python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-only /* * mac80211 TDLS handling code * * Copyright 2006-2010 Johannes Berg <[email protected]> * Copyright 2014, Intel Corporation * Copyright 2014 Intel Mobile Communications GmbH * Copyright 2015 - 2016 Intel Deutschland GmbH * Copyright (C) 2019, 2021-2023 Intel Corporation */ #include <linux/ieee80211.h> #include <linux/log2.h> #include <net/cfg80211.h> #include <linux/rtnetlink.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "wme.h" /* give usermode some time for retries in setting up the TDLS session */ #define TDLS_PEER_SETUP_TIMEOUT (15 * HZ) void ieee80211_tdls_peer_del_work(struct work_struct *wk) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local; sdata = container_of(wk, struct ieee80211_sub_if_data, u.mgd.tdls_peer_del_work.work); local = sdata->local; mutex_lock(&local->mtx); if (!is_zero_ether_addr(sdata->u.mgd.tdls_peer)) { tdls_dbg(sdata, "TDLS del peer %pM\n", sdata->u.mgd.tdls_peer); sta_info_destroy_addr(sdata, sdata->u.mgd.tdls_peer); eth_zero_addr(sdata->u.mgd.tdls_peer); } mutex_unlock(&local->mtx); } static void ieee80211_tdls_add_ext_capab(struct ieee80211_link_data *link, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool chan_switch = local->hw.wiphy->features & NL80211_FEATURE_TDLS_CHANNEL_SWITCH; bool wider_band = ieee80211_hw_check(&local->hw, TDLS_WIDER_BW) && !ifmgd->tdls_wider_bw_prohibited; bool buffer_sta = ieee80211_hw_check(&local->hw, SUPPORTS_TDLS_BUFFER_STA); struct ieee80211_supported_band *sband = ieee80211_get_link_sband(link); bool vht = sband && sband->vht_cap.vht_supported; u8 *pos = skb_put(skb, 10); *pos++ = WLAN_EID_EXT_CAPABILITY; *pos++ = 8; /* len */ *pos++ = 0x0; *pos++ = 0x0; *pos++ = 0x0; *pos++ = (chan_switch ? WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH : 0) | (buffer_sta ? WLAN_EXT_CAPA4_TDLS_BUFFER_STA : 0); *pos++ = WLAN_EXT_CAPA5_TDLS_ENABLED; *pos++ = 0; *pos++ = 0; *pos++ = (vht && wider_band) ? WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED : 0; } static u8 ieee80211_tdls_add_subband(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u16 start, u16 end, u16 spacing) { u8 subband_cnt = 0, ch_cnt = 0; struct ieee80211_channel *ch; struct cfg80211_chan_def chandef; int i, subband_start; struct wiphy *wiphy = sdata->local->hw.wiphy; for (i = start; i <= end; i += spacing) { if (!ch_cnt) subband_start = i; ch = ieee80211_get_channel(sdata->local->hw.wiphy, i); if (ch) { /* we will be active on the channel */ cfg80211_chandef_create(&chandef, ch, NL80211_CHAN_NO_HT); if (cfg80211_reg_can_beacon_relax(wiphy, &chandef, sdata->wdev.iftype)) { ch_cnt++; /* * check if the next channel is also part of * this allowed range */ continue; } } /* * we've reached the end of a range, with allowed channels * found */ if (ch_cnt) { u8 *pos = skb_put(skb, 2); *pos++ = ieee80211_frequency_to_channel(subband_start); *pos++ = ch_cnt; subband_cnt++; ch_cnt = 0; } } /* all channels in the requested range are allowed - add them here */ if (ch_cnt) { u8 *pos = skb_put(skb, 2); *pos++ = ieee80211_frequency_to_channel(subband_start); *pos++ = ch_cnt; subband_cnt++; } return subband_cnt; } static void ieee80211_tdls_add_supp_channels(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { /* * Add possible channels for TDLS. These are channels that are allowed * to be active. */ u8 subband_cnt; u8 *pos = skb_put(skb, 2); *pos++ = WLAN_EID_SUPPORTED_CHANNELS; /* * 5GHz and 2GHz channels numbers can overlap. Ignore this for now, as * this doesn't happen in real world scenarios. */ /* 2GHz, with 5MHz spacing */ subband_cnt = ieee80211_tdls_add_subband(sdata, skb, 2412, 2472, 5); /* 5GHz, with 20MHz spacing */ subband_cnt += ieee80211_tdls_add_subband(sdata, skb, 5000, 5825, 20); /* length */ *pos = 2 * subband_cnt; } static void ieee80211_tdls_add_oper_classes(struct ieee80211_link_data *link, struct sk_buff *skb) { u8 *pos; u8 op_class; if (!ieee80211_chandef_to_operating_class(&link->conf->chandef, &op_class)) return; pos = skb_put(skb, 4); *pos++ = WLAN_EID_SUPPORTED_REGULATORY_CLASSES; *pos++ = 2; /* len */ *pos++ = op_class; *pos++ = op_class; /* give current operating class as alternate too */ } static void ieee80211_tdls_add_bss_coex_ie(struct sk_buff *skb) { u8 *pos = skb_put(skb, 3); *pos++ = WLAN_EID_BSS_COEX_2040; *pos++ = 1; /* len */ *pos++ = WLAN_BSS_COEX_INFORMATION_REQUEST; } static u16 ieee80211_get_tdls_sta_capab(struct ieee80211_link_data *link, u16 status_code) { struct ieee80211_supported_band *sband; /* The capability will be 0 when sending a failure code */ if (status_code != 0) return 0; sband = ieee80211_get_link_sband(link); if (sband && sband->band == NL80211_BAND_2GHZ) { return WLAN_CAPABILITY_SHORT_SLOT_TIME | WLAN_CAPABILITY_SHORT_PREAMBLE; } return 0; } static void ieee80211_tdls_add_link_ie(struct ieee80211_link_data *link, struct sk_buff *skb, const u8 *peer, bool initiator) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_tdls_lnkie *lnkid; const u8 *init_addr, *rsp_addr; if (initiator) { init_addr = sdata->vif.addr; rsp_addr = peer; } else { init_addr = peer; rsp_addr = sdata->vif.addr; } lnkid = skb_put(skb, sizeof(struct ieee80211_tdls_lnkie)); lnkid->ie_type = WLAN_EID_LINK_ID; lnkid->ie_len = sizeof(struct ieee80211_tdls_lnkie) - 2; memcpy(lnkid->bssid, link->u.mgd.bssid, ETH_ALEN); memcpy(lnkid->init_sta, init_addr, ETH_ALEN); memcpy(lnkid->resp_sta, rsp_addr, ETH_ALEN); } static void ieee80211_tdls_add_aid(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { u8 *pos = skb_put(skb, 4); *pos++ = WLAN_EID_AID; *pos++ = 2; /* len */ put_unaligned_le16(sdata->vif.cfg.aid, pos); } /* translate numbering in the WMM parameter IE to the mac80211 notation */ static enum ieee80211_ac_numbers ieee80211_ac_from_wmm(int ac) { switch (ac) { default: WARN_ON_ONCE(1); fallthrough; case 0: return IEEE80211_AC_BE; case 1: return IEEE80211_AC_BK; case 2: return IEEE80211_AC_VI; case 3: return IEEE80211_AC_VO; } } static u8 ieee80211_wmm_aci_aifsn(int aifsn, bool acm, int aci) { u8 ret; ret = aifsn & 0x0f; if (acm) ret |= 0x10; ret |= (aci << 5) & 0x60; return ret; } static u8 ieee80211_wmm_ecw(u16 cw_min, u16 cw_max) { return ((ilog2(cw_min + 1) << 0x0) & 0x0f) | ((ilog2(cw_max + 1) << 0x4) & 0xf0); } static void ieee80211_tdls_add_wmm_param_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_wmm_param_ie *wmm; struct ieee80211_tx_queue_params *txq; int i; wmm = skb_put_zero(skb, sizeof(*wmm)); wmm->element_id = WLAN_EID_VENDOR_SPECIFIC; wmm->len = sizeof(*wmm) - 2; wmm->oui[0] = 0x00; /* Microsoft OUI 00:50:F2 */ wmm->oui[1] = 0x50; wmm->oui[2] = 0xf2; wmm->oui_type = 2; /* WME */ wmm->oui_subtype = 1; /* WME param */ wmm->version = 1; /* WME ver */ wmm->qos_info = 0; /* U-APSD not in use */ /* * Use the EDCA parameters defined for the BSS, or default if the AP * doesn't support it, as mandated by 802.11-2012 section 10.22.4 */ for (i = 0; i < IEEE80211_NUM_ACS; i++) { txq = &sdata->deflink.tx_conf[ieee80211_ac_from_wmm(i)]; wmm->ac[i].aci_aifsn = ieee80211_wmm_aci_aifsn(txq->aifs, txq->acm, i); wmm->ac[i].cw = ieee80211_wmm_ecw(txq->cw_min, txq->cw_max); wmm->ac[i].txop_limit = cpu_to_le16(txq->txop); } } static void ieee80211_tdls_chandef_vht_upgrade(struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { /* IEEE802.11ac-2013 Table E-4 */ u16 centers_80mhz[] = { 5210, 5290, 5530, 5610, 5690, 5775 }; struct cfg80211_chan_def uc = sta->tdls_chandef; enum nl80211_chan_width max_width = ieee80211_sta_cap_chan_bw(&sta->deflink); int i; /* only support upgrading non-narrow channels up to 80Mhz */ if (max_width == NL80211_CHAN_WIDTH_5 || max_width == NL80211_CHAN_WIDTH_10) return; if (max_width > NL80211_CHAN_WIDTH_80) max_width = NL80211_CHAN_WIDTH_80; if (uc.width >= max_width) return; /* * Channel usage constrains in the IEEE802.11ac-2013 specification only * allow expanding a 20MHz channel to 80MHz in a single way. In * addition, there are no 40MHz allowed channels that are not part of * the allowed 80MHz range in the 5GHz spectrum (the relevant one here). */ for (i = 0; i < ARRAY_SIZE(centers_80mhz); i++) if (abs(uc.chan->center_freq - centers_80mhz[i]) <= 30) { uc.center_freq1 = centers_80mhz[i]; uc.center_freq2 = 0; uc.width = NL80211_CHAN_WIDTH_80; break; } if (!uc.center_freq1) return; /* proceed to downgrade the chandef until usable or the same as AP BW */ while (uc.width > max_width || (uc.width > sta->tdls_chandef.width && !cfg80211_reg_can_beacon_relax(sdata->local->hw.wiphy, &uc, sdata->wdev.iftype))) ieee80211_chandef_downgrade(&uc); if (!cfg80211_chandef_identical(&uc, &sta->tdls_chandef)) { tdls_dbg(sdata, "TDLS ch width upgraded %d -> %d\n", sta->tdls_chandef.width, uc.width); /* * the station is not yet authorized when BW upgrade is done, * locking is not required */ sta->tdls_chandef = uc; } } static void ieee80211_tdls_add_setup_start_ies(struct ieee80211_link_data *link, struct sk_buff *skb, const u8 *peer, u8 action_code, bool initiator, const u8 *extra_ies, size_t extra_ies_len) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_supported_band *sband; struct ieee80211_local *local = sdata->local; struct ieee80211_sta_ht_cap ht_cap; struct ieee80211_sta_vht_cap vht_cap; const struct ieee80211_sta_he_cap *he_cap; const struct ieee80211_sta_eht_cap *eht_cap; struct sta_info *sta = NULL; size_t offset = 0, noffset; u8 *pos; sband = ieee80211_get_link_sband(link); if (WARN_ON_ONCE(!sband)) return; ieee80211_add_srates_ie(sdata, skb, false, sband->band); ieee80211_add_ext_srates_ie(sdata, skb, false, sband->band); ieee80211_tdls_add_supp_channels(sdata, skb); /* add any custom IEs that go before Extended Capabilities */ if (extra_ies_len) { static const u8 before_ext_cap[] = { WLAN_EID_SUPP_RATES, WLAN_EID_COUNTRY, WLAN_EID_EXT_SUPP_RATES, WLAN_EID_SUPPORTED_CHANNELS, WLAN_EID_RSN, }; noffset = ieee80211_ie_split(extra_ies, extra_ies_len, before_ext_cap, ARRAY_SIZE(before_ext_cap), offset); skb_put_data(skb, extra_ies + offset, noffset - offset); offset = noffset; } ieee80211_tdls_add_ext_capab(link, skb); /* add the QoS element if we support it */ if (local->hw.queues >= IEEE80211_NUM_ACS && action_code != WLAN_PUB_ACTION_TDLS_DISCOVER_RES) ieee80211_add_wmm_info_ie(skb_put(skb, 9), 0); /* no U-APSD */ /* add any custom IEs that go before HT capabilities */ if (extra_ies_len) { static const u8 before_ht_cap[] = { WLAN_EID_SUPP_RATES, WLAN_EID_COUNTRY, WLAN_EID_EXT_SUPP_RATES, WLAN_EID_SUPPORTED_CHANNELS, WLAN_EID_RSN, WLAN_EID_EXT_CAPABILITY, WLAN_EID_QOS_CAPA, WLAN_EID_FAST_BSS_TRANSITION, WLAN_EID_TIMEOUT_INTERVAL, WLAN_EID_SUPPORTED_REGULATORY_CLASSES, }; noffset = ieee80211_ie_split(extra_ies, extra_ies_len, before_ht_cap, ARRAY_SIZE(before_ht_cap), offset); skb_put_data(skb, extra_ies + offset, noffset - offset); offset = noffset; } /* we should have the peer STA if we're already responding */ if (action_code == WLAN_TDLS_SETUP_RESPONSE) { sta = sta_info_get(sdata, peer); if (WARN_ON_ONCE(!sta)) return; sta->tdls_chandef = link->conf->chandef; } ieee80211_tdls_add_oper_classes(link, skb); /* * with TDLS we can switch channels, and HT-caps are not necessarily * the same on all bands. The specification limits the setup to a * single HT-cap, so use the current band for now. */ memcpy(&ht_cap, &sband->ht_cap, sizeof(ht_cap)); if ((action_code == WLAN_TDLS_SETUP_REQUEST || action_code == WLAN_PUB_ACTION_TDLS_DISCOVER_RES) && ht_cap.ht_supported) { ieee80211_apply_htcap_overrides(sdata, &ht_cap); /* disable SMPS in TDLS initiator */ ht_cap.cap |= WLAN_HT_CAP_SM_PS_DISABLED << IEEE80211_HT_CAP_SM_PS_SHIFT; pos = skb_put(skb, sizeof(struct ieee80211_ht_cap) + 2); ieee80211_ie_build_ht_cap(pos, &ht_cap, ht_cap.cap); } else if (action_code == WLAN_TDLS_SETUP_RESPONSE && ht_cap.ht_supported && sta->sta.deflink.ht_cap.ht_supported) { /* the peer caps are already intersected with our own */ memcpy(&ht_cap, &sta->sta.deflink.ht_cap, sizeof(ht_cap)); pos = skb_put(skb, sizeof(struct ieee80211_ht_cap) + 2); ieee80211_ie_build_ht_cap(pos, &ht_cap, ht_cap.cap); } if (ht_cap.ht_supported && (ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)) ieee80211_tdls_add_bss_coex_ie(skb); ieee80211_tdls_add_link_ie(link, skb, peer, initiator); /* add any custom IEs that go before VHT capabilities */ if (extra_ies_len) { static const u8 before_vht_cap[] = { WLAN_EID_SUPP_RATES, WLAN_EID_COUNTRY, WLAN_EID_EXT_SUPP_RATES, WLAN_EID_SUPPORTED_CHANNELS, WLAN_EID_RSN, WLAN_EID_EXT_CAPABILITY, WLAN_EID_QOS_CAPA, WLAN_EID_FAST_BSS_TRANSITION, WLAN_EID_TIMEOUT_INTERVAL, WLAN_EID_SUPPORTED_REGULATORY_CLASSES, WLAN_EID_MULTI_BAND, }; noffset = ieee80211_ie_split(extra_ies, extra_ies_len, before_vht_cap, ARRAY_SIZE(before_vht_cap), offset); skb_put_data(skb, extra_ies + offset, noffset - offset); offset = noffset; } /* add AID if VHT, HE or EHT capabilities supported */ memcpy(&vht_cap, &sband->vht_cap, sizeof(vht_cap)); he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); if ((vht_cap.vht_supported || he_cap || eht_cap) && (action_code == WLAN_TDLS_SETUP_REQUEST || action_code == WLAN_TDLS_SETUP_RESPONSE)) ieee80211_tdls_add_aid(sdata, skb); /* build the VHT-cap similarly to the HT-cap */ if ((action_code == WLAN_TDLS_SETUP_REQUEST || action_code == WLAN_PUB_ACTION_TDLS_DISCOVER_RES) && vht_cap.vht_supported) { ieee80211_apply_vhtcap_overrides(sdata, &vht_cap); pos = skb_put(skb, sizeof(struct ieee80211_vht_cap) + 2); ieee80211_ie_build_vht_cap(pos, &vht_cap, vht_cap.cap); } else if (action_code == WLAN_TDLS_SETUP_RESPONSE && vht_cap.vht_supported && sta->sta.deflink.vht_cap.vht_supported) { /* the peer caps are already intersected with our own */ memcpy(&vht_cap, &sta->sta.deflink.vht_cap, sizeof(vht_cap)); pos = skb_put(skb, sizeof(struct ieee80211_vht_cap) + 2); ieee80211_ie_build_vht_cap(pos, &vht_cap, vht_cap.cap); /* * if both peers support WIDER_BW, we can expand the chandef to * a wider compatible one, up to 80MHz */ if (test_sta_flag(sta, WLAN_STA_TDLS_WIDER_BW)) ieee80211_tdls_chandef_vht_upgrade(sdata, sta); } /* add any custom IEs that go before HE capabilities */ if (extra_ies_len) { static const u8 before_he_cap[] = { WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, WLAN_EID_AP_CSN, }; noffset = ieee80211_ie_split(extra_ies, extra_ies_len, before_he_cap, ARRAY_SIZE(before_he_cap), offset); skb_put_data(skb, extra_ies + offset, noffset - offset); offset = noffset; } /* build the HE-cap from sband */ if (he_cap && (action_code == WLAN_TDLS_SETUP_REQUEST || action_code == WLAN_TDLS_SETUP_RESPONSE || action_code == WLAN_PUB_ACTION_TDLS_DISCOVER_RES)) { __le16 he_6ghz_capa; u8 cap_size; cap_size = 2 + 1 + sizeof(he_cap->he_cap_elem) + ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem) + ieee80211_he_ppe_size(he_cap->ppe_thres[0], he_cap->he_cap_elem.phy_cap_info); pos = skb_put(skb, cap_size); pos = ieee80211_ie_build_he_cap(0, pos, he_cap, pos + cap_size); /* Build HE 6Ghz capa IE from sband */ if (sband->band == NL80211_BAND_6GHZ) { cap_size = 2 + 1 + sizeof(struct ieee80211_he_6ghz_capa); pos = skb_put(skb, cap_size); he_6ghz_capa = ieee80211_get_he_6ghz_capa_vif(sband, &sdata->vif); pos = ieee80211_write_he_6ghz_cap(pos, he_6ghz_capa, pos + cap_size); } } /* add any custom IEs that go before EHT capabilities */ if (extra_ies_len) { static const u8 before_he_cap[] = { WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, WLAN_EID_AP_CSN, }; noffset = ieee80211_ie_split(extra_ies, extra_ies_len, before_he_cap, ARRAY_SIZE(before_he_cap), offset); skb_put_data(skb, extra_ies + offset, noffset - offset); offset = noffset; } /* build the EHT-cap from sband */ if (he_cap && eht_cap && (action_code == WLAN_TDLS_SETUP_REQUEST || action_code == WLAN_TDLS_SETUP_RESPONSE || action_code == WLAN_PUB_ACTION_TDLS_DISCOVER_RES)) { u8 cap_size; cap_size = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, &eht_cap->eht_cap_elem, false) + ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], eht_cap->eht_cap_elem.phy_cap_info); pos = skb_put(skb, cap_size); ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, pos + cap_size, false); } /* add any remaining IEs */ if (extra_ies_len) { noffset = extra_ies_len; skb_put_data(skb, extra_ies + offset, noffset - offset); } } static void ieee80211_tdls_add_setup_cfm_ies(struct ieee80211_link_data *link, struct sk_buff *skb, const u8 *peer, bool initiator, const u8 *extra_ies, size_t extra_ies_len) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; size_t offset = 0, noffset; struct sta_info *sta, *ap_sta; struct ieee80211_supported_band *sband; u8 *pos; sband = ieee80211_get_link_sband(link); if (WARN_ON_ONCE(!sband)) return; sta = sta_info_get(sdata, peer); ap_sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (WARN_ON_ONCE(!sta || !ap_sta)) return; sta->tdls_chandef = link->conf->chandef; /* add any custom IEs that go before the QoS IE */ if (extra_ies_len) { static const u8 before_qos[] = { WLAN_EID_RSN, }; noffset = ieee80211_ie_split(extra_ies, extra_ies_len, before_qos, ARRAY_SIZE(before_qos), offset); skb_put_data(skb, extra_ies + offset, noffset - offset); offset = noffset; } /* add the QoS param IE if both the peer and we support it */ if (local->hw.queues >= IEEE80211_NUM_ACS && sta->sta.wme) ieee80211_tdls_add_wmm_param_ie(sdata, skb); /* add any custom IEs that go before HT operation */ if (extra_ies_len) { static const u8 before_ht_op[] = { WLAN_EID_RSN, WLAN_EID_QOS_CAPA, WLAN_EID_FAST_BSS_TRANSITION, WLAN_EID_TIMEOUT_INTERVAL, }; noffset = ieee80211_ie_split(extra_ies, extra_ies_len, before_ht_op, ARRAY_SIZE(before_ht_op), offset); skb_put_data(skb, extra_ies + offset, noffset - offset); offset = noffset; } /* * if HT support is only added in TDLS, we need an HT-operation IE. * add the IE as required by IEEE802.11-2012 9.23.3.2. */ if (!ap_sta->sta.deflink.ht_cap.ht_supported && sta->sta.deflink.ht_cap.ht_supported) { u16 prot = IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED | IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT | IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT; pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_operation)); ieee80211_ie_build_ht_oper(pos, &sta->sta.deflink.ht_cap, &link->conf->chandef, prot, true); } ieee80211_tdls_add_link_ie(link, skb, peer, initiator); /* only include VHT-operation if not on the 2.4GHz band */ if (sband->band != NL80211_BAND_2GHZ && sta->sta.deflink.vht_cap.vht_supported) { /* * if both peers support WIDER_BW, we can expand the chandef to * a wider compatible one, up to 80MHz */ if (test_sta_flag(sta, WLAN_STA_TDLS_WIDER_BW)) ieee80211_tdls_chandef_vht_upgrade(sdata, sta); pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_operation)); ieee80211_ie_build_vht_oper(pos, &sta->sta.deflink.vht_cap, &sta->tdls_chandef); } /* add any remaining IEs */ if (extra_ies_len) { noffset = extra_ies_len; skb_put_data(skb, extra_ies + offset, noffset - offset); } } static void ieee80211_tdls_add_chan_switch_req_ies(struct ieee80211_link_data *link, struct sk_buff *skb, const u8 *peer, bool initiator, const u8 *extra_ies, size_t extra_ies_len, u8 oper_class, struct cfg80211_chan_def *chandef) { struct ieee80211_tdls_data *tf; size_t offset = 0, noffset; if (WARN_ON_ONCE(!chandef)) return; tf = (void *)skb->data; tf->u.chan_switch_req.target_channel = ieee80211_frequency_to_channel(chandef->chan->center_freq); tf->u.chan_switch_req.oper_class = oper_class; if (extra_ies_len) { static const u8 before_lnkie[] = { WLAN_EID_SECONDARY_CHANNEL_OFFSET, }; noffset = ieee80211_ie_split(extra_ies, extra_ies_len, before_lnkie, ARRAY_SIZE(before_lnkie), offset); skb_put_data(skb, extra_ies + offset, noffset - offset); offset = noffset; } ieee80211_tdls_add_link_ie(link, skb, peer, initiator); /* add any remaining IEs */ if (extra_ies_len) { noffset = extra_ies_len; skb_put_data(skb, extra_ies + offset, noffset - offset); } } static void ieee80211_tdls_add_chan_switch_resp_ies(struct ieee80211_link_data *link, struct sk_buff *skb, const u8 *peer, u16 status_code, bool initiator, const u8 *extra_ies, size_t extra_ies_len) { if (status_code == 0) ieee80211_tdls_add_link_ie(link, skb, peer, initiator); if (extra_ies_len) skb_put_data(skb, extra_ies, extra_ies_len); } static void ieee80211_tdls_add_ies(struct ieee80211_link_data *link, struct sk_buff *skb, const u8 *peer, u8 action_code, u16 status_code, bool initiator, const u8 *extra_ies, size_t extra_ies_len, u8 oper_class, struct cfg80211_chan_def *chandef) { switch (action_code) { case WLAN_TDLS_SETUP_REQUEST: case WLAN_TDLS_SETUP_RESPONSE: case WLAN_PUB_ACTION_TDLS_DISCOVER_RES: if (status_code == 0) ieee80211_tdls_add_setup_start_ies(link, skb, peer, action_code, initiator, extra_ies, extra_ies_len); break; case WLAN_TDLS_SETUP_CONFIRM: if (status_code == 0) ieee80211_tdls_add_setup_cfm_ies(link, skb, peer, initiator, extra_ies, extra_ies_len); break; case WLAN_TDLS_TEARDOWN: case WLAN_TDLS_DISCOVERY_REQUEST: if (extra_ies_len) skb_put_data(skb, extra_ies, extra_ies_len); if (status_code == 0 || action_code == WLAN_TDLS_TEARDOWN) ieee80211_tdls_add_link_ie(link, skb, peer, initiator); break; case WLAN_TDLS_CHANNEL_SWITCH_REQUEST: ieee80211_tdls_add_chan_switch_req_ies(link, skb, peer, initiator, extra_ies, extra_ies_len, oper_class, chandef); break; case WLAN_TDLS_CHANNEL_SWITCH_RESPONSE: ieee80211_tdls_add_chan_switch_resp_ies(link, skb, peer, status_code, initiator, extra_ies, extra_ies_len); break; } } static int ieee80211_prep_tdls_encap_data(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_link_data *link, const u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_tdls_data *tf; tf = skb_put(skb, offsetof(struct ieee80211_tdls_data, u)); memcpy(tf->da, peer, ETH_ALEN); memcpy(tf->sa, sdata->vif.addr, ETH_ALEN); tf->ether_type = cpu_to_be16(ETH_P_TDLS); tf->payload_type = WLAN_TDLS_SNAP_RFTYPE; /* network header is after the ethernet header */ skb_set_network_header(skb, ETH_HLEN); switch (action_code) { case WLAN_TDLS_SETUP_REQUEST: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_SETUP_REQUEST; skb_put(skb, sizeof(tf->u.setup_req)); tf->u.setup_req.dialog_token = dialog_token; tf->u.setup_req.capability = cpu_to_le16(ieee80211_get_tdls_sta_capab(link, status_code)); break; case WLAN_TDLS_SETUP_RESPONSE: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_SETUP_RESPONSE; skb_put(skb, sizeof(tf->u.setup_resp)); tf->u.setup_resp.status_code = cpu_to_le16(status_code); tf->u.setup_resp.dialog_token = dialog_token; tf->u.setup_resp.capability = cpu_to_le16(ieee80211_get_tdls_sta_capab(link, status_code)); break; case WLAN_TDLS_SETUP_CONFIRM: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_SETUP_CONFIRM; skb_put(skb, sizeof(tf->u.setup_cfm)); tf->u.setup_cfm.status_code = cpu_to_le16(status_code); tf->u.setup_cfm.dialog_token = dialog_token; break; case WLAN_TDLS_TEARDOWN: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_TEARDOWN; skb_put(skb, sizeof(tf->u.teardown)); tf->u.teardown.reason_code = cpu_to_le16(status_code); break; case WLAN_TDLS_DISCOVERY_REQUEST: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_DISCOVERY_REQUEST; skb_put(skb, sizeof(tf->u.discover_req)); tf->u.discover_req.dialog_token = dialog_token; break; case WLAN_TDLS_CHANNEL_SWITCH_REQUEST: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_CHANNEL_SWITCH_REQUEST; skb_put(skb, sizeof(tf->u.chan_switch_req)); break; case WLAN_TDLS_CHANNEL_SWITCH_RESPONSE: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_CHANNEL_SWITCH_RESPONSE; skb_put(skb, sizeof(tf->u.chan_switch_resp)); tf->u.chan_switch_resp.status_code = cpu_to_le16(status_code); break; default: return -EINVAL; } return 0; } static int ieee80211_prep_tdls_direct(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, struct ieee80211_link_data *link, u8 action_code, u8 dialog_token, u16 status_code, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_mgmt *mgmt; mgmt = skb_put_zero(skb, 24); memcpy(mgmt->da, peer, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, link->u.mgd.bssid, ETH_ALEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); switch (action_code) { case WLAN_PUB_ACTION_TDLS_DISCOVER_RES: skb_put(skb, 1 + sizeof(mgmt->u.action.u.tdls_discover_resp)); mgmt->u.action.category = WLAN_CATEGORY_PUBLIC; mgmt->u.action.u.tdls_discover_resp.action_code = WLAN_PUB_ACTION_TDLS_DISCOVER_RES; mgmt->u.action.u.tdls_discover_resp.dialog_token = dialog_token; mgmt->u.action.u.tdls_discover_resp.capability = cpu_to_le16(ieee80211_get_tdls_sta_capab(link, status_code)); break; default: return -EINVAL; } return 0; } static struct sk_buff * ieee80211_tdls_build_mgmt_packet_data(struct ieee80211_sub_if_data *sdata, const u8 *peer, int link_id, u8 action_code, u8 dialog_token, u16 status_code, bool initiator, const u8 *extra_ies, size_t extra_ies_len, u8 oper_class, struct cfg80211_chan_def *chandef) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; int ret; struct ieee80211_link_data *link; link_id = link_id >= 0 ? link_id : 0; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) goto unlock; skb = netdev_alloc_skb(sdata->dev, local->hw.extra_tx_headroom + max(sizeof(struct ieee80211_mgmt), sizeof(struct ieee80211_tdls_data)) + 50 + /* supported rates */ 10 + /* ext capab */ 26 + /* max(WMM-info, WMM-param) */ 2 + max(sizeof(struct ieee80211_ht_cap), sizeof(struct ieee80211_ht_operation)) + 2 + max(sizeof(struct ieee80211_vht_cap), sizeof(struct ieee80211_vht_operation)) + 2 + 1 + sizeof(struct ieee80211_he_cap_elem) + sizeof(struct ieee80211_he_mcs_nss_supp) + IEEE80211_HE_PPE_THRES_MAX_LEN + 2 + 1 + sizeof(struct ieee80211_he_6ghz_capa) + 2 + 1 + sizeof(struct ieee80211_eht_cap_elem) + sizeof(struct ieee80211_eht_mcs_nss_supp) + IEEE80211_EHT_PPE_THRES_MAX_LEN + 50 + /* supported channels */ 3 + /* 40/20 BSS coex */ 4 + /* AID */ 4 + /* oper classes */ extra_ies_len + sizeof(struct ieee80211_tdls_lnkie)); if (!skb) goto unlock; skb_reserve(skb, local->hw.extra_tx_headroom); switch (action_code) { case WLAN_TDLS_SETUP_REQUEST: case WLAN_TDLS_SETUP_RESPONSE: case WLAN_TDLS_SETUP_CONFIRM: case WLAN_TDLS_TEARDOWN: case WLAN_TDLS_DISCOVERY_REQUEST: case WLAN_TDLS_CHANNEL_SWITCH_REQUEST: case WLAN_TDLS_CHANNEL_SWITCH_RESPONSE: ret = ieee80211_prep_tdls_encap_data(local->hw.wiphy, sdata->dev, link, peer, action_code, dialog_token, status_code, skb); break; case WLAN_PUB_ACTION_TDLS_DISCOVER_RES: ret = ieee80211_prep_tdls_direct(local->hw.wiphy, sdata->dev, peer, link, action_code, dialog_token, status_code, skb); break; default: ret = -ENOTSUPP; break; } if (ret < 0) goto fail; ieee80211_tdls_add_ies(link, skb, peer, action_code, status_code, initiator, extra_ies, extra_ies_len, oper_class, chandef); rcu_read_unlock(); return skb; fail: dev_kfree_skb(skb); unlock: rcu_read_unlock(); return NULL; } static int ieee80211_tdls_prep_mgmt_packet(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, int link_id, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *extra_ies, size_t extra_ies_len, u8 oper_class, struct cfg80211_chan_def *chandef) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct sk_buff *skb = NULL; struct sta_info *sta; u32 flags = 0; int ret = 0; rcu_read_lock(); sta = sta_info_get(sdata, peer); /* infer the initiator if we can, to support old userspace */ switch (action_code) { case WLAN_TDLS_SETUP_REQUEST: if (sta) { set_sta_flag(sta, WLAN_STA_TDLS_INITIATOR); sta->sta.tdls_initiator = false; } fallthrough; case WLAN_TDLS_SETUP_CONFIRM: case WLAN_TDLS_DISCOVERY_REQUEST: initiator = true; break; case WLAN_TDLS_SETUP_RESPONSE: /* * In some testing scenarios, we send a request and response. * Make the last packet sent take effect for the initiator * value. */ if (sta) { clear_sta_flag(sta, WLAN_STA_TDLS_INITIATOR); sta->sta.tdls_initiator = true; } fallthrough; case WLAN_PUB_ACTION_TDLS_DISCOVER_RES: initiator = false; break; case WLAN_TDLS_TEARDOWN: case WLAN_TDLS_CHANNEL_SWITCH_REQUEST: case WLAN_TDLS_CHANNEL_SWITCH_RESPONSE: /* any value is ok */ break; default: ret = -ENOTSUPP; break; } if (sta && test_sta_flag(sta, WLAN_STA_TDLS_INITIATOR)) initiator = true; rcu_read_unlock(); if (ret < 0) goto fail; skb = ieee80211_tdls_build_mgmt_packet_data(sdata, peer, link_id, action_code, dialog_token, status_code, initiator, extra_ies, extra_ies_len, oper_class, chandef); if (!skb) { ret = -EINVAL; goto fail; } if (action_code == WLAN_PUB_ACTION_TDLS_DISCOVER_RES) { ieee80211_tx_skb_tid(sdata, skb, 7, link_id); return 0; } /* * According to 802.11z: Setup req/resp are sent in AC_BK, otherwise * we should default to AC_VI. */ switch (action_code) { case WLAN_TDLS_SETUP_REQUEST: case WLAN_TDLS_SETUP_RESPONSE: skb->priority = 256 + 2; break; default: skb->priority = 256 + 5; break; } /* * Set the WLAN_TDLS_TEARDOWN flag to indicate a teardown in progress. * Later, if no ACK is returned from peer, we will re-send the teardown * packet through the AP. */ if ((action_code == WLAN_TDLS_TEARDOWN) && ieee80211_hw_check(&sdata->local->hw, REPORTS_TX_ACK_STATUS)) { bool try_resend; /* Should we keep skb for possible resend */ /* If not sending directly to peer - no point in keeping skb */ rcu_read_lock(); sta = sta_info_get(sdata, peer); try_resend = sta && test_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH); rcu_read_unlock(); spin_lock_bh(&sdata->u.mgd.teardown_lock); if (try_resend && !sdata->u.mgd.teardown_skb) { /* Mark it as requiring TX status callback */ flags |= IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_MLME_CONN_TX; /* * skb is copied since mac80211 will later set * properties that might not be the same as the AP, * such as encryption, QoS, addresses, etc. * * No problem if skb_copy() fails, so no need to check. */ sdata->u.mgd.teardown_skb = skb_copy(skb, GFP_ATOMIC); sdata->u.mgd.orig_teardown_skb = skb; } spin_unlock_bh(&sdata->u.mgd.teardown_lock); } /* disable bottom halves when entering the Tx path */ local_bh_disable(); __ieee80211_subif_start_xmit(skb, dev, flags, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); local_bh_enable(); return ret; fail: dev_kfree_skb(skb); return ret; } static int ieee80211_tdls_mgmt_setup(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, int link_id, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *extra_ies, size_t extra_ies_len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; enum ieee80211_smps_mode smps_mode = sdata->deflink.u.mgd.driver_smps_mode; int ret; /* don't support setup with forced SMPS mode that's not off */ if (smps_mode != IEEE80211_SMPS_AUTOMATIC && smps_mode != IEEE80211_SMPS_OFF) { tdls_dbg(sdata, "Aborting TDLS setup due to SMPS mode %d\n", smps_mode); return -ENOTSUPP; } mutex_lock(&local->mtx); /* we don't support concurrent TDLS peer setups */ if (!is_zero_ether_addr(sdata->u.mgd.tdls_peer) && !ether_addr_equal(sdata->u.mgd.tdls_peer, peer)) { ret = -EBUSY; goto out_unlock; } /* * make sure we have a STA representing the peer so we drop or buffer * non-TDLS-setup frames to the peer. We can't send other packets * during setup through the AP path. * Allow error packets to be sent - sometimes we don't even add a STA * before failing the setup. */ if (status_code == 0) { rcu_read_lock(); if (!sta_info_get(sdata, peer)) { rcu_read_unlock(); ret = -ENOLINK; goto out_unlock; } rcu_read_unlock(); } ieee80211_flush_queues(local, sdata, false); memcpy(sdata->u.mgd.tdls_peer, peer, ETH_ALEN); mutex_unlock(&local->mtx); /* we cannot take the mutex while preparing the setup packet */ ret = ieee80211_tdls_prep_mgmt_packet(wiphy, dev, peer, link_id, action_code, dialog_token, status_code, peer_capability, initiator, extra_ies, extra_ies_len, 0, NULL); if (ret < 0) { mutex_lock(&local->mtx); eth_zero_addr(sdata->u.mgd.tdls_peer); mutex_unlock(&local->mtx); return ret; } ieee80211_queue_delayed_work(&sdata->local->hw, &sdata->u.mgd.tdls_peer_del_work, TDLS_PEER_SETUP_TIMEOUT); return 0; out_unlock: mutex_unlock(&local->mtx); return ret; } static int ieee80211_tdls_mgmt_teardown(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, int link_id, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *extra_ies, size_t extra_ies_len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; int ret; /* * No packets can be transmitted to the peer via the AP during setup - * the STA is set as a TDLS peer, but is not authorized. * During teardown, we prevent direct transmissions by stopping the * queues and flushing all direct packets. */ ieee80211_stop_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_TDLS_TEARDOWN); ieee80211_flush_queues(local, sdata, false); ret = ieee80211_tdls_prep_mgmt_packet(wiphy, dev, peer, link_id, action_code, dialog_token, status_code, peer_capability, initiator, extra_ies, extra_ies_len, 0, NULL); if (ret < 0) sdata_err(sdata, "Failed sending TDLS teardown packet %d\n", ret); /* * Remove the STA AUTH flag to force further traffic through the AP. If * the STA was unreachable, it was already removed. */ rcu_read_lock(); sta = sta_info_get(sdata, peer); if (sta) clear_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH); rcu_read_unlock(); ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_TDLS_TEARDOWN); return 0; } int ieee80211_tdls_mgmt(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, int link_id, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *extra_ies, size_t extra_ies_len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int ret; if (!(wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS)) return -ENOTSUPP; /* make sure we are in managed mode, and associated */ if (sdata->vif.type != NL80211_IFTYPE_STATION || !sdata->u.mgd.associated) return -EINVAL; switch (action_code) { case WLAN_TDLS_SETUP_REQUEST: case WLAN_TDLS_SETUP_RESPONSE: ret = ieee80211_tdls_mgmt_setup(wiphy, dev, peer, link_id, action_code, dialog_token, status_code, peer_capability, initiator, extra_ies, extra_ies_len); break; case WLAN_TDLS_TEARDOWN: ret = ieee80211_tdls_mgmt_teardown(wiphy, dev, peer, link_id, action_code, dialog_token, status_code, peer_capability, initiator, extra_ies, extra_ies_len); break; case WLAN_TDLS_DISCOVERY_REQUEST: /* * Protect the discovery so we can hear the TDLS discovery * response frame. It is transmitted directly and not buffered * by the AP. */ drv_mgd_protect_tdls_discover(sdata->local, sdata); fallthrough; case WLAN_TDLS_SETUP_CONFIRM: case WLAN_PUB_ACTION_TDLS_DISCOVER_RES: /* no special handling */ ret = ieee80211_tdls_prep_mgmt_packet(wiphy, dev, peer, link_id, action_code, dialog_token, status_code, peer_capability, initiator, extra_ies, extra_ies_len, 0, NULL); break; default: ret = -EOPNOTSUPP; break; } tdls_dbg(sdata, "TDLS mgmt action %d peer %pM link_id %d status %d\n", action_code, peer, link_id, ret); return ret; } static void iee80211_tdls_recalc_chanctx(struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *conf; struct ieee80211_chanctx *ctx; enum nl80211_chan_width width; struct ieee80211_supported_band *sband; mutex_lock(&local->chanctx_mtx); conf = rcu_dereference_protected(sdata->vif.bss_conf.chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); if (conf) { width = conf->def.width; sband = local->hw.wiphy->bands[conf->def.chan->band]; ctx = container_of(conf, struct ieee80211_chanctx, conf); ieee80211_recalc_chanctx_chantype(local, ctx); /* if width changed and a peer is given, update its BW */ if (width != conf->def.width && sta && test_sta_flag(sta, WLAN_STA_TDLS_WIDER_BW)) { enum ieee80211_sta_rx_bandwidth bw; bw = ieee80211_chan_width_to_rx_bw(conf->def.width); bw = min(bw, ieee80211_sta_cap_rx_bw(&sta->deflink)); if (bw != sta->sta.deflink.bandwidth) { sta->sta.deflink.bandwidth = bw; rate_control_rate_update(local, sband, sta, 0, IEEE80211_RC_BW_CHANGED); /* * if a TDLS peer BW was updated, we need to * recalc the chandef width again, to get the * correct chanctx min_def */ ieee80211_recalc_chanctx_chantype(local, ctx); } } } mutex_unlock(&local->chanctx_mtx); } static int iee80211_tdls_have_ht_peers(struct ieee80211_sub_if_data *sdata) { struct sta_info *sta; bool result = false; rcu_read_lock(); list_for_each_entry_rcu(sta, &sdata->local->sta_list, list) { if (!sta->sta.tdls || sta->sdata != sdata || !sta->uploaded || !test_sta_flag(sta, WLAN_STA_AUTHORIZED) || !test_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH) || !sta->sta.deflink.ht_cap.ht_supported) continue; result = true; break; } rcu_read_unlock(); return result; } static void iee80211_tdls_recalc_ht_protection(struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { bool tdls_ht; u16 protection = IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED | IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT | IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT; u16 opmode; /* Nothing to do if the BSS connection uses HT */ if (!(sdata->deflink.u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HT)) return; tdls_ht = (sta && sta->sta.deflink.ht_cap.ht_supported) || iee80211_tdls_have_ht_peers(sdata); opmode = sdata->vif.bss_conf.ht_operation_mode; if (tdls_ht) opmode |= protection; else opmode &= ~protection; if (opmode == sdata->vif.bss_conf.ht_operation_mode) return; sdata->vif.bss_conf.ht_operation_mode = opmode; ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_HT); } int ieee80211_tdls_oper(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, enum nl80211_tdls_operation oper) { struct sta_info *sta; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; int ret; if (!(wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS)) return -ENOTSUPP; if (sdata->vif.type != NL80211_IFTYPE_STATION) return -EINVAL; switch (oper) { case NL80211_TDLS_ENABLE_LINK: case NL80211_TDLS_DISABLE_LINK: break; case NL80211_TDLS_TEARDOWN: case NL80211_TDLS_SETUP: case NL80211_TDLS_DISCOVERY_REQ: /* We don't support in-driver setup/teardown/discovery */ return -ENOTSUPP; } /* protect possible bss_conf changes and avoid concurrency in * ieee80211_bss_info_change_notify() */ sdata_lock(sdata); mutex_lock(&local->mtx); tdls_dbg(sdata, "TDLS oper %d peer %pM\n", oper, peer); switch (oper) { case NL80211_TDLS_ENABLE_LINK: if (sdata->vif.bss_conf.csa_active) { tdls_dbg(sdata, "TDLS: disallow link during CSA\n"); ret = -EBUSY; break; } mutex_lock(&local->sta_mtx); sta = sta_info_get(sdata, peer); if (!sta) { mutex_unlock(&local->sta_mtx); ret = -ENOLINK; break; } iee80211_tdls_recalc_chanctx(sdata, sta); iee80211_tdls_recalc_ht_protection(sdata, sta); set_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH); mutex_unlock(&local->sta_mtx); WARN_ON_ONCE(is_zero_ether_addr(sdata->u.mgd.tdls_peer) || !ether_addr_equal(sdata->u.mgd.tdls_peer, peer)); ret = 0; break; case NL80211_TDLS_DISABLE_LINK: /* * The teardown message in ieee80211_tdls_mgmt_teardown() was * created while the queues were stopped, so it might still be * pending. Before flushing the queues we need to be sure the * message is handled by the tasklet handling pending messages, * otherwise we might start destroying the station before * sending the teardown packet. * Note that this only forces the tasklet to flush pendings - * not to stop the tasklet from rescheduling itself. */ tasklet_kill(&local->tx_pending_tasklet); /* flush a potentially queued teardown packet */ ieee80211_flush_queues(local, sdata, false); ret = sta_info_destroy_addr(sdata, peer); mutex_lock(&local->sta_mtx); iee80211_tdls_recalc_ht_protection(sdata, NULL); mutex_unlock(&local->sta_mtx); iee80211_tdls_recalc_chanctx(sdata, NULL); break; default: ret = -ENOTSUPP; break; } if (ret == 0 && ether_addr_equal(sdata->u.mgd.tdls_peer, peer)) { cancel_delayed_work(&sdata->u.mgd.tdls_peer_del_work); eth_zero_addr(sdata->u.mgd.tdls_peer); } if (ret == 0) wiphy_work_queue(sdata->local->hw.wiphy, &sdata->deflink.u.mgd.request_smps_work); mutex_unlock(&local->mtx); sdata_unlock(sdata); return ret; } void ieee80211_tdls_oper_request(struct ieee80211_vif *vif, const u8 *peer, enum nl80211_tdls_operation oper, u16 reason_code, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc) { sdata_err(sdata, "Discarding TDLS oper %d - not STA or disconnected\n", oper); return; } cfg80211_tdls_oper_request(sdata->dev, peer, oper, reason_code, gfp); } EXPORT_SYMBOL(ieee80211_tdls_oper_request); static void iee80211_tdls_add_ch_switch_timing(u8 *buf, u16 switch_time, u16 switch_timeout) { struct ieee80211_ch_switch_timing *ch_sw; *buf++ = WLAN_EID_CHAN_SWITCH_TIMING; *buf++ = sizeof(struct ieee80211_ch_switch_timing); ch_sw = (void *)buf; ch_sw->switch_time = cpu_to_le16(switch_time); ch_sw->switch_timeout = cpu_to_le16(switch_timeout); } /* find switch timing IE in SKB ready for Tx */ static const u8 *ieee80211_tdls_find_sw_timing_ie(struct sk_buff *skb) { struct ieee80211_tdls_data *tf; const u8 *ie_start; /* * Get the offset for the new location of the switch timing IE. * The SKB network header will now point to the "payload_type" * element of the TDLS data frame struct. */ tf = container_of(skb->data + skb_network_offset(skb), struct ieee80211_tdls_data, payload_type); ie_start = tf->u.chan_switch_req.variable; return cfg80211_find_ie(WLAN_EID_CHAN_SWITCH_TIMING, ie_start, skb->len - (ie_start - skb->data)); } static struct sk_buff * ieee80211_tdls_ch_sw_tmpl_get(struct sta_info *sta, u8 oper_class, struct cfg80211_chan_def *chandef, u32 *ch_sw_tm_ie_offset) { struct ieee80211_sub_if_data *sdata = sta->sdata; u8 extra_ies[2 + sizeof(struct ieee80211_sec_chan_offs_ie) + 2 + sizeof(struct ieee80211_ch_switch_timing)]; int extra_ies_len = 2 + sizeof(struct ieee80211_ch_switch_timing); u8 *pos = extra_ies; struct sk_buff *skb; int link_id = sta->sta.valid_links ? ffs(sta->sta.valid_links) - 1 : 0; /* * if chandef points to a wide channel add a Secondary-Channel * Offset information element */ if (chandef->width == NL80211_CHAN_WIDTH_40) { struct ieee80211_sec_chan_offs_ie *sec_chan_ie; bool ht40plus; *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; *pos++ = sizeof(*sec_chan_ie); sec_chan_ie = (void *)pos; ht40plus = cfg80211_get_chandef_type(chandef) == NL80211_CHAN_HT40PLUS; sec_chan_ie->sec_chan_offs = ht40plus ? IEEE80211_HT_PARAM_CHA_SEC_ABOVE : IEEE80211_HT_PARAM_CHA_SEC_BELOW; pos += sizeof(*sec_chan_ie); extra_ies_len += 2 + sizeof(struct ieee80211_sec_chan_offs_ie); } /* just set the values to 0, this is a template */ iee80211_tdls_add_ch_switch_timing(pos, 0, 0); skb = ieee80211_tdls_build_mgmt_packet_data(sdata, sta->sta.addr, link_id, WLAN_TDLS_CHANNEL_SWITCH_REQUEST, 0, 0, !sta->sta.tdls_initiator, extra_ies, extra_ies_len, oper_class, chandef); if (!skb) return NULL; skb = ieee80211_build_data_template(sdata, skb, 0); if (IS_ERR(skb)) { tdls_dbg(sdata, "Failed building TDLS channel switch frame\n"); return NULL; } if (ch_sw_tm_ie_offset) { const u8 *tm_ie = ieee80211_tdls_find_sw_timing_ie(skb); if (!tm_ie) { tdls_dbg(sdata, "No switch timing IE in TDLS switch\n"); dev_kfree_skb_any(skb); return NULL; } *ch_sw_tm_ie_offset = tm_ie - skb->data; } tdls_dbg(sdata, "TDLS channel switch request template for %pM ch %d width %d\n", sta->sta.addr, chandef->chan->center_freq, chandef->width); return skb; } int ieee80211_tdls_channel_switch(struct wiphy *wiphy, struct net_device *dev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct sk_buff *skb = NULL; u32 ch_sw_tm_ie; int ret; if (chandef->chan->freq_offset) /* this may work, but is untested */ return -EOPNOTSUPP; mutex_lock(&local->sta_mtx); sta = sta_info_get(sdata, addr); if (!sta) { tdls_dbg(sdata, "Invalid TDLS peer %pM for channel switch request\n", addr); ret = -ENOENT; goto out; } if (!test_sta_flag(sta, WLAN_STA_TDLS_CHAN_SWITCH)) { tdls_dbg(sdata, "TDLS channel switch unsupported by %pM\n", addr); ret = -ENOTSUPP; goto out; } skb = ieee80211_tdls_ch_sw_tmpl_get(sta, oper_class, chandef, &ch_sw_tm_ie); if (!skb) { ret = -ENOENT; goto out; } ret = drv_tdls_channel_switch(local, sdata, &sta->sta, oper_class, chandef, skb, ch_sw_tm_ie); if (!ret) set_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); out: mutex_unlock(&local->sta_mtx); dev_kfree_skb_any(skb); return ret; } void ieee80211_tdls_cancel_channel_switch(struct wiphy *wiphy, struct net_device *dev, const u8 *addr) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; mutex_lock(&local->sta_mtx); sta = sta_info_get(sdata, addr); if (!sta) { tdls_dbg(sdata, "Invalid TDLS peer %pM for channel switch cancel\n", addr); goto out; } if (!test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { tdls_dbg(sdata, "TDLS channel switch not initiated by %pM\n", addr); goto out; } drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); out: mutex_unlock(&local->sta_mtx); } static struct sk_buff * ieee80211_tdls_ch_sw_resp_tmpl_get(struct sta_info *sta, u32 *ch_sw_tm_ie_offset) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct sk_buff *skb; u8 extra_ies[2 + sizeof(struct ieee80211_ch_switch_timing)]; int link_id = sta->sta.valid_links ? ffs(sta->sta.valid_links) - 1 : 0; /* initial timing are always zero in the template */ iee80211_tdls_add_ch_switch_timing(extra_ies, 0, 0); skb = ieee80211_tdls_build_mgmt_packet_data(sdata, sta->sta.addr, link_id, WLAN_TDLS_CHANNEL_SWITCH_RESPONSE, 0, 0, !sta->sta.tdls_initiator, extra_ies, sizeof(extra_ies), 0, NULL); if (!skb) return NULL; skb = ieee80211_build_data_template(sdata, skb, 0); if (IS_ERR(skb)) { tdls_dbg(sdata, "Failed building TDLS channel switch resp frame\n"); return NULL; } if (ch_sw_tm_ie_offset) { const u8 *tm_ie = ieee80211_tdls_find_sw_timing_ie(skb); if (!tm_ie) { tdls_dbg(sdata, "No switch timing IE in TDLS switch resp\n"); dev_kfree_skb_any(skb); return NULL; } *ch_sw_tm_ie_offset = tm_ie - skb->data; } tdls_dbg(sdata, "TDLS get channel switch response template for %pM\n", sta->sta.addr); return skb; } static int ieee80211_process_tdls_channel_switch_resp(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee802_11_elems *elems = NULL; struct sta_info *sta; struct ieee80211_tdls_data *tf = (void *)skb->data; bool local_initiator; struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); int baselen = offsetof(typeof(*tf), u.chan_switch_resp.variable); struct ieee80211_tdls_ch_sw_params params = {}; int ret; params.action_code = WLAN_TDLS_CHANNEL_SWITCH_RESPONSE; params.timestamp = rx_status->device_timestamp; if (skb->len < baselen) { tdls_dbg(sdata, "TDLS channel switch resp too short: %d\n", skb->len); return -EINVAL; } mutex_lock(&local->sta_mtx); sta = sta_info_get(sdata, tf->sa); if (!sta || !test_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH)) { tdls_dbg(sdata, "TDLS chan switch from non-peer sta %pM\n", tf->sa); ret = -EINVAL; goto out; } params.sta = &sta->sta; params.status = le16_to_cpu(tf->u.chan_switch_resp.status_code); if (params.status != 0) { ret = 0; goto call_drv; } elems = ieee802_11_parse_elems(tf->u.chan_switch_resp.variable, skb->len - baselen, false, NULL); if (!elems) { ret = -ENOMEM; goto out; } if (elems->parse_error) { tdls_dbg(sdata, "Invalid IEs in TDLS channel switch resp\n"); ret = -EINVAL; goto out; } if (!elems->ch_sw_timing || !elems->lnk_id) { tdls_dbg(sdata, "TDLS channel switch resp - missing IEs\n"); ret = -EINVAL; goto out; } /* validate the initiator is set correctly */ local_initiator = !memcmp(elems->lnk_id->init_sta, sdata->vif.addr, ETH_ALEN); if (local_initiator == sta->sta.tdls_initiator) { tdls_dbg(sdata, "TDLS chan switch invalid lnk-id initiator\n"); ret = -EINVAL; goto out; } params.switch_time = le16_to_cpu(elems->ch_sw_timing->switch_time); params.switch_timeout = le16_to_cpu(elems->ch_sw_timing->switch_timeout); params.tmpl_skb = ieee80211_tdls_ch_sw_resp_tmpl_get(sta, &params.ch_sw_tm_ie); if (!params.tmpl_skb) { ret = -ENOENT; goto out; } ret = 0; call_drv: drv_tdls_recv_channel_switch(sdata->local, sdata, &params); tdls_dbg(sdata, "TDLS channel switch response received from %pM status %d\n", tf->sa, params.status); out: mutex_unlock(&local->sta_mtx); dev_kfree_skb_any(params.tmpl_skb); kfree(elems); return ret; } static int ieee80211_process_tdls_channel_switch_req(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee802_11_elems *elems; struct cfg80211_chan_def chandef; struct ieee80211_channel *chan; enum nl80211_channel_type chan_type; int freq; u8 target_channel, oper_class; bool local_initiator; struct sta_info *sta; enum nl80211_band band; struct ieee80211_tdls_data *tf = (void *)skb->data; struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); int baselen = offsetof(typeof(*tf), u.chan_switch_req.variable); struct ieee80211_tdls_ch_sw_params params = {}; int ret = 0; params.action_code = WLAN_TDLS_CHANNEL_SWITCH_REQUEST; params.timestamp = rx_status->device_timestamp; if (skb->len < baselen) { tdls_dbg(sdata, "TDLS channel switch req too short: %d\n", skb->len); return -EINVAL; } target_channel = tf->u.chan_switch_req.target_channel; oper_class = tf->u.chan_switch_req.oper_class; /* * We can't easily infer the channel band. The operating class is * ambiguous - there are multiple tables (US/Europe/JP/Global). The * solution here is to treat channels with number >14 as 5GHz ones, * and specifically check for the (oper_class, channel) combinations * where this doesn't hold. These are thankfully unique according to * IEEE802.11-2012. * We consider only the 2GHz and 5GHz bands and 20MHz+ channels as * valid here. */ if ((oper_class == 112 || oper_class == 2 || oper_class == 3 || oper_class == 4 || oper_class == 5 || oper_class == 6) && target_channel < 14) band = NL80211_BAND_5GHZ; else band = target_channel < 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; freq = ieee80211_channel_to_frequency(target_channel, band); if (freq == 0) { tdls_dbg(sdata, "Invalid channel in TDLS chan switch: %d\n", target_channel); return -EINVAL; } chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); if (!chan) { tdls_dbg(sdata, "Unsupported channel for TDLS chan switch: %d\n", target_channel); return -EINVAL; } elems = ieee802_11_parse_elems(tf->u.chan_switch_req.variable, skb->len - baselen, false, NULL); if (!elems) return -ENOMEM; if (elems->parse_error) { tdls_dbg(sdata, "Invalid IEs in TDLS channel switch req\n"); ret = -EINVAL; goto free; } if (!elems->ch_sw_timing || !elems->lnk_id) { tdls_dbg(sdata, "TDLS channel switch req - missing IEs\n"); ret = -EINVAL; goto free; } if (!elems->sec_chan_offs) { chan_type = NL80211_CHAN_HT20; } else { switch (elems->sec_chan_offs->sec_chan_offs) { case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: chan_type = NL80211_CHAN_HT40PLUS; break; case IEEE80211_HT_PARAM_CHA_SEC_BELOW: chan_type = NL80211_CHAN_HT40MINUS; break; default: chan_type = NL80211_CHAN_HT20; break; } } cfg80211_chandef_create(&chandef, chan, chan_type); /* we will be active on the TDLS link */ if (!cfg80211_reg_can_beacon_relax(sdata->local->hw.wiphy, &chandef, sdata->wdev.iftype)) { tdls_dbg(sdata, "TDLS chan switch to forbidden channel\n"); ret = -EINVAL; goto free; } mutex_lock(&local->sta_mtx); sta = sta_info_get(sdata, tf->sa); if (!sta || !test_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH)) { tdls_dbg(sdata, "TDLS chan switch from non-peer sta %pM\n", tf->sa); ret = -EINVAL; goto out; } params.sta = &sta->sta; /* validate the initiator is set correctly */ local_initiator = !memcmp(elems->lnk_id->init_sta, sdata->vif.addr, ETH_ALEN); if (local_initiator == sta->sta.tdls_initiator) { tdls_dbg(sdata, "TDLS chan switch invalid lnk-id initiator\n"); ret = -EINVAL; goto out; } /* peer should have known better */ if (!sta->sta.deflink.ht_cap.ht_supported && elems->sec_chan_offs && elems->sec_chan_offs->sec_chan_offs) { tdls_dbg(sdata, "TDLS chan switch - wide chan unsupported\n"); ret = -ENOTSUPP; goto out; } params.chandef = &chandef; params.switch_time = le16_to_cpu(elems->ch_sw_timing->switch_time); params.switch_timeout = le16_to_cpu(elems->ch_sw_timing->switch_timeout); params.tmpl_skb = ieee80211_tdls_ch_sw_resp_tmpl_get(sta, &params.ch_sw_tm_ie); if (!params.tmpl_skb) { ret = -ENOENT; goto out; } drv_tdls_recv_channel_switch(sdata->local, sdata, &params); tdls_dbg(sdata, "TDLS ch switch request received from %pM ch %d width %d\n", tf->sa, params.chandef->chan->center_freq, params.chandef->width); out: mutex_unlock(&local->sta_mtx); dev_kfree_skb_any(params.tmpl_skb); free: kfree(elems); return ret; } void ieee80211_process_tdls_channel_switch(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_tdls_data *tf = (void *)skb->data; struct wiphy *wiphy = sdata->local->hw.wiphy; lockdep_assert_wiphy(wiphy); /* make sure the driver supports it */ if (!(wiphy->features & NL80211_FEATURE_TDLS_CHANNEL_SWITCH)) return; /* we want to access the entire packet */ if (skb_linearize(skb)) return; /* * The packet/size was already validated by mac80211 Rx path, only look * at the action type. */ switch (tf->action_code) { case WLAN_TDLS_CHANNEL_SWITCH_REQUEST: ieee80211_process_tdls_channel_switch_req(sdata, skb); break; case WLAN_TDLS_CHANNEL_SWITCH_RESPONSE: ieee80211_process_tdls_channel_switch_resp(sdata, skb); break; default: WARN_ON_ONCE(1); return; } } void ieee80211_teardown_tdls_peers(struct ieee80211_sub_if_data *sdata) { struct sta_info *sta; u16 reason = WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED; rcu_read_lock(); list_for_each_entry_rcu(sta, &sdata->local->sta_list, list) { if (!sta->sta.tdls || sta->sdata != sdata || !sta->uploaded || !test_sta_flag(sta, WLAN_STA_AUTHORIZED)) continue; ieee80211_tdls_oper_request(&sdata->vif, sta->sta.addr, NL80211_TDLS_TEARDOWN, reason, GFP_ATOMIC); } rcu_read_unlock(); } void ieee80211_tdls_handle_disconnect(struct ieee80211_sub_if_data *sdata, const u8 *peer, u16 reason) { struct ieee80211_sta *sta; rcu_read_lock(); sta = ieee80211_find_sta(&sdata->vif, peer); if (!sta || !sta->tdls) { rcu_read_unlock(); return; } rcu_read_unlock(); tdls_dbg(sdata, "disconnected from TDLS peer %pM (Reason: %u=%s)\n", peer, reason, ieee80211_get_reason_code_string(reason)); ieee80211_tdls_oper_request(&sdata->vif, peer, NL80211_TDLS_TEARDOWN, WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE, GFP_ATOMIC); }
linux-master
net/mac80211/tdls.c
// SPDX-License-Identifier: GPL-2.0-only /* * Scanning implementation * * Copyright 2003, Jouni Malinen <[email protected]> * Copyright 2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007, Michael Wu <[email protected]> * Copyright 2013-2015 Intel Mobile Communications GmbH * Copyright 2016-2017 Intel Deutschland GmbH * Copyright (C) 2018-2023 Intel Corporation */ #include <linux/if_arp.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <net/sch_generic.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/random.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "mesh.h" #define IEEE80211_PROBE_DELAY (HZ / 33) #define IEEE80211_CHANNEL_TIME (HZ / 33) #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 9) void ieee80211_rx_bss_put(struct ieee80211_local *local, struct ieee80211_bss *bss) { if (!bss) return; cfg80211_put_bss(local->hw.wiphy, container_of((void *)bss, struct cfg80211_bss, priv)); } static bool is_uapsd_supported(struct ieee802_11_elems *elems) { u8 qos_info; if (elems->wmm_info && elems->wmm_info_len == 7 && elems->wmm_info[5] == 1) qos_info = elems->wmm_info[6]; else if (elems->wmm_param && elems->wmm_param_len == 24 && elems->wmm_param[5] == 1) qos_info = elems->wmm_param[6]; else /* no valid wmm information or parameter element found */ return false; return qos_info & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD; } struct inform_bss_update_data { struct ieee80211_rx_status *rx_status; bool beacon; }; void ieee80211_inform_bss(struct wiphy *wiphy, struct cfg80211_bss *cbss, const struct cfg80211_bss_ies *ies, void *data) { struct ieee80211_local *local = wiphy_priv(wiphy); struct inform_bss_update_data *update_data = data; struct ieee80211_bss *bss = (void *)cbss->priv; struct ieee80211_rx_status *rx_status; struct ieee802_11_elems *elems; int clen, srlen; /* This happens while joining an IBSS */ if (!update_data) return; elems = ieee802_11_parse_elems(ies->data, ies->len, false, NULL); if (!elems) return; rx_status = update_data->rx_status; if (update_data->beacon) bss->device_ts_beacon = rx_status->device_timestamp; else bss->device_ts_presp = rx_status->device_timestamp; if (elems->parse_error) { if (update_data->beacon) bss->corrupt_data |= IEEE80211_BSS_CORRUPT_BEACON; else bss->corrupt_data |= IEEE80211_BSS_CORRUPT_PROBE_RESP; } else { if (update_data->beacon) bss->corrupt_data &= ~IEEE80211_BSS_CORRUPT_BEACON; else bss->corrupt_data &= ~IEEE80211_BSS_CORRUPT_PROBE_RESP; } /* save the ERP value so that it is available at association time */ if (elems->erp_info && (!elems->parse_error || !(bss->valid_data & IEEE80211_BSS_VALID_ERP))) { bss->erp_value = elems->erp_info[0]; bss->has_erp_value = true; if (!elems->parse_error) bss->valid_data |= IEEE80211_BSS_VALID_ERP; } /* replace old supported rates if we get new values */ if (!elems->parse_error || !(bss->valid_data & IEEE80211_BSS_VALID_RATES)) { srlen = 0; if (elems->supp_rates) { clen = IEEE80211_MAX_SUPP_RATES; if (clen > elems->supp_rates_len) clen = elems->supp_rates_len; memcpy(bss->supp_rates, elems->supp_rates, clen); srlen += clen; } if (elems->ext_supp_rates) { clen = IEEE80211_MAX_SUPP_RATES - srlen; if (clen > elems->ext_supp_rates_len) clen = elems->ext_supp_rates_len; memcpy(bss->supp_rates + srlen, elems->ext_supp_rates, clen); srlen += clen; } if (srlen) { bss->supp_rates_len = srlen; if (!elems->parse_error) bss->valid_data |= IEEE80211_BSS_VALID_RATES; } } if (!elems->parse_error || !(bss->valid_data & IEEE80211_BSS_VALID_WMM)) { bss->wmm_used = elems->wmm_param || elems->wmm_info; bss->uapsd_supported = is_uapsd_supported(elems); if (!elems->parse_error) bss->valid_data |= IEEE80211_BSS_VALID_WMM; } if (update_data->beacon) { struct ieee80211_supported_band *sband = local->hw.wiphy->bands[rx_status->band]; if (!(rx_status->encoding == RX_ENC_HT) && !(rx_status->encoding == RX_ENC_VHT)) bss->beacon_rate = &sband->bitrates[rx_status->rate_idx]; } if (elems->vht_cap_elem) bss->vht_cap_info = le32_to_cpu(elems->vht_cap_elem->vht_cap_info); else bss->vht_cap_info = 0; kfree(elems); } struct ieee80211_bss * ieee80211_bss_info_update(struct ieee80211_local *local, struct ieee80211_rx_status *rx_status, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_channel *channel) { bool beacon = ieee80211_is_beacon(mgmt->frame_control) || ieee80211_is_s1g_beacon(mgmt->frame_control); struct cfg80211_bss *cbss; struct inform_bss_update_data update_data = { .rx_status = rx_status, .beacon = beacon, }; struct cfg80211_inform_bss bss_meta = { .boottime_ns = rx_status->boottime_ns, .drv_data = (void *)&update_data, }; bool signal_valid; struct ieee80211_sub_if_data *scan_sdata; if (rx_status->flag & RX_FLAG_NO_SIGNAL_VAL) bss_meta.signal = 0; /* invalid signal indication */ else if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) bss_meta.signal = rx_status->signal * 100; else if (ieee80211_hw_check(&local->hw, SIGNAL_UNSPEC)) bss_meta.signal = (rx_status->signal * 100) / local->hw.max_signal; bss_meta.scan_width = NL80211_BSS_CHAN_WIDTH_20; if (rx_status->bw == RATE_INFO_BW_5) bss_meta.scan_width = NL80211_BSS_CHAN_WIDTH_5; else if (rx_status->bw == RATE_INFO_BW_10) bss_meta.scan_width = NL80211_BSS_CHAN_WIDTH_10; bss_meta.chan = channel; rcu_read_lock(); scan_sdata = rcu_dereference(local->scan_sdata); if (scan_sdata && scan_sdata->vif.type == NL80211_IFTYPE_STATION && scan_sdata->vif.cfg.assoc && ieee80211_have_rx_timestamp(rx_status)) { bss_meta.parent_tsf = ieee80211_calculate_rx_timestamp(local, rx_status, len + FCS_LEN, 24); ether_addr_copy(bss_meta.parent_bssid, scan_sdata->vif.bss_conf.bssid); } rcu_read_unlock(); cbss = cfg80211_inform_bss_frame_data(local->hw.wiphy, &bss_meta, mgmt, len, GFP_ATOMIC); if (!cbss) return NULL; /* In case the signal is invalid update the status */ signal_valid = channel == cbss->channel; if (!signal_valid) rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; return (void *)cbss->priv; } static bool ieee80211_scan_accept_presp(struct ieee80211_sub_if_data *sdata, u32 scan_flags, const u8 *da) { if (!sdata) return false; /* accept broadcast for OCE */ if (scan_flags & NL80211_SCAN_FLAG_ACCEPT_BCAST_PROBE_RESP && is_broadcast_ether_addr(da)) return true; if (scan_flags & NL80211_SCAN_FLAG_RANDOM_ADDR) return true; return ether_addr_equal(da, sdata->vif.addr); } void ieee80211_scan_rx(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct ieee80211_sub_if_data *sdata1, *sdata2; struct ieee80211_mgmt *mgmt = (void *)skb->data; struct ieee80211_bss *bss; struct ieee80211_channel *channel; size_t min_hdr_len = offsetof(struct ieee80211_mgmt, u.probe_resp.variable); if (!ieee80211_is_probe_resp(mgmt->frame_control) && !ieee80211_is_beacon(mgmt->frame_control) && !ieee80211_is_s1g_beacon(mgmt->frame_control)) return; if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_short_beacon.variable); else min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); } if (skb->len < min_hdr_len) return; sdata1 = rcu_dereference(local->scan_sdata); sdata2 = rcu_dereference(local->sched_scan_sdata); if (likely(!sdata1 && !sdata2)) return; if (test_and_clear_bit(SCAN_BEACON_WAIT, &local->scanning)) { /* * we were passive scanning because of radar/no-IR, but * the beacon/proberesp rx gives us an opportunity to upgrade * to active scan */ set_bit(SCAN_BEACON_DONE, &local->scanning); ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); } if (ieee80211_is_probe_resp(mgmt->frame_control)) { struct cfg80211_scan_request *scan_req; struct cfg80211_sched_scan_request *sched_scan_req; u32 scan_req_flags = 0, sched_scan_req_flags = 0; scan_req = rcu_dereference(local->scan_req); sched_scan_req = rcu_dereference(local->sched_scan_req); if (scan_req) scan_req_flags = scan_req->flags; if (sched_scan_req) sched_scan_req_flags = sched_scan_req->flags; /* ignore ProbeResp to foreign address or non-bcast (OCE) * unless scanning with randomised address */ if (!ieee80211_scan_accept_presp(sdata1, scan_req_flags, mgmt->da) && !ieee80211_scan_accept_presp(sdata2, sched_scan_req_flags, mgmt->da)) return; } channel = ieee80211_get_channel_khz(local->hw.wiphy, ieee80211_rx_status_to_khz(rx_status)); if (!channel || channel->flags & IEEE80211_CHAN_DISABLED) return; bss = ieee80211_bss_info_update(local, rx_status, mgmt, skb->len, channel); if (bss) ieee80211_rx_bss_put(local, bss); } static void ieee80211_prepare_scan_chandef(struct cfg80211_chan_def *chandef, enum nl80211_bss_scan_width scan_width) { memset(chandef, 0, sizeof(*chandef)); switch (scan_width) { case NL80211_BSS_CHAN_WIDTH_5: chandef->width = NL80211_CHAN_WIDTH_5; break; case NL80211_BSS_CHAN_WIDTH_10: chandef->width = NL80211_CHAN_WIDTH_10; break; default: chandef->width = NL80211_CHAN_WIDTH_20_NOHT; break; } } /* return false if no more work */ static bool ieee80211_prep_hw_scan(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct cfg80211_scan_request *req; struct cfg80211_chan_def chandef; u8 bands_used = 0; int i, ielen, n_chans; u32 flags = 0; req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); if (test_bit(SCAN_HW_CANCELLED, &local->scanning)) return false; if (ieee80211_hw_check(&local->hw, SINGLE_SCAN_ON_ALL_BANDS)) { for (i = 0; i < req->n_channels; i++) { local->hw_scan_req->req.channels[i] = req->channels[i]; bands_used |= BIT(req->channels[i]->band); } n_chans = req->n_channels; } else { do { if (local->hw_scan_band == NUM_NL80211_BANDS) return false; n_chans = 0; for (i = 0; i < req->n_channels; i++) { if (req->channels[i]->band != local->hw_scan_band) continue; local->hw_scan_req->req.channels[n_chans] = req->channels[i]; n_chans++; bands_used |= BIT(req->channels[i]->band); } local->hw_scan_band++; } while (!n_chans); } local->hw_scan_req->req.n_channels = n_chans; ieee80211_prepare_scan_chandef(&chandef, req->scan_width); if (req->flags & NL80211_SCAN_FLAG_MIN_PREQ_CONTENT) flags |= IEEE80211_PROBE_FLAG_MIN_CONTENT; ielen = ieee80211_build_preq_ies(sdata, (u8 *)local->hw_scan_req->req.ie, local->hw_scan_ies_bufsize, &local->hw_scan_req->ies, req->ie, req->ie_len, bands_used, req->rates, &chandef, flags); local->hw_scan_req->req.ie_len = ielen; local->hw_scan_req->req.no_cck = req->no_cck; ether_addr_copy(local->hw_scan_req->req.mac_addr, req->mac_addr); ether_addr_copy(local->hw_scan_req->req.mac_addr_mask, req->mac_addr_mask); ether_addr_copy(local->hw_scan_req->req.bssid, req->bssid); return true; } static void __ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted) { struct ieee80211_local *local = hw_to_local(hw); bool hw_scan = test_bit(SCAN_HW_SCANNING, &local->scanning); bool was_scanning = local->scanning; struct cfg80211_scan_request *scan_req; struct ieee80211_sub_if_data *scan_sdata; struct ieee80211_sub_if_data *sdata; lockdep_assert_held(&local->mtx); /* * It's ok to abort a not-yet-running scan (that * we have one at all will be verified by checking * local->scan_req next), but not to complete it * successfully. */ if (WARN_ON(!local->scanning && !aborted)) aborted = true; if (WARN_ON(!local->scan_req)) return; scan_sdata = rcu_dereference_protected(local->scan_sdata, lockdep_is_held(&local->mtx)); if (hw_scan && !aborted && !ieee80211_hw_check(&local->hw, SINGLE_SCAN_ON_ALL_BANDS) && ieee80211_prep_hw_scan(scan_sdata)) { int rc; rc = drv_hw_scan(local, rcu_dereference_protected(local->scan_sdata, lockdep_is_held(&local->mtx)), local->hw_scan_req); if (rc == 0) return; /* HW scan failed and is going to be reported as aborted, * so clear old scan info. */ memset(&local->scan_info, 0, sizeof(local->scan_info)); aborted = true; } kfree(local->hw_scan_req); local->hw_scan_req = NULL; scan_req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); RCU_INIT_POINTER(local->scan_req, NULL); RCU_INIT_POINTER(local->scan_sdata, NULL); local->scanning = 0; local->scan_chandef.chan = NULL; synchronize_rcu(); if (scan_req != local->int_scan_req) { local->scan_info.aborted = aborted; cfg80211_scan_done(scan_req, &local->scan_info); } /* Set power back to normal operating levels. */ ieee80211_hw_config(local, 0); if (!hw_scan && was_scanning) { ieee80211_configure_filter(local); drv_sw_scan_complete(local, scan_sdata); ieee80211_offchannel_return(local); } ieee80211_recalc_idle(local); ieee80211_mlme_notify_scan_completed(local); ieee80211_ibss_notify_scan_completed(local); /* Requeue all the work that might have been ignored while * the scan was in progress; if there was none this will * just be a no-op for the particular interface. */ list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (ieee80211_sdata_running(sdata)) wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } if (was_scanning) ieee80211_start_next_roc(local); } void ieee80211_scan_completed(struct ieee80211_hw *hw, struct cfg80211_scan_info *info) { struct ieee80211_local *local = hw_to_local(hw); trace_api_scan_completed(local, info->aborted); set_bit(SCAN_COMPLETED, &local->scanning); if (info->aborted) set_bit(SCAN_ABORTED, &local->scanning); memcpy(&local->scan_info, info, sizeof(*info)); ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); } EXPORT_SYMBOL(ieee80211_scan_completed); static int ieee80211_start_sw_scan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { /* Software scan is not supported in multi-channel cases */ if (local->use_chanctx) return -EOPNOTSUPP; /* * Hardware/driver doesn't support hw_scan, so use software * scanning instead. First send a nullfunc frame with power save * bit on so that AP will buffer the frames for us while we are not * listening, then send probe requests to each channel and wait for * the responses. After all channels are scanned, tune back to the * original channel and send a nullfunc frame with power save bit * off to trigger the AP to send us all the buffered frames. * * Note that while local->sw_scanning is true everything else but * nullfunc frames and probe requests will be dropped in * ieee80211_tx_h_check_assoc(). */ drv_sw_scan_start(local, sdata, local->scan_addr); local->leave_oper_channel_time = jiffies; local->next_scan_state = SCAN_DECISION; local->scan_channel_idx = 0; ieee80211_offchannel_stop_vifs(local); /* ensure nullfunc is transmitted before leaving operating channel */ ieee80211_flush_queues(local, NULL, false); ieee80211_configure_filter(local); /* We need to set power level at maximum rate for scanning. */ ieee80211_hw_config(local, 0); ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); return 0; } static bool __ieee80211_can_leave_ch(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *sdata_iter; if (!ieee80211_is_radar_required(local)) return true; if (!regulatory_pre_cac_allowed(local->hw.wiphy)) return false; mutex_lock(&local->iflist_mtx); list_for_each_entry(sdata_iter, &local->interfaces, list) { if (sdata_iter->wdev.cac_started) { mutex_unlock(&local->iflist_mtx); return false; } } mutex_unlock(&local->iflist_mtx); return true; } static bool ieee80211_can_scan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { if (!__ieee80211_can_leave_ch(sdata)) return false; if (!list_empty(&local->roc_list)) return false; if (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.flags & IEEE80211_STA_CONNECTION_POLL) return false; return true; } void ieee80211_run_deferred_scan(struct ieee80211_local *local) { lockdep_assert_held(&local->mtx); if (!local->scan_req || local->scanning) return; if (!ieee80211_can_scan(local, rcu_dereference_protected( local->scan_sdata, lockdep_is_held(&local->mtx)))) return; ieee80211_queue_delayed_work(&local->hw, &local->scan_work, round_jiffies_relative(0)); } static void ieee80211_send_scan_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, const u8 *ssid, size_t ssid_len, const u8 *ie, size_t ie_len, u32 ratemask, u32 flags, u32 tx_flags, struct ieee80211_channel *channel) { struct sk_buff *skb; skb = ieee80211_build_probe_req(sdata, src, dst, ratemask, channel, ssid, ssid_len, ie, ie_len, flags); if (skb) { if (flags & IEEE80211_PROBE_FLAG_RANDOM_SN) { struct ieee80211_hdr *hdr = (void *)skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); u16 sn = get_random_u16(); info->control.flags |= IEEE80211_TX_CTRL_NO_SEQNO; hdr->seq_ctrl = cpu_to_le16(IEEE80211_SN_TO_SEQ(sn)); } IEEE80211_SKB_CB(skb)->flags |= tx_flags; ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band); } } static void ieee80211_scan_state_send_probe(struct ieee80211_local *local, unsigned long *next_delay) { int i; struct ieee80211_sub_if_data *sdata; struct cfg80211_scan_request *scan_req; enum nl80211_band band = local->hw.conf.chandef.chan->band; u32 flags = 0, tx_flags; scan_req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); tx_flags = IEEE80211_TX_INTFL_OFFCHAN_TX_OK; if (scan_req->no_cck) tx_flags |= IEEE80211_TX_CTL_NO_CCK_RATE; if (scan_req->flags & NL80211_SCAN_FLAG_MIN_PREQ_CONTENT) flags |= IEEE80211_PROBE_FLAG_MIN_CONTENT; if (scan_req->flags & NL80211_SCAN_FLAG_RANDOM_SN) flags |= IEEE80211_PROBE_FLAG_RANDOM_SN; sdata = rcu_dereference_protected(local->scan_sdata, lockdep_is_held(&local->mtx)); for (i = 0; i < scan_req->n_ssids; i++) ieee80211_send_scan_probe_req( sdata, local->scan_addr, scan_req->bssid, scan_req->ssids[i].ssid, scan_req->ssids[i].ssid_len, scan_req->ie, scan_req->ie_len, scan_req->rates[band], flags, tx_flags, local->hw.conf.chandef.chan); /* * After sending probe requests, wait for probe responses * on the channel. */ *next_delay = IEEE80211_CHANNEL_TIME; local->next_scan_state = SCAN_DECISION; } static int __ieee80211_start_scan(struct ieee80211_sub_if_data *sdata, struct cfg80211_scan_request *req) { struct ieee80211_local *local = sdata->local; bool hw_scan = local->ops->hw_scan; int rc; lockdep_assert_held(&local->mtx); if (local->scan_req) return -EBUSY; if (!__ieee80211_can_leave_ch(sdata)) return -EBUSY; if (!ieee80211_can_scan(local, sdata)) { /* wait for the work to finish/time out */ rcu_assign_pointer(local->scan_req, req); rcu_assign_pointer(local->scan_sdata, sdata); return 0; } again: if (hw_scan) { u8 *ies; local->hw_scan_ies_bufsize = local->scan_ies_len + req->ie_len; if (ieee80211_hw_check(&local->hw, SINGLE_SCAN_ON_ALL_BANDS)) { int i, n_bands = 0; u8 bands_counted = 0; for (i = 0; i < req->n_channels; i++) { if (bands_counted & BIT(req->channels[i]->band)) continue; bands_counted |= BIT(req->channels[i]->band); n_bands++; } local->hw_scan_ies_bufsize *= n_bands; } local->hw_scan_req = kmalloc( sizeof(*local->hw_scan_req) + req->n_channels * sizeof(req->channels[0]) + local->hw_scan_ies_bufsize, GFP_KERNEL); if (!local->hw_scan_req) return -ENOMEM; local->hw_scan_req->req.ssids = req->ssids; local->hw_scan_req->req.n_ssids = req->n_ssids; ies = (u8 *)local->hw_scan_req + sizeof(*local->hw_scan_req) + req->n_channels * sizeof(req->channels[0]); local->hw_scan_req->req.ie = ies; local->hw_scan_req->req.flags = req->flags; eth_broadcast_addr(local->hw_scan_req->req.bssid); local->hw_scan_req->req.duration = req->duration; local->hw_scan_req->req.duration_mandatory = req->duration_mandatory; local->hw_scan_band = 0; local->hw_scan_req->req.n_6ghz_params = req->n_6ghz_params; local->hw_scan_req->req.scan_6ghz_params = req->scan_6ghz_params; local->hw_scan_req->req.scan_6ghz = req->scan_6ghz; /* * After allocating local->hw_scan_req, we must * go through until ieee80211_prep_hw_scan(), so * anything that might be changed here and leave * this function early must not go after this * allocation. */ } rcu_assign_pointer(local->scan_req, req); rcu_assign_pointer(local->scan_sdata, sdata); if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) get_random_mask_addr(local->scan_addr, req->mac_addr, req->mac_addr_mask); else memcpy(local->scan_addr, sdata->vif.addr, ETH_ALEN); if (hw_scan) { __set_bit(SCAN_HW_SCANNING, &local->scanning); } else if ((req->n_channels == 1) && (req->channels[0] == local->_oper_chandef.chan)) { /* * If we are scanning only on the operating channel * then we do not need to stop normal activities */ unsigned long next_delay; __set_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning); ieee80211_recalc_idle(local); /* Notify driver scan is starting, keep order of operations * same as normal software scan, in case that matters. */ drv_sw_scan_start(local, sdata, local->scan_addr); ieee80211_configure_filter(local); /* accept probe-responses */ /* We need to ensure power level is at max for scanning. */ ieee80211_hw_config(local, 0); if ((req->channels[0]->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_RADAR)) || !req->n_ssids) { next_delay = IEEE80211_PASSIVE_CHANNEL_TIME; if (req->n_ssids) set_bit(SCAN_BEACON_WAIT, &local->scanning); } else { ieee80211_scan_state_send_probe(local, &next_delay); next_delay = IEEE80211_CHANNEL_TIME; } /* Now, just wait a bit and we are all done! */ ieee80211_queue_delayed_work(&local->hw, &local->scan_work, next_delay); return 0; } else { /* Do normal software scan */ __set_bit(SCAN_SW_SCANNING, &local->scanning); } ieee80211_recalc_idle(local); if (hw_scan) { WARN_ON(!ieee80211_prep_hw_scan(sdata)); rc = drv_hw_scan(local, sdata, local->hw_scan_req); } else { rc = ieee80211_start_sw_scan(local, sdata); } if (rc) { kfree(local->hw_scan_req); local->hw_scan_req = NULL; local->scanning = 0; ieee80211_recalc_idle(local); local->scan_req = NULL; RCU_INIT_POINTER(local->scan_sdata, NULL); } if (hw_scan && rc == 1) { /* * we can't fall back to software for P2P-GO * as it must update NoA etc. */ if (ieee80211_vif_type_p2p(&sdata->vif) == NL80211_IFTYPE_P2P_GO) return -EOPNOTSUPP; hw_scan = false; goto again; } return rc; } static unsigned long ieee80211_scan_get_channel_time(struct ieee80211_channel *chan) { /* * TODO: channel switching also consumes quite some time, * add that delay as well to get a better estimation */ if (chan->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_RADAR)) return IEEE80211_PASSIVE_CHANNEL_TIME; return IEEE80211_PROBE_DELAY + IEEE80211_CHANNEL_TIME; } static void ieee80211_scan_state_decision(struct ieee80211_local *local, unsigned long *next_delay) { bool associated = false; bool tx_empty = true; bool bad_latency; struct ieee80211_sub_if_data *sdata; struct ieee80211_channel *next_chan; enum mac80211_scan_state next_scan_state; struct cfg80211_scan_request *scan_req; /* * check if at least one STA interface is associated, * check if at least one STA interface has pending tx frames * and grab the lowest used beacon interval */ mutex_lock(&local->iflist_mtx); list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_STATION) { if (sdata->u.mgd.associated) { associated = true; if (!qdisc_all_tx_empty(sdata->dev)) { tx_empty = false; break; } } } } mutex_unlock(&local->iflist_mtx); scan_req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); next_chan = scan_req->channels[local->scan_channel_idx]; /* * we're currently scanning a different channel, let's * see if we can scan another channel without interfering * with the current traffic situation. * * Keep good latency, do not stay off-channel more than 125 ms. */ bad_latency = time_after(jiffies + ieee80211_scan_get_channel_time(next_chan), local->leave_oper_channel_time + HZ / 8); if (associated && !tx_empty) { if (scan_req->flags & NL80211_SCAN_FLAG_LOW_PRIORITY) next_scan_state = SCAN_ABORT; else next_scan_state = SCAN_SUSPEND; } else if (associated && bad_latency) { next_scan_state = SCAN_SUSPEND; } else { next_scan_state = SCAN_SET_CHANNEL; } local->next_scan_state = next_scan_state; *next_delay = 0; } static void ieee80211_scan_state_set_channel(struct ieee80211_local *local, unsigned long *next_delay) { int skip; struct ieee80211_channel *chan; enum nl80211_bss_scan_width oper_scan_width; struct cfg80211_scan_request *scan_req; scan_req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); skip = 0; chan = scan_req->channels[local->scan_channel_idx]; local->scan_chandef.chan = chan; local->scan_chandef.center_freq1 = chan->center_freq; local->scan_chandef.freq1_offset = chan->freq_offset; local->scan_chandef.center_freq2 = 0; /* For scanning on the S1G band, ignore scan_width (which is constant * across all channels) for now since channel width is specific to each * channel. Detect the required channel width here and likely revisit * later. Maybe scan_width could be used to build the channel scan list? */ if (chan->band == NL80211_BAND_S1GHZ) { local->scan_chandef.width = ieee80211_s1g_channel_width(chan); goto set_channel; } switch (scan_req->scan_width) { case NL80211_BSS_CHAN_WIDTH_5: local->scan_chandef.width = NL80211_CHAN_WIDTH_5; break; case NL80211_BSS_CHAN_WIDTH_10: local->scan_chandef.width = NL80211_CHAN_WIDTH_10; break; default: case NL80211_BSS_CHAN_WIDTH_20: /* If scanning on oper channel, use whatever channel-type * is currently in use. */ oper_scan_width = cfg80211_chandef_to_scan_width( &local->_oper_chandef); if (chan == local->_oper_chandef.chan && oper_scan_width == scan_req->scan_width) local->scan_chandef = local->_oper_chandef; else local->scan_chandef.width = NL80211_CHAN_WIDTH_20_NOHT; break; case NL80211_BSS_CHAN_WIDTH_1: case NL80211_BSS_CHAN_WIDTH_2: /* shouldn't get here, S1G handled above */ WARN_ON(1); break; } set_channel: if (ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_CHANNEL)) skip = 1; /* advance state machine to next channel/band */ local->scan_channel_idx++; if (skip) { /* if we skip this channel return to the decision state */ local->next_scan_state = SCAN_DECISION; return; } /* * Probe delay is used to update the NAV, cf. 11.1.3.2.2 * (which unfortunately doesn't say _why_ step a) is done, * but it waits for the probe delay or until a frame is * received - and the received frame would update the NAV). * For now, we do not support waiting until a frame is * received. * * In any case, it is not necessary for a passive scan. */ if ((chan->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_RADAR)) || !scan_req->n_ssids) { *next_delay = IEEE80211_PASSIVE_CHANNEL_TIME; local->next_scan_state = SCAN_DECISION; if (scan_req->n_ssids) set_bit(SCAN_BEACON_WAIT, &local->scanning); return; } /* active scan, send probes */ *next_delay = IEEE80211_PROBE_DELAY; local->next_scan_state = SCAN_SEND_PROBE; } static void ieee80211_scan_state_suspend(struct ieee80211_local *local, unsigned long *next_delay) { /* switch back to the operating channel */ local->scan_chandef.chan = NULL; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_CHANNEL); /* disable PS */ ieee80211_offchannel_return(local); *next_delay = HZ / 5; /* afterwards, resume scan & go to next channel */ local->next_scan_state = SCAN_RESUME; } static void ieee80211_scan_state_resume(struct ieee80211_local *local, unsigned long *next_delay) { ieee80211_offchannel_stop_vifs(local); if (local->ops->flush) { ieee80211_flush_queues(local, NULL, false); *next_delay = 0; } else *next_delay = HZ / 10; /* remember when we left the operating channel */ local->leave_oper_channel_time = jiffies; /* advance to the next channel to be scanned */ local->next_scan_state = SCAN_SET_CHANNEL; } void ieee80211_scan_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, scan_work.work); struct ieee80211_sub_if_data *sdata; struct cfg80211_scan_request *scan_req; unsigned long next_delay = 0; bool aborted; mutex_lock(&local->mtx); if (!ieee80211_can_run_worker(local)) { aborted = true; goto out_complete; } sdata = rcu_dereference_protected(local->scan_sdata, lockdep_is_held(&local->mtx)); scan_req = rcu_dereference_protected(local->scan_req, lockdep_is_held(&local->mtx)); /* When scanning on-channel, the first-callback means completed. */ if (test_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning)) { aborted = test_and_clear_bit(SCAN_ABORTED, &local->scanning); goto out_complete; } if (test_and_clear_bit(SCAN_COMPLETED, &local->scanning)) { aborted = test_and_clear_bit(SCAN_ABORTED, &local->scanning); goto out_complete; } if (!sdata || !scan_req) goto out; if (!local->scanning) { int rc; RCU_INIT_POINTER(local->scan_req, NULL); RCU_INIT_POINTER(local->scan_sdata, NULL); rc = __ieee80211_start_scan(sdata, scan_req); if (rc) { /* need to complete scan in cfg80211 */ rcu_assign_pointer(local->scan_req, scan_req); aborted = true; goto out_complete; } else goto out; } clear_bit(SCAN_BEACON_WAIT, &local->scanning); /* * as long as no delay is required advance immediately * without scheduling a new work */ do { if (!ieee80211_sdata_running(sdata)) { aborted = true; goto out_complete; } if (test_and_clear_bit(SCAN_BEACON_DONE, &local->scanning) && local->next_scan_state == SCAN_DECISION) local->next_scan_state = SCAN_SEND_PROBE; switch (local->next_scan_state) { case SCAN_DECISION: /* if no more bands/channels left, complete scan */ if (local->scan_channel_idx >= scan_req->n_channels) { aborted = false; goto out_complete; } ieee80211_scan_state_decision(local, &next_delay); break; case SCAN_SET_CHANNEL: ieee80211_scan_state_set_channel(local, &next_delay); break; case SCAN_SEND_PROBE: ieee80211_scan_state_send_probe(local, &next_delay); break; case SCAN_SUSPEND: ieee80211_scan_state_suspend(local, &next_delay); break; case SCAN_RESUME: ieee80211_scan_state_resume(local, &next_delay); break; case SCAN_ABORT: aborted = true; goto out_complete; } } while (next_delay == 0); ieee80211_queue_delayed_work(&local->hw, &local->scan_work, next_delay); goto out; out_complete: __ieee80211_scan_completed(&local->hw, aborted); out: mutex_unlock(&local->mtx); } int ieee80211_request_scan(struct ieee80211_sub_if_data *sdata, struct cfg80211_scan_request *req) { int res; mutex_lock(&sdata->local->mtx); res = __ieee80211_start_scan(sdata, req); mutex_unlock(&sdata->local->mtx); return res; } int ieee80211_request_ibss_scan(struct ieee80211_sub_if_data *sdata, const u8 *ssid, u8 ssid_len, struct ieee80211_channel **channels, unsigned int n_channels, enum nl80211_bss_scan_width scan_width) { struct ieee80211_local *local = sdata->local; int ret = -EBUSY, i, n_ch = 0; enum nl80211_band band; mutex_lock(&local->mtx); /* busy scanning */ if (local->scan_req) goto unlock; /* fill internal scan request */ if (!channels) { int max_n; for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!local->hw.wiphy->bands[band] || band == NL80211_BAND_6GHZ) continue; max_n = local->hw.wiphy->bands[band]->n_channels; for (i = 0; i < max_n; i++) { struct ieee80211_channel *tmp_ch = &local->hw.wiphy->bands[band]->channels[i]; if (tmp_ch->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_DISABLED)) continue; local->int_scan_req->channels[n_ch] = tmp_ch; n_ch++; } } if (WARN_ON_ONCE(n_ch == 0)) goto unlock; local->int_scan_req->n_channels = n_ch; } else { for (i = 0; i < n_channels; i++) { if (channels[i]->flags & (IEEE80211_CHAN_NO_IR | IEEE80211_CHAN_DISABLED)) continue; local->int_scan_req->channels[n_ch] = channels[i]; n_ch++; } if (WARN_ON_ONCE(n_ch == 0)) goto unlock; local->int_scan_req->n_channels = n_ch; } local->int_scan_req->ssids = &local->scan_ssid; local->int_scan_req->n_ssids = 1; local->int_scan_req->scan_width = scan_width; memcpy(local->int_scan_req->ssids[0].ssid, ssid, IEEE80211_MAX_SSID_LEN); local->int_scan_req->ssids[0].ssid_len = ssid_len; ret = __ieee80211_start_scan(sdata, sdata->local->int_scan_req); unlock: mutex_unlock(&local->mtx); return ret; } void ieee80211_scan_cancel(struct ieee80211_local *local) { /* ensure a new scan cannot be queued */ lockdep_assert_wiphy(local->hw.wiphy); /* * We are canceling software scan, or deferred scan that was not * yet really started (see __ieee80211_start_scan ). * * Regarding hardware scan: * - we can not call __ieee80211_scan_completed() as when * SCAN_HW_SCANNING bit is set this function change * local->hw_scan_req to operate on 5G band, what race with * driver which can use local->hw_scan_req * * - we can not cancel scan_work since driver can schedule it * by ieee80211_scan_completed(..., true) to finish scan * * Hence we only call the cancel_hw_scan() callback, but the low-level * driver is still responsible for calling ieee80211_scan_completed() * after the scan was completed/aborted. */ mutex_lock(&local->mtx); if (!local->scan_req) goto out; /* * We have a scan running and the driver already reported completion, * but the worker hasn't run yet or is stuck on the mutex - mark it as * cancelled. */ if (test_bit(SCAN_HW_SCANNING, &local->scanning) && test_bit(SCAN_COMPLETED, &local->scanning)) { set_bit(SCAN_HW_CANCELLED, &local->scanning); goto out; } if (test_bit(SCAN_HW_SCANNING, &local->scanning)) { /* * Make sure that __ieee80211_scan_completed doesn't trigger a * scan on another band. */ set_bit(SCAN_HW_CANCELLED, &local->scanning); if (local->ops->cancel_hw_scan) drv_cancel_hw_scan(local, rcu_dereference_protected(local->scan_sdata, lockdep_is_held(&local->mtx))); goto out; } /* * If the work is currently running, it must be blocked on * the mutex, but we'll set scan_sdata = NULL and it'll * simply exit once it acquires the mutex. */ cancel_delayed_work(&local->scan_work); /* and clean up */ memset(&local->scan_info, 0, sizeof(local->scan_info)); __ieee80211_scan_completed(&local->hw, true); out: mutex_unlock(&local->mtx); } int __ieee80211_request_sched_scan_start(struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req) { struct ieee80211_local *local = sdata->local; struct ieee80211_scan_ies sched_scan_ies = {}; struct cfg80211_chan_def chandef; int ret, i, iebufsz, num_bands = 0; u32 rate_masks[NUM_NL80211_BANDS] = {}; u8 bands_used = 0; u8 *ie; u32 flags = 0; iebufsz = local->scan_ies_len + req->ie_len; lockdep_assert_held(&local->mtx); if (!local->ops->sched_scan_start) return -ENOTSUPP; for (i = 0; i < NUM_NL80211_BANDS; i++) { if (local->hw.wiphy->bands[i]) { bands_used |= BIT(i); rate_masks[i] = (u32) -1; num_bands++; } } if (req->flags & NL80211_SCAN_FLAG_MIN_PREQ_CONTENT) flags |= IEEE80211_PROBE_FLAG_MIN_CONTENT; ie = kcalloc(iebufsz, num_bands, GFP_KERNEL); if (!ie) { ret = -ENOMEM; goto out; } ieee80211_prepare_scan_chandef(&chandef, req->scan_width); ieee80211_build_preq_ies(sdata, ie, num_bands * iebufsz, &sched_scan_ies, req->ie, req->ie_len, bands_used, rate_masks, &chandef, flags); ret = drv_sched_scan_start(local, sdata, req, &sched_scan_ies); if (ret == 0) { rcu_assign_pointer(local->sched_scan_sdata, sdata); rcu_assign_pointer(local->sched_scan_req, req); } kfree(ie); out: if (ret) { /* Clean in case of failure after HW restart or upon resume. */ RCU_INIT_POINTER(local->sched_scan_sdata, NULL); RCU_INIT_POINTER(local->sched_scan_req, NULL); } return ret; } int ieee80211_request_sched_scan_start(struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req) { struct ieee80211_local *local = sdata->local; int ret; mutex_lock(&local->mtx); if (rcu_access_pointer(local->sched_scan_sdata)) { mutex_unlock(&local->mtx); return -EBUSY; } ret = __ieee80211_request_sched_scan_start(sdata, req); mutex_unlock(&local->mtx); return ret; } int ieee80211_request_sched_scan_stop(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sched_scan_sdata; int ret = -ENOENT; mutex_lock(&local->mtx); if (!local->ops->sched_scan_stop) { ret = -ENOTSUPP; goto out; } /* We don't want to restart sched scan anymore. */ RCU_INIT_POINTER(local->sched_scan_req, NULL); sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, lockdep_is_held(&local->mtx)); if (sched_scan_sdata) { ret = drv_sched_scan_stop(local, sched_scan_sdata); if (!ret) RCU_INIT_POINTER(local->sched_scan_sdata, NULL); } out: mutex_unlock(&local->mtx); return ret; } void ieee80211_sched_scan_results(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); trace_api_sched_scan_results(local); cfg80211_sched_scan_results(hw->wiphy, 0); } EXPORT_SYMBOL(ieee80211_sched_scan_results); void ieee80211_sched_scan_end(struct ieee80211_local *local) { mutex_lock(&local->mtx); if (!rcu_access_pointer(local->sched_scan_sdata)) { mutex_unlock(&local->mtx); return; } RCU_INIT_POINTER(local->sched_scan_sdata, NULL); /* If sched scan was aborted by the driver. */ RCU_INIT_POINTER(local->sched_scan_req, NULL); mutex_unlock(&local->mtx); cfg80211_sched_scan_stopped(local->hw.wiphy, 0); } void ieee80211_sched_scan_stopped_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, sched_scan_stopped_work); ieee80211_sched_scan_end(local); } void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); trace_api_sched_scan_stopped(local); /* * this shouldn't really happen, so for simplicity * simply ignore it, and let mac80211 reconfigure * the sched scan later on. */ if (local->in_reconfig) return; schedule_work(&local->sched_scan_stopped_work); } EXPORT_SYMBOL(ieee80211_sched_scan_stopped);
linux-master
net/mac80211/scan.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008, 2009 open80211s Ltd. * Author: Luis Carlos Cobo <[email protected]> */ #include <linux/etherdevice.h> #include <linux/list.h> #include <linux/random.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/string.h> #include <net/mac80211.h> #include "wme.h" #include "ieee80211_i.h" #include "mesh.h" #include <linux/rhashtable.h> static void mesh_path_free_rcu(struct mesh_table *tbl, struct mesh_path *mpath); static u32 mesh_table_hash(const void *addr, u32 len, u32 seed) { /* Use last four bytes of hw addr as hash index */ return jhash_1word(__get_unaligned_cpu32((u8 *)addr + 2), seed); } static const struct rhashtable_params mesh_rht_params = { .nelem_hint = 2, .automatic_shrinking = true, .key_len = ETH_ALEN, .key_offset = offsetof(struct mesh_path, dst), .head_offset = offsetof(struct mesh_path, rhash), .hashfn = mesh_table_hash, }; static const struct rhashtable_params fast_tx_rht_params = { .nelem_hint = 10, .automatic_shrinking = true, .key_len = ETH_ALEN, .key_offset = offsetof(struct ieee80211_mesh_fast_tx, addr_key), .head_offset = offsetof(struct ieee80211_mesh_fast_tx, rhash), .hashfn = mesh_table_hash, }; static void __mesh_fast_tx_entry_free(void *ptr, void *tblptr) { struct ieee80211_mesh_fast_tx *entry = ptr; kfree_rcu(entry, fast_tx.rcu_head); } static void mesh_fast_tx_deinit(struct ieee80211_sub_if_data *sdata) { struct mesh_tx_cache *cache; cache = &sdata->u.mesh.tx_cache; rhashtable_free_and_destroy(&cache->rht, __mesh_fast_tx_entry_free, NULL); } static void mesh_fast_tx_init(struct ieee80211_sub_if_data *sdata) { struct mesh_tx_cache *cache; cache = &sdata->u.mesh.tx_cache; rhashtable_init(&cache->rht, &fast_tx_rht_params); INIT_HLIST_HEAD(&cache->walk_head); spin_lock_init(&cache->walk_lock); } static inline bool mpath_expired(struct mesh_path *mpath) { return (mpath->flags & MESH_PATH_ACTIVE) && time_after(jiffies, mpath->exp_time) && !(mpath->flags & MESH_PATH_FIXED); } static void mesh_path_rht_free(void *ptr, void *tblptr) { struct mesh_path *mpath = ptr; struct mesh_table *tbl = tblptr; mesh_path_free_rcu(tbl, mpath); } static void mesh_table_init(struct mesh_table *tbl) { INIT_HLIST_HEAD(&tbl->known_gates); INIT_HLIST_HEAD(&tbl->walk_head); atomic_set(&tbl->entries, 0); spin_lock_init(&tbl->gates_lock); spin_lock_init(&tbl->walk_lock); /* rhashtable_init() may fail only in case of wrong * mesh_rht_params */ WARN_ON(rhashtable_init(&tbl->rhead, &mesh_rht_params)); } static void mesh_table_free(struct mesh_table *tbl) { rhashtable_free_and_destroy(&tbl->rhead, mesh_path_rht_free, tbl); } /** * mesh_path_assign_nexthop - update mesh path next hop * * @mpath: mesh path to update * @sta: next hop to assign * * Locking: mpath->state_lock must be held when calling this function */ void mesh_path_assign_nexthop(struct mesh_path *mpath, struct sta_info *sta) { struct sk_buff *skb; struct ieee80211_hdr *hdr; unsigned long flags; rcu_assign_pointer(mpath->next_hop, sta); spin_lock_irqsave(&mpath->frame_queue.lock, flags); skb_queue_walk(&mpath->frame_queue, skb) { hdr = (struct ieee80211_hdr *) skb->data; memcpy(hdr->addr1, sta->sta.addr, ETH_ALEN); memcpy(hdr->addr2, mpath->sdata->vif.addr, ETH_ALEN); ieee80211_mps_set_frame_flags(sta->sdata, sta, hdr); } spin_unlock_irqrestore(&mpath->frame_queue.lock, flags); } static void prepare_for_gate(struct sk_buff *skb, char *dst_addr, struct mesh_path *gate_mpath) { struct ieee80211_hdr *hdr; struct ieee80211s_hdr *mshdr; int mesh_hdrlen, hdrlen; char *next_hop; hdr = (struct ieee80211_hdr *) skb->data; hdrlen = ieee80211_hdrlen(hdr->frame_control); mshdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); if (!(mshdr->flags & MESH_FLAGS_AE)) { /* size of the fixed part of the mesh header */ mesh_hdrlen = 6; /* make room for the two extended addresses */ skb_push(skb, 2 * ETH_ALEN); memmove(skb->data, hdr, hdrlen + mesh_hdrlen); hdr = (struct ieee80211_hdr *) skb->data; /* we preserve the previous mesh header and only add * the new addresses */ mshdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); mshdr->flags = MESH_FLAGS_AE_A5_A6; memcpy(mshdr->eaddr1, hdr->addr3, ETH_ALEN); memcpy(mshdr->eaddr2, hdr->addr4, ETH_ALEN); } /* update next hop */ hdr = (struct ieee80211_hdr *) skb->data; rcu_read_lock(); next_hop = rcu_dereference(gate_mpath->next_hop)->sta.addr; memcpy(hdr->addr1, next_hop, ETH_ALEN); rcu_read_unlock(); memcpy(hdr->addr2, gate_mpath->sdata->vif.addr, ETH_ALEN); memcpy(hdr->addr3, dst_addr, ETH_ALEN); } /** * mesh_path_move_to_queue - Move or copy frames from one mpath queue to another * * This function is used to transfer or copy frames from an unresolved mpath to * a gate mpath. The function also adds the Address Extension field and * updates the next hop. * * If a frame already has an Address Extension field, only the next hop and * destination addresses are updated. * * The gate mpath must be an active mpath with a valid mpath->next_hop. * * @gate_mpath: An active mpath the frames will be sent to (i.e. the gate) * @from_mpath: The failed mpath * @copy: When true, copy all the frames to the new mpath queue. When false, * move them. */ static void mesh_path_move_to_queue(struct mesh_path *gate_mpath, struct mesh_path *from_mpath, bool copy) { struct sk_buff *skb, *fskb, *tmp; struct sk_buff_head failq; unsigned long flags; if (WARN_ON(gate_mpath == from_mpath)) return; if (WARN_ON(!gate_mpath->next_hop)) return; __skb_queue_head_init(&failq); spin_lock_irqsave(&from_mpath->frame_queue.lock, flags); skb_queue_splice_init(&from_mpath->frame_queue, &failq); spin_unlock_irqrestore(&from_mpath->frame_queue.lock, flags); skb_queue_walk_safe(&failq, fskb, tmp) { if (skb_queue_len(&gate_mpath->frame_queue) >= MESH_FRAME_QUEUE_LEN) { mpath_dbg(gate_mpath->sdata, "mpath queue full!\n"); break; } skb = skb_copy(fskb, GFP_ATOMIC); if (WARN_ON(!skb)) break; prepare_for_gate(skb, gate_mpath->dst, gate_mpath); skb_queue_tail(&gate_mpath->frame_queue, skb); if (copy) continue; __skb_unlink(fskb, &failq); kfree_skb(fskb); } mpath_dbg(gate_mpath->sdata, "Mpath queue for gate %pM has %d frames\n", gate_mpath->dst, skb_queue_len(&gate_mpath->frame_queue)); if (!copy) return; spin_lock_irqsave(&from_mpath->frame_queue.lock, flags); skb_queue_splice(&failq, &from_mpath->frame_queue); spin_unlock_irqrestore(&from_mpath->frame_queue.lock, flags); } static struct mesh_path *mpath_lookup(struct mesh_table *tbl, const u8 *dst, struct ieee80211_sub_if_data *sdata) { struct mesh_path *mpath; mpath = rhashtable_lookup(&tbl->rhead, dst, mesh_rht_params); if (mpath && mpath_expired(mpath)) { spin_lock_bh(&mpath->state_lock); mpath->flags &= ~MESH_PATH_ACTIVE; spin_unlock_bh(&mpath->state_lock); } return mpath; } /** * mesh_path_lookup - look up a path in the mesh path table * @sdata: local subif * @dst: hardware address (ETH_ALEN length) of destination * * Returns: pointer to the mesh path structure, or NULL if not found * * Locking: must be called within a read rcu section. */ struct mesh_path * mesh_path_lookup(struct ieee80211_sub_if_data *sdata, const u8 *dst) { return mpath_lookup(&sdata->u.mesh.mesh_paths, dst, sdata); } struct mesh_path * mpp_path_lookup(struct ieee80211_sub_if_data *sdata, const u8 *dst) { return mpath_lookup(&sdata->u.mesh.mpp_paths, dst, sdata); } static struct mesh_path * __mesh_path_lookup_by_idx(struct mesh_table *tbl, int idx) { int i = 0; struct mesh_path *mpath; hlist_for_each_entry_rcu(mpath, &tbl->walk_head, walk_list) { if (i++ == idx) break; } if (!mpath) return NULL; if (mpath_expired(mpath)) { spin_lock_bh(&mpath->state_lock); mpath->flags &= ~MESH_PATH_ACTIVE; spin_unlock_bh(&mpath->state_lock); } return mpath; } /** * mesh_path_lookup_by_idx - look up a path in the mesh path table by its index * @idx: index * @sdata: local subif, or NULL for all entries * * Returns: pointer to the mesh path structure, or NULL if not found. * * Locking: must be called within a read rcu section. */ struct mesh_path * mesh_path_lookup_by_idx(struct ieee80211_sub_if_data *sdata, int idx) { return __mesh_path_lookup_by_idx(&sdata->u.mesh.mesh_paths, idx); } /** * mpp_path_lookup_by_idx - look up a path in the proxy path table by its index * @idx: index * @sdata: local subif, or NULL for all entries * * Returns: pointer to the proxy path structure, or NULL if not found. * * Locking: must be called within a read rcu section. */ struct mesh_path * mpp_path_lookup_by_idx(struct ieee80211_sub_if_data *sdata, int idx) { return __mesh_path_lookup_by_idx(&sdata->u.mesh.mpp_paths, idx); } /** * mesh_path_add_gate - add the given mpath to a mesh gate to our path table * @mpath: gate path to add to table */ int mesh_path_add_gate(struct mesh_path *mpath) { struct mesh_table *tbl; int err; rcu_read_lock(); tbl = &mpath->sdata->u.mesh.mesh_paths; spin_lock_bh(&mpath->state_lock); if (mpath->is_gate) { err = -EEXIST; spin_unlock_bh(&mpath->state_lock); goto err_rcu; } mpath->is_gate = true; mpath->sdata->u.mesh.num_gates++; spin_lock(&tbl->gates_lock); hlist_add_head_rcu(&mpath->gate_list, &tbl->known_gates); spin_unlock(&tbl->gates_lock); spin_unlock_bh(&mpath->state_lock); mpath_dbg(mpath->sdata, "Mesh path: Recorded new gate: %pM. %d known gates\n", mpath->dst, mpath->sdata->u.mesh.num_gates); err = 0; err_rcu: rcu_read_unlock(); return err; } /** * mesh_gate_del - remove a mesh gate from the list of known gates * @tbl: table which holds our list of known gates * @mpath: gate mpath */ static void mesh_gate_del(struct mesh_table *tbl, struct mesh_path *mpath) { lockdep_assert_held(&mpath->state_lock); if (!mpath->is_gate) return; mpath->is_gate = false; spin_lock_bh(&tbl->gates_lock); hlist_del_rcu(&mpath->gate_list); mpath->sdata->u.mesh.num_gates--; spin_unlock_bh(&tbl->gates_lock); mpath_dbg(mpath->sdata, "Mesh path: Deleted gate: %pM. %d known gates\n", mpath->dst, mpath->sdata->u.mesh.num_gates); } /** * mesh_gate_num - number of gates known to this interface * @sdata: subif data */ int mesh_gate_num(struct ieee80211_sub_if_data *sdata) { return sdata->u.mesh.num_gates; } static struct mesh_path *mesh_path_new(struct ieee80211_sub_if_data *sdata, const u8 *dst, gfp_t gfp_flags) { struct mesh_path *new_mpath; new_mpath = kzalloc(sizeof(struct mesh_path), gfp_flags); if (!new_mpath) return NULL; memcpy(new_mpath->dst, dst, ETH_ALEN); eth_broadcast_addr(new_mpath->rann_snd_addr); new_mpath->is_root = false; new_mpath->sdata = sdata; new_mpath->flags = 0; skb_queue_head_init(&new_mpath->frame_queue); new_mpath->exp_time = jiffies; spin_lock_init(&new_mpath->state_lock); timer_setup(&new_mpath->timer, mesh_path_timer, 0); return new_mpath; } static void mesh_fast_tx_entry_free(struct mesh_tx_cache *cache, struct ieee80211_mesh_fast_tx *entry) { hlist_del_rcu(&entry->walk_list); rhashtable_remove_fast(&cache->rht, &entry->rhash, fast_tx_rht_params); kfree_rcu(entry, fast_tx.rcu_head); } struct ieee80211_mesh_fast_tx * mesh_fast_tx_get(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct ieee80211_mesh_fast_tx *entry; struct mesh_tx_cache *cache; cache = &sdata->u.mesh.tx_cache; entry = rhashtable_lookup(&cache->rht, addr, fast_tx_rht_params); if (!entry) return NULL; if (!(entry->mpath->flags & MESH_PATH_ACTIVE) || mpath_expired(entry->mpath)) { spin_lock_bh(&cache->walk_lock); entry = rhashtable_lookup(&cache->rht, addr, fast_tx_rht_params); if (entry) mesh_fast_tx_entry_free(cache, entry); spin_unlock_bh(&cache->walk_lock); return NULL; } mesh_path_refresh(sdata, entry->mpath, NULL); if (entry->mppath) entry->mppath->exp_time = jiffies; entry->timestamp = jiffies; return entry; } void mesh_fast_tx_cache(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct mesh_path *mpath) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_mesh_fast_tx *entry, *prev; struct ieee80211_mesh_fast_tx build = {}; struct ieee80211s_hdr *meshhdr; struct mesh_tx_cache *cache; struct ieee80211_key *key; struct mesh_path *mppath; struct sta_info *sta; u8 *qc; if (sdata->noack_map || !ieee80211_is_data_qos(hdr->frame_control)) return; build.fast_tx.hdr_len = ieee80211_hdrlen(hdr->frame_control); meshhdr = (struct ieee80211s_hdr *)(skb->data + build.fast_tx.hdr_len); build.hdrlen = ieee80211_get_mesh_hdrlen(meshhdr); cache = &sdata->u.mesh.tx_cache; if (atomic_read(&cache->rht.nelems) >= MESH_FAST_TX_CACHE_MAX_SIZE) return; sta = rcu_dereference(mpath->next_hop); if (!sta) return; if ((meshhdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) { /* This is required to keep the mppath alive */ mppath = mpp_path_lookup(sdata, meshhdr->eaddr1); if (!mppath) return; build.mppath = mppath; } else if (ieee80211_has_a4(hdr->frame_control)) { mppath = mpath; } else { return; } /* rate limit, in case fast xmit can't be enabled */ if (mppath->fast_tx_check == jiffies) return; mppath->fast_tx_check = jiffies; /* * Same use of the sta lock as in ieee80211_check_fast_xmit, in order * to protect against concurrent sta key updates. */ spin_lock_bh(&sta->lock); key = rcu_access_pointer(sta->ptk[sta->ptk_idx]); if (!key) key = rcu_access_pointer(sdata->default_unicast_key); build.fast_tx.key = key; if (key) { bool gen_iv, iv_spc; gen_iv = key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV; iv_spc = key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE; if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) || (key->flags & KEY_FLAG_TAINTED)) goto unlock_sta; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: if (gen_iv) build.fast_tx.pn_offs = build.fast_tx.hdr_len; if (gen_iv || iv_spc) build.fast_tx.hdr_len += IEEE80211_CCMP_HDR_LEN; break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (gen_iv) build.fast_tx.pn_offs = build.fast_tx.hdr_len; if (gen_iv || iv_spc) build.fast_tx.hdr_len += IEEE80211_GCMP_HDR_LEN; break; default: goto unlock_sta; } } memcpy(build.addr_key, mppath->dst, ETH_ALEN); build.timestamp = jiffies; build.fast_tx.band = info->band; build.fast_tx.da_offs = offsetof(struct ieee80211_hdr, addr3); build.fast_tx.sa_offs = offsetof(struct ieee80211_hdr, addr4); build.mpath = mpath; memcpy(build.hdr, meshhdr, build.hdrlen); memcpy(build.hdr + build.hdrlen, rfc1042_header, sizeof(rfc1042_header)); build.hdrlen += sizeof(rfc1042_header); memcpy(build.fast_tx.hdr, hdr, build.fast_tx.hdr_len); hdr = (struct ieee80211_hdr *)build.fast_tx.hdr; if (build.fast_tx.key) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); qc = ieee80211_get_qos_ctl(hdr); qc[1] |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT >> 8; entry = kmemdup(&build, sizeof(build), GFP_ATOMIC); if (!entry) goto unlock_sta; spin_lock(&cache->walk_lock); prev = rhashtable_lookup_get_insert_fast(&cache->rht, &entry->rhash, fast_tx_rht_params); if (unlikely(IS_ERR(prev))) { kfree(entry); goto unlock_cache; } /* * replace any previous entry in the hash table, in case we're * replacing it with a different type (e.g. mpath -> mpp) */ if (unlikely(prev)) { rhashtable_replace_fast(&cache->rht, &prev->rhash, &entry->rhash, fast_tx_rht_params); hlist_del_rcu(&prev->walk_list); kfree_rcu(prev, fast_tx.rcu_head); } hlist_add_head(&entry->walk_list, &cache->walk_head); unlock_cache: spin_unlock(&cache->walk_lock); unlock_sta: spin_unlock_bh(&sta->lock); } void mesh_fast_tx_gc(struct ieee80211_sub_if_data *sdata) { unsigned long timeout = msecs_to_jiffies(MESH_FAST_TX_CACHE_TIMEOUT); struct mesh_tx_cache *cache; struct ieee80211_mesh_fast_tx *entry; struct hlist_node *n; cache = &sdata->u.mesh.tx_cache; if (atomic_read(&cache->rht.nelems) < MESH_FAST_TX_CACHE_THRESHOLD_SIZE) return; spin_lock_bh(&cache->walk_lock); hlist_for_each_entry_safe(entry, n, &cache->walk_head, walk_list) if (!time_is_after_jiffies(entry->timestamp + timeout)) mesh_fast_tx_entry_free(cache, entry); spin_unlock_bh(&cache->walk_lock); } void mesh_fast_tx_flush_mpath(struct mesh_path *mpath) { struct ieee80211_sub_if_data *sdata = mpath->sdata; struct mesh_tx_cache *cache = &sdata->u.mesh.tx_cache; struct ieee80211_mesh_fast_tx *entry; struct hlist_node *n; cache = &sdata->u.mesh.tx_cache; spin_lock_bh(&cache->walk_lock); hlist_for_each_entry_safe(entry, n, &cache->walk_head, walk_list) if (entry->mpath == mpath) mesh_fast_tx_entry_free(cache, entry); spin_unlock_bh(&cache->walk_lock); } void mesh_fast_tx_flush_sta(struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { struct mesh_tx_cache *cache = &sdata->u.mesh.tx_cache; struct ieee80211_mesh_fast_tx *entry; struct hlist_node *n; cache = &sdata->u.mesh.tx_cache; spin_lock_bh(&cache->walk_lock); hlist_for_each_entry_safe(entry, n, &cache->walk_head, walk_list) if (rcu_access_pointer(entry->mpath->next_hop) == sta) mesh_fast_tx_entry_free(cache, entry); spin_unlock_bh(&cache->walk_lock); } void mesh_fast_tx_flush_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct mesh_tx_cache *cache = &sdata->u.mesh.tx_cache; struct ieee80211_mesh_fast_tx *entry; cache = &sdata->u.mesh.tx_cache; spin_lock_bh(&cache->walk_lock); entry = rhashtable_lookup(&cache->rht, addr, fast_tx_rht_params); if (entry) mesh_fast_tx_entry_free(cache, entry); spin_unlock_bh(&cache->walk_lock); } /** * mesh_path_add - allocate and add a new path to the mesh path table * @dst: destination address of the path (ETH_ALEN length) * @sdata: local subif * * Returns: 0 on success * * State: the initial state of the new path is set to 0 */ struct mesh_path *mesh_path_add(struct ieee80211_sub_if_data *sdata, const u8 *dst) { struct mesh_table *tbl; struct mesh_path *mpath, *new_mpath; if (ether_addr_equal(dst, sdata->vif.addr)) /* never add ourselves as neighbours */ return ERR_PTR(-ENOTSUPP); if (is_multicast_ether_addr(dst)) return ERR_PTR(-ENOTSUPP); if (atomic_add_unless(&sdata->u.mesh.mpaths, 1, MESH_MAX_MPATHS) == 0) return ERR_PTR(-ENOSPC); new_mpath = mesh_path_new(sdata, dst, GFP_ATOMIC); if (!new_mpath) return ERR_PTR(-ENOMEM); tbl = &sdata->u.mesh.mesh_paths; spin_lock_bh(&tbl->walk_lock); mpath = rhashtable_lookup_get_insert_fast(&tbl->rhead, &new_mpath->rhash, mesh_rht_params); if (!mpath) hlist_add_head(&new_mpath->walk_list, &tbl->walk_head); spin_unlock_bh(&tbl->walk_lock); if (mpath) { kfree(new_mpath); if (IS_ERR(mpath)) return mpath; new_mpath = mpath; } sdata->u.mesh.mesh_paths_generation++; return new_mpath; } int mpp_path_add(struct ieee80211_sub_if_data *sdata, const u8 *dst, const u8 *mpp) { struct mesh_table *tbl; struct mesh_path *new_mpath; int ret; if (ether_addr_equal(dst, sdata->vif.addr)) /* never add ourselves as neighbours */ return -ENOTSUPP; if (is_multicast_ether_addr(dst)) return -ENOTSUPP; new_mpath = mesh_path_new(sdata, dst, GFP_ATOMIC); if (!new_mpath) return -ENOMEM; memcpy(new_mpath->mpp, mpp, ETH_ALEN); tbl = &sdata->u.mesh.mpp_paths; spin_lock_bh(&tbl->walk_lock); ret = rhashtable_lookup_insert_fast(&tbl->rhead, &new_mpath->rhash, mesh_rht_params); if (!ret) hlist_add_head_rcu(&new_mpath->walk_list, &tbl->walk_head); spin_unlock_bh(&tbl->walk_lock); if (ret) kfree(new_mpath); else mesh_fast_tx_flush_addr(sdata, dst); sdata->u.mesh.mpp_paths_generation++; return ret; } /** * mesh_plink_broken - deactivates paths and sends perr when a link breaks * * @sta: broken peer link * * This function must be called from the rate control algorithm if enough * delivery errors suggest that a peer link is no longer usable. */ void mesh_plink_broken(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct mesh_table *tbl = &sdata->u.mesh.mesh_paths; static const u8 bcast[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; struct mesh_path *mpath; rcu_read_lock(); hlist_for_each_entry_rcu(mpath, &tbl->walk_head, walk_list) { if (rcu_access_pointer(mpath->next_hop) == sta && mpath->flags & MESH_PATH_ACTIVE && !(mpath->flags & MESH_PATH_FIXED)) { spin_lock_bh(&mpath->state_lock); mpath->flags &= ~MESH_PATH_ACTIVE; ++mpath->sn; spin_unlock_bh(&mpath->state_lock); mesh_path_error_tx(sdata, sdata->u.mesh.mshcfg.element_ttl, mpath->dst, mpath->sn, WLAN_REASON_MESH_PATH_DEST_UNREACHABLE, bcast); } } rcu_read_unlock(); } static void mesh_path_free_rcu(struct mesh_table *tbl, struct mesh_path *mpath) { struct ieee80211_sub_if_data *sdata = mpath->sdata; spin_lock_bh(&mpath->state_lock); mpath->flags |= MESH_PATH_RESOLVING | MESH_PATH_DELETED; mesh_gate_del(tbl, mpath); spin_unlock_bh(&mpath->state_lock); timer_shutdown_sync(&mpath->timer); atomic_dec(&sdata->u.mesh.mpaths); atomic_dec(&tbl->entries); mesh_path_flush_pending(mpath); kfree_rcu(mpath, rcu); } static void __mesh_path_del(struct mesh_table *tbl, struct mesh_path *mpath) { hlist_del_rcu(&mpath->walk_list); rhashtable_remove_fast(&tbl->rhead, &mpath->rhash, mesh_rht_params); if (tbl == &mpath->sdata->u.mesh.mpp_paths) mesh_fast_tx_flush_addr(mpath->sdata, mpath->dst); else mesh_fast_tx_flush_mpath(mpath); mesh_path_free_rcu(tbl, mpath); } /** * mesh_path_flush_by_nexthop - Deletes mesh paths if their next hop matches * * @sta: mesh peer to match * * RCU notes: this function is called when a mesh plink transitions from * PLINK_ESTAB to any other state, since PLINK_ESTAB state is the only one that * allows path creation. This will happen before the sta can be freed (because * sta_info_destroy() calls this) so any reader in a rcu read block will be * protected against the plink disappearing. */ void mesh_path_flush_by_nexthop(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct mesh_table *tbl = &sdata->u.mesh.mesh_paths; struct mesh_path *mpath; struct hlist_node *n; spin_lock_bh(&tbl->walk_lock); hlist_for_each_entry_safe(mpath, n, &tbl->walk_head, walk_list) { if (rcu_access_pointer(mpath->next_hop) == sta) __mesh_path_del(tbl, mpath); } spin_unlock_bh(&tbl->walk_lock); } static void mpp_flush_by_proxy(struct ieee80211_sub_if_data *sdata, const u8 *proxy) { struct mesh_table *tbl = &sdata->u.mesh.mpp_paths; struct mesh_path *mpath; struct hlist_node *n; spin_lock_bh(&tbl->walk_lock); hlist_for_each_entry_safe(mpath, n, &tbl->walk_head, walk_list) { if (ether_addr_equal(mpath->mpp, proxy)) __mesh_path_del(tbl, mpath); } spin_unlock_bh(&tbl->walk_lock); } static void table_flush_by_iface(struct mesh_table *tbl) { struct mesh_path *mpath; struct hlist_node *n; spin_lock_bh(&tbl->walk_lock); hlist_for_each_entry_safe(mpath, n, &tbl->walk_head, walk_list) { __mesh_path_del(tbl, mpath); } spin_unlock_bh(&tbl->walk_lock); } /** * mesh_path_flush_by_iface - Deletes all mesh paths associated with a given iface * * This function deletes both mesh paths as well as mesh portal paths. * * @sdata: interface data to match * */ void mesh_path_flush_by_iface(struct ieee80211_sub_if_data *sdata) { table_flush_by_iface(&sdata->u.mesh.mesh_paths); table_flush_by_iface(&sdata->u.mesh.mpp_paths); } /** * table_path_del - delete a path from the mesh or mpp table * * @tbl: mesh or mpp path table * @sdata: local subif * @addr: dst address (ETH_ALEN length) * * Returns: 0 if successful */ static int table_path_del(struct mesh_table *tbl, struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct mesh_path *mpath; spin_lock_bh(&tbl->walk_lock); mpath = rhashtable_lookup_fast(&tbl->rhead, addr, mesh_rht_params); if (!mpath) { spin_unlock_bh(&tbl->walk_lock); return -ENXIO; } __mesh_path_del(tbl, mpath); spin_unlock_bh(&tbl->walk_lock); return 0; } /** * mesh_path_del - delete a mesh path from the table * * @addr: dst address (ETH_ALEN length) * @sdata: local subif * * Returns: 0 if successful */ int mesh_path_del(struct ieee80211_sub_if_data *sdata, const u8 *addr) { int err; /* flush relevant mpp entries first */ mpp_flush_by_proxy(sdata, addr); err = table_path_del(&sdata->u.mesh.mesh_paths, sdata, addr); sdata->u.mesh.mesh_paths_generation++; return err; } /** * mesh_path_tx_pending - sends pending frames in a mesh path queue * * @mpath: mesh path to activate * * Locking: the state_lock of the mpath structure must NOT be held when calling * this function. */ void mesh_path_tx_pending(struct mesh_path *mpath) { if (mpath->flags & MESH_PATH_ACTIVE) ieee80211_add_pending_skbs(mpath->sdata->local, &mpath->frame_queue); } /** * mesh_path_send_to_gates - sends pending frames to all known mesh gates * * @mpath: mesh path whose queue will be emptied * * If there is only one gate, the frames are transferred from the failed mpath * queue to that gate's queue. If there are more than one gates, the frames * are copied from each gate to the next. After frames are copied, the * mpath queues are emptied onto the transmission queue. */ int mesh_path_send_to_gates(struct mesh_path *mpath) { struct ieee80211_sub_if_data *sdata = mpath->sdata; struct mesh_table *tbl; struct mesh_path *from_mpath = mpath; struct mesh_path *gate; bool copy = false; tbl = &sdata->u.mesh.mesh_paths; rcu_read_lock(); hlist_for_each_entry_rcu(gate, &tbl->known_gates, gate_list) { if (gate->flags & MESH_PATH_ACTIVE) { mpath_dbg(sdata, "Forwarding to %pM\n", gate->dst); mesh_path_move_to_queue(gate, from_mpath, copy); from_mpath = gate; copy = true; } else { mpath_dbg(sdata, "Not forwarding to %pM (flags %#x)\n", gate->dst, gate->flags); } } hlist_for_each_entry_rcu(gate, &tbl->known_gates, gate_list) { mpath_dbg(sdata, "Sending to %pM\n", gate->dst); mesh_path_tx_pending(gate); } rcu_read_unlock(); return (from_mpath == mpath) ? -EHOSTUNREACH : 0; } /** * mesh_path_discard_frame - discard a frame whose path could not be resolved * * @skb: frame to discard * @sdata: network subif the frame was to be sent through * * Locking: the function must me called within a rcu_read_lock region */ void mesh_path_discard_frame(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { ieee80211_free_txskb(&sdata->local->hw, skb); sdata->u.mesh.mshstats.dropped_frames_no_route++; } /** * mesh_path_flush_pending - free the pending queue of a mesh path * * @mpath: mesh path whose queue has to be freed * * Locking: the function must me called within a rcu_read_lock region */ void mesh_path_flush_pending(struct mesh_path *mpath) { struct sk_buff *skb; while ((skb = skb_dequeue(&mpath->frame_queue)) != NULL) mesh_path_discard_frame(mpath->sdata, skb); } /** * mesh_path_fix_nexthop - force a specific next hop for a mesh path * * @mpath: the mesh path to modify * @next_hop: the next hop to force * * Locking: this function must be called holding mpath->state_lock */ void mesh_path_fix_nexthop(struct mesh_path *mpath, struct sta_info *next_hop) { spin_lock_bh(&mpath->state_lock); mesh_path_assign_nexthop(mpath, next_hop); mpath->sn = 0xffff; mpath->metric = 0; mpath->hop_count = 0; mpath->exp_time = 0; mpath->flags = MESH_PATH_FIXED | MESH_PATH_SN_VALID; mesh_path_activate(mpath); mesh_fast_tx_flush_mpath(mpath); spin_unlock_bh(&mpath->state_lock); ewma_mesh_fail_avg_init(&next_hop->mesh->fail_avg); /* init it at a low value - 0 start is tricky */ ewma_mesh_fail_avg_add(&next_hop->mesh->fail_avg, 1); mesh_path_tx_pending(mpath); } void mesh_pathtbl_init(struct ieee80211_sub_if_data *sdata) { mesh_table_init(&sdata->u.mesh.mesh_paths); mesh_table_init(&sdata->u.mesh.mpp_paths); mesh_fast_tx_init(sdata); } static void mesh_path_tbl_expire(struct ieee80211_sub_if_data *sdata, struct mesh_table *tbl) { struct mesh_path *mpath; struct hlist_node *n; spin_lock_bh(&tbl->walk_lock); hlist_for_each_entry_safe(mpath, n, &tbl->walk_head, walk_list) { if ((!(mpath->flags & MESH_PATH_RESOLVING)) && (!(mpath->flags & MESH_PATH_FIXED)) && time_after(jiffies, mpath->exp_time + MESH_PATH_EXPIRE)) __mesh_path_del(tbl, mpath); } spin_unlock_bh(&tbl->walk_lock); } void mesh_path_expire(struct ieee80211_sub_if_data *sdata) { mesh_path_tbl_expire(sdata, &sdata->u.mesh.mesh_paths); mesh_path_tbl_expire(sdata, &sdata->u.mesh.mpp_paths); } void mesh_pathtbl_unregister(struct ieee80211_sub_if_data *sdata) { mesh_fast_tx_deinit(sdata); mesh_table_free(&sdata->u.mesh.mesh_paths); mesh_table_free(&sdata->u.mesh.mpp_paths); }
linux-master
net/mac80211/mesh_pathtbl.c
// SPDX-License-Identifier: GPL-2.0 /* * S1G handling * Copyright(c) 2020 Adapt-IP */ #include <linux/ieee80211.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" void ieee80211_s1g_sta_rate_init(struct sta_info *sta) { /* avoid indicating legacy bitrates for S1G STAs */ sta->deflink.tx_stats.last_rate.flags |= IEEE80211_TX_RC_S1G_MCS; sta->deflink.rx_stats.last_rate = STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_S1G); } bool ieee80211_s1g_is_twt_setup(struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; if (likely(!ieee80211_is_action(mgmt->frame_control))) return false; if (likely(mgmt->u.action.category != WLAN_CATEGORY_S1G)) return false; return mgmt->u.action.u.s1g.action_code == WLAN_S1G_TWT_SETUP; } static void ieee80211_s1g_send_twt_setup(struct ieee80211_sub_if_data *sdata, const u8 *da, const u8 *bssid, struct ieee80211_twt_setup *twt) { int len = IEEE80211_MIN_ACTION_SIZE + 4 + twt->length; struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; skb = dev_alloc_skb(local->hw.extra_tx_headroom + len); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = skb_put_zero(skb, len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, bssid, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_S1G; mgmt->u.action.u.s1g.action_code = WLAN_S1G_TWT_SETUP; memcpy(mgmt->u.action.u.s1g.variable, twt, 3 + twt->length); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_INTFL_MLME_CONN_TX | IEEE80211_TX_CTL_REQ_TX_STATUS; ieee80211_tx_skb(sdata, skb); } static void ieee80211_s1g_send_twt_teardown(struct ieee80211_sub_if_data *sdata, const u8 *da, const u8 *bssid, u8 flowid) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; u8 *id; skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_MIN_ACTION_SIZE + 2); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = skb_put_zero(skb, IEEE80211_MIN_ACTION_SIZE + 2); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, bssid, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_S1G; mgmt->u.action.u.s1g.action_code = WLAN_S1G_TWT_TEARDOWN; id = (u8 *)mgmt->u.action.u.s1g.variable; *id = flowid; IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_CTL_REQ_TX_STATUS; ieee80211_tx_skb(sdata, skb); } static void ieee80211_s1g_rx_twt_setup(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *)skb->data; struct ieee80211_twt_setup *twt = (void *)mgmt->u.action.u.s1g.variable; struct ieee80211_twt_params *twt_agrt = (void *)twt->params; twt_agrt->req_type &= cpu_to_le16(~IEEE80211_TWT_REQTYPE_REQUEST); /* broadcast TWT not supported yet */ if (twt->control & IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST) { twt_agrt->req_type &= ~cpu_to_le16(IEEE80211_TWT_REQTYPE_SETUP_CMD); twt_agrt->req_type |= le16_encode_bits(TWT_SETUP_CMD_REJECT, IEEE80211_TWT_REQTYPE_SETUP_CMD); goto out; } /* TWT Information not supported yet */ twt->control |= IEEE80211_TWT_CONTROL_RX_DISABLED; drv_add_twt_setup(sdata->local, sdata, &sta->sta, twt); out: ieee80211_s1g_send_twt_setup(sdata, mgmt->sa, sdata->vif.addr, twt); } static void ieee80211_s1g_rx_twt_teardown(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; drv_twt_teardown_request(sdata->local, sdata, &sta->sta, mgmt->u.action.u.s1g.variable[0]); } static void ieee80211_s1g_tx_twt_setup_fail(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; struct ieee80211_twt_setup *twt = (void *)mgmt->u.action.u.s1g.variable; struct ieee80211_twt_params *twt_agrt = (void *)twt->params; u8 flowid = le16_get_bits(twt_agrt->req_type, IEEE80211_TWT_REQTYPE_FLOWID); drv_twt_teardown_request(sdata->local, sdata, &sta->sta, flowid); ieee80211_s1g_send_twt_teardown(sdata, mgmt->sa, sdata->vif.addr, flowid); } void ieee80211_s1g_rx_twt_action(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; struct ieee80211_local *local = sdata->local; struct sta_info *sta; mutex_lock(&local->sta_mtx); sta = sta_info_get_bss(sdata, mgmt->sa); if (!sta) goto out; switch (mgmt->u.action.u.s1g.action_code) { case WLAN_S1G_TWT_SETUP: ieee80211_s1g_rx_twt_setup(sdata, sta, skb); break; case WLAN_S1G_TWT_TEARDOWN: ieee80211_s1g_rx_twt_teardown(sdata, sta, skb); break; default: break; } out: mutex_unlock(&local->sta_mtx); } void ieee80211_s1g_status_twt_action(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; struct ieee80211_local *local = sdata->local; struct sta_info *sta; mutex_lock(&local->sta_mtx); sta = sta_info_get_bss(sdata, mgmt->da); if (!sta) goto out; switch (mgmt->u.action.u.s1g.action_code) { case WLAN_S1G_TWT_SETUP: /* process failed twt setup frames */ ieee80211_s1g_tx_twt_setup_fail(sdata, sta, skb); break; default: break; } out: mutex_unlock(&local->sta_mtx); }
linux-master
net/mac80211/s1g.c
// SPDX-License-Identifier: GPL-2.0-only /* * Off-channel operation helpers * * Copyright 2003, Jouni Malinen <[email protected]> * Copyright 2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007, Michael Wu <[email protected]> * Copyright 2009 Johannes Berg <[email protected]> * Copyright (C) 2019, 2022-2023 Intel Corporation */ #include <linux/export.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" /* * Tell our hardware to disable PS. * Optionally inform AP that we will go to sleep so that it will buffer * the frames while we are doing off-channel work. This is optional * because we *may* be doing work on-operating channel, and want our * hardware unconditionally awake, but still let the AP send us normal frames. */ static void ieee80211_offchannel_ps_enable(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool offchannel_ps_enabled = false; /* FIXME: what to do when local->pspolling is true? */ del_timer_sync(&local->dynamic_ps_timer); del_timer_sync(&ifmgd->bcn_mon_timer); del_timer_sync(&ifmgd->conn_mon_timer); cancel_work_sync(&local->dynamic_ps_enable_work); if (local->hw.conf.flags & IEEE80211_CONF_PS) { offchannel_ps_enabled = true; local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } if (!offchannel_ps_enabled || !ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) /* * If power save was enabled, no need to send a nullfunc * frame because AP knows that we are sleeping. But if the * hardware is creating the nullfunc frame for power save * status (ie. IEEE80211_HW_PS_NULLFUNC_STACK is not * enabled) and power save was enabled, the firmware just * sent a null frame with power save disabled. So we need * to send a new nullfunc frame to inform the AP that we * are again sleeping. */ ieee80211_send_nullfunc(local, sdata, true); } /* inform AP that we are awake again */ static void ieee80211_offchannel_ps_disable(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; if (!local->ps_sdata) ieee80211_send_nullfunc(local, sdata, false); else if (local->hw.conf.dynamic_ps_timeout > 0) { /* * the dynamic_ps_timer had been running before leaving the * operating channel, restart the timer now and send a nullfunc * frame to inform the AP that we are awake so that AP sends * the buffered packets (if any). */ ieee80211_send_nullfunc(local, sdata, false); mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); } ieee80211_sta_reset_beacon_monitor(sdata); ieee80211_sta_reset_conn_monitor(sdata); } void ieee80211_offchannel_stop_vifs(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; if (WARN_ON(local->use_chanctx)) return; /* * notify the AP about us leaving the channel and stop all * STA interfaces. */ /* * Stop queues and transmit all frames queued by the driver * before sending nullfunc to enable powersave at the AP. */ ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL, false); ieee80211_flush_queues(local, NULL, false); mutex_lock(&local->iflist_mtx); list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE || sdata->vif.type == NL80211_IFTYPE_NAN) continue; if (sdata->vif.type != NL80211_IFTYPE_MONITOR) set_bit(SDATA_STATE_OFFCHANNEL, &sdata->state); /* Check to see if we should disable beaconing. */ if (sdata->vif.bss_conf.enable_beacon) { set_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state); sdata->vif.bss_conf.enable_beacon = false; ieee80211_link_info_change_notify( sdata, &sdata->deflink, BSS_CHANGED_BEACON_ENABLED); } if (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.associated) ieee80211_offchannel_ps_enable(sdata); } mutex_unlock(&local->iflist_mtx); } void ieee80211_offchannel_return(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; if (WARN_ON(local->use_chanctx)) return; mutex_lock(&local->iflist_mtx); list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) continue; if (sdata->vif.type != NL80211_IFTYPE_MONITOR) clear_bit(SDATA_STATE_OFFCHANNEL, &sdata->state); if (!ieee80211_sdata_running(sdata)) continue; /* Tell AP we're back */ if (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.associated) ieee80211_offchannel_ps_disable(sdata); if (test_and_clear_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state)) { sdata->vif.bss_conf.enable_beacon = true; ieee80211_link_info_change_notify( sdata, &sdata->deflink, BSS_CHANGED_BEACON_ENABLED); } } mutex_unlock(&local->iflist_mtx); ieee80211_wake_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL, false); } static void ieee80211_roc_notify_destroy(struct ieee80211_roc_work *roc) { /* was never transmitted */ if (roc->frame) { cfg80211_mgmt_tx_status(&roc->sdata->wdev, roc->mgmt_tx_cookie, roc->frame->data, roc->frame->len, false, GFP_KERNEL); ieee80211_free_txskb(&roc->sdata->local->hw, roc->frame); } if (!roc->mgmt_tx_cookie) cfg80211_remain_on_channel_expired(&roc->sdata->wdev, roc->cookie, roc->chan, GFP_KERNEL); else cfg80211_tx_mgmt_expired(&roc->sdata->wdev, roc->mgmt_tx_cookie, roc->chan, GFP_KERNEL); list_del(&roc->list); kfree(roc); } static unsigned long ieee80211_end_finished_rocs(struct ieee80211_local *local, unsigned long now) { struct ieee80211_roc_work *roc, *tmp; long remaining_dur_min = LONG_MAX; lockdep_assert_held(&local->mtx); list_for_each_entry_safe(roc, tmp, &local->roc_list, list) { long remaining; if (!roc->started) break; remaining = roc->start_time + msecs_to_jiffies(roc->duration) - now; /* In case of HW ROC, it is possible that the HW finished the * ROC session before the actual requested time. In such a case * end the ROC session (disregarding the remaining time). */ if (roc->abort || roc->hw_begun || remaining <= 0) ieee80211_roc_notify_destroy(roc); else remaining_dur_min = min(remaining_dur_min, remaining); } return remaining_dur_min; } static bool ieee80211_recalc_sw_work(struct ieee80211_local *local, unsigned long now) { long dur = ieee80211_end_finished_rocs(local, now); if (dur == LONG_MAX) return false; mod_delayed_work(local->workqueue, &local->roc_work, dur); return true; } static void ieee80211_handle_roc_started(struct ieee80211_roc_work *roc, unsigned long start_time) { if (WARN_ON(roc->notified)) return; roc->start_time = start_time; roc->started = true; if (roc->mgmt_tx_cookie) { if (!WARN_ON(!roc->frame)) { ieee80211_tx_skb_tid_band(roc->sdata, roc->frame, 7, roc->chan->band); roc->frame = NULL; } } else { cfg80211_ready_on_channel(&roc->sdata->wdev, roc->cookie, roc->chan, roc->req_duration, GFP_KERNEL); } roc->notified = true; } static void ieee80211_hw_roc_start(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, hw_roc_start); struct ieee80211_roc_work *roc; mutex_lock(&local->mtx); list_for_each_entry(roc, &local->roc_list, list) { if (!roc->started) break; roc->hw_begun = true; ieee80211_handle_roc_started(roc, local->hw_roc_start_time); } mutex_unlock(&local->mtx); } void ieee80211_ready_on_channel(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); local->hw_roc_start_time = jiffies; trace_api_ready_on_channel(local); ieee80211_queue_work(hw, &local->hw_roc_start); } EXPORT_SYMBOL_GPL(ieee80211_ready_on_channel); static void _ieee80211_start_next_roc(struct ieee80211_local *local) { struct ieee80211_roc_work *roc, *tmp; enum ieee80211_roc_type type; u32 min_dur, max_dur; lockdep_assert_held(&local->mtx); if (WARN_ON(list_empty(&local->roc_list))) return; roc = list_first_entry(&local->roc_list, struct ieee80211_roc_work, list); if (WARN_ON(roc->started)) return; min_dur = roc->duration; max_dur = roc->duration; type = roc->type; list_for_each_entry(tmp, &local->roc_list, list) { if (tmp == roc) continue; if (tmp->sdata != roc->sdata || tmp->chan != roc->chan) break; max_dur = max(tmp->duration, max_dur); min_dur = min(tmp->duration, min_dur); type = max(tmp->type, type); } if (local->ops->remain_on_channel) { int ret = drv_remain_on_channel(local, roc->sdata, roc->chan, max_dur, type); if (ret) { wiphy_warn(local->hw.wiphy, "failed to start next HW ROC (%d)\n", ret); /* * queue the work struct again to avoid recursion * when multiple failures occur */ list_for_each_entry(tmp, &local->roc_list, list) { if (tmp->sdata != roc->sdata || tmp->chan != roc->chan) break; tmp->started = true; tmp->abort = true; } ieee80211_queue_work(&local->hw, &local->hw_roc_done); return; } /* we'll notify about the start once the HW calls back */ list_for_each_entry(tmp, &local->roc_list, list) { if (tmp->sdata != roc->sdata || tmp->chan != roc->chan) break; tmp->started = true; } } else { /* If actually operating on the desired channel (with at least * 20 MHz channel width) don't stop all the operations but still * treat it as though the ROC operation started properly, so * other ROC operations won't interfere with this one. */ roc->on_channel = roc->chan == local->_oper_chandef.chan && local->_oper_chandef.width != NL80211_CHAN_WIDTH_5 && local->_oper_chandef.width != NL80211_CHAN_WIDTH_10; /* start this ROC */ ieee80211_recalc_idle(local); if (!roc->on_channel) { ieee80211_offchannel_stop_vifs(local); local->tmp_channel = roc->chan; ieee80211_hw_config(local, 0); } ieee80211_queue_delayed_work(&local->hw, &local->roc_work, msecs_to_jiffies(min_dur)); /* tell userspace or send frame(s) */ list_for_each_entry(tmp, &local->roc_list, list) { if (tmp->sdata != roc->sdata || tmp->chan != roc->chan) break; tmp->on_channel = roc->on_channel; ieee80211_handle_roc_started(tmp, jiffies); } } } void ieee80211_start_next_roc(struct ieee80211_local *local) { struct ieee80211_roc_work *roc; lockdep_assert_held(&local->mtx); if (list_empty(&local->roc_list)) { ieee80211_run_deferred_scan(local); return; } /* defer roc if driver is not started (i.e. during reconfig) */ if (local->in_reconfig) return; roc = list_first_entry(&local->roc_list, struct ieee80211_roc_work, list); if (WARN_ON_ONCE(roc->started)) return; if (local->ops->remain_on_channel) { _ieee80211_start_next_roc(local); } else { /* delay it a bit */ ieee80211_queue_delayed_work(&local->hw, &local->roc_work, round_jiffies_relative(HZ/2)); } } static void __ieee80211_roc_work(struct ieee80211_local *local) { struct ieee80211_roc_work *roc; bool on_channel; lockdep_assert_held(&local->mtx); if (WARN_ON(local->ops->remain_on_channel)) return; roc = list_first_entry_or_null(&local->roc_list, struct ieee80211_roc_work, list); if (!roc) return; if (!roc->started) { WARN_ON(local->use_chanctx); _ieee80211_start_next_roc(local); } else { on_channel = roc->on_channel; if (ieee80211_recalc_sw_work(local, jiffies)) return; /* careful - roc pointer became invalid during recalc */ if (!on_channel) { ieee80211_flush_queues(local, NULL, false); local->tmp_channel = NULL; ieee80211_hw_config(local, 0); ieee80211_offchannel_return(local); } ieee80211_recalc_idle(local); ieee80211_start_next_roc(local); } } static void ieee80211_roc_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, roc_work.work); mutex_lock(&local->mtx); __ieee80211_roc_work(local); mutex_unlock(&local->mtx); } static void ieee80211_hw_roc_done(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, hw_roc_done); mutex_lock(&local->mtx); ieee80211_end_finished_rocs(local, jiffies); /* if there's another roc, start it now */ ieee80211_start_next_roc(local); mutex_unlock(&local->mtx); } void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); trace_api_remain_on_channel_expired(local); ieee80211_queue_work(hw, &local->hw_roc_done); } EXPORT_SYMBOL_GPL(ieee80211_remain_on_channel_expired); static bool ieee80211_coalesce_hw_started_roc(struct ieee80211_local *local, struct ieee80211_roc_work *new_roc, struct ieee80211_roc_work *cur_roc) { unsigned long now = jiffies; unsigned long remaining; if (WARN_ON(!cur_roc->started)) return false; /* if it was scheduled in the hardware, but not started yet, * we can only combine if the older one had a longer duration */ if (!cur_roc->hw_begun && new_roc->duration > cur_roc->duration) return false; remaining = cur_roc->start_time + msecs_to_jiffies(cur_roc->duration) - now; /* if it doesn't fit entirely, schedule a new one */ if (new_roc->duration > jiffies_to_msecs(remaining)) return false; /* add just after the current one so we combine their finish later */ list_add(&new_roc->list, &cur_roc->list); /* if the existing one has already begun then let this one also * begin, otherwise they'll both be marked properly by the work * struct that runs once the driver notifies us of the beginning */ if (cur_roc->hw_begun) { new_roc->hw_begun = true; ieee80211_handle_roc_started(new_roc, now); } return true; } static int ieee80211_start_roc_work(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel *channel, unsigned int duration, u64 *cookie, struct sk_buff *txskb, enum ieee80211_roc_type type) { struct ieee80211_roc_work *roc, *tmp; bool queued = false, combine_started = true; int ret; lockdep_assert_held(&local->mtx); if (channel->freq_offset) /* this may work, but is untested */ return -EOPNOTSUPP; if (local->use_chanctx && !local->ops->remain_on_channel) return -EOPNOTSUPP; roc = kzalloc(sizeof(*roc), GFP_KERNEL); if (!roc) return -ENOMEM; /* * If the duration is zero, then the driver * wouldn't actually do anything. Set it to * 10 for now. * * TODO: cancel the off-channel operation * when we get the SKB's TX status and * the wait time was zero before. */ if (!duration) duration = 10; roc->chan = channel; roc->duration = duration; roc->req_duration = duration; roc->frame = txskb; roc->type = type; roc->sdata = sdata; /* * cookie is either the roc cookie (for normal roc) * or the SKB (for mgmt TX) */ if (!txskb) { roc->cookie = ieee80211_mgmt_tx_cookie(local); *cookie = roc->cookie; } else { roc->mgmt_tx_cookie = *cookie; } /* if there's no need to queue, handle it immediately */ if (list_empty(&local->roc_list) && !local->scanning && !ieee80211_is_radar_required(local)) { /* if not HW assist, just queue & schedule work */ if (!local->ops->remain_on_channel) { list_add_tail(&roc->list, &local->roc_list); ieee80211_queue_delayed_work(&local->hw, &local->roc_work, 0); } else { /* otherwise actually kick it off here * (for error handling) */ ret = drv_remain_on_channel(local, sdata, channel, duration, type); if (ret) { kfree(roc); return ret; } roc->started = true; list_add_tail(&roc->list, &local->roc_list); } return 0; } /* otherwise handle queueing */ list_for_each_entry(tmp, &local->roc_list, list) { if (tmp->chan != channel || tmp->sdata != sdata) continue; /* * Extend this ROC if possible: If it hasn't started, add * just after the new one to combine. */ if (!tmp->started) { list_add(&roc->list, &tmp->list); queued = true; break; } if (!combine_started) continue; if (!local->ops->remain_on_channel) { /* If there's no hardware remain-on-channel, and * doing so won't push us over the maximum r-o-c * we allow, then we can just add the new one to * the list and mark it as having started now. * If it would push over the limit, don't try to * combine with other started ones (that haven't * been running as long) but potentially sort it * with others that had the same fate. */ unsigned long now = jiffies; u32 elapsed = jiffies_to_msecs(now - tmp->start_time); struct wiphy *wiphy = local->hw.wiphy; u32 max_roc = wiphy->max_remain_on_channel_duration; if (elapsed + roc->duration > max_roc) { combine_started = false; continue; } list_add(&roc->list, &tmp->list); queued = true; roc->on_channel = tmp->on_channel; ieee80211_handle_roc_started(roc, now); ieee80211_recalc_sw_work(local, now); break; } queued = ieee80211_coalesce_hw_started_roc(local, roc, tmp); if (queued) break; /* if it wasn't queued, perhaps it can be combined with * another that also couldn't get combined previously, * but no need to check for already started ones, since * that can't work. */ combine_started = false; } if (!queued) list_add_tail(&roc->list, &local->roc_list); return 0; } int ieee80211_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct ieee80211_local *local = sdata->local; int ret; mutex_lock(&local->mtx); ret = ieee80211_start_roc_work(local, sdata, chan, duration, cookie, NULL, IEEE80211_ROC_TYPE_NORMAL); mutex_unlock(&local->mtx); return ret; } static int ieee80211_cancel_roc(struct ieee80211_local *local, u64 cookie, bool mgmt_tx) { struct ieee80211_roc_work *roc, *tmp, *found = NULL; int ret; if (!cookie) return -ENOENT; flush_work(&local->hw_roc_start); mutex_lock(&local->mtx); list_for_each_entry_safe(roc, tmp, &local->roc_list, list) { if (!mgmt_tx && roc->cookie != cookie) continue; else if (mgmt_tx && roc->mgmt_tx_cookie != cookie) continue; found = roc; break; } if (!found) { mutex_unlock(&local->mtx); return -ENOENT; } if (!found->started) { ieee80211_roc_notify_destroy(found); goto out_unlock; } if (local->ops->remain_on_channel) { ret = drv_cancel_remain_on_channel(local, roc->sdata); if (WARN_ON_ONCE(ret)) { mutex_unlock(&local->mtx); return ret; } /* TODO: * if multiple items were combined here then we really shouldn't * cancel them all - we should wait for as much time as needed * for the longest remaining one, and only then cancel ... */ list_for_each_entry_safe(roc, tmp, &local->roc_list, list) { if (!roc->started) break; if (roc == found) found = NULL; ieee80211_roc_notify_destroy(roc); } /* that really must not happen - it was started */ WARN_ON(found); ieee80211_start_next_roc(local); } else { /* go through work struct to return to the operating channel */ found->abort = true; mod_delayed_work(local->workqueue, &local->roc_work, 0); } out_unlock: mutex_unlock(&local->mtx); return 0; } int ieee80211_cancel_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct ieee80211_local *local = sdata->local; return ieee80211_cancel_roc(local, cookie, false); } int ieee80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct sta_info *sta = NULL; const struct ieee80211_mgmt *mgmt = (void *)params->buf; bool need_offchan = false; bool mlo_sta = false; int link_id = -1; u32 flags; int ret; u8 *data; if (params->dont_wait_for_ack) flags = IEEE80211_TX_CTL_NO_ACK; else flags = IEEE80211_TX_INTFL_NL80211_FRAME_TX | IEEE80211_TX_CTL_REQ_TX_STATUS; if (params->no_cck) flags |= IEEE80211_TX_CTL_NO_CCK_RATE; switch (sdata->vif.type) { case NL80211_IFTYPE_ADHOC: if (!sdata->vif.cfg.ibss_joined) need_offchan = true; #ifdef CONFIG_MAC80211_MESH fallthrough; case NL80211_IFTYPE_MESH_POINT: if (ieee80211_vif_is_mesh(&sdata->vif) && !sdata->u.mesh.mesh_id_len) need_offchan = true; #endif fallthrough; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_GO: if (sdata->vif.type != NL80211_IFTYPE_ADHOC && !ieee80211_vif_is_mesh(&sdata->vif) && !sdata->bss->active) need_offchan = true; rcu_read_lock(); sta = sta_info_get_bss(sdata, mgmt->da); mlo_sta = sta && sta->sta.mlo; if (!ieee80211_is_action(mgmt->frame_control) || mgmt->u.action.category == WLAN_CATEGORY_PUBLIC || mgmt->u.action.category == WLAN_CATEGORY_SELF_PROTECTED || mgmt->u.action.category == WLAN_CATEGORY_SPECTRUM_MGMT) { rcu_read_unlock(); break; } if (!sta) { rcu_read_unlock(); return -ENOLINK; } if (params->link_id >= 0 && !(sta->sta.valid_links & BIT(params->link_id))) { rcu_read_unlock(); return -ENOLINK; } link_id = params->link_id; rcu_read_unlock(); break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: sdata_lock(sdata); if (!sdata->u.mgd.associated || (params->offchan && params->wait && local->ops->remain_on_channel && memcmp(sdata->vif.cfg.ap_addr, mgmt->bssid, ETH_ALEN))) need_offchan = true; sdata_unlock(sdata); break; case NL80211_IFTYPE_P2P_DEVICE: need_offchan = true; break; case NL80211_IFTYPE_NAN: default: return -EOPNOTSUPP; } /* configurations requiring offchan cannot work if no channel has been * specified */ if (need_offchan && !params->chan) return -EINVAL; mutex_lock(&local->mtx); /* Check if the operating channel is the requested channel */ if (!params->chan && mlo_sta) { need_offchan = false; } else if (!need_offchan) { struct ieee80211_chanctx_conf *chanctx_conf = NULL; int i; rcu_read_lock(); /* Check all the links first */ for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { struct ieee80211_bss_conf *conf; conf = rcu_dereference(sdata->vif.link_conf[i]); if (!conf) continue; chanctx_conf = rcu_dereference(conf->chanctx_conf); if (!chanctx_conf) continue; if (mlo_sta && params->chan == chanctx_conf->def.chan && ether_addr_equal(sdata->vif.addr, mgmt->sa)) { link_id = i; break; } if (ether_addr_equal(conf->addr, mgmt->sa)) break; chanctx_conf = NULL; } if (chanctx_conf) { need_offchan = params->chan && (params->chan != chanctx_conf->def.chan); } else { need_offchan = true; } rcu_read_unlock(); } if (need_offchan && !params->offchan) { ret = -EBUSY; goto out_unlock; } skb = dev_alloc_skb(local->hw.extra_tx_headroom + params->len); if (!skb) { ret = -ENOMEM; goto out_unlock; } skb_reserve(skb, local->hw.extra_tx_headroom); data = skb_put_data(skb, params->buf, params->len); /* Update CSA counters */ if (sdata->vif.bss_conf.csa_active && (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_MESH_POINT || sdata->vif.type == NL80211_IFTYPE_ADHOC) && params->n_csa_offsets) { int i; struct beacon_data *beacon = NULL; rcu_read_lock(); if (sdata->vif.type == NL80211_IFTYPE_AP) beacon = rcu_dereference(sdata->deflink.u.ap.beacon); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) beacon = rcu_dereference(sdata->u.ibss.presp); else if (ieee80211_vif_is_mesh(&sdata->vif)) beacon = rcu_dereference(sdata->u.mesh.beacon); if (beacon) for (i = 0; i < params->n_csa_offsets; i++) data[params->csa_offsets[i]] = beacon->cntdwn_current_counter; rcu_read_unlock(); } IEEE80211_SKB_CB(skb)->flags = flags; skb->dev = sdata->dev; if (!params->dont_wait_for_ack) { /* make a copy to preserve the frame contents * in case of encryption. */ ret = ieee80211_attach_ack_skb(local, skb, cookie, GFP_KERNEL); if (ret) { kfree_skb(skb); goto out_unlock; } } else { /* Assign a dummy non-zero cookie, it's not sent to * userspace in this case but we rely on its value * internally in the need_offchan case to distinguish * mgmt-tx from remain-on-channel. */ *cookie = 0xffffffff; } if (!need_offchan) { ieee80211_tx_skb_tid(sdata, skb, 7, link_id); ret = 0; goto out_unlock; } IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_TX_OFFCHAN | IEEE80211_TX_INTFL_OFFCHAN_TX_OK; if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) IEEE80211_SKB_CB(skb)->hw_queue = local->hw.offchannel_tx_hw_queue; /* This will handle all kinds of coalescing and immediate TX */ ret = ieee80211_start_roc_work(local, sdata, params->chan, params->wait, cookie, skb, IEEE80211_ROC_TYPE_MGMT_TX); if (ret) ieee80211_free_txskb(&local->hw, skb); out_unlock: mutex_unlock(&local->mtx); return ret; } int ieee80211_mgmt_tx_cancel_wait(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie) { struct ieee80211_local *local = wiphy_priv(wiphy); return ieee80211_cancel_roc(local, cookie, true); } void ieee80211_roc_setup(struct ieee80211_local *local) { INIT_WORK(&local->hw_roc_start, ieee80211_hw_roc_start); INIT_WORK(&local->hw_roc_done, ieee80211_hw_roc_done); INIT_DELAYED_WORK(&local->roc_work, ieee80211_roc_work); INIT_LIST_HEAD(&local->roc_list); } void ieee80211_roc_purge(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct ieee80211_roc_work *roc, *tmp; bool work_to_do = false; mutex_lock(&local->mtx); list_for_each_entry_safe(roc, tmp, &local->roc_list, list) { if (sdata && roc->sdata != sdata) continue; if (roc->started) { if (local->ops->remain_on_channel) { /* can race, so ignore return value */ drv_cancel_remain_on_channel(local, roc->sdata); ieee80211_roc_notify_destroy(roc); } else { roc->abort = true; work_to_do = true; } } else { ieee80211_roc_notify_destroy(roc); } } if (work_to_do) __ieee80211_roc_work(local); mutex_unlock(&local->mtx); }
linux-master
net/mac80211/offchannel.c
// SPDX-License-Identifier: GPL-2.0-only /* * spectrum management * * Copyright 2003, Jouni Malinen <[email protected]> * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007, Michael Wu <[email protected]> * Copyright 2007-2008, Intel Corporation * Copyright 2008, Johannes Berg <[email protected]> * Copyright (C) 2018, 2020, 2022 Intel Corporation */ #include <linux/ieee80211.h> #include <net/cfg80211.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "sta_info.h" #include "wme.h" int ieee80211_parse_ch_switch_ie(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, enum nl80211_band current_band, u32 vht_cap_info, ieee80211_conn_flags_t conn_flags, u8 *bssid, struct ieee80211_csa_ie *csa_ie) { enum nl80211_band new_band = current_band; int new_freq; u8 new_chan_no; struct ieee80211_channel *new_chan; struct cfg80211_chan_def new_vht_chandef = {}; const struct ieee80211_sec_chan_offs_ie *sec_chan_offs; const struct ieee80211_wide_bw_chansw_ie *wide_bw_chansw_ie; int secondary_channel_offset = -1; memset(csa_ie, 0, sizeof(*csa_ie)); sec_chan_offs = elems->sec_chan_offs; wide_bw_chansw_ie = elems->wide_bw_chansw_ie; if (conn_flags & (IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_40MHZ)) { sec_chan_offs = NULL; wide_bw_chansw_ie = NULL; } if (conn_flags & IEEE80211_CONN_DISABLE_VHT) wide_bw_chansw_ie = NULL; if (elems->ext_chansw_ie) { if (!ieee80211_operating_class_to_band( elems->ext_chansw_ie->new_operating_class, &new_band)) { sdata_info(sdata, "cannot understand ECSA IE operating class, %d, ignoring\n", elems->ext_chansw_ie->new_operating_class); } new_chan_no = elems->ext_chansw_ie->new_ch_num; csa_ie->count = elems->ext_chansw_ie->count; csa_ie->mode = elems->ext_chansw_ie->mode; } else if (elems->ch_switch_ie) { new_chan_no = elems->ch_switch_ie->new_ch_num; csa_ie->count = elems->ch_switch_ie->count; csa_ie->mode = elems->ch_switch_ie->mode; } else { /* nothing here we understand */ return 1; } /* Mesh Channel Switch Parameters Element */ if (elems->mesh_chansw_params_ie) { csa_ie->ttl = elems->mesh_chansw_params_ie->mesh_ttl; csa_ie->mode = elems->mesh_chansw_params_ie->mesh_flags; csa_ie->pre_value = le16_to_cpu( elems->mesh_chansw_params_ie->mesh_pre_value); if (elems->mesh_chansw_params_ie->mesh_flags & WLAN_EID_CHAN_SWITCH_PARAM_REASON) csa_ie->reason_code = le16_to_cpu( elems->mesh_chansw_params_ie->mesh_reason); } new_freq = ieee80211_channel_to_frequency(new_chan_no, new_band); new_chan = ieee80211_get_channel(sdata->local->hw.wiphy, new_freq); if (!new_chan || new_chan->flags & IEEE80211_CHAN_DISABLED) { sdata_info(sdata, "BSS %pM switches to unsupported channel (%d MHz), disconnecting\n", bssid, new_freq); return -EINVAL; } if (sec_chan_offs) { secondary_channel_offset = sec_chan_offs->sec_chan_offs; } else if (!(conn_flags & IEEE80211_CONN_DISABLE_HT)) { /* If the secondary channel offset IE is not present, * we can't know what's the post-CSA offset, so the * best we can do is use 20MHz. */ secondary_channel_offset = IEEE80211_HT_PARAM_CHA_SEC_NONE; } switch (secondary_channel_offset) { default: /* secondary_channel_offset was present but is invalid */ case IEEE80211_HT_PARAM_CHA_SEC_NONE: cfg80211_chandef_create(&csa_ie->chandef, new_chan, NL80211_CHAN_HT20); break; case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: cfg80211_chandef_create(&csa_ie->chandef, new_chan, NL80211_CHAN_HT40PLUS); break; case IEEE80211_HT_PARAM_CHA_SEC_BELOW: cfg80211_chandef_create(&csa_ie->chandef, new_chan, NL80211_CHAN_HT40MINUS); break; case -1: cfg80211_chandef_create(&csa_ie->chandef, new_chan, NL80211_CHAN_NO_HT); /* keep width for 5/10 MHz channels */ switch (sdata->vif.bss_conf.chandef.width) { case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: csa_ie->chandef.width = sdata->vif.bss_conf.chandef.width; break; default: break; } break; } if (wide_bw_chansw_ie) { u8 new_seg1 = wide_bw_chansw_ie->new_center_freq_seg1; struct ieee80211_vht_operation vht_oper = { .chan_width = wide_bw_chansw_ie->new_channel_width, .center_freq_seg0_idx = wide_bw_chansw_ie->new_center_freq_seg0, .center_freq_seg1_idx = new_seg1, /* .basic_mcs_set doesn't matter */ }; struct ieee80211_ht_operation ht_oper = { .operation_mode = cpu_to_le16(new_seg1 << IEEE80211_HT_OP_MODE_CCFS2_SHIFT), }; /* default, for the case of IEEE80211_VHT_CHANWIDTH_USE_HT, * to the previously parsed chandef */ new_vht_chandef = csa_ie->chandef; /* ignore if parsing fails */ if (!ieee80211_chandef_vht_oper(&sdata->local->hw, vht_cap_info, &vht_oper, &ht_oper, &new_vht_chandef)) new_vht_chandef.chan = NULL; if (conn_flags & IEEE80211_CONN_DISABLE_80P80MHZ && new_vht_chandef.width == NL80211_CHAN_WIDTH_80P80) ieee80211_chandef_downgrade(&new_vht_chandef); if (conn_flags & IEEE80211_CONN_DISABLE_160MHZ && new_vht_chandef.width == NL80211_CHAN_WIDTH_160) ieee80211_chandef_downgrade(&new_vht_chandef); } /* if VHT data is there validate & use it */ if (new_vht_chandef.chan) { if (!cfg80211_chandef_compatible(&new_vht_chandef, &csa_ie->chandef)) { sdata_info(sdata, "BSS %pM: CSA has inconsistent channel data, disconnecting\n", bssid); return -EINVAL; } csa_ie->chandef = new_vht_chandef; } if (elems->max_channel_switch_time) csa_ie->max_switch_time = (elems->max_channel_switch_time[0] << 0) | (elems->max_channel_switch_time[1] << 8) | (elems->max_channel_switch_time[2] << 16); return 0; } static void ieee80211_send_refuse_measurement_request(struct ieee80211_sub_if_data *sdata, struct ieee80211_msrment_ie *request_ie, const u8 *da, const u8 *bssid, u8 dialog_token) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *msr_report; skb = dev_alloc_skb(sizeof(*msr_report) + local->hw.extra_tx_headroom + sizeof(struct ieee80211_msrment_ie)); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); msr_report = skb_put_zero(skb, 24); memcpy(msr_report->da, da, ETH_ALEN); memcpy(msr_report->sa, sdata->vif.addr, ETH_ALEN); memcpy(msr_report->bssid, bssid, ETH_ALEN); msr_report->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(msr_report->u.action.u.measurement)); msr_report->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; msr_report->u.action.u.measurement.action_code = WLAN_ACTION_SPCT_MSR_RPRT; msr_report->u.action.u.measurement.dialog_token = dialog_token; msr_report->u.action.u.measurement.element_id = WLAN_EID_MEASURE_REPORT; msr_report->u.action.u.measurement.length = sizeof(struct ieee80211_msrment_ie); memset(&msr_report->u.action.u.measurement.msr_elem, 0, sizeof(struct ieee80211_msrment_ie)); msr_report->u.action.u.measurement.msr_elem.token = request_ie->token; msr_report->u.action.u.measurement.msr_elem.mode |= IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED; msr_report->u.action.u.measurement.msr_elem.type = request_ie->type; ieee80211_tx_skb(sdata, skb); } void ieee80211_process_measurement_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { /* * Ignoring measurement request is spec violation. * Mandatory measurements must be reported optional * measurements might be refused or reported incapable * For now just refuse * TODO: Answer basic measurement as unmeasured */ ieee80211_send_refuse_measurement_request(sdata, &mgmt->u.action.u.measurement.msr_elem, mgmt->sa, mgmt->bssid, mgmt->u.action.u.measurement.dialog_token); }
linux-master
net/mac80211/spectmgmt.c
// SPDX-License-Identifier: GPL-2.0-only /* * HT handling * * Copyright 2003, Jouni Malinen <[email protected]> * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007, Michael Wu <[email protected]> * Copyright 2007-2010, Intel Corporation * Copyright(c) 2015-2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2023 Intel Corporation */ #include <linux/ieee80211.h> #include <linux/slab.h> #include <linux/export.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "wme.h" /** * DOC: TX A-MPDU aggregation * * Aggregation on the TX side requires setting the hardware flag * %IEEE80211_HW_AMPDU_AGGREGATION. The driver will then be handed * packets with a flag indicating A-MPDU aggregation. The driver * or device is responsible for actually aggregating the frames, * as well as deciding how many and which to aggregate. * * When TX aggregation is started by some subsystem (usually the rate * control algorithm would be appropriate) by calling the * ieee80211_start_tx_ba_session() function, the driver will be * notified via its @ampdu_action function, with the * %IEEE80211_AMPDU_TX_START action. * * In response to that, the driver is later required to call the * ieee80211_start_tx_ba_cb_irqsafe() function, which will really * start the aggregation session after the peer has also responded. * If the peer responds negatively, the session will be stopped * again right away. Note that it is possible for the aggregation * session to be stopped before the driver has indicated that it * is done setting it up, in which case it must not indicate the * setup completion. * * Also note that, since we also need to wait for a response from * the peer, the driver is notified of the completion of the * handshake by the %IEEE80211_AMPDU_TX_OPERATIONAL action to the * @ampdu_action callback. * * Similarly, when the aggregation session is stopped by the peer * or something calling ieee80211_stop_tx_ba_session(), the driver's * @ampdu_action function will be called with the action * %IEEE80211_AMPDU_TX_STOP. In this case, the call must not fail, * and the driver must later call ieee80211_stop_tx_ba_cb_irqsafe(). * Note that the sta can get destroyed before the BA tear down is * complete. */ static void ieee80211_send_addba_request(struct ieee80211_sub_if_data *sdata, const u8 *da, u16 tid, u8 dialog_token, u16 start_seq_num, u16 agg_size, u16 timeout) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u16 capab; skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = skb_put_zero(skb, 24); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN || sdata->vif.type == NL80211_IFTYPE_MESH_POINT) memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); else if (sdata->vif.type == NL80211_IFTYPE_STATION) memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) memcpy(mgmt->bssid, sdata->u.ibss.bssid, ETH_ALEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req)); mgmt->u.action.category = WLAN_CATEGORY_BACK; mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ; mgmt->u.action.u.addba_req.dialog_token = dialog_token; capab = IEEE80211_ADDBA_PARAM_AMSDU_MASK; capab |= IEEE80211_ADDBA_PARAM_POLICY_MASK; capab |= u16_encode_bits(tid, IEEE80211_ADDBA_PARAM_TID_MASK); capab |= u16_encode_bits(agg_size, IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK); mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab); mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout); mgmt->u.action.u.addba_req.start_seq_num = cpu_to_le16(start_seq_num << 4); ieee80211_tx_skb_tid(sdata, skb, tid, -1); } void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_bar *bar; u16 bar_control = 0; skb = dev_alloc_skb(sizeof(*bar) + local->hw.extra_tx_headroom); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); bar = skb_put_zero(skb, sizeof(*bar)); bar->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); memcpy(bar->ra, ra, ETH_ALEN); memcpy(bar->ta, sdata->vif.addr, ETH_ALEN); bar_control |= (u16)IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL; bar_control |= (u16)IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA; bar_control |= (u16)(tid << IEEE80211_BAR_CTRL_TID_INFO_SHIFT); bar->control = cpu_to_le16(bar_control); bar->start_seq_num = cpu_to_le16(ssn); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_CTL_REQ_TX_STATUS; ieee80211_tx_skb_tid(sdata, skb, tid, -1); } EXPORT_SYMBOL(ieee80211_send_bar); void ieee80211_assign_tid_tx(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx) { lockdep_assert_held(&sta->ampdu_mlme.mtx); lockdep_assert_held(&sta->lock); rcu_assign_pointer(sta->ampdu_mlme.tid_tx[tid], tid_tx); } /* * When multiple aggregation sessions on multiple stations * are being created/destroyed simultaneously, we need to * refcount the global queue stop caused by that in order * to not get into a situation where one of the aggregation * setup or teardown re-enables queues before the other is * ready to handle that. * * These two functions take care of this issue by keeping * a global "agg_queue_stop" refcount. */ static void __acquires(agg_queue) ieee80211_stop_queue_agg(struct ieee80211_sub_if_data *sdata, int tid) { int queue = sdata->vif.hw_queue[ieee80211_ac_from_tid(tid)]; /* we do refcounting here, so don't use the queue reason refcounting */ if (atomic_inc_return(&sdata->local->agg_queue_stop[queue]) == 1) ieee80211_stop_queue_by_reason( &sdata->local->hw, queue, IEEE80211_QUEUE_STOP_REASON_AGGREGATION, false); __acquire(agg_queue); } static void __releases(agg_queue) ieee80211_wake_queue_agg(struct ieee80211_sub_if_data *sdata, int tid) { int queue = sdata->vif.hw_queue[ieee80211_ac_from_tid(tid)]; if (atomic_dec_return(&sdata->local->agg_queue_stop[queue]) == 0) ieee80211_wake_queue_by_reason( &sdata->local->hw, queue, IEEE80211_QUEUE_STOP_REASON_AGGREGATION, false); __release(agg_queue); } static void ieee80211_agg_stop_txq(struct sta_info *sta, int tid) { struct ieee80211_txq *txq = sta->sta.txq[tid]; struct ieee80211_sub_if_data *sdata; struct fq *fq; struct txq_info *txqi; if (!txq) return; txqi = to_txq_info(txq); sdata = vif_to_sdata(txq->vif); fq = &sdata->local->fq; /* Lock here to protect against further seqno updates on dequeue */ spin_lock_bh(&fq->lock); set_bit(IEEE80211_TXQ_STOP, &txqi->flags); spin_unlock_bh(&fq->lock); } static void ieee80211_agg_start_txq(struct sta_info *sta, int tid, bool enable) { struct ieee80211_txq *txq = sta->sta.txq[tid]; struct txq_info *txqi; lockdep_assert_held(&sta->ampdu_mlme.mtx); if (!txq) return; txqi = to_txq_info(txq); if (enable) set_bit(IEEE80211_TXQ_AMPDU, &txqi->flags); else clear_bit(IEEE80211_TXQ_AMPDU, &txqi->flags); clear_bit(IEEE80211_TXQ_STOP, &txqi->flags); local_bh_disable(); rcu_read_lock(); schedule_and_wake_txq(sta->sdata->local, txqi); rcu_read_unlock(); local_bh_enable(); } /* * splice packets from the STA's pending to the local pending, * requires a call to ieee80211_agg_splice_finish later */ static void __acquires(agg_queue) ieee80211_agg_splice_packets(struct ieee80211_sub_if_data *sdata, struct tid_ampdu_tx *tid_tx, u16 tid) { struct ieee80211_local *local = sdata->local; int queue = sdata->vif.hw_queue[ieee80211_ac_from_tid(tid)]; unsigned long flags; ieee80211_stop_queue_agg(sdata, tid); if (WARN(!tid_tx, "TID %d gone but expected when splicing aggregates from the pending queue\n", tid)) return; if (!skb_queue_empty(&tid_tx->pending)) { spin_lock_irqsave(&local->queue_stop_reason_lock, flags); /* copy over remaining packets */ skb_queue_splice_tail_init(&tid_tx->pending, &local->pending[queue]); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } } static void __releases(agg_queue) ieee80211_agg_splice_finish(struct ieee80211_sub_if_data *sdata, u16 tid) { ieee80211_wake_queue_agg(sdata, tid); } static void ieee80211_remove_tid_tx(struct sta_info *sta, int tid) { struct tid_ampdu_tx *tid_tx; lockdep_assert_held(&sta->ampdu_mlme.mtx); lockdep_assert_held(&sta->lock); tid_tx = rcu_dereference_protected_tid_tx(sta, tid); /* * When we get here, the TX path will not be lockless any more wrt. * aggregation, since the OPERATIONAL bit has long been cleared. * Thus it will block on getting the lock, if it occurs. So if we * stop the queue now, we will not get any more packets, and any * that might be being processed will wait for us here, thereby * guaranteeing that no packets go to the tid_tx pending queue any * more. */ ieee80211_agg_splice_packets(sta->sdata, tid_tx, tid); /* future packets must not find the tid_tx struct any more */ ieee80211_assign_tid_tx(sta, tid, NULL); ieee80211_agg_splice_finish(sta->sdata, tid); kfree_rcu(tid_tx, rcu_head); } int ___ieee80211_stop_tx_ba_session(struct sta_info *sta, u16 tid, enum ieee80211_agg_stop_reason reason) { struct ieee80211_local *local = sta->local; struct tid_ampdu_tx *tid_tx; struct ieee80211_ampdu_params params = { .sta = &sta->sta, .tid = tid, .buf_size = 0, .amsdu = false, .timeout = 0, .ssn = 0, }; int ret; lockdep_assert_held(&sta->ampdu_mlme.mtx); switch (reason) { case AGG_STOP_DECLINED: case AGG_STOP_LOCAL_REQUEST: case AGG_STOP_PEER_REQUEST: params.action = IEEE80211_AMPDU_TX_STOP_CONT; break; case AGG_STOP_DESTROY_STA: params.action = IEEE80211_AMPDU_TX_STOP_FLUSH; break; default: WARN_ON_ONCE(1); return -EINVAL; } spin_lock_bh(&sta->lock); /* free struct pending for start, if present */ tid_tx = sta->ampdu_mlme.tid_start_tx[tid]; kfree(tid_tx); sta->ampdu_mlme.tid_start_tx[tid] = NULL; tid_tx = rcu_dereference_protected_tid_tx(sta, tid); if (!tid_tx) { spin_unlock_bh(&sta->lock); return -ENOENT; } /* * if we're already stopping ignore any new requests to stop * unless we're destroying it in which case notify the driver */ if (test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state)) { spin_unlock_bh(&sta->lock); if (reason != AGG_STOP_DESTROY_STA) return -EALREADY; params.action = IEEE80211_AMPDU_TX_STOP_FLUSH_CONT; ret = drv_ampdu_action(local, sta->sdata, &params); WARN_ON_ONCE(ret); return 0; } if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { /* not even started yet! */ ieee80211_assign_tid_tx(sta, tid, NULL); spin_unlock_bh(&sta->lock); kfree_rcu(tid_tx, rcu_head); return 0; } set_bit(HT_AGG_STATE_STOPPING, &tid_tx->state); ieee80211_agg_stop_txq(sta, tid); spin_unlock_bh(&sta->lock); ht_dbg(sta->sdata, "Tx BA session stop requested for %pM tid %u\n", sta->sta.addr, tid); del_timer_sync(&tid_tx->addba_resp_timer); del_timer_sync(&tid_tx->session_timer); /* * After this packets are no longer handed right through * to the driver but are put onto tid_tx->pending instead, * with locking to ensure proper access. */ clear_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state); /* * There might be a few packets being processed right now (on * another CPU) that have already gotten past the aggregation * check when it was still OPERATIONAL and consequently have * IEEE80211_TX_CTL_AMPDU set. In that case, this code might * call into the driver at the same time or even before the * TX paths calls into it, which could confuse the driver. * * Wait for all currently running TX paths to finish before * telling the driver. New packets will not go through since * the aggregation session is no longer OPERATIONAL. */ if (!local->in_reconfig) synchronize_net(); tid_tx->stop_initiator = reason == AGG_STOP_PEER_REQUEST ? WLAN_BACK_RECIPIENT : WLAN_BACK_INITIATOR; tid_tx->tx_stop = reason == AGG_STOP_LOCAL_REQUEST; ret = drv_ampdu_action(local, sta->sdata, &params); /* HW shall not deny going back to legacy */ if (WARN_ON(ret)) { /* * We may have pending packets get stuck in this case... * Not bothering with a workaround for now. */ } /* * In the case of AGG_STOP_DESTROY_STA, the driver won't * necessarily call ieee80211_stop_tx_ba_cb(), so this may * seem like we can leave the tid_tx data pending forever. * This is true, in a way, but "forever" is only until the * station struct is actually destroyed. In the meantime, * leaving it around ensures that we don't transmit packets * to the driver on this TID which might confuse it. */ return 0; } /* * After sending add Block Ack request we activated a timer until * add Block Ack response will arrive from the recipient. * If this timer expires sta_addba_resp_timer_expired will be executed. */ static void sta_addba_resp_timer_expired(struct timer_list *t) { struct tid_ampdu_tx *tid_tx = from_timer(tid_tx, t, addba_resp_timer); struct sta_info *sta = tid_tx->sta; u8 tid = tid_tx->tid; /* check if the TID waits for addBA response */ if (test_bit(HT_AGG_STATE_RESPONSE_RECEIVED, &tid_tx->state)) { ht_dbg(sta->sdata, "timer expired on %pM tid %d not expecting addBA response\n", sta->sta.addr, tid); return; } ht_dbg(sta->sdata, "addBA response timer expired on %pM tid %d\n", sta->sta.addr, tid); ieee80211_stop_tx_ba_session(&sta->sta, tid); } static void ieee80211_send_addba_with_timeout(struct sta_info *sta, struct tid_ampdu_tx *tid_tx) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sta->local; u8 tid = tid_tx->tid; u16 buf_size; if (WARN_ON_ONCE(test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state) || test_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state))) return; lockdep_assert_held(&sta->ampdu_mlme.mtx); /* activate the timer for the recipient's addBA response */ mod_timer(&tid_tx->addba_resp_timer, jiffies + ADDBA_RESP_INTERVAL); ht_dbg(sdata, "activated addBA response timer on %pM tid %d\n", sta->sta.addr, tid); spin_lock_bh(&sta->lock); sta->ampdu_mlme.last_addba_req_time[tid] = jiffies; sta->ampdu_mlme.addba_req_num[tid]++; spin_unlock_bh(&sta->lock); if (sta->sta.deflink.he_cap.has_he) { buf_size = local->hw.max_tx_aggregation_subframes; } else { /* * We really should use what the driver told us it will * transmit as the maximum, but certain APs (e.g. the * LinkSys WRT120N with FW v1.0.07 build 002 Jun 18 2012) * will crash when we use a lower number. */ buf_size = IEEE80211_MAX_AMPDU_BUF_HT; } /* send AddBA request */ ieee80211_send_addba_request(sdata, sta->sta.addr, tid, tid_tx->dialog_token, tid_tx->ssn, buf_size, tid_tx->timeout); WARN_ON(test_and_set_bit(HT_AGG_STATE_SENT_ADDBA, &tid_tx->state)); } void ieee80211_tx_ba_session_handle_start(struct sta_info *sta, int tid) { struct tid_ampdu_tx *tid_tx; struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata; struct ieee80211_ampdu_params params = { .sta = &sta->sta, .action = IEEE80211_AMPDU_TX_START, .tid = tid, .buf_size = 0, .amsdu = false, .timeout = 0, }; int ret; tid_tx = rcu_dereference_protected_tid_tx(sta, tid); /* * Start queuing up packets for this aggregation session. * We're going to release them once the driver is OK with * that. */ clear_bit(HT_AGG_STATE_WANT_START, &tid_tx->state); /* * Make sure no packets are being processed. This ensures that * we have a valid starting sequence number and that in-flight * packets have been flushed out and no packets for this TID * will go into the driver during the ampdu_action call. */ synchronize_net(); sdata = sta->sdata; params.ssn = sta->tid_seq[tid] >> 4; ret = drv_ampdu_action(local, sdata, &params); tid_tx->ssn = params.ssn; if (ret == IEEE80211_AMPDU_TX_START_DELAY_ADDBA) { return; } else if (ret == IEEE80211_AMPDU_TX_START_IMMEDIATE) { /* * We didn't send the request yet, so don't need to check * here if we already got a response, just mark as driver * ready immediately. */ set_bit(HT_AGG_STATE_DRV_READY, &tid_tx->state); } else if (ret) { if (!sdata) return; ht_dbg(sdata, "BA request denied - HW unavailable for %pM tid %d\n", sta->sta.addr, tid); spin_lock_bh(&sta->lock); ieee80211_agg_splice_packets(sdata, tid_tx, tid); ieee80211_assign_tid_tx(sta, tid, NULL); ieee80211_agg_splice_finish(sdata, tid); spin_unlock_bh(&sta->lock); ieee80211_agg_start_txq(sta, tid, false); kfree_rcu(tid_tx, rcu_head); return; } ieee80211_send_addba_with_timeout(sta, tid_tx); } void ieee80211_refresh_tx_agg_session_timer(struct ieee80211_sta *pubsta, u16 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct tid_ampdu_tx *tid_tx; if (WARN_ON_ONCE(tid >= IEEE80211_NUM_TIDS)) return; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (!tid_tx) return; tid_tx->last_tx = jiffies; } EXPORT_SYMBOL(ieee80211_refresh_tx_agg_session_timer); /* * After accepting the AddBA Response we activated a timer, * resetting it after each frame that we send. */ static void sta_tx_agg_session_timer_expired(struct timer_list *t) { struct tid_ampdu_tx *tid_tx = from_timer(tid_tx, t, session_timer); struct sta_info *sta = tid_tx->sta; u8 tid = tid_tx->tid; unsigned long timeout; if (test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state)) { return; } timeout = tid_tx->last_tx + TU_TO_JIFFIES(tid_tx->timeout); if (time_is_after_jiffies(timeout)) { mod_timer(&tid_tx->session_timer, timeout); return; } ht_dbg(sta->sdata, "tx session timer expired on %pM tid %d\n", sta->sta.addr, tid); ieee80211_stop_tx_ba_session(&sta->sta, tid); } int ieee80211_start_tx_ba_session(struct ieee80211_sta *pubsta, u16 tid, u16 timeout) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct tid_ampdu_tx *tid_tx; int ret = 0; trace_api_start_tx_ba_session(pubsta, tid); if (WARN(sta->reserved_tid == tid, "Requested to start BA session on reserved tid=%d", tid)) return -EINVAL; if (!pubsta->deflink.ht_cap.ht_supported && sta->sdata->vif.bss_conf.chandef.chan->band != NL80211_BAND_6GHZ) return -EINVAL; if (WARN_ON_ONCE(!local->ops->ampdu_action)) return -EINVAL; if ((tid >= IEEE80211_NUM_TIDS) || !ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) || ieee80211_hw_check(&local->hw, TX_AMPDU_SETUP_IN_HW)) return -EINVAL; if (WARN_ON(tid >= IEEE80211_FIRST_TSPEC_TSID)) return -EINVAL; ht_dbg(sdata, "Open BA session requested for %pM tid %u\n", pubsta->addr, tid); if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC) return -EINVAL; if (test_sta_flag(sta, WLAN_STA_BLOCK_BA)) { ht_dbg(sdata, "BA sessions blocked - Denying BA session request %pM tid %d\n", sta->sta.addr, tid); return -EINVAL; } if (test_sta_flag(sta, WLAN_STA_MFP) && !test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { ht_dbg(sdata, "MFP STA not authorized - deny BA session request %pM tid %d\n", sta->sta.addr, tid); return -EINVAL; } /* * 802.11n-2009 11.5.1.1: If the initiating STA is an HT STA, is a * member of an IBSS, and has no other existing Block Ack agreement * with the recipient STA, then the initiating STA shall transmit a * Probe Request frame to the recipient STA and shall not transmit an * ADDBA Request frame unless it receives a Probe Response frame * from the recipient within dot11ADDBAFailureTimeout. * * The probe request mechanism for ADDBA is currently not implemented, * but we only build up Block Ack session with HT STAs. This information * is set when we receive a bss info from a probe response or a beacon. */ if (sta->sdata->vif.type == NL80211_IFTYPE_ADHOC && !sta->sta.deflink.ht_cap.ht_supported) { ht_dbg(sdata, "BA request denied - IBSS STA %pM does not advertise HT support\n", pubsta->addr); return -EINVAL; } spin_lock_bh(&sta->lock); /* we have tried too many times, receiver does not want A-MPDU */ if (sta->ampdu_mlme.addba_req_num[tid] > HT_AGG_MAX_RETRIES) { ret = -EBUSY; goto err_unlock_sta; } /* * if we have tried more than HT_AGG_BURST_RETRIES times we * will spread our requests in time to avoid stalling connection * for too long */ if (sta->ampdu_mlme.addba_req_num[tid] > HT_AGG_BURST_RETRIES && time_before(jiffies, sta->ampdu_mlme.last_addba_req_time[tid] + HT_AGG_RETRIES_PERIOD)) { ht_dbg(sdata, "BA request denied - %d failed requests on %pM tid %u\n", sta->ampdu_mlme.addba_req_num[tid], sta->sta.addr, tid); ret = -EBUSY; goto err_unlock_sta; } tid_tx = rcu_dereference_protected_tid_tx(sta, tid); /* check if the TID is not in aggregation flow already */ if (tid_tx || sta->ampdu_mlme.tid_start_tx[tid]) { ht_dbg(sdata, "BA request denied - session is not idle on %pM tid %u\n", sta->sta.addr, tid); ret = -EAGAIN; goto err_unlock_sta; } /* prepare A-MPDU MLME for Tx aggregation */ tid_tx = kzalloc(sizeof(struct tid_ampdu_tx), GFP_ATOMIC); if (!tid_tx) { ret = -ENOMEM; goto err_unlock_sta; } skb_queue_head_init(&tid_tx->pending); __set_bit(HT_AGG_STATE_WANT_START, &tid_tx->state); tid_tx->timeout = timeout; tid_tx->sta = sta; tid_tx->tid = tid; /* response timer */ timer_setup(&tid_tx->addba_resp_timer, sta_addba_resp_timer_expired, 0); /* tx timer */ timer_setup(&tid_tx->session_timer, sta_tx_agg_session_timer_expired, TIMER_DEFERRABLE); /* assign a dialog token */ sta->ampdu_mlme.dialog_token_allocator++; tid_tx->dialog_token = sta->ampdu_mlme.dialog_token_allocator; /* * Finally, assign it to the start array; the work item will * collect it and move it to the normal array. */ sta->ampdu_mlme.tid_start_tx[tid] = tid_tx; ieee80211_queue_work(&local->hw, &sta->ampdu_mlme.work); /* this flow continues off the work */ err_unlock_sta: spin_unlock_bh(&sta->lock); return ret; } EXPORT_SYMBOL(ieee80211_start_tx_ba_session); static void ieee80211_agg_tx_operational(struct ieee80211_local *local, struct sta_info *sta, u16 tid) { struct tid_ampdu_tx *tid_tx; struct ieee80211_ampdu_params params = { .sta = &sta->sta, .action = IEEE80211_AMPDU_TX_OPERATIONAL, .tid = tid, .timeout = 0, .ssn = 0, }; lockdep_assert_held(&sta->ampdu_mlme.mtx); tid_tx = rcu_dereference_protected_tid_tx(sta, tid); params.buf_size = tid_tx->buf_size; params.amsdu = tid_tx->amsdu; ht_dbg(sta->sdata, "Aggregation is on for %pM tid %d\n", sta->sta.addr, tid); drv_ampdu_action(local, sta->sdata, &params); /* * synchronize with TX path, while splicing the TX path * should block so it won't put more packets onto pending. */ spin_lock_bh(&sta->lock); ieee80211_agg_splice_packets(sta->sdata, tid_tx, tid); /* * Now mark as operational. This will be visible * in the TX path, and lets it go lock-free in * the common case. */ set_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state); ieee80211_agg_splice_finish(sta->sdata, tid); spin_unlock_bh(&sta->lock); ieee80211_agg_start_txq(sta, tid, true); } void ieee80211_start_tx_ba_cb(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; lockdep_assert_held(&sta->ampdu_mlme.mtx); if (WARN_ON(test_and_set_bit(HT_AGG_STATE_DRV_READY, &tid_tx->state))) return; if (test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state) || test_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state)) return; if (!test_bit(HT_AGG_STATE_SENT_ADDBA, &tid_tx->state)) { ieee80211_send_addba_with_timeout(sta, tid_tx); /* RESPONSE_RECEIVED state whould trigger the flow again */ return; } if (test_bit(HT_AGG_STATE_RESPONSE_RECEIVED, &tid_tx->state)) ieee80211_agg_tx_operational(local, sta, tid); } static struct tid_ampdu_tx * ieee80211_lookup_tid_tx(struct ieee80211_sub_if_data *sdata, const u8 *ra, u16 tid, struct sta_info **sta) { struct tid_ampdu_tx *tid_tx; if (tid >= IEEE80211_NUM_TIDS) { ht_dbg(sdata, "Bad TID value: tid = %d (>= %d)\n", tid, IEEE80211_NUM_TIDS); return NULL; } *sta = sta_info_get_bss(sdata, ra); if (!*sta) { ht_dbg(sdata, "Could not find station: %pM\n", ra); return NULL; } tid_tx = rcu_dereference((*sta)->ampdu_mlme.tid_tx[tid]); if (WARN_ON(!tid_tx)) ht_dbg(sdata, "addBA was not requested!\n"); return tid_tx; } void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, u16 tid) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct tid_ampdu_tx *tid_tx; trace_api_start_tx_ba_cb(sdata, ra, tid); rcu_read_lock(); tid_tx = ieee80211_lookup_tid_tx(sdata, ra, tid, &sta); if (!tid_tx) goto out; set_bit(HT_AGG_STATE_START_CB, &tid_tx->state); ieee80211_queue_work(&local->hw, &sta->ampdu_mlme.work); out: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_start_tx_ba_cb_irqsafe); int __ieee80211_stop_tx_ba_session(struct sta_info *sta, u16 tid, enum ieee80211_agg_stop_reason reason) { int ret; mutex_lock(&sta->ampdu_mlme.mtx); ret = ___ieee80211_stop_tx_ba_session(sta, tid, reason); mutex_unlock(&sta->ampdu_mlme.mtx); return ret; } int ieee80211_stop_tx_ba_session(struct ieee80211_sta *pubsta, u16 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct tid_ampdu_tx *tid_tx; int ret = 0; trace_api_stop_tx_ba_session(pubsta, tid); if (!local->ops->ampdu_action) return -EINVAL; if (tid >= IEEE80211_NUM_TIDS) return -EINVAL; spin_lock_bh(&sta->lock); tid_tx = rcu_dereference_protected_tid_tx(sta, tid); if (!tid_tx) { ret = -ENOENT; goto unlock; } WARN(sta->reserved_tid == tid, "Requested to stop BA session on reserved tid=%d", tid); if (test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state)) { /* already in progress stopping it */ ret = 0; goto unlock; } set_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state); ieee80211_queue_work(&local->hw, &sta->ampdu_mlme.work); unlock: spin_unlock_bh(&sta->lock); return ret; } EXPORT_SYMBOL(ieee80211_stop_tx_ba_session); void ieee80211_stop_tx_ba_cb(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx) { struct ieee80211_sub_if_data *sdata = sta->sdata; bool send_delba = false; bool start_txq = false; ht_dbg(sdata, "Stopping Tx BA session for %pM tid %d\n", sta->sta.addr, tid); spin_lock_bh(&sta->lock); if (!test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state)) { ht_dbg(sdata, "unexpected callback to A-MPDU stop for %pM tid %d\n", sta->sta.addr, tid); goto unlock_sta; } if (tid_tx->stop_initiator == WLAN_BACK_INITIATOR && tid_tx->tx_stop) send_delba = true; ieee80211_remove_tid_tx(sta, tid); start_txq = true; unlock_sta: spin_unlock_bh(&sta->lock); if (start_txq) ieee80211_agg_start_txq(sta, tid, false); if (send_delba) ieee80211_send_delba(sdata, sta->sta.addr, tid, WLAN_BACK_INITIATOR, WLAN_REASON_QSTA_NOT_USE); } void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, u16 tid) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct tid_ampdu_tx *tid_tx; trace_api_stop_tx_ba_cb(sdata, ra, tid); rcu_read_lock(); tid_tx = ieee80211_lookup_tid_tx(sdata, ra, tid, &sta); if (!tid_tx) goto out; set_bit(HT_AGG_STATE_STOP_CB, &tid_tx->state); ieee80211_queue_work(&local->hw, &sta->ampdu_mlme.work); out: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_stop_tx_ba_cb_irqsafe); void ieee80211_process_addba_resp(struct ieee80211_local *local, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len) { struct tid_ampdu_tx *tid_tx; struct ieee80211_txq *txq; u16 capab, tid, buf_size; bool amsdu; capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab); amsdu = capab & IEEE80211_ADDBA_PARAM_AMSDU_MASK; tid = u16_get_bits(capab, IEEE80211_ADDBA_PARAM_TID_MASK); buf_size = u16_get_bits(capab, IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK); buf_size = min(buf_size, local->hw.max_tx_aggregation_subframes); txq = sta->sta.txq[tid]; if (!amsdu && txq) set_bit(IEEE80211_TXQ_NO_AMSDU, &to_txq_info(txq)->flags); mutex_lock(&sta->ampdu_mlme.mtx); tid_tx = rcu_dereference_protected_tid_tx(sta, tid); if (!tid_tx) goto out; if (mgmt->u.action.u.addba_resp.dialog_token != tid_tx->dialog_token) { ht_dbg(sta->sdata, "wrong addBA response token, %pM tid %d\n", sta->sta.addr, tid); goto out; } del_timer_sync(&tid_tx->addba_resp_timer); ht_dbg(sta->sdata, "switched off addBA timer for %pM tid %d\n", sta->sta.addr, tid); /* * addba_resp_timer may have fired before we got here, and * caused WANT_STOP to be set. If the stop then was already * processed further, STOPPING might be set. */ if (test_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state) || test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state)) { ht_dbg(sta->sdata, "got addBA resp for %pM tid %d but we already gave up\n", sta->sta.addr, tid); goto out; } /* * IEEE 802.11-2007 7.3.1.14: * In an ADDBA Response frame, when the Status Code field * is set to 0, the Buffer Size subfield is set to a value * of at least 1. */ if (le16_to_cpu(mgmt->u.action.u.addba_resp.status) == WLAN_STATUS_SUCCESS && buf_size) { if (test_and_set_bit(HT_AGG_STATE_RESPONSE_RECEIVED, &tid_tx->state)) { /* ignore duplicate response */ goto out; } tid_tx->buf_size = buf_size; tid_tx->amsdu = amsdu; if (test_bit(HT_AGG_STATE_DRV_READY, &tid_tx->state)) ieee80211_agg_tx_operational(local, sta, tid); sta->ampdu_mlme.addba_req_num[tid] = 0; tid_tx->timeout = le16_to_cpu(mgmt->u.action.u.addba_resp.timeout); if (tid_tx->timeout) { mod_timer(&tid_tx->session_timer, TU_TO_EXP_TIME(tid_tx->timeout)); tid_tx->last_tx = jiffies; } } else { ___ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_DECLINED); } out: mutex_unlock(&sta->ampdu_mlme.mtx); }
linux-master
net/mac80211/agg-tx.c
// SPDX-License-Identifier: GPL-2.0-only /* * HT handling * * Copyright 2003, Jouni Malinen <[email protected]> * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007, Michael Wu <[email protected]> * Copyright 2007-2010, Intel Corporation * Copyright 2017 Intel Deutschland GmbH * Copyright(c) 2020-2023 Intel Corporation */ #include <linux/ieee80211.h> #include <linux/export.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "rate.h" static void __check_htcap_disable(struct ieee80211_ht_cap *ht_capa, struct ieee80211_ht_cap *ht_capa_mask, struct ieee80211_sta_ht_cap *ht_cap, u16 flag) { __le16 le_flag = cpu_to_le16(flag); if (ht_capa_mask->cap_info & le_flag) { if (!(ht_capa->cap_info & le_flag)) ht_cap->cap &= ~flag; } } static void __check_htcap_enable(struct ieee80211_ht_cap *ht_capa, struct ieee80211_ht_cap *ht_capa_mask, struct ieee80211_sta_ht_cap *ht_cap, u16 flag) { __le16 le_flag = cpu_to_le16(flag); if ((ht_capa_mask->cap_info & le_flag) && (ht_capa->cap_info & le_flag)) ht_cap->cap |= flag; } void ieee80211_apply_htcap_overrides(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_ht_cap *ht_cap) { struct ieee80211_ht_cap *ht_capa, *ht_capa_mask; u8 *scaps, *smask; int i; if (!ht_cap->ht_supported) return; switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: ht_capa = &sdata->u.mgd.ht_capa; ht_capa_mask = &sdata->u.mgd.ht_capa_mask; break; case NL80211_IFTYPE_ADHOC: ht_capa = &sdata->u.ibss.ht_capa; ht_capa_mask = &sdata->u.ibss.ht_capa_mask; break; default: WARN_ON_ONCE(1); return; } scaps = (u8 *)(&ht_capa->mcs.rx_mask); smask = (u8 *)(&ht_capa_mask->mcs.rx_mask); /* NOTE: If you add more over-rides here, update register_hw * ht_capa_mod_mask logic in main.c as well. * And, if this method can ever change ht_cap.ht_supported, fix * the check in ieee80211_add_ht_ie. */ /* check for HT over-rides, MCS rates first. */ for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) { u8 m = smask[i]; ht_cap->mcs.rx_mask[i] &= ~m; /* turn off all masked bits */ /* Add back rates that are supported */ ht_cap->mcs.rx_mask[i] |= (m & scaps[i]); } /* Force removal of HT-40 capabilities? */ __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_SUP_WIDTH_20_40); __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_SGI_40); /* Allow user to disable SGI-20 (SGI-40 is handled above) */ __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_SGI_20); /* Allow user to disable the max-AMSDU bit. */ __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_MAX_AMSDU); /* Allow user to disable LDPC */ __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_LDPC_CODING); /* Allow user to enable 40 MHz intolerant bit. */ __check_htcap_enable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_40MHZ_INTOLERANT); /* Allow user to enable TX STBC bit */ __check_htcap_enable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_TX_STBC); /* Allow user to configure RX STBC bits */ if (ht_capa_mask->cap_info & cpu_to_le16(IEEE80211_HT_CAP_RX_STBC)) ht_cap->cap |= le16_to_cpu(ht_capa->cap_info) & IEEE80211_HT_CAP_RX_STBC; /* Allow user to decrease AMPDU factor */ if (ht_capa_mask->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_FACTOR) { u8 n = ht_capa->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_FACTOR; if (n < ht_cap->ampdu_factor) ht_cap->ampdu_factor = n; } /* Allow the user to increase AMPDU density. */ if (ht_capa_mask->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_DENSITY) { u8 n = (ht_capa->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_DENSITY) >> IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT; if (n > ht_cap->ampdu_density) ht_cap->ampdu_density = n; } } bool ieee80211_ht_cap_ie_to_sta_ht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_ht_cap *ht_cap_ie, struct link_sta_info *link_sta) { struct ieee80211_bss_conf *link_conf; struct sta_info *sta = link_sta->sta; struct ieee80211_sta_ht_cap ht_cap, own_cap; u8 ampdu_info, tx_mcs_set_cap; int i, max_tx_streams; bool changed; enum ieee80211_sta_rx_bandwidth bw; enum nl80211_chan_width width; memset(&ht_cap, 0, sizeof(ht_cap)); if (!ht_cap_ie || !sband->ht_cap.ht_supported) goto apply; ht_cap.ht_supported = true; own_cap = sband->ht_cap; /* * If user has specified capability over-rides, take care * of that if the station we're setting up is the AP or TDLS peer that * we advertised a restricted capability set to. Override * our own capabilities and then use those below. */ if (sdata->vif.type == NL80211_IFTYPE_STATION || sdata->vif.type == NL80211_IFTYPE_ADHOC) ieee80211_apply_htcap_overrides(sdata, &own_cap); /* * The bits listed in this expression should be * the same for the peer and us, if the station * advertises more then we can't use those thus * we mask them out. */ ht_cap.cap = le16_to_cpu(ht_cap_ie->cap_info) & (own_cap.cap | ~(IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_DSSSCCK40)); /* * The STBC bits are asymmetric -- if we don't have * TX then mask out the peer's RX and vice versa. */ if (!(own_cap.cap & IEEE80211_HT_CAP_TX_STBC)) ht_cap.cap &= ~IEEE80211_HT_CAP_RX_STBC; if (!(own_cap.cap & IEEE80211_HT_CAP_RX_STBC)) ht_cap.cap &= ~IEEE80211_HT_CAP_TX_STBC; ampdu_info = ht_cap_ie->ampdu_params_info; ht_cap.ampdu_factor = ampdu_info & IEEE80211_HT_AMPDU_PARM_FACTOR; ht_cap.ampdu_density = (ampdu_info & IEEE80211_HT_AMPDU_PARM_DENSITY) >> 2; /* own MCS TX capabilities */ tx_mcs_set_cap = own_cap.mcs.tx_params; /* Copy peer MCS TX capabilities, the driver might need them. */ ht_cap.mcs.tx_params = ht_cap_ie->mcs.tx_params; /* can we TX with MCS rates? */ if (!(tx_mcs_set_cap & IEEE80211_HT_MCS_TX_DEFINED)) goto apply; /* Counting from 0, therefore +1 */ if (tx_mcs_set_cap & IEEE80211_HT_MCS_TX_RX_DIFF) max_tx_streams = ((tx_mcs_set_cap & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; else max_tx_streams = IEEE80211_HT_MCS_TX_MAX_STREAMS; /* * 802.11n-2009 20.3.5 / 20.6 says: * - indices 0 to 7 and 32 are single spatial stream * - 8 to 31 are multiple spatial streams using equal modulation * [8..15 for two streams, 16..23 for three and 24..31 for four] * - remainder are multiple spatial streams using unequal modulation */ for (i = 0; i < max_tx_streams; i++) ht_cap.mcs.rx_mask[i] = own_cap.mcs.rx_mask[i] & ht_cap_ie->mcs.rx_mask[i]; if (tx_mcs_set_cap & IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION) for (i = IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE; i < IEEE80211_HT_MCS_MASK_LEN; i++) ht_cap.mcs.rx_mask[i] = own_cap.mcs.rx_mask[i] & ht_cap_ie->mcs.rx_mask[i]; /* handle MCS rate 32 too */ if (own_cap.mcs.rx_mask[32/8] & ht_cap_ie->mcs.rx_mask[32/8] & 1) ht_cap.mcs.rx_mask[32/8] |= 1; /* set Rx highest rate */ ht_cap.mcs.rx_highest = ht_cap_ie->mcs.rx_highest; if (ht_cap.cap & IEEE80211_HT_CAP_MAX_AMSDU) link_sta->pub->agg.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_7935; else link_sta->pub->agg.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_3839; ieee80211_sta_recalc_aggregates(&sta->sta); apply: changed = memcmp(&link_sta->pub->ht_cap, &ht_cap, sizeof(ht_cap)); memcpy(&link_sta->pub->ht_cap, &ht_cap, sizeof(ht_cap)); rcu_read_lock(); link_conf = rcu_dereference(sdata->vif.link_conf[link_sta->link_id]); if (WARN_ON(!link_conf)) width = NL80211_CHAN_WIDTH_20_NOHT; else width = link_conf->chandef.width; switch (width) { default: WARN_ON_ONCE(1); fallthrough; case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: bw = IEEE80211_STA_RX_BW_20; break; case NL80211_CHAN_WIDTH_40: case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: bw = ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; break; } rcu_read_unlock(); link_sta->pub->bandwidth = bw; link_sta->cur_max_bandwidth = ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { enum ieee80211_smps_mode smps_mode; switch ((ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> IEEE80211_HT_CAP_SM_PS_SHIFT) { case WLAN_HT_CAP_SM_PS_INVALID: case WLAN_HT_CAP_SM_PS_STATIC: smps_mode = IEEE80211_SMPS_STATIC; break; case WLAN_HT_CAP_SM_PS_DYNAMIC: smps_mode = IEEE80211_SMPS_DYNAMIC; break; case WLAN_HT_CAP_SM_PS_DISABLED: smps_mode = IEEE80211_SMPS_OFF; break; } if (smps_mode != link_sta->pub->smps_mode) changed = true; link_sta->pub->smps_mode = smps_mode; } else { link_sta->pub->smps_mode = IEEE80211_SMPS_OFF; } return changed; } void ieee80211_sta_tear_down_BA_sessions(struct sta_info *sta, enum ieee80211_agg_stop_reason reason) { int i; mutex_lock(&sta->ampdu_mlme.mtx); for (i = 0; i < IEEE80211_NUM_TIDS; i++) ___ieee80211_stop_rx_ba_session(sta, i, WLAN_BACK_RECIPIENT, WLAN_REASON_QSTA_LEAVE_QBSS, reason != AGG_STOP_DESTROY_STA && reason != AGG_STOP_PEER_REQUEST); for (i = 0; i < IEEE80211_NUM_TIDS; i++) ___ieee80211_stop_tx_ba_session(sta, i, reason); mutex_unlock(&sta->ampdu_mlme.mtx); /* * In case the tear down is part of a reconfigure due to HW restart * request, it is possible that the low level driver requested to stop * the BA session, so handle it to properly clean tid_tx data. */ if(reason == AGG_STOP_DESTROY_STA) { cancel_work_sync(&sta->ampdu_mlme.work); mutex_lock(&sta->ampdu_mlme.mtx); for (i = 0; i < IEEE80211_NUM_TIDS; i++) { struct tid_ampdu_tx *tid_tx = rcu_dereference_protected_tid_tx(sta, i); if (!tid_tx) continue; if (test_and_clear_bit(HT_AGG_STATE_STOP_CB, &tid_tx->state)) ieee80211_stop_tx_ba_cb(sta, i, tid_tx); } mutex_unlock(&sta->ampdu_mlme.mtx); } } void ieee80211_ba_session_work(struct work_struct *work) { struct sta_info *sta = container_of(work, struct sta_info, ampdu_mlme.work); struct tid_ampdu_tx *tid_tx; bool blocked; int tid; /* When this flag is set, new sessions should be blocked. */ blocked = test_sta_flag(sta, WLAN_STA_BLOCK_BA); mutex_lock(&sta->ampdu_mlme.mtx); for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { if (test_and_clear_bit(tid, sta->ampdu_mlme.tid_rx_timer_expired)) ___ieee80211_stop_rx_ba_session( sta, tid, WLAN_BACK_RECIPIENT, WLAN_REASON_QSTA_TIMEOUT, true); if (test_and_clear_bit(tid, sta->ampdu_mlme.tid_rx_stop_requested)) ___ieee80211_stop_rx_ba_session( sta, tid, WLAN_BACK_RECIPIENT, WLAN_REASON_UNSPECIFIED, true); if (!blocked && test_and_clear_bit(tid, sta->ampdu_mlme.tid_rx_manage_offl)) ___ieee80211_start_rx_ba_session(sta, 0, 0, 0, 1, tid, IEEE80211_MAX_AMPDU_BUF_HT, false, true, NULL); if (test_and_clear_bit(tid + IEEE80211_NUM_TIDS, sta->ampdu_mlme.tid_rx_manage_offl)) ___ieee80211_stop_rx_ba_session( sta, tid, WLAN_BACK_RECIPIENT, 0, false); spin_lock_bh(&sta->lock); tid_tx = sta->ampdu_mlme.tid_start_tx[tid]; if (!blocked && tid_tx) { struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); struct ieee80211_sub_if_data *sdata = vif_to_sdata(txqi->txq.vif); struct fq *fq = &sdata->local->fq; spin_lock_bh(&fq->lock); /* Allow only frags to be dequeued */ set_bit(IEEE80211_TXQ_STOP, &txqi->flags); if (!skb_queue_empty(&txqi->frags)) { /* Fragmented Tx is ongoing, wait for it to * finish. Reschedule worker to retry later. */ spin_unlock_bh(&fq->lock); spin_unlock_bh(&sta->lock); /* Give the task working on the txq a chance * to send out the queued frags */ synchronize_net(); mutex_unlock(&sta->ampdu_mlme.mtx); ieee80211_queue_work(&sdata->local->hw, work); return; } spin_unlock_bh(&fq->lock); /* * Assign it over to the normal tid_tx array * where it "goes live". */ sta->ampdu_mlme.tid_start_tx[tid] = NULL; /* could there be a race? */ if (sta->ampdu_mlme.tid_tx[tid]) kfree(tid_tx); else ieee80211_assign_tid_tx(sta, tid, tid_tx); spin_unlock_bh(&sta->lock); ieee80211_tx_ba_session_handle_start(sta, tid); continue; } spin_unlock_bh(&sta->lock); tid_tx = rcu_dereference_protected_tid_tx(sta, tid); if (!tid_tx) continue; if (!blocked && test_and_clear_bit(HT_AGG_STATE_START_CB, &tid_tx->state)) ieee80211_start_tx_ba_cb(sta, tid, tid_tx); if (test_and_clear_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state)) ___ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_LOCAL_REQUEST); if (test_and_clear_bit(HT_AGG_STATE_STOP_CB, &tid_tx->state)) ieee80211_stop_tx_ba_cb(sta, tid, tid_tx); } mutex_unlock(&sta->ampdu_mlme.mtx); } void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata, const u8 *da, u16 tid, u16 initiator, u16 reason_code) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u16 params; skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = skb_put_zero(skb, 24); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN || sdata->vif.type == NL80211_IFTYPE_MESH_POINT) memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); else if (sdata->vif.type == NL80211_IFTYPE_STATION) memcpy(mgmt->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) memcpy(mgmt->bssid, sdata->u.ibss.bssid, ETH_ALEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba)); mgmt->u.action.category = WLAN_CATEGORY_BACK; mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA; params = (u16)(initiator << 11); /* bit 11 initiator */ params |= (u16)(tid << 12); /* bit 15:12 TID number */ mgmt->u.action.u.delba.params = cpu_to_le16(params); mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code); ieee80211_tx_skb(sdata, skb); } void ieee80211_process_delba(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len) { u16 tid, params; u16 initiator; params = le16_to_cpu(mgmt->u.action.u.delba.params); tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12; initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11; ht_dbg_ratelimited(sdata, "delba from %pM (%s) tid %d reason code %d\n", mgmt->sa, initiator ? "initiator" : "recipient", tid, le16_to_cpu(mgmt->u.action.u.delba.reason_code)); if (initiator == WLAN_BACK_INITIATOR) __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_INITIATOR, 0, true); else __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_PEER_REQUEST); } enum nl80211_smps_mode ieee80211_smps_mode_to_smps_mode(enum ieee80211_smps_mode smps) { switch (smps) { case IEEE80211_SMPS_OFF: return NL80211_SMPS_OFF; case IEEE80211_SMPS_STATIC: return NL80211_SMPS_STATIC; case IEEE80211_SMPS_DYNAMIC: return NL80211_SMPS_DYNAMIC; default: return NL80211_SMPS_OFF; } } int ieee80211_send_smps_action(struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps, const u8 *da, const u8 *bssid) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *action_frame; /* 27 = header + category + action + smps mode */ skb = dev_alloc_skb(27 + local->hw.extra_tx_headroom); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); action_frame = skb_put(skb, 27); memcpy(action_frame->da, da, ETH_ALEN); memcpy(action_frame->sa, sdata->dev->dev_addr, ETH_ALEN); memcpy(action_frame->bssid, bssid, ETH_ALEN); action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); action_frame->u.action.category = WLAN_CATEGORY_HT; action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS; switch (smps) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_NUM_MODES: WARN_ON(1); fallthrough; case IEEE80211_SMPS_OFF: action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_DISABLED; break; case IEEE80211_SMPS_STATIC: action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_STATIC; break; case IEEE80211_SMPS_DYNAMIC: action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_DYNAMIC; break; } /* we'll do more on status of this frame */ IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; ieee80211_tx_skb(sdata, skb); return 0; } void ieee80211_request_smps(struct ieee80211_vif *vif, unsigned int link_id, enum ieee80211_smps_mode smps_mode) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_link_data *link; if (WARN_ON_ONCE(vif->type != NL80211_IFTYPE_STATION)) return; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) goto out; if (link->u.mgd.driver_smps_mode == smps_mode) goto out; link->u.mgd.driver_smps_mode = smps_mode; wiphy_work_queue(sdata->local->hw.wiphy, &link->u.mgd.request_smps_work); out: rcu_read_unlock(); } /* this might change ... don't want non-open drivers using it */ EXPORT_SYMBOL_GPL(ieee80211_request_smps);
linux-master
net/mac80211/ht.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008, 2009 open80211s Ltd. * Copyright (C) 2019, 2021-2023 Intel Corporation * Author: Luis Carlos Cobo <[email protected]> */ #include <linux/gfp.h> #include <linux/kernel.h> #include <linux/random.h> #include <linux/rculist.h> #include "ieee80211_i.h" #include "rate.h" #include "mesh.h" #define PLINK_CNF_AID(mgmt) ((mgmt)->u.action.u.self_prot.variable + 2) #define PLINK_GET_LLID(p) (p + 2) #define PLINK_GET_PLID(p) (p + 4) #define mod_plink_timer(s, t) (mod_timer(&s->mesh->plink_timer, \ jiffies + msecs_to_jiffies(t))) enum plink_event { PLINK_UNDEFINED, OPN_ACPT, OPN_RJCT, OPN_IGNR, CNF_ACPT, CNF_RJCT, CNF_IGNR, CLS_ACPT, CLS_IGNR }; static const char * const mplstates[] = { [NL80211_PLINK_LISTEN] = "LISTEN", [NL80211_PLINK_OPN_SNT] = "OPN-SNT", [NL80211_PLINK_OPN_RCVD] = "OPN-RCVD", [NL80211_PLINK_CNF_RCVD] = "CNF_RCVD", [NL80211_PLINK_ESTAB] = "ESTAB", [NL80211_PLINK_HOLDING] = "HOLDING", [NL80211_PLINK_BLOCKED] = "BLOCKED" }; static const char * const mplevents[] = { [PLINK_UNDEFINED] = "NONE", [OPN_ACPT] = "OPN_ACPT", [OPN_RJCT] = "OPN_RJCT", [OPN_IGNR] = "OPN_IGNR", [CNF_ACPT] = "CNF_ACPT", [CNF_RJCT] = "CNF_RJCT", [CNF_IGNR] = "CNF_IGNR", [CLS_ACPT] = "CLS_ACPT", [CLS_IGNR] = "CLS_IGNR" }; /* We only need a valid sta if user configured a minimum rssi_threshold. */ static bool rssi_threshold_check(struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { s32 rssi_threshold = sdata->u.mesh.mshcfg.rssi_threshold; return rssi_threshold == 0 || (sta && (s8)-ewma_signal_read(&sta->deflink.rx_stats_avg.signal) > rssi_threshold); } /** * mesh_plink_fsm_restart - restart a mesh peer link finite state machine * * @sta: mesh peer link to restart * * Locking: this function must be called holding sta->mesh->plink_lock */ static inline void mesh_plink_fsm_restart(struct sta_info *sta) { lockdep_assert_held(&sta->mesh->plink_lock); sta->mesh->plink_state = NL80211_PLINK_LISTEN; sta->mesh->llid = sta->mesh->plid = sta->mesh->reason = 0; sta->mesh->plink_retries = 0; } /* * mesh_set_short_slot_time - enable / disable ERP short slot time. * * The standard indirectly mandates mesh STAs to turn off short slot time by * disallowing advertising this (802.11-2012 8.4.1.4), but that doesn't mean we * can't be sneaky about it. Enable short slot time if all mesh STAs in the * MBSS support ERP rates. * * Returns BSS_CHANGED_ERP_SLOT or 0 for no change. */ static u64 mesh_set_short_slot_time(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; struct sta_info *sta; u32 erp_rates = 0; u64 changed = 0; int i; bool short_slot = false; sband = ieee80211_get_sband(sdata); if (!sband) return changed; if (sband->band == NL80211_BAND_5GHZ) { /* (IEEE 802.11-2012 19.4.5) */ short_slot = true; goto out; } else if (sband->band != NL80211_BAND_2GHZ) { goto out; } for (i = 0; i < sband->n_bitrates; i++) if (sband->bitrates[i].flags & IEEE80211_RATE_ERP_G) erp_rates |= BIT(i); if (!erp_rates) goto out; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata || sta->mesh->plink_state != NL80211_PLINK_ESTAB) continue; short_slot = false; if (erp_rates & sta->sta.deflink.supp_rates[sband->band]) short_slot = true; else break; } rcu_read_unlock(); out: if (sdata->vif.bss_conf.use_short_slot != short_slot) { sdata->vif.bss_conf.use_short_slot = short_slot; changed = BSS_CHANGED_ERP_SLOT; mpl_dbg(sdata, "mesh_plink %pM: ERP short slot time %d\n", sdata->vif.addr, short_slot); } return changed; } /** * mesh_set_ht_prot_mode - set correct HT protection mode * @sdata: the (mesh) interface to handle * * Section 9.23.3.5 of IEEE 80211-2012 describes the protection rules for HT * mesh STA in a MBSS. Three HT protection modes are supported for now, non-HT * mixed mode, 20MHz-protection and no-protection mode. non-HT mixed mode is * selected if any non-HT peers are present in our MBSS. 20MHz-protection mode * is selected if all peers in our 20/40MHz MBSS support HT and at least one * HT20 peer is present. Otherwise no-protection mode is selected. */ static u64 mesh_set_ht_prot_mode(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; u16 ht_opmode; bool non_ht_sta = false, ht20_sta = false; switch (sdata->vif.bss_conf.chandef.width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: return 0; default: break; } rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata || sta->mesh->plink_state != NL80211_PLINK_ESTAB) continue; if (sta->sta.deflink.bandwidth > IEEE80211_STA_RX_BW_20) continue; if (!sta->sta.deflink.ht_cap.ht_supported) { mpl_dbg(sdata, "nonHT sta (%pM) is present\n", sta->sta.addr); non_ht_sta = true; break; } mpl_dbg(sdata, "HT20 sta (%pM) is present\n", sta->sta.addr); ht20_sta = true; } rcu_read_unlock(); if (non_ht_sta) ht_opmode = IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED; else if (ht20_sta && sdata->vif.bss_conf.chandef.width > NL80211_CHAN_WIDTH_20) ht_opmode = IEEE80211_HT_OP_MODE_PROTECTION_20MHZ; else ht_opmode = IEEE80211_HT_OP_MODE_PROTECTION_NONE; if (sdata->vif.bss_conf.ht_operation_mode == ht_opmode) return 0; sdata->vif.bss_conf.ht_operation_mode = ht_opmode; sdata->u.mesh.mshcfg.ht_opmode = ht_opmode; mpl_dbg(sdata, "selected new HT protection mode %d\n", ht_opmode); return BSS_CHANGED_HT; } static int mesh_plink_frame_tx(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, enum ieee80211_self_protected_actioncode action, u8 *da, u16 llid, u16 plid, u16 reason) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_tx_info *info; struct ieee80211_mgmt *mgmt; bool include_plid = false; u16 peering_proto = 0; u8 *pos, ie_len = 4; u8 ie_len_he_cap, ie_len_eht_cap; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.self_prot); int err = -ENOMEM; ie_len_he_cap = ieee80211_ie_len_he_cap(sdata, NL80211_IFTYPE_MESH_POINT); ie_len_eht_cap = ieee80211_ie_len_eht_cap(sdata, NL80211_IFTYPE_MESH_POINT); skb = dev_alloc_skb(local->tx_headroom + hdr_len + 2 + /* capability info */ 2 + /* AID */ 2 + 8 + /* supported rates */ 2 + (IEEE80211_MAX_SUPP_RATES - 8) + 2 + sdata->u.mesh.mesh_id_len + 2 + sizeof(struct ieee80211_meshconf_ie) + 2 + sizeof(struct ieee80211_ht_cap) + 2 + sizeof(struct ieee80211_ht_operation) + 2 + sizeof(struct ieee80211_vht_cap) + 2 + sizeof(struct ieee80211_vht_operation) + ie_len_he_cap + 2 + 1 + sizeof(struct ieee80211_he_operation) + sizeof(struct ieee80211_he_6ghz_oper) + 2 + 1 + sizeof(struct ieee80211_he_6ghz_capa) + ie_len_eht_cap + 2 + 1 + offsetof(struct ieee80211_eht_operation, optional) + offsetof(struct ieee80211_eht_operation_info, optional) + 2 + 8 + /* peering IE */ sdata->u.mesh.ie_len); if (!skb) return err; info = IEEE80211_SKB_CB(skb); skb_reserve(skb, local->tx_headroom); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_SELF_PROTECTED; mgmt->u.action.u.self_prot.action_code = action; if (action != WLAN_SP_MESH_PEERING_CLOSE) { struct ieee80211_supported_band *sband; enum nl80211_band band; sband = ieee80211_get_sband(sdata); if (!sband) { err = -EINVAL; goto free; } band = sband->band; /* capability info */ pos = skb_put_zero(skb, 2); if (action == WLAN_SP_MESH_PEERING_CONFIRM) { /* AID */ pos = skb_put(skb, 2); put_unaligned_le16(sta->sta.aid, pos); } if (ieee80211_add_srates_ie(sdata, skb, true, band) || ieee80211_add_ext_srates_ie(sdata, skb, true, band) || mesh_add_rsn_ie(sdata, skb) || mesh_add_meshid_ie(sdata, skb) || mesh_add_meshconf_ie(sdata, skb)) goto free; } else { /* WLAN_SP_MESH_PEERING_CLOSE */ info->flags |= IEEE80211_TX_CTL_NO_ACK; if (mesh_add_meshid_ie(sdata, skb)) goto free; } /* Add Mesh Peering Management element */ switch (action) { case WLAN_SP_MESH_PEERING_OPEN: break; case WLAN_SP_MESH_PEERING_CONFIRM: ie_len += 2; include_plid = true; break; case WLAN_SP_MESH_PEERING_CLOSE: if (plid) { ie_len += 2; include_plid = true; } ie_len += 2; /* reason code */ break; default: err = -EINVAL; goto free; } if (WARN_ON(skb_tailroom(skb) < 2 + ie_len)) goto free; pos = skb_put(skb, 2 + ie_len); *pos++ = WLAN_EID_PEER_MGMT; *pos++ = ie_len; memcpy(pos, &peering_proto, 2); pos += 2; put_unaligned_le16(llid, pos); pos += 2; if (include_plid) { put_unaligned_le16(plid, pos); pos += 2; } if (action == WLAN_SP_MESH_PEERING_CLOSE) { put_unaligned_le16(reason, pos); pos += 2; } if (action != WLAN_SP_MESH_PEERING_CLOSE) { if (mesh_add_ht_cap_ie(sdata, skb) || mesh_add_ht_oper_ie(sdata, skb) || mesh_add_vht_cap_ie(sdata, skb) || mesh_add_vht_oper_ie(sdata, skb) || mesh_add_he_cap_ie(sdata, skb, ie_len_he_cap) || mesh_add_he_oper_ie(sdata, skb) || mesh_add_he_6ghz_cap_ie(sdata, skb) || mesh_add_eht_cap_ie(sdata, skb, ie_len_eht_cap) || mesh_add_eht_oper_ie(sdata, skb)) goto free; } if (mesh_add_vendor_ies(sdata, skb)) goto free; ieee80211_tx_skb(sdata, skb); return 0; free: kfree_skb(skb); return err; } /** * __mesh_plink_deactivate - deactivate mesh peer link * * @sta: mesh peer link to deactivate * * Mesh paths with this peer as next hop should be flushed * by the caller outside of plink_lock. * * Returns beacon changed flag if the beacon content changed. * * Locking: the caller must hold sta->mesh->plink_lock */ static u64 __mesh_plink_deactivate(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; u64 changed = 0; lockdep_assert_held(&sta->mesh->plink_lock); if (sta->mesh->plink_state == NL80211_PLINK_ESTAB) changed = mesh_plink_dec_estab_count(sdata); sta->mesh->plink_state = NL80211_PLINK_BLOCKED; ieee80211_mps_sta_status_update(sta); changed |= ieee80211_mps_set_sta_local_pm(sta, NL80211_MESH_POWER_UNKNOWN); return changed; } /** * mesh_plink_deactivate - deactivate mesh peer link * * @sta: mesh peer link to deactivate * * All mesh paths with this peer as next hop will be flushed */ u64 mesh_plink_deactivate(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; u64 changed; spin_lock_bh(&sta->mesh->plink_lock); changed = __mesh_plink_deactivate(sta); if (!sdata->u.mesh.user_mpm) { sta->mesh->reason = WLAN_REASON_MESH_PEER_CANCELED; mesh_plink_frame_tx(sdata, sta, WLAN_SP_MESH_PEERING_CLOSE, sta->sta.addr, sta->mesh->llid, sta->mesh->plid, sta->mesh->reason); } spin_unlock_bh(&sta->mesh->plink_lock); if (!sdata->u.mesh.user_mpm) del_timer_sync(&sta->mesh->plink_timer); mesh_path_flush_by_nexthop(sta); /* make sure no readers can access nexthop sta from here on */ synchronize_net(); return changed; } static void mesh_sta_info_init(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee802_11_elems *elems) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; u32 rates, basic_rates = 0, changed = 0; enum ieee80211_sta_rx_bandwidth bw = sta->sta.deflink.bandwidth; sband = ieee80211_get_sband(sdata); if (!sband) return; rates = ieee80211_sta_get_rates(sdata, elems, sband->band, &basic_rates); spin_lock_bh(&sta->mesh->plink_lock); sta->deflink.rx_stats.last_rx = jiffies; /* rates and capabilities don't change during peering */ if (sta->mesh->plink_state == NL80211_PLINK_ESTAB && sta->mesh->processed_beacon) goto out; sta->mesh->processed_beacon = true; if (sta->sta.deflink.supp_rates[sband->band] != rates) changed |= IEEE80211_RC_SUPP_RATES_CHANGED; sta->sta.deflink.supp_rates[sband->band] = rates; if (ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband, elems->ht_cap_elem, &sta->deflink)) changed |= IEEE80211_RC_BW_CHANGED; ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband, elems->vht_cap_elem, &sta->deflink); ieee80211_he_cap_ie_to_sta_he_cap(sdata, sband, elems->he_cap, elems->he_cap_len, elems->he_6ghz_capa, &sta->deflink); ieee80211_eht_cap_ie_to_sta_eht_cap(sdata, sband, elems->he_cap, elems->he_cap_len, elems->eht_cap, elems->eht_cap_len, &sta->deflink); if (bw != sta->sta.deflink.bandwidth) changed |= IEEE80211_RC_BW_CHANGED; /* HT peer is operating 20MHz-only */ if (elems->ht_operation && !(elems->ht_operation->ht_param & IEEE80211_HT_PARAM_CHAN_WIDTH_ANY)) { if (sta->sta.deflink.bandwidth != IEEE80211_STA_RX_BW_20) changed |= IEEE80211_RC_BW_CHANGED; sta->sta.deflink.bandwidth = IEEE80211_STA_RX_BW_20; } if (!test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) rate_control_rate_init(sta); else rate_control_rate_update(local, sband, sta, 0, changed); out: spin_unlock_bh(&sta->mesh->plink_lock); } static int mesh_allocate_aid(struct ieee80211_sub_if_data *sdata) { struct sta_info *sta; unsigned long *aid_map; int aid; aid_map = bitmap_zalloc(IEEE80211_MAX_AID + 1, GFP_KERNEL); if (!aid_map) return -ENOMEM; /* reserve aid 0 for mcast indication */ __set_bit(0, aid_map); rcu_read_lock(); list_for_each_entry_rcu(sta, &sdata->local->sta_list, list) __set_bit(sta->sta.aid, aid_map); rcu_read_unlock(); aid = find_first_zero_bit(aid_map, IEEE80211_MAX_AID + 1); bitmap_free(aid_map); if (aid > IEEE80211_MAX_AID) return -ENOBUFS; return aid; } static struct sta_info * __mesh_sta_info_alloc(struct ieee80211_sub_if_data *sdata, u8 *hw_addr) { struct sta_info *sta; int aid; if (sdata->local->num_sta >= MESH_MAX_PLINKS) return NULL; aid = mesh_allocate_aid(sdata); if (aid < 0) return NULL; sta = sta_info_alloc(sdata, hw_addr, GFP_KERNEL); if (!sta) return NULL; sta->mesh->plink_state = NL80211_PLINK_LISTEN; sta->sta.wme = true; sta->sta.aid = aid; sta_info_pre_move_state(sta, IEEE80211_STA_AUTH); sta_info_pre_move_state(sta, IEEE80211_STA_ASSOC); sta_info_pre_move_state(sta, IEEE80211_STA_AUTHORIZED); return sta; } static struct sta_info * mesh_sta_info_alloc(struct ieee80211_sub_if_data *sdata, u8 *addr, struct ieee802_11_elems *elems, struct ieee80211_rx_status *rx_status) { struct sta_info *sta = NULL; /* Userspace handles station allocation */ if (sdata->u.mesh.user_mpm || sdata->u.mesh.security & IEEE80211_MESH_SEC_AUTHED) { if (mesh_peer_accepts_plinks(elems) && mesh_plink_availables(sdata)) { int sig = 0; if (ieee80211_hw_check(&sdata->local->hw, SIGNAL_DBM)) sig = rx_status->signal; cfg80211_notify_new_peer_candidate(sdata->dev, addr, elems->ie_start, elems->total_len, sig, GFP_KERNEL); } } else sta = __mesh_sta_info_alloc(sdata, addr); return sta; } /* * mesh_sta_info_get - return mesh sta info entry for @addr. * * @sdata: local meshif * @addr: peer's address * @elems: IEs from beacon or mesh peering frame. * @rx_status: rx status for the frame for signal reporting * * Return existing or newly allocated sta_info under RCU read lock. * (re)initialize with given IEs. */ static struct sta_info * mesh_sta_info_get(struct ieee80211_sub_if_data *sdata, u8 *addr, struct ieee802_11_elems *elems, struct ieee80211_rx_status *rx_status) __acquires(RCU) { struct sta_info *sta = NULL; rcu_read_lock(); sta = sta_info_get(sdata, addr); if (sta) { mesh_sta_info_init(sdata, sta, elems); } else { rcu_read_unlock(); /* can't run atomic */ sta = mesh_sta_info_alloc(sdata, addr, elems, rx_status); if (!sta) { rcu_read_lock(); return NULL; } mesh_sta_info_init(sdata, sta, elems); if (sta_info_insert_rcu(sta)) return NULL; } return sta; } /* * mesh_neighbour_update - update or initialize new mesh neighbor. * * @sdata: local meshif * @addr: peer's address * @elems: IEs from beacon or mesh peering frame * @rx_status: rx status for the frame for signal reporting * * Initiates peering if appropriate. */ void mesh_neighbour_update(struct ieee80211_sub_if_data *sdata, u8 *hw_addr, struct ieee802_11_elems *elems, struct ieee80211_rx_status *rx_status) { struct sta_info *sta; u64 changed = 0; sta = mesh_sta_info_get(sdata, hw_addr, elems, rx_status); if (!sta) goto out; sta->mesh->connected_to_gate = elems->mesh_config->meshconf_form & IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE; if (mesh_peer_accepts_plinks(elems) && sta->mesh->plink_state == NL80211_PLINK_LISTEN && sdata->u.mesh.accepting_plinks && sdata->u.mesh.mshcfg.auto_open_plinks && rssi_threshold_check(sdata, sta)) changed = mesh_plink_open(sta); ieee80211_mps_frame_release(sta, elems); out: rcu_read_unlock(); ieee80211_mbss_info_change_notify(sdata, changed); } void mesh_plink_timer(struct timer_list *t) { struct mesh_sta *mesh = from_timer(mesh, t, plink_timer); struct sta_info *sta; u16 reason = 0; struct ieee80211_sub_if_data *sdata; struct mesh_config *mshcfg; enum ieee80211_self_protected_actioncode action = 0; /* * This STA is valid because sta_info_destroy() will * del_timer_sync() this timer after having made sure * it cannot be readded (by deleting the plink.) */ sta = mesh->plink_sta; if (sta->sdata->local->quiescing) return; spin_lock_bh(&sta->mesh->plink_lock); /* If a timer fires just before a state transition on another CPU, * we may have already extended the timeout and changed state by the * time we've acquired the lock and arrived here. In that case, * skip this timer and wait for the new one. */ if (time_before(jiffies, sta->mesh->plink_timer.expires)) { mpl_dbg(sta->sdata, "Ignoring timer for %pM in state %s (timer adjusted)", sta->sta.addr, mplstates[sta->mesh->plink_state]); spin_unlock_bh(&sta->mesh->plink_lock); return; } /* del_timer() and handler may race when entering these states */ if (sta->mesh->plink_state == NL80211_PLINK_LISTEN || sta->mesh->plink_state == NL80211_PLINK_ESTAB) { mpl_dbg(sta->sdata, "Ignoring timer for %pM in state %s (timer deleted)", sta->sta.addr, mplstates[sta->mesh->plink_state]); spin_unlock_bh(&sta->mesh->plink_lock); return; } mpl_dbg(sta->sdata, "Mesh plink timer for %pM fired on state %s\n", sta->sta.addr, mplstates[sta->mesh->plink_state]); sdata = sta->sdata; mshcfg = &sdata->u.mesh.mshcfg; switch (sta->mesh->plink_state) { case NL80211_PLINK_OPN_RCVD: case NL80211_PLINK_OPN_SNT: /* retry timer */ if (sta->mesh->plink_retries < mshcfg->dot11MeshMaxRetries) { u32 rand; mpl_dbg(sta->sdata, "Mesh plink for %pM (retry, timeout): %d %d\n", sta->sta.addr, sta->mesh->plink_retries, sta->mesh->plink_timeout); get_random_bytes(&rand, sizeof(u32)); sta->mesh->plink_timeout = sta->mesh->plink_timeout + rand % sta->mesh->plink_timeout; ++sta->mesh->plink_retries; mod_plink_timer(sta, sta->mesh->plink_timeout); action = WLAN_SP_MESH_PEERING_OPEN; break; } reason = WLAN_REASON_MESH_MAX_RETRIES; fallthrough; case NL80211_PLINK_CNF_RCVD: /* confirm timer */ if (!reason) reason = WLAN_REASON_MESH_CONFIRM_TIMEOUT; sta->mesh->plink_state = NL80211_PLINK_HOLDING; mod_plink_timer(sta, mshcfg->dot11MeshHoldingTimeout); action = WLAN_SP_MESH_PEERING_CLOSE; break; case NL80211_PLINK_HOLDING: /* holding timer */ del_timer(&sta->mesh->plink_timer); mesh_plink_fsm_restart(sta); break; default: break; } spin_unlock_bh(&sta->mesh->plink_lock); if (action) mesh_plink_frame_tx(sdata, sta, action, sta->sta.addr, sta->mesh->llid, sta->mesh->plid, reason); } static inline void mesh_plink_timer_set(struct sta_info *sta, u32 timeout) { sta->mesh->plink_timeout = timeout; mod_timer(&sta->mesh->plink_timer, jiffies + msecs_to_jiffies(timeout)); } static bool llid_in_use(struct ieee80211_sub_if_data *sdata, u16 llid) { struct ieee80211_local *local = sdata->local; bool in_use = false; struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata) continue; if (!memcmp(&sta->mesh->llid, &llid, sizeof(llid))) { in_use = true; break; } } rcu_read_unlock(); return in_use; } static u16 mesh_get_new_llid(struct ieee80211_sub_if_data *sdata) { u16 llid; do { get_random_bytes(&llid, sizeof(llid)); } while (llid_in_use(sdata, llid)); return llid; } u64 mesh_plink_open(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; u64 changed; if (!test_sta_flag(sta, WLAN_STA_AUTH)) return 0; spin_lock_bh(&sta->mesh->plink_lock); sta->mesh->llid = mesh_get_new_llid(sdata); if (sta->mesh->plink_state != NL80211_PLINK_LISTEN && sta->mesh->plink_state != NL80211_PLINK_BLOCKED) { spin_unlock_bh(&sta->mesh->plink_lock); return 0; } sta->mesh->plink_state = NL80211_PLINK_OPN_SNT; mesh_plink_timer_set(sta, sdata->u.mesh.mshcfg.dot11MeshRetryTimeout); spin_unlock_bh(&sta->mesh->plink_lock); mpl_dbg(sdata, "Mesh plink: starting establishment with %pM\n", sta->sta.addr); /* set the non-peer mode to active during peering */ changed = ieee80211_mps_local_status_update(sdata); mesh_plink_frame_tx(sdata, sta, WLAN_SP_MESH_PEERING_OPEN, sta->sta.addr, sta->mesh->llid, 0, 0); return changed; } u64 mesh_plink_block(struct sta_info *sta) { u64 changed; spin_lock_bh(&sta->mesh->plink_lock); changed = __mesh_plink_deactivate(sta); sta->mesh->plink_state = NL80211_PLINK_BLOCKED; spin_unlock_bh(&sta->mesh->plink_lock); mesh_path_flush_by_nexthop(sta); return changed; } static void mesh_plink_close(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, enum plink_event event) { struct mesh_config *mshcfg = &sdata->u.mesh.mshcfg; u16 reason = (event == CLS_ACPT) ? WLAN_REASON_MESH_CLOSE : WLAN_REASON_MESH_CONFIG; sta->mesh->reason = reason; sta->mesh->plink_state = NL80211_PLINK_HOLDING; mod_plink_timer(sta, mshcfg->dot11MeshHoldingTimeout); } static u64 mesh_plink_establish(struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { struct mesh_config *mshcfg = &sdata->u.mesh.mshcfg; u64 changed = 0; del_timer(&sta->mesh->plink_timer); sta->mesh->plink_state = NL80211_PLINK_ESTAB; changed |= mesh_plink_inc_estab_count(sdata); changed |= mesh_set_ht_prot_mode(sdata); changed |= mesh_set_short_slot_time(sdata); mpl_dbg(sdata, "Mesh plink with %pM ESTABLISHED\n", sta->sta.addr); ieee80211_mps_sta_status_update(sta); changed |= ieee80211_mps_set_sta_local_pm(sta, mshcfg->power_mode); return changed; } /** * mesh_plink_fsm - step @sta MPM based on @event * * @sdata: interface * @sta: mesh neighbor * @event: peering event * * Return: changed MBSS flags */ static u64 mesh_plink_fsm(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, enum plink_event event) { struct mesh_config *mshcfg = &sdata->u.mesh.mshcfg; enum ieee80211_self_protected_actioncode action = 0; u64 changed = 0; bool flush = false; mpl_dbg(sdata, "peer %pM in state %s got event %s\n", sta->sta.addr, mplstates[sta->mesh->plink_state], mplevents[event]); spin_lock_bh(&sta->mesh->plink_lock); switch (sta->mesh->plink_state) { case NL80211_PLINK_LISTEN: switch (event) { case CLS_ACPT: mesh_plink_fsm_restart(sta); break; case OPN_ACPT: sta->mesh->plink_state = NL80211_PLINK_OPN_RCVD; sta->mesh->llid = mesh_get_new_llid(sdata); mesh_plink_timer_set(sta, mshcfg->dot11MeshRetryTimeout); /* set the non-peer mode to active during peering */ changed |= ieee80211_mps_local_status_update(sdata); action = WLAN_SP_MESH_PEERING_OPEN; break; default: break; } break; case NL80211_PLINK_OPN_SNT: switch (event) { case OPN_RJCT: case CNF_RJCT: case CLS_ACPT: mesh_plink_close(sdata, sta, event); action = WLAN_SP_MESH_PEERING_CLOSE; break; case OPN_ACPT: /* retry timer is left untouched */ sta->mesh->plink_state = NL80211_PLINK_OPN_RCVD; action = WLAN_SP_MESH_PEERING_CONFIRM; break; case CNF_ACPT: sta->mesh->plink_state = NL80211_PLINK_CNF_RCVD; mod_plink_timer(sta, mshcfg->dot11MeshConfirmTimeout); break; default: break; } break; case NL80211_PLINK_OPN_RCVD: switch (event) { case OPN_RJCT: case CNF_RJCT: case CLS_ACPT: mesh_plink_close(sdata, sta, event); action = WLAN_SP_MESH_PEERING_CLOSE; break; case OPN_ACPT: action = WLAN_SP_MESH_PEERING_CONFIRM; break; case CNF_ACPT: changed |= mesh_plink_establish(sdata, sta); break; default: break; } break; case NL80211_PLINK_CNF_RCVD: switch (event) { case OPN_RJCT: case CNF_RJCT: case CLS_ACPT: mesh_plink_close(sdata, sta, event); action = WLAN_SP_MESH_PEERING_CLOSE; break; case OPN_ACPT: changed |= mesh_plink_establish(sdata, sta); action = WLAN_SP_MESH_PEERING_CONFIRM; break; default: break; } break; case NL80211_PLINK_ESTAB: switch (event) { case CLS_ACPT: changed |= __mesh_plink_deactivate(sta); changed |= mesh_set_ht_prot_mode(sdata); changed |= mesh_set_short_slot_time(sdata); mesh_plink_close(sdata, sta, event); action = WLAN_SP_MESH_PEERING_CLOSE; flush = true; break; case OPN_ACPT: action = WLAN_SP_MESH_PEERING_CONFIRM; break; default: break; } break; case NL80211_PLINK_HOLDING: switch (event) { case CLS_ACPT: del_timer(&sta->mesh->plink_timer); mesh_plink_fsm_restart(sta); break; case OPN_ACPT: case CNF_ACPT: case OPN_RJCT: case CNF_RJCT: action = WLAN_SP_MESH_PEERING_CLOSE; break; default: break; } break; default: /* should not get here, PLINK_BLOCKED is dealt with at the * beginning of the function */ break; } spin_unlock_bh(&sta->mesh->plink_lock); if (flush) mesh_path_flush_by_nexthop(sta); if (action) { mesh_plink_frame_tx(sdata, sta, action, sta->sta.addr, sta->mesh->llid, sta->mesh->plid, sta->mesh->reason); /* also send confirm in open case */ if (action == WLAN_SP_MESH_PEERING_OPEN) { mesh_plink_frame_tx(sdata, sta, WLAN_SP_MESH_PEERING_CONFIRM, sta->sta.addr, sta->mesh->llid, sta->mesh->plid, 0); } } return changed; } /* * mesh_plink_get_event - get correct MPM event * * @sdata: interface * @sta: peer, leave NULL if processing a frame from a new suitable peer * @elems: peering management IEs * @ftype: frame type * @llid: peer's peer link ID * @plid: peer's local link ID * * Return: new peering event for @sta, but PLINK_UNDEFINED should be treated as * an error. */ static enum plink_event mesh_plink_get_event(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee802_11_elems *elems, enum ieee80211_self_protected_actioncode ftype, u16 llid, u16 plid) { enum plink_event event = PLINK_UNDEFINED; u8 ie_len = elems->peering_len; bool matches_local; matches_local = (ftype == WLAN_SP_MESH_PEERING_CLOSE || mesh_matches_local(sdata, elems)); /* deny open request from non-matching peer */ if (!matches_local && !sta) { event = OPN_RJCT; goto out; } if (!sta) { if (ftype != WLAN_SP_MESH_PEERING_OPEN) { mpl_dbg(sdata, "Mesh plink: cls or cnf from unknown peer\n"); goto out; } /* ftype == WLAN_SP_MESH_PEERING_OPEN */ if (!mesh_plink_free_count(sdata)) { mpl_dbg(sdata, "Mesh plink error: no more free plinks\n"); goto out; } /* new matching peer */ event = OPN_ACPT; goto out; } else { if (!test_sta_flag(sta, WLAN_STA_AUTH)) { mpl_dbg(sdata, "Mesh plink: Action frame from non-authed peer\n"); goto out; } if (sta->mesh->plink_state == NL80211_PLINK_BLOCKED) goto out; } switch (ftype) { case WLAN_SP_MESH_PEERING_OPEN: if (!matches_local) event = OPN_RJCT; if (!mesh_plink_free_count(sdata) || (sta->mesh->plid && sta->mesh->plid != plid)) event = OPN_IGNR; else event = OPN_ACPT; break; case WLAN_SP_MESH_PEERING_CONFIRM: if (!matches_local) event = CNF_RJCT; if (!mesh_plink_free_count(sdata) || sta->mesh->llid != llid || (sta->mesh->plid && sta->mesh->plid != plid)) event = CNF_IGNR; else event = CNF_ACPT; break; case WLAN_SP_MESH_PEERING_CLOSE: if (sta->mesh->plink_state == NL80211_PLINK_ESTAB) /* Do not check for llid or plid. This does not * follow the standard but since multiple plinks * per sta are not supported, it is necessary in * order to avoid a livelock when MP A sees an * establish peer link to MP B but MP B does not * see it. This can be caused by a timeout in * B's peer link establishment or B beign * restarted. */ event = CLS_ACPT; else if (sta->mesh->plid != plid) event = CLS_IGNR; else if (ie_len == 8 && sta->mesh->llid != llid) event = CLS_IGNR; else event = CLS_ACPT; break; default: mpl_dbg(sdata, "Mesh plink: unknown frame subtype\n"); break; } out: return event; } static void mesh_process_plink_frame(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, struct ieee802_11_elems *elems, struct ieee80211_rx_status *rx_status) { struct sta_info *sta; enum plink_event event; enum ieee80211_self_protected_actioncode ftype; u64 changed = 0; u8 ie_len = elems->peering_len; u16 plid, llid = 0; if (!elems->peering) { mpl_dbg(sdata, "Mesh plink: missing necessary peer link ie\n"); return; } if (elems->rsn_len && sdata->u.mesh.security == IEEE80211_MESH_SEC_NONE) { mpl_dbg(sdata, "Mesh plink: can't establish link with secure peer\n"); return; } ftype = mgmt->u.action.u.self_prot.action_code; if ((ftype == WLAN_SP_MESH_PEERING_OPEN && ie_len != 4) || (ftype == WLAN_SP_MESH_PEERING_CONFIRM && ie_len != 6) || (ftype == WLAN_SP_MESH_PEERING_CLOSE && ie_len != 6 && ie_len != 8)) { mpl_dbg(sdata, "Mesh plink: incorrect plink ie length %d %d\n", ftype, ie_len); return; } if (ftype != WLAN_SP_MESH_PEERING_CLOSE && (!elems->mesh_id || !elems->mesh_config)) { mpl_dbg(sdata, "Mesh plink: missing necessary ie\n"); return; } /* Note the lines below are correct, the llid in the frame is the plid * from the point of view of this host. */ plid = get_unaligned_le16(PLINK_GET_LLID(elems->peering)); if (ftype == WLAN_SP_MESH_PEERING_CONFIRM || (ftype == WLAN_SP_MESH_PEERING_CLOSE && ie_len == 8)) llid = get_unaligned_le16(PLINK_GET_PLID(elems->peering)); /* WARNING: Only for sta pointer, is dropped & re-acquired */ rcu_read_lock(); sta = sta_info_get(sdata, mgmt->sa); if (ftype == WLAN_SP_MESH_PEERING_OPEN && !rssi_threshold_check(sdata, sta)) { mpl_dbg(sdata, "Mesh plink: %pM does not meet rssi threshold\n", mgmt->sa); goto unlock_rcu; } /* Now we will figure out the appropriate event... */ event = mesh_plink_get_event(sdata, sta, elems, ftype, llid, plid); if (event == OPN_ACPT) { rcu_read_unlock(); /* allocate sta entry if necessary and update info */ sta = mesh_sta_info_get(sdata, mgmt->sa, elems, rx_status); if (!sta) { mpl_dbg(sdata, "Mesh plink: failed to init peer!\n"); goto unlock_rcu; } sta->mesh->plid = plid; } else if (!sta && event == OPN_RJCT) { mesh_plink_frame_tx(sdata, NULL, WLAN_SP_MESH_PEERING_CLOSE, mgmt->sa, 0, plid, WLAN_REASON_MESH_CONFIG); goto unlock_rcu; } else if (!sta || event == PLINK_UNDEFINED) { /* something went wrong */ goto unlock_rcu; } if (event == CNF_ACPT) { /* 802.11-2012 13.3.7.2 - update plid on CNF if not set */ if (!sta->mesh->plid) sta->mesh->plid = plid; sta->mesh->aid = get_unaligned_le16(PLINK_CNF_AID(mgmt)); } changed |= mesh_plink_fsm(sdata, sta, event); unlock_rcu: rcu_read_unlock(); if (changed) ieee80211_mbss_info_change_notify(sdata, changed); } void mesh_rx_plink_frame(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee802_11_elems *elems; size_t baselen; u8 *baseaddr; /* need action_code, aux */ if (len < IEEE80211_MIN_ACTION_SIZE + 3) return; if (sdata->u.mesh.user_mpm) /* userspace must register for these */ return; if (is_multicast_ether_addr(mgmt->da)) { mpl_dbg(sdata, "Mesh plink: ignore frame from multicast address\n"); return; } baseaddr = mgmt->u.action.u.self_prot.variable; baselen = (u8 *) mgmt->u.action.u.self_prot.variable - (u8 *) mgmt; if (mgmt->u.action.u.self_prot.action_code == WLAN_SP_MESH_PEERING_CONFIRM) { baseaddr += 4; baselen += 4; if (baselen > len) return; } elems = ieee802_11_parse_elems(baseaddr, len - baselen, true, NULL); mesh_process_plink_frame(sdata, mgmt, elems, rx_status); kfree(elems); }
linux-master
net/mac80211/mesh_plink.c
// SPDX-License-Identifier: GPL-2.0-only /* * mac80211 ethtool hooks for cfg80211 * * Copied from cfg.c - originally * Copyright 2006-2010 Johannes Berg <[email protected]> * Copyright 2014 Intel Corporation (Author: Johannes Berg) * Copyright (C) 2018, 2022 Intel Corporation */ #include <linux/types.h> #include <net/cfg80211.h> #include "ieee80211_i.h" #include "sta_info.h" #include "driver-ops.h" static int ieee80211_set_ringparam(struct net_device *dev, struct ethtool_ringparam *rp, struct kernel_ethtool_ringparam *kernel_rp, struct netlink_ext_ack *extack) { struct ieee80211_local *local = wiphy_priv(dev->ieee80211_ptr->wiphy); if (rp->rx_mini_pending != 0 || rp->rx_jumbo_pending != 0) return -EINVAL; return drv_set_ringparam(local, rp->tx_pending, rp->rx_pending); } static void ieee80211_get_ringparam(struct net_device *dev, struct ethtool_ringparam *rp, struct kernel_ethtool_ringparam *kernel_rp, struct netlink_ext_ack *extack) { struct ieee80211_local *local = wiphy_priv(dev->ieee80211_ptr->wiphy); memset(rp, 0, sizeof(*rp)); drv_get_ringparam(local, &rp->tx_pending, &rp->tx_max_pending, &rp->rx_pending, &rp->rx_max_pending); } static const char ieee80211_gstrings_sta_stats[][ETH_GSTRING_LEN] = { "rx_packets", "rx_bytes", "rx_duplicates", "rx_fragments", "rx_dropped", "tx_packets", "tx_bytes", "tx_filtered", "tx_retry_failed", "tx_retries", "sta_state", "txrate", "rxrate", "signal", "channel", "noise", "ch_time", "ch_time_busy", "ch_time_ext_busy", "ch_time_rx", "ch_time_tx" }; #define STA_STATS_LEN ARRAY_SIZE(ieee80211_gstrings_sta_stats) static int ieee80211_get_sset_count(struct net_device *dev, int sset) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int rv = 0; if (sset == ETH_SS_STATS) rv += STA_STATS_LEN; rv += drv_get_et_sset_count(sdata, sset); if (rv == 0) return -EOPNOTSUPP; return rv; } static void ieee80211_get_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_channel *channel; struct sta_info *sta; struct ieee80211_local *local = sdata->local; struct station_info sinfo; struct survey_info survey; int i, q; #define STA_STATS_SURVEY_LEN 7 memset(data, 0, sizeof(u64) * STA_STATS_LEN); #define ADD_STA_STATS(sta) \ do { \ data[i++] += sinfo.rx_packets; \ data[i++] += sinfo.rx_bytes; \ data[i++] += (sta)->rx_stats.num_duplicates; \ data[i++] += (sta)->rx_stats.fragments; \ data[i++] += sinfo.rx_dropped_misc; \ \ data[i++] += sinfo.tx_packets; \ data[i++] += sinfo.tx_bytes; \ data[i++] += (sta)->status_stats.filtered; \ data[i++] += sinfo.tx_failed; \ data[i++] += sinfo.tx_retries; \ } while (0) /* For Managed stations, find the single station based on BSSID * and use that. For interface types, iterate through all available * stations and add stats for any station that is assigned to this * network device. */ mutex_lock(&local->sta_mtx); if (sdata->vif.type == NL80211_IFTYPE_STATION) { sta = sta_info_get_bss(sdata, sdata->deflink.u.mgd.bssid); if (!(sta && !WARN_ON(sta->sdata->dev != dev))) goto do_survey; memset(&sinfo, 0, sizeof(sinfo)); sta_set_sinfo(sta, &sinfo, false); i = 0; ADD_STA_STATS(&sta->deflink); data[i++] = sta->sta_state; if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE)) data[i] = 100000ULL * cfg80211_calculate_bitrate(&sinfo.txrate); i++; if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE)) data[i] = 100000ULL * cfg80211_calculate_bitrate(&sinfo.rxrate); i++; if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG)) data[i] = (u8)sinfo.signal_avg; i++; } else { list_for_each_entry(sta, &local->sta_list, list) { /* Make sure this station belongs to the proper dev */ if (sta->sdata->dev != dev) continue; memset(&sinfo, 0, sizeof(sinfo)); sta_set_sinfo(sta, &sinfo, false); i = 0; ADD_STA_STATS(&sta->deflink); } } do_survey: i = STA_STATS_LEN - STA_STATS_SURVEY_LEN; /* Get survey stats for current channel */ survey.filled = 0; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (chanctx_conf) channel = chanctx_conf->def.chan; else channel = NULL; rcu_read_unlock(); if (channel) { q = 0; do { survey.filled = 0; if (drv_get_survey(local, q, &survey) != 0) { survey.filled = 0; break; } q++; } while (channel != survey.channel); } if (survey.filled) data[i++] = survey.channel->center_freq; else data[i++] = 0; if (survey.filled & SURVEY_INFO_NOISE_DBM) data[i++] = (u8)survey.noise; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_TIME) data[i++] = survey.time; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_TIME_BUSY) data[i++] = survey.time_busy; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_TIME_EXT_BUSY) data[i++] = survey.time_ext_busy; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_TIME_RX) data[i++] = survey.time_rx; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_TIME_TX) data[i++] = survey.time_tx; else data[i++] = -1LL; mutex_unlock(&local->sta_mtx); if (WARN_ON(i != STA_STATS_LEN)) return; drv_get_et_stats(sdata, stats, &(data[STA_STATS_LEN])); } static void ieee80211_get_strings(struct net_device *dev, u32 sset, u8 *data) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int sz_sta_stats = 0; if (sset == ETH_SS_STATS) { sz_sta_stats = sizeof(ieee80211_gstrings_sta_stats); memcpy(data, ieee80211_gstrings_sta_stats, sz_sta_stats); } drv_get_et_strings(sdata, sset, &(data[sz_sta_stats])); } static int ieee80211_get_regs_len(struct net_device *dev) { return 0; } static void ieee80211_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *data) { struct wireless_dev *wdev = dev->ieee80211_ptr; regs->version = wdev->wiphy->hw_version; regs->len = 0; } const struct ethtool_ops ieee80211_ethtool_ops = { .get_drvinfo = cfg80211_get_drvinfo, .get_regs_len = ieee80211_get_regs_len, .get_regs = ieee80211_get_regs, .get_link = ethtool_op_get_link, .get_ringparam = ieee80211_get_ringparam, .set_ringparam = ieee80211_set_ringparam, .get_strings = ieee80211_get_strings, .get_ethtool_stats = ieee80211_get_stats, .get_sset_count = ieee80211_get_sset_count, };
linux-master
net/mac80211/ethtool.c
// SPDX-License-Identifier: GPL-2.0-only /* * AES-128-CMAC with TLen 16 for IEEE 802.11w BIP * Copyright 2008, Jouni Malinen <[email protected]> * Copyright (C) 2020 Intel Corporation */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/crypto.h> #include <linux/export.h> #include <linux/err.h> #include <crypto/aes.h> #include <net/mac80211.h> #include "key.h" #include "aes_cmac.h" #define CMAC_TLEN 8 /* CMAC TLen = 64 bits (8 octets) */ #define CMAC_TLEN_256 16 /* CMAC TLen = 128 bits (16 octets) */ #define AAD_LEN 20 static const u8 zero[CMAC_TLEN_256]; void ieee80211_aes_cmac(struct crypto_shash *tfm, const u8 *aad, const u8 *data, size_t data_len, u8 *mic) { SHASH_DESC_ON_STACK(desc, tfm); u8 out[AES_BLOCK_SIZE]; const __le16 *fc; desc->tfm = tfm; crypto_shash_init(desc); crypto_shash_update(desc, aad, AAD_LEN); fc = (const __le16 *)aad; if (ieee80211_is_beacon(*fc)) { /* mask Timestamp field to zero */ crypto_shash_update(desc, zero, 8); crypto_shash_update(desc, data + 8, data_len - 8 - CMAC_TLEN); } else { crypto_shash_update(desc, data, data_len - CMAC_TLEN); } crypto_shash_finup(desc, zero, CMAC_TLEN, out); memcpy(mic, out, CMAC_TLEN); } void ieee80211_aes_cmac_256(struct crypto_shash *tfm, const u8 *aad, const u8 *data, size_t data_len, u8 *mic) { SHASH_DESC_ON_STACK(desc, tfm); const __le16 *fc; desc->tfm = tfm; crypto_shash_init(desc); crypto_shash_update(desc, aad, AAD_LEN); fc = (const __le16 *)aad; if (ieee80211_is_beacon(*fc)) { /* mask Timestamp field to zero */ crypto_shash_update(desc, zero, 8); crypto_shash_update(desc, data + 8, data_len - 8 - CMAC_TLEN_256); } else { crypto_shash_update(desc, data, data_len - CMAC_TLEN_256); } crypto_shash_finup(desc, zero, CMAC_TLEN_256, mic); } struct crypto_shash *ieee80211_aes_cmac_key_setup(const u8 key[], size_t key_len) { struct crypto_shash *tfm; tfm = crypto_alloc_shash("cmac(aes)", 0, 0); if (!IS_ERR(tfm)) { int err = crypto_shash_setkey(tfm, key, key_len); if (err) { crypto_free_shash(tfm); return ERR_PTR(err); } } return tfm; } void ieee80211_aes_cmac_key_free(struct crypto_shash *tfm) { crypto_free_shash(tfm); }
linux-master
net/mac80211/aes_cmac.c
// SPDX-License-Identifier: GPL-2.0 /* * Portions * Copyright (C) 2020-2021 Intel Corporation */ #include <net/mac80211.h> #include <net/rtnetlink.h> #include "ieee80211_i.h" #include "mesh.h" #include "driver-ops.h" #include "led.h" static void ieee80211_sched_scan_cancel(struct ieee80211_local *local) { if (ieee80211_request_sched_scan_stop(local)) return; cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); } int __ieee80211_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata; struct sta_info *sta; if (!local->open_count) goto suspend; local->suspending = true; mb(); /* make suspending visible before any cancellation */ ieee80211_scan_cancel(local); ieee80211_dfs_cac_cancel(local); ieee80211_roc_purge(local, NULL); ieee80211_del_virtual_monitor(local); if (ieee80211_hw_check(hw, AMPDU_AGGREGATION) && !(wowlan && wowlan->any)) { mutex_lock(&local->sta_mtx); list_for_each_entry(sta, &local->sta_list, list) { set_sta_flag(sta, WLAN_STA_BLOCK_BA); ieee80211_sta_tear_down_BA_sessions( sta, AGG_STOP_LOCAL_REQUEST); } mutex_unlock(&local->sta_mtx); } /* keep sched_scan only in case of 'any' trigger */ if (!(wowlan && wowlan->any)) ieee80211_sched_scan_cancel(local); ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_SUSPEND, false); /* flush out all packets */ synchronize_net(); ieee80211_flush_queues(local, NULL, true); local->quiescing = true; /* make quiescing visible to timers everywhere */ mb(); flush_workqueue(local->workqueue); /* Don't try to run timers while suspended. */ del_timer_sync(&local->sta_cleanup); /* * Note that this particular timer doesn't need to be * restarted at resume. */ cancel_work_sync(&local->dynamic_ps_enable_work); del_timer_sync(&local->dynamic_ps_timer); local->wowlan = wowlan; if (local->wowlan) { int err; /* Drivers don't expect to suspend while some operations like * authenticating or associating are in progress. It doesn't * make sense anyway to accept that, since the authentication * or association would never finish since the driver can't do * that on its own. * Thus, clean up in-progress auth/assoc first. */ list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type != NL80211_IFTYPE_STATION) continue; ieee80211_mgd_quiesce(sdata); /* If suspended during TX in progress, and wowlan * is enabled (connection will be active) there * can be a race where the driver is put out * of power-save due to TX and during suspend * dynamic_ps_timer is cancelled and TX packet * is flushed, leaving the driver in ACTIVE even * after resuming until dynamic_ps_timer puts * driver back in DOZE. */ if (sdata->u.mgd.associated && sdata->u.mgd.powersave && !(local->hw.conf.flags & IEEE80211_CONF_PS)) { local->hw.conf.flags |= IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } } err = drv_suspend(local, wowlan); if (err < 0) { local->quiescing = false; local->wowlan = false; if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { mutex_lock(&local->sta_mtx); list_for_each_entry(sta, &local->sta_list, list) { clear_sta_flag(sta, WLAN_STA_BLOCK_BA); } mutex_unlock(&local->sta_mtx); } ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_SUSPEND, false); return err; } else if (err > 0) { WARN_ON(err != 1); /* cfg80211 will call back into mac80211 to disconnect * all interfaces, allow that to proceed properly */ ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_SUSPEND, false); return err; } else { goto suspend; } } /* remove all interfaces that were created in the driver */ list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MONITOR: continue; case NL80211_IFTYPE_STATION: ieee80211_mgd_quiesce(sdata); break; default: break; } flush_delayed_work(&sdata->dec_tailroom_needed_wk); drv_remove_interface(local, sdata); } /* * We disconnected on all interfaces before suspend, all channel * contexts should be released. */ WARN_ON(!list_empty(&local->chanctx_list)); /* stop hardware - this must stop RX */ ieee80211_stop_device(local); suspend: local->suspended = true; /* need suspended to be visible before quiescing is false */ barrier(); local->quiescing = false; local->suspending = false; return 0; } /* * __ieee80211_resume() is a static inline which just calls * ieee80211_reconfig(), which is also needed for hardware * hang/firmware failure/etc. recovery. */ void ieee80211_report_wowlan_wakeup(struct ieee80211_vif *vif, struct cfg80211_wowlan_wakeup *wakeup, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); cfg80211_report_wowlan_wakeup(&sdata->wdev, wakeup, gfp); } EXPORT_SYMBOL(ieee80211_report_wowlan_wakeup);
linux-master
net/mac80211/pm.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010-2013 Felix Fietkau <[email protected]> * Copyright (C) 2019-2022 Intel Corporation */ #include <linux/netdevice.h> #include <linux/types.h> #include <linux/skbuff.h> #include <linux/debugfs.h> #include <linux/random.h> #include <linux/moduleparam.h> #include <linux/ieee80211.h> #include <linux/minmax.h> #include <net/mac80211.h> #include "rate.h" #include "sta_info.h" #include "rc80211_minstrel_ht.h" #define AVG_AMPDU_SIZE 16 #define AVG_PKT_SIZE 1200 /* Number of bits for an average sized packet */ #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3) /* Number of symbols for a packet with (bps) bits per symbol */ #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps)) /* Transmission time (nanoseconds) for a packet containing (syms) symbols */ #define MCS_SYMBOL_TIME(sgi, syms) \ (sgi ? \ ((syms) * 18000 + 4000) / 5 : /* syms * 3.6 us */ \ ((syms) * 1000) << 2 /* syms * 4 us */ \ ) /* Transmit duration for the raw data part of an average sized packet */ #define MCS_DURATION(streams, sgi, bps) \ (MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE) #define BW_20 0 #define BW_40 1 #define BW_80 2 /* * Define group sort order: HT40 -> SGI -> #streams */ #define GROUP_IDX(_streams, _sgi, _ht40) \ MINSTREL_HT_GROUP_0 + \ MINSTREL_MAX_STREAMS * 2 * _ht40 + \ MINSTREL_MAX_STREAMS * _sgi + \ _streams - 1 #define _MAX(a, b) (((a)>(b))?(a):(b)) #define GROUP_SHIFT(duration) \ _MAX(0, 16 - __builtin_clz(duration)) /* MCS rate information for an MCS group */ #define __MCS_GROUP(_streams, _sgi, _ht40, _s) \ [GROUP_IDX(_streams, _sgi, _ht40)] = { \ .streams = _streams, \ .shift = _s, \ .bw = _ht40, \ .flags = \ IEEE80211_TX_RC_MCS | \ (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \ (_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \ .duration = { \ MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s \ } \ } #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40) \ GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26)) #define MCS_GROUP(_streams, _sgi, _ht40) \ __MCS_GROUP(_streams, _sgi, _ht40, \ MCS_GROUP_SHIFT(_streams, _sgi, _ht40)) #define VHT_GROUP_IDX(_streams, _sgi, _bw) \ (MINSTREL_VHT_GROUP_0 + \ MINSTREL_MAX_STREAMS * 2 * (_bw) + \ MINSTREL_MAX_STREAMS * (_sgi) + \ (_streams) - 1) #define BW2VBPS(_bw, r3, r2, r1) \ (_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1) #define __VHT_GROUP(_streams, _sgi, _bw, _s) \ [VHT_GROUP_IDX(_streams, _sgi, _bw)] = { \ .streams = _streams, \ .shift = _s, \ .bw = _bw, \ .flags = \ IEEE80211_TX_RC_VHT_MCS | \ (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \ (_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH : \ _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \ .duration = { \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 117, 54, 26)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 234, 108, 52)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 351, 162, 78)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 468, 216, 104)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 702, 324, 156)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 936, 432, 208)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 1053, 486, 234)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 1170, 540, 260)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 1404, 648, 312)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 1560, 720, 346)) >> _s \ } \ } #define VHT_GROUP_SHIFT(_streams, _sgi, _bw) \ GROUP_SHIFT(MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 117, 54, 26))) #define VHT_GROUP(_streams, _sgi, _bw) \ __VHT_GROUP(_streams, _sgi, _bw, \ VHT_GROUP_SHIFT(_streams, _sgi, _bw)) #define CCK_DURATION(_bitrate, _short) \ (1000 * (10 /* SIFS */ + \ (_short ? 72 + 24 : 144 + 48) + \ (8 * (AVG_PKT_SIZE + 4) * 10) / (_bitrate))) #define CCK_DURATION_LIST(_short, _s) \ CCK_DURATION(10, _short) >> _s, \ CCK_DURATION(20, _short) >> _s, \ CCK_DURATION(55, _short) >> _s, \ CCK_DURATION(110, _short) >> _s #define __CCK_GROUP(_s) \ [MINSTREL_CCK_GROUP] = { \ .streams = 1, \ .flags = 0, \ .shift = _s, \ .duration = { \ CCK_DURATION_LIST(false, _s), \ CCK_DURATION_LIST(true, _s) \ } \ } #define CCK_GROUP_SHIFT \ GROUP_SHIFT(CCK_DURATION(10, false)) #define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT) #define OFDM_DURATION(_bitrate) \ (1000 * (16 /* SIFS + signal ext */ + \ 16 /* T_PREAMBLE */ + \ 4 /* T_SIGNAL */ + \ 4 * (((16 + 80 * (AVG_PKT_SIZE + 4) + 6) / \ ((_bitrate) * 4))))) #define OFDM_DURATION_LIST(_s) \ OFDM_DURATION(60) >> _s, \ OFDM_DURATION(90) >> _s, \ OFDM_DURATION(120) >> _s, \ OFDM_DURATION(180) >> _s, \ OFDM_DURATION(240) >> _s, \ OFDM_DURATION(360) >> _s, \ OFDM_DURATION(480) >> _s, \ OFDM_DURATION(540) >> _s #define __OFDM_GROUP(_s) \ [MINSTREL_OFDM_GROUP] = { \ .streams = 1, \ .flags = 0, \ .shift = _s, \ .duration = { \ OFDM_DURATION_LIST(_s), \ } \ } #define OFDM_GROUP_SHIFT \ GROUP_SHIFT(OFDM_DURATION(60)) #define OFDM_GROUP __OFDM_GROUP(OFDM_GROUP_SHIFT) static bool minstrel_vht_only = true; module_param(minstrel_vht_only, bool, 0644); MODULE_PARM_DESC(minstrel_vht_only, "Use only VHT rates when VHT is supported by sta."); /* * To enable sufficiently targeted rate sampling, MCS rates are divided into * groups, based on the number of streams and flags (HT40, SGI) that they * use. * * Sortorder has to be fixed for GROUP_IDX macro to be applicable: * BW -> SGI -> #streams */ const struct mcs_group minstrel_mcs_groups[] = { MCS_GROUP(1, 0, BW_20), MCS_GROUP(2, 0, BW_20), MCS_GROUP(3, 0, BW_20), MCS_GROUP(4, 0, BW_20), MCS_GROUP(1, 1, BW_20), MCS_GROUP(2, 1, BW_20), MCS_GROUP(3, 1, BW_20), MCS_GROUP(4, 1, BW_20), MCS_GROUP(1, 0, BW_40), MCS_GROUP(2, 0, BW_40), MCS_GROUP(3, 0, BW_40), MCS_GROUP(4, 0, BW_40), MCS_GROUP(1, 1, BW_40), MCS_GROUP(2, 1, BW_40), MCS_GROUP(3, 1, BW_40), MCS_GROUP(4, 1, BW_40), CCK_GROUP, OFDM_GROUP, VHT_GROUP(1, 0, BW_20), VHT_GROUP(2, 0, BW_20), VHT_GROUP(3, 0, BW_20), VHT_GROUP(4, 0, BW_20), VHT_GROUP(1, 1, BW_20), VHT_GROUP(2, 1, BW_20), VHT_GROUP(3, 1, BW_20), VHT_GROUP(4, 1, BW_20), VHT_GROUP(1, 0, BW_40), VHT_GROUP(2, 0, BW_40), VHT_GROUP(3, 0, BW_40), VHT_GROUP(4, 0, BW_40), VHT_GROUP(1, 1, BW_40), VHT_GROUP(2, 1, BW_40), VHT_GROUP(3, 1, BW_40), VHT_GROUP(4, 1, BW_40), VHT_GROUP(1, 0, BW_80), VHT_GROUP(2, 0, BW_80), VHT_GROUP(3, 0, BW_80), VHT_GROUP(4, 0, BW_80), VHT_GROUP(1, 1, BW_80), VHT_GROUP(2, 1, BW_80), VHT_GROUP(3, 1, BW_80), VHT_GROUP(4, 1, BW_80), }; const s16 minstrel_cck_bitrates[4] = { 10, 20, 55, 110 }; const s16 minstrel_ofdm_bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 }; static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly; static const u8 minstrel_sample_seq[] = { MINSTREL_SAMPLE_TYPE_INC, MINSTREL_SAMPLE_TYPE_JUMP, MINSTREL_SAMPLE_TYPE_INC, MINSTREL_SAMPLE_TYPE_JUMP, MINSTREL_SAMPLE_TYPE_INC, MINSTREL_SAMPLE_TYPE_SLOW, }; static void minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi); /* * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer) * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1 * * Returns the valid mcs map for struct minstrel_mcs_group_data.supported */ static u16 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map) { u16 mask = 0; if (bw == BW_20) { if (nss != 3 && nss != 6) mask = BIT(9); } else if (bw == BW_80) { if (nss == 3 || nss == 7) mask = BIT(6); else if (nss == 6) mask = BIT(9); } else { WARN_ON(bw != BW_40); } switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) { case IEEE80211_VHT_MCS_SUPPORT_0_7: mask |= 0x300; break; case IEEE80211_VHT_MCS_SUPPORT_0_8: mask |= 0x200; break; case IEEE80211_VHT_MCS_SUPPORT_0_9: break; default: mask = 0x3ff; } return 0x3ff & ~mask; } static bool minstrel_ht_is_legacy_group(int group) { return group == MINSTREL_CCK_GROUP || group == MINSTREL_OFDM_GROUP; } /* * Look up an MCS group index based on mac80211 rate information */ static int minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate) { return GROUP_IDX((rate->idx / 8) + 1, !!(rate->flags & IEEE80211_TX_RC_SHORT_GI), !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)); } /* * Look up an MCS group index based on new cfg80211 rate_info. */ static int minstrel_ht_ri_get_group_idx(struct rate_info *rate) { return GROUP_IDX((rate->mcs / 8) + 1, !!(rate->flags & RATE_INFO_FLAGS_SHORT_GI), !!(rate->bw & RATE_INFO_BW_40)); } static int minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate) { return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate), !!(rate->flags & IEEE80211_TX_RC_SHORT_GI), !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) + 2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)); } /* * Look up an MCS group index based on new cfg80211 rate_info. */ static int minstrel_vht_ri_get_group_idx(struct rate_info *rate) { return VHT_GROUP_IDX(rate->nss, !!(rate->flags & RATE_INFO_FLAGS_SHORT_GI), !!(rate->bw & RATE_INFO_BW_40) + 2*!!(rate->bw & RATE_INFO_BW_80)); } static struct minstrel_rate_stats * minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_tx_rate *rate) { int group, idx; if (rate->flags & IEEE80211_TX_RC_MCS) { group = minstrel_ht_get_group_idx(rate); idx = rate->idx % 8; goto out; } if (rate->flags & IEEE80211_TX_RC_VHT_MCS) { group = minstrel_vht_get_group_idx(rate); idx = ieee80211_rate_get_vht_mcs(rate); goto out; } group = MINSTREL_CCK_GROUP; for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) { if (!(mi->supported[group] & BIT(idx))) continue; if (rate->idx != mp->cck_rates[idx]) continue; /* short preamble */ if ((mi->supported[group] & BIT(idx + 4)) && (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)) idx += 4; goto out; } group = MINSTREL_OFDM_GROUP; for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++) if (rate->idx == mp->ofdm_rates[mi->band][idx]) goto out; idx = 0; out: return &mi->groups[group].rates[idx]; } /* * Get the minstrel rate statistics for specified STA and rate info. */ static struct minstrel_rate_stats * minstrel_ht_ri_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_rate_status *rate_status) { int group, idx; struct rate_info *rate = &rate_status->rate_idx; if (rate->flags & RATE_INFO_FLAGS_MCS) { group = minstrel_ht_ri_get_group_idx(rate); idx = rate->mcs % 8; goto out; } if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) { group = minstrel_vht_ri_get_group_idx(rate); idx = rate->mcs; goto out; } group = MINSTREL_CCK_GROUP; for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) { if (rate->legacy != minstrel_cck_bitrates[ mp->cck_rates[idx] ]) continue; /* short preamble */ if ((mi->supported[group] & BIT(idx + 4)) && mi->use_short_preamble) idx += 4; goto out; } group = MINSTREL_OFDM_GROUP; for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++) if (rate->legacy == minstrel_ofdm_bitrates[ mp->ofdm_rates[mi->band][idx] ]) goto out; idx = 0; out: return &mi->groups[group].rates[idx]; } static inline struct minstrel_rate_stats * minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index) { return &mi->groups[MI_RATE_GROUP(index)].rates[MI_RATE_IDX(index)]; } static inline int minstrel_get_duration(int index) { const struct mcs_group *group = &minstrel_mcs_groups[MI_RATE_GROUP(index)]; unsigned int duration = group->duration[MI_RATE_IDX(index)]; return duration << group->shift; } static unsigned int minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi) { int duration; if (mi->avg_ampdu_len) return MINSTREL_TRUNC(mi->avg_ampdu_len); if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(mi->max_tp_rate[0]))) return 1; duration = minstrel_get_duration(mi->max_tp_rate[0]); if (duration > 400 * 1000) return 2; if (duration > 250 * 1000) return 4; if (duration > 150 * 1000) return 8; return 16; } /* * Return current throughput based on the average A-MPDU length, taking into * account the expected number of retransmissions and their expected length */ int minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate, int prob_avg) { unsigned int nsecs = 0, overhead = mi->overhead; unsigned int ampdu_len = 1; /* do not account throughput if success prob is below 10% */ if (prob_avg < MINSTREL_FRAC(10, 100)) return 0; if (minstrel_ht_is_legacy_group(group)) overhead = mi->overhead_legacy; else ampdu_len = minstrel_ht_avg_ampdu_len(mi); nsecs = 1000 * overhead / ampdu_len; nsecs += minstrel_mcs_groups[group].duration[rate] << minstrel_mcs_groups[group].shift; /* * For the throughput calculation, limit the probability value to 90% to * account for collision related packet error rate fluctuation * (prob is scaled - see MINSTREL_FRAC above) */ if (prob_avg > MINSTREL_FRAC(90, 100)) prob_avg = MINSTREL_FRAC(90, 100); return MINSTREL_TRUNC(100 * ((prob_avg * 1000000) / nsecs)); } /* * Find & sort topmost throughput rates * * If multiple rates provide equal throughput the sorting is based on their * current success probability. Higher success probability is preferred among * MCS groups, CCK rates do not provide aggregation and are therefore at last. */ static void minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index, u16 *tp_list) { int cur_group, cur_idx, cur_tp_avg, cur_prob; int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob; int j = MAX_THR_RATES; cur_group = MI_RATE_GROUP(index); cur_idx = MI_RATE_IDX(index); cur_prob = mi->groups[cur_group].rates[cur_idx].prob_avg; cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob); do { tmp_group = MI_RATE_GROUP(tp_list[j - 1]); tmp_idx = MI_RATE_IDX(tp_list[j - 1]); tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); if (cur_tp_avg < tmp_tp_avg || (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob)) break; j--; } while (j > 0); if (j < MAX_THR_RATES - 1) { memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) * (MAX_THR_RATES - (j + 1)))); } if (j < MAX_THR_RATES) tp_list[j] = index; } /* * Find and set the topmost probability rate per sta and per group */ static void minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 *dest, u16 index) { struct minstrel_mcs_group_data *mg; struct minstrel_rate_stats *mrs; int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob; int max_tp_group, max_tp_idx, max_tp_prob; int cur_tp_avg, cur_group, cur_idx; int max_gpr_group, max_gpr_idx; int max_gpr_tp_avg, max_gpr_prob; cur_group = MI_RATE_GROUP(index); cur_idx = MI_RATE_IDX(index); mg = &mi->groups[cur_group]; mrs = &mg->rates[cur_idx]; tmp_group = MI_RATE_GROUP(*dest); tmp_idx = MI_RATE_IDX(*dest); tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); /* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */ max_tp_group = MI_RATE_GROUP(mi->max_tp_rate[0]); max_tp_idx = MI_RATE_IDX(mi->max_tp_rate[0]); max_tp_prob = mi->groups[max_tp_group].rates[max_tp_idx].prob_avg; if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index)) && !minstrel_ht_is_legacy_group(max_tp_group)) return; /* skip rates faster than max tp rate with lower prob */ if (minstrel_get_duration(mi->max_tp_rate[0]) > minstrel_get_duration(index) && mrs->prob_avg < max_tp_prob) return; max_gpr_group = MI_RATE_GROUP(mg->max_group_prob_rate); max_gpr_idx = MI_RATE_IDX(mg->max_group_prob_rate); max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_avg; if (mrs->prob_avg > MINSTREL_FRAC(75, 100)) { cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, mrs->prob_avg); if (cur_tp_avg > tmp_tp_avg) *dest = index; max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group, max_gpr_idx, max_gpr_prob); if (cur_tp_avg > max_gpr_tp_avg) mg->max_group_prob_rate = index; } else { if (mrs->prob_avg > tmp_prob) *dest = index; if (mrs->prob_avg > max_gpr_prob) mg->max_group_prob_rate = index; } } /* * Assign new rate set per sta and use CCK rates only if the fastest * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted * rate sets where MCS and CCK rates are mixed, because CCK rates can * not use aggregation. */ static void minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi, u16 tmp_mcs_tp_rate[MAX_THR_RATES], u16 tmp_legacy_tp_rate[MAX_THR_RATES]) { unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob; int i; tmp_group = MI_RATE_GROUP(tmp_legacy_tp_rate[0]); tmp_idx = MI_RATE_IDX(tmp_legacy_tp_rate[0]); tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); tmp_group = MI_RATE_GROUP(tmp_mcs_tp_rate[0]); tmp_idx = MI_RATE_IDX(tmp_mcs_tp_rate[0]); tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); if (tmp_cck_tp > tmp_mcs_tp) { for(i = 0; i < MAX_THR_RATES; i++) { minstrel_ht_sort_best_tp_rates(mi, tmp_legacy_tp_rate[i], tmp_mcs_tp_rate); } } } /* * Try to increase robustness of max_prob rate by decrease number of * streams if possible. */ static inline void minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi) { struct minstrel_mcs_group_data *mg; int tmp_max_streams, group, tmp_idx, tmp_prob; int tmp_tp = 0; if (!mi->sta->deflink.ht_cap.ht_supported) return; group = MI_RATE_GROUP(mi->max_tp_rate[0]); tmp_max_streams = minstrel_mcs_groups[group].streams; for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { mg = &mi->groups[group]; if (!mi->supported[group] || group == MINSTREL_CCK_GROUP) continue; tmp_idx = MI_RATE_IDX(mg->max_group_prob_rate); tmp_prob = mi->groups[group].rates[tmp_idx].prob_avg; if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) && (minstrel_mcs_groups[group].streams < tmp_max_streams)) { mi->max_prob_rate = mg->max_group_prob_rate; tmp_tp = minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob); } } } static u16 __minstrel_ht_get_sample_rate(struct minstrel_ht_sta *mi, enum minstrel_sample_type type) { u16 *rates = mi->sample[type].sample_rates; u16 cur; int i; for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) { if (!rates[i]) continue; cur = rates[i]; rates[i] = 0; return cur; } return 0; } static inline int minstrel_ewma(int old, int new, int weight) { int diff, incr; diff = new - old; incr = (EWMA_DIV - weight) * diff / EWMA_DIV; return old + incr; } static inline int minstrel_filter_avg_add(u16 *prev_1, u16 *prev_2, s32 in) { s32 out_1 = *prev_1; s32 out_2 = *prev_2; s32 val; if (!in) in += 1; if (!out_1) { val = out_1 = in; goto out; } val = MINSTREL_AVG_COEFF1 * in; val += MINSTREL_AVG_COEFF2 * out_1; val += MINSTREL_AVG_COEFF3 * out_2; val >>= MINSTREL_SCALE; if (val > 1 << MINSTREL_SCALE) val = 1 << MINSTREL_SCALE; if (val < 0) val = 1; out: *prev_2 = out_1; *prev_1 = val; return val; } /* * Recalculate statistics and counters of a given rate */ static void minstrel_ht_calc_rate_stats(struct minstrel_priv *mp, struct minstrel_rate_stats *mrs) { unsigned int cur_prob; if (unlikely(mrs->attempts > 0)) { cur_prob = MINSTREL_FRAC(mrs->success, mrs->attempts); minstrel_filter_avg_add(&mrs->prob_avg, &mrs->prob_avg_1, cur_prob); mrs->att_hist += mrs->attempts; mrs->succ_hist += mrs->success; } mrs->last_success = mrs->success; mrs->last_attempts = mrs->attempts; mrs->success = 0; mrs->attempts = 0; } static bool minstrel_ht_find_sample_rate(struct minstrel_ht_sta *mi, int type, int idx) { int i; for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) { u16 cur = mi->sample[type].sample_rates[i]; if (cur == idx) return true; if (!cur) break; } return false; } static int minstrel_ht_move_sample_rates(struct minstrel_ht_sta *mi, int type, u32 fast_rate_dur, u32 slow_rate_dur) { u16 *rates = mi->sample[type].sample_rates; int i, j; for (i = 0, j = 0; i < MINSTREL_SAMPLE_RATES; i++) { u32 duration; bool valid = false; u16 cur; cur = rates[i]; if (!cur) continue; duration = minstrel_get_duration(cur); switch (type) { case MINSTREL_SAMPLE_TYPE_SLOW: valid = duration > fast_rate_dur && duration < slow_rate_dur; break; case MINSTREL_SAMPLE_TYPE_INC: case MINSTREL_SAMPLE_TYPE_JUMP: valid = duration < fast_rate_dur; break; default: valid = false; break; } if (!valid) { rates[i] = 0; continue; } if (i == j) continue; rates[j++] = cur; rates[i] = 0; } return j; } static int minstrel_ht_group_min_rate_offset(struct minstrel_ht_sta *mi, int group, u32 max_duration) { u16 supported = mi->supported[group]; int i; for (i = 0; i < MCS_GROUP_RATES && supported; i++, supported >>= 1) { if (!(supported & BIT(0))) continue; if (minstrel_get_duration(MI_RATE(group, i)) >= max_duration) continue; return i; } return -1; } /* * Incremental update rates: * Flip through groups and pick the first group rate that is faster than the * highest currently selected rate */ static u16 minstrel_ht_next_inc_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur) { u8 type = MINSTREL_SAMPLE_TYPE_INC; int i, index = 0; u8 group; group = mi->sample[type].sample_group; for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) { group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups); index = minstrel_ht_group_min_rate_offset(mi, group, fast_rate_dur); if (index < 0) continue; index = MI_RATE(group, index & 0xf); if (!minstrel_ht_find_sample_rate(mi, type, index)) goto out; } index = 0; out: mi->sample[type].sample_group = group; return index; } static int minstrel_ht_next_group_sample_rate(struct minstrel_ht_sta *mi, int group, u16 supported, int offset) { struct minstrel_mcs_group_data *mg = &mi->groups[group]; u16 idx; int i; for (i = 0; i < MCS_GROUP_RATES; i++) { idx = sample_table[mg->column][mg->index]; if (++mg->index >= MCS_GROUP_RATES) { mg->index = 0; if (++mg->column >= ARRAY_SIZE(sample_table)) mg->column = 0; } if (idx < offset) continue; if (!(supported & BIT(idx))) continue; return MI_RATE(group, idx); } return -1; } /* * Jump rates: * Sample random rates, use those that are faster than the highest * currently selected rate. Rates between the fastest and the slowest * get sorted into the slow sample bucket, but only if it has room */ static u16 minstrel_ht_next_jump_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur, u32 slow_rate_dur, int *slow_rate_ofs) { struct minstrel_rate_stats *mrs; u32 max_duration = slow_rate_dur; int i, index, offset; u16 *slow_rates; u16 supported; u32 duration; u8 group; if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES) max_duration = fast_rate_dur; slow_rates = mi->sample[MINSTREL_SAMPLE_TYPE_SLOW].sample_rates; group = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group; for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) { u8 type; group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups); supported = mi->supported[group]; if (!supported) continue; offset = minstrel_ht_group_min_rate_offset(mi, group, max_duration); if (offset < 0) continue; index = minstrel_ht_next_group_sample_rate(mi, group, supported, offset); if (index < 0) continue; duration = minstrel_get_duration(index); if (duration < fast_rate_dur) type = MINSTREL_SAMPLE_TYPE_JUMP; else type = MINSTREL_SAMPLE_TYPE_SLOW; if (minstrel_ht_find_sample_rate(mi, type, index)) continue; if (type == MINSTREL_SAMPLE_TYPE_JUMP) goto found; if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES) continue; if (duration >= slow_rate_dur) continue; /* skip slow rates with high success probability */ mrs = minstrel_get_ratestats(mi, index); if (mrs->prob_avg > MINSTREL_FRAC(95, 100)) continue; slow_rates[(*slow_rate_ofs)++] = index; if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES) max_duration = fast_rate_dur; } index = 0; found: mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group = group; return index; } static void minstrel_ht_refill_sample_rates(struct minstrel_ht_sta *mi) { u32 prob_dur = minstrel_get_duration(mi->max_prob_rate); u32 tp_dur = minstrel_get_duration(mi->max_tp_rate[0]); u32 tp2_dur = minstrel_get_duration(mi->max_tp_rate[1]); u32 fast_rate_dur = min(min(tp_dur, tp2_dur), prob_dur); u32 slow_rate_dur = max(max(tp_dur, tp2_dur), prob_dur); u16 *rates; int i, j; rates = mi->sample[MINSTREL_SAMPLE_TYPE_INC].sample_rates; i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_INC, fast_rate_dur, slow_rate_dur); while (i < MINSTREL_SAMPLE_RATES) { rates[i] = minstrel_ht_next_inc_rate(mi, tp_dur); if (!rates[i]) break; i++; } rates = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_rates; i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_JUMP, fast_rate_dur, slow_rate_dur); j = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_SLOW, fast_rate_dur, slow_rate_dur); while (i < MINSTREL_SAMPLE_RATES) { rates[i] = minstrel_ht_next_jump_rate(mi, fast_rate_dur, slow_rate_dur, &j); if (!rates[i]) break; i++; } for (i = 0; i < ARRAY_SIZE(mi->sample); i++) memcpy(mi->sample[i].cur_sample_rates, mi->sample[i].sample_rates, sizeof(mi->sample[i].cur_sample_rates)); } /* * Update rate statistics and select new primary rates * * Rules for rate selection: * - max_prob_rate must use only one stream, as a tradeoff between delivery * probability and throughput during strong fluctuations * - as long as the max prob rate has a probability of more than 75%, pick * higher throughput rates, even if the probablity is a bit lower */ static void minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) { struct minstrel_mcs_group_data *mg; struct minstrel_rate_stats *mrs; int group, i, j, cur_prob; u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES]; u16 tmp_legacy_tp_rate[MAX_THR_RATES], tmp_max_prob_rate; u16 index; bool ht_supported = mi->sta->deflink.ht_cap.ht_supported; if (mi->ampdu_packets > 0) { if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN)) mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len, MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL); else mi->avg_ampdu_len = 0; mi->ampdu_len = 0; mi->ampdu_packets = 0; } if (mi->supported[MINSTREL_CCK_GROUP]) group = MINSTREL_CCK_GROUP; else if (mi->supported[MINSTREL_OFDM_GROUP]) group = MINSTREL_OFDM_GROUP; else group = 0; index = MI_RATE(group, 0); for (j = 0; j < ARRAY_SIZE(tmp_legacy_tp_rate); j++) tmp_legacy_tp_rate[j] = index; if (mi->supported[MINSTREL_VHT_GROUP_0]) group = MINSTREL_VHT_GROUP_0; else if (ht_supported) group = MINSTREL_HT_GROUP_0; else if (mi->supported[MINSTREL_CCK_GROUP]) group = MINSTREL_CCK_GROUP; else group = MINSTREL_OFDM_GROUP; index = MI_RATE(group, 0); tmp_max_prob_rate = index; for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++) tmp_mcs_tp_rate[j] = index; /* Find best rate sets within all MCS groups*/ for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { u16 *tp_rate = tmp_mcs_tp_rate; u16 last_prob = 0; mg = &mi->groups[group]; if (!mi->supported[group]) continue; /* (re)Initialize group rate indexes */ for(j = 0; j < MAX_THR_RATES; j++) tmp_group_tp_rate[j] = MI_RATE(group, 0); if (group == MINSTREL_CCK_GROUP && ht_supported) tp_rate = tmp_legacy_tp_rate; for (i = MCS_GROUP_RATES - 1; i >= 0; i--) { if (!(mi->supported[group] & BIT(i))) continue; index = MI_RATE(group, i); mrs = &mg->rates[i]; mrs->retry_updated = false; minstrel_ht_calc_rate_stats(mp, mrs); if (mrs->att_hist) last_prob = max(last_prob, mrs->prob_avg); else mrs->prob_avg = max(last_prob, mrs->prob_avg); cur_prob = mrs->prob_avg; if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0) continue; /* Find max throughput rate set */ minstrel_ht_sort_best_tp_rates(mi, index, tp_rate); /* Find max throughput rate set within a group */ minstrel_ht_sort_best_tp_rates(mi, index, tmp_group_tp_rate); } memcpy(mg->max_group_tp_rate, tmp_group_tp_rate, sizeof(mg->max_group_tp_rate)); } /* Assign new rate set per sta */ minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_legacy_tp_rate); memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate)); for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { if (!mi->supported[group]) continue; mg = &mi->groups[group]; mg->max_group_prob_rate = MI_RATE(group, 0); for (i = 0; i < MCS_GROUP_RATES; i++) { if (!(mi->supported[group] & BIT(i))) continue; index = MI_RATE(group, i); /* Find max probability rate per group and global */ minstrel_ht_set_best_prob_rate(mi, &tmp_max_prob_rate, index); } } mi->max_prob_rate = tmp_max_prob_rate; /* Try to increase robustness of max_prob_rate*/ minstrel_ht_prob_rate_reduce_streams(mi); minstrel_ht_refill_sample_rates(mi); #ifdef CONFIG_MAC80211_DEBUGFS /* use fixed index if set */ if (mp->fixed_rate_idx != -1) { for (i = 0; i < 4; i++) mi->max_tp_rate[i] = mp->fixed_rate_idx; mi->max_prob_rate = mp->fixed_rate_idx; } #endif /* Reset update timer */ mi->last_stats_update = jiffies; mi->sample_time = jiffies; } static bool minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_tx_rate *rate) { int i; if (rate->idx < 0) return false; if (!rate->count) return false; if (rate->flags & IEEE80211_TX_RC_MCS || rate->flags & IEEE80211_TX_RC_VHT_MCS) return true; for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++) if (rate->idx == mp->cck_rates[i]) return true; for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) if (rate->idx == mp->ofdm_rates[mi->band][i]) return true; return false; } /* * Check whether rate_status contains valid information. */ static bool minstrel_ht_ri_txstat_valid(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_rate_status *rate_status) { int i; if (!rate_status) return false; if (!rate_status->try_count) return false; if (rate_status->rate_idx.flags & RATE_INFO_FLAGS_MCS || rate_status->rate_idx.flags & RATE_INFO_FLAGS_VHT_MCS) return true; for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++) { if (rate_status->rate_idx.legacy == minstrel_cck_bitrates[ mp->cck_rates[i] ]) return true; } for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates); i++) { if (rate_status->rate_idx.legacy == minstrel_ofdm_bitrates[ mp->ofdm_rates[mi->band][i] ]) return true; } return false; } static void minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary) { int group, orig_group; orig_group = group = MI_RATE_GROUP(*idx); while (group > 0) { group--; if (!mi->supported[group]) continue; if (minstrel_mcs_groups[group].streams > minstrel_mcs_groups[orig_group].streams) continue; if (primary) *idx = mi->groups[group].max_group_tp_rate[0]; else *idx = mi->groups[group].max_group_tp_rate[1]; break; } } static void minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband, void *priv_sta, struct ieee80211_tx_status *st) { struct ieee80211_tx_info *info = st->info; struct minstrel_ht_sta *mi = priv_sta; struct ieee80211_tx_rate *ar = info->status.rates; struct minstrel_rate_stats *rate, *rate2; struct minstrel_priv *mp = priv; u32 update_interval = mp->update_interval; bool last, update = false; int i; /* Ignore packet that was sent with noAck flag */ if (info->flags & IEEE80211_TX_CTL_NO_ACK) return; /* This packet was aggregated but doesn't carry status info */ if ((info->flags & IEEE80211_TX_CTL_AMPDU) && !(info->flags & IEEE80211_TX_STAT_AMPDU)) return; if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) { info->status.ampdu_ack_len = (info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0); info->status.ampdu_len = 1; } /* wraparound */ if (mi->total_packets >= ~0 - info->status.ampdu_len) { mi->total_packets = 0; mi->sample_packets = 0; } mi->total_packets += info->status.ampdu_len; if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) mi->sample_packets += info->status.ampdu_len; mi->ampdu_packets++; mi->ampdu_len += info->status.ampdu_len; if (st->rates && st->n_rates) { last = !minstrel_ht_ri_txstat_valid(mp, mi, &(st->rates[0])); for (i = 0; !last; i++) { last = (i == st->n_rates - 1) || !minstrel_ht_ri_txstat_valid(mp, mi, &(st->rates[i + 1])); rate = minstrel_ht_ri_get_stats(mp, mi, &(st->rates[i])); if (last) rate->success += info->status.ampdu_ack_len; rate->attempts += st->rates[i].try_count * info->status.ampdu_len; } } else { last = !minstrel_ht_txstat_valid(mp, mi, &ar[0]); for (i = 0; !last; i++) { last = (i == IEEE80211_TX_MAX_RATES - 1) || !minstrel_ht_txstat_valid(mp, mi, &ar[i + 1]); rate = minstrel_ht_get_stats(mp, mi, &ar[i]); if (last) rate->success += info->status.ampdu_ack_len; rate->attempts += ar[i].count * info->status.ampdu_len; } } if (mp->hw->max_rates > 1) { /* * check for sudden death of spatial multiplexing, * downgrade to a lower number of streams if necessary. */ rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]); if (rate->attempts > 30 && rate->success < rate->attempts / 4) { minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true); update = true; } rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]); if (rate2->attempts > 30 && rate2->success < rate2->attempts / 4) { minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false); update = true; } } if (time_after(jiffies, mi->last_stats_update + update_interval)) { update = true; minstrel_ht_update_stats(mp, mi); } if (update) minstrel_ht_update_rates(mp, mi); } static void minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, int index) { struct minstrel_rate_stats *mrs; unsigned int tx_time, tx_time_rtscts, tx_time_data; unsigned int cw = mp->cw_min; unsigned int ctime = 0; unsigned int t_slot = 9; /* FIXME */ unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi); unsigned int overhead = 0, overhead_rtscts = 0; mrs = minstrel_get_ratestats(mi, index); if (mrs->prob_avg < MINSTREL_FRAC(1, 10)) { mrs->retry_count = 1; mrs->retry_count_rtscts = 1; return; } mrs->retry_count = 2; mrs->retry_count_rtscts = 2; mrs->retry_updated = true; tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000; /* Contention time for first 2 tries */ ctime = (t_slot * cw) >> 1; cw = min((cw << 1) | 1, mp->cw_max); ctime += (t_slot * cw) >> 1; cw = min((cw << 1) | 1, mp->cw_max); if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index))) { overhead = mi->overhead_legacy; overhead_rtscts = mi->overhead_legacy_rtscts; } else { overhead = mi->overhead; overhead_rtscts = mi->overhead_rtscts; } /* Total TX time for data and Contention after first 2 tries */ tx_time = ctime + 2 * (overhead + tx_time_data); tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data); /* See how many more tries we can fit inside segment size */ do { /* Contention time for this try */ ctime = (t_slot * cw) >> 1; cw = min((cw << 1) | 1, mp->cw_max); /* Total TX time after this try */ tx_time += ctime + overhead + tx_time_data; tx_time_rtscts += ctime + overhead_rtscts + tx_time_data; if (tx_time_rtscts < mp->segment_size) mrs->retry_count_rtscts++; } while ((tx_time < mp->segment_size) && (++mrs->retry_count < mp->max_retry)); } static void minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_sta_rates *ratetbl, int offset, int index) { int group_idx = MI_RATE_GROUP(index); const struct mcs_group *group = &minstrel_mcs_groups[group_idx]; struct minstrel_rate_stats *mrs; u8 idx; u16 flags = group->flags; mrs = minstrel_get_ratestats(mi, index); if (!mrs->retry_updated) minstrel_calc_retransmit(mp, mi, index); if (mrs->prob_avg < MINSTREL_FRAC(20, 100) || !mrs->retry_count) { ratetbl->rate[offset].count = 2; ratetbl->rate[offset].count_rts = 2; ratetbl->rate[offset].count_cts = 2; } else { ratetbl->rate[offset].count = mrs->retry_count; ratetbl->rate[offset].count_cts = mrs->retry_count; ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts; } index = MI_RATE_IDX(index); if (group_idx == MINSTREL_CCK_GROUP) idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)]; else if (group_idx == MINSTREL_OFDM_GROUP) idx = mp->ofdm_rates[mi->band][index % ARRAY_SIZE(mp->ofdm_rates[0])]; else if (flags & IEEE80211_TX_RC_VHT_MCS) idx = ((group->streams - 1) << 4) | (index & 0xF); else idx = index + (group->streams - 1) * 8; /* enable RTS/CTS if needed: * - if station is in dynamic SMPS (and streams > 1) * - for fallback rates, to increase chances of getting through */ if (offset > 0 || (mi->sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC && group->streams > 1)) { ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts; flags |= IEEE80211_TX_RC_USE_RTS_CTS; } ratetbl->rate[offset].idx = idx; ratetbl->rate[offset].flags = flags; } static inline int minstrel_ht_get_prob_avg(struct minstrel_ht_sta *mi, int rate) { int group = MI_RATE_GROUP(rate); rate = MI_RATE_IDX(rate); return mi->groups[group].rates[rate].prob_avg; } static int minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi) { int group = MI_RATE_GROUP(mi->max_prob_rate); const struct mcs_group *g = &minstrel_mcs_groups[group]; int rate = MI_RATE_IDX(mi->max_prob_rate); unsigned int duration; /* Disable A-MSDU if max_prob_rate is bad */ if (mi->groups[group].rates[rate].prob_avg < MINSTREL_FRAC(50, 100)) return 1; duration = g->duration[rate]; duration <<= g->shift; /* If the rate is slower than single-stream MCS1, make A-MSDU limit small */ if (duration > MCS_DURATION(1, 0, 52)) return 500; /* * If the rate is slower than single-stream MCS4, limit A-MSDU to usual * data packet size */ if (duration > MCS_DURATION(1, 0, 104)) return 1600; /* * If the rate is slower than single-stream MCS7, or if the max throughput * rate success probability is less than 75%, limit A-MSDU to twice the usual * data packet size */ if (duration > MCS_DURATION(1, 0, 260) || (minstrel_ht_get_prob_avg(mi, mi->max_tp_rate[0]) < MINSTREL_FRAC(75, 100))) return 3200; /* * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes. * Since aggregation sessions are started/stopped without txq flush, use * the limit here to avoid the complexity of having to de-aggregate * packets in the queue. */ if (!mi->sta->deflink.vht_cap.vht_supported) return IEEE80211_MAX_MPDU_LEN_HT_BA; /* unlimited */ return 0; } static void minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) { struct ieee80211_sta_rates *rates; int i = 0; int max_rates = min_t(int, mp->hw->max_rates, IEEE80211_TX_RATE_TABLE_SIZE); rates = kzalloc(sizeof(*rates), GFP_ATOMIC); if (!rates) return; /* Start with max_tp_rate[0] */ minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]); /* Fill up remaining, keep one entry for max_probe_rate */ for (; i < (max_rates - 1); i++) minstrel_ht_set_rate(mp, mi, rates, i, mi->max_tp_rate[i]); if (i < max_rates) minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate); if (i < IEEE80211_TX_RATE_TABLE_SIZE) rates->rate[i].idx = -1; mi->sta->deflink.agg.max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi); ieee80211_sta_recalc_aggregates(mi->sta); rate_control_set_rates(mp->hw, mi->sta, rates); } static u16 minstrel_ht_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) { u8 seq; if (mp->hw->max_rates > 1) { seq = mi->sample_seq; mi->sample_seq = (seq + 1) % ARRAY_SIZE(minstrel_sample_seq); seq = minstrel_sample_seq[seq]; } else { seq = MINSTREL_SAMPLE_TYPE_INC; } return __minstrel_ht_get_sample_rate(mi, seq); } static void minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta, struct ieee80211_tx_rate_control *txrc) { const struct mcs_group *sample_group; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb); struct ieee80211_tx_rate *rate = &info->status.rates[0]; struct minstrel_ht_sta *mi = priv_sta; struct minstrel_priv *mp = priv; u16 sample_idx; info->flags |= mi->tx_flags; #ifdef CONFIG_MAC80211_DEBUGFS if (mp->fixed_rate_idx != -1) return; #endif /* Don't use EAPOL frames for sampling on non-mrr hw */ if (mp->hw->max_rates == 1 && (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO)) return; if (time_is_after_jiffies(mi->sample_time)) return; mi->sample_time = jiffies + MINSTREL_SAMPLE_INTERVAL; sample_idx = minstrel_ht_get_sample_rate(mp, mi); if (!sample_idx) return; sample_group = &minstrel_mcs_groups[MI_RATE_GROUP(sample_idx)]; sample_idx = MI_RATE_IDX(sample_idx); if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] && (sample_idx >= 4) != txrc->short_preamble) return; info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; rate->count = 1; if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) { int idx = sample_idx % ARRAY_SIZE(mp->cck_rates); rate->idx = mp->cck_rates[idx]; } else if (sample_group == &minstrel_mcs_groups[MINSTREL_OFDM_GROUP]) { int idx = sample_idx % ARRAY_SIZE(mp->ofdm_rates[0]); rate->idx = mp->ofdm_rates[mi->band][idx]; } else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) { ieee80211_rate_set_vht(rate, MI_RATE_IDX(sample_idx), sample_group->streams); } else { rate->idx = sample_idx + (sample_group->streams - 1) * 8; } rate->flags = sample_group->flags; } static void minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta) { int i; if (sband->band != NL80211_BAND_2GHZ) return; if (sta->deflink.ht_cap.ht_supported && !ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES)) return; for (i = 0; i < 4; i++) { if (mp->cck_rates[i] == 0xff || !rate_supported(sta, sband->band, mp->cck_rates[i])) continue; mi->supported[MINSTREL_CCK_GROUP] |= BIT(i); if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE) mi->supported[MINSTREL_CCK_GROUP] |= BIT(i + 4); } } static void minstrel_ht_update_ofdm(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta) { const u8 *rates; int i; if (sta->deflink.ht_cap.ht_supported) return; rates = mp->ofdm_rates[sband->band]; for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) { if (rates[i] == 0xff || !rate_supported(sta, sband->band, rates[i])) continue; mi->supported[MINSTREL_OFDM_GROUP] |= BIT(i); } } static void minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *priv_sta) { struct minstrel_priv *mp = priv; struct minstrel_ht_sta *mi = priv_sta; struct ieee80211_mcs_info *mcs = &sta->deflink.ht_cap.mcs; u16 ht_cap = sta->deflink.ht_cap.cap; struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap; const struct ieee80211_rate *ctl_rate; struct sta_info *sta_info; bool ldpc, erp; int use_vht; int ack_dur; int stbc; int i; BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB); if (vht_cap->vht_supported) use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0); else use_vht = 0; memset(mi, 0, sizeof(*mi)); mi->sta = sta; mi->band = sband->band; mi->last_stats_update = jiffies; ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0); mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0); mi->overhead += ack_dur; mi->overhead_rtscts = mi->overhead + 2 * ack_dur; ctl_rate = &sband->bitrates[rate_lowest_index(sband, sta)]; erp = ctl_rate->flags & IEEE80211_RATE_ERP_G; ack_dur = ieee80211_frame_duration(sband->band, 10, ctl_rate->bitrate, erp, 1, ieee80211_chandef_get_shift(chandef)); mi->overhead_legacy = ack_dur; mi->overhead_legacy_rtscts = mi->overhead_legacy + 2 * ack_dur; mi->avg_ampdu_len = MINSTREL_FRAC(1, 1); if (!use_vht) { stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >> IEEE80211_HT_CAP_RX_STBC_SHIFT; ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING; } else { stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >> IEEE80211_VHT_CAP_RXSTBC_SHIFT; ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC; } mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT; if (ldpc) mi->tx_flags |= IEEE80211_TX_CTL_LDPC; for (i = 0; i < ARRAY_SIZE(mi->groups); i++) { u32 gflags = minstrel_mcs_groups[i].flags; int bw, nss; mi->supported[i] = 0; if (minstrel_ht_is_legacy_group(i)) continue; if (gflags & IEEE80211_TX_RC_SHORT_GI) { if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) { if (!(ht_cap & IEEE80211_HT_CAP_SGI_40)) continue; } else { if (!(ht_cap & IEEE80211_HT_CAP_SGI_20)) continue; } } if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH && sta->deflink.bandwidth < IEEE80211_STA_RX_BW_40) continue; nss = minstrel_mcs_groups[i].streams; /* Mark MCS > 7 as unsupported if STA is in static SMPS mode */ if (sta->deflink.smps_mode == IEEE80211_SMPS_STATIC && nss > 1) continue; /* HT rate */ if (gflags & IEEE80211_TX_RC_MCS) { if (use_vht && minstrel_vht_only) continue; mi->supported[i] = mcs->rx_mask[nss - 1]; continue; } /* VHT rate */ if (!vht_cap->vht_supported || WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) || WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH)) continue; if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) { if (sta->deflink.bandwidth < IEEE80211_STA_RX_BW_80 || ((gflags & IEEE80211_TX_RC_SHORT_GI) && !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) { continue; } } if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) bw = BW_40; else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) bw = BW_80; else bw = BW_20; mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss, vht_cap->vht_mcs.tx_mcs_map); } sta_info = container_of(sta, struct sta_info, sta); mi->use_short_preamble = test_sta_flag(sta_info, WLAN_STA_SHORT_PREAMBLE) && sta_info->sdata->vif.bss_conf.use_short_preamble; minstrel_ht_update_cck(mp, mi, sband, sta); minstrel_ht_update_ofdm(mp, mi, sband, sta); /* create an initial rate table with the lowest supported rates */ minstrel_ht_update_stats(mp, mi); minstrel_ht_update_rates(mp, mi); } static void minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *priv_sta) { minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta); } static void minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *priv_sta, u32 changed) { minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta); } static void * minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) { struct ieee80211_supported_band *sband; struct minstrel_ht_sta *mi; struct minstrel_priv *mp = priv; struct ieee80211_hw *hw = mp->hw; int max_rates = 0; int i; for (i = 0; i < NUM_NL80211_BANDS; i++) { sband = hw->wiphy->bands[i]; if (sband && sband->n_bitrates > max_rates) max_rates = sband->n_bitrates; } return kzalloc(sizeof(*mi), gfp); } static void minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta) { kfree(priv_sta); } static void minstrel_ht_fill_rate_array(u8 *dest, struct ieee80211_supported_band *sband, const s16 *bitrates, int n_rates, u32 rate_flags) { int i, j; for (i = 0; i < sband->n_bitrates; i++) { struct ieee80211_rate *rate = &sband->bitrates[i]; if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; for (j = 0; j < n_rates; j++) { if (rate->bitrate != bitrates[j]) continue; dest[j] = i; break; } } } static void minstrel_ht_init_cck_rates(struct minstrel_priv *mp) { static const s16 bitrates[4] = { 10, 20, 55, 110 }; struct ieee80211_supported_band *sband; u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef); memset(mp->cck_rates, 0xff, sizeof(mp->cck_rates)); sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ]; if (!sband) return; BUILD_BUG_ON(ARRAY_SIZE(mp->cck_rates) != ARRAY_SIZE(bitrates)); minstrel_ht_fill_rate_array(mp->cck_rates, sband, minstrel_cck_bitrates, ARRAY_SIZE(minstrel_cck_bitrates), rate_flags); } static void minstrel_ht_init_ofdm_rates(struct minstrel_priv *mp, enum nl80211_band band) { static const s16 bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 }; struct ieee80211_supported_band *sband; u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef); memset(mp->ofdm_rates[band], 0xff, sizeof(mp->ofdm_rates[band])); sband = mp->hw->wiphy->bands[band]; if (!sband) return; BUILD_BUG_ON(ARRAY_SIZE(mp->ofdm_rates[band]) != ARRAY_SIZE(bitrates)); minstrel_ht_fill_rate_array(mp->ofdm_rates[band], sband, minstrel_ofdm_bitrates, ARRAY_SIZE(minstrel_ofdm_bitrates), rate_flags); } static void * minstrel_ht_alloc(struct ieee80211_hw *hw) { struct minstrel_priv *mp; int i; mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC); if (!mp) return NULL; /* contention window settings * Just an approximation. Using the per-queue values would complicate * the calculations and is probably unnecessary */ mp->cw_min = 15; mp->cw_max = 1023; /* maximum time that the hw is allowed to stay in one MRR segment */ mp->segment_size = 6000; if (hw->max_rate_tries > 0) mp->max_retry = hw->max_rate_tries; else /* safe default, does not necessarily have to match hw properties */ mp->max_retry = 7; mp->hw = hw; mp->update_interval = HZ / 20; minstrel_ht_init_cck_rates(mp); for (i = 0; i < ARRAY_SIZE(mp->hw->wiphy->bands); i++) minstrel_ht_init_ofdm_rates(mp, i); return mp; } #ifdef CONFIG_MAC80211_DEBUGFS static void minstrel_ht_add_debugfs(struct ieee80211_hw *hw, void *priv, struct dentry *debugfsdir) { struct minstrel_priv *mp = priv; mp->fixed_rate_idx = (u32) -1; debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir, &mp->fixed_rate_idx); } #endif static void minstrel_ht_free(void *priv) { kfree(priv); } static u32 minstrel_ht_get_expected_throughput(void *priv_sta) { struct minstrel_ht_sta *mi = priv_sta; int i, j, prob, tp_avg; i = MI_RATE_GROUP(mi->max_tp_rate[0]); j = MI_RATE_IDX(mi->max_tp_rate[0]); prob = mi->groups[i].rates[j].prob_avg; /* convert tp_avg from pkt per second in kbps */ tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10; tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024; return tp_avg; } static const struct rate_control_ops mac80211_minstrel_ht = { .name = "minstrel_ht", .capa = RATE_CTRL_CAPA_AMPDU_TRIGGER, .tx_status_ext = minstrel_ht_tx_status, .get_rate = minstrel_ht_get_rate, .rate_init = minstrel_ht_rate_init, .rate_update = minstrel_ht_rate_update, .alloc_sta = minstrel_ht_alloc_sta, .free_sta = minstrel_ht_free_sta, .alloc = minstrel_ht_alloc, .free = minstrel_ht_free, #ifdef CONFIG_MAC80211_DEBUGFS .add_debugfs = minstrel_ht_add_debugfs, .add_sta_debugfs = minstrel_ht_add_sta_debugfs, #endif .get_expected_throughput = minstrel_ht_get_expected_throughput, }; static void __init init_sample_table(void) { int col, i, new_idx; u8 rnd[MCS_GROUP_RATES]; memset(sample_table, 0xff, sizeof(sample_table)); for (col = 0; col < SAMPLE_COLUMNS; col++) { get_random_bytes(rnd, sizeof(rnd)); for (i = 0; i < MCS_GROUP_RATES; i++) { new_idx = (i + rnd[i]) % MCS_GROUP_RATES; while (sample_table[col][new_idx] != 0xff) new_idx = (new_idx + 1) % MCS_GROUP_RATES; sample_table[col][new_idx] = i; } } } int __init rc80211_minstrel_init(void) { init_sample_table(); return ieee80211_rate_control_register(&mac80211_minstrel_ht); } void rc80211_minstrel_exit(void) { ieee80211_rate_control_unregister(&mac80211_minstrel_ht); }
linux-master
net/mac80211/rc80211_minstrel_ht.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2017 Intel Deutschland GmbH * Copyright (C) 2018-2023 Intel Corporation */ #include <net/mac80211.h> #include <linux/module.h> #include <linux/fips.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/etherdevice.h> #include <linux/if_arp.h> #include <linux/rtnetlink.h> #include <linux/bitmap.h> #include <linux/inetdevice.h> #include <net/net_namespace.h> #include <net/dropreason.h> #include <net/cfg80211.h> #include <net/addrconf.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "mesh.h" #include "wep.h" #include "led.h" #include "debugfs.h" void ieee80211_configure_filter(struct ieee80211_local *local) { u64 mc; unsigned int changed_flags; unsigned int new_flags = 0; if (atomic_read(&local->iff_allmultis)) new_flags |= FIF_ALLMULTI; if (local->monitors || test_bit(SCAN_SW_SCANNING, &local->scanning) || test_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning)) new_flags |= FIF_BCN_PRBRESP_PROMISC; if (local->fif_probe_req || local->probe_req_reg) new_flags |= FIF_PROBE_REQ; if (local->fif_fcsfail) new_flags |= FIF_FCSFAIL; if (local->fif_plcpfail) new_flags |= FIF_PLCPFAIL; if (local->fif_control) new_flags |= FIF_CONTROL; if (local->fif_other_bss) new_flags |= FIF_OTHER_BSS; if (local->fif_pspoll) new_flags |= FIF_PSPOLL; if (local->rx_mcast_action_reg) new_flags |= FIF_MCAST_ACTION; spin_lock_bh(&local->filter_lock); changed_flags = local->filter_flags ^ new_flags; mc = drv_prepare_multicast(local, &local->mc_list); spin_unlock_bh(&local->filter_lock); /* be a bit nasty */ new_flags |= (1<<31); drv_configure_filter(local, changed_flags, &new_flags, mc); WARN_ON(new_flags & (1<<31)); local->filter_flags = new_flags & ~(1<<31); } static void ieee80211_reconfig_filter(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, reconfig_filter); ieee80211_configure_filter(local); } static u32 ieee80211_hw_conf_chan(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; struct cfg80211_chan_def chandef = {}; u32 changed = 0; int power; u32 offchannel_flag; offchannel_flag = local->hw.conf.flags & IEEE80211_CONF_OFFCHANNEL; if (local->scan_chandef.chan) { chandef = local->scan_chandef; } else if (local->tmp_channel) { chandef.chan = local->tmp_channel; chandef.width = NL80211_CHAN_WIDTH_20_NOHT; chandef.center_freq1 = chandef.chan->center_freq; chandef.freq1_offset = chandef.chan->freq_offset; } else chandef = local->_oper_chandef; WARN(!cfg80211_chandef_valid(&chandef), "control:%d.%03d MHz width:%d center: %d.%03d/%d MHz", chandef.chan->center_freq, chandef.chan->freq_offset, chandef.width, chandef.center_freq1, chandef.freq1_offset, chandef.center_freq2); if (!cfg80211_chandef_identical(&chandef, &local->_oper_chandef)) local->hw.conf.flags |= IEEE80211_CONF_OFFCHANNEL; else local->hw.conf.flags &= ~IEEE80211_CONF_OFFCHANNEL; offchannel_flag ^= local->hw.conf.flags & IEEE80211_CONF_OFFCHANNEL; if (offchannel_flag || !cfg80211_chandef_identical(&local->hw.conf.chandef, &local->_oper_chandef)) { local->hw.conf.chandef = chandef; changed |= IEEE80211_CONF_CHANGE_CHANNEL; } if (!conf_is_ht(&local->hw.conf)) { /* * mac80211.h documents that this is only valid * when the channel is set to an HT type, and * that otherwise STATIC is used. */ local->hw.conf.smps_mode = IEEE80211_SMPS_STATIC; } else if (local->hw.conf.smps_mode != local->smps_mode) { local->hw.conf.smps_mode = local->smps_mode; changed |= IEEE80211_CONF_CHANGE_SMPS; } power = ieee80211_chandef_max_power(&chandef); rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (!rcu_access_pointer(sdata->vif.bss_conf.chanctx_conf)) continue; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) continue; if (sdata->vif.bss_conf.txpower == INT_MIN) continue; power = min(power, sdata->vif.bss_conf.txpower); } rcu_read_unlock(); if (local->hw.conf.power_level != power) { changed |= IEEE80211_CONF_CHANGE_POWER; local->hw.conf.power_level = power; } return changed; } int ieee80211_hw_config(struct ieee80211_local *local, u32 changed) { int ret = 0; might_sleep(); if (!local->use_chanctx) changed |= ieee80211_hw_conf_chan(local); else changed &= ~(IEEE80211_CONF_CHANGE_CHANNEL | IEEE80211_CONF_CHANGE_POWER | IEEE80211_CONF_CHANGE_SMPS); if (changed && local->open_count) { ret = drv_config(local, changed); /* * Goal: * HW reconfiguration should never fail, the driver has told * us what it can support so it should live up to that promise. * * Current status: * rfkill is not integrated with mac80211 and a * configuration command can thus fail if hardware rfkill * is enabled * * FIXME: integrate rfkill with mac80211 and then add this * WARN_ON() back * */ /* WARN_ON(ret); */ } return ret; } #define BSS_CHANGED_VIF_CFG_FLAGS (BSS_CHANGED_ASSOC |\ BSS_CHANGED_IDLE |\ BSS_CHANGED_PS |\ BSS_CHANGED_IBSS |\ BSS_CHANGED_ARP_FILTER |\ BSS_CHANGED_SSID) void ieee80211_bss_info_change_notify(struct ieee80211_sub_if_data *sdata, u64 changed) { struct ieee80211_local *local = sdata->local; might_sleep(); if (!changed || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) return; if (WARN_ON_ONCE(changed & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED) && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_OCB)) return; if (WARN_ON_ONCE(sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE || sdata->vif.type == NL80211_IFTYPE_NAN || (sdata->vif.type == NL80211_IFTYPE_MONITOR && !sdata->vif.bss_conf.mu_mimo_owner && !(changed & BSS_CHANGED_TXPOWER)))) return; if (!check_sdata_in_driver(sdata)) return; if (changed & BSS_CHANGED_VIF_CFG_FLAGS) { u64 ch = changed & BSS_CHANGED_VIF_CFG_FLAGS; trace_drv_vif_cfg_changed(local, sdata, changed); if (local->ops->vif_cfg_changed) local->ops->vif_cfg_changed(&local->hw, &sdata->vif, ch); } if (changed & ~BSS_CHANGED_VIF_CFG_FLAGS) { u64 ch = changed & ~BSS_CHANGED_VIF_CFG_FLAGS; /* FIXME: should be for each link */ trace_drv_link_info_changed(local, sdata, &sdata->vif.bss_conf, changed); if (local->ops->link_info_changed) local->ops->link_info_changed(&local->hw, &sdata->vif, &sdata->vif.bss_conf, ch); } if (local->ops->bss_info_changed) local->ops->bss_info_changed(&local->hw, &sdata->vif, &sdata->vif.bss_conf, changed); trace_drv_return_void(local); } void ieee80211_vif_cfg_change_notify(struct ieee80211_sub_if_data *sdata, u64 changed) { struct ieee80211_local *local = sdata->local; WARN_ON_ONCE(changed & ~BSS_CHANGED_VIF_CFG_FLAGS); if (!changed || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) return; drv_vif_cfg_changed(local, sdata, changed); } void ieee80211_link_info_change_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, u64 changed) { struct ieee80211_local *local = sdata->local; WARN_ON_ONCE(changed & BSS_CHANGED_VIF_CFG_FLAGS); if (!changed || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) return; if (!check_sdata_in_driver(sdata)) return; drv_link_info_changed(local, sdata, link->conf, link->link_id, changed); } u64 ieee80211_reset_erp_info(struct ieee80211_sub_if_data *sdata) { sdata->vif.bss_conf.use_cts_prot = false; sdata->vif.bss_conf.use_short_preamble = false; sdata->vif.bss_conf.use_short_slot = false; return BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_ERP_PREAMBLE | BSS_CHANGED_ERP_SLOT; } static void ieee80211_tasklet_handler(struct tasklet_struct *t) { struct ieee80211_local *local = from_tasklet(local, t, tasklet); struct sk_buff *skb; while ((skb = skb_dequeue(&local->skb_queue)) || (skb = skb_dequeue(&local->skb_queue_unreliable))) { switch (skb->pkt_type) { case IEEE80211_RX_MSG: /* Clear skb->pkt_type in order to not confuse kernel * netstack. */ skb->pkt_type = 0; ieee80211_rx(&local->hw, skb); break; case IEEE80211_TX_STATUS_MSG: skb->pkt_type = 0; ieee80211_tx_status(&local->hw, skb); break; default: WARN(1, "mac80211: Packet is of unknown type %d\n", skb->pkt_type); dev_kfree_skb(skb); break; } } } static void ieee80211_restart_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, restart_work); struct ieee80211_sub_if_data *sdata; int ret; /* wait for scan work complete */ flush_workqueue(local->workqueue); flush_work(&local->sched_scan_stopped_work); flush_work(&local->radar_detected_work); rtnl_lock(); /* we might do interface manipulations, so need both */ wiphy_lock(local->hw.wiphy); WARN(test_bit(SCAN_HW_SCANNING, &local->scanning), "%s called with hardware scan in progress\n", __func__); list_for_each_entry(sdata, &local->interfaces, list) { /* * XXX: there may be more work for other vif types and even * for station mode: a good thing would be to run most of * the iface type's dependent _stop (ieee80211_mg_stop, * ieee80211_ibss_stop) etc... * For now, fix only the specific bug that was seen: race * between csa_connection_drop_work and us. */ if (sdata->vif.type == NL80211_IFTYPE_STATION) { /* * This worker is scheduled from the iface worker that * runs on mac80211's workqueue, so we can't be * scheduling this worker after the cancel right here. * The exception is ieee80211_chswitch_done. * Then we can have a race... */ wiphy_work_cancel(local->hw.wiphy, &sdata->u.mgd.csa_connection_drop_work); if (sdata->vif.bss_conf.csa_active) { sdata_lock(sdata); ieee80211_sta_connection_lost(sdata, WLAN_REASON_UNSPECIFIED, false); sdata_unlock(sdata); } } flush_delayed_work(&sdata->dec_tailroom_needed_wk); } ieee80211_scan_cancel(local); /* make sure any new ROC will consider local->in_reconfig */ flush_delayed_work(&local->roc_work); flush_work(&local->hw_roc_done); /* wait for all packet processing to be done */ synchronize_net(); ret = ieee80211_reconfig(local); wiphy_unlock(local->hw.wiphy); if (ret) cfg80211_shutdown_all_interfaces(local->hw.wiphy); rtnl_unlock(); } void ieee80211_restart_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); trace_api_restart_hw(local); wiphy_info(hw->wiphy, "Hardware restart was requested\n"); /* use this reason, ieee80211_reconfig will unblock it */ ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_SUSPEND, false); /* * Stop all Rx during the reconfig. We don't want state changes * or driver callbacks while this is in progress. */ local->in_reconfig = true; barrier(); queue_work(system_freezable_wq, &local->restart_work); } EXPORT_SYMBOL(ieee80211_restart_hw); #ifdef CONFIG_INET static int ieee80211_ifa_changed(struct notifier_block *nb, unsigned long data, void *arg) { struct in_ifaddr *ifa = arg; struct ieee80211_local *local = container_of(nb, struct ieee80211_local, ifa_notifier); struct net_device *ndev = ifa->ifa_dev->dev; struct wireless_dev *wdev = ndev->ieee80211_ptr; struct in_device *idev; struct ieee80211_sub_if_data *sdata; struct ieee80211_vif_cfg *vif_cfg; struct ieee80211_if_managed *ifmgd; int c = 0; /* Make sure it's our interface that got changed */ if (!wdev) return NOTIFY_DONE; if (wdev->wiphy != local->hw.wiphy) return NOTIFY_DONE; sdata = IEEE80211_DEV_TO_SUB_IF(ndev); vif_cfg = &sdata->vif.cfg; /* ARP filtering is only supported in managed mode */ if (sdata->vif.type != NL80211_IFTYPE_STATION) return NOTIFY_DONE; idev = __in_dev_get_rtnl(sdata->dev); if (!idev) return NOTIFY_DONE; ifmgd = &sdata->u.mgd; sdata_lock(sdata); /* Copy the addresses to the vif config list */ ifa = rtnl_dereference(idev->ifa_list); while (ifa) { if (c < IEEE80211_BSS_ARP_ADDR_LIST_LEN) vif_cfg->arp_addr_list[c] = ifa->ifa_address; ifa = rtnl_dereference(ifa->ifa_next); c++; } vif_cfg->arp_addr_cnt = c; /* Configure driver only if associated (which also implies it is up) */ if (ifmgd->associated) ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_ARP_FILTER); sdata_unlock(sdata); return NOTIFY_OK; } #endif #if IS_ENABLED(CONFIG_IPV6) static int ieee80211_ifa6_changed(struct notifier_block *nb, unsigned long data, void *arg) { struct inet6_ifaddr *ifa = (struct inet6_ifaddr *)arg; struct inet6_dev *idev = ifa->idev; struct net_device *ndev = ifa->idev->dev; struct ieee80211_local *local = container_of(nb, struct ieee80211_local, ifa6_notifier); struct wireless_dev *wdev = ndev->ieee80211_ptr; struct ieee80211_sub_if_data *sdata; /* Make sure it's our interface that got changed */ if (!wdev || wdev->wiphy != local->hw.wiphy) return NOTIFY_DONE; sdata = IEEE80211_DEV_TO_SUB_IF(ndev); /* * For now only support station mode. This is mostly because * doing AP would have to handle AP_VLAN in some way ... */ if (sdata->vif.type != NL80211_IFTYPE_STATION) return NOTIFY_DONE; drv_ipv6_addr_change(local, sdata, idev); return NOTIFY_OK; } #endif /* There isn't a lot of sense in it, but you can transmit anything you like */ static const struct ieee80211_txrx_stypes ieee80211_default_mgmt_stypes[NUM_NL80211_IFTYPES] = { [NL80211_IFTYPE_ADHOC] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4), }, [NL80211_IFTYPE_STATION] = { .tx = 0xffff, /* * To support Pre Association Security Negotiation (PASN) while * already associated to one AP, allow user space to register to * Rx authentication frames, so that the user space logic would * be able to receive/handle authentication frames from a * different AP as part of PASN. * It is expected that user space would intelligently register * for Rx authentication frames, i.e., only when PASN is used * and configure a match filter only for PASN authentication * algorithm, as otherwise the MLME functionality of mac80211 * would be broken. */ .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4), }, [NL80211_IFTYPE_AP] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_ACTION >> 4), }, [NL80211_IFTYPE_AP_VLAN] = { /* copy AP */ .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_ACTION >> 4), }, [NL80211_IFTYPE_P2P_CLIENT] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4), }, [NL80211_IFTYPE_P2P_GO] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_ACTION >> 4), }, [NL80211_IFTYPE_MESH_POINT] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4), }, [NL80211_IFTYPE_P2P_DEVICE] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4), }, }; static const struct ieee80211_ht_cap mac80211_ht_capa_mod_mask = { .ampdu_params_info = IEEE80211_HT_AMPDU_PARM_FACTOR | IEEE80211_HT_AMPDU_PARM_DENSITY, .cap_info = cpu_to_le16(IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_MAX_AMSDU | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_TX_STBC | IEEE80211_HT_CAP_RX_STBC | IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_40MHZ_INTOLERANT), .mcs = { .rx_mask = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }, }, }; static const struct ieee80211_vht_cap mac80211_vht_capa_mod_mask = { .vht_cap_info = cpu_to_le32(IEEE80211_VHT_CAP_RXLDPC | IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_SHORT_GI_160 | IEEE80211_VHT_CAP_RXSTBC_MASK | IEEE80211_VHT_CAP_TXSTBC | IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN | IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK), .supp_mcs = { .rx_mcs_map = cpu_to_le16(~0), .tx_mcs_map = cpu_to_le16(~0), }, }; struct ieee80211_hw *ieee80211_alloc_hw_nm(size_t priv_data_len, const struct ieee80211_ops *ops, const char *requested_name) { struct ieee80211_local *local; int priv_size, i; struct wiphy *wiphy; bool use_chanctx; if (WARN_ON(!ops->tx || !ops->start || !ops->stop || !ops->config || !ops->add_interface || !ops->remove_interface || !ops->configure_filter || !ops->wake_tx_queue)) return NULL; if (WARN_ON(ops->sta_state && (ops->sta_add || ops->sta_remove))) return NULL; if (WARN_ON(!!ops->link_info_changed != !!ops->vif_cfg_changed || (ops->link_info_changed && ops->bss_info_changed))) return NULL; /* check all or no channel context operations exist */ i = !!ops->add_chanctx + !!ops->remove_chanctx + !!ops->change_chanctx + !!ops->assign_vif_chanctx + !!ops->unassign_vif_chanctx; if (WARN_ON(i != 0 && i != 5)) return NULL; use_chanctx = i == 5; /* Ensure 32-byte alignment of our private data and hw private data. * We use the wiphy priv data for both our ieee80211_local and for * the driver's private data * * In memory it'll be like this: * * +-------------------------+ * | struct wiphy | * +-------------------------+ * | struct ieee80211_local | * +-------------------------+ * | driver's private data | * +-------------------------+ * */ priv_size = ALIGN(sizeof(*local), NETDEV_ALIGN) + priv_data_len; wiphy = wiphy_new_nm(&mac80211_config_ops, priv_size, requested_name); if (!wiphy) return NULL; wiphy->mgmt_stypes = ieee80211_default_mgmt_stypes; wiphy->privid = mac80211_wiphy_privid; wiphy->flags |= WIPHY_FLAG_NETNS_OK | WIPHY_FLAG_4ADDR_AP | WIPHY_FLAG_4ADDR_STATION | WIPHY_FLAG_REPORTS_OBSS | WIPHY_FLAG_OFFCHAN_TX; if (!use_chanctx || ops->remain_on_channel) wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; wiphy->features |= NL80211_FEATURE_SK_TX_STATUS | NL80211_FEATURE_SAE | NL80211_FEATURE_HT_IBSS | NL80211_FEATURE_VIF_TXPOWER | NL80211_FEATURE_MAC_ON_CREATE | NL80211_FEATURE_USERSPACE_MPM | NL80211_FEATURE_FULL_AP_CLIENT_STATE; wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_STA); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CONTROL_PORT_OVER_NL80211); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CONTROL_PORT_NO_PREAUTH); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CONTROL_PORT_OVER_NL80211_TX_STATUS); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_SCAN_FREQ_KHZ); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_POWERED_ADDR_CHANGE); if (!ops->hw_scan) { wiphy->features |= NL80211_FEATURE_LOW_PRIORITY_SCAN | NL80211_FEATURE_AP_SCAN; /* * if the driver behaves correctly using the probe request * (template) from mac80211, then both of these should be * supported even with hw scan - but let drivers opt in. */ wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_SCAN_MIN_PREQ_CONTENT); } if (!ops->set_key) wiphy->flags |= WIPHY_FLAG_IBSS_RSN; wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_TXQS); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_RRM); wiphy->bss_priv_size = sizeof(struct ieee80211_bss); local = wiphy_priv(wiphy); if (sta_info_init(local)) goto err_free; local->hw.wiphy = wiphy; local->hw.priv = (char *)local + ALIGN(sizeof(*local), NETDEV_ALIGN); local->ops = ops; local->use_chanctx = use_chanctx; /* * We need a bit of data queued to build aggregates properly, so * instruct the TCP stack to allow more than a single ms of data * to be queued in the stack. The value is a bit-shift of 1 * second, so 7 is ~8ms of queued data. Only affects local TCP * sockets. * This is the default, anyhow - drivers may need to override it * for local reasons (longer buffers, longer completion time, or * similar). */ local->hw.tx_sk_pacing_shift = 7; /* set up some defaults */ local->hw.queues = 1; local->hw.max_rates = 1; local->hw.max_report_rates = 0; local->hw.max_rx_aggregation_subframes = IEEE80211_MAX_AMPDU_BUF_HT; local->hw.max_tx_aggregation_subframes = IEEE80211_MAX_AMPDU_BUF_HT; local->hw.offchannel_tx_hw_queue = IEEE80211_INVAL_HW_QUEUE; local->hw.conf.long_frame_max_tx_count = wiphy->retry_long; local->hw.conf.short_frame_max_tx_count = wiphy->retry_short; local->hw.radiotap_mcs_details = IEEE80211_RADIOTAP_MCS_HAVE_MCS | IEEE80211_RADIOTAP_MCS_HAVE_GI | IEEE80211_RADIOTAP_MCS_HAVE_BW; local->hw.radiotap_vht_details = IEEE80211_RADIOTAP_VHT_KNOWN_GI | IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; local->hw.uapsd_queues = IEEE80211_DEFAULT_UAPSD_QUEUES; local->hw.uapsd_max_sp_len = IEEE80211_DEFAULT_MAX_SP_LEN; local->hw.max_mtu = IEEE80211_MAX_DATA_LEN; local->user_power_level = IEEE80211_UNSET_POWER_LEVEL; wiphy->ht_capa_mod_mask = &mac80211_ht_capa_mod_mask; wiphy->vht_capa_mod_mask = &mac80211_vht_capa_mod_mask; local->ext_capa[7] = WLAN_EXT_CAPA8_OPMODE_NOTIF; wiphy->extended_capabilities = local->ext_capa; wiphy->extended_capabilities_mask = local->ext_capa; wiphy->extended_capabilities_len = ARRAY_SIZE(local->ext_capa); INIT_LIST_HEAD(&local->interfaces); INIT_LIST_HEAD(&local->mon_list); __hw_addr_init(&local->mc_list); mutex_init(&local->iflist_mtx); mutex_init(&local->mtx); mutex_init(&local->key_mtx); spin_lock_init(&local->filter_lock); spin_lock_init(&local->rx_path_lock); spin_lock_init(&local->queue_stop_reason_lock); for (i = 0; i < IEEE80211_NUM_ACS; i++) { INIT_LIST_HEAD(&local->active_txqs[i]); spin_lock_init(&local->active_txq_lock[i]); local->aql_txq_limit_low[i] = IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L; local->aql_txq_limit_high[i] = IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H; atomic_set(&local->aql_ac_pending_airtime[i], 0); } local->airtime_flags = AIRTIME_USE_TX | AIRTIME_USE_RX; local->aql_threshold = IEEE80211_AQL_THRESHOLD; atomic_set(&local->aql_total_pending_airtime, 0); spin_lock_init(&local->handle_wake_tx_queue_lock); INIT_LIST_HEAD(&local->chanctx_list); mutex_init(&local->chanctx_mtx); INIT_DELAYED_WORK(&local->scan_work, ieee80211_scan_work); INIT_WORK(&local->restart_work, ieee80211_restart_work); INIT_WORK(&local->radar_detected_work, ieee80211_dfs_radar_detected_work); INIT_WORK(&local->reconfig_filter, ieee80211_reconfig_filter); local->smps_mode = IEEE80211_SMPS_OFF; INIT_WORK(&local->dynamic_ps_enable_work, ieee80211_dynamic_ps_enable_work); INIT_WORK(&local->dynamic_ps_disable_work, ieee80211_dynamic_ps_disable_work); timer_setup(&local->dynamic_ps_timer, ieee80211_dynamic_ps_timer, 0); INIT_WORK(&local->sched_scan_stopped_work, ieee80211_sched_scan_stopped_work); spin_lock_init(&local->ack_status_lock); idr_init(&local->ack_status_frames); for (i = 0; i < IEEE80211_MAX_QUEUES; i++) { skb_queue_head_init(&local->pending[i]); atomic_set(&local->agg_queue_stop[i], 0); } tasklet_setup(&local->tx_pending_tasklet, ieee80211_tx_pending); tasklet_setup(&local->wake_txqs_tasklet, ieee80211_wake_txqs); tasklet_setup(&local->tasklet, ieee80211_tasklet_handler); skb_queue_head_init(&local->skb_queue); skb_queue_head_init(&local->skb_queue_unreliable); ieee80211_alloc_led_names(local); ieee80211_roc_setup(local); local->hw.radiotap_timestamp.units_pos = -1; local->hw.radiotap_timestamp.accuracy = -1; return &local->hw; err_free: wiphy_free(wiphy); return NULL; } EXPORT_SYMBOL(ieee80211_alloc_hw_nm); static int ieee80211_init_cipher_suites(struct ieee80211_local *local) { bool have_wep = !fips_enabled; /* FIPS does not permit the use of RC4 */ bool have_mfp = ieee80211_hw_check(&local->hw, MFP_CAPABLE); int r = 0, w = 0; u32 *suites; static const u32 cipher_suites[] = { /* keep WEP first, it may be removed below */ WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, WLAN_CIPHER_SUITE_CCMP_256, WLAN_CIPHER_SUITE_GCMP, WLAN_CIPHER_SUITE_GCMP_256, /* keep last -- depends on hw flags! */ WLAN_CIPHER_SUITE_AES_CMAC, WLAN_CIPHER_SUITE_BIP_CMAC_256, WLAN_CIPHER_SUITE_BIP_GMAC_128, WLAN_CIPHER_SUITE_BIP_GMAC_256, }; if (ieee80211_hw_check(&local->hw, SW_CRYPTO_CONTROL) || local->hw.wiphy->cipher_suites) { /* If the driver advertises, or doesn't support SW crypto, * we only need to remove WEP if necessary. */ if (have_wep) return 0; /* well if it has _no_ ciphers ... fine */ if (!local->hw.wiphy->n_cipher_suites) return 0; /* Driver provides cipher suites, but we need to exclude WEP */ suites = kmemdup(local->hw.wiphy->cipher_suites, sizeof(u32) * local->hw.wiphy->n_cipher_suites, GFP_KERNEL); if (!suites) return -ENOMEM; for (r = 0; r < local->hw.wiphy->n_cipher_suites; r++) { u32 suite = local->hw.wiphy->cipher_suites[r]; if (suite == WLAN_CIPHER_SUITE_WEP40 || suite == WLAN_CIPHER_SUITE_WEP104) continue; suites[w++] = suite; } } else { /* assign the (software supported and perhaps offloaded) * cipher suites */ local->hw.wiphy->cipher_suites = cipher_suites; local->hw.wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); if (!have_mfp) local->hw.wiphy->n_cipher_suites -= 4; if (!have_wep) { local->hw.wiphy->cipher_suites += 2; local->hw.wiphy->n_cipher_suites -= 2; } /* not dynamically allocated, so just return */ return 0; } local->hw.wiphy->cipher_suites = suites; local->hw.wiphy->n_cipher_suites = w; local->wiphy_ciphers_allocated = true; return 0; } int ieee80211_register_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); int result, i; enum nl80211_band band; int channels, max_bitrates; bool supp_ht, supp_vht, supp_he, supp_eht; struct cfg80211_chan_def dflt_chandef = {}; if (ieee80211_hw_check(hw, QUEUE_CONTROL) && (local->hw.offchannel_tx_hw_queue == IEEE80211_INVAL_HW_QUEUE || local->hw.offchannel_tx_hw_queue >= local->hw.queues)) return -EINVAL; if ((hw->wiphy->features & NL80211_FEATURE_TDLS_CHANNEL_SWITCH) && (!local->ops->tdls_channel_switch || !local->ops->tdls_cancel_channel_switch || !local->ops->tdls_recv_channel_switch)) return -EOPNOTSUPP; if (WARN_ON(ieee80211_hw_check(hw, SUPPORTS_TX_FRAG) && !local->ops->set_frag_threshold)) return -EINVAL; if (WARN_ON(local->hw.wiphy->interface_modes & BIT(NL80211_IFTYPE_NAN) && (!local->ops->start_nan || !local->ops->stop_nan))) return -EINVAL; if (hw->wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO) { /* * For drivers capable of doing MLO, assume modern driver * or firmware facilities, so software doesn't have to do * as much, e.g. monitoring beacons would be hard if we * might not even know which link is active at which time. */ if (WARN_ON(!local->use_chanctx)) return -EINVAL; if (WARN_ON(!local->ops->link_info_changed)) return -EINVAL; if (WARN_ON(!ieee80211_hw_check(hw, HAS_RATE_CONTROL))) return -EINVAL; if (WARN_ON(!ieee80211_hw_check(hw, AMPDU_AGGREGATION))) return -EINVAL; if (WARN_ON(ieee80211_hw_check(hw, HOST_BROADCAST_PS_BUFFERING))) return -EINVAL; if (WARN_ON(ieee80211_hw_check(hw, SUPPORTS_PS) && (!ieee80211_hw_check(hw, SUPPORTS_DYNAMIC_PS) || ieee80211_hw_check(hw, PS_NULLFUNC_STACK)))) return -EINVAL; if (WARN_ON(!ieee80211_hw_check(hw, MFP_CAPABLE))) return -EINVAL; if (WARN_ON(!ieee80211_hw_check(hw, CONNECTION_MONITOR))) return -EINVAL; if (WARN_ON(ieee80211_hw_check(hw, NEED_DTIM_BEFORE_ASSOC))) return -EINVAL; if (WARN_ON(ieee80211_hw_check(hw, TIMING_BEACON_ONLY))) return -EINVAL; if (WARN_ON(!ieee80211_hw_check(hw, AP_LINK_PS))) return -EINVAL; if (WARN_ON(ieee80211_hw_check(hw, DEAUTH_NEED_MGD_TX_PREP))) return -EINVAL; } #ifdef CONFIG_PM if (hw->wiphy->wowlan && (!local->ops->suspend || !local->ops->resume)) return -EINVAL; #endif if (!local->use_chanctx) { for (i = 0; i < local->hw.wiphy->n_iface_combinations; i++) { const struct ieee80211_iface_combination *comb; comb = &local->hw.wiphy->iface_combinations[i]; if (comb->num_different_channels > 1) return -EINVAL; } } else { /* DFS is not supported with multi-channel combinations yet */ for (i = 0; i < local->hw.wiphy->n_iface_combinations; i++) { const struct ieee80211_iface_combination *comb; comb = &local->hw.wiphy->iface_combinations[i]; if (comb->radar_detect_widths && comb->num_different_channels > 1) return -EINVAL; } } /* Only HW csum features are currently compatible with mac80211 */ if (WARN_ON(hw->netdev_features & ~MAC80211_SUPPORTED_FEATURES)) return -EINVAL; if (hw->max_report_rates == 0) hw->max_report_rates = hw->max_rates; local->rx_chains = 1; /* * generic code guarantees at least one band, * set this very early because much code assumes * that hw.conf.channel is assigned */ channels = 0; max_bitrates = 0; supp_ht = false; supp_vht = false; supp_he = false; supp_eht = false; for (band = 0; band < NUM_NL80211_BANDS; band++) { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[band]; if (!sband) continue; if (!dflt_chandef.chan) { /* * Assign the first enabled channel to dflt_chandef * from the list of channels */ for (i = 0; i < sband->n_channels; i++) if (!(sband->channels[i].flags & IEEE80211_CHAN_DISABLED)) break; /* if none found then use the first anyway */ if (i == sband->n_channels) i = 0; cfg80211_chandef_create(&dflt_chandef, &sband->channels[i], NL80211_CHAN_NO_HT); /* init channel we're on */ if (!local->use_chanctx && !local->_oper_chandef.chan) { local->hw.conf.chandef = dflt_chandef; local->_oper_chandef = dflt_chandef; } local->monitor_chandef = dflt_chandef; } channels += sband->n_channels; /* * Due to the way the aggregation code handles this and it * being an HT capability, we can't really support delayed * BA in MLO (yet). */ if (WARN_ON(sband->ht_cap.ht_supported && (sband->ht_cap.cap & IEEE80211_HT_CAP_DELAY_BA) && hw->wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO)) return -EINVAL; if (max_bitrates < sband->n_bitrates) max_bitrates = sband->n_bitrates; supp_ht = supp_ht || sband->ht_cap.ht_supported; supp_vht = supp_vht || sband->vht_cap.vht_supported; for (i = 0; i < sband->n_iftype_data; i++) { const struct ieee80211_sband_iftype_data *iftd; iftd = &sband->iftype_data[i]; supp_he = supp_he || iftd->he_cap.has_he; supp_eht = supp_eht || iftd->eht_cap.has_eht; } /* HT, VHT, HE require QoS, thus >= 4 queues */ if (WARN_ON(local->hw.queues < IEEE80211_NUM_ACS && (supp_ht || supp_vht || supp_he))) return -EINVAL; /* EHT requires HE support */ if (WARN_ON(supp_eht && !supp_he)) return -EINVAL; if (!sband->ht_cap.ht_supported) continue; /* TODO: consider VHT for RX chains, hopefully it's the same */ local->rx_chains = max(ieee80211_mcs_to_chains(&sband->ht_cap.mcs), local->rx_chains); /* no need to mask, SM_PS_DISABLED has all bits set */ sband->ht_cap.cap |= WLAN_HT_CAP_SM_PS_DISABLED << IEEE80211_HT_CAP_SM_PS_SHIFT; } /* if low-level driver supports AP, we also support VLAN. * drivers advertising SW_CRYPTO_CONTROL should enable AP_VLAN * based on their support to transmit SW encrypted packets. */ if (local->hw.wiphy->interface_modes & BIT(NL80211_IFTYPE_AP) && !ieee80211_hw_check(&local->hw, SW_CRYPTO_CONTROL)) { hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_AP_VLAN); hw->wiphy->software_iftypes |= BIT(NL80211_IFTYPE_AP_VLAN); } /* mac80211 always supports monitor */ hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR); hw->wiphy->software_iftypes |= BIT(NL80211_IFTYPE_MONITOR); /* mac80211 doesn't support more than one IBSS interface right now */ for (i = 0; i < hw->wiphy->n_iface_combinations; i++) { const struct ieee80211_iface_combination *c; int j; c = &hw->wiphy->iface_combinations[i]; for (j = 0; j < c->n_limits; j++) if ((c->limits[j].types & BIT(NL80211_IFTYPE_ADHOC)) && c->limits[j].max > 1) return -EINVAL; } local->int_scan_req = kzalloc(sizeof(*local->int_scan_req) + sizeof(void *) * channels, GFP_KERNEL); if (!local->int_scan_req) return -ENOMEM; eth_broadcast_addr(local->int_scan_req->bssid); for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!local->hw.wiphy->bands[band]) continue; local->int_scan_req->rates[band] = (u32) -1; } #ifndef CONFIG_MAC80211_MESH /* mesh depends on Kconfig, but drivers should set it if they want */ local->hw.wiphy->interface_modes &= ~BIT(NL80211_IFTYPE_MESH_POINT); #endif /* if the underlying driver supports mesh, mac80211 will (at least) * provide routing of mesh authentication frames to userspace */ if (local->hw.wiphy->interface_modes & BIT(NL80211_IFTYPE_MESH_POINT)) local->hw.wiphy->flags |= WIPHY_FLAG_MESH_AUTH; /* mac80211 supports control port protocol changing */ local->hw.wiphy->flags |= WIPHY_FLAG_CONTROL_PORT_PROTOCOL; if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) { local->hw.wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; } else if (ieee80211_hw_check(&local->hw, SIGNAL_UNSPEC)) { local->hw.wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC; if (hw->max_signal <= 0) { result = -EINVAL; goto fail_workqueue; } } /* Mac80211 and therefore all drivers using SW crypto only * are able to handle PTK rekeys and Extended Key ID. */ if (!local->ops->set_key) { wiphy_ext_feature_set(local->hw.wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0); wiphy_ext_feature_set(local->hw.wiphy, NL80211_EXT_FEATURE_EXT_KEY_ID); } if (local->hw.wiphy->interface_modes & BIT(NL80211_IFTYPE_ADHOC)) wiphy_ext_feature_set(local->hw.wiphy, NL80211_EXT_FEATURE_DEL_IBSS_STA); /* * Calculate scan IE length -- we need this to alloc * memory and to subtract from the driver limit. It * includes the DS Params, (extended) supported rates, and HT * information -- SSID is the driver's responsibility. */ local->scan_ies_len = 4 + max_bitrates /* (ext) supp rates */ + 3 /* DS Params */; if (supp_ht) local->scan_ies_len += 2 + sizeof(struct ieee80211_ht_cap); if (supp_vht) local->scan_ies_len += 2 + sizeof(struct ieee80211_vht_cap); /* * HE cap element is variable in size - set len to allow max size */ if (supp_he) { local->scan_ies_len += 3 + sizeof(struct ieee80211_he_cap_elem) + sizeof(struct ieee80211_he_mcs_nss_supp) + IEEE80211_HE_PPE_THRES_MAX_LEN; if (supp_eht) local->scan_ies_len += 3 + sizeof(struct ieee80211_eht_cap_elem) + sizeof(struct ieee80211_eht_mcs_nss_supp) + IEEE80211_EHT_PPE_THRES_MAX_LEN; } if (!local->ops->hw_scan) { /* For hw_scan, driver needs to set these up. */ local->hw.wiphy->max_scan_ssids = 4; local->hw.wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN; } /* * If the driver supports any scan IEs, then assume the * limit includes the IEs mac80211 will add, otherwise * leave it at zero and let the driver sort it out; we * still pass our IEs to the driver but userspace will * not be allowed to in that case. */ if (local->hw.wiphy->max_scan_ie_len) local->hw.wiphy->max_scan_ie_len -= local->scan_ies_len; result = ieee80211_init_cipher_suites(local); if (result < 0) goto fail_workqueue; if (!local->ops->remain_on_channel) local->hw.wiphy->max_remain_on_channel_duration = 5000; /* mac80211 based drivers don't support internal TDLS setup */ if (local->hw.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) local->hw.wiphy->flags |= WIPHY_FLAG_TDLS_EXTERNAL_SETUP; /* mac80211 supports eCSA, if the driver supports STA CSA at all */ if (ieee80211_hw_check(&local->hw, CHANCTX_STA_CSA)) local->ext_capa[0] |= WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING; /* mac80211 supports multi BSSID, if the driver supports it */ if (ieee80211_hw_check(&local->hw, SUPPORTS_MULTI_BSSID)) { local->hw.wiphy->support_mbssid = true; if (ieee80211_hw_check(&local->hw, SUPPORTS_ONLY_HE_MULTI_BSSID)) local->hw.wiphy->support_only_he_mbssid = true; else local->ext_capa[2] |= WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT; } local->hw.wiphy->max_num_csa_counters = IEEE80211_MAX_CNTDWN_COUNTERS_NUM; /* * We use the number of queues for feature tests (QoS, HT) internally * so restrict them appropriately. */ if (hw->queues > IEEE80211_MAX_QUEUES) hw->queues = IEEE80211_MAX_QUEUES; local->workqueue = alloc_ordered_workqueue("%s", 0, wiphy_name(local->hw.wiphy)); if (!local->workqueue) { result = -ENOMEM; goto fail_workqueue; } /* * The hardware needs headroom for sending the frame, * and we need some headroom for passing the frame to monitor * interfaces, but never both at the same time. */ local->tx_headroom = max_t(unsigned int , local->hw.extra_tx_headroom, IEEE80211_TX_STATUS_HEADROOM); /* * if the driver doesn't specify a max listen interval we * use 5 which should be a safe default */ if (local->hw.max_listen_interval == 0) local->hw.max_listen_interval = 5; local->hw.conf.listen_interval = local->hw.max_listen_interval; local->dynamic_ps_forced_timeout = -1; if (!local->hw.max_nan_de_entries) local->hw.max_nan_de_entries = IEEE80211_MAX_NAN_INSTANCE_ID; if (!local->hw.weight_multiplier) local->hw.weight_multiplier = 1; ieee80211_wep_init(local); local->hw.conf.flags = IEEE80211_CONF_IDLE; ieee80211_led_init(local); result = ieee80211_txq_setup_flows(local); if (result) goto fail_flows; rtnl_lock(); result = ieee80211_init_rate_ctrl_alg(local, hw->rate_control_algorithm); rtnl_unlock(); if (result < 0) { wiphy_debug(local->hw.wiphy, "Failed to initialize rate control algorithm\n"); goto fail_rate; } if (local->rate_ctrl) { clear_bit(IEEE80211_HW_SUPPORTS_VHT_EXT_NSS_BW, hw->flags); if (local->rate_ctrl->ops->capa & RATE_CTRL_CAPA_VHT_EXT_NSS_BW) ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW); } /* * If the VHT capabilities don't have IEEE80211_VHT_EXT_NSS_BW_CAPABLE, * or have it when we don't, copy the sband structure and set/clear it. * This is necessary because rate scaling algorithms could be switched * and have different support values. * Print a message so that in the common case the reallocation can be * avoided. */ BUILD_BUG_ON(NUM_NL80211_BANDS > 8 * sizeof(local->sband_allocated)); for (band = 0; band < NUM_NL80211_BANDS; band++) { struct ieee80211_supported_band *sband; bool local_cap, ie_cap; local_cap = ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW); sband = local->hw.wiphy->bands[band]; if (!sband || !sband->vht_cap.vht_supported) continue; ie_cap = !!(sband->vht_cap.vht_mcs.tx_highest & cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)); if (local_cap == ie_cap) continue; sband = kmemdup(sband, sizeof(*sband), GFP_KERNEL); if (!sband) { result = -ENOMEM; goto fail_rate; } wiphy_dbg(hw->wiphy, "copying sband (band %d) due to VHT EXT NSS BW flag\n", band); sband->vht_cap.vht_mcs.tx_highest ^= cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); local->hw.wiphy->bands[band] = sband; local->sband_allocated |= BIT(band); } result = wiphy_register(local->hw.wiphy); if (result < 0) goto fail_wiphy_register; debugfs_hw_add(local); rate_control_add_debugfs(local); rtnl_lock(); wiphy_lock(hw->wiphy); /* add one default STA interface if supported */ if (local->hw.wiphy->interface_modes & BIT(NL80211_IFTYPE_STATION) && !ieee80211_hw_check(hw, NO_AUTO_VIF)) { struct vif_params params = {0}; result = ieee80211_if_add(local, "wlan%d", NET_NAME_ENUM, NULL, NL80211_IFTYPE_STATION, &params); if (result) wiphy_warn(local->hw.wiphy, "Failed to add default virtual iface\n"); } wiphy_unlock(hw->wiphy); rtnl_unlock(); #ifdef CONFIG_INET local->ifa_notifier.notifier_call = ieee80211_ifa_changed; result = register_inetaddr_notifier(&local->ifa_notifier); if (result) goto fail_ifa; #endif #if IS_ENABLED(CONFIG_IPV6) local->ifa6_notifier.notifier_call = ieee80211_ifa6_changed; result = register_inet6addr_notifier(&local->ifa6_notifier); if (result) goto fail_ifa6; #endif return 0; #if IS_ENABLED(CONFIG_IPV6) fail_ifa6: #ifdef CONFIG_INET unregister_inetaddr_notifier(&local->ifa_notifier); #endif #endif #if defined(CONFIG_INET) || defined(CONFIG_IPV6) fail_ifa: #endif wiphy_unregister(local->hw.wiphy); fail_wiphy_register: rtnl_lock(); rate_control_deinitialize(local); ieee80211_remove_interfaces(local); rtnl_unlock(); fail_rate: fail_flows: ieee80211_led_exit(local); destroy_workqueue(local->workqueue); fail_workqueue: if (local->wiphy_ciphers_allocated) { kfree(local->hw.wiphy->cipher_suites); local->wiphy_ciphers_allocated = false; } kfree(local->int_scan_req); return result; } EXPORT_SYMBOL(ieee80211_register_hw); void ieee80211_unregister_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); tasklet_kill(&local->tx_pending_tasklet); tasklet_kill(&local->tasklet); #ifdef CONFIG_INET unregister_inetaddr_notifier(&local->ifa_notifier); #endif #if IS_ENABLED(CONFIG_IPV6) unregister_inet6addr_notifier(&local->ifa6_notifier); #endif rtnl_lock(); /* * At this point, interface list manipulations are fine * because the driver cannot be handing us frames any * more and the tasklet is killed. */ ieee80211_remove_interfaces(local); rtnl_unlock(); cancel_delayed_work_sync(&local->roc_work); cancel_work_sync(&local->restart_work); cancel_work_sync(&local->reconfig_filter); flush_work(&local->sched_scan_stopped_work); flush_work(&local->radar_detected_work); ieee80211_clear_tx_pending(local); rate_control_deinitialize(local); if (skb_queue_len(&local->skb_queue) || skb_queue_len(&local->skb_queue_unreliable)) wiphy_warn(local->hw.wiphy, "skb_queue not empty\n"); skb_queue_purge(&local->skb_queue); skb_queue_purge(&local->skb_queue_unreliable); wiphy_unregister(local->hw.wiphy); destroy_workqueue(local->workqueue); ieee80211_led_exit(local); kfree(local->int_scan_req); } EXPORT_SYMBOL(ieee80211_unregister_hw); static int ieee80211_free_ack_frame(int id, void *p, void *data) { WARN_ONCE(1, "Have pending ack frames!\n"); kfree_skb(p); return 0; } void ieee80211_free_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); enum nl80211_band band; mutex_destroy(&local->iflist_mtx); mutex_destroy(&local->mtx); if (local->wiphy_ciphers_allocated) { kfree(local->hw.wiphy->cipher_suites); local->wiphy_ciphers_allocated = false; } idr_for_each(&local->ack_status_frames, ieee80211_free_ack_frame, NULL); idr_destroy(&local->ack_status_frames); sta_info_stop(local); ieee80211_free_led_names(local); for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!(local->sband_allocated & BIT(band))) continue; kfree(local->hw.wiphy->bands[band]); } wiphy_free(local->hw.wiphy); } EXPORT_SYMBOL(ieee80211_free_hw); static const char * const drop_reasons_monitor[] = { #define V(x) #x, [0] = "RX_DROP_MONITOR", MAC80211_DROP_REASONS_MONITOR(V) }; static struct drop_reason_list drop_reason_list_monitor = { .reasons = drop_reasons_monitor, .n_reasons = ARRAY_SIZE(drop_reasons_monitor), }; static const char * const drop_reasons_unusable[] = { [0] = "RX_DROP_UNUSABLE", MAC80211_DROP_REASONS_UNUSABLE(V) #undef V }; static struct drop_reason_list drop_reason_list_unusable = { .reasons = drop_reasons_unusable, .n_reasons = ARRAY_SIZE(drop_reasons_unusable), }; static int __init ieee80211_init(void) { struct sk_buff *skb; int ret; BUILD_BUG_ON(sizeof(struct ieee80211_tx_info) > sizeof(skb->cb)); BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, driver_data) + IEEE80211_TX_INFO_DRIVER_DATA_SIZE > sizeof(skb->cb)); ret = rc80211_minstrel_init(); if (ret) return ret; ret = ieee80211_iface_init(); if (ret) goto err_netdev; drop_reasons_register_subsys(SKB_DROP_REASON_SUBSYS_MAC80211_MONITOR, &drop_reason_list_monitor); drop_reasons_register_subsys(SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE, &drop_reason_list_unusable); return 0; err_netdev: rc80211_minstrel_exit(); return ret; } static void __exit ieee80211_exit(void) { rc80211_minstrel_exit(); ieee80211s_stop(); ieee80211_iface_exit(); drop_reasons_unregister_subsys(SKB_DROP_REASON_SUBSYS_MAC80211_MONITOR); drop_reasons_unregister_subsys(SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE); rcu_barrier(); } subsys_initcall(ieee80211_init); module_exit(ieee80211_exit); MODULE_DESCRIPTION("IEEE 802.11 subsystem"); MODULE_LICENSE("GPL");
linux-master
net/mac80211/main.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2004, Instant802 Networks, Inc. * Copyright 2008, Jouni Malinen <[email protected]> * Copyright (C) 2016-2017 Intel Deutschland GmbH * Copyright (C) 2020-2022 Intel Corporation */ #include <linux/netdevice.h> #include <linux/types.h> #include <linux/skbuff.h> #include <linux/compiler.h> #include <linux/ieee80211.h> #include <linux/gfp.h> #include <asm/unaligned.h> #include <net/mac80211.h> #include <crypto/aes.h> #include <crypto/utils.h> #include "ieee80211_i.h" #include "michael.h" #include "tkip.h" #include "aes_ccm.h" #include "aes_cmac.h" #include "aes_gmac.h" #include "aes_gcm.h" #include "wpa.h" ieee80211_tx_result ieee80211_tx_h_michael_mic_add(struct ieee80211_tx_data *tx) { u8 *data, *key, *mic; size_t data_len; unsigned int hdrlen; struct ieee80211_hdr *hdr; struct sk_buff *skb = tx->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int tail; hdr = (struct ieee80211_hdr *)skb->data; if (!tx->key || tx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP || skb->len < 24 || !ieee80211_is_data_present(hdr->frame_control)) return TX_CONTINUE; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (skb->len < hdrlen) return TX_DROP; data = skb->data + hdrlen; data_len = skb->len - hdrlen; if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) { /* Need to use software crypto for the test */ info->control.hw_key = NULL; } if (info->control.hw_key && (info->flags & IEEE80211_TX_CTL_DONTFRAG || ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) && !(tx->key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | IEEE80211_KEY_FLAG_PUT_MIC_SPACE))) { /* hwaccel - with no need for SW-generated MMIC or MIC space */ return TX_CONTINUE; } tail = MICHAEL_MIC_LEN; if (!info->control.hw_key) tail += IEEE80211_TKIP_ICV_LEN; if (WARN(skb_tailroom(skb) < tail || skb_headroom(skb) < IEEE80211_TKIP_IV_LEN, "mmic: not enough head/tail (%d/%d,%d/%d)\n", skb_headroom(skb), IEEE80211_TKIP_IV_LEN, skb_tailroom(skb), tail)) return TX_DROP; mic = skb_put(skb, MICHAEL_MIC_LEN); if (tx->key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) { /* Zeroed MIC can help with debug */ memset(mic, 0, MICHAEL_MIC_LEN); return TX_CONTINUE; } key = &tx->key->conf.key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]; michael_mic(key, hdr, data, data_len, mic); if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) mic[0]++; return TX_CONTINUE; } ieee80211_rx_result ieee80211_rx_h_michael_mic_verify(struct ieee80211_rx_data *rx) { u8 *data, *key = NULL; size_t data_len; unsigned int hdrlen; u8 mic[MICHAEL_MIC_LEN]; struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; /* * it makes no sense to check for MIC errors on anything other * than data frames. */ if (!ieee80211_is_data_present(hdr->frame_control)) return RX_CONTINUE; /* * No way to verify the MIC if the hardware stripped it or * the IV with the key index. In this case we have solely rely * on the driver to set RX_FLAG_MMIC_ERROR in the event of a * MIC failure report. */ if (status->flag & (RX_FLAG_MMIC_STRIPPED | RX_FLAG_IV_STRIPPED)) { if (status->flag & RX_FLAG_MMIC_ERROR) goto mic_fail_no_key; if (!(status->flag & RX_FLAG_IV_STRIPPED) && rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_TKIP) goto update_iv; return RX_CONTINUE; } /* * Some hardware seems to generate Michael MIC failure reports; even * though, the frame was not encrypted with TKIP and therefore has no * MIC. Ignore the flag them to avoid triggering countermeasures. */ if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP || !(status->flag & RX_FLAG_DECRYPTED)) return RX_CONTINUE; if (rx->sdata->vif.type == NL80211_IFTYPE_AP && rx->key->conf.keyidx) { /* * APs with pairwise keys should never receive Michael MIC * errors for non-zero keyidx because these are reserved for * group keys and only the AP is sending real multicast * frames in the BSS. */ return RX_DROP_UNUSABLE; } if (status->flag & RX_FLAG_MMIC_ERROR) goto mic_fail; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (skb->len < hdrlen + MICHAEL_MIC_LEN) return RX_DROP_UNUSABLE; if (skb_linearize(rx->skb)) return RX_DROP_UNUSABLE; hdr = (void *)skb->data; data = skb->data + hdrlen; data_len = skb->len - hdrlen - MICHAEL_MIC_LEN; key = &rx->key->conf.key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]; michael_mic(key, hdr, data, data_len, mic); if (crypto_memneq(mic, data + data_len, MICHAEL_MIC_LEN)) goto mic_fail; /* remove Michael MIC from payload */ skb_trim(skb, skb->len - MICHAEL_MIC_LEN); update_iv: /* update IV in key information to be able to detect replays */ rx->key->u.tkip.rx[rx->security_idx].iv32 = rx->tkip.iv32; rx->key->u.tkip.rx[rx->security_idx].iv16 = rx->tkip.iv16; return RX_CONTINUE; mic_fail: rx->key->u.tkip.mic_failures++; mic_fail_no_key: /* * In some cases the key can be unset - e.g. a multicast packet, in * a driver that supports HW encryption. Send up the key idx only if * the key is set. */ cfg80211_michael_mic_failure(rx->sdata->dev, hdr->addr2, is_multicast_ether_addr(hdr->addr1) ? NL80211_KEYTYPE_GROUP : NL80211_KEYTYPE_PAIRWISE, rx->key ? rx->key->conf.keyidx : -1, NULL, GFP_ATOMIC); return RX_DROP_UNUSABLE; } static int tkip_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_key *key = tx->key; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); unsigned int hdrlen; int len, tail; u64 pn; u8 *pos; if (info->control.hw_key && !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { /* hwaccel - with no need for software-generated IV */ return 0; } hdrlen = ieee80211_hdrlen(hdr->frame_control); len = skb->len - hdrlen; if (info->control.hw_key) tail = 0; else tail = IEEE80211_TKIP_ICV_LEN; if (WARN_ON(skb_tailroom(skb) < tail || skb_headroom(skb) < IEEE80211_TKIP_IV_LEN)) return -1; pos = skb_push(skb, IEEE80211_TKIP_IV_LEN); memmove(pos, pos + IEEE80211_TKIP_IV_LEN, hdrlen); pos += hdrlen; /* the HW only needs room for the IV, but not the actual IV */ if (info->control.hw_key && (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) return 0; /* Increase IV for the frame */ pn = atomic64_inc_return(&key->conf.tx_pn); pos = ieee80211_tkip_add_iv(pos, &key->conf, pn); /* hwaccel - with software IV */ if (info->control.hw_key) return 0; /* Add room for ICV */ skb_put(skb, IEEE80211_TKIP_ICV_LEN); return ieee80211_tkip_encrypt_data(&tx->local->wep_tx_ctx, key, skb, pos, len); } ieee80211_tx_result ieee80211_crypto_tkip_encrypt(struct ieee80211_tx_data *tx) { struct sk_buff *skb; ieee80211_tx_set_protected(tx); skb_queue_walk(&tx->skbs, skb) { if (tkip_encrypt_skb(tx, skb) < 0) return TX_DROP; } return TX_CONTINUE; } ieee80211_rx_result ieee80211_crypto_tkip_decrypt(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; int hdrlen, res, hwaccel = 0; struct ieee80211_key *key = rx->key; struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); hdrlen = ieee80211_hdrlen(hdr->frame_control); if (!ieee80211_is_data(hdr->frame_control)) return RX_CONTINUE; if (!rx->sta || skb->len - hdrlen < 12) return RX_DROP_UNUSABLE; /* it may be possible to optimize this a bit more */ if (skb_linearize(rx->skb)) return RX_DROP_UNUSABLE; hdr = (void *)skb->data; /* * Let TKIP code verify IV, but skip decryption. * In the case where hardware checks the IV as well, * we don't even get here, see ieee80211_rx_h_decrypt() */ if (status->flag & RX_FLAG_DECRYPTED) hwaccel = 1; res = ieee80211_tkip_decrypt_data(&rx->local->wep_rx_ctx, key, skb->data + hdrlen, skb->len - hdrlen, rx->sta->sta.addr, hdr->addr1, hwaccel, rx->security_idx, &rx->tkip.iv32, &rx->tkip.iv16); if (res != TKIP_DECRYPT_OK) return RX_DROP_UNUSABLE; /* Trim ICV */ if (!(status->flag & RX_FLAG_ICV_STRIPPED)) skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN); /* Remove IV */ memmove(skb->data + IEEE80211_TKIP_IV_LEN, skb->data, hdrlen); skb_pull(skb, IEEE80211_TKIP_IV_LEN); return RX_CONTINUE; } /* * Calculate AAD for CCMP/GCMP, returning qos_tid since we * need that in CCMP also for b_0. */ static u8 ccmp_gcmp_aad(struct sk_buff *skb, u8 *aad) { struct ieee80211_hdr *hdr = (void *)skb->data; __le16 mask_fc; int a4_included, mgmt; u8 qos_tid; u16 len_a = 22; /* * Mask FC: zero subtype b4 b5 b6 (if not mgmt) * Retry, PwrMgt, MoreData, Order (if Qos Data); set Protected */ mgmt = ieee80211_is_mgmt(hdr->frame_control); mask_fc = hdr->frame_control; mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA); if (!mgmt) mask_fc &= ~cpu_to_le16(0x0070); mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); a4_included = ieee80211_has_a4(hdr->frame_control); if (a4_included) len_a += 6; if (ieee80211_is_data_qos(hdr->frame_control)) { qos_tid = ieee80211_get_tid(hdr); mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); len_a += 2; } else { qos_tid = 0; } /* AAD (extra authenticate-only data) / masked 802.11 header * FC | A1 | A2 | A3 | SC | [A4] | [QC] */ put_unaligned_be16(len_a, &aad[0]); put_unaligned(mask_fc, (__le16 *)&aad[2]); memcpy(&aad[4], &hdr->addrs, 3 * ETH_ALEN); /* Mask Seq#, leave Frag# */ aad[22] = *((u8 *) &hdr->seq_ctrl) & 0x0f; aad[23] = 0; if (a4_included) { memcpy(&aad[24], hdr->addr4, ETH_ALEN); aad[30] = qos_tid; aad[31] = 0; } else { memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN); aad[24] = qos_tid; } return qos_tid; } static void ccmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *b_0, u8 *aad) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; u8 qos_tid = ccmp_gcmp_aad(skb, aad); /* In CCM, the initial vectors (IV) used for CTR mode encryption and CBC * mode authentication are not allowed to collide, yet both are derived * from this vector b_0. We only set L := 1 here to indicate that the * data size can be represented in (L+1) bytes. The CCM layer will take * care of storing the data length in the top (L+1) bytes and setting * and clearing the other bits as is required to derive the two IVs. */ b_0[0] = 0x1; /* Nonce: Nonce Flags | A2 | PN * Nonce Flags: Priority (b0..b3) | Management (b4) | Reserved (b5..b7) */ b_0[1] = qos_tid | (ieee80211_is_mgmt(hdr->frame_control) << 4); memcpy(&b_0[2], hdr->addr2, ETH_ALEN); memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_LEN); } static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn, int key_id) { hdr[0] = pn[5]; hdr[1] = pn[4]; hdr[2] = 0; hdr[3] = 0x20 | (key_id << 6); hdr[4] = pn[3]; hdr[5] = pn[2]; hdr[6] = pn[1]; hdr[7] = pn[0]; } static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr) { pn[0] = hdr[7]; pn[1] = hdr[6]; pn[2] = hdr[5]; pn[3] = hdr[4]; pn[4] = hdr[1]; pn[5] = hdr[0]; } static int ccmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb, unsigned int mic_len) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_key *key = tx->key; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int hdrlen, len, tail; u8 *pos; u8 pn[6]; u64 pn64; u8 aad[CCM_AAD_LEN]; u8 b_0[AES_BLOCK_SIZE]; if (info->control.hw_key && !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && !((info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) && ieee80211_is_mgmt(hdr->frame_control))) { /* * hwaccel has no need for preallocated room for CCMP * header or MIC fields */ return 0; } hdrlen = ieee80211_hdrlen(hdr->frame_control); len = skb->len - hdrlen; if (info->control.hw_key) tail = 0; else tail = mic_len; if (WARN_ON(skb_tailroom(skb) < tail || skb_headroom(skb) < IEEE80211_CCMP_HDR_LEN)) return -1; pos = skb_push(skb, IEEE80211_CCMP_HDR_LEN); memmove(pos, pos + IEEE80211_CCMP_HDR_LEN, hdrlen); /* the HW only needs room for the IV, but not the actual IV */ if (info->control.hw_key && (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) return 0; pos += hdrlen; pn64 = atomic64_inc_return(&key->conf.tx_pn); pn[5] = pn64; pn[4] = pn64 >> 8; pn[3] = pn64 >> 16; pn[2] = pn64 >> 24; pn[1] = pn64 >> 32; pn[0] = pn64 >> 40; ccmp_pn2hdr(pos, pn, key->conf.keyidx); /* hwaccel - with software CCMP header */ if (info->control.hw_key) return 0; pos += IEEE80211_CCMP_HDR_LEN; ccmp_special_blocks(skb, pn, b_0, aad); return ieee80211_aes_ccm_encrypt(key->u.ccmp.tfm, b_0, aad, pos, len, skb_put(skb, mic_len)); } ieee80211_tx_result ieee80211_crypto_ccmp_encrypt(struct ieee80211_tx_data *tx, unsigned int mic_len) { struct sk_buff *skb; ieee80211_tx_set_protected(tx); skb_queue_walk(&tx->skbs, skb) { if (ccmp_encrypt_skb(tx, skb, mic_len) < 0) return TX_DROP; } return TX_CONTINUE; } ieee80211_rx_result ieee80211_crypto_ccmp_decrypt(struct ieee80211_rx_data *rx, unsigned int mic_len) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; int hdrlen; struct ieee80211_key *key = rx->key; struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); u8 pn[IEEE80211_CCMP_PN_LEN]; int data_len; int queue; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (!ieee80211_is_data(hdr->frame_control) && !ieee80211_is_robust_mgmt_frame(skb)) return RX_CONTINUE; if (status->flag & RX_FLAG_DECRYPTED) { if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_CCMP_HDR_LEN)) return RX_DROP_UNUSABLE; if (status->flag & RX_FLAG_MIC_STRIPPED) mic_len = 0; } else { if (skb_linearize(rx->skb)) return RX_DROP_UNUSABLE; } /* reload hdr - skb might have been reallocated */ hdr = (void *)rx->skb->data; data_len = skb->len - hdrlen - IEEE80211_CCMP_HDR_LEN - mic_len; if (!rx->sta || data_len < 0) return RX_DROP_UNUSABLE; if (!(status->flag & RX_FLAG_PN_VALIDATED)) { int res; ccmp_hdr2pn(pn, skb->data + hdrlen); queue = rx->security_idx; res = memcmp(pn, key->u.ccmp.rx_pn[queue], IEEE80211_CCMP_PN_LEN); if (res < 0 || (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) { key->u.ccmp.replays++; return RX_DROP_U_REPLAY; } if (!(status->flag & RX_FLAG_DECRYPTED)) { u8 aad[2 * AES_BLOCK_SIZE]; u8 b_0[AES_BLOCK_SIZE]; /* hardware didn't decrypt/verify MIC */ ccmp_special_blocks(skb, pn, b_0, aad); if (ieee80211_aes_ccm_decrypt( key->u.ccmp.tfm, b_0, aad, skb->data + hdrlen + IEEE80211_CCMP_HDR_LEN, data_len, skb->data + skb->len - mic_len)) return RX_DROP_U_MIC_FAIL; } memcpy(key->u.ccmp.rx_pn[queue], pn, IEEE80211_CCMP_PN_LEN); if (unlikely(ieee80211_is_frag(hdr))) memcpy(rx->ccm_gcm.pn, pn, IEEE80211_CCMP_PN_LEN); } /* Remove CCMP header and MIC */ if (pskb_trim(skb, skb->len - mic_len)) return RX_DROP_UNUSABLE; memmove(skb->data + IEEE80211_CCMP_HDR_LEN, skb->data, hdrlen); skb_pull(skb, IEEE80211_CCMP_HDR_LEN); return RX_CONTINUE; } static void gcmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *j_0, u8 *aad) { struct ieee80211_hdr *hdr = (void *)skb->data; memcpy(j_0, hdr->addr2, ETH_ALEN); memcpy(&j_0[ETH_ALEN], pn, IEEE80211_GCMP_PN_LEN); j_0[13] = 0; j_0[14] = 0; j_0[AES_BLOCK_SIZE - 1] = 0x01; ccmp_gcmp_aad(skb, aad); } static inline void gcmp_pn2hdr(u8 *hdr, const u8 *pn, int key_id) { hdr[0] = pn[5]; hdr[1] = pn[4]; hdr[2] = 0; hdr[3] = 0x20 | (key_id << 6); hdr[4] = pn[3]; hdr[5] = pn[2]; hdr[6] = pn[1]; hdr[7] = pn[0]; } static inline void gcmp_hdr2pn(u8 *pn, const u8 *hdr) { pn[0] = hdr[7]; pn[1] = hdr[6]; pn[2] = hdr[5]; pn[3] = hdr[4]; pn[4] = hdr[1]; pn[5] = hdr[0]; } static int gcmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_key *key = tx->key; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int hdrlen, len, tail; u8 *pos; u8 pn[6]; u64 pn64; u8 aad[GCM_AAD_LEN]; u8 j_0[AES_BLOCK_SIZE]; if (info->control.hw_key && !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && !((info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) && ieee80211_is_mgmt(hdr->frame_control))) { /* hwaccel has no need for preallocated room for GCMP * header or MIC fields */ return 0; } hdrlen = ieee80211_hdrlen(hdr->frame_control); len = skb->len - hdrlen; if (info->control.hw_key) tail = 0; else tail = IEEE80211_GCMP_MIC_LEN; if (WARN_ON(skb_tailroom(skb) < tail || skb_headroom(skb) < IEEE80211_GCMP_HDR_LEN)) return -1; pos = skb_push(skb, IEEE80211_GCMP_HDR_LEN); memmove(pos, pos + IEEE80211_GCMP_HDR_LEN, hdrlen); skb_set_network_header(skb, skb_network_offset(skb) + IEEE80211_GCMP_HDR_LEN); /* the HW only needs room for the IV, but not the actual IV */ if (info->control.hw_key && (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) return 0; pos += hdrlen; pn64 = atomic64_inc_return(&key->conf.tx_pn); pn[5] = pn64; pn[4] = pn64 >> 8; pn[3] = pn64 >> 16; pn[2] = pn64 >> 24; pn[1] = pn64 >> 32; pn[0] = pn64 >> 40; gcmp_pn2hdr(pos, pn, key->conf.keyidx); /* hwaccel - with software GCMP header */ if (info->control.hw_key) return 0; pos += IEEE80211_GCMP_HDR_LEN; gcmp_special_blocks(skb, pn, j_0, aad); return ieee80211_aes_gcm_encrypt(key->u.gcmp.tfm, j_0, aad, pos, len, skb_put(skb, IEEE80211_GCMP_MIC_LEN)); } ieee80211_tx_result ieee80211_crypto_gcmp_encrypt(struct ieee80211_tx_data *tx) { struct sk_buff *skb; ieee80211_tx_set_protected(tx); skb_queue_walk(&tx->skbs, skb) { if (gcmp_encrypt_skb(tx, skb) < 0) return TX_DROP; } return TX_CONTINUE; } ieee80211_rx_result ieee80211_crypto_gcmp_decrypt(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; int hdrlen; struct ieee80211_key *key = rx->key; struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); u8 pn[IEEE80211_GCMP_PN_LEN]; int data_len, queue, mic_len = IEEE80211_GCMP_MIC_LEN; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (!ieee80211_is_data(hdr->frame_control) && !ieee80211_is_robust_mgmt_frame(skb)) return RX_CONTINUE; if (status->flag & RX_FLAG_DECRYPTED) { if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_GCMP_HDR_LEN)) return RX_DROP_UNUSABLE; if (status->flag & RX_FLAG_MIC_STRIPPED) mic_len = 0; } else { if (skb_linearize(rx->skb)) return RX_DROP_UNUSABLE; } /* reload hdr - skb might have been reallocated */ hdr = (void *)rx->skb->data; data_len = skb->len - hdrlen - IEEE80211_GCMP_HDR_LEN - mic_len; if (!rx->sta || data_len < 0) return RX_DROP_UNUSABLE; if (!(status->flag & RX_FLAG_PN_VALIDATED)) { int res; gcmp_hdr2pn(pn, skb->data + hdrlen); queue = rx->security_idx; res = memcmp(pn, key->u.gcmp.rx_pn[queue], IEEE80211_GCMP_PN_LEN); if (res < 0 || (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) { key->u.gcmp.replays++; return RX_DROP_U_REPLAY; } if (!(status->flag & RX_FLAG_DECRYPTED)) { u8 aad[2 * AES_BLOCK_SIZE]; u8 j_0[AES_BLOCK_SIZE]; /* hardware didn't decrypt/verify MIC */ gcmp_special_blocks(skb, pn, j_0, aad); if (ieee80211_aes_gcm_decrypt( key->u.gcmp.tfm, j_0, aad, skb->data + hdrlen + IEEE80211_GCMP_HDR_LEN, data_len, skb->data + skb->len - IEEE80211_GCMP_MIC_LEN)) return RX_DROP_U_MIC_FAIL; } memcpy(key->u.gcmp.rx_pn[queue], pn, IEEE80211_GCMP_PN_LEN); if (unlikely(ieee80211_is_frag(hdr))) memcpy(rx->ccm_gcm.pn, pn, IEEE80211_CCMP_PN_LEN); } /* Remove GCMP header and MIC */ if (pskb_trim(skb, skb->len - mic_len)) return RX_DROP_UNUSABLE; memmove(skb->data + IEEE80211_GCMP_HDR_LEN, skb->data, hdrlen); skb_pull(skb, IEEE80211_GCMP_HDR_LEN); return RX_CONTINUE; } static void bip_aad(struct sk_buff *skb, u8 *aad) { __le16 mask_fc; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; /* BIP AAD: FC(masked) || A1 || A2 || A3 */ /* FC type/subtype */ /* Mask FC Retry, PwrMgt, MoreData flags to zero */ mask_fc = hdr->frame_control; mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA); put_unaligned(mask_fc, (__le16 *) &aad[0]); /* A1 || A2 || A3 */ memcpy(aad + 2, &hdr->addrs, 3 * ETH_ALEN); } static inline void bip_ipn_set64(u8 *d, u64 pn) { *d++ = pn; *d++ = pn >> 8; *d++ = pn >> 16; *d++ = pn >> 24; *d++ = pn >> 32; *d = pn >> 40; } static inline void bip_ipn_swap(u8 *d, const u8 *s) { *d++ = s[5]; *d++ = s[4]; *d++ = s[3]; *d++ = s[2]; *d++ = s[1]; *d = s[0]; } ieee80211_tx_result ieee80211_crypto_aes_cmac_encrypt(struct ieee80211_tx_data *tx) { struct sk_buff *skb; struct ieee80211_tx_info *info; struct ieee80211_key *key = tx->key; struct ieee80211_mmie *mmie; u8 aad[20]; u64 pn64; if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) return TX_DROP; skb = skb_peek(&tx->skbs); info = IEEE80211_SKB_CB(skb); if (info->control.hw_key && !(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIE)) return TX_CONTINUE; if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) return TX_DROP; mmie = skb_put(skb, sizeof(*mmie)); mmie->element_id = WLAN_EID_MMIE; mmie->length = sizeof(*mmie) - 2; mmie->key_id = cpu_to_le16(key->conf.keyidx); /* PN = PN + 1 */ pn64 = atomic64_inc_return(&key->conf.tx_pn); bip_ipn_set64(mmie->sequence_number, pn64); if (info->control.hw_key) return TX_CONTINUE; bip_aad(skb, aad); /* * MIC = AES-128-CMAC(IGTK, AAD || Management Frame Body || MMIE, 64) */ ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad, skb->data + 24, skb->len - 24, mmie->mic); return TX_CONTINUE; } ieee80211_tx_result ieee80211_crypto_aes_cmac_256_encrypt(struct ieee80211_tx_data *tx) { struct sk_buff *skb; struct ieee80211_tx_info *info; struct ieee80211_key *key = tx->key; struct ieee80211_mmie_16 *mmie; u8 aad[20]; u64 pn64; if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) return TX_DROP; skb = skb_peek(&tx->skbs); info = IEEE80211_SKB_CB(skb); if (info->control.hw_key) return TX_CONTINUE; if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) return TX_DROP; mmie = skb_put(skb, sizeof(*mmie)); mmie->element_id = WLAN_EID_MMIE; mmie->length = sizeof(*mmie) - 2; mmie->key_id = cpu_to_le16(key->conf.keyidx); /* PN = PN + 1 */ pn64 = atomic64_inc_return(&key->conf.tx_pn); bip_ipn_set64(mmie->sequence_number, pn64); bip_aad(skb, aad); /* MIC = AES-256-CMAC(IGTK, AAD || Management Frame Body || MMIE, 128) */ ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad, skb->data + 24, skb->len - 24, mmie->mic); return TX_CONTINUE; } ieee80211_rx_result ieee80211_crypto_aes_cmac_decrypt(struct ieee80211_rx_data *rx) { struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_key *key = rx->key; struct ieee80211_mmie *mmie; u8 aad[20], mic[8], ipn[6]; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; if (!ieee80211_is_mgmt(hdr->frame_control)) return RX_CONTINUE; /* management frames are already linear */ if (skb->len < 24 + sizeof(*mmie)) return RX_DROP_UNUSABLE; mmie = (struct ieee80211_mmie *) (skb->data + skb->len - sizeof(*mmie)); if (mmie->element_id != WLAN_EID_MMIE || mmie->length != sizeof(*mmie) - 2) return RX_DROP_U_BAD_MMIE; /* Invalid MMIE */ bip_ipn_swap(ipn, mmie->sequence_number); if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) { key->u.aes_cmac.replays++; return RX_DROP_U_REPLAY; } if (!(status->flag & RX_FLAG_DECRYPTED)) { /* hardware didn't decrypt/verify MIC */ bip_aad(skb, aad); ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad, skb->data + 24, skb->len - 24, mic); if (crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { key->u.aes_cmac.icverrors++; return RX_DROP_U_MIC_FAIL; } } memcpy(key->u.aes_cmac.rx_pn, ipn, 6); /* Remove MMIE */ skb_trim(skb, skb->len - sizeof(*mmie)); return RX_CONTINUE; } ieee80211_rx_result ieee80211_crypto_aes_cmac_256_decrypt(struct ieee80211_rx_data *rx) { struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_key *key = rx->key; struct ieee80211_mmie_16 *mmie; u8 aad[20], mic[16], ipn[6]; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; if (!ieee80211_is_mgmt(hdr->frame_control)) return RX_CONTINUE; /* management frames are already linear */ if (skb->len < 24 + sizeof(*mmie)) return RX_DROP_UNUSABLE; mmie = (struct ieee80211_mmie_16 *) (skb->data + skb->len - sizeof(*mmie)); if (mmie->element_id != WLAN_EID_MMIE || mmie->length != sizeof(*mmie) - 2) return RX_DROP_UNUSABLE; /* Invalid MMIE */ bip_ipn_swap(ipn, mmie->sequence_number); if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) { key->u.aes_cmac.replays++; return RX_DROP_U_REPLAY; } if (!(status->flag & RX_FLAG_DECRYPTED)) { /* hardware didn't decrypt/verify MIC */ bip_aad(skb, aad); ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad, skb->data + 24, skb->len - 24, mic); if (crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { key->u.aes_cmac.icverrors++; return RX_DROP_U_MIC_FAIL; } } memcpy(key->u.aes_cmac.rx_pn, ipn, 6); /* Remove MMIE */ skb_trim(skb, skb->len - sizeof(*mmie)); return RX_CONTINUE; } ieee80211_tx_result ieee80211_crypto_aes_gmac_encrypt(struct ieee80211_tx_data *tx) { struct sk_buff *skb; struct ieee80211_tx_info *info; struct ieee80211_key *key = tx->key; struct ieee80211_mmie_16 *mmie; struct ieee80211_hdr *hdr; u8 aad[GMAC_AAD_LEN]; u64 pn64; u8 nonce[GMAC_NONCE_LEN]; if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) return TX_DROP; skb = skb_peek(&tx->skbs); info = IEEE80211_SKB_CB(skb); if (info->control.hw_key) return TX_CONTINUE; if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) return TX_DROP; mmie = skb_put(skb, sizeof(*mmie)); mmie->element_id = WLAN_EID_MMIE; mmie->length = sizeof(*mmie) - 2; mmie->key_id = cpu_to_le16(key->conf.keyidx); /* PN = PN + 1 */ pn64 = atomic64_inc_return(&key->conf.tx_pn); bip_ipn_set64(mmie->sequence_number, pn64); bip_aad(skb, aad); hdr = (struct ieee80211_hdr *)skb->data; memcpy(nonce, hdr->addr2, ETH_ALEN); bip_ipn_swap(nonce + ETH_ALEN, mmie->sequence_number); /* MIC = AES-GMAC(IGTK, AAD || Management Frame Body || MMIE, 128) */ if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce, skb->data + 24, skb->len - 24, mmie->mic) < 0) return TX_DROP; return TX_CONTINUE; } ieee80211_rx_result ieee80211_crypto_aes_gmac_decrypt(struct ieee80211_rx_data *rx) { struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_key *key = rx->key; struct ieee80211_mmie_16 *mmie; u8 aad[GMAC_AAD_LEN], *mic, ipn[6], nonce[GMAC_NONCE_LEN]; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; if (!ieee80211_is_mgmt(hdr->frame_control)) return RX_CONTINUE; /* management frames are already linear */ if (skb->len < 24 + sizeof(*mmie)) return RX_DROP_UNUSABLE; mmie = (struct ieee80211_mmie_16 *) (skb->data + skb->len - sizeof(*mmie)); if (mmie->element_id != WLAN_EID_MMIE || mmie->length != sizeof(*mmie) - 2) return RX_DROP_U_BAD_MMIE; /* Invalid MMIE */ bip_ipn_swap(ipn, mmie->sequence_number); if (memcmp(ipn, key->u.aes_gmac.rx_pn, 6) <= 0) { key->u.aes_gmac.replays++; return RX_DROP_U_REPLAY; } if (!(status->flag & RX_FLAG_DECRYPTED)) { /* hardware didn't decrypt/verify MIC */ bip_aad(skb, aad); memcpy(nonce, hdr->addr2, ETH_ALEN); memcpy(nonce + ETH_ALEN, ipn, 6); mic = kmalloc(GMAC_MIC_LEN, GFP_ATOMIC); if (!mic) return RX_DROP_UNUSABLE; if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce, skb->data + 24, skb->len - 24, mic) < 0 || crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { key->u.aes_gmac.icverrors++; kfree(mic); return RX_DROP_U_MIC_FAIL; } kfree(mic); } memcpy(key->u.aes_gmac.rx_pn, ipn, 6); /* Remove MMIE */ skb_trim(skb, skb->len - sizeof(*mmie)); return RX_CONTINUE; }
linux-master
net/mac80211/wpa.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2015 Intel Deutschland GmbH * Copyright (C) 2022 Intel Corporation */ #include <net/mac80211.h> #include "ieee80211_i.h" #include "trace.h" #include "driver-ops.h" #include "debugfs_sta.h" #include "debugfs_netdev.h" int drv_start(struct ieee80211_local *local) { int ret; might_sleep(); if (WARN_ON(local->started)) return -EALREADY; trace_drv_start(local); local->started = true; /* allow rx frames */ smp_mb(); ret = local->ops->start(&local->hw); trace_drv_return_int(local, ret); if (ret) local->started = false; return ret; } void drv_stop(struct ieee80211_local *local) { might_sleep(); if (WARN_ON(!local->started)) return; trace_drv_stop(local); local->ops->stop(&local->hw); trace_drv_return_void(local); /* sync away all work on the tasklet before clearing started */ tasklet_disable(&local->tasklet); tasklet_enable(&local->tasklet); barrier(); local->started = false; } int drv_add_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { int ret; might_sleep(); if (WARN_ON(sdata->vif.type == NL80211_IFTYPE_AP_VLAN || (sdata->vif.type == NL80211_IFTYPE_MONITOR && !ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) && !(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)))) return -EINVAL; trace_drv_add_interface(local, sdata); ret = local->ops->add_interface(&local->hw, &sdata->vif); trace_drv_return_int(local, ret); if (ret == 0) sdata->flags |= IEEE80211_SDATA_IN_DRIVER; return ret; } int drv_change_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type, bool p2p) { int ret; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_change_interface(local, sdata, type, p2p); ret = local->ops->change_interface(&local->hw, &sdata->vif, type, p2p); trace_drv_return_int(local, ret); return ret; } void drv_remove_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; trace_drv_remove_interface(local, sdata); local->ops->remove_interface(&local->hw, &sdata->vif); sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; trace_drv_return_void(local); } __must_check int drv_sta_state(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state) { int ret = 0; might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sta_state(local, sdata, &sta->sta, old_state, new_state); if (local->ops->sta_state) { ret = local->ops->sta_state(&local->hw, &sdata->vif, &sta->sta, old_state, new_state); } else if (old_state == IEEE80211_STA_AUTH && new_state == IEEE80211_STA_ASSOC) { ret = drv_sta_add(local, sdata, &sta->sta); if (ret == 0) { sta->uploaded = true; if (rcu_access_pointer(sta->sta.rates)) drv_sta_rate_tbl_update(local, sdata, &sta->sta); } } else if (old_state == IEEE80211_STA_ASSOC && new_state == IEEE80211_STA_AUTH) { drv_sta_remove(local, sdata, &sta->sta); } trace_drv_return_int(local, ret); return ret; } __must_check int drv_sta_set_txpwr(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { int ret = -EOPNOTSUPP; might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sta_set_txpwr(local, sdata, &sta->sta); if (local->ops->sta_set_txpwr) ret = local->ops->sta_set_txpwr(&local->hw, &sdata->vif, &sta->sta); trace_drv_return_int(local, ret); return ret; } void drv_sta_rc_update(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u32 changed) { sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; WARN_ON(changed & IEEE80211_RC_SUPP_RATES_CHANGED && (sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT)); trace_drv_sta_rc_update(local, sdata, sta, changed); if (local->ops->sta_rc_update) local->ops->sta_rc_update(&local->hw, &sdata->vif, sta, changed); trace_drv_return_void(local); } int drv_conf_tx(struct ieee80211_local *local, struct ieee80211_link_data *link, u16 ac, const struct ieee80211_tx_queue_params *params) { struct ieee80211_sub_if_data *sdata = link->sdata; int ret = -EOPNOTSUPP; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; if (sdata->vif.active_links && !(sdata->vif.active_links & BIT(link->link_id))) return 0; if (params->cw_min == 0 || params->cw_min > params->cw_max) { /* * If we can't configure hardware anyway, don't warn. We may * never have initialized the CW parameters. */ WARN_ONCE(local->ops->conf_tx, "%s: invalid CW_min/CW_max: %d/%d\n", sdata->name, params->cw_min, params->cw_max); return -EINVAL; } trace_drv_conf_tx(local, sdata, link->link_id, ac, params); if (local->ops->conf_tx) ret = local->ops->conf_tx(&local->hw, &sdata->vif, link->link_id, ac, params); trace_drv_return_int(local, ret); return ret; } u64 drv_get_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { u64 ret = -1ULL; might_sleep(); if (!check_sdata_in_driver(sdata)) return ret; trace_drv_get_tsf(local, sdata); if (local->ops->get_tsf) ret = local->ops->get_tsf(&local->hw, &sdata->vif); trace_drv_return_u64(local, ret); return ret; } void drv_set_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u64 tsf) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; trace_drv_set_tsf(local, sdata, tsf); if (local->ops->set_tsf) local->ops->set_tsf(&local->hw, &sdata->vif, tsf); trace_drv_return_void(local); } void drv_offset_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, s64 offset) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; trace_drv_offset_tsf(local, sdata, offset); if (local->ops->offset_tsf) local->ops->offset_tsf(&local->hw, &sdata->vif, offset); trace_drv_return_void(local); } void drv_reset_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; trace_drv_reset_tsf(local, sdata); if (local->ops->reset_tsf) local->ops->reset_tsf(&local->hw, &sdata->vif); trace_drv_return_void(local); } int drv_assign_vif_chanctx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx *ctx) { int ret = 0; drv_verify_link_exists(sdata, link_conf); if (!check_sdata_in_driver(sdata)) return -EIO; if (sdata->vif.active_links && !(sdata->vif.active_links & BIT(link_conf->link_id))) return 0; trace_drv_assign_vif_chanctx(local, sdata, link_conf, ctx); if (local->ops->assign_vif_chanctx) { WARN_ON_ONCE(!ctx->driver_present); ret = local->ops->assign_vif_chanctx(&local->hw, &sdata->vif, link_conf, &ctx->conf); } trace_drv_return_int(local, ret); return ret; } void drv_unassign_vif_chanctx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx *ctx) { might_sleep(); drv_verify_link_exists(sdata, link_conf); if (!check_sdata_in_driver(sdata)) return; if (sdata->vif.active_links && !(sdata->vif.active_links & BIT(link_conf->link_id))) return; trace_drv_unassign_vif_chanctx(local, sdata, link_conf, ctx); if (local->ops->unassign_vif_chanctx) { WARN_ON_ONCE(!ctx->driver_present); local->ops->unassign_vif_chanctx(&local->hw, &sdata->vif, link_conf, &ctx->conf); } trace_drv_return_void(local); } int drv_switch_vif_chanctx(struct ieee80211_local *local, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs, enum ieee80211_chanctx_switch_mode mode) { int ret = 0; int i; might_sleep(); if (!local->ops->switch_vif_chanctx) return -EOPNOTSUPP; for (i = 0; i < n_vifs; i++) { struct ieee80211_chanctx *new_ctx = container_of(vifs[i].new_ctx, struct ieee80211_chanctx, conf); struct ieee80211_chanctx *old_ctx = container_of(vifs[i].old_ctx, struct ieee80211_chanctx, conf); WARN_ON_ONCE(!old_ctx->driver_present); WARN_ON_ONCE((mode == CHANCTX_SWMODE_SWAP_CONTEXTS && new_ctx->driver_present) || (mode == CHANCTX_SWMODE_REASSIGN_VIF && !new_ctx->driver_present)); } trace_drv_switch_vif_chanctx(local, vifs, n_vifs, mode); ret = local->ops->switch_vif_chanctx(&local->hw, vifs, n_vifs, mode); trace_drv_return_int(local, ret); if (!ret && mode == CHANCTX_SWMODE_SWAP_CONTEXTS) { for (i = 0; i < n_vifs; i++) { struct ieee80211_chanctx *new_ctx = container_of(vifs[i].new_ctx, struct ieee80211_chanctx, conf); struct ieee80211_chanctx *old_ctx = container_of(vifs[i].old_ctx, struct ieee80211_chanctx, conf); new_ctx->driver_present = true; old_ctx->driver_present = false; } } return ret; } int drv_ampdu_action(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_ampdu_params *params) { int ret = -EOPNOTSUPP; might_sleep(); if (!sdata) return -EIO; sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_ampdu_action(local, sdata, params); if (local->ops->ampdu_action) ret = local->ops->ampdu_action(&local->hw, &sdata->vif, params); trace_drv_return_int(local, ret); return ret; } void drv_link_info_changed(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *info, int link_id, u64 changed) { might_sleep(); if (WARN_ON_ONCE(changed & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED) && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_OCB)) return; if (WARN_ON_ONCE(sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE || sdata->vif.type == NL80211_IFTYPE_NAN || (sdata->vif.type == NL80211_IFTYPE_MONITOR && !sdata->vif.bss_conf.mu_mimo_owner && !(changed & BSS_CHANGED_TXPOWER)))) return; if (!check_sdata_in_driver(sdata)) return; if (sdata->vif.active_links && !(sdata->vif.active_links & BIT(link_id))) return; trace_drv_link_info_changed(local, sdata, info, changed); if (local->ops->link_info_changed) local->ops->link_info_changed(&local->hw, &sdata->vif, info, changed); else if (local->ops->bss_info_changed) local->ops->bss_info_changed(&local->hw, &sdata->vif, info, changed); trace_drv_return_void(local); } int drv_set_key(struct ieee80211_local *local, enum set_key_cmd cmd, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { int ret; might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return -EIO; if (WARN_ON(key->link_id >= 0 && sdata->vif.active_links && !(sdata->vif.active_links & BIT(key->link_id)))) return -ENOLINK; trace_drv_set_key(local, cmd, sdata, sta, key); ret = local->ops->set_key(&local->hw, cmd, &sdata->vif, sta, key); trace_drv_return_int(local, ret); return ret; } int drv_change_vif_links(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 old_links, u16 new_links, struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS]) { struct ieee80211_link_data *link; unsigned long links_to_add; unsigned long links_to_rem; unsigned int link_id; int ret = -EOPNOTSUPP; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; if (old_links == new_links) return 0; links_to_add = ~old_links & new_links; links_to_rem = old_links & ~new_links; for_each_set_bit(link_id, &links_to_rem, IEEE80211_MLD_MAX_NUM_LINKS) { link = rcu_access_pointer(sdata->link[link_id]); ieee80211_link_debugfs_drv_remove(link); } trace_drv_change_vif_links(local, sdata, old_links, new_links); if (local->ops->change_vif_links) ret = local->ops->change_vif_links(&local->hw, &sdata->vif, old_links, new_links, old); trace_drv_return_int(local, ret); if (ret) return ret; for_each_set_bit(link_id, &links_to_add, IEEE80211_MLD_MAX_NUM_LINKS) { link = rcu_access_pointer(sdata->link[link_id]); ieee80211_link_debugfs_drv_add(link); } return 0; } int drv_change_sta_links(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u16 old_links, u16 new_links) { struct sta_info *info = container_of(sta, struct sta_info, sta); struct link_sta_info *link_sta; unsigned long links_to_add; unsigned long links_to_rem; unsigned int link_id; int ret = -EOPNOTSUPP; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; old_links &= sdata->vif.active_links; new_links &= sdata->vif.active_links; if (old_links == new_links) return 0; links_to_add = ~old_links & new_links; links_to_rem = old_links & ~new_links; for_each_set_bit(link_id, &links_to_rem, IEEE80211_MLD_MAX_NUM_LINKS) { link_sta = rcu_dereference_protected(info->link[link_id], lockdep_is_held(&local->sta_mtx)); ieee80211_link_sta_debugfs_drv_remove(link_sta); } trace_drv_change_sta_links(local, sdata, sta, old_links, new_links); if (local->ops->change_sta_links) ret = local->ops->change_sta_links(&local->hw, &sdata->vif, sta, old_links, new_links); trace_drv_return_int(local, ret); if (ret) return ret; for_each_set_bit(link_id, &links_to_add, IEEE80211_MLD_MAX_NUM_LINKS) { link_sta = rcu_dereference_protected(info->link[link_id], lockdep_is_held(&local->sta_mtx)); ieee80211_link_sta_debugfs_drv_add(link_sta); } return 0; }
linux-master
net/mac80211/driver-ops.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2019 Felix Fietkau <[email protected]> * Copyright (C) 2021-2022 Intel Corporation */ #include <net/mac80211.h> #include "ieee80211_i.h" #include "sta_info.h" #define AVG_PKT_SIZE 1024 /* Number of bits for an average sized packet */ #define MCS_NBITS (AVG_PKT_SIZE << 3) /* Number of kilo-symbols (symbols * 1024) for a packet with (bps) bits per * symbol. We use k-symbols to avoid rounding in the _TIME macros below. */ #define MCS_N_KSYMS(bps) DIV_ROUND_UP(MCS_NBITS << 10, (bps)) /* Transmission time (in 1024 * usec) for a packet containing (ksyms) * 1024 * symbols. */ #define MCS_SYMBOL_TIME(sgi, ksyms) \ (sgi ? \ ((ksyms) * 4 * 18) / 20 : /* 3.6 us per sym */ \ ((ksyms) * 4) /* 4.0 us per sym */ \ ) /* Transmit duration for the raw data part of an average sized packet */ #define MCS_DURATION(streams, sgi, bps) \ ((u32)MCS_SYMBOL_TIME(sgi, MCS_N_KSYMS((streams) * (bps)))) #define MCS_DURATION_S(shift, streams, sgi, bps) \ ((u16)((MCS_DURATION(streams, sgi, bps) >> shift))) /* These should match the values in enum nl80211_he_gi */ #define HE_GI_08 0 #define HE_GI_16 1 #define HE_GI_32 2 /* Transmission time (1024 usec) for a packet containing (ksyms) * k-symbols */ #define HE_SYMBOL_TIME(gi, ksyms) \ (gi == HE_GI_08 ? \ ((ksyms) * 16 * 17) / 20 : /* 13.6 us per sym */ \ (gi == HE_GI_16 ? \ ((ksyms) * 16 * 18) / 20 : /* 14.4 us per sym */ \ ((ksyms) * 16) /* 16.0 us per sym */ \ )) /* Transmit duration for the raw data part of an average sized packet */ #define HE_DURATION(streams, gi, bps) \ ((u32)HE_SYMBOL_TIME(gi, MCS_N_KSYMS((streams) * (bps)))) #define HE_DURATION_S(shift, streams, gi, bps) \ (HE_DURATION(streams, gi, bps) >> shift) #define BW_20 0 #define BW_40 1 #define BW_80 2 #define BW_160 3 /* * Define group sort order: HT40 -> SGI -> #streams */ #define IEEE80211_MAX_STREAMS 4 #define IEEE80211_HT_STREAM_GROUPS 4 /* BW(=2) * SGI(=2) */ #define IEEE80211_VHT_STREAM_GROUPS 8 /* BW(=4) * SGI(=2) */ #define IEEE80211_HE_MAX_STREAMS 8 #define IEEE80211_HT_GROUPS_NB (IEEE80211_MAX_STREAMS * \ IEEE80211_HT_STREAM_GROUPS) #define IEEE80211_VHT_GROUPS_NB (IEEE80211_MAX_STREAMS * \ IEEE80211_VHT_STREAM_GROUPS) #define IEEE80211_HT_GROUP_0 0 #define IEEE80211_VHT_GROUP_0 (IEEE80211_HT_GROUP_0 + IEEE80211_HT_GROUPS_NB) #define IEEE80211_HE_GROUP_0 (IEEE80211_VHT_GROUP_0 + IEEE80211_VHT_GROUPS_NB) #define MCS_GROUP_RATES 12 #define HT_GROUP_IDX(_streams, _sgi, _ht40) \ IEEE80211_HT_GROUP_0 + \ IEEE80211_MAX_STREAMS * 2 * _ht40 + \ IEEE80211_MAX_STREAMS * _sgi + \ _streams - 1 #define _MAX(a, b) (((a)>(b))?(a):(b)) #define GROUP_SHIFT(duration) \ _MAX(0, 16 - __builtin_clz(duration)) /* MCS rate information for an MCS group */ #define __MCS_GROUP(_streams, _sgi, _ht40, _s) \ [HT_GROUP_IDX(_streams, _sgi, _ht40)] = { \ .shift = _s, \ .duration = { \ MCS_DURATION_S(_s, _streams, _sgi, _ht40 ? 54 : 26), \ MCS_DURATION_S(_s, _streams, _sgi, _ht40 ? 108 : 52), \ MCS_DURATION_S(_s, _streams, _sgi, _ht40 ? 162 : 78), \ MCS_DURATION_S(_s, _streams, _sgi, _ht40 ? 216 : 104), \ MCS_DURATION_S(_s, _streams, _sgi, _ht40 ? 324 : 156), \ MCS_DURATION_S(_s, _streams, _sgi, _ht40 ? 432 : 208), \ MCS_DURATION_S(_s, _streams, _sgi, _ht40 ? 486 : 234), \ MCS_DURATION_S(_s, _streams, _sgi, _ht40 ? 540 : 260) \ } \ } #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40) \ GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26)) #define MCS_GROUP(_streams, _sgi, _ht40) \ __MCS_GROUP(_streams, _sgi, _ht40, \ MCS_GROUP_SHIFT(_streams, _sgi, _ht40)) #define VHT_GROUP_IDX(_streams, _sgi, _bw) \ (IEEE80211_VHT_GROUP_0 + \ IEEE80211_MAX_STREAMS * 2 * (_bw) + \ IEEE80211_MAX_STREAMS * (_sgi) + \ (_streams) - 1) #define BW2VBPS(_bw, r4, r3, r2, r1) \ (_bw == BW_160 ? r4 : _bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1) #define __VHT_GROUP(_streams, _sgi, _bw, _s) \ [VHT_GROUP_IDX(_streams, _sgi, _bw)] = { \ .shift = _s, \ .duration = { \ MCS_DURATION_S(_s, _streams, _sgi, \ BW2VBPS(_bw, 234, 117, 54, 26)), \ MCS_DURATION_S(_s, _streams, _sgi, \ BW2VBPS(_bw, 468, 234, 108, 52)), \ MCS_DURATION_S(_s, _streams, _sgi, \ BW2VBPS(_bw, 702, 351, 162, 78)), \ MCS_DURATION_S(_s, _streams, _sgi, \ BW2VBPS(_bw, 936, 468, 216, 104)), \ MCS_DURATION_S(_s, _streams, _sgi, \ BW2VBPS(_bw, 1404, 702, 324, 156)), \ MCS_DURATION_S(_s, _streams, _sgi, \ BW2VBPS(_bw, 1872, 936, 432, 208)), \ MCS_DURATION_S(_s, _streams, _sgi, \ BW2VBPS(_bw, 2106, 1053, 486, 234)), \ MCS_DURATION_S(_s, _streams, _sgi, \ BW2VBPS(_bw, 2340, 1170, 540, 260)), \ MCS_DURATION_S(_s, _streams, _sgi, \ BW2VBPS(_bw, 2808, 1404, 648, 312)), \ MCS_DURATION_S(_s, _streams, _sgi, \ BW2VBPS(_bw, 3120, 1560, 720, 346)) \ } \ } #define VHT_GROUP_SHIFT(_streams, _sgi, _bw) \ GROUP_SHIFT(MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 243, 117, 54, 26))) #define VHT_GROUP(_streams, _sgi, _bw) \ __VHT_GROUP(_streams, _sgi, _bw, \ VHT_GROUP_SHIFT(_streams, _sgi, _bw)) #define HE_GROUP_IDX(_streams, _gi, _bw) \ (IEEE80211_HE_GROUP_0 + \ IEEE80211_HE_MAX_STREAMS * 3 * (_bw) + \ IEEE80211_HE_MAX_STREAMS * (_gi) + \ (_streams) - 1) #define __HE_GROUP(_streams, _gi, _bw, _s) \ [HE_GROUP_IDX(_streams, _gi, _bw)] = { \ .shift = _s, \ .duration = { \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 979, 489, 230, 115)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 1958, 979, 475, 230)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 2937, 1468, 705, 345)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 3916, 1958, 936, 475)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 5875, 2937, 1411, 705)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 7833, 3916, 1872, 936)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 8827, 4406, 2102, 1051)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 9806, 4896, 2347, 1166)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 11764, 5875, 2808, 1411)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 13060, 6523, 3124, 1555)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 14702, 7344, 3513, 1756)), \ HE_DURATION_S(_s, _streams, _gi, \ BW2VBPS(_bw, 16329, 8164, 3902, 1944)) \ } \ } #define HE_GROUP_SHIFT(_streams, _gi, _bw) \ GROUP_SHIFT(HE_DURATION(_streams, _gi, \ BW2VBPS(_bw, 979, 489, 230, 115))) #define HE_GROUP(_streams, _gi, _bw) \ __HE_GROUP(_streams, _gi, _bw, \ HE_GROUP_SHIFT(_streams, _gi, _bw)) struct mcs_group { u8 shift; u16 duration[MCS_GROUP_RATES]; }; static const struct mcs_group airtime_mcs_groups[] = { MCS_GROUP(1, 0, BW_20), MCS_GROUP(2, 0, BW_20), MCS_GROUP(3, 0, BW_20), MCS_GROUP(4, 0, BW_20), MCS_GROUP(1, 1, BW_20), MCS_GROUP(2, 1, BW_20), MCS_GROUP(3, 1, BW_20), MCS_GROUP(4, 1, BW_20), MCS_GROUP(1, 0, BW_40), MCS_GROUP(2, 0, BW_40), MCS_GROUP(3, 0, BW_40), MCS_GROUP(4, 0, BW_40), MCS_GROUP(1, 1, BW_40), MCS_GROUP(2, 1, BW_40), MCS_GROUP(3, 1, BW_40), MCS_GROUP(4, 1, BW_40), VHT_GROUP(1, 0, BW_20), VHT_GROUP(2, 0, BW_20), VHT_GROUP(3, 0, BW_20), VHT_GROUP(4, 0, BW_20), VHT_GROUP(1, 1, BW_20), VHT_GROUP(2, 1, BW_20), VHT_GROUP(3, 1, BW_20), VHT_GROUP(4, 1, BW_20), VHT_GROUP(1, 0, BW_40), VHT_GROUP(2, 0, BW_40), VHT_GROUP(3, 0, BW_40), VHT_GROUP(4, 0, BW_40), VHT_GROUP(1, 1, BW_40), VHT_GROUP(2, 1, BW_40), VHT_GROUP(3, 1, BW_40), VHT_GROUP(4, 1, BW_40), VHT_GROUP(1, 0, BW_80), VHT_GROUP(2, 0, BW_80), VHT_GROUP(3, 0, BW_80), VHT_GROUP(4, 0, BW_80), VHT_GROUP(1, 1, BW_80), VHT_GROUP(2, 1, BW_80), VHT_GROUP(3, 1, BW_80), VHT_GROUP(4, 1, BW_80), VHT_GROUP(1, 0, BW_160), VHT_GROUP(2, 0, BW_160), VHT_GROUP(3, 0, BW_160), VHT_GROUP(4, 0, BW_160), VHT_GROUP(1, 1, BW_160), VHT_GROUP(2, 1, BW_160), VHT_GROUP(3, 1, BW_160), VHT_GROUP(4, 1, BW_160), HE_GROUP(1, HE_GI_08, BW_20), HE_GROUP(2, HE_GI_08, BW_20), HE_GROUP(3, HE_GI_08, BW_20), HE_GROUP(4, HE_GI_08, BW_20), HE_GROUP(5, HE_GI_08, BW_20), HE_GROUP(6, HE_GI_08, BW_20), HE_GROUP(7, HE_GI_08, BW_20), HE_GROUP(8, HE_GI_08, BW_20), HE_GROUP(1, HE_GI_16, BW_20), HE_GROUP(2, HE_GI_16, BW_20), HE_GROUP(3, HE_GI_16, BW_20), HE_GROUP(4, HE_GI_16, BW_20), HE_GROUP(5, HE_GI_16, BW_20), HE_GROUP(6, HE_GI_16, BW_20), HE_GROUP(7, HE_GI_16, BW_20), HE_GROUP(8, HE_GI_16, BW_20), HE_GROUP(1, HE_GI_32, BW_20), HE_GROUP(2, HE_GI_32, BW_20), HE_GROUP(3, HE_GI_32, BW_20), HE_GROUP(4, HE_GI_32, BW_20), HE_GROUP(5, HE_GI_32, BW_20), HE_GROUP(6, HE_GI_32, BW_20), HE_GROUP(7, HE_GI_32, BW_20), HE_GROUP(8, HE_GI_32, BW_20), HE_GROUP(1, HE_GI_08, BW_40), HE_GROUP(2, HE_GI_08, BW_40), HE_GROUP(3, HE_GI_08, BW_40), HE_GROUP(4, HE_GI_08, BW_40), HE_GROUP(5, HE_GI_08, BW_40), HE_GROUP(6, HE_GI_08, BW_40), HE_GROUP(7, HE_GI_08, BW_40), HE_GROUP(8, HE_GI_08, BW_40), HE_GROUP(1, HE_GI_16, BW_40), HE_GROUP(2, HE_GI_16, BW_40), HE_GROUP(3, HE_GI_16, BW_40), HE_GROUP(4, HE_GI_16, BW_40), HE_GROUP(5, HE_GI_16, BW_40), HE_GROUP(6, HE_GI_16, BW_40), HE_GROUP(7, HE_GI_16, BW_40), HE_GROUP(8, HE_GI_16, BW_40), HE_GROUP(1, HE_GI_32, BW_40), HE_GROUP(2, HE_GI_32, BW_40), HE_GROUP(3, HE_GI_32, BW_40), HE_GROUP(4, HE_GI_32, BW_40), HE_GROUP(5, HE_GI_32, BW_40), HE_GROUP(6, HE_GI_32, BW_40), HE_GROUP(7, HE_GI_32, BW_40), HE_GROUP(8, HE_GI_32, BW_40), HE_GROUP(1, HE_GI_08, BW_80), HE_GROUP(2, HE_GI_08, BW_80), HE_GROUP(3, HE_GI_08, BW_80), HE_GROUP(4, HE_GI_08, BW_80), HE_GROUP(5, HE_GI_08, BW_80), HE_GROUP(6, HE_GI_08, BW_80), HE_GROUP(7, HE_GI_08, BW_80), HE_GROUP(8, HE_GI_08, BW_80), HE_GROUP(1, HE_GI_16, BW_80), HE_GROUP(2, HE_GI_16, BW_80), HE_GROUP(3, HE_GI_16, BW_80), HE_GROUP(4, HE_GI_16, BW_80), HE_GROUP(5, HE_GI_16, BW_80), HE_GROUP(6, HE_GI_16, BW_80), HE_GROUP(7, HE_GI_16, BW_80), HE_GROUP(8, HE_GI_16, BW_80), HE_GROUP(1, HE_GI_32, BW_80), HE_GROUP(2, HE_GI_32, BW_80), HE_GROUP(3, HE_GI_32, BW_80), HE_GROUP(4, HE_GI_32, BW_80), HE_GROUP(5, HE_GI_32, BW_80), HE_GROUP(6, HE_GI_32, BW_80), HE_GROUP(7, HE_GI_32, BW_80), HE_GROUP(8, HE_GI_32, BW_80), HE_GROUP(1, HE_GI_08, BW_160), HE_GROUP(2, HE_GI_08, BW_160), HE_GROUP(3, HE_GI_08, BW_160), HE_GROUP(4, HE_GI_08, BW_160), HE_GROUP(5, HE_GI_08, BW_160), HE_GROUP(6, HE_GI_08, BW_160), HE_GROUP(7, HE_GI_08, BW_160), HE_GROUP(8, HE_GI_08, BW_160), HE_GROUP(1, HE_GI_16, BW_160), HE_GROUP(2, HE_GI_16, BW_160), HE_GROUP(3, HE_GI_16, BW_160), HE_GROUP(4, HE_GI_16, BW_160), HE_GROUP(5, HE_GI_16, BW_160), HE_GROUP(6, HE_GI_16, BW_160), HE_GROUP(7, HE_GI_16, BW_160), HE_GROUP(8, HE_GI_16, BW_160), HE_GROUP(1, HE_GI_32, BW_160), HE_GROUP(2, HE_GI_32, BW_160), HE_GROUP(3, HE_GI_32, BW_160), HE_GROUP(4, HE_GI_32, BW_160), HE_GROUP(5, HE_GI_32, BW_160), HE_GROUP(6, HE_GI_32, BW_160), HE_GROUP(7, HE_GI_32, BW_160), HE_GROUP(8, HE_GI_32, BW_160), }; static u32 ieee80211_calc_legacy_rate_duration(u16 bitrate, bool short_pre, bool cck, int len) { u32 duration; if (cck) { duration = 144 + 48; /* preamble + PLCP */ if (short_pre) duration >>= 1; duration += 10; /* SIFS */ } else { duration = 20 + 16; /* premable + SIFS */ } len <<= 3; duration += (len * 10) / bitrate; return duration; } static u32 ieee80211_get_rate_duration(struct ieee80211_hw *hw, struct ieee80211_rx_status *status, u32 *overhead) { bool sgi = status->enc_flags & RX_ENC_FLAG_SHORT_GI; int bw, streams; int group, idx; u32 duration; switch (status->bw) { case RATE_INFO_BW_20: bw = BW_20; break; case RATE_INFO_BW_40: bw = BW_40; break; case RATE_INFO_BW_80: bw = BW_80; break; case RATE_INFO_BW_160: bw = BW_160; break; default: WARN_ON_ONCE(1); return 0; } switch (status->encoding) { case RX_ENC_VHT: streams = status->nss; idx = status->rate_idx; group = VHT_GROUP_IDX(streams, sgi, bw); break; case RX_ENC_HT: streams = ((status->rate_idx >> 3) & 3) + 1; idx = status->rate_idx & 7; group = HT_GROUP_IDX(streams, sgi, bw); break; case RX_ENC_HE: streams = status->nss; idx = status->rate_idx; group = HE_GROUP_IDX(streams, status->he_gi, bw); break; default: WARN_ON_ONCE(1); return 0; } if (WARN_ON_ONCE((status->encoding != RX_ENC_HE && streams > 4) || (status->encoding == RX_ENC_HE && streams > 8))) return 0; if (idx >= MCS_GROUP_RATES) return 0; duration = airtime_mcs_groups[group].duration[idx]; duration <<= airtime_mcs_groups[group].shift; *overhead = 36 + (streams << 2); return duration; } u32 ieee80211_calc_rx_airtime(struct ieee80211_hw *hw, struct ieee80211_rx_status *status, int len) { struct ieee80211_supported_band *sband; u32 duration, overhead = 0; if (status->encoding == RX_ENC_LEGACY) { const struct ieee80211_rate *rate; bool sp = status->enc_flags & RX_ENC_FLAG_SHORTPRE; bool cck; /* on 60GHz or sub-1GHz band, there are no legacy rates */ if (WARN_ON_ONCE(status->band == NL80211_BAND_60GHZ || status->band == NL80211_BAND_S1GHZ)) return 0; sband = hw->wiphy->bands[status->band]; if (!sband || status->rate_idx >= sband->n_bitrates) return 0; rate = &sband->bitrates[status->rate_idx]; cck = rate->flags & IEEE80211_RATE_MANDATORY_B; return ieee80211_calc_legacy_rate_duration(rate->bitrate, sp, cck, len); } duration = ieee80211_get_rate_duration(hw, status, &overhead); if (!duration) return 0; duration *= len; duration /= AVG_PKT_SIZE; duration /= 1024; return duration + overhead; } EXPORT_SYMBOL_GPL(ieee80211_calc_rx_airtime); static bool ieee80211_fill_rate_info(struct ieee80211_hw *hw, struct ieee80211_rx_status *stat, u8 band, struct rate_info *ri) { struct ieee80211_supported_band *sband = hw->wiphy->bands[band]; int i; if (!ri || !sband) return false; stat->bw = ri->bw; stat->nss = ri->nss; stat->rate_idx = ri->mcs; if (ri->flags & RATE_INFO_FLAGS_HE_MCS) stat->encoding = RX_ENC_HE; else if (ri->flags & RATE_INFO_FLAGS_VHT_MCS) stat->encoding = RX_ENC_VHT; else if (ri->flags & RATE_INFO_FLAGS_MCS) stat->encoding = RX_ENC_HT; else stat->encoding = RX_ENC_LEGACY; if (ri->flags & RATE_INFO_FLAGS_SHORT_GI) stat->enc_flags |= RX_ENC_FLAG_SHORT_GI; stat->he_gi = ri->he_gi; if (stat->encoding != RX_ENC_LEGACY) return true; stat->rate_idx = 0; for (i = 0; i < sband->n_bitrates; i++) { if (ri->legacy != sband->bitrates[i].bitrate) continue; stat->rate_idx = i; return true; } return false; } static int ieee80211_fill_rx_status(struct ieee80211_rx_status *stat, struct ieee80211_hw *hw, struct ieee80211_tx_rate *rate, struct rate_info *ri, u8 band, int len) { memset(stat, 0, sizeof(*stat)); stat->band = band; if (ieee80211_fill_rate_info(hw, stat, band, ri)) return 0; if (rate->idx < 0 || !rate->count) return -1; if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH) stat->bw = RATE_INFO_BW_160; else if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH) stat->bw = RATE_INFO_BW_80; else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) stat->bw = RATE_INFO_BW_40; else stat->bw = RATE_INFO_BW_20; stat->enc_flags = 0; if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) stat->enc_flags |= RX_ENC_FLAG_SHORTPRE; if (rate->flags & IEEE80211_TX_RC_SHORT_GI) stat->enc_flags |= RX_ENC_FLAG_SHORT_GI; stat->rate_idx = rate->idx; if (rate->flags & IEEE80211_TX_RC_VHT_MCS) { stat->encoding = RX_ENC_VHT; stat->rate_idx = ieee80211_rate_get_vht_mcs(rate); stat->nss = ieee80211_rate_get_vht_nss(rate); } else if (rate->flags & IEEE80211_TX_RC_MCS) { stat->encoding = RX_ENC_HT; } else { stat->encoding = RX_ENC_LEGACY; } return 0; } static u32 ieee80211_calc_tx_airtime_rate(struct ieee80211_hw *hw, struct ieee80211_tx_rate *rate, struct rate_info *ri, u8 band, int len) { struct ieee80211_rx_status stat; if (ieee80211_fill_rx_status(&stat, hw, rate, ri, band, len)) return 0; return ieee80211_calc_rx_airtime(hw, &stat, len); } u32 ieee80211_calc_tx_airtime(struct ieee80211_hw *hw, struct ieee80211_tx_info *info, int len) { u32 duration = 0; int i; for (i = 0; i < ARRAY_SIZE(info->status.rates); i++) { struct ieee80211_tx_rate *rate = &info->status.rates[i]; u32 cur_duration; cur_duration = ieee80211_calc_tx_airtime_rate(hw, rate, NULL, info->band, len); if (!cur_duration) break; duration += cur_duration * rate->count; } return duration; } EXPORT_SYMBOL_GPL(ieee80211_calc_tx_airtime); u32 ieee80211_calc_expected_tx_airtime(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *pubsta, int len, bool ampdu) { struct ieee80211_supported_band *sband; struct ieee80211_chanctx_conf *conf; int rateidx, shift = 0; bool cck, short_pream; u32 basic_rates; u8 band = 0; u16 rate; len += 38; /* Ethernet header length */ conf = rcu_dereference(vif->bss_conf.chanctx_conf); if (conf) { band = conf->def.chan->band; shift = ieee80211_chandef_get_shift(&conf->def); } if (pubsta) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_rx_status stat; struct ieee80211_tx_rate *tx_rate = &sta->deflink.tx_stats.last_rate; struct rate_info *ri = &sta->deflink.tx_stats.last_rate_info; u32 duration, overhead; u8 agg_shift; if (ieee80211_fill_rx_status(&stat, hw, tx_rate, ri, band, len)) return 0; if (stat.encoding == RX_ENC_LEGACY || !ampdu) return ieee80211_calc_rx_airtime(hw, &stat, len); duration = ieee80211_get_rate_duration(hw, &stat, &overhead); /* * Assume that HT/VHT transmission on any AC except VO will * use aggregation. Since we don't have reliable reporting * of aggregation length, assume an average size based on the * tx rate. * This will not be very accurate, but much better than simply * assuming un-aggregated tx in all cases. */ if (duration > 400 * 1024) /* <= VHT20 MCS2 1S */ agg_shift = 1; else if (duration > 250 * 1024) /* <= VHT20 MCS3 1S or MCS1 2S */ agg_shift = 2; else if (duration > 150 * 1024) /* <= VHT20 MCS5 1S or MCS2 2S */ agg_shift = 3; else if (duration > 70 * 1024) /* <= VHT20 MCS5 2S */ agg_shift = 4; else if (stat.encoding != RX_ENC_HE || duration > 20 * 1024) /* <= HE40 MCS6 2S */ agg_shift = 5; else agg_shift = 6; duration *= len; duration /= AVG_PKT_SIZE; duration /= 1024; duration += (overhead >> agg_shift); return max_t(u32, duration, 4); } if (!conf) return 0; /* No station to get latest rate from, so calculate the worst-case * duration using the lowest configured basic rate. */ sband = hw->wiphy->bands[band]; basic_rates = vif->bss_conf.basic_rates; short_pream = vif->bss_conf.use_short_preamble; rateidx = basic_rates ? ffs(basic_rates) - 1 : 0; rate = sband->bitrates[rateidx].bitrate << shift; cck = sband->bitrates[rateidx].flags & IEEE80211_RATE_MANDATORY_B; return ieee80211_calc_legacy_rate_duration(rate, short_pream, cck, len); }
linux-master
net/mac80211/airtime.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2003-2005 Devicescape Software, Inc. * Copyright (c) 2006 Jiri Benc <[email protected]> * Copyright 2007 Johannes Berg <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright(c) 2016 Intel Deutschland GmbH * Copyright (C) 2018 - 2022 Intel Corporation */ #include <linux/debugfs.h> #include <linux/ieee80211.h> #include "ieee80211_i.h" #include "debugfs.h" #include "debugfs_sta.h" #include "sta_info.h" #include "driver-ops.h" /* sta attributtes */ #define STA_READ(name, field, format_string) \ static ssize_t sta_ ##name## _read(struct file *file, \ char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ struct sta_info *sta = file->private_data; \ return mac80211_format_buffer(userbuf, count, ppos, \ format_string, sta->field); \ } #define STA_READ_D(name, field) STA_READ(name, field, "%d\n") #define STA_OPS(name) \ static const struct file_operations sta_ ##name## _ops = { \ .read = sta_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define STA_OPS_RW(name) \ static const struct file_operations sta_ ##name## _ops = { \ .read = sta_##name##_read, \ .write = sta_##name##_write, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define STA_FILE(name, field, format) \ STA_READ_##format(name, field) \ STA_OPS(name) STA_FILE(aid, sta.aid, D); static const char * const sta_flag_names[] = { #define FLAG(F) [WLAN_STA_##F] = #F FLAG(AUTH), FLAG(ASSOC), FLAG(PS_STA), FLAG(AUTHORIZED), FLAG(SHORT_PREAMBLE), FLAG(WDS), FLAG(CLEAR_PS_FILT), FLAG(MFP), FLAG(BLOCK_BA), FLAG(PS_DRIVER), FLAG(PSPOLL), FLAG(TDLS_PEER), FLAG(TDLS_PEER_AUTH), FLAG(TDLS_INITIATOR), FLAG(TDLS_CHAN_SWITCH), FLAG(TDLS_OFF_CHANNEL), FLAG(TDLS_WIDER_BW), FLAG(UAPSD), FLAG(SP), FLAG(4ADDR_EVENT), FLAG(INSERTED), FLAG(RATE_CONTROL), FLAG(TOFFSET_KNOWN), FLAG(MPSP_OWNER), FLAG(MPSP_RECIPIENT), FLAG(PS_DELIVER), FLAG(USES_ENCRYPTION), FLAG(DECAP_OFFLOAD), #undef FLAG }; static ssize_t sta_flags_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char buf[16 * NUM_WLAN_STA_FLAGS], *pos = buf; char *end = buf + sizeof(buf) - 1; struct sta_info *sta = file->private_data; unsigned int flg; BUILD_BUG_ON(ARRAY_SIZE(sta_flag_names) != NUM_WLAN_STA_FLAGS); for (flg = 0; flg < NUM_WLAN_STA_FLAGS; flg++) { if (test_sta_flag(sta, flg)) pos += scnprintf(pos, end - pos, "%s\n", sta_flag_names[flg]); } return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf)); } STA_OPS(flags); static ssize_t sta_num_ps_buf_frames_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; char buf[17*IEEE80211_NUM_ACS], *p = buf; int ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) p += scnprintf(p, sizeof(buf)+buf-p, "AC%d: %d\n", ac, skb_queue_len(&sta->ps_tx_buf[ac]) + skb_queue_len(&sta->tx_filtered[ac])); return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); } STA_OPS(num_ps_buf_frames); static ssize_t sta_last_seq_ctrl_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char buf[15*IEEE80211_NUM_TIDS], *p = buf; int i; struct sta_info *sta = file->private_data; for (i = 0; i < IEEE80211_NUM_TIDS; i++) p += scnprintf(p, sizeof(buf)+buf-p, "%x ", le16_to_cpu(sta->last_seq_ctrl[i])); p += scnprintf(p, sizeof(buf)+buf-p, "\n"); return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); } STA_OPS(last_seq_ctrl); #define AQM_TXQ_ENTRY_LEN 130 static ssize_t sta_aqm_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->local; size_t bufsz = AQM_TXQ_ENTRY_LEN * (IEEE80211_NUM_TIDS + 2); char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf; struct txq_info *txqi; ssize_t rv; int i; if (!buf) return -ENOMEM; spin_lock_bh(&local->fq.lock); rcu_read_lock(); p += scnprintf(p, bufsz + buf - p, "target %uus interval %uus ecn %s\n", codel_time_to_us(sta->cparams.target), codel_time_to_us(sta->cparams.interval), sta->cparams.ecn ? "yes" : "no"); p += scnprintf(p, bufsz + buf - p, "tid ac backlog-bytes backlog-packets new-flows drops marks overlimit collisions tx-bytes tx-packets flags\n"); for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { if (!sta->sta.txq[i]) continue; txqi = to_txq_info(sta->sta.txq[i]); p += scnprintf(p, bufsz + buf - p, "%d %d %u %u %u %u %u %u %u %u %u 0x%lx(%s%s%s%s)\n", txqi->txq.tid, txqi->txq.ac, txqi->tin.backlog_bytes, txqi->tin.backlog_packets, txqi->tin.flows, txqi->cstats.drop_count, txqi->cstats.ecn_mark, txqi->tin.overlimit, txqi->tin.collisions, txqi->tin.tx_bytes, txqi->tin.tx_packets, txqi->flags, test_bit(IEEE80211_TXQ_STOP, &txqi->flags) ? "STOP" : "RUN", test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags) ? " AMPDU" : "", test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags) ? " NO-AMSDU" : "", test_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) ? " DIRTY" : ""); } rcu_read_unlock(); spin_unlock_bh(&local->fq.lock); rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return rv; } STA_OPS(aqm); static ssize_t sta_airtime_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->sdata->local; size_t bufsz = 400; char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf; u64 rx_airtime = 0, tx_airtime = 0; s32 deficit[IEEE80211_NUM_ACS]; ssize_t rv; int ac; if (!buf) return -ENOMEM; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { spin_lock_bh(&local->active_txq_lock[ac]); rx_airtime += sta->airtime[ac].rx_airtime; tx_airtime += sta->airtime[ac].tx_airtime; deficit[ac] = sta->airtime[ac].deficit; spin_unlock_bh(&local->active_txq_lock[ac]); } p += scnprintf(p, bufsz + buf - p, "RX: %llu us\nTX: %llu us\nWeight: %u\n" "Deficit: VO: %d us VI: %d us BE: %d us BK: %d us\n", rx_airtime, tx_airtime, sta->airtime_weight, deficit[0], deficit[1], deficit[2], deficit[3]); rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return rv; } static ssize_t sta_airtime_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->sdata->local; int ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { spin_lock_bh(&local->active_txq_lock[ac]); sta->airtime[ac].rx_airtime = 0; sta->airtime[ac].tx_airtime = 0; sta->airtime[ac].deficit = sta->airtime_weight; spin_unlock_bh(&local->active_txq_lock[ac]); } return count; } STA_OPS_RW(airtime); static ssize_t sta_aql_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->sdata->local; size_t bufsz = 400; char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf; u32 q_depth[IEEE80211_NUM_ACS]; u32 q_limit_l[IEEE80211_NUM_ACS], q_limit_h[IEEE80211_NUM_ACS]; ssize_t rv; int ac; if (!buf) return -ENOMEM; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { spin_lock_bh(&local->active_txq_lock[ac]); q_limit_l[ac] = sta->airtime[ac].aql_limit_low; q_limit_h[ac] = sta->airtime[ac].aql_limit_high; spin_unlock_bh(&local->active_txq_lock[ac]); q_depth[ac] = atomic_read(&sta->airtime[ac].aql_tx_pending); } p += scnprintf(p, bufsz + buf - p, "Q depth: VO: %u us VI: %u us BE: %u us BK: %u us\n" "Q limit[low/high]: VO: %u/%u VI: %u/%u BE: %u/%u BK: %u/%u\n", q_depth[0], q_depth[1], q_depth[2], q_depth[3], q_limit_l[0], q_limit_h[0], q_limit_l[1], q_limit_h[1], q_limit_l[2], q_limit_h[2], q_limit_l[3], q_limit_h[3]); rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return rv; } static ssize_t sta_aql_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; u32 ac, q_limit_l, q_limit_h; char _buf[100] = {}, *buf = _buf; if (count > sizeof(_buf)) return -EINVAL; if (copy_from_user(buf, userbuf, count)) return -EFAULT; buf[sizeof(_buf) - 1] = '\0'; if (sscanf(buf, "limit %u %u %u", &ac, &q_limit_l, &q_limit_h) != 3) return -EINVAL; if (ac >= IEEE80211_NUM_ACS) return -EINVAL; sta->airtime[ac].aql_limit_low = q_limit_l; sta->airtime[ac].aql_limit_high = q_limit_h; return count; } STA_OPS_RW(aql); static ssize_t sta_agg_status_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf, *p; ssize_t bufsz = 71 + IEEE80211_NUM_TIDS * 40; int i; struct sta_info *sta = file->private_data; struct tid_ampdu_rx *tid_rx; struct tid_ampdu_tx *tid_tx; ssize_t ret; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; rcu_read_lock(); p += scnprintf(p, bufsz + buf - p, "next dialog_token: %#02x\n", sta->ampdu_mlme.dialog_token_allocator + 1); p += scnprintf(p, bufsz + buf - p, "TID\t\tRX\tDTKN\tSSN\t\tTX\tDTKN\tpending\n"); for (i = 0; i < IEEE80211_NUM_TIDS; i++) { bool tid_rx_valid; tid_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[i]); tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[i]); tid_rx_valid = test_bit(i, sta->ampdu_mlme.agg_session_valid); p += scnprintf(p, bufsz + buf - p, "%02d", i); p += scnprintf(p, bufsz + buf - p, "\t\t%x", tid_rx_valid); p += scnprintf(p, bufsz + buf - p, "\t%#.2x", tid_rx_valid ? sta->ampdu_mlme.tid_rx_token[i] : 0); p += scnprintf(p, bufsz + buf - p, "\t%#.3x", tid_rx ? tid_rx->ssn : 0); p += scnprintf(p, bufsz + buf - p, "\t\t%x", !!tid_tx); p += scnprintf(p, bufsz + buf - p, "\t%#.2x", tid_tx ? tid_tx->dialog_token : 0); p += scnprintf(p, bufsz + buf - p, "\t%03d", tid_tx ? skb_queue_len(&tid_tx->pending) : 0); p += scnprintf(p, bufsz + buf - p, "\n"); } rcu_read_unlock(); ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } static ssize_t sta_agg_status_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { char _buf[25] = {}, *buf = _buf; struct sta_info *sta = file->private_data; bool start, tx; unsigned long tid; char *pos; int ret, timeout = 5000; if (count > sizeof(_buf)) return -EINVAL; if (copy_from_user(buf, userbuf, count)) return -EFAULT; buf[sizeof(_buf) - 1] = '\0'; pos = buf; buf = strsep(&pos, " "); if (!buf) return -EINVAL; if (!strcmp(buf, "tx")) tx = true; else if (!strcmp(buf, "rx")) tx = false; else return -EINVAL; buf = strsep(&pos, " "); if (!buf) return -EINVAL; if (!strcmp(buf, "start")) { start = true; if (!tx) return -EINVAL; } else if (!strcmp(buf, "stop")) { start = false; } else { return -EINVAL; } buf = strsep(&pos, " "); if (!buf) return -EINVAL; if (sscanf(buf, "timeout=%d", &timeout) == 1) { buf = strsep(&pos, " "); if (!buf || !tx || !start) return -EINVAL; } ret = kstrtoul(buf, 0, &tid); if (ret || tid >= IEEE80211_NUM_TIDS) return -EINVAL; if (tx) { if (start) ret = ieee80211_start_tx_ba_session(&sta->sta, tid, timeout); else ret = ieee80211_stop_tx_ba_session(&sta->sta, tid); } else { __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT, 3, true); ret = 0; } return ret ?: count; } STA_OPS_RW(agg_status); /* link sta attributes */ #define LINK_STA_OPS(name) \ static const struct file_operations link_sta_ ##name## _ops = { \ .read = link_sta_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } static ssize_t link_sta_addr_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct link_sta_info *link_sta = file->private_data; u8 mac[3 * ETH_ALEN + 1]; snprintf(mac, sizeof(mac), "%pM\n", link_sta->pub->addr); return simple_read_from_buffer(userbuf, count, ppos, mac, 3 * ETH_ALEN); } LINK_STA_OPS(addr); static ssize_t link_sta_ht_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { #define PRINT_HT_CAP(_cond, _str) \ do { \ if (_cond) \ p += scnprintf(p, bufsz + buf - p, "\t" _str "\n"); \ } while (0) char *buf, *p; int i; ssize_t bufsz = 512; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_ht_cap *htc = &link_sta->pub->ht_cap; ssize_t ret; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, bufsz + buf - p, "ht %ssupported\n", htc->ht_supported ? "" : "not "); if (htc->ht_supported) { p += scnprintf(p, bufsz + buf - p, "cap: %#.4x\n", htc->cap); PRINT_HT_CAP((htc->cap & BIT(0)), "RX LDPC"); PRINT_HT_CAP((htc->cap & BIT(1)), "HT20/HT40"); PRINT_HT_CAP(!(htc->cap & BIT(1)), "HT20"); PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 0, "Static SM Power Save"); PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 1, "Dynamic SM Power Save"); PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 3, "SM Power Save disabled"); PRINT_HT_CAP((htc->cap & BIT(4)), "RX Greenfield"); PRINT_HT_CAP((htc->cap & BIT(5)), "RX HT20 SGI"); PRINT_HT_CAP((htc->cap & BIT(6)), "RX HT40 SGI"); PRINT_HT_CAP((htc->cap & BIT(7)), "TX STBC"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 0, "No RX STBC"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 1, "RX STBC 1-stream"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 2, "RX STBC 2-streams"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 3, "RX STBC 3-streams"); PRINT_HT_CAP((htc->cap & BIT(10)), "HT Delayed Block Ack"); PRINT_HT_CAP(!(htc->cap & BIT(11)), "Max AMSDU length: " "3839 bytes"); PRINT_HT_CAP((htc->cap & BIT(11)), "Max AMSDU length: " "7935 bytes"); /* * For beacons and probe response this would mean the BSS * does or does not allow the usage of DSSS/CCK HT40. * Otherwise it means the STA does or does not use * DSSS/CCK HT40. */ PRINT_HT_CAP((htc->cap & BIT(12)), "DSSS/CCK HT40"); PRINT_HT_CAP(!(htc->cap & BIT(12)), "No DSSS/CCK HT40"); /* BIT(13) is reserved */ PRINT_HT_CAP((htc->cap & BIT(14)), "40 MHz Intolerant"); PRINT_HT_CAP((htc->cap & BIT(15)), "L-SIG TXOP protection"); p += scnprintf(p, bufsz + buf - p, "ampdu factor/density: %d/%d\n", htc->ampdu_factor, htc->ampdu_density); p += scnprintf(p, bufsz + buf - p, "MCS mask:"); for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) p += scnprintf(p, bufsz + buf - p, " %.2x", htc->mcs.rx_mask[i]); p += scnprintf(p, bufsz + buf - p, "\n"); /* If not set this is meaningless */ if (le16_to_cpu(htc->mcs.rx_highest)) { p += scnprintf(p, bufsz + buf - p, "MCS rx highest: %d Mbps\n", le16_to_cpu(htc->mcs.rx_highest)); } p += scnprintf(p, bufsz + buf - p, "MCS tx params: %x\n", htc->mcs.tx_params); } ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(ht_capa); static ssize_t link_sta_vht_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf, *p; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_vht_cap *vhtc = &link_sta->pub->vht_cap; ssize_t ret; ssize_t bufsz = 512; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, bufsz + buf - p, "VHT %ssupported\n", vhtc->vht_supported ? "" : "not "); if (vhtc->vht_supported) { p += scnprintf(p, bufsz + buf - p, "cap: %#.8x\n", vhtc->cap); #define PFLAG(a, b) \ do { \ if (vhtc->cap & IEEE80211_VHT_CAP_ ## a) \ p += scnprintf(p, bufsz + buf - p, \ "\t\t%s\n", b); \ } while (0) switch (vhtc->cap & 0x3) { case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-3895\n"); break; case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-7991\n"); break; case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-11454\n"); break; default: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-UNKNOWN\n"); } switch (vhtc->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) { case 0: p += scnprintf(p, bufsz + buf - p, "\t\t80Mhz\n"); break; case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ: p += scnprintf(p, bufsz + buf - p, "\t\t160Mhz\n"); break; case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ: p += scnprintf(p, bufsz + buf - p, "\t\t80+80Mhz\n"); break; default: p += scnprintf(p, bufsz + buf - p, "\t\tUNKNOWN-MHZ: 0x%x\n", (vhtc->cap >> 2) & 0x3); } PFLAG(RXLDPC, "RXLDPC"); PFLAG(SHORT_GI_80, "SHORT-GI-80"); PFLAG(SHORT_GI_160, "SHORT-GI-160"); PFLAG(TXSTBC, "TXSTBC"); p += scnprintf(p, bufsz + buf - p, "\t\tRXSTBC_%d\n", (vhtc->cap >> 8) & 0x7); PFLAG(SU_BEAMFORMER_CAPABLE, "SU-BEAMFORMER-CAPABLE"); PFLAG(SU_BEAMFORMEE_CAPABLE, "SU-BEAMFORMEE-CAPABLE"); p += scnprintf(p, bufsz + buf - p, "\t\tBEAMFORMEE-STS: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK) >> IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT); p += scnprintf(p, bufsz + buf - p, "\t\tSOUNDING-DIMENSIONS: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK) >> IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT); PFLAG(MU_BEAMFORMER_CAPABLE, "MU-BEAMFORMER-CAPABLE"); PFLAG(MU_BEAMFORMEE_CAPABLE, "MU-BEAMFORMEE-CAPABLE"); PFLAG(VHT_TXOP_PS, "TXOP-PS"); PFLAG(HTC_VHT, "HTC-VHT"); p += scnprintf(p, bufsz + buf - p, "\t\tMPDU-LENGTH-EXPONENT: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT); PFLAG(VHT_LINK_ADAPTATION_VHT_UNSOL_MFB, "LINK-ADAPTATION-VHT-UNSOL-MFB"); p += scnprintf(p, bufsz + buf - p, "\t\tLINK-ADAPTATION-VHT-MRQ-MFB: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB) >> 26); PFLAG(RX_ANTENNA_PATTERN, "RX-ANTENNA-PATTERN"); PFLAG(TX_ANTENNA_PATTERN, "TX-ANTENNA-PATTERN"); p += scnprintf(p, bufsz + buf - p, "RX MCS: %.4x\n", le16_to_cpu(vhtc->vht_mcs.rx_mcs_map)); if (vhtc->vht_mcs.rx_highest) p += scnprintf(p, bufsz + buf - p, "MCS RX highest: %d Mbps\n", le16_to_cpu(vhtc->vht_mcs.rx_highest)); p += scnprintf(p, bufsz + buf - p, "TX MCS: %.4x\n", le16_to_cpu(vhtc->vht_mcs.tx_mcs_map)); if (vhtc->vht_mcs.tx_highest) p += scnprintf(p, bufsz + buf - p, "MCS TX highest: %d Mbps\n", le16_to_cpu(vhtc->vht_mcs.tx_highest)); #undef PFLAG } ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(vht_capa); static ssize_t link_sta_he_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf, *p; size_t buf_sz = PAGE_SIZE; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_he_cap *hec = &link_sta->pub->he_cap; struct ieee80211_he_mcs_nss_supp *nss = &hec->he_mcs_nss_supp; u8 ppe_size; u8 *cap; int i; ssize_t ret; buf = kmalloc(buf_sz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, buf_sz + buf - p, "HE %ssupported\n", hec->has_he ? "" : "not "); if (!hec->has_he) goto out; cap = hec->he_cap_elem.mac_cap_info; p += scnprintf(p, buf_sz + buf - p, "MAC-CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n", cap[0], cap[1], cap[2], cap[3], cap[4], cap[5]); #define PRINT(fmt, ...) \ p += scnprintf(p, buf_sz + buf - p, "\t\t" fmt "\n", \ ##__VA_ARGS__) #define PFLAG(t, n, a, b) \ do { \ if (cap[n] & IEEE80211_HE_##t##_CAP##n##_##a) \ PRINT("%s", b); \ } while (0) #define PFLAG_RANGE(t, i, n, s, m, off, fmt) \ do { \ u8 msk = IEEE80211_HE_##t##_CAP##i##_##n##_MASK; \ u8 idx = ((cap[i] & msk) >> (ffs(msk) - 1)) + off; \ PRINT(fmt, (s << idx) + (m * idx)); \ } while (0) #define PFLAG_RANGE_DEFAULT(t, i, n, s, m, off, fmt, a, b) \ do { \ if (cap[i] == IEEE80211_HE_##t ##_CAP##i##_##n##_##a) { \ PRINT("%s", b); \ break; \ } \ PFLAG_RANGE(t, i, n, s, m, off, fmt); \ } while (0) PFLAG(MAC, 0, HTC_HE, "HTC-HE"); PFLAG(MAC, 0, TWT_REQ, "TWT-REQ"); PFLAG(MAC, 0, TWT_RES, "TWT-RES"); PFLAG_RANGE_DEFAULT(MAC, 0, DYNAMIC_FRAG, 0, 1, 0, "DYNAMIC-FRAG-LEVEL-%d", NOT_SUPP, "NOT-SUPP"); PFLAG_RANGE_DEFAULT(MAC, 0, MAX_NUM_FRAG_MSDU, 1, 0, 0, "MAX-NUM-FRAG-MSDU-%d", UNLIMITED, "UNLIMITED"); PFLAG_RANGE_DEFAULT(MAC, 1, MIN_FRAG_SIZE, 128, 0, -1, "MIN-FRAG-SIZE-%d", UNLIMITED, "UNLIMITED"); PFLAG_RANGE_DEFAULT(MAC, 1, TF_MAC_PAD_DUR, 0, 8, 0, "TF-MAC-PAD-DUR-%dUS", MASK, "UNKNOWN"); PFLAG_RANGE(MAC, 1, MULTI_TID_AGG_RX_QOS, 0, 1, 1, "MULTI-TID-AGG-RX-QOS-%d"); if (cap[0] & IEEE80211_HE_MAC_CAP0_HTC_HE) { switch (((cap[2] << 1) | (cap[1] >> 7)) & 0x3) { case 0: PRINT("LINK-ADAPTATION-NO-FEEDBACK"); break; case 1: PRINT("LINK-ADAPTATION-RESERVED"); break; case 2: PRINT("LINK-ADAPTATION-UNSOLICITED-FEEDBACK"); break; case 3: PRINT("LINK-ADAPTATION-BOTH"); break; } } PFLAG(MAC, 2, ALL_ACK, "ALL-ACK"); PFLAG(MAC, 2, TRS, "TRS"); PFLAG(MAC, 2, BSR, "BSR"); PFLAG(MAC, 2, BCAST_TWT, "BCAST-TWT"); PFLAG(MAC, 2, 32BIT_BA_BITMAP, "32BIT-BA-BITMAP"); PFLAG(MAC, 2, MU_CASCADING, "MU-CASCADING"); PFLAG(MAC, 2, ACK_EN, "ACK-EN"); PFLAG(MAC, 3, OMI_CONTROL, "OMI-CONTROL"); PFLAG(MAC, 3, OFDMA_RA, "OFDMA-RA"); switch (cap[3] & IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK) { case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0: PRINT("MAX-AMPDU-LEN-EXP-USE-EXT-0"); break; case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1: PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-1"); break; case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2: PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-2"); break; case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3: PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-3"); break; } PFLAG(MAC, 3, AMSDU_FRAG, "AMSDU-FRAG"); PFLAG(MAC, 3, FLEX_TWT_SCHED, "FLEX-TWT-SCHED"); PFLAG(MAC, 3, RX_CTRL_FRAME_TO_MULTIBSS, "RX-CTRL-FRAME-TO-MULTIBSS"); PFLAG(MAC, 4, BSRP_BQRP_A_MPDU_AGG, "BSRP-BQRP-A-MPDU-AGG"); PFLAG(MAC, 4, QTP, "QTP"); PFLAG(MAC, 4, BQR, "BQR"); PFLAG(MAC, 4, PSR_RESP, "PSR-RESP"); PFLAG(MAC, 4, NDP_FB_REP, "NDP-FB-REP"); PFLAG(MAC, 4, OPS, "OPS"); PFLAG(MAC, 4, AMSDU_IN_AMPDU, "AMSDU-IN-AMPDU"); PRINT("MULTI-TID-AGG-TX-QOS-%d", ((cap[5] << 1) | (cap[4] >> 7)) & 0x7); PFLAG(MAC, 5, SUBCHAN_SELECTIVE_TRANSMISSION, "SUBCHAN-SELECTIVE-TRANSMISSION"); PFLAG(MAC, 5, UL_2x996_TONE_RU, "UL-2x996-TONE-RU"); PFLAG(MAC, 5, OM_CTRL_UL_MU_DATA_DIS_RX, "OM-CTRL-UL-MU-DATA-DIS-RX"); PFLAG(MAC, 5, HE_DYNAMIC_SM_PS, "HE-DYNAMIC-SM-PS"); PFLAG(MAC, 5, PUNCTURED_SOUNDING, "PUNCTURED-SOUNDING"); PFLAG(MAC, 5, HT_VHT_TRIG_FRAME_RX, "HT-VHT-TRIG-FRAME-RX"); cap = hec->he_cap_elem.phy_cap_info; p += scnprintf(p, buf_sz + buf - p, "PHY CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n", cap[0], cap[1], cap[2], cap[3], cap[4], cap[5], cap[6], cap[7], cap[8], cap[9], cap[10]); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_40MHZ_IN_2G, "CHANNEL-WIDTH-SET-40MHZ-IN-2G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G, "CHANNEL-WIDTH-SET-40MHZ-80MHZ-IN-5G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_160MHZ_IN_5G, "CHANNEL-WIDTH-SET-160MHZ-IN-5G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G, "CHANNEL-WIDTH-SET-80PLUS80-MHZ-IN-5G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G, "CHANNEL-WIDTH-SET-RU-MAPPING-IN-2G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G, "CHANNEL-WIDTH-SET-RU-MAPPING-IN-5G"); switch (cap[1] & IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK) { case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ: PRINT("PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-20MHZ"); break; case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ: PRINT("PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-40MHZ"); break; case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ: PRINT("PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-20MHZ"); break; case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ: PRINT("PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-40MHZ"); break; } PFLAG(PHY, 1, DEVICE_CLASS_A, "IEEE80211-HE-PHY-CAP1-DEVICE-CLASS-A"); PFLAG(PHY, 1, LDPC_CODING_IN_PAYLOAD, "LDPC-CODING-IN-PAYLOAD"); PFLAG(PHY, 1, HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US, "HY-CAP1-HE-LTF-AND-GI-FOR-HE-PPDUS-0-8US"); PRINT("MIDAMBLE-RX-MAX-NSTS-%d", ((cap[2] << 1) | (cap[1] >> 7)) & 0x3); PFLAG(PHY, 2, NDP_4x_LTF_AND_3_2US, "NDP-4X-LTF-AND-3-2US"); PFLAG(PHY, 2, STBC_TX_UNDER_80MHZ, "STBC-TX-UNDER-80MHZ"); PFLAG(PHY, 2, STBC_RX_UNDER_80MHZ, "STBC-RX-UNDER-80MHZ"); PFLAG(PHY, 2, DOPPLER_TX, "DOPPLER-TX"); PFLAG(PHY, 2, DOPPLER_RX, "DOPPLER-RX"); PFLAG(PHY, 2, UL_MU_FULL_MU_MIMO, "UL-MU-FULL-MU-MIMO"); PFLAG(PHY, 2, UL_MU_PARTIAL_MU_MIMO, "UL-MU-PARTIAL-MU-MIMO"); switch (cap[3] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK) { case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM: PRINT("DCM-MAX-CONST-TX-NO-DCM"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK: PRINT("DCM-MAX-CONST-TX-BPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK: PRINT("DCM-MAX-CONST-TX-QPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM: PRINT("DCM-MAX-CONST-TX-16-QAM"); break; } PFLAG(PHY, 3, DCM_MAX_TX_NSS_1, "DCM-MAX-TX-NSS-1"); PFLAG(PHY, 3, DCM_MAX_TX_NSS_2, "DCM-MAX-TX-NSS-2"); switch (cap[3] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK) { case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM: PRINT("DCM-MAX-CONST-RX-NO-DCM"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK: PRINT("DCM-MAX-CONST-RX-BPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK: PRINT("DCM-MAX-CONST-RX-QPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM: PRINT("DCM-MAX-CONST-RX-16-QAM"); break; } PFLAG(PHY, 3, DCM_MAX_RX_NSS_1, "DCM-MAX-RX-NSS-1"); PFLAG(PHY, 3, DCM_MAX_RX_NSS_2, "DCM-MAX-RX-NSS-2"); PFLAG(PHY, 3, RX_PARTIAL_BW_SU_IN_20MHZ_MU, "RX-PARTIAL-BW-SU-IN-20MHZ-MU"); PFLAG(PHY, 3, SU_BEAMFORMER, "SU-BEAMFORMER"); PFLAG(PHY, 4, SU_BEAMFORMEE, "SU-BEAMFORMEE"); PFLAG(PHY, 4, MU_BEAMFORMER, "MU-BEAMFORMER"); PFLAG_RANGE(PHY, 4, BEAMFORMEE_MAX_STS_UNDER_80MHZ, 0, 1, 4, "BEAMFORMEE-MAX-STS-UNDER-%d"); PFLAG_RANGE(PHY, 4, BEAMFORMEE_MAX_STS_ABOVE_80MHZ, 0, 1, 4, "BEAMFORMEE-MAX-STS-ABOVE-%d"); PFLAG_RANGE(PHY, 5, BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ, 0, 1, 1, "NUM-SND-DIM-UNDER-80MHZ-%d"); PFLAG_RANGE(PHY, 5, BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ, 0, 1, 1, "NUM-SND-DIM-ABOVE-80MHZ-%d"); PFLAG(PHY, 5, NG16_SU_FEEDBACK, "NG16-SU-FEEDBACK"); PFLAG(PHY, 5, NG16_MU_FEEDBACK, "NG16-MU-FEEDBACK"); PFLAG(PHY, 6, CODEBOOK_SIZE_42_SU, "CODEBOOK-SIZE-42-SU"); PFLAG(PHY, 6, CODEBOOK_SIZE_75_MU, "CODEBOOK-SIZE-75-MU"); PFLAG(PHY, 6, TRIG_SU_BEAMFORMING_FB, "TRIG-SU-BEAMFORMING-FB"); PFLAG(PHY, 6, TRIG_MU_BEAMFORMING_PARTIAL_BW_FB, "MU-BEAMFORMING-PARTIAL-BW-FB"); PFLAG(PHY, 6, TRIG_CQI_FB, "TRIG-CQI-FB"); PFLAG(PHY, 6, PARTIAL_BW_EXT_RANGE, "PARTIAL-BW-EXT-RANGE"); PFLAG(PHY, 6, PARTIAL_BANDWIDTH_DL_MUMIMO, "PARTIAL-BANDWIDTH-DL-MUMIMO"); PFLAG(PHY, 6, PPE_THRESHOLD_PRESENT, "PPE-THRESHOLD-PRESENT"); PFLAG(PHY, 7, PSR_BASED_SR, "PSR-BASED-SR"); PFLAG(PHY, 7, POWER_BOOST_FACTOR_SUPP, "POWER-BOOST-FACTOR-SUPP"); PFLAG(PHY, 7, HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, "HE-SU-MU-PPDU-4XLTF-AND-08-US-GI"); PFLAG_RANGE(PHY, 7, MAX_NC, 0, 1, 1, "MAX-NC-%d"); PFLAG(PHY, 7, STBC_TX_ABOVE_80MHZ, "STBC-TX-ABOVE-80MHZ"); PFLAG(PHY, 7, STBC_RX_ABOVE_80MHZ, "STBC-RX-ABOVE-80MHZ"); PFLAG(PHY, 8, HE_ER_SU_PPDU_4XLTF_AND_08_US_GI, "HE-ER-SU-PPDU-4XLTF-AND-08-US-GI"); PFLAG(PHY, 8, 20MHZ_IN_40MHZ_HE_PPDU_IN_2G, "20MHZ-IN-40MHZ-HE-PPDU-IN-2G"); PFLAG(PHY, 8, 20MHZ_IN_160MHZ_HE_PPDU, "20MHZ-IN-160MHZ-HE-PPDU"); PFLAG(PHY, 8, 80MHZ_IN_160MHZ_HE_PPDU, "80MHZ-IN-160MHZ-HE-PPDU"); PFLAG(PHY, 8, HE_ER_SU_1XLTF_AND_08_US_GI, "HE-ER-SU-1XLTF-AND-08-US-GI"); PFLAG(PHY, 8, MIDAMBLE_RX_TX_2X_AND_1XLTF, "MIDAMBLE-RX-TX-2X-AND-1XLTF"); switch (cap[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK) { case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242: PRINT("DCM-MAX-RU-242"); break; case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484: PRINT("DCM-MAX-RU-484"); break; case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996: PRINT("DCM-MAX-RU-996"); break; case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996: PRINT("DCM-MAX-RU-2x996"); break; } PFLAG(PHY, 9, LONGER_THAN_16_SIGB_OFDM_SYM, "LONGER-THAN-16-SIGB-OFDM-SYM"); PFLAG(PHY, 9, NON_TRIGGERED_CQI_FEEDBACK, "NON-TRIGGERED-CQI-FEEDBACK"); PFLAG(PHY, 9, TX_1024_QAM_LESS_THAN_242_TONE_RU, "TX-1024-QAM-LESS-THAN-242-TONE-RU"); PFLAG(PHY, 9, RX_1024_QAM_LESS_THAN_242_TONE_RU, "RX-1024-QAM-LESS-THAN-242-TONE-RU"); PFLAG(PHY, 9, RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB, "RX-FULL-BW-SU-USING-MU-WITH-COMP-SIGB"); PFLAG(PHY, 9, RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB, "RX-FULL-BW-SU-USING-MU-WITH-NON-COMP-SIGB"); switch (u8_get_bits(cap[9], IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK)) { case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US: PRINT("NOMINAL-PACKET-PADDING-0US"); break; case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US: PRINT("NOMINAL-PACKET-PADDING-8US"); break; case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US: PRINT("NOMINAL-PACKET-PADDING-16US"); break; } #undef PFLAG_RANGE_DEFAULT #undef PFLAG_RANGE #undef PFLAG #define PRINT_NSS_SUPP(f, n) \ do { \ int _i; \ u16 v = le16_to_cpu(nss->f); \ p += scnprintf(p, buf_sz + buf - p, n ": %#.4x\n", v); \ for (_i = 0; _i < 8; _i += 2) { \ switch ((v >> _i) & 0x3) { \ case 0: \ PRINT(n "-%d-SUPPORT-0-7", _i / 2); \ break; \ case 1: \ PRINT(n "-%d-SUPPORT-0-9", _i / 2); \ break; \ case 2: \ PRINT(n "-%d-SUPPORT-0-11", _i / 2); \ break; \ case 3: \ PRINT(n "-%d-NOT-SUPPORTED", _i / 2); \ break; \ } \ } \ } while (0) PRINT_NSS_SUPP(rx_mcs_80, "RX-MCS-80"); PRINT_NSS_SUPP(tx_mcs_80, "TX-MCS-80"); if (cap[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) { PRINT_NSS_SUPP(rx_mcs_160, "RX-MCS-160"); PRINT_NSS_SUPP(tx_mcs_160, "TX-MCS-160"); } if (cap[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) { PRINT_NSS_SUPP(rx_mcs_80p80, "RX-MCS-80P80"); PRINT_NSS_SUPP(tx_mcs_80p80, "TX-MCS-80P80"); } #undef PRINT_NSS_SUPP #undef PRINT if (!(cap[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT)) goto out; p += scnprintf(p, buf_sz + buf - p, "PPE-THRESHOLDS: %#.2x", hec->ppe_thres[0]); ppe_size = ieee80211_he_ppe_size(hec->ppe_thres[0], cap); for (i = 1; i < ppe_size; i++) { p += scnprintf(p, buf_sz + buf - p, " %#.2x", hec->ppe_thres[i]); } p += scnprintf(p, buf_sz + buf - p, "\n"); out: ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(he_capa); static ssize_t link_sta_eht_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf, *p; size_t buf_sz = PAGE_SIZE; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_eht_cap *bec = &link_sta->pub->eht_cap; struct ieee80211_eht_cap_elem_fixed *fixed = &bec->eht_cap_elem; struct ieee80211_eht_mcs_nss_supp *nss = &bec->eht_mcs_nss_supp; u8 *cap; int i; ssize_t ret; static const char *mcs_desc[] = { "0-7", "8-9", "10-11", "12-13"}; buf = kmalloc(buf_sz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, buf_sz + buf - p, "EHT %ssupported\n", bec->has_eht ? "" : "not "); if (!bec->has_eht) goto out; p += scnprintf(p, buf_sz + buf - p, "MAC-CAP: %#.2x %#.2x\n", fixed->mac_cap_info[0], fixed->mac_cap_info[1]); p += scnprintf(p, buf_sz + buf - p, "PHY-CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n", fixed->phy_cap_info[0], fixed->phy_cap_info[1], fixed->phy_cap_info[2], fixed->phy_cap_info[3], fixed->phy_cap_info[4], fixed->phy_cap_info[5], fixed->phy_cap_info[6], fixed->phy_cap_info[7], fixed->phy_cap_info[8]); #define PRINT(fmt, ...) \ p += scnprintf(p, buf_sz + buf - p, "\t\t" fmt "\n", \ ##__VA_ARGS__) #define PFLAG(t, n, a, b) \ do { \ if (cap[n] & IEEE80211_EHT_##t##_CAP##n##_##a) \ PRINT("%s", b); \ } while (0) cap = fixed->mac_cap_info; PFLAG(MAC, 0, EPCS_PRIO_ACCESS, "EPCS-PRIO-ACCESS"); PFLAG(MAC, 0, OM_CONTROL, "OM-CONTROL"); PFLAG(MAC, 0, TRIG_TXOP_SHARING_MODE1, "TRIG-TXOP-SHARING-MODE1"); PFLAG(MAC, 0, TRIG_TXOP_SHARING_MODE2, "TRIG-TXOP-SHARING-MODE2"); PFLAG(MAC, 0, RESTRICTED_TWT, "RESTRICTED-TWT"); PFLAG(MAC, 0, SCS_TRAFFIC_DESC, "SCS-TRAFFIC-DESC"); switch ((cap[0] & 0xc0) >> 6) { case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895: PRINT("MAX-MPDU-LEN: 3985"); break; case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991: PRINT("MAX-MPDU-LEN: 7991"); break; case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454: PRINT("MAX-MPDU-LEN: 11454"); break; } cap = fixed->phy_cap_info; PFLAG(PHY, 0, 320MHZ_IN_6GHZ, "320MHZ-IN-6GHZ"); PFLAG(PHY, 0, 242_TONE_RU_GT20MHZ, "242-TONE-RU-GT20MHZ"); PFLAG(PHY, 0, NDP_4_EHT_LFT_32_GI, "NDP-4-EHT-LFT-32-GI"); PFLAG(PHY, 0, PARTIAL_BW_UL_MU_MIMO, "PARTIAL-BW-UL-MU-MIMO"); PFLAG(PHY, 0, SU_BEAMFORMER, "SU-BEAMFORMER"); PFLAG(PHY, 0, SU_BEAMFORMEE, "SU-BEAMFORMEE"); i = cap[0] >> 7; i |= (cap[1] & 0x3) << 1; PRINT("BEAMFORMEE-80-NSS: %i", i); PRINT("BEAMFORMEE-160-NSS: %i", (cap[1] >> 2) & 0x7); PRINT("BEAMFORMEE-320-NSS: %i", (cap[1] >> 5) & 0x7); PRINT("SOUNDING-DIM-80-NSS: %i", (cap[2] & 0x7)); PRINT("SOUNDING-DIM-160-NSS: %i", (cap[2] >> 3) & 0x7); i = cap[2] >> 6; i |= (cap[3] & 0x1) << 3; PRINT("SOUNDING-DIM-320-NSS: %i", i); PFLAG(PHY, 3, NG_16_SU_FEEDBACK, "NG-16-SU-FEEDBACK"); PFLAG(PHY, 3, NG_16_MU_FEEDBACK, "NG-16-MU-FEEDBACK"); PFLAG(PHY, 3, CODEBOOK_4_2_SU_FDBK, "CODEBOOK-4-2-SU-FDBK"); PFLAG(PHY, 3, CODEBOOK_7_5_MU_FDBK, "CODEBOOK-7-5-MU-FDBK"); PFLAG(PHY, 3, TRIG_SU_BF_FDBK, "TRIG-SU-BF-FDBK"); PFLAG(PHY, 3, TRIG_MU_BF_PART_BW_FDBK, "TRIG-MU-BF-PART-BW-FDBK"); PFLAG(PHY, 3, TRIG_CQI_FDBK, "TRIG-CQI-FDBK"); PFLAG(PHY, 4, PART_BW_DL_MU_MIMO, "PART-BW-DL-MU-MIMO"); PFLAG(PHY, 4, PSR_SR_SUPP, "PSR-SR-SUPP"); PFLAG(PHY, 4, POWER_BOOST_FACT_SUPP, "POWER-BOOST-FACT-SUPP"); PFLAG(PHY, 4, EHT_MU_PPDU_4_EHT_LTF_08_GI, "EHT-MU-PPDU-4-EHT-LTF-08-GI"); PRINT("MAX_NC: %i", cap[4] >> 4); PFLAG(PHY, 5, NON_TRIG_CQI_FEEDBACK, "NON-TRIG-CQI-FEEDBACK"); PFLAG(PHY, 5, TX_LESS_242_TONE_RU_SUPP, "TX-LESS-242-TONE-RU-SUPP"); PFLAG(PHY, 5, RX_LESS_242_TONE_RU_SUPP, "RX-LESS-242-TONE-RU-SUPP"); PFLAG(PHY, 5, PPE_THRESHOLD_PRESENT, "PPE_THRESHOLD_PRESENT"); switch (cap[5] >> 4 & 0x3) { case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US: PRINT("NOMINAL_PKT_PAD: 0us"); break; case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US: PRINT("NOMINAL_PKT_PAD: 8us"); break; case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US: PRINT("NOMINAL_PKT_PAD: 16us"); break; case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US: PRINT("NOMINAL_PKT_PAD: 20us"); break; } i = cap[5] >> 6; i |= cap[6] & 0x7; PRINT("MAX-NUM-SUPP-EHT-LTF: %i", i); PFLAG(PHY, 5, SUPP_EXTRA_EHT_LTF, "SUPP-EXTRA-EHT-LTF"); i = (cap[6] >> 3) & 0xf; PRINT("MCS15-SUPP-MASK: %i", i); PFLAG(PHY, 6, EHT_DUP_6GHZ_SUPP, "EHT-DUP-6GHZ-SUPP"); PFLAG(PHY, 7, 20MHZ_STA_RX_NDP_WIDER_BW, "20MHZ-STA-RX-NDP-WIDER-BW"); PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_80MHZ, "NON-OFDMA-UL-MU-MIMO-80MHZ"); PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_160MHZ, "NON-OFDMA-UL-MU-MIMO-160MHZ"); PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_320MHZ, "NON-OFDMA-UL-MU-MIMO-320MHZ"); PFLAG(PHY, 7, MU_BEAMFORMER_80MHZ, "MU-BEAMFORMER-80MHZ"); PFLAG(PHY, 7, MU_BEAMFORMER_160MHZ, "MU-BEAMFORMER-160MHZ"); PFLAG(PHY, 7, MU_BEAMFORMER_320MHZ, "MU-BEAMFORMER-320MHZ"); PFLAG(PHY, 7, TB_SOUNDING_FDBK_RATE_LIMIT, "TB-SOUNDING-FDBK-RATE-LIMIT"); PFLAG(PHY, 8, RX_1024QAM_WIDER_BW_DL_OFDMA, "RX-1024QAM-WIDER-BW-DL-OFDMA"); PFLAG(PHY, 8, RX_4096QAM_WIDER_BW_DL_OFDMA, "RX-4096QAM-WIDER-BW-DL-OFDMA"); #undef PFLAG PRINT(""); /* newline */ if (!(link_sta->pub->he_cap.he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL)) { u8 *mcs_vals = (u8 *)(&nss->only_20mhz); for (i = 0; i < 4; i++) PRINT("EHT bw=20 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); } else { u8 *mcs_vals = (u8 *)(&nss->bw._80); for (i = 0; i < 3; i++) PRINT("EHT bw <= 80 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i + 1], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); mcs_vals = (u8 *)(&nss->bw._160); for (i = 0; i < 3; i++) PRINT("EHT bw <= 160 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i + 1], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); mcs_vals = (u8 *)(&nss->bw._320); for (i = 0; i < 3; i++) PRINT("EHT bw <= 320 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i + 1], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); } if (cap[5] & IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) { u8 ppe_size = ieee80211_eht_ppe_size(bec->eht_ppe_thres[0], cap); p += scnprintf(p, buf_sz + buf - p, "EHT PPE Thresholds: "); for (i = 0; i < ppe_size; i++) p += scnprintf(p, buf_sz + buf - p, "0x%02x ", bec->eht_ppe_thres[i]); PRINT(""); /* newline */ } out: ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(eht_capa); #define DEBUGFS_ADD(name) \ debugfs_create_file(#name, 0400, \ sta->debugfs_dir, sta, &sta_ ##name## _ops) #define DEBUGFS_ADD_COUNTER(name, field) \ debugfs_create_ulong(#name, 0400, sta->debugfs_dir, &sta->field); void ieee80211_sta_debugfs_add(struct sta_info *sta) { struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct dentry *stations_dir = sta->sdata->debugfs.subdir_stations; u8 mac[3*ETH_ALEN]; if (!stations_dir) return; snprintf(mac, sizeof(mac), "%pM", sta->sta.addr); /* * This might fail due to a race condition: * When mac80211 unlinks a station, the debugfs entries * remain, but it is already possible to link a new * station with the same address which triggers adding * it to debugfs; therefore, if the old station isn't * destroyed quickly enough the old station's debugfs * dir might still be around. */ sta->debugfs_dir = debugfs_create_dir(mac, stations_dir); DEBUGFS_ADD(flags); DEBUGFS_ADD(aid); DEBUGFS_ADD(num_ps_buf_frames); DEBUGFS_ADD(last_seq_ctrl); DEBUGFS_ADD(agg_status); /* FIXME: Kept here as the statistics are only done on the deflink */ DEBUGFS_ADD_COUNTER(tx_filtered, deflink.status_stats.filtered); DEBUGFS_ADD(aqm); DEBUGFS_ADD(airtime); if (wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) DEBUGFS_ADD(aql); debugfs_create_xul("driver_buffered_tids", 0400, sta->debugfs_dir, &sta->driver_buffered_tids); drv_sta_add_debugfs(local, sdata, &sta->sta, sta->debugfs_dir); } void ieee80211_sta_debugfs_remove(struct sta_info *sta) { debugfs_remove_recursive(sta->debugfs_dir); sta->debugfs_dir = NULL; } #undef DEBUGFS_ADD #undef DEBUGFS_ADD_COUNTER #define DEBUGFS_ADD(name) \ debugfs_create_file(#name, 0400, \ link_sta->debugfs_dir, link_sta, &link_sta_ ##name## _ops) #define DEBUGFS_ADD_COUNTER(name, field) \ debugfs_create_ulong(#name, 0400, link_sta->debugfs_dir, &link_sta->field) void ieee80211_link_sta_debugfs_add(struct link_sta_info *link_sta) { if (WARN_ON(!link_sta->sta->debugfs_dir)) return; /* For non-MLO, leave the files in the main directory. */ if (link_sta->sta->sta.valid_links) { char link_dir_name[10]; snprintf(link_dir_name, sizeof(link_dir_name), "link-%d", link_sta->link_id); link_sta->debugfs_dir = debugfs_create_dir(link_dir_name, link_sta->sta->debugfs_dir); DEBUGFS_ADD(addr); } else { if (WARN_ON(link_sta != &link_sta->sta->deflink)) return; link_sta->debugfs_dir = link_sta->sta->debugfs_dir; } DEBUGFS_ADD(ht_capa); DEBUGFS_ADD(vht_capa); DEBUGFS_ADD(he_capa); DEBUGFS_ADD(eht_capa); DEBUGFS_ADD_COUNTER(rx_duplicates, rx_stats.num_duplicates); DEBUGFS_ADD_COUNTER(rx_fragments, rx_stats.fragments); } void ieee80211_link_sta_debugfs_remove(struct link_sta_info *link_sta) { if (!link_sta->debugfs_dir || !link_sta->sta->debugfs_dir) { link_sta->debugfs_dir = NULL; return; } if (link_sta->debugfs_dir == link_sta->sta->debugfs_dir) { WARN_ON(link_sta != &link_sta->sta->deflink); link_sta->sta->debugfs_dir = NULL; return; } debugfs_remove_recursive(link_sta->debugfs_dir); link_sta->debugfs_dir = NULL; } void ieee80211_link_sta_debugfs_drv_add(struct link_sta_info *link_sta) { if (WARN_ON(!link_sta->debugfs_dir)) return; drv_link_sta_add_debugfs(link_sta->sta->local, link_sta->sta->sdata, link_sta->pub, link_sta->debugfs_dir); } void ieee80211_link_sta_debugfs_drv_remove(struct link_sta_info *link_sta) { if (!link_sta->debugfs_dir) return; if (WARN_ON(link_sta->debugfs_dir == link_sta->sta->debugfs_dir)) return; /* Recreate the directory excluding the driver data */ debugfs_remove_recursive(link_sta->debugfs_dir); link_sta->debugfs_dir = NULL; ieee80211_link_sta_debugfs_add(link_sta); }
linux-master
net/mac80211/debugfs_sta.c
// SPDX-License-Identifier: GPL-2.0-only /* * HT handling * * Copyright 2003, Jouni Malinen <[email protected]> * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007, Michael Wu <[email protected]> * Copyright 2007-2010, Intel Corporation * Copyright(c) 2015-2017 Intel Deutschland GmbH * Copyright (C) 2018-2022 Intel Corporation */ /** * DOC: RX A-MPDU aggregation * * Aggregation on the RX side requires only implementing the * @ampdu_action callback that is invoked to start/stop any * block-ack sessions for RX aggregation. * * When RX aggregation is started by the peer, the driver is * notified via @ampdu_action function, with the * %IEEE80211_AMPDU_RX_START action, and may reject the request * in which case a negative response is sent to the peer, if it * accepts it a positive response is sent. * * While the session is active, the device/driver are required * to de-aggregate frames and pass them up one by one to mac80211, * which will handle the reorder buffer. * * When the aggregation session is stopped again by the peer or * ourselves, the driver's @ampdu_action function will be called * with the action %IEEE80211_AMPDU_RX_STOP. In this case, the * call must not fail. */ #include <linux/ieee80211.h> #include <linux/slab.h> #include <linux/export.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" static void ieee80211_free_tid_rx(struct rcu_head *h) { struct tid_ampdu_rx *tid_rx = container_of(h, struct tid_ampdu_rx, rcu_head); int i; for (i = 0; i < tid_rx->buf_size; i++) __skb_queue_purge(&tid_rx->reorder_buf[i]); kfree(tid_rx->reorder_buf); kfree(tid_rx->reorder_time); kfree(tid_rx); } void ___ieee80211_stop_rx_ba_session(struct sta_info *sta, u16 tid, u16 initiator, u16 reason, bool tx) { struct ieee80211_local *local = sta->local; struct tid_ampdu_rx *tid_rx; struct ieee80211_ampdu_params params = { .sta = &sta->sta, .action = IEEE80211_AMPDU_RX_STOP, .tid = tid, .amsdu = false, .timeout = 0, .ssn = 0, }; lockdep_assert_held(&sta->ampdu_mlme.mtx); tid_rx = rcu_dereference_protected(sta->ampdu_mlme.tid_rx[tid], lockdep_is_held(&sta->ampdu_mlme.mtx)); if (!test_bit(tid, sta->ampdu_mlme.agg_session_valid)) return; RCU_INIT_POINTER(sta->ampdu_mlme.tid_rx[tid], NULL); __clear_bit(tid, sta->ampdu_mlme.agg_session_valid); ht_dbg(sta->sdata, "Rx BA session stop requested for %pM tid %u %s reason: %d\n", sta->sta.addr, tid, initiator == WLAN_BACK_RECIPIENT ? "recipient" : "initiator", (int)reason); if (drv_ampdu_action(local, sta->sdata, &params)) sdata_info(sta->sdata, "HW problem - can not stop rx aggregation for %pM tid %d\n", sta->sta.addr, tid); /* check if this is a self generated aggregation halt */ if (initiator == WLAN_BACK_RECIPIENT && tx) ieee80211_send_delba(sta->sdata, sta->sta.addr, tid, WLAN_BACK_RECIPIENT, reason); /* * return here in case tid_rx is not assigned - which will happen if * IEEE80211_HW_SUPPORTS_REORDERING_BUFFER is set. */ if (!tid_rx) return; del_timer_sync(&tid_rx->session_timer); /* make sure ieee80211_sta_reorder_release() doesn't re-arm the timer */ spin_lock_bh(&tid_rx->reorder_lock); tid_rx->removed = true; spin_unlock_bh(&tid_rx->reorder_lock); del_timer_sync(&tid_rx->reorder_timer); call_rcu(&tid_rx->rcu_head, ieee80211_free_tid_rx); } void __ieee80211_stop_rx_ba_session(struct sta_info *sta, u16 tid, u16 initiator, u16 reason, bool tx) { mutex_lock(&sta->ampdu_mlme.mtx); ___ieee80211_stop_rx_ba_session(sta, tid, initiator, reason, tx); mutex_unlock(&sta->ampdu_mlme.mtx); } void ieee80211_stop_rx_ba_session(struct ieee80211_vif *vif, u16 ba_rx_bitmap, const u8 *addr) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct sta_info *sta; int i; rcu_read_lock(); sta = sta_info_get_bss(sdata, addr); if (!sta) { rcu_read_unlock(); return; } for (i = 0; i < IEEE80211_NUM_TIDS; i++) if (ba_rx_bitmap & BIT(i)) set_bit(i, sta->ampdu_mlme.tid_rx_stop_requested); ieee80211_queue_work(&sta->local->hw, &sta->ampdu_mlme.work); rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_stop_rx_ba_session); /* * After accepting the AddBA Request we activated a timer, * resetting it after each frame that arrives from the originator. */ static void sta_rx_agg_session_timer_expired(struct timer_list *t) { struct tid_ampdu_rx *tid_rx = from_timer(tid_rx, t, session_timer); struct sta_info *sta = tid_rx->sta; u8 tid = tid_rx->tid; unsigned long timeout; timeout = tid_rx->last_rx + TU_TO_JIFFIES(tid_rx->timeout); if (time_is_after_jiffies(timeout)) { mod_timer(&tid_rx->session_timer, timeout); return; } ht_dbg(sta->sdata, "RX session timer expired on %pM tid %d\n", sta->sta.addr, tid); set_bit(tid, sta->ampdu_mlme.tid_rx_timer_expired); ieee80211_queue_work(&sta->local->hw, &sta->ampdu_mlme.work); } static void sta_rx_agg_reorder_timer_expired(struct timer_list *t) { struct tid_ampdu_rx *tid_rx = from_timer(tid_rx, t, reorder_timer); rcu_read_lock(); ieee80211_release_reorder_timeout(tid_rx->sta, tid_rx->tid); rcu_read_unlock(); } static void ieee80211_add_addbaext(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, const struct ieee80211_addba_ext_ie *req, u16 buf_size) { struct ieee80211_addba_ext_ie *resp; u8 *pos; pos = skb_put_zero(skb, 2 + sizeof(struct ieee80211_addba_ext_ie)); *pos++ = WLAN_EID_ADDBA_EXT; *pos++ = sizeof(struct ieee80211_addba_ext_ie); resp = (struct ieee80211_addba_ext_ie *)pos; resp->data = req->data & IEEE80211_ADDBA_EXT_NO_FRAG; resp->data |= u8_encode_bits(buf_size >> IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT, IEEE80211_ADDBA_EXT_BUF_SIZE_MASK); } static void ieee80211_send_addba_resp(struct sta_info *sta, u8 *da, u16 tid, u8 dialog_token, u16 status, u16 policy, u16 buf_size, u16 timeout, const struct ieee80211_addba_ext_ie *addbaext) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; bool amsdu = ieee80211_hw_check(&local->hw, SUPPORTS_AMSDU_IN_AMPDU); u16 capab; skb = dev_alloc_skb(sizeof(*mgmt) + 2 + sizeof(struct ieee80211_addba_ext_ie) + local->hw.extra_tx_headroom); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = skb_put_zero(skb, 24); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN || sdata->vif.type == NL80211_IFTYPE_MESH_POINT) memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); else if (sdata->vif.type == NL80211_IFTYPE_STATION) memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) memcpy(mgmt->bssid, sdata->u.ibss.bssid, ETH_ALEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp)); mgmt->u.action.category = WLAN_CATEGORY_BACK; mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP; mgmt->u.action.u.addba_resp.dialog_token = dialog_token; capab = u16_encode_bits(amsdu, IEEE80211_ADDBA_PARAM_AMSDU_MASK); capab |= u16_encode_bits(policy, IEEE80211_ADDBA_PARAM_POLICY_MASK); capab |= u16_encode_bits(tid, IEEE80211_ADDBA_PARAM_TID_MASK); capab |= u16_encode_bits(buf_size, IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK); mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab); mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout); mgmt->u.action.u.addba_resp.status = cpu_to_le16(status); if (sta->sta.deflink.he_cap.has_he && addbaext) ieee80211_add_addbaext(sdata, skb, addbaext, buf_size); ieee80211_tx_skb(sdata, skb); } void ___ieee80211_start_rx_ba_session(struct sta_info *sta, u8 dialog_token, u16 timeout, u16 start_seq_num, u16 ba_policy, u16 tid, u16 buf_size, bool tx, bool auto_seq, const struct ieee80211_addba_ext_ie *addbaext) { struct ieee80211_local *local = sta->sdata->local; struct tid_ampdu_rx *tid_agg_rx; struct ieee80211_ampdu_params params = { .sta = &sta->sta, .action = IEEE80211_AMPDU_RX_START, .tid = tid, .amsdu = false, .timeout = timeout, .ssn = start_seq_num, }; int i, ret = -EOPNOTSUPP; u16 status = WLAN_STATUS_REQUEST_DECLINED; u16 max_buf_size; if (tid >= IEEE80211_FIRST_TSPEC_TSID) { ht_dbg(sta->sdata, "STA %pM requests BA session on unsupported tid %d\n", sta->sta.addr, tid); goto end; } if (!sta->sta.deflink.ht_cap.ht_supported && !sta->sta.deflink.he_cap.has_he) { ht_dbg(sta->sdata, "STA %pM erroneously requests BA session on tid %d w/o HT\n", sta->sta.addr, tid); /* send a response anyway, it's an error case if we get here */ goto end; } if (test_sta_flag(sta, WLAN_STA_BLOCK_BA)) { ht_dbg(sta->sdata, "Suspend in progress - Denying ADDBA request (%pM tid %d)\n", sta->sta.addr, tid); goto end; } if (sta->sta.deflink.eht_cap.has_eht) max_buf_size = IEEE80211_MAX_AMPDU_BUF_EHT; else if (sta->sta.deflink.he_cap.has_he) max_buf_size = IEEE80211_MAX_AMPDU_BUF_HE; else max_buf_size = IEEE80211_MAX_AMPDU_BUF_HT; /* sanity check for incoming parameters: * check if configuration can support the BA policy * and if buffer size does not exceeds max value */ /* XXX: check own ht delayed BA capability?? */ if (((ba_policy != 1) && (!(sta->sta.deflink.ht_cap.cap & IEEE80211_HT_CAP_DELAY_BA))) || (buf_size > max_buf_size)) { status = WLAN_STATUS_INVALID_QOS_PARAM; ht_dbg_ratelimited(sta->sdata, "AddBA Req with bad params from %pM on tid %u. policy %d, buffer size %d\n", sta->sta.addr, tid, ba_policy, buf_size); goto end; } /* determine default buffer size */ if (buf_size == 0) buf_size = max_buf_size; /* make sure the size doesn't exceed the maximum supported by the hw */ if (buf_size > sta->sta.max_rx_aggregation_subframes) buf_size = sta->sta.max_rx_aggregation_subframes; params.buf_size = buf_size; ht_dbg(sta->sdata, "AddBA Req buf_size=%d for %pM\n", buf_size, sta->sta.addr); /* examine state machine */ lockdep_assert_held(&sta->ampdu_mlme.mtx); if (test_bit(tid, sta->ampdu_mlme.agg_session_valid)) { if (sta->ampdu_mlme.tid_rx_token[tid] == dialog_token) { struct tid_ampdu_rx *tid_rx; ht_dbg_ratelimited(sta->sdata, "updated AddBA Req from %pM on tid %u\n", sta->sta.addr, tid); /* We have no API to update the timeout value in the * driver so reject the timeout update if the timeout * changed. If it did not change, i.e., no real update, * just reply with success. */ rcu_read_lock(); tid_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); if (tid_rx && tid_rx->timeout == timeout) status = WLAN_STATUS_SUCCESS; else status = WLAN_STATUS_REQUEST_DECLINED; rcu_read_unlock(); goto end; } ht_dbg_ratelimited(sta->sdata, "unexpected AddBA Req from %pM on tid %u\n", sta->sta.addr, tid); /* delete existing Rx BA session on the same tid */ ___ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT, WLAN_STATUS_UNSPECIFIED_QOS, false); } if (ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) { ret = drv_ampdu_action(local, sta->sdata, &params); ht_dbg(sta->sdata, "Rx A-MPDU request on %pM tid %d result %d\n", sta->sta.addr, tid, ret); if (!ret) status = WLAN_STATUS_SUCCESS; goto end; } /* prepare A-MPDU MLME for Rx aggregation */ tid_agg_rx = kzalloc(sizeof(*tid_agg_rx), GFP_KERNEL); if (!tid_agg_rx) goto end; spin_lock_init(&tid_agg_rx->reorder_lock); /* rx timer */ timer_setup(&tid_agg_rx->session_timer, sta_rx_agg_session_timer_expired, TIMER_DEFERRABLE); /* rx reorder timer */ timer_setup(&tid_agg_rx->reorder_timer, sta_rx_agg_reorder_timer_expired, 0); /* prepare reordering buffer */ tid_agg_rx->reorder_buf = kcalloc(buf_size, sizeof(struct sk_buff_head), GFP_KERNEL); tid_agg_rx->reorder_time = kcalloc(buf_size, sizeof(unsigned long), GFP_KERNEL); if (!tid_agg_rx->reorder_buf || !tid_agg_rx->reorder_time) { kfree(tid_agg_rx->reorder_buf); kfree(tid_agg_rx->reorder_time); kfree(tid_agg_rx); goto end; } for (i = 0; i < buf_size; i++) __skb_queue_head_init(&tid_agg_rx->reorder_buf[i]); ret = drv_ampdu_action(local, sta->sdata, &params); ht_dbg(sta->sdata, "Rx A-MPDU request on %pM tid %d result %d\n", sta->sta.addr, tid, ret); if (ret) { kfree(tid_agg_rx->reorder_buf); kfree(tid_agg_rx->reorder_time); kfree(tid_agg_rx); goto end; } /* update data */ tid_agg_rx->ssn = start_seq_num; tid_agg_rx->head_seq_num = start_seq_num; tid_agg_rx->buf_size = buf_size; tid_agg_rx->timeout = timeout; tid_agg_rx->stored_mpdu_num = 0; tid_agg_rx->auto_seq = auto_seq; tid_agg_rx->started = false; tid_agg_rx->reorder_buf_filtered = 0; tid_agg_rx->tid = tid; tid_agg_rx->sta = sta; status = WLAN_STATUS_SUCCESS; /* activate it for RX */ rcu_assign_pointer(sta->ampdu_mlme.tid_rx[tid], tid_agg_rx); if (timeout) { mod_timer(&tid_agg_rx->session_timer, TU_TO_EXP_TIME(timeout)); tid_agg_rx->last_rx = jiffies; } end: if (status == WLAN_STATUS_SUCCESS) { __set_bit(tid, sta->ampdu_mlme.agg_session_valid); __clear_bit(tid, sta->ampdu_mlme.unexpected_agg); sta->ampdu_mlme.tid_rx_token[tid] = dialog_token; } if (tx) ieee80211_send_addba_resp(sta, sta->sta.addr, tid, dialog_token, status, 1, buf_size, timeout, addbaext); } static void __ieee80211_start_rx_ba_session(struct sta_info *sta, u8 dialog_token, u16 timeout, u16 start_seq_num, u16 ba_policy, u16 tid, u16 buf_size, bool tx, bool auto_seq, const struct ieee80211_addba_ext_ie *addbaext) { mutex_lock(&sta->ampdu_mlme.mtx); ___ieee80211_start_rx_ba_session(sta, dialog_token, timeout, start_seq_num, ba_policy, tid, buf_size, tx, auto_seq, addbaext); mutex_unlock(&sta->ampdu_mlme.mtx); } void ieee80211_process_addba_request(struct ieee80211_local *local, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len) { u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num; struct ieee802_11_elems *elems = NULL; u8 dialog_token; int ies_len; /* extract session parameters from addba request frame */ dialog_token = mgmt->u.action.u.addba_req.dialog_token; timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout); start_seq_num = le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4; capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab); ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1; tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2; buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6; ies_len = len - offsetof(struct ieee80211_mgmt, u.action.u.addba_req.variable); if (ies_len) { elems = ieee802_11_parse_elems(mgmt->u.action.u.addba_req.variable, ies_len, true, NULL); if (!elems || elems->parse_error) goto free; } if (sta->sta.deflink.eht_cap.has_eht && elems && elems->addba_ext_ie) { u8 buf_size_1k = u8_get_bits(elems->addba_ext_ie->data, IEEE80211_ADDBA_EXT_BUF_SIZE_MASK); buf_size |= buf_size_1k << IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT; } __ieee80211_start_rx_ba_session(sta, dialog_token, timeout, start_seq_num, ba_policy, tid, buf_size, true, false, elems ? elems->addba_ext_ie : NULL); free: kfree(elems); } void ieee80211_manage_rx_ba_offl(struct ieee80211_vif *vif, const u8 *addr, unsigned int tid) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct sta_info *sta; rcu_read_lock(); sta = sta_info_get_bss(sdata, addr); if (!sta) goto unlock; set_bit(tid, sta->ampdu_mlme.tid_rx_manage_offl); ieee80211_queue_work(&local->hw, &sta->ampdu_mlme.work); unlock: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_manage_rx_ba_offl); void ieee80211_rx_ba_timer_expired(struct ieee80211_vif *vif, const u8 *addr, unsigned int tid) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct sta_info *sta; rcu_read_lock(); sta = sta_info_get_bss(sdata, addr); if (!sta) goto unlock; set_bit(tid, sta->ampdu_mlme.tid_rx_timer_expired); ieee80211_queue_work(&local->hw, &sta->ampdu_mlme.work); unlock: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_rx_ba_timer_expired);
linux-master
net/mac80211/agg-rx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2004, Instant802 Networks, Inc. * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2022 Intel Corporation */ #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/module.h> #include <linux/if_arp.h> #include <linux/types.h> #include <net/ip.h> #include <net/pkt_sched.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "wme.h" /* Default mapping in classifier to work with default * queue setup. */ const int ieee802_1d_to_ac[8] = { IEEE80211_AC_BE, IEEE80211_AC_BK, IEEE80211_AC_BK, IEEE80211_AC_BE, IEEE80211_AC_VI, IEEE80211_AC_VI, IEEE80211_AC_VO, IEEE80211_AC_VO }; static int wme_downgrade_ac(struct sk_buff *skb) { switch (skb->priority) { case 6: case 7: skb->priority = 5; /* VO -> VI */ return 0; case 4: case 5: skb->priority = 3; /* VI -> BE */ return 0; case 0: case 3: skb->priority = 2; /* BE -> BK */ return 0; default: return -1; } } /** * ieee80211_fix_reserved_tid - return the TID to use if this one is reserved * @tid: the assumed-reserved TID * * Returns: the alternative TID to use, or 0 on error */ static inline u8 ieee80211_fix_reserved_tid(u8 tid) { switch (tid) { case 0: return 3; case 1: return 2; case 2: return 1; case 3: return 0; case 4: return 5; case 5: return 4; case 6: return 7; case 7: return 6; } return 0; } static u16 ieee80211_downgrade_queue(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; /* in case we are a client verify acm is not set for this ac */ while (sdata->wmm_acm & BIT(skb->priority)) { int ac = ieee802_1d_to_ac[skb->priority]; if (ifmgd->tx_tspec[ac].admitted_time && skb->priority == ifmgd->tx_tspec[ac].up) return ac; if (wme_downgrade_ac(skb)) { /* * This should not really happen. The AP has marked all * lower ACs to require admission control which is not * a reasonable configuration. Allow the frame to be * transmitted using AC_BK as a workaround. */ break; } } /* Check to see if this is a reserved TID */ if (sta && sta->reserved_tid == skb->priority) skb->priority = ieee80211_fix_reserved_tid(skb->priority); /* look up which queue to use for frames with this 1d tag */ return ieee802_1d_to_ac[skb->priority]; } /* Indicate which queue to use for this fully formed 802.11 frame */ u16 ieee80211_select_queue_80211(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct ieee80211_hdr *hdr) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); u8 *p; /* Ensure hash is set prior to potential SW encryption */ skb_get_hash(skb); if ((info->control.flags & IEEE80211_TX_CTRL_DONT_REORDER) || local->hw.queues < IEEE80211_NUM_ACS) return 0; if (!ieee80211_is_data(hdr->frame_control)) { skb->priority = 7; return ieee802_1d_to_ac[skb->priority]; } if (!ieee80211_is_data_qos(hdr->frame_control)) { skb->priority = 0; return ieee802_1d_to_ac[skb->priority]; } p = ieee80211_get_qos_ctl(hdr); skb->priority = *p & IEEE80211_QOS_CTL_TAG1D_MASK; return ieee80211_downgrade_queue(sdata, NULL, skb); } u16 ieee80211_select_queue(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { const struct ethhdr *eth = (void *)skb->data; struct mac80211_qos_map *qos_map; bool qos; /* Ensure hash is set prior to potential SW encryption */ skb_get_hash(skb); /* all mesh/ocb stations are required to support WME */ if ((sdata->vif.type == NL80211_IFTYPE_MESH_POINT && !is_multicast_ether_addr(eth->h_dest)) || (sdata->vif.type == NL80211_IFTYPE_OCB && sta)) qos = true; else if (sta) qos = sta->sta.wme; else qos = false; if (!qos) { skb->priority = 0; /* required for correct WPA/11i MIC */ return IEEE80211_AC_BE; } if (skb->protocol == sdata->control_port_protocol) { skb->priority = 7; goto downgrade; } /* use the data classifier to determine what 802.1d tag the * data frame has */ qos_map = rcu_dereference(sdata->qos_map); skb->priority = cfg80211_classify8021d(skb, qos_map ? &qos_map->qos_map : NULL); downgrade: return ieee80211_downgrade_queue(sdata, sta, skb); } /** * ieee80211_set_qos_hdr - Fill in the QoS header if there is one. * * @sdata: local subif * @skb: packet to be updated */ void ieee80211_set_qos_hdr(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (void *)skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); u8 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; u8 flags; u8 *p; if (!ieee80211_is_data_qos(hdr->frame_control)) return; p = ieee80211_get_qos_ctl(hdr); /* don't overwrite the QoS field of injected frames */ if (info->flags & IEEE80211_TX_CTL_INJECTED) { /* do take into account Ack policy of injected frames */ if (*p & IEEE80211_QOS_CTL_ACK_POLICY_NOACK) info->flags |= IEEE80211_TX_CTL_NO_ACK; return; } /* set up the first byte */ /* * preserve everything but the TID and ACK policy * (which we both write here) */ flags = *p & ~(IEEE80211_QOS_CTL_TID_MASK | IEEE80211_QOS_CTL_ACK_POLICY_MASK); if (is_multicast_ether_addr(hdr->addr1) || sdata->noack_map & BIT(tid)) { flags |= IEEE80211_QOS_CTL_ACK_POLICY_NOACK; info->flags |= IEEE80211_TX_CTL_NO_ACK; } *p = flags | tid; /* set up the second byte */ p++; if (ieee80211_vif_is_mesh(&sdata->vif)) { /* preserve RSPI and Mesh PS Level bit */ *p &= ((IEEE80211_QOS_CTL_RSPI | IEEE80211_QOS_CTL_MESH_PS_LEVEL) >> 8); /* Nulls don't have a mesh header (frame body) */ if (!ieee80211_is_qos_nullfunc(hdr->frame_control)) *p |= (IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT >> 8); } else { *p = 0; } }
linux-master
net/mac80211/wme.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2006 Jiri Benc <[email protected]> * Copyright 2007 Johannes Berg <[email protected]> * Copyright (C) 2020-2023 Intel Corporation */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/if.h> #include <linux/if_ether.h> #include <linux/interrupt.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/notifier.h> #include <net/mac80211.h> #include <net/cfg80211.h> #include "ieee80211_i.h" #include "rate.h" #include "debugfs.h" #include "debugfs_netdev.h" #include "driver-ops.h" static ssize_t ieee80211_if_read( void *data, char __user *userbuf, size_t count, loff_t *ppos, ssize_t (*format)(const void *, char *, int)) { char buf[200]; ssize_t ret = -EINVAL; read_lock(&dev_base_lock); ret = (*format)(data, buf, sizeof(buf)); read_unlock(&dev_base_lock); if (ret >= 0) ret = simple_read_from_buffer(userbuf, count, ppos, buf, ret); return ret; } static ssize_t ieee80211_if_write( void *data, const char __user *userbuf, size_t count, loff_t *ppos, ssize_t (*write)(void *, const char *, int)) { char buf[64]; ssize_t ret; if (count >= sizeof(buf)) return -E2BIG; if (copy_from_user(buf, userbuf, count)) return -EFAULT; buf[count] = '\0'; rtnl_lock(); ret = (*write)(data, buf, count); rtnl_unlock(); return ret; } #define IEEE80211_IF_FMT(name, type, field, format_string) \ static ssize_t ieee80211_if_fmt_##name( \ const type *data, char *buf, \ int buflen) \ { \ return scnprintf(buf, buflen, format_string, data->field); \ } #define IEEE80211_IF_FMT_DEC(name, type, field) \ IEEE80211_IF_FMT(name, type, field, "%d\n") #define IEEE80211_IF_FMT_HEX(name, type, field) \ IEEE80211_IF_FMT(name, type, field, "%#x\n") #define IEEE80211_IF_FMT_LHEX(name, type, field) \ IEEE80211_IF_FMT(name, type, field, "%#lx\n") #define IEEE80211_IF_FMT_HEXARRAY(name, type, field) \ static ssize_t ieee80211_if_fmt_##name( \ const type *data, \ char *buf, int buflen) \ { \ char *p = buf; \ int i; \ for (i = 0; i < sizeof(data->field); i++) { \ p += scnprintf(p, buflen + buf - p, "%.2x ", \ data->field[i]); \ } \ p += scnprintf(p, buflen + buf - p, "\n"); \ return p - buf; \ } #define IEEE80211_IF_FMT_ATOMIC(name, type, field) \ static ssize_t ieee80211_if_fmt_##name( \ const type *data, \ char *buf, int buflen) \ { \ return scnprintf(buf, buflen, "%d\n", atomic_read(&data->field));\ } #define IEEE80211_IF_FMT_MAC(name, type, field) \ static ssize_t ieee80211_if_fmt_##name( \ const type *data, char *buf, \ int buflen) \ { \ return scnprintf(buf, buflen, "%pM\n", data->field); \ } #define IEEE80211_IF_FMT_JIFFIES_TO_MS(name, type, field) \ static ssize_t ieee80211_if_fmt_##name( \ const type *data, \ char *buf, int buflen) \ { \ return scnprintf(buf, buflen, "%d\n", \ jiffies_to_msecs(data->field)); \ } #define _IEEE80211_IF_FILE_OPS(name, _read, _write) \ static const struct file_operations name##_ops = { \ .read = (_read), \ .write = (_write), \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define _IEEE80211_IF_FILE_R_FN(name, type) \ static ssize_t ieee80211_if_read_##name(struct file *file, \ char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ ssize_t (*fn)(const void *, char *, int) = (void *) \ ((ssize_t (*)(const type, char *, int)) \ ieee80211_if_fmt_##name); \ return ieee80211_if_read(file->private_data, \ userbuf, count, ppos, fn); \ } #define _IEEE80211_IF_FILE_W_FN(name, type) \ static ssize_t ieee80211_if_write_##name(struct file *file, \ const char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ ssize_t (*fn)(void *, const char *, int) = (void *) \ ((ssize_t (*)(type, const char *, int)) \ ieee80211_if_parse_##name); \ return ieee80211_if_write(file->private_data, userbuf, count, \ ppos, fn); \ } #define IEEE80211_IF_FILE_R(name) \ _IEEE80211_IF_FILE_R_FN(name, struct ieee80211_sub_if_data *) \ _IEEE80211_IF_FILE_OPS(name, ieee80211_if_read_##name, NULL) #define IEEE80211_IF_FILE_W(name) \ _IEEE80211_IF_FILE_W_FN(name, struct ieee80211_sub_if_data *) \ _IEEE80211_IF_FILE_OPS(name, NULL, ieee80211_if_write_##name) #define IEEE80211_IF_FILE_RW(name) \ _IEEE80211_IF_FILE_R_FN(name, struct ieee80211_sub_if_data *) \ _IEEE80211_IF_FILE_W_FN(name, struct ieee80211_sub_if_data *) \ _IEEE80211_IF_FILE_OPS(name, ieee80211_if_read_##name, \ ieee80211_if_write_##name) #define IEEE80211_IF_FILE(name, field, format) \ IEEE80211_IF_FMT_##format(name, struct ieee80211_sub_if_data, field) \ IEEE80211_IF_FILE_R(name) /* Same but with a link_ prefix in the ops variable name and different type */ #define IEEE80211_IF_LINK_FILE_R(name) \ _IEEE80211_IF_FILE_R_FN(name, struct ieee80211_link_data *) \ _IEEE80211_IF_FILE_OPS(link_##name, ieee80211_if_read_##name, NULL) #define IEEE80211_IF_LINK_FILE_W(name) \ _IEEE80211_IF_FILE_W_FN(name) \ _IEEE80211_IF_FILE_OPS(link_##name, NULL, ieee80211_if_write_##name) #define IEEE80211_IF_LINK_FILE_RW(name) \ _IEEE80211_IF_FILE_R_FN(name, struct ieee80211_link_data *) \ _IEEE80211_IF_FILE_W_FN(name, struct ieee80211_link_data *) \ _IEEE80211_IF_FILE_OPS(link_##name, ieee80211_if_read_##name, \ ieee80211_if_write_##name) #define IEEE80211_IF_LINK_FILE(name, field, format) \ IEEE80211_IF_FMT_##format(name, struct ieee80211_link_data, field) \ IEEE80211_IF_LINK_FILE_R(name) /* common attributes */ IEEE80211_IF_FILE(rc_rateidx_mask_2ghz, rc_rateidx_mask[NL80211_BAND_2GHZ], HEX); IEEE80211_IF_FILE(rc_rateidx_mask_5ghz, rc_rateidx_mask[NL80211_BAND_5GHZ], HEX); IEEE80211_IF_FILE(rc_rateidx_mcs_mask_2ghz, rc_rateidx_mcs_mask[NL80211_BAND_2GHZ], HEXARRAY); IEEE80211_IF_FILE(rc_rateidx_mcs_mask_5ghz, rc_rateidx_mcs_mask[NL80211_BAND_5GHZ], HEXARRAY); static ssize_t ieee80211_if_fmt_rc_rateidx_vht_mcs_mask_2ghz( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { int i, len = 0; const u16 *mask = sdata->rc_rateidx_vht_mcs_mask[NL80211_BAND_2GHZ]; for (i = 0; i < NL80211_VHT_NSS_MAX; i++) len += scnprintf(buf + len, buflen - len, "%04x ", mask[i]); len += scnprintf(buf + len, buflen - len, "\n"); return len; } IEEE80211_IF_FILE_R(rc_rateidx_vht_mcs_mask_2ghz); static ssize_t ieee80211_if_fmt_rc_rateidx_vht_mcs_mask_5ghz( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { int i, len = 0; const u16 *mask = sdata->rc_rateidx_vht_mcs_mask[NL80211_BAND_5GHZ]; for (i = 0; i < NL80211_VHT_NSS_MAX; i++) len += scnprintf(buf + len, buflen - len, "%04x ", mask[i]); len += scnprintf(buf + len, buflen - len, "\n"); return len; } IEEE80211_IF_FILE_R(rc_rateidx_vht_mcs_mask_5ghz); IEEE80211_IF_FILE(flags, flags, HEX); IEEE80211_IF_FILE(state, state, LHEX); IEEE80211_IF_LINK_FILE(txpower, conf->txpower, DEC); IEEE80211_IF_LINK_FILE(ap_power_level, ap_power_level, DEC); IEEE80211_IF_LINK_FILE(user_power_level, user_power_level, DEC); static ssize_t ieee80211_if_fmt_hw_queues(const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { int len; len = scnprintf(buf, buflen, "AC queues: VO:%d VI:%d BE:%d BK:%d\n", sdata->vif.hw_queue[IEEE80211_AC_VO], sdata->vif.hw_queue[IEEE80211_AC_VI], sdata->vif.hw_queue[IEEE80211_AC_BE], sdata->vif.hw_queue[IEEE80211_AC_BK]); if (sdata->vif.type == NL80211_IFTYPE_AP) len += scnprintf(buf + len, buflen - len, "cab queue: %d\n", sdata->vif.cab_queue); return len; } IEEE80211_IF_FILE_R(hw_queues); /* STA attributes */ IEEE80211_IF_FILE(bssid, deflink.u.mgd.bssid, MAC); IEEE80211_IF_FILE(aid, vif.cfg.aid, DEC); IEEE80211_IF_FILE(beacon_timeout, u.mgd.beacon_timeout, JIFFIES_TO_MS); static int ieee80211_set_smps(struct ieee80211_link_data *link, enum ieee80211_smps_mode smps_mode) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; int err; if (sdata->vif.driver_flags & IEEE80211_VIF_DISABLE_SMPS_OVERRIDE) return -EOPNOTSUPP; if (!(local->hw.wiphy->features & NL80211_FEATURE_STATIC_SMPS) && smps_mode == IEEE80211_SMPS_STATIC) return -EINVAL; /* auto should be dynamic if in PS mode */ if (!(local->hw.wiphy->features & NL80211_FEATURE_DYNAMIC_SMPS) && (smps_mode == IEEE80211_SMPS_DYNAMIC || smps_mode == IEEE80211_SMPS_AUTOMATIC)) return -EINVAL; if (sdata->vif.type != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; sdata_lock(sdata); err = __ieee80211_request_smps_mgd(link->sdata, link, smps_mode); sdata_unlock(sdata); return err; } static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = { [IEEE80211_SMPS_AUTOMATIC] = "auto", [IEEE80211_SMPS_OFF] = "off", [IEEE80211_SMPS_STATIC] = "static", [IEEE80211_SMPS_DYNAMIC] = "dynamic", }; static ssize_t ieee80211_if_fmt_smps(const struct ieee80211_link_data *link, char *buf, int buflen) { if (link->sdata->vif.type == NL80211_IFTYPE_STATION) return snprintf(buf, buflen, "request: %s\nused: %s\n", smps_modes[link->u.mgd.req_smps], smps_modes[link->smps_mode]); return -EINVAL; } static ssize_t ieee80211_if_parse_smps(struct ieee80211_link_data *link, const char *buf, int buflen) { enum ieee80211_smps_mode mode; for (mode = 0; mode < IEEE80211_SMPS_NUM_MODES; mode++) { if (strncmp(buf, smps_modes[mode], buflen) == 0) { int err = ieee80211_set_smps(link, mode); if (!err) return buflen; return err; } } return -EINVAL; } IEEE80211_IF_LINK_FILE_RW(smps); static ssize_t ieee80211_if_parse_tkip_mic_test( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { struct ieee80211_local *local = sdata->local; u8 addr[ETH_ALEN]; struct sk_buff *skb; struct ieee80211_hdr *hdr; __le16 fc; if (!mac_pton(buf, addr)) return -EINVAL; if (!ieee80211_sdata_running(sdata)) return -ENOTCONN; skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24 + 100); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); hdr = skb_put_zero(skb, 24); fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); switch (sdata->vif.type) { case NL80211_IFTYPE_AP: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ memcpy(hdr->addr1, addr, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr->addr3, sdata->vif.addr, ETH_ALEN); break; case NL80211_IFTYPE_STATION: fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ sdata_lock(sdata); if (!sdata->u.mgd.associated) { sdata_unlock(sdata); dev_kfree_skb(skb); return -ENOTCONN; } memcpy(hdr->addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr->addr3, addr, ETH_ALEN); sdata_unlock(sdata); break; default: dev_kfree_skb(skb); return -EOPNOTSUPP; } hdr->frame_control = fc; /* * Add some length to the test frame to make it look bit more valid. * The exact contents does not matter since the recipient is required * to drop this because of the Michael MIC failure. */ skb_put_zero(skb, 50); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_TKIP_MIC_FAILURE; ieee80211_tx_skb(sdata, skb); return buflen; } IEEE80211_IF_FILE_W(tkip_mic_test); static ssize_t ieee80211_if_parse_beacon_loss( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { if (!ieee80211_sdata_running(sdata) || !sdata->vif.cfg.assoc) return -ENOTCONN; ieee80211_beacon_loss(&sdata->vif); return buflen; } IEEE80211_IF_FILE_W(beacon_loss); static ssize_t ieee80211_if_fmt_uapsd_queues( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { const struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; return snprintf(buf, buflen, "0x%x\n", ifmgd->uapsd_queues); } static ssize_t ieee80211_if_parse_uapsd_queues( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 val; int ret; ret = kstrtou8(buf, 0, &val); if (ret) return ret; if (val & ~IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK) return -ERANGE; ifmgd->uapsd_queues = val; return buflen; } IEEE80211_IF_FILE_RW(uapsd_queues); static ssize_t ieee80211_if_fmt_uapsd_max_sp_len( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { const struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; return snprintf(buf, buflen, "0x%x\n", ifmgd->uapsd_max_sp_len); } static ssize_t ieee80211_if_parse_uapsd_max_sp_len( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret) return -EINVAL; if (val & ~IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK) return -ERANGE; ifmgd->uapsd_max_sp_len = val; return buflen; } IEEE80211_IF_FILE_RW(uapsd_max_sp_len); static ssize_t ieee80211_if_fmt_tdls_wider_bw( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { const struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool tdls_wider_bw; tdls_wider_bw = ieee80211_hw_check(&sdata->local->hw, TDLS_WIDER_BW) && !ifmgd->tdls_wider_bw_prohibited; return snprintf(buf, buflen, "%d\n", tdls_wider_bw); } static ssize_t ieee80211_if_parse_tdls_wider_bw( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 val; int ret; ret = kstrtou8(buf, 0, &val); if (ret) return ret; ifmgd->tdls_wider_bw_prohibited = !val; return buflen; } IEEE80211_IF_FILE_RW(tdls_wider_bw); /* AP attributes */ IEEE80211_IF_FILE(num_mcast_sta, u.ap.num_mcast_sta, ATOMIC); IEEE80211_IF_FILE(num_sta_ps, u.ap.ps.num_sta_ps, ATOMIC); IEEE80211_IF_FILE(dtim_count, u.ap.ps.dtim_count, DEC); IEEE80211_IF_FILE(num_mcast_sta_vlan, u.vlan.num_mcast_sta, ATOMIC); static ssize_t ieee80211_if_fmt_num_buffered_multicast( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { return scnprintf(buf, buflen, "%u\n", skb_queue_len(&sdata->u.ap.ps.bc_buf)); } IEEE80211_IF_FILE_R(num_buffered_multicast); static ssize_t ieee80211_if_fmt_aqm( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { struct ieee80211_local *local = sdata->local; struct txq_info *txqi; int len; if (!sdata->vif.txq) return 0; txqi = to_txq_info(sdata->vif.txq); spin_lock_bh(&local->fq.lock); rcu_read_lock(); len = scnprintf(buf, buflen, "ac backlog-bytes backlog-packets new-flows drops marks overlimit collisions tx-bytes tx-packets\n" "%u %u %u %u %u %u %u %u %u %u\n", txqi->txq.ac, txqi->tin.backlog_bytes, txqi->tin.backlog_packets, txqi->tin.flows, txqi->cstats.drop_count, txqi->cstats.ecn_mark, txqi->tin.overlimit, txqi->tin.collisions, txqi->tin.tx_bytes, txqi->tin.tx_packets); rcu_read_unlock(); spin_unlock_bh(&local->fq.lock); return len; } IEEE80211_IF_FILE_R(aqm); IEEE80211_IF_FILE(multicast_to_unicast, u.ap.multicast_to_unicast, HEX); /* IBSS attributes */ static ssize_t ieee80211_if_fmt_tsf( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { struct ieee80211_local *local = sdata->local; u64 tsf; tsf = drv_get_tsf(local, (struct ieee80211_sub_if_data *)sdata); return scnprintf(buf, buflen, "0x%016llx\n", (unsigned long long) tsf); } static ssize_t ieee80211_if_parse_tsf( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { struct ieee80211_local *local = sdata->local; unsigned long long tsf; int ret; int tsf_is_delta = 0; if (strncmp(buf, "reset", 5) == 0) { if (local->ops->reset_tsf) { drv_reset_tsf(local, sdata); wiphy_info(local->hw.wiphy, "debugfs reset TSF\n"); } } else { if (buflen > 10 && buf[1] == '=') { if (buf[0] == '+') tsf_is_delta = 1; else if (buf[0] == '-') tsf_is_delta = -1; else return -EINVAL; buf += 2; } ret = kstrtoull(buf, 10, &tsf); if (ret < 0) return ret; if (tsf_is_delta && local->ops->offset_tsf) { drv_offset_tsf(local, sdata, tsf_is_delta * tsf); wiphy_info(local->hw.wiphy, "debugfs offset TSF by %018lld\n", tsf_is_delta * tsf); } else if (local->ops->set_tsf) { if (tsf_is_delta) tsf = drv_get_tsf(local, sdata) + tsf_is_delta * tsf; drv_set_tsf(local, sdata, tsf); wiphy_info(local->hw.wiphy, "debugfs set TSF to %#018llx\n", tsf); } } ieee80211_recalc_dtim(local, sdata); return buflen; } IEEE80211_IF_FILE_RW(tsf); static ssize_t ieee80211_if_fmt_valid_links(const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { return snprintf(buf, buflen, "0x%x\n", sdata->vif.valid_links); } IEEE80211_IF_FILE_R(valid_links); static ssize_t ieee80211_if_fmt_active_links(const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { return snprintf(buf, buflen, "0x%x\n", sdata->vif.active_links); } static ssize_t ieee80211_if_parse_active_links(struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { u16 active_links; if (kstrtou16(buf, 0, &active_links)) return -EINVAL; return ieee80211_set_active_links(&sdata->vif, active_links) ?: buflen; } IEEE80211_IF_FILE_RW(active_links); IEEE80211_IF_LINK_FILE(addr, conf->addr, MAC); #ifdef CONFIG_MAC80211_MESH IEEE80211_IF_FILE(estab_plinks, u.mesh.estab_plinks, ATOMIC); /* Mesh stats attributes */ IEEE80211_IF_FILE(fwded_mcast, u.mesh.mshstats.fwded_mcast, DEC); IEEE80211_IF_FILE(fwded_unicast, u.mesh.mshstats.fwded_unicast, DEC); IEEE80211_IF_FILE(fwded_frames, u.mesh.mshstats.fwded_frames, DEC); IEEE80211_IF_FILE(dropped_frames_ttl, u.mesh.mshstats.dropped_frames_ttl, DEC); IEEE80211_IF_FILE(dropped_frames_no_route, u.mesh.mshstats.dropped_frames_no_route, DEC); /* Mesh parameters */ IEEE80211_IF_FILE(dot11MeshMaxRetries, u.mesh.mshcfg.dot11MeshMaxRetries, DEC); IEEE80211_IF_FILE(dot11MeshRetryTimeout, u.mesh.mshcfg.dot11MeshRetryTimeout, DEC); IEEE80211_IF_FILE(dot11MeshConfirmTimeout, u.mesh.mshcfg.dot11MeshConfirmTimeout, DEC); IEEE80211_IF_FILE(dot11MeshHoldingTimeout, u.mesh.mshcfg.dot11MeshHoldingTimeout, DEC); IEEE80211_IF_FILE(dot11MeshTTL, u.mesh.mshcfg.dot11MeshTTL, DEC); IEEE80211_IF_FILE(element_ttl, u.mesh.mshcfg.element_ttl, DEC); IEEE80211_IF_FILE(auto_open_plinks, u.mesh.mshcfg.auto_open_plinks, DEC); IEEE80211_IF_FILE(dot11MeshMaxPeerLinks, u.mesh.mshcfg.dot11MeshMaxPeerLinks, DEC); IEEE80211_IF_FILE(dot11MeshHWMPactivePathTimeout, u.mesh.mshcfg.dot11MeshHWMPactivePathTimeout, DEC); IEEE80211_IF_FILE(dot11MeshHWMPpreqMinInterval, u.mesh.mshcfg.dot11MeshHWMPpreqMinInterval, DEC); IEEE80211_IF_FILE(dot11MeshHWMPperrMinInterval, u.mesh.mshcfg.dot11MeshHWMPperrMinInterval, DEC); IEEE80211_IF_FILE(dot11MeshHWMPnetDiameterTraversalTime, u.mesh.mshcfg.dot11MeshHWMPnetDiameterTraversalTime, DEC); IEEE80211_IF_FILE(dot11MeshHWMPmaxPREQretries, u.mesh.mshcfg.dot11MeshHWMPmaxPREQretries, DEC); IEEE80211_IF_FILE(path_refresh_time, u.mesh.mshcfg.path_refresh_time, DEC); IEEE80211_IF_FILE(min_discovery_timeout, u.mesh.mshcfg.min_discovery_timeout, DEC); IEEE80211_IF_FILE(dot11MeshHWMPRootMode, u.mesh.mshcfg.dot11MeshHWMPRootMode, DEC); IEEE80211_IF_FILE(dot11MeshGateAnnouncementProtocol, u.mesh.mshcfg.dot11MeshGateAnnouncementProtocol, DEC); IEEE80211_IF_FILE(dot11MeshHWMPRannInterval, u.mesh.mshcfg.dot11MeshHWMPRannInterval, DEC); IEEE80211_IF_FILE(dot11MeshForwarding, u.mesh.mshcfg.dot11MeshForwarding, DEC); IEEE80211_IF_FILE(rssi_threshold, u.mesh.mshcfg.rssi_threshold, DEC); IEEE80211_IF_FILE(ht_opmode, u.mesh.mshcfg.ht_opmode, DEC); IEEE80211_IF_FILE(dot11MeshHWMPactivePathToRootTimeout, u.mesh.mshcfg.dot11MeshHWMPactivePathToRootTimeout, DEC); IEEE80211_IF_FILE(dot11MeshHWMProotInterval, u.mesh.mshcfg.dot11MeshHWMProotInterval, DEC); IEEE80211_IF_FILE(dot11MeshHWMPconfirmationInterval, u.mesh.mshcfg.dot11MeshHWMPconfirmationInterval, DEC); IEEE80211_IF_FILE(power_mode, u.mesh.mshcfg.power_mode, DEC); IEEE80211_IF_FILE(dot11MeshAwakeWindowDuration, u.mesh.mshcfg.dot11MeshAwakeWindowDuration, DEC); IEEE80211_IF_FILE(dot11MeshConnectedToMeshGate, u.mesh.mshcfg.dot11MeshConnectedToMeshGate, DEC); IEEE80211_IF_FILE(dot11MeshNolearn, u.mesh.mshcfg.dot11MeshNolearn, DEC); IEEE80211_IF_FILE(dot11MeshConnectedToAuthServer, u.mesh.mshcfg.dot11MeshConnectedToAuthServer, DEC); #endif #define DEBUGFS_ADD_MODE(name, mode) \ debugfs_create_file(#name, mode, sdata->vif.debugfs_dir, \ sdata, &name##_ops) #define DEBUGFS_ADD_X(_bits, _name, _mode) \ debugfs_create_x##_bits(#_name, _mode, sdata->vif.debugfs_dir, \ &sdata->vif._name) #define DEBUGFS_ADD_X8(_name, _mode) \ DEBUGFS_ADD_X(8, _name, _mode) #define DEBUGFS_ADD_X16(_name, _mode) \ DEBUGFS_ADD_X(16, _name, _mode) #define DEBUGFS_ADD_X32(_name, _mode) \ DEBUGFS_ADD_X(32, _name, _mode) #define DEBUGFS_ADD(name) DEBUGFS_ADD_MODE(name, 0400) static void add_common_files(struct ieee80211_sub_if_data *sdata) { DEBUGFS_ADD(rc_rateidx_mask_2ghz); DEBUGFS_ADD(rc_rateidx_mask_5ghz); DEBUGFS_ADD(rc_rateidx_mcs_mask_2ghz); DEBUGFS_ADD(rc_rateidx_mcs_mask_5ghz); DEBUGFS_ADD(rc_rateidx_vht_mcs_mask_2ghz); DEBUGFS_ADD(rc_rateidx_vht_mcs_mask_5ghz); DEBUGFS_ADD(hw_queues); if (sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && sdata->vif.type != NL80211_IFTYPE_NAN) DEBUGFS_ADD(aqm); } static void add_sta_files(struct ieee80211_sub_if_data *sdata) { DEBUGFS_ADD(bssid); DEBUGFS_ADD(aid); DEBUGFS_ADD(beacon_timeout); DEBUGFS_ADD_MODE(tkip_mic_test, 0200); DEBUGFS_ADD_MODE(beacon_loss, 0200); DEBUGFS_ADD_MODE(uapsd_queues, 0600); DEBUGFS_ADD_MODE(uapsd_max_sp_len, 0600); DEBUGFS_ADD_MODE(tdls_wider_bw, 0600); DEBUGFS_ADD_MODE(valid_links, 0400); DEBUGFS_ADD_MODE(active_links, 0600); DEBUGFS_ADD_X16(dormant_links, 0400); } static void add_ap_files(struct ieee80211_sub_if_data *sdata) { DEBUGFS_ADD(num_mcast_sta); DEBUGFS_ADD(num_sta_ps); DEBUGFS_ADD(dtim_count); DEBUGFS_ADD(num_buffered_multicast); DEBUGFS_ADD_MODE(tkip_mic_test, 0200); DEBUGFS_ADD_MODE(multicast_to_unicast, 0600); } static void add_vlan_files(struct ieee80211_sub_if_data *sdata) { /* add num_mcast_sta_vlan using name num_mcast_sta */ debugfs_create_file("num_mcast_sta", 0400, sdata->vif.debugfs_dir, sdata, &num_mcast_sta_vlan_ops); } static void add_ibss_files(struct ieee80211_sub_if_data *sdata) { DEBUGFS_ADD_MODE(tsf, 0600); } #ifdef CONFIG_MAC80211_MESH static void add_mesh_files(struct ieee80211_sub_if_data *sdata) { DEBUGFS_ADD_MODE(tsf, 0600); DEBUGFS_ADD_MODE(estab_plinks, 0400); } static void add_mesh_stats(struct ieee80211_sub_if_data *sdata) { struct dentry *dir = debugfs_create_dir("mesh_stats", sdata->vif.debugfs_dir); #define MESHSTATS_ADD(name)\ debugfs_create_file(#name, 0400, dir, sdata, &name##_ops) MESHSTATS_ADD(fwded_mcast); MESHSTATS_ADD(fwded_unicast); MESHSTATS_ADD(fwded_frames); MESHSTATS_ADD(dropped_frames_ttl); MESHSTATS_ADD(dropped_frames_no_route); #undef MESHSTATS_ADD } static void add_mesh_config(struct ieee80211_sub_if_data *sdata) { struct dentry *dir = debugfs_create_dir("mesh_config", sdata->vif.debugfs_dir); #define MESHPARAMS_ADD(name) \ debugfs_create_file(#name, 0600, dir, sdata, &name##_ops) MESHPARAMS_ADD(dot11MeshMaxRetries); MESHPARAMS_ADD(dot11MeshRetryTimeout); MESHPARAMS_ADD(dot11MeshConfirmTimeout); MESHPARAMS_ADD(dot11MeshHoldingTimeout); MESHPARAMS_ADD(dot11MeshTTL); MESHPARAMS_ADD(element_ttl); MESHPARAMS_ADD(auto_open_plinks); MESHPARAMS_ADD(dot11MeshMaxPeerLinks); MESHPARAMS_ADD(dot11MeshHWMPactivePathTimeout); MESHPARAMS_ADD(dot11MeshHWMPpreqMinInterval); MESHPARAMS_ADD(dot11MeshHWMPperrMinInterval); MESHPARAMS_ADD(dot11MeshHWMPnetDiameterTraversalTime); MESHPARAMS_ADD(dot11MeshHWMPmaxPREQretries); MESHPARAMS_ADD(path_refresh_time); MESHPARAMS_ADD(min_discovery_timeout); MESHPARAMS_ADD(dot11MeshHWMPRootMode); MESHPARAMS_ADD(dot11MeshHWMPRannInterval); MESHPARAMS_ADD(dot11MeshForwarding); MESHPARAMS_ADD(dot11MeshGateAnnouncementProtocol); MESHPARAMS_ADD(rssi_threshold); MESHPARAMS_ADD(ht_opmode); MESHPARAMS_ADD(dot11MeshHWMPactivePathToRootTimeout); MESHPARAMS_ADD(dot11MeshHWMProotInterval); MESHPARAMS_ADD(dot11MeshHWMPconfirmationInterval); MESHPARAMS_ADD(power_mode); MESHPARAMS_ADD(dot11MeshAwakeWindowDuration); MESHPARAMS_ADD(dot11MeshConnectedToMeshGate); MESHPARAMS_ADD(dot11MeshNolearn); MESHPARAMS_ADD(dot11MeshConnectedToAuthServer); #undef MESHPARAMS_ADD } #endif static void add_files(struct ieee80211_sub_if_data *sdata) { if (!sdata->vif.debugfs_dir) return; DEBUGFS_ADD(flags); DEBUGFS_ADD(state); if (sdata->vif.type != NL80211_IFTYPE_MONITOR) add_common_files(sdata); switch (sdata->vif.type) { case NL80211_IFTYPE_MESH_POINT: #ifdef CONFIG_MAC80211_MESH add_mesh_files(sdata); add_mesh_stats(sdata); add_mesh_config(sdata); #endif break; case NL80211_IFTYPE_STATION: add_sta_files(sdata); break; case NL80211_IFTYPE_ADHOC: add_ibss_files(sdata); break; case NL80211_IFTYPE_AP: add_ap_files(sdata); break; case NL80211_IFTYPE_AP_VLAN: add_vlan_files(sdata); break; default: break; } } #undef DEBUGFS_ADD_MODE #undef DEBUGFS_ADD #define DEBUGFS_ADD_MODE(dentry, name, mode) \ debugfs_create_file(#name, mode, dentry, \ link, &link_##name##_ops) #define DEBUGFS_ADD(dentry, name) DEBUGFS_ADD_MODE(dentry, name, 0400) static void add_link_files(struct ieee80211_link_data *link, struct dentry *dentry) { DEBUGFS_ADD(dentry, txpower); DEBUGFS_ADD(dentry, user_power_level); DEBUGFS_ADD(dentry, ap_power_level); switch (link->sdata->vif.type) { case NL80211_IFTYPE_STATION: DEBUGFS_ADD_MODE(dentry, smps, 0600); break; default: break; } } void ieee80211_debugfs_add_netdev(struct ieee80211_sub_if_data *sdata) { char buf[10+IFNAMSIZ]; sprintf(buf, "netdev:%s", sdata->name); sdata->vif.debugfs_dir = debugfs_create_dir(buf, sdata->local->hw.wiphy->debugfsdir); sdata->debugfs.subdir_stations = debugfs_create_dir("stations", sdata->vif.debugfs_dir); add_files(sdata); if (!(sdata->local->hw.wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO)) add_link_files(&sdata->deflink, sdata->vif.debugfs_dir); } void ieee80211_debugfs_remove_netdev(struct ieee80211_sub_if_data *sdata) { if (!sdata->vif.debugfs_dir) return; debugfs_remove_recursive(sdata->vif.debugfs_dir); sdata->vif.debugfs_dir = NULL; sdata->debugfs.subdir_stations = NULL; } void ieee80211_debugfs_rename_netdev(struct ieee80211_sub_if_data *sdata) { struct dentry *dir; char buf[10 + IFNAMSIZ]; dir = sdata->vif.debugfs_dir; if (IS_ERR_OR_NULL(dir)) return; sprintf(buf, "netdev:%s", sdata->name); debugfs_rename(dir->d_parent, dir, dir->d_parent, buf); } void ieee80211_link_debugfs_add(struct ieee80211_link_data *link) { char link_dir_name[10]; if (WARN_ON(!link->sdata->vif.debugfs_dir)) return; /* For now, this should not be called for non-MLO capable drivers */ if (WARN_ON(!(link->sdata->local->hw.wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO))) return; snprintf(link_dir_name, sizeof(link_dir_name), "link-%d", link->link_id); link->debugfs_dir = debugfs_create_dir(link_dir_name, link->sdata->vif.debugfs_dir); DEBUGFS_ADD(link->debugfs_dir, addr); add_link_files(link, link->debugfs_dir); } void ieee80211_link_debugfs_remove(struct ieee80211_link_data *link) { if (!link->sdata->vif.debugfs_dir || !link->debugfs_dir) { link->debugfs_dir = NULL; return; } if (link->debugfs_dir == link->sdata->vif.debugfs_dir) { WARN_ON(link != &link->sdata->deflink); link->debugfs_dir = NULL; return; } debugfs_remove_recursive(link->debugfs_dir); link->debugfs_dir = NULL; } void ieee80211_link_debugfs_drv_add(struct ieee80211_link_data *link) { if (WARN_ON(!link->debugfs_dir)) return; drv_link_add_debugfs(link->sdata->local, link->sdata, link->conf, link->debugfs_dir); } void ieee80211_link_debugfs_drv_remove(struct ieee80211_link_data *link) { if (!link || !link->debugfs_dir) return; if (WARN_ON(link->debugfs_dir == link->sdata->vif.debugfs_dir)) return; /* Recreate the directory excluding the driver data */ debugfs_remove_recursive(link->debugfs_dir); link->debugfs_dir = NULL; ieee80211_link_debugfs_add(link); }
linux-master
net/mac80211/debugfs_netdev.c
// SPDX-License-Identifier: GPL-2.0-only /* * BSS client mode implementation * Copyright 2003-2008, Jouni Malinen <[email protected]> * Copyright 2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007, Michael Wu <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015 - 2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2023 Intel Corporation */ #include <linux/delay.h> #include <linux/fips.h> #include <linux/if_ether.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/etherdevice.h> #include <linux/moduleparam.h> #include <linux/rtnetlink.h> #include <linux/crc32.h> #include <linux/slab.h> #include <linux/export.h> #include <net/mac80211.h> #include <asm/unaligned.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "led.h" #include "fils_aead.h" #define IEEE80211_AUTH_TIMEOUT (HZ / 5) #define IEEE80211_AUTH_TIMEOUT_LONG (HZ / 2) #define IEEE80211_AUTH_TIMEOUT_SHORT (HZ / 10) #define IEEE80211_AUTH_TIMEOUT_SAE (HZ * 2) #define IEEE80211_AUTH_MAX_TRIES 3 #define IEEE80211_AUTH_WAIT_ASSOC (HZ * 5) #define IEEE80211_AUTH_WAIT_SAE_RETRY (HZ * 2) #define IEEE80211_ASSOC_TIMEOUT (HZ / 5) #define IEEE80211_ASSOC_TIMEOUT_LONG (HZ / 2) #define IEEE80211_ASSOC_TIMEOUT_SHORT (HZ / 10) #define IEEE80211_ASSOC_MAX_TRIES 3 static int max_nullfunc_tries = 2; module_param(max_nullfunc_tries, int, 0644); MODULE_PARM_DESC(max_nullfunc_tries, "Maximum nullfunc tx tries before disconnecting (reason 4)."); static int max_probe_tries = 5; module_param(max_probe_tries, int, 0644); MODULE_PARM_DESC(max_probe_tries, "Maximum probe tries before disconnecting (reason 4)."); /* * Beacon loss timeout is calculated as N frames times the * advertised beacon interval. This may need to be somewhat * higher than what hardware might detect to account for * delays in the host processing frames. But since we also * probe on beacon miss before declaring the connection lost * default to what we want. */ static int beacon_loss_count = 7; module_param(beacon_loss_count, int, 0644); MODULE_PARM_DESC(beacon_loss_count, "Number of beacon intervals before we decide beacon was lost."); /* * Time the connection can be idle before we probe * it to see if we can still talk to the AP. */ #define IEEE80211_CONNECTION_IDLE_TIME (30 * HZ) /* * Time we wait for a probe response after sending * a probe request because of beacon loss or for * checking the connection still works. */ static int probe_wait_ms = 500; module_param(probe_wait_ms, int, 0644); MODULE_PARM_DESC(probe_wait_ms, "Maximum time(ms) to wait for probe response" " before disconnecting (reason 4)."); /* * How many Beacon frames need to have been used in average signal strength * before starting to indicate signal change events. */ #define IEEE80211_SIGNAL_AVE_MIN_COUNT 4 /* * Extract from the given disabled subchannel bitmap (raw format * from the EHT Operation Element) the bits for the subchannel * we're using right now. */ static u16 ieee80211_extract_dis_subch_bmap(const struct ieee80211_eht_operation *eht_oper, struct cfg80211_chan_def *chandef, u16 bitmap) { struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; struct cfg80211_chan_def ap_chandef = *chandef; u32 ap_center_freq, local_center_freq; u32 ap_bw, local_bw; int ap_start_freq, local_start_freq; u16 shift, mask; if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT) || !(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)) return 0; /* set 160/320 supported to get the full AP definition */ ieee80211_chandef_eht_oper(eht_oper, true, true, &ap_chandef); ap_center_freq = ap_chandef.center_freq1; ap_bw = 20 * BIT(u8_get_bits(info->control, IEEE80211_EHT_OPER_CHAN_WIDTH)); ap_start_freq = ap_center_freq - ap_bw / 2; local_center_freq = chandef->center_freq1; local_bw = 20 * BIT(ieee80211_chan_width_to_rx_bw(chandef->width)); local_start_freq = local_center_freq - local_bw / 2; shift = (local_start_freq - ap_start_freq) / 20; mask = BIT(local_bw / 20) - 1; return (bitmap >> shift) & mask; } /* * Handle the puncturing bitmap, possibly downgrading bandwidth to get a * valid bitmap. */ static void ieee80211_handle_puncturing_bitmap(struct ieee80211_link_data *link, const struct ieee80211_eht_operation *eht_oper, u16 bitmap, u64 *changed) { struct cfg80211_chan_def *chandef = &link->conf->chandef; u16 extracted; u64 _changed = 0; if (!changed) changed = &_changed; while (chandef->width > NL80211_CHAN_WIDTH_40) { extracted = ieee80211_extract_dis_subch_bmap(eht_oper, chandef, bitmap); if (cfg80211_valid_disable_subchannel_bitmap(&bitmap, chandef)) break; link->u.mgd.conn_flags |= ieee80211_chandef_downgrade(chandef); *changed |= BSS_CHANGED_BANDWIDTH; } if (chandef->width <= NL80211_CHAN_WIDTH_40) extracted = 0; if (link->conf->eht_puncturing != extracted) { link->conf->eht_puncturing = extracted; *changed |= BSS_CHANGED_EHT_PUNCTURING; } } /* * We can have multiple work items (and connection probing) * scheduling this timer, but we need to take care to only * reschedule it when it should fire _earlier_ than it was * asked for before, or if it's not pending right now. This * function ensures that. Note that it then is required to * run this function for all timeouts after the first one * has happened -- the work that runs from this timer will * do that. */ static void run_again(struct ieee80211_sub_if_data *sdata, unsigned long timeout) { sdata_assert_lock(sdata); if (!timer_pending(&sdata->u.mgd.timer) || time_before(timeout, sdata->u.mgd.timer.expires)) mod_timer(&sdata->u.mgd.timer, timeout); } void ieee80211_sta_reset_beacon_monitor(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER) return; if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) return; mod_timer(&sdata->u.mgd.bcn_mon_timer, round_jiffies_up(jiffies + sdata->u.mgd.beacon_timeout)); } void ieee80211_sta_reset_conn_monitor(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; if (unlikely(!ifmgd->associated)) return; if (ifmgd->probe_send_count) ifmgd->probe_send_count = 0; if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) return; mod_timer(&ifmgd->conn_mon_timer, round_jiffies_up(jiffies + IEEE80211_CONNECTION_IDLE_TIME)); } static int ecw2cw(int ecw) { return (1 << ecw) - 1; } static ieee80211_conn_flags_t ieee80211_determine_chantype(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, ieee80211_conn_flags_t conn_flags, struct ieee80211_supported_band *sband, struct ieee80211_channel *channel, u32 vht_cap_info, const struct ieee80211_ht_operation *ht_oper, const struct ieee80211_vht_operation *vht_oper, const struct ieee80211_he_operation *he_oper, const struct ieee80211_eht_operation *eht_oper, const struct ieee80211_s1g_oper_ie *s1g_oper, struct cfg80211_chan_def *chandef, bool tracking) { struct cfg80211_chan_def vht_chandef; struct ieee80211_sta_ht_cap sta_ht_cap; ieee80211_conn_flags_t ret; u32 ht_cfreq; memset(chandef, 0, sizeof(struct cfg80211_chan_def)); chandef->chan = channel; chandef->width = NL80211_CHAN_WIDTH_20_NOHT; chandef->center_freq1 = channel->center_freq; chandef->freq1_offset = channel->freq_offset; if (channel->band == NL80211_BAND_6GHZ) { if (!ieee80211_chandef_he_6ghz_oper(sdata, he_oper, eht_oper, chandef)) { mlme_dbg(sdata, "bad 6 GHz operation, disabling HT/VHT/HE/EHT\n"); ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT | IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT; } else { ret = 0; } vht_chandef = *chandef; goto out; } else if (sband->band == NL80211_BAND_S1GHZ) { if (!ieee80211_chandef_s1g_oper(s1g_oper, chandef)) { sdata_info(sdata, "Missing S1G Operation Element? Trying operating == primary\n"); chandef->width = ieee80211_s1g_channel_width(channel); } ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_40MHZ | IEEE80211_CONN_DISABLE_VHT | IEEE80211_CONN_DISABLE_80P80MHZ | IEEE80211_CONN_DISABLE_160MHZ; goto out; } memcpy(&sta_ht_cap, &sband->ht_cap, sizeof(sta_ht_cap)); ieee80211_apply_htcap_overrides(sdata, &sta_ht_cap); if (!ht_oper || !sta_ht_cap.ht_supported) { mlme_dbg(sdata, "HT operation missing / HT not supported\n"); ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT | IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT; goto out; } chandef->width = NL80211_CHAN_WIDTH_20; ht_cfreq = ieee80211_channel_to_frequency(ht_oper->primary_chan, channel->band); /* check that channel matches the right operating channel */ if (!tracking && channel->center_freq != ht_cfreq) { /* * It's possible that some APs are confused here; * Netgear WNDR3700 sometimes reports 4 higher than * the actual channel in association responses, but * since we look at probe response/beacon data here * it should be OK. */ sdata_info(sdata, "Wrong control channel: center-freq: %d ht-cfreq: %d ht->primary_chan: %d band: %d - Disabling HT\n", channel->center_freq, ht_cfreq, ht_oper->primary_chan, channel->band); ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT | IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT; goto out; } /* check 40 MHz support, if we have it */ if (sta_ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) { ieee80211_chandef_ht_oper(ht_oper, chandef); } else { mlme_dbg(sdata, "40 MHz not supported\n"); /* 40 MHz (and 80 MHz) must be supported for VHT */ ret = IEEE80211_CONN_DISABLE_VHT; /* also mark 40 MHz disabled */ ret |= IEEE80211_CONN_DISABLE_40MHZ; goto out; } if (!vht_oper || !sband->vht_cap.vht_supported) { mlme_dbg(sdata, "VHT operation missing / VHT not supported\n"); ret = IEEE80211_CONN_DISABLE_VHT; goto out; } vht_chandef = *chandef; if (!(conn_flags & IEEE80211_CONN_DISABLE_HE) && he_oper && (le32_to_cpu(he_oper->he_oper_params) & IEEE80211_HE_OPERATION_VHT_OPER_INFO)) { struct ieee80211_vht_operation he_oper_vht_cap; /* * Set only first 3 bytes (other 2 aren't used in * ieee80211_chandef_vht_oper() anyway) */ memcpy(&he_oper_vht_cap, he_oper->optional, 3); he_oper_vht_cap.basic_mcs_set = cpu_to_le16(0); if (!ieee80211_chandef_vht_oper(&sdata->local->hw, vht_cap_info, &he_oper_vht_cap, ht_oper, &vht_chandef)) { if (!(conn_flags & IEEE80211_CONN_DISABLE_HE)) sdata_info(sdata, "HE AP VHT information is invalid, disabling HE\n"); ret = IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT; goto out; } } else if (!ieee80211_chandef_vht_oper(&sdata->local->hw, vht_cap_info, vht_oper, ht_oper, &vht_chandef)) { if (!(conn_flags & IEEE80211_CONN_DISABLE_VHT)) sdata_info(sdata, "AP VHT information is invalid, disabling VHT\n"); ret = IEEE80211_CONN_DISABLE_VHT; goto out; } if (!cfg80211_chandef_valid(&vht_chandef)) { if (!(conn_flags & IEEE80211_CONN_DISABLE_VHT)) sdata_info(sdata, "AP VHT information is invalid, disabling VHT\n"); ret = IEEE80211_CONN_DISABLE_VHT; goto out; } if (cfg80211_chandef_identical(chandef, &vht_chandef)) { ret = 0; goto out; } if (!cfg80211_chandef_compatible(chandef, &vht_chandef)) { if (!(conn_flags & IEEE80211_CONN_DISABLE_VHT)) sdata_info(sdata, "AP VHT information doesn't match HT, disabling VHT\n"); ret = IEEE80211_CONN_DISABLE_VHT; goto out; } *chandef = vht_chandef; /* * handle the case that the EHT operation indicates that it holds EHT * operation information (in case that the channel width differs from * the channel width reported in HT/VHT/HE). */ if (eht_oper && (eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { struct cfg80211_chan_def eht_chandef = *chandef; ieee80211_chandef_eht_oper(eht_oper, eht_chandef.width == NL80211_CHAN_WIDTH_160, false, &eht_chandef); if (!cfg80211_chandef_valid(&eht_chandef)) { if (!(conn_flags & IEEE80211_CONN_DISABLE_EHT)) sdata_info(sdata, "AP EHT information is invalid, disabling EHT\n"); ret = IEEE80211_CONN_DISABLE_EHT; goto out; } if (!cfg80211_chandef_compatible(chandef, &eht_chandef)) { if (!(conn_flags & IEEE80211_CONN_DISABLE_EHT)) sdata_info(sdata, "AP EHT information is incompatible, disabling EHT\n"); ret = IEEE80211_CONN_DISABLE_EHT; goto out; } *chandef = eht_chandef; } ret = 0; out: /* * When tracking the current AP, don't do any further checks if the * new chandef is identical to the one we're currently using for the * connection. This keeps us from playing ping-pong with regulatory, * without it the following can happen (for example): * - connect to an AP with 80 MHz, world regdom allows 80 MHz * - AP advertises regdom US * - CRDA loads regdom US with 80 MHz prohibited (old database) * - the code below detects an unsupported channel, downgrades, and * we disconnect from the AP in the caller * - disconnect causes CRDA to reload world regdomain and the game * starts anew. * (see https://bugzilla.kernel.org/show_bug.cgi?id=70881) * * It seems possible that there are still scenarios with CSA or real * bandwidth changes where a this could happen, but those cases are * less common and wouldn't completely prevent using the AP. */ if (tracking && cfg80211_chandef_identical(chandef, &link->conf->chandef)) return ret; /* don't print the message below for VHT mismatch if VHT is disabled */ if (ret & IEEE80211_CONN_DISABLE_VHT) vht_chandef = *chandef; /* * Ignore the DISABLED flag when we're already connected and only * tracking the APs beacon for bandwidth changes - otherwise we * might get disconnected here if we connect to an AP, update our * regulatory information based on the AP's country IE and the * information we have is wrong/outdated and disables the channel * that we're actually using for the connection to the AP. */ while (!cfg80211_chandef_usable(sdata->local->hw.wiphy, chandef, tracking ? 0 : IEEE80211_CHAN_DISABLED)) { if (WARN_ON(chandef->width == NL80211_CHAN_WIDTH_20_NOHT)) { ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT | IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT; break; } ret |= ieee80211_chandef_downgrade(chandef); } if (!he_oper || !cfg80211_chandef_usable(sdata->wdev.wiphy, chandef, IEEE80211_CHAN_NO_HE)) ret |= IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT; if (!eht_oper || !cfg80211_chandef_usable(sdata->wdev.wiphy, chandef, IEEE80211_CHAN_NO_EHT)) ret |= IEEE80211_CONN_DISABLE_EHT; if (chandef->width != vht_chandef.width && !tracking) sdata_info(sdata, "capabilities/regulatory prevented using AP HT/VHT configuration, downgraded\n"); WARN_ON_ONCE(!cfg80211_chandef_valid(chandef)); return ret; } static int ieee80211_config_bw(struct ieee80211_link_data *link, const struct ieee80211_ht_cap *ht_cap, const struct ieee80211_vht_cap *vht_cap, const struct ieee80211_ht_operation *ht_oper, const struct ieee80211_vht_operation *vht_oper, const struct ieee80211_he_operation *he_oper, const struct ieee80211_eht_operation *eht_oper, const struct ieee80211_s1g_oper_ie *s1g_oper, const u8 *bssid, u64 *changed) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_channel *chan = link->conf->chandef.chan; struct ieee80211_supported_band *sband = local->hw.wiphy->bands[chan->band]; struct cfg80211_chan_def chandef; u16 ht_opmode; ieee80211_conn_flags_t flags; u32 vht_cap_info = 0; int ret; /* if HT was/is disabled, don't track any bandwidth changes */ if (link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HT || !ht_oper) return 0; /* don't check VHT if we associated as non-VHT station */ if (link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_VHT) vht_oper = NULL; /* don't check HE if we associated as non-HE station */ if (link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HE || !ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif)) { he_oper = NULL; eht_oper = NULL; } /* don't check EHT if we associated as non-EHT station */ if (link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_EHT || !ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif)) eht_oper = NULL; /* * if bss configuration changed store the new one - * this may be applicable even if channel is identical */ ht_opmode = le16_to_cpu(ht_oper->operation_mode); if (link->conf->ht_operation_mode != ht_opmode) { *changed |= BSS_CHANGED_HT; link->conf->ht_operation_mode = ht_opmode; } if (vht_cap) vht_cap_info = le32_to_cpu(vht_cap->vht_cap_info); /* calculate new channel (type) based on HT/VHT/HE operation IEs */ flags = ieee80211_determine_chantype(sdata, link, link->u.mgd.conn_flags, sband, chan, vht_cap_info, ht_oper, vht_oper, he_oper, eht_oper, s1g_oper, &chandef, true); /* * Downgrade the new channel if we associated with restricted * capabilities. For example, if we associated as a 20 MHz STA * to a 40 MHz AP (due to regulatory, capabilities or config * reasons) then switching to a 40 MHz channel now won't do us * any good -- we couldn't use it with the AP. */ if (link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_80P80MHZ && chandef.width == NL80211_CHAN_WIDTH_80P80) flags |= ieee80211_chandef_downgrade(&chandef); if (link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_160MHZ && chandef.width == NL80211_CHAN_WIDTH_160) flags |= ieee80211_chandef_downgrade(&chandef); if (link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_40MHZ && chandef.width > NL80211_CHAN_WIDTH_20) flags |= ieee80211_chandef_downgrade(&chandef); if (cfg80211_chandef_identical(&chandef, &link->conf->chandef)) return 0; link_info(link, "AP %pM changed bandwidth, new config is %d.%03d MHz, width %d (%d.%03d/%d MHz)\n", link->u.mgd.bssid, chandef.chan->center_freq, chandef.chan->freq_offset, chandef.width, chandef.center_freq1, chandef.freq1_offset, chandef.center_freq2); if (flags != (link->u.mgd.conn_flags & (IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT | IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT | IEEE80211_CONN_DISABLE_40MHZ | IEEE80211_CONN_DISABLE_80P80MHZ | IEEE80211_CONN_DISABLE_160MHZ | IEEE80211_CONN_DISABLE_320MHZ)) || !cfg80211_chandef_valid(&chandef)) { sdata_info(sdata, "AP %pM changed caps/bw in a way we can't support (0x%x/0x%x) - disconnect\n", link->u.mgd.bssid, flags, ifmgd->flags); return -EINVAL; } ret = ieee80211_link_change_bandwidth(link, &chandef, changed); if (ret) { sdata_info(sdata, "AP %pM changed bandwidth to incompatible one - disconnect\n", link->u.mgd.bssid); return ret; } return 0; } /* frame sending functions */ static void ieee80211_add_ht_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u8 ap_ht_param, struct ieee80211_supported_band *sband, struct ieee80211_channel *channel, enum ieee80211_smps_mode smps, ieee80211_conn_flags_t conn_flags) { u8 *pos; u32 flags = channel->flags; u16 cap; struct ieee80211_sta_ht_cap ht_cap; BUILD_BUG_ON(sizeof(ht_cap) != sizeof(sband->ht_cap)); memcpy(&ht_cap, &sband->ht_cap, sizeof(ht_cap)); ieee80211_apply_htcap_overrides(sdata, &ht_cap); /* determine capability flags */ cap = ht_cap.cap; switch (ap_ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: if (flags & IEEE80211_CHAN_NO_HT40PLUS) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; cap &= ~IEEE80211_HT_CAP_SGI_40; } break; case IEEE80211_HT_PARAM_CHA_SEC_BELOW: if (flags & IEEE80211_CHAN_NO_HT40MINUS) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; cap &= ~IEEE80211_HT_CAP_SGI_40; } break; } /* * If 40 MHz was disabled associate as though we weren't * capable of 40 MHz -- some broken APs will never fall * back to trying to transmit in 20 MHz. */ if (conn_flags & IEEE80211_CONN_DISABLE_40MHZ) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; cap &= ~IEEE80211_HT_CAP_SGI_40; } /* set SM PS mode properly */ cap &= ~IEEE80211_HT_CAP_SM_PS; switch (smps) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_NUM_MODES: WARN_ON(1); fallthrough; case IEEE80211_SMPS_OFF: cap |= WLAN_HT_CAP_SM_PS_DISABLED << IEEE80211_HT_CAP_SM_PS_SHIFT; break; case IEEE80211_SMPS_STATIC: cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT; break; case IEEE80211_SMPS_DYNAMIC: cap |= WLAN_HT_CAP_SM_PS_DYNAMIC << IEEE80211_HT_CAP_SM_PS_SHIFT; break; } /* reserve and fill IE */ pos = skb_put(skb, sizeof(struct ieee80211_ht_cap) + 2); ieee80211_ie_build_ht_cap(pos, &ht_cap, cap); } /* This function determines vht capability flags for the association * and builds the IE. * Note - the function returns true to own the MU-MIMO capability */ static bool ieee80211_add_vht_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct ieee80211_supported_band *sband, struct ieee80211_vht_cap *ap_vht_cap, ieee80211_conn_flags_t conn_flags) { struct ieee80211_local *local = sdata->local; u8 *pos; u32 cap; struct ieee80211_sta_vht_cap vht_cap; u32 mask, ap_bf_sts, our_bf_sts; bool mu_mimo_owner = false; BUILD_BUG_ON(sizeof(vht_cap) != sizeof(sband->vht_cap)); memcpy(&vht_cap, &sband->vht_cap, sizeof(vht_cap)); ieee80211_apply_vhtcap_overrides(sdata, &vht_cap); /* determine capability flags */ cap = vht_cap.cap; if (conn_flags & IEEE80211_CONN_DISABLE_80P80MHZ) { u32 bw = cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; cap &= ~IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; if (bw == IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ || bw == IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ; } if (conn_flags & IEEE80211_CONN_DISABLE_160MHZ) { cap &= ~IEEE80211_VHT_CAP_SHORT_GI_160; cap &= ~IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; } /* * Some APs apparently get confused if our capabilities are better * than theirs, so restrict what we advertise in the assoc request. */ if (!(ap_vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE))) cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE); else if (!(ap_vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE))) cap &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; /* * If some other vif is using the MU-MIMO capability we cannot associate * using MU-MIMO - this will lead to contradictions in the group-id * mechanism. * Ownership is defined since association request, in order to avoid * simultaneous associations with MU-MIMO. */ if (cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) { bool disable_mu_mimo = false; struct ieee80211_sub_if_data *other; list_for_each_entry_rcu(other, &local->interfaces, list) { if (other->vif.bss_conf.mu_mimo_owner) { disable_mu_mimo = true; break; } } if (disable_mu_mimo) cap &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; else mu_mimo_owner = true; } mask = IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; ap_bf_sts = le32_to_cpu(ap_vht_cap->vht_cap_info) & mask; our_bf_sts = cap & mask; if (ap_bf_sts < our_bf_sts) { cap &= ~mask; cap |= ap_bf_sts; } /* reserve and fill IE */ pos = skb_put(skb, sizeof(struct ieee80211_vht_cap) + 2); ieee80211_ie_build_vht_cap(pos, &vht_cap, cap); return mu_mimo_owner; } /* This function determines HE capability flags for the association * and builds the IE. */ static void ieee80211_add_he_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct ieee80211_supported_band *sband, enum ieee80211_smps_mode smps_mode, ieee80211_conn_flags_t conn_flags) { u8 *pos, *pre_he_pos; const struct ieee80211_sta_he_cap *he_cap; u8 he_cap_size; he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); if (WARN_ON(!he_cap)) return; /* get a max size estimate */ he_cap_size = 2 + 1 + sizeof(he_cap->he_cap_elem) + ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem) + ieee80211_he_ppe_size(he_cap->ppe_thres[0], he_cap->he_cap_elem.phy_cap_info); pos = skb_put(skb, he_cap_size); pre_he_pos = pos; pos = ieee80211_ie_build_he_cap(conn_flags, pos, he_cap, pos + he_cap_size); /* trim excess if any */ skb_trim(skb, skb->len - (pre_he_pos + he_cap_size - pos)); ieee80211_ie_build_he_6ghz_cap(sdata, smps_mode, skb); } static void ieee80211_add_eht_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct ieee80211_supported_band *sband) { u8 *pos; const struct ieee80211_sta_he_cap *he_cap; const struct ieee80211_sta_eht_cap *eht_cap; u8 eht_cap_size; he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); /* * EHT capabilities element is only added if the HE capabilities element * was added so assume that 'he_cap' is valid and don't check it. */ if (WARN_ON(!he_cap || !eht_cap)) return; eht_cap_size = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, &eht_cap->eht_cap_elem, false) + ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], eht_cap->eht_cap_elem.phy_cap_info); pos = skb_put(skb, eht_cap_size); ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, pos + eht_cap_size, false); } static void ieee80211_assoc_add_rates(struct sk_buff *skb, enum nl80211_chan_width width, struct ieee80211_supported_band *sband, struct ieee80211_mgd_assoc_data *assoc_data) { unsigned int shift = ieee80211_chanwidth_get_shift(width); unsigned int rates_len, supp_rates_len; u32 rates = 0; int i, count; u8 *pos; if (assoc_data->supp_rates_len) { /* * Get all rates supported by the device and the AP as * some APs don't like getting a superset of their rates * in the association request (e.g. D-Link DAP 1353 in * b-only mode)... */ rates_len = ieee80211_parse_bitrates(width, sband, assoc_data->supp_rates, assoc_data->supp_rates_len, &rates); } else { /* * In case AP not provide any supported rates information * before association, we send information element(s) with * all rates that we support. */ rates_len = sband->n_bitrates; for (i = 0; i < sband->n_bitrates; i++) rates |= BIT(i); } supp_rates_len = rates_len; if (supp_rates_len > 8) supp_rates_len = 8; pos = skb_put(skb, supp_rates_len + 2); *pos++ = WLAN_EID_SUPP_RATES; *pos++ = supp_rates_len; count = 0; for (i = 0; i < sband->n_bitrates; i++) { if (BIT(i) & rates) { int rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5 * (1 << shift)); *pos++ = (u8)rate; if (++count == 8) break; } } if (rates_len > count) { pos = skb_put(skb, rates_len - count + 2); *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos++ = rates_len - count; for (i++; i < sband->n_bitrates; i++) { if (BIT(i) & rates) { int rate; rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5 * (1 << shift)); *pos++ = (u8)rate; } } } } static size_t ieee80211_add_before_ht_elems(struct sk_buff *skb, const u8 *elems, size_t elems_len, size_t offset) { size_t noffset; static const u8 before_ht[] = { WLAN_EID_SSID, WLAN_EID_SUPP_RATES, WLAN_EID_EXT_SUPP_RATES, WLAN_EID_PWR_CAPABILITY, WLAN_EID_SUPPORTED_CHANNELS, WLAN_EID_RSN, WLAN_EID_QOS_CAPA, WLAN_EID_RRM_ENABLED_CAPABILITIES, WLAN_EID_MOBILITY_DOMAIN, WLAN_EID_FAST_BSS_TRANSITION, /* reassoc only */ WLAN_EID_RIC_DATA, /* reassoc only */ WLAN_EID_SUPPORTED_REGULATORY_CLASSES, }; static const u8 after_ric[] = { WLAN_EID_SUPPORTED_REGULATORY_CLASSES, WLAN_EID_HT_CAPABILITY, WLAN_EID_BSS_COEX_2040, /* luckily this is almost always there */ WLAN_EID_EXT_CAPABILITY, WLAN_EID_QOS_TRAFFIC_CAPA, WLAN_EID_TIM_BCAST_REQ, WLAN_EID_INTERWORKING, /* 60 GHz (Multi-band, DMG, MMS) can't happen */ WLAN_EID_VHT_CAPABILITY, WLAN_EID_OPMODE_NOTIF, }; if (!elems_len) return offset; noffset = ieee80211_ie_split_ric(elems, elems_len, before_ht, ARRAY_SIZE(before_ht), after_ric, ARRAY_SIZE(after_ric), offset); skb_put_data(skb, elems + offset, noffset - offset); return noffset; } static size_t ieee80211_add_before_vht_elems(struct sk_buff *skb, const u8 *elems, size_t elems_len, size_t offset) { static const u8 before_vht[] = { /* * no need to list the ones split off before HT * or generated here */ WLAN_EID_BSS_COEX_2040, WLAN_EID_EXT_CAPABILITY, WLAN_EID_QOS_TRAFFIC_CAPA, WLAN_EID_TIM_BCAST_REQ, WLAN_EID_INTERWORKING, /* 60 GHz (Multi-band, DMG, MMS) can't happen */ }; size_t noffset; if (!elems_len) return offset; /* RIC already taken care of in ieee80211_add_before_ht_elems() */ noffset = ieee80211_ie_split(elems, elems_len, before_vht, ARRAY_SIZE(before_vht), offset); skb_put_data(skb, elems + offset, noffset - offset); return noffset; } static size_t ieee80211_add_before_he_elems(struct sk_buff *skb, const u8 *elems, size_t elems_len, size_t offset) { static const u8 before_he[] = { /* * no need to list the ones split off before VHT * or generated here */ WLAN_EID_OPMODE_NOTIF, WLAN_EID_EXTENSION, WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE, /* 11ai elements */ WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_SESSION, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_PUBLIC_KEY, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_KEY_CONFIRM, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_HLP_CONTAINER, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN, /* TODO: add 11ah/11aj/11ak elements */ }; size_t noffset; if (!elems_len) return offset; /* RIC already taken care of in ieee80211_add_before_ht_elems() */ noffset = ieee80211_ie_split(elems, elems_len, before_he, ARRAY_SIZE(before_he), offset); skb_put_data(skb, elems + offset, noffset - offset); return noffset; } #define PRESENT_ELEMS_MAX 8 #define PRESENT_ELEM_EXT_OFFS 0x100 static void ieee80211_assoc_add_ml_elem(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u16 capab, const struct element *ext_capa, const u16 *present_elems); static size_t ieee80211_assoc_link_elems(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u16 *capab, const struct element *ext_capa, const u8 *extra_elems, size_t extra_elems_len, unsigned int link_id, struct ieee80211_link_data *link, u16 *present_elems) { enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; struct ieee80211_channel *chan = cbss->channel; const struct ieee80211_sband_iftype_data *iftd; struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; enum nl80211_chan_width width = NL80211_CHAN_WIDTH_20; struct ieee80211_chanctx_conf *chanctx_conf; enum ieee80211_smps_mode smps_mode; u16 orig_capab = *capab; size_t offset = 0; int present_elems_len = 0; u8 *pos; int i; #define ADD_PRESENT_ELEM(id) do { \ /* need a last for termination - we use 0 == SSID */ \ if (!WARN_ON(present_elems_len >= PRESENT_ELEMS_MAX - 1)) \ present_elems[present_elems_len++] = (id); \ } while (0) #define ADD_PRESENT_EXT_ELEM(id) ADD_PRESENT_ELEM(PRESENT_ELEM_EXT_OFFS | (id)) if (link) smps_mode = link->smps_mode; else if (sdata->u.mgd.powersave) smps_mode = IEEE80211_SMPS_DYNAMIC; else smps_mode = IEEE80211_SMPS_OFF; if (link) { /* * 5/10 MHz scenarios are only viable without MLO, in which * case this pointer should be used ... All of this is a bit * unclear though, not sure this even works at all. */ rcu_read_lock(); chanctx_conf = rcu_dereference(link->conf->chanctx_conf); if (chanctx_conf) width = chanctx_conf->def.width; rcu_read_unlock(); } sband = local->hw.wiphy->bands[chan->band]; iftd = ieee80211_get_sband_iftype_data(sband, iftype); if (sband->band == NL80211_BAND_2GHZ) { *capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME; *capab |= WLAN_CAPABILITY_SHORT_PREAMBLE; } if ((cbss->capability & WLAN_CAPABILITY_SPECTRUM_MGMT) && ieee80211_hw_check(&local->hw, SPECTRUM_MGMT)) *capab |= WLAN_CAPABILITY_SPECTRUM_MGMT; if (sband->band != NL80211_BAND_S1GHZ) ieee80211_assoc_add_rates(skb, width, sband, assoc_data); if (*capab & WLAN_CAPABILITY_SPECTRUM_MGMT || *capab & WLAN_CAPABILITY_RADIO_MEASURE) { struct cfg80211_chan_def chandef = { .width = width, .chan = chan, }; pos = skb_put(skb, 4); *pos++ = WLAN_EID_PWR_CAPABILITY; *pos++ = 2; *pos++ = 0; /* min tx power */ /* max tx power */ *pos++ = ieee80211_chandef_max_power(&chandef); ADD_PRESENT_ELEM(WLAN_EID_PWR_CAPABILITY); } /* * Per spec, we shouldn't include the list of channels if we advertise * support for extended channel switching, but we've always done that; * (for now?) apply this restriction only on the (new) 6 GHz band. */ if (*capab & WLAN_CAPABILITY_SPECTRUM_MGMT && (sband->band != NL80211_BAND_6GHZ || !ext_capa || ext_capa->datalen < 1 || !(ext_capa->data[0] & WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING))) { /* TODO: get this in reg domain format */ pos = skb_put(skb, 2 * sband->n_channels + 2); *pos++ = WLAN_EID_SUPPORTED_CHANNELS; *pos++ = 2 * sband->n_channels; for (i = 0; i < sband->n_channels; i++) { int cf = sband->channels[i].center_freq; *pos++ = ieee80211_frequency_to_channel(cf); *pos++ = 1; /* one channel in the subband*/ } ADD_PRESENT_ELEM(WLAN_EID_SUPPORTED_CHANNELS); } /* if present, add any custom IEs that go before HT */ offset = ieee80211_add_before_ht_elems(skb, extra_elems, extra_elems_len, offset); if (sband->band != NL80211_BAND_6GHZ && !(assoc_data->link[link_id].conn_flags & IEEE80211_CONN_DISABLE_HT)) { ieee80211_add_ht_ie(sdata, skb, assoc_data->link[link_id].ap_ht_param, sband, chan, smps_mode, assoc_data->link[link_id].conn_flags); ADD_PRESENT_ELEM(WLAN_EID_HT_CAPABILITY); } /* if present, add any custom IEs that go before VHT */ offset = ieee80211_add_before_vht_elems(skb, extra_elems, extra_elems_len, offset); if (sband->band != NL80211_BAND_6GHZ && !(assoc_data->link[link_id].conn_flags & IEEE80211_CONN_DISABLE_VHT)) { bool mu_mimo_owner = ieee80211_add_vht_ie(sdata, skb, sband, &assoc_data->link[link_id].ap_vht_cap, assoc_data->link[link_id].conn_flags); if (link) link->conf->mu_mimo_owner = mu_mimo_owner; ADD_PRESENT_ELEM(WLAN_EID_VHT_CAPABILITY); } /* * If AP doesn't support HT, mark HE and EHT as disabled. * If on the 5GHz band, make sure it supports VHT. */ if (assoc_data->link[link_id].conn_flags & IEEE80211_CONN_DISABLE_HT || (sband->band == NL80211_BAND_5GHZ && assoc_data->link[link_id].conn_flags & IEEE80211_CONN_DISABLE_VHT)) assoc_data->link[link_id].conn_flags |= IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT; /* if present, add any custom IEs that go before HE */ offset = ieee80211_add_before_he_elems(skb, extra_elems, extra_elems_len, offset); if (!(assoc_data->link[link_id].conn_flags & IEEE80211_CONN_DISABLE_HE)) { ieee80211_add_he_ie(sdata, skb, sband, smps_mode, assoc_data->link[link_id].conn_flags); ADD_PRESENT_EXT_ELEM(WLAN_EID_EXT_HE_CAPABILITY); } /* * careful - need to know about all the present elems before * calling ieee80211_assoc_add_ml_elem(), so add this one if * we're going to put it after the ML element */ if (!(assoc_data->link[link_id].conn_flags & IEEE80211_CONN_DISABLE_EHT)) ADD_PRESENT_EXT_ELEM(WLAN_EID_EXT_EHT_CAPABILITY); if (link_id == assoc_data->assoc_link_id) ieee80211_assoc_add_ml_elem(sdata, skb, orig_capab, ext_capa, present_elems); /* crash if somebody gets it wrong */ present_elems = NULL; if (!(assoc_data->link[link_id].conn_flags & IEEE80211_CONN_DISABLE_EHT)) ieee80211_add_eht_ie(sdata, skb, sband); if (sband->band == NL80211_BAND_S1GHZ) { ieee80211_add_aid_request_ie(sdata, skb); ieee80211_add_s1g_capab_ie(sdata, &sband->s1g_cap, skb); } if (iftd && iftd->vendor_elems.data && iftd->vendor_elems.len) skb_put_data(skb, iftd->vendor_elems.data, iftd->vendor_elems.len); if (link) link->u.mgd.conn_flags = assoc_data->link[link_id].conn_flags; return offset; } static void ieee80211_add_non_inheritance_elem(struct sk_buff *skb, const u16 *outer, const u16 *inner) { unsigned int skb_len = skb->len; bool at_extension = false; bool added = false; int i, j; u8 *len, *list_len = NULL; skb_put_u8(skb, WLAN_EID_EXTENSION); len = skb_put(skb, 1); skb_put_u8(skb, WLAN_EID_EXT_NON_INHERITANCE); for (i = 0; i < PRESENT_ELEMS_MAX && outer[i]; i++) { u16 elem = outer[i]; bool have_inner = false; /* should at least be sorted in the sense of normal -> ext */ WARN_ON(at_extension && elem < PRESENT_ELEM_EXT_OFFS); /* switch to extension list */ if (!at_extension && elem >= PRESENT_ELEM_EXT_OFFS) { at_extension = true; if (!list_len) skb_put_u8(skb, 0); list_len = NULL; } for (j = 0; j < PRESENT_ELEMS_MAX && inner[j]; j++) { if (elem == inner[j]) { have_inner = true; break; } } if (have_inner) continue; if (!list_len) { list_len = skb_put(skb, 1); *list_len = 0; } *list_len += 1; skb_put_u8(skb, (u8)elem); added = true; } /* if we added a list but no extension list, make a zero-len one */ if (added && (!at_extension || !list_len)) skb_put_u8(skb, 0); /* if nothing added remove extension element completely */ if (!added) skb_trim(skb, skb_len); else *len = skb->len - skb_len - 2; } static void ieee80211_assoc_add_ml_elem(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u16 capab, const struct element *ext_capa, const u16 *outer_present_elems) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; struct ieee80211_multi_link_elem *ml_elem; struct ieee80211_mle_basic_common_info *common; const struct wiphy_iftype_ext_capab *ift_ext_capa; __le16 eml_capa = 0, mld_capa_ops = 0; unsigned int link_id; u8 *ml_elem_len; void *capab_pos; if (!ieee80211_vif_is_mld(&sdata->vif)) return; ift_ext_capa = cfg80211_get_iftype_ext_capa(local->hw.wiphy, ieee80211_vif_type_p2p(&sdata->vif)); if (ift_ext_capa) { eml_capa = cpu_to_le16(ift_ext_capa->eml_capabilities); mld_capa_ops = cpu_to_le16(ift_ext_capa->mld_capa_and_ops); } skb_put_u8(skb, WLAN_EID_EXTENSION); ml_elem_len = skb_put(skb, 1); skb_put_u8(skb, WLAN_EID_EXT_EHT_MULTI_LINK); ml_elem = skb_put(skb, sizeof(*ml_elem)); ml_elem->control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC | IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP); common = skb_put(skb, sizeof(*common)); common->len = sizeof(*common) + 2; /* MLD capa/ops */ memcpy(common->mld_mac_addr, sdata->vif.addr, ETH_ALEN); /* add EML_CAPA only if needed, see Draft P802.11be_D2.1, 35.3.17 */ if (eml_capa & cpu_to_le16((IEEE80211_EML_CAP_EMLSR_SUPP | IEEE80211_EML_CAP_EMLMR_SUPPORT))) { common->len += 2; /* EML capabilities */ ml_elem->control |= cpu_to_le16(IEEE80211_MLC_BASIC_PRES_EML_CAPA); skb_put_data(skb, &eml_capa, sizeof(eml_capa)); } /* need indication from userspace to support this */ mld_capa_ops &= ~cpu_to_le16(IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP); skb_put_data(skb, &mld_capa_ops, sizeof(mld_capa_ops)); for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { u16 link_present_elems[PRESENT_ELEMS_MAX] = {}; const u8 *extra_elems; size_t extra_elems_len; size_t extra_used; u8 *subelem_len = NULL; __le16 ctrl; if (!assoc_data->link[link_id].bss || link_id == assoc_data->assoc_link_id) continue; extra_elems = assoc_data->link[link_id].elems; extra_elems_len = assoc_data->link[link_id].elems_len; skb_put_u8(skb, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE); subelem_len = skb_put(skb, 1); ctrl = cpu_to_le16(link_id | IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE | IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT); skb_put_data(skb, &ctrl, sizeof(ctrl)); skb_put_u8(skb, 1 + ETH_ALEN); /* STA Info Length */ skb_put_data(skb, assoc_data->link[link_id].addr, ETH_ALEN); /* * Now add the contents of the (re)association request, * but the "listen interval" and "current AP address" * (if applicable) are skipped. So we only have * the capability field (remember the position and fill * later), followed by the elements added below by * calling ieee80211_assoc_link_elems(). */ capab_pos = skb_put(skb, 2); extra_used = ieee80211_assoc_link_elems(sdata, skb, &capab, ext_capa, extra_elems, extra_elems_len, link_id, NULL, link_present_elems); if (extra_elems) skb_put_data(skb, extra_elems + extra_used, extra_elems_len - extra_used); put_unaligned_le16(capab, capab_pos); ieee80211_add_non_inheritance_elem(skb, outer_present_elems, link_present_elems); ieee80211_fragment_element(skb, subelem_len, IEEE80211_MLE_SUBELEM_FRAGMENT); } ieee80211_fragment_element(skb, ml_elem_len, WLAN_EID_FRAGMENT); } static int ieee80211_send_assoc(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; struct ieee80211_link_data *link; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u8 *pos, qos_info, *ie_start; size_t offset, noffset; u16 capab = WLAN_CAPABILITY_ESS, link_capab; __le16 listen_int; struct element *ext_capa = NULL; enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); struct ieee80211_prep_tx_info info = {}; unsigned int link_id, n_links = 0; u16 present_elems[PRESENT_ELEMS_MAX] = {}; void *capab_pos; size_t size; int ret; /* we know it's writable, cast away the const */ if (assoc_data->ie_len) ext_capa = (void *)cfg80211_find_elem(WLAN_EID_EXT_CAPABILITY, assoc_data->ie, assoc_data->ie_len); sdata_assert_lock(sdata); size = local->hw.extra_tx_headroom + sizeof(*mgmt) + /* bit too much but doesn't matter */ 2 + assoc_data->ssid_len + /* SSID */ assoc_data->ie_len + /* extra IEs */ (assoc_data->fils_kek_len ? 16 /* AES-SIV */ : 0) + 9; /* WMM */ for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; const struct ieee80211_sband_iftype_data *iftd; struct ieee80211_supported_band *sband; if (!cbss) continue; sband = local->hw.wiphy->bands[cbss->channel->band]; n_links++; /* add STA profile elements length */ size += assoc_data->link[link_id].elems_len; /* and supported rates length */ size += 4 + sband->n_bitrates; /* supported channels */ size += 2 + 2 * sband->n_channels; iftd = ieee80211_get_sband_iftype_data(sband, iftype); if (iftd) size += iftd->vendor_elems.len; /* power capability */ size += 4; /* HT, VHT, HE, EHT */ size += 2 + sizeof(struct ieee80211_ht_cap); size += 2 + sizeof(struct ieee80211_vht_cap); size += 2 + 1 + sizeof(struct ieee80211_he_cap_elem) + sizeof(struct ieee80211_he_mcs_nss_supp) + IEEE80211_HE_PPE_THRES_MAX_LEN; if (sband->band == NL80211_BAND_6GHZ) size += 2 + 1 + sizeof(struct ieee80211_he_6ghz_capa); size += 2 + 1 + sizeof(struct ieee80211_eht_cap_elem) + sizeof(struct ieee80211_eht_mcs_nss_supp) + IEEE80211_EHT_PPE_THRES_MAX_LEN; /* non-inheritance element */ size += 2 + 2 + PRESENT_ELEMS_MAX; /* should be the same across all BSSes */ if (cbss->capability & WLAN_CAPABILITY_PRIVACY) capab |= WLAN_CAPABILITY_PRIVACY; } if (ieee80211_vif_is_mld(&sdata->vif)) { /* consider the multi-link element with STA profile */ size += sizeof(struct ieee80211_multi_link_elem); /* max common info field in basic multi-link element */ size += sizeof(struct ieee80211_mle_basic_common_info) + 2 + /* capa & op */ 2; /* EML capa */ /* * The capability elements were already considered above; * note this over-estimates a bit because there's no * STA profile for the assoc link. */ size += (n_links - 1) * (1 + 1 + /* subelement ID/length */ 2 + /* STA control */ 1 + ETH_ALEN + 2 /* STA Info field */); } link = sdata_dereference(sdata->link[assoc_data->assoc_link_id], sdata); if (WARN_ON(!link)) return -EINVAL; if (WARN_ON(!assoc_data->link[assoc_data->assoc_link_id].bss)) return -EINVAL; skb = alloc_skb(size, GFP_KERNEL); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); if (ifmgd->flags & IEEE80211_STA_ENABLE_RRM) capab |= WLAN_CAPABILITY_RADIO_MEASURE; /* Set MBSSID support for HE AP if needed */ if (ieee80211_hw_check(&local->hw, SUPPORTS_ONLY_HE_MULTI_BSSID) && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HE) && ext_capa && ext_capa->datalen >= 3) ext_capa->data[2] |= WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT; mgmt = skb_put_zero(skb, 24); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); listen_int = cpu_to_le16(assoc_data->s1g ? ieee80211_encode_usf(local->hw.conf.listen_interval) : local->hw.conf.listen_interval); if (!is_zero_ether_addr(assoc_data->prev_ap_addr)) { skb_put(skb, 10); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); capab_pos = &mgmt->u.reassoc_req.capab_info; mgmt->u.reassoc_req.listen_interval = listen_int; memcpy(mgmt->u.reassoc_req.current_ap, assoc_data->prev_ap_addr, ETH_ALEN); info.subtype = IEEE80211_STYPE_REASSOC_REQ; } else { skb_put(skb, 4); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); capab_pos = &mgmt->u.assoc_req.capab_info; mgmt->u.assoc_req.listen_interval = listen_int; info.subtype = IEEE80211_STYPE_ASSOC_REQ; } /* SSID */ pos = skb_put(skb, 2 + assoc_data->ssid_len); ie_start = pos; *pos++ = WLAN_EID_SSID; *pos++ = assoc_data->ssid_len; memcpy(pos, assoc_data->ssid, assoc_data->ssid_len); /* add the elements for the assoc (main) link */ link_capab = capab; offset = ieee80211_assoc_link_elems(sdata, skb, &link_capab, ext_capa, assoc_data->ie, assoc_data->ie_len, assoc_data->assoc_link_id, link, present_elems); put_unaligned_le16(link_capab, capab_pos); /* if present, add any custom non-vendor IEs */ if (assoc_data->ie_len) { noffset = ieee80211_ie_split_vendor(assoc_data->ie, assoc_data->ie_len, offset); skb_put_data(skb, assoc_data->ie + offset, noffset - offset); offset = noffset; } if (assoc_data->wmm) { if (assoc_data->uapsd) { qos_info = ifmgd->uapsd_queues; qos_info |= (ifmgd->uapsd_max_sp_len << IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT); } else { qos_info = 0; } pos = ieee80211_add_wmm_info_ie(skb_put(skb, 9), qos_info); } /* add any remaining custom (i.e. vendor specific here) IEs */ if (assoc_data->ie_len) { noffset = assoc_data->ie_len; skb_put_data(skb, assoc_data->ie + offset, noffset - offset); } if (assoc_data->fils_kek_len) { ret = fils_encrypt_assoc_req(skb, assoc_data); if (ret < 0) { dev_kfree_skb(skb); return ret; } } pos = skb_tail_pointer(skb); kfree(ifmgd->assoc_req_ies); ifmgd->assoc_req_ies = kmemdup(ie_start, pos - ie_start, GFP_ATOMIC); if (!ifmgd->assoc_req_ies) { dev_kfree_skb(skb); return -ENOMEM; } ifmgd->assoc_req_ies_len = pos - ie_start; drv_mgd_prepare_tx(local, sdata, &info); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_MLME_CONN_TX; ieee80211_tx_skb(sdata, skb); return 0; } void ieee80211_send_pspoll(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct ieee80211_pspoll *pspoll; struct sk_buff *skb; skb = ieee80211_pspoll_get(&local->hw, &sdata->vif); if (!skb) return; pspoll = (struct ieee80211_pspoll *) skb->data; pspoll->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; ieee80211_tx_skb(sdata, skb); } void ieee80211_send_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool powersave) { struct sk_buff *skb; struct ieee80211_hdr_3addr *nullfunc; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; skb = ieee80211_nullfunc_get(&local->hw, &sdata->vif, -1, !ieee80211_hw_check(&local->hw, DOESNT_SUPPORT_QOS_NDP)); if (!skb) return; nullfunc = (struct ieee80211_hdr_3addr *) skb->data; if (powersave) nullfunc->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_INTFL_OFFCHAN_TX_OK; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_USE_MINRATE; ieee80211_tx_skb(sdata, skb); } void ieee80211_send_4addr_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct sk_buff *skb; struct ieee80211_hdr *nullfunc; __le16 fc; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; skb = dev_alloc_skb(local->hw.extra_tx_headroom + 30); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = skb_put_zero(skb, 30); fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); nullfunc->frame_control = fc; memcpy(nullfunc->addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); memcpy(nullfunc->addr3, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(nullfunc->addr4, sdata->vif.addr, ETH_ALEN); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_USE_MINRATE; ieee80211_tx_skb(sdata, skb); } /* spectrum management related things */ static void ieee80211_chswitch_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_link_data *link = container_of(work, struct ieee80211_link_data, u.mgd.chswitch_work.work); struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; int ret; if (!ieee80211_sdata_running(sdata)) return; sdata_lock(sdata); mutex_lock(&local->mtx); mutex_lock(&local->chanctx_mtx); if (!ifmgd->associated) goto out; if (!link->conf->csa_active) goto out; /* * using reservation isn't immediate as it may be deferred until later * with multi-vif. once reservation is complete it will re-schedule the * work with no reserved_chanctx so verify chandef to check if it * completed successfully */ if (link->reserved_chanctx) { /* * with multi-vif csa driver may call ieee80211_csa_finish() * many times while waiting for other interfaces to use their * reservations */ if (link->reserved_ready) goto out; ret = ieee80211_link_use_reserved_context(link); if (ret) { sdata_info(sdata, "failed to use reserved channel context, disconnecting (err=%d)\n", ret); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); goto out; } goto out; } if (!cfg80211_chandef_identical(&link->conf->chandef, &link->csa_chandef)) { sdata_info(sdata, "failed to finalize channel switch, disconnecting\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); goto out; } link->u.mgd.csa_waiting_bcn = true; ieee80211_sta_reset_beacon_monitor(sdata); ieee80211_sta_reset_conn_monitor(sdata); out: mutex_unlock(&local->chanctx_mtx); mutex_unlock(&local->mtx); sdata_unlock(sdata); } static void ieee80211_chswitch_post_beacon(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; int ret; sdata_assert_lock(sdata); WARN_ON(!link->conf->csa_active); if (link->csa_block_tx) { ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_CSA); link->csa_block_tx = false; } link->conf->csa_active = false; link->u.mgd.csa_waiting_bcn = false; /* * If the CSA IE is still present on the beacon after the switch, * we need to consider it as a new CSA (possibly to self). */ link->u.mgd.beacon_crc_valid = false; ret = drv_post_channel_switch(sdata); if (ret) { sdata_info(sdata, "driver post channel switch failed, disconnecting\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); return; } cfg80211_ch_switch_notify(sdata->dev, &link->reserved_chandef, 0, 0); } void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif))) success = false; trace_api_chswitch_done(sdata, success); if (!success) { sdata_info(sdata, "driver channel switch failed, disconnecting\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); } else { wiphy_delayed_work_queue(sdata->local->hw.wiphy, &sdata->deflink.u.mgd.chswitch_work, 0); } } EXPORT_SYMBOL(ieee80211_chswitch_done); static void ieee80211_sta_abort_chanswitch(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; if (!local->ops->abort_channel_switch) return; mutex_lock(&local->mtx); mutex_lock(&local->chanctx_mtx); ieee80211_link_unreserve_chanctx(link); mutex_unlock(&local->chanctx_mtx); if (link->csa_block_tx) ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_CSA); link->csa_block_tx = false; link->conf->csa_active = false; mutex_unlock(&local->mtx); drv_abort_channel_switch(sdata); } static void ieee80211_sta_process_chanswitch(struct ieee80211_link_data *link, u64 timestamp, u32 device_timestamp, struct ieee802_11_elems *elems, bool beacon) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct cfg80211_bss *cbss = link->u.mgd.bss; struct ieee80211_chanctx_conf *conf; struct ieee80211_chanctx *chanctx; enum nl80211_band current_band; struct ieee80211_csa_ie csa_ie; struct ieee80211_channel_switch ch_switch; struct ieee80211_bss *bss; unsigned long timeout; int res; sdata_assert_lock(sdata); if (!cbss) return; current_band = cbss->channel->band; bss = (void *)cbss->priv; res = ieee80211_parse_ch_switch_ie(sdata, elems, current_band, bss->vht_cap_info, link->u.mgd.conn_flags, link->u.mgd.bssid, &csa_ie); if (!res) { ch_switch.timestamp = timestamp; ch_switch.device_timestamp = device_timestamp; ch_switch.block_tx = csa_ie.mode; ch_switch.chandef = csa_ie.chandef; ch_switch.count = csa_ie.count; ch_switch.delay = csa_ie.max_switch_time; } if (res < 0) goto lock_and_drop_connection; if (beacon && link->conf->csa_active && !link->u.mgd.csa_waiting_bcn) { if (res) ieee80211_sta_abort_chanswitch(link); else drv_channel_switch_rx_beacon(sdata, &ch_switch); return; } else if (link->conf->csa_active || res) { /* disregard subsequent announcements if already processing */ return; } if (link->conf->chandef.chan->band != csa_ie.chandef.chan->band) { sdata_info(sdata, "AP %pM switches to different band (%d MHz, width:%d, CF1/2: %d/%d MHz), disconnecting\n", link->u.mgd.bssid, csa_ie.chandef.chan->center_freq, csa_ie.chandef.width, csa_ie.chandef.center_freq1, csa_ie.chandef.center_freq2); goto lock_and_drop_connection; } if (!cfg80211_chandef_usable(local->hw.wiphy, &csa_ie.chandef, IEEE80211_CHAN_DISABLED)) { sdata_info(sdata, "AP %pM switches to unsupported channel " "(%d.%03d MHz, width:%d, CF1/2: %d.%03d/%d MHz), " "disconnecting\n", link->u.mgd.bssid, csa_ie.chandef.chan->center_freq, csa_ie.chandef.chan->freq_offset, csa_ie.chandef.width, csa_ie.chandef.center_freq1, csa_ie.chandef.freq1_offset, csa_ie.chandef.center_freq2); goto lock_and_drop_connection; } if (cfg80211_chandef_identical(&csa_ie.chandef, &link->conf->chandef) && (!csa_ie.mode || !beacon)) { if (link->u.mgd.csa_ignored_same_chan) return; sdata_info(sdata, "AP %pM tries to chanswitch to same channel, ignore\n", link->u.mgd.bssid); link->u.mgd.csa_ignored_same_chan = true; return; } /* * Drop all TDLS peers - either we disconnect or move to a different * channel from this point on. There's no telling what our peer will do. * The TDLS WIDER_BW scenario is also problematic, as peers might now * have an incompatible wider chandef. */ ieee80211_teardown_tdls_peers(sdata); mutex_lock(&local->mtx); mutex_lock(&local->chanctx_mtx); conf = rcu_dereference_protected(link->conf->chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); if (!conf) { sdata_info(sdata, "no channel context assigned to vif?, disconnecting\n"); goto drop_connection; } chanctx = container_of(conf, struct ieee80211_chanctx, conf); if (local->use_chanctx && !ieee80211_hw_check(&local->hw, CHANCTX_STA_CSA)) { sdata_info(sdata, "driver doesn't support chan-switch with channel contexts\n"); goto drop_connection; } if (drv_pre_channel_switch(sdata, &ch_switch)) { sdata_info(sdata, "preparing for channel switch failed, disconnecting\n"); goto drop_connection; } res = ieee80211_link_reserve_chanctx(link, &csa_ie.chandef, chanctx->mode, false); if (res) { sdata_info(sdata, "failed to reserve channel context for channel switch, disconnecting (err=%d)\n", res); goto drop_connection; } mutex_unlock(&local->chanctx_mtx); link->conf->csa_active = true; link->csa_chandef = csa_ie.chandef; link->csa_block_tx = csa_ie.mode; link->u.mgd.csa_ignored_same_chan = false; link->u.mgd.beacon_crc_valid = false; if (link->csa_block_tx) ieee80211_stop_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_CSA); mutex_unlock(&local->mtx); cfg80211_ch_switch_started_notify(sdata->dev, &csa_ie.chandef, link->link_id, csa_ie.count, csa_ie.mode, 0); if (local->ops->channel_switch) { /* use driver's channel switch callback */ drv_channel_switch(local, sdata, &ch_switch); return; } /* channel switch handled in software */ timeout = TU_TO_JIFFIES((max_t(int, csa_ie.count, 1) - 1) * cbss->beacon_interval); wiphy_delayed_work_queue(local->hw.wiphy, &link->u.mgd.chswitch_work, timeout); return; lock_and_drop_connection: mutex_lock(&local->mtx); mutex_lock(&local->chanctx_mtx); drop_connection: /* * This is just so that the disconnect flow will know that * we were trying to switch channel and failed. In case the * mode is 1 (we are not allowed to Tx), we will know not to * send a deauthentication frame. Those two fields will be * reset when the disconnection worker runs. */ link->conf->csa_active = true; link->csa_block_tx = csa_ie.mode; wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); mutex_unlock(&local->chanctx_mtx); mutex_unlock(&local->mtx); } static bool ieee80211_find_80211h_pwr_constr(struct ieee80211_sub_if_data *sdata, struct ieee80211_channel *channel, const u8 *country_ie, u8 country_ie_len, const u8 *pwr_constr_elem, int *chan_pwr, int *pwr_reduction) { struct ieee80211_country_ie_triplet *triplet; int chan = ieee80211_frequency_to_channel(channel->center_freq); int i, chan_increment; bool have_chan_pwr = false; /* Invalid IE */ if (country_ie_len % 2 || country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) return false; triplet = (void *)(country_ie + 3); country_ie_len -= 3; switch (channel->band) { default: WARN_ON_ONCE(1); fallthrough; case NL80211_BAND_2GHZ: case NL80211_BAND_60GHZ: case NL80211_BAND_LC: chan_increment = 1; break; case NL80211_BAND_5GHZ: chan_increment = 4; break; case NL80211_BAND_6GHZ: /* * In the 6 GHz band, the "maximum transmit power level" * field in the triplets is reserved, and thus will be * zero and we shouldn't use it to control TX power. * The actual TX power will be given in the transmit * power envelope element instead. */ return false; } /* find channel */ while (country_ie_len >= 3) { u8 first_channel = triplet->chans.first_channel; if (first_channel >= IEEE80211_COUNTRY_EXTENSION_ID) goto next; for (i = 0; i < triplet->chans.num_channels; i++) { if (first_channel + i * chan_increment == chan) { have_chan_pwr = true; *chan_pwr = triplet->chans.max_power; break; } } if (have_chan_pwr) break; next: triplet++; country_ie_len -= 3; } if (have_chan_pwr && pwr_constr_elem) *pwr_reduction = *pwr_constr_elem; else *pwr_reduction = 0; return have_chan_pwr; } static void ieee80211_find_cisco_dtpc(struct ieee80211_sub_if_data *sdata, struct ieee80211_channel *channel, const u8 *cisco_dtpc_ie, int *pwr_level) { /* From practical testing, the first data byte of the DTPC element * seems to contain the requested dBm level, and the CLI on Cisco * APs clearly state the range is -127 to 127 dBm, which indicates * a signed byte, although it seemingly never actually goes negative. * The other byte seems to always be zero. */ *pwr_level = (__s8)cisco_dtpc_ie[4]; } static u64 ieee80211_handle_pwr_constr(struct ieee80211_link_data *link, struct ieee80211_channel *channel, struct ieee80211_mgmt *mgmt, const u8 *country_ie, u8 country_ie_len, const u8 *pwr_constr_ie, const u8 *cisco_dtpc_ie) { struct ieee80211_sub_if_data *sdata = link->sdata; bool has_80211h_pwr = false, has_cisco_pwr = false; int chan_pwr = 0, pwr_reduction_80211h = 0; int pwr_level_cisco, pwr_level_80211h; int new_ap_level; __le16 capab = mgmt->u.probe_resp.capab_info; if (ieee80211_is_s1g_beacon(mgmt->frame_control)) return 0; /* TODO */ if (country_ie && (capab & cpu_to_le16(WLAN_CAPABILITY_SPECTRUM_MGMT) || capab & cpu_to_le16(WLAN_CAPABILITY_RADIO_MEASURE))) { has_80211h_pwr = ieee80211_find_80211h_pwr_constr( sdata, channel, country_ie, country_ie_len, pwr_constr_ie, &chan_pwr, &pwr_reduction_80211h); pwr_level_80211h = max_t(int, 0, chan_pwr - pwr_reduction_80211h); } if (cisco_dtpc_ie) { ieee80211_find_cisco_dtpc( sdata, channel, cisco_dtpc_ie, &pwr_level_cisco); has_cisco_pwr = true; } if (!has_80211h_pwr && !has_cisco_pwr) return 0; /* If we have both 802.11h and Cisco DTPC, apply both limits * by picking the smallest of the two power levels advertised. */ if (has_80211h_pwr && (!has_cisco_pwr || pwr_level_80211h <= pwr_level_cisco)) { new_ap_level = pwr_level_80211h; if (link->ap_power_level == new_ap_level) return 0; sdata_dbg(sdata, "Limiting TX power to %d (%d - %d) dBm as advertised by %pM\n", pwr_level_80211h, chan_pwr, pwr_reduction_80211h, link->u.mgd.bssid); } else { /* has_cisco_pwr is always true here. */ new_ap_level = pwr_level_cisco; if (link->ap_power_level == new_ap_level) return 0; sdata_dbg(sdata, "Limiting TX power to %d dBm as advertised by %pM\n", pwr_level_cisco, link->u.mgd.bssid); } link->ap_power_level = new_ap_level; if (__ieee80211_recalc_txpower(sdata)) return BSS_CHANGED_TXPOWER; return 0; } /* powersave */ static void ieee80211_enable_ps(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct ieee80211_conf *conf = &local->hw.conf; /* * If we are scanning right now then the parameters will * take effect when scan finishes. */ if (local->scanning) return; if (conf->dynamic_ps_timeout > 0 && !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) { mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(conf->dynamic_ps_timeout)); } else { if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) ieee80211_send_nullfunc(local, sdata, true); if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) return; conf->flags |= IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } } static void ieee80211_change_ps(struct ieee80211_local *local) { struct ieee80211_conf *conf = &local->hw.conf; if (local->ps_sdata) { ieee80211_enable_ps(local, local->ps_sdata); } else if (conf->flags & IEEE80211_CONF_PS) { conf->flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); del_timer_sync(&local->dynamic_ps_timer); cancel_work_sync(&local->dynamic_ps_enable_work); } } static bool ieee80211_powersave_allowed(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *mgd = &sdata->u.mgd; struct sta_info *sta = NULL; bool authorized = false; if (!mgd->powersave) return false; if (mgd->broken_ap) return false; if (!mgd->associated) return false; if (mgd->flags & IEEE80211_STA_CONNECTION_POLL) return false; if (!(local->hw.wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO) && !sdata->deflink.u.mgd.have_beacon) return false; rcu_read_lock(); sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (sta) authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); rcu_read_unlock(); return authorized; } /* need to hold RTNL or interface lock */ void ieee80211_recalc_ps(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata, *found = NULL; int count = 0; int timeout; if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS) || ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) { local->ps_sdata = NULL; return; } list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_AP) { /* If an AP vif is found, then disable PS * by setting the count to zero thereby setting * ps_sdata to NULL. */ count = 0; break; } if (sdata->vif.type != NL80211_IFTYPE_STATION) continue; found = sdata; count++; } if (count == 1 && ieee80211_powersave_allowed(found)) { u8 dtimper = found->deflink.u.mgd.dtim_period; timeout = local->dynamic_ps_forced_timeout; if (timeout < 0) timeout = 100; local->hw.conf.dynamic_ps_timeout = timeout; /* If the TIM IE is invalid, pretend the value is 1 */ if (!dtimper) dtimper = 1; local->hw.conf.ps_dtim_period = dtimper; local->ps_sdata = found; } else { local->ps_sdata = NULL; } ieee80211_change_ps(local); } void ieee80211_recalc_ps_vif(struct ieee80211_sub_if_data *sdata) { bool ps_allowed = ieee80211_powersave_allowed(sdata); if (sdata->vif.cfg.ps != ps_allowed) { sdata->vif.cfg.ps = ps_allowed; ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_PS); } } void ieee80211_dynamic_ps_disable_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, dynamic_ps_disable_work); if (local->hw.conf.flags & IEEE80211_CONF_PS) { local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } ieee80211_wake_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_PS, false); } void ieee80211_dynamic_ps_enable_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, dynamic_ps_enable_work); struct ieee80211_sub_if_data *sdata = local->ps_sdata; struct ieee80211_if_managed *ifmgd; unsigned long flags; int q; /* can only happen when PS was just disabled anyway */ if (!sdata) return; ifmgd = &sdata->u.mgd; if (local->hw.conf.flags & IEEE80211_CONF_PS) return; if (local->hw.conf.dynamic_ps_timeout > 0) { /* don't enter PS if TX frames are pending */ if (drv_tx_frames_pending(local)) { mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies( local->hw.conf.dynamic_ps_timeout)); return; } /* * transmission can be stopped by others which leads to * dynamic_ps_timer expiry. Postpone the ps timer if it * is not the actual idle state. */ spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for (q = 0; q < local->hw.queues; q++) { if (local->queue_stop_reasons[q]) { spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies( local->hw.conf.dynamic_ps_timeout)); return; } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) && !(ifmgd->flags & IEEE80211_STA_NULLFUNC_ACKED)) { if (drv_tx_frames_pending(local)) { mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies( local->hw.conf.dynamic_ps_timeout)); } else { ieee80211_send_nullfunc(local, sdata, true); /* Flush to get the tx status of nullfunc frame */ ieee80211_flush_queues(local, sdata, false); } } if (!(ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS) && ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) || (ifmgd->flags & IEEE80211_STA_NULLFUNC_ACKED)) { ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; local->hw.conf.flags |= IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } } void ieee80211_dynamic_ps_timer(struct timer_list *t) { struct ieee80211_local *local = from_timer(local, t, dynamic_ps_timer); ieee80211_queue_work(&local->hw, &local->dynamic_ps_enable_work); } void ieee80211_dfs_cac_timer_work(struct work_struct *work) { struct delayed_work *delayed_work = to_delayed_work(work); struct ieee80211_link_data *link = container_of(delayed_work, struct ieee80211_link_data, dfs_cac_timer_work); struct cfg80211_chan_def chandef = link->conf->chandef; struct ieee80211_sub_if_data *sdata = link->sdata; mutex_lock(&sdata->local->mtx); if (sdata->wdev.cac_started) { ieee80211_link_release_channel(link); cfg80211_cac_event(sdata->dev, &chandef, NL80211_RADAR_CAC_FINISHED, GFP_KERNEL); } mutex_unlock(&sdata->local->mtx); } static bool __ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool ret = false; int ac; if (local->hw.queues < IEEE80211_NUM_ACS) return false; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { struct ieee80211_sta_tx_tspec *tx_tspec = &ifmgd->tx_tspec[ac]; int non_acm_ac; unsigned long now = jiffies; if (tx_tspec->action == TX_TSPEC_ACTION_NONE && tx_tspec->admitted_time && time_after(now, tx_tspec->time_slice_start + HZ)) { tx_tspec->consumed_tx_time = 0; tx_tspec->time_slice_start = now; if (tx_tspec->downgraded) tx_tspec->action = TX_TSPEC_ACTION_STOP_DOWNGRADE; } switch (tx_tspec->action) { case TX_TSPEC_ACTION_STOP_DOWNGRADE: /* take the original parameters */ if (drv_conf_tx(local, &sdata->deflink, ac, &sdata->deflink.tx_conf[ac])) link_err(&sdata->deflink, "failed to set TX queue parameters for queue %d\n", ac); tx_tspec->action = TX_TSPEC_ACTION_NONE; tx_tspec->downgraded = false; ret = true; break; case TX_TSPEC_ACTION_DOWNGRADE: if (time_after(now, tx_tspec->time_slice_start + HZ)) { tx_tspec->action = TX_TSPEC_ACTION_NONE; ret = true; break; } /* downgrade next lower non-ACM AC */ for (non_acm_ac = ac + 1; non_acm_ac < IEEE80211_NUM_ACS; non_acm_ac++) if (!(sdata->wmm_acm & BIT(7 - 2 * non_acm_ac))) break; /* Usually the loop will result in using BK even if it * requires admission control, but such a configuration * makes no sense and we have to transmit somehow - the * AC selection does the same thing. * If we started out trying to downgrade from BK, then * the extra condition here might be needed. */ if (non_acm_ac >= IEEE80211_NUM_ACS) non_acm_ac = IEEE80211_AC_BK; if (drv_conf_tx(local, &sdata->deflink, ac, &sdata->deflink.tx_conf[non_acm_ac])) link_err(&sdata->deflink, "failed to set TX queue parameters for queue %d\n", ac); tx_tspec->action = TX_TSPEC_ACTION_NONE; ret = true; schedule_delayed_work(&ifmgd->tx_tspec_wk, tx_tspec->time_slice_start + HZ - now + 1); break; case TX_TSPEC_ACTION_NONE: /* nothing now */ break; } } return ret; } void ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata) { if (__ieee80211_sta_handle_tspec_ac_params(sdata)) ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_QOS); } static void ieee80211_sta_handle_tspec_ac_params_wk(struct work_struct *work) { struct ieee80211_sub_if_data *sdata; sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.tx_tspec_wk.work); ieee80211_sta_handle_tspec_ac_params(sdata); } void ieee80211_mgd_set_link_qos_params(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_tx_queue_params *params = link->tx_conf; u8 ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { mlme_dbg(sdata, "WMM AC=%d acm=%d aifs=%d cWmin=%d cWmax=%d txop=%d uapsd=%d, downgraded=%d\n", ac, params[ac].acm, params[ac].aifs, params[ac].cw_min, params[ac].cw_max, params[ac].txop, params[ac].uapsd, ifmgd->tx_tspec[ac].downgraded); if (!ifmgd->tx_tspec[ac].downgraded && drv_conf_tx(local, link, ac, &params[ac])) link_err(link, "failed to set TX queue parameters for AC %d\n", ac); } } /* MLME */ static bool ieee80211_sta_wmm_params(struct ieee80211_local *local, struct ieee80211_link_data *link, const u8 *wmm_param, size_t wmm_param_len, const struct ieee80211_mu_edca_param_set *mu_edca) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_tx_queue_params params[IEEE80211_NUM_ACS]; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; size_t left; int count, mu_edca_count, ac; const u8 *pos; u8 uapsd_queues = 0; if (!local->ops->conf_tx) return false; if (local->hw.queues < IEEE80211_NUM_ACS) return false; if (!wmm_param) return false; if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1) return false; if (ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) uapsd_queues = ifmgd->uapsd_queues; count = wmm_param[6] & 0x0f; /* -1 is the initial value of ifmgd->mu_edca_last_param_set. * if mu_edca was preset before and now it disappeared tell * the driver about it. */ mu_edca_count = mu_edca ? mu_edca->mu_qos_info & 0x0f : -1; if (count == link->u.mgd.wmm_last_param_set && mu_edca_count == link->u.mgd.mu_edca_last_param_set) return false; link->u.mgd.wmm_last_param_set = count; link->u.mgd.mu_edca_last_param_set = mu_edca_count; pos = wmm_param + 8; left = wmm_param_len - 8; memset(&params, 0, sizeof(params)); sdata->wmm_acm = 0; for (; left >= 4; left -= 4, pos += 4) { int aci = (pos[0] >> 5) & 0x03; int acm = (pos[0] >> 4) & 0x01; bool uapsd = false; switch (aci) { case 1: /* AC_BK */ ac = IEEE80211_AC_BK; if (acm) sdata->wmm_acm |= BIT(1) | BIT(2); /* BK/- */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_bk; break; case 2: /* AC_VI */ ac = IEEE80211_AC_VI; if (acm) sdata->wmm_acm |= BIT(4) | BIT(5); /* CL/VI */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_vi; break; case 3: /* AC_VO */ ac = IEEE80211_AC_VO; if (acm) sdata->wmm_acm |= BIT(6) | BIT(7); /* VO/NC */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_vo; break; case 0: /* AC_BE */ default: ac = IEEE80211_AC_BE; if (acm) sdata->wmm_acm |= BIT(0) | BIT(3); /* BE/EE */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_be; break; } params[ac].aifs = pos[0] & 0x0f; if (params[ac].aifs < 2) { link_info(link, "AP has invalid WMM params (AIFSN=%d for ACI %d), will use 2\n", params[ac].aifs, aci); params[ac].aifs = 2; } params[ac].cw_max = ecw2cw((pos[1] & 0xf0) >> 4); params[ac].cw_min = ecw2cw(pos[1] & 0x0f); params[ac].txop = get_unaligned_le16(pos + 2); params[ac].acm = acm; params[ac].uapsd = uapsd; if (params[ac].cw_min == 0 || params[ac].cw_min > params[ac].cw_max) { link_info(link, "AP has invalid WMM params (CWmin/max=%d/%d for ACI %d), using defaults\n", params[ac].cw_min, params[ac].cw_max, aci); return false; } ieee80211_regulatory_limit_wmm_params(sdata, &params[ac], ac); } /* WMM specification requires all 4 ACIs. */ for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { if (params[ac].cw_min == 0) { link_info(link, "AP has invalid WMM params (missing AC %d), using defaults\n", ac); return false; } } for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) link->tx_conf[ac] = params[ac]; ieee80211_mgd_set_link_qos_params(link); /* enable WMM or activate new settings */ link->conf->qos = true; return true; } static void __ieee80211_stop_poll(struct ieee80211_sub_if_data *sdata) { lockdep_assert_held(&sdata->local->mtx); sdata->u.mgd.flags &= ~IEEE80211_STA_CONNECTION_POLL; ieee80211_run_deferred_scan(sdata->local); } static void ieee80211_stop_poll(struct ieee80211_sub_if_data *sdata) { mutex_lock(&sdata->local->mtx); __ieee80211_stop_poll(sdata); mutex_unlock(&sdata->local->mtx); } static u64 ieee80211_handle_bss_capability(struct ieee80211_link_data *link, u16 capab, bool erp_valid, u8 erp) { struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_supported_band *sband; u64 changed = 0; bool use_protection; bool use_short_preamble; bool use_short_slot; sband = ieee80211_get_link_sband(link); if (!sband) return changed; if (erp_valid) { use_protection = (erp & WLAN_ERP_USE_PROTECTION) != 0; use_short_preamble = (erp & WLAN_ERP_BARKER_PREAMBLE) == 0; } else { use_protection = false; use_short_preamble = !!(capab & WLAN_CAPABILITY_SHORT_PREAMBLE); } use_short_slot = !!(capab & WLAN_CAPABILITY_SHORT_SLOT_TIME); if (sband->band == NL80211_BAND_5GHZ || sband->band == NL80211_BAND_6GHZ) use_short_slot = true; if (use_protection != bss_conf->use_cts_prot) { bss_conf->use_cts_prot = use_protection; changed |= BSS_CHANGED_ERP_CTS_PROT; } if (use_short_preamble != bss_conf->use_short_preamble) { bss_conf->use_short_preamble = use_short_preamble; changed |= BSS_CHANGED_ERP_PREAMBLE; } if (use_short_slot != bss_conf->use_short_slot) { bss_conf->use_short_slot = use_short_slot; changed |= BSS_CHANGED_ERP_SLOT; } return changed; } static u64 ieee80211_link_set_associated(struct ieee80211_link_data *link, struct cfg80211_bss *cbss) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_bss *bss = (void *)cbss->priv; u64 changed = BSS_CHANGED_QOS; /* not really used in MLO */ sdata->u.mgd.beacon_timeout = usecs_to_jiffies(ieee80211_tu_to_usec(beacon_loss_count * bss_conf->beacon_int)); changed |= ieee80211_handle_bss_capability(link, bss_conf->assoc_capability, bss->has_erp_value, bss->erp_value); ieee80211_check_rate_mask(link); link->u.mgd.bss = cbss; memcpy(link->u.mgd.bssid, cbss->bssid, ETH_ALEN); if (sdata->vif.p2p || sdata->vif.driver_flags & IEEE80211_VIF_GET_NOA_UPDATE) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); ies = rcu_dereference(cbss->ies); if (ies) { int ret; ret = cfg80211_get_p2p_attr( ies->data, ies->len, IEEE80211_P2P_ATTR_ABSENCE_NOTICE, (u8 *) &bss_conf->p2p_noa_attr, sizeof(bss_conf->p2p_noa_attr)); if (ret >= 2) { link->u.mgd.p2p_noa_index = bss_conf->p2p_noa_attr.index; changed |= BSS_CHANGED_P2P_PS; } } rcu_read_unlock(); } if (link->u.mgd.have_beacon) { bss_conf->beacon_rate = bss->beacon_rate; changed |= BSS_CHANGED_BEACON_INFO; } else { bss_conf->beacon_rate = NULL; } /* Tell the driver to monitor connection quality (if supported) */ if (sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI && bss_conf->cqm_rssi_thold) changed |= BSS_CHANGED_CQM; return changed; } static void ieee80211_set_associated(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgd_assoc_data *assoc_data, u64 changed[IEEE80211_MLD_MAX_NUM_LINKS]) { struct ieee80211_local *local = sdata->local; struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg; u64 vif_changed = BSS_CHANGED_ASSOC; unsigned int link_id; sdata->u.mgd.associated = true; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; struct ieee80211_link_data *link; if (!cbss || assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) continue; if (ieee80211_vif_is_mld(&sdata->vif) && !(ieee80211_vif_usable_links(&sdata->vif) & BIT(link_id))) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) return; changed[link_id] |= ieee80211_link_set_associated(link, cbss); } /* just to be sure */ ieee80211_stop_poll(sdata); ieee80211_led_assoc(local, 1); vif_cfg->assoc = 1; /* Enable ARP filtering */ if (vif_cfg->arp_addr_cnt) vif_changed |= BSS_CHANGED_ARP_FILTER; if (ieee80211_vif_is_mld(&sdata->vif)) { for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee80211_link_data *link; struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; if (!cbss || !(BIT(link_id) & ieee80211_vif_usable_links(&sdata->vif)) || assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) return; ieee80211_link_info_change_notify(sdata, link, changed[link_id]); ieee80211_recalc_smps(sdata, link); } ieee80211_vif_cfg_change_notify(sdata, vif_changed); } else { ieee80211_bss_info_change_notify(sdata, vif_changed | changed[0]); } mutex_lock(&local->iflist_mtx); ieee80211_recalc_ps(local); mutex_unlock(&local->iflist_mtx); /* leave this here to not change ordering in non-MLO cases */ if (!ieee80211_vif_is_mld(&sdata->vif)) ieee80211_recalc_smps(sdata, &sdata->deflink); ieee80211_recalc_ps_vif(sdata); netif_carrier_on(sdata->dev); } static void ieee80211_set_disassoc(struct ieee80211_sub_if_data *sdata, u16 stype, u16 reason, bool tx, u8 *frame_buf) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = sdata->local; unsigned int link_id; u64 changed = 0; struct ieee80211_prep_tx_info info = { .subtype = stype, }; sdata_assert_lock(sdata); if (WARN_ON_ONCE(tx && !frame_buf)) return; if (WARN_ON(!ifmgd->associated)) return; ieee80211_stop_poll(sdata); ifmgd->associated = false; /* other links will be destroyed */ sdata->deflink.u.mgd.bss = NULL; netif_carrier_off(sdata->dev); /* * if we want to get out of ps before disassoc (why?) we have * to do it before sending disassoc, as otherwise the null-packet * won't be valid. */ if (local->hw.conf.flags & IEEE80211_CONF_PS) { local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } local->ps_sdata = NULL; /* disable per-vif ps */ ieee80211_recalc_ps_vif(sdata); /* make sure ongoing transmission finishes */ synchronize_net(); /* * drop any frame before deauth/disassoc, this can be data or * management frame. Since we are disconnecting, we should not * insist sending these frames which can take time and delay * the disconnection and possible the roaming. */ if (tx) ieee80211_flush_queues(local, sdata, true); /* deauthenticate/disassociate now */ if (tx || frame_buf) { /* * In multi channel scenarios guarantee that the virtual * interface is granted immediate airtime to transmit the * deauthentication frame by calling mgd_prepare_tx, if the * driver requested so. */ if (ieee80211_hw_check(&local->hw, DEAUTH_NEED_MGD_TX_PREP) && !sdata->deflink.u.mgd.have_beacon) { drv_mgd_prepare_tx(sdata->local, sdata, &info); } ieee80211_send_deauth_disassoc(sdata, sdata->vif.cfg.ap_addr, sdata->vif.cfg.ap_addr, stype, reason, tx, frame_buf); } /* flush out frame - make sure the deauth was actually sent */ if (tx) ieee80211_flush_queues(local, sdata, false); drv_mgd_complete_tx(sdata->local, sdata, &info); /* clear AP addr only after building the needed mgmt frames */ eth_zero_addr(sdata->deflink.u.mgd.bssid); eth_zero_addr(sdata->vif.cfg.ap_addr); sdata->vif.cfg.ssid_len = 0; /* remove AP and TDLS peers */ sta_info_flush(sdata); /* finally reset all BSS / config parameters */ if (!ieee80211_vif_is_mld(&sdata->vif)) changed |= ieee80211_reset_erp_info(sdata); ieee80211_led_assoc(local, 0); changed |= BSS_CHANGED_ASSOC; sdata->vif.cfg.assoc = false; sdata->deflink.u.mgd.p2p_noa_index = -1; memset(&sdata->vif.bss_conf.p2p_noa_attr, 0, sizeof(sdata->vif.bss_conf.p2p_noa_attr)); /* on the next assoc, re-program HT/VHT parameters */ memset(&ifmgd->ht_capa, 0, sizeof(ifmgd->ht_capa)); memset(&ifmgd->ht_capa_mask, 0, sizeof(ifmgd->ht_capa_mask)); memset(&ifmgd->vht_capa, 0, sizeof(ifmgd->vht_capa)); memset(&ifmgd->vht_capa_mask, 0, sizeof(ifmgd->vht_capa_mask)); /* * reset MU-MIMO ownership and group data in default link, * if used, other links are destroyed */ memset(sdata->vif.bss_conf.mu_group.membership, 0, sizeof(sdata->vif.bss_conf.mu_group.membership)); memset(sdata->vif.bss_conf.mu_group.position, 0, sizeof(sdata->vif.bss_conf.mu_group.position)); if (!ieee80211_vif_is_mld(&sdata->vif)) changed |= BSS_CHANGED_MU_GROUPS; sdata->vif.bss_conf.mu_mimo_owner = false; sdata->deflink.ap_power_level = IEEE80211_UNSET_POWER_LEVEL; del_timer_sync(&local->dynamic_ps_timer); cancel_work_sync(&local->dynamic_ps_enable_work); /* Disable ARP filtering */ if (sdata->vif.cfg.arp_addr_cnt) changed |= BSS_CHANGED_ARP_FILTER; sdata->vif.bss_conf.qos = false; if (!ieee80211_vif_is_mld(&sdata->vif)) { changed |= BSS_CHANGED_QOS; /* The BSSID (not really interesting) and HT changed */ changed |= BSS_CHANGED_BSSID | BSS_CHANGED_HT; ieee80211_bss_info_change_notify(sdata, changed); } else { ieee80211_vif_cfg_change_notify(sdata, changed); } /* disassociated - set to defaults now */ ieee80211_set_wmm_default(&sdata->deflink, false, false); del_timer_sync(&sdata->u.mgd.conn_mon_timer); del_timer_sync(&sdata->u.mgd.bcn_mon_timer); del_timer_sync(&sdata->u.mgd.timer); sdata->vif.bss_conf.dtim_period = 0; sdata->vif.bss_conf.beacon_rate = NULL; sdata->deflink.u.mgd.have_beacon = false; sdata->deflink.u.mgd.tracking_signal_avg = false; sdata->deflink.u.mgd.disable_wmm_tracking = false; ifmgd->flags = 0; sdata->deflink.u.mgd.conn_flags = 0; mutex_lock(&local->mtx); for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; ieee80211_link_release_channel(link); } sdata->vif.bss_conf.csa_active = false; sdata->deflink.u.mgd.csa_waiting_bcn = false; sdata->deflink.u.mgd.csa_ignored_same_chan = false; if (sdata->deflink.csa_block_tx) { ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_CSA); sdata->deflink.csa_block_tx = false; } mutex_unlock(&local->mtx); /* existing TX TSPEC sessions no longer exist */ memset(ifmgd->tx_tspec, 0, sizeof(ifmgd->tx_tspec)); cancel_delayed_work_sync(&ifmgd->tx_tspec_wk); sdata->vif.bss_conf.pwr_reduction = 0; sdata->vif.bss_conf.tx_pwr_env_num = 0; memset(sdata->vif.bss_conf.tx_pwr_env, 0, sizeof(sdata->vif.bss_conf.tx_pwr_env)); ieee80211_vif_set_links(sdata, 0, 0); } static void ieee80211_reset_ap_probe(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = sdata->local; mutex_lock(&local->mtx); if (!(ifmgd->flags & IEEE80211_STA_CONNECTION_POLL)) goto out; __ieee80211_stop_poll(sdata); mutex_lock(&local->iflist_mtx); ieee80211_recalc_ps(local); mutex_unlock(&local->iflist_mtx); if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) goto out; /* * We've received a probe response, but are not sure whether * we have or will be receiving any beacons or data, so let's * schedule the timers again, just in case. */ ieee80211_sta_reset_beacon_monitor(sdata); mod_timer(&ifmgd->conn_mon_timer, round_jiffies_up(jiffies + IEEE80211_CONNECTION_IDLE_TIME)); out: mutex_unlock(&local->mtx); } static void ieee80211_sta_tx_wmm_ac_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_hdr *hdr, u16 tx_time) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 tid; int ac; struct ieee80211_sta_tx_tspec *tx_tspec; unsigned long now = jiffies; if (!ieee80211_is_data_qos(hdr->frame_control)) return; tid = ieee80211_get_tid(hdr); ac = ieee80211_ac_from_tid(tid); tx_tspec = &ifmgd->tx_tspec[ac]; if (likely(!tx_tspec->admitted_time)) return; if (time_after(now, tx_tspec->time_slice_start + HZ)) { tx_tspec->consumed_tx_time = 0; tx_tspec->time_slice_start = now; if (tx_tspec->downgraded) { tx_tspec->action = TX_TSPEC_ACTION_STOP_DOWNGRADE; schedule_delayed_work(&ifmgd->tx_tspec_wk, 0); } } if (tx_tspec->downgraded) return; tx_tspec->consumed_tx_time += tx_time; if (tx_tspec->consumed_tx_time >= tx_tspec->admitted_time) { tx_tspec->downgraded = true; tx_tspec->action = TX_TSPEC_ACTION_DOWNGRADE; schedule_delayed_work(&ifmgd->tx_tspec_wk, 0); } } void ieee80211_sta_tx_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_hdr *hdr, bool ack, u16 tx_time) { ieee80211_sta_tx_wmm_ac_notify(sdata, hdr, tx_time); if (!ieee80211_is_any_nullfunc(hdr->frame_control) || !sdata->u.mgd.probe_send_count) return; if (ack) sdata->u.mgd.probe_send_count = 0; else sdata->u.mgd.nullfunc_failed = true; wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } static void ieee80211_mlme_send_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, const u8 *ssid, size_t ssid_len, struct ieee80211_channel *channel) { struct sk_buff *skb; skb = ieee80211_build_probe_req(sdata, src, dst, (u32)-1, channel, ssid, ssid_len, NULL, 0, IEEE80211_PROBE_FLAG_DIRECTED); if (skb) ieee80211_tx_skb(sdata, skb); } static void ieee80211_mgd_probe_ap_send(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 *dst = sdata->vif.cfg.ap_addr; u8 unicast_limit = max(1, max_probe_tries - 3); struct sta_info *sta; if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif))) return; /* * Try sending broadcast probe requests for the last three * probe requests after the first ones failed since some * buggy APs only support broadcast probe requests. */ if (ifmgd->probe_send_count >= unicast_limit) dst = NULL; /* * When the hardware reports an accurate Tx ACK status, it's * better to send a nullfunc frame instead of a probe request, * as it will kick us off the AP quickly if we aren't associated * anymore. The timeout will be reset if the frame is ACKed by * the AP. */ ifmgd->probe_send_count++; if (dst) { mutex_lock(&sdata->local->sta_mtx); sta = sta_info_get(sdata, dst); if (!WARN_ON(!sta)) ieee80211_check_fast_rx(sta); mutex_unlock(&sdata->local->sta_mtx); } if (ieee80211_hw_check(&sdata->local->hw, REPORTS_TX_ACK_STATUS)) { ifmgd->nullfunc_failed = false; ieee80211_send_nullfunc(sdata->local, sdata, false); } else { ieee80211_mlme_send_probe_req(sdata, sdata->vif.addr, dst, sdata->vif.cfg.ssid, sdata->vif.cfg.ssid_len, sdata->deflink.u.mgd.bss->channel); } ifmgd->probe_timeout = jiffies + msecs_to_jiffies(probe_wait_ms); run_again(sdata, ifmgd->probe_timeout); } static void ieee80211_mgd_probe_ap(struct ieee80211_sub_if_data *sdata, bool beacon) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool already = false; if (WARN_ON_ONCE(ieee80211_vif_is_mld(&sdata->vif))) return; if (!ieee80211_sdata_running(sdata)) return; sdata_lock(sdata); if (!ifmgd->associated) goto out; mutex_lock(&sdata->local->mtx); if (sdata->local->tmp_channel || sdata->local->scanning) { mutex_unlock(&sdata->local->mtx); goto out; } if (sdata->local->suspending) { /* reschedule after resume */ mutex_unlock(&sdata->local->mtx); ieee80211_reset_ap_probe(sdata); goto out; } if (beacon) { mlme_dbg_ratelimited(sdata, "detected beacon loss from AP (missed %d beacons) - probing\n", beacon_loss_count); ieee80211_cqm_beacon_loss_notify(&sdata->vif, GFP_KERNEL); } /* * The driver/our work has already reported this event or the * connection monitoring has kicked in and we have already sent * a probe request. Or maybe the AP died and the driver keeps * reporting until we disassociate... * * In either case we have to ignore the current call to this * function (except for setting the correct probe reason bit) * because otherwise we would reset the timer every time and * never check whether we received a probe response! */ if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL) already = true; ifmgd->flags |= IEEE80211_STA_CONNECTION_POLL; mutex_unlock(&sdata->local->mtx); if (already) goto out; mutex_lock(&sdata->local->iflist_mtx); ieee80211_recalc_ps(sdata->local); mutex_unlock(&sdata->local->iflist_mtx); ifmgd->probe_send_count = 0; ieee80211_mgd_probe_ap_send(sdata); out: sdata_unlock(sdata); } struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct cfg80211_bss *cbss; struct sk_buff *skb; const struct element *ssid; int ssid_len; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION || ieee80211_vif_is_mld(&sdata->vif))) return NULL; sdata_assert_lock(sdata); if (ifmgd->associated) cbss = sdata->deflink.u.mgd.bss; else if (ifmgd->auth_data) cbss = ifmgd->auth_data->bss; else if (ifmgd->assoc_data && ifmgd->assoc_data->link[0].bss) cbss = ifmgd->assoc_data->link[0].bss; else return NULL; rcu_read_lock(); ssid = ieee80211_bss_get_elem(cbss, WLAN_EID_SSID); if (WARN_ONCE(!ssid || ssid->datalen > IEEE80211_MAX_SSID_LEN, "invalid SSID element (len=%d)", ssid ? ssid->datalen : -1)) ssid_len = 0; else ssid_len = ssid->datalen; skb = ieee80211_build_probe_req(sdata, sdata->vif.addr, cbss->bssid, (u32) -1, cbss->channel, ssid->data, ssid_len, NULL, 0, IEEE80211_PROBE_FLAG_DIRECTED); rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_ap_probereq_get); static void ieee80211_report_disconnect(struct ieee80211_sub_if_data *sdata, const u8 *buf, size_t len, bool tx, u16 reason, bool reconnect) { struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = tx ? DEAUTH_TX_EVENT : DEAUTH_RX_EVENT, .u.mlme.reason = reason, }; if (tx) cfg80211_tx_mlme_mgmt(sdata->dev, buf, len, reconnect); else cfg80211_rx_mlme_mgmt(sdata->dev, buf, len); drv_event_callback(sdata->local, sdata, &event); } static void ___ieee80211_disconnect(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; bool tx; if (!ifmgd->associated) return; /* in MLO assume we have a link where we can TX the frame */ tx = ieee80211_vif_is_mld(&sdata->vif) || !sdata->deflink.csa_block_tx; if (!ifmgd->driver_disconnect) { unsigned int link_id; /* * AP is probably out of range (or not reachable for another * reason) so remove the bss structs for that AP. In the case * of multi-link, it's not clear that all of them really are * out of range, but if they weren't the driver likely would * have switched to just have a single link active? */ for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; cfg80211_unlink_bss(local->hw.wiphy, link->u.mgd.bss); link->u.mgd.bss = NULL; } } ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, ifmgd->driver_disconnect ? WLAN_REASON_DEAUTH_LEAVING : WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, tx, frame_buf); mutex_lock(&local->mtx); /* the other links will be destroyed */ sdata->vif.bss_conf.csa_active = false; sdata->deflink.u.mgd.csa_waiting_bcn = false; if (sdata->deflink.csa_block_tx) { ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_CSA); sdata->deflink.csa_block_tx = false; } mutex_unlock(&local->mtx); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), tx, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, ifmgd->reconnect); ifmgd->reconnect = false; } static void __ieee80211_disconnect(struct ieee80211_sub_if_data *sdata) { sdata_lock(sdata); ___ieee80211_disconnect(sdata); sdata_unlock(sdata); } static void ieee80211_beacon_connection_loss_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.beacon_connection_loss_work); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; if (ifmgd->connection_loss) { sdata_info(sdata, "Connection to AP %pM lost\n", sdata->vif.cfg.ap_addr); __ieee80211_disconnect(sdata); ifmgd->connection_loss = false; } else if (ifmgd->driver_disconnect) { sdata_info(sdata, "Driver requested disconnection from AP %pM\n", sdata->vif.cfg.ap_addr); __ieee80211_disconnect(sdata); ifmgd->driver_disconnect = false; } else { if (ifmgd->associated) sdata->deflink.u.mgd.beacon_loss_count++; ieee80211_mgd_probe_ap(sdata, true); } } static void ieee80211_csa_connection_drop_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.csa_connection_drop_work); __ieee80211_disconnect(sdata); } void ieee80211_beacon_loss(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_hw *hw = &sdata->local->hw; trace_api_beacon_loss(sdata); sdata->u.mgd.connection_loss = false; wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work); } EXPORT_SYMBOL(ieee80211_beacon_loss); void ieee80211_connection_loss(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_hw *hw = &sdata->local->hw; trace_api_connection_loss(sdata); sdata->u.mgd.connection_loss = true; wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work); } EXPORT_SYMBOL(ieee80211_connection_loss); void ieee80211_disconnect(struct ieee80211_vif *vif, bool reconnect) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_hw *hw = &sdata->local->hw; trace_api_disconnect(sdata, reconnect); if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; sdata->u.mgd.driver_disconnect = true; sdata->u.mgd.reconnect = reconnect; wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work); } EXPORT_SYMBOL(ieee80211_disconnect); static void ieee80211_destroy_auth_data(struct ieee80211_sub_if_data *sdata, bool assoc) { struct ieee80211_mgd_auth_data *auth_data = sdata->u.mgd.auth_data; sdata_assert_lock(sdata); if (!assoc) { /* * we are not authenticated yet, the only timer that could be * running is the timeout for the authentication response which * which is not relevant anymore. */ del_timer_sync(&sdata->u.mgd.timer); sta_info_destroy_addr(sdata, auth_data->ap_addr); /* other links are destroyed */ sdata->deflink.u.mgd.conn_flags = 0; eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); sdata->u.mgd.flags = 0; mutex_lock(&sdata->local->mtx); ieee80211_link_release_channel(&sdata->deflink); ieee80211_vif_set_links(sdata, 0, 0); mutex_unlock(&sdata->local->mtx); } cfg80211_put_bss(sdata->local->hw.wiphy, auth_data->bss); kfree(auth_data); sdata->u.mgd.auth_data = NULL; } enum assoc_status { ASSOC_SUCCESS, ASSOC_REJECTED, ASSOC_TIMEOUT, ASSOC_ABANDON, }; static void ieee80211_destroy_assoc_data(struct ieee80211_sub_if_data *sdata, enum assoc_status status) { struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data; sdata_assert_lock(sdata); if (status != ASSOC_SUCCESS) { /* * we are not associated yet, the only timer that could be * running is the timeout for the association response which * which is not relevant anymore. */ del_timer_sync(&sdata->u.mgd.timer); sta_info_destroy_addr(sdata, assoc_data->ap_addr); sdata->deflink.u.mgd.conn_flags = 0; eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); sdata->u.mgd.flags = 0; sdata->vif.bss_conf.mu_mimo_owner = false; if (status != ASSOC_REJECTED) { struct cfg80211_assoc_failure data = { .timeout = status == ASSOC_TIMEOUT, }; int i; BUILD_BUG_ON(ARRAY_SIZE(data.bss) != ARRAY_SIZE(assoc_data->link)); for (i = 0; i < ARRAY_SIZE(data.bss); i++) data.bss[i] = assoc_data->link[i].bss; if (ieee80211_vif_is_mld(&sdata->vif)) data.ap_mld_addr = assoc_data->ap_addr; cfg80211_assoc_failure(sdata->dev, &data); } mutex_lock(&sdata->local->mtx); ieee80211_link_release_channel(&sdata->deflink); ieee80211_vif_set_links(sdata, 0, 0); mutex_unlock(&sdata->local->mtx); } kfree(assoc_data); sdata->u.mgd.assoc_data = NULL; } static void ieee80211_auth_challenge(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgd_auth_data *auth_data = sdata->u.mgd.auth_data; const struct element *challenge; u8 *pos; u32 tx_flags = 0; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_AUTH, }; pos = mgmt->u.auth.variable; challenge = cfg80211_find_elem(WLAN_EID_CHALLENGE, pos, len - (pos - (u8 *)mgmt)); if (!challenge) return; auth_data->expected_transaction = 4; drv_mgd_prepare_tx(sdata->local, sdata, &info); if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) tx_flags = IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_MLME_CONN_TX; ieee80211_send_auth(sdata, 3, auth_data->algorithm, 0, (void *)challenge, challenge->datalen + sizeof(*challenge), auth_data->ap_addr, auth_data->ap_addr, auth_data->key, auth_data->key_len, auth_data->key_idx, tx_flags); } static bool ieee80211_mark_sta_auth(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; const u8 *ap_addr = ifmgd->auth_data->ap_addr; struct sta_info *sta; bool result = true; sdata_info(sdata, "authenticated\n"); ifmgd->auth_data->done = true; ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_WAIT_ASSOC; ifmgd->auth_data->timeout_started = true; run_again(sdata, ifmgd->auth_data->timeout); /* move station state to auth */ mutex_lock(&sdata->local->sta_mtx); sta = sta_info_get(sdata, ap_addr); if (!sta) { WARN_ONCE(1, "%s: STA %pM not found", sdata->name, ap_addr); result = false; goto out; } if (sta_info_move_state(sta, IEEE80211_STA_AUTH)) { sdata_info(sdata, "failed moving %pM to auth\n", ap_addr); result = false; goto out; } out: mutex_unlock(&sdata->local->sta_mtx); return result; } static void ieee80211_rx_mgmt_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 auth_alg, auth_transaction, status_code; struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = AUTH_EVENT, }; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_AUTH, }; sdata_assert_lock(sdata); if (len < 24 + 6) return; if (!ifmgd->auth_data || ifmgd->auth_data->done) return; if (!ether_addr_equal(ifmgd->auth_data->ap_addr, mgmt->bssid)) return; auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg); auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction); status_code = le16_to_cpu(mgmt->u.auth.status_code); if (auth_alg != ifmgd->auth_data->algorithm || (auth_alg != WLAN_AUTH_SAE && auth_transaction != ifmgd->auth_data->expected_transaction) || (auth_alg == WLAN_AUTH_SAE && (auth_transaction < ifmgd->auth_data->expected_transaction || auth_transaction > 2))) { sdata_info(sdata, "%pM unexpected authentication state: alg %d (expected %d) transact %d (expected %d)\n", mgmt->sa, auth_alg, ifmgd->auth_data->algorithm, auth_transaction, ifmgd->auth_data->expected_transaction); goto notify_driver; } if (status_code != WLAN_STATUS_SUCCESS) { cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len); if (auth_alg == WLAN_AUTH_SAE && (status_code == WLAN_STATUS_ANTI_CLOG_REQUIRED || (auth_transaction == 1 && (status_code == WLAN_STATUS_SAE_HASH_TO_ELEMENT || status_code == WLAN_STATUS_SAE_PK)))) { /* waiting for userspace now */ ifmgd->auth_data->waiting = true; ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_WAIT_SAE_RETRY; ifmgd->auth_data->timeout_started = true; run_again(sdata, ifmgd->auth_data->timeout); goto notify_driver; } sdata_info(sdata, "%pM denied authentication (status %d)\n", mgmt->sa, status_code); ieee80211_destroy_auth_data(sdata, false); event.u.mlme.status = MLME_DENIED; event.u.mlme.reason = status_code; drv_event_callback(sdata->local, sdata, &event); goto notify_driver; } switch (ifmgd->auth_data->algorithm) { case WLAN_AUTH_OPEN: case WLAN_AUTH_LEAP: case WLAN_AUTH_FT: case WLAN_AUTH_SAE: case WLAN_AUTH_FILS_SK: case WLAN_AUTH_FILS_SK_PFS: case WLAN_AUTH_FILS_PK: break; case WLAN_AUTH_SHARED_KEY: if (ifmgd->auth_data->expected_transaction != 4) { ieee80211_auth_challenge(sdata, mgmt, len); /* need another frame */ return; } break; default: WARN_ONCE(1, "invalid auth alg %d", ifmgd->auth_data->algorithm); goto notify_driver; } event.u.mlme.status = MLME_SUCCESS; info.success = 1; drv_event_callback(sdata->local, sdata, &event); if (ifmgd->auth_data->algorithm != WLAN_AUTH_SAE || (auth_transaction == 2 && ifmgd->auth_data->expected_transaction == 2)) { if (!ieee80211_mark_sta_auth(sdata)) return; /* ignore frame -- wait for timeout */ } else if (ifmgd->auth_data->algorithm == WLAN_AUTH_SAE && auth_transaction == 2) { sdata_info(sdata, "SAE peer confirmed\n"); ifmgd->auth_data->peer_confirmed = true; } cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len); notify_driver: drv_mgd_complete_tx(sdata->local, sdata, &info); } #define case_WLAN(type) \ case WLAN_REASON_##type: return #type const char *ieee80211_get_reason_code_string(u16 reason_code) { switch (reason_code) { case_WLAN(UNSPECIFIED); case_WLAN(PREV_AUTH_NOT_VALID); case_WLAN(DEAUTH_LEAVING); case_WLAN(DISASSOC_DUE_TO_INACTIVITY); case_WLAN(DISASSOC_AP_BUSY); case_WLAN(CLASS2_FRAME_FROM_NONAUTH_STA); case_WLAN(CLASS3_FRAME_FROM_NONASSOC_STA); case_WLAN(DISASSOC_STA_HAS_LEFT); case_WLAN(STA_REQ_ASSOC_WITHOUT_AUTH); case_WLAN(DISASSOC_BAD_POWER); case_WLAN(DISASSOC_BAD_SUPP_CHAN); case_WLAN(INVALID_IE); case_WLAN(MIC_FAILURE); case_WLAN(4WAY_HANDSHAKE_TIMEOUT); case_WLAN(GROUP_KEY_HANDSHAKE_TIMEOUT); case_WLAN(IE_DIFFERENT); case_WLAN(INVALID_GROUP_CIPHER); case_WLAN(INVALID_PAIRWISE_CIPHER); case_WLAN(INVALID_AKMP); case_WLAN(UNSUPP_RSN_VERSION); case_WLAN(INVALID_RSN_IE_CAP); case_WLAN(IEEE8021X_FAILED); case_WLAN(CIPHER_SUITE_REJECTED); case_WLAN(DISASSOC_UNSPECIFIED_QOS); case_WLAN(DISASSOC_QAP_NO_BANDWIDTH); case_WLAN(DISASSOC_LOW_ACK); case_WLAN(DISASSOC_QAP_EXCEED_TXOP); case_WLAN(QSTA_LEAVE_QBSS); case_WLAN(QSTA_NOT_USE); case_WLAN(QSTA_REQUIRE_SETUP); case_WLAN(QSTA_TIMEOUT); case_WLAN(QSTA_CIPHER_NOT_SUPP); case_WLAN(MESH_PEER_CANCELED); case_WLAN(MESH_MAX_PEERS); case_WLAN(MESH_CONFIG); case_WLAN(MESH_CLOSE); case_WLAN(MESH_MAX_RETRIES); case_WLAN(MESH_CONFIRM_TIMEOUT); case_WLAN(MESH_INVALID_GTK); case_WLAN(MESH_INCONSISTENT_PARAM); case_WLAN(MESH_INVALID_SECURITY); case_WLAN(MESH_PATH_ERROR); case_WLAN(MESH_PATH_NOFORWARD); case_WLAN(MESH_PATH_DEST_UNREACHABLE); case_WLAN(MAC_EXISTS_IN_MBSS); case_WLAN(MESH_CHAN_REGULATORY); case_WLAN(MESH_CHAN); default: return "<unknown>"; } } static void ieee80211_rx_mgmt_deauth(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 reason_code = le16_to_cpu(mgmt->u.deauth.reason_code); sdata_assert_lock(sdata); if (len < 24 + 2) return; if (!ether_addr_equal(mgmt->bssid, mgmt->sa)) { ieee80211_tdls_handle_disconnect(sdata, mgmt->sa, reason_code); return; } if (ifmgd->associated && ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) { sdata_info(sdata, "deauthenticated from %pM (Reason: %u=%s)\n", sdata->vif.cfg.ap_addr, reason_code, ieee80211_get_reason_code_string(reason_code)); ieee80211_set_disassoc(sdata, 0, 0, false, NULL); ieee80211_report_disconnect(sdata, (u8 *)mgmt, len, false, reason_code, false); return; } if (ifmgd->assoc_data && ether_addr_equal(mgmt->bssid, ifmgd->assoc_data->ap_addr)) { sdata_info(sdata, "deauthenticated from %pM while associating (Reason: %u=%s)\n", ifmgd->assoc_data->ap_addr, reason_code, ieee80211_get_reason_code_string(reason_code)); ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len); return; } } static void ieee80211_rx_mgmt_disassoc(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 reason_code; sdata_assert_lock(sdata); if (len < 24 + 2) return; if (!ifmgd->associated || !ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) return; reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code); if (!ether_addr_equal(mgmt->bssid, mgmt->sa)) { ieee80211_tdls_handle_disconnect(sdata, mgmt->sa, reason_code); return; } sdata_info(sdata, "disassociated from %pM (Reason: %u=%s)\n", sdata->vif.cfg.ap_addr, reason_code, ieee80211_get_reason_code_string(reason_code)); ieee80211_set_disassoc(sdata, 0, 0, false, NULL); ieee80211_report_disconnect(sdata, (u8 *)mgmt, len, false, reason_code, false); } static void ieee80211_get_rates(struct ieee80211_supported_band *sband, u8 *supp_rates, unsigned int supp_rates_len, u32 *rates, u32 *basic_rates, bool *have_higher_than_11mbit, int *min_rate, int *min_rate_index, int shift) { int i, j; for (i = 0; i < supp_rates_len; i++) { int rate = supp_rates[i] & 0x7f; bool is_basic = !!(supp_rates[i] & 0x80); if ((rate * 5 * (1 << shift)) > 110) *have_higher_than_11mbit = true; /* * Skip HT, VHT, HE, EHT and SAE H2E only BSS membership * selectors since they're not rates. * * Note: Even though the membership selector and the basic * rate flag share the same bit, they are not exactly * the same. */ if (supp_rates[i] == (0x80 | BSS_MEMBERSHIP_SELECTOR_HT_PHY) || supp_rates[i] == (0x80 | BSS_MEMBERSHIP_SELECTOR_VHT_PHY) || supp_rates[i] == (0x80 | BSS_MEMBERSHIP_SELECTOR_HE_PHY) || supp_rates[i] == (0x80 | BSS_MEMBERSHIP_SELECTOR_EHT_PHY) || supp_rates[i] == (0x80 | BSS_MEMBERSHIP_SELECTOR_SAE_H2E)) continue; for (j = 0; j < sband->n_bitrates; j++) { struct ieee80211_rate *br; int brate; br = &sband->bitrates[j]; brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); if (brate == rate) { *rates |= BIT(j); if (is_basic) *basic_rates |= BIT(j); if ((rate * 5) < *min_rate) { *min_rate = rate * 5; *min_rate_index = j; } break; } } } } static bool ieee80211_twt_req_supported(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct link_sta_info *link_sta, const struct ieee802_11_elems *elems) { const struct ieee80211_sta_he_cap *own_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); if (elems->ext_capab_len < 10) return false; if (!(elems->ext_capab[9] & WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT)) return false; return link_sta->pub->he_cap.he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_RES && own_he_cap && (own_he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_REQ); } static u64 ieee80211_recalc_twt_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, struct ieee80211_link_data *link, struct link_sta_info *link_sta, struct ieee802_11_elems *elems) { bool twt = ieee80211_twt_req_supported(sdata, sband, link_sta, elems); if (link->conf->twt_requester != twt) { link->conf->twt_requester = twt; return BSS_CHANGED_TWT; } return 0; } static bool ieee80211_twt_bcast_support(struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *bss_conf, struct ieee80211_supported_band *sband, struct link_sta_info *link_sta) { const struct ieee80211_sta_he_cap *own_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); return bss_conf->he_support && (link_sta->pub->he_cap.he_cap_elem.mac_cap_info[2] & IEEE80211_HE_MAC_CAP2_BCAST_TWT) && own_he_cap && (own_he_cap->he_cap_elem.mac_cap_info[2] & IEEE80211_HE_MAC_CAP2_BCAST_TWT); } static bool ieee80211_assoc_config_link(struct ieee80211_link_data *link, struct link_sta_info *link_sta, struct cfg80211_bss *cbss, struct ieee80211_mgmt *mgmt, const u8 *elem_start, unsigned int elem_len, u64 *changed) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data; struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_local *local = sdata->local; unsigned int link_id = link->link_id; struct ieee80211_elems_parse_params parse_params = { .start = elem_start, .len = elem_len, .link_id = link_id == assoc_data->assoc_link_id ? -1 : link_id, .from_ap = true, }; bool is_6ghz = cbss->channel->band == NL80211_BAND_6GHZ; bool is_s1g = cbss->channel->band == NL80211_BAND_S1GHZ; const struct cfg80211_bss_ies *bss_ies = NULL; struct ieee80211_supported_band *sband; struct ieee802_11_elems *elems; const __le16 prof_bss_param_ch_present = cpu_to_le16(IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT); u16 capab_info; bool ret; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return false; if (link_id == assoc_data->assoc_link_id) { capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info); /* * we should not get to this flow unless the association was * successful, so set the status directly to success */ assoc_data->link[link_id].status = WLAN_STATUS_SUCCESS; if (elems->ml_basic) { if (!(elems->ml_basic->control & cpu_to_le16(IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))) { ret = false; goto out; } link->u.mgd.bss_param_ch_cnt = ieee80211_mle_get_bss_param_ch_cnt(elems->ml_basic); } } else if (!elems->prof || !(elems->prof->control & prof_bss_param_ch_present)) { ret = false; goto out; } else { const u8 *ptr = elems->prof->variable + elems->prof->sta_info_len - 1; /* * During parsing, we validated that these fields exist, * otherwise elems->prof would have been set to NULL. */ capab_info = get_unaligned_le16(ptr); assoc_data->link[link_id].status = get_unaligned_le16(ptr + 2); link->u.mgd.bss_param_ch_cnt = ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(elems->prof); if (assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) { link_info(link, "association response status code=%u\n", assoc_data->link[link_id].status); ret = true; goto out; } } if (!is_s1g && !elems->supp_rates) { sdata_info(sdata, "no SuppRates element in AssocResp\n"); ret = false; goto out; } link->u.mgd.tdls_chan_switch_prohibited = elems->ext_capab && elems->ext_capab_len >= 5 && (elems->ext_capab[4] & WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED); /* * Some APs are erroneously not including some information in their * (re)association response frames. Try to recover by using the data * from the beacon or probe response. This seems to afflict mobile * 2G/3G/4G wifi routers, reported models include the "Onda PN51T", * "Vodafone PocketWiFi 2", "ZTE MF60" and a similar T-Mobile device. */ if (!is_6ghz && ((assoc_data->wmm && !elems->wmm_param) || (!(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HT) && (!elems->ht_cap_elem || !elems->ht_operation)) || (!(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_VHT) && (!elems->vht_cap_elem || !elems->vht_operation)))) { const struct cfg80211_bss_ies *ies; struct ieee802_11_elems *bss_elems; rcu_read_lock(); ies = rcu_dereference(cbss->ies); if (ies) bss_ies = kmemdup(ies, sizeof(*ies) + ies->len, GFP_ATOMIC); rcu_read_unlock(); if (!bss_ies) { ret = false; goto out; } parse_params.start = bss_ies->data; parse_params.len = bss_ies->len; parse_params.bss = cbss; bss_elems = ieee802_11_parse_elems_full(&parse_params); if (!bss_elems) { ret = false; goto out; } if (assoc_data->wmm && !elems->wmm_param && bss_elems->wmm_param) { elems->wmm_param = bss_elems->wmm_param; sdata_info(sdata, "AP bug: WMM param missing from AssocResp\n"); } /* * Also check if we requested HT/VHT, otherwise the AP doesn't * have to include the IEs in the (re)association response. */ if (!elems->ht_cap_elem && bss_elems->ht_cap_elem && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HT)) { elems->ht_cap_elem = bss_elems->ht_cap_elem; sdata_info(sdata, "AP bug: HT capability missing from AssocResp\n"); } if (!elems->ht_operation && bss_elems->ht_operation && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HT)) { elems->ht_operation = bss_elems->ht_operation; sdata_info(sdata, "AP bug: HT operation missing from AssocResp\n"); } if (!elems->vht_cap_elem && bss_elems->vht_cap_elem && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_VHT)) { elems->vht_cap_elem = bss_elems->vht_cap_elem; sdata_info(sdata, "AP bug: VHT capa missing from AssocResp\n"); } if (!elems->vht_operation && bss_elems->vht_operation && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_VHT)) { elems->vht_operation = bss_elems->vht_operation; sdata_info(sdata, "AP bug: VHT operation missing from AssocResp\n"); } kfree(bss_elems); } /* * We previously checked these in the beacon/probe response, so * they should be present here. This is just a safety net. */ if (!is_6ghz && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HT) && (!elems->wmm_param || !elems->ht_cap_elem || !elems->ht_operation)) { sdata_info(sdata, "HT AP is missing WMM params or HT capability/operation\n"); ret = false; goto out; } if (!is_6ghz && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_VHT) && (!elems->vht_cap_elem || !elems->vht_operation)) { sdata_info(sdata, "VHT AP is missing VHT capability/operation\n"); ret = false; goto out; } if (is_6ghz && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HE) && !elems->he_6ghz_capa) { sdata_info(sdata, "HE 6 GHz AP is missing HE 6 GHz band capability\n"); ret = false; goto out; } if (WARN_ON(!link->conf->chandef.chan)) { ret = false; goto out; } sband = local->hw.wiphy->bands[link->conf->chandef.chan->band]; if (!(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HE) && (!elems->he_cap || !elems->he_operation)) { sdata_info(sdata, "HE AP is missing HE capability/operation\n"); ret = false; goto out; } /* Set up internal HT/VHT capabilities */ if (elems->ht_cap_elem && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HT)) ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband, elems->ht_cap_elem, link_sta); if (elems->vht_cap_elem && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_VHT)) ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband, elems->vht_cap_elem, link_sta); if (elems->he_operation && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HE) && elems->he_cap) { ieee80211_he_cap_ie_to_sta_he_cap(sdata, sband, elems->he_cap, elems->he_cap_len, elems->he_6ghz_capa, link_sta); bss_conf->he_support = link_sta->pub->he_cap.has_he; if (elems->rsnx && elems->rsnx_len && (elems->rsnx[0] & WLAN_RSNX_CAPA_PROTECTED_TWT) && wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_PROTECTED_TWT)) bss_conf->twt_protected = true; else bss_conf->twt_protected = false; *changed |= ieee80211_recalc_twt_req(sdata, sband, link, link_sta, elems); if (elems->eht_operation && elems->eht_cap && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_EHT)) { ieee80211_eht_cap_ie_to_sta_eht_cap(sdata, sband, elems->he_cap, elems->he_cap_len, elems->eht_cap, elems->eht_cap_len, link_sta); bss_conf->eht_support = link_sta->pub->eht_cap.has_eht; *changed |= BSS_CHANGED_EHT_PUNCTURING; } else { bss_conf->eht_support = false; } } else { bss_conf->he_support = false; bss_conf->twt_requester = false; bss_conf->twt_protected = false; bss_conf->eht_support = false; } bss_conf->twt_broadcast = ieee80211_twt_bcast_support(sdata, bss_conf, sband, link_sta); if (bss_conf->he_support) { bss_conf->he_bss_color.color = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_BSS_COLOR_MASK); bss_conf->he_bss_color.partial = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR); bss_conf->he_bss_color.enabled = !le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); if (bss_conf->he_bss_color.enabled) *changed |= BSS_CHANGED_HE_BSS_COLOR; bss_conf->htc_trig_based_pkt_ext = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK); bss_conf->frame_time_rts_th = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); bss_conf->uora_exists = !!elems->uora_element; if (elems->uora_element) bss_conf->uora_ocw_range = elems->uora_element[0]; ieee80211_he_op_ie_to_bss_conf(&sdata->vif, elems->he_operation); ieee80211_he_spr_ie_to_bss_conf(&sdata->vif, elems->he_spr); /* TODO: OPEN: what happens if BSS color disable is set? */ } if (cbss->transmitted_bss) { bss_conf->nontransmitted = true; ether_addr_copy(bss_conf->transmitter_bssid, cbss->transmitted_bss->bssid); bss_conf->bssid_indicator = cbss->max_bssid_indicator; bss_conf->bssid_index = cbss->bssid_index; } /* * Some APs, e.g. Netgear WNDR3700, report invalid HT operation data * in their association response, so ignore that data for our own * configuration. If it changed since the last beacon, we'll get the * next beacon and update then. */ /* * If an operating mode notification IE is present, override the * NSS calculation (that would be done in rate_control_rate_init()) * and use the # of streams from that element. */ if (elems->opmode_notif && !(*elems->opmode_notif & IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF)) { u8 nss; nss = *elems->opmode_notif & IEEE80211_OPMODE_NOTIF_RX_NSS_MASK; nss >>= IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT; nss += 1; link_sta->pub->rx_nss = nss; } /* * Always handle WMM once after association regardless * of the first value the AP uses. Setting -1 here has * that effect because the AP values is an unsigned * 4-bit value. */ link->u.mgd.wmm_last_param_set = -1; link->u.mgd.mu_edca_last_param_set = -1; if (link->u.mgd.disable_wmm_tracking) { ieee80211_set_wmm_default(link, false, false); } else if (!ieee80211_sta_wmm_params(local, link, elems->wmm_param, elems->wmm_param_len, elems->mu_edca_param_set)) { /* still enable QoS since we might have HT/VHT */ ieee80211_set_wmm_default(link, false, true); /* disable WMM tracking in this case to disable * tracking WMM parameter changes in the beacon if * the parameters weren't actually valid. Doing so * avoids changing parameters very strangely when * the AP is going back and forth between valid and * invalid parameters. */ link->u.mgd.disable_wmm_tracking = true; } if (elems->max_idle_period_ie) { bss_conf->max_idle_period = le16_to_cpu(elems->max_idle_period_ie->max_idle_period); bss_conf->protected_keep_alive = !!(elems->max_idle_period_ie->idle_options & WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE); *changed |= BSS_CHANGED_KEEP_ALIVE; } else { bss_conf->max_idle_period = 0; bss_conf->protected_keep_alive = false; } /* set assoc capability (AID was already set earlier), * ieee80211_set_associated() will tell the driver */ bss_conf->assoc_capability = capab_info; ret = true; out: kfree(elems); kfree(bss_ies); return ret; } static int ieee80211_mgd_setup_link_sta(struct ieee80211_link_data *link, struct sta_info *sta, struct link_sta_info *link_sta, struct cfg80211_bss *cbss) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_bss *bss = (void *)cbss->priv; u32 rates = 0, basic_rates = 0; bool have_higher_than_11mbit = false; int min_rate = INT_MAX, min_rate_index = -1; /* this is clearly wrong for MLO but we'll just remove it later */ int shift = ieee80211_vif_get_shift(&sdata->vif); struct ieee80211_supported_band *sband; memcpy(link_sta->addr, cbss->bssid, ETH_ALEN); memcpy(link_sta->pub->addr, cbss->bssid, ETH_ALEN); /* TODO: S1G Basic Rate Set is expressed elsewhere */ if (cbss->channel->band == NL80211_BAND_S1GHZ) { ieee80211_s1g_sta_rate_init(sta); return 0; } sband = local->hw.wiphy->bands[cbss->channel->band]; ieee80211_get_rates(sband, bss->supp_rates, bss->supp_rates_len, &rates, &basic_rates, &have_higher_than_11mbit, &min_rate, &min_rate_index, shift); /* * This used to be a workaround for basic rates missing * in the association response frame. Now that we no * longer use the basic rates from there, it probably * doesn't happen any more, but keep the workaround so * in case some *other* APs are buggy in different ways * we can connect -- with a warning. * Allow this workaround only in case the AP provided at least * one rate. */ if (min_rate_index < 0) { link_info(link, "No legacy rates in association response\n"); return -EINVAL; } else if (!basic_rates) { link_info(link, "No basic rates, using min rate instead\n"); basic_rates = BIT(min_rate_index); } if (rates) link_sta->pub->supp_rates[cbss->channel->band] = rates; else link_info(link, "No rates found, keeping mandatory only\n"); link->conf->basic_rates = basic_rates; /* cf. IEEE 802.11 9.2.12 */ link->operating_11g_mode = sband->band == NL80211_BAND_2GHZ && have_higher_than_11mbit; return 0; } static u8 ieee80211_max_rx_chains(struct ieee80211_link_data *link, struct cfg80211_bss *cbss) { struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp; const struct element *ht_cap_elem, *vht_cap_elem; const struct cfg80211_bss_ies *ies; const struct ieee80211_ht_cap *ht_cap; const struct ieee80211_vht_cap *vht_cap; const struct ieee80211_he_cap_elem *he_cap; const struct element *he_cap_elem; u16 mcs_80_map, mcs_160_map; int i, mcs_nss_size; bool support_160; u8 chains = 1; if (link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HT) return chains; ht_cap_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_HT_CAPABILITY); if (ht_cap_elem && ht_cap_elem->datalen >= sizeof(*ht_cap)) { ht_cap = (void *)ht_cap_elem->data; chains = ieee80211_mcs_to_chains(&ht_cap->mcs); /* * TODO: use "Tx Maximum Number Spatial Streams Supported" and * "Tx Unequal Modulation Supported" fields. */ } if (link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_VHT) return chains; vht_cap_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_VHT_CAPABILITY); if (vht_cap_elem && vht_cap_elem->datalen >= sizeof(*vht_cap)) { u8 nss; u16 tx_mcs_map; vht_cap = (void *)vht_cap_elem->data; tx_mcs_map = le16_to_cpu(vht_cap->supp_mcs.tx_mcs_map); for (nss = 8; nss > 0; nss--) { if (((tx_mcs_map >> (2 * (nss - 1))) & 3) != IEEE80211_VHT_MCS_NOT_SUPPORTED) break; } /* TODO: use "Tx Highest Supported Long GI Data Rate" field? */ chains = max(chains, nss); } if (link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_HE) return chains; ies = rcu_dereference(cbss->ies); he_cap_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ies->data, ies->len); if (!he_cap_elem || he_cap_elem->datalen < sizeof(*he_cap)) return chains; /* skip one byte ext_tag_id */ he_cap = (void *)(he_cap_elem->data + 1); mcs_nss_size = ieee80211_he_mcs_nss_size(he_cap); /* invalid HE IE */ if (he_cap_elem->datalen < 1 + mcs_nss_size + sizeof(*he_cap)) return chains; /* mcs_nss is right after he_cap info */ he_mcs_nss_supp = (void *)(he_cap + 1); mcs_80_map = le16_to_cpu(he_mcs_nss_supp->tx_mcs_80); for (i = 7; i >= 0; i--) { u8 mcs_80 = mcs_80_map >> (2 * i) & 3; if (mcs_80 != IEEE80211_VHT_MCS_NOT_SUPPORTED) { chains = max_t(u8, chains, i + 1); break; } } support_160 = he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; if (!support_160) return chains; mcs_160_map = le16_to_cpu(he_mcs_nss_supp->tx_mcs_160); for (i = 7; i >= 0; i--) { u8 mcs_160 = mcs_160_map >> (2 * i) & 3; if (mcs_160 != IEEE80211_VHT_MCS_NOT_SUPPORTED) { chains = max_t(u8, chains, i + 1); break; } } return chains; } static bool ieee80211_verify_peer_he_mcs_support(struct ieee80211_sub_if_data *sdata, const struct cfg80211_bss_ies *ies, const struct ieee80211_he_operation *he_op) { const struct element *he_cap_elem; const struct ieee80211_he_cap_elem *he_cap; struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp; u16 mcs_80_map_tx, mcs_80_map_rx; u16 ap_min_req_set; int mcs_nss_size; int nss; he_cap_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ies->data, ies->len); if (!he_cap_elem) return false; /* invalid HE IE */ if (he_cap_elem->datalen < 1 + sizeof(*he_cap)) { sdata_info(sdata, "Invalid HE elem, Disable HE\n"); return false; } /* skip one byte ext_tag_id */ he_cap = (void *)(he_cap_elem->data + 1); mcs_nss_size = ieee80211_he_mcs_nss_size(he_cap); /* invalid HE IE */ if (he_cap_elem->datalen < 1 + sizeof(*he_cap) + mcs_nss_size) { sdata_info(sdata, "Invalid HE elem with nss size, Disable HE\n"); return false; } /* mcs_nss is right after he_cap info */ he_mcs_nss_supp = (void *)(he_cap + 1); mcs_80_map_tx = le16_to_cpu(he_mcs_nss_supp->tx_mcs_80); mcs_80_map_rx = le16_to_cpu(he_mcs_nss_supp->rx_mcs_80); /* P802.11-REVme/D0.3 * 27.1.1 Introduction to the HE PHY * ... * An HE STA shall support the following features: * ... * Single spatial stream HE-MCSs 0 to 7 (transmit and receive) in all * supported channel widths for HE SU PPDUs */ if ((mcs_80_map_tx & 0x3) == IEEE80211_HE_MCS_NOT_SUPPORTED || (mcs_80_map_rx & 0x3) == IEEE80211_HE_MCS_NOT_SUPPORTED) { sdata_info(sdata, "Missing mandatory rates for 1 Nss, rx 0x%x, tx 0x%x, disable HE\n", mcs_80_map_tx, mcs_80_map_rx); return false; } if (!he_op) return true; ap_min_req_set = le16_to_cpu(he_op->he_mcs_nss_set); /* * Apparently iPhone 13 (at least iOS version 15.3.1) sets this to all * zeroes, which is nonsense, and completely inconsistent with itself * (it doesn't have 8 streams). Accept the settings in this case anyway. */ if (!ap_min_req_set) return true; /* make sure the AP is consistent with itself * * P802.11-REVme/D0.3 * 26.17.1 Basic HE BSS operation * * A STA that is operating in an HE BSS shall be able to receive and * transmit at each of the <HE-MCS, NSS> tuple values indicated by the * Basic HE-MCS And NSS Set field of the HE Operation parameter of the * MLME-START.request primitive and shall be able to receive at each of * the <HE-MCS, NSS> tuple values indicated by the Supported HE-MCS and * NSS Set field in the HE Capabilities parameter of the MLMESTART.request * primitive */ for (nss = 8; nss > 0; nss--) { u8 ap_op_val = (ap_min_req_set >> (2 * (nss - 1))) & 3; u8 ap_rx_val; u8 ap_tx_val; if (ap_op_val == IEEE80211_HE_MCS_NOT_SUPPORTED) continue; ap_rx_val = (mcs_80_map_rx >> (2 * (nss - 1))) & 3; ap_tx_val = (mcs_80_map_tx >> (2 * (nss - 1))) & 3; if (ap_rx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || ap_tx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || ap_rx_val < ap_op_val || ap_tx_val < ap_op_val) { sdata_info(sdata, "Invalid rates for %d Nss, rx %d, tx %d oper %d, disable HE\n", nss, ap_rx_val, ap_rx_val, ap_op_val); return false; } } return true; } static bool ieee80211_verify_sta_he_mcs_support(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_he_operation *he_op) { const struct ieee80211_sta_he_cap *sta_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); u16 ap_min_req_set; int i; if (!sta_he_cap || !he_op) return false; ap_min_req_set = le16_to_cpu(he_op->he_mcs_nss_set); /* * Apparently iPhone 13 (at least iOS version 15.3.1) sets this to all * zeroes, which is nonsense, and completely inconsistent with itself * (it doesn't have 8 streams). Accept the settings in this case anyway. */ if (!ap_min_req_set) return true; /* Need to go over for 80MHz, 160MHz and for 80+80 */ for (i = 0; i < 3; i++) { const struct ieee80211_he_mcs_nss_supp *sta_mcs_nss_supp = &sta_he_cap->he_mcs_nss_supp; u16 sta_mcs_map_rx = le16_to_cpu(((__le16 *)sta_mcs_nss_supp)[2 * i]); u16 sta_mcs_map_tx = le16_to_cpu(((__le16 *)sta_mcs_nss_supp)[2 * i + 1]); u8 nss; bool verified = true; /* * For each band there is a maximum of 8 spatial streams * possible. Each of the sta_mcs_map_* is a 16-bit struct built * of 2 bits per NSS (1-8), with the values defined in enum * ieee80211_he_mcs_support. Need to make sure STA TX and RX * capabilities aren't less than the AP's minimum requirements * for this HE BSS per SS. * It is enough to find one such band that meets the reqs. */ for (nss = 8; nss > 0; nss--) { u8 sta_rx_val = (sta_mcs_map_rx >> (2 * (nss - 1))) & 3; u8 sta_tx_val = (sta_mcs_map_tx >> (2 * (nss - 1))) & 3; u8 ap_val = (ap_min_req_set >> (2 * (nss - 1))) & 3; if (ap_val == IEEE80211_HE_MCS_NOT_SUPPORTED) continue; /* * Make sure the HE AP doesn't require MCSs that aren't * supported by the client as required by spec * * P802.11-REVme/D0.3 * 26.17.1 Basic HE BSS operation * * An HE STA shall not attempt to join * (MLME-JOIN.request primitive) * a BSS, unless it supports (i.e., is able to both transmit and * receive using) all of the <HE-MCS, NSS> tuples in the basic * HE-MCS and NSS set. */ if (sta_rx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || sta_tx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || (ap_val > sta_rx_val) || (ap_val > sta_tx_val)) { verified = false; break; } } if (verified) return true; } /* If here, STA doesn't meet AP's HE min requirements */ return false; } static u8 ieee80211_get_eht_cap_mcs_nss(const struct ieee80211_sta_he_cap *sta_he_cap, const struct ieee80211_sta_eht_cap *sta_eht_cap, unsigned int idx, int bw) { u8 he_phy_cap0 = sta_he_cap->he_cap_elem.phy_cap_info[0]; u8 eht_phy_cap0 = sta_eht_cap->eht_cap_elem.phy_cap_info[0]; /* handle us being a 20 MHz-only EHT STA - with four values * for MCS 0-7, 8-9, 10-11, 12-13. */ if (!(he_phy_cap0 & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL)) return sta_eht_cap->eht_mcs_nss_supp.only_20mhz.rx_tx_max_nss[idx]; /* the others have MCS 0-9 together, rather than separately from 0-7 */ if (idx > 0) idx--; switch (bw) { case 0: return sta_eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_max_nss[idx]; case 1: if (!(he_phy_cap0 & (IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G))) return 0xff; /* pass check */ return sta_eht_cap->eht_mcs_nss_supp.bw._160.rx_tx_max_nss[idx]; case 2: if (!(eht_phy_cap0 & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)) return 0xff; /* pass check */ return sta_eht_cap->eht_mcs_nss_supp.bw._320.rx_tx_max_nss[idx]; } WARN_ON(1); return 0; } static bool ieee80211_verify_sta_eht_mcs_support(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_eht_operation *eht_op) { const struct ieee80211_sta_he_cap *sta_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); const struct ieee80211_sta_eht_cap *sta_eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); const struct ieee80211_eht_mcs_nss_supp_20mhz_only *req; unsigned int i; if (!sta_he_cap || !sta_eht_cap || !eht_op) return false; req = &eht_op->basic_mcs_nss; for (i = 0; i < ARRAY_SIZE(req->rx_tx_max_nss); i++) { u8 req_rx_nss, req_tx_nss; unsigned int bw; req_rx_nss = u8_get_bits(req->rx_tx_max_nss[i], IEEE80211_EHT_MCS_NSS_RX); req_tx_nss = u8_get_bits(req->rx_tx_max_nss[i], IEEE80211_EHT_MCS_NSS_TX); for (bw = 0; bw < 3; bw++) { u8 have, have_rx_nss, have_tx_nss; have = ieee80211_get_eht_cap_mcs_nss(sta_he_cap, sta_eht_cap, i, bw); have_rx_nss = u8_get_bits(have, IEEE80211_EHT_MCS_NSS_RX); have_tx_nss = u8_get_bits(have, IEEE80211_EHT_MCS_NSS_TX); if (req_rx_nss > have_rx_nss || req_tx_nss > have_tx_nss) return false; } } return true; } static int ieee80211_prep_channel(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct cfg80211_bss *cbss, ieee80211_conn_flags_t *conn_flags) { struct ieee80211_local *local = sdata->local; const struct ieee80211_ht_cap *ht_cap = NULL; const struct ieee80211_ht_operation *ht_oper = NULL; const struct ieee80211_vht_operation *vht_oper = NULL; const struct ieee80211_he_operation *he_oper = NULL; const struct ieee80211_eht_operation *eht_oper = NULL; const struct ieee80211_s1g_oper_ie *s1g_oper = NULL; struct ieee80211_supported_band *sband; struct cfg80211_chan_def chandef; bool is_6ghz = cbss->channel->band == NL80211_BAND_6GHZ; bool is_5ghz = cbss->channel->band == NL80211_BAND_5GHZ; struct ieee80211_bss *bss = (void *)cbss->priv; struct ieee80211_elems_parse_params parse_params = { .link_id = -1, .from_ap = true, }; struct ieee802_11_elems *elems; const struct cfg80211_bss_ies *ies; int ret; u32 i; bool have_80mhz; rcu_read_lock(); ies = rcu_dereference(cbss->ies); parse_params.start = ies->data; parse_params.len = ies->len; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) { rcu_read_unlock(); return -ENOMEM; } sband = local->hw.wiphy->bands[cbss->channel->band]; *conn_flags &= ~(IEEE80211_CONN_DISABLE_40MHZ | IEEE80211_CONN_DISABLE_80P80MHZ | IEEE80211_CONN_DISABLE_160MHZ); /* disable HT/VHT/HE if we don't support them */ if (!sband->ht_cap.ht_supported && !is_6ghz) { mlme_dbg(sdata, "HT not supported, disabling HT/VHT/HE/EHT\n"); *conn_flags |= IEEE80211_CONN_DISABLE_HT; *conn_flags |= IEEE80211_CONN_DISABLE_VHT; *conn_flags |= IEEE80211_CONN_DISABLE_HE; *conn_flags |= IEEE80211_CONN_DISABLE_EHT; } if (!sband->vht_cap.vht_supported && is_5ghz) { mlme_dbg(sdata, "VHT not supported, disabling VHT/HE/EHT\n"); *conn_flags |= IEEE80211_CONN_DISABLE_VHT; *conn_flags |= IEEE80211_CONN_DISABLE_HE; *conn_flags |= IEEE80211_CONN_DISABLE_EHT; } if (!ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif)) { mlme_dbg(sdata, "HE not supported, disabling HE and EHT\n"); *conn_flags |= IEEE80211_CONN_DISABLE_HE; *conn_flags |= IEEE80211_CONN_DISABLE_EHT; } if (!ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif)) { mlme_dbg(sdata, "EHT not supported, disabling EHT\n"); *conn_flags |= IEEE80211_CONN_DISABLE_EHT; } if (!(*conn_flags & IEEE80211_CONN_DISABLE_HT) && !is_6ghz) { ht_oper = elems->ht_operation; ht_cap = elems->ht_cap_elem; if (!ht_cap) { *conn_flags |= IEEE80211_CONN_DISABLE_HT; ht_oper = NULL; } } if (!(*conn_flags & IEEE80211_CONN_DISABLE_VHT) && !is_6ghz) { vht_oper = elems->vht_operation; if (vht_oper && !ht_oper) { vht_oper = NULL; sdata_info(sdata, "AP advertised VHT without HT, disabling HT/VHT/HE\n"); *conn_flags |= IEEE80211_CONN_DISABLE_HT; *conn_flags |= IEEE80211_CONN_DISABLE_VHT; *conn_flags |= IEEE80211_CONN_DISABLE_HE; *conn_flags |= IEEE80211_CONN_DISABLE_EHT; } if (!elems->vht_cap_elem) { *conn_flags |= IEEE80211_CONN_DISABLE_VHT; vht_oper = NULL; } } if (!(*conn_flags & IEEE80211_CONN_DISABLE_HE)) { he_oper = elems->he_operation; if (link && is_6ghz) { struct ieee80211_bss_conf *bss_conf; u8 j = 0; bss_conf = link->conf; if (elems->pwr_constr_elem) bss_conf->pwr_reduction = *elems->pwr_constr_elem; BUILD_BUG_ON(ARRAY_SIZE(bss_conf->tx_pwr_env) != ARRAY_SIZE(elems->tx_pwr_env)); for (i = 0; i < elems->tx_pwr_env_num; i++) { if (elems->tx_pwr_env_len[i] > sizeof(bss_conf->tx_pwr_env[j])) continue; bss_conf->tx_pwr_env_num++; memcpy(&bss_conf->tx_pwr_env[j], elems->tx_pwr_env[i], elems->tx_pwr_env_len[i]); j++; } } if (!ieee80211_verify_peer_he_mcs_support(sdata, ies, he_oper) || !ieee80211_verify_sta_he_mcs_support(sdata, sband, he_oper)) *conn_flags |= IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT; } /* * EHT requires HE to be supported as well. Specifically for 6 GHz * channels, the operation channel information can only be deduced from * both the 6 GHz operation information (from the HE operation IE) and * EHT operation. */ if (!(*conn_flags & (IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT)) && he_oper) { const struct cfg80211_bss_ies *cbss_ies; const struct element *eht_ml_elem; const u8 *eht_oper_ie; cbss_ies = rcu_dereference(cbss->ies); eht_oper_ie = cfg80211_find_ext_ie(WLAN_EID_EXT_EHT_OPERATION, cbss_ies->data, cbss_ies->len); if (eht_oper_ie && eht_oper_ie[1] >= 1 + sizeof(struct ieee80211_eht_operation)) eht_oper = (void *)(eht_oper_ie + 3); else eht_oper = NULL; if (!ieee80211_verify_sta_eht_mcs_support(sdata, sband, eht_oper)) *conn_flags |= IEEE80211_CONN_DISABLE_EHT; eht_ml_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK, cbss_ies->data, cbss_ies->len); /* data + 1 / datalen - 1 since it's an extended element */ if (!(*conn_flags & IEEE80211_CONN_DISABLE_EHT) && eht_ml_elem && ieee80211_mle_type_ok(eht_ml_elem->data + 1, IEEE80211_ML_CONTROL_TYPE_BASIC, eht_ml_elem->datalen - 1)) { sdata->vif.cfg.eml_cap = ieee80211_mle_get_eml_cap(eht_ml_elem->data + 1); sdata->vif.cfg.eml_med_sync_delay = ieee80211_mle_get_eml_med_sync_delay(eht_ml_elem->data + 1); } } /* Allow VHT if at least one channel on the sband supports 80 MHz */ have_80mhz = false; for (i = 0; i < sband->n_channels; i++) { if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_NO_80MHZ)) continue; have_80mhz = true; break; } if (!have_80mhz) { sdata_info(sdata, "80 MHz not supported, disabling VHT\n"); *conn_flags |= IEEE80211_CONN_DISABLE_VHT; } if (sband->band == NL80211_BAND_S1GHZ) { s1g_oper = elems->s1g_oper; if (!s1g_oper) sdata_info(sdata, "AP missing S1G operation element?\n"); } *conn_flags |= ieee80211_determine_chantype(sdata, link, *conn_flags, sband, cbss->channel, bss->vht_cap_info, ht_oper, vht_oper, he_oper, eht_oper, s1g_oper, &chandef, false); if (link) link->needed_rx_chains = min(ieee80211_max_rx_chains(link, cbss), local->rx_chains); rcu_read_unlock(); /* the element data was RCU protected so no longer valid anyway */ kfree(elems); elems = NULL; if (*conn_flags & IEEE80211_CONN_DISABLE_HE && is_6ghz) { sdata_info(sdata, "Rejecting non-HE 6/7 GHz connection"); return -EINVAL; } if (!link) return 0; /* will change later if needed */ link->smps_mode = IEEE80211_SMPS_OFF; mutex_lock(&local->mtx); /* * If this fails (possibly due to channel context sharing * on incompatible channels, e.g. 80+80 and 160 sharing the * same control channel) try to use a smaller bandwidth. */ ret = ieee80211_link_use_channel(link, &chandef, IEEE80211_CHANCTX_SHARED); /* don't downgrade for 5 and 10 MHz channels, though. */ if (chandef.width == NL80211_CHAN_WIDTH_5 || chandef.width == NL80211_CHAN_WIDTH_10) goto out; while (ret && chandef.width != NL80211_CHAN_WIDTH_20_NOHT) { *conn_flags |= ieee80211_chandef_downgrade(&chandef); ret = ieee80211_link_use_channel(link, &chandef, IEEE80211_CHANCTX_SHARED); } out: mutex_unlock(&local->mtx); return ret; } static bool ieee80211_get_dtim(const struct cfg80211_bss_ies *ies, u8 *dtim_count, u8 *dtim_period) { const u8 *tim_ie = cfg80211_find_ie(WLAN_EID_TIM, ies->data, ies->len); const u8 *idx_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, ies->data, ies->len); const struct ieee80211_tim_ie *tim = NULL; const struct ieee80211_bssid_index *idx; bool valid = tim_ie && tim_ie[1] >= 2; if (valid) tim = (void *)(tim_ie + 2); if (dtim_count) *dtim_count = valid ? tim->dtim_count : 0; if (dtim_period) *dtim_period = valid ? tim->dtim_period : 0; /* Check if value is overridden by non-transmitted profile */ if (!idx_ie || idx_ie[1] < 3) return valid; idx = (void *)(idx_ie + 2); if (dtim_count) *dtim_count = idx->dtim_count; if (dtim_period) *dtim_period = idx->dtim_period; return true; } static bool ieee80211_assoc_success(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, struct ieee802_11_elems *elems, const u8 *elem_start, unsigned int elem_len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; struct ieee80211_local *local = sdata->local; unsigned int link_id; struct sta_info *sta; u64 changed[IEEE80211_MLD_MAX_NUM_LINKS] = {}; u16 valid_links = 0, dormant_links = 0; int err; mutex_lock(&sdata->local->sta_mtx); /* * station info was already allocated and inserted before * the association and should be available to us */ sta = sta_info_get(sdata, assoc_data->ap_addr); if (WARN_ON(!sta)) goto out_err; if (ieee80211_vif_is_mld(&sdata->vif)) { for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!assoc_data->link[link_id].bss) continue; valid_links |= BIT(link_id); if (assoc_data->link[link_id].disabled) { dormant_links |= BIT(link_id); } else if (link_id != assoc_data->assoc_link_id) { err = ieee80211_sta_allocate_link(sta, link_id); if (err) goto out_err; } } ieee80211_vif_set_links(sdata, valid_links, dormant_links); } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; struct ieee80211_link_data *link; struct link_sta_info *link_sta; if (!cbss || assoc_data->link[link_id].disabled) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) goto out_err; if (ieee80211_vif_is_mld(&sdata->vif)) link_info(link, "local address %pM, AP link address %pM%s\n", link->conf->addr, assoc_data->link[link_id].bss->bssid, link_id == assoc_data->assoc_link_id ? " (assoc)" : ""); link_sta = rcu_dereference_protected(sta->link[link_id], lockdep_is_held(&local->sta_mtx)); if (WARN_ON(!link_sta)) goto out_err; if (!link->u.mgd.have_beacon) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); ies = rcu_dereference(cbss->beacon_ies); if (ies) link->u.mgd.have_beacon = true; else ies = rcu_dereference(cbss->ies); ieee80211_get_dtim(ies, &link->conf->sync_dtim_count, &link->u.mgd.dtim_period); link->conf->beacon_int = cbss->beacon_interval; rcu_read_unlock(); } link->conf->dtim_period = link->u.mgd.dtim_period ?: 1; if (link_id != assoc_data->assoc_link_id) { err = ieee80211_prep_channel(sdata, link, cbss, &link->u.mgd.conn_flags); if (err) { link_info(link, "prep_channel failed\n"); goto out_err; } } err = ieee80211_mgd_setup_link_sta(link, sta, link_sta, assoc_data->link[link_id].bss); if (err) goto out_err; if (!ieee80211_assoc_config_link(link, link_sta, assoc_data->link[link_id].bss, mgmt, elem_start, elem_len, &changed[link_id])) goto out_err; if (assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) { valid_links &= ~BIT(link_id); ieee80211_sta_remove_link(sta, link_id); continue; } if (link_id != assoc_data->assoc_link_id) { err = ieee80211_sta_activate_link(sta, link_id); if (err) goto out_err; } } /* links might have changed due to rejected ones, set them again */ ieee80211_vif_set_links(sdata, valid_links, dormant_links); rate_control_rate_init(sta); if (ifmgd->flags & IEEE80211_STA_MFP_ENABLED) { set_sta_flag(sta, WLAN_STA_MFP); sta->sta.mfp = true; } else { sta->sta.mfp = false; } ieee80211_sta_set_max_amsdu_subframes(sta, elems->ext_capab, elems->ext_capab_len); sta->sta.wme = (elems->wmm_param || elems->s1g_capab) && local->hw.queues >= IEEE80211_NUM_ACS; err = sta_info_move_state(sta, IEEE80211_STA_ASSOC); if (!err && !(ifmgd->flags & IEEE80211_STA_CONTROL_PORT)) err = sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED); if (err) { sdata_info(sdata, "failed to move station %pM to desired state\n", sta->sta.addr); WARN_ON(__sta_info_destroy(sta)); goto out_err; } if (sdata->wdev.use_4addr) drv_sta_set_4addr(local, sdata, &sta->sta, true); mutex_unlock(&sdata->local->sta_mtx); ieee80211_set_associated(sdata, assoc_data, changed); /* * If we're using 4-addr mode, let the AP know that we're * doing so, so that it can create the STA VLAN on its side */ if (ifmgd->use_4addr) ieee80211_send_4addr_nullfunc(local, sdata); /* * Start timer to probe the connection to the AP now. * Also start the timer that will detect beacon loss. */ ieee80211_sta_reset_beacon_monitor(sdata); ieee80211_sta_reset_conn_monitor(sdata); return true; out_err: eth_zero_addr(sdata->vif.cfg.ap_addr); mutex_unlock(&sdata->local->sta_mtx); return false; } static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; u16 capab_info, status_code, aid; struct ieee80211_elems_parse_params parse_params = { .bss = NULL, .link_id = -1, .from_ap = true, }; struct ieee802_11_elems *elems; int ac; const u8 *elem_start; unsigned int elem_len; bool reassoc; struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = ASSOC_EVENT, }; struct ieee80211_prep_tx_info info = {}; struct cfg80211_rx_assoc_resp resp = { .uapsd_queues = -1, }; u8 ap_mld_addr[ETH_ALEN] __aligned(2); unsigned int link_id; sdata_assert_lock(sdata); if (!assoc_data) return; if (!ether_addr_equal(assoc_data->ap_addr, mgmt->bssid) || !ether_addr_equal(assoc_data->ap_addr, mgmt->sa)) return; /* * AssocResp and ReassocResp have identical structure, so process both * of them in this function. */ if (len < 24 + 6) return; reassoc = ieee80211_is_reassoc_resp(mgmt->frame_control); capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info); status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code); if (assoc_data->s1g) elem_start = mgmt->u.s1g_assoc_resp.variable; else elem_start = mgmt->u.assoc_resp.variable; /* * Note: this may not be perfect, AP might misbehave - if * anyone needs to rely on perfect complete notification * with the exact right subtype, then we need to track what * we actually transmitted. */ info.subtype = reassoc ? IEEE80211_STYPE_REASSOC_REQ : IEEE80211_STYPE_ASSOC_REQ; if (assoc_data->fils_kek_len && fils_decrypt_assoc_resp(sdata, (u8 *)mgmt, &len, assoc_data) < 0) return; elem_len = len - (elem_start - (u8 *)mgmt); parse_params.start = elem_start; parse_params.len = elem_len; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) goto notify_driver; if (elems->aid_resp) aid = le16_to_cpu(elems->aid_resp->aid); else if (assoc_data->s1g) aid = 0; /* TODO */ else aid = le16_to_cpu(mgmt->u.assoc_resp.aid); /* * The 5 MSB of the AID field are reserved * (802.11-2016 9.4.1.8 AID field) */ aid &= 0x7ff; sdata_info(sdata, "RX %sssocResp from %pM (capab=0x%x status=%d aid=%d)\n", reassoc ? "Rea" : "A", assoc_data->ap_addr, capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14)))); ifmgd->broken_ap = false; if (status_code == WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY && elems->timeout_int && elems->timeout_int->type == WLAN_TIMEOUT_ASSOC_COMEBACK) { u32 tu, ms; cfg80211_assoc_comeback(sdata->dev, assoc_data->ap_addr, le32_to_cpu(elems->timeout_int->value)); tu = le32_to_cpu(elems->timeout_int->value); ms = tu * 1024 / 1000; sdata_info(sdata, "%pM rejected association temporarily; comeback duration %u TU (%u ms)\n", assoc_data->ap_addr, tu, ms); assoc_data->timeout = jiffies + msecs_to_jiffies(ms); assoc_data->timeout_started = true; if (ms > IEEE80211_ASSOC_TIMEOUT) run_again(sdata, assoc_data->timeout); goto notify_driver; } if (status_code != WLAN_STATUS_SUCCESS) { sdata_info(sdata, "%pM denied association (code=%d)\n", assoc_data->ap_addr, status_code); event.u.mlme.status = MLME_DENIED; event.u.mlme.reason = status_code; drv_event_callback(sdata->local, sdata, &event); } else { if (aid == 0 || aid > IEEE80211_MAX_AID) { sdata_info(sdata, "invalid AID value %d (out of range), turn off PS\n", aid); aid = 0; ifmgd->broken_ap = true; } if (ieee80211_vif_is_mld(&sdata->vif)) { if (!elems->ml_basic) { sdata_info(sdata, "MLO association with %pM but no multi-link element in response!\n", assoc_data->ap_addr); goto abandon_assoc; } if (le16_get_bits(elems->ml_basic->control, IEEE80211_ML_CONTROL_TYPE) != IEEE80211_ML_CONTROL_TYPE_BASIC) { sdata_info(sdata, "bad multi-link element (control=0x%x)\n", le16_to_cpu(elems->ml_basic->control)); goto abandon_assoc; } else { struct ieee80211_mle_basic_common_info *common; common = (void *)elems->ml_basic->variable; if (memcmp(assoc_data->ap_addr, common->mld_mac_addr, ETH_ALEN)) { sdata_info(sdata, "AP MLD MAC address mismatch: got %pM expected %pM\n", common->mld_mac_addr, assoc_data->ap_addr); goto abandon_assoc; } } } sdata->vif.cfg.aid = aid; if (!ieee80211_assoc_success(sdata, mgmt, elems, elem_start, elem_len)) { /* oops -- internal error -- send timeout for now */ ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT); goto notify_driver; } event.u.mlme.status = MLME_SUCCESS; drv_event_callback(sdata->local, sdata, &event); sdata_info(sdata, "associated\n"); info.success = 1; } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee80211_link_data *link; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; if (!assoc_data->link[link_id].bss) continue; resp.links[link_id].bss = assoc_data->link[link_id].bss; resp.links[link_id].addr = link->conf->addr; resp.links[link_id].status = assoc_data->link[link_id].status; /* get uapsd queues configuration - same for all links */ resp.uapsd_queues = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) if (link->tx_conf[ac].uapsd) resp.uapsd_queues |= ieee80211_ac_to_qos_mask[ac]; } if (ieee80211_vif_is_mld(&sdata->vif)) { ether_addr_copy(ap_mld_addr, sdata->vif.cfg.ap_addr); resp.ap_mld_addr = ap_mld_addr; } ieee80211_destroy_assoc_data(sdata, status_code == WLAN_STATUS_SUCCESS ? ASSOC_SUCCESS : ASSOC_REJECTED); resp.buf = (u8 *)mgmt; resp.len = len; resp.req_ies = ifmgd->assoc_req_ies; resp.req_ies_len = ifmgd->assoc_req_ies_len; cfg80211_rx_assoc_resp(sdata->dev, &resp); notify_driver: drv_mgd_complete_tx(sdata->local, sdata, &info); kfree(elems); return; abandon_assoc: ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); goto notify_driver; } static void ieee80211_rx_bss_info(struct ieee80211_link_data *link, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_bss *bss; struct ieee80211_channel *channel; sdata_assert_lock(sdata); channel = ieee80211_get_channel_khz(local->hw.wiphy, ieee80211_rx_status_to_khz(rx_status)); if (!channel) return; bss = ieee80211_bss_info_update(local, rx_status, mgmt, len, channel); if (bss) { link->conf->beacon_rate = bss->beacon_rate; ieee80211_rx_bss_put(local, bss); } } static void ieee80211_rx_mgmt_probe_resp(struct ieee80211_link_data *link, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_mgmt *mgmt = (void *)skb->data; struct ieee80211_if_managed *ifmgd; struct ieee80211_rx_status *rx_status = (void *) skb->cb; struct ieee80211_channel *channel; size_t baselen, len = skb->len; ifmgd = &sdata->u.mgd; sdata_assert_lock(sdata); /* * According to Draft P802.11ax D6.0 clause 26.17.2.3.2: * "If a 6 GHz AP receives a Probe Request frame and responds with * a Probe Response frame [..], the Address 1 field of the Probe * Response frame shall be set to the broadcast address [..]" * So, on 6GHz band we should also accept broadcast responses. */ channel = ieee80211_get_channel(sdata->local->hw.wiphy, rx_status->freq); if (!channel) return; if (!ether_addr_equal(mgmt->da, sdata->vif.addr) && (channel->band != NL80211_BAND_6GHZ || !is_broadcast_ether_addr(mgmt->da))) return; /* ignore ProbeResp to foreign address */ baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt; if (baselen > len) return; ieee80211_rx_bss_info(link, mgmt, len, rx_status); if (ifmgd->associated && ether_addr_equal(mgmt->bssid, link->u.mgd.bssid)) ieee80211_reset_ap_probe(sdata); } /* * This is the canonical list of information elements we care about, * the filter code also gives us all changes to the Microsoft OUI * (00:50:F2) vendor IE which is used for WMM which we need to track, * as well as the DTPC IE (part of the Cisco OUI) used for signaling * changes to requested client power. * * We implement beacon filtering in software since that means we can * avoid processing the frame here and in cfg80211, and userspace * will not be able to tell whether the hardware supports it or not. * * XXX: This list needs to be dynamic -- userspace needs to be able to * add items it requires. It also needs to be able to tell us to * look out for other vendor IEs. */ static const u64 care_about_ies = (1ULL << WLAN_EID_COUNTRY) | (1ULL << WLAN_EID_ERP_INFO) | (1ULL << WLAN_EID_CHANNEL_SWITCH) | (1ULL << WLAN_EID_PWR_CONSTRAINT) | (1ULL << WLAN_EID_HT_CAPABILITY) | (1ULL << WLAN_EID_HT_OPERATION) | (1ULL << WLAN_EID_EXT_CHANSWITCH_ANN); static void ieee80211_handle_beacon_sig(struct ieee80211_link_data *link, struct ieee80211_if_managed *ifmgd, struct ieee80211_bss_conf *bss_conf, struct ieee80211_local *local, struct ieee80211_rx_status *rx_status) { struct ieee80211_sub_if_data *sdata = link->sdata; /* Track average RSSI from the Beacon frames of the current AP */ if (!link->u.mgd.tracking_signal_avg) { link->u.mgd.tracking_signal_avg = true; ewma_beacon_signal_init(&link->u.mgd.ave_beacon_signal); link->u.mgd.last_cqm_event_signal = 0; link->u.mgd.count_beacon_signal = 1; link->u.mgd.last_ave_beacon_signal = 0; } else { link->u.mgd.count_beacon_signal++; } ewma_beacon_signal_add(&link->u.mgd.ave_beacon_signal, -rx_status->signal); if (ifmgd->rssi_min_thold != ifmgd->rssi_max_thold && link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT) { int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal); int last_sig = link->u.mgd.last_ave_beacon_signal; struct ieee80211_event event = { .type = RSSI_EVENT, }; /* * if signal crosses either of the boundaries, invoke callback * with appropriate parameters */ if (sig > ifmgd->rssi_max_thold && (last_sig <= ifmgd->rssi_min_thold || last_sig == 0)) { link->u.mgd.last_ave_beacon_signal = sig; event.u.rssi.data = RSSI_EVENT_HIGH; drv_event_callback(local, sdata, &event); } else if (sig < ifmgd->rssi_min_thold && (last_sig >= ifmgd->rssi_max_thold || last_sig == 0)) { link->u.mgd.last_ave_beacon_signal = sig; event.u.rssi.data = RSSI_EVENT_LOW; drv_event_callback(local, sdata, &event); } } if (bss_conf->cqm_rssi_thold && link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT && !(sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI)) { int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal); int last_event = link->u.mgd.last_cqm_event_signal; int thold = bss_conf->cqm_rssi_thold; int hyst = bss_conf->cqm_rssi_hyst; if (sig < thold && (last_event == 0 || sig < last_event - hyst)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW, sig, GFP_KERNEL); } else if (sig > thold && (last_event == 0 || sig > last_event + hyst)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH, sig, GFP_KERNEL); } } if (bss_conf->cqm_rssi_low && link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT) { int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal); int last_event = link->u.mgd.last_cqm_event_signal; int low = bss_conf->cqm_rssi_low; int high = bss_conf->cqm_rssi_high; if (sig < low && (last_event == 0 || last_event >= low)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW, sig, GFP_KERNEL); } else if (sig > high && (last_event == 0 || last_event <= high)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH, sig, GFP_KERNEL); } } } static bool ieee80211_rx_our_beacon(const u8 *tx_bssid, struct cfg80211_bss *bss) { if (ether_addr_equal(tx_bssid, bss->bssid)) return true; if (!bss->transmitted_bss) return false; return ether_addr_equal(tx_bssid, bss->transmitted_bss->bssid); } static bool ieee80211_config_puncturing(struct ieee80211_link_data *link, const struct ieee80211_eht_operation *eht_oper, u64 *changed) { u16 bitmap = 0, extracted; if ((eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT) && (eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)) { const struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; const u8 *disable_subchannel_bitmap = info->optional; bitmap = get_unaligned_le16(disable_subchannel_bitmap); } extracted = ieee80211_extract_dis_subch_bmap(eht_oper, &link->conf->chandef, bitmap); /* accept if there are no changes */ if (!(*changed & BSS_CHANGED_BANDWIDTH) && extracted == link->conf->eht_puncturing) return true; if (!cfg80211_valid_disable_subchannel_bitmap(&bitmap, &link->conf->chandef)) { link_info(link, "Got an invalid disable subchannel bitmap from AP %pM: bitmap = 0x%x, bw = 0x%x. disconnect\n", link->u.mgd.bssid, bitmap, link->conf->chandef.width); return false; } ieee80211_handle_puncturing_bitmap(link, eht_oper, bitmap, changed); return true; } static void ieee80211_ml_reconf_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.ml_reconf_work.work); u16 new_valid_links, new_active_links, new_dormant_links; int ret; sdata_lock(sdata); if (!sdata->u.mgd.removed_links) { sdata_unlock(sdata); return; } sdata_info(sdata, "MLO Reconfiguration: work: valid=0x%x, removed=0x%x\n", sdata->vif.valid_links, sdata->u.mgd.removed_links); new_valid_links = sdata->vif.valid_links & ~sdata->u.mgd.removed_links; if (new_valid_links == sdata->vif.valid_links) { sdata_unlock(sdata); return; } if (!new_valid_links || !(new_valid_links & ~sdata->vif.dormant_links)) { sdata_info(sdata, "No valid links after reconfiguration\n"); ret = -EINVAL; goto out; } new_active_links = sdata->vif.active_links & ~sdata->u.mgd.removed_links; if (new_active_links != sdata->vif.active_links) { if (!new_active_links) new_active_links = BIT(ffs(new_valid_links & ~sdata->vif.dormant_links) - 1); ret = __ieee80211_set_active_links(&sdata->vif, new_active_links); if (ret) { sdata_info(sdata, "Failed setting active links\n"); goto out; } } new_dormant_links = sdata->vif.dormant_links & ~sdata->u.mgd.removed_links; ret = ieee80211_vif_set_links(sdata, new_valid_links, new_dormant_links); if (ret) sdata_info(sdata, "Failed setting valid links\n"); out: if (!ret) cfg80211_links_removed(sdata->dev, sdata->u.mgd.removed_links); else ___ieee80211_disconnect(sdata); sdata->u.mgd.removed_links = 0; sdata_unlock(sdata); } static void ieee80211_ml_reconfiguration(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems) { const struct ieee80211_multi_link_elem *ml; const struct element *sub; size_t ml_len; unsigned long removed_links = 0; u16 link_removal_timeout[IEEE80211_MLD_MAX_NUM_LINKS] = {}; u8 link_id; u32 delay; if (!ieee80211_vif_is_mld(&sdata->vif) || !elems->ml_reconf) return; ml_len = cfg80211_defragment_element(elems->ml_reconf_elem, elems->ie_start, elems->total_len, elems->scratch_pos, elems->scratch + elems->scratch_len - elems->scratch_pos, WLAN_EID_FRAGMENT); elems->ml_reconf = (const void *)elems->scratch_pos; elems->ml_reconf_len = ml_len; ml = elems->ml_reconf; /* Directly parse the sub elements as the common information doesn't * hold any useful information. */ for_each_mle_subelement(sub, (u8 *)ml, ml_len) { struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; u8 *pos = prof->variable; u16 control; if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) continue; if (!ieee80211_mle_reconf_sta_prof_size_ok(sub->data, sub->datalen)) return; control = le16_to_cpu(prof->control); link_id = control & IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID; removed_links |= BIT(link_id); /* the MAC address should not be included, but handle it */ if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT) pos += 6; /* According to Draft P802.11be_D3.0, the control should * include the AP Removal Timer present. If the AP Removal Timer * is not present assume immediate removal. */ if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT) link_removal_timeout[link_id] = le16_to_cpu(*(__le16 *)pos); } removed_links &= sdata->vif.valid_links; if (!removed_links) { /* In case the removal was cancelled, abort it */ if (sdata->u.mgd.removed_links) { sdata->u.mgd.removed_links = 0; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.ml_reconf_work); } return; } delay = 0; for_each_set_bit(link_id, &removed_links, IEEE80211_MLD_MAX_NUM_LINKS) { struct ieee80211_bss_conf *link_conf = sdata_dereference(sdata->vif.link_conf[link_id], sdata); u32 link_delay; if (!link_conf) { removed_links &= ~BIT(link_id); continue; } link_delay = link_conf->beacon_int * link_removal_timeout[link_id]; if (!delay) delay = link_delay; else delay = min(delay, link_delay); } sdata->u.mgd.removed_links = removed_links; wiphy_delayed_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.ml_reconf_work, TU_TO_JIFFIES(delay)); } static void ieee80211_rx_mgmt_beacon(struct ieee80211_link_data *link, struct ieee80211_hdr *hdr, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg; struct ieee80211_mgmt *mgmt = (void *) hdr; size_t baselen; struct ieee802_11_elems *elems; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_supported_band *sband; struct ieee80211_channel *chan; struct link_sta_info *link_sta; struct sta_info *sta; u64 changed = 0; bool erp_valid; u8 erp_value = 0; u32 ncrc = 0; u8 *bssid, *variable = mgmt->u.beacon.variable; u8 deauth_buf[IEEE80211_DEAUTH_FRAME_LEN]; struct ieee80211_elems_parse_params parse_params = { .link_id = -1, .from_ap = true, }; sdata_assert_lock(sdata); /* Process beacon from the current BSS */ bssid = ieee80211_get_bssid(hdr, len, sdata->vif.type); if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { struct ieee80211_ext *ext = (void *) mgmt; if (ieee80211_is_s1g_short_beacon(ext->frame_control)) variable = ext->u.s1g_short_beacon.variable; else variable = ext->u.s1g_beacon.variable; } baselen = (u8 *) variable - (u8 *) mgmt; if (baselen > len) return; parse_params.start = variable; parse_params.len = len - baselen; rcu_read_lock(); chanctx_conf = rcu_dereference(link->conf->chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); return; } if (ieee80211_rx_status_to_khz(rx_status) != ieee80211_channel_to_khz(chanctx_conf->def.chan)) { rcu_read_unlock(); return; } chan = chanctx_conf->def.chan; rcu_read_unlock(); if (ifmgd->assoc_data && ifmgd->assoc_data->need_beacon && !WARN_ON(ieee80211_vif_is_mld(&sdata->vif)) && ieee80211_rx_our_beacon(bssid, ifmgd->assoc_data->link[0].bss)) { parse_params.bss = ifmgd->assoc_data->link[0].bss; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return; ieee80211_rx_bss_info(link, mgmt, len, rx_status); if (elems->dtim_period) link->u.mgd.dtim_period = elems->dtim_period; link->u.mgd.have_beacon = true; ifmgd->assoc_data->need_beacon = false; if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY)) { link->conf->sync_tsf = le64_to_cpu(mgmt->u.beacon.timestamp); link->conf->sync_device_ts = rx_status->device_timestamp; link->conf->sync_dtim_count = elems->dtim_count; } if (elems->mbssid_config_ie) bss_conf->profile_periodicity = elems->mbssid_config_ie->profile_periodicity; else bss_conf->profile_periodicity = 0; if (elems->ext_capab_len >= 11 && (elems->ext_capab[10] & WLAN_EXT_CAPA11_EMA_SUPPORT)) bss_conf->ema_ap = true; else bss_conf->ema_ap = false; /* continue assoc process */ ifmgd->assoc_data->timeout = jiffies; ifmgd->assoc_data->timeout_started = true; run_again(sdata, ifmgd->assoc_data->timeout); kfree(elems); return; } if (!ifmgd->associated || !ieee80211_rx_our_beacon(bssid, link->u.mgd.bss)) return; bssid = link->u.mgd.bssid; if (!(rx_status->flag & RX_FLAG_NO_SIGNAL_VAL)) ieee80211_handle_beacon_sig(link, ifmgd, bss_conf, local, rx_status); if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL) { mlme_dbg_ratelimited(sdata, "cancelling AP probe due to a received beacon\n"); ieee80211_reset_ap_probe(sdata); } /* * Push the beacon loss detection into the future since * we are processing a beacon from the AP just now. */ ieee80211_sta_reset_beacon_monitor(sdata); /* TODO: CRC urrently not calculated on S1G Beacon Compatibility * element (which carries the beacon interval). Don't forget to add a * bit to care_about_ies[] above if mac80211 is interested in a * changing S1G element. */ if (!ieee80211_is_s1g_beacon(hdr->frame_control)) ncrc = crc32_be(0, (void *)&mgmt->u.beacon.beacon_int, 4); parse_params.bss = link->u.mgd.bss; parse_params.filter = care_about_ies; parse_params.crc = ncrc; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return; ncrc = elems->crc; if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) && ieee80211_check_tim(elems->tim, elems->tim_len, vif_cfg->aid)) { if (local->hw.conf.dynamic_ps_timeout > 0) { if (local->hw.conf.flags & IEEE80211_CONF_PS) { local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } ieee80211_send_nullfunc(local, sdata, false); } else if (!local->pspolling && sdata->u.mgd.powersave) { local->pspolling = true; /* * Here is assumed that the driver will be * able to send ps-poll frame and receive a * response even though power save mode is * enabled, but some drivers might require * to disable power save here. This needs * to be investigated. */ ieee80211_send_pspoll(local, sdata); } } if (sdata->vif.p2p || sdata->vif.driver_flags & IEEE80211_VIF_GET_NOA_UPDATE) { struct ieee80211_p2p_noa_attr noa = {}; int ret; ret = cfg80211_get_p2p_attr(variable, len - baselen, IEEE80211_P2P_ATTR_ABSENCE_NOTICE, (u8 *) &noa, sizeof(noa)); if (ret >= 2) { if (link->u.mgd.p2p_noa_index != noa.index) { /* valid noa_attr and index changed */ link->u.mgd.p2p_noa_index = noa.index; memcpy(&bss_conf->p2p_noa_attr, &noa, sizeof(noa)); changed |= BSS_CHANGED_P2P_PS; /* * make sure we update all information, the CRC * mechanism doesn't look at P2P attributes. */ link->u.mgd.beacon_crc_valid = false; } } else if (link->u.mgd.p2p_noa_index != -1) { /* noa_attr not found and we had valid noa_attr before */ link->u.mgd.p2p_noa_index = -1; memset(&bss_conf->p2p_noa_attr, 0, sizeof(bss_conf->p2p_noa_attr)); changed |= BSS_CHANGED_P2P_PS; link->u.mgd.beacon_crc_valid = false; } } if (link->u.mgd.csa_waiting_bcn) ieee80211_chswitch_post_beacon(link); /* * Update beacon timing and dtim count on every beacon appearance. This * will allow the driver to use the most updated values. Do it before * comparing this one with last received beacon. * IMPORTANT: These parameters would possibly be out of sync by the time * the driver will use them. The synchronized view is currently * guaranteed only in certain callbacks. */ if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY) && !ieee80211_is_s1g_beacon(hdr->frame_control)) { link->conf->sync_tsf = le64_to_cpu(mgmt->u.beacon.timestamp); link->conf->sync_device_ts = rx_status->device_timestamp; link->conf->sync_dtim_count = elems->dtim_count; } if ((ncrc == link->u.mgd.beacon_crc && link->u.mgd.beacon_crc_valid) || ieee80211_is_s1g_short_beacon(mgmt->frame_control)) goto free; link->u.mgd.beacon_crc = ncrc; link->u.mgd.beacon_crc_valid = true; ieee80211_rx_bss_info(link, mgmt, len, rx_status); ieee80211_sta_process_chanswitch(link, rx_status->mactime, rx_status->device_timestamp, elems, true); if (!link->u.mgd.disable_wmm_tracking && ieee80211_sta_wmm_params(local, link, elems->wmm_param, elems->wmm_param_len, elems->mu_edca_param_set)) changed |= BSS_CHANGED_QOS; /* * If we haven't had a beacon before, tell the driver about the * DTIM period (and beacon timing if desired) now. */ if (!link->u.mgd.have_beacon) { /* a few bogus AP send dtim_period = 0 or no TIM IE */ bss_conf->dtim_period = elems->dtim_period ?: 1; changed |= BSS_CHANGED_BEACON_INFO; link->u.mgd.have_beacon = true; mutex_lock(&local->iflist_mtx); ieee80211_recalc_ps(local); mutex_unlock(&local->iflist_mtx); ieee80211_recalc_ps_vif(sdata); } if (elems->erp_info) { erp_valid = true; erp_value = elems->erp_info[0]; } else { erp_valid = false; } if (!ieee80211_is_s1g_beacon(hdr->frame_control)) changed |= ieee80211_handle_bss_capability(link, le16_to_cpu(mgmt->u.beacon.capab_info), erp_valid, erp_value); mutex_lock(&local->sta_mtx); sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (WARN_ON(!sta)) { mutex_unlock(&local->sta_mtx); goto free; } link_sta = rcu_dereference_protected(sta->link[link->link_id], lockdep_is_held(&local->sta_mtx)); if (WARN_ON(!link_sta)) { mutex_unlock(&local->sta_mtx); goto free; } if (WARN_ON(!link->conf->chandef.chan)) goto free; sband = local->hw.wiphy->bands[link->conf->chandef.chan->band]; changed |= ieee80211_recalc_twt_req(sdata, sband, link, link_sta, elems); if (ieee80211_config_bw(link, elems->ht_cap_elem, elems->vht_cap_elem, elems->ht_operation, elems->vht_operation, elems->he_operation, elems->eht_operation, elems->s1g_oper, bssid, &changed)) { mutex_unlock(&local->sta_mtx); sdata_info(sdata, "failed to follow AP %pM bandwidth change, disconnect\n", bssid); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, WLAN_REASON_DEAUTH_LEAVING, true, deauth_buf); ieee80211_report_disconnect(sdata, deauth_buf, sizeof(deauth_buf), true, WLAN_REASON_DEAUTH_LEAVING, false); goto free; } if (elems->opmode_notif) ieee80211_vht_handle_opmode(sdata, link_sta, *elems->opmode_notif, rx_status->band); mutex_unlock(&local->sta_mtx); changed |= ieee80211_handle_pwr_constr(link, chan, mgmt, elems->country_elem, elems->country_elem_len, elems->pwr_constr_elem, elems->cisco_dtpc_elem); if (elems->eht_operation && !(link->u.mgd.conn_flags & IEEE80211_CONN_DISABLE_EHT)) { if (!ieee80211_config_puncturing(link, elems->eht_operation, &changed)) { ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, WLAN_REASON_DEAUTH_LEAVING, true, deauth_buf); ieee80211_report_disconnect(sdata, deauth_buf, sizeof(deauth_buf), true, WLAN_REASON_DEAUTH_LEAVING, false); goto free; } } ieee80211_ml_reconfiguration(sdata, elems); ieee80211_link_info_change_notify(sdata, link, changed); free: kfree(elems); } void ieee80211_sta_rx_queued_ext(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_link_data *link = &sdata->deflink; struct ieee80211_rx_status *rx_status; struct ieee80211_hdr *hdr; u16 fc; rx_status = (struct ieee80211_rx_status *) skb->cb; hdr = (struct ieee80211_hdr *) skb->data; fc = le16_to_cpu(hdr->frame_control); sdata_lock(sdata); switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_S1G_BEACON: ieee80211_rx_mgmt_beacon(link, hdr, skb->len, rx_status); break; } sdata_unlock(sdata); } void ieee80211_sta_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_link_data *link = &sdata->deflink; struct ieee80211_rx_status *rx_status; struct ieee80211_mgmt *mgmt; u16 fc; int ies_len; rx_status = (struct ieee80211_rx_status *) skb->cb; mgmt = (struct ieee80211_mgmt *) skb->data; fc = le16_to_cpu(mgmt->frame_control); sdata_lock(sdata); if (rx_status->link_valid) { link = sdata_dereference(sdata->link[rx_status->link_id], sdata); if (!link) goto out; } switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_BEACON: ieee80211_rx_mgmt_beacon(link, (void *)mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_PROBE_RESP: ieee80211_rx_mgmt_probe_resp(link, skb); break; case IEEE80211_STYPE_AUTH: ieee80211_rx_mgmt_auth(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_DEAUTH: ieee80211_rx_mgmt_deauth(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_DISASSOC: ieee80211_rx_mgmt_disassoc(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_ASSOC_RESP: case IEEE80211_STYPE_REASSOC_RESP: ieee80211_rx_mgmt_assoc_resp(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_ACTION: if (!sdata->u.mgd.associated || !ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) break; if (mgmt->u.action.category == WLAN_CATEGORY_SPECTRUM_MGMT) { struct ieee802_11_elems *elems; ies_len = skb->len - offsetof(struct ieee80211_mgmt, u.action.u.chan_switch.variable); if (ies_len < 0) break; /* CSA IE cannot be overridden, no need for BSSID */ elems = ieee802_11_parse_elems( mgmt->u.action.u.chan_switch.variable, ies_len, true, NULL); if (elems && !elems->parse_error) ieee80211_sta_process_chanswitch(link, rx_status->mactime, rx_status->device_timestamp, elems, false); kfree(elems); } else if (mgmt->u.action.category == WLAN_CATEGORY_PUBLIC) { struct ieee802_11_elems *elems; ies_len = skb->len - offsetof(struct ieee80211_mgmt, u.action.u.ext_chan_switch.variable); if (ies_len < 0) break; /* * extended CSA IE can't be overridden, no need for * BSSID */ elems = ieee802_11_parse_elems( mgmt->u.action.u.ext_chan_switch.variable, ies_len, true, NULL); if (elems && !elems->parse_error) { /* for the handling code pretend it was an IE */ elems->ext_chansw_ie = &mgmt->u.action.u.ext_chan_switch.data; ieee80211_sta_process_chanswitch(link, rx_status->mactime, rx_status->device_timestamp, elems, false); } kfree(elems); } break; } out: sdata_unlock(sdata); } static void ieee80211_sta_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mgd.timer); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } void ieee80211_sta_connection_lost(struct ieee80211_sub_if_data *sdata, u8 reason, bool tx) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, reason, tx, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, reason, false); } static int ieee80211_auth(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_auth_data *auth_data = ifmgd->auth_data; u32 tx_flags = 0; u16 trans = 1; u16 status = 0; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_AUTH, }; sdata_assert_lock(sdata); if (WARN_ON_ONCE(!auth_data)) return -EINVAL; auth_data->tries++; if (auth_data->tries > IEEE80211_AUTH_MAX_TRIES) { sdata_info(sdata, "authentication with %pM timed out\n", auth_data->ap_addr); /* * Most likely AP is not in the range so remove the * bss struct for that AP. */ cfg80211_unlink_bss(local->hw.wiphy, auth_data->bss); return -ETIMEDOUT; } if (auth_data->algorithm == WLAN_AUTH_SAE) info.duration = jiffies_to_msecs(IEEE80211_AUTH_TIMEOUT_SAE); drv_mgd_prepare_tx(local, sdata, &info); sdata_info(sdata, "send auth to %pM (try %d/%d)\n", auth_data->ap_addr, auth_data->tries, IEEE80211_AUTH_MAX_TRIES); auth_data->expected_transaction = 2; if (auth_data->algorithm == WLAN_AUTH_SAE) { trans = auth_data->sae_trans; status = auth_data->sae_status; auth_data->expected_transaction = trans; } if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) tx_flags = IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_MLME_CONN_TX; ieee80211_send_auth(sdata, trans, auth_data->algorithm, status, auth_data->data, auth_data->data_len, auth_data->ap_addr, auth_data->ap_addr, NULL, 0, 0, tx_flags); if (tx_flags == 0) { if (auth_data->algorithm == WLAN_AUTH_SAE) auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT_SAE; else auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT; } else { auth_data->timeout = round_jiffies_up(jiffies + IEEE80211_AUTH_TIMEOUT_LONG); } auth_data->timeout_started = true; run_again(sdata, auth_data->timeout); return 0; } static int ieee80211_do_assoc(struct ieee80211_sub_if_data *sdata) { struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data; struct ieee80211_local *local = sdata->local; int ret; sdata_assert_lock(sdata); assoc_data->tries++; if (assoc_data->tries > IEEE80211_ASSOC_MAX_TRIES) { sdata_info(sdata, "association with %pM timed out\n", assoc_data->ap_addr); /* * Most likely AP is not in the range so remove the * bss struct for that AP. */ cfg80211_unlink_bss(local->hw.wiphy, assoc_data->link[assoc_data->assoc_link_id].bss); return -ETIMEDOUT; } sdata_info(sdata, "associate with %pM (try %d/%d)\n", assoc_data->ap_addr, assoc_data->tries, IEEE80211_ASSOC_MAX_TRIES); ret = ieee80211_send_assoc(sdata); if (ret) return ret; if (!ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { assoc_data->timeout = jiffies + IEEE80211_ASSOC_TIMEOUT; assoc_data->timeout_started = true; run_again(sdata, assoc_data->timeout); } else { assoc_data->timeout = round_jiffies_up(jiffies + IEEE80211_ASSOC_TIMEOUT_LONG); assoc_data->timeout_started = true; run_again(sdata, assoc_data->timeout); } return 0; } void ieee80211_mgd_conn_tx_status(struct ieee80211_sub_if_data *sdata, __le16 fc, bool acked) { struct ieee80211_local *local = sdata->local; sdata->u.mgd.status_fc = fc; sdata->u.mgd.status_acked = acked; sdata->u.mgd.status_received = true; wiphy_work_queue(local->hw.wiphy, &sdata->work); } void ieee80211_sta_work(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; sdata_lock(sdata); if (ifmgd->status_received) { __le16 fc = ifmgd->status_fc; bool status_acked = ifmgd->status_acked; ifmgd->status_received = false; if (ifmgd->auth_data && ieee80211_is_auth(fc)) { if (status_acked) { if (ifmgd->auth_data->algorithm == WLAN_AUTH_SAE) ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT_SAE; else ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT_SHORT; run_again(sdata, ifmgd->auth_data->timeout); } else { ifmgd->auth_data->timeout = jiffies - 1; } ifmgd->auth_data->timeout_started = true; } else if (ifmgd->assoc_data && (ieee80211_is_assoc_req(fc) || ieee80211_is_reassoc_req(fc))) { if (status_acked) { ifmgd->assoc_data->timeout = jiffies + IEEE80211_ASSOC_TIMEOUT_SHORT; run_again(sdata, ifmgd->assoc_data->timeout); } else { ifmgd->assoc_data->timeout = jiffies - 1; } ifmgd->assoc_data->timeout_started = true; } } if (ifmgd->auth_data && ifmgd->auth_data->timeout_started && time_after(jiffies, ifmgd->auth_data->timeout)) { if (ifmgd->auth_data->done || ifmgd->auth_data->waiting) { /* * ok ... we waited for assoc or continuation but * userspace didn't do it, so kill the auth data */ ieee80211_destroy_auth_data(sdata, false); } else if (ieee80211_auth(sdata)) { u8 ap_addr[ETH_ALEN]; struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = AUTH_EVENT, .u.mlme.status = MLME_TIMEOUT, }; memcpy(ap_addr, ifmgd->auth_data->ap_addr, ETH_ALEN); ieee80211_destroy_auth_data(sdata, false); cfg80211_auth_timeout(sdata->dev, ap_addr); drv_event_callback(sdata->local, sdata, &event); } } else if (ifmgd->auth_data && ifmgd->auth_data->timeout_started) run_again(sdata, ifmgd->auth_data->timeout); if (ifmgd->assoc_data && ifmgd->assoc_data->timeout_started && time_after(jiffies, ifmgd->assoc_data->timeout)) { if ((ifmgd->assoc_data->need_beacon && !sdata->deflink.u.mgd.have_beacon) || ieee80211_do_assoc(sdata)) { struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = ASSOC_EVENT, .u.mlme.status = MLME_TIMEOUT, }; ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT); drv_event_callback(sdata->local, sdata, &event); } } else if (ifmgd->assoc_data && ifmgd->assoc_data->timeout_started) run_again(sdata, ifmgd->assoc_data->timeout); if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL && ifmgd->associated) { u8 *bssid = sdata->deflink.u.mgd.bssid; int max_tries; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) max_tries = max_nullfunc_tries; else max_tries = max_probe_tries; /* ACK received for nullfunc probing frame */ if (!ifmgd->probe_send_count) ieee80211_reset_ap_probe(sdata); else if (ifmgd->nullfunc_failed) { if (ifmgd->probe_send_count < max_tries) { mlme_dbg(sdata, "No ack for nullfunc frame to AP %pM, try %d/%i\n", bssid, ifmgd->probe_send_count, max_tries); ieee80211_mgd_probe_ap_send(sdata); } else { mlme_dbg(sdata, "No ack for nullfunc frame to AP %pM, disconnecting.\n", bssid); ieee80211_sta_connection_lost(sdata, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false); } } else if (time_is_after_jiffies(ifmgd->probe_timeout)) run_again(sdata, ifmgd->probe_timeout); else if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { mlme_dbg(sdata, "Failed to send nullfunc to AP %pM after %dms, disconnecting\n", bssid, probe_wait_ms); ieee80211_sta_connection_lost(sdata, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false); } else if (ifmgd->probe_send_count < max_tries) { mlme_dbg(sdata, "No probe response from AP %pM after %dms, try %d/%i\n", bssid, probe_wait_ms, ifmgd->probe_send_count, max_tries); ieee80211_mgd_probe_ap_send(sdata); } else { /* * We actually lost the connection ... or did we? * Let's make sure! */ mlme_dbg(sdata, "No probe response from AP %pM after %dms, disconnecting.\n", bssid, probe_wait_ms); ieee80211_sta_connection_lost(sdata, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false); } } sdata_unlock(sdata); } static void ieee80211_sta_bcn_mon_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mgd.bcn_mon_timer); if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif))) return; if (sdata->vif.bss_conf.csa_active && !sdata->deflink.u.mgd.csa_waiting_bcn) return; if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER) return; sdata->u.mgd.connection_loss = false; wiphy_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.beacon_connection_loss_work); } static void ieee80211_sta_conn_mon_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mgd.conn_mon_timer); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = sdata->local; struct sta_info *sta; unsigned long timeout; if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif))) return; if (sdata->vif.bss_conf.csa_active && !sdata->deflink.u.mgd.csa_waiting_bcn) return; sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (!sta) return; timeout = sta->deflink.status_stats.last_ack; if (time_before(sta->deflink.status_stats.last_ack, sta->deflink.rx_stats.last_rx)) timeout = sta->deflink.rx_stats.last_rx; timeout += IEEE80211_CONNECTION_IDLE_TIME; /* If timeout is after now, then update timer to fire at * the later date, but do not actually probe at this time. */ if (time_is_after_jiffies(timeout)) { mod_timer(&ifmgd->conn_mon_timer, round_jiffies_up(timeout)); return; } ieee80211_queue_work(&local->hw, &ifmgd->monitor_work); } static void ieee80211_sta_monitor_work(struct work_struct *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.monitor_work); ieee80211_mgd_probe_ap(sdata, false); } static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == NL80211_IFTYPE_STATION) { __ieee80211_stop_poll(sdata); /* let's probe the connection once */ if (!ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) ieee80211_queue_work(&sdata->local->hw, &sdata->u.mgd.monitor_work); } } #ifdef CONFIG_PM void ieee80211_mgd_quiesce(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; sdata_lock(sdata); if (ifmgd->auth_data || ifmgd->assoc_data) { const u8 *ap_addr = ifmgd->auth_data ? ifmgd->auth_data->ap_addr : ifmgd->assoc_data->ap_addr; /* * If we are trying to authenticate / associate while suspending, * cfg80211 won't know and won't actually abort those attempts, * thus we need to do that ourselves. */ ieee80211_send_deauth_disassoc(sdata, ap_addr, ap_addr, IEEE80211_STYPE_DEAUTH, WLAN_REASON_DEAUTH_LEAVING, false, frame_buf); if (ifmgd->assoc_data) ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); if (ifmgd->auth_data) ieee80211_destroy_auth_data(sdata, false); cfg80211_tx_mlme_mgmt(sdata->dev, frame_buf, IEEE80211_DEAUTH_FRAME_LEN, false); } /* This is a bit of a hack - we should find a better and more generic * solution to this. Normally when suspending, cfg80211 will in fact * deauthenticate. However, it doesn't (and cannot) stop an ongoing * auth (not so important) or assoc (this is the problem) process. * * As a consequence, it can happen that we are in the process of both * associating and suspending, and receive an association response * after cfg80211 has checked if it needs to disconnect, but before * we actually set the flag to drop incoming frames. This will then * cause the workqueue flush to process the association response in * the suspend, resulting in a successful association just before it * tries to remove the interface from the driver, which now though * has a channel context assigned ... this results in issues. * * To work around this (for now) simply deauth here again if we're * now connected. */ if (ifmgd->associated && !sdata->local->wowlan) { u8 bssid[ETH_ALEN]; struct cfg80211_deauth_request req = { .reason_code = WLAN_REASON_DEAUTH_LEAVING, .bssid = bssid, }; memcpy(bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); ieee80211_mgd_deauth(sdata, &req); } sdata_unlock(sdata); } #endif void ieee80211_sta_restart(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; sdata_lock(sdata); if (!ifmgd->associated) { sdata_unlock(sdata); return; } if (sdata->flags & IEEE80211_SDATA_DISCONNECT_RESUME) { sdata->flags &= ~IEEE80211_SDATA_DISCONNECT_RESUME; mlme_dbg(sdata, "driver requested disconnect after resume\n"); ieee80211_sta_connection_lost(sdata, WLAN_REASON_UNSPECIFIED, true); sdata_unlock(sdata); return; } if (sdata->flags & IEEE80211_SDATA_DISCONNECT_HW_RESTART) { sdata->flags &= ~IEEE80211_SDATA_DISCONNECT_HW_RESTART; mlme_dbg(sdata, "driver requested disconnect after hardware restart\n"); ieee80211_sta_connection_lost(sdata, WLAN_REASON_UNSPECIFIED, true); sdata_unlock(sdata); return; } sdata_unlock(sdata); } static void ieee80211_request_smps_mgd_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_link_data *link = container_of(work, struct ieee80211_link_data, u.mgd.request_smps_work); sdata_lock(link->sdata); __ieee80211_request_smps_mgd(link->sdata, link, link->u.mgd.driver_smps_mode); sdata_unlock(link->sdata); } /* interface setup */ void ieee80211_sta_setup_sdata(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; INIT_WORK(&ifmgd->monitor_work, ieee80211_sta_monitor_work); wiphy_work_init(&ifmgd->beacon_connection_loss_work, ieee80211_beacon_connection_loss_work); wiphy_work_init(&ifmgd->csa_connection_drop_work, ieee80211_csa_connection_drop_work); INIT_DELAYED_WORK(&ifmgd->tdls_peer_del_work, ieee80211_tdls_peer_del_work); wiphy_delayed_work_init(&ifmgd->ml_reconf_work, ieee80211_ml_reconf_work); timer_setup(&ifmgd->timer, ieee80211_sta_timer, 0); timer_setup(&ifmgd->bcn_mon_timer, ieee80211_sta_bcn_mon_timer, 0); timer_setup(&ifmgd->conn_mon_timer, ieee80211_sta_conn_mon_timer, 0); INIT_DELAYED_WORK(&ifmgd->tx_tspec_wk, ieee80211_sta_handle_tspec_ac_params_wk); ifmgd->flags = 0; ifmgd->powersave = sdata->wdev.ps; ifmgd->uapsd_queues = sdata->local->hw.uapsd_queues; ifmgd->uapsd_max_sp_len = sdata->local->hw.uapsd_max_sp_len; /* Setup TDLS data */ spin_lock_init(&ifmgd->teardown_lock); ifmgd->teardown_skb = NULL; ifmgd->orig_teardown_skb = NULL; } void ieee80211_mgd_setup_link(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; unsigned int link_id = link->link_id; link->u.mgd.p2p_noa_index = -1; link->u.mgd.conn_flags = 0; link->conf->bssid = link->u.mgd.bssid; wiphy_work_init(&link->u.mgd.request_smps_work, ieee80211_request_smps_mgd_work); if (local->hw.wiphy->features & NL80211_FEATURE_DYNAMIC_SMPS) link->u.mgd.req_smps = IEEE80211_SMPS_AUTOMATIC; else link->u.mgd.req_smps = IEEE80211_SMPS_OFF; wiphy_delayed_work_init(&link->u.mgd.chswitch_work, ieee80211_chswitch_work); if (sdata->u.mgd.assoc_data) ether_addr_copy(link->conf->addr, sdata->u.mgd.assoc_data->link[link_id].addr); else if (!is_valid_ether_addr(link->conf->addr)) eth_random_addr(link->conf->addr); } /* scan finished notification */ void ieee80211_mlme_notify_scan_completed(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; /* Restart STA timers */ rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (ieee80211_sdata_running(sdata)) ieee80211_restart_sta_timer(sdata); } rcu_read_unlock(); } static int ieee80211_prep_connection(struct ieee80211_sub_if_data *sdata, struct cfg80211_bss *cbss, s8 link_id, const u8 *ap_mld_addr, bool assoc, bool override) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_bss *bss = (void *)cbss->priv; struct sta_info *new_sta = NULL; struct ieee80211_link_data *link; bool have_sta = false; bool mlo; int err; if (link_id >= 0) { mlo = true; if (WARN_ON(!ap_mld_addr)) return -EINVAL; err = ieee80211_vif_set_links(sdata, BIT(link_id), 0); } else { if (WARN_ON(ap_mld_addr)) return -EINVAL; ap_mld_addr = cbss->bssid; err = ieee80211_vif_set_links(sdata, 0, 0); link_id = 0; mlo = false; } if (err) return err; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) { err = -ENOLINK; goto out_err; } if (WARN_ON(!ifmgd->auth_data && !ifmgd->assoc_data)) { err = -EINVAL; goto out_err; } /* If a reconfig is happening, bail out */ if (local->in_reconfig) { err = -EBUSY; goto out_err; } if (assoc) { rcu_read_lock(); have_sta = sta_info_get(sdata, ap_mld_addr); rcu_read_unlock(); } if (!have_sta) { if (mlo) new_sta = sta_info_alloc_with_link(sdata, ap_mld_addr, link_id, cbss->bssid, GFP_KERNEL); else new_sta = sta_info_alloc(sdata, ap_mld_addr, GFP_KERNEL); if (!new_sta) { err = -ENOMEM; goto out_err; } new_sta->sta.mlo = mlo; } /* * Set up the information for the new channel before setting the * new channel. We can't - completely race-free - change the basic * rates bitmap and the channel (sband) that it refers to, but if * we set it up before we at least avoid calling into the driver's * bss_info_changed() method with invalid information (since we do * call that from changing the channel - only for IDLE and perhaps * some others, but ...). * * So to avoid that, just set up all the new information before the * channel, but tell the driver to apply it only afterwards, since * it might need the new channel for that. */ if (new_sta) { const struct cfg80211_bss_ies *ies; struct link_sta_info *link_sta; rcu_read_lock(); link_sta = rcu_dereference(new_sta->link[link_id]); if (WARN_ON(!link_sta)) { rcu_read_unlock(); sta_info_free(local, new_sta); err = -EINVAL; goto out_err; } err = ieee80211_mgd_setup_link_sta(link, new_sta, link_sta, cbss); if (err) { rcu_read_unlock(); sta_info_free(local, new_sta); goto out_err; } memcpy(link->u.mgd.bssid, cbss->bssid, ETH_ALEN); /* set timing information */ link->conf->beacon_int = cbss->beacon_interval; ies = rcu_dereference(cbss->beacon_ies); if (ies) { link->conf->sync_tsf = ies->tsf; link->conf->sync_device_ts = bss->device_ts_beacon; ieee80211_get_dtim(ies, &link->conf->sync_dtim_count, NULL); } else if (!ieee80211_hw_check(&sdata->local->hw, TIMING_BEACON_ONLY)) { ies = rcu_dereference(cbss->proberesp_ies); /* must be non-NULL since beacon IEs were NULL */ link->conf->sync_tsf = ies->tsf; link->conf->sync_device_ts = bss->device_ts_presp; link->conf->sync_dtim_count = 0; } else { link->conf->sync_tsf = 0; link->conf->sync_device_ts = 0; link->conf->sync_dtim_count = 0; } rcu_read_unlock(); } if (new_sta || override) { err = ieee80211_prep_channel(sdata, link, cbss, &link->u.mgd.conn_flags); if (err) { if (new_sta) sta_info_free(local, new_sta); goto out_err; } } if (new_sta) { /* * tell driver about BSSID, basic rates and timing * this was set up above, before setting the channel */ ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_BSSID | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT); if (assoc) sta_info_pre_move_state(new_sta, IEEE80211_STA_AUTH); err = sta_info_insert(new_sta); new_sta = NULL; if (err) { sdata_info(sdata, "failed to insert STA entry for the AP (error %d)\n", err); goto out_err; } } else WARN_ON_ONCE(!ether_addr_equal(link->u.mgd.bssid, cbss->bssid)); /* Cancel scan to ensure that nothing interferes with connection */ if (local->scanning) ieee80211_scan_cancel(local); return 0; out_err: ieee80211_link_release_channel(&sdata->deflink); ieee80211_vif_set_links(sdata, 0, 0); return err; } /* config hooks */ int ieee80211_mgd_auth(struct ieee80211_sub_if_data *sdata, struct cfg80211_auth_request *req) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_auth_data *auth_data; u16 auth_alg; int err; bool cont_auth; /* prepare auth data structure */ switch (req->auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: auth_alg = WLAN_AUTH_OPEN; break; case NL80211_AUTHTYPE_SHARED_KEY: if (fips_enabled) return -EOPNOTSUPP; auth_alg = WLAN_AUTH_SHARED_KEY; break; case NL80211_AUTHTYPE_FT: auth_alg = WLAN_AUTH_FT; break; case NL80211_AUTHTYPE_NETWORK_EAP: auth_alg = WLAN_AUTH_LEAP; break; case NL80211_AUTHTYPE_SAE: auth_alg = WLAN_AUTH_SAE; break; case NL80211_AUTHTYPE_FILS_SK: auth_alg = WLAN_AUTH_FILS_SK; break; case NL80211_AUTHTYPE_FILS_SK_PFS: auth_alg = WLAN_AUTH_FILS_SK_PFS; break; case NL80211_AUTHTYPE_FILS_PK: auth_alg = WLAN_AUTH_FILS_PK; break; default: return -EOPNOTSUPP; } if (ifmgd->assoc_data) return -EBUSY; auth_data = kzalloc(sizeof(*auth_data) + req->auth_data_len + req->ie_len, GFP_KERNEL); if (!auth_data) return -ENOMEM; memcpy(auth_data->ap_addr, req->ap_mld_addr ?: req->bss->bssid, ETH_ALEN); auth_data->bss = req->bss; auth_data->link_id = req->link_id; if (req->auth_data_len >= 4) { if (req->auth_type == NL80211_AUTHTYPE_SAE) { __le16 *pos = (__le16 *) req->auth_data; auth_data->sae_trans = le16_to_cpu(pos[0]); auth_data->sae_status = le16_to_cpu(pos[1]); } memcpy(auth_data->data, req->auth_data + 4, req->auth_data_len - 4); auth_data->data_len += req->auth_data_len - 4; } /* Check if continuing authentication or trying to authenticate with the * same BSS that we were in the process of authenticating with and avoid * removal and re-addition of the STA entry in * ieee80211_prep_connection(). */ cont_auth = ifmgd->auth_data && req->bss == ifmgd->auth_data->bss && ifmgd->auth_data->link_id == req->link_id; if (req->ie && req->ie_len) { memcpy(&auth_data->data[auth_data->data_len], req->ie, req->ie_len); auth_data->data_len += req->ie_len; } if (req->key && req->key_len) { auth_data->key_len = req->key_len; auth_data->key_idx = req->key_idx; memcpy(auth_data->key, req->key, req->key_len); } auth_data->algorithm = auth_alg; /* try to authenticate/probe */ if (ifmgd->auth_data) { if (cont_auth && req->auth_type == NL80211_AUTHTYPE_SAE) { auth_data->peer_confirmed = ifmgd->auth_data->peer_confirmed; } ieee80211_destroy_auth_data(sdata, cont_auth); } /* prep auth_data so we don't go into idle on disassoc */ ifmgd->auth_data = auth_data; /* If this is continuation of an ongoing SAE authentication exchange * (i.e., request to send SAE Confirm) and the peer has already * confirmed, mark authentication completed since we are about to send * out SAE Confirm. */ if (cont_auth && req->auth_type == NL80211_AUTHTYPE_SAE && auth_data->peer_confirmed && auth_data->sae_trans == 2) ieee80211_mark_sta_auth(sdata); if (ifmgd->associated) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; sdata_info(sdata, "disconnect from AP %pM for new auth to %pM\n", sdata->vif.cfg.ap_addr, auth_data->ap_addr); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, WLAN_REASON_UNSPECIFIED, false, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, WLAN_REASON_UNSPECIFIED, false); } sdata_info(sdata, "authenticate with %pM\n", auth_data->ap_addr); /* needed for transmitting the auth frame(s) properly */ memcpy(sdata->vif.cfg.ap_addr, auth_data->ap_addr, ETH_ALEN); err = ieee80211_prep_connection(sdata, req->bss, req->link_id, req->ap_mld_addr, cont_auth, false); if (err) goto err_clear; err = ieee80211_auth(sdata); if (err) { sta_info_destroy_addr(sdata, auth_data->ap_addr); goto err_clear; } /* hold our own reference */ cfg80211_ref_bss(local->hw.wiphy, auth_data->bss); return 0; err_clear: if (!ieee80211_vif_is_mld(&sdata->vif)) { eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); mutex_lock(&sdata->local->mtx); ieee80211_link_release_channel(&sdata->deflink); mutex_unlock(&sdata->local->mtx); } ifmgd->auth_data = NULL; kfree(auth_data); return err; } static ieee80211_conn_flags_t ieee80211_setup_assoc_link(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgd_assoc_data *assoc_data, struct cfg80211_assoc_request *req, ieee80211_conn_flags_t conn_flags, unsigned int link_id) { struct ieee80211_local *local = sdata->local; const struct cfg80211_bss_ies *beacon_ies; struct ieee80211_supported_band *sband; const struct element *ht_elem, *vht_elem; struct ieee80211_link_data *link; struct cfg80211_bss *cbss; struct ieee80211_bss *bss; bool is_5ghz, is_6ghz; cbss = assoc_data->link[link_id].bss; if (WARN_ON(!cbss)) return 0; bss = (void *)cbss->priv; sband = local->hw.wiphy->bands[cbss->channel->band]; if (WARN_ON(!sband)) return 0; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) return 0; is_5ghz = cbss->channel->band == NL80211_BAND_5GHZ; is_6ghz = cbss->channel->band == NL80211_BAND_6GHZ; /* for MLO connections assume advertising all rates is OK */ if (!req->ap_mld_addr) { assoc_data->supp_rates = bss->supp_rates; assoc_data->supp_rates_len = bss->supp_rates_len; } /* copy and link elems for the STA profile */ if (req->links[link_id].elems_len) { memcpy(assoc_data->ie_pos, req->links[link_id].elems, req->links[link_id].elems_len); assoc_data->link[link_id].elems = assoc_data->ie_pos; assoc_data->link[link_id].elems_len = req->links[link_id].elems_len; assoc_data->ie_pos += req->links[link_id].elems_len; } rcu_read_lock(); ht_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_HT_OPERATION); if (ht_elem && ht_elem->datalen >= sizeof(struct ieee80211_ht_operation)) assoc_data->link[link_id].ap_ht_param = ((struct ieee80211_ht_operation *)(ht_elem->data))->ht_param; else if (!is_6ghz) conn_flags |= IEEE80211_CONN_DISABLE_HT; vht_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_VHT_CAPABILITY); if (vht_elem && vht_elem->datalen >= sizeof(struct ieee80211_vht_cap)) { memcpy(&assoc_data->link[link_id].ap_vht_cap, vht_elem->data, sizeof(struct ieee80211_vht_cap)); } else if (is_5ghz) { link_info(link, "VHT capa missing/short, disabling VHT/HE/EHT\n"); conn_flags |= IEEE80211_CONN_DISABLE_VHT | IEEE80211_CONN_DISABLE_HE | IEEE80211_CONN_DISABLE_EHT; } rcu_read_unlock(); link->u.mgd.beacon_crc_valid = false; link->u.mgd.dtim_period = 0; link->u.mgd.have_beacon = false; /* override HT/VHT configuration only if the AP and we support it */ if (!(conn_flags & IEEE80211_CONN_DISABLE_HT)) { struct ieee80211_sta_ht_cap sta_ht_cap; memcpy(&sta_ht_cap, &sband->ht_cap, sizeof(sta_ht_cap)); ieee80211_apply_htcap_overrides(sdata, &sta_ht_cap); } link->conf->eht_puncturing = 0; rcu_read_lock(); beacon_ies = rcu_dereference(cbss->beacon_ies); if (beacon_ies) { const struct ieee80211_eht_operation *eht_oper; const struct element *elem; u8 dtim_count = 0; ieee80211_get_dtim(beacon_ies, &dtim_count, &link->u.mgd.dtim_period); sdata->deflink.u.mgd.have_beacon = true; if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY)) { link->conf->sync_tsf = beacon_ies->tsf; link->conf->sync_device_ts = bss->device_ts_beacon; link->conf->sync_dtim_count = dtim_count; } elem = cfg80211_find_ext_elem(WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION, beacon_ies->data, beacon_ies->len); if (elem && elem->datalen >= 3) link->conf->profile_periodicity = elem->data[2]; else link->conf->profile_periodicity = 0; elem = cfg80211_find_elem(WLAN_EID_EXT_CAPABILITY, beacon_ies->data, beacon_ies->len); if (elem && elem->datalen >= 11 && (elem->data[10] & WLAN_EXT_CAPA11_EMA_SUPPORT)) link->conf->ema_ap = true; else link->conf->ema_ap = false; elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_OPERATION, beacon_ies->data, beacon_ies->len); eht_oper = (const void *)(elem->data + 1); if (elem && ieee80211_eht_oper_size_ok((const void *)(elem->data + 1), elem->datalen - 1) && (eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT) && (eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)) { const struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; const u8 *disable_subchannel_bitmap = info->optional; u16 bitmap; bitmap = get_unaligned_le16(disable_subchannel_bitmap); if (cfg80211_valid_disable_subchannel_bitmap(&bitmap, &link->conf->chandef)) ieee80211_handle_puncturing_bitmap(link, eht_oper, bitmap, NULL); else conn_flags |= IEEE80211_CONN_DISABLE_EHT; } } rcu_read_unlock(); if (bss->corrupt_data) { char *corrupt_type = "data"; if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_BEACON) { if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_PROBE_RESP) corrupt_type = "beacon and probe response"; else corrupt_type = "beacon"; } else if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_PROBE_RESP) { corrupt_type = "probe response"; } sdata_info(sdata, "associating to AP %pM with corrupt %s\n", cbss->bssid, corrupt_type); } if (link->u.mgd.req_smps == IEEE80211_SMPS_AUTOMATIC) { if (sdata->u.mgd.powersave) link->smps_mode = IEEE80211_SMPS_DYNAMIC; else link->smps_mode = IEEE80211_SMPS_OFF; } else { link->smps_mode = link->u.mgd.req_smps; } return conn_flags; } int ieee80211_mgd_assoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_assoc_request *req) { unsigned int assoc_link_id = req->link_id < 0 ? 0 : req->link_id; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data; const struct element *ssid_elem; struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg; ieee80211_conn_flags_t conn_flags = 0; struct ieee80211_link_data *link; struct cfg80211_bss *cbss; struct ieee80211_bss *bss; bool override; int i, err; size_t size = sizeof(*assoc_data) + req->ie_len; for (i = 0; i < IEEE80211_MLD_MAX_NUM_LINKS; i++) size += req->links[i].elems_len; /* FIXME: no support for 4-addr MLO yet */ if (sdata->u.mgd.use_4addr && req->link_id >= 0) return -EOPNOTSUPP; assoc_data = kzalloc(size, GFP_KERNEL); if (!assoc_data) return -ENOMEM; cbss = req->link_id < 0 ? req->bss : req->links[req->link_id].bss; rcu_read_lock(); ssid_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_SSID); if (!ssid_elem || ssid_elem->datalen > sizeof(assoc_data->ssid)) { rcu_read_unlock(); kfree(assoc_data); return -EINVAL; } memcpy(assoc_data->ssid, ssid_elem->data, ssid_elem->datalen); assoc_data->ssid_len = ssid_elem->datalen; memcpy(vif_cfg->ssid, assoc_data->ssid, assoc_data->ssid_len); vif_cfg->ssid_len = assoc_data->ssid_len; rcu_read_unlock(); if (req->ap_mld_addr) { for (i = 0; i < IEEE80211_MLD_MAX_NUM_LINKS; i++) { if (!req->links[i].bss) continue; link = sdata_dereference(sdata->link[i], sdata); if (link) ether_addr_copy(assoc_data->link[i].addr, link->conf->addr); else eth_random_addr(assoc_data->link[i].addr); } } else { memcpy(assoc_data->link[0].addr, sdata->vif.addr, ETH_ALEN); } assoc_data->s1g = cbss->channel->band == NL80211_BAND_S1GHZ; memcpy(assoc_data->ap_addr, req->ap_mld_addr ?: req->bss->bssid, ETH_ALEN); if (ifmgd->associated) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; sdata_info(sdata, "disconnect from AP %pM for new assoc to %pM\n", sdata->vif.cfg.ap_addr, assoc_data->ap_addr); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, WLAN_REASON_UNSPECIFIED, false, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, WLAN_REASON_UNSPECIFIED, false); } if (ifmgd->auth_data && !ifmgd->auth_data->done) { err = -EBUSY; goto err_free; } if (ifmgd->assoc_data) { err = -EBUSY; goto err_free; } if (ifmgd->auth_data) { bool match; /* keep sta info, bssid if matching */ match = ether_addr_equal(ifmgd->auth_data->ap_addr, assoc_data->ap_addr) && ifmgd->auth_data->link_id == req->link_id; ieee80211_destroy_auth_data(sdata, match); } /* prepare assoc data */ bss = (void *)cbss->priv; assoc_data->wmm = bss->wmm_used && (local->hw.queues >= IEEE80211_NUM_ACS); /* * IEEE802.11n does not allow TKIP/WEP as pairwise ciphers in HT mode. * We still associate in non-HT mode (11a/b/g) if any one of these * ciphers is configured as pairwise. * We can set this to true for non-11n hardware, that'll be checked * separately along with the peer capabilities. */ for (i = 0; i < req->crypto.n_ciphers_pairwise; i++) { if (req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_WEP40 || req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_TKIP || req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_WEP104) { conn_flags |= IEEE80211_CONN_DISABLE_HT; conn_flags |= IEEE80211_CONN_DISABLE_VHT; conn_flags |= IEEE80211_CONN_DISABLE_HE; conn_flags |= IEEE80211_CONN_DISABLE_EHT; netdev_info(sdata->dev, "disabling HT/VHT/HE due to WEP/TKIP use\n"); } } /* also disable HT/VHT/HE/EHT if the AP doesn't use WMM */ if (!bss->wmm_used) { conn_flags |= IEEE80211_CONN_DISABLE_HT; conn_flags |= IEEE80211_CONN_DISABLE_VHT; conn_flags |= IEEE80211_CONN_DISABLE_HE; conn_flags |= IEEE80211_CONN_DISABLE_EHT; netdev_info(sdata->dev, "disabling HT/VHT/HE as WMM/QoS is not supported by the AP\n"); } if (req->flags & ASSOC_REQ_DISABLE_HT) { mlme_dbg(sdata, "HT disabled by flag, disabling HT/VHT/HE\n"); conn_flags |= IEEE80211_CONN_DISABLE_HT; conn_flags |= IEEE80211_CONN_DISABLE_VHT; conn_flags |= IEEE80211_CONN_DISABLE_HE; conn_flags |= IEEE80211_CONN_DISABLE_EHT; } if (req->flags & ASSOC_REQ_DISABLE_VHT) { mlme_dbg(sdata, "VHT disabled by flag, disabling VHT\n"); conn_flags |= IEEE80211_CONN_DISABLE_VHT; } if (req->flags & ASSOC_REQ_DISABLE_HE) { mlme_dbg(sdata, "HE disabled by flag, disabling HE/EHT\n"); conn_flags |= IEEE80211_CONN_DISABLE_HE; conn_flags |= IEEE80211_CONN_DISABLE_EHT; } if (req->flags & ASSOC_REQ_DISABLE_EHT) conn_flags |= IEEE80211_CONN_DISABLE_EHT; memcpy(&ifmgd->ht_capa, &req->ht_capa, sizeof(ifmgd->ht_capa)); memcpy(&ifmgd->ht_capa_mask, &req->ht_capa_mask, sizeof(ifmgd->ht_capa_mask)); memcpy(&ifmgd->vht_capa, &req->vht_capa, sizeof(ifmgd->vht_capa)); memcpy(&ifmgd->vht_capa_mask, &req->vht_capa_mask, sizeof(ifmgd->vht_capa_mask)); memcpy(&ifmgd->s1g_capa, &req->s1g_capa, sizeof(ifmgd->s1g_capa)); memcpy(&ifmgd->s1g_capa_mask, &req->s1g_capa_mask, sizeof(ifmgd->s1g_capa_mask)); if (req->ie && req->ie_len) { memcpy(assoc_data->ie, req->ie, req->ie_len); assoc_data->ie_len = req->ie_len; assoc_data->ie_pos = assoc_data->ie + assoc_data->ie_len; } else { assoc_data->ie_pos = assoc_data->ie; } if (req->fils_kek) { /* should already be checked in cfg80211 - so warn */ if (WARN_ON(req->fils_kek_len > FILS_MAX_KEK_LEN)) { err = -EINVAL; goto err_free; } memcpy(assoc_data->fils_kek, req->fils_kek, req->fils_kek_len); assoc_data->fils_kek_len = req->fils_kek_len; } if (req->fils_nonces) memcpy(assoc_data->fils_nonces, req->fils_nonces, 2 * FILS_NONCE_LEN); /* default timeout */ assoc_data->timeout = jiffies; assoc_data->timeout_started = true; assoc_data->assoc_link_id = assoc_link_id; if (req->ap_mld_addr) { for (i = 0; i < ARRAY_SIZE(assoc_data->link); i++) { assoc_data->link[i].conn_flags = conn_flags; assoc_data->link[i].bss = req->links[i].bss; assoc_data->link[i].disabled = req->links[i].disabled; } /* if there was no authentication, set up the link */ err = ieee80211_vif_set_links(sdata, BIT(assoc_link_id), 0); if (err) goto err_clear; } else { assoc_data->link[0].conn_flags = conn_flags; assoc_data->link[0].bss = cbss; } link = sdata_dereference(sdata->link[assoc_link_id], sdata); if (WARN_ON(!link)) { err = -EINVAL; goto err_clear; } /* keep old conn_flags from ieee80211_prep_channel() from auth */ conn_flags |= link->u.mgd.conn_flags; conn_flags |= ieee80211_setup_assoc_link(sdata, assoc_data, req, conn_flags, assoc_link_id); override = link->u.mgd.conn_flags != conn_flags; link->u.mgd.conn_flags |= conn_flags; if (WARN((sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_UAPSD) && ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK), "U-APSD not supported with HW_PS_NULLFUNC_STACK\n")) sdata->vif.driver_flags &= ~IEEE80211_VIF_SUPPORTS_UAPSD; if (bss->wmm_used && bss->uapsd_supported && (sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_UAPSD)) { assoc_data->uapsd = true; ifmgd->flags |= IEEE80211_STA_UAPSD_ENABLED; } else { assoc_data->uapsd = false; ifmgd->flags &= ~IEEE80211_STA_UAPSD_ENABLED; } if (req->prev_bssid) memcpy(assoc_data->prev_ap_addr, req->prev_bssid, ETH_ALEN); if (req->use_mfp) { ifmgd->mfp = IEEE80211_MFP_REQUIRED; ifmgd->flags |= IEEE80211_STA_MFP_ENABLED; } else { ifmgd->mfp = IEEE80211_MFP_DISABLED; ifmgd->flags &= ~IEEE80211_STA_MFP_ENABLED; } if (req->flags & ASSOC_REQ_USE_RRM) ifmgd->flags |= IEEE80211_STA_ENABLE_RRM; else ifmgd->flags &= ~IEEE80211_STA_ENABLE_RRM; if (req->crypto.control_port) ifmgd->flags |= IEEE80211_STA_CONTROL_PORT; else ifmgd->flags &= ~IEEE80211_STA_CONTROL_PORT; sdata->control_port_protocol = req->crypto.control_port_ethertype; sdata->control_port_no_encrypt = req->crypto.control_port_no_encrypt; sdata->control_port_over_nl80211 = req->crypto.control_port_over_nl80211; sdata->control_port_no_preauth = req->crypto.control_port_no_preauth; /* kick off associate process */ ifmgd->assoc_data = assoc_data; for (i = 0; i < ARRAY_SIZE(assoc_data->link); i++) { if (!assoc_data->link[i].bss) continue; if (i == assoc_data->assoc_link_id) continue; /* only calculate the flags, hence link == NULL */ err = ieee80211_prep_channel(sdata, NULL, assoc_data->link[i].bss, &assoc_data->link[i].conn_flags); if (err) goto err_clear; } /* needed for transmitting the assoc frames properly */ memcpy(sdata->vif.cfg.ap_addr, assoc_data->ap_addr, ETH_ALEN); err = ieee80211_prep_connection(sdata, cbss, req->link_id, req->ap_mld_addr, true, override); if (err) goto err_clear; assoc_data->link[assoc_data->assoc_link_id].conn_flags = link->u.mgd.conn_flags; if (ieee80211_hw_check(&sdata->local->hw, NEED_DTIM_BEFORE_ASSOC)) { const struct cfg80211_bss_ies *beacon_ies; rcu_read_lock(); beacon_ies = rcu_dereference(req->bss->beacon_ies); if (beacon_ies) { /* * Wait up to one beacon interval ... * should this be more if we miss one? */ sdata_info(sdata, "waiting for beacon from %pM\n", link->u.mgd.bssid); assoc_data->timeout = TU_TO_EXP_TIME(req->bss->beacon_interval); assoc_data->timeout_started = true; assoc_data->need_beacon = true; } rcu_read_unlock(); } run_again(sdata, assoc_data->timeout); return 0; err_clear: eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); ifmgd->assoc_data = NULL; err_free: kfree(assoc_data); return err; } int ieee80211_mgd_deauth(struct ieee80211_sub_if_data *sdata, struct cfg80211_deauth_request *req) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; bool tx = !req->local_state_change; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_DEAUTH, }; if (ifmgd->auth_data && ether_addr_equal(ifmgd->auth_data->ap_addr, req->bssid)) { sdata_info(sdata, "aborting authentication with %pM by local choice (Reason: %u=%s)\n", req->bssid, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); drv_mgd_prepare_tx(sdata->local, sdata, &info); ieee80211_send_deauth_disassoc(sdata, req->bssid, req->bssid, IEEE80211_STYPE_DEAUTH, req->reason_code, tx, frame_buf); ieee80211_destroy_auth_data(sdata, false); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); drv_mgd_complete_tx(sdata->local, sdata, &info); return 0; } if (ifmgd->assoc_data && ether_addr_equal(ifmgd->assoc_data->ap_addr, req->bssid)) { sdata_info(sdata, "aborting association with %pM by local choice (Reason: %u=%s)\n", req->bssid, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); drv_mgd_prepare_tx(sdata->local, sdata, &info); ieee80211_send_deauth_disassoc(sdata, req->bssid, req->bssid, IEEE80211_STYPE_DEAUTH, req->reason_code, tx, frame_buf); ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); return 0; } if (ifmgd->associated && ether_addr_equal(sdata->vif.cfg.ap_addr, req->bssid)) { sdata_info(sdata, "deauthenticating from %pM by local choice (Reason: %u=%s)\n", req->bssid, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, req->reason_code, tx, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); drv_mgd_complete_tx(sdata->local, sdata, &info); return 0; } return -ENOTCONN; } int ieee80211_mgd_disassoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_disassoc_request *req) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; if (!sdata->u.mgd.associated || memcmp(sdata->vif.cfg.ap_addr, req->ap_addr, ETH_ALEN)) return -ENOTCONN; sdata_info(sdata, "disassociating from %pM by local choice (Reason: %u=%s)\n", req->ap_addr, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DISASSOC, req->reason_code, !req->local_state_change, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); return 0; } void ieee80211_mgd_stop_link(struct ieee80211_link_data *link) { wiphy_work_cancel(link->sdata->local->hw.wiphy, &link->u.mgd.request_smps_work); wiphy_delayed_work_cancel(link->sdata->local->hw.wiphy, &link->u.mgd.chswitch_work); } void ieee80211_mgd_stop(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; /* * Make sure some work items will not run after this, * they will not do anything but might not have been * cancelled when disconnecting. */ cancel_work_sync(&ifmgd->monitor_work); wiphy_work_cancel(sdata->local->hw.wiphy, &ifmgd->beacon_connection_loss_work); wiphy_work_cancel(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); cancel_delayed_work_sync(&ifmgd->tdls_peer_del_work); wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &ifmgd->ml_reconf_work); sdata_lock(sdata); if (ifmgd->assoc_data) ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT); if (ifmgd->auth_data) ieee80211_destroy_auth_data(sdata, false); spin_lock_bh(&ifmgd->teardown_lock); if (ifmgd->teardown_skb) { kfree_skb(ifmgd->teardown_skb); ifmgd->teardown_skb = NULL; ifmgd->orig_teardown_skb = NULL; } kfree(ifmgd->assoc_req_ies); ifmgd->assoc_req_ies = NULL; ifmgd->assoc_req_ies_len = 0; spin_unlock_bh(&ifmgd->teardown_lock); del_timer_sync(&ifmgd->timer); sdata_unlock(sdata); } void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif, enum nl80211_cqm_rssi_threshold_event rssi_event, s32 rssi_level, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); trace_api_cqm_rssi_notify(sdata, rssi_event, rssi_level); cfg80211_cqm_rssi_notify(sdata->dev, rssi_event, rssi_level, gfp); } EXPORT_SYMBOL(ieee80211_cqm_rssi_notify); void ieee80211_cqm_beacon_loss_notify(struct ieee80211_vif *vif, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); trace_api_cqm_beacon_loss_notify(sdata->local, sdata); cfg80211_cqm_beacon_loss_notify(sdata->dev, gfp); } EXPORT_SYMBOL(ieee80211_cqm_beacon_loss_notify); static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, int rssi_min_thold, int rssi_max_thold) { trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; /* * Scale up threshold values before storing it, as the RSSI averaging * algorithm uses a scaled up value as well. Change this scaling * factor if the RSSI averaging algorithm changes. */ sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; } void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, int rssi_min_thold, int rssi_max_thold) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); WARN_ON(rssi_min_thold == rssi_max_thold || rssi_min_thold > rssi_max_thold); _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); } EXPORT_SYMBOL(ieee80211_enable_rssi_reports); void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); _ieee80211_enable_rssi_reports(sdata, 0, 0); } EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
linux-master
net/mac80211/mlme.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2008-2010 Johannes Berg <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2021-2023 Intel Corporation */ #include <linux/export.h> #include <linux/etherdevice.h> #include <net/mac80211.h> #include <asm/unaligned.h> #include "ieee80211_i.h" #include "rate.h" #include "mesh.h" #include "led.h" #include "wme.h" void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int tmp; skb->pkt_type = IEEE80211_TX_STATUS_MSG; skb_queue_tail(info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS ? &local->skb_queue : &local->skb_queue_unreliable, skb); tmp = skb_queue_len(&local->skb_queue) + skb_queue_len(&local->skb_queue_unreliable); while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT && (skb = skb_dequeue(&local->skb_queue_unreliable))) { ieee80211_free_txskb(hw, skb); tmp--; I802_DEBUG_INC(local->tx_status_drop); } tasklet_schedule(&local->tasklet); } EXPORT_SYMBOL(ieee80211_tx_status_irqsafe); static void ieee80211_handle_filtered_frame(struct ieee80211_local *local, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; int ac; if (info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | IEEE80211_TX_CTL_AMPDU | IEEE80211_TX_CTL_HW_80211_ENCAP)) { ieee80211_free_txskb(&local->hw, skb); return; } /* * This skb 'survived' a round-trip through the driver, and * hopefully the driver didn't mangle it too badly. However, * we can definitely not rely on the control information * being correct. Clear it so we don't get junk there, and * indicate that it needs new processing, but must not be * modified/encrypted again. */ memset(&info->control, 0, sizeof(info->control)); info->control.jiffies = jiffies; info->control.vif = &sta->sdata->vif; info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; info->flags |= IEEE80211_TX_INTFL_RETRANSMISSION; info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; sta->deflink.status_stats.filtered++; /* * Clear more-data bit on filtered frames, it might be set * but later frames might time out so it might have to be * clear again ... It's all rather unlikely (this frame * should time out first, right?) but let's not confuse * peers unnecessarily. */ if (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_MOREDATA); if (ieee80211_is_data_qos(hdr->frame_control)) { u8 *p = ieee80211_get_qos_ctl(hdr); int tid = *p & IEEE80211_QOS_CTL_TID_MASK; /* * Clear EOSP if set, this could happen e.g. * if an absence period (us being a P2P GO) * shortens the SP. */ if (*p & IEEE80211_QOS_CTL_EOSP) *p &= ~IEEE80211_QOS_CTL_EOSP; ac = ieee80211_ac_from_tid(tid); } else { ac = IEEE80211_AC_BE; } /* * Clear the TX filter mask for this STA when sending the next * packet. If the STA went to power save mode, this will happen * when it wakes up for the next time. */ set_sta_flag(sta, WLAN_STA_CLEAR_PS_FILT); ieee80211_clear_fast_xmit(sta); /* * This code races in the following way: * * (1) STA sends frame indicating it will go to sleep and does so * (2) hardware/firmware adds STA to filter list, passes frame up * (3) hardware/firmware processes TX fifo and suppresses a frame * (4) we get TX status before having processed the frame and * knowing that the STA has gone to sleep. * * This is actually quite unlikely even when both those events are * processed from interrupts coming in quickly after one another or * even at the same time because we queue both TX status events and * RX frames to be processed by a tasklet and process them in the * same order that they were received or TX status last. Hence, there * is no race as long as the frame RX is processed before the next TX * status, which drivers can ensure, see below. * * Note that this can only happen if the hardware or firmware can * actually add STAs to the filter list, if this is done by the * driver in response to set_tim() (which will only reduce the race * this whole filtering tries to solve, not completely solve it) * this situation cannot happen. * * To completely solve this race drivers need to make sure that they * (a) don't mix the irq-safe/not irq-safe TX status/RX processing * functions and * (b) always process RX events before TX status events if ordering * can be unknown, for example with different interrupt status * bits. * (c) if PS mode transitions are manual (i.e. the flag * %IEEE80211_HW_AP_LINK_PS is set), always process PS state * changes before calling TX status events if ordering can be * unknown. */ if (test_sta_flag(sta, WLAN_STA_PS_STA) && skb_queue_len(&sta->tx_filtered[ac]) < STA_MAX_TX_BUFFER) { skb_queue_tail(&sta->tx_filtered[ac], skb); sta_info_recalc_tim(sta); if (!timer_pending(&local->sta_cleanup)) mod_timer(&local->sta_cleanup, round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); return; } if (!test_sta_flag(sta, WLAN_STA_PS_STA) && !(info->flags & IEEE80211_TX_INTFL_RETRIED)) { /* Software retry the packet once */ info->flags |= IEEE80211_TX_INTFL_RETRIED; ieee80211_add_pending_skb(local, skb); return; } ps_dbg_ratelimited(sta->sdata, "dropped TX filtered frame, queue_len=%d PS=%d @%lu\n", skb_queue_len(&sta->tx_filtered[ac]), !!test_sta_flag(sta, WLAN_STA_PS_STA), jiffies); ieee80211_free_txskb(&local->hw, skb); } static void ieee80211_check_pending_bar(struct sta_info *sta, u8 *addr, u8 tid) { struct tid_ampdu_tx *tid_tx; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (!tid_tx || !tid_tx->bar_pending) return; tid_tx->bar_pending = false; ieee80211_send_bar(&sta->sdata->vif, addr, tid, tid_tx->failed_bar_ssn); } static void ieee80211_frame_acked(struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *) skb->data; struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; if (ieee80211_is_data_qos(mgmt->frame_control)) { struct ieee80211_hdr *hdr = (void *) skb->data; u8 *qc = ieee80211_get_qos_ctl(hdr); u16 tid = qc[0] & 0xf; ieee80211_check_pending_bar(sta, hdr->addr1, tid); } if (ieee80211_is_action(mgmt->frame_control) && !ieee80211_has_protected(mgmt->frame_control) && mgmt->u.action.category == WLAN_CATEGORY_HT && mgmt->u.action.u.ht_smps.action == WLAN_HT_ACTION_SMPS && ieee80211_sdata_running(sdata)) { enum ieee80211_smps_mode smps_mode; switch (mgmt->u.action.u.ht_smps.smps_control) { case WLAN_HT_SMPS_CONTROL_DYNAMIC: smps_mode = IEEE80211_SMPS_DYNAMIC; break; case WLAN_HT_SMPS_CONTROL_STATIC: smps_mode = IEEE80211_SMPS_STATIC; break; case WLAN_HT_SMPS_CONTROL_DISABLED: default: /* shouldn't happen since we don't send that */ smps_mode = IEEE80211_SMPS_OFF; break; } if (sdata->vif.type == NL80211_IFTYPE_STATION) { /* * This update looks racy, but isn't -- if we come * here we've definitely got a station that we're * talking to, and on a managed interface that can * only be the AP. And the only other place updating * this variable in managed mode is before association. */ sdata->deflink.smps_mode = smps_mode; ieee80211_queue_work(&local->hw, &sdata->recalc_smps); } } } static void ieee80211_set_bar_pending(struct sta_info *sta, u8 tid, u16 ssn) { struct tid_ampdu_tx *tid_tx; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (!tid_tx) return; tid_tx->failed_bar_ssn = ssn; tid_tx->bar_pending = true; } static int ieee80211_tx_radiotap_len(struct ieee80211_tx_info *info, struct ieee80211_tx_status *status) { struct ieee80211_rate_status *status_rate = NULL; int len = sizeof(struct ieee80211_radiotap_header); if (status && status->n_rates) status_rate = &status->rates[status->n_rates - 1]; /* IEEE80211_RADIOTAP_RATE rate */ if (status_rate && !(status_rate->rate_idx.flags & (RATE_INFO_FLAGS_MCS | RATE_INFO_FLAGS_DMG | RATE_INFO_FLAGS_EDMG | RATE_INFO_FLAGS_VHT_MCS | RATE_INFO_FLAGS_HE_MCS))) len += 2; else if (info->status.rates[0].idx >= 0 && !(info->status.rates[0].flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS))) len += 2; /* IEEE80211_RADIOTAP_TX_FLAGS */ len += 2; /* IEEE80211_RADIOTAP_DATA_RETRIES */ len += 1; /* IEEE80211_RADIOTAP_MCS * IEEE80211_RADIOTAP_VHT */ if (status_rate) { if (status_rate->rate_idx.flags & RATE_INFO_FLAGS_MCS) len += 3; else if (status_rate->rate_idx.flags & RATE_INFO_FLAGS_VHT_MCS) len = ALIGN(len, 2) + 12; else if (status_rate->rate_idx.flags & RATE_INFO_FLAGS_HE_MCS) len = ALIGN(len, 2) + 12; } else if (info->status.rates[0].idx >= 0) { if (info->status.rates[0].flags & IEEE80211_TX_RC_MCS) len += 3; else if (info->status.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) len = ALIGN(len, 2) + 12; } return len; } static void ieee80211_add_tx_radiotap_header(struct ieee80211_local *local, struct sk_buff *skb, int retry_count, int rtap_len, int shift, struct ieee80211_tx_status *status) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_radiotap_header *rthdr; struct ieee80211_rate_status *status_rate = NULL; unsigned char *pos; u16 legacy_rate = 0; u16 txflags; if (status && status->n_rates) status_rate = &status->rates[status->n_rates - 1]; rthdr = skb_push(skb, rtap_len); memset(rthdr, 0, rtap_len); rthdr->it_len = cpu_to_le16(rtap_len); rthdr->it_present = cpu_to_le32(BIT(IEEE80211_RADIOTAP_TX_FLAGS) | BIT(IEEE80211_RADIOTAP_DATA_RETRIES)); pos = (unsigned char *)(rthdr + 1); /* * XXX: Once radiotap gets the bitmap reset thing the vendor * extensions proposal contains, we can actually report * the whole set of tries we did. */ /* IEEE80211_RADIOTAP_RATE */ if (status_rate) { if (!(status_rate->rate_idx.flags & (RATE_INFO_FLAGS_MCS | RATE_INFO_FLAGS_DMG | RATE_INFO_FLAGS_EDMG | RATE_INFO_FLAGS_VHT_MCS | RATE_INFO_FLAGS_HE_MCS))) legacy_rate = status_rate->rate_idx.legacy; } else if (info->status.rates[0].idx >= 0 && !(info->status.rates[0].flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS))) { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[info->band]; legacy_rate = sband->bitrates[info->status.rates[0].idx].bitrate; } if (legacy_rate) { rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); *pos = DIV_ROUND_UP(legacy_rate, 5 * (1 << shift)); /* padding for tx flags */ pos += 2; } /* IEEE80211_RADIOTAP_TX_FLAGS */ txflags = 0; if (!(info->flags & IEEE80211_TX_STAT_ACK) && !is_multicast_ether_addr(hdr->addr1)) txflags |= IEEE80211_RADIOTAP_F_TX_FAIL; if (info->status.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) txflags |= IEEE80211_RADIOTAP_F_TX_CTS; if (info->status.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) txflags |= IEEE80211_RADIOTAP_F_TX_RTS; put_unaligned_le16(txflags, pos); pos += 2; /* IEEE80211_RADIOTAP_DATA_RETRIES */ /* for now report the total retry_count */ *pos = retry_count; pos++; if (status_rate && (status_rate->rate_idx.flags & RATE_INFO_FLAGS_MCS)) { rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); pos[0] = IEEE80211_RADIOTAP_MCS_HAVE_MCS | IEEE80211_RADIOTAP_MCS_HAVE_GI | IEEE80211_RADIOTAP_MCS_HAVE_BW; if (status_rate->rate_idx.flags & RATE_INFO_FLAGS_SHORT_GI) pos[1] |= IEEE80211_RADIOTAP_MCS_SGI; if (status_rate->rate_idx.bw == RATE_INFO_BW_40) pos[1] |= IEEE80211_RADIOTAP_MCS_BW_40; pos[2] = status_rate->rate_idx.mcs; pos += 3; } else if (status_rate && (status_rate->rate_idx.flags & RATE_INFO_FLAGS_VHT_MCS)) { u16 known = local->hw.radiotap_vht_details & (IEEE80211_RADIOTAP_VHT_KNOWN_GI | IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH); rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); /* required alignment from rthdr */ pos = (u8 *)rthdr + ALIGN(pos - (u8 *)rthdr, 2); /* u16 known - IEEE80211_RADIOTAP_VHT_KNOWN_* */ put_unaligned_le16(known, pos); pos += 2; /* u8 flags - IEEE80211_RADIOTAP_VHT_FLAG_* */ if (status_rate->rate_idx.flags & RATE_INFO_FLAGS_SHORT_GI) *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; pos++; /* u8 bandwidth */ switch (status_rate->rate_idx.bw) { case RATE_INFO_BW_160: *pos = 11; break; case RATE_INFO_BW_80: *pos = 4; break; case RATE_INFO_BW_40: *pos = 1; break; default: *pos = 0; break; } pos++; /* u8 mcs_nss[4] */ *pos = (status_rate->rate_idx.mcs << 4) | status_rate->rate_idx.nss; pos += 4; /* u8 coding */ pos++; /* u8 group_id */ pos++; /* u16 partial_aid */ pos += 2; } else if (status_rate && (status_rate->rate_idx.flags & RATE_INFO_FLAGS_HE_MCS)) { struct ieee80211_radiotap_he *he; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); /* required alignment from rthdr */ pos = (u8 *)rthdr + ALIGN(pos - (u8 *)rthdr, 2); he = (struct ieee80211_radiotap_he *)pos; he->data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_SU | IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); he->data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN); #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) he->data6 |= HE_PREP(DATA6_NSTS, status_rate->rate_idx.nss); #define CHECK_GI(s) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ (int)NL80211_RATE_INFO_HE_GI_##s) CHECK_GI(0_8); CHECK_GI(1_6); CHECK_GI(3_2); he->data3 |= HE_PREP(DATA3_DATA_MCS, status_rate->rate_idx.mcs); he->data3 |= HE_PREP(DATA3_DATA_DCM, status_rate->rate_idx.he_dcm); he->data5 |= HE_PREP(DATA5_GI, status_rate->rate_idx.he_gi); switch (status_rate->rate_idx.bw) { case RATE_INFO_BW_20: he->data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); break; case RATE_INFO_BW_40: he->data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); break; case RATE_INFO_BW_80: he->data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); break; case RATE_INFO_BW_160: he->data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); break; case RATE_INFO_BW_HE_RU: #define CHECK_RU_ALLOC(s) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) CHECK_RU_ALLOC(26); CHECK_RU_ALLOC(52); CHECK_RU_ALLOC(106); CHECK_RU_ALLOC(242); CHECK_RU_ALLOC(484); CHECK_RU_ALLOC(996); CHECK_RU_ALLOC(2x996); he->data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, status_rate->rate_idx.he_ru_alloc + 4); break; default: WARN_ONCE(1, "Invalid SU BW %d\n", status_rate->rate_idx.bw); } pos += sizeof(struct ieee80211_radiotap_he); } if (status_rate || info->status.rates[0].idx < 0) return; /* IEEE80211_RADIOTAP_MCS * IEEE80211_RADIOTAP_VHT */ if (info->status.rates[0].flags & IEEE80211_TX_RC_MCS) { rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); pos[0] = IEEE80211_RADIOTAP_MCS_HAVE_MCS | IEEE80211_RADIOTAP_MCS_HAVE_GI | IEEE80211_RADIOTAP_MCS_HAVE_BW; if (info->status.rates[0].flags & IEEE80211_TX_RC_SHORT_GI) pos[1] |= IEEE80211_RADIOTAP_MCS_SGI; if (info->status.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) pos[1] |= IEEE80211_RADIOTAP_MCS_BW_40; if (info->status.rates[0].flags & IEEE80211_TX_RC_GREEN_FIELD) pos[1] |= IEEE80211_RADIOTAP_MCS_FMT_GF; pos[2] = info->status.rates[0].idx; pos += 3; } else if (info->status.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) { u16 known = local->hw.radiotap_vht_details & (IEEE80211_RADIOTAP_VHT_KNOWN_GI | IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH); rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); /* required alignment from rthdr */ pos = (u8 *)rthdr + ALIGN(pos - (u8 *)rthdr, 2); /* u16 known - IEEE80211_RADIOTAP_VHT_KNOWN_* */ put_unaligned_le16(known, pos); pos += 2; /* u8 flags - IEEE80211_RADIOTAP_VHT_FLAG_* */ if (info->status.rates[0].flags & IEEE80211_TX_RC_SHORT_GI) *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; pos++; /* u8 bandwidth */ if (info->status.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) *pos = 1; else if (info->status.rates[0].flags & IEEE80211_TX_RC_80_MHZ_WIDTH) *pos = 4; else if (info->status.rates[0].flags & IEEE80211_TX_RC_160_MHZ_WIDTH) *pos = 11; else /* IEEE80211_TX_RC_{20_MHZ_WIDTH,FIXME:DUP_DATA} */ *pos = 0; pos++; /* u8 mcs_nss[4] */ *pos = (ieee80211_rate_get_vht_mcs(&info->status.rates[0]) << 4) | ieee80211_rate_get_vht_nss(&info->status.rates[0]); pos += 4; /* u8 coding */ pos++; /* u8 group_id */ pos++; /* u16 partial_aid */ pos += 2; } } /* * Handles the tx for TDLS teardown frames. * If the frame wasn't ACKed by the peer - it will be re-sent through the AP */ static void ieee80211_tdls_td_tx_handle(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 flags) { struct sk_buff *teardown_skb; struct sk_buff *orig_teardown_skb; bool is_teardown = false; /* Get the teardown data we need and free the lock */ spin_lock(&sdata->u.mgd.teardown_lock); teardown_skb = sdata->u.mgd.teardown_skb; orig_teardown_skb = sdata->u.mgd.orig_teardown_skb; if ((skb == orig_teardown_skb) && teardown_skb) { sdata->u.mgd.teardown_skb = NULL; sdata->u.mgd.orig_teardown_skb = NULL; is_teardown = true; } spin_unlock(&sdata->u.mgd.teardown_lock); if (is_teardown) { /* This mechanism relies on being able to get ACKs */ WARN_ON(!ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)); /* Check if peer has ACKed */ if (flags & IEEE80211_TX_STAT_ACK) { dev_kfree_skb_any(teardown_skb); } else { tdls_dbg(sdata, "TDLS Resending teardown through AP\n"); ieee80211_subif_start_xmit(teardown_skb, skb->dev); } } } static struct ieee80211_sub_if_data * ieee80211_sdata_from_skb(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata; if (skb->dev) { list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (!sdata->dev) continue; if (skb->dev == sdata->dev) return sdata; } return NULL; } return rcu_dereference(local->p2p_sdata); } static void ieee80211_report_ack_skb(struct ieee80211_local *local, struct sk_buff *orig_skb, bool acked, bool dropped, ktime_t ack_hwtstamp) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(orig_skb); struct sk_buff *skb; unsigned long flags; spin_lock_irqsave(&local->ack_status_lock, flags); skb = idr_remove(&local->ack_status_frames, info->ack_frame_id); spin_unlock_irqrestore(&local->ack_status_lock, flags); if (!skb) return; if (info->flags & IEEE80211_TX_INTFL_NL80211_FRAME_TX) { u64 cookie = IEEE80211_SKB_CB(skb)->ack.cookie; struct ieee80211_sub_if_data *sdata; struct ieee80211_hdr *hdr = (void *)skb->data; bool is_valid_ack_signal = !!(info->status.flags & IEEE80211_TX_STATUS_ACK_SIGNAL_VALID); struct cfg80211_tx_status status = { .cookie = cookie, .buf = skb->data, .len = skb->len, .ack = acked, }; if (ieee80211_is_timing_measurement(orig_skb) || ieee80211_is_ftm(orig_skb)) { status.tx_tstamp = ktime_to_ns(skb_hwtstamps(orig_skb)->hwtstamp); status.ack_tstamp = ktime_to_ns(ack_hwtstamp); } rcu_read_lock(); sdata = ieee80211_sdata_from_skb(local, skb); if (sdata) { if (skb->protocol == sdata->control_port_protocol || skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) cfg80211_control_port_tx_status(&sdata->wdev, cookie, skb->data, skb->len, acked, GFP_ATOMIC); else if (ieee80211_is_any_nullfunc(hdr->frame_control)) cfg80211_probe_status(sdata->dev, hdr->addr1, cookie, acked, info->status.ack_signal, is_valid_ack_signal, GFP_ATOMIC); else if (ieee80211_is_mgmt(hdr->frame_control)) cfg80211_mgmt_tx_status_ext(&sdata->wdev, &status, GFP_ATOMIC); else pr_warn("Unknown status report in ack skb\n"); } rcu_read_unlock(); dev_kfree_skb_any(skb); } else if (dropped) { dev_kfree_skb_any(skb); } else { /* consumes skb */ skb_complete_wifi_ack(skb, acked); } } static void ieee80211_report_used_skb(struct ieee80211_local *local, struct sk_buff *skb, bool dropped, ktime_t ack_hwtstamp) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); u16 tx_time_est = ieee80211_info_get_tx_time_est(info); struct ieee80211_hdr *hdr = (void *)skb->data; bool acked = info->flags & IEEE80211_TX_STAT_ACK; if (dropped) acked = false; if (tx_time_est) { struct sta_info *sta; rcu_read_lock(); sta = sta_info_get_by_addrs(local, hdr->addr1, hdr->addr2); ieee80211_sta_update_pending_airtime(local, sta, skb_get_queue_mapping(skb), tx_time_est, true); rcu_read_unlock(); } if (info->flags & IEEE80211_TX_INTFL_MLME_CONN_TX) { struct ieee80211_sub_if_data *sdata; rcu_read_lock(); sdata = ieee80211_sdata_from_skb(local, skb); if (!sdata) { skb->dev = NULL; } else if (!dropped) { unsigned int hdr_size = ieee80211_hdrlen(hdr->frame_control); /* Check to see if packet is a TDLS teardown packet */ if (ieee80211_is_data(hdr->frame_control) && (ieee80211_get_tdls_action(skb, hdr_size) == WLAN_TDLS_TEARDOWN)) { ieee80211_tdls_td_tx_handle(local, sdata, skb, info->flags); } else if (ieee80211_s1g_is_twt_setup(skb)) { if (!acked) { struct sk_buff *qskb; qskb = skb_clone(skb, GFP_ATOMIC); if (qskb) { skb_queue_tail(&sdata->status_queue, qskb); wiphy_work_queue(local->hw.wiphy, &sdata->work); } } } else { ieee80211_mgd_conn_tx_status(sdata, hdr->frame_control, acked); } } rcu_read_unlock(); } else if (info->ack_frame_id) { ieee80211_report_ack_skb(local, skb, acked, dropped, ack_hwtstamp); } if (!dropped && skb->destructor) { skb->wifi_acked_valid = 1; skb->wifi_acked = acked; } ieee80211_led_tx(local); if (skb_has_frag_list(skb)) { kfree_skb_list(skb_shinfo(skb)->frag_list); skb_shinfo(skb)->frag_list = NULL; } } /* * Use a static threshold for now, best value to be determined * by testing ... * Should it depend on: * - on # of retransmissions * - current throughput (higher value for higher tpt)? */ #define STA_LOST_PKT_THRESHOLD 50 #define STA_LOST_PKT_TIME HZ /* 1 sec since last ACK */ #define STA_LOST_TDLS_PKT_TIME (10*HZ) /* 10secs since last ACK */ static void ieee80211_lost_packet(struct sta_info *sta, struct ieee80211_tx_info *info) { unsigned long pkt_time = STA_LOST_PKT_TIME; unsigned int pkt_thr = STA_LOST_PKT_THRESHOLD; /* If driver relies on its own algorithm for station kickout, skip * mac80211 packet loss mechanism. */ if (ieee80211_hw_check(&sta->local->hw, REPORTS_LOW_ACK)) return; /* This packet was aggregated but doesn't carry status info */ if ((info->flags & IEEE80211_TX_CTL_AMPDU) && !(info->flags & IEEE80211_TX_STAT_AMPDU)) return; sta->deflink.status_stats.lost_packets++; if (sta->sta.tdls) { pkt_time = STA_LOST_TDLS_PKT_TIME; pkt_thr = STA_LOST_PKT_THRESHOLD; } /* * If we're in TDLS mode, make sure that all STA_LOST_PKT_THRESHOLD * of the last packets were lost, and that no ACK was received in the * last STA_LOST_TDLS_PKT_TIME ms, before triggering the CQM packet-loss * mechanism. * For non-TDLS, use STA_LOST_PKT_THRESHOLD and STA_LOST_PKT_TIME */ if (sta->deflink.status_stats.lost_packets < pkt_thr || !time_after(jiffies, sta->deflink.status_stats.last_pkt_time + pkt_time)) return; cfg80211_cqm_pktloss_notify(sta->sdata->dev, sta->sta.addr, sta->deflink.status_stats.lost_packets, GFP_ATOMIC); sta->deflink.status_stats.lost_packets = 0; } static int ieee80211_tx_get_rates(struct ieee80211_hw *hw, struct ieee80211_tx_info *info, int *retry_count) { int count = -1; int i; for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { if ((info->flags & IEEE80211_TX_CTL_AMPDU) && !(info->flags & IEEE80211_TX_STAT_AMPDU)) { /* just the first aggr frame carry status info */ info->status.rates[i].idx = -1; info->status.rates[i].count = 0; break; } else if (info->status.rates[i].idx < 0) { break; } else if (i >= hw->max_report_rates) { /* the HW cannot have attempted that rate */ info->status.rates[i].idx = -1; info->status.rates[i].count = 0; break; } count += info->status.rates[i].count; } if (count < 0) count = 0; *retry_count = count; return i - 1; } void ieee80211_tx_monitor(struct ieee80211_local *local, struct sk_buff *skb, int retry_count, int shift, bool send_to_cooked, struct ieee80211_tx_status *status) { struct sk_buff *skb2; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sub_if_data *sdata; struct net_device *prev_dev = NULL; int rtap_len; /* send frame to monitor interfaces now */ rtap_len = ieee80211_tx_radiotap_len(info, status); if (WARN_ON_ONCE(skb_headroom(skb) < rtap_len)) { pr_err("ieee80211_tx_status: headroom too small\n"); dev_kfree_skb(skb); return; } ieee80211_add_tx_radiotap_header(local, skb, retry_count, rtap_len, shift, status); /* XXX: is this sufficient for BPF? */ skb_reset_mac_header(skb); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (sdata->vif.type == NL80211_IFTYPE_MONITOR) { if (!ieee80211_sdata_running(sdata)) continue; if ((sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) && !send_to_cooked) continue; if (prev_dev) { skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) { skb2->dev = prev_dev; netif_rx(skb2); } } prev_dev = sdata->dev; } } if (prev_dev) { skb->dev = prev_dev; netif_rx(skb); skb = NULL; } rcu_read_unlock(); dev_kfree_skb(skb); } static void __ieee80211_tx_status(struct ieee80211_hw *hw, struct ieee80211_tx_status *status, int rates_idx, int retry_count) { struct sk_buff *skb = status->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_info *info = status->info; struct sta_info *sta; __le16 fc; bool send_to_cooked; bool acked; bool noack_success; struct ieee80211_bar *bar; int shift = 0; int tid = IEEE80211_NUM_TIDS; fc = hdr->frame_control; if (status->sta) { sta = container_of(status->sta, struct sta_info, sta); shift = ieee80211_vif_get_shift(&sta->sdata->vif); if (info->flags & IEEE80211_TX_STATUS_EOSP) clear_sta_flag(sta, WLAN_STA_SP); acked = !!(info->flags & IEEE80211_TX_STAT_ACK); noack_success = !!(info->flags & IEEE80211_TX_STAT_NOACK_TRANSMITTED); /* mesh Peer Service Period support */ if (ieee80211_vif_is_mesh(&sta->sdata->vif) && ieee80211_is_data_qos(fc)) ieee80211_mpsp_trigger_process( ieee80211_get_qos_ctl(hdr), sta, true, acked); if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL) && (ieee80211_is_data(hdr->frame_control)) && (rates_idx != -1)) sta->deflink.tx_stats.last_rate = info->status.rates[rates_idx]; if ((info->flags & IEEE80211_TX_STAT_AMPDU_NO_BACK) && (ieee80211_is_data_qos(fc))) { u16 ssn; u8 *qc; qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & 0xf; ssn = ((le16_to_cpu(hdr->seq_ctrl) + 0x10) & IEEE80211_SCTL_SEQ); ieee80211_send_bar(&sta->sdata->vif, hdr->addr1, tid, ssn); } else if (ieee80211_is_data_qos(fc)) { u8 *qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & 0xf; } if (!acked && ieee80211_is_back_req(fc)) { u16 control; /* * BAR failed, store the last SSN and retry sending * the BAR when the next unicast transmission on the * same TID succeeds. */ bar = (struct ieee80211_bar *) skb->data; control = le16_to_cpu(bar->control); if (!(control & IEEE80211_BAR_CTRL_MULTI_TID)) { u16 ssn = le16_to_cpu(bar->start_seq_num); tid = (control & IEEE80211_BAR_CTRL_TID_INFO_MASK) >> IEEE80211_BAR_CTRL_TID_INFO_SHIFT; ieee80211_set_bar_pending(sta, tid, ssn); } } if (info->flags & IEEE80211_TX_STAT_TX_FILTERED) { ieee80211_handle_filtered_frame(local, sta, skb); return; } else if (ieee80211_is_data_present(fc)) { if (!acked && !noack_success) sta->deflink.status_stats.msdu_failed[tid]++; sta->deflink.status_stats.msdu_retries[tid] += retry_count; } if (!(info->flags & IEEE80211_TX_CTL_INJECTED) && acked) ieee80211_frame_acked(sta, skb); } /* SNMP counters * Fragments are passed to low-level drivers as separate skbs, so these * are actually fragments, not frames. Update frame counters only for * the first fragment of the frame. */ if ((info->flags & IEEE80211_TX_STAT_ACK) || (info->flags & IEEE80211_TX_STAT_NOACK_TRANSMITTED)) { if (ieee80211_is_first_frag(hdr->seq_ctrl)) { I802_DEBUG_INC(local->dot11TransmittedFrameCount); if (is_multicast_ether_addr(ieee80211_get_DA(hdr))) I802_DEBUG_INC(local->dot11MulticastTransmittedFrameCount); if (retry_count > 0) I802_DEBUG_INC(local->dot11RetryCount); if (retry_count > 1) I802_DEBUG_INC(local->dot11MultipleRetryCount); } /* This counter shall be incremented for an acknowledged MPDU * with an individual address in the address 1 field or an MPDU * with a multicast address in the address 1 field of type Data * or Management. */ if (!is_multicast_ether_addr(hdr->addr1) || ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) I802_DEBUG_INC(local->dot11TransmittedFragmentCount); } else { if (ieee80211_is_first_frag(hdr->seq_ctrl)) I802_DEBUG_INC(local->dot11FailedCount); } if (ieee80211_is_any_nullfunc(fc) && ieee80211_has_pm(fc) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS) && !(info->flags & IEEE80211_TX_CTL_INJECTED) && local->ps_sdata && !(local->scanning)) { if (info->flags & IEEE80211_TX_STAT_ACK) local->ps_sdata->u.mgd.flags |= IEEE80211_STA_NULLFUNC_ACKED; mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(10)); } ieee80211_report_used_skb(local, skb, false, status->ack_hwtstamp); /* this was a transmitted frame, but now we want to reuse it */ skb_orphan(skb); /* Need to make a copy before skb->cb gets cleared */ send_to_cooked = !!(info->flags & IEEE80211_TX_CTL_INJECTED) || !(ieee80211_is_data(fc)); /* * This is a bit racy but we can avoid a lot of work * with this test... */ if (!local->monitors && (!send_to_cooked || !local->cooked_mntrs)) { if (status->free_list) list_add_tail(&skb->list, status->free_list); else dev_kfree_skb(skb); return; } /* send to monitor interfaces */ ieee80211_tx_monitor(local, skb, retry_count, shift, send_to_cooked, status); } void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_status status = { .skb = skb, .info = IEEE80211_SKB_CB(skb), }; struct sta_info *sta; rcu_read_lock(); sta = sta_info_get_by_addrs(local, hdr->addr1, hdr->addr2); if (sta) status.sta = &sta->sta; ieee80211_tx_status_ext(hw, &status); rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_tx_status); void ieee80211_tx_status_ext(struct ieee80211_hw *hw, struct ieee80211_tx_status *status) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_info *info = status->info; struct ieee80211_sta *pubsta = status->sta; struct sk_buff *skb = status->skb; struct sta_info *sta = NULL; int rates_idx, retry_count; bool acked, noack_success, ack_signal_valid; u16 tx_time_est; if (pubsta) { sta = container_of(pubsta, struct sta_info, sta); if (status->n_rates) sta->deflink.tx_stats.last_rate_info = status->rates[status->n_rates - 1].rate_idx; } if (skb && (tx_time_est = ieee80211_info_get_tx_time_est(IEEE80211_SKB_CB(skb))) > 0) { /* Do this here to avoid the expensive lookup of the sta * in ieee80211_report_used_skb(). */ ieee80211_sta_update_pending_airtime(local, sta, skb_get_queue_mapping(skb), tx_time_est, true); ieee80211_info_set_tx_time_est(IEEE80211_SKB_CB(skb), 0); } if (!status->info) goto free; rates_idx = ieee80211_tx_get_rates(hw, info, &retry_count); acked = !!(info->flags & IEEE80211_TX_STAT_ACK); noack_success = !!(info->flags & IEEE80211_TX_STAT_NOACK_TRANSMITTED); ack_signal_valid = !!(info->status.flags & IEEE80211_TX_STATUS_ACK_SIGNAL_VALID); if (pubsta) { struct ieee80211_sub_if_data *sdata = sta->sdata; if (!acked && !noack_success) sta->deflink.status_stats.retry_failed++; sta->deflink.status_stats.retry_count += retry_count; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { if (sdata->vif.type == NL80211_IFTYPE_STATION && skb && !(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) ieee80211_sta_tx_notify(sdata, (void *) skb->data, acked, info->status.tx_time); if (acked) { sta->deflink.status_stats.last_ack = jiffies; if (sta->deflink.status_stats.lost_packets) sta->deflink.status_stats.lost_packets = 0; /* Track when last packet was ACKed */ sta->deflink.status_stats.last_pkt_time = jiffies; /* Reset connection monitor */ if (sdata->vif.type == NL80211_IFTYPE_STATION && unlikely(sdata->u.mgd.probe_send_count > 0)) sdata->u.mgd.probe_send_count = 0; if (ack_signal_valid) { sta->deflink.status_stats.last_ack_signal = (s8)info->status.ack_signal; sta->deflink.status_stats.ack_signal_filled = true; ewma_avg_signal_add(&sta->deflink.status_stats.avg_ack_signal, -info->status.ack_signal); } } else if (test_sta_flag(sta, WLAN_STA_PS_STA)) { /* * The STA is in power save mode, so assume * that this TX packet failed because of that. */ if (skb) ieee80211_handle_filtered_frame(local, sta, skb); return; } else if (noack_success) { /* nothing to do here, do not account as lost */ } else { ieee80211_lost_packet(sta, info); } } rate_control_tx_status(local, status); if (ieee80211_vif_is_mesh(&sta->sdata->vif)) ieee80211s_update_metric(local, sta, status); } if (skb && !(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) return __ieee80211_tx_status(hw, status, rates_idx, retry_count); if (acked || noack_success) { I802_DEBUG_INC(local->dot11TransmittedFrameCount); if (!pubsta) I802_DEBUG_INC(local->dot11MulticastTransmittedFrameCount); if (retry_count > 0) I802_DEBUG_INC(local->dot11RetryCount); if (retry_count > 1) I802_DEBUG_INC(local->dot11MultipleRetryCount); } else { I802_DEBUG_INC(local->dot11FailedCount); } free: if (!skb) return; ieee80211_report_used_skb(local, skb, false, status->ack_hwtstamp); if (status->free_list) list_add_tail(&skb->list, status->free_list); else dev_kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_tx_status_ext); void ieee80211_tx_rate_update(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct ieee80211_tx_info *info) { struct ieee80211_local *local = hw_to_local(hw); struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_tx_status status = { .info = info, .sta = pubsta, }; rate_control_tx_status(local, &status); if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) sta->deflink.tx_stats.last_rate = info->status.rates[0]; } EXPORT_SYMBOL(ieee80211_tx_rate_update); void ieee80211_report_low_ack(struct ieee80211_sta *pubsta, u32 num_packets) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); cfg80211_cqm_pktloss_notify(sta->sdata->dev, sta->sta.addr, num_packets, GFP_ATOMIC); } EXPORT_SYMBOL(ieee80211_report_low_ack); void ieee80211_free_txskb(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_local *local = hw_to_local(hw); ktime_t kt = ktime_set(0, 0); ieee80211_report_used_skb(local, skb, true, kt); dev_kfree_skb_any(skb); } EXPORT_SYMBOL(ieee80211_free_txskb); void ieee80211_purge_tx_queue(struct ieee80211_hw *hw, struct sk_buff_head *skbs) { struct sk_buff *skb; while ((skb = __skb_dequeue(skbs))) ieee80211_free_txskb(hw, skb); }
linux-master
net/mac80211/status.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2003-2004, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2014-2015, Qualcomm Atheros, Inc. * * Rewrite: Copyright (C) 2013 Linaro Ltd <[email protected]> */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/err.h> #include <linux/scatterlist.h> #include <crypto/aead.h> #include "aead_api.h" int aead_encrypt(struct crypto_aead *tfm, u8 *b_0, u8 *aad, size_t aad_len, u8 *data, size_t data_len, u8 *mic) { size_t mic_len = crypto_aead_authsize(tfm); struct scatterlist sg[3]; struct aead_request *aead_req; int reqsize = sizeof(*aead_req) + crypto_aead_reqsize(tfm); u8 *__aad; int ret; aead_req = kzalloc(reqsize + aad_len, GFP_ATOMIC); if (!aead_req) return -ENOMEM; __aad = (u8 *)aead_req + reqsize; memcpy(__aad, aad, aad_len); sg_init_table(sg, 3); sg_set_buf(&sg[0], __aad, aad_len); sg_set_buf(&sg[1], data, data_len); sg_set_buf(&sg[2], mic, mic_len); aead_request_set_tfm(aead_req, tfm); aead_request_set_crypt(aead_req, sg, sg, data_len, b_0); aead_request_set_ad(aead_req, sg[0].length); ret = crypto_aead_encrypt(aead_req); kfree_sensitive(aead_req); return ret; } int aead_decrypt(struct crypto_aead *tfm, u8 *b_0, u8 *aad, size_t aad_len, u8 *data, size_t data_len, u8 *mic) { size_t mic_len = crypto_aead_authsize(tfm); struct scatterlist sg[3]; struct aead_request *aead_req; int reqsize = sizeof(*aead_req) + crypto_aead_reqsize(tfm); u8 *__aad; int err; if (data_len == 0) return -EINVAL; aead_req = kzalloc(reqsize + aad_len, GFP_ATOMIC); if (!aead_req) return -ENOMEM; __aad = (u8 *)aead_req + reqsize; memcpy(__aad, aad, aad_len); sg_init_table(sg, 3); sg_set_buf(&sg[0], __aad, aad_len); sg_set_buf(&sg[1], data, data_len); sg_set_buf(&sg[2], mic, mic_len); aead_request_set_tfm(aead_req, tfm); aead_request_set_crypt(aead_req, sg, sg, data_len + mic_len, b_0); aead_request_set_ad(aead_req, sg[0].length); err = crypto_aead_decrypt(aead_req); kfree_sensitive(aead_req); return err; } struct crypto_aead * aead_key_setup_encrypt(const char *alg, const u8 key[], size_t key_len, size_t mic_len) { struct crypto_aead *tfm; int err; tfm = crypto_alloc_aead(alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) return tfm; err = crypto_aead_setkey(tfm, key, key_len); if (err) goto free_aead; err = crypto_aead_setauthsize(tfm, mic_len); if (err) goto free_aead; return tfm; free_aead: crypto_free_aead(tfm); return ERR_PTR(err); } void aead_key_free(struct crypto_aead *tfm) { crypto_free_aead(tfm); }
linux-master
net/mac80211/aead_api.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2003-2005 Devicescape Software, Inc. * Copyright (c) 2006 Jiri Benc <[email protected]> * Copyright 2007 Johannes Berg <[email protected]> * Copyright (C) 2015 Intel Deutschland GmbH * Copyright (C) 2021-2022 Intel Corporation */ #include <linux/kobject.h> #include <linux/slab.h> #include "ieee80211_i.h" #include "key.h" #include "debugfs.h" #include "debugfs_key.h" #define KEY_READ(name, prop, format_string) \ static ssize_t key_##name##_read(struct file *file, \ char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ struct ieee80211_key *key = file->private_data; \ return mac80211_format_buffer(userbuf, count, ppos, \ format_string, key->prop); \ } #define KEY_READ_X(name) KEY_READ(name, name, "0x%x\n") #define KEY_OPS(name) \ static const struct file_operations key_ ##name## _ops = { \ .read = key_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define KEY_OPS_W(name) \ static const struct file_operations key_ ##name## _ops = { \ .read = key_##name##_read, \ .write = key_##name##_write, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define KEY_FILE(name, format) \ KEY_READ_##format(name) \ KEY_OPS(name) #define KEY_CONF_READ(name, format_string) \ KEY_READ(conf_##name, conf.name, format_string) #define KEY_CONF_READ_D(name) KEY_CONF_READ(name, "%d\n") #define KEY_CONF_OPS(name) \ static const struct file_operations key_ ##name## _ops = { \ .read = key_conf_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define KEY_CONF_FILE(name, format) \ KEY_CONF_READ_##format(name) \ KEY_CONF_OPS(name) KEY_CONF_FILE(keylen, D); KEY_CONF_FILE(keyidx, D); KEY_CONF_FILE(hw_key_idx, D); KEY_FILE(flags, X); KEY_READ(ifindex, sdata->name, "%s\n"); KEY_OPS(ifindex); static ssize_t key_algorithm_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char buf[15]; struct ieee80211_key *key = file->private_data; u32 c = key->conf.cipher; sprintf(buf, "%.2x-%.2x-%.2x:%d\n", c >> 24, (c >> 16) & 0xff, (c >> 8) & 0xff, c & 0xff); return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf)); } KEY_OPS(algorithm); static ssize_t key_tx_spec_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct ieee80211_key *key = file->private_data; u64 pn; int ret; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: return -EINVAL; case WLAN_CIPHER_SUITE_TKIP: /* not supported yet */ return -EOPNOTSUPP; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: ret = kstrtou64_from_user(userbuf, count, 16, &pn); if (ret) return ret; /* PN is a 48-bit counter */ if (pn >= (1ULL << 48)) return -ERANGE; atomic64_set(&key->conf.tx_pn, pn); return count; default: return 0; } } static ssize_t key_tx_spec_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { u64 pn; char buf[20]; int len; struct ieee80211_key *key = file->private_data; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: len = scnprintf(buf, sizeof(buf), "\n"); break; case WLAN_CIPHER_SUITE_TKIP: pn = atomic64_read(&key->conf.tx_pn); len = scnprintf(buf, sizeof(buf), "%08x %04x\n", TKIP_PN_TO_IV32(pn), TKIP_PN_TO_IV16(pn)); break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: pn = atomic64_read(&key->conf.tx_pn); len = scnprintf(buf, sizeof(buf), "%02x%02x%02x%02x%02x%02x\n", (u8)(pn >> 40), (u8)(pn >> 32), (u8)(pn >> 24), (u8)(pn >> 16), (u8)(pn >> 8), (u8)pn); break; default: return 0; } return simple_read_from_buffer(userbuf, count, ppos, buf, len); } KEY_OPS_W(tx_spec); static ssize_t key_rx_spec_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct ieee80211_key *key = file->private_data; char buf[14*IEEE80211_NUM_TIDS+1], *p = buf; int i, len; const u8 *rpn; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: len = scnprintf(buf, sizeof(buf), "\n"); break; case WLAN_CIPHER_SUITE_TKIP: for (i = 0; i < IEEE80211_NUM_TIDS; i++) p += scnprintf(p, sizeof(buf)+buf-p, "%08x %04x\n", key->u.tkip.rx[i].iv32, key->u.tkip.rx[i].iv16); len = p - buf; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { rpn = key->u.ccmp.rx_pn[i]; p += scnprintf(p, sizeof(buf)+buf-p, "%02x%02x%02x%02x%02x%02x\n", rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5]); } len = p - buf; break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: rpn = key->u.aes_cmac.rx_pn; p += scnprintf(p, sizeof(buf)+buf-p, "%02x%02x%02x%02x%02x%02x\n", rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5]); len = p - buf; break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: rpn = key->u.aes_gmac.rx_pn; p += scnprintf(p, sizeof(buf)+buf-p, "%02x%02x%02x%02x%02x%02x\n", rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5]); len = p - buf; break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { rpn = key->u.gcmp.rx_pn[i]; p += scnprintf(p, sizeof(buf)+buf-p, "%02x%02x%02x%02x%02x%02x\n", rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5]); } len = p - buf; break; default: return 0; } return simple_read_from_buffer(userbuf, count, ppos, buf, len); } KEY_OPS(rx_spec); static ssize_t key_replays_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct ieee80211_key *key = file->private_data; char buf[20]; int len; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: len = scnprintf(buf, sizeof(buf), "%u\n", key->u.ccmp.replays); break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: len = scnprintf(buf, sizeof(buf), "%u\n", key->u.aes_cmac.replays); break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: len = scnprintf(buf, sizeof(buf), "%u\n", key->u.aes_gmac.replays); break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: len = scnprintf(buf, sizeof(buf), "%u\n", key->u.gcmp.replays); break; default: return 0; } return simple_read_from_buffer(userbuf, count, ppos, buf, len); } KEY_OPS(replays); static ssize_t key_icverrors_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct ieee80211_key *key = file->private_data; char buf[20]; int len; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: len = scnprintf(buf, sizeof(buf), "%u\n", key->u.aes_cmac.icverrors); break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: len = scnprintf(buf, sizeof(buf), "%u\n", key->u.aes_gmac.icverrors); break; default: return 0; } return simple_read_from_buffer(userbuf, count, ppos, buf, len); } KEY_OPS(icverrors); static ssize_t key_mic_failures_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct ieee80211_key *key = file->private_data; char buf[20]; int len; if (key->conf.cipher != WLAN_CIPHER_SUITE_TKIP) return -EINVAL; len = scnprintf(buf, sizeof(buf), "%u\n", key->u.tkip.mic_failures); return simple_read_from_buffer(userbuf, count, ppos, buf, len); } KEY_OPS(mic_failures); static ssize_t key_key_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct ieee80211_key *key = file->private_data; int i, bufsize = 2 * key->conf.keylen + 2; char *buf = kmalloc(bufsize, GFP_KERNEL); char *p = buf; ssize_t res; if (!buf) return -ENOMEM; for (i = 0; i < key->conf.keylen; i++) p += scnprintf(p, bufsize + buf - p, "%02x", key->conf.key[i]); p += scnprintf(p, bufsize+buf-p, "\n"); res = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return res; } KEY_OPS(key); #define DEBUGFS_ADD(name) \ debugfs_create_file(#name, 0400, key->debugfs.dir, \ key, &key_##name##_ops) #define DEBUGFS_ADD_W(name) \ debugfs_create_file(#name, 0600, key->debugfs.dir, \ key, &key_##name##_ops); void ieee80211_debugfs_key_add(struct ieee80211_key *key) { static int keycount; char buf[100]; struct sta_info *sta; if (!key->local->debugfs.keys) return; sprintf(buf, "%d", keycount); key->debugfs.cnt = keycount; keycount++; key->debugfs.dir = debugfs_create_dir(buf, key->local->debugfs.keys); sta = key->sta; if (sta) { sprintf(buf, "../../netdev:%s/stations/%pM", sta->sdata->name, sta->sta.addr); key->debugfs.stalink = debugfs_create_symlink("station", key->debugfs.dir, buf); } DEBUGFS_ADD(keylen); DEBUGFS_ADD(flags); DEBUGFS_ADD(keyidx); DEBUGFS_ADD(hw_key_idx); DEBUGFS_ADD(algorithm); DEBUGFS_ADD_W(tx_spec); DEBUGFS_ADD(rx_spec); DEBUGFS_ADD(replays); DEBUGFS_ADD(icverrors); DEBUGFS_ADD(mic_failures); DEBUGFS_ADD(key); DEBUGFS_ADD(ifindex); }; void ieee80211_debugfs_key_remove(struct ieee80211_key *key) { if (!key) return; debugfs_remove_recursive(key->debugfs.dir); key->debugfs.dir = NULL; } void ieee80211_debugfs_key_update_default(struct ieee80211_sub_if_data *sdata) { char buf[50]; struct ieee80211_key *key; if (!sdata->vif.debugfs_dir) return; lockdep_assert_held(&sdata->local->key_mtx); debugfs_remove(sdata->debugfs.default_unicast_key); sdata->debugfs.default_unicast_key = NULL; if (sdata->default_unicast_key) { key = key_mtx_dereference(sdata->local, sdata->default_unicast_key); sprintf(buf, "../keys/%d", key->debugfs.cnt); sdata->debugfs.default_unicast_key = debugfs_create_symlink("default_unicast_key", sdata->vif.debugfs_dir, buf); } debugfs_remove(sdata->debugfs.default_multicast_key); sdata->debugfs.default_multicast_key = NULL; if (sdata->deflink.default_multicast_key) { key = key_mtx_dereference(sdata->local, sdata->deflink.default_multicast_key); sprintf(buf, "../keys/%d", key->debugfs.cnt); sdata->debugfs.default_multicast_key = debugfs_create_symlink("default_multicast_key", sdata->vif.debugfs_dir, buf); } } void ieee80211_debugfs_key_add_mgmt_default(struct ieee80211_sub_if_data *sdata) { char buf[50]; struct ieee80211_key *key; if (!sdata->vif.debugfs_dir) return; key = key_mtx_dereference(sdata->local, sdata->deflink.default_mgmt_key); if (key) { sprintf(buf, "../keys/%d", key->debugfs.cnt); sdata->debugfs.default_mgmt_key = debugfs_create_symlink("default_mgmt_key", sdata->vif.debugfs_dir, buf); } else ieee80211_debugfs_key_remove_mgmt_default(sdata); } void ieee80211_debugfs_key_remove_mgmt_default(struct ieee80211_sub_if_data *sdata) { if (!sdata) return; debugfs_remove(sdata->debugfs.default_mgmt_key); sdata->debugfs.default_mgmt_key = NULL; } void ieee80211_debugfs_key_add_beacon_default(struct ieee80211_sub_if_data *sdata) { char buf[50]; struct ieee80211_key *key; if (!sdata->vif.debugfs_dir) return; key = key_mtx_dereference(sdata->local, sdata->deflink.default_beacon_key); if (key) { sprintf(buf, "../keys/%d", key->debugfs.cnt); sdata->debugfs.default_beacon_key = debugfs_create_symlink("default_beacon_key", sdata->vif.debugfs_dir, buf); } else { ieee80211_debugfs_key_remove_beacon_default(sdata); } } void ieee80211_debugfs_key_remove_beacon_default(struct ieee80211_sub_if_data *sdata) { if (!sdata) return; debugfs_remove(sdata->debugfs.default_beacon_key); sdata->debugfs.default_beacon_key = NULL; } void ieee80211_debugfs_key_sta_del(struct ieee80211_key *key, struct sta_info *sta) { debugfs_remove(key->debugfs.stalink); key->debugfs.stalink = NULL; }
linux-master
net/mac80211/debugfs_key.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007-2008 Johannes Berg <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2015-2017 Intel Deutschland GmbH * Copyright 2018-2020, 2022-2023 Intel Corporation */ #include <crypto/utils.h> #include <linux/if_ether.h> #include <linux/etherdevice.h> #include <linux/list.h> #include <linux/rcupdate.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/export.h> #include <net/mac80211.h> #include <asm/unaligned.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "debugfs_key.h" #include "aes_ccm.h" #include "aes_cmac.h" #include "aes_gmac.h" #include "aes_gcm.h" /** * DOC: Key handling basics * * Key handling in mac80211 is done based on per-interface (sub_if_data) * keys and per-station keys. Since each station belongs to an interface, * each station key also belongs to that interface. * * Hardware acceleration is done on a best-effort basis for algorithms * that are implemented in software, for each key the hardware is asked * to enable that key for offloading but if it cannot do that the key is * simply kept for software encryption (unless it is for an algorithm * that isn't implemented in software). * There is currently no way of knowing whether a key is handled in SW * or HW except by looking into debugfs. * * All key management is internally protected by a mutex. Within all * other parts of mac80211, key references are, just as STA structure * references, protected by RCU. Note, however, that some things are * unprotected, namely the key->sta dereferences within the hardware * acceleration functions. This means that sta_info_destroy() must * remove the key which waits for an RCU grace period. */ static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static void assert_key_lock(struct ieee80211_local *local) { lockdep_assert_held(&local->key_mtx); } static void update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta) { struct ieee80211_sub_if_data *vlan; if (sdata->vif.type != NL80211_IFTYPE_AP) return; /* crypto_tx_tailroom_needed_cnt is protected by this */ assert_key_lock(sdata->local); rcu_read_lock(); list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list) vlan->crypto_tx_tailroom_needed_cnt += delta; rcu_read_unlock(); } static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata) { /* * When this count is zero, SKB resizing for allocating tailroom * for IV or MMIC is skipped. But, this check has created two race * cases in xmit path while transiting from zero count to one: * * 1. SKB resize was skipped because no key was added but just before * the xmit key is added and SW encryption kicks off. * * 2. SKB resize was skipped because all the keys were hw planted but * just before xmit one of the key is deleted and SW encryption kicks * off. * * In both the above case SW encryption will find not enough space for * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c) * * Solution has been explained at * http://mid.gmane.org/[email protected] */ assert_key_lock(sdata->local); update_vlan_tailroom_need_count(sdata, 1); if (!sdata->crypto_tx_tailroom_needed_cnt++) { /* * Flush all XMIT packets currently using HW encryption or no * encryption at all if the count transition is from 0 -> 1. */ synchronize_net(); } } static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta) { assert_key_lock(sdata->local); WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta); update_vlan_tailroom_need_count(sdata, -delta); sdata->crypto_tx_tailroom_needed_cnt -= delta; } static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key) { struct ieee80211_sub_if_data *sdata = key->sdata; struct sta_info *sta; int ret = -EOPNOTSUPP; might_sleep(); if (key->flags & KEY_FLAG_TAINTED) { /* If we get here, it's during resume and the key is * tainted so shouldn't be used/programmed any more. * However, its flags may still indicate that it was * programmed into the device (since we're in resume) * so clear that flag now to avoid trying to remove * it again later. */ if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | IEEE80211_KEY_FLAG_PUT_MIC_SPACE | IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) increment_tailroom_need_count(sdata); key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; return -EINVAL; } if (!key->local->ops->set_key) goto out_unsupported; assert_key_lock(key->local); sta = key->sta; /* * If this is a per-STA GTK, check if it * is supported; if not, return. */ if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) && !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK)) goto out_unsupported; if (sta && !sta->uploaded) goto out_unsupported; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { /* * The driver doesn't know anything about VLAN interfaces. * Hence, don't send GTKs for VLAN interfaces to the driver. */ if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { ret = 1; goto out_unsupported; } } if (key->conf.link_id >= 0 && sdata->vif.active_links && !(sdata->vif.active_links & BIT(key->conf.link_id))) return 0; ret = drv_set_key(key->local, SET_KEY, sdata, sta ? &sta->sta : NULL, &key->conf); if (!ret) { key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | IEEE80211_KEY_FLAG_PUT_MIC_SPACE | IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) decrease_tailroom_need_count(sdata, 1); WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)); WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) && (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)); return 0; } if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1) sdata_err(sdata, "failed to set key (%d, %pM) to hardware (%d)\n", key->conf.keyidx, sta ? sta->sta.addr : bcast_addr, ret); out_unsupported: switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: /* all of these we can do in software - if driver can */ if (ret == 1) return 0; if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL)) return -EINVAL; return 0; default: return -EINVAL; } } static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key) { struct ieee80211_sub_if_data *sdata; struct sta_info *sta; int ret; might_sleep(); if (!key || !key->local->ops->set_key) return; assert_key_lock(key->local); if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) return; sta = key->sta; sdata = key->sdata; if (key->conf.link_id >= 0 && sdata->vif.active_links && !(sdata->vif.active_links & BIT(key->conf.link_id))) return; if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | IEEE80211_KEY_FLAG_PUT_MIC_SPACE | IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) increment_tailroom_need_count(sdata); key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; ret = drv_set_key(key->local, DISABLE_KEY, sdata, sta ? &sta->sta : NULL, &key->conf); if (ret) sdata_err(sdata, "failed to remove key (%d, %pM) from hardware (%d)\n", key->conf.keyidx, sta ? sta->sta.addr : bcast_addr, ret); } static int _ieee80211_set_tx_key(struct ieee80211_key *key, bool force) { struct sta_info *sta = key->sta; struct ieee80211_local *local = key->local; assert_key_lock(local); set_sta_flag(sta, WLAN_STA_USES_ENCRYPTION); sta->ptk_idx = key->conf.keyidx; if (force || !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) clear_sta_flag(sta, WLAN_STA_BLOCK_BA); ieee80211_check_fast_xmit(sta); return 0; } int ieee80211_set_tx_key(struct ieee80211_key *key) { return _ieee80211_set_tx_key(key, false); } static void ieee80211_pairwise_rekey(struct ieee80211_key *old, struct ieee80211_key *new) { struct ieee80211_local *local = new->local; struct sta_info *sta = new->sta; int i; assert_key_lock(local); if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) { /* Extended Key ID key install, initial one or rekey */ if (sta->ptk_idx != INVALID_PTK_KEYIDX && !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) { /* Aggregation Sessions with Extended Key ID must not * mix MPDUs with different keyIDs within one A-MPDU. * Tear down running Tx aggregation sessions and block * new Rx/Tx aggregation requests during rekey to * ensure there are no A-MPDUs when the driver is not * supporting A-MPDU key borders. (Blocking Tx only * would be sufficient but WLAN_STA_BLOCK_BA gets the * job done for the few ms we need it.) */ set_sta_flag(sta, WLAN_STA_BLOCK_BA); mutex_lock(&sta->ampdu_mlme.mtx); for (i = 0; i < IEEE80211_NUM_TIDS; i++) ___ieee80211_stop_tx_ba_session(sta, i, AGG_STOP_LOCAL_REQUEST); mutex_unlock(&sta->ampdu_mlme.mtx); } } else if (old) { /* Rekey without Extended Key ID. * Aggregation sessions are OK when running on SW crypto. * A broken remote STA may cause issues not observed with HW * crypto, though. */ if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) return; /* Stop Tx till we are on the new key */ old->flags |= KEY_FLAG_TAINTED; ieee80211_clear_fast_xmit(sta); if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) { set_sta_flag(sta, WLAN_STA_BLOCK_BA); ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_LOCAL_REQUEST); } if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) { pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.", sta->sta.addr); /* Flushing the driver queues *may* help prevent * the clear text leaks and freezes. */ ieee80211_flush_queues(local, old->sdata, false); } } } static void __ieee80211_set_default_key(struct ieee80211_link_data *link, int idx, bool uni, bool multi) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_key *key = NULL; assert_key_lock(sdata->local); if (idx >= 0 && idx < NUM_DEFAULT_KEYS) { key = key_mtx_dereference(sdata->local, sdata->keys[idx]); if (!key) key = key_mtx_dereference(sdata->local, link->gtk[idx]); } if (uni) { rcu_assign_pointer(sdata->default_unicast_key, key); ieee80211_check_fast_xmit_iface(sdata); if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN) drv_set_default_unicast_key(sdata->local, sdata, idx); } if (multi) rcu_assign_pointer(link->default_multicast_key, key); ieee80211_debugfs_key_update_default(sdata); } void ieee80211_set_default_key(struct ieee80211_link_data *link, int idx, bool uni, bool multi) { mutex_lock(&link->sdata->local->key_mtx); __ieee80211_set_default_key(link, idx, uni, multi); mutex_unlock(&link->sdata->local->key_mtx); } static void __ieee80211_set_default_mgmt_key(struct ieee80211_link_data *link, int idx) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_key *key = NULL; assert_key_lock(sdata->local); if (idx >= NUM_DEFAULT_KEYS && idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) key = key_mtx_dereference(sdata->local, link->gtk[idx]); rcu_assign_pointer(link->default_mgmt_key, key); ieee80211_debugfs_key_update_default(sdata); } void ieee80211_set_default_mgmt_key(struct ieee80211_link_data *link, int idx) { mutex_lock(&link->sdata->local->key_mtx); __ieee80211_set_default_mgmt_key(link, idx); mutex_unlock(&link->sdata->local->key_mtx); } static void __ieee80211_set_default_beacon_key(struct ieee80211_link_data *link, int idx) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_key *key = NULL; assert_key_lock(sdata->local); if (idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS && idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS) key = key_mtx_dereference(sdata->local, link->gtk[idx]); rcu_assign_pointer(link->default_beacon_key, key); ieee80211_debugfs_key_update_default(sdata); } void ieee80211_set_default_beacon_key(struct ieee80211_link_data *link, int idx) { mutex_lock(&link->sdata->local->key_mtx); __ieee80211_set_default_beacon_key(link, idx); mutex_unlock(&link->sdata->local->key_mtx); } static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct sta_info *sta, bool pairwise, struct ieee80211_key *old, struct ieee80211_key *new) { struct link_sta_info *link_sta = sta ? &sta->deflink : NULL; int link_id; int idx; int ret = 0; bool defunikey, defmultikey, defmgmtkey, defbeaconkey; bool is_wep; /* caller must provide at least one old/new */ if (WARN_ON(!new && !old)) return 0; if (new) { idx = new->conf.keyidx; is_wep = new->conf.cipher == WLAN_CIPHER_SUITE_WEP40 || new->conf.cipher == WLAN_CIPHER_SUITE_WEP104; link_id = new->conf.link_id; } else { idx = old->conf.keyidx; is_wep = old->conf.cipher == WLAN_CIPHER_SUITE_WEP40 || old->conf.cipher == WLAN_CIPHER_SUITE_WEP104; link_id = old->conf.link_id; } if (WARN(old && old->conf.link_id != link_id, "old link ID %d doesn't match new link ID %d\n", old->conf.link_id, link_id)) return -EINVAL; if (link_id >= 0) { if (!link) { link = sdata_dereference(sdata->link[link_id], sdata); if (!link) return -ENOLINK; } if (sta) { link_sta = rcu_dereference_protected(sta->link[link_id], lockdep_is_held(&sta->local->sta_mtx)); if (!link_sta) return -ENOLINK; } } else { link = &sdata->deflink; } if ((is_wep || pairwise) && idx >= NUM_DEFAULT_KEYS) return -EINVAL; WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx); if (new && sta && pairwise) { /* Unicast rekey needs special handling. With Extended Key ID * old is still NULL for the first rekey. */ ieee80211_pairwise_rekey(old, new); } if (old) { if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { ieee80211_key_disable_hw_accel(old); if (new) ret = ieee80211_key_enable_hw_accel(new); } } else { if (!new->local->wowlan) { ret = ieee80211_key_enable_hw_accel(new); } else { assert_key_lock(new->local); new->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; } } if (ret) return ret; if (new) list_add_tail_rcu(&new->list, &sdata->key_list); if (sta) { if (pairwise) { rcu_assign_pointer(sta->ptk[idx], new); if (new && !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX)) _ieee80211_set_tx_key(new, true); } else { rcu_assign_pointer(link_sta->gtk[idx], new); } /* Only needed for transition from no key -> key. * Still triggers unnecessary when using Extended Key ID * and installing the second key ID the first time. */ if (new && !old) ieee80211_check_fast_rx(sta); } else { defunikey = old && old == key_mtx_dereference(sdata->local, sdata->default_unicast_key); defmultikey = old && old == key_mtx_dereference(sdata->local, link->default_multicast_key); defmgmtkey = old && old == key_mtx_dereference(sdata->local, link->default_mgmt_key); defbeaconkey = old && old == key_mtx_dereference(sdata->local, link->default_beacon_key); if (defunikey && !new) __ieee80211_set_default_key(link, -1, true, false); if (defmultikey && !new) __ieee80211_set_default_key(link, -1, false, true); if (defmgmtkey && !new) __ieee80211_set_default_mgmt_key(link, -1); if (defbeaconkey && !new) __ieee80211_set_default_beacon_key(link, -1); if (is_wep || pairwise) rcu_assign_pointer(sdata->keys[idx], new); else rcu_assign_pointer(link->gtk[idx], new); if (defunikey && new) __ieee80211_set_default_key(link, new->conf.keyidx, true, false); if (defmultikey && new) __ieee80211_set_default_key(link, new->conf.keyidx, false, true); if (defmgmtkey && new) __ieee80211_set_default_mgmt_key(link, new->conf.keyidx); if (defbeaconkey && new) __ieee80211_set_default_beacon_key(link, new->conf.keyidx); } if (old) list_del_rcu(&old->list); return 0; } struct ieee80211_key * ieee80211_key_alloc(u32 cipher, int idx, size_t key_len, const u8 *key_data, size_t seq_len, const u8 *seq) { struct ieee80211_key *key; int i, j, err; if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS)) return ERR_PTR(-EINVAL); key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL); if (!key) return ERR_PTR(-ENOMEM); /* * Default to software encryption; we'll later upload the * key to the hardware if possible. */ key->conf.flags = 0; key->flags = 0; key->conf.link_id = -1; key->conf.cipher = cipher; key->conf.keyidx = idx; key->conf.keylen = key_len; switch (cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: key->conf.iv_len = IEEE80211_WEP_IV_LEN; key->conf.icv_len = IEEE80211_WEP_ICV_LEN; break; case WLAN_CIPHER_SUITE_TKIP: key->conf.iv_len = IEEE80211_TKIP_IV_LEN; key->conf.icv_len = IEEE80211_TKIP_ICV_LEN; if (seq) { for (i = 0; i < IEEE80211_NUM_TIDS; i++) { key->u.tkip.rx[i].iv32 = get_unaligned_le32(&seq[2]); key->u.tkip.rx[i].iv16 = get_unaligned_le16(seq); } } spin_lock_init(&key->u.tkip.txlock); break; case WLAN_CIPHER_SUITE_CCMP: key->conf.iv_len = IEEE80211_CCMP_HDR_LEN; key->conf.icv_len = IEEE80211_CCMP_MIC_LEN; if (seq) { for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++) key->u.ccmp.rx_pn[i][j] = seq[IEEE80211_CCMP_PN_LEN - j - 1]; } /* * Initialize AES key state here as an optimization so that * it does not need to be initialized for every packet. */ key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( key_data, key_len, IEEE80211_CCMP_MIC_LEN); if (IS_ERR(key->u.ccmp.tfm)) { err = PTR_ERR(key->u.ccmp.tfm); kfree(key); return ERR_PTR(err); } break; case WLAN_CIPHER_SUITE_CCMP_256: key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN; key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN; for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++) key->u.ccmp.rx_pn[i][j] = seq[IEEE80211_CCMP_256_PN_LEN - j - 1]; /* Initialize AES key state here as an optimization so that * it does not need to be initialized for every packet. */ key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( key_data, key_len, IEEE80211_CCMP_256_MIC_LEN); if (IS_ERR(key->u.ccmp.tfm)) { err = PTR_ERR(key->u.ccmp.tfm); kfree(key); return ERR_PTR(err); } break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: key->conf.iv_len = 0; if (cipher == WLAN_CIPHER_SUITE_AES_CMAC) key->conf.icv_len = sizeof(struct ieee80211_mmie); else key->conf.icv_len = sizeof(struct ieee80211_mmie_16); if (seq) for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++) key->u.aes_cmac.rx_pn[j] = seq[IEEE80211_CMAC_PN_LEN - j - 1]; /* * Initialize AES key state here as an optimization so that * it does not need to be initialized for every packet. */ key->u.aes_cmac.tfm = ieee80211_aes_cmac_key_setup(key_data, key_len); if (IS_ERR(key->u.aes_cmac.tfm)) { err = PTR_ERR(key->u.aes_cmac.tfm); kfree(key); return ERR_PTR(err); } break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: key->conf.iv_len = 0; key->conf.icv_len = sizeof(struct ieee80211_mmie_16); if (seq) for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++) key->u.aes_gmac.rx_pn[j] = seq[IEEE80211_GMAC_PN_LEN - j - 1]; /* Initialize AES key state here as an optimization so that * it does not need to be initialized for every packet. */ key->u.aes_gmac.tfm = ieee80211_aes_gmac_key_setup(key_data, key_len); if (IS_ERR(key->u.aes_gmac.tfm)) { err = PTR_ERR(key->u.aes_gmac.tfm); kfree(key); return ERR_PTR(err); } break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: key->conf.iv_len = IEEE80211_GCMP_HDR_LEN; key->conf.icv_len = IEEE80211_GCMP_MIC_LEN; for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++) key->u.gcmp.rx_pn[i][j] = seq[IEEE80211_GCMP_PN_LEN - j - 1]; /* Initialize AES key state here as an optimization so that * it does not need to be initialized for every packet. */ key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data, key_len); if (IS_ERR(key->u.gcmp.tfm)) { err = PTR_ERR(key->u.gcmp.tfm); kfree(key); return ERR_PTR(err); } break; } memcpy(key->conf.key, key_data, key_len); INIT_LIST_HEAD(&key->list); return key; } static void ieee80211_key_free_common(struct ieee80211_key *key) { switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: ieee80211_aes_key_free(key->u.ccmp.tfm); break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm); break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm); break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: ieee80211_aes_gcm_key_free(key->u.gcmp.tfm); break; } kfree_sensitive(key); } static void __ieee80211_key_destroy(struct ieee80211_key *key, bool delay_tailroom) { if (key->local) { struct ieee80211_sub_if_data *sdata = key->sdata; ieee80211_debugfs_key_remove(key); if (delay_tailroom) { /* see ieee80211_delayed_tailroom_dec */ sdata->crypto_tx_tailroom_pending_dec++; schedule_delayed_work(&sdata->dec_tailroom_needed_wk, HZ/2); } else { decrease_tailroom_need_count(sdata, 1); } } ieee80211_key_free_common(key); } static void ieee80211_key_destroy(struct ieee80211_key *key, bool delay_tailroom) { if (!key) return; /* * Synchronize so the TX path and rcu key iterators * can no longer be using this key before we free/remove it. */ synchronize_net(); __ieee80211_key_destroy(key, delay_tailroom); } void ieee80211_key_free_unused(struct ieee80211_key *key) { WARN_ON(key->sdata || key->local); ieee80211_key_free_common(key); } static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata, struct ieee80211_key *old, struct ieee80211_key *new) { u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP]; u8 *tk_old, *tk_new; if (!old || new->conf.keylen != old->conf.keylen) return false; tk_old = old->conf.key; tk_new = new->conf.key; /* * In station mode, don't compare the TX MIC key, as it's never used * and offloaded rekeying may not care to send it to the host. This * is the case in iwlwifi, for example. */ if (sdata->vif.type == NL80211_IFTYPE_STATION && new->conf.cipher == WLAN_CIPHER_SUITE_TKIP && new->conf.keylen == WLAN_KEY_LEN_TKIP && !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP); memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP); memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); tk_old = tkip_old; tk_new = tkip_new; } return !crypto_memneq(tk_old, tk_new, new->conf.keylen); } int ieee80211_key_link(struct ieee80211_key *key, struct ieee80211_link_data *link, struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = link->sdata; static atomic_t key_color = ATOMIC_INIT(0); struct ieee80211_key *old_key = NULL; int idx = key->conf.keyidx; bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE; /* * We want to delay tailroom updates only for station - in that * case it helps roaming speed, but in other cases it hurts and * can cause warnings to appear. */ bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION; int ret = -EOPNOTSUPP; mutex_lock(&sdata->local->key_mtx); if (sta && pairwise) { struct ieee80211_key *alt_key; old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]); alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]); /* The rekey code assumes that the old and new key are using * the same cipher. Enforce the assumption for pairwise keys. */ if ((alt_key && alt_key->conf.cipher != key->conf.cipher) || (old_key && old_key->conf.cipher != key->conf.cipher)) goto out; } else if (sta) { struct link_sta_info *link_sta = &sta->deflink; int link_id = key->conf.link_id; if (link_id >= 0) { link_sta = rcu_dereference_protected(sta->link[link_id], lockdep_is_held(&sta->local->sta_mtx)); if (!link_sta) { ret = -ENOLINK; goto out; } } old_key = key_mtx_dereference(sdata->local, link_sta->gtk[idx]); } else { if (idx < NUM_DEFAULT_KEYS) old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]); if (!old_key) old_key = key_mtx_dereference(sdata->local, link->gtk[idx]); } /* Non-pairwise keys must also not switch the cipher on rekey */ if (!pairwise) { if (old_key && old_key->conf.cipher != key->conf.cipher) goto out; } /* * Silently accept key re-installation without really installing the * new version of the key to avoid nonce reuse or replay issues. */ if (ieee80211_key_identical(sdata, old_key, key)) { ieee80211_key_free_unused(key); ret = 0; goto out; } key->local = sdata->local; key->sdata = sdata; key->sta = sta; /* * Assign a unique ID to every key so we can easily prevent mixed * key and fragment cache attacks. */ key->color = atomic_inc_return(&key_color); increment_tailroom_need_count(sdata); ret = ieee80211_key_replace(sdata, link, sta, pairwise, old_key, key); if (!ret) { ieee80211_debugfs_key_add(key); ieee80211_key_destroy(old_key, delay_tailroom); } else { ieee80211_key_free(key, delay_tailroom); } out: mutex_unlock(&sdata->local->key_mtx); return ret; } void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom) { if (!key) return; /* * Replace key with nothingness if it was ever used. */ if (key->sdata) ieee80211_key_replace(key->sdata, NULL, key->sta, key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, key, NULL); ieee80211_key_destroy(key, delay_tailroom); } void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata) { struct ieee80211_key *key; struct ieee80211_sub_if_data *vlan; lockdep_assert_wiphy(sdata->local->hw.wiphy); mutex_lock(&sdata->local->key_mtx); sdata->crypto_tx_tailroom_needed_cnt = 0; sdata->crypto_tx_tailroom_pending_dec = 0; if (sdata->vif.type == NL80211_IFTYPE_AP) { list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) { vlan->crypto_tx_tailroom_needed_cnt = 0; vlan->crypto_tx_tailroom_pending_dec = 0; } } if (ieee80211_sdata_running(sdata)) { list_for_each_entry(key, &sdata->key_list, list) { increment_tailroom_need_count(sdata); ieee80211_key_enable_hw_accel(key); } } mutex_unlock(&sdata->local->key_mtx); } void ieee80211_iter_keys(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void (*iter)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key, void *data), void *iter_data) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_key *key, *tmp; struct ieee80211_sub_if_data *sdata; lockdep_assert_wiphy(hw->wiphy); mutex_lock(&local->key_mtx); if (vif) { sdata = vif_to_sdata(vif); list_for_each_entry_safe(key, tmp, &sdata->key_list, list) iter(hw, &sdata->vif, key->sta ? &key->sta->sta : NULL, &key->conf, iter_data); } else { list_for_each_entry(sdata, &local->interfaces, list) list_for_each_entry_safe(key, tmp, &sdata->key_list, list) iter(hw, &sdata->vif, key->sta ? &key->sta->sta : NULL, &key->conf, iter_data); } mutex_unlock(&local->key_mtx); } EXPORT_SYMBOL(ieee80211_iter_keys); static void _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, struct ieee80211_sub_if_data *sdata, void (*iter)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key, void *data), void *iter_data) { struct ieee80211_key *key; list_for_each_entry_rcu(key, &sdata->key_list, list) { /* skip keys of station in removal process */ if (key->sta && key->sta->removed) continue; if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) continue; iter(hw, &sdata->vif, key->sta ? &key->sta->sta : NULL, &key->conf, iter_data); } } void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void (*iter)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key, void *data), void *iter_data) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata; if (vif) { sdata = vif_to_sdata(vif); _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); } else { list_for_each_entry_rcu(sdata, &local->interfaces, list) _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); } } EXPORT_SYMBOL(ieee80211_iter_keys_rcu); static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata, struct list_head *keys) { struct ieee80211_key *key, *tmp; decrease_tailroom_need_count(sdata, sdata->crypto_tx_tailroom_pending_dec); sdata->crypto_tx_tailroom_pending_dec = 0; ieee80211_debugfs_key_remove_mgmt_default(sdata); ieee80211_debugfs_key_remove_beacon_default(sdata); list_for_each_entry_safe(key, tmp, &sdata->key_list, list) { ieee80211_key_replace(key->sdata, NULL, key->sta, key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, key, NULL); list_add_tail(&key->list, keys); } ieee80211_debugfs_key_update_default(sdata); } void ieee80211_remove_link_keys(struct ieee80211_link_data *link, struct list_head *keys) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_key *key, *tmp; mutex_lock(&local->key_mtx); list_for_each_entry_safe(key, tmp, &sdata->key_list, list) { if (key->conf.link_id != link->link_id) continue; ieee80211_key_replace(key->sdata, link, key->sta, key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, key, NULL); list_add_tail(&key->list, keys); } mutex_unlock(&local->key_mtx); } void ieee80211_free_key_list(struct ieee80211_local *local, struct list_head *keys) { struct ieee80211_key *key, *tmp; mutex_lock(&local->key_mtx); list_for_each_entry_safe(key, tmp, keys, list) __ieee80211_key_destroy(key, false); mutex_unlock(&local->key_mtx); } void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata, bool force_synchronize) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *vlan; struct ieee80211_sub_if_data *master; struct ieee80211_key *key, *tmp; LIST_HEAD(keys); cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk); mutex_lock(&local->key_mtx); ieee80211_free_keys_iface(sdata, &keys); if (sdata->vif.type == NL80211_IFTYPE_AP) { list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) ieee80211_free_keys_iface(vlan, &keys); } if (!list_empty(&keys) || force_synchronize) synchronize_net(); list_for_each_entry_safe(key, tmp, &keys, list) __ieee80211_key_destroy(key, false); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (sdata->bss) { master = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt != master->crypto_tx_tailroom_needed_cnt); } } else { WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt || sdata->crypto_tx_tailroom_pending_dec); } if (sdata->vif.type == NL80211_IFTYPE_AP) { list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt || vlan->crypto_tx_tailroom_pending_dec); } mutex_unlock(&local->key_mtx); } void ieee80211_free_sta_keys(struct ieee80211_local *local, struct sta_info *sta) { struct ieee80211_key *key; int i; mutex_lock(&local->key_mtx); for (i = 0; i < ARRAY_SIZE(sta->deflink.gtk); i++) { key = key_mtx_dereference(local, sta->deflink.gtk[i]); if (!key) continue; ieee80211_key_replace(key->sdata, NULL, key->sta, key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, key, NULL); __ieee80211_key_destroy(key, key->sdata->vif.type == NL80211_IFTYPE_STATION); } for (i = 0; i < NUM_DEFAULT_KEYS; i++) { key = key_mtx_dereference(local, sta->ptk[i]); if (!key) continue; ieee80211_key_replace(key->sdata, NULL, key->sta, key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, key, NULL); __ieee80211_key_destroy(key, key->sdata->vif.type == NL80211_IFTYPE_STATION); } mutex_unlock(&local->key_mtx); } void ieee80211_delayed_tailroom_dec(struct work_struct *wk) { struct ieee80211_sub_if_data *sdata; sdata = container_of(wk, struct ieee80211_sub_if_data, dec_tailroom_needed_wk.work); /* * The reason for the delayed tailroom needed decrementing is to * make roaming faster: during roaming, all keys are first deleted * and then new keys are installed. The first new key causes the * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes * the cost of synchronize_net() (which can be slow). Avoid this * by deferring the crypto_tx_tailroom_needed_cnt decrementing on * key removal for a while, so if we roam the value is larger than * zero and no 0->1 transition happens. * * The cost is that if the AP switching was from an AP with keys * to one without, we still allocate tailroom while it would no * longer be needed. However, in the typical (fast) roaming case * within an ESS this usually won't happen. */ mutex_lock(&sdata->local->key_mtx); decrease_tailroom_need_count(sdata, sdata->crypto_tx_tailroom_pending_dec); sdata->crypto_tx_tailroom_pending_dec = 0; mutex_unlock(&sdata->local->key_mtx); } void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, const u8 *replay_ctr, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr); cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp); } EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify); void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, int tid, struct ieee80211_key_seq *seq) { struct ieee80211_key *key; const u8 *pn; key = container_of(keyconf, struct ieee80211_key, conf); switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_TKIP: if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) return; seq->tkip.iv32 = key->u.tkip.rx[tid].iv32; seq->tkip.iv16 = key->u.tkip.rx[tid].iv16; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) return; if (tid < 0) pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; else pn = key->u.ccmp.rx_pn[tid]; memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN); break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: if (WARN_ON(tid != 0)) return; pn = key->u.aes_cmac.rx_pn; memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN); break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (WARN_ON(tid != 0)) return; pn = key->u.aes_gmac.rx_pn; memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN); break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) return; if (tid < 0) pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; else pn = key->u.gcmp.rx_pn[tid]; memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN); break; } } EXPORT_SYMBOL(ieee80211_get_key_rx_seq); void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, int tid, struct ieee80211_key_seq *seq) { struct ieee80211_key *key; u8 *pn; key = container_of(keyconf, struct ieee80211_key, conf); switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_TKIP: if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) return; key->u.tkip.rx[tid].iv32 = seq->tkip.iv32; key->u.tkip.rx[tid].iv16 = seq->tkip.iv16; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) return; if (tid < 0) pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; else pn = key->u.ccmp.rx_pn[tid]; memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN); break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: if (WARN_ON(tid != 0)) return; pn = key->u.aes_cmac.rx_pn; memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN); break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (WARN_ON(tid != 0)) return; pn = key->u.aes_gmac.rx_pn; memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN); break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) return; if (tid < 0) pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; else pn = key->u.gcmp.rx_pn[tid]; memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN); break; default: WARN_ON(1); break; } } EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq); void ieee80211_remove_key(struct ieee80211_key_conf *keyconf) { struct ieee80211_key *key; key = container_of(keyconf, struct ieee80211_key, conf); assert_key_lock(key->local); /* * if key was uploaded, we assume the driver will/has remove(d) * it, so adjust bookkeeping accordingly */ if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | IEEE80211_KEY_FLAG_PUT_MIC_SPACE | IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) increment_tailroom_need_count(key->sdata); } ieee80211_key_free(key, false); } EXPORT_SYMBOL_GPL(ieee80211_remove_key); struct ieee80211_key_conf * ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, struct ieee80211_key_conf *keyconf) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct ieee80211_key *key; int err; if (WARN_ON(!local->wowlan)) return ERR_PTR(-EINVAL); if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return ERR_PTR(-EINVAL); key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx, keyconf->keylen, keyconf->key, 0, NULL); if (IS_ERR(key)) return ERR_CAST(key); if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; /* FIXME: this function needs to get a link ID */ err = ieee80211_key_link(key, &sdata->deflink, NULL); if (err) return ERR_PTR(err); return &key->conf; } EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add); void ieee80211_key_mic_failure(struct ieee80211_key_conf *keyconf) { struct ieee80211_key *key; key = container_of(keyconf, struct ieee80211_key, conf); switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: key->u.aes_cmac.icverrors++; break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: key->u.aes_gmac.icverrors++; break; default: /* ignore the others for now, we don't keep counters now */ break; } } EXPORT_SYMBOL_GPL(ieee80211_key_mic_failure); void ieee80211_key_replay(struct ieee80211_key_conf *keyconf) { struct ieee80211_key *key; key = container_of(keyconf, struct ieee80211_key, conf); switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: key->u.ccmp.replays++; break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: key->u.aes_cmac.replays++; break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: key->u.aes_gmac.replays++; break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: key->u.gcmp.replays++; break; } } EXPORT_SYMBOL_GPL(ieee80211_key_replay); int ieee80211_key_switch_links(struct ieee80211_sub_if_data *sdata, unsigned long del_links_mask, unsigned long add_links_mask) { struct ieee80211_key *key; int ret; list_for_each_entry(key, &sdata->key_list, list) { if (key->conf.link_id < 0 || !(del_links_mask & BIT(key->conf.link_id))) continue; /* shouldn't happen for per-link keys */ WARN_ON(key->sta); ieee80211_key_disable_hw_accel(key); } list_for_each_entry(key, &sdata->key_list, list) { if (key->conf.link_id < 0 || !(add_links_mask & BIT(key->conf.link_id))) continue; /* shouldn't happen for per-link keys */ WARN_ON(key->sta); ret = ieee80211_key_enable_hw_accel(key); if (ret) return ret; } return 0; }
linux-master
net/mac80211/key.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2011-2012, Pavel Zubarev <[email protected]> * Copyright 2011-2012, Marco Porsch <[email protected]> * Copyright 2011-2012, cozybit Inc. * Copyright (C) 2021 Intel Corporation */ #include "ieee80211_i.h" #include "mesh.h" #include "driver-ops.h" /* This is not in the standard. It represents a tolerable tsf drift below * which we do no TSF adjustment. */ #define TOFFSET_MINIMUM_ADJUSTMENT 10 /* This is not in the standard. It is a margin added to the * Toffset setpoint to mitigate TSF overcorrection * introduced by TSF adjustment latency. */ #define TOFFSET_SET_MARGIN 20 /* This is not in the standard. It represents the maximum Toffset jump above * which we'll invalidate the Toffset setpoint and choose a new setpoint. This * could be, for instance, in case a neighbor is restarted and its TSF counter * reset. */ #define TOFFSET_MAXIMUM_ADJUSTMENT 800 /* 0.8 ms */ struct sync_method { u8 method; struct ieee80211_mesh_sync_ops ops; }; /** * mesh_peer_tbtt_adjusting - check if an mp is currently adjusting its TBTT * * @cfg: mesh config element from the mesh peer (or %NULL) */ static bool mesh_peer_tbtt_adjusting(const struct ieee80211_meshconf_ie *cfg) { return cfg && (cfg->meshconf_cap & IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING); } void mesh_sync_adjust_tsf(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; /* sdata->vif.bss_conf.beacon_int in 1024us units, 0.04% */ u64 beacon_int_fraction = sdata->vif.bss_conf.beacon_int * 1024 / 2500; u64 tsf; u64 tsfdelta; spin_lock_bh(&ifmsh->sync_offset_lock); if (ifmsh->sync_offset_clockdrift_max < beacon_int_fraction) { msync_dbg(sdata, "TSF : max clockdrift=%lld; adjusting\n", (long long) ifmsh->sync_offset_clockdrift_max); tsfdelta = -ifmsh->sync_offset_clockdrift_max; ifmsh->sync_offset_clockdrift_max = 0; } else { msync_dbg(sdata, "TSF : max clockdrift=%lld; adjusting by %llu\n", (long long) ifmsh->sync_offset_clockdrift_max, (unsigned long long) beacon_int_fraction); tsfdelta = -beacon_int_fraction; ifmsh->sync_offset_clockdrift_max -= beacon_int_fraction; } spin_unlock_bh(&ifmsh->sync_offset_lock); if (local->ops->offset_tsf) { drv_offset_tsf(local, sdata, tsfdelta); } else { tsf = drv_get_tsf(local, sdata); if (tsf != -1ULL) drv_set_tsf(local, sdata, tsf + tsfdelta); } } static void mesh_sync_offset_rx_bcn_presp(struct ieee80211_sub_if_data *sdata, u16 stype, struct ieee80211_mgmt *mgmt, unsigned int len, const struct ieee80211_meshconf_ie *mesh_cfg, struct ieee80211_rx_status *rx_status) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_local *local = sdata->local; struct sta_info *sta; u64 t_t, t_r; WARN_ON(ifmsh->mesh_sp_id != IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET); /* standard mentions only beacons */ if (stype != IEEE80211_STYPE_BEACON) return; /* * Get time when timestamp field was received. If we don't * have rx timestamps, then use current tsf as an approximation. * drv_get_tsf() must be called before entering the rcu-read * section. */ if (ieee80211_have_rx_timestamp(rx_status)) t_r = ieee80211_calculate_rx_timestamp(local, rx_status, len + FCS_LEN, 24); else t_r = drv_get_tsf(local, sdata); rcu_read_lock(); sta = sta_info_get(sdata, mgmt->sa); if (!sta) goto no_sync; /* check offset sync conditions (13.13.2.2.1) * * TODO also sync to * dot11MeshNbrOffsetMaxNeighbor non-peer non-MBSS neighbors */ if (mesh_peer_tbtt_adjusting(mesh_cfg)) { msync_dbg(sdata, "STA %pM : is adjusting TBTT\n", sta->sta.addr); goto no_sync; } /* Timing offset calculation (see 13.13.2.2.2) */ t_t = le64_to_cpu(mgmt->u.beacon.timestamp); sta->mesh->t_offset = t_t - t_r; if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { s64 t_clockdrift = sta->mesh->t_offset_setpoint - sta->mesh->t_offset; msync_dbg(sdata, "STA %pM : t_offset=%lld, t_offset_setpoint=%lld, t_clockdrift=%lld\n", sta->sta.addr, (long long) sta->mesh->t_offset, (long long) sta->mesh->t_offset_setpoint, (long long) t_clockdrift); if (t_clockdrift > TOFFSET_MAXIMUM_ADJUSTMENT || t_clockdrift < -TOFFSET_MAXIMUM_ADJUSTMENT) { msync_dbg(sdata, "STA %pM : t_clockdrift=%lld too large, setpoint reset\n", sta->sta.addr, (long long) t_clockdrift); clear_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN); goto no_sync; } spin_lock_bh(&ifmsh->sync_offset_lock); if (t_clockdrift > ifmsh->sync_offset_clockdrift_max) ifmsh->sync_offset_clockdrift_max = t_clockdrift; spin_unlock_bh(&ifmsh->sync_offset_lock); } else { sta->mesh->t_offset_setpoint = sta->mesh->t_offset - TOFFSET_SET_MARGIN; set_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN); msync_dbg(sdata, "STA %pM : offset was invalid, t_offset=%lld\n", sta->sta.addr, (long long) sta->mesh->t_offset); } no_sync: rcu_read_unlock(); } static void mesh_sync_offset_adjust_tsf(struct ieee80211_sub_if_data *sdata, struct beacon_data *beacon) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; WARN_ON(ifmsh->mesh_sp_id != IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET); WARN_ON(!rcu_read_lock_held()); spin_lock_bh(&ifmsh->sync_offset_lock); if (ifmsh->sync_offset_clockdrift_max > TOFFSET_MINIMUM_ADJUSTMENT) { /* Since ajusting the tsf here would * require a possibly blocking call * to the driver tsf setter, we punt * the tsf adjustment to the mesh tasklet */ msync_dbg(sdata, "TSF : kicking off TSF adjustment with clockdrift_max=%lld\n", ifmsh->sync_offset_clockdrift_max); set_bit(MESH_WORK_DRIFT_ADJUST, &ifmsh->wrkq_flags); } else { msync_dbg(sdata, "TSF : max clockdrift=%lld; too small to adjust\n", (long long)ifmsh->sync_offset_clockdrift_max); ifmsh->sync_offset_clockdrift_max = 0; } spin_unlock_bh(&ifmsh->sync_offset_lock); } static const struct sync_method sync_methods[] = { { .method = IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET, .ops = { .rx_bcn_presp = &mesh_sync_offset_rx_bcn_presp, .adjust_tsf = &mesh_sync_offset_adjust_tsf, } }, }; const struct ieee80211_mesh_sync_ops *ieee80211_mesh_sync_ops_get(u8 method) { int i; for (i = 0 ; i < ARRAY_SIZE(sync_methods); ++i) { if (sync_methods[i].method == method) return &sync_methods[i].ops; } return NULL; }
linux-master
net/mac80211/mesh_sync.c
// SPDX-License-Identifier: GPL-2.0-only /* * EHT handling * * Copyright(c) 2021-2023 Intel Corporation */ #include "ieee80211_i.h" void ieee80211_eht_cap_ie_to_sta_eht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const u8 *he_cap_ie, u8 he_cap_len, const struct ieee80211_eht_cap_elem *eht_cap_ie_elem, u8 eht_cap_len, struct link_sta_info *link_sta) { struct ieee80211_sta_eht_cap *eht_cap = &link_sta->pub->eht_cap; struct ieee80211_he_cap_elem *he_cap_ie_elem = (void *)he_cap_ie; u8 eht_ppe_size = 0; u8 mcs_nss_size; u8 eht_total_size = sizeof(eht_cap->eht_cap_elem); u8 *pos = (u8 *)eht_cap_ie_elem; memset(eht_cap, 0, sizeof(*eht_cap)); if (!eht_cap_ie_elem || !ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif)) return; mcs_nss_size = ieee80211_eht_mcs_nss_size(he_cap_ie_elem, &eht_cap_ie_elem->fixed, sdata->vif.type == NL80211_IFTYPE_STATION); eht_total_size += mcs_nss_size; /* Calculate the PPE thresholds length only if the header is present */ if (eht_cap_ie_elem->fixed.phy_cap_info[5] & IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) { u16 eht_ppe_hdr; if (eht_cap_len < eht_total_size + sizeof(u16)) return; eht_ppe_hdr = get_unaligned_le16(eht_cap_ie_elem->optional + mcs_nss_size); eht_ppe_size = ieee80211_eht_ppe_size(eht_ppe_hdr, eht_cap_ie_elem->fixed.phy_cap_info); eht_total_size += eht_ppe_size; /* we calculate as if NSS > 8 are valid, but don't handle that */ if (eht_ppe_size > sizeof(eht_cap->eht_ppe_thres)) return; } if (eht_cap_len < eht_total_size) return; /* Copy the static portion of the EHT capabilities */ memcpy(&eht_cap->eht_cap_elem, pos, sizeof(eht_cap->eht_cap_elem)); pos += sizeof(eht_cap->eht_cap_elem); /* Copy MCS/NSS which depends on the peer capabilities */ memset(&eht_cap->eht_mcs_nss_supp, 0, sizeof(eht_cap->eht_mcs_nss_supp)); memcpy(&eht_cap->eht_mcs_nss_supp, pos, mcs_nss_size); if (eht_ppe_size) memcpy(eht_cap->eht_ppe_thres, &eht_cap_ie_elem->optional[mcs_nss_size], eht_ppe_size); eht_cap->has_eht = true; link_sta->cur_max_bandwidth = ieee80211_sta_cap_rx_bw(link_sta); link_sta->pub->bandwidth = ieee80211_sta_cur_vht_bw(link_sta); }
linux-master
net/mac80211/eht.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008, 2009 open80211s Ltd. * Copyright (C) 2019, 2021-2023 Intel Corporation * Author: Luis Carlos Cobo <[email protected]> */ #include <linux/slab.h> #include <linux/etherdevice.h> #include <asm/unaligned.h> #include "wme.h" #include "mesh.h" #define TEST_FRAME_LEN 8192 #define MAX_METRIC 0xffffffff #define ARITH_SHIFT 8 #define LINK_FAIL_THRESH 95 #define MAX_PREQ_QUEUE_LEN 64 static void mesh_queue_preq(struct mesh_path *, u8); static inline u32 u32_field_get(const u8 *preq_elem, int offset, bool ae) { if (ae) offset += 6; return get_unaligned_le32(preq_elem + offset); } static inline u16 u16_field_get(const u8 *preq_elem, int offset, bool ae) { if (ae) offset += 6; return get_unaligned_le16(preq_elem + offset); } /* HWMP IE processing macros */ #define AE_F (1<<6) #define AE_F_SET(x) (*x & AE_F) #define PREQ_IE_FLAGS(x) (*(x)) #define PREQ_IE_HOPCOUNT(x) (*(x + 1)) #define PREQ_IE_TTL(x) (*(x + 2)) #define PREQ_IE_PREQ_ID(x) u32_field_get(x, 3, 0) #define PREQ_IE_ORIG_ADDR(x) (x + 7) #define PREQ_IE_ORIG_SN(x) u32_field_get(x, 13, 0) #define PREQ_IE_LIFETIME(x) u32_field_get(x, 17, AE_F_SET(x)) #define PREQ_IE_METRIC(x) u32_field_get(x, 21, AE_F_SET(x)) #define PREQ_IE_TARGET_F(x) (*(AE_F_SET(x) ? x + 32 : x + 26)) #define PREQ_IE_TARGET_ADDR(x) (AE_F_SET(x) ? x + 33 : x + 27) #define PREQ_IE_TARGET_SN(x) u32_field_get(x, 33, AE_F_SET(x)) #define PREP_IE_FLAGS(x) PREQ_IE_FLAGS(x) #define PREP_IE_HOPCOUNT(x) PREQ_IE_HOPCOUNT(x) #define PREP_IE_TTL(x) PREQ_IE_TTL(x) #define PREP_IE_ORIG_ADDR(x) (AE_F_SET(x) ? x + 27 : x + 21) #define PREP_IE_ORIG_SN(x) u32_field_get(x, 27, AE_F_SET(x)) #define PREP_IE_LIFETIME(x) u32_field_get(x, 13, AE_F_SET(x)) #define PREP_IE_METRIC(x) u32_field_get(x, 17, AE_F_SET(x)) #define PREP_IE_TARGET_ADDR(x) (x + 3) #define PREP_IE_TARGET_SN(x) u32_field_get(x, 9, 0) #define PERR_IE_TTL(x) (*(x)) #define PERR_IE_TARGET_FLAGS(x) (*(x + 2)) #define PERR_IE_TARGET_ADDR(x) (x + 3) #define PERR_IE_TARGET_SN(x) u32_field_get(x, 9, 0) #define PERR_IE_TARGET_RCODE(x) u16_field_get(x, 13, 0) #define MSEC_TO_TU(x) (x*1000/1024) #define SN_GT(x, y) ((s32)(y - x) < 0) #define SN_LT(x, y) ((s32)(x - y) < 0) #define MAX_SANE_SN_DELTA 32 static inline u32 SN_DELTA(u32 x, u32 y) { return x >= y ? x - y : y - x; } #define net_traversal_jiffies(s) \ msecs_to_jiffies(s->u.mesh.mshcfg.dot11MeshHWMPnetDiameterTraversalTime) #define default_lifetime(s) \ MSEC_TO_TU(s->u.mesh.mshcfg.dot11MeshHWMPactivePathTimeout) #define min_preq_int_jiff(s) \ (msecs_to_jiffies(s->u.mesh.mshcfg.dot11MeshHWMPpreqMinInterval)) #define max_preq_retries(s) (s->u.mesh.mshcfg.dot11MeshHWMPmaxPREQretries) #define disc_timeout_jiff(s) \ msecs_to_jiffies(sdata->u.mesh.mshcfg.min_discovery_timeout) #define root_path_confirmation_jiffies(s) \ msecs_to_jiffies(sdata->u.mesh.mshcfg.dot11MeshHWMPconfirmationInterval) enum mpath_frame_type { MPATH_PREQ = 0, MPATH_PREP, MPATH_PERR, MPATH_RANN }; static const u8 broadcast_addr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; static int mesh_path_sel_frame_tx(enum mpath_frame_type action, u8 flags, const u8 *orig_addr, u32 orig_sn, u8 target_flags, const u8 *target, u32 target_sn, const u8 *da, u8 hop_count, u8 ttl, u32 lifetime, u32 metric, u32 preq_id, struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u8 *pos, ie_len; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.mesh_action); skb = dev_alloc_skb(local->tx_headroom + hdr_len + 2 + 37); /* max HWMP IE */ if (!skb) return -1; skb_reserve(skb, local->tx_headroom); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); /* BSSID == SA */ memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_MESH_ACTION; mgmt->u.action.u.mesh_action.action_code = WLAN_MESH_ACTION_HWMP_PATH_SELECTION; switch (action) { case MPATH_PREQ: mhwmp_dbg(sdata, "sending PREQ to %pM\n", target); ie_len = 37; pos = skb_put(skb, 2 + ie_len); *pos++ = WLAN_EID_PREQ; break; case MPATH_PREP: mhwmp_dbg(sdata, "sending PREP to %pM\n", orig_addr); ie_len = 31; pos = skb_put(skb, 2 + ie_len); *pos++ = WLAN_EID_PREP; break; case MPATH_RANN: mhwmp_dbg(sdata, "sending RANN from %pM\n", orig_addr); ie_len = sizeof(struct ieee80211_rann_ie); pos = skb_put(skb, 2 + ie_len); *pos++ = WLAN_EID_RANN; break; default: kfree_skb(skb); return -ENOTSUPP; } *pos++ = ie_len; *pos++ = flags; *pos++ = hop_count; *pos++ = ttl; if (action == MPATH_PREP) { memcpy(pos, target, ETH_ALEN); pos += ETH_ALEN; put_unaligned_le32(target_sn, pos); pos += 4; } else { if (action == MPATH_PREQ) { put_unaligned_le32(preq_id, pos); pos += 4; } memcpy(pos, orig_addr, ETH_ALEN); pos += ETH_ALEN; put_unaligned_le32(orig_sn, pos); pos += 4; } put_unaligned_le32(lifetime, pos); /* interval for RANN */ pos += 4; put_unaligned_le32(metric, pos); pos += 4; if (action == MPATH_PREQ) { *pos++ = 1; /* destination count */ *pos++ = target_flags; memcpy(pos, target, ETH_ALEN); pos += ETH_ALEN; put_unaligned_le32(target_sn, pos); pos += 4; } else if (action == MPATH_PREP) { memcpy(pos, orig_addr, ETH_ALEN); pos += ETH_ALEN; put_unaligned_le32(orig_sn, pos); pos += 4; } ieee80211_tx_skb(sdata, skb); return 0; } /* Headroom is not adjusted. Caller should ensure that skb has sufficient * headroom in case the frame is encrypted. */ static void prepare_frame_for_deferred_tx(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); /* Send all internal mgmt frames on VO. Accordingly set TID to 7. */ skb_set_queue_mapping(skb, IEEE80211_AC_VO); skb->priority = 7; info->control.vif = &sdata->vif; info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; ieee80211_set_qos_hdr(sdata, skb); ieee80211_mps_set_frame_flags(sdata, NULL, hdr); } /** * mesh_path_error_tx - Sends a PERR mesh management frame * * @ttl: allowed remaining hops * @target: broken destination * @target_sn: SN of the broken destination * @target_rcode: reason code for this PERR * @ra: node this frame is addressed to * @sdata: local mesh subif * * Note: This function may be called with driver locks taken that the driver * also acquires in the TX path. To avoid a deadlock we don't transmit the * frame directly but add it to the pending queue instead. */ int mesh_path_error_tx(struct ieee80211_sub_if_data *sdata, u8 ttl, const u8 *target, u32 target_sn, u16 target_rcode, const u8 *ra) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_mgmt *mgmt; u8 *pos, ie_len; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.mesh_action); if (time_before(jiffies, ifmsh->next_perr)) return -EAGAIN; skb = dev_alloc_skb(local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM + IEEE80211_ENCRYPT_TAILROOM + hdr_len + 2 + 15 /* PERR IE */); if (!skb) return -1; skb_reserve(skb, local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, ra, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); /* BSSID == SA */ memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_MESH_ACTION; mgmt->u.action.u.mesh_action.action_code = WLAN_MESH_ACTION_HWMP_PATH_SELECTION; ie_len = 15; pos = skb_put(skb, 2 + ie_len); *pos++ = WLAN_EID_PERR; *pos++ = ie_len; /* ttl */ *pos++ = ttl; /* number of destinations */ *pos++ = 1; /* Flags field has AE bit only as defined in * sec 8.4.2.117 IEEE802.11-2012 */ *pos = 0; pos++; memcpy(pos, target, ETH_ALEN); pos += ETH_ALEN; put_unaligned_le32(target_sn, pos); pos += 4; put_unaligned_le16(target_rcode, pos); /* see note in function header */ prepare_frame_for_deferred_tx(sdata, skb); ifmsh->next_perr = TU_TO_EXP_TIME( ifmsh->mshcfg.dot11MeshHWMPperrMinInterval); ieee80211_add_pending_skb(local, skb); return 0; } void ieee80211s_update_metric(struct ieee80211_local *local, struct sta_info *sta, struct ieee80211_tx_status *st) { struct ieee80211_tx_info *txinfo = st->info; int failed; struct rate_info rinfo; failed = !(txinfo->flags & IEEE80211_TX_STAT_ACK); /* moving average, scaled to 100. * feed failure as 100 and success as 0 */ ewma_mesh_fail_avg_add(&sta->mesh->fail_avg, failed * 100); if (ewma_mesh_fail_avg_read(&sta->mesh->fail_avg) > LINK_FAIL_THRESH) mesh_plink_broken(sta); /* use rate info set by the driver directly if present */ if (st->n_rates) rinfo = sta->deflink.tx_stats.last_rate_info; else sta_set_rate_info_tx(sta, &sta->deflink.tx_stats.last_rate, &rinfo); ewma_mesh_tx_rate_avg_add(&sta->mesh->tx_rate_avg, cfg80211_calculate_bitrate(&rinfo)); } u32 airtime_link_metric_get(struct ieee80211_local *local, struct sta_info *sta) { /* This should be adjusted for each device */ int device_constant = 1 << ARITH_SHIFT; int test_frame_len = TEST_FRAME_LEN << ARITH_SHIFT; int s_unit = 1 << ARITH_SHIFT; int rate, err; u32 tx_time, estimated_retx; u64 result; unsigned long fail_avg = ewma_mesh_fail_avg_read(&sta->mesh->fail_avg); if (sta->mesh->plink_state != NL80211_PLINK_ESTAB) return MAX_METRIC; /* Try to get rate based on HW/SW RC algorithm. * Rate is returned in units of Kbps, correct this * to comply with airtime calculation units * Round up in case we get rate < 100Kbps */ rate = DIV_ROUND_UP(sta_get_expected_throughput(sta), 100); if (rate) { err = 0; } else { if (fail_avg > LINK_FAIL_THRESH) return MAX_METRIC; rate = ewma_mesh_tx_rate_avg_read(&sta->mesh->tx_rate_avg); if (WARN_ON(!rate)) return MAX_METRIC; err = (fail_avg << ARITH_SHIFT) / 100; } /* bitrate is in units of 100 Kbps, while we need rate in units of * 1Mbps. This will be corrected on tx_time computation. */ tx_time = (device_constant + 10 * test_frame_len / rate); estimated_retx = ((1 << (2 * ARITH_SHIFT)) / (s_unit - err)); result = ((u64)tx_time * estimated_retx) >> (2 * ARITH_SHIFT); return (u32)result; } /** * hwmp_route_info_get - Update routing info to originator and transmitter * * @sdata: local mesh subif * @mgmt: mesh management frame * @hwmp_ie: hwmp information element (PREP or PREQ) * @action: type of hwmp ie * * This function updates the path routing information to the originator and the * transmitter of a HWMP PREQ or PREP frame. * * Returns: metric to frame originator or 0 if the frame should not be further * processed * * Notes: this function is the only place (besides user-provided info) where * path routing information is updated. */ static u32 hwmp_route_info_get(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, const u8 *hwmp_ie, enum mpath_frame_type action) { struct ieee80211_local *local = sdata->local; struct mesh_path *mpath; struct sta_info *sta; bool fresh_info; const u8 *orig_addr, *ta; u32 orig_sn, orig_metric; unsigned long orig_lifetime, exp_time; u32 last_hop_metric, new_metric; bool flush_mpath = false; bool process = true; u8 hopcount; rcu_read_lock(); sta = sta_info_get(sdata, mgmt->sa); if (!sta) { rcu_read_unlock(); return 0; } last_hop_metric = airtime_link_metric_get(local, sta); /* Update and check originator routing info */ fresh_info = true; switch (action) { case MPATH_PREQ: orig_addr = PREQ_IE_ORIG_ADDR(hwmp_ie); orig_sn = PREQ_IE_ORIG_SN(hwmp_ie); orig_lifetime = PREQ_IE_LIFETIME(hwmp_ie); orig_metric = PREQ_IE_METRIC(hwmp_ie); hopcount = PREQ_IE_HOPCOUNT(hwmp_ie) + 1; break; case MPATH_PREP: /* Originator here refers to the MP that was the target in the * Path Request. We divert from the nomenclature in the draft * so that we can easily use a single function to gather path * information from both PREQ and PREP frames. */ orig_addr = PREP_IE_TARGET_ADDR(hwmp_ie); orig_sn = PREP_IE_TARGET_SN(hwmp_ie); orig_lifetime = PREP_IE_LIFETIME(hwmp_ie); orig_metric = PREP_IE_METRIC(hwmp_ie); hopcount = PREP_IE_HOPCOUNT(hwmp_ie) + 1; break; default: rcu_read_unlock(); return 0; } new_metric = orig_metric + last_hop_metric; if (new_metric < orig_metric) new_metric = MAX_METRIC; exp_time = TU_TO_EXP_TIME(orig_lifetime); if (ether_addr_equal(orig_addr, sdata->vif.addr)) { /* This MP is the originator, we are not interested in this * frame, except for updating transmitter's path info. */ process = false; fresh_info = false; } else { mpath = mesh_path_lookup(sdata, orig_addr); if (mpath) { spin_lock_bh(&mpath->state_lock); if (mpath->flags & MESH_PATH_FIXED) fresh_info = false; else if ((mpath->flags & MESH_PATH_ACTIVE) && (mpath->flags & MESH_PATH_SN_VALID)) { if (SN_GT(mpath->sn, orig_sn) || (mpath->sn == orig_sn && (rcu_access_pointer(mpath->next_hop) != sta ? mult_frac(new_metric, 10, 9) : new_metric) >= mpath->metric)) { process = false; fresh_info = false; } } else if (!(mpath->flags & MESH_PATH_ACTIVE)) { bool have_sn, newer_sn, bounced; have_sn = mpath->flags & MESH_PATH_SN_VALID; newer_sn = have_sn && SN_GT(orig_sn, mpath->sn); bounced = have_sn && (SN_DELTA(orig_sn, mpath->sn) > MAX_SANE_SN_DELTA); if (!have_sn || newer_sn) { /* if SN is newer than what we had * then we can take it */; } else if (bounced) { /* if SN is way different than what * we had then assume the other side * rebooted or restarted */; } else { process = false; fresh_info = false; } } } else { mpath = mesh_path_add(sdata, orig_addr); if (IS_ERR(mpath)) { rcu_read_unlock(); return 0; } spin_lock_bh(&mpath->state_lock); } if (fresh_info) { if (rcu_access_pointer(mpath->next_hop) != sta) { mpath->path_change_count++; flush_mpath = true; } mesh_path_assign_nexthop(mpath, sta); mpath->flags |= MESH_PATH_SN_VALID; mpath->metric = new_metric; mpath->sn = orig_sn; mpath->exp_time = time_after(mpath->exp_time, exp_time) ? mpath->exp_time : exp_time; mpath->hop_count = hopcount; mesh_path_activate(mpath); spin_unlock_bh(&mpath->state_lock); if (flush_mpath) mesh_fast_tx_flush_mpath(mpath); ewma_mesh_fail_avg_init(&sta->mesh->fail_avg); /* init it at a low value - 0 start is tricky */ ewma_mesh_fail_avg_add(&sta->mesh->fail_avg, 1); mesh_path_tx_pending(mpath); /* draft says preq_id should be saved to, but there does * not seem to be any use for it, skipping by now */ } else spin_unlock_bh(&mpath->state_lock); } /* Update and check transmitter routing info */ ta = mgmt->sa; if (ether_addr_equal(orig_addr, ta)) fresh_info = false; else { fresh_info = true; mpath = mesh_path_lookup(sdata, ta); if (mpath) { spin_lock_bh(&mpath->state_lock); if ((mpath->flags & MESH_PATH_FIXED) || ((mpath->flags & MESH_PATH_ACTIVE) && ((rcu_access_pointer(mpath->next_hop) != sta ? mult_frac(last_hop_metric, 10, 9) : last_hop_metric) > mpath->metric))) fresh_info = false; } else { mpath = mesh_path_add(sdata, ta); if (IS_ERR(mpath)) { rcu_read_unlock(); return 0; } spin_lock_bh(&mpath->state_lock); } if (fresh_info) { if (rcu_access_pointer(mpath->next_hop) != sta) { mpath->path_change_count++; flush_mpath = true; } mesh_path_assign_nexthop(mpath, sta); mpath->metric = last_hop_metric; mpath->exp_time = time_after(mpath->exp_time, exp_time) ? mpath->exp_time : exp_time; mpath->hop_count = 1; mesh_path_activate(mpath); spin_unlock_bh(&mpath->state_lock); if (flush_mpath) mesh_fast_tx_flush_mpath(mpath); ewma_mesh_fail_avg_init(&sta->mesh->fail_avg); /* init it at a low value - 0 start is tricky */ ewma_mesh_fail_avg_add(&sta->mesh->fail_avg, 1); mesh_path_tx_pending(mpath); } else spin_unlock_bh(&mpath->state_lock); } rcu_read_unlock(); return process ? new_metric : 0; } static void hwmp_preq_frame_process(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, const u8 *preq_elem, u32 orig_metric) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct mesh_path *mpath = NULL; const u8 *target_addr, *orig_addr; const u8 *da; u8 target_flags, ttl, flags; u32 orig_sn, target_sn, lifetime, target_metric = 0; bool reply = false; bool forward = true; bool root_is_gate; /* Update target SN, if present */ target_addr = PREQ_IE_TARGET_ADDR(preq_elem); orig_addr = PREQ_IE_ORIG_ADDR(preq_elem); target_sn = PREQ_IE_TARGET_SN(preq_elem); orig_sn = PREQ_IE_ORIG_SN(preq_elem); target_flags = PREQ_IE_TARGET_F(preq_elem); /* Proactive PREQ gate announcements */ flags = PREQ_IE_FLAGS(preq_elem); root_is_gate = !!(flags & RANN_FLAG_IS_GATE); mhwmp_dbg(sdata, "received PREQ from %pM\n", orig_addr); if (ether_addr_equal(target_addr, sdata->vif.addr)) { mhwmp_dbg(sdata, "PREQ is for us\n"); forward = false; reply = true; target_metric = 0; if (SN_GT(target_sn, ifmsh->sn)) ifmsh->sn = target_sn; if (time_after(jiffies, ifmsh->last_sn_update + net_traversal_jiffies(sdata)) || time_before(jiffies, ifmsh->last_sn_update)) { ++ifmsh->sn; ifmsh->last_sn_update = jiffies; } target_sn = ifmsh->sn; } else if (is_broadcast_ether_addr(target_addr) && (target_flags & IEEE80211_PREQ_TO_FLAG)) { rcu_read_lock(); mpath = mesh_path_lookup(sdata, orig_addr); if (mpath) { if (flags & IEEE80211_PREQ_PROACTIVE_PREP_FLAG) { reply = true; target_addr = sdata->vif.addr; target_sn = ++ifmsh->sn; target_metric = 0; ifmsh->last_sn_update = jiffies; } if (root_is_gate) mesh_path_add_gate(mpath); } rcu_read_unlock(); } else { rcu_read_lock(); mpath = mesh_path_lookup(sdata, target_addr); if (mpath) { if ((!(mpath->flags & MESH_PATH_SN_VALID)) || SN_LT(mpath->sn, target_sn)) { mpath->sn = target_sn; mpath->flags |= MESH_PATH_SN_VALID; } else if ((!(target_flags & IEEE80211_PREQ_TO_FLAG)) && (mpath->flags & MESH_PATH_ACTIVE)) { reply = true; target_metric = mpath->metric; target_sn = mpath->sn; /* Case E2 of sec 13.10.9.3 IEEE 802.11-2012*/ target_flags |= IEEE80211_PREQ_TO_FLAG; } } rcu_read_unlock(); } if (reply) { lifetime = PREQ_IE_LIFETIME(preq_elem); ttl = ifmsh->mshcfg.element_ttl; if (ttl != 0) { mhwmp_dbg(sdata, "replying to the PREQ\n"); mesh_path_sel_frame_tx(MPATH_PREP, 0, orig_addr, orig_sn, 0, target_addr, target_sn, mgmt->sa, 0, ttl, lifetime, target_metric, 0, sdata); } else { ifmsh->mshstats.dropped_frames_ttl++; } } if (forward && ifmsh->mshcfg.dot11MeshForwarding) { u32 preq_id; u8 hopcount; ttl = PREQ_IE_TTL(preq_elem); lifetime = PREQ_IE_LIFETIME(preq_elem); if (ttl <= 1) { ifmsh->mshstats.dropped_frames_ttl++; return; } mhwmp_dbg(sdata, "forwarding the PREQ from %pM\n", orig_addr); --ttl; preq_id = PREQ_IE_PREQ_ID(preq_elem); hopcount = PREQ_IE_HOPCOUNT(preq_elem) + 1; da = (mpath && mpath->is_root) ? mpath->rann_snd_addr : broadcast_addr; if (flags & IEEE80211_PREQ_PROACTIVE_PREP_FLAG) { target_addr = PREQ_IE_TARGET_ADDR(preq_elem); target_sn = PREQ_IE_TARGET_SN(preq_elem); } mesh_path_sel_frame_tx(MPATH_PREQ, flags, orig_addr, orig_sn, target_flags, target_addr, target_sn, da, hopcount, ttl, lifetime, orig_metric, preq_id, sdata); if (!is_multicast_ether_addr(da)) ifmsh->mshstats.fwded_unicast++; else ifmsh->mshstats.fwded_mcast++; ifmsh->mshstats.fwded_frames++; } } static inline struct sta_info * next_hop_deref_protected(struct mesh_path *mpath) { return rcu_dereference_protected(mpath->next_hop, lockdep_is_held(&mpath->state_lock)); } static void hwmp_prep_frame_process(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, const u8 *prep_elem, u32 metric) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct mesh_path *mpath; const u8 *target_addr, *orig_addr; u8 ttl, hopcount, flags; u8 next_hop[ETH_ALEN]; u32 target_sn, orig_sn, lifetime; mhwmp_dbg(sdata, "received PREP from %pM\n", PREP_IE_TARGET_ADDR(prep_elem)); orig_addr = PREP_IE_ORIG_ADDR(prep_elem); if (ether_addr_equal(orig_addr, sdata->vif.addr)) /* destination, no forwarding required */ return; if (!ifmsh->mshcfg.dot11MeshForwarding) return; ttl = PREP_IE_TTL(prep_elem); if (ttl <= 1) { sdata->u.mesh.mshstats.dropped_frames_ttl++; return; } rcu_read_lock(); mpath = mesh_path_lookup(sdata, orig_addr); if (mpath) spin_lock_bh(&mpath->state_lock); else goto fail; if (!(mpath->flags & MESH_PATH_ACTIVE)) { spin_unlock_bh(&mpath->state_lock); goto fail; } memcpy(next_hop, next_hop_deref_protected(mpath)->sta.addr, ETH_ALEN); spin_unlock_bh(&mpath->state_lock); --ttl; flags = PREP_IE_FLAGS(prep_elem); lifetime = PREP_IE_LIFETIME(prep_elem); hopcount = PREP_IE_HOPCOUNT(prep_elem) + 1; target_addr = PREP_IE_TARGET_ADDR(prep_elem); target_sn = PREP_IE_TARGET_SN(prep_elem); orig_sn = PREP_IE_ORIG_SN(prep_elem); mesh_path_sel_frame_tx(MPATH_PREP, flags, orig_addr, orig_sn, 0, target_addr, target_sn, next_hop, hopcount, ttl, lifetime, metric, 0, sdata); rcu_read_unlock(); sdata->u.mesh.mshstats.fwded_unicast++; sdata->u.mesh.mshstats.fwded_frames++; return; fail: rcu_read_unlock(); sdata->u.mesh.mshstats.dropped_frames_no_route++; } static void hwmp_perr_frame_process(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, const u8 *perr_elem) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct mesh_path *mpath; u8 ttl; const u8 *ta, *target_addr; u32 target_sn; u16 target_rcode; ta = mgmt->sa; ttl = PERR_IE_TTL(perr_elem); if (ttl <= 1) { ifmsh->mshstats.dropped_frames_ttl++; return; } ttl--; target_addr = PERR_IE_TARGET_ADDR(perr_elem); target_sn = PERR_IE_TARGET_SN(perr_elem); target_rcode = PERR_IE_TARGET_RCODE(perr_elem); rcu_read_lock(); mpath = mesh_path_lookup(sdata, target_addr); if (mpath) { struct sta_info *sta; spin_lock_bh(&mpath->state_lock); sta = next_hop_deref_protected(mpath); if (mpath->flags & MESH_PATH_ACTIVE && ether_addr_equal(ta, sta->sta.addr) && !(mpath->flags & MESH_PATH_FIXED) && (!(mpath->flags & MESH_PATH_SN_VALID) || SN_GT(target_sn, mpath->sn) || target_sn == 0)) { mpath->flags &= ~MESH_PATH_ACTIVE; if (target_sn != 0) mpath->sn = target_sn; else mpath->sn += 1; spin_unlock_bh(&mpath->state_lock); if (!ifmsh->mshcfg.dot11MeshForwarding) goto endperr; mesh_path_error_tx(sdata, ttl, target_addr, target_sn, target_rcode, broadcast_addr); } else spin_unlock_bh(&mpath->state_lock); } endperr: rcu_read_unlock(); } static void hwmp_rann_frame_process(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, const struct ieee80211_rann_ie *rann) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct mesh_path *mpath; u8 ttl, flags, hopcount; const u8 *orig_addr; u32 orig_sn, new_metric, orig_metric, last_hop_metric, interval; bool root_is_gate; ttl = rann->rann_ttl; flags = rann->rann_flags; root_is_gate = !!(flags & RANN_FLAG_IS_GATE); orig_addr = rann->rann_addr; orig_sn = le32_to_cpu(rann->rann_seq); interval = le32_to_cpu(rann->rann_interval); hopcount = rann->rann_hopcount; hopcount++; orig_metric = le32_to_cpu(rann->rann_metric); /* Ignore our own RANNs */ if (ether_addr_equal(orig_addr, sdata->vif.addr)) return; mhwmp_dbg(sdata, "received RANN from %pM via neighbour %pM (is_gate=%d)\n", orig_addr, mgmt->sa, root_is_gate); rcu_read_lock(); sta = sta_info_get(sdata, mgmt->sa); if (!sta) { rcu_read_unlock(); return; } last_hop_metric = airtime_link_metric_get(local, sta); new_metric = orig_metric + last_hop_metric; if (new_metric < orig_metric) new_metric = MAX_METRIC; mpath = mesh_path_lookup(sdata, orig_addr); if (!mpath) { mpath = mesh_path_add(sdata, orig_addr); if (IS_ERR(mpath)) { rcu_read_unlock(); sdata->u.mesh.mshstats.dropped_frames_no_route++; return; } } if (!(SN_LT(mpath->sn, orig_sn)) && !(mpath->sn == orig_sn && new_metric < mpath->rann_metric)) { rcu_read_unlock(); return; } if ((!(mpath->flags & (MESH_PATH_ACTIVE | MESH_PATH_RESOLVING)) || (time_after(jiffies, mpath->last_preq_to_root + root_path_confirmation_jiffies(sdata)) || time_before(jiffies, mpath->last_preq_to_root))) && !(mpath->flags & MESH_PATH_FIXED) && (ttl != 0)) { mhwmp_dbg(sdata, "time to refresh root mpath %pM\n", orig_addr); mesh_queue_preq(mpath, PREQ_Q_F_START | PREQ_Q_F_REFRESH); mpath->last_preq_to_root = jiffies; } mpath->sn = orig_sn; mpath->rann_metric = new_metric; mpath->is_root = true; /* Recording RANNs sender address to send individually * addressed PREQs destined for root mesh STA */ memcpy(mpath->rann_snd_addr, mgmt->sa, ETH_ALEN); if (root_is_gate) mesh_path_add_gate(mpath); if (ttl <= 1) { ifmsh->mshstats.dropped_frames_ttl++; rcu_read_unlock(); return; } ttl--; if (ifmsh->mshcfg.dot11MeshForwarding) { mesh_path_sel_frame_tx(MPATH_RANN, flags, orig_addr, orig_sn, 0, NULL, 0, broadcast_addr, hopcount, ttl, interval, new_metric, 0, sdata); } rcu_read_unlock(); } void mesh_rx_path_sel_frame(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee802_11_elems *elems; size_t baselen; u32 path_metric; struct sta_info *sta; /* need action_code */ if (len < IEEE80211_MIN_ACTION_SIZE + 1) return; rcu_read_lock(); sta = sta_info_get(sdata, mgmt->sa); if (!sta || sta->mesh->plink_state != NL80211_PLINK_ESTAB) { rcu_read_unlock(); return; } rcu_read_unlock(); baselen = (u8 *) mgmt->u.action.u.mesh_action.variable - (u8 *) mgmt; elems = ieee802_11_parse_elems(mgmt->u.action.u.mesh_action.variable, len - baselen, false, NULL); if (!elems) return; if (elems->preq) { if (elems->preq_len != 37) /* Right now we support just 1 destination and no AE */ goto free; path_metric = hwmp_route_info_get(sdata, mgmt, elems->preq, MPATH_PREQ); if (path_metric) hwmp_preq_frame_process(sdata, mgmt, elems->preq, path_metric); } if (elems->prep) { if (elems->prep_len != 31) /* Right now we support no AE */ goto free; path_metric = hwmp_route_info_get(sdata, mgmt, elems->prep, MPATH_PREP); if (path_metric) hwmp_prep_frame_process(sdata, mgmt, elems->prep, path_metric); } if (elems->perr) { if (elems->perr_len != 15) /* Right now we support only one destination per PERR */ goto free; hwmp_perr_frame_process(sdata, mgmt, elems->perr); } if (elems->rann) hwmp_rann_frame_process(sdata, mgmt, elems->rann); free: kfree(elems); } /** * mesh_queue_preq - queue a PREQ to a given destination * * @mpath: mesh path to discover * @flags: special attributes of the PREQ to be sent * * Locking: the function must be called from within a rcu read lock block. * */ static void mesh_queue_preq(struct mesh_path *mpath, u8 flags) { struct ieee80211_sub_if_data *sdata = mpath->sdata; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct mesh_preq_queue *preq_node; preq_node = kmalloc(sizeof(struct mesh_preq_queue), GFP_ATOMIC); if (!preq_node) { mhwmp_dbg(sdata, "could not allocate PREQ node\n"); return; } spin_lock_bh(&ifmsh->mesh_preq_queue_lock); if (ifmsh->preq_queue_len == MAX_PREQ_QUEUE_LEN) { spin_unlock_bh(&ifmsh->mesh_preq_queue_lock); kfree(preq_node); if (printk_ratelimit()) mhwmp_dbg(sdata, "PREQ node queue full\n"); return; } spin_lock(&mpath->state_lock); if (mpath->flags & MESH_PATH_REQ_QUEUED) { spin_unlock(&mpath->state_lock); spin_unlock_bh(&ifmsh->mesh_preq_queue_lock); kfree(preq_node); return; } memcpy(preq_node->dst, mpath->dst, ETH_ALEN); preq_node->flags = flags; mpath->flags |= MESH_PATH_REQ_QUEUED; spin_unlock(&mpath->state_lock); list_add_tail(&preq_node->list, &ifmsh->preq_queue.list); ++ifmsh->preq_queue_len; spin_unlock_bh(&ifmsh->mesh_preq_queue_lock); if (time_after(jiffies, ifmsh->last_preq + min_preq_int_jiff(sdata))) wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); else if (time_before(jiffies, ifmsh->last_preq)) { /* avoid long wait if did not send preqs for a long time * and jiffies wrapped around */ ifmsh->last_preq = jiffies - min_preq_int_jiff(sdata) - 1; wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } else mod_timer(&ifmsh->mesh_path_timer, ifmsh->last_preq + min_preq_int_jiff(sdata)); } /** * mesh_path_start_discovery - launch a path discovery from the PREQ queue * * @sdata: local mesh subif */ void mesh_path_start_discovery(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct mesh_preq_queue *preq_node; struct mesh_path *mpath; u8 ttl, target_flags = 0; const u8 *da; u32 lifetime; spin_lock_bh(&ifmsh->mesh_preq_queue_lock); if (!ifmsh->preq_queue_len || time_before(jiffies, ifmsh->last_preq + min_preq_int_jiff(sdata))) { spin_unlock_bh(&ifmsh->mesh_preq_queue_lock); return; } preq_node = list_first_entry(&ifmsh->preq_queue.list, struct mesh_preq_queue, list); list_del(&preq_node->list); --ifmsh->preq_queue_len; spin_unlock_bh(&ifmsh->mesh_preq_queue_lock); rcu_read_lock(); mpath = mesh_path_lookup(sdata, preq_node->dst); if (!mpath) goto enddiscovery; spin_lock_bh(&mpath->state_lock); if (mpath->flags & (MESH_PATH_DELETED | MESH_PATH_FIXED)) { spin_unlock_bh(&mpath->state_lock); goto enddiscovery; } mpath->flags &= ~MESH_PATH_REQ_QUEUED; if (preq_node->flags & PREQ_Q_F_START) { if (mpath->flags & MESH_PATH_RESOLVING) { spin_unlock_bh(&mpath->state_lock); goto enddiscovery; } else { mpath->flags &= ~MESH_PATH_RESOLVED; mpath->flags |= MESH_PATH_RESOLVING; mpath->discovery_retries = 0; mpath->discovery_timeout = disc_timeout_jiff(sdata); } } else if (!(mpath->flags & MESH_PATH_RESOLVING) || mpath->flags & MESH_PATH_RESOLVED) { mpath->flags &= ~MESH_PATH_RESOLVING; spin_unlock_bh(&mpath->state_lock); goto enddiscovery; } ifmsh->last_preq = jiffies; if (time_after(jiffies, ifmsh->last_sn_update + net_traversal_jiffies(sdata)) || time_before(jiffies, ifmsh->last_sn_update)) { ++ifmsh->sn; sdata->u.mesh.last_sn_update = jiffies; } lifetime = default_lifetime(sdata); ttl = sdata->u.mesh.mshcfg.element_ttl; if (ttl == 0) { sdata->u.mesh.mshstats.dropped_frames_ttl++; spin_unlock_bh(&mpath->state_lock); goto enddiscovery; } if (preq_node->flags & PREQ_Q_F_REFRESH) target_flags |= IEEE80211_PREQ_TO_FLAG; else target_flags &= ~IEEE80211_PREQ_TO_FLAG; spin_unlock_bh(&mpath->state_lock); da = (mpath->is_root) ? mpath->rann_snd_addr : broadcast_addr; mesh_path_sel_frame_tx(MPATH_PREQ, 0, sdata->vif.addr, ifmsh->sn, target_flags, mpath->dst, mpath->sn, da, 0, ttl, lifetime, 0, ifmsh->preq_id++, sdata); spin_lock_bh(&mpath->state_lock); if (!(mpath->flags & MESH_PATH_DELETED)) mod_timer(&mpath->timer, jiffies + mpath->discovery_timeout); spin_unlock_bh(&mpath->state_lock); enddiscovery: rcu_read_unlock(); kfree(preq_node); } /** * mesh_nexthop_resolve - lookup next hop; conditionally start path discovery * * @skb: 802.11 frame to be sent * @sdata: network subif the frame will be sent through * * Lookup next hop for given skb and start path discovery if no * forwarding information is found. * * Returns: 0 if the next hop was found and -ENOENT if the frame was queued. * skb is freed here if no mpath could be allocated. */ int mesh_nexthop_resolve(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct mesh_path *mpath; struct sk_buff *skb_to_free = NULL; u8 *target_addr = hdr->addr3; /* Nulls are only sent to peers for PS and should be pre-addressed */ if (ieee80211_is_qos_nullfunc(hdr->frame_control)) return 0; /* Allow injected packets to bypass mesh routing */ if (info->control.flags & IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP) return 0; if (!mesh_nexthop_lookup(sdata, skb)) return 0; /* no nexthop found, start resolving */ mpath = mesh_path_lookup(sdata, target_addr); if (!mpath) { mpath = mesh_path_add(sdata, target_addr); if (IS_ERR(mpath)) { mesh_path_discard_frame(sdata, skb); return PTR_ERR(mpath); } } if (!(mpath->flags & MESH_PATH_RESOLVING) && mesh_path_sel_is_hwmp(sdata)) mesh_queue_preq(mpath, PREQ_Q_F_START); if (skb_queue_len(&mpath->frame_queue) >= MESH_FRAME_QUEUE_LEN) skb_to_free = skb_dequeue(&mpath->frame_queue); info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; ieee80211_set_qos_hdr(sdata, skb); skb_queue_tail(&mpath->frame_queue, skb); if (skb_to_free) mesh_path_discard_frame(sdata, skb_to_free); return -ENOENT; } /** * mesh_nexthop_lookup_nolearn - try to set next hop without path discovery * @skb: 802.11 frame to be sent * @sdata: network subif the frame will be sent through * * Check if the meshDA (addr3) of a unicast frame is a direct neighbor. * And if so, set the RA (addr1) to it to transmit to this node directly, * avoiding PREQ/PREP path discovery. * * Returns: 0 if the next hop was found and -ENOENT otherwise. */ static int mesh_nexthop_lookup_nolearn(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct sta_info *sta; if (is_multicast_ether_addr(hdr->addr1)) return -ENOENT; rcu_read_lock(); sta = sta_info_get(sdata, hdr->addr3); if (!sta || sta->mesh->plink_state != NL80211_PLINK_ESTAB) { rcu_read_unlock(); return -ENOENT; } rcu_read_unlock(); memcpy(hdr->addr1, hdr->addr3, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); return 0; } void mesh_path_refresh(struct ieee80211_sub_if_data *sdata, struct mesh_path *mpath, const u8 *addr) { if (mpath->flags & (MESH_PATH_REQ_QUEUED | MESH_PATH_FIXED | MESH_PATH_RESOLVING)) return; if (time_after(jiffies, mpath->exp_time - msecs_to_jiffies(sdata->u.mesh.mshcfg.path_refresh_time)) && (!addr || ether_addr_equal(sdata->vif.addr, addr))) mesh_queue_preq(mpath, PREQ_Q_F_START | PREQ_Q_F_REFRESH); } /** * mesh_nexthop_lookup - put the appropriate next hop on a mesh frame. Calling * this function is considered "using" the associated mpath, so preempt a path * refresh if this mpath expires soon. * * @skb: 802.11 frame to be sent * @sdata: network subif the frame will be sent through * * Returns: 0 if the next hop was found. Nonzero otherwise. */ int mesh_nexthop_lookup(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct mesh_path *mpath; struct sta_info *next_hop; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u8 *target_addr = hdr->addr3; if (ifmsh->mshcfg.dot11MeshNolearn && !mesh_nexthop_lookup_nolearn(sdata, skb)) return 0; mpath = mesh_path_lookup(sdata, target_addr); if (!mpath || !(mpath->flags & MESH_PATH_ACTIVE)) return -ENOENT; mesh_path_refresh(sdata, mpath, hdr->addr4); next_hop = rcu_dereference(mpath->next_hop); if (next_hop) { memcpy(hdr->addr1, next_hop->sta.addr, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); ieee80211_mps_set_frame_flags(sdata, next_hop, hdr); if (ieee80211_hw_check(&sdata->local->hw, SUPPORT_FAST_XMIT)) mesh_fast_tx_cache(sdata, skb, mpath); return 0; } return -ENOENT; } void mesh_path_timer(struct timer_list *t) { struct mesh_path *mpath = from_timer(mpath, t, timer); struct ieee80211_sub_if_data *sdata = mpath->sdata; int ret; if (sdata->local->quiescing) return; spin_lock_bh(&mpath->state_lock); if (mpath->flags & MESH_PATH_RESOLVED || (!(mpath->flags & MESH_PATH_RESOLVING))) { mpath->flags &= ~(MESH_PATH_RESOLVING | MESH_PATH_RESOLVED); spin_unlock_bh(&mpath->state_lock); } else if (mpath->discovery_retries < max_preq_retries(sdata)) { ++mpath->discovery_retries; mpath->discovery_timeout *= 2; mpath->flags &= ~MESH_PATH_REQ_QUEUED; spin_unlock_bh(&mpath->state_lock); mesh_queue_preq(mpath, 0); } else { mpath->flags &= ~(MESH_PATH_RESOLVING | MESH_PATH_RESOLVED | MESH_PATH_REQ_QUEUED); mpath->exp_time = jiffies; spin_unlock_bh(&mpath->state_lock); if (!mpath->is_gate && mesh_gate_num(sdata) > 0) { ret = mesh_path_send_to_gates(mpath); if (ret) mhwmp_dbg(sdata, "no gate was reachable\n"); } else mesh_path_flush_pending(mpath); } } void mesh_path_tx_root_frame(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u32 interval = ifmsh->mshcfg.dot11MeshHWMPRannInterval; u8 flags, target_flags = 0; flags = (ifmsh->mshcfg.dot11MeshGateAnnouncementProtocol) ? RANN_FLAG_IS_GATE : 0; switch (ifmsh->mshcfg.dot11MeshHWMPRootMode) { case IEEE80211_PROACTIVE_RANN: mesh_path_sel_frame_tx(MPATH_RANN, flags, sdata->vif.addr, ++ifmsh->sn, 0, NULL, 0, broadcast_addr, 0, ifmsh->mshcfg.element_ttl, interval, 0, 0, sdata); break; case IEEE80211_PROACTIVE_PREQ_WITH_PREP: flags |= IEEE80211_PREQ_PROACTIVE_PREP_FLAG; fallthrough; case IEEE80211_PROACTIVE_PREQ_NO_PREP: interval = ifmsh->mshcfg.dot11MeshHWMPactivePathToRootTimeout; target_flags |= IEEE80211_PREQ_TO_FLAG | IEEE80211_PREQ_USN_FLAG; mesh_path_sel_frame_tx(MPATH_PREQ, flags, sdata->vif.addr, ++ifmsh->sn, target_flags, (u8 *) broadcast_addr, 0, broadcast_addr, 0, ifmsh->mshcfg.element_ttl, interval, 0, ifmsh->preq_id++, sdata); break; default: mhwmp_dbg(sdata, "Proactive mechanism not supported\n"); return; } }
linux-master
net/mac80211/mesh_hwmp.c
// SPDX-License-Identifier: GPL-2.0-only /* * VHT handling * * Portions of this file * Copyright(c) 2015 - 2016 Intel Deutschland GmbH * Copyright (C) 2018 - 2022 Intel Corporation */ #include <linux/ieee80211.h> #include <linux/export.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "rate.h" static void __check_vhtcap_disable(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_vht_cap *vht_cap, u32 flag) { __le32 le_flag = cpu_to_le32(flag); if (sdata->u.mgd.vht_capa_mask.vht_cap_info & le_flag && !(sdata->u.mgd.vht_capa.vht_cap_info & le_flag)) vht_cap->cap &= ~flag; } void ieee80211_apply_vhtcap_overrides(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_vht_cap *vht_cap) { int i; u16 rxmcs_mask, rxmcs_cap, rxmcs_n, txmcs_mask, txmcs_cap, txmcs_n; if (!vht_cap->vht_supported) return; if (sdata->vif.type != NL80211_IFTYPE_STATION) return; __check_vhtcap_disable(sdata, vht_cap, IEEE80211_VHT_CAP_RXLDPC); __check_vhtcap_disable(sdata, vht_cap, IEEE80211_VHT_CAP_SHORT_GI_80); __check_vhtcap_disable(sdata, vht_cap, IEEE80211_VHT_CAP_SHORT_GI_160); __check_vhtcap_disable(sdata, vht_cap, IEEE80211_VHT_CAP_TXSTBC); __check_vhtcap_disable(sdata, vht_cap, IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE); __check_vhtcap_disable(sdata, vht_cap, IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE); __check_vhtcap_disable(sdata, vht_cap, IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN); __check_vhtcap_disable(sdata, vht_cap, IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN); /* Allow user to decrease AMPDU length exponent */ if (sdata->u.mgd.vht_capa_mask.vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK)) { u32 cap, n; n = le32_to_cpu(sdata->u.mgd.vht_capa.vht_cap_info) & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK; n >>= IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; cap = vht_cap->cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK; cap >>= IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; if (n < cap) { vht_cap->cap &= ~IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK; vht_cap->cap |= n << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; } } /* Allow the user to decrease MCSes */ rxmcs_mask = le16_to_cpu(sdata->u.mgd.vht_capa_mask.supp_mcs.rx_mcs_map); rxmcs_n = le16_to_cpu(sdata->u.mgd.vht_capa.supp_mcs.rx_mcs_map); rxmcs_n &= rxmcs_mask; rxmcs_cap = le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map); txmcs_mask = le16_to_cpu(sdata->u.mgd.vht_capa_mask.supp_mcs.tx_mcs_map); txmcs_n = le16_to_cpu(sdata->u.mgd.vht_capa.supp_mcs.tx_mcs_map); txmcs_n &= txmcs_mask; txmcs_cap = le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map); for (i = 0; i < 8; i++) { u8 m, n, c; m = (rxmcs_mask >> 2*i) & IEEE80211_VHT_MCS_NOT_SUPPORTED; n = (rxmcs_n >> 2*i) & IEEE80211_VHT_MCS_NOT_SUPPORTED; c = (rxmcs_cap >> 2*i) & IEEE80211_VHT_MCS_NOT_SUPPORTED; if (m && ((c != IEEE80211_VHT_MCS_NOT_SUPPORTED && n < c) || n == IEEE80211_VHT_MCS_NOT_SUPPORTED)) { rxmcs_cap &= ~(3 << 2*i); rxmcs_cap |= (rxmcs_n & (3 << 2*i)); } m = (txmcs_mask >> 2*i) & IEEE80211_VHT_MCS_NOT_SUPPORTED; n = (txmcs_n >> 2*i) & IEEE80211_VHT_MCS_NOT_SUPPORTED; c = (txmcs_cap >> 2*i) & IEEE80211_VHT_MCS_NOT_SUPPORTED; if (m && ((c != IEEE80211_VHT_MCS_NOT_SUPPORTED && n < c) || n == IEEE80211_VHT_MCS_NOT_SUPPORTED)) { txmcs_cap &= ~(3 << 2*i); txmcs_cap |= (txmcs_n & (3 << 2*i)); } } vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(rxmcs_cap); vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(txmcs_cap); } void ieee80211_vht_cap_ie_to_sta_vht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_vht_cap *vht_cap_ie, struct link_sta_info *link_sta) { struct ieee80211_sta_vht_cap *vht_cap = &link_sta->pub->vht_cap; struct ieee80211_sta_vht_cap own_cap; u32 cap_info, i; bool have_80mhz; memset(vht_cap, 0, sizeof(*vht_cap)); if (!link_sta->pub->ht_cap.ht_supported) return; if (!vht_cap_ie || !sband->vht_cap.vht_supported) return; /* Allow VHT if at least one channel on the sband supports 80 MHz */ have_80mhz = false; for (i = 0; i < sband->n_channels; i++) { if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_NO_80MHZ)) continue; have_80mhz = true; break; } if (!have_80mhz) return; /* * A VHT STA must support 40 MHz, but if we verify that here * then we break a few things - some APs (e.g. Netgear R6300v2 * and others based on the BCM4360 chipset) will unset this * capability bit when operating in 20 MHz. */ vht_cap->vht_supported = true; own_cap = sband->vht_cap; /* * If user has specified capability overrides, take care * of that if the station we're setting up is the AP that * we advertised a restricted capability set to. Override * our own capabilities and then use those below. */ if (sdata->vif.type == NL80211_IFTYPE_STATION && !test_sta_flag(link_sta->sta, WLAN_STA_TDLS_PEER)) ieee80211_apply_vhtcap_overrides(sdata, &own_cap); /* take some capabilities as-is */ cap_info = le32_to_cpu(vht_cap_ie->vht_cap_info); vht_cap->cap = cap_info; vht_cap->cap &= IEEE80211_VHT_CAP_RXLDPC | IEEE80211_VHT_CAP_VHT_TXOP_PS | IEEE80211_VHT_CAP_HTC_VHT | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB | IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB | IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN | IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; vht_cap->cap |= min_t(u32, cap_info & IEEE80211_VHT_CAP_MAX_MPDU_MASK, own_cap.cap & IEEE80211_VHT_CAP_MAX_MPDU_MASK); /* and some based on our own capabilities */ switch (own_cap.cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) { case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ: vht_cap->cap |= cap_info & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ; break; case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ: vht_cap->cap |= cap_info & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; break; default: /* nothing */ break; } /* symmetric capabilities */ vht_cap->cap |= cap_info & own_cap.cap & (IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_SHORT_GI_160); /* remaining ones */ if (own_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) vht_cap->cap |= cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK); if (own_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) vht_cap->cap |= cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK); if (own_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) vht_cap->cap |= cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; if (own_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) vht_cap->cap |= cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE; if (own_cap.cap & IEEE80211_VHT_CAP_TXSTBC) vht_cap->cap |= cap_info & IEEE80211_VHT_CAP_RXSTBC_MASK; if (own_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK) vht_cap->cap |= cap_info & IEEE80211_VHT_CAP_TXSTBC; /* Copy peer MCS info, the driver might need them. */ memcpy(&vht_cap->vht_mcs, &vht_cap_ie->supp_mcs, sizeof(struct ieee80211_vht_mcs_info)); /* copy EXT_NSS_BW Support value or remove the capability */ if (ieee80211_hw_check(&sdata->local->hw, SUPPORTS_VHT_EXT_NSS_BW)) vht_cap->cap |= (cap_info & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); else vht_cap->vht_mcs.tx_highest &= ~cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); /* but also restrict MCSes */ for (i = 0; i < 8; i++) { u16 own_rx, own_tx, peer_rx, peer_tx; own_rx = le16_to_cpu(own_cap.vht_mcs.rx_mcs_map); own_rx = (own_rx >> i * 2) & IEEE80211_VHT_MCS_NOT_SUPPORTED; own_tx = le16_to_cpu(own_cap.vht_mcs.tx_mcs_map); own_tx = (own_tx >> i * 2) & IEEE80211_VHT_MCS_NOT_SUPPORTED; peer_rx = le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map); peer_rx = (peer_rx >> i * 2) & IEEE80211_VHT_MCS_NOT_SUPPORTED; peer_tx = le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map); peer_tx = (peer_tx >> i * 2) & IEEE80211_VHT_MCS_NOT_SUPPORTED; if (peer_tx != IEEE80211_VHT_MCS_NOT_SUPPORTED) { if (own_rx == IEEE80211_VHT_MCS_NOT_SUPPORTED) peer_tx = IEEE80211_VHT_MCS_NOT_SUPPORTED; else if (own_rx < peer_tx) peer_tx = own_rx; } if (peer_rx != IEEE80211_VHT_MCS_NOT_SUPPORTED) { if (own_tx == IEEE80211_VHT_MCS_NOT_SUPPORTED) peer_rx = IEEE80211_VHT_MCS_NOT_SUPPORTED; else if (own_tx < peer_rx) peer_rx = own_tx; } vht_cap->vht_mcs.rx_mcs_map &= ~cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << i * 2); vht_cap->vht_mcs.rx_mcs_map |= cpu_to_le16(peer_rx << i * 2); vht_cap->vht_mcs.tx_mcs_map &= ~cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << i * 2); vht_cap->vht_mcs.tx_mcs_map |= cpu_to_le16(peer_tx << i * 2); } /* * This is a workaround for VHT-enabled STAs which break the spec * and have the VHT-MCS Rx map filled in with value 3 for all eight * spacial streams, an example is AR9462. * * As per spec, in section 22.1.1 Introduction to the VHT PHY * A VHT STA shall support at least single spactial stream VHT-MCSs * 0 to 7 (transmit and receive) in all supported channel widths. */ if (vht_cap->vht_mcs.rx_mcs_map == cpu_to_le16(0xFFFF)) { vht_cap->vht_supported = false; sdata_info(sdata, "Ignoring VHT IE from %pM (link:%pM) due to invalid rx_mcs_map\n", link_sta->sta->addr, link_sta->addr); return; } /* finally set up the bandwidth */ switch (vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) { case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ: case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ: link_sta->cur_max_bandwidth = IEEE80211_STA_RX_BW_160; break; default: link_sta->cur_max_bandwidth = IEEE80211_STA_RX_BW_80; if (!(vht_cap->vht_mcs.tx_highest & cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) break; /* * If this is non-zero, then it does support 160 MHz after all, * in one form or the other. We don't distinguish here (or even * above) between 160 and 80+80 yet. */ if (cap_info & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) link_sta->cur_max_bandwidth = IEEE80211_STA_RX_BW_160; } link_sta->pub->bandwidth = ieee80211_sta_cur_vht_bw(link_sta); /* * FIXME - should the amsdu len be per link? store per link * and maintain a minimum? */ switch (vht_cap->cap & IEEE80211_VHT_CAP_MAX_MPDU_MASK) { case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454: link_sta->pub->agg.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_VHT_11454; break; case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991: link_sta->pub->agg.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_VHT_7991; break; case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895: default: link_sta->pub->agg.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_VHT_3895; break; } ieee80211_sta_recalc_aggregates(&link_sta->sta->sta); } /* FIXME: move this to some better location - parses HE/EHT now */ enum ieee80211_sta_rx_bandwidth ieee80211_sta_cap_rx_bw(struct link_sta_info *link_sta) { unsigned int link_id = link_sta->link_id; struct ieee80211_sub_if_data *sdata = link_sta->sta->sdata; struct ieee80211_sta_vht_cap *vht_cap = &link_sta->pub->vht_cap; struct ieee80211_sta_he_cap *he_cap = &link_sta->pub->he_cap; struct ieee80211_sta_eht_cap *eht_cap = &link_sta->pub->eht_cap; u32 cap_width; if (he_cap->has_he) { struct ieee80211_bss_conf *link_conf; enum ieee80211_sta_rx_bandwidth ret; u8 info; rcu_read_lock(); link_conf = rcu_dereference(sdata->vif.link_conf[link_id]); if (eht_cap->has_eht && link_conf->chandef.chan->band == NL80211_BAND_6GHZ) { info = eht_cap->eht_cap_elem.phy_cap_info[0]; if (info & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) { ret = IEEE80211_STA_RX_BW_320; goto out; } } info = he_cap->he_cap_elem.phy_cap_info[0]; if (link_conf->chandef.chan->band == NL80211_BAND_2GHZ) { if (info & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G) ret = IEEE80211_STA_RX_BW_40; else ret = IEEE80211_STA_RX_BW_20; goto out; } if (info & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G || info & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) ret = IEEE80211_STA_RX_BW_160; else if (info & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G) ret = IEEE80211_STA_RX_BW_80; else ret = IEEE80211_STA_RX_BW_20; out: rcu_read_unlock(); return ret; } if (!vht_cap->vht_supported) return link_sta->pub->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; cap_width = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; if (cap_width == IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ || cap_width == IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) return IEEE80211_STA_RX_BW_160; /* * If this is non-zero, then it does support 160 MHz after all, * in one form or the other. We don't distinguish here (or even * above) between 160 and 80+80 yet. */ if (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) return IEEE80211_STA_RX_BW_160; return IEEE80211_STA_RX_BW_80; } enum nl80211_chan_width ieee80211_sta_cap_chan_bw(struct link_sta_info *link_sta) { struct ieee80211_sta_vht_cap *vht_cap = &link_sta->pub->vht_cap; u32 cap_width; if (!vht_cap->vht_supported) { if (!link_sta->pub->ht_cap.ht_supported) return NL80211_CHAN_WIDTH_20_NOHT; return link_sta->pub->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? NL80211_CHAN_WIDTH_40 : NL80211_CHAN_WIDTH_20; } cap_width = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; if (cap_width == IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ) return NL80211_CHAN_WIDTH_160; else if (cap_width == IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) return NL80211_CHAN_WIDTH_80P80; return NL80211_CHAN_WIDTH_80; } enum nl80211_chan_width ieee80211_sta_rx_bw_to_chan_width(struct link_sta_info *link_sta) { enum ieee80211_sta_rx_bandwidth cur_bw = link_sta->pub->bandwidth; struct ieee80211_sta_vht_cap *vht_cap = &link_sta->pub->vht_cap; u32 cap_width; switch (cur_bw) { case IEEE80211_STA_RX_BW_20: if (!link_sta->pub->ht_cap.ht_supported) return NL80211_CHAN_WIDTH_20_NOHT; else return NL80211_CHAN_WIDTH_20; case IEEE80211_STA_RX_BW_40: return NL80211_CHAN_WIDTH_40; case IEEE80211_STA_RX_BW_80: return NL80211_CHAN_WIDTH_80; case IEEE80211_STA_RX_BW_160: cap_width = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; if (cap_width == IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ) return NL80211_CHAN_WIDTH_160; return NL80211_CHAN_WIDTH_80P80; default: return NL80211_CHAN_WIDTH_20; } } enum ieee80211_sta_rx_bandwidth ieee80211_chan_width_to_rx_bw(enum nl80211_chan_width width) { switch (width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: return IEEE80211_STA_RX_BW_20; case NL80211_CHAN_WIDTH_40: return IEEE80211_STA_RX_BW_40; case NL80211_CHAN_WIDTH_80: return IEEE80211_STA_RX_BW_80; case NL80211_CHAN_WIDTH_160: case NL80211_CHAN_WIDTH_80P80: return IEEE80211_STA_RX_BW_160; case NL80211_CHAN_WIDTH_320: return IEEE80211_STA_RX_BW_320; default: WARN_ON_ONCE(1); return IEEE80211_STA_RX_BW_20; } } /* FIXME: rename/move - this deals with everything not just VHT */ enum ieee80211_sta_rx_bandwidth ieee80211_sta_cur_vht_bw(struct link_sta_info *link_sta) { struct sta_info *sta = link_sta->sta; struct ieee80211_bss_conf *link_conf; enum nl80211_chan_width bss_width; enum ieee80211_sta_rx_bandwidth bw; rcu_read_lock(); link_conf = rcu_dereference(sta->sdata->vif.link_conf[link_sta->link_id]); if (WARN_ON(!link_conf)) bss_width = NL80211_CHAN_WIDTH_20_NOHT; else bss_width = link_conf->chandef.width; rcu_read_unlock(); bw = ieee80211_sta_cap_rx_bw(link_sta); bw = min(bw, link_sta->cur_max_bandwidth); /* Don't consider AP's bandwidth for TDLS peers, section 11.23.1 of * IEEE80211-2016 specification makes higher bandwidth operation * possible on the TDLS link if the peers have wider bandwidth * capability. * * However, in this case, and only if the TDLS peer is authorized, * limit to the tdls_chandef so that the configuration here isn't * wider than what's actually requested on the channel context. */ if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) && test_sta_flag(sta, WLAN_STA_TDLS_WIDER_BW) && test_sta_flag(sta, WLAN_STA_AUTHORIZED) && sta->tdls_chandef.chan) bw = min(bw, ieee80211_chan_width_to_rx_bw(sta->tdls_chandef.width)); else bw = min(bw, ieee80211_chan_width_to_rx_bw(bss_width)); return bw; } void ieee80211_sta_set_rx_nss(struct link_sta_info *link_sta) { u8 ht_rx_nss = 0, vht_rx_nss = 0, he_rx_nss = 0, eht_rx_nss = 0, rx_nss; bool support_160; /* if we received a notification already don't overwrite it */ if (link_sta->pub->rx_nss) return; if (link_sta->pub->eht_cap.has_eht) { int i; const u8 *rx_nss_mcs = (void *)&link_sta->pub->eht_cap.eht_mcs_nss_supp; /* get the max nss for EHT over all possible bandwidths and mcs */ for (i = 0; i < sizeof(struct ieee80211_eht_mcs_nss_supp); i++) eht_rx_nss = max_t(u8, eht_rx_nss, u8_get_bits(rx_nss_mcs[i], IEEE80211_EHT_MCS_NSS_RX)); } if (link_sta->pub->he_cap.has_he) { int i; u8 rx_mcs_80 = 0, rx_mcs_160 = 0; const struct ieee80211_sta_he_cap *he_cap = &link_sta->pub->he_cap; u16 mcs_160_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160); u16 mcs_80_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80); for (i = 7; i >= 0; i--) { u8 mcs_160 = (mcs_160_map >> (2 * i)) & 3; if (mcs_160 != IEEE80211_HE_MCS_NOT_SUPPORTED) { rx_mcs_160 = i + 1; break; } } for (i = 7; i >= 0; i--) { u8 mcs_80 = (mcs_80_map >> (2 * i)) & 3; if (mcs_80 != IEEE80211_HE_MCS_NOT_SUPPORTED) { rx_mcs_80 = i + 1; break; } } support_160 = he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; if (support_160) he_rx_nss = min(rx_mcs_80, rx_mcs_160); else he_rx_nss = rx_mcs_80; } if (link_sta->pub->ht_cap.ht_supported) { if (link_sta->pub->ht_cap.mcs.rx_mask[0]) ht_rx_nss++; if (link_sta->pub->ht_cap.mcs.rx_mask[1]) ht_rx_nss++; if (link_sta->pub->ht_cap.mcs.rx_mask[2]) ht_rx_nss++; if (link_sta->pub->ht_cap.mcs.rx_mask[3]) ht_rx_nss++; /* FIXME: consider rx_highest? */ } if (link_sta->pub->vht_cap.vht_supported) { int i; u16 rx_mcs_map; rx_mcs_map = le16_to_cpu(link_sta->pub->vht_cap.vht_mcs.rx_mcs_map); for (i = 7; i >= 0; i--) { u8 mcs = (rx_mcs_map >> (2 * i)) & 3; if (mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED) { vht_rx_nss = i + 1; break; } } /* FIXME: consider rx_highest? */ } rx_nss = max(vht_rx_nss, ht_rx_nss); rx_nss = max(he_rx_nss, rx_nss); rx_nss = max(eht_rx_nss, rx_nss); link_sta->pub->rx_nss = max_t(u8, 1, rx_nss); } u32 __ieee80211_vht_handle_opmode(struct ieee80211_sub_if_data *sdata, struct link_sta_info *link_sta, u8 opmode, enum nl80211_band band) { enum ieee80211_sta_rx_bandwidth new_bw; struct sta_opmode_info sta_opmode = {}; u32 changed = 0; u8 nss, cur_nss; /* ignore - no support for BF yet */ if (opmode & IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF) return 0; nss = opmode & IEEE80211_OPMODE_NOTIF_RX_NSS_MASK; nss >>= IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT; nss += 1; if (link_sta->pub->rx_nss != nss) { cur_nss = link_sta->pub->rx_nss; /* Reset rx_nss and call ieee80211_sta_set_rx_nss() which * will set the same to max nss value calculated based on capability. */ link_sta->pub->rx_nss = 0; ieee80211_sta_set_rx_nss(link_sta); /* Do not allow an nss change to rx_nss greater than max_nss * negotiated and capped to APs capability during association. */ if (nss <= link_sta->pub->rx_nss) { link_sta->pub->rx_nss = nss; sta_opmode.rx_nss = nss; changed |= IEEE80211_RC_NSS_CHANGED; sta_opmode.changed |= STA_OPMODE_N_SS_CHANGED; } else { link_sta->pub->rx_nss = cur_nss; pr_warn_ratelimited("Ignoring NSS change in VHT Operating Mode Notification from %pM with invalid nss %d", link_sta->pub->addr, nss); } } switch (opmode & IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK) { case IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: /* ignore IEEE80211_OPMODE_NOTIF_BW_160_80P80 must not be set */ link_sta->cur_max_bandwidth = IEEE80211_STA_RX_BW_20; break; case IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: /* ignore IEEE80211_OPMODE_NOTIF_BW_160_80P80 must not be set */ link_sta->cur_max_bandwidth = IEEE80211_STA_RX_BW_40; break; case IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: if (opmode & IEEE80211_OPMODE_NOTIF_BW_160_80P80) link_sta->cur_max_bandwidth = IEEE80211_STA_RX_BW_160; else link_sta->cur_max_bandwidth = IEEE80211_STA_RX_BW_80; break; case IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: /* legacy only, no longer used by newer spec */ link_sta->cur_max_bandwidth = IEEE80211_STA_RX_BW_160; break; } new_bw = ieee80211_sta_cur_vht_bw(link_sta); if (new_bw != link_sta->pub->bandwidth) { link_sta->pub->bandwidth = new_bw; sta_opmode.bw = ieee80211_sta_rx_bw_to_chan_width(link_sta); changed |= IEEE80211_RC_BW_CHANGED; sta_opmode.changed |= STA_OPMODE_MAX_BW_CHANGED; } if (sta_opmode.changed) cfg80211_sta_opmode_change_notify(sdata->dev, link_sta->addr, &sta_opmode, GFP_KERNEL); return changed; } void ieee80211_process_mu_groups(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct ieee80211_mgmt *mgmt) { struct ieee80211_bss_conf *link_conf = link->conf; if (!link_conf->mu_mimo_owner) return; if (!memcmp(mgmt->u.action.u.vht_group_notif.position, link_conf->mu_group.position, WLAN_USER_POSITION_LEN) && !memcmp(mgmt->u.action.u.vht_group_notif.membership, link_conf->mu_group.membership, WLAN_MEMBERSHIP_LEN)) return; memcpy(link_conf->mu_group.membership, mgmt->u.action.u.vht_group_notif.membership, WLAN_MEMBERSHIP_LEN); memcpy(link_conf->mu_group.position, mgmt->u.action.u.vht_group_notif.position, WLAN_USER_POSITION_LEN); ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_MU_GROUPS); } void ieee80211_update_mu_groups(struct ieee80211_vif *vif, unsigned int link_id, const u8 *membership, const u8 *position) { struct ieee80211_bss_conf *link_conf; rcu_read_lock(); link_conf = rcu_dereference(vif->link_conf[link_id]); if (!WARN_ON_ONCE(!link_conf || !link_conf->mu_mimo_owner)) { memcpy(link_conf->mu_group.membership, membership, WLAN_MEMBERSHIP_LEN); memcpy(link_conf->mu_group.position, position, WLAN_USER_POSITION_LEN); } rcu_read_unlock(); } EXPORT_SYMBOL_GPL(ieee80211_update_mu_groups); void ieee80211_vht_handle_opmode(struct ieee80211_sub_if_data *sdata, struct link_sta_info *link_sta, u8 opmode, enum nl80211_band band) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband = local->hw.wiphy->bands[band]; u32 changed = __ieee80211_vht_handle_opmode(sdata, link_sta, opmode, band); if (changed > 0) { ieee80211_recalc_min_chandef(sdata, link_sta->link_id); rate_control_rate_update(local, sband, link_sta->sta, link_sta->link_id, changed); } } void ieee80211_get_vht_mask_from_cap(__le16 vht_cap, u16 vht_mask[NL80211_VHT_NSS_MAX]) { int i; u16 mask, cap = le16_to_cpu(vht_cap); for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { mask = (cap >> i * 2) & IEEE80211_VHT_MCS_NOT_SUPPORTED; switch (mask) { case IEEE80211_VHT_MCS_SUPPORT_0_7: vht_mask[i] = 0x00FF; break; case IEEE80211_VHT_MCS_SUPPORT_0_8: vht_mask[i] = 0x01FF; break; case IEEE80211_VHT_MCS_SUPPORT_0_9: vht_mask[i] = 0x03FF; break; case IEEE80211_VHT_MCS_NOT_SUPPORTED: default: vht_mask[i] = 0; break; } } }
linux-master
net/mac80211/vht.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007 Johannes Berg <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2018-2022 Intel Corporation * * Transmit and frame generation functions. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <linux/etherdevice.h> #include <linux/bitmap.h> #include <linux/rcupdate.h> #include <linux/export.h> #include <net/net_namespace.h> #include <net/ieee80211_radiotap.h> #include <net/cfg80211.h> #include <net/mac80211.h> #include <net/codel.h> #include <net/codel_impl.h> #include <asm/unaligned.h> #include <net/fq_impl.h> #include <net/gso.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "led.h" #include "mesh.h" #include "wep.h" #include "wpa.h" #include "wme.h" #include "rate.h" /* misc utils */ static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, struct sk_buff *skb, int group_addr, int next_frag_len) { int rate, mrate, erp, dur, i, shift = 0; struct ieee80211_rate *txrate; struct ieee80211_local *local = tx->local; struct ieee80211_supported_band *sband; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_chanctx_conf *chanctx_conf; u32 rate_flags = 0; /* assume HW handles this */ if (tx->rate.flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS)) return 0; rcu_read_lock(); chanctx_conf = rcu_dereference(tx->sdata->vif.bss_conf.chanctx_conf); if (chanctx_conf) { shift = ieee80211_chandef_get_shift(&chanctx_conf->def); rate_flags = ieee80211_chandef_rate_flags(&chanctx_conf->def); } rcu_read_unlock(); /* uh huh? */ if (WARN_ON_ONCE(tx->rate.idx < 0)) return 0; sband = local->hw.wiphy->bands[info->band]; txrate = &sband->bitrates[tx->rate.idx]; erp = txrate->flags & IEEE80211_RATE_ERP_G; /* device is expected to do this */ if (sband->band == NL80211_BAND_S1GHZ) return 0; /* * data and mgmt (except PS Poll): * - during CFP: 32768 * - during contention period: * if addr1 is group address: 0 * if more fragments = 0 and addr1 is individual address: time to * transmit one ACK plus SIFS * if more fragments = 1 and addr1 is individual address: time to * transmit next fragment plus 2 x ACK plus 3 x SIFS * * IEEE 802.11, 9.6: * - control response frame (CTS or ACK) shall be transmitted using the * same rate as the immediately previous frame in the frame exchange * sequence, if this rate belongs to the PHY mandatory rates, or else * at the highest possible rate belonging to the PHY rates in the * BSSBasicRateSet */ hdr = (struct ieee80211_hdr *)skb->data; if (ieee80211_is_ctl(hdr->frame_control)) { /* TODO: These control frames are not currently sent by * mac80211, but should they be implemented, this function * needs to be updated to support duration field calculation. * * RTS: time needed to transmit pending data/mgmt frame plus * one CTS frame plus one ACK frame plus 3 x SIFS * CTS: duration of immediately previous RTS minus time * required to transmit CTS and its SIFS * ACK: 0 if immediately previous directed data/mgmt had * more=0, with more=1 duration in ACK frame is duration * from previous frame minus time needed to transmit ACK * and its SIFS * PS Poll: BIT(15) | BIT(14) | aid */ return 0; } /* data/mgmt */ if (0 /* FIX: data/mgmt during CFP */) return cpu_to_le16(32768); if (group_addr) /* Group address as the destination - no ACK */ return 0; /* Individual destination address: * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) * CTS and ACK frames shall be transmitted using the highest rate in * basic rate set that is less than or equal to the rate of the * immediately previous frame and that is using the same modulation * (CCK or OFDM). If no basic rate set matches with these requirements, * the highest mandatory rate of the PHY that is less than or equal to * the rate of the previous frame is used. * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps */ rate = -1; /* use lowest available if everything fails */ mrate = sband->bitrates[0].bitrate; for (i = 0; i < sband->n_bitrates; i++) { struct ieee80211_rate *r = &sband->bitrates[i]; if (r->bitrate > txrate->bitrate) break; if ((rate_flags & r->flags) != rate_flags) continue; if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) rate = DIV_ROUND_UP(r->bitrate, 1 << shift); switch (sband->band) { case NL80211_BAND_2GHZ: case NL80211_BAND_LC: { u32 flag; if (tx->sdata->deflink.operating_11g_mode) flag = IEEE80211_RATE_MANDATORY_G; else flag = IEEE80211_RATE_MANDATORY_B; if (r->flags & flag) mrate = r->bitrate; break; } case NL80211_BAND_5GHZ: case NL80211_BAND_6GHZ: if (r->flags & IEEE80211_RATE_MANDATORY_A) mrate = r->bitrate; break; case NL80211_BAND_S1GHZ: case NL80211_BAND_60GHZ: /* TODO, for now fall through */ case NUM_NL80211_BANDS: WARN_ON(1); break; } } if (rate == -1) { /* No matching basic rate found; use highest suitable mandatory * PHY rate */ rate = DIV_ROUND_UP(mrate, 1 << shift); } /* Don't calculate ACKs for QoS Frames with NoAck Policy set */ if (ieee80211_is_data_qos(hdr->frame_control) && *(ieee80211_get_qos_ctl(hdr)) & IEEE80211_QOS_CTL_ACK_POLICY_NOACK) dur = 0; else /* Time needed to transmit ACK * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up * to closest integer */ dur = ieee80211_frame_duration(sband->band, 10, rate, erp, tx->sdata->vif.bss_conf.use_short_preamble, shift); if (next_frag_len) { /* Frame is fragmented: duration increases with time needed to * transmit next fragment plus ACK and 2 x SIFS. */ dur *= 2; /* ACK + SIFS */ /* next fragment */ dur += ieee80211_frame_duration(sband->band, next_frag_len, txrate->bitrate, erp, tx->sdata->vif.bss_conf.use_short_preamble, shift); } return cpu_to_le16(dur); } /* tx handlers */ static ieee80211_tx_result debug_noinline ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) { struct ieee80211_local *local = tx->local; struct ieee80211_if_managed *ifmgd; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); /* driver doesn't support power save */ if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS)) return TX_CONTINUE; /* hardware does dynamic power save */ if (ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) return TX_CONTINUE; /* dynamic power save disabled */ if (local->hw.conf.dynamic_ps_timeout <= 0) return TX_CONTINUE; /* we are scanning, don't enable power save */ if (local->scanning) return TX_CONTINUE; if (!local->ps_sdata) return TX_CONTINUE; /* No point if we're going to suspend */ if (local->quiescing) return TX_CONTINUE; /* dynamic ps is supported only in managed mode */ if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) return TX_CONTINUE; if (unlikely(info->flags & IEEE80211_TX_INTFL_OFFCHAN_TX_OK)) return TX_CONTINUE; ifmgd = &tx->sdata->u.mgd; /* * Don't wakeup from power save if u-apsd is enabled, voip ac has * u-apsd enabled and the frame is in voip class. This effectively * means that even if all access categories have u-apsd enabled, in * practise u-apsd is only used with the voip ac. This is a * workaround for the case when received voip class packets do not * have correct qos tag for some reason, due the network or the * peer application. * * Note: ifmgd->uapsd_queues access is racy here. If the value is * changed via debugfs, user needs to reassociate manually to have * everything in sync. */ if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) && (ifmgd->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) && skb_get_queue_mapping(tx->skb) == IEEE80211_AC_VO) return TX_CONTINUE; if (local->hw.conf.flags & IEEE80211_CONF_PS) { ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_PS, false); ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; ieee80211_queue_work(&local->hw, &local->dynamic_ps_disable_work); } /* Don't restart the timer if we're not disassociated */ if (!ifmgd->associated) return TX_CONTINUE; mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); bool assoc = false; if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) return TX_CONTINUE; if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) && test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) && !ieee80211_is_probe_req(hdr->frame_control) && !ieee80211_is_any_nullfunc(hdr->frame_control)) /* * When software scanning only nullfunc frames (to notify * the sleep state to the AP) and probe requests (for the * active scan) are allowed, all other frames should not be * sent and we should not get here, but if we do * nonetheless, drop them to avoid sending them * off-channel. See the link below and * ieee80211_start_scan() for more. * * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 */ return TX_DROP; if (tx->sdata->vif.type == NL80211_IFTYPE_OCB) return TX_CONTINUE; if (tx->flags & IEEE80211_TX_PS_BUFFERED) return TX_CONTINUE; if (tx->sta) assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); if (likely(tx->flags & IEEE80211_TX_UNICAST)) { if (unlikely(!assoc && ieee80211_is_data(hdr->frame_control))) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG sdata_info(tx->sdata, "dropped data frame to not associated station %pM\n", hdr->addr1); #endif I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); return TX_DROP; } } else if (unlikely(ieee80211_is_data(hdr->frame_control) && ieee80211_vif_get_num_mcast_if(tx->sdata) == 0)) { /* * No associated STAs - no need to send multicast * frames. */ return TX_DROP; } return TX_CONTINUE; } /* This function is called whenever the AP is about to exceed the maximum limit * of buffered frames for power saving STAs. This situation should not really * happen often during normal operation, so dropping the oldest buffered packet * from each queue should be OK to make some room for new frames. */ static void purge_old_ps_buffers(struct ieee80211_local *local) { int total = 0, purged = 0; struct sk_buff *skb; struct ieee80211_sub_if_data *sdata; struct sta_info *sta; list_for_each_entry_rcu(sdata, &local->interfaces, list) { struct ps_data *ps; if (sdata->vif.type == NL80211_IFTYPE_AP) ps = &sdata->u.ap.ps; else if (ieee80211_vif_is_mesh(&sdata->vif)) ps = &sdata->u.mesh.ps; else continue; skb = skb_dequeue(&ps->bc_buf); if (skb) { purged++; ieee80211_free_txskb(&local->hw, skb); } total += skb_queue_len(&ps->bc_buf); } /* * Drop one frame from each station from the lowest-priority * AC that has frames at all. */ list_for_each_entry_rcu(sta, &local->sta_list, list) { int ac; for (ac = IEEE80211_AC_BK; ac >= IEEE80211_AC_VO; ac--) { skb = skb_dequeue(&sta->ps_tx_buf[ac]); total += skb_queue_len(&sta->ps_tx_buf[ac]); if (skb) { purged++; ieee80211_free_txskb(&local->hw, skb); break; } } } local->total_ps_buffered = total; ps_dbg_hw(&local->hw, "PS buffers full - purged %d frames\n", purged); } static ieee80211_tx_result ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ps_data *ps; /* * broadcast/multicast frame * * If any of the associated/peer stations is in power save mode, * the frame is buffered to be sent after DTIM beacon frame. * This is done either by the hardware or us. */ /* powersaving STAs currently only in AP/VLAN/mesh mode */ if (tx->sdata->vif.type == NL80211_IFTYPE_AP || tx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (!tx->sdata->bss) return TX_CONTINUE; ps = &tx->sdata->bss->ps; } else if (ieee80211_vif_is_mesh(&tx->sdata->vif)) { ps = &tx->sdata->u.mesh.ps; } else { return TX_CONTINUE; } /* no buffering for ordered frames */ if (ieee80211_has_order(hdr->frame_control)) return TX_CONTINUE; if (ieee80211_is_probe_req(hdr->frame_control)) return TX_CONTINUE; if (ieee80211_hw_check(&tx->local->hw, QUEUE_CONTROL)) info->hw_queue = tx->sdata->vif.cab_queue; /* no stations in PS mode and no buffered packets */ if (!atomic_read(&ps->num_sta_ps) && skb_queue_empty(&ps->bc_buf)) return TX_CONTINUE; info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; /* device releases frame after DTIM beacon */ if (!ieee80211_hw_check(&tx->local->hw, HOST_BROADCAST_PS_BUFFERING)) return TX_CONTINUE; /* buffered in mac80211 */ if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); if (skb_queue_len(&ps->bc_buf) >= AP_MAX_BC_BUFFER) { ps_dbg(tx->sdata, "BC TX buffer full - dropping the oldest frame\n"); ieee80211_free_txskb(&tx->local->hw, skb_dequeue(&ps->bc_buf)); } else tx->local->total_ps_buffered++; skb_queue_tail(&ps->bc_buf, tx->skb); return TX_QUEUED; } static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, struct sk_buff *skb) { if (!ieee80211_is_mgmt(fc)) return 0; if (sta == NULL || !test_sta_flag(sta, WLAN_STA_MFP)) return 0; if (!ieee80211_is_robust_mgmt_frame(skb)) return 0; return 1; } static ieee80211_tx_result ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) { struct sta_info *sta = tx->sta; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_local *local = tx->local; if (unlikely(!sta)) return TX_CONTINUE; if (unlikely((test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER)) && !(info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER))) { int ac = skb_get_queue_mapping(tx->skb); if (ieee80211_is_mgmt(hdr->frame_control) && !ieee80211_is_bufferable_mmpdu(tx->skb)) { info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; return TX_CONTINUE; } ps_dbg(sta->sdata, "STA %pM aid %d: PS buffer for AC %d\n", sta->sta.addr, sta->sta.aid, ac); if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); /* sync with ieee80211_sta_ps_deliver_wakeup */ spin_lock(&sta->ps_lock); /* * STA woke up the meantime and all the frames on ps_tx_buf have * been queued to pending queue. No reordering can happen, go * ahead and Tx the packet. */ if (!test_sta_flag(sta, WLAN_STA_PS_STA) && !test_sta_flag(sta, WLAN_STA_PS_DRIVER) && !test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { spin_unlock(&sta->ps_lock); return TX_CONTINUE; } if (skb_queue_len(&sta->ps_tx_buf[ac]) >= STA_MAX_TX_BUFFER) { struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf[ac]); ps_dbg(tx->sdata, "STA %pM TX buffer for AC %d full - dropping oldest frame\n", sta->sta.addr, ac); ieee80211_free_txskb(&local->hw, old); } else tx->local->total_ps_buffered++; info->control.jiffies = jiffies; info->control.vif = &tx->sdata->vif; info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; skb_queue_tail(&sta->ps_tx_buf[ac], tx->skb); spin_unlock(&sta->ps_lock); if (!timer_pending(&local->sta_cleanup)) mod_timer(&local->sta_cleanup, round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); /* * We queued up some frames, so the TIM bit might * need to be set, recalculate it. */ sta_info_recalc_tim(sta); return TX_QUEUED; } else if (unlikely(test_sta_flag(sta, WLAN_STA_PS_STA))) { ps_dbg(tx->sdata, "STA %pM in PS mode, but polling/in SP -> send frame\n", sta->sta.addr); } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) { if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) return TX_CONTINUE; if (tx->flags & IEEE80211_TX_UNICAST) return ieee80211_tx_h_unicast_ps_buf(tx); else return ieee80211_tx_h_multicast_ps_buf(tx); } static ieee80211_tx_result debug_noinline ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol)) { if (tx->sdata->control_port_no_encrypt) info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; info->control.flags |= IEEE80211_TX_CTRL_PORT_CTRL_PROTO; info->flags |= IEEE80211_TX_CTL_USE_MINRATE; } return TX_CONTINUE; } static struct ieee80211_key * ieee80211_select_link_key(struct ieee80211_tx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_link_data *link; unsigned int link_id; link_id = u32_get_bits(info->control.flags, IEEE80211_TX_CTRL_MLO_LINK); if (link_id == IEEE80211_LINK_UNSPECIFIED) { link = &tx->sdata->deflink; } else { link = rcu_dereference(tx->sdata->link[link_id]); if (!link) return NULL; } if (ieee80211_is_group_privacy_action(tx->skb)) return rcu_dereference(link->default_multicast_key); else if (ieee80211_is_mgmt(hdr->frame_control) && is_multicast_ether_addr(hdr->addr1) && ieee80211_is_robust_mgmt_frame(tx->skb)) return rcu_dereference(link->default_mgmt_key); else if (is_multicast_ether_addr(hdr->addr1)) return rcu_dereference(link->default_multicast_key); return NULL; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) { struct ieee80211_key *key; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) { tx->key = NULL; return TX_CONTINUE; } if (tx->sta && (key = rcu_dereference(tx->sta->ptk[tx->sta->ptk_idx]))) tx->key = key; else if ((key = ieee80211_select_link_key(tx))) tx->key = key; else if (!is_multicast_ether_addr(hdr->addr1) && (key = rcu_dereference(tx->sdata->default_unicast_key))) tx->key = key; else tx->key = NULL; if (tx->key) { bool skip_hw = false; /* TODO: add threshold stuff again */ switch (tx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: if (!ieee80211_is_data_present(hdr->frame_control)) tx->key = NULL; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (!ieee80211_is_data_present(hdr->frame_control) && !ieee80211_use_mfp(hdr->frame_control, tx->sta, tx->skb) && !ieee80211_is_group_privacy_action(tx->skb)) tx->key = NULL; else skip_hw = (tx->key->conf.flags & IEEE80211_KEY_FLAG_SW_MGMT_TX) && ieee80211_is_mgmt(hdr->frame_control); break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (!ieee80211_is_mgmt(hdr->frame_control)) tx->key = NULL; break; } if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED && !ieee80211_is_deauth(hdr->frame_control))) return TX_DROP; if (!skip_hw && tx->key && tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) info->control.hw_key = &tx->key->conf; } else if (ieee80211_is_data_present(hdr->frame_control) && tx->sta && test_sta_flag(tx->sta, WLAN_STA_USES_ENCRYPTION)) { return TX_DROP; } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (void *)tx->skb->data; struct ieee80211_supported_band *sband; u32 len; struct ieee80211_tx_rate_control txrc; struct ieee80211_sta_rates *ratetbl = NULL; bool encap = info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP; bool assoc = false; memset(&txrc, 0, sizeof(txrc)); sband = tx->local->hw.wiphy->bands[info->band]; len = min_t(u32, tx->skb->len + FCS_LEN, tx->local->hw.wiphy->frag_threshold); /* set up the tx rate control struct we give the RC algo */ txrc.hw = &tx->local->hw; txrc.sband = sband; txrc.bss_conf = &tx->sdata->vif.bss_conf; txrc.skb = tx->skb; txrc.reported_rate.idx = -1; txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[info->band]; if (tx->sdata->rc_has_mcs_mask[info->band]) txrc.rate_idx_mcs_mask = tx->sdata->rc_rateidx_mcs_mask[info->band]; txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP || tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT || tx->sdata->vif.type == NL80211_IFTYPE_ADHOC || tx->sdata->vif.type == NL80211_IFTYPE_OCB); /* set up RTS protection if desired */ if (len > tx->local->hw.wiphy->rts_threshold) { txrc.rts = true; } info->control.use_rts = txrc.rts; info->control.use_cts_prot = tx->sdata->vif.bss_conf.use_cts_prot; /* * Use short preamble if the BSS can handle it, but not for * management frames unless we know the receiver can handle * that -- the management frame might be to a station that * just wants a probe response. */ if (tx->sdata->vif.bss_conf.use_short_preamble && (ieee80211_is_tx_data(tx->skb) || (tx->sta && test_sta_flag(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) txrc.short_preamble = true; info->control.short_preamble = txrc.short_preamble; /* don't ask rate control when rate already injected via radiotap */ if (info->control.flags & IEEE80211_TX_CTRL_RATE_INJECT) return TX_CONTINUE; if (tx->sta) assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); /* * Lets not bother rate control if we're associated and cannot * talk to the sta. This should not happen. */ if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && assoc && !rate_usable_index_exists(sband, &tx->sta->sta), "%s: Dropped data frame as no usable bitrate found while " "scanning and associated. Target station: " "%pM on %d GHz band\n", tx->sdata->name, encap ? ((struct ethhdr *)hdr)->h_dest : hdr->addr1, info->band ? 5 : 2)) return TX_DROP; /* * If we're associated with the sta at this point we know we can at * least send the frame at the lowest bit rate. */ rate_control_get_rate(tx->sdata, tx->sta, &txrc); if (tx->sta && !info->control.skip_table) ratetbl = rcu_dereference(tx->sta->sta.rates); if (unlikely(info->control.rates[0].idx < 0)) { if (ratetbl) { struct ieee80211_tx_rate rate = { .idx = ratetbl->rate[0].idx, .flags = ratetbl->rate[0].flags, .count = ratetbl->rate[0].count }; if (ratetbl->rate[0].idx < 0) return TX_DROP; tx->rate = rate; } else { return TX_DROP; } } else { tx->rate = info->control.rates[0]; } if (txrc.reported_rate.idx < 0) { txrc.reported_rate = tx->rate; if (tx->sta && ieee80211_is_tx_data(tx->skb)) tx->sta->deflink.tx_stats.last_rate = txrc.reported_rate; } else if (tx->sta) tx->sta->deflink.tx_stats.last_rate = txrc.reported_rate; if (ratetbl) return TX_CONTINUE; if (unlikely(!info->control.rates[0].count)) info->control.rates[0].count = 1; if (WARN_ON_ONCE((info->control.rates[0].count > 1) && (info->flags & IEEE80211_TX_CTL_NO_ACK))) info->control.rates[0].count = 1; return TX_CONTINUE; } static __le16 ieee80211_tx_next_seq(struct sta_info *sta, int tid) { u16 *seq = &sta->tid_seq[tid]; __le16 ret = cpu_to_le16(*seq); /* Increase the sequence number. */ *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; return ret; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; int tid; /* * Packet injection may want to control the sequence * number, if we have no matching interface then we * neither assign one ourselves nor ask the driver to. */ if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) return TX_CONTINUE; if (unlikely(ieee80211_is_ctl(hdr->frame_control))) return TX_CONTINUE; if (ieee80211_hdrlen(hdr->frame_control) < 24) return TX_CONTINUE; if (ieee80211_is_qos_nullfunc(hdr->frame_control)) return TX_CONTINUE; if (info->control.flags & IEEE80211_TX_CTRL_NO_SEQNO) return TX_CONTINUE; /* SNS11 from 802.11be 10.3.2.14 */ if (unlikely(is_multicast_ether_addr(hdr->addr1) && ieee80211_vif_is_mld(info->control.vif) && info->control.vif->type == NL80211_IFTYPE_AP)) { if (info->control.flags & IEEE80211_TX_CTRL_MCAST_MLO_FIRST_TX) tx->sdata->mld_mcast_seq += 0x10; hdr->seq_ctrl = cpu_to_le16(tx->sdata->mld_mcast_seq); return TX_CONTINUE; } /* * Anything but QoS data that has a sequence number field * (is long enough) gets a sequence number from the global * counter. QoS data frames with a multicast destination * also use the global counter (802.11-2012 9.3.2.10). */ if (!ieee80211_is_data_qos(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) { /* driver should assign sequence number */ info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; /* for pure STA mode without beacons, we can do it */ hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); tx->sdata->sequence_number += 0x10; if (tx->sta) tx->sta->deflink.tx_stats.msdu[IEEE80211_NUM_TIDS]++; return TX_CONTINUE; } /* * This should be true for injected/management frames only, for * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ * above since they are not QoS-data frames. */ if (!tx->sta) return TX_CONTINUE; /* include per-STA, per-TID sequence counter */ tid = ieee80211_get_tid(hdr); tx->sta->deflink.tx_stats.msdu[tid]++; hdr->seq_ctrl = ieee80211_tx_next_seq(tx->sta, tid); return TX_CONTINUE; } static int ieee80211_fragment(struct ieee80211_tx_data *tx, struct sk_buff *skb, int hdrlen, int frag_threshold) { struct ieee80211_local *local = tx->local; struct ieee80211_tx_info *info; struct sk_buff *tmp; int per_fragm = frag_threshold - hdrlen - FCS_LEN; int pos = hdrlen + per_fragm; int rem = skb->len - hdrlen - per_fragm; if (WARN_ON(rem < 0)) return -EINVAL; /* first fragment was already added to queue by caller */ while (rem) { int fraglen = per_fragm; if (fraglen > rem) fraglen = rem; rem -= fraglen; tmp = dev_alloc_skb(local->tx_headroom + frag_threshold + IEEE80211_ENCRYPT_HEADROOM + IEEE80211_ENCRYPT_TAILROOM); if (!tmp) return -ENOMEM; __skb_queue_tail(&tx->skbs, tmp); skb_reserve(tmp, local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM); /* copy control information */ memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); info = IEEE80211_SKB_CB(tmp); info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT); if (rem) info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; skb_copy_queue_mapping(tmp, skb); tmp->priority = skb->priority; tmp->dev = skb->dev; /* copy header and data */ skb_put_data(tmp, skb->data, hdrlen); skb_put_data(tmp, skb->data + pos, fraglen); pos += fraglen; } /* adjust first fragment's length */ skb_trim(skb, hdrlen + per_fragm); return 0; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) { struct sk_buff *skb = tx->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; int frag_threshold = tx->local->hw.wiphy->frag_threshold; int hdrlen; int fragnum; /* no matter what happens, tx->skb moves to tx->skbs */ __skb_queue_tail(&tx->skbs, skb); tx->skb = NULL; if (info->flags & IEEE80211_TX_CTL_DONTFRAG) return TX_CONTINUE; if (ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) return TX_CONTINUE; /* * Warn when submitting a fragmented A-MPDU frame and drop it. * This scenario is handled in ieee80211_tx_prepare but extra * caution taken here as fragmented ampdu may cause Tx stop. */ if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) return TX_DROP; hdrlen = ieee80211_hdrlen(hdr->frame_control); /* internal error, why isn't DONTFRAG set? */ if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) return TX_DROP; /* * Now fragment the frame. This will allocate all the fragments and * chain them (using skb as the first fragment) to skb->next. * During transmission, we will remove the successfully transmitted * fragments from this list. When the low-level driver rejects one * of the fragments then we will simply pretend to accept the skb * but store it away as pending. */ if (ieee80211_fragment(tx, skb, hdrlen, frag_threshold)) return TX_DROP; /* update duration/seq/flags of fragments */ fragnum = 0; skb_queue_walk(&tx->skbs, skb) { const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); hdr = (void *)skb->data; info = IEEE80211_SKB_CB(skb); if (!skb_queue_is_last(&tx->skbs, skb)) { hdr->frame_control |= morefrags; /* * No multi-rate retries for fragmented frames, that * would completely throw off the NAV at other STAs. */ info->control.rates[1].idx = -1; info->control.rates[2].idx = -1; info->control.rates[3].idx = -1; BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 4); info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; } else { hdr->frame_control &= ~morefrags; } hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); fragnum++; } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) { struct sk_buff *skb; int ac = -1; if (!tx->sta) return TX_CONTINUE; skb_queue_walk(&tx->skbs, skb) { ac = skb_get_queue_mapping(skb); tx->sta->deflink.tx_stats.bytes[ac] += skb->len; } if (ac >= 0) tx->sta->deflink.tx_stats.packets[ac]++; return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) { if (!tx->key) return TX_CONTINUE; switch (tx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: return ieee80211_crypto_wep_encrypt(tx); case WLAN_CIPHER_SUITE_TKIP: return ieee80211_crypto_tkip_encrypt(tx); case WLAN_CIPHER_SUITE_CCMP: return ieee80211_crypto_ccmp_encrypt( tx, IEEE80211_CCMP_MIC_LEN); case WLAN_CIPHER_SUITE_CCMP_256: return ieee80211_crypto_ccmp_encrypt( tx, IEEE80211_CCMP_256_MIC_LEN); case WLAN_CIPHER_SUITE_AES_CMAC: return ieee80211_crypto_aes_cmac_encrypt(tx); case WLAN_CIPHER_SUITE_BIP_CMAC_256: return ieee80211_crypto_aes_cmac_256_encrypt(tx); case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: return ieee80211_crypto_aes_gmac_encrypt(tx); case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: return ieee80211_crypto_gcmp_encrypt(tx); } return TX_DROP; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) { struct sk_buff *skb; struct ieee80211_hdr *hdr; int next_len; bool group_addr; skb_queue_walk(&tx->skbs, skb) { hdr = (void *) skb->data; if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) break; /* must not overwrite AID */ if (!skb_queue_is_last(&tx->skbs, skb)) { struct sk_buff *next = skb_queue_next(&tx->skbs, skb); next_len = next->len; } else next_len = 0; group_addr = is_multicast_ether_addr(hdr->addr1); hdr->duration_id = ieee80211_duration(tx, skb, group_addr, next_len); } return TX_CONTINUE; } /* actual transmit path */ static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, struct sk_buff *skb, struct ieee80211_tx_info *info, struct tid_ampdu_tx *tid_tx, int tid) { bool queued = false; bool reset_agg_timer = false; struct sk_buff *purge_skb = NULL; if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { reset_agg_timer = true; } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { /* * nothing -- this aggregation session is being started * but that might still fail with the driver */ } else if (!tx->sta->sta.txq[tid]) { spin_lock(&tx->sta->lock); /* * Need to re-check now, because we may get here * * 1) in the window during which the setup is actually * already done, but not marked yet because not all * packets are spliced over to the driver pending * queue yet -- if this happened we acquire the lock * either before or after the splice happens, but * need to recheck which of these cases happened. * * 2) during session teardown, if the OPERATIONAL bit * was cleared due to the teardown but the pointer * hasn't been assigned NULL yet (or we loaded it * before it was assigned) -- in this case it may * now be NULL which means we should just let the * packet pass through because splicing the frames * back is already done. */ tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid); if (!tid_tx) { /* do nothing, let packet pass through */ } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { reset_agg_timer = true; } else { queued = true; if (info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER) { clear_sta_flag(tx->sta, WLAN_STA_SP); ps_dbg(tx->sta->sdata, "STA %pM aid %d: SP frame queued, close the SP w/o telling the peer\n", tx->sta->sta.addr, tx->sta->sta.aid); } info->control.vif = &tx->sdata->vif; info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; __skb_queue_tail(&tid_tx->pending, skb); if (skb_queue_len(&tid_tx->pending) > STA_MAX_TX_BUFFER) purge_skb = __skb_dequeue(&tid_tx->pending); } spin_unlock(&tx->sta->lock); if (purge_skb) ieee80211_free_txskb(&tx->local->hw, purge_skb); } /* reset session timer */ if (reset_agg_timer) tid_tx->last_tx = jiffies; return queued; } void ieee80211_aggr_check(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct rate_control_ref *ref = sdata->local->rate_ctrl; u16 tid; if (!ref || !(ref->ops->capa & RATE_CTRL_CAPA_AMPDU_TRIGGER)) return; if (!sta || !sta->sta.deflink.ht_cap.ht_supported || !sta->sta.wme || skb_get_queue_mapping(skb) == IEEE80211_AC_VO || skb->protocol == sdata->control_port_protocol) return; tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK; if (likely(sta->ampdu_mlme.tid_tx[tid])) return; ieee80211_start_tx_ba_session(&sta->sta, tid, 0); } /* * initialises @tx * pass %NULL for the station if unknown, a valid pointer if known * or an ERR_PTR() if the station is known not to exist */ static ieee80211_tx_result ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, struct ieee80211_tx_data *tx, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); bool aggr_check = false; int tid; memset(tx, 0, sizeof(*tx)); tx->skb = skb; tx->local = local; tx->sdata = sdata; __skb_queue_head_init(&tx->skbs); /* * If this flag is set to true anywhere, and we get here, * we are doing the needed processing, so remove the flag * now. */ info->control.flags &= ~IEEE80211_TX_INTCFL_NEED_TXPROCESSING; hdr = (struct ieee80211_hdr *) skb->data; if (likely(sta)) { if (!IS_ERR(sta)) tx->sta = sta; } else { if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { tx->sta = rcu_dereference(sdata->u.vlan.sta); if (!tx->sta && sdata->wdev.use_4addr) return TX_DROP; } else if (tx->sdata->control_port_protocol == tx->skb->protocol) { tx->sta = sta_info_get_bss(sdata, hdr->addr1); } if (!tx->sta && !is_multicast_ether_addr(hdr->addr1)) { tx->sta = sta_info_get(sdata, hdr->addr1); aggr_check = true; } } if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && !ieee80211_is_qos_nullfunc(hdr->frame_control) && ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && !ieee80211_hw_check(&local->hw, TX_AMPDU_SETUP_IN_HW)) { struct tid_ampdu_tx *tid_tx; tid = ieee80211_get_tid(hdr); tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); if (!tid_tx && aggr_check) { ieee80211_aggr_check(sdata, tx->sta, skb); tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); } if (tid_tx) { bool queued; queued = ieee80211_tx_prep_agg(tx, skb, info, tid_tx, tid); if (unlikely(queued)) return TX_QUEUED; } } if (is_multicast_ether_addr(hdr->addr1)) { tx->flags &= ~IEEE80211_TX_UNICAST; info->flags |= IEEE80211_TX_CTL_NO_ACK; } else tx->flags |= IEEE80211_TX_UNICAST; if (!(info->flags & IEEE80211_TX_CTL_DONTFRAG)) { if (!(tx->flags & IEEE80211_TX_UNICAST) || skb->len + FCS_LEN <= local->hw.wiphy->frag_threshold || info->flags & IEEE80211_TX_CTL_AMPDU) info->flags |= IEEE80211_TX_CTL_DONTFRAG; } if (!tx->sta) info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; else if (test_and_clear_sta_flag(tx->sta, WLAN_STA_CLEAR_PS_FILT)) { info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; ieee80211_check_fast_xmit(tx->sta); } info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; return TX_CONTINUE; } static struct txq_info *ieee80211_get_txq(struct ieee80211_local *local, struct ieee80211_vif *vif, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_txq *txq = NULL; if ((info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) || (info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE)) return NULL; if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) && unlikely(!ieee80211_is_data_present(hdr->frame_control))) { if ((!ieee80211_is_mgmt(hdr->frame_control) || ieee80211_is_bufferable_mmpdu(skb) || vif->type == NL80211_IFTYPE_STATION) && sta && sta->uploaded) { /* * This will be NULL if the driver didn't set the * opt-in hardware flag. */ txq = sta->sta.txq[IEEE80211_NUM_TIDS]; } } else if (sta) { u8 tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK; if (!sta->uploaded) return NULL; txq = sta->sta.txq[tid]; } else { txq = vif->txq; } if (!txq) return NULL; return to_txq_info(txq); } static void ieee80211_set_skb_enqueue_time(struct sk_buff *skb) { struct sk_buff *next; codel_time_t now = codel_get_time(); skb_list_walk_safe(skb, skb, next) IEEE80211_SKB_CB(skb)->control.enqueue_time = now; } static u32 codel_skb_len_func(const struct sk_buff *skb) { return skb->len; } static codel_time_t codel_skb_time_func(const struct sk_buff *skb) { const struct ieee80211_tx_info *info; info = (const struct ieee80211_tx_info *)skb->cb; return info->control.enqueue_time; } static struct sk_buff *codel_dequeue_func(struct codel_vars *cvars, void *ctx) { struct ieee80211_local *local; struct txq_info *txqi; struct fq *fq; struct fq_flow *flow; txqi = ctx; local = vif_to_sdata(txqi->txq.vif)->local; fq = &local->fq; if (cvars == &txqi->def_cvars) flow = &txqi->tin.default_flow; else flow = &fq->flows[cvars - local->cvars]; return fq_flow_dequeue(fq, flow); } static void codel_drop_func(struct sk_buff *skb, void *ctx) { struct ieee80211_local *local; struct ieee80211_hw *hw; struct txq_info *txqi; txqi = ctx; local = vif_to_sdata(txqi->txq.vif)->local; hw = &local->hw; ieee80211_free_txskb(hw, skb); } static struct sk_buff *fq_tin_dequeue_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow) { struct ieee80211_local *local; struct txq_info *txqi; struct codel_vars *cvars; struct codel_params *cparams; struct codel_stats *cstats; local = container_of(fq, struct ieee80211_local, fq); txqi = container_of(tin, struct txq_info, tin); cstats = &txqi->cstats; if (txqi->txq.sta) { struct sta_info *sta = container_of(txqi->txq.sta, struct sta_info, sta); cparams = &sta->cparams; } else { cparams = &local->cparams; } if (flow == &tin->default_flow) cvars = &txqi->def_cvars; else cvars = &local->cvars[flow - fq->flows]; return codel_dequeue(txqi, &flow->backlog, cparams, cvars, cstats, codel_skb_len_func, codel_skb_time_func, codel_drop_func, codel_dequeue_func); } static void fq_skb_free_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow, struct sk_buff *skb) { struct ieee80211_local *local; local = container_of(fq, struct ieee80211_local, fq); ieee80211_free_txskb(&local->hw, skb); } static void ieee80211_txq_enqueue(struct ieee80211_local *local, struct txq_info *txqi, struct sk_buff *skb) { struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; u32 flow_idx = fq_flow_idx(fq, skb); ieee80211_set_skb_enqueue_time(skb); spin_lock_bh(&fq->lock); /* * For management frames, don't really apply codel etc., * we don't want to apply any shaping or anything we just * want to simplify the driver API by having them on the * txqi. */ if (unlikely(txqi->txq.tid == IEEE80211_NUM_TIDS)) { IEEE80211_SKB_CB(skb)->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; __skb_queue_tail(&txqi->frags, skb); } else { fq_tin_enqueue(fq, tin, flow_idx, skb, fq_skb_free_func); } spin_unlock_bh(&fq->lock); } static bool fq_vlan_filter_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow, struct sk_buff *skb, void *data) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); return info->control.vif == data; } void ieee80211_txq_remove_vlan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct fq *fq = &local->fq; struct txq_info *txqi; struct fq_tin *tin; struct ieee80211_sub_if_data *ap; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) return; ap = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); if (!ap->vif.txq) return; txqi = to_txq_info(ap->vif.txq); tin = &txqi->tin; spin_lock_bh(&fq->lock); fq_tin_filter(fq, tin, fq_vlan_filter_func, &sdata->vif, fq_skb_free_func); spin_unlock_bh(&fq->lock); } void ieee80211_txq_init(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct txq_info *txqi, int tid) { fq_tin_init(&txqi->tin); codel_vars_init(&txqi->def_cvars); codel_stats_init(&txqi->cstats); __skb_queue_head_init(&txqi->frags); INIT_LIST_HEAD(&txqi->schedule_order); txqi->txq.vif = &sdata->vif; if (!sta) { sdata->vif.txq = &txqi->txq; txqi->txq.tid = 0; txqi->txq.ac = IEEE80211_AC_BE; return; } if (tid == IEEE80211_NUM_TIDS) { if (sdata->vif.type == NL80211_IFTYPE_STATION) { /* Drivers need to opt in to the management MPDU TXQ */ if (!ieee80211_hw_check(&sdata->local->hw, STA_MMPDU_TXQ)) return; } else if (!ieee80211_hw_check(&sdata->local->hw, BUFF_MMPDU_TXQ)) { /* Drivers need to opt in to the bufferable MMPDU TXQ */ return; } txqi->txq.ac = IEEE80211_AC_VO; } else { txqi->txq.ac = ieee80211_ac_from_tid(tid); } txqi->txq.sta = &sta->sta; txqi->txq.tid = tid; sta->sta.txq[tid] = &txqi->txq; } void ieee80211_txq_purge(struct ieee80211_local *local, struct txq_info *txqi) { struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; spin_lock_bh(&fq->lock); fq_tin_reset(fq, tin, fq_skb_free_func); ieee80211_purge_tx_queue(&local->hw, &txqi->frags); spin_unlock_bh(&fq->lock); spin_lock_bh(&local->active_txq_lock[txqi->txq.ac]); list_del_init(&txqi->schedule_order); spin_unlock_bh(&local->active_txq_lock[txqi->txq.ac]); } void ieee80211_txq_set_params(struct ieee80211_local *local) { if (local->hw.wiphy->txq_limit) local->fq.limit = local->hw.wiphy->txq_limit; else local->hw.wiphy->txq_limit = local->fq.limit; if (local->hw.wiphy->txq_memory_limit) local->fq.memory_limit = local->hw.wiphy->txq_memory_limit; else local->hw.wiphy->txq_memory_limit = local->fq.memory_limit; if (local->hw.wiphy->txq_quantum) local->fq.quantum = local->hw.wiphy->txq_quantum; else local->hw.wiphy->txq_quantum = local->fq.quantum; } int ieee80211_txq_setup_flows(struct ieee80211_local *local) { struct fq *fq = &local->fq; int ret; int i; bool supp_vht = false; enum nl80211_band band; ret = fq_init(fq, 4096); if (ret) return ret; /* * If the hardware doesn't support VHT, it is safe to limit the maximum * queue size. 4 Mbytes is 64 max-size aggregates in 802.11n. */ for (band = 0; band < NUM_NL80211_BANDS; band++) { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[band]; if (!sband) continue; supp_vht = supp_vht || sband->vht_cap.vht_supported; } if (!supp_vht) fq->memory_limit = 4 << 20; /* 4 Mbytes */ codel_params_init(&local->cparams); local->cparams.interval = MS2TIME(100); local->cparams.target = MS2TIME(20); local->cparams.ecn = true; local->cvars = kcalloc(fq->flows_cnt, sizeof(local->cvars[0]), GFP_KERNEL); if (!local->cvars) { spin_lock_bh(&fq->lock); fq_reset(fq, fq_skb_free_func); spin_unlock_bh(&fq->lock); return -ENOMEM; } for (i = 0; i < fq->flows_cnt; i++) codel_vars_init(&local->cvars[i]); ieee80211_txq_set_params(local); return 0; } void ieee80211_txq_teardown_flows(struct ieee80211_local *local) { struct fq *fq = &local->fq; kfree(local->cvars); local->cvars = NULL; spin_lock_bh(&fq->lock); fq_reset(fq, fq_skb_free_func); spin_unlock_bh(&fq->lock); } static bool ieee80211_queue_skb(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_vif *vif; struct txq_info *txqi; if (sdata->vif.type == NL80211_IFTYPE_MONITOR) return false; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); vif = &sdata->vif; txqi = ieee80211_get_txq(local, vif, sta, skb); if (!txqi) return false; ieee80211_txq_enqueue(local, txqi, skb); schedule_and_wake_txq(local, txqi); return true; } static bool ieee80211_tx_frags(struct ieee80211_local *local, struct ieee80211_vif *vif, struct sta_info *sta, struct sk_buff_head *skbs, bool txpending) { struct ieee80211_tx_control control = {}; struct sk_buff *skb, *tmp; unsigned long flags; skb_queue_walk_safe(skbs, skb, tmp) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int q = info->hw_queue; #ifdef CONFIG_MAC80211_VERBOSE_DEBUG if (WARN_ON_ONCE(q >= local->hw.queues)) { __skb_unlink(skb, skbs); ieee80211_free_txskb(&local->hw, skb); continue; } #endif spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (local->queue_stop_reasons[q] || (!txpending && !skb_queue_empty(&local->pending[q]))) { if (unlikely(info->flags & IEEE80211_TX_INTFL_OFFCHAN_TX_OK)) { if (local->queue_stop_reasons[q] & ~BIT(IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL)) { /* * Drop off-channel frames if queues * are stopped for any reason other * than off-channel operation. Never * queue them. */ spin_unlock_irqrestore( &local->queue_stop_reason_lock, flags); ieee80211_purge_tx_queue(&local->hw, skbs); return true; } } else { /* * Since queue is stopped, queue up frames for * later transmission from the tx-pending * tasklet when the queue is woken again. */ if (txpending) skb_queue_splice_init(skbs, &local->pending[q]); else skb_queue_splice_tail_init(skbs, &local->pending[q]); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return false; } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); info->control.vif = vif; control.sta = sta ? &sta->sta : NULL; __skb_unlink(skb, skbs); drv_tx(local, &control, skb); } return true; } /* * Returns false if the frame couldn't be transmitted but was queued instead. */ static bool __ieee80211_tx(struct ieee80211_local *local, struct sk_buff_head *skbs, struct sta_info *sta, bool txpending) { struct ieee80211_tx_info *info; struct ieee80211_sub_if_data *sdata; struct ieee80211_vif *vif; struct sk_buff *skb; bool result; if (WARN_ON(skb_queue_empty(skbs))) return true; skb = skb_peek(skbs); info = IEEE80211_SKB_CB(skb); sdata = vif_to_sdata(info->control.vif); if (sta && !sta->uploaded) sta = NULL; switch (sdata->vif.type) { case NL80211_IFTYPE_MONITOR: if (sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) { vif = &sdata->vif; break; } sdata = rcu_dereference(local->monitor_sdata); if (sdata) { vif = &sdata->vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; } else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { ieee80211_purge_tx_queue(&local->hw, skbs); return true; } else vif = NULL; break; case NL80211_IFTYPE_AP_VLAN: sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); fallthrough; default: vif = &sdata->vif; break; } result = ieee80211_tx_frags(local, vif, sta, skbs, txpending); WARN_ON_ONCE(!skb_queue_empty(skbs)); return result; } /* * Invoke TX handlers, return 0 on success and non-zero if the * frame was dropped or queued. * * The handlers are split into an early and late part. The latter is everything * that can be sensitive to reordering, and will be deferred to after packets * are dequeued from the intermediate queues (when they are enabled). */ static int invoke_tx_handlers_early(struct ieee80211_tx_data *tx) { ieee80211_tx_result res = TX_DROP; #define CALL_TXH(txh) \ do { \ res = txh(tx); \ if (res != TX_CONTINUE) \ goto txh_done; \ } while (0) CALL_TXH(ieee80211_tx_h_dynamic_ps); CALL_TXH(ieee80211_tx_h_check_assoc); CALL_TXH(ieee80211_tx_h_ps_buf); CALL_TXH(ieee80211_tx_h_check_control_port_protocol); CALL_TXH(ieee80211_tx_h_select_key); txh_done: if (unlikely(res == TX_DROP)) { I802_DEBUG_INC(tx->local->tx_handlers_drop); if (tx->skb) ieee80211_free_txskb(&tx->local->hw, tx->skb); else ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs); return -1; } else if (unlikely(res == TX_QUEUED)) { I802_DEBUG_INC(tx->local->tx_handlers_queued); return -1; } return 0; } /* * Late handlers can be called while the sta lock is held. Handlers that can * cause packets to be generated will cause deadlock! */ static int invoke_tx_handlers_late(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); ieee80211_tx_result res = TX_CONTINUE; if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL)) CALL_TXH(ieee80211_tx_h_rate_ctrl); if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) { __skb_queue_tail(&tx->skbs, tx->skb); tx->skb = NULL; goto txh_done; } CALL_TXH(ieee80211_tx_h_michael_mic_add); CALL_TXH(ieee80211_tx_h_sequence); CALL_TXH(ieee80211_tx_h_fragment); /* handlers after fragment must be aware of tx info fragmentation! */ CALL_TXH(ieee80211_tx_h_stats); CALL_TXH(ieee80211_tx_h_encrypt); if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL)) CALL_TXH(ieee80211_tx_h_calculate_duration); #undef CALL_TXH txh_done: if (unlikely(res == TX_DROP)) { I802_DEBUG_INC(tx->local->tx_handlers_drop); if (tx->skb) ieee80211_free_txskb(&tx->local->hw, tx->skb); else ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs); return -1; } else if (unlikely(res == TX_QUEUED)) { I802_DEBUG_INC(tx->local->tx_handlers_queued); return -1; } return 0; } static int invoke_tx_handlers(struct ieee80211_tx_data *tx) { int r = invoke_tx_handlers_early(tx); if (r) return r; return invoke_tx_handlers_late(tx); } bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct sk_buff *skb, int band, struct ieee80211_sta **sta) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_data tx; struct sk_buff *skb2; if (ieee80211_tx_prepare(sdata, &tx, NULL, skb) == TX_DROP) return false; info->band = band; info->control.vif = vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; if (invoke_tx_handlers(&tx)) return false; if (sta) { if (tx.sta) *sta = &tx.sta->sta; else *sta = NULL; } /* this function isn't suitable for fragmented data frames */ skb2 = __skb_dequeue(&tx.skbs); if (WARN_ON(skb2 != skb || !skb_queue_empty(&tx.skbs))) { ieee80211_free_txskb(hw, skb2); ieee80211_purge_tx_queue(hw, &tx.skbs); return false; } return true; } EXPORT_SYMBOL(ieee80211_tx_prepare_skb); /* * Returns false if the frame couldn't be transmitted but was queued instead. */ static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb, bool txpending) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_data tx; ieee80211_tx_result res_prepare; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); bool result = true; if (unlikely(skb->len < 10)) { dev_kfree_skb(skb); return true; } /* initialises tx */ res_prepare = ieee80211_tx_prepare(sdata, &tx, sta, skb); if (unlikely(res_prepare == TX_DROP)) { ieee80211_free_txskb(&local->hw, skb); return true; } else if (unlikely(res_prepare == TX_QUEUED)) { return true; } /* set up hw_queue value early */ if (!(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) info->hw_queue = sdata->vif.hw_queue[skb_get_queue_mapping(skb)]; if (invoke_tx_handlers_early(&tx)) return true; if (ieee80211_queue_skb(local, sdata, tx.sta, tx.skb)) return true; if (!invoke_tx_handlers_late(&tx)) result = __ieee80211_tx(local, &tx.skbs, tx.sta, txpending); return result; } /* device xmit handlers */ enum ieee80211_encrypt { ENCRYPT_NO, ENCRYPT_MGMT, ENCRYPT_DATA, }; static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int head_need, enum ieee80211_encrypt encrypt) { struct ieee80211_local *local = sdata->local; bool enc_tailroom; int tail_need = 0; enc_tailroom = encrypt == ENCRYPT_MGMT || (encrypt == ENCRYPT_DATA && sdata->crypto_tx_tailroom_needed_cnt); if (enc_tailroom) { tail_need = IEEE80211_ENCRYPT_TAILROOM; tail_need -= skb_tailroom(skb); tail_need = max_t(int, tail_need, 0); } if (skb_cloned(skb) && (!ieee80211_hw_check(&local->hw, SUPPORTS_CLONED_SKBS) || !skb_clone_writable(skb, ETH_HLEN) || enc_tailroom)) I802_DEBUG_INC(local->tx_expand_skb_head_cloned); else if (head_need || tail_need) I802_DEBUG_INC(local->tx_expand_skb_head); else return 0; if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { wiphy_debug(local->hw.wiphy, "failed to reallocate TX buffer\n"); return -ENOMEM; } return 0; } void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; int headroom; enum ieee80211_encrypt encrypt; if (info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT) encrypt = ENCRYPT_NO; else if (ieee80211_is_mgmt(hdr->frame_control)) encrypt = ENCRYPT_MGMT; else encrypt = ENCRYPT_DATA; headroom = local->tx_headroom; if (encrypt != ENCRYPT_NO) headroom += IEEE80211_ENCRYPT_HEADROOM; headroom -= skb_headroom(skb); headroom = max_t(int, 0, headroom); if (ieee80211_skb_resize(sdata, skb, headroom, encrypt)) { ieee80211_free_txskb(&local->hw, skb); return; } /* reload after potential resize */ hdr = (struct ieee80211_hdr *) skb->data; info->control.vif = &sdata->vif; if (ieee80211_vif_is_mesh(&sdata->vif)) { if (ieee80211_is_data(hdr->frame_control) && is_unicast_ether_addr(hdr->addr1)) { if (mesh_nexthop_resolve(sdata, skb)) return; /* skb queued: don't free */ } else { ieee80211_mps_set_frame_flags(sdata, NULL, hdr); } } ieee80211_set_qos_hdr(sdata, skb); ieee80211_tx(sdata, sta, skb, false); } static bool ieee80211_validate_radiotap_len(struct sk_buff *skb) { struct ieee80211_radiotap_header *rthdr = (struct ieee80211_radiotap_header *)skb->data; /* check for not even having the fixed radiotap header part */ if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) return false; /* too short to be possibly valid */ /* is it a header version we can trust to find length from? */ if (unlikely(rthdr->it_version)) return false; /* only version 0 is supported */ /* does the skb contain enough to deliver on the alleged length? */ if (unlikely(skb->len < ieee80211_get_radiotap_len(skb->data))) return false; /* skb too short for claimed rt header extent */ return true; } bool ieee80211_parse_tx_radiotap(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_radiotap_iterator iterator; struct ieee80211_radiotap_header *rthdr = (struct ieee80211_radiotap_header *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, NULL); u16 txflags; u16 rate = 0; bool rate_found = false; u8 rate_retries = 0; u16 rate_flags = 0; u8 mcs_known, mcs_flags, mcs_bw; u16 vht_known; u8 vht_mcs = 0, vht_nss = 0; int i; if (!ieee80211_validate_radiotap_len(skb)) return false; info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_CTL_DONTFRAG; /* * for every radiotap entry that is present * (ieee80211_radiotap_iterator_next returns -ENOENT when no more * entries present, or -EINVAL on error) */ while (!ret) { ret = ieee80211_radiotap_iterator_next(&iterator); if (ret) continue; /* see if this argument is something we can use */ switch (iterator.this_arg_index) { /* * You must take care when dereferencing iterator.this_arg * for multibyte types... the pointer is not aligned. Use * get_unaligned((type *)iterator.this_arg) to dereference * iterator.this_arg for type "type" safely on all arches. */ case IEEE80211_RADIOTAP_FLAGS: if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { /* * this indicates that the skb we have been * handed has the 32-bit FCS CRC at the end... * we should react to that by snipping it off * because it will be recomputed and added * on transmission */ if (skb->len < (iterator._max_length + FCS_LEN)) return false; skb_trim(skb, skb->len - FCS_LEN); } if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) info->flags &= ~IEEE80211_TX_CTL_DONTFRAG; break; case IEEE80211_RADIOTAP_TX_FLAGS: txflags = get_unaligned_le16(iterator.this_arg); if (txflags & IEEE80211_RADIOTAP_F_TX_NOACK) info->flags |= IEEE80211_TX_CTL_NO_ACK; if (txflags & IEEE80211_RADIOTAP_F_TX_NOSEQNO) info->control.flags |= IEEE80211_TX_CTRL_NO_SEQNO; if (txflags & IEEE80211_RADIOTAP_F_TX_ORDER) info->control.flags |= IEEE80211_TX_CTRL_DONT_REORDER; break; case IEEE80211_RADIOTAP_RATE: rate = *iterator.this_arg; rate_flags = 0; rate_found = true; break; case IEEE80211_RADIOTAP_DATA_RETRIES: rate_retries = *iterator.this_arg; break; case IEEE80211_RADIOTAP_MCS: mcs_known = iterator.this_arg[0]; mcs_flags = iterator.this_arg[1]; if (!(mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_MCS)) break; rate_found = true; rate = iterator.this_arg[2]; rate_flags = IEEE80211_TX_RC_MCS; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_GI && mcs_flags & IEEE80211_RADIOTAP_MCS_SGI) rate_flags |= IEEE80211_TX_RC_SHORT_GI; mcs_bw = mcs_flags & IEEE80211_RADIOTAP_MCS_BW_MASK; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_BW && mcs_bw == IEEE80211_RADIOTAP_MCS_BW_40) rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_FEC && mcs_flags & IEEE80211_RADIOTAP_MCS_FEC_LDPC) info->flags |= IEEE80211_TX_CTL_LDPC; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_STBC) { u8 stbc = u8_get_bits(mcs_flags, IEEE80211_RADIOTAP_MCS_STBC_MASK); info->flags |= u32_encode_bits(stbc, IEEE80211_TX_CTL_STBC); } break; case IEEE80211_RADIOTAP_VHT: vht_known = get_unaligned_le16(iterator.this_arg); rate_found = true; rate_flags = IEEE80211_TX_RC_VHT_MCS; if ((vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_GI) && (iterator.this_arg[2] & IEEE80211_RADIOTAP_VHT_FLAG_SGI)) rate_flags |= IEEE80211_TX_RC_SHORT_GI; if (vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH) { if (iterator.this_arg[3] == 1) rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; else if (iterator.this_arg[3] == 4) rate_flags |= IEEE80211_TX_RC_80_MHZ_WIDTH; else if (iterator.this_arg[3] == 11) rate_flags |= IEEE80211_TX_RC_160_MHZ_WIDTH; } vht_mcs = iterator.this_arg[4] >> 4; if (vht_mcs > 11) vht_mcs = 0; vht_nss = iterator.this_arg[4] & 0xF; if (!vht_nss || vht_nss > 8) vht_nss = 1; break; /* * Please update the file * Documentation/networking/mac80211-injection.rst * when parsing new fields here. */ default: break; } } if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ return false; if (rate_found) { struct ieee80211_supported_band *sband = local->hw.wiphy->bands[info->band]; info->control.flags |= IEEE80211_TX_CTRL_RATE_INJECT; for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { info->control.rates[i].idx = -1; info->control.rates[i].flags = 0; info->control.rates[i].count = 0; } if (rate_flags & IEEE80211_TX_RC_MCS) { info->control.rates[0].idx = rate; } else if (rate_flags & IEEE80211_TX_RC_VHT_MCS) { ieee80211_rate_set_vht(info->control.rates, vht_mcs, vht_nss); } else if (sband) { for (i = 0; i < sband->n_bitrates; i++) { if (rate * 5 != sband->bitrates[i].bitrate) continue; info->control.rates[0].idx = i; break; } } if (info->control.rates[0].idx < 0) info->control.flags &= ~IEEE80211_TX_CTRL_RATE_INJECT; info->control.rates[0].flags = rate_flags; info->control.rates[0].count = min_t(u8, rate_retries + 1, local->hw.max_rate_tries); } return true; } netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; struct ieee80211_sub_if_data *tmp_sdata, *sdata; struct cfg80211_chan_def *chandef; u16 len_rthdr; int hdrlen; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (unlikely(!ieee80211_sdata_running(sdata))) goto fail; memset(info, 0, sizeof(*info)); info->flags = IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_CTL_INJECTED; /* Sanity-check the length of the radiotap header */ if (!ieee80211_validate_radiotap_len(skb)) goto fail; /* we now know there is a radiotap header with a length we can use */ len_rthdr = ieee80211_get_radiotap_len(skb->data); /* * fix up the pointers accounting for the radiotap * header still being in there. We are being given * a precooked IEEE80211 header so no need for * normal processing */ skb_set_mac_header(skb, len_rthdr); /* * these are just fixed to the end of the rt area since we * don't have any better information and at this point, nobody cares */ skb_set_network_header(skb, len_rthdr); skb_set_transport_header(skb, len_rthdr); if (skb->len < len_rthdr + 2) goto fail; hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); hdrlen = ieee80211_hdrlen(hdr->frame_control); if (skb->len < len_rthdr + hdrlen) goto fail; /* * Initialize skb->protocol if the injected frame is a data frame * carrying a rfc1042 header */ if (ieee80211_is_data(hdr->frame_control) && skb->len >= len_rthdr + hdrlen + sizeof(rfc1042_header) + 2) { u8 *payload = (u8 *)hdr + hdrlen; if (ether_addr_equal(payload, rfc1042_header)) skb->protocol = cpu_to_be16((payload[6] << 8) | payload[7]); } rcu_read_lock(); /* * We process outgoing injected frames that have a local address * we handle as though they are non-injected frames. * This code here isn't entirely correct, the local MAC address * isn't always enough to find the interface to use; for proper * VLAN support we have an nl80211-based mechanism. * * This is necessary, for example, for old hostapd versions that * don't use nl80211-based management TX/RX. */ list_for_each_entry_rcu(tmp_sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(tmp_sdata)) continue; if (tmp_sdata->vif.type == NL80211_IFTYPE_MONITOR || tmp_sdata->vif.type == NL80211_IFTYPE_AP_VLAN) continue; if (ether_addr_equal(tmp_sdata->vif.addr, hdr->addr2)) { sdata = tmp_sdata; break; } } chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) { tmp_sdata = rcu_dereference(local->monitor_sdata); if (tmp_sdata) chanctx_conf = rcu_dereference(tmp_sdata->vif.bss_conf.chanctx_conf); } if (chanctx_conf) chandef = &chanctx_conf->def; else if (!local->use_chanctx) chandef = &local->_oper_chandef; else goto fail_rcu; /* * Frame injection is not allowed if beaconing is not allowed * or if we need radar detection. Beaconing is usually not allowed when * the mode or operation (Adhoc, AP, Mesh) does not support DFS. * Passive scan is also used in world regulatory domains where * your country is not known and as such it should be treated as * NO TX unless the channel is explicitly allowed in which case * your current regulatory domain would not have the passive scan * flag. * * Since AP mode uses monitor interfaces to inject/TX management * frames we can make AP mode the exception to this rule once it * supports radar detection as its implementation can deal with * radar detection by itself. We can do that later by adding a * monitor flag interfaces used for AP support. */ if (!cfg80211_reg_can_beacon(local->hw.wiphy, chandef, sdata->vif.type)) goto fail_rcu; info->band = chandef->chan->band; /* Initialize skb->priority according to frame type and TID class, * with respect to the sub interface that the frame will actually * be transmitted on. If the DONT_REORDER flag is set, the original * skb-priority is preserved to assure frames injected with this * flag are not reordered relative to each other. */ ieee80211_select_queue_80211(sdata, skb, hdr); skb_set_queue_mapping(skb, ieee80211_ac_from_tid(skb->priority)); /* * Process the radiotap header. This will now take into account the * selected chandef above to accurately set injection rates and * retransmissions. */ if (!ieee80211_parse_tx_radiotap(skb, dev)) goto fail_rcu; /* remove the injection radiotap header */ skb_pull(skb, len_rthdr); ieee80211_xmit(sdata, NULL, skb); rcu_read_unlock(); return NETDEV_TX_OK; fail_rcu: rcu_read_unlock(); fail: dev_kfree_skb(skb); return NETDEV_TX_OK; /* meaning, we dealt with the skb */ } static inline bool ieee80211_is_tdls_setup(struct sk_buff *skb) { u16 ethertype = (skb->data[12] << 8) | skb->data[13]; return ethertype == ETH_P_TDLS && skb->len > 14 && skb->data[14] == WLAN_TDLS_SNAP_RFTYPE; } int ieee80211_lookup_ra_sta(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info **sta_out) { struct sta_info *sta; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: sta = rcu_dereference(sdata->u.vlan.sta); if (sta) { *sta_out = sta; return 0; } else if (sdata->wdev.use_4addr) { return -ENOLINK; } fallthrough; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_ADHOC: if (is_multicast_ether_addr(skb->data)) { *sta_out = ERR_PTR(-ENOENT); return 0; } sta = sta_info_get_bss(sdata, skb->data); break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: /* determined much later */ *sta_out = NULL; return 0; #endif case NL80211_IFTYPE_STATION: if (sdata->wdev.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) { sta = sta_info_get(sdata, skb->data); if (sta && test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { if (test_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH)) { *sta_out = sta; return 0; } /* * TDLS link during setup - throw out frames to * peer. Allow TDLS-setup frames to unauthorized * peers for the special case of a link teardown * after a TDLS sta is removed due to being * unreachable. */ if (!ieee80211_is_tdls_setup(skb)) return -EINVAL; } } sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (!sta) return -ENOLINK; break; default: return -EINVAL; } *sta_out = sta ?: ERR_PTR(-ENOENT); return 0; } static u16 ieee80211_store_ack_skb(struct ieee80211_local *local, struct sk_buff *skb, u32 *info_flags, u64 *cookie) { struct sk_buff *ack_skb; u16 info_id = 0; if (skb->sk) ack_skb = skb_clone_sk(skb); else ack_skb = skb_clone(skb, GFP_ATOMIC); if (ack_skb) { unsigned long flags; int id; spin_lock_irqsave(&local->ack_status_lock, flags); id = idr_alloc(&local->ack_status_frames, ack_skb, 1, 0x2000, GFP_ATOMIC); spin_unlock_irqrestore(&local->ack_status_lock, flags); if (id >= 0) { info_id = id; *info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; if (cookie) { *cookie = ieee80211_mgmt_tx_cookie(local); IEEE80211_SKB_CB(ack_skb)->ack.cookie = *cookie; } } else { kfree_skb(ack_skb); } } return info_id; } /** * ieee80211_build_hdr - build 802.11 header in the given frame * @sdata: virtual interface to build the header for * @skb: the skb to build the header in * @info_flags: skb flags to set * @sta: the station pointer * @ctrl_flags: info control flags to set * @cookie: cookie pointer to fill (if not %NULL) * * This function takes the skb with 802.3 header and reformats the header to * the appropriate IEEE 802.11 header based on which interface the packet is * being transmitted on. * * Note that this function also takes care of the TX status request and * potential unsharing of the SKB - this needs to be interleaved with the * header building. * * The function requires the read-side RCU lock held * * Returns: the (possibly reallocated) skb or an ERR_PTR() code */ static struct sk_buff *ieee80211_build_hdr(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags, struct sta_info *sta, u32 ctrl_flags, u64 *cookie) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info; int head_need; u16 ethertype, hdrlen, meshhdrlen = 0; __le16 fc; struct ieee80211_hdr hdr; struct ieee80211s_hdr mesh_hdr __maybe_unused; struct mesh_path __maybe_unused *mppath = NULL, *mpath = NULL; const u8 *encaps_data; int encaps_len, skip_header_bytes; bool wme_sta = false, authorized = false; bool tdls_peer; bool multicast; u16 info_id = 0; struct ieee80211_chanctx_conf *chanctx_conf = NULL; enum nl80211_band band; int ret; u8 link_id = u32_get_bits(ctrl_flags, IEEE80211_TX_CTRL_MLO_LINK); if (IS_ERR(sta)) sta = NULL; #ifdef CONFIG_MAC80211_DEBUGFS if (local->force_tx_status) info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; #endif /* convert Ethernet header to proper 802.11 header (based on * operation mode) */ ethertype = (skb->data[12] << 8) | skb->data[13]; fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); if (!ieee80211_vif_is_mld(&sdata->vif)) chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: if (sdata->wdev.use_4addr) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); wme_sta = sta->sta.wme; } if (!ieee80211_vif_is_mld(&sdata->vif)) { struct ieee80211_sub_if_data *ap_sdata; /* override chanctx_conf from AP (we don't have one) */ ap_sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); chanctx_conf = rcu_dereference(ap_sdata->vif.bss_conf.chanctx_conf); } if (sdata->wdev.use_4addr) break; fallthrough; case NL80211_IFTYPE_AP: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ memcpy(hdr.addr1, skb->data, ETH_ALEN); if (ieee80211_vif_is_mld(&sdata->vif) && sta && !sta->sta.mlo) { struct ieee80211_link_data *link; link_id = sta->deflink.link_id; link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) { ret = -ENOLINK; goto free; } memcpy(hdr.addr2, link->conf->addr, ETH_ALEN); } else if (link_id == IEEE80211_LINK_UNSPECIFIED || (sta && sta->sta.mlo)) { memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); } else { struct ieee80211_bss_conf *conf; conf = rcu_dereference(sdata->vif.link_conf[link_id]); if (unlikely(!conf)) { ret = -ENOLINK; goto free; } memcpy(hdr.addr2, conf->addr, ETH_ALEN); } memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 24; break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: if (!is_multicast_ether_addr(skb->data)) { struct sta_info *next_hop; bool mpp_lookup = true; mpath = mesh_path_lookup(sdata, skb->data); if (mpath) { mpp_lookup = false; next_hop = rcu_dereference(mpath->next_hop); if (!next_hop || !(mpath->flags & (MESH_PATH_ACTIVE | MESH_PATH_RESOLVING))) mpp_lookup = true; } if (mpp_lookup) { mppath = mpp_path_lookup(sdata, skb->data); if (mppath) mppath->exp_time = jiffies; } if (mppath && mpath) mesh_path_del(sdata, mpath->dst); } /* * Use address extension if it is a packet from * another interface or if we know the destination * is being proxied by a portal (i.e. portal address * differs from proxied address) */ if (ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN) && !(mppath && !ether_addr_equal(mppath->mpp, skb->data))) { hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, skb->data, skb->data + ETH_ALEN); meshhdrlen = ieee80211_new_mesh_header(sdata, &mesh_hdr, NULL, NULL); } else { /* DS -> MBSS (802.11-2012 13.11.3.3). * For unicast with unknown forwarding information, * destination might be in the MBSS or if that fails * forwarded to another mesh gate. In either case * resolution will be handled in ieee80211_xmit(), so * leave the original DA. This also works for mcast */ const u8 *mesh_da = skb->data; if (mppath) mesh_da = mppath->mpp; else if (mpath) mesh_da = mpath->dst; hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, mesh_da, sdata->vif.addr); if (is_multicast_ether_addr(mesh_da)) /* DA TA mSA AE:SA */ meshhdrlen = ieee80211_new_mesh_header( sdata, &mesh_hdr, skb->data + ETH_ALEN, NULL); else /* RA TA mDA mSA AE:DA SA */ meshhdrlen = ieee80211_new_mesh_header( sdata, &mesh_hdr, skb->data, skb->data + ETH_ALEN); } /* For injected frames, fill RA right away as nexthop lookup * will be skipped. */ if ((ctrl_flags & IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP) && is_zero_ether_addr(hdr.addr1)) memcpy(hdr.addr1, skb->data, ETH_ALEN); break; #endif case NL80211_IFTYPE_STATION: /* we already did checks when looking up the RA STA */ tdls_peer = test_sta_flag(sta, WLAN_STA_TDLS_PEER); if (tdls_peer) { /* For TDLS only one link can be valid with peer STA */ int tdls_link_id = sta->sta.valid_links ? __ffs(sta->sta.valid_links) : 0; struct ieee80211_link_data *link; /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); link = rcu_dereference(sdata->link[tdls_link_id]); if (WARN_ON_ONCE(!link)) { ret = -EINVAL; goto free; } memcpy(hdr.addr3, link->u.mgd.bssid, ETH_ALEN); hdrlen = 24; } else if (sdata->u.mgd.use_4addr && cpu_to_be16(ethertype) != sdata->control_port_protocol) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr.addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; } else { fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ memcpy(hdr.addr1, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); hdrlen = 24; } break; case NL80211_IFTYPE_OCB: /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); eth_broadcast_addr(hdr.addr3); hdrlen = 24; break; case NL80211_IFTYPE_ADHOC: /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); hdrlen = 24; break; default: ret = -EINVAL; goto free; } if (!chanctx_conf) { if (!ieee80211_vif_is_mld(&sdata->vif)) { ret = -ENOTCONN; goto free; } /* MLD transmissions must not rely on the band */ band = 0; } else { band = chanctx_conf->def.chan->band; } multicast = is_multicast_ether_addr(hdr.addr1); /* sta is always NULL for mesh */ if (sta) { authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); wme_sta = sta->sta.wme; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { /* For mesh, the use of the QoS header is mandatory */ wme_sta = true; } /* receiver does QoS (which also means we do) use it */ if (wme_sta) { fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); hdrlen += 2; } /* * Drop unicast frames to unauthorised stations unless they are * EAPOL frames from the local station. */ if (unlikely(!ieee80211_vif_is_mesh(&sdata->vif) && (sdata->vif.type != NL80211_IFTYPE_OCB) && !multicast && !authorized && (cpu_to_be16(ethertype) != sdata->control_port_protocol || !ieee80211_is_our_addr(sdata, skb->data + ETH_ALEN, NULL)))) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG net_info_ratelimited("%s: dropped frame to %pM (unauthorized port)\n", sdata->name, hdr.addr1); #endif I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); ret = -EPERM; goto free; } if (unlikely(!multicast && ((skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS) || ctrl_flags & IEEE80211_TX_CTL_REQ_TX_STATUS))) info_id = ieee80211_store_ack_skb(local, skb, &info_flags, cookie); /* * If the skb is shared we need to obtain our own copy. */ skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) { ret = -ENOMEM; goto free; } hdr.frame_control = fc; hdr.duration_id = 0; hdr.seq_ctrl = 0; skip_header_bytes = ETH_HLEN; if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { encaps_data = bridge_tunnel_header; encaps_len = sizeof(bridge_tunnel_header); skip_header_bytes -= 2; } else if (ethertype >= ETH_P_802_3_MIN) { encaps_data = rfc1042_header; encaps_len = sizeof(rfc1042_header); skip_header_bytes -= 2; } else { encaps_data = NULL; encaps_len = 0; } skb_pull(skb, skip_header_bytes); head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); /* * So we need to modify the skb header and hence need a copy of * that. The head_need variable above doesn't, so far, include * the needed header space that we don't need right away. If we * can, then we don't reallocate right now but only after the * frame arrives at the master device (if it does...) * * If we cannot, however, then we will reallocate to include all * the ever needed space. Also, if we need to reallocate it anyway, * make it big enough for everything we may ever need. */ if (head_need > 0 || skb_cloned(skb)) { head_need += IEEE80211_ENCRYPT_HEADROOM; head_need += local->tx_headroom; head_need = max_t(int, 0, head_need); if (ieee80211_skb_resize(sdata, skb, head_need, ENCRYPT_DATA)) { ieee80211_free_txskb(&local->hw, skb); skb = NULL; return ERR_PTR(-ENOMEM); } } if (encaps_data) memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); #ifdef CONFIG_MAC80211_MESH if (meshhdrlen > 0) memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); #endif if (ieee80211_is_data_qos(fc)) { __le16 *qos_control; qos_control = skb_push(skb, 2); memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); /* * Maybe we could actually set some fields here, for now just * initialise to zero to indicate no special operation. */ *qos_control = 0; } else memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); skb_reset_mac_header(skb); info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->flags = info_flags; info->ack_frame_id = info_id; info->band = band; if (likely(!cookie)) { ctrl_flags |= u32_encode_bits(link_id, IEEE80211_TX_CTRL_MLO_LINK); } else { unsigned int pre_conf_link_id; /* * ctrl_flags already have been set by * ieee80211_tx_control_port(), here * we just sanity check that */ pre_conf_link_id = u32_get_bits(ctrl_flags, IEEE80211_TX_CTRL_MLO_LINK); if (pre_conf_link_id != link_id && link_id != IEEE80211_LINK_UNSPECIFIED) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG net_info_ratelimited("%s: dropped frame to %pM with bad link ID request (%d vs. %d)\n", sdata->name, hdr.addr1, pre_conf_link_id, link_id); #endif ret = -EINVAL; goto free; } } info->control.flags = ctrl_flags; return skb; free: kfree_skb(skb); return ERR_PTR(ret); } /* * fast-xmit overview * * The core idea of this fast-xmit is to remove per-packet checks by checking * them out of band. ieee80211_check_fast_xmit() implements the out-of-band * checks that are needed to get the sta->fast_tx pointer assigned, after which * much less work can be done per packet. For example, fragmentation must be * disabled or the fast_tx pointer will not be set. All the conditions are seen * in the code here. * * Once assigned, the fast_tx data structure also caches the per-packet 802.11 * header and other data to aid packet processing in ieee80211_xmit_fast(). * * The most difficult part of this is that when any of these assumptions * change, an external trigger (i.e. a call to ieee80211_clear_fast_xmit(), * ieee80211_check_fast_xmit() or friends) is required to reset the data, * since the per-packet code no longer checks the conditions. This is reflected * by the calls to these functions throughout the rest of the code, and must be * maintained if any of the TX path checks change. */ void ieee80211_check_fast_xmit(struct sta_info *sta) { struct ieee80211_fast_tx build = {}, *fast_tx = NULL, *old; struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_hdr *hdr = (void *)build.hdr; struct ieee80211_chanctx_conf *chanctx_conf; __le16 fc; if (!ieee80211_hw_check(&local->hw, SUPPORT_FAST_XMIT)) return; if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_fast_tx_flush_sta(sdata, sta); /* Locking here protects both the pointer itself, and against concurrent * invocations winning data access races to, e.g., the key pointer that * is used. * Without it, the invocation of this function right after the key * pointer changes wouldn't be sufficient, as another CPU could access * the pointer, then stall, and then do the cache update after the CPU * that invalidated the key. * With the locking, such scenarios cannot happen as the check for the * key and the fast-tx assignment are done atomically, so the CPU that * modifies the key will either wait or other one will see the key * cleared/changed already. */ spin_lock_bh(&sta->lock); if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && sdata->vif.type == NL80211_IFTYPE_STATION) goto out; if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) goto out; if (test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER) || test_sta_flag(sta, WLAN_STA_CLEAR_PS_FILT)) goto out; if (sdata->noack_map) goto out; /* fast-xmit doesn't handle fragmentation at all */ if (local->hw.wiphy->frag_threshold != (u32)-1 && !ieee80211_hw_check(&local->hw, SUPPORTS_TX_FRAG)) goto out; if (!ieee80211_vif_is_mld(&sdata->vif)) { rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); goto out; } build.band = chanctx_conf->def.chan->band; rcu_read_unlock(); } else { /* MLD transmissions must not rely on the band */ build.band = 0; } fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); switch (sdata->vif.type) { case NL80211_IFTYPE_ADHOC: /* DA SA BSSID */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); memcpy(hdr->addr3, sdata->u.ibss.bssid, ETH_ALEN); build.hdr_len = 24; break; case NL80211_IFTYPE_STATION: if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { /* For TDLS only one link can be valid with peer STA */ int tdls_link_id = sta->sta.valid_links ? __ffs(sta->sta.valid_links) : 0; struct ieee80211_link_data *link; /* DA SA BSSID */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); link = rcu_dereference(sdata->link[tdls_link_id]); if (WARN_ON_ONCE(!link)) break; memcpy(hdr->addr3, link->u.mgd.bssid, ETH_ALEN); build.hdr_len = 24; break; } if (sdata->u.mgd.use_4addr) { /* non-regular ethertype cannot use the fastpath */ fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr->addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr4); build.hdr_len = 30; break; } fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ memcpy(hdr->addr1, sdata->vif.cfg.ap_addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); build.hdr_len = 24; break; case NL80211_IFTYPE_AP_VLAN: if (sdata->wdev.use_4addr) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr->addr1, sta->sta.addr, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr4); build.hdr_len = 30; break; } fallthrough; case NL80211_IFTYPE_AP: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); if (sta->sta.mlo || !ieee80211_vif_is_mld(&sdata->vif)) { memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); } else { unsigned int link_id = sta->deflink.link_id; struct ieee80211_link_data *link; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) { rcu_read_unlock(); goto out; } memcpy(hdr->addr2, link->conf->addr, ETH_ALEN); rcu_read_unlock(); } build.sa_offs = offsetof(struct ieee80211_hdr, addr3); build.hdr_len = 24; break; default: /* not handled on fast-xmit */ goto out; } if (sta->sta.wme) { build.hdr_len += 2; fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); } /* We store the key here so there's no point in using rcu_dereference() * but that's fine because the code that changes the pointers will call * this function after doing so. For a single CPU that would be enough, * for multiple see the comment above. */ build.key = rcu_access_pointer(sta->ptk[sta->ptk_idx]); if (!build.key) build.key = rcu_access_pointer(sdata->default_unicast_key); if (build.key) { bool gen_iv, iv_spc, mmic; gen_iv = build.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV; iv_spc = build.key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE; mmic = build.key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | IEEE80211_KEY_FLAG_PUT_MIC_SPACE); /* don't handle software crypto */ if (!(build.key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) goto out; /* Key is being removed */ if (build.key->flags & KEY_FLAG_TAINTED) goto out; switch (build.key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: if (gen_iv) build.pn_offs = build.hdr_len; if (gen_iv || iv_spc) build.hdr_len += IEEE80211_CCMP_HDR_LEN; break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (gen_iv) build.pn_offs = build.hdr_len; if (gen_iv || iv_spc) build.hdr_len += IEEE80211_GCMP_HDR_LEN; break; case WLAN_CIPHER_SUITE_TKIP: /* cannot handle MMIC or IV generation in xmit-fast */ if (mmic || gen_iv) goto out; if (iv_spc) build.hdr_len += IEEE80211_TKIP_IV_LEN; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: /* cannot handle IV generation in fast-xmit */ if (gen_iv) goto out; if (iv_spc) build.hdr_len += IEEE80211_WEP_IV_LEN; break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: WARN(1, "management cipher suite 0x%x enabled for data\n", build.key->conf.cipher); goto out; default: /* we don't know how to generate IVs for this at all */ if (WARN_ON(gen_iv)) goto out; } fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); } hdr->frame_control = fc; memcpy(build.hdr + build.hdr_len, rfc1042_header, sizeof(rfc1042_header)); build.hdr_len += sizeof(rfc1042_header); fast_tx = kmemdup(&build, sizeof(build), GFP_ATOMIC); /* if the kmemdup fails, continue w/o fast_tx */ out: /* we might have raced against another call to this function */ old = rcu_dereference_protected(sta->fast_tx, lockdep_is_held(&sta->lock)); rcu_assign_pointer(sta->fast_tx, fast_tx); if (old) kfree_rcu(old, rcu_head); spin_unlock_bh(&sta->lock); } void ieee80211_check_fast_xmit_all(struct ieee80211_local *local) { struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) ieee80211_check_fast_xmit(sta); rcu_read_unlock(); } void ieee80211_check_fast_xmit_iface(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata && (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) continue; ieee80211_check_fast_xmit(sta); } rcu_read_unlock(); } void ieee80211_clear_fast_xmit(struct sta_info *sta) { struct ieee80211_fast_tx *fast_tx; spin_lock_bh(&sta->lock); fast_tx = rcu_dereference_protected(sta->fast_tx, lockdep_is_held(&sta->lock)); RCU_INIT_POINTER(sta->fast_tx, NULL); spin_unlock_bh(&sta->lock); if (fast_tx) kfree_rcu(fast_tx, rcu_head); } static bool ieee80211_amsdu_realloc_pad(struct ieee80211_local *local, struct sk_buff *skb, int headroom) { if (skb_headroom(skb) < headroom) { I802_DEBUG_INC(local->tx_expand_skb_head); if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) { wiphy_debug(local->hw.wiphy, "failed to reallocate TX buffer\n"); return false; } } return true; } static bool ieee80211_amsdu_prepare_head(struct ieee80211_sub_if_data *sdata, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; struct ethhdr *amsdu_hdr; int hdr_len = fast_tx->hdr_len - sizeof(rfc1042_header); int subframe_len = skb->len - hdr_len; void *data; u8 *qc, *h_80211_src, *h_80211_dst; const u8 *bssid; if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) return false; if (info->control.flags & IEEE80211_TX_CTRL_AMSDU) return true; if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(*amsdu_hdr) + local->hw.extra_tx_headroom)) return false; data = skb_push(skb, sizeof(*amsdu_hdr)); memmove(data, data + sizeof(*amsdu_hdr), hdr_len); hdr = data; amsdu_hdr = data + hdr_len; /* h_80211_src/dst is addr* field within hdr */ h_80211_src = data + fast_tx->sa_offs; h_80211_dst = data + fast_tx->da_offs; amsdu_hdr->h_proto = cpu_to_be16(subframe_len); ether_addr_copy(amsdu_hdr->h_source, h_80211_src); ether_addr_copy(amsdu_hdr->h_dest, h_80211_dst); /* according to IEEE 802.11-2012 8.3.2 table 8-19, the outer SA/DA * fields needs to be changed to BSSID for A-MSDU frames depending * on FromDS/ToDS values. */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: bssid = sdata->vif.cfg.ap_addr; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: bssid = sdata->vif.addr; break; default: bssid = NULL; } if (bssid && ieee80211_has_fromds(hdr->frame_control)) ether_addr_copy(h_80211_src, bssid); if (bssid && ieee80211_has_tods(hdr->frame_control)) ether_addr_copy(h_80211_dst, bssid); qc = ieee80211_get_qos_ctl(hdr); *qc |= IEEE80211_QOS_CTL_A_MSDU_PRESENT; info->control.flags |= IEEE80211_TX_CTRL_AMSDU; return true; } static bool ieee80211_amsdu_aggregate(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb, const u8 *da, const u8 *sa) { struct ieee80211_local *local = sdata->local; struct fq *fq = &local->fq; struct fq_tin *tin; struct fq_flow *flow; u8 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; struct ieee80211_txq *txq = sta->sta.txq[tid]; struct txq_info *txqi; struct sk_buff **frag_tail, *head; int subframe_len = skb->len - ETH_ALEN; u8 max_subframes = sta->sta.max_amsdu_subframes; int max_frags = local->hw.max_tx_fragments; int max_amsdu_len = sta->sta.cur->max_amsdu_len; int orig_truesize; u32 flow_idx; __be16 len; void *data; bool ret = false; unsigned int orig_len; int n = 2, nfrags, pad = 0; u16 hdrlen; if (!ieee80211_hw_check(&local->hw, TX_AMSDU)) return false; if (sdata->vif.offload_flags & IEEE80211_OFFLOAD_ENCAP_ENABLED) return false; if (ieee80211_vif_is_mesh(&sdata->vif)) return false; if (skb_is_gso(skb)) return false; if (!txq) return false; txqi = to_txq_info(txq); if (test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags)) return false; if (sta->sta.cur->max_rc_amsdu_len) max_amsdu_len = min_t(int, max_amsdu_len, sta->sta.cur->max_rc_amsdu_len); if (sta->sta.cur->max_tid_amsdu_len[tid]) max_amsdu_len = min_t(int, max_amsdu_len, sta->sta.cur->max_tid_amsdu_len[tid]); flow_idx = fq_flow_idx(fq, skb); spin_lock_bh(&fq->lock); /* TODO: Ideally aggregation should be done on dequeue to remain * responsive to environment changes. */ tin = &txqi->tin; flow = fq_flow_classify(fq, tin, flow_idx, skb); head = skb_peek_tail(&flow->queue); if (!head || skb_is_gso(head)) goto out; orig_truesize = head->truesize; orig_len = head->len; if (skb->len + head->len > max_amsdu_len) goto out; nfrags = 1 + skb_shinfo(skb)->nr_frags; nfrags += 1 + skb_shinfo(head)->nr_frags; frag_tail = &skb_shinfo(head)->frag_list; while (*frag_tail) { nfrags += 1 + skb_shinfo(*frag_tail)->nr_frags; frag_tail = &(*frag_tail)->next; n++; } if (max_subframes && n > max_subframes) goto out; if (max_frags && nfrags > max_frags) goto out; if (!drv_can_aggregate_in_amsdu(local, head, skb)) goto out; if (!ieee80211_amsdu_prepare_head(sdata, fast_tx, head)) goto out; /* If n == 2, the "while (*frag_tail)" loop above didn't execute * and frag_tail should be &skb_shinfo(head)->frag_list. * However, ieee80211_amsdu_prepare_head() can reallocate it. * Reload frag_tail to have it pointing to the correct place. */ if (n == 2) frag_tail = &skb_shinfo(head)->frag_list; /* * Pad out the previous subframe to a multiple of 4 by adding the * padding to the next one, that's being added. Note that head->len * is the length of the full A-MSDU, but that works since each time * we add a new subframe we pad out the previous one to a multiple * of 4 and thus it no longer matters in the next round. */ hdrlen = fast_tx->hdr_len - sizeof(rfc1042_header); if ((head->len - hdrlen) & 3) pad = 4 - ((head->len - hdrlen) & 3); if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(rfc1042_header) + 2 + pad)) goto out_recalc; ret = true; data = skb_push(skb, ETH_ALEN + 2); ether_addr_copy(data, da); ether_addr_copy(data + ETH_ALEN, sa); data += 2 * ETH_ALEN; len = cpu_to_be16(subframe_len); memcpy(data, &len, 2); memcpy(data + 2, rfc1042_header, sizeof(rfc1042_header)); memset(skb_push(skb, pad), 0, pad); head->len += skb->len; head->data_len += skb->len; *frag_tail = skb; out_recalc: fq->memory_usage += head->truesize - orig_truesize; if (head->len != orig_len) { flow->backlog += head->len - orig_len; tin->backlog_bytes += head->len - orig_len; } out: spin_unlock_bh(&fq->lock); return ret; } /* * Can be called while the sta lock is held. Anything that can cause packets to * be generated will cause deadlock! */ static ieee80211_tx_result ieee80211_xmit_fast_finish(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, u8 pn_offs, struct ieee80211_key *key, struct ieee80211_tx_data *tx) { struct sk_buff *skb = tx->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; u8 tid = IEEE80211_NUM_TIDS; if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL) && ieee80211_tx_h_rate_ctrl(tx) != TX_CONTINUE) return TX_DROP; if (key) info->control.hw_key = &key->conf; dev_sw_netstats_tx_add(skb->dev, 1, skb->len); if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; hdr->seq_ctrl = ieee80211_tx_next_seq(sta, tid); } else { info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; hdr->seq_ctrl = cpu_to_le16(sdata->sequence_number); sdata->sequence_number += 0x10; } if (skb_shinfo(skb)->gso_size) sta->deflink.tx_stats.msdu[tid] += DIV_ROUND_UP(skb->len, skb_shinfo(skb)->gso_size); else sta->deflink.tx_stats.msdu[tid]++; info->hw_queue = sdata->vif.hw_queue[skb_get_queue_mapping(skb)]; /* statistics normally done by ieee80211_tx_h_stats (but that * has to consider fragmentation, so is more complex) */ sta->deflink.tx_stats.bytes[skb_get_queue_mapping(skb)] += skb->len; sta->deflink.tx_stats.packets[skb_get_queue_mapping(skb)]++; if (pn_offs) { u64 pn; u8 *crypto_hdr = skb->data + pn_offs; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: pn = atomic64_inc_return(&key->conf.tx_pn); crypto_hdr[0] = pn; crypto_hdr[1] = pn >> 8; crypto_hdr[3] = 0x20 | (key->conf.keyidx << 6); crypto_hdr[4] = pn >> 16; crypto_hdr[5] = pn >> 24; crypto_hdr[6] = pn >> 32; crypto_hdr[7] = pn >> 40; break; } } return TX_CONTINUE; } static netdev_features_t ieee80211_sdata_netdev_features(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN) return sdata->vif.netdev_features; if (!sdata->bss) return 0; sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); return sdata->vif.netdev_features; } static struct sk_buff * ieee80211_tx_skb_fixup(struct sk_buff *skb, netdev_features_t features) { if (skb_is_gso(skb)) { struct sk_buff *segs; segs = skb_gso_segment(skb, features); if (!segs) return skb; if (IS_ERR(segs)) goto free; consume_skb(skb); return segs; } if (skb_needs_linearize(skb, features) && __skb_linearize(skb)) goto free; if (skb->ip_summed == CHECKSUM_PARTIAL) { int ofs = skb_checksum_start_offset(skb); if (skb->encapsulation) skb_set_inner_transport_header(skb, ofs); else skb_set_transport_header(skb, ofs); if (skb_csum_hwoffload_help(skb, features)) goto free; } skb_mark_not_on_list(skb); return skb; free: kfree_skb(skb); return NULL; } void __ieee80211_xmit_fast(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb, bool ampdu, const u8 *da, const u8 *sa) { struct ieee80211_local *local = sdata->local; struct ieee80211_hdr *hdr = (void *)fast_tx->hdr; struct ieee80211_tx_info *info; struct ieee80211_tx_data tx; ieee80211_tx_result r; int hw_headroom = sdata->local->hw.extra_tx_headroom; int extra_head = fast_tx->hdr_len - (ETH_HLEN - 2); skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) return; if ((hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) && ieee80211_amsdu_aggregate(sdata, sta, fast_tx, skb, da, sa)) return; /* will not be crypto-handled beyond what we do here, so use false * as the may-encrypt argument for the resize to not account for * more room than we already have in 'extra_head' */ if (unlikely(ieee80211_skb_resize(sdata, skb, max_t(int, extra_head + hw_headroom - skb_headroom(skb), 0), ENCRYPT_NO))) goto free; hdr = skb_push(skb, extra_head); memcpy(skb->data, fast_tx->hdr, fast_tx->hdr_len); memcpy(skb->data + fast_tx->da_offs, da, ETH_ALEN); memcpy(skb->data + fast_tx->sa_offs, sa, ETH_ALEN); info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->band = fast_tx->band; info->control.vif = &sdata->vif; info->flags = IEEE80211_TX_CTL_FIRST_FRAGMENT | IEEE80211_TX_CTL_DONTFRAG; info->control.flags = IEEE80211_TX_CTRL_FAST_XMIT | u32_encode_bits(IEEE80211_LINK_UNSPECIFIED, IEEE80211_TX_CTRL_MLO_LINK); #ifdef CONFIG_MAC80211_DEBUGFS if (local->force_tx_status) info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; #endif if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { u8 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; *ieee80211_get_qos_ctl(hdr) = tid; } __skb_queue_head_init(&tx.skbs); tx.flags = IEEE80211_TX_UNICAST; tx.local = local; tx.sdata = sdata; tx.sta = sta; tx.key = fast_tx->key; if (ieee80211_queue_skb(local, sdata, sta, skb)) return; tx.skb = skb; r = ieee80211_xmit_fast_finish(sdata, sta, fast_tx->pn_offs, fast_tx->key, &tx); tx.skb = NULL; if (r == TX_DROP) goto free; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); __skb_queue_tail(&tx.skbs, skb); ieee80211_tx_frags(local, &sdata->vif, sta, &tx.skbs, false); return; free: kfree_skb(skb); } static bool ieee80211_xmit_fast(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb) { u16 ethertype = (skb->data[12] << 8) | skb->data[13]; struct ieee80211_hdr *hdr = (void *)fast_tx->hdr; struct tid_ampdu_tx *tid_tx = NULL; struct sk_buff *next; struct ethhdr eth; u8 tid = IEEE80211_NUM_TIDS; /* control port protocol needs a lot of special handling */ if (cpu_to_be16(ethertype) == sdata->control_port_protocol) return false; /* only RFC 1042 SNAP */ if (ethertype < ETH_P_802_3_MIN) return false; /* don't handle TX status request here either */ if (skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS) return false; if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) return false; if (tid_tx->timeout) tid_tx->last_tx = jiffies; } } memcpy(&eth, skb->data, ETH_HLEN - 2); /* after this point (skb is modified) we cannot return false */ skb = ieee80211_tx_skb_fixup(skb, ieee80211_sdata_netdev_features(sdata)); if (!skb) return true; skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); __ieee80211_xmit_fast(sdata, sta, fast_tx, skb, tid_tx, eth.h_dest, eth.h_source); } return true; } struct sk_buff *ieee80211_tx_dequeue(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ieee80211_local *local = hw_to_local(hw); struct txq_info *txqi = container_of(txq, struct txq_info, txq); struct ieee80211_hdr *hdr; struct sk_buff *skb = NULL; struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; struct ieee80211_tx_info *info; struct ieee80211_tx_data tx; ieee80211_tx_result r; struct ieee80211_vif *vif = txq->vif; int q = vif->hw_queue[txq->ac]; unsigned long flags; bool q_stopped; WARN_ON_ONCE(softirq_count() == 0); if (!ieee80211_txq_airtime_check(hw, txq)) return NULL; begin: spin_lock_irqsave(&local->queue_stop_reason_lock, flags); q_stopped = local->queue_stop_reasons[q]; spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); if (unlikely(q_stopped)) { /* mark for waking later */ set_bit(IEEE80211_TXQ_DIRTY, &txqi->flags); return NULL; } spin_lock_bh(&fq->lock); /* Make sure fragments stay together. */ skb = __skb_dequeue(&txqi->frags); if (unlikely(skb)) { if (!(IEEE80211_SKB_CB(skb)->control.flags & IEEE80211_TX_INTCFL_NEED_TXPROCESSING)) goto out; IEEE80211_SKB_CB(skb)->control.flags &= ~IEEE80211_TX_INTCFL_NEED_TXPROCESSING; } else { if (unlikely(test_bit(IEEE80211_TXQ_STOP, &txqi->flags))) goto out; skb = fq_tin_dequeue(fq, tin, fq_tin_dequeue_func); } if (!skb) goto out; spin_unlock_bh(&fq->lock); hdr = (struct ieee80211_hdr *)skb->data; info = IEEE80211_SKB_CB(skb); memset(&tx, 0, sizeof(tx)); __skb_queue_head_init(&tx.skbs); tx.local = local; tx.skb = skb; tx.sdata = vif_to_sdata(info->control.vif); if (txq->sta) { tx.sta = container_of(txq->sta, struct sta_info, sta); /* * Drop unicast frames to unauthorised stations unless they are * injected frames or EAPOL frames from the local station. */ if (unlikely(!(info->flags & IEEE80211_TX_CTL_INJECTED) && ieee80211_is_data(hdr->frame_control) && !ieee80211_vif_is_mesh(&tx.sdata->vif) && tx.sdata->vif.type != NL80211_IFTYPE_OCB && !is_multicast_ether_addr(hdr->addr1) && !test_sta_flag(tx.sta, WLAN_STA_AUTHORIZED) && (!(info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO) || !ieee80211_is_our_addr(tx.sdata, hdr->addr2, NULL)))) { I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); ieee80211_free_txskb(&local->hw, skb); goto begin; } } /* * The key can be removed while the packet was queued, so need to call * this here to get the current key. */ r = ieee80211_tx_h_select_key(&tx); if (r != TX_CONTINUE) { ieee80211_free_txskb(&local->hw, skb); goto begin; } if (test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags)) info->flags |= (IEEE80211_TX_CTL_AMPDU | IEEE80211_TX_CTL_DONTFRAG); if (info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) { if (!ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) { r = ieee80211_tx_h_rate_ctrl(&tx); if (r != TX_CONTINUE) { ieee80211_free_txskb(&local->hw, skb); goto begin; } } goto encap_out; } if (info->control.flags & IEEE80211_TX_CTRL_FAST_XMIT) { struct sta_info *sta = container_of(txq->sta, struct sta_info, sta); u8 pn_offs = 0; if (tx.key && (tx.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)) pn_offs = ieee80211_hdrlen(hdr->frame_control); r = ieee80211_xmit_fast_finish(sta->sdata, sta, pn_offs, tx.key, &tx); if (r != TX_CONTINUE) { ieee80211_free_txskb(&local->hw, skb); goto begin; } } else { if (invoke_tx_handlers_late(&tx)) goto begin; skb = __skb_dequeue(&tx.skbs); if (!skb_queue_empty(&tx.skbs)) { spin_lock_bh(&fq->lock); skb_queue_splice_tail(&tx.skbs, &txqi->frags); spin_unlock_bh(&fq->lock); } } if (skb_has_frag_list(skb) && !ieee80211_hw_check(&local->hw, TX_FRAG_LIST)) { if (skb_linearize(skb)) { ieee80211_free_txskb(&local->hw, skb); goto begin; } } switch (tx.sdata->vif.type) { case NL80211_IFTYPE_MONITOR: if (tx.sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) { vif = &tx.sdata->vif; break; } tx.sdata = rcu_dereference(local->monitor_sdata); if (tx.sdata) { vif = &tx.sdata->vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; } else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { ieee80211_free_txskb(&local->hw, skb); goto begin; } else { vif = NULL; } break; case NL80211_IFTYPE_AP_VLAN: tx.sdata = container_of(tx.sdata->bss, struct ieee80211_sub_if_data, u.ap); fallthrough; default: vif = &tx.sdata->vif; break; } encap_out: IEEE80211_SKB_CB(skb)->control.vif = vif; if (tx.sta && wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) { bool ampdu = txq->ac != IEEE80211_AC_VO; u32 airtime; airtime = ieee80211_calc_expected_tx_airtime(hw, vif, txq->sta, skb->len, ampdu); if (airtime) { airtime = ieee80211_info_set_tx_time_est(info, airtime); ieee80211_sta_update_pending_airtime(local, tx.sta, txq->ac, airtime, false); } } return skb; out: spin_unlock_bh(&fq->lock); return skb; } EXPORT_SYMBOL(ieee80211_tx_dequeue); static inline s32 ieee80211_sta_deficit(struct sta_info *sta, u8 ac) { struct airtime_info *air_info = &sta->airtime[ac]; return air_info->deficit - atomic_read(&air_info->aql_tx_pending); } static void ieee80211_txq_set_active(struct txq_info *txqi) { struct sta_info *sta; if (!txqi->txq.sta) return; sta = container_of(txqi->txq.sta, struct sta_info, sta); sta->airtime[txqi->txq.ac].last_active = (u32)jiffies; } static bool ieee80211_txq_keep_active(struct txq_info *txqi) { struct sta_info *sta; u32 diff; if (!txqi->txq.sta) return false; sta = container_of(txqi->txq.sta, struct sta_info, sta); if (ieee80211_sta_deficit(sta, txqi->txq.ac) >= 0) return false; diff = (u32)jiffies - sta->airtime[txqi->txq.ac].last_active; return diff <= AIRTIME_ACTIVE_DURATION; } struct ieee80211_txq *ieee80211_next_txq(struct ieee80211_hw *hw, u8 ac) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_txq *ret = NULL; struct txq_info *txqi = NULL, *head = NULL; bool found_eligible_txq = false; spin_lock_bh(&local->active_txq_lock[ac]); if (!local->schedule_round[ac]) goto out; begin: txqi = list_first_entry_or_null(&local->active_txqs[ac], struct txq_info, schedule_order); if (!txqi) goto out; if (txqi == head) { if (!found_eligible_txq) goto out; else found_eligible_txq = false; } if (!head) head = txqi; if (txqi->txq.sta) { struct sta_info *sta = container_of(txqi->txq.sta, struct sta_info, sta); bool aql_check = ieee80211_txq_airtime_check(hw, &txqi->txq); s32 deficit = ieee80211_sta_deficit(sta, txqi->txq.ac); if (aql_check) found_eligible_txq = true; if (deficit < 0) sta->airtime[txqi->txq.ac].deficit += sta->airtime_weight; if (deficit < 0 || !aql_check) { list_move_tail(&txqi->schedule_order, &local->active_txqs[txqi->txq.ac]); goto begin; } } if (txqi->schedule_round == local->schedule_round[ac]) goto out; list_del_init(&txqi->schedule_order); txqi->schedule_round = local->schedule_round[ac]; ret = &txqi->txq; out: spin_unlock_bh(&local->active_txq_lock[ac]); return ret; } EXPORT_SYMBOL(ieee80211_next_txq); void __ieee80211_schedule_txq(struct ieee80211_hw *hw, struct ieee80211_txq *txq, bool force) { struct ieee80211_local *local = hw_to_local(hw); struct txq_info *txqi = to_txq_info(txq); bool has_queue; spin_lock_bh(&local->active_txq_lock[txq->ac]); has_queue = force || txq_has_queue(txq); if (list_empty(&txqi->schedule_order) && (has_queue || ieee80211_txq_keep_active(txqi))) { /* If airtime accounting is active, always enqueue STAs at the * head of the list to ensure that they only get moved to the * back by the airtime DRR scheduler once they have a negative * deficit. A station that already has a negative deficit will * get immediately moved to the back of the list on the next * call to ieee80211_next_txq(). */ if (txqi->txq.sta && local->airtime_flags && has_queue && wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AIRTIME_FAIRNESS)) list_add(&txqi->schedule_order, &local->active_txqs[txq->ac]); else list_add_tail(&txqi->schedule_order, &local->active_txqs[txq->ac]); if (has_queue) ieee80211_txq_set_active(txqi); } spin_unlock_bh(&local->active_txq_lock[txq->ac]); } EXPORT_SYMBOL(__ieee80211_schedule_txq); DEFINE_STATIC_KEY_FALSE(aql_disable); bool ieee80211_txq_airtime_check(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct sta_info *sta; struct ieee80211_local *local = hw_to_local(hw); if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) return true; if (static_branch_unlikely(&aql_disable)) return true; if (!txq->sta) return true; if (unlikely(txq->tid == IEEE80211_NUM_TIDS)) return true; sta = container_of(txq->sta, struct sta_info, sta); if (atomic_read(&sta->airtime[txq->ac].aql_tx_pending) < sta->airtime[txq->ac].aql_limit_low) return true; if (atomic_read(&local->aql_total_pending_airtime) < local->aql_threshold && atomic_read(&sta->airtime[txq->ac].aql_tx_pending) < sta->airtime[txq->ac].aql_limit_high) return true; return false; } EXPORT_SYMBOL(ieee80211_txq_airtime_check); static bool ieee80211_txq_schedule_airtime_check(struct ieee80211_local *local, u8 ac) { unsigned int num_txq = 0; struct txq_info *txq; u32 aql_limit; if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) return true; list_for_each_entry(txq, &local->active_txqs[ac], schedule_order) num_txq++; aql_limit = (num_txq - 1) * local->aql_txq_limit_low[ac] / 2 + local->aql_txq_limit_high[ac]; return atomic_read(&local->aql_ac_pending_airtime[ac]) < aql_limit; } bool ieee80211_txq_may_transmit(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ieee80211_local *local = hw_to_local(hw); struct txq_info *iter, *tmp, *txqi = to_txq_info(txq); struct sta_info *sta; u8 ac = txq->ac; spin_lock_bh(&local->active_txq_lock[ac]); if (!txqi->txq.sta) goto out; if (list_empty(&txqi->schedule_order)) goto out; if (!ieee80211_txq_schedule_airtime_check(local, ac)) goto out; list_for_each_entry_safe(iter, tmp, &local->active_txqs[ac], schedule_order) { if (iter == txqi) break; if (!iter->txq.sta) { list_move_tail(&iter->schedule_order, &local->active_txqs[ac]); continue; } sta = container_of(iter->txq.sta, struct sta_info, sta); if (ieee80211_sta_deficit(sta, ac) < 0) sta->airtime[ac].deficit += sta->airtime_weight; list_move_tail(&iter->schedule_order, &local->active_txqs[ac]); } sta = container_of(txqi->txq.sta, struct sta_info, sta); if (sta->airtime[ac].deficit >= 0) goto out; sta->airtime[ac].deficit += sta->airtime_weight; list_move_tail(&txqi->schedule_order, &local->active_txqs[ac]); spin_unlock_bh(&local->active_txq_lock[ac]); return false; out: if (!list_empty(&txqi->schedule_order)) list_del_init(&txqi->schedule_order); spin_unlock_bh(&local->active_txq_lock[ac]); return true; } EXPORT_SYMBOL(ieee80211_txq_may_transmit); void ieee80211_txq_schedule_start(struct ieee80211_hw *hw, u8 ac) { struct ieee80211_local *local = hw_to_local(hw); spin_lock_bh(&local->active_txq_lock[ac]); if (ieee80211_txq_schedule_airtime_check(local, ac)) { local->schedule_round[ac]++; if (!local->schedule_round[ac]) local->schedule_round[ac]++; } else { local->schedule_round[ac] = 0; } spin_unlock_bh(&local->active_txq_lock[ac]); } EXPORT_SYMBOL(ieee80211_txq_schedule_start); void __ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev, u32 info_flags, u32 ctrl_flags, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct sk_buff *next; int len = skb->len; if (unlikely(!ieee80211_sdata_running(sdata) || skb->len < ETH_HLEN)) { kfree_skb(skb); return; } sk_pacing_shift_update(skb->sk, sdata->local->hw.tx_sk_pacing_shift); rcu_read_lock(); if (ieee80211_vif_is_mesh(&sdata->vif) && ieee80211_hw_check(&local->hw, SUPPORT_FAST_XMIT) && ieee80211_mesh_xmit_fast(sdata, skb, ctrl_flags)) goto out; if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) goto out_free; if (IS_ERR(sta)) sta = NULL; skb_set_queue_mapping(skb, ieee80211_select_queue(sdata, sta, skb)); ieee80211_aggr_check(sdata, sta, skb); if (sta) { struct ieee80211_fast_tx *fast_tx; fast_tx = rcu_dereference(sta->fast_tx); if (fast_tx && ieee80211_xmit_fast(sdata, sta, fast_tx, skb)) goto out; } /* the frame could be fragmented, software-encrypted, and other * things so we cannot really handle checksum or GSO offload. * fix it up in software before we handle anything else. */ skb = ieee80211_tx_skb_fixup(skb, 0); if (!skb) { len = 0; goto out; } skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); if (skb->protocol == sdata->control_port_protocol) ctrl_flags |= IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP; skb = ieee80211_build_hdr(sdata, skb, info_flags, sta, ctrl_flags, cookie); if (IS_ERR(skb)) { kfree_skb_list(next); goto out; } dev_sw_netstats_tx_add(dev, 1, skb->len); ieee80211_xmit(sdata, sta, skb); } goto out; out_free: kfree_skb(skb); len = 0; out: if (len) ieee80211_tpt_led_trig_tx(local, len); rcu_read_unlock(); } static int ieee80211_change_da(struct sk_buff *skb, struct sta_info *sta) { struct ethhdr *eth; int err; err = skb_ensure_writable(skb, ETH_HLEN); if (unlikely(err)) return err; eth = (void *)skb->data; ether_addr_copy(eth->h_dest, sta->sta.addr); return 0; } static bool ieee80211_multicast_to_unicast(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); const struct ethhdr *eth = (void *)skb->data; const struct vlan_ethhdr *ethvlan = (void *)skb->data; __be16 ethertype; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: if (sdata->u.vlan.sta) return false; if (sdata->wdev.use_4addr) return false; fallthrough; case NL80211_IFTYPE_AP: /* check runtime toggle for this bss */ if (!sdata->bss->multicast_to_unicast) return false; break; default: return false; } /* multicast to unicast conversion only for some payload */ ethertype = eth->h_proto; if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN) ethertype = ethvlan->h_vlan_encapsulated_proto; switch (ethertype) { case htons(ETH_P_ARP): case htons(ETH_P_IP): case htons(ETH_P_IPV6): break; default: return false; } return true; } static void ieee80211_convert_to_unicast(struct sk_buff *skb, struct net_device *dev, struct sk_buff_head *queue) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; const struct ethhdr *eth = (struct ethhdr *)skb->data; struct sta_info *sta, *first = NULL; struct sk_buff *cloned_skb; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata) /* AP-VLAN mismatch */ continue; if (unlikely(ether_addr_equal(eth->h_source, sta->sta.addr))) /* do not send back to source */ continue; if (!first) { first = sta; continue; } cloned_skb = skb_clone(skb, GFP_ATOMIC); if (!cloned_skb) goto multicast; if (unlikely(ieee80211_change_da(cloned_skb, sta))) { dev_kfree_skb(cloned_skb); goto multicast; } __skb_queue_tail(queue, cloned_skb); } if (likely(first)) { if (unlikely(ieee80211_change_da(skb, first))) goto multicast; __skb_queue_tail(queue, skb); } else { /* no STA connected, drop */ kfree_skb(skb); skb = NULL; } goto out; multicast: __skb_queue_purge(queue); __skb_queue_tail(queue, skb); out: rcu_read_unlock(); } static void ieee80211_mlo_multicast_tx_one(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 ctrl_flags, unsigned int link_id) { struct sk_buff *out; out = skb_copy(skb, GFP_ATOMIC); if (!out) return; ctrl_flags |= u32_encode_bits(link_id, IEEE80211_TX_CTRL_MLO_LINK); __ieee80211_subif_start_xmit(out, sdata->dev, 0, ctrl_flags, NULL); } static void ieee80211_mlo_multicast_tx(struct net_device *dev, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); unsigned long links = sdata->vif.active_links; unsigned int link; u32 ctrl_flags = IEEE80211_TX_CTRL_MCAST_MLO_FIRST_TX; if (hweight16(links) == 1) { ctrl_flags |= u32_encode_bits(__ffs(links), IEEE80211_TX_CTRL_MLO_LINK); __ieee80211_subif_start_xmit(skb, sdata->dev, 0, ctrl_flags, NULL); return; } for_each_set_bit(link, &links, IEEE80211_MLD_MAX_NUM_LINKS) { ieee80211_mlo_multicast_tx_one(sdata, skb, ctrl_flags, link); ctrl_flags = 0; } kfree_skb(skb); } /** * ieee80211_subif_start_xmit - netif start_xmit function for 802.3 vifs * @skb: packet to be sent * @dev: incoming interface * * On failure skb will be freed. */ netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); const struct ethhdr *eth = (void *)skb->data; if (likely(!is_multicast_ether_addr(eth->h_dest))) goto normal; if (unlikely(!ieee80211_sdata_running(sdata))) { kfree_skb(skb); return NETDEV_TX_OK; } if (unlikely(ieee80211_multicast_to_unicast(skb, dev))) { struct sk_buff_head queue; __skb_queue_head_init(&queue); ieee80211_convert_to_unicast(skb, dev, &queue); while ((skb = __skb_dequeue(&queue))) __ieee80211_subif_start_xmit(skb, dev, 0, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); } else if (ieee80211_vif_is_mld(&sdata->vif) && sdata->vif.type == NL80211_IFTYPE_AP && !ieee80211_hw_check(&sdata->local->hw, MLO_MCAST_MULTI_LINK_TX)) { ieee80211_mlo_multicast_tx(dev, skb); } else { normal: __ieee80211_subif_start_xmit(skb, dev, 0, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); } return NETDEV_TX_OK; } static bool __ieee80211_tx_8023(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info *sta, bool txpending) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_control control = {}; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sta *pubsta = NULL; unsigned long flags; int q = info->hw_queue; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (local->queue_stop_reasons[q] || (!txpending && !skb_queue_empty(&local->pending[q]))) { if (txpending) skb_queue_head(&local->pending[q], skb); else skb_queue_tail(&local->pending[q], skb); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return false; } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); if (sta && sta->uploaded) pubsta = &sta->sta; control.sta = pubsta; drv_tx(local, &control, skb); return true; } static bool ieee80211_tx_8023(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info *sta, bool txpending) { struct ieee80211_local *local = sdata->local; struct sk_buff *next; bool ret = true; if (ieee80211_queue_skb(local, sdata, sta, skb)) return true; skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); if (!__ieee80211_tx_8023(sdata, skb, sta, txpending)) ret = false; } return ret; } static void ieee80211_8023_xmit(struct ieee80211_sub_if_data *sdata, struct net_device *dev, struct sta_info *sta, struct ieee80211_key *key, struct sk_buff *skb) { struct ieee80211_tx_info *info; struct ieee80211_local *local = sdata->local; struct tid_ampdu_tx *tid_tx; struct sk_buff *seg, *next; unsigned int skbs = 0, len = 0; u16 queue; u8 tid; queue = ieee80211_select_queue(sdata, sta, skb); skb_set_queue_mapping(skb, queue); if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning)) && test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)) goto out_free; skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) return; ieee80211_aggr_check(sdata, sta, skb); tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { /* fall back to non-offload slow path */ __ieee80211_subif_start_xmit(skb, dev, 0, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); return; } if (tid_tx->timeout) tid_tx->last_tx = jiffies; } skb = ieee80211_tx_skb_fixup(skb, ieee80211_sdata_netdev_features(sdata)); if (!skb) return; info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->hw_queue = sdata->vif.hw_queue[queue]; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); info->flags |= IEEE80211_TX_CTL_HW_80211_ENCAP; info->control.vif = &sdata->vif; if (key) info->control.hw_key = &key->conf; skb_list_walk_safe(skb, seg, next) { skbs++; len += seg->len; if (seg != skb) memcpy(IEEE80211_SKB_CB(seg), info, sizeof(*info)); } if (unlikely(skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS)) info->ack_frame_id = ieee80211_store_ack_skb(local, skb, &info->flags, NULL); dev_sw_netstats_tx_add(dev, skbs, len); sta->deflink.tx_stats.packets[queue] += skbs; sta->deflink.tx_stats.bytes[queue] += len; ieee80211_tpt_led_trig_tx(local, len); ieee80211_tx_8023(sdata, skb, sta, false); return; out_free: kfree_skb(skb); } netdev_tx_t ieee80211_subif_start_xmit_8023(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ethhdr *ehdr = (struct ethhdr *)skb->data; struct ieee80211_key *key; struct sta_info *sta; if (unlikely(!ieee80211_sdata_running(sdata) || skb->len < ETH_HLEN)) { kfree_skb(skb); return NETDEV_TX_OK; } rcu_read_lock(); if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) { kfree_skb(skb); goto out; } if (unlikely(IS_ERR_OR_NULL(sta) || !sta->uploaded || !test_sta_flag(sta, WLAN_STA_AUTHORIZED) || sdata->control_port_protocol == ehdr->h_proto)) goto skip_offload; key = rcu_dereference(sta->ptk[sta->ptk_idx]); if (!key) key = rcu_dereference(sdata->default_unicast_key); if (key && (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) || key->conf.cipher == WLAN_CIPHER_SUITE_TKIP)) goto skip_offload; sk_pacing_shift_update(skb->sk, sdata->local->hw.tx_sk_pacing_shift); ieee80211_8023_xmit(sdata, dev, sta, key, skb); goto out; skip_offload: ieee80211_subif_start_xmit(skb, dev); out: rcu_read_unlock(); return NETDEV_TX_OK; } struct sk_buff * ieee80211_build_data_template(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags) { struct ieee80211_hdr *hdr; struct ieee80211_tx_data tx = { .local = sdata->local, .sdata = sdata, }; struct sta_info *sta; rcu_read_lock(); if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) { kfree_skb(skb); skb = ERR_PTR(-EINVAL); goto out; } skb = ieee80211_build_hdr(sdata, skb, info_flags, sta, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); if (IS_ERR(skb)) goto out; hdr = (void *)skb->data; tx.sta = sta_info_get(sdata, hdr->addr1); tx.skb = skb; if (ieee80211_tx_h_select_key(&tx) != TX_CONTINUE) { rcu_read_unlock(); kfree_skb(skb); return ERR_PTR(-EINVAL); } out: rcu_read_unlock(); return skb; } /* * ieee80211_clear_tx_pending may not be called in a context where * it is possible that it packets could come in again. */ void ieee80211_clear_tx_pending(struct ieee80211_local *local) { struct sk_buff *skb; int i; for (i = 0; i < local->hw.queues; i++) { while ((skb = skb_dequeue(&local->pending[i])) != NULL) ieee80211_free_txskb(&local->hw, skb); } } /* * Returns false if the frame couldn't be transmitted but was queued instead, * which in this case means re-queued -- take as an indication to stop sending * more pending frames. */ static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sub_if_data *sdata; struct sta_info *sta; struct ieee80211_hdr *hdr; bool result; struct ieee80211_chanctx_conf *chanctx_conf; sdata = vif_to_sdata(info->control.vif); if (info->control.flags & IEEE80211_TX_INTCFL_NEED_TXPROCESSING) { /* update band only for non-MLD */ if (!ieee80211_vif_is_mld(&sdata->vif)) { chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (unlikely(!chanctx_conf)) { dev_kfree_skb(skb); return true; } info->band = chanctx_conf->def.chan->band; } result = ieee80211_tx(sdata, NULL, skb, true); } else if (info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) { if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) { dev_kfree_skb(skb); return true; } if (IS_ERR(sta) || (sta && !sta->uploaded)) sta = NULL; result = ieee80211_tx_8023(sdata, skb, sta, true); } else { struct sk_buff_head skbs; __skb_queue_head_init(&skbs); __skb_queue_tail(&skbs, skb); hdr = (struct ieee80211_hdr *)skb->data; sta = sta_info_get(sdata, hdr->addr1); result = __ieee80211_tx(local, &skbs, sta, true); } return result; } /* * Transmit all pending packets. Called from tasklet. */ void ieee80211_tx_pending(struct tasklet_struct *t) { struct ieee80211_local *local = from_tasklet(local, t, tx_pending_tasklet); unsigned long flags; int i; bool txok; rcu_read_lock(); spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for (i = 0; i < local->hw.queues; i++) { /* * If queue is stopped by something other than due to pending * frames, or we have no pending frames, proceed to next queue. */ if (local->queue_stop_reasons[i] || skb_queue_empty(&local->pending[i])) continue; while (!skb_queue_empty(&local->pending[i])) { struct sk_buff *skb = __skb_dequeue(&local->pending[i]); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (WARN_ON(!info->control.vif)) { ieee80211_free_txskb(&local->hw, skb); continue; } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); txok = ieee80211_tx_pending_skb(local, skb); spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (!txok) break; } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); rcu_read_unlock(); } /* functions for drivers to get certain frames */ static void __ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct ps_data *ps, struct sk_buff *skb, bool is_template) { u8 *pos, *tim; int aid0 = 0; int i, have_bits = 0, n1, n2; struct ieee80211_bss_conf *link_conf = link->conf; /* Generate bitmap for TIM only if there are any STAs in power save * mode. */ if (atomic_read(&ps->num_sta_ps) > 0) /* in the hope that this is faster than * checking byte-for-byte */ have_bits = !bitmap_empty((unsigned long *)ps->tim, IEEE80211_MAX_AID+1); if (!is_template) { if (ps->dtim_count == 0) ps->dtim_count = link_conf->dtim_period - 1; else ps->dtim_count--; } tim = pos = skb_put(skb, 5); *pos++ = WLAN_EID_TIM; *pos++ = 3; *pos++ = ps->dtim_count; *pos++ = link_conf->dtim_period; if (ps->dtim_count == 0 && !skb_queue_empty(&ps->bc_buf)) aid0 = 1; ps->dtim_bc_mc = aid0 == 1; if (have_bits) { /* Find largest even number N1 so that bits numbered 1 through * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits * (N2 + 1) x 8 through 2007 are 0. */ n1 = 0; for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { if (ps->tim[i]) { n1 = i & 0xfe; break; } } n2 = n1; for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { if (ps->tim[i]) { n2 = i; break; } } /* Bitmap control */ *pos++ = n1 | aid0; /* Part Virt Bitmap */ skb_put_data(skb, ps->tim + n1, n2 - n1 + 1); tim[1] = n2 - n1 + 4; } else { *pos++ = aid0; /* Bitmap control */ if (ieee80211_get_link_sband(link)->band != NL80211_BAND_S1GHZ) { tim[1] = 4; /* Part Virt Bitmap */ skb_put_u8(skb, 0); } } } static int ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct ps_data *ps, struct sk_buff *skb, bool is_template) { struct ieee80211_local *local = sdata->local; /* * Not very nice, but we want to allow the driver to call * ieee80211_beacon_get() as a response to the set_tim() * callback. That, however, is already invoked under the * sta_lock to guarantee consistent and race-free update * of the tim bitmap in mac80211 and the driver. */ if (local->tim_in_locked_section) { __ieee80211_beacon_add_tim(sdata, link, ps, skb, is_template); } else { spin_lock_bh(&local->tim_lock); __ieee80211_beacon_add_tim(sdata, link, ps, skb, is_template); spin_unlock_bh(&local->tim_lock); } return 0; } static void ieee80211_set_beacon_cntdwn(struct ieee80211_sub_if_data *sdata, struct beacon_data *beacon, struct ieee80211_link_data *link) { u8 *beacon_data, count, max_count = 1; struct probe_resp *resp; size_t beacon_data_len; u16 *bcn_offsets; int i; switch (sdata->vif.type) { case NL80211_IFTYPE_AP: beacon_data = beacon->tail; beacon_data_len = beacon->tail_len; break; case NL80211_IFTYPE_ADHOC: beacon_data = beacon->head; beacon_data_len = beacon->head_len; break; case NL80211_IFTYPE_MESH_POINT: beacon_data = beacon->head; beacon_data_len = beacon->head_len; break; default: return; } resp = rcu_dereference(link->u.ap.probe_resp); bcn_offsets = beacon->cntdwn_counter_offsets; count = beacon->cntdwn_current_counter; if (link->conf->csa_active) max_count = IEEE80211_MAX_CNTDWN_COUNTERS_NUM; for (i = 0; i < max_count; ++i) { if (bcn_offsets[i]) { if (WARN_ON_ONCE(bcn_offsets[i] >= beacon_data_len)) return; beacon_data[bcn_offsets[i]] = count; } if (sdata->vif.type == NL80211_IFTYPE_AP && resp) { u16 *resp_offsets = resp->cntdwn_counter_offsets; resp->data[resp_offsets[i]] = count; } } } static u8 __ieee80211_beacon_update_cntdwn(struct beacon_data *beacon) { beacon->cntdwn_current_counter--; /* the counter should never reach 0 */ WARN_ON_ONCE(!beacon->cntdwn_current_counter); return beacon->cntdwn_current_counter; } u8 ieee80211_beacon_update_cntdwn(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct beacon_data *beacon = NULL; u8 count = 0; rcu_read_lock(); if (sdata->vif.type == NL80211_IFTYPE_AP) beacon = rcu_dereference(sdata->deflink.u.ap.beacon); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) beacon = rcu_dereference(sdata->u.ibss.presp); else if (ieee80211_vif_is_mesh(&sdata->vif)) beacon = rcu_dereference(sdata->u.mesh.beacon); if (!beacon) goto unlock; count = __ieee80211_beacon_update_cntdwn(beacon); unlock: rcu_read_unlock(); return count; } EXPORT_SYMBOL(ieee80211_beacon_update_cntdwn); void ieee80211_beacon_set_cntdwn(struct ieee80211_vif *vif, u8 counter) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct beacon_data *beacon = NULL; rcu_read_lock(); if (sdata->vif.type == NL80211_IFTYPE_AP) beacon = rcu_dereference(sdata->deflink.u.ap.beacon); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) beacon = rcu_dereference(sdata->u.ibss.presp); else if (ieee80211_vif_is_mesh(&sdata->vif)) beacon = rcu_dereference(sdata->u.mesh.beacon); if (!beacon) goto unlock; if (counter < beacon->cntdwn_current_counter) beacon->cntdwn_current_counter = counter; unlock: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_beacon_set_cntdwn); bool ieee80211_beacon_cntdwn_is_complete(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct beacon_data *beacon = NULL; u8 *beacon_data; size_t beacon_data_len; int ret = false; if (!ieee80211_sdata_running(sdata)) return false; rcu_read_lock(); if (vif->type == NL80211_IFTYPE_AP) { beacon = rcu_dereference(sdata->deflink.u.ap.beacon); if (WARN_ON(!beacon || !beacon->tail)) goto out; beacon_data = beacon->tail; beacon_data_len = beacon->tail_len; } else if (vif->type == NL80211_IFTYPE_ADHOC) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; beacon = rcu_dereference(ifibss->presp); if (!beacon) goto out; beacon_data = beacon->head; beacon_data_len = beacon->head_len; } else if (vif->type == NL80211_IFTYPE_MESH_POINT) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; beacon = rcu_dereference(ifmsh->beacon); if (!beacon) goto out; beacon_data = beacon->head; beacon_data_len = beacon->head_len; } else { WARN_ON(1); goto out; } if (!beacon->cntdwn_counter_offsets[0]) goto out; if (WARN_ON_ONCE(beacon->cntdwn_counter_offsets[0] > beacon_data_len)) goto out; if (beacon_data[beacon->cntdwn_counter_offsets[0]] == 1) ret = true; out: rcu_read_unlock(); return ret; } EXPORT_SYMBOL(ieee80211_beacon_cntdwn_is_complete); static int ieee80211_beacon_protect(struct sk_buff *skb, struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link) { ieee80211_tx_result res; struct ieee80211_tx_data tx; struct sk_buff *check_skb; memset(&tx, 0, sizeof(tx)); tx.key = rcu_dereference(link->default_beacon_key); if (!tx.key) return 0; if (unlikely(tx.key->flags & KEY_FLAG_TAINTED)) { tx.key = NULL; return -EINVAL; } if (!(tx.key->conf.flags & IEEE80211_KEY_FLAG_SW_MGMT_TX) && tx.key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) IEEE80211_SKB_CB(skb)->control.hw_key = &tx.key->conf; tx.local = local; tx.sdata = sdata; __skb_queue_head_init(&tx.skbs); __skb_queue_tail(&tx.skbs, skb); res = ieee80211_tx_h_encrypt(&tx); check_skb = __skb_dequeue(&tx.skbs); /* we may crash after this, but it'd be a bug in crypto */ WARN_ON(check_skb != skb); if (WARN_ON_ONCE(res != TX_CONTINUE)) return -EINVAL; return 0; } static void ieee80211_beacon_get_finish(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_link_data *link, struct ieee80211_mutable_offsets *offs, struct beacon_data *beacon, struct sk_buff *skb, struct ieee80211_chanctx_conf *chanctx_conf, u16 csa_off_base) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_tx_info *info; enum nl80211_band band; struct ieee80211_tx_rate_control txrc; /* CSA offsets */ if (offs && beacon) { u16 i; for (i = 0; i < IEEE80211_MAX_CNTDWN_COUNTERS_NUM; i++) { u16 csa_off = beacon->cntdwn_counter_offsets[i]; if (!csa_off) continue; offs->cntdwn_counter_offs[i] = csa_off_base + csa_off; } } band = chanctx_conf->def.chan->band; info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; info->flags |= IEEE80211_TX_CTL_NO_ACK; info->band = band; memset(&txrc, 0, sizeof(txrc)); txrc.hw = hw; txrc.sband = local->hw.wiphy->bands[band]; txrc.bss_conf = link->conf; txrc.skb = skb; txrc.reported_rate.idx = -1; if (sdata->beacon_rate_set && sdata->beacon_rateidx_mask[band]) txrc.rate_idx_mask = sdata->beacon_rateidx_mask[band]; else txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; txrc.bss = true; rate_control_get_rate(sdata, NULL, &txrc); info->control.vif = vif; info->control.flags |= u32_encode_bits(link->link_id, IEEE80211_TX_CTRL_MLO_LINK); info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_ASSIGN_SEQ | IEEE80211_TX_CTL_FIRST_FRAGMENT; } static void ieee80211_beacon_add_mbssid(struct sk_buff *skb, struct beacon_data *beacon, u8 i) { if (!beacon->mbssid_ies || !beacon->mbssid_ies->cnt || i > beacon->mbssid_ies->cnt) return; if (i < beacon->mbssid_ies->cnt) { skb_put_data(skb, beacon->mbssid_ies->elem[i].data, beacon->mbssid_ies->elem[i].len); if (beacon->rnr_ies && beacon->rnr_ies->cnt) { skb_put_data(skb, beacon->rnr_ies->elem[i].data, beacon->rnr_ies->elem[i].len); for (i = beacon->mbssid_ies->cnt; i < beacon->rnr_ies->cnt; i++) skb_put_data(skb, beacon->rnr_ies->elem[i].data, beacon->rnr_ies->elem[i].len); } return; } /* i == beacon->mbssid_ies->cnt, include all MBSSID elements */ for (i = 0; i < beacon->mbssid_ies->cnt; i++) skb_put_data(skb, beacon->mbssid_ies->elem[i].data, beacon->mbssid_ies->elem[i].len); } static struct sk_buff * ieee80211_beacon_get_ap(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_link_data *link, struct ieee80211_mutable_offsets *offs, bool is_template, struct beacon_data *beacon, struct ieee80211_chanctx_conf *chanctx_conf, u8 ema_index) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_if_ap *ap = &sdata->u.ap; struct sk_buff *skb = NULL; u16 csa_off_base = 0; int mbssid_len; if (beacon->cntdwn_counter_offsets[0]) { if (!is_template) ieee80211_beacon_update_cntdwn(vif); ieee80211_set_beacon_cntdwn(sdata, beacon, link); } /* headroom, head length, * tail length, maximum TIM length and multiple BSSID length */ mbssid_len = ieee80211_get_mbssid_beacon_len(beacon->mbssid_ies, beacon->rnr_ies, ema_index); skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + beacon->tail_len + 256 + local->hw.extra_beacon_tailroom + mbssid_len); if (!skb) return NULL; skb_reserve(skb, local->tx_headroom); skb_put_data(skb, beacon->head, beacon->head_len); ieee80211_beacon_add_tim(sdata, link, &ap->ps, skb, is_template); if (offs) { offs->tim_offset = beacon->head_len; offs->tim_length = skb->len - beacon->head_len; offs->cntdwn_counter_offs[0] = beacon->cntdwn_counter_offsets[0]; if (mbssid_len) { ieee80211_beacon_add_mbssid(skb, beacon, ema_index); offs->mbssid_off = skb->len - mbssid_len; } /* for AP the csa offsets are from tail */ csa_off_base = skb->len; } if (beacon->tail) skb_put_data(skb, beacon->tail, beacon->tail_len); if (ieee80211_beacon_protect(skb, local, sdata, link) < 0) return NULL; ieee80211_beacon_get_finish(hw, vif, link, offs, beacon, skb, chanctx_conf, csa_off_base); return skb; } static struct ieee80211_ema_beacons * ieee80211_beacon_get_ap_ema_list(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_link_data *link, struct ieee80211_mutable_offsets *offs, bool is_template, struct beacon_data *beacon, struct ieee80211_chanctx_conf *chanctx_conf) { struct ieee80211_ema_beacons *ema = NULL; if (!beacon->mbssid_ies || !beacon->mbssid_ies->cnt) return NULL; ema = kzalloc(struct_size(ema, bcn, beacon->mbssid_ies->cnt), GFP_ATOMIC); if (!ema) return NULL; for (ema->cnt = 0; ema->cnt < beacon->mbssid_ies->cnt; ema->cnt++) { ema->bcn[ema->cnt].skb = ieee80211_beacon_get_ap(hw, vif, link, &ema->bcn[ema->cnt].offs, is_template, beacon, chanctx_conf, ema->cnt); if (!ema->bcn[ema->cnt].skb) break; } if (ema->cnt == beacon->mbssid_ies->cnt) return ema; ieee80211_beacon_free_ema_list(ema); return NULL; } #define IEEE80211_INCLUDE_ALL_MBSSID_ELEMS -1 static struct sk_buff * __ieee80211_beacon_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs, bool is_template, unsigned int link_id, int ema_index, struct ieee80211_ema_beacons **ema_beacons) { struct ieee80211_local *local = hw_to_local(hw); struct beacon_data *beacon = NULL; struct sk_buff *skb = NULL; struct ieee80211_sub_if_data *sdata = NULL; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_link_data *link; rcu_read_lock(); sdata = vif_to_sdata(vif); link = rcu_dereference(sdata->link[link_id]); if (!link) goto out; chanctx_conf = rcu_dereference(link->conf->chanctx_conf); if (!ieee80211_sdata_running(sdata) || !chanctx_conf) goto out; if (offs) memset(offs, 0, sizeof(*offs)); if (sdata->vif.type == NL80211_IFTYPE_AP) { beacon = rcu_dereference(link->u.ap.beacon); if (!beacon) goto out; if (ema_beacons) { *ema_beacons = ieee80211_beacon_get_ap_ema_list(hw, vif, link, offs, is_template, beacon, chanctx_conf); } else { if (beacon->mbssid_ies && beacon->mbssid_ies->cnt) { if (ema_index >= beacon->mbssid_ies->cnt) goto out; /* End of MBSSID elements */ if (ema_index <= IEEE80211_INCLUDE_ALL_MBSSID_ELEMS) ema_index = beacon->mbssid_ies->cnt; } else { ema_index = 0; } skb = ieee80211_beacon_get_ap(hw, vif, link, offs, is_template, beacon, chanctx_conf, ema_index); } } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_hdr *hdr; beacon = rcu_dereference(ifibss->presp); if (!beacon) goto out; if (beacon->cntdwn_counter_offsets[0]) { if (!is_template) __ieee80211_beacon_update_cntdwn(beacon); ieee80211_set_beacon_cntdwn(sdata, beacon, link); } skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + local->hw.extra_beacon_tailroom); if (!skb) goto out; skb_reserve(skb, local->tx_headroom); skb_put_data(skb, beacon->head, beacon->head_len); hdr = (struct ieee80211_hdr *) skb->data; hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); ieee80211_beacon_get_finish(hw, vif, link, offs, beacon, skb, chanctx_conf, 0); } else if (ieee80211_vif_is_mesh(&sdata->vif)) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; beacon = rcu_dereference(ifmsh->beacon); if (!beacon) goto out; if (beacon->cntdwn_counter_offsets[0]) { if (!is_template) /* TODO: For mesh csa_counter is in TU, so * decrementing it by one isn't correct, but * for now we leave it consistent with overall * mac80211's behavior. */ __ieee80211_beacon_update_cntdwn(beacon); ieee80211_set_beacon_cntdwn(sdata, beacon, link); } if (ifmsh->sync_ops) ifmsh->sync_ops->adjust_tsf(sdata, beacon); skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + 256 + /* TIM IE */ beacon->tail_len + local->hw.extra_beacon_tailroom); if (!skb) goto out; skb_reserve(skb, local->tx_headroom); skb_put_data(skb, beacon->head, beacon->head_len); ieee80211_beacon_add_tim(sdata, link, &ifmsh->ps, skb, is_template); if (offs) { offs->tim_offset = beacon->head_len; offs->tim_length = skb->len - beacon->head_len; } skb_put_data(skb, beacon->tail, beacon->tail_len); ieee80211_beacon_get_finish(hw, vif, link, offs, beacon, skb, chanctx_conf, 0); } else { WARN_ON(1); goto out; } out: rcu_read_unlock(); return skb; } struct sk_buff * ieee80211_beacon_get_template(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs, unsigned int link_id) { return __ieee80211_beacon_get(hw, vif, offs, true, link_id, IEEE80211_INCLUDE_ALL_MBSSID_ELEMS, NULL); } EXPORT_SYMBOL(ieee80211_beacon_get_template); struct sk_buff * ieee80211_beacon_get_template_ema_index(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs, unsigned int link_id, u8 ema_index) { return __ieee80211_beacon_get(hw, vif, offs, true, link_id, ema_index, NULL); } EXPORT_SYMBOL(ieee80211_beacon_get_template_ema_index); void ieee80211_beacon_free_ema_list(struct ieee80211_ema_beacons *ema_beacons) { u8 i; if (!ema_beacons) return; for (i = 0; i < ema_beacons->cnt; i++) kfree_skb(ema_beacons->bcn[i].skb); kfree(ema_beacons); } EXPORT_SYMBOL(ieee80211_beacon_free_ema_list); struct ieee80211_ema_beacons * ieee80211_beacon_get_template_ema_list(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id) { struct ieee80211_ema_beacons *ema_beacons = NULL; WARN_ON(__ieee80211_beacon_get(hw, vif, NULL, true, link_id, 0, &ema_beacons)); return ema_beacons; } EXPORT_SYMBOL(ieee80211_beacon_get_template_ema_list); struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 *tim_offset, u16 *tim_length, unsigned int link_id) { struct ieee80211_mutable_offsets offs = {}; struct sk_buff *bcn = __ieee80211_beacon_get(hw, vif, &offs, false, link_id, IEEE80211_INCLUDE_ALL_MBSSID_ELEMS, NULL); struct sk_buff *copy; int shift; if (!bcn) return bcn; if (tim_offset) *tim_offset = offs.tim_offset; if (tim_length) *tim_length = offs.tim_length; if (ieee80211_hw_check(hw, BEACON_TX_STATUS) || !hw_to_local(hw)->monitors) return bcn; /* send a copy to monitor interfaces */ copy = skb_copy(bcn, GFP_ATOMIC); if (!copy) return bcn; shift = ieee80211_vif_get_shift(vif); ieee80211_tx_monitor(hw_to_local(hw), copy, 1, shift, false, NULL); return bcn; } EXPORT_SYMBOL(ieee80211_beacon_get_tim); struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct sk_buff *skb = NULL; struct probe_resp *presp = NULL; struct ieee80211_hdr *hdr; struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (sdata->vif.type != NL80211_IFTYPE_AP) return NULL; rcu_read_lock(); presp = rcu_dereference(sdata->deflink.u.ap.probe_resp); if (!presp) goto out; skb = dev_alloc_skb(presp->len); if (!skb) goto out; skb_put_data(skb, presp->data, presp->len); hdr = (struct ieee80211_hdr *) skb->data; memset(hdr->addr1, 0, sizeof(hdr->addr1)); out: rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_proberesp_get); struct sk_buff *ieee80211_get_fils_discovery_tmpl(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct sk_buff *skb = NULL; struct fils_discovery_data *tmpl = NULL; struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (sdata->vif.type != NL80211_IFTYPE_AP) return NULL; rcu_read_lock(); tmpl = rcu_dereference(sdata->deflink.u.ap.fils_discovery); if (!tmpl) { rcu_read_unlock(); return NULL; } skb = dev_alloc_skb(sdata->local->hw.extra_tx_headroom + tmpl->len); if (skb) { skb_reserve(skb, sdata->local->hw.extra_tx_headroom); skb_put_data(skb, tmpl->data, tmpl->len); } rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_get_fils_discovery_tmpl); struct sk_buff * ieee80211_get_unsol_bcast_probe_resp_tmpl(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct sk_buff *skb = NULL; struct unsol_bcast_probe_resp_data *tmpl = NULL; struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (sdata->vif.type != NL80211_IFTYPE_AP) return NULL; rcu_read_lock(); tmpl = rcu_dereference(sdata->deflink.u.ap.unsol_bcast_probe_resp); if (!tmpl) { rcu_read_unlock(); return NULL; } skb = dev_alloc_skb(sdata->local->hw.extra_tx_headroom + tmpl->len); if (skb) { skb_reserve(skb, sdata->local->hw.extra_tx_headroom); skb_put_data(skb, tmpl->data, tmpl->len); } rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_get_unsol_bcast_probe_resp_tmpl); struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata; struct ieee80211_pspoll *pspoll; struct ieee80211_local *local; struct sk_buff *skb; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return NULL; sdata = vif_to_sdata(vif); local = sdata->local; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); pspoll = skb_put_zero(skb, sizeof(*pspoll)); pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); pspoll->aid = cpu_to_le16(sdata->vif.cfg.aid); /* aid in PS-Poll has its two MSBs each set to 1 */ pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); memcpy(pspoll->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(pspoll->ta, vif->addr, ETH_ALEN); return skb; } EXPORT_SYMBOL(ieee80211_pspoll_get); struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int link_id, bool qos_ok) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct ieee80211_link_data *link = NULL; struct ieee80211_hdr_3addr *nullfunc; struct sk_buff *skb; bool qos = false; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return NULL; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc) + 2); if (!skb) return NULL; rcu_read_lock(); if (qos_ok) { struct sta_info *sta; sta = sta_info_get(sdata, vif->cfg.ap_addr); qos = sta && sta->sta.wme; } if (link_id >= 0) { link = rcu_dereference(sdata->link[link_id]); if (WARN_ON_ONCE(!link)) { rcu_read_unlock(); kfree_skb(skb); return NULL; } } skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = skb_put_zero(skb, sizeof(*nullfunc)); nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_TODS); if (qos) { __le16 qoshdr = cpu_to_le16(7); BUILD_BUG_ON((IEEE80211_STYPE_QOS_NULLFUNC | IEEE80211_STYPE_NULLFUNC) != IEEE80211_STYPE_QOS_NULLFUNC); nullfunc->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_NULLFUNC); skb->priority = 7; skb_set_queue_mapping(skb, IEEE80211_AC_VO); skb_put_data(skb, &qoshdr, sizeof(qoshdr)); } if (link) { memcpy(nullfunc->addr1, link->conf->bssid, ETH_ALEN); memcpy(nullfunc->addr2, link->conf->addr, ETH_ALEN); memcpy(nullfunc->addr3, link->conf->bssid, ETH_ALEN); } else { memcpy(nullfunc->addr1, vif->cfg.ap_addr, ETH_ALEN); memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); memcpy(nullfunc->addr3, vif->cfg.ap_addr, ETH_ALEN); } rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_nullfunc_get); struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, const u8 *src_addr, const u8 *ssid, size_t ssid_len, size_t tailroom) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_hdr_3addr *hdr; struct sk_buff *skb; size_t ie_ssid_len; u8 *pos; ie_ssid_len = 2 + ssid_len; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + ie_ssid_len + tailroom); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); hdr = skb_put_zero(skb, sizeof(*hdr)); hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); eth_broadcast_addr(hdr->addr1); memcpy(hdr->addr2, src_addr, ETH_ALEN); eth_broadcast_addr(hdr->addr3); pos = skb_put(skb, ie_ssid_len); *pos++ = WLAN_EID_SSID; *pos++ = ssid_len; if (ssid_len) memcpy(pos, ssid, ssid_len); pos += ssid_len; return skb; } EXPORT_SYMBOL(ieee80211_probereq_get); void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_rts *rts) { const struct ieee80211_hdr *hdr = frame; rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); rts->duration = ieee80211_rts_duration(hw, vif, frame_len, frame_txctl); memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); } EXPORT_SYMBOL(ieee80211_rts_get); void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_cts *cts) { const struct ieee80211_hdr *hdr = frame; cts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); cts->duration = ieee80211_ctstoself_duration(hw, vif, frame_len, frame_txctl); memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); } EXPORT_SYMBOL(ieee80211_ctstoself_get); struct sk_buff * ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_local *local = hw_to_local(hw); struct sk_buff *skb = NULL; struct ieee80211_tx_data tx; struct ieee80211_sub_if_data *sdata; struct ps_data *ps; struct ieee80211_tx_info *info; struct ieee80211_chanctx_conf *chanctx_conf; sdata = vif_to_sdata(vif); rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) goto out; if (sdata->vif.type == NL80211_IFTYPE_AP) { struct beacon_data *beacon = rcu_dereference(sdata->deflink.u.ap.beacon); if (!beacon || !beacon->head) goto out; ps = &sdata->u.ap.ps; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { ps = &sdata->u.mesh.ps; } else { goto out; } if (ps->dtim_count != 0 || !ps->dtim_bc_mc) goto out; /* send buffered bc/mc only after DTIM beacon */ while (1) { skb = skb_dequeue(&ps->bc_buf); if (!skb) goto out; local->total_ps_buffered--; if (!skb_queue_empty(&ps->bc_buf) && skb->len >= 2) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; /* more buffered multicast/broadcast frames ==> set * MoreData flag in IEEE 802.11 header to inform PS * STAs */ hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } if (sdata->vif.type == NL80211_IFTYPE_AP) sdata = IEEE80211_DEV_TO_SUB_IF(skb->dev); if (!ieee80211_tx_prepare(sdata, &tx, NULL, skb)) break; ieee80211_free_txskb(hw, skb); } info = IEEE80211_SKB_CB(skb); tx.flags |= IEEE80211_TX_PS_BUFFERED; info->band = chanctx_conf->def.chan->band; if (invoke_tx_handlers(&tx)) skb = NULL; out: rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_get_buffered_bc); int ieee80211_reserve_tid(struct ieee80211_sta *pubsta, u8 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; int ret; u32 queues; lockdep_assert_held(&local->sta_mtx); /* only some cases are supported right now */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: break; default: WARN_ON(1); return -EINVAL; } if (WARN_ON(tid >= IEEE80211_NUM_UPS)) return -EINVAL; if (sta->reserved_tid == tid) { ret = 0; goto out; } if (sta->reserved_tid != IEEE80211_TID_UNRESERVED) { sdata_err(sdata, "TID reservation already active\n"); ret = -EALREADY; goto out; } ieee80211_stop_vif_queues(sdata->local, sdata, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID); synchronize_net(); /* Tear down BA sessions so we stop aggregating on this TID */ if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) { set_sta_flag(sta, WLAN_STA_BLOCK_BA); __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_LOCAL_REQUEST); } queues = BIT(sdata->vif.hw_queue[ieee802_1d_to_ac[tid]]); __ieee80211_flush_queues(local, sdata, queues, false); sta->reserved_tid = tid; ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID); if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) clear_sta_flag(sta, WLAN_STA_BLOCK_BA); ret = 0; out: return ret; } EXPORT_SYMBOL(ieee80211_reserve_tid); void ieee80211_unreserve_tid(struct ieee80211_sta *pubsta, u8 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; lockdep_assert_held(&sdata->local->sta_mtx); /* only some cases are supported right now */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: break; default: WARN_ON(1); return; } if (tid != sta->reserved_tid) { sdata_err(sdata, "TID to unreserve (%d) isn't reserved\n", tid); return; } sta->reserved_tid = IEEE80211_TID_UNRESERVED; } EXPORT_SYMBOL(ieee80211_unreserve_tid); void __ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, int link_id, enum nl80211_band band) { const struct ieee80211_hdr *hdr = (void *)skb->data; int ac = ieee80211_ac_from_tid(tid); unsigned int link; skb_reset_mac_header(skb); skb_set_queue_mapping(skb, ac); skb->priority = tid; skb->dev = sdata->dev; BUILD_BUG_ON(IEEE80211_LINK_UNSPECIFIED < IEEE80211_MLD_MAX_NUM_LINKS); BUILD_BUG_ON(!FIELD_FIT(IEEE80211_TX_CTRL_MLO_LINK, IEEE80211_LINK_UNSPECIFIED)); if (!ieee80211_vif_is_mld(&sdata->vif)) { link = 0; } else if (link_id >= 0) { link = link_id; } else if (memcmp(sdata->vif.addr, hdr->addr2, ETH_ALEN) == 0) { /* address from the MLD */ link = IEEE80211_LINK_UNSPECIFIED; } else { /* otherwise must be addressed from a link */ rcu_read_lock(); for (link = 0; link < ARRAY_SIZE(sdata->vif.link_conf); link++) { struct ieee80211_bss_conf *link_conf; link_conf = rcu_dereference(sdata->vif.link_conf[link]); if (!link_conf) continue; if (memcmp(link_conf->addr, hdr->addr2, ETH_ALEN) == 0) break; } rcu_read_unlock(); if (WARN_ON_ONCE(link == ARRAY_SIZE(sdata->vif.link_conf))) link = ffs(sdata->vif.active_links) - 1; } IEEE80211_SKB_CB(skb)->control.flags |= u32_encode_bits(link, IEEE80211_TX_CTRL_MLO_LINK); /* * The other path calling ieee80211_xmit is from the tasklet, * and while we can handle concurrent transmissions locking * requirements are that we do not come into tx with bhs on. */ local_bh_disable(); IEEE80211_SKB_CB(skb)->band = band; ieee80211_xmit(sdata, NULL, skb); local_bh_enable(); } void ieee80211_tx_skb_tid(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, int link_id) { struct ieee80211_chanctx_conf *chanctx_conf; enum nl80211_band band; rcu_read_lock(); if (!ieee80211_vif_is_mld(&sdata->vif)) { WARN_ON(link_id >= 0); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); kfree_skb(skb); return; } band = chanctx_conf->def.chan->band; } else { WARN_ON(link_id >= 0 && !(sdata->vif.active_links & BIT(link_id))); /* MLD transmissions must not rely on the band */ band = 0; } __ieee80211_tx_skb_tid_band(sdata, skb, tid, link_id, band); rcu_read_unlock(); } int ieee80211_tx_control_port(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len, const u8 *dest, __be16 proto, bool unencrypted, int link_id, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct sk_buff *skb; struct ethhdr *ehdr; u32 ctrl_flags = 0; u32 flags = 0; int err; /* Only accept CONTROL_PORT_PROTOCOL configured in CONNECT/ASSOCIATE * or Pre-Authentication */ if (proto != sdata->control_port_protocol && proto != cpu_to_be16(ETH_P_PREAUTH)) return -EINVAL; if (proto == sdata->control_port_protocol) ctrl_flags |= IEEE80211_TX_CTRL_PORT_CTRL_PROTO | IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP; if (unencrypted) flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; if (cookie) ctrl_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; flags |= IEEE80211_TX_INTFL_NL80211_FRAME_TX; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(struct ethhdr) + len); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom + sizeof(struct ethhdr)); skb_put_data(skb, buf, len); ehdr = skb_push(skb, sizeof(struct ethhdr)); memcpy(ehdr->h_dest, dest, ETH_ALEN); /* we may override the SA for MLO STA later */ if (link_id < 0) { ctrl_flags |= u32_encode_bits(IEEE80211_LINK_UNSPECIFIED, IEEE80211_TX_CTRL_MLO_LINK); memcpy(ehdr->h_source, sdata->vif.addr, ETH_ALEN); } else { struct ieee80211_bss_conf *link_conf; ctrl_flags |= u32_encode_bits(link_id, IEEE80211_TX_CTRL_MLO_LINK); rcu_read_lock(); link_conf = rcu_dereference(sdata->vif.link_conf[link_id]); if (!link_conf) { dev_kfree_skb(skb); rcu_read_unlock(); return -ENOLINK; } memcpy(ehdr->h_source, link_conf->addr, ETH_ALEN); rcu_read_unlock(); } ehdr->h_proto = proto; skb->dev = dev; skb->protocol = proto; skb_reset_network_header(skb); skb_reset_mac_header(skb); if (local->hw.queues < IEEE80211_NUM_ACS) goto start_xmit; /* update QoS header to prioritize control port frames if possible, * priorization also happens for control port frames send over * AF_PACKET */ rcu_read_lock(); err = ieee80211_lookup_ra_sta(sdata, skb, &sta); if (err) { dev_kfree_skb(skb); rcu_read_unlock(); return err; } if (!IS_ERR(sta)) { u16 queue = ieee80211_select_queue(sdata, sta, skb); skb_set_queue_mapping(skb, queue); /* * for MLO STA, the SA should be the AP MLD address, but * the link ID has been selected already */ if (sta && sta->sta.mlo) memcpy(ehdr->h_source, sdata->vif.addr, ETH_ALEN); } rcu_read_unlock(); start_xmit: /* mutex lock is only needed for incrementing the cookie counter */ mutex_lock(&local->mtx); local_bh_disable(); __ieee80211_subif_start_xmit(skb, skb->dev, flags, ctrl_flags, cookie); local_bh_enable(); mutex_unlock(&local->mtx); return 0; } int ieee80211_probe_mesh_link(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sk_buff *skb; skb = dev_alloc_skb(local->hw.extra_tx_headroom + len + 30 + /* header size */ 18); /* 11s header size */ if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); skb_put_data(skb, buf, len); skb->dev = dev; skb->protocol = htons(ETH_P_802_3); skb_reset_network_header(skb); skb_reset_mac_header(skb); local_bh_disable(); __ieee80211_subif_start_xmit(skb, skb->dev, 0, IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP, NULL); local_bh_enable(); return 0; }
linux-master
net/mac80211/tx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008, 2009 open80211s Ltd. * Copyright (C) 2018 - 2023 Intel Corporation * Authors: Luis Carlos Cobo <[email protected]> * Javier Cardona <[email protected]> */ #include <linux/slab.h> #include <asm/unaligned.h> #include "ieee80211_i.h" #include "mesh.h" #include "wme.h" #include "driver-ops.h" static int mesh_allocated; static struct kmem_cache *rm_cache; bool mesh_action_is_path_sel(struct ieee80211_mgmt *mgmt) { return (mgmt->u.action.u.mesh_action.action_code == WLAN_MESH_ACTION_HWMP_PATH_SELECTION); } void ieee80211s_init(void) { mesh_allocated = 1; rm_cache = kmem_cache_create("mesh_rmc", sizeof(struct rmc_entry), 0, 0, NULL); } void ieee80211s_stop(void) { if (!mesh_allocated) return; kmem_cache_destroy(rm_cache); } static void ieee80211_mesh_housekeeping_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mesh.housekeeping_timer); struct ieee80211_local *local = sdata->local; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; set_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags); wiphy_work_queue(local->hw.wiphy, &sdata->work); } /** * mesh_matches_local - check if the config of a mesh point matches ours * * @sdata: local mesh subif * @ie: information elements of a management frame from the mesh peer * * This function checks if the mesh configuration of a mesh point matches the * local mesh configuration, i.e. if both nodes belong to the same mesh network. */ bool mesh_matches_local(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *ie) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u32 basic_rates = 0; struct cfg80211_chan_def sta_chan_def; struct ieee80211_supported_band *sband; u32 vht_cap_info = 0; /* * As support for each feature is added, check for matching * - On mesh config capabilities * - Power Save Support En * - Sync support enabled * - Sync support active * - Sync support required from peer * - MDA enabled * - Power management control on fc */ if (!(ifmsh->mesh_id_len == ie->mesh_id_len && memcmp(ifmsh->mesh_id, ie->mesh_id, ie->mesh_id_len) == 0 && (ifmsh->mesh_pp_id == ie->mesh_config->meshconf_psel) && (ifmsh->mesh_pm_id == ie->mesh_config->meshconf_pmetric) && (ifmsh->mesh_cc_id == ie->mesh_config->meshconf_congest) && (ifmsh->mesh_sp_id == ie->mesh_config->meshconf_synch) && (ifmsh->mesh_auth_id == ie->mesh_config->meshconf_auth))) return false; sband = ieee80211_get_sband(sdata); if (!sband) return false; ieee80211_sta_get_rates(sdata, ie, sband->band, &basic_rates); if (sdata->vif.bss_conf.basic_rates != basic_rates) return false; cfg80211_chandef_create(&sta_chan_def, sdata->vif.bss_conf.chandef.chan, NL80211_CHAN_NO_HT); ieee80211_chandef_ht_oper(ie->ht_operation, &sta_chan_def); if (ie->vht_cap_elem) vht_cap_info = le32_to_cpu(ie->vht_cap_elem->vht_cap_info); ieee80211_chandef_vht_oper(&sdata->local->hw, vht_cap_info, ie->vht_operation, ie->ht_operation, &sta_chan_def); ieee80211_chandef_he_6ghz_oper(sdata, ie->he_operation, ie->eht_operation, &sta_chan_def); if (!cfg80211_chandef_compatible(&sdata->vif.bss_conf.chandef, &sta_chan_def)) return false; return true; } /** * mesh_peer_accepts_plinks - check if an mp is willing to establish peer links * * @ie: information elements of a management frame from the mesh peer */ bool mesh_peer_accepts_plinks(struct ieee802_11_elems *ie) { return (ie->mesh_config->meshconf_cap & IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS) != 0; } /** * mesh_accept_plinks_update - update accepting_plink in local mesh beacons * * @sdata: mesh interface in which mesh beacons are going to be updated * * Returns: beacon changed flag if the beacon content changed. */ u64 mesh_accept_plinks_update(struct ieee80211_sub_if_data *sdata) { bool free_plinks; u64 changed = 0; /* In case mesh_plink_free_count > 0 and mesh_plinktbl_capacity == 0, * the mesh interface might be able to establish plinks with peers that * are already on the table but are not on PLINK_ESTAB state. However, * in general the mesh interface is not accepting peer link requests * from new peers, and that must be reflected in the beacon */ free_plinks = mesh_plink_availables(sdata); if (free_plinks != sdata->u.mesh.accepting_plinks) { sdata->u.mesh.accepting_plinks = free_plinks; changed = BSS_CHANGED_BEACON; } return changed; } /* * mesh_sta_cleanup - clean up any mesh sta state * * @sta: mesh sta to clean up. */ void mesh_sta_cleanup(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; u64 changed = mesh_plink_deactivate(sta); if (changed) ieee80211_mbss_info_change_notify(sdata, changed); } int mesh_rmc_init(struct ieee80211_sub_if_data *sdata) { int i; sdata->u.mesh.rmc = kmalloc(sizeof(struct mesh_rmc), GFP_KERNEL); if (!sdata->u.mesh.rmc) return -ENOMEM; sdata->u.mesh.rmc->idx_mask = RMC_BUCKETS - 1; for (i = 0; i < RMC_BUCKETS; i++) INIT_HLIST_HEAD(&sdata->u.mesh.rmc->bucket[i]); return 0; } void mesh_rmc_free(struct ieee80211_sub_if_data *sdata) { struct mesh_rmc *rmc = sdata->u.mesh.rmc; struct rmc_entry *p; struct hlist_node *n; int i; if (!sdata->u.mesh.rmc) return; for (i = 0; i < RMC_BUCKETS; i++) { hlist_for_each_entry_safe(p, n, &rmc->bucket[i], list) { hlist_del(&p->list); kmem_cache_free(rm_cache, p); } } kfree(rmc); sdata->u.mesh.rmc = NULL; } /** * mesh_rmc_check - Check frame in recent multicast cache and add if absent. * * @sdata: interface * @sa: source address * @mesh_hdr: mesh_header * * Returns: 0 if the frame is not in the cache, nonzero otherwise. * * Checks using the source address and the mesh sequence number if we have * received this frame lately. If the frame is not in the cache, it is added to * it. */ int mesh_rmc_check(struct ieee80211_sub_if_data *sdata, const u8 *sa, struct ieee80211s_hdr *mesh_hdr) { struct mesh_rmc *rmc = sdata->u.mesh.rmc; u32 seqnum = 0; int entries = 0; u8 idx; struct rmc_entry *p; struct hlist_node *n; if (!rmc) return -1; /* Don't care about endianness since only match matters */ memcpy(&seqnum, &mesh_hdr->seqnum, sizeof(mesh_hdr->seqnum)); idx = le32_to_cpu(mesh_hdr->seqnum) & rmc->idx_mask; hlist_for_each_entry_safe(p, n, &rmc->bucket[idx], list) { ++entries; if (time_after(jiffies, p->exp_time) || entries == RMC_QUEUE_MAX_LEN) { hlist_del(&p->list); kmem_cache_free(rm_cache, p); --entries; } else if ((seqnum == p->seqnum) && ether_addr_equal(sa, p->sa)) return -1; } p = kmem_cache_alloc(rm_cache, GFP_ATOMIC); if (!p) return 0; p->seqnum = seqnum; p->exp_time = jiffies + RMC_TIMEOUT; memcpy(p->sa, sa, ETH_ALEN); hlist_add_head(&p->list, &rmc->bucket[idx]); return 0; } int mesh_add_meshconf_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u8 *pos, neighbors; u8 meshconf_len = sizeof(struct ieee80211_meshconf_ie); bool is_connected_to_gate = ifmsh->num_gates > 0 || ifmsh->mshcfg.dot11MeshGateAnnouncementProtocol || ifmsh->mshcfg.dot11MeshConnectedToMeshGate; bool is_connected_to_as = ifmsh->mshcfg.dot11MeshConnectedToAuthServer; if (skb_tailroom(skb) < 2 + meshconf_len) return -ENOMEM; pos = skb_put(skb, 2 + meshconf_len); *pos++ = WLAN_EID_MESH_CONFIG; *pos++ = meshconf_len; /* save a pointer for quick updates in pre-tbtt */ ifmsh->meshconf_offset = pos - skb->data; /* Active path selection protocol ID */ *pos++ = ifmsh->mesh_pp_id; /* Active path selection metric ID */ *pos++ = ifmsh->mesh_pm_id; /* Congestion control mode identifier */ *pos++ = ifmsh->mesh_cc_id; /* Synchronization protocol identifier */ *pos++ = ifmsh->mesh_sp_id; /* Authentication Protocol identifier */ *pos++ = ifmsh->mesh_auth_id; /* Mesh Formation Info - number of neighbors */ neighbors = atomic_read(&ifmsh->estab_plinks); neighbors = min_t(int, neighbors, IEEE80211_MAX_MESH_PEERINGS); *pos++ = (is_connected_to_as << 7) | (neighbors << 1) | is_connected_to_gate; /* Mesh capability */ *pos = 0x00; *pos |= ifmsh->mshcfg.dot11MeshForwarding ? IEEE80211_MESHCONF_CAPAB_FORWARDING : 0x00; *pos |= ifmsh->accepting_plinks ? IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS : 0x00; /* Mesh PS mode. See IEEE802.11-2012 8.4.2.100.8 */ *pos |= ifmsh->ps_peers_deep_sleep ? IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL : 0x00; return 0; } int mesh_add_meshid_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u8 *pos; if (skb_tailroom(skb) < 2 + ifmsh->mesh_id_len) return -ENOMEM; pos = skb_put(skb, 2 + ifmsh->mesh_id_len); *pos++ = WLAN_EID_MESH_ID; *pos++ = ifmsh->mesh_id_len; if (ifmsh->mesh_id_len) memcpy(pos, ifmsh->mesh_id, ifmsh->mesh_id_len); return 0; } static int mesh_add_awake_window_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u8 *pos; /* see IEEE802.11-2012 13.14.6 */ if (ifmsh->ps_peers_light_sleep == 0 && ifmsh->ps_peers_deep_sleep == 0 && ifmsh->nonpeer_pm == NL80211_MESH_POWER_ACTIVE) return 0; if (skb_tailroom(skb) < 4) return -ENOMEM; pos = skb_put(skb, 2 + 2); *pos++ = WLAN_EID_MESH_AWAKE_WINDOW; *pos++ = 2; put_unaligned_le16(ifmsh->mshcfg.dot11MeshAwakeWindowDuration, pos); return 0; } int mesh_add_vendor_ies(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u8 offset, len; const u8 *data; if (!ifmsh->ie || !ifmsh->ie_len) return 0; /* fast-forward to vendor IEs */ offset = ieee80211_ie_split_vendor(ifmsh->ie, ifmsh->ie_len, 0); if (offset < ifmsh->ie_len) { len = ifmsh->ie_len - offset; data = ifmsh->ie + offset; if (skb_tailroom(skb) < len) return -ENOMEM; skb_put_data(skb, data, len); } return 0; } int mesh_add_rsn_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u8 len = 0; const u8 *data; if (!ifmsh->ie || !ifmsh->ie_len) return 0; /* find RSN IE */ data = cfg80211_find_ie(WLAN_EID_RSN, ifmsh->ie, ifmsh->ie_len); if (!data) return 0; len = data[1] + 2; if (skb_tailroom(skb) < len) return -ENOMEM; skb_put_data(skb, data, len); return 0; } static int mesh_add_ds_params_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_channel *chan; u8 *pos; if (skb_tailroom(skb) < 3) return -ENOMEM; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); return -EINVAL; } chan = chanctx_conf->def.chan; rcu_read_unlock(); pos = skb_put(skb, 2 + 1); *pos++ = WLAN_EID_DS_PARAMS; *pos++ = 1; *pos++ = ieee80211_frequency_to_channel(chan->center_freq); return 0; } int mesh_add_ht_cap_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_supported_band *sband; u8 *pos; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; /* HT not allowed in 6 GHz */ if (sband->band == NL80211_BAND_6GHZ) return 0; if (!sband->ht_cap.ht_supported || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_10) return 0; if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) return -ENOMEM; pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, sband->ht_cap.cap); return 0; } int mesh_add_ht_oper_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_channel *channel; struct ieee80211_supported_band *sband; struct ieee80211_sta_ht_cap *ht_cap; u8 *pos; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); return -EINVAL; } channel = chanctx_conf->def.chan; rcu_read_unlock(); sband = local->hw.wiphy->bands[channel->band]; ht_cap = &sband->ht_cap; /* HT not allowed in 6 GHz */ if (sband->band == NL80211_BAND_6GHZ) return 0; if (!ht_cap->ht_supported || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_10) return 0; if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_operation)) return -ENOMEM; pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_operation)); ieee80211_ie_build_ht_oper(pos, ht_cap, &sdata->vif.bss_conf.chandef, sdata->vif.bss_conf.ht_operation_mode, false); return 0; } int mesh_add_vht_cap_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_supported_band *sband; u8 *pos; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; /* VHT not allowed in 6 GHz */ if (sband->band == NL80211_BAND_6GHZ) return 0; if (!sband->vht_cap.vht_supported || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_10) return 0; if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) return -ENOMEM; pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, sband->vht_cap.cap); return 0; } int mesh_add_vht_oper_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_channel *channel; struct ieee80211_supported_band *sband; struct ieee80211_sta_vht_cap *vht_cap; u8 *pos; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); return -EINVAL; } channel = chanctx_conf->def.chan; rcu_read_unlock(); sband = local->hw.wiphy->bands[channel->band]; vht_cap = &sband->vht_cap; /* VHT not allowed in 6 GHz */ if (sband->band == NL80211_BAND_6GHZ) return 0; if (!vht_cap->vht_supported || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_10) return 0; if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_operation)) return -ENOMEM; pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_operation)); ieee80211_ie_build_vht_oper(pos, vht_cap, &sdata->vif.bss_conf.chandef); return 0; } int mesh_add_he_cap_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u8 ie_len) { const struct ieee80211_sta_he_cap *he_cap; struct ieee80211_supported_band *sband; u8 *pos; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; he_cap = ieee80211_get_he_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT); if (!he_cap || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_10) return 0; if (skb_tailroom(skb) < ie_len) return -ENOMEM; pos = skb_put(skb, ie_len); ieee80211_ie_build_he_cap(0, pos, he_cap, pos + ie_len); return 0; } int mesh_add_he_oper_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { const struct ieee80211_sta_he_cap *he_cap; struct ieee80211_supported_band *sband; u32 len; u8 *pos; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; he_cap = ieee80211_get_he_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT); if (!he_cap || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_10) return 0; len = 2 + 1 + sizeof(struct ieee80211_he_operation); if (sdata->vif.bss_conf.chandef.chan->band == NL80211_BAND_6GHZ) len += sizeof(struct ieee80211_he_6ghz_oper); if (skb_tailroom(skb) < len) return -ENOMEM; pos = skb_put(skb, len); ieee80211_ie_build_he_oper(pos, &sdata->vif.bss_conf.chandef); return 0; } int mesh_add_he_6ghz_cap_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_supported_band *sband; const struct ieee80211_sband_iftype_data *iftd; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; iftd = ieee80211_get_sband_iftype_data(sband, NL80211_IFTYPE_MESH_POINT); /* The device doesn't support HE in mesh mode or at all */ if (!iftd) return 0; ieee80211_ie_build_he_6ghz_cap(sdata, sdata->deflink.smps_mode, skb); return 0; } int mesh_add_eht_cap_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u8 ie_len) { const struct ieee80211_sta_he_cap *he_cap; const struct ieee80211_sta_eht_cap *eht_cap; struct ieee80211_supported_band *sband; u8 *pos; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; he_cap = ieee80211_get_he_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT); eht_cap = ieee80211_get_eht_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT); if (!he_cap || !eht_cap || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_10) return 0; if (skb_tailroom(skb) < ie_len) return -ENOMEM; pos = skb_put(skb, ie_len); ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, pos + ie_len, false); return 0; } int mesh_add_eht_oper_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { const struct ieee80211_sta_eht_cap *eht_cap; struct ieee80211_supported_band *sband; u32 len; u8 *pos; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; eht_cap = ieee80211_get_eht_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT); if (!eht_cap || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_10) return 0; len = 2 + 1 + offsetof(struct ieee80211_eht_operation, optional) + offsetof(struct ieee80211_eht_operation_info, optional); if (skb_tailroom(skb) < len) return -ENOMEM; pos = skb_put(skb, len); ieee80211_ie_build_eht_oper(pos, &sdata->vif.bss_conf.chandef, eht_cap); return 0; } static void ieee80211_mesh_path_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mesh.mesh_path_timer); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } static void ieee80211_mesh_path_root_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mesh.mesh_path_root_timer); struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; set_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } void ieee80211_mesh_root_setup(struct ieee80211_if_mesh *ifmsh) { if (ifmsh->mshcfg.dot11MeshHWMPRootMode > IEEE80211_ROOTMODE_ROOT) set_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags); else { clear_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags); /* stop running timer */ del_timer_sync(&ifmsh->mesh_path_root_timer); } } static void ieee80211_mesh_update_bss_params(struct ieee80211_sub_if_data *sdata, u8 *ie, u8 ie_len) { struct ieee80211_supported_band *sband; const struct element *cap; const struct ieee80211_he_operation *he_oper = NULL; sband = ieee80211_get_sband(sdata); if (!sband) return; if (!ieee80211_get_he_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT) || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_10) return; sdata->vif.bss_conf.he_support = true; cap = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ie_len); if (cap && cap->datalen >= 1 + sizeof(*he_oper) && cap->datalen >= 1 + ieee80211_he_oper_size(cap->data + 1)) he_oper = (void *)(cap->data + 1); if (he_oper) sdata->vif.bss_conf.he_oper.params = __le32_to_cpu(he_oper->he_oper_params); sdata->vif.bss_conf.eht_support = !!ieee80211_get_eht_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT); } bool ieee80211_mesh_xmit_fast(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 ctrl_flags) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_mesh_fast_tx *entry; struct ieee80211s_hdr *meshhdr; u8 sa[ETH_ALEN] __aligned(2); struct tid_ampdu_tx *tid_tx; struct sta_info *sta; bool copy_sa = false; u16 ethertype; u8 tid; if (ctrl_flags & IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP) return false; if (ifmsh->mshcfg.dot11MeshNolearn) return false; /* Add support for these cases later */ if (ifmsh->ps_peers_light_sleep || ifmsh->ps_peers_deep_sleep) return false; if (is_multicast_ether_addr(skb->data)) return false; ethertype = (skb->data[12] << 8) | skb->data[13]; if (ethertype < ETH_P_802_3_MIN) return false; if (skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS) return false; if (skb->ip_summed == CHECKSUM_PARTIAL) { skb_set_transport_header(skb, skb_checksum_start_offset(skb)); if (skb_checksum_help(skb)) return false; } entry = mesh_fast_tx_get(sdata, skb->data); if (!entry) return false; if (skb_headroom(skb) < entry->hdrlen + entry->fast_tx.hdr_len) return false; sta = rcu_dereference(entry->mpath->next_hop); if (!sta) return false; tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) return false; if (tid_tx->timeout) tid_tx->last_tx = jiffies; } skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) return true; skb_set_queue_mapping(skb, ieee80211_select_queue(sdata, sta, skb)); meshhdr = (struct ieee80211s_hdr *)entry->hdr; if ((meshhdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) { /* preserve SA from eth header for 6-addr frames */ ether_addr_copy(sa, skb->data + ETH_ALEN); copy_sa = true; } memcpy(skb_push(skb, entry->hdrlen - 2 * ETH_ALEN), entry->hdr, entry->hdrlen); meshhdr = (struct ieee80211s_hdr *)skb->data; put_unaligned_le32(atomic_inc_return(&sdata->u.mesh.mesh_seqnum), &meshhdr->seqnum); meshhdr->ttl = sdata->u.mesh.mshcfg.dot11MeshTTL; if (copy_sa) ether_addr_copy(meshhdr->eaddr2, sa); skb_push(skb, 2 * ETH_ALEN); __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx, entry->mpath->dst, sdata->vif.addr); return true; } /** * ieee80211_fill_mesh_addresses - fill addresses of a locally originated mesh frame * @hdr: 802.11 frame header * @fc: frame control field * @meshda: destination address in the mesh * @meshsa: source address in the mesh. Same as TA, as frame is * locally originated. * * Return the length of the 802.11 (does not include a mesh control header) */ int ieee80211_fill_mesh_addresses(struct ieee80211_hdr *hdr, __le16 *fc, const u8 *meshda, const u8 *meshsa) { if (is_multicast_ether_addr(meshda)) { *fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA TA SA */ memcpy(hdr->addr1, meshda, ETH_ALEN); memcpy(hdr->addr2, meshsa, ETH_ALEN); memcpy(hdr->addr3, meshsa, ETH_ALEN); return 24; } else { *fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ eth_zero_addr(hdr->addr1); /* RA is resolved later */ memcpy(hdr->addr2, meshsa, ETH_ALEN); memcpy(hdr->addr3, meshda, ETH_ALEN); memcpy(hdr->addr4, meshsa, ETH_ALEN); return 30; } } /** * ieee80211_new_mesh_header - create a new mesh header * @sdata: mesh interface to be used * @meshhdr: uninitialized mesh header * @addr4or5: 1st address in the ae header, which may correspond to address 4 * (if addr6 is NULL) or address 5 (if addr6 is present). It may * be NULL. * @addr6: 2nd address in the ae header, which corresponds to addr6 of the * mesh frame * * Return the header length. */ unsigned int ieee80211_new_mesh_header(struct ieee80211_sub_if_data *sdata, struct ieee80211s_hdr *meshhdr, const char *addr4or5, const char *addr6) { if (WARN_ON(!addr4or5 && addr6)) return 0; memset(meshhdr, 0, sizeof(*meshhdr)); meshhdr->ttl = sdata->u.mesh.mshcfg.dot11MeshTTL; put_unaligned_le32(atomic_inc_return(&sdata->u.mesh.mesh_seqnum), &meshhdr->seqnum); if (addr4or5 && !addr6) { meshhdr->flags |= MESH_FLAGS_AE_A4; memcpy(meshhdr->eaddr1, addr4or5, ETH_ALEN); return 2 * ETH_ALEN; } else if (addr4or5 && addr6) { meshhdr->flags |= MESH_FLAGS_AE_A5_A6; memcpy(meshhdr->eaddr1, addr4or5, ETH_ALEN); memcpy(meshhdr->eaddr2, addr6, ETH_ALEN); return 3 * ETH_ALEN; } return ETH_ALEN; } static void ieee80211_mesh_housekeeping(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u64 changed; if (ifmsh->mshcfg.plink_timeout > 0) ieee80211_sta_expire(sdata, ifmsh->mshcfg.plink_timeout * HZ); mesh_path_expire(sdata); changed = mesh_accept_plinks_update(sdata); ieee80211_mbss_info_change_notify(sdata, changed); mesh_fast_tx_gc(sdata); mod_timer(&ifmsh->housekeeping_timer, round_jiffies(jiffies + IEEE80211_MESH_HOUSEKEEPING_INTERVAL)); } static void ieee80211_mesh_rootpath(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u32 interval; mesh_path_tx_root_frame(sdata); if (ifmsh->mshcfg.dot11MeshHWMPRootMode == IEEE80211_PROACTIVE_RANN) interval = ifmsh->mshcfg.dot11MeshHWMPRannInterval; else interval = ifmsh->mshcfg.dot11MeshHWMProotInterval; mod_timer(&ifmsh->mesh_path_root_timer, round_jiffies(TU_TO_EXP_TIME(interval))); } static int ieee80211_mesh_build_beacon(struct ieee80211_if_mesh *ifmsh) { struct beacon_data *bcn; int head_len, tail_len; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; struct ieee80211_chanctx_conf *chanctx_conf; struct mesh_csa_settings *csa; enum nl80211_band band; u8 ie_len_he_cap, ie_len_eht_cap; u8 *pos; struct ieee80211_sub_if_data *sdata; int hdr_len = offsetofend(struct ieee80211_mgmt, u.beacon); sdata = container_of(ifmsh, struct ieee80211_sub_if_data, u.mesh); rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); band = chanctx_conf->def.chan->band; rcu_read_unlock(); ie_len_he_cap = ieee80211_ie_len_he_cap(sdata, NL80211_IFTYPE_MESH_POINT); ie_len_eht_cap = ieee80211_ie_len_eht_cap(sdata, NL80211_IFTYPE_MESH_POINT); head_len = hdr_len + 2 + /* NULL SSID */ /* Channel Switch Announcement */ 2 + sizeof(struct ieee80211_channel_sw_ie) + /* Mesh Channel Switch Parameters */ 2 + sizeof(struct ieee80211_mesh_chansw_params_ie) + /* Channel Switch Wrapper + Wide Bandwidth CSA IE */ 2 + 2 + sizeof(struct ieee80211_wide_bw_chansw_ie) + 2 + sizeof(struct ieee80211_sec_chan_offs_ie) + 2 + 8 + /* supported rates */ 2 + 3; /* DS params */ tail_len = 2 + (IEEE80211_MAX_SUPP_RATES - 8) + 2 + sizeof(struct ieee80211_ht_cap) + 2 + sizeof(struct ieee80211_ht_operation) + 2 + ifmsh->mesh_id_len + 2 + sizeof(struct ieee80211_meshconf_ie) + 2 + sizeof(__le16) + /* awake window */ 2 + sizeof(struct ieee80211_vht_cap) + 2 + sizeof(struct ieee80211_vht_operation) + ie_len_he_cap + 2 + 1 + sizeof(struct ieee80211_he_operation) + sizeof(struct ieee80211_he_6ghz_oper) + 2 + 1 + sizeof(struct ieee80211_he_6ghz_capa) + ie_len_eht_cap + 2 + 1 + offsetof(struct ieee80211_eht_operation, optional) + offsetof(struct ieee80211_eht_operation_info, optional) + ifmsh->ie_len; bcn = kzalloc(sizeof(*bcn) + head_len + tail_len, GFP_KERNEL); /* need an skb for IE builders to operate on */ skb = __dev_alloc_skb(max(head_len, tail_len), GFP_KERNEL); if (!bcn || !skb) goto out_free; /* * pointers go into the block we allocated, * memory is | beacon_data | head | tail | */ bcn->head = ((u8 *) bcn) + sizeof(*bcn); /* fill in the head */ mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); eth_broadcast_addr(mgmt->da); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); ieee80211_mps_set_frame_flags(sdata, NULL, (void *) mgmt); mgmt->u.beacon.beacon_int = cpu_to_le16(sdata->vif.bss_conf.beacon_int); mgmt->u.beacon.capab_info |= cpu_to_le16( sdata->u.mesh.security ? WLAN_CAPABILITY_PRIVACY : 0); pos = skb_put(skb, 2); *pos++ = WLAN_EID_SSID; *pos++ = 0x0; rcu_read_lock(); csa = rcu_dereference(ifmsh->csa); if (csa) { enum nl80211_channel_type ct; struct cfg80211_chan_def *chandef; int ie_len = 2 + sizeof(struct ieee80211_channel_sw_ie) + 2 + sizeof(struct ieee80211_mesh_chansw_params_ie); pos = skb_put_zero(skb, ie_len); *pos++ = WLAN_EID_CHANNEL_SWITCH; *pos++ = 3; *pos++ = 0x0; *pos++ = ieee80211_frequency_to_channel( csa->settings.chandef.chan->center_freq); bcn->cntdwn_current_counter = csa->settings.count; bcn->cntdwn_counter_offsets[0] = hdr_len + 6; *pos++ = csa->settings.count; *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; *pos++ = 6; if (ifmsh->csa_role == IEEE80211_MESH_CSA_ROLE_INIT) { *pos++ = ifmsh->mshcfg.dot11MeshTTL; *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; } else { *pos++ = ifmsh->chsw_ttl; } *pos++ |= csa->settings.block_tx ? WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); pos += 2; put_unaligned_le16(ifmsh->pre_value, pos); pos += 2; switch (csa->settings.chandef.width) { case NL80211_CHAN_WIDTH_40: ie_len = 2 + sizeof(struct ieee80211_sec_chan_offs_ie); pos = skb_put_zero(skb, ie_len); *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ *pos++ = 1; /* len */ ct = cfg80211_get_chandef_type(&csa->settings.chandef); if (ct == NL80211_CHAN_HT40PLUS) *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; else *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; break; case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: /* Channel Switch Wrapper + Wide Bandwidth CSA IE */ ie_len = 2 + 2 + sizeof(struct ieee80211_wide_bw_chansw_ie); pos = skb_put_zero(skb, ie_len); *pos++ = WLAN_EID_CHANNEL_SWITCH_WRAPPER; /* EID */ *pos++ = 5; /* len */ /* put sub IE */ chandef = &csa->settings.chandef; ieee80211_ie_build_wide_bw_cs(pos, chandef); break; default: break; } } rcu_read_unlock(); if (ieee80211_add_srates_ie(sdata, skb, true, band) || mesh_add_ds_params_ie(sdata, skb)) goto out_free; bcn->head_len = skb->len; memcpy(bcn->head, skb->data, bcn->head_len); /* now the tail */ skb_trim(skb, 0); bcn->tail = bcn->head + bcn->head_len; if (ieee80211_add_ext_srates_ie(sdata, skb, true, band) || mesh_add_rsn_ie(sdata, skb) || mesh_add_ht_cap_ie(sdata, skb) || mesh_add_ht_oper_ie(sdata, skb) || mesh_add_meshid_ie(sdata, skb) || mesh_add_meshconf_ie(sdata, skb) || mesh_add_awake_window_ie(sdata, skb) || mesh_add_vht_cap_ie(sdata, skb) || mesh_add_vht_oper_ie(sdata, skb) || mesh_add_he_cap_ie(sdata, skb, ie_len_he_cap) || mesh_add_he_oper_ie(sdata, skb) || mesh_add_he_6ghz_cap_ie(sdata, skb) || mesh_add_eht_cap_ie(sdata, skb, ie_len_eht_cap) || mesh_add_eht_oper_ie(sdata, skb) || mesh_add_vendor_ies(sdata, skb)) goto out_free; bcn->tail_len = skb->len; memcpy(bcn->tail, skb->data, bcn->tail_len); ieee80211_mesh_update_bss_params(sdata, bcn->tail, bcn->tail_len); bcn->meshconf = (struct ieee80211_meshconf_ie *) (bcn->tail + ifmsh->meshconf_offset); dev_kfree_skb(skb); rcu_assign_pointer(ifmsh->beacon, bcn); return 0; out_free: kfree(bcn); dev_kfree_skb(skb); return -ENOMEM; } static int ieee80211_mesh_rebuild_beacon(struct ieee80211_sub_if_data *sdata) { struct beacon_data *old_bcn; int ret; old_bcn = sdata_dereference(sdata->u.mesh.beacon, sdata); ret = ieee80211_mesh_build_beacon(&sdata->u.mesh); if (ret) /* just reuse old beacon */ return ret; if (old_bcn) kfree_rcu(old_bcn, rcu_head); return 0; } void ieee80211_mbss_info_change_notify(struct ieee80211_sub_if_data *sdata, u64 changed) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; unsigned long bits = changed; u32 bit; if (!bits) return; /* if we race with running work, worst case this work becomes a noop */ for_each_set_bit(bit, &bits, sizeof(changed) * BITS_PER_BYTE) set_bit(bit, &ifmsh->mbss_changed); set_bit(MESH_WORK_MBSS_CHANGED, &ifmsh->wrkq_flags); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } int ieee80211_start_mesh(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_local *local = sdata->local; u64 changed = BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_HT | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT | BSS_CHANGED_MCAST_RATE; local->fif_other_bss++; /* mesh ifaces must set allmulti to forward mcast traffic */ atomic_inc(&local->iff_allmultis); ieee80211_configure_filter(local); ifmsh->mesh_cc_id = 0; /* Disabled */ /* register sync ops from extensible synchronization framework */ ifmsh->sync_ops = ieee80211_mesh_sync_ops_get(ifmsh->mesh_sp_id); ifmsh->sync_offset_clockdrift_max = 0; set_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags); ieee80211_mesh_root_setup(ifmsh); wiphy_work_queue(local->hw.wiphy, &sdata->work); sdata->vif.bss_conf.ht_operation_mode = ifmsh->mshcfg.ht_opmode; sdata->vif.bss_conf.enable_beacon = true; changed |= ieee80211_mps_local_status_update(sdata); if (ieee80211_mesh_build_beacon(ifmsh)) { ieee80211_stop_mesh(sdata); return -ENOMEM; } ieee80211_recalc_dtim(local, sdata); ieee80211_link_info_change_notify(sdata, &sdata->deflink, changed); netif_carrier_on(sdata->dev); return 0; } void ieee80211_stop_mesh(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct beacon_data *bcn; netif_carrier_off(sdata->dev); /* flush STAs and mpaths on this iface */ sta_info_flush(sdata); ieee80211_free_keys(sdata, true); mesh_path_flush_by_iface(sdata); /* stop the beacon */ ifmsh->mesh_id_len = 0; sdata->vif.bss_conf.enable_beacon = false; sdata->beacon_rate_set = false; clear_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BEACON_ENABLED); /* remove beacon */ bcn = sdata_dereference(ifmsh->beacon, sdata); RCU_INIT_POINTER(ifmsh->beacon, NULL); kfree_rcu(bcn, rcu_head); /* free all potentially still buffered group-addressed frames */ local->total_ps_buffered -= skb_queue_len(&ifmsh->ps.bc_buf); skb_queue_purge(&ifmsh->ps.bc_buf); del_timer_sync(&sdata->u.mesh.housekeeping_timer); del_timer_sync(&sdata->u.mesh.mesh_path_root_timer); del_timer_sync(&sdata->u.mesh.mesh_path_timer); /* clear any mesh work (for next join) we may have accrued */ ifmsh->wrkq_flags = 0; ifmsh->mbss_changed = 0; local->fif_other_bss--; atomic_dec(&local->iff_allmultis); ieee80211_configure_filter(local); } static void ieee80211_mesh_csa_mark_radar(struct ieee80211_sub_if_data *sdata) { int err; /* if the current channel is a DFS channel, mark the channel as * unavailable. */ err = cfg80211_chandef_dfs_required(sdata->local->hw.wiphy, &sdata->vif.bss_conf.chandef, NL80211_IFTYPE_MESH_POINT); if (err > 0) cfg80211_radar_event(sdata->local->hw.wiphy, &sdata->vif.bss_conf.chandef, GFP_ATOMIC); } static bool ieee80211_mesh_process_chnswitch(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, bool beacon) { struct cfg80211_csa_settings params; struct ieee80211_csa_ie csa_ie; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_supported_band *sband; int err; ieee80211_conn_flags_t conn_flags = 0; u32 vht_cap_info = 0; sdata_assert_lock(sdata); sband = ieee80211_get_sband(sdata); if (!sband) return false; switch (sdata->vif.bss_conf.chandef.width) { case NL80211_CHAN_WIDTH_20_NOHT: conn_flags |= IEEE80211_CONN_DISABLE_HT; fallthrough; case NL80211_CHAN_WIDTH_20: conn_flags |= IEEE80211_CONN_DISABLE_40MHZ; fallthrough; case NL80211_CHAN_WIDTH_40: conn_flags |= IEEE80211_CONN_DISABLE_VHT; break; default: break; } if (elems->vht_cap_elem) vht_cap_info = le32_to_cpu(elems->vht_cap_elem->vht_cap_info); memset(&params, 0, sizeof(params)); err = ieee80211_parse_ch_switch_ie(sdata, elems, sband->band, vht_cap_info, conn_flags, sdata->vif.addr, &csa_ie); if (err < 0) return false; if (err) return false; /* Mark the channel unavailable if the reason for the switch is * regulatory. */ if (csa_ie.reason_code == WLAN_REASON_MESH_CHAN_REGULATORY) ieee80211_mesh_csa_mark_radar(sdata); params.chandef = csa_ie.chandef; params.count = csa_ie.count; if (!cfg80211_chandef_usable(sdata->local->hw.wiphy, &params.chandef, IEEE80211_CHAN_DISABLED) || !cfg80211_reg_can_beacon(sdata->local->hw.wiphy, &params.chandef, NL80211_IFTYPE_MESH_POINT)) { sdata_info(sdata, "mesh STA %pM switches to unsupported channel (%d MHz, width:%d, CF1/2: %d/%d MHz), aborting\n", sdata->vif.addr, params.chandef.chan->center_freq, params.chandef.width, params.chandef.center_freq1, params.chandef.center_freq2); return false; } err = cfg80211_chandef_dfs_required(sdata->local->hw.wiphy, &params.chandef, NL80211_IFTYPE_MESH_POINT); if (err < 0) return false; if (err > 0 && !ifmsh->userspace_handles_dfs) { sdata_info(sdata, "mesh STA %pM switches to channel requiring DFS (%d MHz, width:%d, CF1/2: %d/%d MHz), aborting\n", sdata->vif.addr, params.chandef.chan->center_freq, params.chandef.width, params.chandef.center_freq1, params.chandef.center_freq2); return false; } params.radar_required = err; if (cfg80211_chandef_identical(&params.chandef, &sdata->vif.bss_conf.chandef)) { mcsa_dbg(sdata, "received csa with an identical chandef, ignoring\n"); return true; } mcsa_dbg(sdata, "received channel switch announcement to go to channel %d MHz\n", params.chandef.chan->center_freq); params.block_tx = csa_ie.mode & WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT; if (beacon) { ifmsh->chsw_ttl = csa_ie.ttl - 1; if (ifmsh->pre_value >= csa_ie.pre_value) return false; ifmsh->pre_value = csa_ie.pre_value; } if (ifmsh->chsw_ttl >= ifmsh->mshcfg.dot11MeshTTL) return false; ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_REPEATER; if (ieee80211_channel_switch(sdata->local->hw.wiphy, sdata->dev, &params) < 0) return false; return true; } static void ieee80211_mesh_rx_probe_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct sk_buff *presp; struct beacon_data *bcn; struct ieee80211_mgmt *hdr; struct ieee802_11_elems *elems; size_t baselen; u8 *pos; pos = mgmt->u.probe_req.variable; baselen = (u8 *) pos - (u8 *) mgmt; if (baselen > len) return; elems = ieee802_11_parse_elems(pos, len - baselen, false, NULL); if (!elems) return; if (!elems->mesh_id) goto free; /* 802.11-2012 10.1.4.3.2 */ if ((!ether_addr_equal(mgmt->da, sdata->vif.addr) && !is_broadcast_ether_addr(mgmt->da)) || elems->ssid_len != 0) goto free; if (elems->mesh_id_len != 0 && (elems->mesh_id_len != ifmsh->mesh_id_len || memcmp(elems->mesh_id, ifmsh->mesh_id, ifmsh->mesh_id_len))) goto free; rcu_read_lock(); bcn = rcu_dereference(ifmsh->beacon); if (!bcn) goto out; presp = dev_alloc_skb(local->tx_headroom + bcn->head_len + bcn->tail_len); if (!presp) goto out; skb_reserve(presp, local->tx_headroom); skb_put_data(presp, bcn->head, bcn->head_len); skb_put_data(presp, bcn->tail, bcn->tail_len); hdr = (struct ieee80211_mgmt *) presp->data; hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); memcpy(hdr->da, mgmt->sa, ETH_ALEN); IEEE80211_SKB_CB(presp)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; ieee80211_tx_skb(sdata, presp); out: rcu_read_unlock(); free: kfree(elems); } static void ieee80211_mesh_rx_bcn_presp(struct ieee80211_sub_if_data *sdata, u16 stype, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee802_11_elems *elems; struct ieee80211_channel *channel; size_t baselen; int freq; enum nl80211_band band = rx_status->band; /* ignore ProbeResp to foreign address */ if (stype == IEEE80211_STYPE_PROBE_RESP && !ether_addr_equal(mgmt->da, sdata->vif.addr)) return; baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt; if (baselen > len) return; elems = ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen, false, NULL); if (!elems) return; /* ignore non-mesh or secure / unsecure mismatch */ if ((!elems->mesh_id || !elems->mesh_config) || (elems->rsn && sdata->u.mesh.security == IEEE80211_MESH_SEC_NONE) || (!elems->rsn && sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)) goto free; if (elems->ds_params) freq = ieee80211_channel_to_frequency(elems->ds_params[0], band); else freq = rx_status->freq; channel = ieee80211_get_channel(local->hw.wiphy, freq); if (!channel || channel->flags & IEEE80211_CHAN_DISABLED) goto free; if (mesh_matches_local(sdata, elems)) { mpl_dbg(sdata, "rssi_threshold=%d,rx_status->signal=%d\n", sdata->u.mesh.mshcfg.rssi_threshold, rx_status->signal); if (!sdata->u.mesh.user_mpm || sdata->u.mesh.mshcfg.rssi_threshold == 0 || sdata->u.mesh.mshcfg.rssi_threshold < rx_status->signal) mesh_neighbour_update(sdata, mgmt->sa, elems, rx_status); if (ifmsh->csa_role != IEEE80211_MESH_CSA_ROLE_INIT && !sdata->vif.bss_conf.csa_active) ieee80211_mesh_process_chnswitch(sdata, elems, true); } if (ifmsh->sync_ops) ifmsh->sync_ops->rx_bcn_presp(sdata, stype, mgmt, len, elems->mesh_config, rx_status); free: kfree(elems); } int ieee80211_mesh_finish_csa(struct ieee80211_sub_if_data *sdata, u64 *changed) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct mesh_csa_settings *tmp_csa_settings; int ret = 0; /* Reset the TTL value and Initiator flag */ ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_NONE; ifmsh->chsw_ttl = 0; /* Remove the CSA and MCSP elements from the beacon */ tmp_csa_settings = sdata_dereference(ifmsh->csa, sdata); RCU_INIT_POINTER(ifmsh->csa, NULL); if (tmp_csa_settings) kfree_rcu(tmp_csa_settings, rcu_head); ret = ieee80211_mesh_rebuild_beacon(sdata); if (ret) return -EINVAL; *changed |= BSS_CHANGED_BEACON; mcsa_dbg(sdata, "complete switching to center freq %d MHz", sdata->vif.bss_conf.chandef.chan->center_freq); return 0; } int ieee80211_mesh_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings, u64 *changed) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct mesh_csa_settings *tmp_csa_settings; int ret = 0; lockdep_assert_held(&sdata->wdev.mtx); tmp_csa_settings = kmalloc(sizeof(*tmp_csa_settings), GFP_ATOMIC); if (!tmp_csa_settings) return -ENOMEM; memcpy(&tmp_csa_settings->settings, csa_settings, sizeof(struct cfg80211_csa_settings)); rcu_assign_pointer(ifmsh->csa, tmp_csa_settings); ret = ieee80211_mesh_rebuild_beacon(sdata); if (ret) { tmp_csa_settings = rcu_dereference(ifmsh->csa); RCU_INIT_POINTER(ifmsh->csa, NULL); kfree_rcu(tmp_csa_settings, rcu_head); return ret; } *changed |= BSS_CHANGED_BEACON; return 0; } static int mesh_fwd_csa_frame(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee802_11_elems *elems) { struct ieee80211_mgmt *mgmt_fwd; struct sk_buff *skb; struct ieee80211_local *local = sdata->local; skb = dev_alloc_skb(local->tx_headroom + len); if (!skb) return -ENOMEM; skb_reserve(skb, local->tx_headroom); mgmt_fwd = skb_put(skb, len); elems->mesh_chansw_params_ie->mesh_ttl--; elems->mesh_chansw_params_ie->mesh_flags &= ~WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; memcpy(mgmt_fwd, mgmt, len); eth_broadcast_addr(mgmt_fwd->da); memcpy(mgmt_fwd->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt_fwd->bssid, sdata->vif.addr, ETH_ALEN); ieee80211_tx_skb(sdata, skb); return 0; } static void mesh_rx_csa_frame(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee802_11_elems *elems; u16 pre_value; bool fwd_csa = true; size_t baselen; u8 *pos; if (mgmt->u.action.u.measurement.action_code != WLAN_ACTION_SPCT_CHL_SWITCH) return; pos = mgmt->u.action.u.chan_switch.variable; baselen = offsetof(struct ieee80211_mgmt, u.action.u.chan_switch.variable); elems = ieee802_11_parse_elems(pos, len - baselen, true, NULL); if (!elems) return; if (!mesh_matches_local(sdata, elems)) goto free; ifmsh->chsw_ttl = elems->mesh_chansw_params_ie->mesh_ttl; if (!--ifmsh->chsw_ttl) fwd_csa = false; pre_value = le16_to_cpu(elems->mesh_chansw_params_ie->mesh_pre_value); if (ifmsh->pre_value >= pre_value) goto free; ifmsh->pre_value = pre_value; if (!sdata->vif.bss_conf.csa_active && !ieee80211_mesh_process_chnswitch(sdata, elems, false)) { mcsa_dbg(sdata, "Failed to process CSA action frame"); goto free; } /* forward or re-broadcast the CSA frame */ if (fwd_csa) { if (mesh_fwd_csa_frame(sdata, mgmt, len, elems) < 0) mcsa_dbg(sdata, "Failed to forward the CSA frame"); } free: kfree(elems); } static void ieee80211_mesh_rx_mgmt_action(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { switch (mgmt->u.action.category) { case WLAN_CATEGORY_SELF_PROTECTED: switch (mgmt->u.action.u.self_prot.action_code) { case WLAN_SP_MESH_PEERING_OPEN: case WLAN_SP_MESH_PEERING_CLOSE: case WLAN_SP_MESH_PEERING_CONFIRM: mesh_rx_plink_frame(sdata, mgmt, len, rx_status); break; } break; case WLAN_CATEGORY_MESH_ACTION: if (mesh_action_is_path_sel(mgmt)) mesh_rx_path_sel_frame(sdata, mgmt, len); break; case WLAN_CATEGORY_SPECTRUM_MGMT: mesh_rx_csa_frame(sdata, mgmt, len); break; } } void ieee80211_mesh_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_rx_status *rx_status; struct ieee80211_mgmt *mgmt; u16 stype; sdata_lock(sdata); /* mesh already went down */ if (!sdata->u.mesh.mesh_id_len) goto out; rx_status = IEEE80211_SKB_RXCB(skb); mgmt = (struct ieee80211_mgmt *) skb->data; stype = le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE; switch (stype) { case IEEE80211_STYPE_PROBE_RESP: case IEEE80211_STYPE_BEACON: ieee80211_mesh_rx_bcn_presp(sdata, stype, mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_PROBE_REQ: ieee80211_mesh_rx_probe_req(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_ACTION: ieee80211_mesh_rx_mgmt_action(sdata, mgmt, skb->len, rx_status); break; } out: sdata_unlock(sdata); } static void mesh_bss_info_changed(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u32 bit; u64 changed = 0; for_each_set_bit(bit, &ifmsh->mbss_changed, sizeof(changed) * BITS_PER_BYTE) { clear_bit(bit, &ifmsh->mbss_changed); changed |= BIT(bit); } if (sdata->vif.bss_conf.enable_beacon && (changed & (BSS_CHANGED_BEACON | BSS_CHANGED_HT | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT))) if (ieee80211_mesh_rebuild_beacon(sdata)) return; ieee80211_link_info_change_notify(sdata, &sdata->deflink, changed); } void ieee80211_mesh_work(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; sdata_lock(sdata); /* mesh already went down */ if (!sdata->u.mesh.mesh_id_len) goto out; if (ifmsh->preq_queue_len && time_after(jiffies, ifmsh->last_preq + msecs_to_jiffies(ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval))) mesh_path_start_discovery(sdata); if (test_and_clear_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags)) ieee80211_mesh_housekeeping(sdata); if (test_and_clear_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags)) ieee80211_mesh_rootpath(sdata); if (test_and_clear_bit(MESH_WORK_DRIFT_ADJUST, &ifmsh->wrkq_flags)) mesh_sync_adjust_tsf(sdata); if (test_and_clear_bit(MESH_WORK_MBSS_CHANGED, &ifmsh->wrkq_flags)) mesh_bss_info_changed(sdata); out: sdata_unlock(sdata); } void ieee80211_mesh_init_sdata(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; static u8 zero_addr[ETH_ALEN] = {}; timer_setup(&ifmsh->housekeeping_timer, ieee80211_mesh_housekeeping_timer, 0); ifmsh->accepting_plinks = true; atomic_set(&ifmsh->mpaths, 0); mesh_rmc_init(sdata); ifmsh->last_preq = jiffies; ifmsh->next_perr = jiffies; ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_NONE; /* Allocate all mesh structures when creating the first mesh interface. */ if (!mesh_allocated) ieee80211s_init(); mesh_pathtbl_init(sdata); timer_setup(&ifmsh->mesh_path_timer, ieee80211_mesh_path_timer, 0); timer_setup(&ifmsh->mesh_path_root_timer, ieee80211_mesh_path_root_timer, 0); INIT_LIST_HEAD(&ifmsh->preq_queue.list); skb_queue_head_init(&ifmsh->ps.bc_buf); spin_lock_init(&ifmsh->mesh_preq_queue_lock); spin_lock_init(&ifmsh->sync_offset_lock); RCU_INIT_POINTER(ifmsh->beacon, NULL); sdata->vif.bss_conf.bssid = zero_addr; } void ieee80211_mesh_teardown_sdata(struct ieee80211_sub_if_data *sdata) { mesh_rmc_free(sdata); mesh_pathtbl_unregister(sdata); }
linux-master
net/mac80211/mesh.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright (C) 2016 Intel Deutschland GmbH */ #include <linux/kernel.h> #include <linux/bitops.h> #include <linux/types.h> #include <linux/netdevice.h> #include <linux/export.h> #include <asm/unaligned.h> #include <net/mac80211.h> #include "driver-ops.h" #include "key.h" #include "tkip.h" #include "wep.h" #define PHASE1_LOOP_COUNT 8 /* * 2-byte by 2-byte subset of the full AES S-box table; second part of this * table is identical to first part but byte-swapped */ static const u16 tkip_sbox[256] = { 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154, 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A, 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B, 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B, 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F, 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F, 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5, 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F, 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB, 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397, 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED, 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A, 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194, 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3, 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104, 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D, 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39, 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695, 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83, 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76, 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4, 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B, 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0, 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018, 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751, 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85, 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12, 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9, 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7, 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A, 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8, 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A, }; static u16 tkipS(u16 val) { return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]); } static u8 *write_tkip_iv(u8 *pos, u16 iv16) { *pos++ = iv16 >> 8; *pos++ = ((iv16 >> 8) | 0x20) & 0x7f; *pos++ = iv16 & 0xFF; return pos; } /* * P1K := Phase1(TA, TK, TSC) * TA = transmitter address (48 bits) * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits) * TSC = TKIP sequence counter (48 bits, only 32 msb bits used) * P1K: 80 bits */ static void tkip_mixing_phase1(const u8 *tk, struct tkip_ctx *ctx, const u8 *ta, u32 tsc_IV32) { int i, j; u16 *p1k = ctx->p1k; p1k[0] = tsc_IV32 & 0xFFFF; p1k[1] = tsc_IV32 >> 16; p1k[2] = get_unaligned_le16(ta + 0); p1k[3] = get_unaligned_le16(ta + 2); p1k[4] = get_unaligned_le16(ta + 4); for (i = 0; i < PHASE1_LOOP_COUNT; i++) { j = 2 * (i & 1); p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j)); p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j)); p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j)); p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j)); p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i; } ctx->state = TKIP_STATE_PHASE1_DONE; ctx->p1k_iv32 = tsc_IV32; } static void tkip_mixing_phase2(const u8 *tk, struct tkip_ctx *ctx, u16 tsc_IV16, u8 *rc4key) { u16 ppk[6]; const u16 *p1k = ctx->p1k; int i; ppk[0] = p1k[0]; ppk[1] = p1k[1]; ppk[2] = p1k[2]; ppk[3] = p1k[3]; ppk[4] = p1k[4]; ppk[5] = p1k[4] + tsc_IV16; ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0)); ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2)); ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4)); ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6)); ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8)); ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10)); ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1); ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1); ppk[2] += ror16(ppk[1], 1); ppk[3] += ror16(ppk[2], 1); ppk[4] += ror16(ppk[3], 1); ppk[5] += ror16(ppk[4], 1); rc4key = write_tkip_iv(rc4key, tsc_IV16); *rc4key++ = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF; for (i = 0; i < 6; i++) put_unaligned_le16(ppk[i], rc4key + 2 * i); } /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets * of the IV. Returns pointer to the octet following IVs (i.e., beginning of * the packet payload). */ u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key_conf *keyconf, u64 pn) { pos = write_tkip_iv(pos, TKIP_PN_TO_IV16(pn)); *pos++ = (keyconf->keyidx << 6) | (1 << 5) /* Ext IV */; put_unaligned_le32(TKIP_PN_TO_IV32(pn), pos); return pos + 4; } EXPORT_SYMBOL_GPL(ieee80211_tkip_add_iv); static void ieee80211_compute_tkip_p1k(struct ieee80211_key *key, u32 iv32) { struct ieee80211_sub_if_data *sdata = key->sdata; struct tkip_ctx *ctx = &key->u.tkip.tx; const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; lockdep_assert_held(&key->u.tkip.txlock); /* * Update the P1K when the IV32 is different from the value it * had when we last computed it (or when not initialised yet). * This might flip-flop back and forth if packets are processed * out-of-order due to the different ACs, but then we have to * just compute the P1K more often. */ if (ctx->p1k_iv32 != iv32 || ctx->state == TKIP_STATE_NOT_INIT) tkip_mixing_phase1(tk, ctx, sdata->vif.addr, iv32); } void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf, u32 iv32, u16 *p1k) { struct ieee80211_key *key = (struct ieee80211_key *) container_of(keyconf, struct ieee80211_key, conf); struct tkip_ctx *ctx = &key->u.tkip.tx; spin_lock_bh(&key->u.tkip.txlock); ieee80211_compute_tkip_p1k(key, iv32); memcpy(p1k, ctx->p1k, sizeof(ctx->p1k)); spin_unlock_bh(&key->u.tkip.txlock); } EXPORT_SYMBOL(ieee80211_get_tkip_p1k_iv); void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf, const u8 *ta, u32 iv32, u16 *p1k) { const u8 *tk = &keyconf->key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; struct tkip_ctx ctx; tkip_mixing_phase1(tk, &ctx, ta, iv32); memcpy(p1k, ctx.p1k, sizeof(ctx.p1k)); } EXPORT_SYMBOL(ieee80211_get_tkip_rx_p1k); void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf, struct sk_buff *skb, u8 *p2k) { struct ieee80211_key *key = (struct ieee80211_key *) container_of(keyconf, struct ieee80211_key, conf); const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; struct tkip_ctx *ctx = &key->u.tkip.tx; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); u32 iv32 = get_unaligned_le32(&data[4]); u16 iv16 = data[2] | (data[0] << 8); spin_lock(&key->u.tkip.txlock); ieee80211_compute_tkip_p1k(key, iv32); tkip_mixing_phase2(tk, ctx, iv16, p2k); spin_unlock(&key->u.tkip.txlock); } EXPORT_SYMBOL(ieee80211_get_tkip_p2k); /* * Encrypt packet payload with TKIP using @key. @pos is a pointer to the * beginning of the buffer containing payload. This payload must include * the IV/Ext.IV and space for (taildroom) four octets for ICV. * @payload_len is the length of payload (_not_ including IV/ICV length). * @ta is the transmitter addresses. */ int ieee80211_tkip_encrypt_data(struct arc4_ctx *ctx, struct ieee80211_key *key, struct sk_buff *skb, u8 *payload, size_t payload_len) { u8 rc4key[16]; ieee80211_get_tkip_p2k(&key->conf, skb, rc4key); return ieee80211_wep_encrypt_data(ctx, rc4key, 16, payload, payload_len); } /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the * beginning of the buffer containing IEEE 802.11 header payload, i.e., * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the * length of payload, including IV, Ext. IV, MIC, ICV. */ int ieee80211_tkip_decrypt_data(struct arc4_ctx *ctx, struct ieee80211_key *key, u8 *payload, size_t payload_len, u8 *ta, u8 *ra, int only_iv, int queue, u32 *out_iv32, u16 *out_iv16) { u32 iv32; u32 iv16; u8 rc4key[16], keyid, *pos = payload; int res; const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; struct tkip_ctx_rx *rx_ctx = &key->u.tkip.rx[queue]; if (payload_len < 12) return -1; iv16 = (pos[0] << 8) | pos[2]; keyid = pos[3]; iv32 = get_unaligned_le32(pos + 4); pos += 8; if (!(keyid & (1 << 5))) return TKIP_DECRYPT_NO_EXT_IV; if ((keyid >> 6) != key->conf.keyidx) return TKIP_DECRYPT_INVALID_KEYIDX; /* Reject replays if the received TSC is smaller than or equal to the * last received value in a valid message, but with an exception for * the case where a new key has been set and no valid frame using that * key has yet received and the local RSC was initialized to 0. This * exception allows the very first frame sent by the transmitter to be * accepted even if that transmitter were to use TSC 0 (IEEE 802.11 * described TSC to be initialized to 1 whenever a new key is taken into * use). */ if (iv32 < rx_ctx->iv32 || (iv32 == rx_ctx->iv32 && (iv16 < rx_ctx->iv16 || (iv16 == rx_ctx->iv16 && (rx_ctx->iv32 || rx_ctx->iv16 || rx_ctx->ctx.state != TKIP_STATE_NOT_INIT))))) return TKIP_DECRYPT_REPLAY; if (only_iv) { res = TKIP_DECRYPT_OK; rx_ctx->ctx.state = TKIP_STATE_PHASE1_HW_UPLOADED; goto done; } if (rx_ctx->ctx.state == TKIP_STATE_NOT_INIT || rx_ctx->iv32 != iv32) { /* IV16 wrapped around - perform TKIP phase 1 */ tkip_mixing_phase1(tk, &rx_ctx->ctx, ta, iv32); } if (key->local->ops->update_tkip_key && key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && rx_ctx->ctx.state != TKIP_STATE_PHASE1_HW_UPLOADED) { struct ieee80211_sub_if_data *sdata = key->sdata; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(key->sdata->bss, struct ieee80211_sub_if_data, u.ap); drv_update_tkip_key(key->local, sdata, &key->conf, key->sta, iv32, rx_ctx->ctx.p1k); rx_ctx->ctx.state = TKIP_STATE_PHASE1_HW_UPLOADED; } tkip_mixing_phase2(tk, &rx_ctx->ctx, iv16, rc4key); res = ieee80211_wep_decrypt_data(ctx, rc4key, 16, pos, payload_len - 12); done: if (res == TKIP_DECRYPT_OK) { /* * Record previously received IV, will be copied into the * key information after MIC verification. It is possible * that we don't catch replays of fragments but that's ok * because the Michael MIC verication will then fail. */ *out_iv32 = iv32; *out_iv16 = iv16; } return res; }
linux-master
net/mac80211/tkip.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2012-2013, Marco Porsch <[email protected]> * Copyright 2012-2013, cozybit Inc. * Copyright (C) 2021 Intel Corporation * Copyright (C) 2023 Intel Corporation */ #include "mesh.h" #include "wme.h" /* mesh PS management */ /** * mps_qos_null_get - create pre-addressed QoS Null frame for mesh powersave * @sta: the station to get the frame for */ static struct sk_buff *mps_qos_null_get(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_hdr *nullfunc; /* use 4addr header */ struct sk_buff *skb; int size = sizeof(*nullfunc); __le16 fc; skb = dev_alloc_skb(local->hw.extra_tx_headroom + size + 2); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = skb_put(skb, size); fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC); ieee80211_fill_mesh_addresses(nullfunc, &fc, sta->sta.addr, sdata->vif.addr); nullfunc->frame_control = fc; nullfunc->duration_id = 0; nullfunc->seq_ctrl = 0; /* no address resolution for this frame -> set addr 1 immediately */ memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); skb_put_zero(skb, 2); /* append QoS control field */ ieee80211_mps_set_frame_flags(sdata, sta, nullfunc); return skb; } /** * mps_qos_null_tx - send a QoS Null to indicate link-specific power mode * @sta: the station to send to */ static void mps_qos_null_tx(struct sta_info *sta) { struct sk_buff *skb; skb = mps_qos_null_get(sta); if (!skb) return; mps_dbg(sta->sdata, "announcing peer-specific power mode to %pM\n", sta->sta.addr); /* don't unintentionally start a MPSP */ if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { u8 *qc = ieee80211_get_qos_ctl((void *) skb->data); qc[0] |= IEEE80211_QOS_CTL_EOSP; } ieee80211_tx_skb(sta->sdata, skb); } /** * ieee80211_mps_local_status_update - track status of local link-specific PMs * * @sdata: local mesh subif * * sets the non-peer power mode and triggers the driver PS (re-)configuration * Return BSS_CHANGED_BEACON if a beacon update is necessary. */ u64 ieee80211_mps_local_status_update(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct sta_info *sta; bool peering = false; int light_sleep_cnt = 0; int deep_sleep_cnt = 0; u64 changed = 0; enum nl80211_mesh_power_mode nonpeer_pm; rcu_read_lock(); list_for_each_entry_rcu(sta, &sdata->local->sta_list, list) { if (sdata != sta->sdata) continue; switch (sta->mesh->plink_state) { case NL80211_PLINK_OPN_SNT: case NL80211_PLINK_OPN_RCVD: case NL80211_PLINK_CNF_RCVD: peering = true; break; case NL80211_PLINK_ESTAB: if (sta->mesh->local_pm == NL80211_MESH_POWER_LIGHT_SLEEP) light_sleep_cnt++; else if (sta->mesh->local_pm == NL80211_MESH_POWER_DEEP_SLEEP) deep_sleep_cnt++; break; default: break; } } rcu_read_unlock(); /* * Set non-peer mode to active during peering/scanning/authentication * (see IEEE802.11-2012 13.14.8.3). The non-peer mesh power mode is * deep sleep if the local STA is in light or deep sleep towards at * least one mesh peer (see 13.14.3.1). Otherwise, set it to the * user-configured default value. */ if (peering) { mps_dbg(sdata, "setting non-peer PM to active for peering\n"); nonpeer_pm = NL80211_MESH_POWER_ACTIVE; } else if (light_sleep_cnt || deep_sleep_cnt) { mps_dbg(sdata, "setting non-peer PM to deep sleep\n"); nonpeer_pm = NL80211_MESH_POWER_DEEP_SLEEP; } else { mps_dbg(sdata, "setting non-peer PM to user value\n"); nonpeer_pm = ifmsh->mshcfg.power_mode; } /* need update if sleep counts move between 0 and non-zero */ if (ifmsh->nonpeer_pm != nonpeer_pm || !ifmsh->ps_peers_light_sleep != !light_sleep_cnt || !ifmsh->ps_peers_deep_sleep != !deep_sleep_cnt) changed = BSS_CHANGED_BEACON; ifmsh->nonpeer_pm = nonpeer_pm; ifmsh->ps_peers_light_sleep = light_sleep_cnt; ifmsh->ps_peers_deep_sleep = deep_sleep_cnt; return changed; } /** * ieee80211_mps_set_sta_local_pm - set local PM towards a mesh STA * * @sta: mesh STA * @pm: the power mode to set * Return BSS_CHANGED_BEACON if a beacon update is in order. */ u64 ieee80211_mps_set_sta_local_pm(struct sta_info *sta, enum nl80211_mesh_power_mode pm) { struct ieee80211_sub_if_data *sdata = sta->sdata; if (sta->mesh->local_pm == pm) return 0; mps_dbg(sdata, "local STA operates in mode %d with %pM\n", pm, sta->sta.addr); sta->mesh->local_pm = pm; /* * announce peer-specific power mode transition * (see IEEE802.11-2012 13.14.3.2 and 13.14.3.3) */ if (sta->mesh->plink_state == NL80211_PLINK_ESTAB) mps_qos_null_tx(sta); return ieee80211_mps_local_status_update(sdata); } /** * ieee80211_mps_set_frame_flags - set mesh PS flags in FC (and QoS Control) * * @sdata: local mesh subif * @sta: mesh STA * @hdr: 802.11 frame header * * see IEEE802.11-2012 8.2.4.1.7 and 8.2.4.5.11 * * NOTE: sta must be given when an individually-addressed QoS frame header * is handled, for group-addressed and management frames it is not used */ void ieee80211_mps_set_frame_flags(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_hdr *hdr) { enum nl80211_mesh_power_mode pm; u8 *qc; if (WARN_ON(is_unicast_ether_addr(hdr->addr1) && ieee80211_is_data_qos(hdr->frame_control) && !sta)) return; if (is_unicast_ether_addr(hdr->addr1) && ieee80211_is_data_qos(hdr->frame_control) && sta->mesh->plink_state == NL80211_PLINK_ESTAB) pm = sta->mesh->local_pm; else pm = sdata->u.mesh.nonpeer_pm; if (pm == NL80211_MESH_POWER_ACTIVE) hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_PM); else hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); if (!ieee80211_is_data_qos(hdr->frame_control)) return; qc = ieee80211_get_qos_ctl(hdr); if ((is_unicast_ether_addr(hdr->addr1) && pm == NL80211_MESH_POWER_DEEP_SLEEP) || (is_multicast_ether_addr(hdr->addr1) && sdata->u.mesh.ps_peers_deep_sleep > 0)) qc[1] |= (IEEE80211_QOS_CTL_MESH_PS_LEVEL >> 8); else qc[1] &= ~(IEEE80211_QOS_CTL_MESH_PS_LEVEL >> 8); } /** * ieee80211_mps_sta_status_update - update buffering status of neighbor STA * * @sta: mesh STA * * called after change of peering status or non-peer/peer-specific power mode */ void ieee80211_mps_sta_status_update(struct sta_info *sta) { enum nl80211_mesh_power_mode pm; bool do_buffer; /* For non-assoc STA, prevent buffering or frame transmission */ if (sta->sta_state < IEEE80211_STA_ASSOC) return; /* * use peer-specific power mode if peering is established and the * peer's power mode is known */ if (sta->mesh->plink_state == NL80211_PLINK_ESTAB && sta->mesh->peer_pm != NL80211_MESH_POWER_UNKNOWN) pm = sta->mesh->peer_pm; else pm = sta->mesh->nonpeer_pm; do_buffer = (pm != NL80211_MESH_POWER_ACTIVE); /* clear the MPSP flags for non-peers or active STA */ if (sta->mesh->plink_state != NL80211_PLINK_ESTAB) { clear_sta_flag(sta, WLAN_STA_MPSP_OWNER); clear_sta_flag(sta, WLAN_STA_MPSP_RECIPIENT); } else if (!do_buffer) { clear_sta_flag(sta, WLAN_STA_MPSP_OWNER); } /* Don't let the same PS state be set twice */ if (test_sta_flag(sta, WLAN_STA_PS_STA) == do_buffer) return; if (do_buffer) { set_sta_flag(sta, WLAN_STA_PS_STA); atomic_inc(&sta->sdata->u.mesh.ps.num_sta_ps); mps_dbg(sta->sdata, "start PS buffering frames towards %pM\n", sta->sta.addr); } else { ieee80211_sta_ps_deliver_wakeup(sta); } } static void mps_set_sta_peer_pm(struct sta_info *sta, struct ieee80211_hdr *hdr) { enum nl80211_mesh_power_mode pm; u8 *qc = ieee80211_get_qos_ctl(hdr); /* * Test Power Management field of frame control (PW) and * mesh power save level subfield of QoS control field (PSL) * * | PM | PSL| Mesh PM | * +----+----+---------+ * | 0 |Rsrv| Active | * | 1 | 0 | Light | * | 1 | 1 | Deep | */ if (ieee80211_has_pm(hdr->frame_control)) { if (qc[1] & (IEEE80211_QOS_CTL_MESH_PS_LEVEL >> 8)) pm = NL80211_MESH_POWER_DEEP_SLEEP; else pm = NL80211_MESH_POWER_LIGHT_SLEEP; } else { pm = NL80211_MESH_POWER_ACTIVE; } if (sta->mesh->peer_pm == pm) return; mps_dbg(sta->sdata, "STA %pM enters mode %d\n", sta->sta.addr, pm); sta->mesh->peer_pm = pm; ieee80211_mps_sta_status_update(sta); } static void mps_set_sta_nonpeer_pm(struct sta_info *sta, struct ieee80211_hdr *hdr) { enum nl80211_mesh_power_mode pm; if (ieee80211_has_pm(hdr->frame_control)) pm = NL80211_MESH_POWER_DEEP_SLEEP; else pm = NL80211_MESH_POWER_ACTIVE; if (sta->mesh->nonpeer_pm == pm) return; mps_dbg(sta->sdata, "STA %pM sets non-peer mode to %d\n", sta->sta.addr, pm); sta->mesh->nonpeer_pm = pm; ieee80211_mps_sta_status_update(sta); } /** * ieee80211_mps_rx_h_sta_process - frame receive handler for mesh powersave * * @sta: STA info that transmitted the frame * @hdr: IEEE 802.11 (QoS) Header */ void ieee80211_mps_rx_h_sta_process(struct sta_info *sta, struct ieee80211_hdr *hdr) { if (is_unicast_ether_addr(hdr->addr1) && ieee80211_is_data_qos(hdr->frame_control)) { /* * individually addressed QoS Data/Null frames contain * peer link-specific PS mode towards the local STA */ mps_set_sta_peer_pm(sta, hdr); /* check for mesh Peer Service Period trigger frames */ ieee80211_mpsp_trigger_process(ieee80211_get_qos_ctl(hdr), sta, false, false); } else { /* * can only determine non-peer PS mode * (see IEEE802.11-2012 8.2.4.1.7) */ mps_set_sta_nonpeer_pm(sta, hdr); } } /* mesh PS frame release */ static void mpsp_trigger_send(struct sta_info *sta, bool rspi, bool eosp) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct sk_buff *skb; struct ieee80211_hdr *nullfunc; struct ieee80211_tx_info *info; u8 *qc; skb = mps_qos_null_get(sta); if (!skb) return; nullfunc = (struct ieee80211_hdr *) skb->data; if (!eosp) nullfunc->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); /* * | RSPI | EOSP | MPSP triggering | * +------+------+--------------------+ * | 0 | 0 | local STA is owner | * | 0 | 1 | no MPSP (MPSP end) | * | 1 | 0 | both STA are owner | * | 1 | 1 | peer STA is owner | see IEEE802.11-2012 13.14.9.2 */ qc = ieee80211_get_qos_ctl(nullfunc); if (rspi) qc[1] |= (IEEE80211_QOS_CTL_RSPI >> 8); if (eosp) qc[0] |= IEEE80211_QOS_CTL_EOSP; info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | IEEE80211_TX_CTL_REQ_TX_STATUS; mps_dbg(sdata, "sending MPSP trigger%s%s to %pM\n", rspi ? " RSPI" : "", eosp ? " EOSP" : "", sta->sta.addr); ieee80211_tx_skb(sdata, skb); } /** * mpsp_qos_null_append - append QoS Null frame to MPSP skb queue if needed * @sta: the station to handle * @frames: the frame list to append to * * To properly end a mesh MPSP the last transmitted frame has to set the EOSP * flag in the QoS Control field. In case the current tailing frame is not a * QoS Data frame, append a QoS Null to carry the flag. */ static void mpsp_qos_null_append(struct sta_info *sta, struct sk_buff_head *frames) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct sk_buff *new_skb, *skb = skb_peek_tail(frames); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info; if (ieee80211_is_data_qos(hdr->frame_control)) return; new_skb = mps_qos_null_get(sta); if (!new_skb) return; mps_dbg(sdata, "appending QoS Null in MPSP towards %pM\n", sta->sta.addr); /* * This frame has to be transmitted last. Assign lowest priority to * make sure it cannot pass other frames when releasing multiple ACs. */ new_skb->priority = 1; skb_set_queue_mapping(new_skb, IEEE80211_AC_BK); ieee80211_set_qos_hdr(sdata, new_skb); info = IEEE80211_SKB_CB(new_skb); info->control.vif = &sdata->vif; info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; __skb_queue_tail(frames, new_skb); } /** * mps_frame_deliver - transmit frames during mesh powersave * * @sta: STA info to transmit to * @n_frames: number of frames to transmit. -1 for all */ static void mps_frame_deliver(struct sta_info *sta, int n_frames) { struct ieee80211_local *local = sta->sdata->local; int ac; struct sk_buff_head frames; struct sk_buff *skb; bool more_data = false; skb_queue_head_init(&frames); /* collect frame(s) from buffers */ for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { while (n_frames != 0) { skb = skb_dequeue(&sta->tx_filtered[ac]); if (!skb) { skb = skb_dequeue( &sta->ps_tx_buf[ac]); if (skb) local->total_ps_buffered--; } if (!skb) break; n_frames--; __skb_queue_tail(&frames, skb); } if (!skb_queue_empty(&sta->tx_filtered[ac]) || !skb_queue_empty(&sta->ps_tx_buf[ac])) more_data = true; } /* nothing to send? -> EOSP */ if (skb_queue_empty(&frames)) { mpsp_trigger_send(sta, false, true); return; } /* in a MPSP make sure the last skb is a QoS Data frame */ if (test_sta_flag(sta, WLAN_STA_MPSP_OWNER)) mpsp_qos_null_append(sta, &frames); mps_dbg(sta->sdata, "sending %d frames to PS STA %pM\n", skb_queue_len(&frames), sta->sta.addr); /* prepare collected frames for transmission */ skb_queue_walk(&frames, skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *) skb->data; /* * Tell TX path to send this frame even though the * STA may still remain is PS mode after this frame * exchange. */ info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; if (more_data || !skb_queue_is_last(&frames, skb)) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); else hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA); if (skb_queue_is_last(&frames, skb) && ieee80211_is_data_qos(hdr->frame_control)) { u8 *qoshdr = ieee80211_get_qos_ctl(hdr); /* MPSP trigger frame ends service period */ *qoshdr |= IEEE80211_QOS_CTL_EOSP; info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; } } ieee80211_add_pending_skbs(local, &frames); sta_info_recalc_tim(sta); } /** * ieee80211_mpsp_trigger_process - track status of mesh Peer Service Periods * * @qc: QoS Control field * @sta: peer to start a MPSP with * @tx: frame was transmitted by the local STA * @acked: frame has been transmitted successfully * * NOTE: active mode STA may only serve as MPSP owner */ void ieee80211_mpsp_trigger_process(u8 *qc, struct sta_info *sta, bool tx, bool acked) { u8 rspi = qc[1] & (IEEE80211_QOS_CTL_RSPI >> 8); u8 eosp = qc[0] & IEEE80211_QOS_CTL_EOSP; if (tx) { if (rspi && acked) set_sta_flag(sta, WLAN_STA_MPSP_RECIPIENT); if (eosp) clear_sta_flag(sta, WLAN_STA_MPSP_OWNER); else if (acked && test_sta_flag(sta, WLAN_STA_PS_STA) && !test_and_set_sta_flag(sta, WLAN_STA_MPSP_OWNER)) mps_frame_deliver(sta, -1); } else { if (eosp) clear_sta_flag(sta, WLAN_STA_MPSP_RECIPIENT); else if (sta->mesh->local_pm != NL80211_MESH_POWER_ACTIVE) set_sta_flag(sta, WLAN_STA_MPSP_RECIPIENT); if (rspi && !test_and_set_sta_flag(sta, WLAN_STA_MPSP_OWNER)) mps_frame_deliver(sta, -1); } } /** * ieee80211_mps_frame_release - release frames buffered due to mesh power save * * @sta: mesh STA * @elems: IEs of beacon or probe response * * For peers if we have individually-addressed frames buffered or the peer * indicates buffered frames, send a corresponding MPSP trigger frame. Since * we do not evaluate the awake window duration, QoS Nulls are used as MPSP * trigger frames. If the neighbour STA is not a peer, only send single frames. */ void ieee80211_mps_frame_release(struct sta_info *sta, struct ieee802_11_elems *elems) { int ac, buffer_local = 0; bool has_buffered = false; if (sta->mesh->plink_state == NL80211_PLINK_ESTAB) has_buffered = ieee80211_check_tim(elems->tim, elems->tim_len, sta->mesh->aid); if (has_buffered) mps_dbg(sta->sdata, "%pM indicates buffered frames\n", sta->sta.addr); /* only transmit to PS STA with announced, non-zero awake window */ if (test_sta_flag(sta, WLAN_STA_PS_STA) && (!elems->awake_window || !get_unaligned_le16(elems->awake_window))) return; if (!test_sta_flag(sta, WLAN_STA_MPSP_OWNER)) for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) buffer_local += skb_queue_len(&sta->ps_tx_buf[ac]) + skb_queue_len(&sta->tx_filtered[ac]); if (!has_buffered && !buffer_local) return; if (sta->mesh->plink_state == NL80211_PLINK_ESTAB) mpsp_trigger_send(sta, has_buffered, !buffer_local); else mps_frame_deliver(sta, 1); }
linux-master
net/mac80211/mesh_ps.c
// SPDX-License-Identifier: GPL-2.0-only /* * FILS AEAD for (Re)Association Request/Response frames * Copyright 2016, Qualcomm Atheros, Inc. */ #include <crypto/aes.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include <crypto/utils.h> #include "ieee80211_i.h" #include "aes_cmac.h" #include "fils_aead.h" static void gf_mulx(u8 *pad) { u64 a = get_unaligned_be64(pad); u64 b = get_unaligned_be64(pad + 8); put_unaligned_be64((a << 1) | (b >> 63), pad); put_unaligned_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0), pad + 8); } static int aes_s2v(struct crypto_shash *tfm, size_t num_elem, const u8 *addr[], size_t len[], u8 *v) { u8 d[AES_BLOCK_SIZE], tmp[AES_BLOCK_SIZE] = {}; SHASH_DESC_ON_STACK(desc, tfm); size_t i; desc->tfm = tfm; /* D = AES-CMAC(K, <zero>) */ crypto_shash_digest(desc, tmp, AES_BLOCK_SIZE, d); for (i = 0; i < num_elem - 1; i++) { /* D = dbl(D) xor AES_CMAC(K, Si) */ gf_mulx(d); /* dbl */ crypto_shash_digest(desc, addr[i], len[i], tmp); crypto_xor(d, tmp, AES_BLOCK_SIZE); } crypto_shash_init(desc); if (len[i] >= AES_BLOCK_SIZE) { /* len(Sn) >= 128 */ /* T = Sn xorend D */ crypto_shash_update(desc, addr[i], len[i] - AES_BLOCK_SIZE); crypto_xor(d, addr[i] + len[i] - AES_BLOCK_SIZE, AES_BLOCK_SIZE); } else { /* len(Sn) < 128 */ /* T = dbl(D) xor pad(Sn) */ gf_mulx(d); /* dbl */ crypto_xor(d, addr[i], len[i]); d[len[i]] ^= 0x80; } /* V = AES-CMAC(K, T) */ crypto_shash_finup(desc, d, AES_BLOCK_SIZE, v); return 0; } /* Note: addr[] and len[] needs to have one extra slot at the end. */ static int aes_siv_encrypt(const u8 *key, size_t key_len, const u8 *plain, size_t plain_len, size_t num_elem, const u8 *addr[], size_t len[], u8 *out) { u8 v[AES_BLOCK_SIZE]; struct crypto_shash *tfm; struct crypto_skcipher *tfm2; struct skcipher_request *req; int res; struct scatterlist src[1], dst[1]; u8 *tmp; key_len /= 2; /* S2V key || CTR key */ addr[num_elem] = plain; len[num_elem] = plain_len; num_elem++; /* S2V */ tfm = crypto_alloc_shash("cmac(aes)", 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); /* K1 for S2V */ res = crypto_shash_setkey(tfm, key, key_len); if (!res) res = aes_s2v(tfm, num_elem, addr, len, v); crypto_free_shash(tfm); if (res) return res; /* Use a temporary buffer of the plaintext to handle need for * overwriting this during AES-CTR. */ tmp = kmemdup(plain, plain_len, GFP_KERNEL); if (!tmp) return -ENOMEM; /* IV for CTR before encrypted data */ memcpy(out, v, AES_BLOCK_SIZE); /* Synthetic IV to be used as the initial counter in CTR: * Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31) */ v[8] &= 0x7f; v[12] &= 0x7f; /* CTR */ tfm2 = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm2)) { kfree(tmp); return PTR_ERR(tfm2); } /* K2 for CTR */ res = crypto_skcipher_setkey(tfm2, key + key_len, key_len); if (res) goto fail; req = skcipher_request_alloc(tfm2, GFP_KERNEL); if (!req) { res = -ENOMEM; goto fail; } sg_init_one(src, tmp, plain_len); sg_init_one(dst, out + AES_BLOCK_SIZE, plain_len); skcipher_request_set_crypt(req, src, dst, plain_len, v); res = crypto_skcipher_encrypt(req); skcipher_request_free(req); fail: kfree(tmp); crypto_free_skcipher(tfm2); return res; } /* Note: addr[] and len[] needs to have one extra slot at the end. */ static int aes_siv_decrypt(const u8 *key, size_t key_len, const u8 *iv_crypt, size_t iv_c_len, size_t num_elem, const u8 *addr[], size_t len[], u8 *out) { struct crypto_shash *tfm; struct crypto_skcipher *tfm2; struct skcipher_request *req; struct scatterlist src[1], dst[1]; size_t crypt_len; int res; u8 frame_iv[AES_BLOCK_SIZE], iv[AES_BLOCK_SIZE]; u8 check[AES_BLOCK_SIZE]; crypt_len = iv_c_len - AES_BLOCK_SIZE; key_len /= 2; /* S2V key || CTR key */ addr[num_elem] = out; len[num_elem] = crypt_len; num_elem++; memcpy(iv, iv_crypt, AES_BLOCK_SIZE); memcpy(frame_iv, iv_crypt, AES_BLOCK_SIZE); /* Synthetic IV to be used as the initial counter in CTR: * Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31) */ iv[8] &= 0x7f; iv[12] &= 0x7f; /* CTR */ tfm2 = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm2)) return PTR_ERR(tfm2); /* K2 for CTR */ res = crypto_skcipher_setkey(tfm2, key + key_len, key_len); if (res) { crypto_free_skcipher(tfm2); return res; } req = skcipher_request_alloc(tfm2, GFP_KERNEL); if (!req) { crypto_free_skcipher(tfm2); return -ENOMEM; } sg_init_one(src, iv_crypt + AES_BLOCK_SIZE, crypt_len); sg_init_one(dst, out, crypt_len); skcipher_request_set_crypt(req, src, dst, crypt_len, iv); res = crypto_skcipher_decrypt(req); skcipher_request_free(req); crypto_free_skcipher(tfm2); if (res) return res; /* S2V */ tfm = crypto_alloc_shash("cmac(aes)", 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); /* K1 for S2V */ res = crypto_shash_setkey(tfm, key, key_len); if (!res) res = aes_s2v(tfm, num_elem, addr, len, check); crypto_free_shash(tfm); if (res) return res; if (memcmp(check, frame_iv, AES_BLOCK_SIZE) != 0) return -EINVAL; return 0; } int fils_encrypt_assoc_req(struct sk_buff *skb, struct ieee80211_mgd_assoc_data *assoc_data) { struct ieee80211_mgmt *mgmt = (void *)skb->data; u8 *capab, *ies, *encr; const u8 *addr[5 + 1]; const struct element *session; size_t len[5 + 1]; size_t crypt_len; if (ieee80211_is_reassoc_req(mgmt->frame_control)) { capab = (u8 *)&mgmt->u.reassoc_req.capab_info; ies = mgmt->u.reassoc_req.variable; } else { capab = (u8 *)&mgmt->u.assoc_req.capab_info; ies = mgmt->u.assoc_req.variable; } session = cfg80211_find_ext_elem(WLAN_EID_EXT_FILS_SESSION, ies, skb->data + skb->len - ies); if (!session || session->datalen != 1 + 8) return -EINVAL; /* encrypt after FILS Session element */ encr = (u8 *)session->data + 1 + 8; /* AES-SIV AAD vectors */ /* The STA's MAC address */ addr[0] = mgmt->sa; len[0] = ETH_ALEN; /* The AP's BSSID */ addr[1] = mgmt->da; len[1] = ETH_ALEN; /* The STA's nonce */ addr[2] = assoc_data->fils_nonces; len[2] = FILS_NONCE_LEN; /* The AP's nonce */ addr[3] = &assoc_data->fils_nonces[FILS_NONCE_LEN]; len[3] = FILS_NONCE_LEN; /* The (Re)Association Request frame from the Capability Information * field to the FILS Session element (both inclusive). */ addr[4] = capab; len[4] = encr - capab; crypt_len = skb->data + skb->len - encr; skb_put(skb, AES_BLOCK_SIZE); return aes_siv_encrypt(assoc_data->fils_kek, assoc_data->fils_kek_len, encr, crypt_len, 5, addr, len, encr); } int fils_decrypt_assoc_resp(struct ieee80211_sub_if_data *sdata, u8 *frame, size_t *frame_len, struct ieee80211_mgd_assoc_data *assoc_data) { struct ieee80211_mgmt *mgmt = (void *)frame; u8 *capab, *ies, *encr; const u8 *addr[5 + 1]; const struct element *session; size_t len[5 + 1]; int res; size_t crypt_len; if (*frame_len < 24 + 6) return -EINVAL; capab = (u8 *)&mgmt->u.assoc_resp.capab_info; ies = mgmt->u.assoc_resp.variable; session = cfg80211_find_ext_elem(WLAN_EID_EXT_FILS_SESSION, ies, frame + *frame_len - ies); if (!session || session->datalen != 1 + 8) { mlme_dbg(sdata, "No (valid) FILS Session element in (Re)Association Response frame from %pM", mgmt->sa); return -EINVAL; } /* decrypt after FILS Session element */ encr = (u8 *)session->data + 1 + 8; /* AES-SIV AAD vectors */ /* The AP's BSSID */ addr[0] = mgmt->sa; len[0] = ETH_ALEN; /* The STA's MAC address */ addr[1] = mgmt->da; len[1] = ETH_ALEN; /* The AP's nonce */ addr[2] = &assoc_data->fils_nonces[FILS_NONCE_LEN]; len[2] = FILS_NONCE_LEN; /* The STA's nonce */ addr[3] = assoc_data->fils_nonces; len[3] = FILS_NONCE_LEN; /* The (Re)Association Response frame from the Capability Information * field to the FILS Session element (both inclusive). */ addr[4] = capab; len[4] = encr - capab; crypt_len = frame + *frame_len - encr; if (crypt_len < AES_BLOCK_SIZE) { mlme_dbg(sdata, "Not enough room for AES-SIV data after FILS Session element in (Re)Association Response frame from %pM", mgmt->sa); return -EINVAL; } res = aes_siv_decrypt(assoc_data->fils_kek, assoc_data->fils_kek_len, encr, crypt_len, 5, addr, len, encr); if (res != 0) { mlme_dbg(sdata, "AES-SIV decryption of (Re)Association Response frame from %pM failed", mgmt->sa); return res; } *frame_len -= AES_BLOCK_SIZE; return 0; }
linux-master
net/mac80211/fils_aead.c
/* * net/ife/ife.c - Inter-FE protocol based on ForCES WG InterFE LFB * Copyright (c) 2015 Jamal Hadi Salim <[email protected]> * Copyright (c) 2017 Yotam Gigi <[email protected]> * * Refer to: draft-ietf-forces-interfelfb-03 and netdev01 paper: * "Distributing Linux Traffic Control Classifier-Action Subsystem" * Authors: Jamal Hadi Salim and Damascene M. Joachimpillai * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/module.h> #include <linux/init.h> #include <net/net_namespace.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <linux/etherdevice.h> #include <net/ife.h> struct ifeheadr { __be16 metalen; u8 tlv_data[]; }; void *ife_encode(struct sk_buff *skb, u16 metalen) { /* OUTERHDR:TOTMETALEN:{TLVHDR:Metadatum:TLVHDR..}:ORIGDATA * where ORIGDATA = original ethernet header ... */ int hdrm = metalen + IFE_METAHDRLEN; int total_push = hdrm + skb->dev->hard_header_len; struct ifeheadr *ifehdr; struct ethhdr *iethh; /* inner ether header */ int skboff = 0; int err; err = skb_cow_head(skb, total_push); if (unlikely(err)) return NULL; iethh = (struct ethhdr *) skb->data; __skb_push(skb, total_push); memcpy(skb->data, iethh, skb->dev->hard_header_len); skb_reset_mac_header(skb); skboff += skb->dev->hard_header_len; /* total metadata length */ ifehdr = (struct ifeheadr *) (skb->data + skboff); metalen += IFE_METAHDRLEN; ifehdr->metalen = htons(metalen); return ifehdr->tlv_data; } EXPORT_SYMBOL_GPL(ife_encode); void *ife_decode(struct sk_buff *skb, u16 *metalen) { struct ifeheadr *ifehdr; int total_pull; u16 ifehdrln; if (!pskb_may_pull(skb, skb->dev->hard_header_len + IFE_METAHDRLEN)) return NULL; ifehdr = (struct ifeheadr *) (skb->data + skb->dev->hard_header_len); ifehdrln = ntohs(ifehdr->metalen); total_pull = skb->dev->hard_header_len + ifehdrln; if (unlikely(ifehdrln < 2)) return NULL; if (unlikely(!pskb_may_pull(skb, total_pull))) return NULL; skb_set_mac_header(skb, total_pull); __skb_pull(skb, total_pull); *metalen = ifehdrln - IFE_METAHDRLEN; return &ifehdr->tlv_data; } EXPORT_SYMBOL_GPL(ife_decode); struct meta_tlvhdr { __be16 type; __be16 len; }; static bool __ife_tlv_meta_valid(const unsigned char *skbdata, const unsigned char *ifehdr_end) { const struct meta_tlvhdr *tlv; u16 tlvlen; if (unlikely(skbdata + sizeof(*tlv) > ifehdr_end)) return false; tlv = (const struct meta_tlvhdr *)skbdata; tlvlen = ntohs(tlv->len); /* tlv length field is inc header, check on minimum */ if (tlvlen < NLA_HDRLEN) return false; /* overflow by NLA_ALIGN check */ if (NLA_ALIGN(tlvlen) < tlvlen) return false; if (unlikely(skbdata + NLA_ALIGN(tlvlen) > ifehdr_end)) return false; return true; } /* Caller takes care of presenting data in network order */ void *ife_tlv_meta_decode(void *skbdata, const void *ifehdr_end, u16 *attrtype, u16 *dlen, u16 *totlen) { struct meta_tlvhdr *tlv; if (!__ife_tlv_meta_valid(skbdata, ifehdr_end)) return NULL; tlv = (struct meta_tlvhdr *)skbdata; *dlen = ntohs(tlv->len) - NLA_HDRLEN; *attrtype = ntohs(tlv->type); if (totlen) *totlen = nla_total_size(*dlen); return skbdata + sizeof(struct meta_tlvhdr); } EXPORT_SYMBOL_GPL(ife_tlv_meta_decode); void *ife_tlv_meta_next(void *skbdata) { struct meta_tlvhdr *tlv = (struct meta_tlvhdr *) skbdata; u16 tlvlen = ntohs(tlv->len); tlvlen = NLA_ALIGN(tlvlen); return skbdata + tlvlen; } EXPORT_SYMBOL_GPL(ife_tlv_meta_next); /* Caller takes care of presenting data in network order */ int ife_tlv_meta_encode(void *skbdata, u16 attrtype, u16 dlen, const void *dval) { __be32 *tlv = (__be32 *) (skbdata); u16 totlen = nla_total_size(dlen); /*alignment + hdr */ char *dptr = (char *) tlv + NLA_HDRLEN; u32 htlv = attrtype << 16 | (dlen + NLA_HDRLEN); *tlv = htonl(htlv); memset(dptr, 0, totlen - NLA_HDRLEN); memcpy(dptr, dval, dlen); return totlen; } EXPORT_SYMBOL_GPL(ife_tlv_meta_encode); MODULE_AUTHOR("Jamal Hadi Salim <[email protected]>"); MODULE_AUTHOR("Yotam Gigi <[email protected]>"); MODULE_DESCRIPTION("Inter-FE LFB action"); MODULE_LICENSE("GPL");
linux-master
net/ife/ife.c
/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/percpu.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include "rds.h" #include "ib.h" DEFINE_PER_CPU_SHARED_ALIGNED(struct rds_ib_statistics, rds_ib_stats); static const char *const rds_ib_stat_names[] = { "ib_connect_raced", "ib_listen_closed_stale", "ib_evt_handler_call", "ib_tasklet_call", "ib_tx_cq_event", "ib_tx_ring_full", "ib_tx_throttle", "ib_tx_sg_mapping_failure", "ib_tx_stalled", "ib_tx_credit_updates", "ib_rx_cq_event", "ib_rx_ring_empty", "ib_rx_refill_from_cq", "ib_rx_refill_from_thread", "ib_rx_alloc_limit", "ib_rx_total_frags", "ib_rx_total_incs", "ib_rx_credit_updates", "ib_ack_sent", "ib_ack_send_failure", "ib_ack_send_delayed", "ib_ack_send_piggybacked", "ib_ack_received", "ib_rdma_mr_8k_alloc", "ib_rdma_mr_8k_free", "ib_rdma_mr_8k_used", "ib_rdma_mr_8k_pool_flush", "ib_rdma_mr_8k_pool_wait", "ib_rdma_mr_8k_pool_depleted", "ib_rdma_mr_1m_alloc", "ib_rdma_mr_1m_free", "ib_rdma_mr_1m_used", "ib_rdma_mr_1m_pool_flush", "ib_rdma_mr_1m_pool_wait", "ib_rdma_mr_1m_pool_depleted", "ib_rdma_mr_8k_reused", "ib_rdma_mr_1m_reused", "ib_atomic_cswp", "ib_atomic_fadd", }; unsigned int rds_ib_stats_info_copy(struct rds_info_iterator *iter, unsigned int avail) { struct rds_ib_statistics stats = {0, }; uint64_t *src; uint64_t *sum; size_t i; int cpu; if (avail < ARRAY_SIZE(rds_ib_stat_names)) goto out; for_each_online_cpu(cpu) { src = (uint64_t *)&(per_cpu(rds_ib_stats, cpu)); sum = (uint64_t *)&stats; for (i = 0; i < sizeof(stats) / sizeof(uint64_t); i++) *(sum++) += *(src++); } rds_stats_info_copy(iter, (uint64_t *)&stats, rds_ib_stat_names, ARRAY_SIZE(rds_ib_stat_names)); out: return ARRAY_SIZE(rds_ib_stat_names); }
linux-master
net/rds/ib_stats.c
/* * Copyright (c) 2007, 2017 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/slab.h> #include <linux/types.h> #include <linux/rbtree.h> #include <linux/bitops.h> #include <linux/export.h> #include "rds.h" /* * This file implements the receive side of the unconventional congestion * management in RDS. * * Messages waiting in the receive queue on the receiving socket are accounted * against the sockets SO_RCVBUF option value. Only the payload bytes in the * message are accounted for. If the number of bytes queued equals or exceeds * rcvbuf then the socket is congested. All sends attempted to this socket's * address should return block or return -EWOULDBLOCK. * * Applications are expected to be reasonably tuned such that this situation * very rarely occurs. An application encountering this "back-pressure" is * considered a bug. * * This is implemented by having each node maintain bitmaps which indicate * which ports on bound addresses are congested. As the bitmap changes it is * sent through all the connections which terminate in the local address of the * bitmap which changed. * * The bitmaps are allocated as connections are brought up. This avoids * allocation in the interrupt handling path which queues messages on sockets. * The dense bitmaps let transports send the entire bitmap on any bitmap change * reasonably efficiently. This is much easier to implement than some * finer-grained communication of per-port congestion. The sender does a very * inexpensive bit test to test if the port it's about to send to is congested * or not. */ /* * Interaction with poll is a tad tricky. We want all processes stuck in * poll to wake up and check whether a congested destination became uncongested. * The really sad thing is we have no idea which destinations the application * wants to send to - we don't even know which rds_connections are involved. * So until we implement a more flexible rds poll interface, we have to make * do with this: * We maintain a global counter that is incremented each time a congestion map * update is received. Each rds socket tracks this value, and if rds_poll * finds that the saved generation number is smaller than the global generation * number, it wakes up the process. */ static atomic_t rds_cong_generation = ATOMIC_INIT(0); /* * Congestion monitoring */ static LIST_HEAD(rds_cong_monitor); static DEFINE_RWLOCK(rds_cong_monitor_lock); /* * Yes, a global lock. It's used so infrequently that it's worth keeping it * global to simplify the locking. It's only used in the following * circumstances: * * - on connection buildup to associate a conn with its maps * - on map changes to inform conns of a new map to send * * It's sadly ordered under the socket callback lock and the connection lock. * Receive paths can mark ports congested from interrupt context so the * lock masks interrupts. */ static DEFINE_SPINLOCK(rds_cong_lock); static struct rb_root rds_cong_tree = RB_ROOT; static struct rds_cong_map *rds_cong_tree_walk(const struct in6_addr *addr, struct rds_cong_map *insert) { struct rb_node **p = &rds_cong_tree.rb_node; struct rb_node *parent = NULL; struct rds_cong_map *map; while (*p) { int diff; parent = *p; map = rb_entry(parent, struct rds_cong_map, m_rb_node); diff = rds_addr_cmp(addr, &map->m_addr); if (diff < 0) p = &(*p)->rb_left; else if (diff > 0) p = &(*p)->rb_right; else return map; } if (insert) { rb_link_node(&insert->m_rb_node, parent, p); rb_insert_color(&insert->m_rb_node, &rds_cong_tree); } return NULL; } /* * There is only ever one bitmap for any address. Connections try and allocate * these bitmaps in the process getting pointers to them. The bitmaps are only * ever freed as the module is removed after all connections have been freed. */ static struct rds_cong_map *rds_cong_from_addr(const struct in6_addr *addr) { struct rds_cong_map *map; struct rds_cong_map *ret = NULL; unsigned long zp; unsigned long i; unsigned long flags; map = kzalloc(sizeof(struct rds_cong_map), GFP_KERNEL); if (!map) return NULL; map->m_addr = *addr; init_waitqueue_head(&map->m_waitq); INIT_LIST_HEAD(&map->m_conn_list); for (i = 0; i < RDS_CONG_MAP_PAGES; i++) { zp = get_zeroed_page(GFP_KERNEL); if (zp == 0) goto out; map->m_page_addrs[i] = zp; } spin_lock_irqsave(&rds_cong_lock, flags); ret = rds_cong_tree_walk(addr, map); spin_unlock_irqrestore(&rds_cong_lock, flags); if (!ret) { ret = map; map = NULL; } out: if (map) { for (i = 0; i < RDS_CONG_MAP_PAGES && map->m_page_addrs[i]; i++) free_page(map->m_page_addrs[i]); kfree(map); } rdsdebug("map %p for addr %pI6c\n", ret, addr); return ret; } /* * Put the conn on its local map's list. This is called when the conn is * really added to the hash. It's nested under the rds_conn_lock, sadly. */ void rds_cong_add_conn(struct rds_connection *conn) { unsigned long flags; rdsdebug("conn %p now on map %p\n", conn, conn->c_lcong); spin_lock_irqsave(&rds_cong_lock, flags); list_add_tail(&conn->c_map_item, &conn->c_lcong->m_conn_list); spin_unlock_irqrestore(&rds_cong_lock, flags); } void rds_cong_remove_conn(struct rds_connection *conn) { unsigned long flags; rdsdebug("removing conn %p from map %p\n", conn, conn->c_lcong); spin_lock_irqsave(&rds_cong_lock, flags); list_del_init(&conn->c_map_item); spin_unlock_irqrestore(&rds_cong_lock, flags); } int rds_cong_get_maps(struct rds_connection *conn) { conn->c_lcong = rds_cong_from_addr(&conn->c_laddr); conn->c_fcong = rds_cong_from_addr(&conn->c_faddr); if (!(conn->c_lcong && conn->c_fcong)) return -ENOMEM; return 0; } void rds_cong_queue_updates(struct rds_cong_map *map) { struct rds_connection *conn; unsigned long flags; spin_lock_irqsave(&rds_cong_lock, flags); list_for_each_entry(conn, &map->m_conn_list, c_map_item) { struct rds_conn_path *cp = &conn->c_path[0]; rcu_read_lock(); if (!test_and_set_bit(0, &conn->c_map_queued) && !rds_destroy_pending(cp->cp_conn)) { rds_stats_inc(s_cong_update_queued); /* We cannot inline the call to rds_send_xmit() here * for two reasons (both pertaining to a TCP transport): * 1. When we get here from the receive path, we * are already holding the sock_lock (held by * tcp_v4_rcv()). So inlining calls to * tcp_setsockopt and/or tcp_sendmsg will deadlock * when it tries to get the sock_lock()) * 2. Interrupts are masked so that we can mark the * port congested from both send and recv paths. * (See comment around declaration of rdc_cong_lock). * An attempt to get the sock_lock() here will * therefore trigger warnings. * Defer the xmit to rds_send_worker() instead. */ queue_delayed_work(rds_wq, &cp->cp_send_w, 0); } rcu_read_unlock(); } spin_unlock_irqrestore(&rds_cong_lock, flags); } void rds_cong_map_updated(struct rds_cong_map *map, uint64_t portmask) { rdsdebug("waking map %p for %pI4\n", map, &map->m_addr); rds_stats_inc(s_cong_update_received); atomic_inc(&rds_cong_generation); if (waitqueue_active(&map->m_waitq)) wake_up(&map->m_waitq); if (waitqueue_active(&rds_poll_waitq)) wake_up_all(&rds_poll_waitq); if (portmask && !list_empty(&rds_cong_monitor)) { unsigned long flags; struct rds_sock *rs; read_lock_irqsave(&rds_cong_monitor_lock, flags); list_for_each_entry(rs, &rds_cong_monitor, rs_cong_list) { spin_lock(&rs->rs_lock); rs->rs_cong_notify |= (rs->rs_cong_mask & portmask); rs->rs_cong_mask &= ~portmask; spin_unlock(&rs->rs_lock); if (rs->rs_cong_notify) rds_wake_sk_sleep(rs); } read_unlock_irqrestore(&rds_cong_monitor_lock, flags); } } EXPORT_SYMBOL_GPL(rds_cong_map_updated); int rds_cong_updated_since(unsigned long *recent) { unsigned long gen = atomic_read(&rds_cong_generation); if (likely(*recent == gen)) return 0; *recent = gen; return 1; } /* * We're called under the locking that protects the sockets receive buffer * consumption. This makes it a lot easier for the caller to only call us * when it knows that an existing set bit needs to be cleared, and vice versa. * We can't block and we need to deal with concurrent sockets working against * the same per-address map. */ void rds_cong_set_bit(struct rds_cong_map *map, __be16 port) { unsigned long i; unsigned long off; rdsdebug("setting congestion for %pI4:%u in map %p\n", &map->m_addr, ntohs(port), map); i = be16_to_cpu(port) / RDS_CONG_MAP_PAGE_BITS; off = be16_to_cpu(port) % RDS_CONG_MAP_PAGE_BITS; set_bit_le(off, (void *)map->m_page_addrs[i]); } void rds_cong_clear_bit(struct rds_cong_map *map, __be16 port) { unsigned long i; unsigned long off; rdsdebug("clearing congestion for %pI4:%u in map %p\n", &map->m_addr, ntohs(port), map); i = be16_to_cpu(port) / RDS_CONG_MAP_PAGE_BITS; off = be16_to_cpu(port) % RDS_CONG_MAP_PAGE_BITS; clear_bit_le(off, (void *)map->m_page_addrs[i]); } static int rds_cong_test_bit(struct rds_cong_map *map, __be16 port) { unsigned long i; unsigned long off; i = be16_to_cpu(port) / RDS_CONG_MAP_PAGE_BITS; off = be16_to_cpu(port) % RDS_CONG_MAP_PAGE_BITS; return test_bit_le(off, (void *)map->m_page_addrs[i]); } void rds_cong_add_socket(struct rds_sock *rs) { unsigned long flags; write_lock_irqsave(&rds_cong_monitor_lock, flags); if (list_empty(&rs->rs_cong_list)) list_add(&rs->rs_cong_list, &rds_cong_monitor); write_unlock_irqrestore(&rds_cong_monitor_lock, flags); } void rds_cong_remove_socket(struct rds_sock *rs) { unsigned long flags; struct rds_cong_map *map; write_lock_irqsave(&rds_cong_monitor_lock, flags); list_del_init(&rs->rs_cong_list); write_unlock_irqrestore(&rds_cong_monitor_lock, flags); /* update congestion map for now-closed port */ spin_lock_irqsave(&rds_cong_lock, flags); map = rds_cong_tree_walk(&rs->rs_bound_addr, NULL); spin_unlock_irqrestore(&rds_cong_lock, flags); if (map && rds_cong_test_bit(map, rs->rs_bound_port)) { rds_cong_clear_bit(map, rs->rs_bound_port); rds_cong_queue_updates(map); } } int rds_cong_wait(struct rds_cong_map *map, __be16 port, int nonblock, struct rds_sock *rs) { if (!rds_cong_test_bit(map, port)) return 0; if (nonblock) { if (rs && rs->rs_cong_monitor) { unsigned long flags; /* It would have been nice to have an atomic set_bit on * a uint64_t. */ spin_lock_irqsave(&rs->rs_lock, flags); rs->rs_cong_mask |= RDS_CONG_MONITOR_MASK(ntohs(port)); spin_unlock_irqrestore(&rs->rs_lock, flags); /* Test again - a congestion update may have arrived in * the meantime. */ if (!rds_cong_test_bit(map, port)) return 0; } rds_stats_inc(s_cong_send_error); return -ENOBUFS; } rds_stats_inc(s_cong_send_blocked); rdsdebug("waiting on map %p for port %u\n", map, be16_to_cpu(port)); return wait_event_interruptible(map->m_waitq, !rds_cong_test_bit(map, port)); } void rds_cong_exit(void) { struct rb_node *node; struct rds_cong_map *map; unsigned long i; while ((node = rb_first(&rds_cong_tree))) { map = rb_entry(node, struct rds_cong_map, m_rb_node); rdsdebug("freeing map %p\n", map); rb_erase(&map->m_rb_node, &rds_cong_tree); for (i = 0; i < RDS_CONG_MAP_PAGES && map->m_page_addrs[i]; i++) free_page(map->m_page_addrs[i]); kfree(map); } } /* * Allocate a RDS message containing a congestion update. */ struct rds_message *rds_cong_update_alloc(struct rds_connection *conn) { struct rds_cong_map *map = conn->c_lcong; struct rds_message *rm; rm = rds_message_map_pages(map->m_page_addrs, RDS_CONG_MAP_BYTES); if (!IS_ERR(rm)) rm->m_inc.i_hdr.h_flags = RDS_FLAG_CONG_BITMAP; return rm; }
linux-master
net/rds/cong.c
/* * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/in.h> #include <linux/ipv6.h> #include "rds.h" #include "loop.h" static char * const rds_trans_modules[] = { [RDS_TRANS_IB] = "rds_rdma", [RDS_TRANS_GAP] = NULL, [RDS_TRANS_TCP] = "rds_tcp", }; static struct rds_transport *transports[RDS_TRANS_COUNT]; static DECLARE_RWSEM(rds_trans_sem); void rds_trans_register(struct rds_transport *trans) { BUG_ON(strlen(trans->t_name) + 1 > TRANSNAMSIZ); down_write(&rds_trans_sem); if (transports[trans->t_type]) printk(KERN_ERR "RDS Transport type %d already registered\n", trans->t_type); else { transports[trans->t_type] = trans; printk(KERN_INFO "Registered RDS/%s transport\n", trans->t_name); } up_write(&rds_trans_sem); } EXPORT_SYMBOL_GPL(rds_trans_register); void rds_trans_unregister(struct rds_transport *trans) { down_write(&rds_trans_sem); transports[trans->t_type] = NULL; printk(KERN_INFO "Unregistered RDS/%s transport\n", trans->t_name); up_write(&rds_trans_sem); } EXPORT_SYMBOL_GPL(rds_trans_unregister); void rds_trans_put(struct rds_transport *trans) { if (trans) module_put(trans->t_owner); } struct rds_transport *rds_trans_get_preferred(struct net *net, const struct in6_addr *addr, __u32 scope_id) { struct rds_transport *ret = NULL; struct rds_transport *trans; unsigned int i; if (ipv6_addr_v4mapped(addr)) { if (*(u_int8_t *)&addr->s6_addr32[3] == IN_LOOPBACKNET) return &rds_loop_transport; } else if (ipv6_addr_loopback(addr)) { return &rds_loop_transport; } down_read(&rds_trans_sem); for (i = 0; i < RDS_TRANS_COUNT; i++) { trans = transports[i]; if (trans && (trans->laddr_check(net, addr, scope_id) == 0) && (!trans->t_owner || try_module_get(trans->t_owner))) { ret = trans; break; } } up_read(&rds_trans_sem); return ret; } struct rds_transport *rds_trans_get(int t_type) { struct rds_transport *ret = NULL; struct rds_transport *trans; down_read(&rds_trans_sem); trans = transports[t_type]; if (!trans) { up_read(&rds_trans_sem); if (rds_trans_modules[t_type]) request_module(rds_trans_modules[t_type]); down_read(&rds_trans_sem); trans = transports[t_type]; } if (trans && trans->t_type == t_type && (!trans->t_owner || try_module_get(trans->t_owner))) ret = trans; up_read(&rds_trans_sem); return ret; } /* * This returns the number of stats entries in the snapshot and only * copies them using the iter if there is enough space for them. The * caller passes in the global stats so that we can size and copy while * holding the lock. */ unsigned int rds_trans_stats_info_copy(struct rds_info_iterator *iter, unsigned int avail) { struct rds_transport *trans; unsigned int total = 0; unsigned int part; int i; rds_info_iter_unmap(iter); down_read(&rds_trans_sem); for (i = 0; i < RDS_TRANS_COUNT; i++) { trans = transports[i]; if (!trans || !trans->stats_info_copy) continue; part = trans->stats_info_copy(iter, avail); avail -= min(avail, part); total += part; } up_read(&rds_trans_sem); return total; }
linux-master
net/rds/transport.c
/* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/moduleparam.h> #include <linux/gfp.h> #include <net/sock.h> #include <linux/in.h> #include <linux/list.h> #include <linux/ratelimit.h> #include <linux/export.h> #include <linux/sizes.h> #include "rds.h" /* When transmitting messages in rds_send_xmit, we need to emerge from * time to time and briefly release the CPU. Otherwise the softlock watchdog * will kick our shin. * Also, it seems fairer to not let one busy connection stall all the * others. * * send_batch_count is the number of times we'll loop in send_xmit. Setting * it to 0 will restore the old behavior (where we looped until we had * drained the queue). */ static int send_batch_count = SZ_1K; module_param(send_batch_count, int, 0444); MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); static void rds_send_remove_from_sock(struct list_head *messages, int status); /* * Reset the send state. Callers must ensure that this doesn't race with * rds_send_xmit(). */ void rds_send_path_reset(struct rds_conn_path *cp) { struct rds_message *rm, *tmp; unsigned long flags; if (cp->cp_xmit_rm) { rm = cp->cp_xmit_rm; cp->cp_xmit_rm = NULL; /* Tell the user the RDMA op is no longer mapped by the * transport. This isn't entirely true (it's flushed out * independently) but as the connection is down, there's * no ongoing RDMA to/from that memory */ rds_message_unmapped(rm); rds_message_put(rm); } cp->cp_xmit_sg = 0; cp->cp_xmit_hdr_off = 0; cp->cp_xmit_data_off = 0; cp->cp_xmit_atomic_sent = 0; cp->cp_xmit_rdma_sent = 0; cp->cp_xmit_data_sent = 0; cp->cp_conn->c_map_queued = 0; cp->cp_unacked_packets = rds_sysctl_max_unacked_packets; cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes; /* Mark messages as retransmissions, and move them to the send q */ spin_lock_irqsave(&cp->cp_lock, flags); list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); } list_splice_init(&cp->cp_retrans, &cp->cp_send_queue); spin_unlock_irqrestore(&cp->cp_lock, flags); } EXPORT_SYMBOL_GPL(rds_send_path_reset); static int acquire_in_xmit(struct rds_conn_path *cp) { return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0; } static void release_in_xmit(struct rds_conn_path *cp) { clear_bit(RDS_IN_XMIT, &cp->cp_flags); smp_mb__after_atomic(); /* * We don't use wait_on_bit()/wake_up_bit() because our waking is in a * hot path and finding waiters is very rare. We don't want to walk * the system-wide hashed waitqueue buckets in the fast path only to * almost never find waiters. */ if (waitqueue_active(&cp->cp_waitq)) wake_up_all(&cp->cp_waitq); } /* * We're making the conscious trade-off here to only send one message * down the connection at a time. * Pro: * - tx queueing is a simple fifo list * - reassembly is optional and easily done by transports per conn * - no per flow rx lookup at all, straight to the socket * - less per-frag memory and wire overhead * Con: * - queued acks can be delayed behind large messages * Depends: * - small message latency is higher behind queued large messages * - large message latency isn't starved by intervening small sends */ int rds_send_xmit(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; struct rds_message *rm; unsigned long flags; unsigned int tmp; struct scatterlist *sg; int ret = 0; LIST_HEAD(to_be_dropped); int batch_count; unsigned long send_gen = 0; int same_rm = 0; restart: batch_count = 0; /* * sendmsg calls here after having queued its message on the send * queue. We only have one task feeding the connection at a time. If * another thread is already feeding the queue then we back off. This * avoids blocking the caller and trading per-connection data between * caches per message. */ if (!acquire_in_xmit(cp)) { rds_stats_inc(s_send_lock_contention); ret = -ENOMEM; goto out; } if (rds_destroy_pending(cp->cp_conn)) { release_in_xmit(cp); ret = -ENETUNREACH; /* dont requeue send work */ goto out; } /* * we record the send generation after doing the xmit acquire. * if someone else manages to jump in and do some work, we'll use * this to avoid a goto restart farther down. * * The acquire_in_xmit() check above ensures that only one * caller can increment c_send_gen at any time. */ send_gen = READ_ONCE(cp->cp_send_gen) + 1; WRITE_ONCE(cp->cp_send_gen, send_gen); /* * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, * we do the opposite to avoid races. */ if (!rds_conn_path_up(cp)) { release_in_xmit(cp); ret = 0; goto out; } if (conn->c_trans->xmit_path_prepare) conn->c_trans->xmit_path_prepare(cp); /* * spin trying to push headers and data down the connection until * the connection doesn't make forward progress. */ while (1) { rm = cp->cp_xmit_rm; if (!rm) { same_rm = 0; } else { same_rm++; if (same_rm >= 4096) { rds_stats_inc(s_send_stuck_rm); ret = -EAGAIN; break; } } /* * If between sending messages, we can send a pending congestion * map update. */ if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { rm = rds_cong_update_alloc(conn); if (IS_ERR(rm)) { ret = PTR_ERR(rm); break; } rm->data.op_active = 1; rm->m_inc.i_conn_path = cp; rm->m_inc.i_conn = cp->cp_conn; cp->cp_xmit_rm = rm; } /* * If not already working on one, grab the next message. * * cp_xmit_rm holds a ref while we're sending this message down * the connction. We can use this ref while holding the * send_sem.. rds_send_reset() is serialized with it. */ if (!rm) { unsigned int len; batch_count++; /* we want to process as big a batch as we can, but * we also want to avoid softlockups. If we've been * through a lot of messages, lets back off and see * if anyone else jumps in */ if (batch_count >= send_batch_count) goto over_batch; spin_lock_irqsave(&cp->cp_lock, flags); if (!list_empty(&cp->cp_send_queue)) { rm = list_entry(cp->cp_send_queue.next, struct rds_message, m_conn_item); rds_message_addref(rm); /* * Move the message from the send queue to the retransmit * list right away. */ list_move_tail(&rm->m_conn_item, &cp->cp_retrans); } spin_unlock_irqrestore(&cp->cp_lock, flags); if (!rm) break; /* Unfortunately, the way Infiniband deals with * RDMA to a bad MR key is by moving the entire * queue pair to error state. We could possibly * recover from that, but right now we drop the * connection. * Therefore, we never retransmit messages with RDMA ops. */ if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) || (rm->rdma.op_active && test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) { spin_lock_irqsave(&cp->cp_lock, flags); if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) list_move(&rm->m_conn_item, &to_be_dropped); spin_unlock_irqrestore(&cp->cp_lock, flags); continue; } /* Require an ACK every once in a while */ len = ntohl(rm->m_inc.i_hdr.h_len); if (cp->cp_unacked_packets == 0 || cp->cp_unacked_bytes < len) { set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); cp->cp_unacked_packets = rds_sysctl_max_unacked_packets; cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes; rds_stats_inc(s_send_ack_required); } else { cp->cp_unacked_bytes -= len; cp->cp_unacked_packets--; } cp->cp_xmit_rm = rm; } /* The transport either sends the whole rdma or none of it */ if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) { rm->m_final_op = &rm->rdma; /* The transport owns the mapped memory for now. * You can't unmap it while it's on the send queue */ set_bit(RDS_MSG_MAPPED, &rm->m_flags); ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); if (ret) { clear_bit(RDS_MSG_MAPPED, &rm->m_flags); wake_up_interruptible(&rm->m_flush_wait); break; } cp->cp_xmit_rdma_sent = 1; } if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) { rm->m_final_op = &rm->atomic; /* The transport owns the mapped memory for now. * You can't unmap it while it's on the send queue */ set_bit(RDS_MSG_MAPPED, &rm->m_flags); ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); if (ret) { clear_bit(RDS_MSG_MAPPED, &rm->m_flags); wake_up_interruptible(&rm->m_flush_wait); break; } cp->cp_xmit_atomic_sent = 1; } /* * A number of cases require an RDS header to be sent * even if there is no data. * We permit 0-byte sends; rds-ping depends on this. * However, if there are exclusively attached silent ops, * we skip the hdr/data send, to enable silent operation. */ if (rm->data.op_nents == 0) { int ops_present; int all_ops_are_silent = 1; ops_present = (rm->atomic.op_active || rm->rdma.op_active); if (rm->atomic.op_active && !rm->atomic.op_silent) all_ops_are_silent = 0; if (rm->rdma.op_active && !rm->rdma.op_silent) all_ops_are_silent = 0; if (ops_present && all_ops_are_silent && !rm->m_rdma_cookie) rm->data.op_active = 0; } if (rm->data.op_active && !cp->cp_xmit_data_sent) { rm->m_final_op = &rm->data; ret = conn->c_trans->xmit(conn, rm, cp->cp_xmit_hdr_off, cp->cp_xmit_sg, cp->cp_xmit_data_off); if (ret <= 0) break; if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) { tmp = min_t(int, ret, sizeof(struct rds_header) - cp->cp_xmit_hdr_off); cp->cp_xmit_hdr_off += tmp; ret -= tmp; } sg = &rm->data.op_sg[cp->cp_xmit_sg]; while (ret) { tmp = min_t(int, ret, sg->length - cp->cp_xmit_data_off); cp->cp_xmit_data_off += tmp; ret -= tmp; if (cp->cp_xmit_data_off == sg->length) { cp->cp_xmit_data_off = 0; sg++; cp->cp_xmit_sg++; BUG_ON(ret != 0 && cp->cp_xmit_sg == rm->data.op_nents); } } if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) && (cp->cp_xmit_sg == rm->data.op_nents)) cp->cp_xmit_data_sent = 1; } /* * A rm will only take multiple times through this loop * if there is a data op. Thus, if the data is sent (or there was * none), then we're done with the rm. */ if (!rm->data.op_active || cp->cp_xmit_data_sent) { cp->cp_xmit_rm = NULL; cp->cp_xmit_sg = 0; cp->cp_xmit_hdr_off = 0; cp->cp_xmit_data_off = 0; cp->cp_xmit_rdma_sent = 0; cp->cp_xmit_atomic_sent = 0; cp->cp_xmit_data_sent = 0; rds_message_put(rm); } } over_batch: if (conn->c_trans->xmit_path_complete) conn->c_trans->xmit_path_complete(cp); release_in_xmit(cp); /* Nuke any messages we decided not to retransmit. */ if (!list_empty(&to_be_dropped)) { /* irqs on here, so we can put(), unlike above */ list_for_each_entry(rm, &to_be_dropped, m_conn_item) rds_message_put(rm); rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); } /* * Other senders can queue a message after we last test the send queue * but before we clear RDS_IN_XMIT. In that case they'd back off and * not try and send their newly queued message. We need to check the * send queue after having cleared RDS_IN_XMIT so that their message * doesn't get stuck on the send queue. * * If the transport cannot continue (i.e ret != 0), then it must * call us when more room is available, such as from the tx * completion handler. * * We have an extra generation check here so that if someone manages * to jump in after our release_in_xmit, we'll see that they have done * some work and we will skip our goto */ if (ret == 0) { bool raced; smp_mb(); raced = send_gen != READ_ONCE(cp->cp_send_gen); if ((test_bit(0, &conn->c_map_queued) || !list_empty(&cp->cp_send_queue)) && !raced) { if (batch_count < send_batch_count) goto restart; rcu_read_lock(); if (rds_destroy_pending(cp->cp_conn)) ret = -ENETUNREACH; else queue_delayed_work(rds_wq, &cp->cp_send_w, 1); rcu_read_unlock(); } else if (raced) { rds_stats_inc(s_send_lock_queue_raced); } } out: return ret; } EXPORT_SYMBOL_GPL(rds_send_xmit); static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) { u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); assert_spin_locked(&rs->rs_lock); BUG_ON(rs->rs_snd_bytes < len); rs->rs_snd_bytes -= len; if (rs->rs_snd_bytes == 0) rds_stats_inc(s_send_queue_empty); } static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, is_acked_func is_acked) { if (is_acked) return is_acked(rm, ack); return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; } /* * This is pretty similar to what happens below in the ACK * handling code - except that we call here as soon as we get * the IB send completion on the RDMA op and the accompanying * message. */ void rds_rdma_send_complete(struct rds_message *rm, int status) { struct rds_sock *rs = NULL; struct rm_rdma_op *ro; struct rds_notifier *notifier; unsigned long flags; spin_lock_irqsave(&rm->m_rs_lock, flags); ro = &rm->rdma; if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && ro->op_active && ro->op_notify && ro->op_notifier) { notifier = ro->op_notifier; rs = rm->m_rs; sock_hold(rds_rs_to_sk(rs)); notifier->n_status = status; spin_lock(&rs->rs_lock); list_add_tail(&notifier->n_list, &rs->rs_notify_queue); spin_unlock(&rs->rs_lock); ro->op_notifier = NULL; } spin_unlock_irqrestore(&rm->m_rs_lock, flags); if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } } EXPORT_SYMBOL_GPL(rds_rdma_send_complete); /* * Just like above, except looks at atomic op */ void rds_atomic_send_complete(struct rds_message *rm, int status) { struct rds_sock *rs = NULL; struct rm_atomic_op *ao; struct rds_notifier *notifier; unsigned long flags; spin_lock_irqsave(&rm->m_rs_lock, flags); ao = &rm->atomic; if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && ao->op_active && ao->op_notify && ao->op_notifier) { notifier = ao->op_notifier; rs = rm->m_rs; sock_hold(rds_rs_to_sk(rs)); notifier->n_status = status; spin_lock(&rs->rs_lock); list_add_tail(&notifier->n_list, &rs->rs_notify_queue); spin_unlock(&rs->rs_lock); ao->op_notifier = NULL; } spin_unlock_irqrestore(&rm->m_rs_lock, flags); if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } } EXPORT_SYMBOL_GPL(rds_atomic_send_complete); /* * This is the same as rds_rdma_send_complete except we * don't do any locking - we have all the ingredients (message, * socket, socket lock) and can just move the notifier. */ static inline void __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) { struct rm_rdma_op *ro; struct rm_atomic_op *ao; ro = &rm->rdma; if (ro->op_active && ro->op_notify && ro->op_notifier) { ro->op_notifier->n_status = status; list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); ro->op_notifier = NULL; } ao = &rm->atomic; if (ao->op_active && ao->op_notify && ao->op_notifier) { ao->op_notifier->n_status = status; list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); ao->op_notifier = NULL; } /* No need to wake the app - caller does this */ } /* * This removes messages from the socket's list if they're on it. The list * argument must be private to the caller, we must be able to modify it * without locks. The messages must have a reference held for their * position on the list. This function will drop that reference after * removing the messages from the 'messages' list regardless of if it found * the messages on the socket list or not. */ static void rds_send_remove_from_sock(struct list_head *messages, int status) { unsigned long flags; struct rds_sock *rs = NULL; struct rds_message *rm; while (!list_empty(messages)) { int was_on_sock = 0; rm = list_entry(messages->next, struct rds_message, m_conn_item); list_del_init(&rm->m_conn_item); /* * If we see this flag cleared then we're *sure* that someone * else beat us to removing it from the sock. If we race * with their flag update we'll get the lock and then really * see that the flag has been cleared. * * The message spinlock makes sure nobody clears rm->m_rs * while we're messing with it. It does not prevent the * message from being removed from the socket, though. */ spin_lock_irqsave(&rm->m_rs_lock, flags); if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) goto unlock_and_drop; if (rs != rm->m_rs) { if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } rs = rm->m_rs; if (rs) sock_hold(rds_rs_to_sk(rs)); } if (!rs) goto unlock_and_drop; spin_lock(&rs->rs_lock); if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { struct rm_rdma_op *ro = &rm->rdma; struct rds_notifier *notifier; list_del_init(&rm->m_sock_item); rds_send_sndbuf_remove(rs, rm); if (ro->op_active && ro->op_notifier && (ro->op_notify || (ro->op_recverr && status))) { notifier = ro->op_notifier; list_add_tail(&notifier->n_list, &rs->rs_notify_queue); if (!notifier->n_status) notifier->n_status = status; rm->rdma.op_notifier = NULL; } was_on_sock = 1; } spin_unlock(&rs->rs_lock); unlock_and_drop: spin_unlock_irqrestore(&rm->m_rs_lock, flags); rds_message_put(rm); if (was_on_sock) rds_message_put(rm); } if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } } /* * Transports call here when they've determined that the receiver queued * messages up to, and including, the given sequence number. Messages are * moved to the retrans queue when rds_send_xmit picks them off the send * queue. This means that in the TCP case, the message may not have been * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked * checks the RDS_MSG_HAS_ACK_SEQ bit. */ void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack, is_acked_func is_acked) { struct rds_message *rm, *tmp; unsigned long flags; LIST_HEAD(list); spin_lock_irqsave(&cp->cp_lock, flags); list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { if (!rds_send_is_acked(rm, ack, is_acked)) break; list_move(&rm->m_conn_item, &list); clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); } /* order flag updates with spin locks */ if (!list_empty(&list)) smp_mb__after_atomic(); spin_unlock_irqrestore(&cp->cp_lock, flags); /* now remove the messages from the sock list as needed */ rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); } EXPORT_SYMBOL_GPL(rds_send_path_drop_acked); void rds_send_drop_acked(struct rds_connection *conn, u64 ack, is_acked_func is_acked) { WARN_ON(conn->c_trans->t_mp_capable); rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked); } EXPORT_SYMBOL_GPL(rds_send_drop_acked); void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest) { struct rds_message *rm, *tmp; struct rds_connection *conn; struct rds_conn_path *cp; unsigned long flags; LIST_HEAD(list); /* get all the messages we're dropping under the rs lock */ spin_lock_irqsave(&rs->rs_lock, flags); list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { if (dest && (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) || dest->sin6_port != rm->m_inc.i_hdr.h_dport)) continue; list_move(&rm->m_sock_item, &list); rds_send_sndbuf_remove(rs, rm); clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); } /* order flag updates with the rs lock */ smp_mb__after_atomic(); spin_unlock_irqrestore(&rs->rs_lock, flags); if (list_empty(&list)) return; /* Remove the messages from the conn */ list_for_each_entry(rm, &list, m_sock_item) { conn = rm->m_inc.i_conn; if (conn->c_trans->t_mp_capable) cp = rm->m_inc.i_conn_path; else cp = &conn->c_path[0]; spin_lock_irqsave(&cp->cp_lock, flags); /* * Maybe someone else beat us to removing rm from the conn. * If we race with their flag update we'll get the lock and * then really see that the flag has been cleared. */ if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { spin_unlock_irqrestore(&cp->cp_lock, flags); continue; } list_del_init(&rm->m_conn_item); spin_unlock_irqrestore(&cp->cp_lock, flags); /* * Couldn't grab m_rs_lock in top loop (lock ordering), * but we can now. */ spin_lock_irqsave(&rm->m_rs_lock, flags); spin_lock(&rs->rs_lock); __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); spin_unlock(&rs->rs_lock); spin_unlock_irqrestore(&rm->m_rs_lock, flags); rds_message_put(rm); } rds_wake_sk_sleep(rs); while (!list_empty(&list)) { rm = list_entry(list.next, struct rds_message, m_sock_item); list_del_init(&rm->m_sock_item); rds_message_wait(rm); /* just in case the code above skipped this message * because RDS_MSG_ON_CONN wasn't set, run it again here * taking m_rs_lock is the only thing that keeps us * from racing with ack processing. */ spin_lock_irqsave(&rm->m_rs_lock, flags); spin_lock(&rs->rs_lock); __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); spin_unlock(&rs->rs_lock); spin_unlock_irqrestore(&rm->m_rs_lock, flags); rds_message_put(rm); } } /* * we only want this to fire once so we use the callers 'queued'. It's * possible that another thread can race with us and remove the * message from the flow with RDS_CANCEL_SENT_TO. */ static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, struct rds_conn_path *cp, struct rds_message *rm, __be16 sport, __be16 dport, int *queued) { unsigned long flags; u32 len; if (*queued) goto out; len = be32_to_cpu(rm->m_inc.i_hdr.h_len); /* this is the only place which holds both the socket's rs_lock * and the connection's c_lock */ spin_lock_irqsave(&rs->rs_lock, flags); /* * If there is a little space in sndbuf, we don't queue anything, * and userspace gets -EAGAIN. But poll() indicates there's send * room. This can lead to bad behavior (spinning) if snd_bytes isn't * freed up by incoming acks. So we check the *old* value of * rs_snd_bytes here to allow the last msg to exceed the buffer, * and poll() now knows no more data can be sent. */ if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { rs->rs_snd_bytes += len; /* let recv side know we are close to send space exhaustion. * This is probably not the optimal way to do it, as this * means we set the flag on *all* messages as soon as our * throughput hits a certain threshold. */ if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); rds_message_addref(rm); sock_hold(rds_rs_to_sk(rs)); rm->m_rs = rs; /* The code ordering is a little weird, but we're trying to minimize the time we hold c_lock */ rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); rm->m_inc.i_conn = conn; rm->m_inc.i_conn_path = cp; rds_message_addref(rm); spin_lock(&cp->cp_lock); rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++); list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); set_bit(RDS_MSG_ON_CONN, &rm->m_flags); spin_unlock(&cp->cp_lock); rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", rm, len, rs, rs->rs_snd_bytes, (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); *queued = 1; } spin_unlock_irqrestore(&rs->rs_lock, flags); out: return *queued; } /* * rds_message is getting to be quite complicated, and we'd like to allocate * it all in one go. This figures out how big it needs to be up front. */ static int rds_rm_size(struct msghdr *msg, int num_sgs, struct rds_iov_vector_arr *vct) { struct cmsghdr *cmsg; int size = 0; int cmsg_groups = 0; int retval; bool zcopy_cookie = false; struct rds_iov_vector *iov, *tmp_iov; if (num_sgs < 0) return -EINVAL; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_RDS) continue; switch (cmsg->cmsg_type) { case RDS_CMSG_RDMA_ARGS: if (vct->indx >= vct->len) { vct->len += vct->incr; tmp_iov = krealloc(vct->vec, vct->len * sizeof(struct rds_iov_vector), GFP_KERNEL); if (!tmp_iov) { vct->len -= vct->incr; return -ENOMEM; } vct->vec = tmp_iov; } iov = &vct->vec[vct->indx]; memset(iov, 0, sizeof(struct rds_iov_vector)); vct->indx++; cmsg_groups |= 1; retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov); if (retval < 0) return retval; size += retval; break; case RDS_CMSG_ZCOPY_COOKIE: zcopy_cookie = true; fallthrough; case RDS_CMSG_RDMA_DEST: case RDS_CMSG_RDMA_MAP: cmsg_groups |= 2; /* these are valid but do no add any size */ break; case RDS_CMSG_ATOMIC_CSWP: case RDS_CMSG_ATOMIC_FADD: case RDS_CMSG_MASKED_ATOMIC_CSWP: case RDS_CMSG_MASKED_ATOMIC_FADD: cmsg_groups |= 1; size += sizeof(struct scatterlist); break; default: return -EINVAL; } } if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie) return -EINVAL; size += num_sgs * sizeof(struct scatterlist); /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ if (cmsg_groups == 3) return -EINVAL; return size; } static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg) { u32 *cookie; if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) || !rm->data.op_mmp_znotifier) return -EINVAL; cookie = CMSG_DATA(cmsg); rm->data.op_mmp_znotifier->z_cookie = *cookie; return 0; } static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, struct msghdr *msg, int *allocated_mr, struct rds_iov_vector_arr *vct) { struct cmsghdr *cmsg; int ret = 0, ind = 0; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_RDS) continue; /* As a side effect, RDMA_DEST and RDMA_MAP will set * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. */ switch (cmsg->cmsg_type) { case RDS_CMSG_RDMA_ARGS: if (ind >= vct->indx) return -ENOMEM; ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]); ind++; break; case RDS_CMSG_RDMA_DEST: ret = rds_cmsg_rdma_dest(rs, rm, cmsg); break; case RDS_CMSG_RDMA_MAP: ret = rds_cmsg_rdma_map(rs, rm, cmsg); if (!ret) *allocated_mr = 1; else if (ret == -ENODEV) /* Accommodate the get_mr() case which can fail * if connection isn't established yet. */ ret = -EAGAIN; break; case RDS_CMSG_ATOMIC_CSWP: case RDS_CMSG_ATOMIC_FADD: case RDS_CMSG_MASKED_ATOMIC_CSWP: case RDS_CMSG_MASKED_ATOMIC_FADD: ret = rds_cmsg_atomic(rs, rm, cmsg); break; case RDS_CMSG_ZCOPY_COOKIE: ret = rds_cmsg_zcopy(rs, rm, cmsg); break; default: return -EINVAL; } if (ret) break; } return ret; } static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn, int nonblock) { int hash; if (conn->c_npaths == 0) hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS); else hash = RDS_MPATH_HASH(rs, conn->c_npaths); if (conn->c_npaths == 0 && hash != 0) { rds_send_ping(conn, 0); /* The underlying connection is not up yet. Need to wait * until it is up to be sure that the non-zero c_path can be * used. But if we are interrupted, we have to use the zero * c_path in case the connection ends up being non-MP capable. */ if (conn->c_npaths == 0) { /* Cannot wait for the connection be made, so just use * the base c_path. */ if (nonblock) return 0; if (wait_event_interruptible(conn->c_hs_waitq, conn->c_npaths != 0)) hash = 0; } if (conn->c_npaths == 1) hash = 0; } return hash; } static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes) { struct rds_rdma_args *args; struct cmsghdr *cmsg; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_RDS) continue; if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) { if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))) return -EINVAL; args = CMSG_DATA(cmsg); *rdma_bytes += args->remote_vec.bytes; } } return 0; } int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len) { struct sock *sk = sock->sk; struct rds_sock *rs = rds_sk_to_rs(sk); DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); __be16 dport; struct rds_message *rm = NULL; struct rds_connection *conn; int ret = 0; int queued = 0, allocated_mr = 0; int nonblock = msg->msg_flags & MSG_DONTWAIT; long timeo = sock_sndtimeo(sk, nonblock); struct rds_conn_path *cpath; struct in6_addr daddr; __u32 scope_id = 0; size_t rdma_payload_len = 0; bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) && sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY)); int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE); int namelen; struct rds_iov_vector_arr vct; int ind; memset(&vct, 0, sizeof(vct)); /* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */ vct.incr = 1; /* Mirror Linux UDP mirror of BSD error message compatibility */ /* XXX: Perhaps MSG_MORE someday */ if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) { ret = -EOPNOTSUPP; goto out; } namelen = msg->msg_namelen; if (namelen != 0) { if (namelen < sizeof(*usin)) { ret = -EINVAL; goto out; } switch (usin->sin_family) { case AF_INET: if (usin->sin_addr.s_addr == htonl(INADDR_ANY) || usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) || ipv4_is_multicast(usin->sin_addr.s_addr)) { ret = -EINVAL; goto out; } ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr); dport = usin->sin_port; break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: { int addr_type; if (namelen < sizeof(*sin6)) { ret = -EINVAL; goto out; } addr_type = ipv6_addr_type(&sin6->sin6_addr); if (!(addr_type & IPV6_ADDR_UNICAST)) { __be32 addr4; if (!(addr_type & IPV6_ADDR_MAPPED)) { ret = -EINVAL; goto out; } /* It is a mapped address. Need to do some * sanity checks. */ addr4 = sin6->sin6_addr.s6_addr32[3]; if (addr4 == htonl(INADDR_ANY) || addr4 == htonl(INADDR_BROADCAST) || ipv4_is_multicast(addr4)) { ret = -EINVAL; goto out; } } if (addr_type & IPV6_ADDR_LINKLOCAL) { if (sin6->sin6_scope_id == 0) { ret = -EINVAL; goto out; } scope_id = sin6->sin6_scope_id; } daddr = sin6->sin6_addr; dport = sin6->sin6_port; break; } #endif default: ret = -EINVAL; goto out; } } else { /* We only care about consistency with ->connect() */ lock_sock(sk); daddr = rs->rs_conn_addr; dport = rs->rs_conn_port; scope_id = rs->rs_bound_scope_id; release_sock(sk); } lock_sock(sk); if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) { release_sock(sk); ret = -ENOTCONN; goto out; } else if (namelen != 0) { /* Cannot send to an IPv4 address using an IPv6 source * address and cannot send to an IPv6 address using an * IPv4 source address. */ if (ipv6_addr_v4mapped(&daddr) ^ ipv6_addr_v4mapped(&rs->rs_bound_addr)) { release_sock(sk); ret = -EOPNOTSUPP; goto out; } /* If the socket is already bound to a link local address, * it can only send to peers on the same link. But allow * communicating between link local and non-link local address. */ if (scope_id != rs->rs_bound_scope_id) { if (!scope_id) { scope_id = rs->rs_bound_scope_id; } else if (rs->rs_bound_scope_id) { release_sock(sk); ret = -EINVAL; goto out; } } } release_sock(sk); ret = rds_rdma_bytes(msg, &rdma_payload_len); if (ret) goto out; if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) { ret = -EMSGSIZE; goto out; } if (payload_len > rds_sk_sndbuf(rs)) { ret = -EMSGSIZE; goto out; } if (zcopy) { if (rs->rs_transport->t_type != RDS_TRANS_TCP) { ret = -EOPNOTSUPP; goto out; } num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX); } /* size of rm including all sgs */ ret = rds_rm_size(msg, num_sgs, &vct); if (ret < 0) goto out; rm = rds_message_alloc(ret, GFP_KERNEL); if (!rm) { ret = -ENOMEM; goto out; } /* Attach data to the rm */ if (payload_len) { rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs); if (IS_ERR(rm->data.op_sg)) { ret = PTR_ERR(rm->data.op_sg); goto out; } ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy); if (ret) goto out; } rm->data.op_active = 1; rm->m_daddr = daddr; /* rds_conn_create has a spinlock that runs with IRQ off. * Caching the conn in the socket helps a lot. */ if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) && rs->rs_tos == rs->rs_conn->c_tos) { conn = rs->rs_conn; } else { conn = rds_conn_create_outgoing(sock_net(sock->sk), &rs->rs_bound_addr, &daddr, rs->rs_transport, rs->rs_tos, sock->sk->sk_allocation, scope_id); if (IS_ERR(conn)) { ret = PTR_ERR(conn); goto out; } rs->rs_conn = conn; } if (conn->c_trans->t_mp_capable) cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)]; else cpath = &conn->c_path[0]; rm->m_conn_path = cpath; /* Parse any control messages the user may have included. */ ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct); if (ret) { /* Trigger connection so that its ready for the next retry */ if (ret == -EAGAIN) rds_conn_connect_if_down(conn); goto out; } if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", &rm->rdma, conn->c_trans->xmit_rdma); ret = -EOPNOTSUPP; goto out; } if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", &rm->atomic, conn->c_trans->xmit_atomic); ret = -EOPNOTSUPP; goto out; } if (rds_destroy_pending(conn)) { ret = -EAGAIN; goto out; } if (rds_conn_path_down(cpath)) rds_check_all_paths(conn); ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); if (ret) { rs->rs_seen_congestion = 1; goto out; } while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port, dport, &queued)) { rds_stats_inc(s_send_queue_full); if (nonblock) { ret = -EAGAIN; goto out; } timeo = wait_event_interruptible_timeout(*sk_sleep(sk), rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port, dport, &queued), timeo); rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) continue; ret = timeo; if (ret == 0) ret = -ETIMEDOUT; goto out; } /* * By now we've committed to the send. We reuse rds_send_worker() * to retry sends in the rds thread if the transport asks us to. */ rds_stats_inc(s_send_queued); ret = rds_send_xmit(cpath); if (ret == -ENOMEM || ret == -EAGAIN) { ret = 0; rcu_read_lock(); if (rds_destroy_pending(cpath->cp_conn)) ret = -ENETUNREACH; else queue_delayed_work(rds_wq, &cpath->cp_send_w, 1); rcu_read_unlock(); } if (ret) goto out; rds_message_put(rm); for (ind = 0; ind < vct.indx; ind++) kfree(vct.vec[ind].iov); kfree(vct.vec); return payload_len; out: for (ind = 0; ind < vct.indx; ind++) kfree(vct.vec[ind].iov); kfree(vct.vec); /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN * or in any other way, we need to destroy the MR again */ if (allocated_mr) rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); if (rm) rds_message_put(rm); return ret; } /* * send out a probe. Can be shared by rds_send_ping, * rds_send_pong, rds_send_hb. * rds_send_hb should use h_flags * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED * or * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED */ static int rds_send_probe(struct rds_conn_path *cp, __be16 sport, __be16 dport, u8 h_flags) { struct rds_message *rm; unsigned long flags; int ret = 0; rm = rds_message_alloc(0, GFP_ATOMIC); if (!rm) { ret = -ENOMEM; goto out; } rm->m_daddr = cp->cp_conn->c_faddr; rm->data.op_active = 1; rds_conn_path_connect_if_down(cp); ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL); if (ret) goto out; spin_lock_irqsave(&cp->cp_lock, flags); list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); set_bit(RDS_MSG_ON_CONN, &rm->m_flags); rds_message_addref(rm); rm->m_inc.i_conn = cp->cp_conn; rm->m_inc.i_conn_path = cp; rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, cp->cp_next_tx_seq); rm->m_inc.i_hdr.h_flags |= h_flags; cp->cp_next_tx_seq++; if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) && cp->cp_conn->c_trans->t_mp_capable) { u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS); u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num); rds_message_add_extension(&rm->m_inc.i_hdr, RDS_EXTHDR_NPATHS, &npaths, sizeof(npaths)); rds_message_add_extension(&rm->m_inc.i_hdr, RDS_EXTHDR_GEN_NUM, &my_gen_num, sizeof(u32)); } spin_unlock_irqrestore(&cp->cp_lock, flags); rds_stats_inc(s_send_queued); rds_stats_inc(s_send_pong); /* schedule the send work on rds_wq */ rcu_read_lock(); if (!rds_destroy_pending(cp->cp_conn)) queue_delayed_work(rds_wq, &cp->cp_send_w, 1); rcu_read_unlock(); rds_message_put(rm); return 0; out: if (rm) rds_message_put(rm); return ret; } int rds_send_pong(struct rds_conn_path *cp, __be16 dport) { return rds_send_probe(cp, 0, dport, 0); } void rds_send_ping(struct rds_connection *conn, int cp_index) { unsigned long flags; struct rds_conn_path *cp = &conn->c_path[cp_index]; spin_lock_irqsave(&cp->cp_lock, flags); if (conn->c_ping_triggered) { spin_unlock_irqrestore(&cp->cp_lock, flags); return; } conn->c_ping_triggered = 1; spin_unlock_irqrestore(&cp->cp_lock, flags); rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0); } EXPORT_SYMBOL_GPL(rds_send_ping);
linux-master
net/rds/send.c
/* * Copyright (c) 2007, 2020 Oracle and/or its affiliates. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/pagemap.h> #include <linux/slab.h> #include <linux/rbtree.h> #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ #include "rds.h" /* * XXX * - build with sparse * - should we detect duplicate keys on a socket? hmm. * - an rdma is an mlock, apply rlimit? */ /* * get the number of pages by looking at the page indices that the start and * end addresses fall in. * * Returns 0 if the vec is invalid. It is invalid if the number of bytes * causes the address to wrap or overflows an unsigned int. This comes * from being stored in the 'length' member of 'struct scatterlist'. */ static unsigned int rds_pages_in_vec(struct rds_iovec *vec) { if ((vec->addr + vec->bytes <= vec->addr) || (vec->bytes > (u64)UINT_MAX)) return 0; return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - (vec->addr >> PAGE_SHIFT); } static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, struct rds_mr *insert) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct rds_mr *mr; while (*p) { parent = *p; mr = rb_entry(parent, struct rds_mr, r_rb_node); if (key < mr->r_key) p = &(*p)->rb_left; else if (key > mr->r_key) p = &(*p)->rb_right; else return mr; } if (insert) { rb_link_node(&insert->r_rb_node, parent, p); rb_insert_color(&insert->r_rb_node, root); kref_get(&insert->r_kref); } return NULL; } /* * Destroy the transport-specific part of a MR. */ static void rds_destroy_mr(struct rds_mr *mr) { struct rds_sock *rs = mr->r_sock; void *trans_private = NULL; unsigned long flags; rdsdebug("RDS: destroy mr key is %x refcnt %u\n", mr->r_key, kref_read(&mr->r_kref)); spin_lock_irqsave(&rs->rs_rdma_lock, flags); if (!RB_EMPTY_NODE(&mr->r_rb_node)) rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); trans_private = mr->r_trans_private; mr->r_trans_private = NULL; spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); if (trans_private) mr->r_trans->free_mr(trans_private, mr->r_invalidate); } void __rds_put_mr_final(struct kref *kref) { struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref); rds_destroy_mr(mr); kfree(mr); } /* * By the time this is called we can't have any more ioctls called on * the socket so we don't need to worry about racing with others. */ void rds_rdma_drop_keys(struct rds_sock *rs) { struct rds_mr *mr; struct rb_node *node; unsigned long flags; /* Release any MRs associated with this socket */ spin_lock_irqsave(&rs->rs_rdma_lock, flags); while ((node = rb_first(&rs->rs_rdma_keys))) { mr = rb_entry(node, struct rds_mr, r_rb_node); if (mr->r_trans == rs->rs_transport) mr->r_invalidate = 0; rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); RB_CLEAR_NODE(&mr->r_rb_node); spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); kref_put(&mr->r_kref, __rds_put_mr_final); spin_lock_irqsave(&rs->rs_rdma_lock, flags); } spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); if (rs->rs_transport && rs->rs_transport->flush_mrs) rs->rs_transport->flush_mrs(); } /* * Helper function to pin user pages. */ static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, struct page **pages, int write) { unsigned int gup_flags = FOLL_LONGTERM; int ret; if (write) gup_flags |= FOLL_WRITE; ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages); if (ret >= 0 && ret < nr_pages) { unpin_user_pages(pages, ret); ret = -EFAULT; } return ret; } static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, u64 *cookie_ret, struct rds_mr **mr_ret, struct rds_conn_path *cp) { struct rds_mr *mr = NULL, *found; struct scatterlist *sg = NULL; unsigned int nr_pages; struct page **pages = NULL; void *trans_private; unsigned long flags; rds_rdma_cookie_t cookie; unsigned int nents = 0; int need_odp = 0; long i; int ret; if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) { ret = -ENOTCONN; /* XXX not a great errno */ goto out; } if (!rs->rs_transport->get_mr) { ret = -EOPNOTSUPP; goto out; } /* If the combination of the addr and size requested for this memory * region causes an integer overflow, return error. */ if (((args->vec.addr + args->vec.bytes) < args->vec.addr) || PAGE_ALIGN(args->vec.addr + args->vec.bytes) < (args->vec.addr + args->vec.bytes)) { ret = -EINVAL; goto out; } if (!can_do_mlock()) { ret = -EPERM; goto out; } nr_pages = rds_pages_in_vec(&args->vec); if (nr_pages == 0) { ret = -EINVAL; goto out; } /* Restrict the size of mr irrespective of underlying transport * To account for unaligned mr regions, subtract one from nr_pages */ if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) { ret = -EMSGSIZE; goto out; } rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", args->vec.addr, args->vec.bytes, nr_pages); /* XXX clamp nr_pages to limit the size of this alloc? */ pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!pages) { ret = -ENOMEM; goto out; } mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); if (!mr) { ret = -ENOMEM; goto out; } kref_init(&mr->r_kref); RB_CLEAR_NODE(&mr->r_rb_node); mr->r_trans = rs->rs_transport; mr->r_sock = rs; if (args->flags & RDS_RDMA_USE_ONCE) mr->r_use_once = 1; if (args->flags & RDS_RDMA_INVALIDATE) mr->r_invalidate = 1; if (args->flags & RDS_RDMA_READWRITE) mr->r_write = 1; /* * Pin the pages that make up the user buffer and transfer the page * pointers to the mr's sg array. We check to see if we've mapped * the whole region after transferring the partial page references * to the sg array so that we can have one page ref cleanup path. * * For now we have no flag that tells us whether the mapping is * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to * the zero page. */ ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); if (ret == -EOPNOTSUPP) { need_odp = 1; } else if (ret <= 0) { goto out; } else { nents = ret; sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL); if (!sg) { ret = -ENOMEM; goto out; } WARN_ON(!nents); sg_init_table(sg, nents); /* Stick all pages into the scatterlist */ for (i = 0 ; i < nents; i++) sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); rdsdebug("RDS: trans_private nents is %u\n", nents); } /* Obtain a transport specific MR. If this succeeds, the * s/g list is now owned by the MR. * Note that dma_map() implies that pending writes are * flushed to RAM, so no dma_sync is needed here. */ trans_private = rs->rs_transport->get_mr( sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL, args->vec.addr, args->vec.bytes, need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED); if (IS_ERR(trans_private)) { /* In ODP case, we don't GUP pages, so don't need * to release anything. */ if (!need_odp) { unpin_user_pages(pages, nr_pages); kfree(sg); } ret = PTR_ERR(trans_private); goto out; } mr->r_trans_private = trans_private; rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", mr->r_key, (void *)(unsigned long) args->cookie_addr); /* The user may pass us an unaligned address, but we can only * map page aligned regions. So we keep the offset, and build * a 64bit cookie containing <R_Key, offset> and pass that * around. */ if (need_odp) cookie = rds_rdma_make_cookie(mr->r_key, 0); else cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK); if (cookie_ret) *cookie_ret = cookie; if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) { if (!need_odp) { unpin_user_pages(pages, nr_pages); kfree(sg); } ret = -EFAULT; goto out; } /* Inserting the new MR into the rbtree bumps its * reference count. */ spin_lock_irqsave(&rs->rs_rdma_lock, flags); found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); BUG_ON(found && found != mr); rdsdebug("RDS: get_mr key is %x\n", mr->r_key); if (mr_ret) { kref_get(&mr->r_kref); *mr_ret = mr; } ret = 0; out: kfree(pages); if (mr) kref_put(&mr->r_kref, __rds_put_mr_final); return ret; } int rds_get_mr(struct rds_sock *rs, sockptr_t optval, int optlen) { struct rds_get_mr_args args; if (optlen != sizeof(struct rds_get_mr_args)) return -EINVAL; if (copy_from_sockptr(&args, optval, sizeof(struct rds_get_mr_args))) return -EFAULT; return __rds_rdma_map(rs, &args, NULL, NULL, NULL); } int rds_get_mr_for_dest(struct rds_sock *rs, sockptr_t optval, int optlen) { struct rds_get_mr_for_dest_args args; struct rds_get_mr_args new_args; if (optlen != sizeof(struct rds_get_mr_for_dest_args)) return -EINVAL; if (copy_from_sockptr(&args, optval, sizeof(struct rds_get_mr_for_dest_args))) return -EFAULT; /* * Initially, just behave like get_mr(). * TODO: Implement get_mr as wrapper around this * and deprecate it. */ new_args.vec = args.vec; new_args.cookie_addr = args.cookie_addr; new_args.flags = args.flags; return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL); } /* * Free the MR indicated by the given R_Key */ int rds_free_mr(struct rds_sock *rs, sockptr_t optval, int optlen) { struct rds_free_mr_args args; struct rds_mr *mr; unsigned long flags; if (optlen != sizeof(struct rds_free_mr_args)) return -EINVAL; if (copy_from_sockptr(&args, optval, sizeof(struct rds_free_mr_args))) return -EFAULT; /* Special case - a null cookie means flush all unused MRs */ if (args.cookie == 0) { if (!rs->rs_transport || !rs->rs_transport->flush_mrs) return -EINVAL; rs->rs_transport->flush_mrs(); return 0; } /* Look up the MR given its R_key and remove it from the rbtree * so nobody else finds it. * This should also prevent races with rds_rdma_unuse. */ spin_lock_irqsave(&rs->rs_rdma_lock, flags); mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); if (mr) { rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); RB_CLEAR_NODE(&mr->r_rb_node); if (args.flags & RDS_RDMA_INVALIDATE) mr->r_invalidate = 1; } spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); if (!mr) return -EINVAL; kref_put(&mr->r_kref, __rds_put_mr_final); return 0; } /* * This is called when we receive an extension header that * tells us this MR was used. It allows us to implement * use_once semantics */ void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) { struct rds_mr *mr; unsigned long flags; int zot_me = 0; spin_lock_irqsave(&rs->rs_rdma_lock, flags); mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); if (!mr) { pr_debug("rds: trying to unuse MR with unknown r_key %u!\n", r_key); spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); return; } /* Get a reference so that the MR won't go away before calling * sync_mr() below. */ kref_get(&mr->r_kref); /* If it is going to be freed, remove it from the tree now so * that no other thread can find it and free it. */ if (mr->r_use_once || force) { rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); RB_CLEAR_NODE(&mr->r_rb_node); zot_me = 1; } spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); /* May have to issue a dma_sync on this memory region. * Note we could avoid this if the operation was a RDMA READ, * but at this point we can't tell. */ if (mr->r_trans->sync_mr) mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); /* Release the reference held above. */ kref_put(&mr->r_kref, __rds_put_mr_final); /* If the MR was marked as invalidate, this will * trigger an async flush. */ if (zot_me) kref_put(&mr->r_kref, __rds_put_mr_final); } void rds_rdma_free_op(struct rm_rdma_op *ro) { unsigned int i; if (ro->op_odp_mr) { kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final); } else { for (i = 0; i < ro->op_nents; i++) { struct page *page = sg_page(&ro->op_sg[i]); /* Mark page dirty if it was possibly modified, which * is the case for a RDMA_READ which copies from remote * to local memory */ unpin_user_pages_dirty_lock(&page, 1, !ro->op_write); } } kfree(ro->op_notifier); ro->op_notifier = NULL; ro->op_active = 0; ro->op_odp_mr = NULL; } void rds_atomic_free_op(struct rm_atomic_op *ao) { struct page *page = sg_page(ao->op_sg); /* Mark page dirty if it was possibly modified, which * is the case for a RDMA_READ which copies from remote * to local memory */ unpin_user_pages_dirty_lock(&page, 1, true); kfree(ao->op_notifier); ao->op_notifier = NULL; ao->op_active = 0; } /* * Count the number of pages needed to describe an incoming iovec array. */ static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs) { int tot_pages = 0; unsigned int nr_pages; unsigned int i; /* figure out the number of pages in the vector */ for (i = 0; i < nr_iovecs; i++) { nr_pages = rds_pages_in_vec(&iov[i]); if (nr_pages == 0) return -EINVAL; tot_pages += nr_pages; /* * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, * so tot_pages cannot overflow without first going negative. */ if (tot_pages < 0) return -EINVAL; } return tot_pages; } int rds_rdma_extra_size(struct rds_rdma_args *args, struct rds_iov_vector *iov) { struct rds_iovec *vec; struct rds_iovec __user *local_vec; int tot_pages = 0; unsigned int nr_pages; unsigned int i; local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; if (args->nr_local == 0) return -EINVAL; if (args->nr_local > UIO_MAXIOV) return -EMSGSIZE; iov->iov = kcalloc(args->nr_local, sizeof(struct rds_iovec), GFP_KERNEL); if (!iov->iov) return -ENOMEM; vec = &iov->iov[0]; if (copy_from_user(vec, local_vec, args->nr_local * sizeof(struct rds_iovec))) return -EFAULT; iov->len = args->nr_local; /* figure out the number of pages in the vector */ for (i = 0; i < args->nr_local; i++, vec++) { nr_pages = rds_pages_in_vec(vec); if (nr_pages == 0) return -EINVAL; tot_pages += nr_pages; /* * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, * so tot_pages cannot overflow without first going negative. */ if (tot_pages < 0) return -EINVAL; } return tot_pages * sizeof(struct scatterlist); } /* * The application asks for a RDMA transfer. * Extract all arguments and set up the rdma_op */ int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg, struct rds_iov_vector *vec) { struct rds_rdma_args *args; struct rm_rdma_op *op = &rm->rdma; int nr_pages; unsigned int nr_bytes; struct page **pages = NULL; struct rds_iovec *iovs; unsigned int i, j; int ret = 0; bool odp_supported = true; if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) || rm->rdma.op_active) return -EINVAL; args = CMSG_DATA(cmsg); if (ipv6_addr_any(&rs->rs_bound_addr)) { ret = -ENOTCONN; /* XXX not a great errno */ goto out_ret; } if (args->nr_local > UIO_MAXIOV) { ret = -EMSGSIZE; goto out_ret; } if (vec->len != args->nr_local) { ret = -EINVAL; goto out_ret; } /* odp-mr is not supported for multiple requests within one message */ if (args->nr_local != 1) odp_supported = false; iovs = vec->iov; nr_pages = rds_rdma_pages(iovs, args->nr_local); if (nr_pages < 0) { ret = -EINVAL; goto out_ret; } pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!pages) { ret = -ENOMEM; goto out_ret; } op->op_write = !!(args->flags & RDS_RDMA_READWRITE); op->op_fence = !!(args->flags & RDS_RDMA_FENCE); op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); op->op_silent = !!(args->flags & RDS_RDMA_SILENT); op->op_active = 1; op->op_recverr = rs->rs_recverr; op->op_odp_mr = NULL; WARN_ON(!nr_pages); op->op_sg = rds_message_alloc_sgs(rm, nr_pages); if (IS_ERR(op->op_sg)) { ret = PTR_ERR(op->op_sg); goto out_pages; } if (op->op_notify || op->op_recverr) { /* We allocate an uninitialized notifier here, because * we don't want to do that in the completion handler. We * would have to use GFP_ATOMIC there, and don't want to deal * with failed allocations. */ op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); if (!op->op_notifier) { ret = -ENOMEM; goto out_pages; } op->op_notifier->n_user_token = args->user_token; op->op_notifier->n_status = RDS_RDMA_SUCCESS; } /* The cookie contains the R_Key of the remote memory region, and * optionally an offset into it. This is how we implement RDMA into * unaligned memory. * When setting up the RDMA, we need to add that offset to the * destination address (which is really an offset into the MR) * FIXME: We may want to move this into ib_rdma.c */ op->op_rkey = rds_rdma_cookie_key(args->cookie); op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); nr_bytes = 0; rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", (unsigned long long)args->nr_local, (unsigned long long)args->remote_vec.addr, op->op_rkey); for (i = 0; i < args->nr_local; i++) { struct rds_iovec *iov = &iovs[i]; /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */ unsigned int nr = rds_pages_in_vec(iov); rs->rs_user_addr = iov->addr; rs->rs_user_bytes = iov->bytes; /* If it's a WRITE operation, we want to pin the pages for reading. * If it's a READ operation, we need to pin the pages for writing. */ ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write); if ((!odp_supported && ret <= 0) || (odp_supported && ret <= 0 && ret != -EOPNOTSUPP)) goto out_pages; if (ret == -EOPNOTSUPP) { struct rds_mr *local_odp_mr; if (!rs->rs_transport->get_mr) { ret = -EOPNOTSUPP; goto out_pages; } local_odp_mr = kzalloc(sizeof(*local_odp_mr), GFP_KERNEL); if (!local_odp_mr) { ret = -ENOMEM; goto out_pages; } RB_CLEAR_NODE(&local_odp_mr->r_rb_node); kref_init(&local_odp_mr->r_kref); local_odp_mr->r_trans = rs->rs_transport; local_odp_mr->r_sock = rs; local_odp_mr->r_trans_private = rs->rs_transport->get_mr( NULL, 0, rs, &local_odp_mr->r_key, NULL, iov->addr, iov->bytes, ODP_VIRTUAL); if (IS_ERR(local_odp_mr->r_trans_private)) { ret = PTR_ERR(local_odp_mr->r_trans_private); rdsdebug("get_mr ret %d %p\"", ret, local_odp_mr->r_trans_private); kfree(local_odp_mr); ret = -EOPNOTSUPP; goto out_pages; } rdsdebug("Need odp; local_odp_mr %p trans_private %p\n", local_odp_mr, local_odp_mr->r_trans_private); op->op_odp_mr = local_odp_mr; op->op_odp_addr = iov->addr; } rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n", nr_bytes, nr, iov->bytes, iov->addr); nr_bytes += iov->bytes; for (j = 0; j < nr; j++) { unsigned int offset = iov->addr & ~PAGE_MASK; struct scatterlist *sg; sg = &op->op_sg[op->op_nents + j]; sg_set_page(sg, pages[j], min_t(unsigned int, iov->bytes, PAGE_SIZE - offset), offset); sg_dma_len(sg) = sg->length; rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n", sg->offset, sg->length, iov->addr, iov->bytes); iov->addr += sg->length; iov->bytes -= sg->length; } op->op_nents += nr; } if (nr_bytes > args->remote_vec.bytes) { rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", nr_bytes, (unsigned int) args->remote_vec.bytes); ret = -EINVAL; goto out_pages; } op->op_bytes = nr_bytes; ret = 0; out_pages: kfree(pages); out_ret: if (ret) rds_rdma_free_op(op); else rds_stats_inc(s_send_rdma); return ret; } /* * The application wants us to pass an RDMA destination (aka MR) * to the remote */ int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg) { unsigned long flags; struct rds_mr *mr; u32 r_key; int err = 0; if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || rm->m_rdma_cookie != 0) return -EINVAL; memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); /* We are reusing a previously mapped MR here. Most likely, the * application has written to the buffer, so we need to explicitly * flush those writes to RAM. Otherwise the HCA may not see them * when doing a DMA from that buffer. */ r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); spin_lock_irqsave(&rs->rs_rdma_lock, flags); mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); if (!mr) err = -EINVAL; /* invalid r_key */ else kref_get(&mr->r_kref); spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); if (mr) { mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); rm->rdma.op_rdma_mr = mr; } return err; } /* * The application passes us an address range it wants to enable RDMA * to/from. We map the area, and save the <R_Key,offset> pair * in rm->m_rdma_cookie. This causes it to be sent along to the peer * in an extension header. */ int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg) { if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || rm->m_rdma_cookie != 0) return -EINVAL; return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr, rm->m_conn_path); } /* * Fill in rds_message for an atomic request. */ int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg) { struct page *page = NULL; struct rds_atomic_args *args; int ret = 0; if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args)) || rm->atomic.op_active) return -EINVAL; args = CMSG_DATA(cmsg); /* Nonmasked & masked cmsg ops converted to masked hw ops */ switch (cmsg->cmsg_type) { case RDS_CMSG_ATOMIC_FADD: rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; rm->atomic.op_m_fadd.add = args->fadd.add; rm->atomic.op_m_fadd.nocarry_mask = 0; break; case RDS_CMSG_MASKED_ATOMIC_FADD: rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; rm->atomic.op_m_fadd.add = args->m_fadd.add; rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask; break; case RDS_CMSG_ATOMIC_CSWP: rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; rm->atomic.op_m_cswp.compare = args->cswp.compare; rm->atomic.op_m_cswp.swap = args->cswp.swap; rm->atomic.op_m_cswp.compare_mask = ~0; rm->atomic.op_m_cswp.swap_mask = ~0; break; case RDS_CMSG_MASKED_ATOMIC_CSWP: rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; rm->atomic.op_m_cswp.compare = args->m_cswp.compare; rm->atomic.op_m_cswp.swap = args->m_cswp.swap; rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask; rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask; break; default: BUG(); /* should never happen */ } rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT); rm->atomic.op_active = 1; rm->atomic.op_recverr = rs->rs_recverr; rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1); if (IS_ERR(rm->atomic.op_sg)) { ret = PTR_ERR(rm->atomic.op_sg); goto err; } /* verify 8 byte-aligned */ if (args->local_addr & 0x7) { ret = -EFAULT; goto err; } ret = rds_pin_pages(args->local_addr, 1, &page, 1); if (ret != 1) goto err; ret = 0; sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr)); if (rm->atomic.op_notify || rm->atomic.op_recverr) { /* We allocate an uninitialized notifier here, because * we don't want to do that in the completion handler. We * would have to use GFP_ATOMIC there, and don't want to deal * with failed allocations. */ rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL); if (!rm->atomic.op_notifier) { ret = -ENOMEM; goto err; } rm->atomic.op_notifier->n_user_token = args->user_token; rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS; } rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie); rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie); return ret; err: if (page) unpin_user_page(page); rm->atomic.op_active = 0; kfree(rm->atomic.op_notifier); return ret; }
linux-master
net/rds/rdma.c
/* * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/in.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <linux/ipv6.h> #include "rds_single_path.h" #include "rds.h" #include "loop.h" static DEFINE_SPINLOCK(loop_conns_lock); static LIST_HEAD(loop_conns); static atomic_t rds_loop_unloading = ATOMIC_INIT(0); static void rds_loop_set_unloading(void) { atomic_set(&rds_loop_unloading, 1); } static bool rds_loop_is_unloading(struct rds_connection *conn) { return atomic_read(&rds_loop_unloading) != 0; } /* * This 'loopback' transport is a special case for flows that originate * and terminate on the same machine. * * Connection build-up notices if the destination address is thought of * as a local address by a transport. At that time it decides to use the * loopback transport instead of the bound transport of the sending socket. * * The loopback transport's sending path just hands the sent rds_message * straight to the receiving path via an embedded rds_incoming. */ /* * Usually a message transits both the sender and receiver's conns as it * flows to the receiver. In the loopback case, though, the receive path * is handed the sending conn so the sense of the addresses is reversed. */ static int rds_loop_xmit(struct rds_connection *conn, struct rds_message *rm, unsigned int hdr_off, unsigned int sg, unsigned int off) { struct scatterlist *sgp = &rm->data.op_sg[sg]; int ret = sizeof(struct rds_header) + be32_to_cpu(rm->m_inc.i_hdr.h_len); /* Do not send cong updates to loopback */ if (rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) { rds_cong_map_updated(conn->c_fcong, ~(u64) 0); ret = min_t(int, ret, sgp->length - conn->c_xmit_data_off); goto out; } BUG_ON(hdr_off || sg || off); rds_inc_init(&rm->m_inc, conn, &conn->c_laddr); /* For the embedded inc. Matching put is in loop_inc_free() */ rds_message_addref(rm); rds_recv_incoming(conn, &conn->c_laddr, &conn->c_faddr, &rm->m_inc, GFP_KERNEL); rds_send_drop_acked(conn, be64_to_cpu(rm->m_inc.i_hdr.h_sequence), NULL); rds_inc_put(&rm->m_inc); out: return ret; } /* * See rds_loop_xmit(). Since our inc is embedded in the rm, we * make sure the rm lives at least until the inc is done. */ static void rds_loop_inc_free(struct rds_incoming *inc) { struct rds_message *rm = container_of(inc, struct rds_message, m_inc); rds_message_put(rm); } /* we need to at least give the thread something to succeed */ static int rds_loop_recv_path(struct rds_conn_path *cp) { return 0; } struct rds_loop_connection { struct list_head loop_node; struct rds_connection *conn; }; /* * Even the loopback transport needs to keep track of its connections, * so it can call rds_conn_destroy() on them on exit. N.B. there are * 1+ loopback addresses (127.*.*.*) so it's not a bug to have * multiple loopback conns allocated, although rather useless. */ static int rds_loop_conn_alloc(struct rds_connection *conn, gfp_t gfp) { struct rds_loop_connection *lc; unsigned long flags; lc = kzalloc(sizeof(struct rds_loop_connection), gfp); if (!lc) return -ENOMEM; INIT_LIST_HEAD(&lc->loop_node); lc->conn = conn; conn->c_transport_data = lc; spin_lock_irqsave(&loop_conns_lock, flags); list_add_tail(&lc->loop_node, &loop_conns); spin_unlock_irqrestore(&loop_conns_lock, flags); return 0; } static void rds_loop_conn_free(void *arg) { struct rds_loop_connection *lc = arg; unsigned long flags; rdsdebug("lc %p\n", lc); spin_lock_irqsave(&loop_conns_lock, flags); list_del(&lc->loop_node); spin_unlock_irqrestore(&loop_conns_lock, flags); kfree(lc); } static int rds_loop_conn_path_connect(struct rds_conn_path *cp) { rds_connect_complete(cp->cp_conn); return 0; } static void rds_loop_conn_path_shutdown(struct rds_conn_path *cp) { } void rds_loop_exit(void) { struct rds_loop_connection *lc, *_lc; LIST_HEAD(tmp_list); rds_loop_set_unloading(); synchronize_rcu(); /* avoid calling conn_destroy with irqs off */ spin_lock_irq(&loop_conns_lock); list_splice(&loop_conns, &tmp_list); INIT_LIST_HEAD(&loop_conns); spin_unlock_irq(&loop_conns_lock); list_for_each_entry_safe(lc, _lc, &tmp_list, loop_node) { WARN_ON(lc->conn->c_passive); rds_conn_destroy(lc->conn); } } static void rds_loop_kill_conns(struct net *net) { struct rds_loop_connection *lc, *_lc; LIST_HEAD(tmp_list); spin_lock_irq(&loop_conns_lock); list_for_each_entry_safe(lc, _lc, &loop_conns, loop_node) { struct net *c_net = read_pnet(&lc->conn->c_net); if (net != c_net) continue; list_move_tail(&lc->loop_node, &tmp_list); } spin_unlock_irq(&loop_conns_lock); list_for_each_entry_safe(lc, _lc, &tmp_list, loop_node) { WARN_ON(lc->conn->c_passive); rds_conn_destroy(lc->conn); } } static void __net_exit rds_loop_exit_net(struct net *net) { rds_loop_kill_conns(net); } static struct pernet_operations rds_loop_net_ops = { .exit = rds_loop_exit_net, }; int rds_loop_net_init(void) { return register_pernet_device(&rds_loop_net_ops); } void rds_loop_net_exit(void) { unregister_pernet_device(&rds_loop_net_ops); } /* * This is missing .xmit_* because loop doesn't go through generic * rds_send_xmit() and doesn't call rds_recv_incoming(). .listen_stop and * .laddr_check are missing because transport.c doesn't iterate over * rds_loop_transport. */ struct rds_transport rds_loop_transport = { .xmit = rds_loop_xmit, .recv_path = rds_loop_recv_path, .conn_alloc = rds_loop_conn_alloc, .conn_free = rds_loop_conn_free, .conn_path_connect = rds_loop_conn_path_connect, .conn_path_shutdown = rds_loop_conn_path_shutdown, .inc_copy_to_user = rds_message_inc_copy_to_user, .inc_free = rds_loop_inc_free, .t_name = "loopback", .t_type = RDS_TRANS_LOOP, .t_unloading = rds_loop_is_unloading, };
linux-master
net/rds/loop.c
/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/sysctl.h> #include <linux/proc_fs.h> #include "rds.h" static struct ctl_table_header *rds_sysctl_reg_table; static unsigned long rds_sysctl_reconnect_min = 1; static unsigned long rds_sysctl_reconnect_max = ~0UL; unsigned long rds_sysctl_reconnect_min_jiffies; unsigned long rds_sysctl_reconnect_max_jiffies = HZ; unsigned int rds_sysctl_max_unacked_packets = 8; unsigned int rds_sysctl_max_unacked_bytes = (16 << 20); unsigned int rds_sysctl_ping_enable = 1; static struct ctl_table rds_sysctl_rds_table[] = { { .procname = "reconnect_min_delay_ms", .data = &rds_sysctl_reconnect_min_jiffies, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_ms_jiffies_minmax, .extra1 = &rds_sysctl_reconnect_min, .extra2 = &rds_sysctl_reconnect_max_jiffies, }, { .procname = "reconnect_max_delay_ms", .data = &rds_sysctl_reconnect_max_jiffies, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_ms_jiffies_minmax, .extra1 = &rds_sysctl_reconnect_min_jiffies, .extra2 = &rds_sysctl_reconnect_max, }, { .procname = "max_unacked_packets", .data = &rds_sysctl_max_unacked_packets, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "max_unacked_bytes", .data = &rds_sysctl_max_unacked_bytes, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "ping_enable", .data = &rds_sysctl_ping_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { } }; void rds_sysctl_exit(void) { unregister_net_sysctl_table(rds_sysctl_reg_table); } int rds_sysctl_init(void) { rds_sysctl_reconnect_min = msecs_to_jiffies(1); rds_sysctl_reconnect_min_jiffies = rds_sysctl_reconnect_min; rds_sysctl_reg_table = register_net_sysctl(&init_net, "net/rds", rds_sysctl_rds_table); if (!rds_sysctl_reg_table) return -ENOMEM; return 0; }
linux-master
net/rds/sysctl.c
/* * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <net/sock.h> #include <linux/in.h> #include <linux/ipv6.h> #include <linux/if_arp.h> #include <linux/jhash.h> #include <linux/ratelimit.h> #include "rds.h" static struct rhashtable bind_hash_table; static const struct rhashtable_params ht_parms = { .nelem_hint = 768, .key_len = RDS_BOUND_KEY_LEN, .key_offset = offsetof(struct rds_sock, rs_bound_key), .head_offset = offsetof(struct rds_sock, rs_bound_node), .max_size = 16384, .min_size = 1024, }; /* Create a key for the bind hash table manipulation. Port is in network byte * order. */ static inline void __rds_create_bind_key(u8 *key, const struct in6_addr *addr, __be16 port, __u32 scope_id) { memcpy(key, addr, sizeof(*addr)); key += sizeof(*addr); memcpy(key, &port, sizeof(port)); key += sizeof(port); memcpy(key, &scope_id, sizeof(scope_id)); } /* * Return the rds_sock bound at the given local address. * * The rx path can race with rds_release. We notice if rds_release() has * marked this socket and don't return a rs ref to the rx path. */ struct rds_sock *rds_find_bound(const struct in6_addr *addr, __be16 port, __u32 scope_id) { u8 key[RDS_BOUND_KEY_LEN]; struct rds_sock *rs; __rds_create_bind_key(key, addr, port, scope_id); rcu_read_lock(); rs = rhashtable_lookup(&bind_hash_table, key, ht_parms); if (rs && (sock_flag(rds_rs_to_sk(rs), SOCK_DEAD) || !refcount_inc_not_zero(&rds_rs_to_sk(rs)->sk_refcnt))) rs = NULL; rcu_read_unlock(); rdsdebug("returning rs %p for %pI6c:%u\n", rs, addr, ntohs(port)); return rs; } /* returns -ve errno or +ve port */ static int rds_add_bound(struct rds_sock *rs, const struct in6_addr *addr, __be16 *port, __u32 scope_id) { int ret = -EADDRINUSE; u16 rover, last; u8 key[RDS_BOUND_KEY_LEN]; if (*port != 0) { rover = be16_to_cpu(*port); if (rover == RDS_FLAG_PROBE_PORT) return -EINVAL; last = rover; } else { rover = max_t(u16, get_random_u16(), 2); last = rover - 1; } do { if (rover == 0) rover++; if (rover == RDS_FLAG_PROBE_PORT) continue; __rds_create_bind_key(key, addr, cpu_to_be16(rover), scope_id); if (rhashtable_lookup_fast(&bind_hash_table, key, ht_parms)) continue; memcpy(rs->rs_bound_key, key, sizeof(rs->rs_bound_key)); rs->rs_bound_addr = *addr; net_get_random_once(&rs->rs_hash_initval, sizeof(rs->rs_hash_initval)); rs->rs_bound_port = cpu_to_be16(rover); rs->rs_bound_node.next = NULL; rds_sock_addref(rs); if (!rhashtable_insert_fast(&bind_hash_table, &rs->rs_bound_node, ht_parms)) { *port = rs->rs_bound_port; rs->rs_bound_scope_id = scope_id; ret = 0; rdsdebug("rs %p binding to %pI6c:%d\n", rs, addr, (int)ntohs(*port)); break; } else { rs->rs_bound_addr = in6addr_any; rds_sock_put(rs); ret = -ENOMEM; break; } } while (rover++ != last); return ret; } void rds_remove_bound(struct rds_sock *rs) { if (ipv6_addr_any(&rs->rs_bound_addr)) return; rdsdebug("rs %p unbinding from %pI6c:%d\n", rs, &rs->rs_bound_addr, ntohs(rs->rs_bound_port)); rhashtable_remove_fast(&bind_hash_table, &rs->rs_bound_node, ht_parms); rds_sock_put(rs); rs->rs_bound_addr = in6addr_any; } int rds_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; struct rds_sock *rs = rds_sk_to_rs(sk); struct in6_addr v6addr, *binding_addr; struct rds_transport *trans; __u32 scope_id = 0; int ret = 0; __be16 port; /* We allow an RDS socket to be bound to either IPv4 or IPv6 * address. */ if (addr_len < offsetofend(struct sockaddr, sa_family)) return -EINVAL; if (uaddr->sa_family == AF_INET) { struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; if (addr_len < sizeof(struct sockaddr_in) || sin->sin_addr.s_addr == htonl(INADDR_ANY) || sin->sin_addr.s_addr == htonl(INADDR_BROADCAST) || ipv4_is_multicast(sin->sin_addr.s_addr)) return -EINVAL; ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &v6addr); binding_addr = &v6addr; port = sin->sin_port; #if IS_ENABLED(CONFIG_IPV6) } else if (uaddr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)uaddr; int addr_type; if (addr_len < sizeof(struct sockaddr_in6)) return -EINVAL; addr_type = ipv6_addr_type(&sin6->sin6_addr); if (!(addr_type & IPV6_ADDR_UNICAST)) { __be32 addr4; if (!(addr_type & IPV6_ADDR_MAPPED)) return -EINVAL; /* It is a mapped address. Need to do some sanity * checks. */ addr4 = sin6->sin6_addr.s6_addr32[3]; if (addr4 == htonl(INADDR_ANY) || addr4 == htonl(INADDR_BROADCAST) || ipv4_is_multicast(addr4)) return -EINVAL; } /* The scope ID must be specified for link local address. */ if (addr_type & IPV6_ADDR_LINKLOCAL) { if (sin6->sin6_scope_id == 0) return -EINVAL; scope_id = sin6->sin6_scope_id; } binding_addr = &sin6->sin6_addr; port = sin6->sin6_port; #endif } else { return -EINVAL; } lock_sock(sk); /* RDS socket does not allow re-binding. */ if (!ipv6_addr_any(&rs->rs_bound_addr)) { ret = -EINVAL; goto out; } /* Socket is connected. The binding address should have the same * scope ID as the connected address, except the case when one is * non-link local address (scope_id is 0). */ if (!ipv6_addr_any(&rs->rs_conn_addr) && scope_id && rs->rs_bound_scope_id && scope_id != rs->rs_bound_scope_id) { ret = -EINVAL; goto out; } /* The transport can be set using SO_RDS_TRANSPORT option before the * socket is bound. */ if (rs->rs_transport) { trans = rs->rs_transport; if (!trans->laddr_check || trans->laddr_check(sock_net(sock->sk), binding_addr, scope_id) != 0) { ret = -ENOPROTOOPT; goto out; } } else { trans = rds_trans_get_preferred(sock_net(sock->sk), binding_addr, scope_id); if (!trans) { ret = -EADDRNOTAVAIL; pr_info_ratelimited("RDS: %s could not find a transport for %pI6c, load rds_tcp or rds_rdma?\n", __func__, binding_addr); goto out; } rs->rs_transport = trans; } sock_set_flag(sk, SOCK_RCU_FREE); ret = rds_add_bound(rs, binding_addr, &port, scope_id); if (ret) rs->rs_transport = NULL; out: release_sock(sk); return ret; } void rds_bind_lock_destroy(void) { rhashtable_destroy(&bind_hash_table); } int rds_bind_lock_init(void) { return rhashtable_init(&bind_hash_table, &ht_parms); }
linux-master
net/rds/bind.c
/* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/rculist.h> #include <linux/llist.h> #include "rds_single_path.h" #include "ib_mr.h" #include "rds.h" struct workqueue_struct *rds_ib_mr_wq; struct rds_ib_dereg_odp_mr { struct work_struct work; struct ib_mr *mr; }; static void rds_ib_odp_mr_worker(struct work_struct *work); static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr) { struct rds_ib_device *rds_ibdev; struct rds_ib_ipaddr *i_ipaddr; rcu_read_lock(); list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) { list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { if (i_ipaddr->ipaddr == ipaddr) { refcount_inc(&rds_ibdev->refcount); rcu_read_unlock(); return rds_ibdev; } } } rcu_read_unlock(); return NULL; } static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) { struct rds_ib_ipaddr *i_ipaddr; i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL); if (!i_ipaddr) return -ENOMEM; i_ipaddr->ipaddr = ipaddr; spin_lock_irq(&rds_ibdev->spinlock); list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list); spin_unlock_irq(&rds_ibdev->spinlock); return 0; } static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) { struct rds_ib_ipaddr *i_ipaddr; struct rds_ib_ipaddr *to_free = NULL; spin_lock_irq(&rds_ibdev->spinlock); list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { if (i_ipaddr->ipaddr == ipaddr) { list_del_rcu(&i_ipaddr->list); to_free = i_ipaddr; break; } } spin_unlock_irq(&rds_ibdev->spinlock); if (to_free) kfree_rcu(to_free, rcu); } int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, struct in6_addr *ipaddr) { struct rds_ib_device *rds_ibdev_old; rds_ibdev_old = rds_ib_get_device(ipaddr->s6_addr32[3]); if (!rds_ibdev_old) return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]); if (rds_ibdev_old != rds_ibdev) { rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr->s6_addr32[3]); rds_ib_dev_put(rds_ibdev_old); return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]); } rds_ib_dev_put(rds_ibdev_old); return 0; } void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) { struct rds_ib_connection *ic = conn->c_transport_data; /* conn was previously on the nodev_conns_list */ spin_lock_irq(&ib_nodev_conns_lock); BUG_ON(list_empty(&ib_nodev_conns)); BUG_ON(list_empty(&ic->ib_node)); list_del(&ic->ib_node); spin_lock(&rds_ibdev->spinlock); list_add_tail(&ic->ib_node, &rds_ibdev->conn_list); spin_unlock(&rds_ibdev->spinlock); spin_unlock_irq(&ib_nodev_conns_lock); ic->rds_ibdev = rds_ibdev; refcount_inc(&rds_ibdev->refcount); } void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) { struct rds_ib_connection *ic = conn->c_transport_data; /* place conn on nodev_conns_list */ spin_lock(&ib_nodev_conns_lock); spin_lock_irq(&rds_ibdev->spinlock); BUG_ON(list_empty(&ic->ib_node)); list_del(&ic->ib_node); spin_unlock_irq(&rds_ibdev->spinlock); list_add_tail(&ic->ib_node, &ib_nodev_conns); spin_unlock(&ib_nodev_conns_lock); ic->rds_ibdev = NULL; rds_ib_dev_put(rds_ibdev); } void rds_ib_destroy_nodev_conns(void) { struct rds_ib_connection *ic, *_ic; LIST_HEAD(tmp_list); /* avoid calling conn_destroy with irqs off */ spin_lock_irq(&ib_nodev_conns_lock); list_splice(&ib_nodev_conns, &tmp_list); spin_unlock_irq(&ib_nodev_conns_lock); list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) rds_conn_destroy(ic->conn); } void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo) { struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool; iinfo->rdma_mr_max = pool_1m->max_items; iinfo->rdma_mr_size = pool_1m->max_pages; } #if IS_ENABLED(CONFIG_IPV6) void rds6_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds6_info_rdma_connection *iinfo6) { struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool; iinfo6->rdma_mr_max = pool_1m->max_items; iinfo6->rdma_mr_size = pool_1m->max_pages; } #endif struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool) { struct rds_ib_mr *ibmr = NULL; struct llist_node *ret; unsigned long flags; spin_lock_irqsave(&pool->clean_lock, flags); ret = llist_del_first(&pool->clean_list); spin_unlock_irqrestore(&pool->clean_lock, flags); if (ret) { ibmr = llist_entry(ret, struct rds_ib_mr, llnode); if (pool->pool_type == RDS_IB_MR_8K_POOL) rds_ib_stats_inc(s_ib_rdma_mr_8k_reused); else rds_ib_stats_inc(s_ib_rdma_mr_1m_reused); } return ibmr; } void rds_ib_sync_mr(void *trans_private, int direction) { struct rds_ib_mr *ibmr = trans_private; struct rds_ib_device *rds_ibdev = ibmr->device; if (ibmr->odp) return; switch (direction) { case DMA_FROM_DEVICE: ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg, ibmr->sg_dma_len, DMA_BIDIRECTIONAL); break; case DMA_TO_DEVICE: ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg, ibmr->sg_dma_len, DMA_BIDIRECTIONAL); break; } } void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr) { struct rds_ib_device *rds_ibdev = ibmr->device; if (ibmr->sg_dma_len) { ib_dma_unmap_sg(rds_ibdev->dev, ibmr->sg, ibmr->sg_len, DMA_BIDIRECTIONAL); ibmr->sg_dma_len = 0; } /* Release the s/g list */ if (ibmr->sg_len) { unsigned int i; for (i = 0; i < ibmr->sg_len; ++i) { struct page *page = sg_page(&ibmr->sg[i]); /* FIXME we need a way to tell a r/w MR * from a r/o MR */ WARN_ON(!page->mapping && irqs_disabled()); set_page_dirty(page); put_page(page); } kfree(ibmr->sg); ibmr->sg = NULL; ibmr->sg_len = 0; } } void rds_ib_teardown_mr(struct rds_ib_mr *ibmr) { unsigned int pinned = ibmr->sg_len; __rds_ib_teardown_mr(ibmr); if (pinned) { struct rds_ib_mr_pool *pool = ibmr->pool; atomic_sub(pinned, &pool->free_pinned); } } static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all) { unsigned int item_count; item_count = atomic_read(&pool->item_count); if (free_all) return item_count; return 0; } /* * given an llist of mrs, put them all into the list_head for more processing */ static unsigned int llist_append_to_list(struct llist_head *llist, struct list_head *list) { struct rds_ib_mr *ibmr; struct llist_node *node; struct llist_node *next; unsigned int count = 0; node = llist_del_all(llist); while (node) { next = node->next; ibmr = llist_entry(node, struct rds_ib_mr, llnode); list_add_tail(&ibmr->unmap_list, list); node = next; count++; } return count; } /* * this takes a list head of mrs and turns it into linked llist nodes * of clusters. Each cluster has linked llist nodes of * MR_CLUSTER_SIZE mrs that are ready for reuse. */ static void list_to_llist_nodes(struct list_head *list, struct llist_node **nodes_head, struct llist_node **nodes_tail) { struct rds_ib_mr *ibmr; struct llist_node *cur = NULL; struct llist_node **next = nodes_head; list_for_each_entry(ibmr, list, unmap_list) { cur = &ibmr->llnode; *next = cur; next = &cur->next; } *next = NULL; *nodes_tail = cur; } /* * Flush our pool of MRs. * At a minimum, all currently unused MRs are unmapped. * If the number of MRs allocated exceeds the limit, we also try * to free as many MRs as needed to get back to this limit. */ int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **ibmr_ret) { struct rds_ib_mr *ibmr; struct llist_node *clean_nodes; struct llist_node *clean_tail; LIST_HEAD(unmap_list); unsigned long unpinned = 0; unsigned int nfreed = 0, dirty_to_clean = 0, free_goal; if (pool->pool_type == RDS_IB_MR_8K_POOL) rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush); else rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush); if (ibmr_ret) { DEFINE_WAIT(wait); while (!mutex_trylock(&pool->flush_lock)) { ibmr = rds_ib_reuse_mr(pool); if (ibmr) { *ibmr_ret = ibmr; finish_wait(&pool->flush_wait, &wait); goto out_nolock; } prepare_to_wait(&pool->flush_wait, &wait, TASK_UNINTERRUPTIBLE); if (llist_empty(&pool->clean_list)) schedule(); ibmr = rds_ib_reuse_mr(pool); if (ibmr) { *ibmr_ret = ibmr; finish_wait(&pool->flush_wait, &wait); goto out_nolock; } } finish_wait(&pool->flush_wait, &wait); } else mutex_lock(&pool->flush_lock); if (ibmr_ret) { ibmr = rds_ib_reuse_mr(pool); if (ibmr) { *ibmr_ret = ibmr; goto out; } } /* Get the list of all MRs to be dropped. Ordering matters - * we want to put drop_list ahead of free_list. */ dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list); dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list); if (free_all) { unsigned long flags; spin_lock_irqsave(&pool->clean_lock, flags); llist_append_to_list(&pool->clean_list, &unmap_list); spin_unlock_irqrestore(&pool->clean_lock, flags); } free_goal = rds_ib_flush_goal(pool, free_all); if (list_empty(&unmap_list)) goto out; rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal); if (!list_empty(&unmap_list)) { unsigned long flags; list_to_llist_nodes(&unmap_list, &clean_nodes, &clean_tail); if (ibmr_ret) { *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode); clean_nodes = clean_nodes->next; } /* more than one entry in llist nodes */ if (clean_nodes) { spin_lock_irqsave(&pool->clean_lock, flags); llist_add_batch(clean_nodes, clean_tail, &pool->clean_list); spin_unlock_irqrestore(&pool->clean_lock, flags); } } atomic_sub(unpinned, &pool->free_pinned); atomic_sub(dirty_to_clean, &pool->dirty_count); atomic_sub(nfreed, &pool->item_count); out: mutex_unlock(&pool->flush_lock); if (waitqueue_active(&pool->flush_wait)) wake_up(&pool->flush_wait); out_nolock: return 0; } struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool) { struct rds_ib_mr *ibmr = NULL; int iter = 0; while (1) { ibmr = rds_ib_reuse_mr(pool); if (ibmr) return ibmr; if (atomic_inc_return(&pool->item_count) <= pool->max_items) break; atomic_dec(&pool->item_count); if (++iter > 2) { if (pool->pool_type == RDS_IB_MR_8K_POOL) rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted); else rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted); break; } /* We do have some empty MRs. Flush them out. */ if (pool->pool_type == RDS_IB_MR_8K_POOL) rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait); else rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait); rds_ib_flush_mr_pool(pool, 0, &ibmr); if (ibmr) return ibmr; } return NULL; } static void rds_ib_mr_pool_flush_worker(struct work_struct *work) { struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work); rds_ib_flush_mr_pool(pool, 0, NULL); } void rds_ib_free_mr(void *trans_private, int invalidate) { struct rds_ib_mr *ibmr = trans_private; struct rds_ib_mr_pool *pool = ibmr->pool; struct rds_ib_device *rds_ibdev = ibmr->device; rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len); if (ibmr->odp) { /* A MR created and marked as use_once. We use delayed work, * because there is a change that we are in interrupt and can't * call to ib_dereg_mr() directly. */ INIT_DELAYED_WORK(&ibmr->work, rds_ib_odp_mr_worker); queue_delayed_work(rds_ib_mr_wq, &ibmr->work, 0); return; } /* Return it to the pool's free list */ rds_ib_free_frmr_list(ibmr); atomic_add(ibmr->sg_len, &pool->free_pinned); atomic_inc(&pool->dirty_count); /* If we've pinned too many pages, request a flush */ if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || atomic_read(&pool->dirty_count) >= pool->max_items / 5) queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10); if (invalidate) { if (likely(!in_interrupt())) { rds_ib_flush_mr_pool(pool, 0, NULL); } else { /* We get here if the user created a MR marked * as use_once and invalidate at the same time. */ queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10); } } rds_ib_dev_put(rds_ibdev); } void rds_ib_flush_mrs(void) { struct rds_ib_device *rds_ibdev; down_read(&rds_ib_devices_lock); list_for_each_entry(rds_ibdev, &rds_ib_devices, list) { if (rds_ibdev->mr_8k_pool) rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL); if (rds_ibdev->mr_1m_pool) rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL); } up_read(&rds_ib_devices_lock); } u32 rds_ib_get_lkey(void *trans_private) { struct rds_ib_mr *ibmr = trans_private; return ibmr->u.mr->lkey; } void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents, struct rds_sock *rs, u32 *key_ret, struct rds_connection *conn, u64 start, u64 length, int need_odp) { struct rds_ib_device *rds_ibdev; struct rds_ib_mr *ibmr = NULL; struct rds_ib_connection *ic = NULL; int ret; rds_ibdev = rds_ib_get_device(rs->rs_bound_addr.s6_addr32[3]); if (!rds_ibdev) { ret = -ENODEV; goto out; } if (need_odp == ODP_ZEROBASED || need_odp == ODP_VIRTUAL) { u64 virt_addr = need_odp == ODP_ZEROBASED ? 0 : start; int access_flags = (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_ON_DEMAND); struct ib_sge sge = {}; struct ib_mr *ib_mr; if (!rds_ibdev->odp_capable) { ret = -EOPNOTSUPP; goto out; } ib_mr = ib_reg_user_mr(rds_ibdev->pd, start, length, virt_addr, access_flags); if (IS_ERR(ib_mr)) { rdsdebug("rds_ib_get_user_mr returned %d\n", IS_ERR(ib_mr)); ret = PTR_ERR(ib_mr); goto out; } if (key_ret) *key_ret = ib_mr->rkey; ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); if (!ibmr) { ib_dereg_mr(ib_mr); ret = -ENOMEM; goto out; } ibmr->u.mr = ib_mr; ibmr->odp = 1; sge.addr = virt_addr; sge.length = length; sge.lkey = ib_mr->lkey; ib_advise_mr(rds_ibdev->pd, IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE, IB_UVERBS_ADVISE_MR_FLAG_FLUSH, &sge, 1); return ibmr; } if (conn) ic = conn->c_transport_data; if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) { ret = -ENODEV; goto out; } ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret); if (IS_ERR(ibmr)) { ret = PTR_ERR(ibmr); pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret); } else { return ibmr; } out: if (rds_ibdev) rds_ib_dev_put(rds_ibdev); return ERR_PTR(ret); } void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool) { cancel_delayed_work_sync(&pool->flush_worker); rds_ib_flush_mr_pool(pool, 1, NULL); WARN_ON(atomic_read(&pool->item_count)); WARN_ON(atomic_read(&pool->free_pinned)); kfree(pool); } struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev, int pool_type) { struct rds_ib_mr_pool *pool; pool = kzalloc(sizeof(*pool), GFP_KERNEL); if (!pool) return ERR_PTR(-ENOMEM); pool->pool_type = pool_type; init_llist_head(&pool->free_list); init_llist_head(&pool->drop_list); init_llist_head(&pool->clean_list); spin_lock_init(&pool->clean_lock); mutex_init(&pool->flush_lock); init_waitqueue_head(&pool->flush_wait); INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker); if (pool_type == RDS_IB_MR_1M_POOL) { /* +1 allows for unaligned MRs */ pool->max_pages = RDS_MR_1M_MSG_SIZE + 1; pool->max_items = rds_ibdev->max_1m_mrs; } else { /* pool_type == RDS_IB_MR_8K_POOL */ pool->max_pages = RDS_MR_8K_MSG_SIZE + 1; pool->max_items = rds_ibdev->max_8k_mrs; } pool->max_free_pinned = pool->max_items * pool->max_pages / 4; pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4; return pool; } int rds_ib_mr_init(void) { rds_ib_mr_wq = alloc_workqueue("rds_mr_flushd", WQ_MEM_RECLAIM, 0); if (!rds_ib_mr_wq) return -ENOMEM; return 0; } /* By the time this is called all the IB devices should have been torn down and * had their pools freed. As each pool is freed its work struct is waited on, * so the pool flushing work queue should be idle by the time we get here. */ void rds_ib_mr_exit(void) { destroy_workqueue(rds_ib_mr_wq); } static void rds_ib_odp_mr_worker(struct work_struct *work) { struct rds_ib_mr *ibmr; ibmr = container_of(work, struct rds_ib_mr, work.work); ib_dereg_mr(ibmr->u.mr); kfree(ibmr); }
linux-master
net/rds/ib_rdma.c
/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/percpu.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/proc_fs.h> #include <linux/export.h> #include "rds.h" /* * This file implements a getsockopt() call which copies a set of fixed * sized structs into a user-specified buffer as a means of providing * read-only information about RDS. * * For a given information source there are a given number of fixed sized * structs at a given time. The structs are only copied if the user-specified * buffer is big enough. The destination pages that make up the buffer * are pinned for the duration of the copy. * * This gives us the following benefits: * * - simple implementation, no copy "position" across multiple calls * - consistent snapshot of an info source * - atomic copy works well with whatever locking info source has * - one portable tool to get rds info across implementations * - long-lived tool can get info without allocating * * at the following costs: * * - info source copy must be pinned, may be "large" */ struct rds_info_iterator { struct page **pages; void *addr; unsigned long offset; }; static DEFINE_SPINLOCK(rds_info_lock); static rds_info_func rds_info_funcs[RDS_INFO_LAST - RDS_INFO_FIRST + 1]; void rds_info_register_func(int optname, rds_info_func func) { int offset = optname - RDS_INFO_FIRST; BUG_ON(optname < RDS_INFO_FIRST || optname > RDS_INFO_LAST); spin_lock(&rds_info_lock); BUG_ON(rds_info_funcs[offset]); rds_info_funcs[offset] = func; spin_unlock(&rds_info_lock); } EXPORT_SYMBOL_GPL(rds_info_register_func); void rds_info_deregister_func(int optname, rds_info_func func) { int offset = optname - RDS_INFO_FIRST; BUG_ON(optname < RDS_INFO_FIRST || optname > RDS_INFO_LAST); spin_lock(&rds_info_lock); BUG_ON(rds_info_funcs[offset] != func); rds_info_funcs[offset] = NULL; spin_unlock(&rds_info_lock); } EXPORT_SYMBOL_GPL(rds_info_deregister_func); /* * Typically we hold an atomic kmap across multiple rds_info_copy() calls * because the kmap is so expensive. This must be called before using blocking * operations while holding the mapping and as the iterator is torn down. */ void rds_info_iter_unmap(struct rds_info_iterator *iter) { if (iter->addr) { kunmap_atomic(iter->addr); iter->addr = NULL; } } /* * get_user_pages() called flush_dcache_page() on the pages for us. */ void rds_info_copy(struct rds_info_iterator *iter, void *data, unsigned long bytes) { unsigned long this; while (bytes) { if (!iter->addr) iter->addr = kmap_atomic(*iter->pages); this = min(bytes, PAGE_SIZE - iter->offset); rdsdebug("page %p addr %p offset %lu this %lu data %p " "bytes %lu\n", *iter->pages, iter->addr, iter->offset, this, data, bytes); memcpy(iter->addr + iter->offset, data, this); data += this; bytes -= this; iter->offset += this; if (iter->offset == PAGE_SIZE) { kunmap_atomic(iter->addr); iter->addr = NULL; iter->offset = 0; iter->pages++; } } } EXPORT_SYMBOL_GPL(rds_info_copy); /* * @optval points to the userspace buffer that the information snapshot * will be copied into. * * @optlen on input is the size of the buffer in userspace. @optlen * on output is the size of the requested snapshot in bytes. * * This function returns -errno if there is a failure, particularly -ENOSPC * if the given userspace buffer was not large enough to fit the snapshot. * On success it returns the positive number of bytes of each array element * in the snapshot. */ int rds_info_getsockopt(struct socket *sock, int optname, char __user *optval, int __user *optlen) { struct rds_info_iterator iter; struct rds_info_lengths lens; unsigned long nr_pages = 0; unsigned long start; rds_info_func func; struct page **pages = NULL; int ret; int len; int total; if (get_user(len, optlen)) { ret = -EFAULT; goto out; } /* check for all kinds of wrapping and the like */ start = (unsigned long)optval; if (len < 0 || len > INT_MAX - PAGE_SIZE + 1 || start + len < start) { ret = -EINVAL; goto out; } /* a 0 len call is just trying to probe its length */ if (len == 0) goto call_func; nr_pages = (PAGE_ALIGN(start + len) - (start & PAGE_MASK)) >> PAGE_SHIFT; pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!pages) { ret = -ENOMEM; goto out; } ret = pin_user_pages_fast(start, nr_pages, FOLL_WRITE, pages); if (ret != nr_pages) { if (ret > 0) nr_pages = ret; else nr_pages = 0; ret = -EAGAIN; /* XXX ? */ goto out; } rdsdebug("len %d nr_pages %lu\n", len, nr_pages); call_func: func = rds_info_funcs[optname - RDS_INFO_FIRST]; if (!func) { ret = -ENOPROTOOPT; goto out; } iter.pages = pages; iter.addr = NULL; iter.offset = start & (PAGE_SIZE - 1); func(sock, len, &iter, &lens); BUG_ON(lens.each == 0); total = lens.nr * lens.each; rds_info_iter_unmap(&iter); if (total > len) { len = total; ret = -ENOSPC; } else { len = total; ret = lens.each; } if (put_user(len, optlen)) ret = -EFAULT; out: if (pages) unpin_user_pages(pages, nr_pages); kfree(pages); return ret; }
linux-master
net/rds/info.c
/* * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/in.h> #include <linux/device.h> #include <linux/dmapool.h> #include <linux/ratelimit.h> #include "rds_single_path.h" #include "rds.h" #include "ib.h" #include "ib_mr.h" /* * Convert IB-specific error message to RDS error message and call core * completion handler. */ static void rds_ib_send_complete(struct rds_message *rm, int wc_status, void (*complete)(struct rds_message *rm, int status)) { int notify_status; switch (wc_status) { case IB_WC_WR_FLUSH_ERR: return; case IB_WC_SUCCESS: notify_status = RDS_RDMA_SUCCESS; break; case IB_WC_REM_ACCESS_ERR: notify_status = RDS_RDMA_REMOTE_ERROR; break; default: notify_status = RDS_RDMA_OTHER_ERROR; break; } complete(rm, notify_status); } static void rds_ib_send_unmap_data(struct rds_ib_connection *ic, struct rm_data_op *op, int wc_status) { if (op->op_nents) ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, op->op_nents, DMA_TO_DEVICE); } static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic, struct rm_rdma_op *op, int wc_status) { if (op->op_mapped) { ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, op->op_nents, op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); op->op_mapped = 0; } /* If the user asked for a completion notification on this * message, we can implement three different semantics: * 1. Notify when we received the ACK on the RDS message * that was queued with the RDMA. This provides reliable * notification of RDMA status at the expense of a one-way * packet delay. * 2. Notify when the IB stack gives us the completion event for * the RDMA operation. * 3. Notify when the IB stack gives us the completion event for * the accompanying RDS messages. * Here, we implement approach #3. To implement approach #2, * we would need to take an event for the rdma WR. To implement #1, * don't call rds_rdma_send_complete at all, and fall back to the notify * handling in the ACK processing code. * * Note: There's no need to explicitly sync any RDMA buffers using * ib_dma_sync_sg_for_cpu - the completion for the RDMA * operation itself unmapped the RDMA buffers, which takes care * of synching. */ rds_ib_send_complete(container_of(op, struct rds_message, rdma), wc_status, rds_rdma_send_complete); if (op->op_write) rds_stats_add(s_send_rdma_bytes, op->op_bytes); else rds_stats_add(s_recv_rdma_bytes, op->op_bytes); } static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic, struct rm_atomic_op *op, int wc_status) { /* unmap atomic recvbuf */ if (op->op_mapped) { ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE); op->op_mapped = 0; } rds_ib_send_complete(container_of(op, struct rds_message, atomic), wc_status, rds_atomic_send_complete); if (op->op_type == RDS_ATOMIC_TYPE_CSWP) rds_ib_stats_inc(s_ib_atomic_cswp); else rds_ib_stats_inc(s_ib_atomic_fadd); } /* * Unmap the resources associated with a struct send_work. * * Returns the rm for no good reason other than it is unobtainable * other than by switching on wr.opcode, currently, and the caller, * the event handler, needs it. */ static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic, struct rds_ib_send_work *send, int wc_status) { struct rds_message *rm = NULL; /* In the error case, wc.opcode sometimes contains garbage */ switch (send->s_wr.opcode) { case IB_WR_SEND: if (send->s_op) { rm = container_of(send->s_op, struct rds_message, data); rds_ib_send_unmap_data(ic, send->s_op, wc_status); } break; case IB_WR_RDMA_WRITE: case IB_WR_RDMA_READ: if (send->s_op) { rm = container_of(send->s_op, struct rds_message, rdma); rds_ib_send_unmap_rdma(ic, send->s_op, wc_status); } break; case IB_WR_ATOMIC_FETCH_AND_ADD: case IB_WR_ATOMIC_CMP_AND_SWP: if (send->s_op) { rm = container_of(send->s_op, struct rds_message, atomic); rds_ib_send_unmap_atomic(ic, send->s_op, wc_status); } break; default: printk_ratelimited(KERN_NOTICE "RDS/IB: %s: unexpected opcode 0x%x in WR!\n", __func__, send->s_wr.opcode); break; } send->s_wr.opcode = 0xdead; return rm; } void rds_ib_send_init_ring(struct rds_ib_connection *ic) { struct rds_ib_send_work *send; u32 i; for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { struct ib_sge *sge; send->s_op = NULL; send->s_wr.wr_id = i; send->s_wr.sg_list = send->s_sge; send->s_wr.ex.imm_data = 0; sge = &send->s_sge[0]; sge->addr = ic->i_send_hdrs_dma[i]; sge->length = sizeof(struct rds_header); sge->lkey = ic->i_pd->local_dma_lkey; send->s_sge[1].lkey = ic->i_pd->local_dma_lkey; } } void rds_ib_send_clear_ring(struct rds_ib_connection *ic) { struct rds_ib_send_work *send; u32 i; for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { if (send->s_op && send->s_wr.opcode != 0xdead) rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR); } } /* * The only fast path caller always has a non-zero nr, so we don't * bother testing nr before performing the atomic sub. */ static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr) { if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) && waitqueue_active(&rds_ib_ring_empty_wait)) wake_up(&rds_ib_ring_empty_wait); BUG_ON(atomic_read(&ic->i_signaled_sends) < 0); } /* * The _oldest/_free ring operations here race cleanly with the alloc/unalloc * operations performed in the send path. As the sender allocs and potentially * unallocs the next free entry in the ring it doesn't alter which is * the next to be freed, which is what this is concerned with. */ void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc) { struct rds_message *rm = NULL; struct rds_connection *conn = ic->conn; struct rds_ib_send_work *send; u32 completed; u32 oldest; u32 i = 0; int nr_sig = 0; rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", (unsigned long long)wc->wr_id, wc->status, ib_wc_status_msg(wc->status), wc->byte_len, be32_to_cpu(wc->ex.imm_data)); rds_ib_stats_inc(s_ib_tx_cq_event); if (wc->wr_id == RDS_IB_ACK_WR_ID) { if (time_after(jiffies, ic->i_ack_queued + HZ / 2)) rds_ib_stats_inc(s_ib_tx_stalled); rds_ib_ack_send_complete(ic); return; } oldest = rds_ib_ring_oldest(&ic->i_send_ring); completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest); for (i = 0; i < completed; i++) { send = &ic->i_sends[oldest]; if (send->s_wr.send_flags & IB_SEND_SIGNALED) nr_sig++; rm = rds_ib_send_unmap_op(ic, send, wc->status); if (time_after(jiffies, send->s_queued + HZ / 2)) rds_ib_stats_inc(s_ib_tx_stalled); if (send->s_op) { if (send->s_op == rm->m_final_op) { /* If anyone waited for this message to get * flushed out, wake them up now */ rds_message_unmapped(rm); } rds_message_put(rm); send->s_op = NULL; } oldest = (oldest + 1) % ic->i_send_ring.w_nr; } rds_ib_ring_free(&ic->i_send_ring, completed); rds_ib_sub_signaled(ic, nr_sig); if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) || test_bit(0, &conn->c_map_queued)) queue_delayed_work(rds_wq, &conn->c_send_w, 0); /* We expect errors as the qp is drained during shutdown */ if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) { rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n", &conn->c_laddr, &conn->c_faddr, conn->c_tos, wc->status, ib_wc_status_msg(wc->status), wc->vendor_err); } } /* * This is the main function for allocating credits when sending * messages. * * Conceptually, we have two counters: * - send credits: this tells us how many WRs we're allowed * to submit without overruning the receiver's queue. For * each SEND WR we post, we decrement this by one. * * - posted credits: this tells us how many WRs we recently * posted to the receive queue. This value is transferred * to the peer as a "credit update" in a RDS header field. * Every time we transmit credits to the peer, we subtract * the amount of transferred credits from this counter. * * It is essential that we avoid situations where both sides have * exhausted their send credits, and are unable to send new credits * to the peer. We achieve this by requiring that we send at least * one credit update to the peer before exhausting our credits. * When new credits arrive, we subtract one credit that is withheld * until we've posted new buffers and are ready to transmit these * credits (see rds_ib_send_add_credits below). * * The RDS send code is essentially single-threaded; rds_send_xmit * sets RDS_IN_XMIT to ensure exclusive access to the send ring. * However, the ACK sending code is independent and can race with * message SENDs. * * In the send path, we need to update the counters for send credits * and the counter of posted buffers atomically - when we use the * last available credit, we cannot allow another thread to race us * and grab the posted credits counter. Hence, we have to use a * spinlock to protect the credit counter, or use atomics. * * Spinlocks shared between the send and the receive path are bad, * because they create unnecessary delays. An early implementation * using a spinlock showed a 5% degradation in throughput at some * loads. * * This implementation avoids spinlocks completely, putting both * counters into a single atomic, and updating that atomic using * atomic_add (in the receive path, when receiving fresh credits), * and using atomic_cmpxchg when updating the two counters. */ int rds_ib_send_grab_credits(struct rds_ib_connection *ic, u32 wanted, u32 *adv_credits, int need_posted, int max_posted) { unsigned int avail, posted, got = 0, advertise; long oldval, newval; *adv_credits = 0; if (!ic->i_flowctl) return wanted; try_again: advertise = 0; oldval = newval = atomic_read(&ic->i_credits); posted = IB_GET_POST_CREDITS(oldval); avail = IB_GET_SEND_CREDITS(oldval); rdsdebug("wanted=%u credits=%u posted=%u\n", wanted, avail, posted); /* The last credit must be used to send a credit update. */ if (avail && !posted) avail--; if (avail < wanted) { struct rds_connection *conn = ic->i_cm_id->context; /* Oops, there aren't that many credits left! */ set_bit(RDS_LL_SEND_FULL, &conn->c_flags); got = avail; } else { /* Sometimes you get what you want, lalala. */ got = wanted; } newval -= IB_SET_SEND_CREDITS(got); /* * If need_posted is non-zero, then the caller wants * the posted regardless of whether any send credits are * available. */ if (posted && (got || need_posted)) { advertise = min_t(unsigned int, posted, max_posted); newval -= IB_SET_POST_CREDITS(advertise); } /* Finally bill everything */ if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval) goto try_again; *adv_credits = advertise; return got; } void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits) { struct rds_ib_connection *ic = conn->c_transport_data; if (credits == 0) return; rdsdebug("credits=%u current=%u%s\n", credits, IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)), test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : ""); atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits); if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags)) queue_delayed_work(rds_wq, &conn->c_send_w, 0); WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384); rds_ib_stats_inc(s_ib_rx_credit_updates); } void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted) { struct rds_ib_connection *ic = conn->c_transport_data; if (posted == 0) return; atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits); /* Decide whether to send an update to the peer now. * If we would send a credit update for every single buffer we * post, we would end up with an ACK storm (ACK arrives, * consumes buffer, we refill the ring, send ACK to remote * advertising the newly posted buffer... ad inf) * * Performance pretty much depends on how often we send * credit updates - too frequent updates mean lots of ACKs. * Too infrequent updates, and the peer will run out of * credits and has to throttle. * For the time being, 16 seems to be a good compromise. */ if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16) set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); } static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic, struct rds_ib_send_work *send, bool notify) { /* * We want to delay signaling completions just enough to get * the batching benefits but not so much that we create dead time * on the wire. */ if (ic->i_unsignaled_wrs-- == 0 || notify) { ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs; send->s_wr.send_flags |= IB_SEND_SIGNALED; return 1; } return 0; } /* * This can be called multiple times for a given message. The first time * we see a message we map its scatterlist into the IB device so that * we can provide that mapped address to the IB scatter gather entries * in the IB work requests. We translate the scatterlist into a series * of work requests that fragment the message. These work requests complete * in order so we pass ownership of the message to the completion handler * once we send the final fragment. * * The RDS core uses the c_send_lock to only enter this function once * per connection. This makes sure that the tx ring alloc/unalloc pairs * don't get out of sync and confuse the ring. */ int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm, unsigned int hdr_off, unsigned int sg, unsigned int off) { struct rds_ib_connection *ic = conn->c_transport_data; struct ib_device *dev = ic->i_cm_id->device; struct rds_ib_send_work *send = NULL; struct rds_ib_send_work *first; struct rds_ib_send_work *prev; const struct ib_send_wr *failed_wr; struct scatterlist *scat; u32 pos; u32 i; u32 work_alloc; u32 credit_alloc = 0; u32 posted; u32 adv_credits = 0; int send_flags = 0; int bytes_sent = 0; int ret; int flow_controlled = 0; int nr_sig = 0; BUG_ON(off % RDS_FRAG_SIZE); BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header)); /* Do not send cong updates to IB loopback */ if (conn->c_loopback && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) { rds_cong_map_updated(conn->c_fcong, ~(u64) 0); scat = &rm->data.op_sg[sg]; ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length); return sizeof(struct rds_header) + ret; } /* FIXME we may overallocate here */ if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) i = 1; else i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE); work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); if (work_alloc == 0) { set_bit(RDS_LL_SEND_FULL, &conn->c_flags); rds_ib_stats_inc(s_ib_tx_ring_full); ret = -ENOMEM; goto out; } if (ic->i_flowctl) { credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT); adv_credits += posted; if (credit_alloc < work_alloc) { rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc); work_alloc = credit_alloc; flow_controlled = 1; } if (work_alloc == 0) { set_bit(RDS_LL_SEND_FULL, &conn->c_flags); rds_ib_stats_inc(s_ib_tx_throttle); ret = -ENOMEM; goto out; } } /* map the message the first time we see it */ if (!ic->i_data_op) { if (rm->data.op_nents) { rm->data.op_count = ib_dma_map_sg(dev, rm->data.op_sg, rm->data.op_nents, DMA_TO_DEVICE); rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count); if (rm->data.op_count == 0) { rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); ret = -ENOMEM; /* XXX ? */ goto out; } } else { rm->data.op_count = 0; } rds_message_addref(rm); rm->data.op_dmasg = 0; rm->data.op_dmaoff = 0; ic->i_data_op = &rm->data; /* Finalize the header */ if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags)) rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED; if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED; /* If it has a RDMA op, tell the peer we did it. This is * used by the peer to release use-once RDMA MRs. */ if (rm->rdma.op_active) { struct rds_ext_header_rdma ext_hdr; ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey); rds_message_add_extension(&rm->m_inc.i_hdr, RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr)); } if (rm->m_rdma_cookie) { rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr, rds_rdma_cookie_key(rm->m_rdma_cookie), rds_rdma_cookie_offset(rm->m_rdma_cookie)); } /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so * we should not do this unless we have a chance of at least * sticking the header into the send ring. Which is why we * should call rds_ib_ring_alloc first. */ rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic)); rds_message_make_checksum(&rm->m_inc.i_hdr); /* * Update adv_credits since we reset the ACK_REQUIRED bit. */ if (ic->i_flowctl) { rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits); adv_credits += posted; BUG_ON(adv_credits > 255); } } /* Sometimes you want to put a fence between an RDMA * READ and the following SEND. * We could either do this all the time * or when requested by the user. Right now, we let * the application choose. */ if (rm->rdma.op_active && rm->rdma.op_fence) send_flags = IB_SEND_FENCE; /* Each frag gets a header. Msgs may be 0 bytes */ send = &ic->i_sends[pos]; first = send; prev = NULL; scat = &ic->i_data_op->op_sg[rm->data.op_dmasg]; i = 0; do { unsigned int len = 0; /* Set up the header */ send->s_wr.send_flags = send_flags; send->s_wr.opcode = IB_WR_SEND; send->s_wr.num_sge = 1; send->s_wr.next = NULL; send->s_queued = jiffies; send->s_op = NULL; send->s_sge[0].addr = ic->i_send_hdrs_dma[pos]; send->s_sge[0].length = sizeof(struct rds_header); send->s_sge[0].lkey = ic->i_pd->local_dma_lkey; ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_send_hdrs_dma[pos], sizeof(struct rds_header), DMA_TO_DEVICE); memcpy(ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header)); /* Set up the data, if present */ if (i < work_alloc && scat != &rm->data.op_sg[rm->data.op_count]) { len = min(RDS_FRAG_SIZE, sg_dma_len(scat) - rm->data.op_dmaoff); send->s_wr.num_sge = 2; send->s_sge[1].addr = sg_dma_address(scat); send->s_sge[1].addr += rm->data.op_dmaoff; send->s_sge[1].length = len; send->s_sge[1].lkey = ic->i_pd->local_dma_lkey; bytes_sent += len; rm->data.op_dmaoff += len; if (rm->data.op_dmaoff == sg_dma_len(scat)) { scat++; rm->data.op_dmasg++; rm->data.op_dmaoff = 0; } } rds_ib_set_wr_signal_state(ic, send, false); /* * Always signal the last one if we're stopping due to flow control. */ if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) { rds_ib_set_wr_signal_state(ic, send, true); send->s_wr.send_flags |= IB_SEND_SOLICITED; } if (send->s_wr.send_flags & IB_SEND_SIGNALED) nr_sig++; rdsdebug("send %p wr %p num_sge %u next %p\n", send, &send->s_wr, send->s_wr.num_sge, send->s_wr.next); if (ic->i_flowctl && adv_credits) { struct rds_header *hdr = ic->i_send_hdrs[pos]; /* add credit and redo the header checksum */ hdr->h_credit = adv_credits; rds_message_make_checksum(hdr); adv_credits = 0; rds_ib_stats_inc(s_ib_tx_credit_updates); } ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_send_hdrs_dma[pos], sizeof(struct rds_header), DMA_TO_DEVICE); if (prev) prev->s_wr.next = &send->s_wr; prev = send; pos = (pos + 1) % ic->i_send_ring.w_nr; send = &ic->i_sends[pos]; i++; } while (i < work_alloc && scat != &rm->data.op_sg[rm->data.op_count]); /* Account the RDS header in the number of bytes we sent, but just once. * The caller has no concept of fragmentation. */ if (hdr_off == 0) bytes_sent += sizeof(struct rds_header); /* if we finished the message then send completion owns it */ if (scat == &rm->data.op_sg[rm->data.op_count]) { prev->s_op = ic->i_data_op; prev->s_wr.send_flags |= IB_SEND_SOLICITED; if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED)) nr_sig += rds_ib_set_wr_signal_state(ic, prev, true); ic->i_data_op = NULL; } /* Put back wrs & credits we didn't use */ if (i < work_alloc) { rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); work_alloc = i; } if (ic->i_flowctl && i < credit_alloc) rds_ib_send_add_credits(conn, credit_alloc - i); if (nr_sig) atomic_add(nr_sig, &ic->i_signaled_sends); /* XXX need to worry about failed_wr and partial sends. */ failed_wr = &first->s_wr; ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, first, &first->s_wr, ret, failed_wr); BUG_ON(failed_wr != &first->s_wr); if (ret) { printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c " "returned %d\n", &conn->c_faddr, ret); rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); rds_ib_sub_signaled(ic, nr_sig); if (prev->s_op) { ic->i_data_op = prev->s_op; prev->s_op = NULL; } rds_ib_conn_error(ic->conn, "ib_post_send failed\n"); goto out; } ret = bytes_sent; out: BUG_ON(adv_credits); return ret; } /* * Issue atomic operation. * A simplified version of the rdma case, we always map 1 SG, and * only 8 bytes, for the return value from the atomic operation. */ int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op) { struct rds_ib_connection *ic = conn->c_transport_data; struct rds_ib_send_work *send = NULL; const struct ib_send_wr *failed_wr; u32 pos; u32 work_alloc; int ret; int nr_sig = 0; work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos); if (work_alloc != 1) { rds_ib_stats_inc(s_ib_tx_ring_full); ret = -ENOMEM; goto out; } /* address of send request in ring */ send = &ic->i_sends[pos]; send->s_queued = jiffies; if (op->op_type == RDS_ATOMIC_TYPE_CSWP) { send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP; send->s_atomic_wr.compare_add = op->op_m_cswp.compare; send->s_atomic_wr.swap = op->op_m_cswp.swap; send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask; send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask; } else { /* FADD */ send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD; send->s_atomic_wr.compare_add = op->op_m_fadd.add; send->s_atomic_wr.swap = 0; send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask; send->s_atomic_wr.swap_mask = 0; } send->s_wr.send_flags = 0; nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify); send->s_atomic_wr.wr.num_sge = 1; send->s_atomic_wr.wr.next = NULL; send->s_atomic_wr.remote_addr = op->op_remote_addr; send->s_atomic_wr.rkey = op->op_rkey; send->s_op = op; rds_message_addref(container_of(send->s_op, struct rds_message, atomic)); /* map 8 byte retval buffer to the device */ ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE); rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret); if (ret != 1) { rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); ret = -ENOMEM; /* XXX ? */ goto out; } /* Convert our struct scatterlist to struct ib_sge */ send->s_sge[0].addr = sg_dma_address(op->op_sg); send->s_sge[0].length = sg_dma_len(op->op_sg); send->s_sge[0].lkey = ic->i_pd->local_dma_lkey; rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr, send->s_sge[0].addr, send->s_sge[0].length); if (nr_sig) atomic_add(nr_sig, &ic->i_signaled_sends); failed_wr = &send->s_atomic_wr.wr; ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr); rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic, send, &send->s_atomic_wr, ret, failed_wr); BUG_ON(failed_wr != &send->s_atomic_wr.wr); if (ret) { printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c " "returned %d\n", &conn->c_faddr, ret); rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); rds_ib_sub_signaled(ic, nr_sig); goto out; } if (unlikely(failed_wr != &send->s_atomic_wr.wr)) { printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret); BUG_ON(failed_wr != &send->s_atomic_wr.wr); } out: return ret; } int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op) { struct rds_ib_connection *ic = conn->c_transport_data; struct rds_ib_send_work *send = NULL; struct rds_ib_send_work *first; struct rds_ib_send_work *prev; const struct ib_send_wr *failed_wr; struct scatterlist *scat; unsigned long len; u64 remote_addr = op->op_remote_addr; u32 max_sge = ic->rds_ibdev->max_sge; u32 pos; u32 work_alloc; u32 i; u32 j; int sent; int ret; int num_sge; int nr_sig = 0; u64 odp_addr = op->op_odp_addr; u32 odp_lkey = 0; /* map the op the first time we see it */ if (!op->op_odp_mr) { if (!op->op_mapped) { op->op_count = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, op->op_nents, (op->op_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count); if (op->op_count == 0) { rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); ret = -ENOMEM; /* XXX ? */ goto out; } op->op_mapped = 1; } } else { op->op_count = op->op_nents; odp_lkey = rds_ib_get_lkey(op->op_odp_mr->r_trans_private); } /* * Instead of knowing how to return a partial rdma read/write we insist that there * be enough work requests to send the entire message. */ i = DIV_ROUND_UP(op->op_count, max_sge); work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); if (work_alloc != i) { rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); rds_ib_stats_inc(s_ib_tx_ring_full); ret = -ENOMEM; goto out; } send = &ic->i_sends[pos]; first = send; prev = NULL; scat = &op->op_sg[0]; sent = 0; num_sge = op->op_count; for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) { send->s_wr.send_flags = 0; send->s_queued = jiffies; send->s_op = NULL; if (!op->op_notify) nr_sig += rds_ib_set_wr_signal_state(ic, send, op->op_notify); send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ; send->s_rdma_wr.remote_addr = remote_addr; send->s_rdma_wr.rkey = op->op_rkey; if (num_sge > max_sge) { send->s_rdma_wr.wr.num_sge = max_sge; num_sge -= max_sge; } else { send->s_rdma_wr.wr.num_sge = num_sge; } send->s_rdma_wr.wr.next = NULL; if (prev) prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr; for (j = 0; j < send->s_rdma_wr.wr.num_sge && scat != &op->op_sg[op->op_count]; j++) { len = sg_dma_len(scat); if (!op->op_odp_mr) { send->s_sge[j].addr = sg_dma_address(scat); send->s_sge[j].lkey = ic->i_pd->local_dma_lkey; } else { send->s_sge[j].addr = odp_addr; send->s_sge[j].lkey = odp_lkey; } send->s_sge[j].length = len; sent += len; rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr); remote_addr += len; odp_addr += len; scat++; } rdsdebug("send %p wr %p num_sge %u next %p\n", send, &send->s_rdma_wr.wr, send->s_rdma_wr.wr.num_sge, send->s_rdma_wr.wr.next); prev = send; if (++send == &ic->i_sends[ic->i_send_ring.w_nr]) send = ic->i_sends; } /* give a reference to the last op */ if (scat == &op->op_sg[op->op_count]) { prev->s_op = op; rds_message_addref(container_of(op, struct rds_message, rdma)); } if (i < work_alloc) { rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); work_alloc = i; } if (nr_sig) atomic_add(nr_sig, &ic->i_signaled_sends); failed_wr = &first->s_rdma_wr.wr; ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr); rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, first, &first->s_rdma_wr.wr, ret, failed_wr); BUG_ON(failed_wr != &first->s_rdma_wr.wr); if (ret) { printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c " "returned %d\n", &conn->c_faddr, ret); rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); rds_ib_sub_signaled(ic, nr_sig); goto out; } if (unlikely(failed_wr != &first->s_rdma_wr.wr)) { printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret); BUG_ON(failed_wr != &first->s_rdma_wr.wr); } out: return ret; } void rds_ib_xmit_path_complete(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; struct rds_ib_connection *ic = conn->c_transport_data; /* We may have a pending ACK or window update we were unable * to send previously (due to flow control). Try again. */ rds_ib_attempt_ack(ic); }
linux-master
net/rds/ib_send.c
/* * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <net/tcp.h> #include <trace/events/sock.h> #include "rds.h" #include "tcp.h" static struct kmem_cache *rds_tcp_incoming_slab; static void rds_tcp_inc_purge(struct rds_incoming *inc) { struct rds_tcp_incoming *tinc; tinc = container_of(inc, struct rds_tcp_incoming, ti_inc); rdsdebug("purging tinc %p inc %p\n", tinc, inc); skb_queue_purge(&tinc->ti_skb_list); } void rds_tcp_inc_free(struct rds_incoming *inc) { struct rds_tcp_incoming *tinc; tinc = container_of(inc, struct rds_tcp_incoming, ti_inc); rds_tcp_inc_purge(inc); rdsdebug("freeing tinc %p inc %p\n", tinc, inc); kmem_cache_free(rds_tcp_incoming_slab, tinc); } /* * this is pretty lame, but, whatever. */ int rds_tcp_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to) { struct rds_tcp_incoming *tinc; struct sk_buff *skb; int ret = 0; if (!iov_iter_count(to)) goto out; tinc = container_of(inc, struct rds_tcp_incoming, ti_inc); skb_queue_walk(&tinc->ti_skb_list, skb) { unsigned long to_copy, skb_off; for (skb_off = 0; skb_off < skb->len; skb_off += to_copy) { to_copy = iov_iter_count(to); to_copy = min(to_copy, skb->len - skb_off); if (skb_copy_datagram_iter(skb, skb_off, to, to_copy)) return -EFAULT; rds_stats_add(s_copy_to_user, to_copy); ret += to_copy; if (!iov_iter_count(to)) goto out; } } out: return ret; } /* * We have a series of skbs that have fragmented pieces of the congestion * bitmap. They must add up to the exact size of the congestion bitmap. We * use the skb helpers to copy those into the pages that make up the in-memory * congestion bitmap for the remote address of this connection. We then tell * the congestion core that the bitmap has been changed so that it can wake up * sleepers. * * This is racing with sending paths which are using test_bit to see if the * bitmap indicates that their recipient is congested. */ static void rds_tcp_cong_recv(struct rds_connection *conn, struct rds_tcp_incoming *tinc) { struct sk_buff *skb; unsigned int to_copy, skb_off; unsigned int map_off; unsigned int map_page; struct rds_cong_map *map; int ret; /* catch completely corrupt packets */ if (be32_to_cpu(tinc->ti_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) return; map_page = 0; map_off = 0; map = conn->c_fcong; skb_queue_walk(&tinc->ti_skb_list, skb) { skb_off = 0; while (skb_off < skb->len) { to_copy = min_t(unsigned int, PAGE_SIZE - map_off, skb->len - skb_off); BUG_ON(map_page >= RDS_CONG_MAP_PAGES); /* only returns 0 or -error */ ret = skb_copy_bits(skb, skb_off, (void *)map->m_page_addrs[map_page] + map_off, to_copy); BUG_ON(ret != 0); skb_off += to_copy; map_off += to_copy; if (map_off == PAGE_SIZE) { map_off = 0; map_page++; } } } rds_cong_map_updated(map, ~(u64) 0); } struct rds_tcp_desc_arg { struct rds_conn_path *conn_path; gfp_t gfp; }; static int rds_tcp_data_recv(read_descriptor_t *desc, struct sk_buff *skb, unsigned int offset, size_t len) { struct rds_tcp_desc_arg *arg = desc->arg.data; struct rds_conn_path *cp = arg->conn_path; struct rds_tcp_connection *tc = cp->cp_transport_data; struct rds_tcp_incoming *tinc = tc->t_tinc; struct sk_buff *clone; size_t left = len, to_copy; rdsdebug("tcp data tc %p skb %p offset %u len %zu\n", tc, skb, offset, len); /* * tcp_read_sock() interprets partial progress as an indication to stop * processing. */ while (left) { if (!tinc) { tinc = kmem_cache_alloc(rds_tcp_incoming_slab, arg->gfp); if (!tinc) { desc->error = -ENOMEM; goto out; } tc->t_tinc = tinc; rdsdebug("allocated tinc %p\n", tinc); rds_inc_path_init(&tinc->ti_inc, cp, &cp->cp_conn->c_faddr); tinc->ti_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] = local_clock(); /* * XXX * we might be able to use the __ variants when * we've already serialized at a higher level. */ skb_queue_head_init(&tinc->ti_skb_list); } if (left && tc->t_tinc_hdr_rem) { to_copy = min(tc->t_tinc_hdr_rem, left); rdsdebug("copying %zu header from skb %p\n", to_copy, skb); skb_copy_bits(skb, offset, (char *)&tinc->ti_inc.i_hdr + sizeof(struct rds_header) - tc->t_tinc_hdr_rem, to_copy); tc->t_tinc_hdr_rem -= to_copy; left -= to_copy; offset += to_copy; if (tc->t_tinc_hdr_rem == 0) { /* could be 0 for a 0 len message */ tc->t_tinc_data_rem = be32_to_cpu(tinc->ti_inc.i_hdr.h_len); tinc->ti_inc.i_rx_lat_trace[RDS_MSG_RX_START] = local_clock(); } } if (left && tc->t_tinc_data_rem) { to_copy = min(tc->t_tinc_data_rem, left); clone = pskb_extract(skb, offset, to_copy, arg->gfp); if (!clone) { desc->error = -ENOMEM; goto out; } skb_queue_tail(&tinc->ti_skb_list, clone); rdsdebug("skb %p data %p len %d off %u to_copy %zu -> " "clone %p data %p len %d\n", skb, skb->data, skb->len, offset, to_copy, clone, clone->data, clone->len); tc->t_tinc_data_rem -= to_copy; left -= to_copy; offset += to_copy; } if (tc->t_tinc_hdr_rem == 0 && tc->t_tinc_data_rem == 0) { struct rds_connection *conn = cp->cp_conn; if (tinc->ti_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) rds_tcp_cong_recv(conn, tinc); else rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr, &tinc->ti_inc, arg->gfp); tc->t_tinc_hdr_rem = sizeof(struct rds_header); tc->t_tinc_data_rem = 0; tc->t_tinc = NULL; rds_inc_put(&tinc->ti_inc); tinc = NULL; } } out: rdsdebug("returning len %zu left %zu skb len %d rx queue depth %d\n", len, left, skb->len, skb_queue_len(&tc->t_sock->sk->sk_receive_queue)); return len - left; } /* the caller has to hold the sock lock */ static int rds_tcp_read_sock(struct rds_conn_path *cp, gfp_t gfp) { struct rds_tcp_connection *tc = cp->cp_transport_data; struct socket *sock = tc->t_sock; read_descriptor_t desc; struct rds_tcp_desc_arg arg; /* It's like glib in the kernel! */ arg.conn_path = cp; arg.gfp = gfp; desc.arg.data = &arg; desc.error = 0; desc.count = 1; /* give more than one skb per call */ tcp_read_sock(sock->sk, &desc, rds_tcp_data_recv); rdsdebug("tcp_read_sock for tc %p gfp 0x%x returned %d\n", tc, gfp, desc.error); return desc.error; } /* * We hold the sock lock to serialize our rds_tcp_recv->tcp_read_sock from * data_ready. * * if we fail to allocate we're in trouble.. blindly wait some time before * trying again to see if the VM can free up something for us. */ int rds_tcp_recv_path(struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; struct socket *sock = tc->t_sock; int ret = 0; rdsdebug("recv worker path [%d] tc %p sock %p\n", cp->cp_index, tc, sock); lock_sock(sock->sk); ret = rds_tcp_read_sock(cp, GFP_KERNEL); release_sock(sock->sk); return ret; } void rds_tcp_data_ready(struct sock *sk) { void (*ready)(struct sock *sk); struct rds_conn_path *cp; struct rds_tcp_connection *tc; trace_sk_data_ready(sk); rdsdebug("data ready sk %p\n", sk); read_lock_bh(&sk->sk_callback_lock); cp = sk->sk_user_data; if (!cp) { /* check for teardown race */ ready = sk->sk_data_ready; goto out; } tc = cp->cp_transport_data; ready = tc->t_orig_data_ready; rds_tcp_stats_inc(s_tcp_data_ready_calls); if (rds_tcp_read_sock(cp, GFP_ATOMIC) == -ENOMEM) { rcu_read_lock(); if (!rds_destroy_pending(cp->cp_conn)) queue_delayed_work(rds_wq, &cp->cp_recv_w, 0); rcu_read_unlock(); } out: read_unlock_bh(&sk->sk_callback_lock); ready(sk); } int rds_tcp_recv_init(void) { rds_tcp_incoming_slab = kmem_cache_create("rds_tcp_incoming", sizeof(struct rds_tcp_incoming), 0, 0, NULL); if (!rds_tcp_incoming_slab) return -ENOMEM; return 0; } void rds_tcp_recv_exit(void) { kmem_cache_destroy(rds_tcp_incoming_slab); }
linux-master
net/rds/tcp_recv.c
/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/sysctl.h> #include <linux/proc_fs.h> #include "ib.h" static struct ctl_table_header *rds_ib_sysctl_hdr; unsigned long rds_ib_sysctl_max_send_wr = RDS_IB_DEFAULT_SEND_WR; unsigned long rds_ib_sysctl_max_recv_wr = RDS_IB_DEFAULT_RECV_WR; unsigned long rds_ib_sysctl_max_recv_allocation = (128 * 1024 * 1024) / RDS_FRAG_SIZE; static unsigned long rds_ib_sysctl_max_wr_min = 1; /* hardware will fail CQ creation long before this */ static unsigned long rds_ib_sysctl_max_wr_max = (u32)~0; unsigned long rds_ib_sysctl_max_unsig_wrs = 16; static unsigned long rds_ib_sysctl_max_unsig_wr_min = 1; static unsigned long rds_ib_sysctl_max_unsig_wr_max = 64; /* * This sysctl does nothing. * * Backwards compatibility with RDS 3.0 wire protocol * disables initial FC credit exchange. * If it's ever possible to drop 3.0 support, * setting this to 1 and moving init/refill of send/recv * rings from ib_cm_connect_complete() back into ib_setup_qp() * will cause credits to be added before protocol negotiation. */ unsigned int rds_ib_sysctl_flow_control = 0; static struct ctl_table rds_ib_sysctl_table[] = { { .procname = "max_send_wr", .data = &rds_ib_sysctl_max_send_wr, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = &rds_ib_sysctl_max_wr_min, .extra2 = &rds_ib_sysctl_max_wr_max, }, { .procname = "max_recv_wr", .data = &rds_ib_sysctl_max_recv_wr, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = &rds_ib_sysctl_max_wr_min, .extra2 = &rds_ib_sysctl_max_wr_max, }, { .procname = "max_unsignaled_wr", .data = &rds_ib_sysctl_max_unsig_wrs, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = &rds_ib_sysctl_max_unsig_wr_min, .extra2 = &rds_ib_sysctl_max_unsig_wr_max, }, { .procname = "max_recv_allocation", .data = &rds_ib_sysctl_max_recv_allocation, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "flow_control", .data = &rds_ib_sysctl_flow_control, .maxlen = sizeof(rds_ib_sysctl_flow_control), .mode = 0644, .proc_handler = proc_dointvec, }, { } }; void rds_ib_sysctl_exit(void) { if (rds_ib_sysctl_hdr) unregister_net_sysctl_table(rds_ib_sysctl_hdr); } int rds_ib_sysctl_init(void) { rds_ib_sysctl_hdr = register_net_sysctl(&init_net, "net/rds/ib", rds_ib_sysctl_table); if (!rds_ib_sysctl_hdr) return -ENOMEM; return 0; }
linux-master
net/rds/ib_sysctl.c
/* * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/in.h> #include <linux/if.h> #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/if_arp.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/module.h> #include <net/addrconf.h> #include "rds_single_path.h" #include "rds.h" #include "ib.h" #include "ib_mr.h" static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE; static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE; unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT; static atomic_t rds_ib_unloading; module_param(rds_ib_mr_1m_pool_size, int, 0444); MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA"); module_param(rds_ib_mr_8k_pool_size, int, 0444); MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA"); module_param(rds_ib_retry_count, int, 0444); MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error"); /* * we have a clumsy combination of RCU and a rwsem protecting this list * because it is used both in the get_mr fast path and while blocking in * the FMR flushing path. */ DECLARE_RWSEM(rds_ib_devices_lock); struct list_head rds_ib_devices; /* NOTE: if also grabbing ibdev lock, grab this first */ DEFINE_SPINLOCK(ib_nodev_conns_lock); LIST_HEAD(ib_nodev_conns); static void rds_ib_nodev_connect(void) { struct rds_ib_connection *ic; spin_lock(&ib_nodev_conns_lock); list_for_each_entry(ic, &ib_nodev_conns, ib_node) rds_conn_connect_if_down(ic->conn); spin_unlock(&ib_nodev_conns_lock); } static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev) { struct rds_ib_connection *ic; unsigned long flags; spin_lock_irqsave(&rds_ibdev->spinlock, flags); list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node) rds_conn_path_drop(&ic->conn->c_path[0], true); spin_unlock_irqrestore(&rds_ibdev->spinlock, flags); } /* * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references * from interrupt context so we push freing off into a work struct in krdsd. */ static void rds_ib_dev_free(struct work_struct *work) { struct rds_ib_ipaddr *i_ipaddr, *i_next; struct rds_ib_device *rds_ibdev = container_of(work, struct rds_ib_device, free_work); if (rds_ibdev->mr_8k_pool) rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool); if (rds_ibdev->mr_1m_pool) rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool); if (rds_ibdev->pd) ib_dealloc_pd(rds_ibdev->pd); list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) { list_del(&i_ipaddr->list); kfree(i_ipaddr); } kfree(rds_ibdev->vector_load); kfree(rds_ibdev); } void rds_ib_dev_put(struct rds_ib_device *rds_ibdev) { BUG_ON(refcount_read(&rds_ibdev->refcount) == 0); if (refcount_dec_and_test(&rds_ibdev->refcount)) queue_work(rds_wq, &rds_ibdev->free_work); } static int rds_ib_add_one(struct ib_device *device) { struct rds_ib_device *rds_ibdev; int ret; /* Only handle IB (no iWARP) devices */ if (device->node_type != RDMA_NODE_IB_CA) return -EOPNOTSUPP; /* Device must support FRWR */ if (!(device->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) return -EOPNOTSUPP; rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL, ibdev_to_node(device)); if (!rds_ibdev) return -ENOMEM; spin_lock_init(&rds_ibdev->spinlock); refcount_set(&rds_ibdev->refcount, 1); INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free); INIT_LIST_HEAD(&rds_ibdev->ipaddr_list); INIT_LIST_HEAD(&rds_ibdev->conn_list); rds_ibdev->max_wrs = device->attrs.max_qp_wr; rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE); rds_ibdev->odp_capable = !!(device->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING) && !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & IB_ODP_SUPPORT_WRITE) && !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & IB_ODP_SUPPORT_READ); rds_ibdev->max_1m_mrs = device->attrs.max_mr ? min_t(unsigned int, (device->attrs.max_mr / 2), rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size; rds_ibdev->max_8k_mrs = device->attrs.max_mr ? min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE), rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size; rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom; rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom; rds_ibdev->vector_load = kcalloc(device->num_comp_vectors, sizeof(int), GFP_KERNEL); if (!rds_ibdev->vector_load) { pr_err("RDS/IB: %s failed to allocate vector memory\n", __func__); ret = -ENOMEM; goto put_dev; } rds_ibdev->dev = device; rds_ibdev->pd = ib_alloc_pd(device, 0); if (IS_ERR(rds_ibdev->pd)) { ret = PTR_ERR(rds_ibdev->pd); rds_ibdev->pd = NULL; goto put_dev; } rds_ibdev->mr_1m_pool = rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL); if (IS_ERR(rds_ibdev->mr_1m_pool)) { ret = PTR_ERR(rds_ibdev->mr_1m_pool); rds_ibdev->mr_1m_pool = NULL; goto put_dev; } rds_ibdev->mr_8k_pool = rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL); if (IS_ERR(rds_ibdev->mr_8k_pool)) { ret = PTR_ERR(rds_ibdev->mr_8k_pool); rds_ibdev->mr_8k_pool = NULL; goto put_dev; } rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, max_1m_mrs = %d, max_8k_mrs = %d\n", device->attrs.max_mr, rds_ibdev->max_wrs, rds_ibdev->max_sge, rds_ibdev->max_1m_mrs, rds_ibdev->max_8k_mrs); pr_info("RDS/IB: %s: added\n", device->name); down_write(&rds_ib_devices_lock); list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices); up_write(&rds_ib_devices_lock); refcount_inc(&rds_ibdev->refcount); ib_set_client_data(device, &rds_ib_client, rds_ibdev); rds_ib_nodev_connect(); return 0; put_dev: rds_ib_dev_put(rds_ibdev); return ret; } /* * New connections use this to find the device to associate with the * connection. It's not in the fast path so we're not concerned about the * performance of the IB call. (As of this writing, it uses an interrupt * blocking spinlock to serialize walking a per-device list of all registered * clients.) * * RCU is used to handle incoming connections racing with device teardown. * Rather than use a lock to serialize removal from the client_data and * getting a new reference, we use an RCU grace period. The destruction * path removes the device from client_data and then waits for all RCU * readers to finish. * * A new connection can get NULL from this if its arriving on a * device that is in the process of being removed. */ struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device) { struct rds_ib_device *rds_ibdev; rcu_read_lock(); rds_ibdev = ib_get_client_data(device, &rds_ib_client); if (rds_ibdev) refcount_inc(&rds_ibdev->refcount); rcu_read_unlock(); return rds_ibdev; } /* * The IB stack is letting us know that a device is going away. This can * happen if the underlying HCA driver is removed or if PCI hotplug is removing * the pci function, for example. * * This can be called at any time and can be racing with any other RDS path. */ static void rds_ib_remove_one(struct ib_device *device, void *client_data) { struct rds_ib_device *rds_ibdev = client_data; rds_ib_dev_shutdown(rds_ibdev); /* stop connection attempts from getting a reference to this device. */ ib_set_client_data(device, &rds_ib_client, NULL); down_write(&rds_ib_devices_lock); list_del_rcu(&rds_ibdev->list); up_write(&rds_ib_devices_lock); /* * This synchronize rcu is waiting for readers of both the ib * client data and the devices list to finish before we drop * both of those references. */ synchronize_rcu(); rds_ib_dev_put(rds_ibdev); rds_ib_dev_put(rds_ibdev); } struct ib_client rds_ib_client = { .name = "rds_ib", .add = rds_ib_add_one, .remove = rds_ib_remove_one }; static int rds_ib_conn_info_visitor(struct rds_connection *conn, void *buffer) { struct rds_info_rdma_connection *iinfo = buffer; struct rds_ib_connection *ic = conn->c_transport_data; /* We will only ever look at IB transports */ if (conn->c_trans != &rds_ib_transport) return 0; if (conn->c_isv6) return 0; iinfo->src_addr = conn->c_laddr.s6_addr32[3]; iinfo->dst_addr = conn->c_faddr.s6_addr32[3]; if (ic) { iinfo->tos = conn->c_tos; iinfo->sl = ic->i_sl; } memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); if (rds_conn_state(conn) == RDS_CONN_UP) { struct rds_ib_device *rds_ibdev; rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid, (union ib_gid *)&iinfo->dst_gid); rds_ibdev = ic->rds_ibdev; iinfo->max_send_wr = ic->i_send_ring.w_nr; iinfo->max_recv_wr = ic->i_recv_ring.w_nr; iinfo->max_send_sge = rds_ibdev->max_sge; rds_ib_get_mr_info(rds_ibdev, iinfo); iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs); } return 1; } #if IS_ENABLED(CONFIG_IPV6) /* IPv6 version of rds_ib_conn_info_visitor(). */ static int rds6_ib_conn_info_visitor(struct rds_connection *conn, void *buffer) { struct rds6_info_rdma_connection *iinfo6 = buffer; struct rds_ib_connection *ic = conn->c_transport_data; /* We will only ever look at IB transports */ if (conn->c_trans != &rds_ib_transport) return 0; iinfo6->src_addr = conn->c_laddr; iinfo6->dst_addr = conn->c_faddr; if (ic) { iinfo6->tos = conn->c_tos; iinfo6->sl = ic->i_sl; } memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid)); memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid)); if (rds_conn_state(conn) == RDS_CONN_UP) { struct rds_ib_device *rds_ibdev; rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid, (union ib_gid *)&iinfo6->dst_gid); rds_ibdev = ic->rds_ibdev; iinfo6->max_send_wr = ic->i_send_ring.w_nr; iinfo6->max_recv_wr = ic->i_recv_ring.w_nr; iinfo6->max_send_sge = rds_ibdev->max_sge; rds6_ib_get_mr_info(rds_ibdev, iinfo6); iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs); } return 1; } #endif static void rds_ib_ic_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8]; rds_for_each_conn_info(sock, len, iter, lens, rds_ib_conn_info_visitor, buffer, sizeof(struct rds_info_rdma_connection)); } #if IS_ENABLED(CONFIG_IPV6) /* IPv6 version of rds_ib_ic_info(). */ static void rds6_ib_ic_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8]; rds_for_each_conn_info(sock, len, iter, lens, rds6_ib_conn_info_visitor, buffer, sizeof(struct rds6_info_rdma_connection)); } #endif /* * Early RDS/IB was built to only bind to an address if there is an IPoIB * device with that address set. * * If it were me, I'd advocate for something more flexible. Sending and * receiving should be device-agnostic. Transports would try and maintain * connections between peers who have messages queued. Userspace would be * allowed to influence which paths have priority. We could call userspace * asserting this policy "routing". */ static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr, __u32 scope_id) { int ret; struct rdma_cm_id *cm_id; #if IS_ENABLED(CONFIG_IPV6) struct sockaddr_in6 sin6; #endif struct sockaddr_in sin; struct sockaddr *sa; bool isv4; isv4 = ipv6_addr_v4mapped(addr); /* Create a CMA ID and try to bind it. This catches both * IB and iWARP capable NICs. */ cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler, NULL, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(cm_id)) return PTR_ERR(cm_id); if (isv4) { memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_addr.s_addr = addr->s6_addr32[3]; sa = (struct sockaddr *)&sin; } else { #if IS_ENABLED(CONFIG_IPV6) memset(&sin6, 0, sizeof(sin6)); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr; sin6.sin6_scope_id = scope_id; sa = (struct sockaddr *)&sin6; /* XXX Do a special IPv6 link local address check here. The * reason is that rdma_bind_addr() always succeeds with IPv6 * link local address regardless it is indeed configured in a * system. */ if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) { struct net_device *dev; if (scope_id == 0) { ret = -EADDRNOTAVAIL; goto out; } /* Use init_net for now as RDS is not network * name space aware. */ dev = dev_get_by_index(&init_net, scope_id); if (!dev) { ret = -EADDRNOTAVAIL; goto out; } if (!ipv6_chk_addr(&init_net, addr, dev, 1)) { dev_put(dev); ret = -EADDRNOTAVAIL; goto out; } dev_put(dev); } #else ret = -EADDRNOTAVAIL; goto out; #endif } /* rdma_bind_addr will only succeed for IB & iWARP devices */ ret = rdma_bind_addr(cm_id, sa); /* due to this, we will claim to support iWARP devices unless we check node_type. */ if (ret || !cm_id->device || cm_id->device->node_type != RDMA_NODE_IB_CA) ret = -EADDRNOTAVAIL; rdsdebug("addr %pI6c%%%u ret %d node type %d\n", addr, scope_id, ret, cm_id->device ? cm_id->device->node_type : -1); out: rdma_destroy_id(cm_id); return ret; } static void rds_ib_unregister_client(void) { ib_unregister_client(&rds_ib_client); /* wait for rds_ib_dev_free() to complete */ flush_workqueue(rds_wq); } static void rds_ib_set_unloading(void) { atomic_set(&rds_ib_unloading, 1); } static bool rds_ib_is_unloading(struct rds_connection *conn) { struct rds_conn_path *cp = &conn->c_path[0]; return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) || atomic_read(&rds_ib_unloading) != 0); } void rds_ib_exit(void) { rds_ib_set_unloading(); synchronize_rcu(); rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); #endif rds_ib_unregister_client(); rds_ib_destroy_nodev_conns(); rds_ib_sysctl_exit(); rds_ib_recv_exit(); rds_trans_unregister(&rds_ib_transport); rds_ib_mr_exit(); } static u8 rds_ib_get_tos_map(u8 tos) { /* 1:1 user to transport map for RDMA transport. * In future, if custom map is desired, hook can export * user configurable map. */ return tos; } struct rds_transport rds_ib_transport = { .laddr_check = rds_ib_laddr_check, .xmit_path_complete = rds_ib_xmit_path_complete, .xmit = rds_ib_xmit, .xmit_rdma = rds_ib_xmit_rdma, .xmit_atomic = rds_ib_xmit_atomic, .recv_path = rds_ib_recv_path, .conn_alloc = rds_ib_conn_alloc, .conn_free = rds_ib_conn_free, .conn_path_connect = rds_ib_conn_path_connect, .conn_path_shutdown = rds_ib_conn_path_shutdown, .inc_copy_to_user = rds_ib_inc_copy_to_user, .inc_free = rds_ib_inc_free, .cm_initiate_connect = rds_ib_cm_initiate_connect, .cm_handle_connect = rds_ib_cm_handle_connect, .cm_connect_complete = rds_ib_cm_connect_complete, .stats_info_copy = rds_ib_stats_info_copy, .exit = rds_ib_exit, .get_mr = rds_ib_get_mr, .sync_mr = rds_ib_sync_mr, .free_mr = rds_ib_free_mr, .flush_mrs = rds_ib_flush_mrs, .get_tos_map = rds_ib_get_tos_map, .t_owner = THIS_MODULE, .t_name = "infiniband", .t_unloading = rds_ib_is_unloading, .t_type = RDS_TRANS_IB }; int rds_ib_init(void) { int ret; INIT_LIST_HEAD(&rds_ib_devices); ret = rds_ib_mr_init(); if (ret) goto out; ret = ib_register_client(&rds_ib_client); if (ret) goto out_mr_exit; ret = rds_ib_sysctl_init(); if (ret) goto out_ibreg; ret = rds_ib_recv_init(); if (ret) goto out_sysctl; rds_trans_register(&rds_ib_transport); rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); #endif goto out; out_sysctl: rds_ib_sysctl_exit(); out_ibreg: rds_ib_unregister_client(); out_mr_exit: rds_ib_mr_exit(); out: return ret; } MODULE_LICENSE("GPL");
linux-master
net/rds/ib.c
/* * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/module.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/gfp.h> #include <linux/in.h> #include <linux/ipv6.h> #include <linux/poll.h> #include <net/sock.h> #include "rds.h" /* this is just used for stats gathering :/ */ static DEFINE_SPINLOCK(rds_sock_lock); static unsigned long rds_sock_count; static LIST_HEAD(rds_sock_list); DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq); /* * This is called as the final descriptor referencing this socket is closed. * We have to unbind the socket so that another socket can be bound to the * address it was using. * * We have to be careful about racing with the incoming path. sock_orphan() * sets SOCK_DEAD and we use that as an indicator to the rx path that new * messages shouldn't be queued. */ static int rds_release(struct socket *sock) { struct sock *sk = sock->sk; struct rds_sock *rs; if (!sk) goto out; rs = rds_sk_to_rs(sk); sock_orphan(sk); /* Note - rds_clear_recv_queue grabs rs_recv_lock, so * that ensures the recv path has completed messing * with the socket. */ rds_clear_recv_queue(rs); rds_cong_remove_socket(rs); rds_remove_bound(rs); rds_send_drop_to(rs, NULL); rds_rdma_drop_keys(rs); rds_notify_queue_get(rs, NULL); rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue); spin_lock_bh(&rds_sock_lock); list_del_init(&rs->rs_item); rds_sock_count--; spin_unlock_bh(&rds_sock_lock); rds_trans_put(rs->rs_transport); sock->sk = NULL; sock_put(sk); out: return 0; } /* * Careful not to race with rds_release -> sock_orphan which clears sk_sleep. * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but * this seems more conservative. * NB - normally, one would use sk_callback_lock for this, but we can * get here from interrupts, whereas the network code grabs sk_callback_lock * with _lock_bh only - so relying on sk_callback_lock introduces livelocks. */ void rds_wake_sk_sleep(struct rds_sock *rs) { unsigned long flags; read_lock_irqsave(&rs->rs_recv_lock, flags); __rds_wake_sk_sleep(rds_rs_to_sk(rs)); read_unlock_irqrestore(&rs->rs_recv_lock, flags); } static int rds_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct rds_sock *rs = rds_sk_to_rs(sock->sk); struct sockaddr_in6 *sin6; struct sockaddr_in *sin; int uaddr_len; /* racey, don't care */ if (peer) { if (ipv6_addr_any(&rs->rs_conn_addr)) return -ENOTCONN; if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) { sin = (struct sockaddr_in *)uaddr; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); sin->sin_family = AF_INET; sin->sin_port = rs->rs_conn_port; sin->sin_addr.s_addr = rs->rs_conn_addr_v4; uaddr_len = sizeof(*sin); } else { sin6 = (struct sockaddr_in6 *)uaddr; sin6->sin6_family = AF_INET6; sin6->sin6_port = rs->rs_conn_port; sin6->sin6_addr = rs->rs_conn_addr; sin6->sin6_flowinfo = 0; /* scope_id is the same as in the bound address. */ sin6->sin6_scope_id = rs->rs_bound_scope_id; uaddr_len = sizeof(*sin6); } } else { /* If socket is not yet bound and the socket is connected, * set the return address family to be the same as the * connected address, but with 0 address value. If it is not * connected, set the family to be AF_UNSPEC (value 0) and * the address size to be that of an IPv4 address. */ if (ipv6_addr_any(&rs->rs_bound_addr)) { if (ipv6_addr_any(&rs->rs_conn_addr)) { sin = (struct sockaddr_in *)uaddr; memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_UNSPEC; return sizeof(*sin); } #if IS_ENABLED(CONFIG_IPV6) if (!(ipv6_addr_type(&rs->rs_conn_addr) & IPV6_ADDR_MAPPED)) { sin6 = (struct sockaddr_in6 *)uaddr; memset(sin6, 0, sizeof(*sin6)); sin6->sin6_family = AF_INET6; return sizeof(*sin6); } #endif sin = (struct sockaddr_in *)uaddr; memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; return sizeof(*sin); } if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) { sin = (struct sockaddr_in *)uaddr; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); sin->sin_family = AF_INET; sin->sin_port = rs->rs_bound_port; sin->sin_addr.s_addr = rs->rs_bound_addr_v4; uaddr_len = sizeof(*sin); } else { sin6 = (struct sockaddr_in6 *)uaddr; sin6->sin6_family = AF_INET6; sin6->sin6_port = rs->rs_bound_port; sin6->sin6_addr = rs->rs_bound_addr; sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = rs->rs_bound_scope_id; uaddr_len = sizeof(*sin6); } } return uaddr_len; } /* * RDS' poll is without a doubt the least intuitive part of the interface, * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from * a network protocol. * * EPOLLIN is asserted if * - there is data on the receive queue. * - to signal that a previously congested destination may have become * uncongested * - A notification has been queued to the socket (this can be a congestion * update, or a RDMA completion, or a MSG_ZEROCOPY completion). * * EPOLLOUT is asserted if there is room on the send queue. This does not mean * however, that the next sendmsg() call will succeed. If the application tries * to send to a congested destination, the system call may still fail (and * return ENOBUFS). */ static __poll_t rds_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct rds_sock *rs = rds_sk_to_rs(sk); __poll_t mask = 0; unsigned long flags; poll_wait(file, sk_sleep(sk), wait); if (rs->rs_seen_congestion) poll_wait(file, &rds_poll_waitq, wait); read_lock_irqsave(&rs->rs_recv_lock, flags); if (!rs->rs_cong_monitor) { /* When a congestion map was updated, we signal EPOLLIN for * "historical" reasons. Applications can also poll for * WRBAND instead. */ if (rds_cong_updated_since(&rs->rs_cong_track)) mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND); } else { spin_lock(&rs->rs_lock); if (rs->rs_cong_notify) mask |= (EPOLLIN | EPOLLRDNORM); spin_unlock(&rs->rs_lock); } if (!list_empty(&rs->rs_recv_queue) || !list_empty(&rs->rs_notify_queue) || !list_empty(&rs->rs_zcookie_queue.zcookie_head)) mask |= (EPOLLIN | EPOLLRDNORM); if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) mask |= (EPOLLOUT | EPOLLWRNORM); if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) mask |= POLLERR; read_unlock_irqrestore(&rs->rs_recv_lock, flags); /* clear state any time we wake a seen-congested socket */ if (mask) rs->rs_seen_congestion = 0; return mask; } static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct rds_sock *rs = rds_sk_to_rs(sock->sk); rds_tos_t utos, tos = 0; switch (cmd) { case SIOCRDSSETTOS: if (get_user(utos, (rds_tos_t __user *)arg)) return -EFAULT; if (rs->rs_transport && rs->rs_transport->get_tos_map) tos = rs->rs_transport->get_tos_map(utos); else return -ENOIOCTLCMD; spin_lock_bh(&rds_sock_lock); if (rs->rs_tos || rs->rs_conn) { spin_unlock_bh(&rds_sock_lock); return -EINVAL; } rs->rs_tos = tos; spin_unlock_bh(&rds_sock_lock); break; case SIOCRDSGETTOS: spin_lock_bh(&rds_sock_lock); tos = rs->rs_tos; spin_unlock_bh(&rds_sock_lock); if (put_user(tos, (rds_tos_t __user *)arg)) return -EFAULT; break; default: return -ENOIOCTLCMD; } return 0; } static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len) { struct sockaddr_in6 sin6; struct sockaddr_in sin; int ret = 0; /* racing with another thread binding seems ok here */ if (ipv6_addr_any(&rs->rs_bound_addr)) { ret = -ENOTCONN; /* XXX not a great errno */ goto out; } if (len < sizeof(struct sockaddr_in)) { ret = -EINVAL; goto out; } else if (len < sizeof(struct sockaddr_in6)) { /* Assume IPv4 */ if (copy_from_sockptr(&sin, optval, sizeof(struct sockaddr_in))) { ret = -EFAULT; goto out; } ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr); sin6.sin6_port = sin.sin_port; } else { if (copy_from_sockptr(&sin6, optval, sizeof(struct sockaddr_in6))) { ret = -EFAULT; goto out; } } rds_send_drop_to(rs, &sin6); out: return ret; } static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval, int optlen) { int value; if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&value, optval, sizeof(int))) return -EFAULT; *optvar = !!value; return 0; } static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen) { int ret; ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen); if (ret == 0) { if (rs->rs_cong_monitor) { rds_cong_add_socket(rs); } else { rds_cong_remove_socket(rs); rs->rs_cong_mask = 0; rs->rs_cong_notify = 0; } } return ret; } static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen) { int t_type; if (rs->rs_transport) return -EOPNOTSUPP; /* previously attached to transport */ if (optlen != sizeof(int)) return -EINVAL; if (copy_from_sockptr(&t_type, optval, sizeof(t_type))) return -EFAULT; if (t_type < 0 || t_type >= RDS_TRANS_COUNT) return -EINVAL; rs->rs_transport = rds_trans_get(t_type); return rs->rs_transport ? 0 : -ENOPROTOOPT; } static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval, int optlen, int optname) { int val, valbool; if (optlen != sizeof(int)) return -EFAULT; if (copy_from_sockptr(&val, optval, sizeof(int))) return -EFAULT; valbool = val ? 1 : 0; if (optname == SO_TIMESTAMP_NEW) sock_set_flag(sk, SOCK_TSTAMP_NEW); if (valbool) sock_set_flag(sk, SOCK_RCVTSTAMP); else sock_reset_flag(sk, SOCK_RCVTSTAMP); return 0; } static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval, int optlen) { struct rds_rx_trace_so trace; int i; if (optlen != sizeof(struct rds_rx_trace_so)) return -EFAULT; if (copy_from_sockptr(&trace, optval, sizeof(trace))) return -EFAULT; if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX) return -EFAULT; rs->rs_rx_traces = trace.rx_traces; for (i = 0; i < rs->rs_rx_traces; i++) { if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) { rs->rs_rx_traces = 0; return -EFAULT; } rs->rs_rx_trace[i] = trace.rx_trace_pos[i]; } return 0; } static int rds_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct rds_sock *rs = rds_sk_to_rs(sock->sk); int ret; if (level != SOL_RDS) { ret = -ENOPROTOOPT; goto out; } switch (optname) { case RDS_CANCEL_SENT_TO: ret = rds_cancel_sent_to(rs, optval, optlen); break; case RDS_GET_MR: ret = rds_get_mr(rs, optval, optlen); break; case RDS_GET_MR_FOR_DEST: ret = rds_get_mr_for_dest(rs, optval, optlen); break; case RDS_FREE_MR: ret = rds_free_mr(rs, optval, optlen); break; case RDS_RECVERR: ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen); break; case RDS_CONG_MONITOR: ret = rds_cong_monitor(rs, optval, optlen); break; case SO_RDS_TRANSPORT: lock_sock(sock->sk); ret = rds_set_transport(rs, optval, optlen); release_sock(sock->sk); break; case SO_TIMESTAMP_OLD: case SO_TIMESTAMP_NEW: lock_sock(sock->sk); ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname); release_sock(sock->sk); break; case SO_RDS_MSG_RXPATH_LATENCY: ret = rds_recv_track_latency(rs, optval, optlen); break; default: ret = -ENOPROTOOPT; } out: return ret; } static int rds_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct rds_sock *rs = rds_sk_to_rs(sock->sk); int ret = -ENOPROTOOPT, len; int trans; if (level != SOL_RDS) goto out; if (get_user(len, optlen)) { ret = -EFAULT; goto out; } switch (optname) { case RDS_INFO_FIRST ... RDS_INFO_LAST: ret = rds_info_getsockopt(sock, optname, optval, optlen); break; case RDS_RECVERR: if (len < sizeof(int)) ret = -EINVAL; else if (put_user(rs->rs_recverr, (int __user *) optval) || put_user(sizeof(int), optlen)) ret = -EFAULT; else ret = 0; break; case SO_RDS_TRANSPORT: if (len < sizeof(int)) { ret = -EINVAL; break; } trans = (rs->rs_transport ? rs->rs_transport->t_type : RDS_TRANS_NONE); /* unbound */ if (put_user(trans, (int __user *)optval) || put_user(sizeof(int), optlen)) ret = -EFAULT; else ret = 0; break; default: break; } out: return ret; } static int rds_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; struct sockaddr_in *sin; struct rds_sock *rs = rds_sk_to_rs(sk); int ret = 0; if (addr_len < offsetofend(struct sockaddr, sa_family)) return -EINVAL; lock_sock(sk); switch (uaddr->sa_family) { case AF_INET: sin = (struct sockaddr_in *)uaddr; if (addr_len < sizeof(struct sockaddr_in)) { ret = -EINVAL; break; } if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) { ret = -EDESTADDRREQ; break; } if (ipv4_is_multicast(sin->sin_addr.s_addr) || sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) { ret = -EINVAL; break; } ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr); rs->rs_conn_port = sin->sin_port; break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: { struct sockaddr_in6 *sin6; int addr_type; sin6 = (struct sockaddr_in6 *)uaddr; if (addr_len < sizeof(struct sockaddr_in6)) { ret = -EINVAL; break; } addr_type = ipv6_addr_type(&sin6->sin6_addr); if (!(addr_type & IPV6_ADDR_UNICAST)) { __be32 addr4; if (!(addr_type & IPV6_ADDR_MAPPED)) { ret = -EPROTOTYPE; break; } /* It is a mapped address. Need to do some sanity * checks. */ addr4 = sin6->sin6_addr.s6_addr32[3]; if (addr4 == htonl(INADDR_ANY) || addr4 == htonl(INADDR_BROADCAST) || ipv4_is_multicast(addr4)) { ret = -EPROTOTYPE; break; } } if (addr_type & IPV6_ADDR_LINKLOCAL) { /* If socket is arleady bound to a link local address, * the peer address must be on the same link. */ if (sin6->sin6_scope_id == 0 || (!ipv6_addr_any(&rs->rs_bound_addr) && rs->rs_bound_scope_id && sin6->sin6_scope_id != rs->rs_bound_scope_id)) { ret = -EINVAL; break; } /* Remember the connected address scope ID. It will * be checked against the binding local address when * the socket is bound. */ rs->rs_bound_scope_id = sin6->sin6_scope_id; } rs->rs_conn_addr = sin6->sin6_addr; rs->rs_conn_port = sin6->sin6_port; break; } #endif default: ret = -EAFNOSUPPORT; break; } release_sock(sk); return ret; } static struct proto rds_proto = { .name = "RDS", .owner = THIS_MODULE, .obj_size = sizeof(struct rds_sock), }; static const struct proto_ops rds_proto_ops = { .family = AF_RDS, .owner = THIS_MODULE, .release = rds_release, .bind = rds_bind, .connect = rds_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = rds_getname, .poll = rds_poll, .ioctl = rds_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = rds_setsockopt, .getsockopt = rds_getsockopt, .sendmsg = rds_sendmsg, .recvmsg = rds_recvmsg, .mmap = sock_no_mmap, }; static void rds_sock_destruct(struct sock *sk) { struct rds_sock *rs = rds_sk_to_rs(sk); WARN_ON((&rs->rs_item != rs->rs_item.next || &rs->rs_item != rs->rs_item.prev)); } static int __rds_create(struct socket *sock, struct sock *sk, int protocol) { struct rds_sock *rs; sock_init_data(sock, sk); sock->ops = &rds_proto_ops; sk->sk_protocol = protocol; sk->sk_destruct = rds_sock_destruct; rs = rds_sk_to_rs(sk); spin_lock_init(&rs->rs_lock); rwlock_init(&rs->rs_recv_lock); INIT_LIST_HEAD(&rs->rs_send_queue); INIT_LIST_HEAD(&rs->rs_recv_queue); INIT_LIST_HEAD(&rs->rs_notify_queue); INIT_LIST_HEAD(&rs->rs_cong_list); rds_message_zcopy_queue_init(&rs->rs_zcookie_queue); spin_lock_init(&rs->rs_rdma_lock); rs->rs_rdma_keys = RB_ROOT; rs->rs_rx_traces = 0; rs->rs_tos = 0; rs->rs_conn = NULL; spin_lock_bh(&rds_sock_lock); list_add_tail(&rs->rs_item, &rds_sock_list); rds_sock_count++; spin_unlock_bh(&rds_sock_lock); return 0; } static int rds_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; if (sock->type != SOCK_SEQPACKET || protocol) return -ESOCKTNOSUPPORT; sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern); if (!sk) return -ENOMEM; return __rds_create(sock, sk, protocol); } void rds_sock_addref(struct rds_sock *rs) { sock_hold(rds_rs_to_sk(rs)); } void rds_sock_put(struct rds_sock *rs) { sock_put(rds_rs_to_sk(rs)); } static const struct net_proto_family rds_family_ops = { .family = AF_RDS, .create = rds_create, .owner = THIS_MODULE, }; static void rds_sock_inc_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_sock *rs; struct rds_incoming *inc; unsigned int total = 0; len /= sizeof(struct rds_info_message); spin_lock_bh(&rds_sock_lock); list_for_each_entry(rs, &rds_sock_list, rs_item) { /* This option only supports IPv4 sockets. */ if (!ipv6_addr_v4mapped(&rs->rs_bound_addr)) continue; read_lock(&rs->rs_recv_lock); /* XXX too lazy to maintain counts.. */ list_for_each_entry(inc, &rs->rs_recv_queue, i_item) { total++; if (total <= len) rds_inc_info_copy(inc, iter, inc->i_saddr.s6_addr32[3], rs->rs_bound_addr_v4, 1); } read_unlock(&rs->rs_recv_lock); } spin_unlock_bh(&rds_sock_lock); lens->nr = total; lens->each = sizeof(struct rds_info_message); } #if IS_ENABLED(CONFIG_IPV6) static void rds6_sock_inc_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_incoming *inc; unsigned int total = 0; struct rds_sock *rs; len /= sizeof(struct rds6_info_message); spin_lock_bh(&rds_sock_lock); list_for_each_entry(rs, &rds_sock_list, rs_item) { read_lock(&rs->rs_recv_lock); list_for_each_entry(inc, &rs->rs_recv_queue, i_item) { total++; if (total <= len) rds6_inc_info_copy(inc, iter, &inc->i_saddr, &rs->rs_bound_addr, 1); } read_unlock(&rs->rs_recv_lock); } spin_unlock_bh(&rds_sock_lock); lens->nr = total; lens->each = sizeof(struct rds6_info_message); } #endif static void rds_sock_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_info_socket sinfo; unsigned int cnt = 0; struct rds_sock *rs; len /= sizeof(struct rds_info_socket); spin_lock_bh(&rds_sock_lock); if (len < rds_sock_count) { cnt = rds_sock_count; goto out; } list_for_each_entry(rs, &rds_sock_list, rs_item) { /* This option only supports IPv4 sockets. */ if (!ipv6_addr_v4mapped(&rs->rs_bound_addr)) continue; sinfo.sndbuf = rds_sk_sndbuf(rs); sinfo.rcvbuf = rds_sk_rcvbuf(rs); sinfo.bound_addr = rs->rs_bound_addr_v4; sinfo.connected_addr = rs->rs_conn_addr_v4; sinfo.bound_port = rs->rs_bound_port; sinfo.connected_port = rs->rs_conn_port; sinfo.inum = sock_i_ino(rds_rs_to_sk(rs)); rds_info_copy(iter, &sinfo, sizeof(sinfo)); cnt++; } out: lens->nr = cnt; lens->each = sizeof(struct rds_info_socket); spin_unlock_bh(&rds_sock_lock); } #if IS_ENABLED(CONFIG_IPV6) static void rds6_sock_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds6_info_socket sinfo6; struct rds_sock *rs; len /= sizeof(struct rds6_info_socket); spin_lock_bh(&rds_sock_lock); if (len < rds_sock_count) goto out; list_for_each_entry(rs, &rds_sock_list, rs_item) { sinfo6.sndbuf = rds_sk_sndbuf(rs); sinfo6.rcvbuf = rds_sk_rcvbuf(rs); sinfo6.bound_addr = rs->rs_bound_addr; sinfo6.connected_addr = rs->rs_conn_addr; sinfo6.bound_port = rs->rs_bound_port; sinfo6.connected_port = rs->rs_conn_port; sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs)); rds_info_copy(iter, &sinfo6, sizeof(sinfo6)); } out: lens->nr = rds_sock_count; lens->each = sizeof(struct rds6_info_socket); spin_unlock_bh(&rds_sock_lock); } #endif static void rds_exit(void) { sock_unregister(rds_family_ops.family); proto_unregister(&rds_proto); rds_conn_exit(); rds_cong_exit(); rds_sysctl_exit(); rds_threads_exit(); rds_stats_exit(); rds_page_exit(); rds_bind_lock_destroy(); rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info); rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info); rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info); #endif } module_exit(rds_exit); u32 rds_gen_num; static int __init rds_init(void) { int ret; net_get_random_once(&rds_gen_num, sizeof(rds_gen_num)); ret = rds_bind_lock_init(); if (ret) goto out; ret = rds_conn_init(); if (ret) goto out_bind; ret = rds_threads_init(); if (ret) goto out_conn; ret = rds_sysctl_init(); if (ret) goto out_threads; ret = rds_stats_init(); if (ret) goto out_sysctl; ret = proto_register(&rds_proto, 1); if (ret) goto out_stats; ret = sock_register(&rds_family_ops); if (ret) goto out_proto; rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info); rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info); rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info); #endif goto out; out_proto: proto_unregister(&rds_proto); out_stats: rds_stats_exit(); out_sysctl: rds_sysctl_exit(); out_threads: rds_threads_exit(); out_conn: rds_conn_exit(); rds_cong_exit(); rds_page_exit(); out_bind: rds_bind_lock_destroy(); out: return ret; } module_init(rds_init); #define DRV_VERSION "4.0" #define DRV_RELDATE "Feb 12, 2009" MODULE_AUTHOR("Oracle Corporation <[email protected]>"); MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets" " v" DRV_VERSION " (" DRV_RELDATE ")"); MODULE_VERSION(DRV_VERSION); MODULE_LICENSE("Dual BSD/GPL"); MODULE_ALIAS_NETPROTO(PF_RDS);
linux-master
net/rds/af_rds.c
/* * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/in.h> #include <net/tcp.h> #include "rds.h" #include "tcp.h" void rds_tcp_state_change(struct sock *sk) { void (*state_change)(struct sock *sk); struct rds_conn_path *cp; struct rds_tcp_connection *tc; read_lock_bh(&sk->sk_callback_lock); cp = sk->sk_user_data; if (!cp) { state_change = sk->sk_state_change; goto out; } tc = cp->cp_transport_data; state_change = tc->t_orig_state_change; rdsdebug("sock %p state_change to %d\n", tc->t_sock, sk->sk_state); switch (sk->sk_state) { /* ignore connecting sockets as they make progress */ case TCP_SYN_SENT: case TCP_SYN_RECV: break; case TCP_ESTABLISHED: /* Force the peer to reconnect so that we have the * TCP ports going from <smaller-ip>.<transient> to * <larger-ip>.<RDS_TCP_PORT>. We avoid marking the * RDS connection as RDS_CONN_UP until the reconnect, * to avoid RDS datagram loss. */ if (rds_addr_cmp(&cp->cp_conn->c_laddr, &cp->cp_conn->c_faddr) >= 0 && rds_conn_path_transition(cp, RDS_CONN_CONNECTING, RDS_CONN_ERROR)) { rds_conn_path_drop(cp, false); } else { rds_connect_path_complete(cp, RDS_CONN_CONNECTING); } break; case TCP_CLOSE_WAIT: case TCP_CLOSE: rds_conn_path_drop(cp, false); break; default: break; } out: read_unlock_bh(&sk->sk_callback_lock); state_change(sk); } int rds_tcp_conn_path_connect(struct rds_conn_path *cp) { struct socket *sock = NULL; struct sockaddr_in6 sin6; struct sockaddr_in sin; struct sockaddr *addr; int addrlen; bool isv6; int ret; struct rds_connection *conn = cp->cp_conn; struct rds_tcp_connection *tc = cp->cp_transport_data; /* for multipath rds,we only trigger the connection after * the handshake probe has determined the number of paths. */ if (cp->cp_index > 0 && cp->cp_conn->c_npaths < 2) return -EAGAIN; mutex_lock(&tc->t_conn_path_lock); if (rds_conn_path_up(cp)) { mutex_unlock(&tc->t_conn_path_lock); return 0; } if (ipv6_addr_v4mapped(&conn->c_laddr)) { ret = sock_create_kern(rds_conn_net(conn), PF_INET, SOCK_STREAM, IPPROTO_TCP, &sock); isv6 = false; } else { ret = sock_create_kern(rds_conn_net(conn), PF_INET6, SOCK_STREAM, IPPROTO_TCP, &sock); isv6 = true; } if (ret < 0) goto out; if (!rds_tcp_tune(sock)) { ret = -EINVAL; goto out; } if (isv6) { sin6.sin6_family = AF_INET6; sin6.sin6_addr = conn->c_laddr; sin6.sin6_port = 0; sin6.sin6_flowinfo = 0; sin6.sin6_scope_id = conn->c_dev_if; addr = (struct sockaddr *)&sin6; addrlen = sizeof(sin6); } else { sin.sin_family = AF_INET; sin.sin_addr.s_addr = conn->c_laddr.s6_addr32[3]; sin.sin_port = 0; addr = (struct sockaddr *)&sin; addrlen = sizeof(sin); } ret = sock->ops->bind(sock, addr, addrlen); if (ret) { rdsdebug("bind failed with %d at address %pI6c\n", ret, &conn->c_laddr); goto out; } if (isv6) { sin6.sin6_family = AF_INET6; sin6.sin6_addr = conn->c_faddr; sin6.sin6_port = htons(RDS_TCP_PORT); sin6.sin6_flowinfo = 0; sin6.sin6_scope_id = conn->c_dev_if; addr = (struct sockaddr *)&sin6; addrlen = sizeof(sin6); } else { sin.sin_family = AF_INET; sin.sin_addr.s_addr = conn->c_faddr.s6_addr32[3]; sin.sin_port = htons(RDS_TCP_PORT); addr = (struct sockaddr *)&sin; addrlen = sizeof(sin); } /* * once we call connect() we can start getting callbacks and they * own the socket */ rds_tcp_set_callbacks(sock, cp); ret = sock->ops->connect(sock, addr, addrlen, O_NONBLOCK); rdsdebug("connect to address %pI6c returned %d\n", &conn->c_faddr, ret); if (ret == -EINPROGRESS) ret = 0; if (ret == 0) { rds_tcp_keepalive(sock); sock = NULL; } else { rds_tcp_restore_callbacks(sock, cp->cp_transport_data); } out: mutex_unlock(&tc->t_conn_path_lock); if (sock) sock_release(sock); return ret; } /* * Before killing the tcp socket this needs to serialize with callbacks. The * caller has already grabbed the sending sem so we're serialized with other * senders. * * TCP calls the callbacks with the sock lock so we hold it while we reset the * callbacks to those set by TCP. Our callbacks won't execute again once we * hold the sock lock. */ void rds_tcp_conn_path_shutdown(struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; struct socket *sock = tc->t_sock; rdsdebug("shutting down conn %p tc %p sock %p\n", cp->cp_conn, tc, sock); if (sock) { if (rds_destroy_pending(cp->cp_conn)) sock_no_linger(sock->sk); sock->ops->shutdown(sock, RCV_SHUTDOWN | SEND_SHUTDOWN); lock_sock(sock->sk); rds_tcp_restore_callbacks(sock, tc); /* tc->tc_sock = NULL */ release_sock(sock->sk); sock_release(sock); } if (tc->t_tinc) { rds_inc_put(&tc->t_tinc->ti_inc); tc->t_tinc = NULL; } tc->t_tinc_hdr_rem = sizeof(struct rds_header); tc->t_tinc_data_rem = 0; }
linux-master
net/rds/tcp_connect.c
/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/percpu.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/export.h> #include "rds.h" DEFINE_PER_CPU_SHARED_ALIGNED(struct rds_statistics, rds_stats); EXPORT_PER_CPU_SYMBOL_GPL(rds_stats); /* :.,$s/unsigned long\>.*\<s_\(.*\);/"\1",/g */ static const char *const rds_stat_names[] = { "conn_reset", "recv_drop_bad_checksum", "recv_drop_old_seq", "recv_drop_no_sock", "recv_drop_dead_sock", "recv_deliver_raced", "recv_delivered", "recv_queued", "recv_immediate_retry", "recv_delayed_retry", "recv_ack_required", "recv_rdma_bytes", "recv_ping", "send_queue_empty", "send_queue_full", "send_lock_contention", "send_lock_queue_raced", "send_immediate_retry", "send_delayed_retry", "send_drop_acked", "send_ack_required", "send_queued", "send_rdma", "send_rdma_bytes", "send_pong", "page_remainder_hit", "page_remainder_miss", "copy_to_user", "copy_from_user", "cong_update_queued", "cong_update_received", "cong_send_error", "cong_send_blocked", "recv_bytes_added_to_sock", "recv_bytes_freed_fromsock", "send_stuck_rm", }; void rds_stats_info_copy(struct rds_info_iterator *iter, uint64_t *values, const char *const *names, size_t nr) { struct rds_info_counter ctr; size_t i; for (i = 0; i < nr; i++) { BUG_ON(strlen(names[i]) >= sizeof(ctr.name)); strncpy(ctr.name, names[i], sizeof(ctr.name) - 1); ctr.name[sizeof(ctr.name) - 1] = '\0'; ctr.value = values[i]; rds_info_copy(iter, &ctr, sizeof(ctr)); } } EXPORT_SYMBOL_GPL(rds_stats_info_copy); /* * This gives global counters across all the transports. The strings * are copied in so that the tool doesn't need knowledge of the specific * stats that we're exporting. Some are pretty implementation dependent * and may change over time. That doesn't stop them from being useful. * * This is the only function in the chain that knows about the byte granular * length in userspace. It converts it to number of stat entries that the * rest of the functions operate in. */ static void rds_stats_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_statistics stats = {0, }; uint64_t *src; uint64_t *sum; size_t i; int cpu; unsigned int avail; avail = len / sizeof(struct rds_info_counter); if (avail < ARRAY_SIZE(rds_stat_names)) { avail = 0; goto trans; } for_each_online_cpu(cpu) { src = (uint64_t *)&(per_cpu(rds_stats, cpu)); sum = (uint64_t *)&stats; for (i = 0; i < sizeof(stats) / sizeof(uint64_t); i++) *(sum++) += *(src++); } rds_stats_info_copy(iter, (uint64_t *)&stats, rds_stat_names, ARRAY_SIZE(rds_stat_names)); avail -= ARRAY_SIZE(rds_stat_names); trans: lens->each = sizeof(struct rds_info_counter); lens->nr = rds_trans_stats_info_copy(iter, avail) + ARRAY_SIZE(rds_stat_names); } void rds_stats_exit(void) { rds_info_deregister_func(RDS_INFO_COUNTERS, rds_stats_info); } int rds_stats_init(void) { rds_info_register_func(RDS_INFO_COUNTERS, rds_stats_info); return 0; }
linux-master
net/rds/stats.c
/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/percpu.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include "rds.h" #include "tcp.h" DEFINE_PER_CPU(struct rds_tcp_statistics, rds_tcp_stats) ____cacheline_aligned; static const char * const rds_tcp_stat_names[] = { "tcp_data_ready_calls", "tcp_write_space_calls", "tcp_sndbuf_full", "tcp_connect_raced", "tcp_listen_closed_stale", }; unsigned int rds_tcp_stats_info_copy(struct rds_info_iterator *iter, unsigned int avail) { struct rds_tcp_statistics stats = {0, }; uint64_t *src; uint64_t *sum; size_t i; int cpu; if (avail < ARRAY_SIZE(rds_tcp_stat_names)) goto out; for_each_online_cpu(cpu) { src = (uint64_t *)&(per_cpu(rds_tcp_stats, cpu)); sum = (uint64_t *)&stats; for (i = 0; i < sizeof(stats) / sizeof(uint64_t); i++) *(sum++) += *(src++); } rds_stats_info_copy(iter, (uint64_t *)&stats, rds_tcp_stat_names, ARRAY_SIZE(rds_tcp_stat_names)); out: return ARRAY_SIZE(rds_tcp_stat_names); }
linux-master
net/rds/tcp_stats.c
/* * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <net/sock.h> #include <linux/in.h> #include <linux/export.h> #include <linux/sched/clock.h> #include <linux/time.h> #include <linux/rds.h> #include "rds.h" void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn, struct in6_addr *saddr) { refcount_set(&inc->i_refcount, 1); INIT_LIST_HEAD(&inc->i_item); inc->i_conn = conn; inc->i_saddr = *saddr; inc->i_usercopy.rdma_cookie = 0; inc->i_usercopy.rx_tstamp = ktime_set(0, 0); memset(inc->i_rx_lat_trace, 0, sizeof(inc->i_rx_lat_trace)); } EXPORT_SYMBOL_GPL(rds_inc_init); void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *cp, struct in6_addr *saddr) { refcount_set(&inc->i_refcount, 1); INIT_LIST_HEAD(&inc->i_item); inc->i_conn = cp->cp_conn; inc->i_conn_path = cp; inc->i_saddr = *saddr; inc->i_usercopy.rdma_cookie = 0; inc->i_usercopy.rx_tstamp = ktime_set(0, 0); } EXPORT_SYMBOL_GPL(rds_inc_path_init); static void rds_inc_addref(struct rds_incoming *inc) { rdsdebug("addref inc %p ref %d\n", inc, refcount_read(&inc->i_refcount)); refcount_inc(&inc->i_refcount); } void rds_inc_put(struct rds_incoming *inc) { rdsdebug("put inc %p ref %d\n", inc, refcount_read(&inc->i_refcount)); if (refcount_dec_and_test(&inc->i_refcount)) { BUG_ON(!list_empty(&inc->i_item)); inc->i_conn->c_trans->inc_free(inc); } } EXPORT_SYMBOL_GPL(rds_inc_put); static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk, struct rds_cong_map *map, int delta, __be16 port) { int now_congested; if (delta == 0) return; rs->rs_rcv_bytes += delta; if (delta > 0) rds_stats_add(s_recv_bytes_added_to_socket, delta); else rds_stats_add(s_recv_bytes_removed_from_socket, -delta); /* loop transport doesn't send/recv congestion updates */ if (rs->rs_transport->t_type == RDS_TRANS_LOOP) return; now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs); rdsdebug("rs %p (%pI6c:%u) recv bytes %d buf %d " "now_cong %d delta %d\n", rs, &rs->rs_bound_addr, ntohs(rs->rs_bound_port), rs->rs_rcv_bytes, rds_sk_rcvbuf(rs), now_congested, delta); /* wasn't -> am congested */ if (!rs->rs_congested && now_congested) { rs->rs_congested = 1; rds_cong_set_bit(map, port); rds_cong_queue_updates(map); } /* was -> aren't congested */ /* Require more free space before reporting uncongested to prevent bouncing cong/uncong state too often */ else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) { rs->rs_congested = 0; rds_cong_clear_bit(map, port); rds_cong_queue_updates(map); } /* do nothing if no change in cong state */ } static void rds_conn_peer_gen_update(struct rds_connection *conn, u32 peer_gen_num) { int i; struct rds_message *rm, *tmp; unsigned long flags; WARN_ON(conn->c_trans->t_type != RDS_TRANS_TCP); if (peer_gen_num != 0) { if (conn->c_peer_gen_num != 0 && peer_gen_num != conn->c_peer_gen_num) { for (i = 0; i < RDS_MPATH_WORKERS; i++) { struct rds_conn_path *cp; cp = &conn->c_path[i]; spin_lock_irqsave(&cp->cp_lock, flags); cp->cp_next_tx_seq = 1; cp->cp_next_rx_seq = 0; list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { set_bit(RDS_MSG_FLUSH, &rm->m_flags); } spin_unlock_irqrestore(&cp->cp_lock, flags); } } conn->c_peer_gen_num = peer_gen_num; } } /* * Process all extension headers that come with this message. */ static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs) { struct rds_header *hdr = &inc->i_hdr; unsigned int pos = 0, type, len; union { struct rds_ext_header_version version; struct rds_ext_header_rdma rdma; struct rds_ext_header_rdma_dest rdma_dest; } buffer; while (1) { len = sizeof(buffer); type = rds_message_next_extension(hdr, &pos, &buffer, &len); if (type == RDS_EXTHDR_NONE) break; /* Process extension header here */ switch (type) { case RDS_EXTHDR_RDMA: rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0); break; case RDS_EXTHDR_RDMA_DEST: /* We ignore the size for now. We could stash it * somewhere and use it for error checking. */ inc->i_usercopy.rdma_cookie = rds_rdma_make_cookie( be32_to_cpu(buffer.rdma_dest.h_rdma_rkey), be32_to_cpu(buffer.rdma_dest.h_rdma_offset)); break; } } } static void rds_recv_hs_exthdrs(struct rds_header *hdr, struct rds_connection *conn) { unsigned int pos = 0, type, len; union { struct rds_ext_header_version version; u16 rds_npaths; u32 rds_gen_num; } buffer; u32 new_peer_gen_num = 0; while (1) { len = sizeof(buffer); type = rds_message_next_extension(hdr, &pos, &buffer, &len); if (type == RDS_EXTHDR_NONE) break; /* Process extension header here */ switch (type) { case RDS_EXTHDR_NPATHS: conn->c_npaths = min_t(int, RDS_MPATH_WORKERS, be16_to_cpu(buffer.rds_npaths)); break; case RDS_EXTHDR_GEN_NUM: new_peer_gen_num = be32_to_cpu(buffer.rds_gen_num); break; default: pr_warn_ratelimited("ignoring unknown exthdr type " "0x%x\n", type); } } /* if RDS_EXTHDR_NPATHS was not found, default to a single-path */ conn->c_npaths = max_t(int, conn->c_npaths, 1); conn->c_ping_triggered = 0; rds_conn_peer_gen_update(conn, new_peer_gen_num); } /* rds_start_mprds() will synchronously start multiple paths when appropriate. * The scheme is based on the following rules: * * 1. rds_sendmsg on first connect attempt sends the probe ping, with the * sender's npaths (s_npaths) * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It * sends back a probe-pong with r_npaths. After that, if rcvr is the * smaller ip addr, it starts rds_conn_path_connect_if_down on all * mprds_paths. * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down. * If it is the smaller ipaddr, rds_conn_path_connect_if_down can be * called after reception of the probe-pong on all mprds_paths. * Otherwise (sender of probe-ping is not the smaller ip addr): just call * rds_conn_path_connect_if_down on the hashed path. (see rule 4) * 4. rds_connect_worker must only trigger a connection if laddr < faddr. * 5. sender may end up queuing the packet on the cp. will get sent out later. * when connection is completed. */ static void rds_start_mprds(struct rds_connection *conn) { int i; struct rds_conn_path *cp; if (conn->c_npaths > 1 && rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) < 0) { for (i = 0; i < conn->c_npaths; i++) { cp = &conn->c_path[i]; rds_conn_path_connect_if_down(cp); } } } /* * The transport must make sure that this is serialized against other * rx and conn reset on this specific conn. * * We currently assert that only one fragmented message will be sent * down a connection at a time. This lets us reassemble in the conn * instead of per-flow which means that we don't have to go digging through * flows to tear down partial reassembly progress on conn failure and * we save flow lookup and locking for each frag arrival. It does mean * that small messages will wait behind large ones. Fragmenting at all * is only to reduce the memory consumption of pre-posted buffers. * * The caller passes in saddr and daddr instead of us getting it from the * conn. This lets loopback, who only has one conn for both directions, * tell us which roles the addrs in the conn are playing for this message. */ void rds_recv_incoming(struct rds_connection *conn, struct in6_addr *saddr, struct in6_addr *daddr, struct rds_incoming *inc, gfp_t gfp) { struct rds_sock *rs = NULL; struct sock *sk; unsigned long flags; struct rds_conn_path *cp; inc->i_conn = conn; inc->i_rx_jiffies = jiffies; if (conn->c_trans->t_mp_capable) cp = inc->i_conn_path; else cp = &conn->c_path[0]; rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u " "flags 0x%x rx_jiffies %lu\n", conn, (unsigned long long)cp->cp_next_rx_seq, inc, (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence), be32_to_cpu(inc->i_hdr.h_len), be16_to_cpu(inc->i_hdr.h_sport), be16_to_cpu(inc->i_hdr.h_dport), inc->i_hdr.h_flags, inc->i_rx_jiffies); /* * Sequence numbers should only increase. Messages get their * sequence number as they're queued in a sending conn. They * can be dropped, though, if the sending socket is closed before * they hit the wire. So sequence numbers can skip forward * under normal operation. They can also drop back in the conn * failover case as previously sent messages are resent down the * new instance of a conn. We drop those, otherwise we have * to assume that the next valid seq does not come after a * hole in the fragment stream. * * The headers don't give us a way to realize if fragments of * a message have been dropped. We assume that frags that arrive * to a flow are part of the current message on the flow that is * being reassembled. This means that senders can't drop messages * from the sending conn until all their frags are sent. * * XXX we could spend more on the wire to get more robust failure * detection, arguably worth it to avoid data corruption. */ if (be64_to_cpu(inc->i_hdr.h_sequence) < cp->cp_next_rx_seq && (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) { rds_stats_inc(s_recv_drop_old_seq); goto out; } cp->cp_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1; if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) { if (inc->i_hdr.h_sport == 0) { rdsdebug("ignore ping with 0 sport from %pI6c\n", saddr); goto out; } rds_stats_inc(s_recv_ping); rds_send_pong(cp, inc->i_hdr.h_sport); /* if this is a handshake ping, start multipath if necessary */ if (RDS_HS_PROBE(be16_to_cpu(inc->i_hdr.h_sport), be16_to_cpu(inc->i_hdr.h_dport))) { rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn); rds_start_mprds(cp->cp_conn); } goto out; } if (be16_to_cpu(inc->i_hdr.h_dport) == RDS_FLAG_PROBE_PORT && inc->i_hdr.h_sport == 0) { rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn); /* if this is a handshake pong, start multipath if necessary */ rds_start_mprds(cp->cp_conn); wake_up(&cp->cp_conn->c_hs_waitq); goto out; } rs = rds_find_bound(daddr, inc->i_hdr.h_dport, conn->c_bound_if); if (!rs) { rds_stats_inc(s_recv_drop_no_sock); goto out; } /* Process extension headers */ rds_recv_incoming_exthdrs(inc, rs); /* We can be racing with rds_release() which marks the socket dead. */ sk = rds_rs_to_sk(rs); /* serialize with rds_release -> sock_orphan */ write_lock_irqsave(&rs->rs_recv_lock, flags); if (!sock_flag(sk, SOCK_DEAD)) { rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs); rds_stats_inc(s_recv_queued); rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, be32_to_cpu(inc->i_hdr.h_len), inc->i_hdr.h_dport); if (sock_flag(sk, SOCK_RCVTSTAMP)) inc->i_usercopy.rx_tstamp = ktime_get_real(); rds_inc_addref(inc); inc->i_rx_lat_trace[RDS_MSG_RX_END] = local_clock(); list_add_tail(&inc->i_item, &rs->rs_recv_queue); __rds_wake_sk_sleep(sk); } else { rds_stats_inc(s_recv_drop_dead_sock); } write_unlock_irqrestore(&rs->rs_recv_lock, flags); out: if (rs) rds_sock_put(rs); } EXPORT_SYMBOL_GPL(rds_recv_incoming); /* * be very careful here. This is being called as the condition in * wait_event_*() needs to cope with being called many times. */ static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc) { unsigned long flags; if (!*inc) { read_lock_irqsave(&rs->rs_recv_lock, flags); if (!list_empty(&rs->rs_recv_queue)) { *inc = list_entry(rs->rs_recv_queue.next, struct rds_incoming, i_item); rds_inc_addref(*inc); } read_unlock_irqrestore(&rs->rs_recv_lock, flags); } return *inc != NULL; } static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc, int drop) { struct sock *sk = rds_rs_to_sk(rs); int ret = 0; unsigned long flags; write_lock_irqsave(&rs->rs_recv_lock, flags); if (!list_empty(&inc->i_item)) { ret = 1; if (drop) { /* XXX make sure this i_conn is reliable */ rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, -be32_to_cpu(inc->i_hdr.h_len), inc->i_hdr.h_dport); list_del_init(&inc->i_item); rds_inc_put(inc); } } write_unlock_irqrestore(&rs->rs_recv_lock, flags); rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop); return ret; } /* * Pull errors off the error queue. * If msghdr is NULL, we will just purge the error queue. */ int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr) { struct rds_notifier *notifier; struct rds_rdma_notify cmsg; unsigned int count = 0, max_messages = ~0U; unsigned long flags; LIST_HEAD(copy); int err = 0; memset(&cmsg, 0, sizeof(cmsg)); /* fill holes with zero */ /* put_cmsg copies to user space and thus may sleep. We can't do this * with rs_lock held, so first grab as many notifications as we can stuff * in the user provided cmsg buffer. We don't try to copy more, to avoid * losing notifications - except when the buffer is so small that it wouldn't * even hold a single notification. Then we give him as much of this single * msg as we can squeeze in, and set MSG_CTRUNC. */ if (msghdr) { max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg)); if (!max_messages) max_messages = 1; } spin_lock_irqsave(&rs->rs_lock, flags); while (!list_empty(&rs->rs_notify_queue) && count < max_messages) { notifier = list_entry(rs->rs_notify_queue.next, struct rds_notifier, n_list); list_move(&notifier->n_list, &copy); count++; } spin_unlock_irqrestore(&rs->rs_lock, flags); if (!count) return 0; while (!list_empty(&copy)) { notifier = list_entry(copy.next, struct rds_notifier, n_list); if (msghdr) { cmsg.user_token = notifier->n_user_token; cmsg.status = notifier->n_status; err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS, sizeof(cmsg), &cmsg); if (err) break; } list_del_init(&notifier->n_list); kfree(notifier); } /* If we bailed out because of an error in put_cmsg, * we may be left with one or more notifications that we * didn't process. Return them to the head of the list. */ if (!list_empty(&copy)) { spin_lock_irqsave(&rs->rs_lock, flags); list_splice(&copy, &rs->rs_notify_queue); spin_unlock_irqrestore(&rs->rs_lock, flags); } return err; } /* * Queue a congestion notification */ static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr) { uint64_t notify = rs->rs_cong_notify; unsigned long flags; int err; err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE, sizeof(notify), &notify); if (err) return err; spin_lock_irqsave(&rs->rs_lock, flags); rs->rs_cong_notify &= ~notify; spin_unlock_irqrestore(&rs->rs_lock, flags); return 0; } /* * Receive any control messages. */ static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg, struct rds_sock *rs) { int ret = 0; if (inc->i_usercopy.rdma_cookie) { ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST, sizeof(inc->i_usercopy.rdma_cookie), &inc->i_usercopy.rdma_cookie); if (ret) goto out; } if ((inc->i_usercopy.rx_tstamp != 0) && sock_flag(rds_rs_to_sk(rs), SOCK_RCVTSTAMP)) { struct __kernel_old_timeval tv = ns_to_kernel_old_timeval(inc->i_usercopy.rx_tstamp); if (!sock_flag(rds_rs_to_sk(rs), SOCK_TSTAMP_NEW)) { ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, sizeof(tv), &tv); } else { struct __kernel_sock_timeval sk_tv; sk_tv.tv_sec = tv.tv_sec; sk_tv.tv_usec = tv.tv_usec; ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, sizeof(sk_tv), &sk_tv); } if (ret) goto out; } if (rs->rs_rx_traces) { struct rds_cmsg_rx_trace t; int i, j; memset(&t, 0, sizeof(t)); inc->i_rx_lat_trace[RDS_MSG_RX_CMSG] = local_clock(); t.rx_traces = rs->rs_rx_traces; for (i = 0; i < rs->rs_rx_traces; i++) { j = rs->rs_rx_trace[i]; t.rx_trace_pos[i] = j; t.rx_trace[i] = inc->i_rx_lat_trace[j + 1] - inc->i_rx_lat_trace[j]; } ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RXPATH_LATENCY, sizeof(t), &t); if (ret) goto out; } out: return ret; } static bool rds_recvmsg_zcookie(struct rds_sock *rs, struct msghdr *msg) { struct rds_msg_zcopy_queue *q = &rs->rs_zcookie_queue; struct rds_msg_zcopy_info *info = NULL; struct rds_zcopy_cookies *done; unsigned long flags; if (!msg->msg_control) return false; if (!sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY) || msg->msg_controllen < CMSG_SPACE(sizeof(*done))) return false; spin_lock_irqsave(&q->lock, flags); if (!list_empty(&q->zcookie_head)) { info = list_entry(q->zcookie_head.next, struct rds_msg_zcopy_info, rs_zcookie_next); list_del(&info->rs_zcookie_next); } spin_unlock_irqrestore(&q->lock, flags); if (!info) return false; done = &info->zcookies; if (put_cmsg(msg, SOL_RDS, RDS_CMSG_ZCOPY_COMPLETION, sizeof(*done), done)) { spin_lock_irqsave(&q->lock, flags); list_add(&info->rs_zcookie_next, &q->zcookie_head); spin_unlock_irqrestore(&q->lock, flags); return false; } kfree(info); return true; } int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int msg_flags) { struct sock *sk = sock->sk; struct rds_sock *rs = rds_sk_to_rs(sk); long timeo; int ret = 0, nonblock = msg_flags & MSG_DONTWAIT; DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); struct rds_incoming *inc = NULL; /* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */ timeo = sock_rcvtimeo(sk, nonblock); rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo); if (msg_flags & MSG_OOB) goto out; if (msg_flags & MSG_ERRQUEUE) return sock_recv_errqueue(sk, msg, size, SOL_IP, IP_RECVERR); while (1) { /* If there are pending notifications, do those - and nothing else */ if (!list_empty(&rs->rs_notify_queue)) { ret = rds_notify_queue_get(rs, msg); break; } if (rs->rs_cong_notify) { ret = rds_notify_cong(rs, msg); break; } if (!rds_next_incoming(rs, &inc)) { if (nonblock) { bool reaped = rds_recvmsg_zcookie(rs, msg); ret = reaped ? 0 : -EAGAIN; break; } timeo = wait_event_interruptible_timeout(*sk_sleep(sk), (!list_empty(&rs->rs_notify_queue) || rs->rs_cong_notify || rds_next_incoming(rs, &inc)), timeo); rdsdebug("recvmsg woke inc %p timeo %ld\n", inc, timeo); if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) continue; ret = timeo; if (ret == 0) ret = -ETIMEDOUT; break; } rdsdebug("copying inc %p from %pI6c:%u to user\n", inc, &inc->i_conn->c_faddr, ntohs(inc->i_hdr.h_sport)); ret = inc->i_conn->c_trans->inc_copy_to_user(inc, &msg->msg_iter); if (ret < 0) break; /* * if the message we just copied isn't at the head of the * recv queue then someone else raced us to return it, try * to get the next message. */ if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) { rds_inc_put(inc); inc = NULL; rds_stats_inc(s_recv_deliver_raced); iov_iter_revert(&msg->msg_iter, ret); continue; } if (ret < be32_to_cpu(inc->i_hdr.h_len)) { if (msg_flags & MSG_TRUNC) ret = be32_to_cpu(inc->i_hdr.h_len); msg->msg_flags |= MSG_TRUNC; } if (rds_cmsg_recv(inc, msg, rs)) { ret = -EFAULT; break; } rds_recvmsg_zcookie(rs, msg); rds_stats_inc(s_recv_delivered); if (msg->msg_name) { if (ipv6_addr_v4mapped(&inc->i_saddr)) { sin->sin_family = AF_INET; sin->sin_port = inc->i_hdr.h_sport; sin->sin_addr.s_addr = inc->i_saddr.s6_addr32[3]; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); msg->msg_namelen = sizeof(*sin); } else { sin6->sin6_family = AF_INET6; sin6->sin6_port = inc->i_hdr.h_sport; sin6->sin6_addr = inc->i_saddr; sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = rs->rs_bound_scope_id; msg->msg_namelen = sizeof(*sin6); } } break; } if (inc) rds_inc_put(inc); out: return ret; } /* * The socket is being shut down and we're asked to drop messages that were * queued for recvmsg. The caller has unbound the socket so the receive path * won't queue any more incoming fragments or messages on the socket. */ void rds_clear_recv_queue(struct rds_sock *rs) { struct sock *sk = rds_rs_to_sk(rs); struct rds_incoming *inc, *tmp; unsigned long flags; write_lock_irqsave(&rs->rs_recv_lock, flags); list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) { rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, -be32_to_cpu(inc->i_hdr.h_len), inc->i_hdr.h_dport); list_del_init(&inc->i_item); rds_inc_put(inc); } write_unlock_irqrestore(&rs->rs_recv_lock, flags); } /* * inc->i_saddr isn't used here because it is only set in the receive * path. */ void rds_inc_info_copy(struct rds_incoming *inc, struct rds_info_iterator *iter, __be32 saddr, __be32 daddr, int flip) { struct rds_info_message minfo; minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence); minfo.len = be32_to_cpu(inc->i_hdr.h_len); minfo.tos = inc->i_conn->c_tos; if (flip) { minfo.laddr = daddr; minfo.faddr = saddr; minfo.lport = inc->i_hdr.h_dport; minfo.fport = inc->i_hdr.h_sport; } else { minfo.laddr = saddr; minfo.faddr = daddr; minfo.lport = inc->i_hdr.h_sport; minfo.fport = inc->i_hdr.h_dport; } minfo.flags = 0; rds_info_copy(iter, &minfo, sizeof(minfo)); } #if IS_ENABLED(CONFIG_IPV6) void rds6_inc_info_copy(struct rds_incoming *inc, struct rds_info_iterator *iter, struct in6_addr *saddr, struct in6_addr *daddr, int flip) { struct rds6_info_message minfo6; minfo6.seq = be64_to_cpu(inc->i_hdr.h_sequence); minfo6.len = be32_to_cpu(inc->i_hdr.h_len); minfo6.tos = inc->i_conn->c_tos; if (flip) { minfo6.laddr = *daddr; minfo6.faddr = *saddr; minfo6.lport = inc->i_hdr.h_dport; minfo6.fport = inc->i_hdr.h_sport; } else { minfo6.laddr = *saddr; minfo6.faddr = *daddr; minfo6.lport = inc->i_hdr.h_sport; minfo6.fport = inc->i_hdr.h_dport; } minfo6.flags = 0; rds_info_copy(iter, &minfo6, sizeof(minfo6)); } #endif
linux-master
net/rds/recv.c
/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/highmem.h> #include <linux/gfp.h> #include <linux/cpu.h> #include <linux/export.h> #include "rds.h" struct rds_page_remainder { struct page *r_page; unsigned long r_offset; }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct rds_page_remainder, rds_page_remainders); /** * rds_page_remainder_alloc - build up regions of a message. * * @scat: Scatter list for message * @bytes: the number of bytes needed. * @gfp: the waiting behaviour of the allocation * * @gfp is always ored with __GFP_HIGHMEM. Callers must be prepared to * kmap the pages, etc. * * If @bytes is at least a full page then this just returns a page from * alloc_page(). * * If @bytes is a partial page then this stores the unused region of the * page in a per-cpu structure. Future partial-page allocations may be * satisfied from that cached region. This lets us waste less memory on * small allocations with minimal complexity. It works because the transmit * path passes read-only page regions down to devices. They hold a page * reference until they are done with the region. */ int rds_page_remainder_alloc(struct scatterlist *scat, unsigned long bytes, gfp_t gfp) { struct rds_page_remainder *rem; unsigned long flags; struct page *page; int ret; gfp |= __GFP_HIGHMEM; /* jump straight to allocation if we're trying for a huge page */ if (bytes >= PAGE_SIZE) { page = alloc_page(gfp); if (!page) { ret = -ENOMEM; } else { sg_set_page(scat, page, PAGE_SIZE, 0); ret = 0; } goto out; } rem = &per_cpu(rds_page_remainders, get_cpu()); local_irq_save(flags); while (1) { /* avoid a tiny region getting stuck by tossing it */ if (rem->r_page && bytes > (PAGE_SIZE - rem->r_offset)) { rds_stats_inc(s_page_remainder_miss); __free_page(rem->r_page); rem->r_page = NULL; } /* hand out a fragment from the cached page */ if (rem->r_page && bytes <= (PAGE_SIZE - rem->r_offset)) { sg_set_page(scat, rem->r_page, bytes, rem->r_offset); get_page(sg_page(scat)); if (rem->r_offset != 0) rds_stats_inc(s_page_remainder_hit); rem->r_offset += ALIGN(bytes, 8); if (rem->r_offset >= PAGE_SIZE) { __free_page(rem->r_page); rem->r_page = NULL; } ret = 0; break; } /* alloc if there is nothing for us to use */ local_irq_restore(flags); put_cpu(); page = alloc_page(gfp); rem = &per_cpu(rds_page_remainders, get_cpu()); local_irq_save(flags); if (!page) { ret = -ENOMEM; break; } /* did someone race to fill the remainder before us? */ if (rem->r_page) { __free_page(page); continue; } /* otherwise install our page and loop around to alloc */ rem->r_page = page; rem->r_offset = 0; } local_irq_restore(flags); put_cpu(); out: rdsdebug("bytes %lu ret %d %p %u %u\n", bytes, ret, ret ? NULL : sg_page(scat), ret ? 0 : scat->offset, ret ? 0 : scat->length); return ret; } EXPORT_SYMBOL_GPL(rds_page_remainder_alloc); void rds_page_exit(void) { unsigned int cpu; for_each_possible_cpu(cpu) { struct rds_page_remainder *rem; rem = &per_cpu(rds_page_remainders, cpu); rdsdebug("cpu %u\n", cpu); if (rem->r_page) __free_page(rem->r_page); rem->r_page = NULL; } }
linux-master
net/rds/page.c
/* * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/ratelimit.h> #include <net/addrconf.h> #include <rdma/ib_cm.h> #include "rds_single_path.h" #include "rds.h" #include "ib.h" #include "ib_mr.h" /* * Set the selected protocol version */ static void rds_ib_set_protocol(struct rds_connection *conn, unsigned int version) { conn->c_version = version; } /* * Set up flow control */ static void rds_ib_set_flow_control(struct rds_connection *conn, u32 credits) { struct rds_ib_connection *ic = conn->c_transport_data; if (rds_ib_sysctl_flow_control && credits != 0) { /* We're doing flow control */ ic->i_flowctl = 1; rds_ib_send_add_credits(conn, credits); } else { ic->i_flowctl = 0; } } /* * Connection established. * We get here for both outgoing and incoming connection. */ void rds_ib_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event) { struct rds_ib_connection *ic = conn->c_transport_data; const union rds_ib_conn_priv *dp = NULL; __be64 ack_seq = 0; __be32 credit = 0; u8 major = 0; u8 minor = 0; int err; dp = event->param.conn.private_data; if (conn->c_isv6) { if (event->param.conn.private_data_len >= sizeof(struct rds6_ib_connect_private)) { major = dp->ricp_v6.dp_protocol_major; minor = dp->ricp_v6.dp_protocol_minor; credit = dp->ricp_v6.dp_credit; /* dp structure start is not guaranteed to be 8 bytes * aligned. Since dp_ack_seq is 64-bit extended load * operations can be used so go through get_unaligned * to avoid unaligned errors. */ ack_seq = get_unaligned(&dp->ricp_v6.dp_ack_seq); } } else if (event->param.conn.private_data_len >= sizeof(struct rds_ib_connect_private)) { major = dp->ricp_v4.dp_protocol_major; minor = dp->ricp_v4.dp_protocol_minor; credit = dp->ricp_v4.dp_credit; ack_seq = get_unaligned(&dp->ricp_v4.dp_ack_seq); } /* make sure it isn't empty data */ if (major) { rds_ib_set_protocol(conn, RDS_PROTOCOL(major, minor)); rds_ib_set_flow_control(conn, be32_to_cpu(credit)); } if (conn->c_version < RDS_PROTOCOL_VERSION) { if (conn->c_version != RDS_PROTOCOL_COMPAT_VERSION) { pr_notice("RDS/IB: Connection <%pI6c,%pI6c> version %u.%u no longer supported\n", &conn->c_laddr, &conn->c_faddr, RDS_PROTOCOL_MAJOR(conn->c_version), RDS_PROTOCOL_MINOR(conn->c_version)); rds_conn_destroy(conn); return; } } pr_notice("RDS/IB: %s conn connected <%pI6c,%pI6c,%d> version %u.%u%s\n", ic->i_active_side ? "Active" : "Passive", &conn->c_laddr, &conn->c_faddr, conn->c_tos, RDS_PROTOCOL_MAJOR(conn->c_version), RDS_PROTOCOL_MINOR(conn->c_version), ic->i_flowctl ? ", flow control" : ""); /* receive sl from the peer */ ic->i_sl = ic->i_cm_id->route.path_rec->sl; atomic_set(&ic->i_cq_quiesce, 0); /* Init rings and fill recv. this needs to wait until protocol * negotiation is complete, since ring layout is different * from 3.1 to 4.1. */ rds_ib_send_init_ring(ic); rds_ib_recv_init_ring(ic); /* Post receive buffers - as a side effect, this will update * the posted credit count. */ rds_ib_recv_refill(conn, 1, GFP_KERNEL); /* update ib_device with this local ipaddr */ err = rds_ib_update_ipaddr(ic->rds_ibdev, &conn->c_laddr); if (err) printk(KERN_ERR "rds_ib_update_ipaddr failed (%d)\n", err); /* If the peer gave us the last packet it saw, process this as if * we had received a regular ACK. */ if (dp) { if (ack_seq) rds_send_drop_acked(conn, be64_to_cpu(ack_seq), NULL); } conn->c_proposed_version = conn->c_version; rds_connect_complete(conn); } static void rds_ib_cm_fill_conn_param(struct rds_connection *conn, struct rdma_conn_param *conn_param, union rds_ib_conn_priv *dp, u32 protocol_version, u32 max_responder_resources, u32 max_initiator_depth, bool isv6) { struct rds_ib_connection *ic = conn->c_transport_data; struct rds_ib_device *rds_ibdev = ic->rds_ibdev; memset(conn_param, 0, sizeof(struct rdma_conn_param)); conn_param->responder_resources = min_t(u32, rds_ibdev->max_responder_resources, max_responder_resources); conn_param->initiator_depth = min_t(u32, rds_ibdev->max_initiator_depth, max_initiator_depth); conn_param->retry_count = min_t(unsigned int, rds_ib_retry_count, 7); conn_param->rnr_retry_count = 7; if (dp) { memset(dp, 0, sizeof(*dp)); if (isv6) { dp->ricp_v6.dp_saddr = conn->c_laddr; dp->ricp_v6.dp_daddr = conn->c_faddr; dp->ricp_v6.dp_protocol_major = RDS_PROTOCOL_MAJOR(protocol_version); dp->ricp_v6.dp_protocol_minor = RDS_PROTOCOL_MINOR(protocol_version); dp->ricp_v6.dp_protocol_minor_mask = cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); dp->ricp_v6.dp_ack_seq = cpu_to_be64(rds_ib_piggyb_ack(ic)); dp->ricp_v6.dp_cmn.ricpc_dp_toss = conn->c_tos; conn_param->private_data = &dp->ricp_v6; conn_param->private_data_len = sizeof(dp->ricp_v6); } else { dp->ricp_v4.dp_saddr = conn->c_laddr.s6_addr32[3]; dp->ricp_v4.dp_daddr = conn->c_faddr.s6_addr32[3]; dp->ricp_v4.dp_protocol_major = RDS_PROTOCOL_MAJOR(protocol_version); dp->ricp_v4.dp_protocol_minor = RDS_PROTOCOL_MINOR(protocol_version); dp->ricp_v4.dp_protocol_minor_mask = cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); dp->ricp_v4.dp_ack_seq = cpu_to_be64(rds_ib_piggyb_ack(ic)); dp->ricp_v4.dp_cmn.ricpc_dp_toss = conn->c_tos; conn_param->private_data = &dp->ricp_v4; conn_param->private_data_len = sizeof(dp->ricp_v4); } /* Advertise flow control */ if (ic->i_flowctl) { unsigned int credits; credits = IB_GET_POST_CREDITS (atomic_read(&ic->i_credits)); if (isv6) dp->ricp_v6.dp_credit = cpu_to_be32(credits); else dp->ricp_v4.dp_credit = cpu_to_be32(credits); atomic_sub(IB_SET_POST_CREDITS(credits), &ic->i_credits); } } } static void rds_ib_cq_event_handler(struct ib_event *event, void *data) { rdsdebug("event %u (%s) data %p\n", event->event, ib_event_msg(event->event), data); } /* Plucking the oldest entry from the ring can be done concurrently with * the thread refilling the ring. Each ring operation is protected by * spinlocks and the transient state of refilling doesn't change the * recording of which entry is oldest. * * This relies on IB only calling one cq comp_handler for each cq so that * there will only be one caller of rds_recv_incoming() per RDS connection. */ static void rds_ib_cq_comp_handler_recv(struct ib_cq *cq, void *context) { struct rds_connection *conn = context; struct rds_ib_connection *ic = conn->c_transport_data; rdsdebug("conn %p cq %p\n", conn, cq); rds_ib_stats_inc(s_ib_evt_handler_call); tasklet_schedule(&ic->i_recv_tasklet); } static void poll_scq(struct rds_ib_connection *ic, struct ib_cq *cq, struct ib_wc *wcs) { int nr, i; struct ib_wc *wc; while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { for (i = 0; i < nr; i++) { wc = wcs + i; rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", (unsigned long long)wc->wr_id, wc->status, wc->byte_len, be32_to_cpu(wc->ex.imm_data)); if (wc->wr_id <= ic->i_send_ring.w_nr || wc->wr_id == RDS_IB_ACK_WR_ID) rds_ib_send_cqe_handler(ic, wc); else rds_ib_mr_cqe_handler(ic, wc); } } } static void rds_ib_tasklet_fn_send(unsigned long data) { struct rds_ib_connection *ic = (struct rds_ib_connection *)data; struct rds_connection *conn = ic->conn; rds_ib_stats_inc(s_ib_tasklet_call); /* if cq has been already reaped, ignore incoming cq event */ if (atomic_read(&ic->i_cq_quiesce)) return; poll_scq(ic, ic->i_send_cq, ic->i_send_wc); ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); poll_scq(ic, ic->i_send_cq, ic->i_send_wc); if (rds_conn_up(conn) && (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags) || test_bit(0, &conn->c_map_queued))) rds_send_xmit(&ic->conn->c_path[0]); } static void poll_rcq(struct rds_ib_connection *ic, struct ib_cq *cq, struct ib_wc *wcs, struct rds_ib_ack_state *ack_state) { int nr, i; struct ib_wc *wc; while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { for (i = 0; i < nr; i++) { wc = wcs + i; rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", (unsigned long long)wc->wr_id, wc->status, wc->byte_len, be32_to_cpu(wc->ex.imm_data)); rds_ib_recv_cqe_handler(ic, wc, ack_state); } } } static void rds_ib_tasklet_fn_recv(unsigned long data) { struct rds_ib_connection *ic = (struct rds_ib_connection *)data; struct rds_connection *conn = ic->conn; struct rds_ib_device *rds_ibdev = ic->rds_ibdev; struct rds_ib_ack_state state; if (!rds_ibdev) rds_conn_drop(conn); rds_ib_stats_inc(s_ib_tasklet_call); /* if cq has been already reaped, ignore incoming cq event */ if (atomic_read(&ic->i_cq_quiesce)) return; memset(&state, 0, sizeof(state)); poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); if (state.ack_next_valid) rds_ib_set_ack(ic, state.ack_next, state.ack_required); if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { rds_send_drop_acked(conn, state.ack_recv, NULL); ic->i_ack_recv = state.ack_recv; } if (rds_conn_up(conn)) rds_ib_attempt_ack(ic); } static void rds_ib_qp_event_handler(struct ib_event *event, void *data) { struct rds_connection *conn = data; struct rds_ib_connection *ic = conn->c_transport_data; rdsdebug("conn %p ic %p event %u (%s)\n", conn, ic, event->event, ib_event_msg(event->event)); switch (event->event) { case IB_EVENT_COMM_EST: rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST); break; default: rdsdebug("Fatal QP Event %u (%s) - connection %pI6c->%pI6c, reconnecting\n", event->event, ib_event_msg(event->event), &conn->c_laddr, &conn->c_faddr); rds_conn_drop(conn); break; } } static void rds_ib_cq_comp_handler_send(struct ib_cq *cq, void *context) { struct rds_connection *conn = context; struct rds_ib_connection *ic = conn->c_transport_data; rdsdebug("conn %p cq %p\n", conn, cq); rds_ib_stats_inc(s_ib_evt_handler_call); tasklet_schedule(&ic->i_send_tasklet); } static inline int ibdev_get_unused_vector(struct rds_ib_device *rds_ibdev) { int min = rds_ibdev->vector_load[rds_ibdev->dev->num_comp_vectors - 1]; int index = rds_ibdev->dev->num_comp_vectors - 1; int i; for (i = rds_ibdev->dev->num_comp_vectors - 1; i >= 0; i--) { if (rds_ibdev->vector_load[i] < min) { index = i; min = rds_ibdev->vector_load[i]; } } rds_ibdev->vector_load[index]++; return index; } static inline void ibdev_put_vector(struct rds_ib_device *rds_ibdev, int index) { rds_ibdev->vector_load[index]--; } static void rds_dma_hdr_free(struct ib_device *dev, struct rds_header *hdr, dma_addr_t dma_addr, enum dma_data_direction dir) { ib_dma_unmap_single(dev, dma_addr, sizeof(*hdr), dir); kfree(hdr); } static struct rds_header *rds_dma_hdr_alloc(struct ib_device *dev, dma_addr_t *dma_addr, enum dma_data_direction dir) { struct rds_header *hdr; hdr = kzalloc_node(sizeof(*hdr), GFP_KERNEL, ibdev_to_node(dev)); if (!hdr) return NULL; *dma_addr = ib_dma_map_single(dev, hdr, sizeof(*hdr), DMA_BIDIRECTIONAL); if (ib_dma_mapping_error(dev, *dma_addr)) { kfree(hdr); return NULL; } return hdr; } /* Free the DMA memory used to store struct rds_header. * * @dev: the RDS IB device * @hdrs: pointer to the array storing DMA memory pointers * @dma_addrs: pointer to the array storing DMA addresses * @num_hdars: number of headers to free. */ static void rds_dma_hdrs_free(struct rds_ib_device *dev, struct rds_header **hdrs, dma_addr_t *dma_addrs, u32 num_hdrs, enum dma_data_direction dir) { u32 i; for (i = 0; i < num_hdrs; i++) rds_dma_hdr_free(dev->dev, hdrs[i], dma_addrs[i], dir); kvfree(hdrs); kvfree(dma_addrs); } /* Allocate DMA coherent memory to be used to store struct rds_header for * sending/receiving packets. The pointers to the DMA memory and the * associated DMA addresses are stored in two arrays. * * @dev: the RDS IB device * @dma_addrs: pointer to the array for storing DMA addresses * @num_hdrs: number of headers to allocate * * It returns the pointer to the array storing the DMA memory pointers. On * error, NULL pointer is returned. */ static struct rds_header **rds_dma_hdrs_alloc(struct rds_ib_device *dev, dma_addr_t **dma_addrs, u32 num_hdrs, enum dma_data_direction dir) { struct rds_header **hdrs; dma_addr_t *hdr_daddrs; u32 i; hdrs = kvmalloc_node(sizeof(*hdrs) * num_hdrs, GFP_KERNEL, ibdev_to_node(dev->dev)); if (!hdrs) return NULL; hdr_daddrs = kvmalloc_node(sizeof(*hdr_daddrs) * num_hdrs, GFP_KERNEL, ibdev_to_node(dev->dev)); if (!hdr_daddrs) { kvfree(hdrs); return NULL; } for (i = 0; i < num_hdrs; i++) { hdrs[i] = rds_dma_hdr_alloc(dev->dev, &hdr_daddrs[i], dir); if (!hdrs[i]) { rds_dma_hdrs_free(dev, hdrs, hdr_daddrs, i, dir); return NULL; } } *dma_addrs = hdr_daddrs; return hdrs; } /* * This needs to be very careful to not leave IS_ERR pointers around for * cleanup to trip over. */ static int rds_ib_setup_qp(struct rds_connection *conn) { struct rds_ib_connection *ic = conn->c_transport_data; struct ib_device *dev = ic->i_cm_id->device; struct ib_qp_init_attr attr; struct ib_cq_init_attr cq_attr = {}; struct rds_ib_device *rds_ibdev; unsigned long max_wrs; int ret, fr_queue_space; /* * It's normal to see a null device if an incoming connection races * with device removal, so we don't print a warning. */ rds_ibdev = rds_ib_get_client_data(dev); if (!rds_ibdev) return -EOPNOTSUPP; /* The fr_queue_space is currently set to 512, to add extra space on * completion queue and send queue. This extra space is used for FRWR * registration and invalidation work requests */ fr_queue_space = RDS_IB_DEFAULT_FR_WR; /* add the conn now so that connection establishment has the dev */ rds_ib_add_conn(rds_ibdev, conn); max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_send_wr + 1 ? rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_send_wr; if (ic->i_send_ring.w_nr != max_wrs) rds_ib_ring_resize(&ic->i_send_ring, max_wrs); max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_recv_wr + 1 ? rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_recv_wr; if (ic->i_recv_ring.w_nr != max_wrs) rds_ib_ring_resize(&ic->i_recv_ring, max_wrs); /* Protection domain and memory range */ ic->i_pd = rds_ibdev->pd; ic->i_scq_vector = ibdev_get_unused_vector(rds_ibdev); cq_attr.cqe = ic->i_send_ring.w_nr + fr_queue_space + 1; cq_attr.comp_vector = ic->i_scq_vector; ic->i_send_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_send, rds_ib_cq_event_handler, conn, &cq_attr); if (IS_ERR(ic->i_send_cq)) { ret = PTR_ERR(ic->i_send_cq); ic->i_send_cq = NULL; ibdev_put_vector(rds_ibdev, ic->i_scq_vector); rdsdebug("ib_create_cq send failed: %d\n", ret); goto rds_ibdev_out; } ic->i_rcq_vector = ibdev_get_unused_vector(rds_ibdev); cq_attr.cqe = ic->i_recv_ring.w_nr; cq_attr.comp_vector = ic->i_rcq_vector; ic->i_recv_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_recv, rds_ib_cq_event_handler, conn, &cq_attr); if (IS_ERR(ic->i_recv_cq)) { ret = PTR_ERR(ic->i_recv_cq); ic->i_recv_cq = NULL; ibdev_put_vector(rds_ibdev, ic->i_rcq_vector); rdsdebug("ib_create_cq recv failed: %d\n", ret); goto send_cq_out; } ret = ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); if (ret) { rdsdebug("ib_req_notify_cq send failed: %d\n", ret); goto recv_cq_out; } ret = ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); if (ret) { rdsdebug("ib_req_notify_cq recv failed: %d\n", ret); goto recv_cq_out; } /* XXX negotiate max send/recv with remote? */ memset(&attr, 0, sizeof(attr)); attr.event_handler = rds_ib_qp_event_handler; attr.qp_context = conn; /* + 1 to allow for the single ack message */ attr.cap.max_send_wr = ic->i_send_ring.w_nr + fr_queue_space + 1; attr.cap.max_recv_wr = ic->i_recv_ring.w_nr + 1; attr.cap.max_send_sge = rds_ibdev->max_sge; attr.cap.max_recv_sge = RDS_IB_RECV_SGE; attr.sq_sig_type = IB_SIGNAL_REQ_WR; attr.qp_type = IB_QPT_RC; attr.send_cq = ic->i_send_cq; attr.recv_cq = ic->i_recv_cq; /* * XXX this can fail if max_*_wr is too large? Are we supposed * to back off until we get a value that the hardware can support? */ ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr); if (ret) { rdsdebug("rdma_create_qp failed: %d\n", ret); goto recv_cq_out; } ic->i_send_hdrs = rds_dma_hdrs_alloc(rds_ibdev, &ic->i_send_hdrs_dma, ic->i_send_ring.w_nr, DMA_TO_DEVICE); if (!ic->i_send_hdrs) { ret = -ENOMEM; rdsdebug("DMA send hdrs alloc failed\n"); goto qp_out; } ic->i_recv_hdrs = rds_dma_hdrs_alloc(rds_ibdev, &ic->i_recv_hdrs_dma, ic->i_recv_ring.w_nr, DMA_FROM_DEVICE); if (!ic->i_recv_hdrs) { ret = -ENOMEM; rdsdebug("DMA recv hdrs alloc failed\n"); goto send_hdrs_dma_out; } ic->i_ack = rds_dma_hdr_alloc(rds_ibdev->dev, &ic->i_ack_dma, DMA_TO_DEVICE); if (!ic->i_ack) { ret = -ENOMEM; rdsdebug("DMA ack header alloc failed\n"); goto recv_hdrs_dma_out; } ic->i_sends = vzalloc_node(array_size(sizeof(struct rds_ib_send_work), ic->i_send_ring.w_nr), ibdev_to_node(dev)); if (!ic->i_sends) { ret = -ENOMEM; rdsdebug("send allocation failed\n"); goto ack_dma_out; } ic->i_recvs = vzalloc_node(array_size(sizeof(struct rds_ib_recv_work), ic->i_recv_ring.w_nr), ibdev_to_node(dev)); if (!ic->i_recvs) { ret = -ENOMEM; rdsdebug("recv allocation failed\n"); goto sends_out; } rds_ib_recv_init_ack(ic); rdsdebug("conn %p pd %p cq %p %p\n", conn, ic->i_pd, ic->i_send_cq, ic->i_recv_cq); goto out; sends_out: vfree(ic->i_sends); ack_dma_out: rds_dma_hdr_free(rds_ibdev->dev, ic->i_ack, ic->i_ack_dma, DMA_TO_DEVICE); ic->i_ack = NULL; recv_hdrs_dma_out: rds_dma_hdrs_free(rds_ibdev, ic->i_recv_hdrs, ic->i_recv_hdrs_dma, ic->i_recv_ring.w_nr, DMA_FROM_DEVICE); ic->i_recv_hdrs = NULL; ic->i_recv_hdrs_dma = NULL; send_hdrs_dma_out: rds_dma_hdrs_free(rds_ibdev, ic->i_send_hdrs, ic->i_send_hdrs_dma, ic->i_send_ring.w_nr, DMA_TO_DEVICE); ic->i_send_hdrs = NULL; ic->i_send_hdrs_dma = NULL; qp_out: rdma_destroy_qp(ic->i_cm_id); recv_cq_out: ib_destroy_cq(ic->i_recv_cq); ic->i_recv_cq = NULL; send_cq_out: ib_destroy_cq(ic->i_send_cq); ic->i_send_cq = NULL; rds_ibdev_out: rds_ib_remove_conn(rds_ibdev, conn); out: rds_ib_dev_put(rds_ibdev); return ret; } static u32 rds_ib_protocol_compatible(struct rdma_cm_event *event, bool isv6) { const union rds_ib_conn_priv *dp = event->param.conn.private_data; u8 data_len, major, minor; u32 version = 0; __be16 mask; u16 common; /* * rdma_cm private data is odd - when there is any private data in the * request, we will be given a pretty large buffer without telling us the * original size. The only way to tell the difference is by looking at * the contents, which are initialized to zero. * If the protocol version fields aren't set, this is a connection attempt * from an older version. This could be 3.0 or 2.0 - we can't tell. * We really should have changed this for OFED 1.3 :-( */ /* Be paranoid. RDS always has privdata */ if (!event->param.conn.private_data_len) { printk(KERN_NOTICE "RDS incoming connection has no private data, " "rejecting\n"); return 0; } if (isv6) { data_len = sizeof(struct rds6_ib_connect_private); major = dp->ricp_v6.dp_protocol_major; minor = dp->ricp_v6.dp_protocol_minor; mask = dp->ricp_v6.dp_protocol_minor_mask; } else { data_len = sizeof(struct rds_ib_connect_private); major = dp->ricp_v4.dp_protocol_major; minor = dp->ricp_v4.dp_protocol_minor; mask = dp->ricp_v4.dp_protocol_minor_mask; } /* Even if len is crap *now* I still want to check it. -ASG */ if (event->param.conn.private_data_len < data_len || major == 0) return RDS_PROTOCOL_4_0; common = be16_to_cpu(mask) & RDS_IB_SUPPORTED_PROTOCOLS; if (major == 4 && common) { version = RDS_PROTOCOL_4_0; while ((common >>= 1) != 0) version++; } else if (RDS_PROTOCOL_COMPAT_VERSION == RDS_PROTOCOL(major, minor)) { version = RDS_PROTOCOL_COMPAT_VERSION; } else { if (isv6) printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI6c using incompatible protocol version %u.%u\n", &dp->ricp_v6.dp_saddr, major, minor); else printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI4 using incompatible protocol version %u.%u\n", &dp->ricp_v4.dp_saddr, major, minor); } return version; } #if IS_ENABLED(CONFIG_IPV6) /* Given an IPv6 address, find the net_device which hosts that address and * return its index. This is used by the rds_ib_cm_handle_connect() code to * find the interface index of where an incoming request comes from when * the request is using a link local address. * * Note one problem in this search. It is possible that two interfaces have * the same link local address. Unfortunately, this cannot be solved unless * the underlying layer gives us the interface which an incoming RDMA connect * request comes from. */ static u32 __rds_find_ifindex(struct net *net, const struct in6_addr *addr) { struct net_device *dev; int idx = 0; rcu_read_lock(); for_each_netdev_rcu(net, dev) { if (ipv6_chk_addr(net, addr, dev, 1)) { idx = dev->ifindex; break; } } rcu_read_unlock(); return idx; } #endif int rds_ib_cm_handle_connect(struct rdma_cm_id *cm_id, struct rdma_cm_event *event, bool isv6) { __be64 lguid = cm_id->route.path_rec->sgid.global.interface_id; __be64 fguid = cm_id->route.path_rec->dgid.global.interface_id; const struct rds_ib_conn_priv_cmn *dp_cmn; struct rds_connection *conn = NULL; struct rds_ib_connection *ic = NULL; struct rdma_conn_param conn_param; const union rds_ib_conn_priv *dp; union rds_ib_conn_priv dp_rep; struct in6_addr s_mapped_addr; struct in6_addr d_mapped_addr; const struct in6_addr *saddr6; const struct in6_addr *daddr6; int destroy = 1; u32 ifindex = 0; u32 version; int err = 1; /* Check whether the remote protocol version matches ours. */ version = rds_ib_protocol_compatible(event, isv6); if (!version) { err = RDS_RDMA_REJ_INCOMPAT; goto out; } dp = event->param.conn.private_data; if (isv6) { #if IS_ENABLED(CONFIG_IPV6) dp_cmn = &dp->ricp_v6.dp_cmn; saddr6 = &dp->ricp_v6.dp_saddr; daddr6 = &dp->ricp_v6.dp_daddr; /* If either address is link local, need to find the * interface index in order to create a proper RDS * connection. */ if (ipv6_addr_type(daddr6) & IPV6_ADDR_LINKLOCAL) { /* Using init_net for now .. */ ifindex = __rds_find_ifindex(&init_net, daddr6); /* No index found... Need to bail out. */ if (ifindex == 0) { err = -EOPNOTSUPP; goto out; } } else if (ipv6_addr_type(saddr6) & IPV6_ADDR_LINKLOCAL) { /* Use our address to find the correct index. */ ifindex = __rds_find_ifindex(&init_net, daddr6); /* No index found... Need to bail out. */ if (ifindex == 0) { err = -EOPNOTSUPP; goto out; } } #else err = -EOPNOTSUPP; goto out; #endif } else { dp_cmn = &dp->ricp_v4.dp_cmn; ipv6_addr_set_v4mapped(dp->ricp_v4.dp_saddr, &s_mapped_addr); ipv6_addr_set_v4mapped(dp->ricp_v4.dp_daddr, &d_mapped_addr); saddr6 = &s_mapped_addr; daddr6 = &d_mapped_addr; } rdsdebug("saddr %pI6c daddr %pI6c RDSv%u.%u lguid 0x%llx fguid 0x%llx, tos:%d\n", saddr6, daddr6, RDS_PROTOCOL_MAJOR(version), RDS_PROTOCOL_MINOR(version), (unsigned long long)be64_to_cpu(lguid), (unsigned long long)be64_to_cpu(fguid), dp_cmn->ricpc_dp_toss); /* RDS/IB is not currently netns aware, thus init_net */ conn = rds_conn_create(&init_net, daddr6, saddr6, &rds_ib_transport, dp_cmn->ricpc_dp_toss, GFP_KERNEL, ifindex); if (IS_ERR(conn)) { rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn)); conn = NULL; goto out; } /* * The connection request may occur while the * previous connection exist, e.g. in case of failover. * But as connections may be initiated simultaneously * by both hosts, we have a random backoff mechanism - * see the comment above rds_queue_reconnect() */ mutex_lock(&conn->c_cm_lock); if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) { if (rds_conn_state(conn) == RDS_CONN_UP) { rdsdebug("incoming connect while connecting\n"); rds_conn_drop(conn); rds_ib_stats_inc(s_ib_listen_closed_stale); } else if (rds_conn_state(conn) == RDS_CONN_CONNECTING) { /* Wait and see - our connect may still be succeeding */ rds_ib_stats_inc(s_ib_connect_raced); } goto out; } ic = conn->c_transport_data; rds_ib_set_protocol(conn, version); rds_ib_set_flow_control(conn, be32_to_cpu(dp_cmn->ricpc_credit)); /* If the peer gave us the last packet it saw, process this as if * we had received a regular ACK. */ if (dp_cmn->ricpc_ack_seq) rds_send_drop_acked(conn, be64_to_cpu(dp_cmn->ricpc_ack_seq), NULL); BUG_ON(cm_id->context); BUG_ON(ic->i_cm_id); ic->i_cm_id = cm_id; cm_id->context = conn; /* We got halfway through setting up the ib_connection, if we * fail now, we have to take the long route out of this mess. */ destroy = 0; err = rds_ib_setup_qp(conn); if (err) { rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", err); goto out; } rds_ib_cm_fill_conn_param(conn, &conn_param, &dp_rep, version, event->param.conn.responder_resources, event->param.conn.initiator_depth, isv6); rdma_set_min_rnr_timer(cm_id, IB_RNR_TIMER_000_32); /* rdma_accept() calls rdma_reject() internally if it fails */ if (rdma_accept(cm_id, &conn_param)) rds_ib_conn_error(conn, "rdma_accept failed\n"); out: if (conn) mutex_unlock(&conn->c_cm_lock); if (err) rdma_reject(cm_id, &err, sizeof(int), IB_CM_REJ_CONSUMER_DEFINED); return destroy; } int rds_ib_cm_initiate_connect(struct rdma_cm_id *cm_id, bool isv6) { struct rds_connection *conn = cm_id->context; struct rds_ib_connection *ic = conn->c_transport_data; struct rdma_conn_param conn_param; union rds_ib_conn_priv dp; int ret; /* If the peer doesn't do protocol negotiation, we must * default to RDSv3.0 */ rds_ib_set_protocol(conn, RDS_PROTOCOL_4_1); ic->i_flowctl = rds_ib_sysctl_flow_control; /* advertise flow control */ ret = rds_ib_setup_qp(conn); if (ret) { rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", ret); goto out; } rds_ib_cm_fill_conn_param(conn, &conn_param, &dp, conn->c_proposed_version, UINT_MAX, UINT_MAX, isv6); ret = rdma_connect_locked(cm_id, &conn_param); if (ret) rds_ib_conn_error(conn, "rdma_connect_locked failed (%d)\n", ret); out: /* Beware - returning non-zero tells the rdma_cm to destroy * the cm_id. We should certainly not do it as long as we still * "own" the cm_id. */ if (ret) { if (ic->i_cm_id == cm_id) ret = 0; } ic->i_active_side = true; return ret; } int rds_ib_conn_path_connect(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; struct sockaddr_storage src, dest; rdma_cm_event_handler handler; struct rds_ib_connection *ic; int ret; ic = conn->c_transport_data; /* XXX I wonder what affect the port space has */ /* delegate cm event handler to rdma_transport */ #if IS_ENABLED(CONFIG_IPV6) if (conn->c_isv6) handler = rds6_rdma_cm_event_handler; else #endif handler = rds_rdma_cm_event_handler; ic->i_cm_id = rdma_create_id(&init_net, handler, conn, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(ic->i_cm_id)) { ret = PTR_ERR(ic->i_cm_id); ic->i_cm_id = NULL; rdsdebug("rdma_create_id() failed: %d\n", ret); goto out; } rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn); if (ipv6_addr_v4mapped(&conn->c_faddr)) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)&src; sin->sin_family = AF_INET; sin->sin_addr.s_addr = conn->c_laddr.s6_addr32[3]; sin->sin_port = 0; sin = (struct sockaddr_in *)&dest; sin->sin_family = AF_INET; sin->sin_addr.s_addr = conn->c_faddr.s6_addr32[3]; sin->sin_port = htons(RDS_PORT); } else { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&src; sin6->sin6_family = AF_INET6; sin6->sin6_addr = conn->c_laddr; sin6->sin6_port = 0; sin6->sin6_scope_id = conn->c_dev_if; sin6 = (struct sockaddr_in6 *)&dest; sin6->sin6_family = AF_INET6; sin6->sin6_addr = conn->c_faddr; sin6->sin6_port = htons(RDS_CM_PORT); sin6->sin6_scope_id = conn->c_dev_if; } ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src, (struct sockaddr *)&dest, RDS_RDMA_RESOLVE_TIMEOUT_MS); if (ret) { rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id, ret); rdma_destroy_id(ic->i_cm_id); ic->i_cm_id = NULL; } out: return ret; } /* * This is so careful about only cleaning up resources that were built up * so that it can be called at any point during startup. In fact it * can be called multiple times for a given connection. */ void rds_ib_conn_path_shutdown(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; struct rds_ib_connection *ic = conn->c_transport_data; int err = 0; rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id, ic->i_pd, ic->i_send_cq, ic->i_recv_cq, ic->i_cm_id ? ic->i_cm_id->qp : NULL); if (ic->i_cm_id) { rdsdebug("disconnecting cm %p\n", ic->i_cm_id); err = rdma_disconnect(ic->i_cm_id); if (err) { /* Actually this may happen quite frequently, when * an outgoing connect raced with an incoming connect. */ rdsdebug("failed to disconnect, cm: %p err %d\n", ic->i_cm_id, err); } /* kick off "flush_worker" for all pools in order to reap * all FRMR registrations that are still marked "FRMR_IS_INUSE" */ rds_ib_flush_mrs(); /* * We want to wait for tx and rx completion to finish * before we tear down the connection, but we have to be * careful not to get stuck waiting on a send ring that * only has unsignaled sends in it. We've shutdown new * sends before getting here so by waiting for signaled * sends to complete we're ensured that there will be no * more tx processing. */ wait_event(rds_ib_ring_empty_wait, rds_ib_ring_empty(&ic->i_recv_ring) && (atomic_read(&ic->i_signaled_sends) == 0) && (atomic_read(&ic->i_fastreg_inuse_count) == 0) && (atomic_read(&ic->i_fastreg_wrs) == RDS_IB_DEFAULT_FR_WR)); tasklet_kill(&ic->i_send_tasklet); tasklet_kill(&ic->i_recv_tasklet); atomic_set(&ic->i_cq_quiesce, 1); /* first destroy the ib state that generates callbacks */ if (ic->i_cm_id->qp) rdma_destroy_qp(ic->i_cm_id); if (ic->i_send_cq) { if (ic->rds_ibdev) ibdev_put_vector(ic->rds_ibdev, ic->i_scq_vector); ib_destroy_cq(ic->i_send_cq); } if (ic->i_recv_cq) { if (ic->rds_ibdev) ibdev_put_vector(ic->rds_ibdev, ic->i_rcq_vector); ib_destroy_cq(ic->i_recv_cq); } if (ic->rds_ibdev) { /* then free the resources that ib callbacks use */ if (ic->i_send_hdrs) { rds_dma_hdrs_free(ic->rds_ibdev, ic->i_send_hdrs, ic->i_send_hdrs_dma, ic->i_send_ring.w_nr, DMA_TO_DEVICE); ic->i_send_hdrs = NULL; ic->i_send_hdrs_dma = NULL; } if (ic->i_recv_hdrs) { rds_dma_hdrs_free(ic->rds_ibdev, ic->i_recv_hdrs, ic->i_recv_hdrs_dma, ic->i_recv_ring.w_nr, DMA_FROM_DEVICE); ic->i_recv_hdrs = NULL; ic->i_recv_hdrs_dma = NULL; } if (ic->i_ack) { rds_dma_hdr_free(ic->rds_ibdev->dev, ic->i_ack, ic->i_ack_dma, DMA_TO_DEVICE); ic->i_ack = NULL; } } else { WARN_ON(ic->i_send_hdrs); WARN_ON(ic->i_send_hdrs_dma); WARN_ON(ic->i_recv_hdrs); WARN_ON(ic->i_recv_hdrs_dma); WARN_ON(ic->i_ack); } if (ic->i_sends) rds_ib_send_clear_ring(ic); if (ic->i_recvs) rds_ib_recv_clear_ring(ic); rdma_destroy_id(ic->i_cm_id); /* * Move connection back to the nodev list. */ if (ic->rds_ibdev) rds_ib_remove_conn(ic->rds_ibdev, conn); ic->i_cm_id = NULL; ic->i_pd = NULL; ic->i_send_cq = NULL; ic->i_recv_cq = NULL; } BUG_ON(ic->rds_ibdev); /* Clear pending transmit */ if (ic->i_data_op) { struct rds_message *rm; rm = container_of(ic->i_data_op, struct rds_message, data); rds_message_put(rm); ic->i_data_op = NULL; } /* Clear the ACK state */ clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); #ifdef KERNEL_HAS_ATOMIC64 atomic64_set(&ic->i_ack_next, 0); #else ic->i_ack_next = 0; #endif ic->i_ack_recv = 0; /* Clear flow control state */ ic->i_flowctl = 0; atomic_set(&ic->i_credits, 0); /* Re-init rings, but retain sizes. */ rds_ib_ring_init(&ic->i_send_ring, ic->i_send_ring.w_nr); rds_ib_ring_init(&ic->i_recv_ring, ic->i_recv_ring.w_nr); if (ic->i_ibinc) { rds_inc_put(&ic->i_ibinc->ii_inc); ic->i_ibinc = NULL; } vfree(ic->i_sends); ic->i_sends = NULL; vfree(ic->i_recvs); ic->i_recvs = NULL; ic->i_active_side = false; } int rds_ib_conn_alloc(struct rds_connection *conn, gfp_t gfp) { struct rds_ib_connection *ic; unsigned long flags; int ret; /* XXX too lazy? */ ic = kzalloc(sizeof(struct rds_ib_connection), gfp); if (!ic) return -ENOMEM; ret = rds_ib_recv_alloc_caches(ic, gfp); if (ret) { kfree(ic); return ret; } INIT_LIST_HEAD(&ic->ib_node); tasklet_init(&ic->i_send_tasklet, rds_ib_tasklet_fn_send, (unsigned long)ic); tasklet_init(&ic->i_recv_tasklet, rds_ib_tasklet_fn_recv, (unsigned long)ic); mutex_init(&ic->i_recv_mutex); #ifndef KERNEL_HAS_ATOMIC64 spin_lock_init(&ic->i_ack_lock); #endif atomic_set(&ic->i_signaled_sends, 0); atomic_set(&ic->i_fastreg_wrs, RDS_IB_DEFAULT_FR_WR); /* * rds_ib_conn_shutdown() waits for these to be emptied so they * must be initialized before it can be called. */ rds_ib_ring_init(&ic->i_send_ring, 0); rds_ib_ring_init(&ic->i_recv_ring, 0); ic->conn = conn; conn->c_transport_data = ic; spin_lock_irqsave(&ib_nodev_conns_lock, flags); list_add_tail(&ic->ib_node, &ib_nodev_conns); spin_unlock_irqrestore(&ib_nodev_conns_lock, flags); rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data); return 0; } /* * Free a connection. Connection must be shut down and not set for reconnect. */ void rds_ib_conn_free(void *arg) { struct rds_ib_connection *ic = arg; spinlock_t *lock_ptr; rdsdebug("ic %p\n", ic); /* * Conn is either on a dev's list or on the nodev list. * A race with shutdown() or connect() would cause problems * (since rds_ibdev would change) but that should never happen. */ lock_ptr = ic->rds_ibdev ? &ic->rds_ibdev->spinlock : &ib_nodev_conns_lock; spin_lock_irq(lock_ptr); list_del(&ic->ib_node); spin_unlock_irq(lock_ptr); rds_ib_recv_free_caches(ic); kfree(ic); } /* * An error occurred on the connection */ void __rds_ib_conn_error(struct rds_connection *conn, const char *fmt, ...) { va_list ap; rds_conn_drop(conn); va_start(ap, fmt); vprintk(fmt, ap); va_end(ap); }
linux-master
net/rds/ib_cm.c
/* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/in.h> #include <linux/module.h> #include <net/tcp.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/addrconf.h> #include "rds.h" #include "tcp.h" /* only for info exporting */ static DEFINE_SPINLOCK(rds_tcp_tc_list_lock); static LIST_HEAD(rds_tcp_tc_list); /* rds_tcp_tc_count counts only IPv4 connections. * rds6_tcp_tc_count counts both IPv4 and IPv6 connections. */ static unsigned int rds_tcp_tc_count; #if IS_ENABLED(CONFIG_IPV6) static unsigned int rds6_tcp_tc_count; #endif /* Track rds_tcp_connection structs so they can be cleaned up */ static DEFINE_SPINLOCK(rds_tcp_conn_lock); static LIST_HEAD(rds_tcp_conn_list); static atomic_t rds_tcp_unloading = ATOMIC_INIT(0); static struct kmem_cache *rds_tcp_conn_slab; static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos); static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF; static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF; static struct ctl_table rds_tcp_sysctl_table[] = { #define RDS_TCP_SNDBUF 0 { .procname = "rds_tcp_sndbuf", /* data is per-net pointer */ .maxlen = sizeof(int), .mode = 0644, .proc_handler = rds_tcp_skbuf_handler, .extra1 = &rds_tcp_min_sndbuf, }, #define RDS_TCP_RCVBUF 1 { .procname = "rds_tcp_rcvbuf", /* data is per-net pointer */ .maxlen = sizeof(int), .mode = 0644, .proc_handler = rds_tcp_skbuf_handler, .extra1 = &rds_tcp_min_rcvbuf, }, { } }; u32 rds_tcp_write_seq(struct rds_tcp_connection *tc) { /* seq# of the last byte of data in tcp send buffer */ return tcp_sk(tc->t_sock->sk)->write_seq; } u32 rds_tcp_snd_una(struct rds_tcp_connection *tc) { return tcp_sk(tc->t_sock->sk)->snd_una; } void rds_tcp_restore_callbacks(struct socket *sock, struct rds_tcp_connection *tc) { rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc); write_lock_bh(&sock->sk->sk_callback_lock); /* done under the callback_lock to serialize with write_space */ spin_lock(&rds_tcp_tc_list_lock); list_del_init(&tc->t_list_item); #if IS_ENABLED(CONFIG_IPV6) rds6_tcp_tc_count--; #endif if (!tc->t_cpath->cp_conn->c_isv6) rds_tcp_tc_count--; spin_unlock(&rds_tcp_tc_list_lock); tc->t_sock = NULL; sock->sk->sk_write_space = tc->t_orig_write_space; sock->sk->sk_data_ready = tc->t_orig_data_ready; sock->sk->sk_state_change = tc->t_orig_state_change; sock->sk->sk_user_data = NULL; write_unlock_bh(&sock->sk->sk_callback_lock); } /* * rds_tcp_reset_callbacks() switches the to the new sock and * returns the existing tc->t_sock. * * The only functions that set tc->t_sock are rds_tcp_set_callbacks * and rds_tcp_reset_callbacks. Send and receive trust that * it is set. The absence of RDS_CONN_UP bit protects those paths * from being called while it isn't set. */ void rds_tcp_reset_callbacks(struct socket *sock, struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; struct socket *osock = tc->t_sock; if (!osock) goto newsock; /* Need to resolve a duelling SYN between peers. * We have an outstanding SYN to this peer, which may * potentially have transitioned to the RDS_CONN_UP state, * so we must quiesce any send threads before resetting * cp_transport_data. We quiesce these threads by setting * cp_state to something other than RDS_CONN_UP, and then * waiting for any existing threads in rds_send_xmit to * complete release_in_xmit(). (Subsequent threads entering * rds_send_xmit() will bail on !rds_conn_up(). * * However an incoming syn-ack at this point would end up * marking the conn as RDS_CONN_UP, and would again permit * rds_send_xmi() threads through, so ideally we would * synchronize on RDS_CONN_UP after lock_sock(), but cannot * do that: waiting on !RDS_IN_XMIT after lock_sock() may * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT * would not get set. As a result, we set c_state to * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change * cannot mark rds_conn_path_up() in the window before lock_sock() */ atomic_set(&cp->cp_state, RDS_CONN_RESETTING); wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags)); /* reset receive side state for rds_tcp_data_recv() for osock */ cancel_delayed_work_sync(&cp->cp_send_w); cancel_delayed_work_sync(&cp->cp_recv_w); lock_sock(osock->sk); if (tc->t_tinc) { rds_inc_put(&tc->t_tinc->ti_inc); tc->t_tinc = NULL; } tc->t_tinc_hdr_rem = sizeof(struct rds_header); tc->t_tinc_data_rem = 0; rds_tcp_restore_callbacks(osock, tc); release_sock(osock->sk); sock_release(osock); newsock: rds_send_path_reset(cp); lock_sock(sock->sk); rds_tcp_set_callbacks(sock, cp); release_sock(sock->sk); } /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments * above rds_tcp_reset_callbacks for notes about synchronization * with data path */ void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc); write_lock_bh(&sock->sk->sk_callback_lock); /* done under the callback_lock to serialize with write_space */ spin_lock(&rds_tcp_tc_list_lock); list_add_tail(&tc->t_list_item, &rds_tcp_tc_list); #if IS_ENABLED(CONFIG_IPV6) rds6_tcp_tc_count++; #endif if (!tc->t_cpath->cp_conn->c_isv6) rds_tcp_tc_count++; spin_unlock(&rds_tcp_tc_list_lock); /* accepted sockets need our listen data ready undone */ if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready) sock->sk->sk_data_ready = sock->sk->sk_user_data; tc->t_sock = sock; tc->t_cpath = cp; tc->t_orig_data_ready = sock->sk->sk_data_ready; tc->t_orig_write_space = sock->sk->sk_write_space; tc->t_orig_state_change = sock->sk->sk_state_change; sock->sk->sk_user_data = cp; sock->sk->sk_data_ready = rds_tcp_data_ready; sock->sk->sk_write_space = rds_tcp_write_space; sock->sk->sk_state_change = rds_tcp_state_change; write_unlock_bh(&sock->sk->sk_callback_lock); } /* Handle RDS_INFO_TCP_SOCKETS socket option. It only returns IPv4 * connections for backward compatibility. */ static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_info_tcp_socket tsinfo; struct rds_tcp_connection *tc; unsigned long flags; spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); if (len / sizeof(tsinfo) < rds_tcp_tc_count) goto out; list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { struct inet_sock *inet = inet_sk(tc->t_sock->sk); if (tc->t_cpath->cp_conn->c_isv6) continue; tsinfo.local_addr = inet->inet_saddr; tsinfo.local_port = inet->inet_sport; tsinfo.peer_addr = inet->inet_daddr; tsinfo.peer_port = inet->inet_dport; tsinfo.hdr_rem = tc->t_tinc_hdr_rem; tsinfo.data_rem = tc->t_tinc_data_rem; tsinfo.last_sent_nxt = tc->t_last_sent_nxt; tsinfo.last_expected_una = tc->t_last_expected_una; tsinfo.last_seen_una = tc->t_last_seen_una; tsinfo.tos = tc->t_cpath->cp_conn->c_tos; rds_info_copy(iter, &tsinfo, sizeof(tsinfo)); } out: lens->nr = rds_tcp_tc_count; lens->each = sizeof(tsinfo); spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); } #if IS_ENABLED(CONFIG_IPV6) /* Handle RDS6_INFO_TCP_SOCKETS socket option. It returns both IPv4 and * IPv6 connections. IPv4 connection address is returned in an IPv4 mapped * address. */ static void rds6_tcp_tc_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds6_info_tcp_socket tsinfo6; struct rds_tcp_connection *tc; unsigned long flags; spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); if (len / sizeof(tsinfo6) < rds6_tcp_tc_count) goto out; list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { struct sock *sk = tc->t_sock->sk; struct inet_sock *inet = inet_sk(sk); tsinfo6.local_addr = sk->sk_v6_rcv_saddr; tsinfo6.local_port = inet->inet_sport; tsinfo6.peer_addr = sk->sk_v6_daddr; tsinfo6.peer_port = inet->inet_dport; tsinfo6.hdr_rem = tc->t_tinc_hdr_rem; tsinfo6.data_rem = tc->t_tinc_data_rem; tsinfo6.last_sent_nxt = tc->t_last_sent_nxt; tsinfo6.last_expected_una = tc->t_last_expected_una; tsinfo6.last_seen_una = tc->t_last_seen_una; rds_info_copy(iter, &tsinfo6, sizeof(tsinfo6)); } out: lens->nr = rds6_tcp_tc_count; lens->each = sizeof(tsinfo6); spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); } #endif int rds_tcp_laddr_check(struct net *net, const struct in6_addr *addr, __u32 scope_id) { struct net_device *dev = NULL; #if IS_ENABLED(CONFIG_IPV6) int ret; #endif if (ipv6_addr_v4mapped(addr)) { if (inet_addr_type(net, addr->s6_addr32[3]) == RTN_LOCAL) return 0; return -EADDRNOTAVAIL; } /* If the scope_id is specified, check only those addresses * hosted on the specified interface. */ if (scope_id != 0) { rcu_read_lock(); dev = dev_get_by_index_rcu(net, scope_id); /* scope_id is not valid... */ if (!dev) { rcu_read_unlock(); return -EADDRNOTAVAIL; } rcu_read_unlock(); } #if IS_ENABLED(CONFIG_IPV6) ret = ipv6_chk_addr(net, addr, dev, 0); if (ret) return 0; #endif return -EADDRNOTAVAIL; } static void rds_tcp_conn_free(void *arg) { struct rds_tcp_connection *tc = arg; unsigned long flags; rdsdebug("freeing tc %p\n", tc); spin_lock_irqsave(&rds_tcp_conn_lock, flags); if (!tc->t_tcp_node_detached) list_del(&tc->t_tcp_node); spin_unlock_irqrestore(&rds_tcp_conn_lock, flags); kmem_cache_free(rds_tcp_conn_slab, tc); } static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp) { struct rds_tcp_connection *tc; int i, j; int ret = 0; for (i = 0; i < RDS_MPATH_WORKERS; i++) { tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp); if (!tc) { ret = -ENOMEM; goto fail; } mutex_init(&tc->t_conn_path_lock); tc->t_sock = NULL; tc->t_tinc = NULL; tc->t_tinc_hdr_rem = sizeof(struct rds_header); tc->t_tinc_data_rem = 0; conn->c_path[i].cp_transport_data = tc; tc->t_cpath = &conn->c_path[i]; tc->t_tcp_node_detached = true; rdsdebug("rds_conn_path [%d] tc %p\n", i, conn->c_path[i].cp_transport_data); } spin_lock_irq(&rds_tcp_conn_lock); for (i = 0; i < RDS_MPATH_WORKERS; i++) { tc = conn->c_path[i].cp_transport_data; tc->t_tcp_node_detached = false; list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list); } spin_unlock_irq(&rds_tcp_conn_lock); fail: if (ret) { for (j = 0; j < i; j++) rds_tcp_conn_free(conn->c_path[j].cp_transport_data); } return ret; } static bool list_has_conn(struct list_head *list, struct rds_connection *conn) { struct rds_tcp_connection *tc, *_tc; list_for_each_entry_safe(tc, _tc, list, t_tcp_node) { if (tc->t_cpath->cp_conn == conn) return true; } return false; } static void rds_tcp_set_unloading(void) { atomic_set(&rds_tcp_unloading, 1); } static bool rds_tcp_is_unloading(struct rds_connection *conn) { return atomic_read(&rds_tcp_unloading) != 0; } static void rds_tcp_destroy_conns(void) { struct rds_tcp_connection *tc, *_tc; LIST_HEAD(tmp_list); /* avoid calling conn_destroy with irqs off */ spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) list_move_tail(&tc->t_tcp_node, &tmp_list); } spin_unlock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) rds_conn_destroy(tc->t_cpath->cp_conn); } static void rds_tcp_exit(void); static u8 rds_tcp_get_tos_map(u8 tos) { /* all user tos mapped to default 0 for TCP transport */ return 0; } struct rds_transport rds_tcp_transport = { .laddr_check = rds_tcp_laddr_check, .xmit_path_prepare = rds_tcp_xmit_path_prepare, .xmit_path_complete = rds_tcp_xmit_path_complete, .xmit = rds_tcp_xmit, .recv_path = rds_tcp_recv_path, .conn_alloc = rds_tcp_conn_alloc, .conn_free = rds_tcp_conn_free, .conn_path_connect = rds_tcp_conn_path_connect, .conn_path_shutdown = rds_tcp_conn_path_shutdown, .inc_copy_to_user = rds_tcp_inc_copy_to_user, .inc_free = rds_tcp_inc_free, .stats_info_copy = rds_tcp_stats_info_copy, .exit = rds_tcp_exit, .get_tos_map = rds_tcp_get_tos_map, .t_owner = THIS_MODULE, .t_name = "tcp", .t_type = RDS_TRANS_TCP, .t_prefer_loopback = 1, .t_mp_capable = 1, .t_unloading = rds_tcp_is_unloading, }; static unsigned int rds_tcp_netid; /* per-network namespace private data for this module */ struct rds_tcp_net { struct socket *rds_tcp_listen_sock; struct work_struct rds_tcp_accept_w; struct ctl_table_header *rds_tcp_sysctl; struct ctl_table *ctl_table; int sndbuf_size; int rcvbuf_size; }; /* All module specific customizations to the RDS-TCP socket should be done in * rds_tcp_tune() and applied after socket creation. */ bool rds_tcp_tune(struct socket *sock) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct rds_tcp_net *rtn; tcp_sock_set_nodelay(sock->sk); lock_sock(sk); /* TCP timer functions might access net namespace even after * a process which created this net namespace terminated. */ if (!sk->sk_net_refcnt) { if (!maybe_get_net(net)) { release_sock(sk); return false; } /* Update ns_tracker to current stack trace and refcounted tracker */ __netns_tracker_free(net, &sk->ns_tracker, false); sk->sk_net_refcnt = 1; netns_tracker_alloc(net, &sk->ns_tracker, GFP_KERNEL); sock_inuse_add(net, 1); } rtn = net_generic(net, rds_tcp_netid); if (rtn->sndbuf_size > 0) { sk->sk_sndbuf = rtn->sndbuf_size; sk->sk_userlocks |= SOCK_SNDBUF_LOCK; } if (rtn->rcvbuf_size > 0) { sk->sk_rcvbuf = rtn->rcvbuf_size; sk->sk_userlocks |= SOCK_RCVBUF_LOCK; } release_sock(sk); return true; } static void rds_tcp_accept_worker(struct work_struct *work) { struct rds_tcp_net *rtn = container_of(work, struct rds_tcp_net, rds_tcp_accept_w); while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0) cond_resched(); } void rds_tcp_accept_work(struct sock *sk) { struct net *net = sock_net(sk); struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); queue_work(rds_wq, &rtn->rds_tcp_accept_w); } static __net_init int rds_tcp_init_net(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct ctl_table *tbl; int err = 0; memset(rtn, 0, sizeof(*rtn)); /* {snd, rcv}buf_size default to 0, which implies we let the * stack pick the value, and permit auto-tuning of buffer size. */ if (net == &init_net) { tbl = rds_tcp_sysctl_table; } else { tbl = kmemdup(rds_tcp_sysctl_table, sizeof(rds_tcp_sysctl_table), GFP_KERNEL); if (!tbl) { pr_warn("could not set allocate sysctl table\n"); return -ENOMEM; } rtn->ctl_table = tbl; } tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size; tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size; rtn->rds_tcp_sysctl = register_net_sysctl_sz(net, "net/rds/tcp", tbl, ARRAY_SIZE(rds_tcp_sysctl_table)); if (!rtn->rds_tcp_sysctl) { pr_warn("could not register sysctl\n"); err = -ENOMEM; goto fail; } #if IS_ENABLED(CONFIG_IPV6) rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, true); #else rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); #endif if (!rtn->rds_tcp_listen_sock) { pr_warn("could not set up IPv6 listen sock\n"); #if IS_ENABLED(CONFIG_IPV6) /* Try IPv4 as some systems disable IPv6 */ rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); if (!rtn->rds_tcp_listen_sock) { #endif unregister_net_sysctl_table(rtn->rds_tcp_sysctl); rtn->rds_tcp_sysctl = NULL; err = -EAFNOSUPPORT; goto fail; #if IS_ENABLED(CONFIG_IPV6) } #endif } INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker); return 0; fail: if (net != &init_net) kfree(tbl); return err; } static void rds_tcp_kill_sock(struct net *net) { struct rds_tcp_connection *tc, *_tc; LIST_HEAD(tmp_list); struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct socket *lsock = rtn->rds_tcp_listen_sock; rtn->rds_tcp_listen_sock = NULL; rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w); spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); if (net != c_net) continue; if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) { list_move_tail(&tc->t_tcp_node, &tmp_list); } else { list_del(&tc->t_tcp_node); tc->t_tcp_node_detached = true; } } spin_unlock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) rds_conn_destroy(tc->t_cpath->cp_conn); } static void __net_exit rds_tcp_exit_net(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); rds_tcp_kill_sock(net); if (rtn->rds_tcp_sysctl) unregister_net_sysctl_table(rtn->rds_tcp_sysctl); if (net != &init_net) kfree(rtn->ctl_table); } static struct pernet_operations rds_tcp_net_ops = { .init = rds_tcp_init_net, .exit = rds_tcp_exit_net, .id = &rds_tcp_netid, .size = sizeof(struct rds_tcp_net), }; void *rds_tcp_listen_sock_def_readable(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct socket *lsock = rtn->rds_tcp_listen_sock; if (!lsock) return NULL; return lsock->sk->sk_user_data; } /* when sysctl is used to modify some kernel socket parameters,this * function resets the RDS connections in that netns so that we can * restart with new parameters. The assumption is that such reset * events are few and far-between. */ static void rds_tcp_sysctl_reset(struct net *net) { struct rds_tcp_connection *tc, *_tc; spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); if (net != c_net || !tc->t_sock) continue; /* reconnect with new parameters */ rds_conn_path_drop(tc->t_cpath, false); } spin_unlock_irq(&rds_tcp_conn_lock); } static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos) { struct net *net = current->nsproxy->net_ns; int err; err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos); if (err < 0) { pr_warn("Invalid input. Must be >= %d\n", *(int *)(ctl->extra1)); return err; } if (write) rds_tcp_sysctl_reset(net); return 0; } static void rds_tcp_exit(void) { rds_tcp_set_unloading(); synchronize_rcu(); rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_deregister_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); #endif unregister_pernet_device(&rds_tcp_net_ops); rds_tcp_destroy_conns(); rds_trans_unregister(&rds_tcp_transport); rds_tcp_recv_exit(); kmem_cache_destroy(rds_tcp_conn_slab); } module_exit(rds_tcp_exit); static int __init rds_tcp_init(void) { int ret; rds_tcp_conn_slab = kmem_cache_create("rds_tcp_connection", sizeof(struct rds_tcp_connection), 0, 0, NULL); if (!rds_tcp_conn_slab) { ret = -ENOMEM; goto out; } ret = rds_tcp_recv_init(); if (ret) goto out_slab; ret = register_pernet_device(&rds_tcp_net_ops); if (ret) goto out_recv; rds_trans_register(&rds_tcp_transport); rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_register_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); #endif goto out; out_recv: rds_tcp_recv_exit(); out_slab: kmem_cache_destroy(rds_tcp_conn_slab); out: return ret; } module_init(rds_tcp_init); MODULE_AUTHOR("Oracle Corporation <[email protected]>"); MODULE_DESCRIPTION("RDS: TCP transport"); MODULE_LICENSE("Dual BSD/GPL");
linux-master
net/rds/tcp.c
/* * Copyright (c) 2016 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "ib_mr.h" static inline void rds_transition_frwr_state(struct rds_ib_mr *ibmr, enum rds_ib_fr_state old_state, enum rds_ib_fr_state new_state) { if (cmpxchg(&ibmr->u.frmr.fr_state, old_state, new_state) == old_state && old_state == FRMR_IS_INUSE) { /* enforce order of ibmr->u.frmr.fr_state update * before decrementing i_fastreg_inuse_count */ smp_mb__before_atomic(); atomic_dec(&ibmr->ic->i_fastreg_inuse_count); if (waitqueue_active(&rds_ib_ring_empty_wait)) wake_up(&rds_ib_ring_empty_wait); } } static struct rds_ib_mr *rds_ib_alloc_frmr(struct rds_ib_device *rds_ibdev, int npages) { struct rds_ib_mr_pool *pool; struct rds_ib_mr *ibmr = NULL; struct rds_ib_frmr *frmr; int err = 0; if (npages <= RDS_MR_8K_MSG_SIZE) pool = rds_ibdev->mr_8k_pool; else pool = rds_ibdev->mr_1m_pool; ibmr = rds_ib_try_reuse_ibmr(pool); if (ibmr) return ibmr; ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev)); if (!ibmr) { err = -ENOMEM; goto out_no_cigar; } frmr = &ibmr->u.frmr; frmr->mr = ib_alloc_mr(rds_ibdev->pd, IB_MR_TYPE_MEM_REG, pool->max_pages); if (IS_ERR(frmr->mr)) { pr_warn("RDS/IB: %s failed to allocate MR", __func__); err = PTR_ERR(frmr->mr); goto out_no_cigar; } ibmr->pool = pool; if (pool->pool_type == RDS_IB_MR_8K_POOL) rds_ib_stats_inc(s_ib_rdma_mr_8k_alloc); else rds_ib_stats_inc(s_ib_rdma_mr_1m_alloc); if (atomic_read(&pool->item_count) > pool->max_items_soft) pool->max_items_soft = pool->max_items; frmr->fr_state = FRMR_IS_FREE; init_waitqueue_head(&frmr->fr_inv_done); init_waitqueue_head(&frmr->fr_reg_done); return ibmr; out_no_cigar: kfree(ibmr); atomic_dec(&pool->item_count); return ERR_PTR(err); } static void rds_ib_free_frmr(struct rds_ib_mr *ibmr, bool drop) { struct rds_ib_mr_pool *pool = ibmr->pool; if (drop) llist_add(&ibmr->llnode, &pool->drop_list); else llist_add(&ibmr->llnode, &pool->free_list); atomic_add(ibmr->sg_len, &pool->free_pinned); atomic_inc(&pool->dirty_count); /* If we've pinned too many pages, request a flush */ if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || atomic_read(&pool->dirty_count) >= pool->max_items / 5) queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10); } static int rds_ib_post_reg_frmr(struct rds_ib_mr *ibmr) { struct rds_ib_frmr *frmr = &ibmr->u.frmr; struct ib_reg_wr reg_wr; int ret, off = 0; while (atomic_dec_return(&ibmr->ic->i_fastreg_wrs) <= 0) { atomic_inc(&ibmr->ic->i_fastreg_wrs); cpu_relax(); } ret = ib_map_mr_sg_zbva(frmr->mr, ibmr->sg, ibmr->sg_dma_len, &off, PAGE_SIZE); if (unlikely(ret != ibmr->sg_dma_len)) return ret < 0 ? ret : -EINVAL; if (cmpxchg(&frmr->fr_state, FRMR_IS_FREE, FRMR_IS_INUSE) != FRMR_IS_FREE) return -EBUSY; atomic_inc(&ibmr->ic->i_fastreg_inuse_count); /* Perform a WR for the fast_reg_mr. Each individual page * in the sg list is added to the fast reg page list and placed * inside the fast_reg_mr WR. The key used is a rolling 8bit * counter, which should guarantee uniqueness. */ ib_update_fast_reg_key(frmr->mr, ibmr->remap_count++); frmr->fr_reg = true; memset(&reg_wr, 0, sizeof(reg_wr)); reg_wr.wr.wr_id = (unsigned long)(void *)ibmr; reg_wr.wr.opcode = IB_WR_REG_MR; reg_wr.wr.num_sge = 0; reg_wr.mr = frmr->mr; reg_wr.key = frmr->mr->rkey; reg_wr.access = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; reg_wr.wr.send_flags = IB_SEND_SIGNALED; ret = ib_post_send(ibmr->ic->i_cm_id->qp, &reg_wr.wr, NULL); if (unlikely(ret)) { /* Failure here can be because of -ENOMEM as well */ rds_transition_frwr_state(ibmr, FRMR_IS_INUSE, FRMR_IS_STALE); atomic_inc(&ibmr->ic->i_fastreg_wrs); if (printk_ratelimit()) pr_warn("RDS/IB: %s returned error(%d)\n", __func__, ret); goto out; } /* Wait for the registration to complete in order to prevent an invalid * access error resulting from a race between the memory region already * being accessed while registration is still pending. */ wait_event(frmr->fr_reg_done, !frmr->fr_reg); out: return ret; } static int rds_ib_map_frmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr_pool *pool, struct rds_ib_mr *ibmr, struct scatterlist *sg, unsigned int sg_len) { struct ib_device *dev = rds_ibdev->dev; struct rds_ib_frmr *frmr = &ibmr->u.frmr; int i; u32 len; int ret = 0; /* We want to teardown old ibmr values here and fill it up with * new sg values */ rds_ib_teardown_mr(ibmr); ibmr->sg = sg; ibmr->sg_len = sg_len; ibmr->sg_dma_len = 0; frmr->sg_byte_len = 0; WARN_ON(ibmr->sg_dma_len); ibmr->sg_dma_len = ib_dma_map_sg(dev, ibmr->sg, ibmr->sg_len, DMA_BIDIRECTIONAL); if (unlikely(!ibmr->sg_dma_len)) { pr_warn("RDS/IB: %s failed!\n", __func__); return -EBUSY; } frmr->sg_byte_len = 0; frmr->dma_npages = 0; len = 0; ret = -EINVAL; for (i = 0; i < ibmr->sg_dma_len; ++i) { unsigned int dma_len = sg_dma_len(&ibmr->sg[i]); u64 dma_addr = sg_dma_address(&ibmr->sg[i]); frmr->sg_byte_len += dma_len; if (dma_addr & ~PAGE_MASK) { if (i > 0) goto out_unmap; else ++frmr->dma_npages; } if ((dma_addr + dma_len) & ~PAGE_MASK) { if (i < ibmr->sg_dma_len - 1) goto out_unmap; else ++frmr->dma_npages; } len += dma_len; } frmr->dma_npages += len >> PAGE_SHIFT; if (frmr->dma_npages > ibmr->pool->max_pages) { ret = -EMSGSIZE; goto out_unmap; } ret = rds_ib_post_reg_frmr(ibmr); if (ret) goto out_unmap; if (ibmr->pool->pool_type == RDS_IB_MR_8K_POOL) rds_ib_stats_inc(s_ib_rdma_mr_8k_used); else rds_ib_stats_inc(s_ib_rdma_mr_1m_used); return ret; out_unmap: ib_dma_unmap_sg(rds_ibdev->dev, ibmr->sg, ibmr->sg_len, DMA_BIDIRECTIONAL); ibmr->sg_dma_len = 0; return ret; } static int rds_ib_post_inv(struct rds_ib_mr *ibmr) { struct ib_send_wr *s_wr; struct rds_ib_frmr *frmr = &ibmr->u.frmr; struct rdma_cm_id *i_cm_id = ibmr->ic->i_cm_id; int ret = -EINVAL; if (!i_cm_id || !i_cm_id->qp || !frmr->mr) goto out; if (frmr->fr_state != FRMR_IS_INUSE) goto out; while (atomic_dec_return(&ibmr->ic->i_fastreg_wrs) <= 0) { atomic_inc(&ibmr->ic->i_fastreg_wrs); cpu_relax(); } frmr->fr_inv = true; s_wr = &frmr->fr_wr; memset(s_wr, 0, sizeof(*s_wr)); s_wr->wr_id = (unsigned long)(void *)ibmr; s_wr->opcode = IB_WR_LOCAL_INV; s_wr->ex.invalidate_rkey = frmr->mr->rkey; s_wr->send_flags = IB_SEND_SIGNALED; ret = ib_post_send(i_cm_id->qp, s_wr, NULL); if (unlikely(ret)) { rds_transition_frwr_state(ibmr, FRMR_IS_INUSE, FRMR_IS_STALE); frmr->fr_inv = false; /* enforce order of frmr->fr_inv update * before incrementing i_fastreg_wrs */ smp_mb__before_atomic(); atomic_inc(&ibmr->ic->i_fastreg_wrs); pr_err("RDS/IB: %s returned error(%d)\n", __func__, ret); goto out; } /* Wait for the FRMR_IS_FREE (or FRMR_IS_STALE) transition in order to * 1) avoid a silly bouncing between "clean_list" and "drop_list" * triggered by function "rds_ib_reg_frmr" as it is releases frmr * regions whose state is not "FRMR_IS_FREE" right away. * 2) prevents an invalid access error in a race * from a pending "IB_WR_LOCAL_INV" operation * with a teardown ("dma_unmap_sg", "put_page") * and de-registration ("ib_dereg_mr") of the corresponding * memory region. */ wait_event(frmr->fr_inv_done, frmr->fr_state != FRMR_IS_INUSE); out: return ret; } void rds_ib_mr_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc) { struct rds_ib_mr *ibmr = (void *)(unsigned long)wc->wr_id; struct rds_ib_frmr *frmr = &ibmr->u.frmr; if (wc->status != IB_WC_SUCCESS) { rds_transition_frwr_state(ibmr, FRMR_IS_INUSE, FRMR_IS_STALE); if (rds_conn_up(ic->conn)) rds_ib_conn_error(ic->conn, "frmr completion <%pI4,%pI4> status %u(%s), vendor_err 0x%x, disconnecting and reconnecting\n", &ic->conn->c_laddr, &ic->conn->c_faddr, wc->status, ib_wc_status_msg(wc->status), wc->vendor_err); } if (frmr->fr_inv) { rds_transition_frwr_state(ibmr, FRMR_IS_INUSE, FRMR_IS_FREE); frmr->fr_inv = false; wake_up(&frmr->fr_inv_done); } if (frmr->fr_reg) { frmr->fr_reg = false; wake_up(&frmr->fr_reg_done); } /* enforce order of frmr->{fr_reg,fr_inv} update * before incrementing i_fastreg_wrs */ smp_mb__before_atomic(); atomic_inc(&ic->i_fastreg_wrs); } void rds_ib_unreg_frmr(struct list_head *list, unsigned int *nfreed, unsigned long *unpinned, unsigned int goal) { struct rds_ib_mr *ibmr, *next; struct rds_ib_frmr *frmr; int ret = 0, ret2; unsigned int freed = *nfreed; /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */ list_for_each_entry(ibmr, list, unmap_list) { if (ibmr->sg_dma_len) { ret2 = rds_ib_post_inv(ibmr); if (ret2 && !ret) ret = ret2; } } if (ret) pr_warn("RDS/IB: %s failed (err=%d)\n", __func__, ret); /* Now we can destroy the DMA mapping and unpin any pages */ list_for_each_entry_safe(ibmr, next, list, unmap_list) { *unpinned += ibmr->sg_len; frmr = &ibmr->u.frmr; __rds_ib_teardown_mr(ibmr); if (freed < goal || frmr->fr_state == FRMR_IS_STALE) { /* Don't de-allocate if the MR is not free yet */ if (frmr->fr_state == FRMR_IS_INUSE) continue; if (ibmr->pool->pool_type == RDS_IB_MR_8K_POOL) rds_ib_stats_inc(s_ib_rdma_mr_8k_free); else rds_ib_stats_inc(s_ib_rdma_mr_1m_free); list_del(&ibmr->unmap_list); if (frmr->mr) ib_dereg_mr(frmr->mr); kfree(ibmr); freed++; } } *nfreed = freed; } struct rds_ib_mr *rds_ib_reg_frmr(struct rds_ib_device *rds_ibdev, struct rds_ib_connection *ic, struct scatterlist *sg, unsigned long nents, u32 *key) { struct rds_ib_mr *ibmr = NULL; struct rds_ib_frmr *frmr; int ret; if (!ic) { /* TODO: Add FRWR support for RDS_GET_MR using proxy qp*/ return ERR_PTR(-EOPNOTSUPP); } do { if (ibmr) rds_ib_free_frmr(ibmr, true); ibmr = rds_ib_alloc_frmr(rds_ibdev, nents); if (IS_ERR(ibmr)) return ibmr; frmr = &ibmr->u.frmr; } while (frmr->fr_state != FRMR_IS_FREE); ibmr->ic = ic; ibmr->device = rds_ibdev; ret = rds_ib_map_frmr(rds_ibdev, ibmr->pool, ibmr, sg, nents); if (ret == 0) { *key = frmr->mr->rkey; } else { rds_ib_free_frmr(ibmr, false); ibmr = ERR_PTR(ret); } return ibmr; } void rds_ib_free_frmr_list(struct rds_ib_mr *ibmr) { struct rds_ib_mr_pool *pool = ibmr->pool; struct rds_ib_frmr *frmr = &ibmr->u.frmr; if (frmr->fr_state == FRMR_IS_STALE) llist_add(&ibmr->llnode, &pool->drop_list); else llist_add(&ibmr->llnode, &pool->free_list); }
linux-master
net/rds/ib_frmr.c
/* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/gfp.h> #include <linux/in.h> #include <net/tcp.h> #include <trace/events/sock.h> #include "rds.h" #include "tcp.h" void rds_tcp_keepalive(struct socket *sock) { /* values below based on xs_udp_default_timeout */ int keepidle = 5; /* send a probe 'keepidle' secs after last data */ int keepcnt = 5; /* number of unack'ed probes before declaring dead */ sock_set_keepalive(sock->sk); tcp_sock_set_keepcnt(sock->sk, keepcnt); tcp_sock_set_keepidle(sock->sk, keepidle); /* KEEPINTVL is the interval between successive probes. We follow * the model in xs_tcp_finish_connecting() and re-use keepidle. */ tcp_sock_set_keepintvl(sock->sk, keepidle); } /* rds_tcp_accept_one_path(): if accepting on cp_index > 0, make sure the * client's ipaddr < server's ipaddr. Otherwise, close the accepted * socket and force a reconneect from smaller -> larger ip addr. The reason * we special case cp_index 0 is to allow the rds probe ping itself to itself * get through efficiently. * Since reconnects are only initiated from the node with the numerically * smaller ip address, we recycle conns in RDS_CONN_ERROR on the passive side * by moving them to CONNECTING in this function. */ static struct rds_tcp_connection *rds_tcp_accept_one_path(struct rds_connection *conn) { int i; int npaths = max_t(int, 1, conn->c_npaths); /* for mprds, all paths MUST be initiated by the peer * with the smaller address. */ if (rds_addr_cmp(&conn->c_faddr, &conn->c_laddr) >= 0) { /* Make sure we initiate at least one path if this * has not already been done; rds_start_mprds() will * take care of additional paths, if necessary. */ if (npaths == 1) rds_conn_path_connect_if_down(&conn->c_path[0]); return NULL; } for (i = 0; i < npaths; i++) { struct rds_conn_path *cp = &conn->c_path[i]; if (rds_conn_path_transition(cp, RDS_CONN_DOWN, RDS_CONN_CONNECTING) || rds_conn_path_transition(cp, RDS_CONN_ERROR, RDS_CONN_CONNECTING)) { return cp->cp_transport_data; } } return NULL; } int rds_tcp_accept_one(struct socket *sock) { struct socket *new_sock = NULL; struct rds_connection *conn; int ret; struct inet_sock *inet; struct rds_tcp_connection *rs_tcp = NULL; int conn_state; struct rds_conn_path *cp; struct in6_addr *my_addr, *peer_addr; #if !IS_ENABLED(CONFIG_IPV6) struct in6_addr saddr, daddr; #endif int dev_if = 0; if (!sock) /* module unload or netns delete in progress */ return -ENETUNREACH; ret = sock_create_lite(sock->sk->sk_family, sock->sk->sk_type, sock->sk->sk_protocol, &new_sock); if (ret) goto out; ret = sock->ops->accept(sock, new_sock, O_NONBLOCK, true); if (ret < 0) goto out; /* sock_create_lite() does not get a hold on the owner module so we * need to do it here. Note that sock_release() uses sock->ops to * determine if it needs to decrement the reference count. So set * sock->ops after calling accept() in case that fails. And there's * no need to do try_module_get() as the listener should have a hold * already. */ new_sock->ops = sock->ops; __module_get(new_sock->ops->owner); rds_tcp_keepalive(new_sock); if (!rds_tcp_tune(new_sock)) { ret = -EINVAL; goto out; } inet = inet_sk(new_sock->sk); #if IS_ENABLED(CONFIG_IPV6) my_addr = &new_sock->sk->sk_v6_rcv_saddr; peer_addr = &new_sock->sk->sk_v6_daddr; #else ipv6_addr_set_v4mapped(inet->inet_saddr, &saddr); ipv6_addr_set_v4mapped(inet->inet_daddr, &daddr); my_addr = &saddr; peer_addr = &daddr; #endif rdsdebug("accepted family %d tcp %pI6c:%u -> %pI6c:%u\n", sock->sk->sk_family, my_addr, ntohs(inet->inet_sport), peer_addr, ntohs(inet->inet_dport)); #if IS_ENABLED(CONFIG_IPV6) /* sk_bound_dev_if is not set if the peer address is not link local * address. In this case, it happens that mcast_oif is set. So * just use it. */ if ((ipv6_addr_type(my_addr) & IPV6_ADDR_LINKLOCAL) && !(ipv6_addr_type(peer_addr) & IPV6_ADDR_LINKLOCAL)) { struct ipv6_pinfo *inet6; inet6 = inet6_sk(new_sock->sk); dev_if = inet6->mcast_oif; } else { dev_if = new_sock->sk->sk_bound_dev_if; } #endif if (!rds_tcp_laddr_check(sock_net(sock->sk), peer_addr, dev_if)) { /* local address connection is only allowed via loopback */ ret = -EOPNOTSUPP; goto out; } conn = rds_conn_create(sock_net(sock->sk), my_addr, peer_addr, &rds_tcp_transport, 0, GFP_KERNEL, dev_if); if (IS_ERR(conn)) { ret = PTR_ERR(conn); goto out; } /* An incoming SYN request came in, and TCP just accepted it. * * If the client reboots, this conn will need to be cleaned up. * rds_tcp_state_change() will do that cleanup */ rs_tcp = rds_tcp_accept_one_path(conn); if (!rs_tcp) goto rst_nsk; mutex_lock(&rs_tcp->t_conn_path_lock); cp = rs_tcp->t_cpath; conn_state = rds_conn_path_state(cp); WARN_ON(conn_state == RDS_CONN_UP); if (conn_state != RDS_CONN_CONNECTING && conn_state != RDS_CONN_ERROR) goto rst_nsk; if (rs_tcp->t_sock) { /* Duelling SYN has been handled in rds_tcp_accept_one() */ rds_tcp_reset_callbacks(new_sock, cp); /* rds_connect_path_complete() marks RDS_CONN_UP */ rds_connect_path_complete(cp, RDS_CONN_RESETTING); } else { rds_tcp_set_callbacks(new_sock, cp); rds_connect_path_complete(cp, RDS_CONN_CONNECTING); } new_sock = NULL; ret = 0; if (conn->c_npaths == 0) rds_send_ping(cp->cp_conn, cp->cp_index); goto out; rst_nsk: /* reset the newly returned accept sock and bail. * It is safe to set linger on new_sock because the RDS connection * has not been brought up on new_sock, so no RDS-level data could * be pending on it. By setting linger, we achieve the side-effect * of avoiding TIME_WAIT state on new_sock. */ sock_no_linger(new_sock->sk); kernel_sock_shutdown(new_sock, SHUT_RDWR); ret = 0; out: if (rs_tcp) mutex_unlock(&rs_tcp->t_conn_path_lock); if (new_sock) sock_release(new_sock); return ret; } void rds_tcp_listen_data_ready(struct sock *sk) { void (*ready)(struct sock *sk); trace_sk_data_ready(sk); rdsdebug("listen data ready sk %p\n", sk); read_lock_bh(&sk->sk_callback_lock); ready = sk->sk_user_data; if (!ready) { /* check for teardown race */ ready = sk->sk_data_ready; goto out; } /* * ->sk_data_ready is also called for a newly established child socket * before it has been accepted and the accepter has set up their * data_ready.. we only want to queue listen work for our listening * socket * * (*ready)() may be null if we are racing with netns delete, and * the listen socket is being torn down. */ if (sk->sk_state == TCP_LISTEN) rds_tcp_accept_work(sk); else ready = rds_tcp_listen_sock_def_readable(sock_net(sk)); out: read_unlock_bh(&sk->sk_callback_lock); if (ready) ready(sk); } struct socket *rds_tcp_listen_init(struct net *net, bool isv6) { struct socket *sock = NULL; struct sockaddr_storage ss; struct sockaddr_in6 *sin6; struct sockaddr_in *sin; int addr_len; int ret; ret = sock_create_kern(net, isv6 ? PF_INET6 : PF_INET, SOCK_STREAM, IPPROTO_TCP, &sock); if (ret < 0) { rdsdebug("could not create %s listener socket: %d\n", isv6 ? "IPv6" : "IPv4", ret); goto out; } sock->sk->sk_reuse = SK_CAN_REUSE; tcp_sock_set_nodelay(sock->sk); write_lock_bh(&sock->sk->sk_callback_lock); sock->sk->sk_user_data = sock->sk->sk_data_ready; sock->sk->sk_data_ready = rds_tcp_listen_data_ready; write_unlock_bh(&sock->sk->sk_callback_lock); if (isv6) { sin6 = (struct sockaddr_in6 *)&ss; sin6->sin6_family = PF_INET6; sin6->sin6_addr = in6addr_any; sin6->sin6_port = (__force u16)htons(RDS_TCP_PORT); sin6->sin6_scope_id = 0; sin6->sin6_flowinfo = 0; addr_len = sizeof(*sin6); } else { sin = (struct sockaddr_in *)&ss; sin->sin_family = PF_INET; sin->sin_addr.s_addr = INADDR_ANY; sin->sin_port = (__force u16)htons(RDS_TCP_PORT); addr_len = sizeof(*sin); } ret = sock->ops->bind(sock, (struct sockaddr *)&ss, addr_len); if (ret < 0) { rdsdebug("could not bind %s listener socket: %d\n", isv6 ? "IPv6" : "IPv4", ret); goto out; } ret = sock->ops->listen(sock, 64); if (ret < 0) goto out; return sock; out: if (sock) sock_release(sock); return NULL; } void rds_tcp_listen_stop(struct socket *sock, struct work_struct *acceptor) { struct sock *sk; if (!sock) return; sk = sock->sk; /* serialize with and prevent further callbacks */ lock_sock(sk); write_lock_bh(&sk->sk_callback_lock); if (sk->sk_user_data) { sk->sk_data_ready = sk->sk_user_data; sk->sk_user_data = NULL; } write_unlock_bh(&sk->sk_callback_lock); release_sock(sk); /* wait for accepts to stop and close the socket */ flush_workqueue(rds_wq); flush_work(acceptor); sock_release(sock); }
linux-master
net/rds/tcp_listen.c
/* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/export.h> #include <net/ipv6.h> #include <net/inet6_hashtables.h> #include <net/addrconf.h> #include "rds.h" #include "loop.h" #define RDS_CONNECTION_HASH_BITS 12 #define RDS_CONNECTION_HASH_ENTRIES (1 << RDS_CONNECTION_HASH_BITS) #define RDS_CONNECTION_HASH_MASK (RDS_CONNECTION_HASH_ENTRIES - 1) /* converting this to RCU is a chore for another day.. */ static DEFINE_SPINLOCK(rds_conn_lock); static unsigned long rds_conn_count; static struct hlist_head rds_conn_hash[RDS_CONNECTION_HASH_ENTRIES]; static struct kmem_cache *rds_conn_slab; static struct hlist_head *rds_conn_bucket(const struct in6_addr *laddr, const struct in6_addr *faddr) { static u32 rds6_hash_secret __read_mostly; static u32 rds_hash_secret __read_mostly; u32 lhash, fhash, hash; net_get_random_once(&rds_hash_secret, sizeof(rds_hash_secret)); net_get_random_once(&rds6_hash_secret, sizeof(rds6_hash_secret)); lhash = (__force u32)laddr->s6_addr32[3]; #if IS_ENABLED(CONFIG_IPV6) fhash = __ipv6_addr_jhash(faddr, rds6_hash_secret); #else fhash = (__force u32)faddr->s6_addr32[3]; #endif hash = __inet_ehashfn(lhash, 0, fhash, 0, rds_hash_secret); return &rds_conn_hash[hash & RDS_CONNECTION_HASH_MASK]; } #define rds_conn_info_set(var, test, suffix) do { \ if (test) \ var |= RDS_INFO_CONNECTION_FLAG_##suffix; \ } while (0) /* rcu read lock must be held or the connection spinlock */ static struct rds_connection *rds_conn_lookup(struct net *net, struct hlist_head *head, const struct in6_addr *laddr, const struct in6_addr *faddr, struct rds_transport *trans, u8 tos, int dev_if) { struct rds_connection *conn, *ret = NULL; hlist_for_each_entry_rcu(conn, head, c_hash_node) { if (ipv6_addr_equal(&conn->c_faddr, faddr) && ipv6_addr_equal(&conn->c_laddr, laddr) && conn->c_trans == trans && conn->c_tos == tos && net == rds_conn_net(conn) && conn->c_dev_if == dev_if) { ret = conn; break; } } rdsdebug("returning conn %p for %pI6c -> %pI6c\n", ret, laddr, faddr); return ret; } /* * This is called by transports as they're bringing down a connection. * It clears partial message state so that the transport can start sending * and receiving over this connection again in the future. It is up to * the transport to have serialized this call with its send and recv. */ static void rds_conn_path_reset(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; rdsdebug("connection %pI6c to %pI6c reset\n", &conn->c_laddr, &conn->c_faddr); rds_stats_inc(s_conn_reset); rds_send_path_reset(cp); cp->cp_flags = 0; /* Do not clear next_rx_seq here, else we cannot distinguish * retransmitted packets from new packets, and will hand all * of them to the application. That is not consistent with the * reliability guarantees of RDS. */ } static void __rds_conn_path_init(struct rds_connection *conn, struct rds_conn_path *cp, bool is_outgoing) { spin_lock_init(&cp->cp_lock); cp->cp_next_tx_seq = 1; init_waitqueue_head(&cp->cp_waitq); INIT_LIST_HEAD(&cp->cp_send_queue); INIT_LIST_HEAD(&cp->cp_retrans); cp->cp_conn = conn; atomic_set(&cp->cp_state, RDS_CONN_DOWN); cp->cp_send_gen = 0; cp->cp_reconnect_jiffies = 0; cp->cp_conn->c_proposed_version = RDS_PROTOCOL_VERSION; INIT_DELAYED_WORK(&cp->cp_send_w, rds_send_worker); INIT_DELAYED_WORK(&cp->cp_recv_w, rds_recv_worker); INIT_DELAYED_WORK(&cp->cp_conn_w, rds_connect_worker); INIT_WORK(&cp->cp_down_w, rds_shutdown_worker); mutex_init(&cp->cp_cm_lock); cp->cp_flags = 0; } /* * There is only every one 'conn' for a given pair of addresses in the * system at a time. They contain messages to be retransmitted and so * span the lifetime of the actual underlying transport connections. * * For now they are not garbage collected once they're created. They * are torn down as the module is removed, if ever. */ static struct rds_connection *__rds_conn_create(struct net *net, const struct in6_addr *laddr, const struct in6_addr *faddr, struct rds_transport *trans, gfp_t gfp, u8 tos, int is_outgoing, int dev_if) { struct rds_connection *conn, *parent = NULL; struct hlist_head *head = rds_conn_bucket(laddr, faddr); struct rds_transport *loop_trans; unsigned long flags; int ret, i; int npaths = (trans->t_mp_capable ? RDS_MPATH_WORKERS : 1); rcu_read_lock(); conn = rds_conn_lookup(net, head, laddr, faddr, trans, tos, dev_if); if (conn && conn->c_loopback && conn->c_trans != &rds_loop_transport && ipv6_addr_equal(laddr, faddr) && !is_outgoing) { /* This is a looped back IB connection, and we're * called by the code handling the incoming connect. * We need a second connection object into which we * can stick the other QP. */ parent = conn; conn = parent->c_passive; } rcu_read_unlock(); if (conn) goto out; conn = kmem_cache_zalloc(rds_conn_slab, gfp); if (!conn) { conn = ERR_PTR(-ENOMEM); goto out; } conn->c_path = kcalloc(npaths, sizeof(struct rds_conn_path), gfp); if (!conn->c_path) { kmem_cache_free(rds_conn_slab, conn); conn = ERR_PTR(-ENOMEM); goto out; } INIT_HLIST_NODE(&conn->c_hash_node); conn->c_laddr = *laddr; conn->c_isv6 = !ipv6_addr_v4mapped(laddr); conn->c_faddr = *faddr; conn->c_dev_if = dev_if; conn->c_tos = tos; #if IS_ENABLED(CONFIG_IPV6) /* If the local address is link local, set c_bound_if to be the * index used for this connection. Otherwise, set it to 0 as * the socket is not bound to an interface. c_bound_if is used * to look up a socket when a packet is received */ if (ipv6_addr_type(laddr) & IPV6_ADDR_LINKLOCAL) conn->c_bound_if = dev_if; else #endif conn->c_bound_if = 0; rds_conn_net_set(conn, net); ret = rds_cong_get_maps(conn); if (ret) { kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); conn = ERR_PTR(ret); goto out; } /* * This is where a connection becomes loopback. If *any* RDS sockets * can bind to the destination address then we'd rather the messages * flow through loopback rather than either transport. */ loop_trans = rds_trans_get_preferred(net, faddr, conn->c_dev_if); if (loop_trans) { rds_trans_put(loop_trans); conn->c_loopback = 1; if (trans->t_prefer_loopback) { if (likely(is_outgoing)) { /* "outgoing" connection to local address. * Protocol says it wants the connection * handled by the loopback transport. * This is what TCP does. */ trans = &rds_loop_transport; } else { /* No transport currently in use * should end up here, but if it * does, reset/destroy the connection. */ kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); conn = ERR_PTR(-EOPNOTSUPP); goto out; } } } conn->c_trans = trans; init_waitqueue_head(&conn->c_hs_waitq); for (i = 0; i < npaths; i++) { __rds_conn_path_init(conn, &conn->c_path[i], is_outgoing); conn->c_path[i].cp_index = i; } rcu_read_lock(); if (rds_destroy_pending(conn)) ret = -ENETDOWN; else ret = trans->conn_alloc(conn, GFP_ATOMIC); if (ret) { rcu_read_unlock(); kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); conn = ERR_PTR(ret); goto out; } rdsdebug("allocated conn %p for %pI6c -> %pI6c over %s %s\n", conn, laddr, faddr, strnlen(trans->t_name, sizeof(trans->t_name)) ? trans->t_name : "[unknown]", is_outgoing ? "(outgoing)" : ""); /* * Since we ran without holding the conn lock, someone could * have created the same conn (either normal or passive) in the * interim. We check while holding the lock. If we won, we complete * init and return our conn. If we lost, we rollback and return the * other one. */ spin_lock_irqsave(&rds_conn_lock, flags); if (parent) { /* Creating passive conn */ if (parent->c_passive) { trans->conn_free(conn->c_path[0].cp_transport_data); kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); conn = parent->c_passive; } else { parent->c_passive = conn; rds_cong_add_conn(conn); rds_conn_count++; } } else { /* Creating normal conn */ struct rds_connection *found; found = rds_conn_lookup(net, head, laddr, faddr, trans, tos, dev_if); if (found) { struct rds_conn_path *cp; int i; for (i = 0; i < npaths; i++) { cp = &conn->c_path[i]; /* The ->conn_alloc invocation may have * allocated resource for all paths, so all * of them may have to be freed here. */ if (cp->cp_transport_data) trans->conn_free(cp->cp_transport_data); } kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); conn = found; } else { conn->c_my_gen_num = rds_gen_num; conn->c_peer_gen_num = 0; hlist_add_head_rcu(&conn->c_hash_node, head); rds_cong_add_conn(conn); rds_conn_count++; } } spin_unlock_irqrestore(&rds_conn_lock, flags); rcu_read_unlock(); out: return conn; } struct rds_connection *rds_conn_create(struct net *net, const struct in6_addr *laddr, const struct in6_addr *faddr, struct rds_transport *trans, u8 tos, gfp_t gfp, int dev_if) { return __rds_conn_create(net, laddr, faddr, trans, gfp, tos, 0, dev_if); } EXPORT_SYMBOL_GPL(rds_conn_create); struct rds_connection *rds_conn_create_outgoing(struct net *net, const struct in6_addr *laddr, const struct in6_addr *faddr, struct rds_transport *trans, u8 tos, gfp_t gfp, int dev_if) { return __rds_conn_create(net, laddr, faddr, trans, gfp, tos, 1, dev_if); } EXPORT_SYMBOL_GPL(rds_conn_create_outgoing); void rds_conn_shutdown(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; /* shut it down unless it's down already */ if (!rds_conn_path_transition(cp, RDS_CONN_DOWN, RDS_CONN_DOWN)) { /* * Quiesce the connection mgmt handlers before we start tearing * things down. We don't hold the mutex for the entire * duration of the shutdown operation, else we may be * deadlocking with the CM handler. Instead, the CM event * handler is supposed to check for state DISCONNECTING */ mutex_lock(&cp->cp_cm_lock); if (!rds_conn_path_transition(cp, RDS_CONN_UP, RDS_CONN_DISCONNECTING) && !rds_conn_path_transition(cp, RDS_CONN_ERROR, RDS_CONN_DISCONNECTING)) { rds_conn_path_error(cp, "shutdown called in state %d\n", atomic_read(&cp->cp_state)); mutex_unlock(&cp->cp_cm_lock); return; } mutex_unlock(&cp->cp_cm_lock); wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags)); wait_event(cp->cp_waitq, !test_bit(RDS_RECV_REFILL, &cp->cp_flags)); conn->c_trans->conn_path_shutdown(cp); rds_conn_path_reset(cp); if (!rds_conn_path_transition(cp, RDS_CONN_DISCONNECTING, RDS_CONN_DOWN) && !rds_conn_path_transition(cp, RDS_CONN_ERROR, RDS_CONN_DOWN)) { /* This can happen - eg when we're in the middle of tearing * down the connection, and someone unloads the rds module. * Quite reproducible with loopback connections. * Mostly harmless. * * Note that this also happens with rds-tcp because * we could have triggered rds_conn_path_drop in irq * mode from rds_tcp_state change on the receipt of * a FIN, thus we need to recheck for RDS_CONN_ERROR * here. */ rds_conn_path_error(cp, "%s: failed to transition " "to state DOWN, current state " "is %d\n", __func__, atomic_read(&cp->cp_state)); return; } } /* Then reconnect if it's still live. * The passive side of an IB loopback connection is never added * to the conn hash, so we never trigger a reconnect on this * conn - the reconnect is always triggered by the active peer. */ cancel_delayed_work_sync(&cp->cp_conn_w); rcu_read_lock(); if (!hlist_unhashed(&conn->c_hash_node)) { rcu_read_unlock(); rds_queue_reconnect(cp); } else { rcu_read_unlock(); } } /* destroy a single rds_conn_path. rds_conn_destroy() iterates over * all paths using rds_conn_path_destroy() */ static void rds_conn_path_destroy(struct rds_conn_path *cp) { struct rds_message *rm, *rtmp; if (!cp->cp_transport_data) return; /* make sure lingering queued work won't try to ref the conn */ cancel_delayed_work_sync(&cp->cp_send_w); cancel_delayed_work_sync(&cp->cp_recv_w); rds_conn_path_drop(cp, true); flush_work(&cp->cp_down_w); /* tear down queued messages */ list_for_each_entry_safe(rm, rtmp, &cp->cp_send_queue, m_conn_item) { list_del_init(&rm->m_conn_item); BUG_ON(!list_empty(&rm->m_sock_item)); rds_message_put(rm); } if (cp->cp_xmit_rm) rds_message_put(cp->cp_xmit_rm); WARN_ON(delayed_work_pending(&cp->cp_send_w)); WARN_ON(delayed_work_pending(&cp->cp_recv_w)); WARN_ON(delayed_work_pending(&cp->cp_conn_w)); WARN_ON(work_pending(&cp->cp_down_w)); cp->cp_conn->c_trans->conn_free(cp->cp_transport_data); } /* * Stop and free a connection. * * This can only be used in very limited circumstances. It assumes that once * the conn has been shutdown that no one else is referencing the connection. * We can only ensure this in the rmmod path in the current code. */ void rds_conn_destroy(struct rds_connection *conn) { unsigned long flags; int i; struct rds_conn_path *cp; int npaths = (conn->c_trans->t_mp_capable ? RDS_MPATH_WORKERS : 1); rdsdebug("freeing conn %p for %pI4 -> " "%pI4\n", conn, &conn->c_laddr, &conn->c_faddr); /* Ensure conn will not be scheduled for reconnect */ spin_lock_irq(&rds_conn_lock); hlist_del_init_rcu(&conn->c_hash_node); spin_unlock_irq(&rds_conn_lock); synchronize_rcu(); /* shut the connection down */ for (i = 0; i < npaths; i++) { cp = &conn->c_path[i]; rds_conn_path_destroy(cp); BUG_ON(!list_empty(&cp->cp_retrans)); } /* * The congestion maps aren't freed up here. They're * freed by rds_cong_exit() after all the connections * have been freed. */ rds_cong_remove_conn(conn); kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); spin_lock_irqsave(&rds_conn_lock, flags); rds_conn_count--; spin_unlock_irqrestore(&rds_conn_lock, flags); } EXPORT_SYMBOL_GPL(rds_conn_destroy); static void __rds_inc_msg_cp(struct rds_incoming *inc, struct rds_info_iterator *iter, void *saddr, void *daddr, int flip, bool isv6) { #if IS_ENABLED(CONFIG_IPV6) if (isv6) rds6_inc_info_copy(inc, iter, saddr, daddr, flip); else #endif rds_inc_info_copy(inc, iter, *(__be32 *)saddr, *(__be32 *)daddr, flip); } static void rds_conn_message_info_cmn(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int want_send, bool isv6) { struct hlist_head *head; struct list_head *list; struct rds_connection *conn; struct rds_message *rm; unsigned int total = 0; unsigned long flags; size_t i; int j; if (isv6) len /= sizeof(struct rds6_info_message); else len /= sizeof(struct rds_info_message); rcu_read_lock(); for (i = 0, head = rds_conn_hash; i < ARRAY_SIZE(rds_conn_hash); i++, head++) { hlist_for_each_entry_rcu(conn, head, c_hash_node) { struct rds_conn_path *cp; int npaths; if (!isv6 && conn->c_isv6) continue; npaths = (conn->c_trans->t_mp_capable ? RDS_MPATH_WORKERS : 1); for (j = 0; j < npaths; j++) { cp = &conn->c_path[j]; if (want_send) list = &cp->cp_send_queue; else list = &cp->cp_retrans; spin_lock_irqsave(&cp->cp_lock, flags); /* XXX too lazy to maintain counts.. */ list_for_each_entry(rm, list, m_conn_item) { total++; if (total <= len) __rds_inc_msg_cp(&rm->m_inc, iter, &conn->c_laddr, &conn->c_faddr, 0, isv6); } spin_unlock_irqrestore(&cp->cp_lock, flags); } } } rcu_read_unlock(); lens->nr = total; if (isv6) lens->each = sizeof(struct rds6_info_message); else lens->each = sizeof(struct rds_info_message); } static void rds_conn_message_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int want_send) { rds_conn_message_info_cmn(sock, len, iter, lens, want_send, false); } #if IS_ENABLED(CONFIG_IPV6) static void rds6_conn_message_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int want_send) { rds_conn_message_info_cmn(sock, len, iter, lens, want_send, true); } #endif static void rds_conn_message_info_send(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { rds_conn_message_info(sock, len, iter, lens, 1); } #if IS_ENABLED(CONFIG_IPV6) static void rds6_conn_message_info_send(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { rds6_conn_message_info(sock, len, iter, lens, 1); } #endif static void rds_conn_message_info_retrans(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { rds_conn_message_info(sock, len, iter, lens, 0); } #if IS_ENABLED(CONFIG_IPV6) static void rds6_conn_message_info_retrans(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { rds6_conn_message_info(sock, len, iter, lens, 0); } #endif void rds_for_each_conn_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int (*visitor)(struct rds_connection *, void *), u64 *buffer, size_t item_len) { struct hlist_head *head; struct rds_connection *conn; size_t i; rcu_read_lock(); lens->nr = 0; lens->each = item_len; for (i = 0, head = rds_conn_hash; i < ARRAY_SIZE(rds_conn_hash); i++, head++) { hlist_for_each_entry_rcu(conn, head, c_hash_node) { /* XXX no c_lock usage.. */ if (!visitor(conn, buffer)) continue; /* We copy as much as we can fit in the buffer, * but we count all items so that the caller * can resize the buffer. */ if (len >= item_len) { rds_info_copy(iter, buffer, item_len); len -= item_len; } lens->nr++; } } rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rds_for_each_conn_info); static void rds_walk_conn_path_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int (*visitor)(struct rds_conn_path *, void *), u64 *buffer, size_t item_len) { struct hlist_head *head; struct rds_connection *conn; size_t i; rcu_read_lock(); lens->nr = 0; lens->each = item_len; for (i = 0, head = rds_conn_hash; i < ARRAY_SIZE(rds_conn_hash); i++, head++) { hlist_for_each_entry_rcu(conn, head, c_hash_node) { struct rds_conn_path *cp; /* XXX We only copy the information from the first * path for now. The problem is that if there are * more than one underlying paths, we cannot report * information of all of them using the existing * API. For example, there is only one next_tx_seq, * which path's next_tx_seq should we report? It is * a bug in the design of MPRDS. */ cp = conn->c_path; /* XXX no cp_lock usage.. */ if (!visitor(cp, buffer)) continue; /* We copy as much as we can fit in the buffer, * but we count all items so that the caller * can resize the buffer. */ if (len >= item_len) { rds_info_copy(iter, buffer, item_len); len -= item_len; } lens->nr++; } } rcu_read_unlock(); } static int rds_conn_info_visitor(struct rds_conn_path *cp, void *buffer) { struct rds_info_connection *cinfo = buffer; struct rds_connection *conn = cp->cp_conn; if (conn->c_isv6) return 0; cinfo->next_tx_seq = cp->cp_next_tx_seq; cinfo->next_rx_seq = cp->cp_next_rx_seq; cinfo->laddr = conn->c_laddr.s6_addr32[3]; cinfo->faddr = conn->c_faddr.s6_addr32[3]; cinfo->tos = conn->c_tos; strncpy(cinfo->transport, conn->c_trans->t_name, sizeof(cinfo->transport)); cinfo->flags = 0; rds_conn_info_set(cinfo->flags, test_bit(RDS_IN_XMIT, &cp->cp_flags), SENDING); /* XXX Future: return the state rather than these funky bits */ rds_conn_info_set(cinfo->flags, atomic_read(&cp->cp_state) == RDS_CONN_CONNECTING, CONNECTING); rds_conn_info_set(cinfo->flags, atomic_read(&cp->cp_state) == RDS_CONN_UP, CONNECTED); return 1; } #if IS_ENABLED(CONFIG_IPV6) static int rds6_conn_info_visitor(struct rds_conn_path *cp, void *buffer) { struct rds6_info_connection *cinfo6 = buffer; struct rds_connection *conn = cp->cp_conn; cinfo6->next_tx_seq = cp->cp_next_tx_seq; cinfo6->next_rx_seq = cp->cp_next_rx_seq; cinfo6->laddr = conn->c_laddr; cinfo6->faddr = conn->c_faddr; strncpy(cinfo6->transport, conn->c_trans->t_name, sizeof(cinfo6->transport)); cinfo6->flags = 0; rds_conn_info_set(cinfo6->flags, test_bit(RDS_IN_XMIT, &cp->cp_flags), SENDING); /* XXX Future: return the state rather than these funky bits */ rds_conn_info_set(cinfo6->flags, atomic_read(&cp->cp_state) == RDS_CONN_CONNECTING, CONNECTING); rds_conn_info_set(cinfo6->flags, atomic_read(&cp->cp_state) == RDS_CONN_UP, CONNECTED); /* Just return 1 as there is no error case. This is a helper function * for rds_walk_conn_path_info() and it wants a return value. */ return 1; } #endif static void rds_conn_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { u64 buffer[(sizeof(struct rds_info_connection) + 7) / 8]; rds_walk_conn_path_info(sock, len, iter, lens, rds_conn_info_visitor, buffer, sizeof(struct rds_info_connection)); } #if IS_ENABLED(CONFIG_IPV6) static void rds6_conn_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { u64 buffer[(sizeof(struct rds6_info_connection) + 7) / 8]; rds_walk_conn_path_info(sock, len, iter, lens, rds6_conn_info_visitor, buffer, sizeof(struct rds6_info_connection)); } #endif int rds_conn_init(void) { int ret; ret = rds_loop_net_init(); /* register pernet callback */ if (ret) return ret; rds_conn_slab = kmem_cache_create("rds_connection", sizeof(struct rds_connection), 0, 0, NULL); if (!rds_conn_slab) { rds_loop_net_exit(); return -ENOMEM; } rds_info_register_func(RDS_INFO_CONNECTIONS, rds_conn_info); rds_info_register_func(RDS_INFO_SEND_MESSAGES, rds_conn_message_info_send); rds_info_register_func(RDS_INFO_RETRANS_MESSAGES, rds_conn_message_info_retrans); #if IS_ENABLED(CONFIG_IPV6) rds_info_register_func(RDS6_INFO_CONNECTIONS, rds6_conn_info); rds_info_register_func(RDS6_INFO_SEND_MESSAGES, rds6_conn_message_info_send); rds_info_register_func(RDS6_INFO_RETRANS_MESSAGES, rds6_conn_message_info_retrans); #endif return 0; } void rds_conn_exit(void) { rds_loop_net_exit(); /* unregister pernet callback */ rds_loop_exit(); WARN_ON(!hlist_empty(rds_conn_hash)); kmem_cache_destroy(rds_conn_slab); rds_info_deregister_func(RDS_INFO_CONNECTIONS, rds_conn_info); rds_info_deregister_func(RDS_INFO_SEND_MESSAGES, rds_conn_message_info_send); rds_info_deregister_func(RDS_INFO_RETRANS_MESSAGES, rds_conn_message_info_retrans); #if IS_ENABLED(CONFIG_IPV6) rds_info_deregister_func(RDS6_INFO_CONNECTIONS, rds6_conn_info); rds_info_deregister_func(RDS6_INFO_SEND_MESSAGES, rds6_conn_message_info_send); rds_info_deregister_func(RDS6_INFO_RETRANS_MESSAGES, rds6_conn_message_info_retrans); #endif } /* * Force a disconnect */ void rds_conn_path_drop(struct rds_conn_path *cp, bool destroy) { atomic_set(&cp->cp_state, RDS_CONN_ERROR); rcu_read_lock(); if (!destroy && rds_destroy_pending(cp->cp_conn)) { rcu_read_unlock(); return; } queue_work(rds_wq, &cp->cp_down_w); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rds_conn_path_drop); void rds_conn_drop(struct rds_connection *conn) { WARN_ON(conn->c_trans->t_mp_capable); rds_conn_path_drop(&conn->c_path[0], false); } EXPORT_SYMBOL_GPL(rds_conn_drop); /* * If the connection is down, trigger a connect. We may have scheduled a * delayed reconnect however - in this case we should not interfere. */ void rds_conn_path_connect_if_down(struct rds_conn_path *cp) { rcu_read_lock(); if (rds_destroy_pending(cp->cp_conn)) { rcu_read_unlock(); return; } if (rds_conn_path_state(cp) == RDS_CONN_DOWN && !test_and_set_bit(RDS_RECONNECT_PENDING, &cp->cp_flags)) queue_delayed_work(rds_wq, &cp->cp_conn_w, 0); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rds_conn_path_connect_if_down); /* Check connectivity of all paths */ void rds_check_all_paths(struct rds_connection *conn) { int i = 0; do { rds_conn_path_connect_if_down(&conn->c_path[i]); } while (++i < conn->c_npaths); } void rds_conn_connect_if_down(struct rds_connection *conn) { WARN_ON(conn->c_trans->t_mp_capable); rds_conn_path_connect_if_down(&conn->c_path[0]); } EXPORT_SYMBOL_GPL(rds_conn_connect_if_down); void __rds_conn_path_error(struct rds_conn_path *cp, const char *fmt, ...) { va_list ap; va_start(ap, fmt); vprintk(fmt, ap); va_end(ap); rds_conn_path_drop(cp, false); }
linux-master
net/rds/connection.c
/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include "rds.h" #include "ib.h" /* * Locking for IB rings. * We assume that allocation is always protected by a mutex * in the caller (this is a valid assumption for the current * implementation). * * Freeing always happens in an interrupt, and hence only * races with allocations, but not with other free()s. * * The interaction between allocation and freeing is that * the alloc code has to determine the number of free entries. * To this end, we maintain two counters; an allocation counter * and a free counter. Both are allowed to run freely, and wrap * around. * The number of used entries is always (alloc_ctr - free_ctr) % NR. * * The current implementation makes free_ctr atomic. When the * caller finds an allocation fails, it should set an "alloc fail" * bit and retry the allocation. The "alloc fail" bit essentially tells * the CQ completion handlers to wake it up after freeing some * more entries. */ /* * This only happens on shutdown. */ DECLARE_WAIT_QUEUE_HEAD(rds_ib_ring_empty_wait); void rds_ib_ring_init(struct rds_ib_work_ring *ring, u32 nr) { memset(ring, 0, sizeof(*ring)); ring->w_nr = nr; rdsdebug("ring %p nr %u\n", ring, ring->w_nr); } static inline u32 __rds_ib_ring_used(struct rds_ib_work_ring *ring) { u32 diff; /* This assumes that atomic_t has at least as many bits as u32 */ diff = ring->w_alloc_ctr - (u32) atomic_read(&ring->w_free_ctr); BUG_ON(diff > ring->w_nr); return diff; } void rds_ib_ring_resize(struct rds_ib_work_ring *ring, u32 nr) { /* We only ever get called from the connection setup code, * prior to creating the QP. */ BUG_ON(__rds_ib_ring_used(ring)); ring->w_nr = nr; } static int __rds_ib_ring_empty(struct rds_ib_work_ring *ring) { return __rds_ib_ring_used(ring) == 0; } u32 rds_ib_ring_alloc(struct rds_ib_work_ring *ring, u32 val, u32 *pos) { u32 ret = 0, avail; avail = ring->w_nr - __rds_ib_ring_used(ring); rdsdebug("ring %p val %u next %u free %u\n", ring, val, ring->w_alloc_ptr, avail); if (val && avail) { ret = min(val, avail); *pos = ring->w_alloc_ptr; ring->w_alloc_ptr = (ring->w_alloc_ptr + ret) % ring->w_nr; ring->w_alloc_ctr += ret; } return ret; } void rds_ib_ring_free(struct rds_ib_work_ring *ring, u32 val) { ring->w_free_ptr = (ring->w_free_ptr + val) % ring->w_nr; atomic_add(val, &ring->w_free_ctr); if (__rds_ib_ring_empty(ring) && waitqueue_active(&rds_ib_ring_empty_wait)) wake_up(&rds_ib_ring_empty_wait); } void rds_ib_ring_unalloc(struct rds_ib_work_ring *ring, u32 val) { ring->w_alloc_ptr = (ring->w_alloc_ptr - val) % ring->w_nr; ring->w_alloc_ctr -= val; } int rds_ib_ring_empty(struct rds_ib_work_ring *ring) { return __rds_ib_ring_empty(ring); } int rds_ib_ring_low(struct rds_ib_work_ring *ring) { return __rds_ib_ring_used(ring) <= (ring->w_nr >> 1); } /* * returns the oldest allocated ring entry. This will be the next one * freed. This can't be called if there are none allocated. */ u32 rds_ib_ring_oldest(struct rds_ib_work_ring *ring) { return ring->w_free_ptr; } /* * returns the number of completed work requests. */ u32 rds_ib_ring_completed(struct rds_ib_work_ring *ring, u32 wr_id, u32 oldest) { u32 ret; if (oldest <= (unsigned long long)wr_id) ret = (unsigned long long)wr_id - oldest + 1; else ret = ring->w_nr - oldest + (unsigned long long)wr_id + 1; rdsdebug("ring %p ret %u wr_id %u oldest %u\n", ring, ret, wr_id, oldest); return ret; }
linux-master
net/rds/ib_ring.c
/* * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/sched/clock.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <rdma/rdma_cm.h> #include "rds_single_path.h" #include "rds.h" #include "ib.h" static struct kmem_cache *rds_ib_incoming_slab; static struct kmem_cache *rds_ib_frag_slab; static atomic_t rds_ib_allocation = ATOMIC_INIT(0); void rds_ib_recv_init_ring(struct rds_ib_connection *ic) { struct rds_ib_recv_work *recv; u32 i; for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { struct ib_sge *sge; recv->r_ibinc = NULL; recv->r_frag = NULL; recv->r_wr.next = NULL; recv->r_wr.wr_id = i; recv->r_wr.sg_list = recv->r_sge; recv->r_wr.num_sge = RDS_IB_RECV_SGE; sge = &recv->r_sge[0]; sge->addr = ic->i_recv_hdrs_dma[i]; sge->length = sizeof(struct rds_header); sge->lkey = ic->i_pd->local_dma_lkey; sge = &recv->r_sge[1]; sge->addr = 0; sge->length = RDS_FRAG_SIZE; sge->lkey = ic->i_pd->local_dma_lkey; } } /* * The entire 'from' list, including the from element itself, is put on * to the tail of the 'to' list. */ static void list_splice_entire_tail(struct list_head *from, struct list_head *to) { struct list_head *from_last = from->prev; list_splice_tail(from_last, to); list_add_tail(from_last, to); } static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache) { struct list_head *tmp; tmp = xchg(&cache->xfer, NULL); if (tmp) { if (cache->ready) list_splice_entire_tail(tmp, cache->ready); else cache->ready = tmp; } } static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp) { struct rds_ib_cache_head *head; int cpu; cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp); if (!cache->percpu) return -ENOMEM; for_each_possible_cpu(cpu) { head = per_cpu_ptr(cache->percpu, cpu); head->first = NULL; head->count = 0; } cache->xfer = NULL; cache->ready = NULL; return 0; } int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp) { int ret; ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp); if (!ret) { ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp); if (ret) free_percpu(ic->i_cache_incs.percpu); } return ret; } static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache, struct list_head *caller_list) { struct rds_ib_cache_head *head; int cpu; for_each_possible_cpu(cpu) { head = per_cpu_ptr(cache->percpu, cpu); if (head->first) { list_splice_entire_tail(head->first, caller_list); head->first = NULL; } } if (cache->ready) { list_splice_entire_tail(cache->ready, caller_list); cache->ready = NULL; } } void rds_ib_recv_free_caches(struct rds_ib_connection *ic) { struct rds_ib_incoming *inc; struct rds_ib_incoming *inc_tmp; struct rds_page_frag *frag; struct rds_page_frag *frag_tmp; LIST_HEAD(list); rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list); free_percpu(ic->i_cache_incs.percpu); list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) { list_del(&inc->ii_cache_entry); WARN_ON(!list_empty(&inc->ii_frags)); kmem_cache_free(rds_ib_incoming_slab, inc); atomic_dec(&rds_ib_allocation); } rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list); free_percpu(ic->i_cache_frags.percpu); list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) { list_del(&frag->f_cache_entry); WARN_ON(!list_empty(&frag->f_item)); kmem_cache_free(rds_ib_frag_slab, frag); } } /* fwd decl */ static void rds_ib_recv_cache_put(struct list_head *new_item, struct rds_ib_refill_cache *cache); static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache); /* Recycle frag and attached recv buffer f_sg */ static void rds_ib_frag_free(struct rds_ib_connection *ic, struct rds_page_frag *frag) { rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg)); rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags); atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs); rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE); } /* Recycle inc after freeing attached frags */ void rds_ib_inc_free(struct rds_incoming *inc) { struct rds_ib_incoming *ibinc; struct rds_page_frag *frag; struct rds_page_frag *pos; struct rds_ib_connection *ic = inc->i_conn->c_transport_data; ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); /* Free attached frags */ list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { list_del_init(&frag->f_item); rds_ib_frag_free(ic, frag); } BUG_ON(!list_empty(&ibinc->ii_frags)); rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs); } static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, struct rds_ib_recv_work *recv) { if (recv->r_ibinc) { rds_inc_put(&recv->r_ibinc->ii_inc); recv->r_ibinc = NULL; } if (recv->r_frag) { ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); rds_ib_frag_free(ic, recv->r_frag); recv->r_frag = NULL; } } void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) { u32 i; for (i = 0; i < ic->i_recv_ring.w_nr; i++) rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); } static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic, gfp_t slab_mask) { struct rds_ib_incoming *ibinc; struct list_head *cache_item; int avail_allocs; cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs); if (cache_item) { ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry); } else { avail_allocs = atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation); if (!avail_allocs) { rds_ib_stats_inc(s_ib_rx_alloc_limit); return NULL; } ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask); if (!ibinc) { atomic_dec(&rds_ib_allocation); return NULL; } rds_ib_stats_inc(s_ib_rx_total_incs); } INIT_LIST_HEAD(&ibinc->ii_frags); rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr); return ibinc; } static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic, gfp_t slab_mask, gfp_t page_mask) { struct rds_page_frag *frag; struct list_head *cache_item; int ret; cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags); if (cache_item) { frag = container_of(cache_item, struct rds_page_frag, f_cache_entry); atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs); rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE); } else { frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask); if (!frag) return NULL; sg_init_table(&frag->f_sg, 1); ret = rds_page_remainder_alloc(&frag->f_sg, RDS_FRAG_SIZE, page_mask); if (ret) { kmem_cache_free(rds_ib_frag_slab, frag); return NULL; } rds_ib_stats_inc(s_ib_rx_total_frags); } INIT_LIST_HEAD(&frag->f_item); return frag; } static int rds_ib_recv_refill_one(struct rds_connection *conn, struct rds_ib_recv_work *recv, gfp_t gfp) { struct rds_ib_connection *ic = conn->c_transport_data; struct ib_sge *sge; int ret = -ENOMEM; gfp_t slab_mask = gfp; gfp_t page_mask = gfp; if (gfp & __GFP_DIRECT_RECLAIM) { slab_mask = GFP_KERNEL; page_mask = GFP_HIGHUSER; } if (!ic->i_cache_incs.ready) rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); if (!ic->i_cache_frags.ready) rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); /* * ibinc was taken from recv if recv contained the start of a message. * recvs that were continuations will still have this allocated. */ if (!recv->r_ibinc) { recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask); if (!recv->r_ibinc) goto out; } WARN_ON(recv->r_frag); /* leak! */ recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask); if (!recv->r_frag) goto out; ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); WARN_ON(ret != 1); sge = &recv->r_sge[0]; sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs]; sge->length = sizeof(struct rds_header); sge = &recv->r_sge[1]; sge->addr = sg_dma_address(&recv->r_frag->f_sg); sge->length = sg_dma_len(&recv->r_frag->f_sg); ret = 0; out: return ret; } static int acquire_refill(struct rds_connection *conn) { return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0; } static void release_refill(struct rds_connection *conn) { clear_bit(RDS_RECV_REFILL, &conn->c_flags); smp_mb__after_atomic(); /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a * hot path and finding waiters is very rare. We don't want to walk * the system-wide hashed waitqueue buckets in the fast path only to * almost never find waiters. */ if (waitqueue_active(&conn->c_waitq)) wake_up_all(&conn->c_waitq); } /* * This tries to allocate and post unused work requests after making sure that * they have all the allocations they need to queue received fragments into * sockets. */ void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp) { struct rds_ib_connection *ic = conn->c_transport_data; struct rds_ib_recv_work *recv; unsigned int posted = 0; int ret = 0; bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM); bool must_wake = false; u32 pos; /* the goal here is to just make sure that someone, somewhere * is posting buffers. If we can't get the refill lock, * let them do their thing */ if (!acquire_refill(conn)) return; while ((prefill || rds_conn_up(conn)) && rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { if (pos >= ic->i_recv_ring.w_nr) { printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", pos); break; } recv = &ic->i_recvs[pos]; ret = rds_ib_recv_refill_one(conn, recv, gfp); if (ret) { must_wake = true; break; } rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv, recv->r_ibinc, sg_page(&recv->r_frag->f_sg), (long)sg_dma_address(&recv->r_frag->f_sg)); /* XXX when can this fail? */ ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL); if (ret) { rds_ib_conn_error(conn, "recv post on " "%pI6c returned %d, disconnecting and " "reconnecting\n", &conn->c_faddr, ret); break; } posted++; if ((posted > 128 && need_resched()) || posted > 8192) { must_wake = true; break; } } /* We're doing flow control - update the window. */ if (ic->i_flowctl && posted) rds_ib_advertise_credits(conn, posted); if (ret) rds_ib_ring_unalloc(&ic->i_recv_ring, 1); release_refill(conn); /* if we're called from the softirq handler, we'll be GFP_NOWAIT. * in this case the ring being low is going to lead to more interrupts * and we can safely let the softirq code take care of it unless the * ring is completely empty. * * if we're called from krdsd, we'll be GFP_KERNEL. In this case * we might have raced with the softirq code while we had the refill * lock held. Use rds_ib_ring_low() instead of ring_empty to decide * if we should requeue. */ if (rds_conn_up(conn) && (must_wake || (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) || rds_ib_ring_empty(&ic->i_recv_ring))) { queue_delayed_work(rds_wq, &conn->c_recv_w, 1); } if (can_wait) cond_resched(); } /* * We want to recycle several types of recv allocations, like incs and frags. * To use this, the *_free() function passes in the ptr to a list_head within * the recyclee, as well as the cache to put it on. * * First, we put the memory on a percpu list. When this reaches a certain size, * We move it to an intermediate non-percpu list in a lockless manner, with some * xchg/compxchg wizardry. * * N.B. Instead of a list_head as the anchor, we use a single pointer, which can * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and * list_empty() will return true with one element is actually present. */ static void rds_ib_recv_cache_put(struct list_head *new_item, struct rds_ib_refill_cache *cache) { unsigned long flags; struct list_head *old, *chpfirst; local_irq_save(flags); chpfirst = __this_cpu_read(cache->percpu->first); if (!chpfirst) INIT_LIST_HEAD(new_item); else /* put on front */ list_add_tail(new_item, chpfirst); __this_cpu_write(cache->percpu->first, new_item); __this_cpu_inc(cache->percpu->count); if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT) goto end; /* * Return our per-cpu first list to the cache's xfer by atomically * grabbing the current xfer list, appending it to our per-cpu list, * and then atomically returning that entire list back to the * cache's xfer list as long as it's still empty. */ do { old = xchg(&cache->xfer, NULL); if (old) list_splice_entire_tail(old, chpfirst); old = cmpxchg(&cache->xfer, NULL, chpfirst); } while (old); __this_cpu_write(cache->percpu->first, NULL); __this_cpu_write(cache->percpu->count, 0); end: local_irq_restore(flags); } static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache) { struct list_head *head = cache->ready; if (head) { if (!list_empty(head)) { cache->ready = head->next; list_del_init(head); } else cache->ready = NULL; } return head; } int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to) { struct rds_ib_incoming *ibinc; struct rds_page_frag *frag; unsigned long to_copy; unsigned long frag_off = 0; int copied = 0; int ret; u32 len; ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); len = be32_to_cpu(inc->i_hdr.h_len); while (iov_iter_count(to) && copied < len) { if (frag_off == RDS_FRAG_SIZE) { frag = list_entry(frag->f_item.next, struct rds_page_frag, f_item); frag_off = 0; } to_copy = min_t(unsigned long, iov_iter_count(to), RDS_FRAG_SIZE - frag_off); to_copy = min_t(unsigned long, to_copy, len - copied); /* XXX needs + offset for multiple recvs per page */ rds_stats_add(s_copy_to_user, to_copy); ret = copy_page_to_iter(sg_page(&frag->f_sg), frag->f_sg.offset + frag_off, to_copy, to); if (ret != to_copy) return -EFAULT; frag_off += to_copy; copied += to_copy; } return copied; } /* ic starts out kzalloc()ed */ void rds_ib_recv_init_ack(struct rds_ib_connection *ic) { struct ib_send_wr *wr = &ic->i_ack_wr; struct ib_sge *sge = &ic->i_ack_sge; sge->addr = ic->i_ack_dma; sge->length = sizeof(struct rds_header); sge->lkey = ic->i_pd->local_dma_lkey; wr->sg_list = sge; wr->num_sge = 1; wr->opcode = IB_WR_SEND; wr->wr_id = RDS_IB_ACK_WR_ID; wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; } /* * You'd think that with reliable IB connections you wouldn't need to ack * messages that have been received. The problem is that IB hardware generates * an ack message before it has DMAed the message into memory. This creates a * potential message loss if the HCA is disabled for any reason between when it * sends the ack and before the message is DMAed and processed. This is only a * potential issue if another HCA is available for fail-over. * * When the remote host receives our ack they'll free the sent message from * their send queue. To decrease the latency of this we always send an ack * immediately after we've received messages. * * For simplicity, we only have one ack in flight at a time. This puts * pressure on senders to have deep enough send queues to absorb the latency of * a single ack frame being in flight. This might not be good enough. * * This is implemented by have a long-lived send_wr and sge which point to a * statically allocated ack frame. This ack wr does not fall under the ring * accounting that the tx and rx wrs do. The QP attribute specifically makes * room for it beyond the ring size. Send completion notices its special * wr_id and avoids working with the ring in that case. */ #ifndef KERNEL_HAS_ATOMIC64 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) { unsigned long flags; spin_lock_irqsave(&ic->i_ack_lock, flags); ic->i_ack_next = seq; if (ack_required) set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); spin_unlock_irqrestore(&ic->i_ack_lock, flags); } static u64 rds_ib_get_ack(struct rds_ib_connection *ic) { unsigned long flags; u64 seq; clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); spin_lock_irqsave(&ic->i_ack_lock, flags); seq = ic->i_ack_next; spin_unlock_irqrestore(&ic->i_ack_lock, flags); return seq; } #else void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) { atomic64_set(&ic->i_ack_next, seq); if (ack_required) { smp_mb__before_atomic(); set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); } } static u64 rds_ib_get_ack(struct rds_ib_connection *ic) { clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); smp_mb__after_atomic(); return atomic64_read(&ic->i_ack_next); } #endif static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) { struct rds_header *hdr = ic->i_ack; u64 seq; int ret; seq = rds_ib_get_ack(ic); rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_ack_dma, sizeof(*hdr), DMA_TO_DEVICE); rds_message_populate_header(hdr, 0, 0, 0); hdr->h_ack = cpu_to_be64(seq); hdr->h_credit = adv_credits; rds_message_make_checksum(hdr); ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_ack_dma, sizeof(*hdr), DMA_TO_DEVICE); ic->i_ack_queued = jiffies; ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL); if (unlikely(ret)) { /* Failed to send. Release the WR, and * force another ACK. */ clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); rds_ib_stats_inc(s_ib_ack_send_failure); rds_ib_conn_error(ic->conn, "sending ack failed\n"); } else rds_ib_stats_inc(s_ib_ack_sent); } /* * There are 3 ways of getting acknowledgements to the peer: * 1. We call rds_ib_attempt_ack from the recv completion handler * to send an ACK-only frame. * However, there can be only one such frame in the send queue * at any time, so we may have to postpone it. * 2. When another (data) packet is transmitted while there's * an ACK in the queue, we piggyback the ACK sequence number * on the data packet. * 3. If the ACK WR is done sending, we get called from the * send queue completion handler, and check whether there's * another ACK pending (postponed because the WR was on the * queue). If so, we transmit it. * * We maintain 2 variables: * - i_ack_flags, which keeps track of whether the ACK WR * is currently in the send queue or not (IB_ACK_IN_FLIGHT) * - i_ack_next, which is the last sequence number we received * * Potentially, send queue and receive queue handlers can run concurrently. * It would be nice to not have to use a spinlock to synchronize things, * but the one problem that rules this out is that 64bit updates are * not atomic on all platforms. Things would be a lot simpler if * we had atomic64 or maybe cmpxchg64 everywhere. * * Reconnecting complicates this picture just slightly. When we * reconnect, we may be seeing duplicate packets. The peer * is retransmitting them, because it hasn't seen an ACK for * them. It is important that we ACK these. * * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with * this flag set *MUST* be acknowledged immediately. */ /* * When we get here, we're called from the recv queue handler. * Check whether we ought to transmit an ACK. */ void rds_ib_attempt_ack(struct rds_ib_connection *ic) { unsigned int adv_credits; if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) return; if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { rds_ib_stats_inc(s_ib_ack_send_delayed); return; } /* Can we get a send credit? */ if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { rds_ib_stats_inc(s_ib_tx_throttle); clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); return; } clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); rds_ib_send_ack(ic, adv_credits); } /* * We get here from the send completion handler, when the * adapter tells us the ACK frame was sent. */ void rds_ib_ack_send_complete(struct rds_ib_connection *ic) { clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); rds_ib_attempt_ack(ic); } /* * This is called by the regular xmit code when it wants to piggyback * an ACK on an outgoing frame. */ u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) { if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) rds_ib_stats_inc(s_ib_ack_send_piggybacked); return rds_ib_get_ack(ic); } /* * It's kind of lame that we're copying from the posted receive pages into * long-lived bitmaps. We could have posted the bitmaps and rdma written into * them. But receiving new congestion bitmaps should be a *rare* event, so * hopefully we won't need to invest that complexity in making it more * efficient. By copying we can share a simpler core with TCP which has to * copy. */ static void rds_ib_cong_recv(struct rds_connection *conn, struct rds_ib_incoming *ibinc) { struct rds_cong_map *map; unsigned int map_off; unsigned int map_page; struct rds_page_frag *frag; unsigned long frag_off; unsigned long to_copy; unsigned long copied; __le64 uncongested = 0; void *addr; /* catch completely corrupt packets */ if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) return; map = conn->c_fcong; map_page = 0; map_off = 0; frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); frag_off = 0; copied = 0; while (copied < RDS_CONG_MAP_BYTES) { __le64 *src, *dst; unsigned int k; to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ addr = kmap_atomic(sg_page(&frag->f_sg)); src = addr + frag->f_sg.offset + frag_off; dst = (void *)map->m_page_addrs[map_page] + map_off; for (k = 0; k < to_copy; k += 8) { /* Record ports that became uncongested, ie * bits that changed from 0 to 1. */ uncongested |= ~(*src) & *dst; *dst++ = *src++; } kunmap_atomic(addr); copied += to_copy; map_off += to_copy; if (map_off == PAGE_SIZE) { map_off = 0; map_page++; } frag_off += to_copy; if (frag_off == RDS_FRAG_SIZE) { frag = list_entry(frag->f_item.next, struct rds_page_frag, f_item); frag_off = 0; } } /* the congestion map is in little endian order */ rds_cong_map_updated(map, le64_to_cpu(uncongested)); } static void rds_ib_process_recv(struct rds_connection *conn, struct rds_ib_recv_work *recv, u32 data_len, struct rds_ib_ack_state *state) { struct rds_ib_connection *ic = conn->c_transport_data; struct rds_ib_incoming *ibinc = ic->i_ibinc; struct rds_header *ihdr, *hdr; dma_addr_t dma_addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs]; /* XXX shut down the connection if port 0,0 are seen? */ rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, data_len); if (data_len < sizeof(struct rds_header)) { rds_ib_conn_error(conn, "incoming message " "from %pI6c didn't include a " "header, disconnecting and " "reconnecting\n", &conn->c_faddr); return; } data_len -= sizeof(struct rds_header); ihdr = ic->i_recv_hdrs[recv - ic->i_recvs]; ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, dma_addr, sizeof(*ihdr), DMA_FROM_DEVICE); /* Validate the checksum. */ if (!rds_message_verify_checksum(ihdr)) { rds_ib_conn_error(conn, "incoming message " "from %pI6c has corrupted header - " "forcing a reconnect\n", &conn->c_faddr); rds_stats_inc(s_recv_drop_bad_checksum); goto done; } /* Process the ACK sequence which comes with every packet */ state->ack_recv = be64_to_cpu(ihdr->h_ack); state->ack_recv_valid = 1; /* Process the credits update if there was one */ if (ihdr->h_credit) rds_ib_send_add_credits(conn, ihdr->h_credit); if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) { /* This is an ACK-only packet. The fact that it gets * special treatment here is that historically, ACKs * were rather special beasts. */ rds_ib_stats_inc(s_ib_ack_received); /* * Usually the frags make their way on to incs and are then freed as * the inc is freed. We don't go that route, so we have to drop the * page ref ourselves. We can't just leave the page on the recv * because that confuses the dma mapping of pages and each recv's use * of a partial page. * * FIXME: Fold this into the code path below. */ rds_ib_frag_free(ic, recv->r_frag); recv->r_frag = NULL; goto done; } /* * If we don't already have an inc on the connection then this * fragment has a header and starts a message.. copy its header * into the inc and save the inc so we can hang upcoming fragments * off its list. */ if (!ibinc) { ibinc = recv->r_ibinc; recv->r_ibinc = NULL; ic->i_ibinc = ibinc; hdr = &ibinc->ii_inc.i_hdr; ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] = local_clock(); memcpy(hdr, ihdr, sizeof(*hdr)); ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] = local_clock(); rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, ic->i_recv_data_rem, hdr->h_flags); } else { hdr = &ibinc->ii_inc.i_hdr; /* We can't just use memcmp here; fragments of a * single message may carry different ACKs */ if (hdr->h_sequence != ihdr->h_sequence || hdr->h_len != ihdr->h_len || hdr->h_sport != ihdr->h_sport || hdr->h_dport != ihdr->h_dport) { rds_ib_conn_error(conn, "fragment header mismatch; forcing reconnect\n"); goto done; } } list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); recv->r_frag = NULL; if (ic->i_recv_data_rem > RDS_FRAG_SIZE) ic->i_recv_data_rem -= RDS_FRAG_SIZE; else { ic->i_recv_data_rem = 0; ic->i_ibinc = NULL; if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) { rds_ib_cong_recv(conn, ibinc); } else { rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr, &ibinc->ii_inc, GFP_ATOMIC); state->ack_next = be64_to_cpu(hdr->h_sequence); state->ack_next_valid = 1; } /* Evaluate the ACK_REQUIRED flag *after* we received * the complete frame, and after bumping the next_rx * sequence. */ if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { rds_stats_inc(s_recv_ack_required); state->ack_required = 1; } rds_inc_put(&ibinc->ii_inc); } done: ib_dma_sync_single_for_device(ic->rds_ibdev->dev, dma_addr, sizeof(*ihdr), DMA_FROM_DEVICE); } void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc, struct rds_ib_ack_state *state) { struct rds_connection *conn = ic->conn; struct rds_ib_recv_work *recv; rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", (unsigned long long)wc->wr_id, wc->status, ib_wc_status_msg(wc->status), wc->byte_len, be32_to_cpu(wc->ex.imm_data)); rds_ib_stats_inc(s_ib_rx_cq_event); recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); /* Also process recvs in connecting state because it is possible * to get a recv completion _before_ the rdmacm ESTABLISHED * event is processed. */ if (wc->status == IB_WC_SUCCESS) { rds_ib_process_recv(conn, recv, wc->byte_len, state); } else { /* We expect errors as the qp is drained during shutdown */ if (rds_conn_up(conn) || rds_conn_connecting(conn)) rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n", &conn->c_laddr, &conn->c_faddr, conn->c_tos, wc->status, ib_wc_status_msg(wc->status), wc->vendor_err); } /* rds_ib_process_recv() doesn't always consume the frag, and * we might not have called it at all if the wc didn't indicate * success. We already unmapped the frag's pages, though, and * the following rds_ib_ring_free() call tells the refill path * that it will not find an allocated frag here. Make sure we * keep that promise by freeing a frag that's still on the ring. */ if (recv->r_frag) { rds_ib_frag_free(ic, recv->r_frag); recv->r_frag = NULL; } rds_ib_ring_free(&ic->i_recv_ring, 1); /* If we ever end up with a really empty receive ring, we're * in deep trouble, as the sender will definitely see RNR * timeouts. */ if (rds_ib_ring_empty(&ic->i_recv_ring)) rds_ib_stats_inc(s_ib_rx_ring_empty); if (rds_ib_ring_low(&ic->i_recv_ring)) { rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN); rds_ib_stats_inc(s_ib_rx_refill_from_cq); } } int rds_ib_recv_path(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; struct rds_ib_connection *ic = conn->c_transport_data; rdsdebug("conn %p\n", conn); if (rds_conn_up(conn)) { rds_ib_attempt_ack(ic); rds_ib_recv_refill(conn, 0, GFP_KERNEL); rds_ib_stats_inc(s_ib_rx_refill_from_thread); } return 0; } int rds_ib_recv_init(void) { struct sysinfo si; int ret = -ENOMEM; /* Default to 30% of all available RAM for recv memory */ si_meminfo(&si); rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; rds_ib_incoming_slab = kmem_cache_create_usercopy("rds_ib_incoming", sizeof(struct rds_ib_incoming), 0, SLAB_HWCACHE_ALIGN, offsetof(struct rds_ib_incoming, ii_inc.i_usercopy), sizeof(struct rds_inc_usercopy), NULL); if (!rds_ib_incoming_slab) goto out; rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", sizeof(struct rds_page_frag), 0, SLAB_HWCACHE_ALIGN, NULL); if (!rds_ib_frag_slab) { kmem_cache_destroy(rds_ib_incoming_slab); rds_ib_incoming_slab = NULL; } else ret = 0; out: return ret; } void rds_ib_recv_exit(void) { WARN_ON(atomic_read(&rds_ib_allocation)); kmem_cache_destroy(rds_ib_incoming_slab); kmem_cache_destroy(rds_ib_frag_slab); }
linux-master
net/rds/ib_recv.c
/* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/random.h> #include <linux/export.h> #include "rds.h" /* * All of connection management is simplified by serializing it through * work queues that execute in a connection managing thread. * * TCP wants to send acks through sendpage() in response to data_ready(), * but it needs a process context to do so. * * The receive paths need to allocate but can't drop packets (!) so we have * a thread around to block allocating if the receive fast path sees an * allocation failure. */ /* Grand Unified Theory of connection life cycle: * At any point in time, the connection can be in one of these states: * DOWN, CONNECTING, UP, DISCONNECTING, ERROR * * The following transitions are possible: * ANY -> ERROR * UP -> DISCONNECTING * ERROR -> DISCONNECTING * DISCONNECTING -> DOWN * DOWN -> CONNECTING * CONNECTING -> UP * * Transition to state DISCONNECTING/DOWN: * - Inside the shutdown worker; synchronizes with xmit path * through RDS_IN_XMIT, and with connection management callbacks * via c_cm_lock. * * For receive callbacks, we rely on the underlying transport * (TCP, IB/RDMA) to provide the necessary synchronisation. */ struct workqueue_struct *rds_wq; EXPORT_SYMBOL_GPL(rds_wq); void rds_connect_path_complete(struct rds_conn_path *cp, int curr) { if (!rds_conn_path_transition(cp, curr, RDS_CONN_UP)) { printk(KERN_WARNING "%s: Cannot transition to state UP, " "current state is %d\n", __func__, atomic_read(&cp->cp_state)); rds_conn_path_drop(cp, false); return; } rdsdebug("conn %p for %pI6c to %pI6c complete\n", cp->cp_conn, &cp->cp_conn->c_laddr, &cp->cp_conn->c_faddr); cp->cp_reconnect_jiffies = 0; set_bit(0, &cp->cp_conn->c_map_queued); rcu_read_lock(); if (!rds_destroy_pending(cp->cp_conn)) { queue_delayed_work(rds_wq, &cp->cp_send_w, 0); queue_delayed_work(rds_wq, &cp->cp_recv_w, 0); } rcu_read_unlock(); cp->cp_conn->c_proposed_version = RDS_PROTOCOL_VERSION; } EXPORT_SYMBOL_GPL(rds_connect_path_complete); void rds_connect_complete(struct rds_connection *conn) { rds_connect_path_complete(&conn->c_path[0], RDS_CONN_CONNECTING); } EXPORT_SYMBOL_GPL(rds_connect_complete); /* * This random exponential backoff is relied on to eventually resolve racing * connects. * * If connect attempts race then both parties drop both connections and come * here to wait for a random amount of time before trying again. Eventually * the backoff range will be so much greater than the time it takes to * establish a connection that one of the pair will establish the connection * before the other's random delay fires. * * Connection attempts that arrive while a connection is already established * are also considered to be racing connects. This lets a connection from * a rebooted machine replace an existing stale connection before the transport * notices that the connection has failed. * * We should *always* start with a random backoff; otherwise a broken connection * will always take several iterations to be re-established. */ void rds_queue_reconnect(struct rds_conn_path *cp) { unsigned long rand; struct rds_connection *conn = cp->cp_conn; rdsdebug("conn %p for %pI6c to %pI6c reconnect jiffies %lu\n", conn, &conn->c_laddr, &conn->c_faddr, cp->cp_reconnect_jiffies); /* let peer with smaller addr initiate reconnect, to avoid duels */ if (conn->c_trans->t_type == RDS_TRANS_TCP && rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) >= 0) return; set_bit(RDS_RECONNECT_PENDING, &cp->cp_flags); if (cp->cp_reconnect_jiffies == 0) { cp->cp_reconnect_jiffies = rds_sysctl_reconnect_min_jiffies; rcu_read_lock(); if (!rds_destroy_pending(cp->cp_conn)) queue_delayed_work(rds_wq, &cp->cp_conn_w, 0); rcu_read_unlock(); return; } get_random_bytes(&rand, sizeof(rand)); rdsdebug("%lu delay %lu ceil conn %p for %pI6c -> %pI6c\n", rand % cp->cp_reconnect_jiffies, cp->cp_reconnect_jiffies, conn, &conn->c_laddr, &conn->c_faddr); rcu_read_lock(); if (!rds_destroy_pending(cp->cp_conn)) queue_delayed_work(rds_wq, &cp->cp_conn_w, rand % cp->cp_reconnect_jiffies); rcu_read_unlock(); cp->cp_reconnect_jiffies = min(cp->cp_reconnect_jiffies * 2, rds_sysctl_reconnect_max_jiffies); } void rds_connect_worker(struct work_struct *work) { struct rds_conn_path *cp = container_of(work, struct rds_conn_path, cp_conn_w.work); struct rds_connection *conn = cp->cp_conn; int ret; if (cp->cp_index > 0 && rds_addr_cmp(&cp->cp_conn->c_laddr, &cp->cp_conn->c_faddr) >= 0) return; clear_bit(RDS_RECONNECT_PENDING, &cp->cp_flags); ret = rds_conn_path_transition(cp, RDS_CONN_DOWN, RDS_CONN_CONNECTING); if (ret) { ret = conn->c_trans->conn_path_connect(cp); rdsdebug("conn %p for %pI6c to %pI6c dispatched, ret %d\n", conn, &conn->c_laddr, &conn->c_faddr, ret); if (ret) { if (rds_conn_path_transition(cp, RDS_CONN_CONNECTING, RDS_CONN_DOWN)) rds_queue_reconnect(cp); else rds_conn_path_error(cp, "connect failed\n"); } } } void rds_send_worker(struct work_struct *work) { struct rds_conn_path *cp = container_of(work, struct rds_conn_path, cp_send_w.work); int ret; if (rds_conn_path_state(cp) == RDS_CONN_UP) { clear_bit(RDS_LL_SEND_FULL, &cp->cp_flags); ret = rds_send_xmit(cp); cond_resched(); rdsdebug("conn %p ret %d\n", cp->cp_conn, ret); switch (ret) { case -EAGAIN: rds_stats_inc(s_send_immediate_retry); queue_delayed_work(rds_wq, &cp->cp_send_w, 0); break; case -ENOMEM: rds_stats_inc(s_send_delayed_retry); queue_delayed_work(rds_wq, &cp->cp_send_w, 2); break; default: break; } } } void rds_recv_worker(struct work_struct *work) { struct rds_conn_path *cp = container_of(work, struct rds_conn_path, cp_recv_w.work); int ret; if (rds_conn_path_state(cp) == RDS_CONN_UP) { ret = cp->cp_conn->c_trans->recv_path(cp); rdsdebug("conn %p ret %d\n", cp->cp_conn, ret); switch (ret) { case -EAGAIN: rds_stats_inc(s_recv_immediate_retry); queue_delayed_work(rds_wq, &cp->cp_recv_w, 0); break; case -ENOMEM: rds_stats_inc(s_recv_delayed_retry); queue_delayed_work(rds_wq, &cp->cp_recv_w, 2); break; default: break; } } } void rds_shutdown_worker(struct work_struct *work) { struct rds_conn_path *cp = container_of(work, struct rds_conn_path, cp_down_w); rds_conn_shutdown(cp); } void rds_threads_exit(void) { destroy_workqueue(rds_wq); } int rds_threads_init(void) { rds_wq = create_singlethread_workqueue("krdsd"); if (!rds_wq) return -ENOMEM; return 0; } /* Compare two IPv6 addresses. Return 0 if the two addresses are equal. * Return 1 if the first is greater. Return -1 if the second is greater. */ int rds_addr_cmp(const struct in6_addr *addr1, const struct in6_addr *addr2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const __be64 *a1, *a2; u64 x, y; a1 = (__be64 *)addr1; a2 = (__be64 *)addr2; if (*a1 != *a2) { if (be64_to_cpu(*a1) < be64_to_cpu(*a2)) return -1; else return 1; } else { x = be64_to_cpu(*++a1); y = be64_to_cpu(*++a2); if (x < y) return -1; else if (x > y) return 1; else return 0; } #else u32 a, b; int i; for (i = 0; i < 4; i++) { if (addr1->s6_addr32[i] != addr2->s6_addr32[i]) { a = ntohl(addr1->s6_addr32[i]); b = ntohl(addr2->s6_addr32[i]); if (a < b) return -1; else if (a > b) return 1; } } return 0; #endif } EXPORT_SYMBOL_GPL(rds_addr_cmp);
linux-master
net/rds/threads.c
/* * Copyright (c) 2009, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/module.h> #include <rdma/rdma_cm.h> #include "rds_single_path.h" #include "rdma_transport.h" #include "ib.h" /* Global IPv4 and IPv6 RDS RDMA listener cm_id */ static struct rdma_cm_id *rds_rdma_listen_id; #if IS_ENABLED(CONFIG_IPV6) static struct rdma_cm_id *rds6_rdma_listen_id; #endif /* Per IB specification 7.7.3, service level is a 4-bit field. */ #define TOS_TO_SL(tos) ((tos) & 0xF) static int rds_rdma_cm_event_handler_cmn(struct rdma_cm_id *cm_id, struct rdma_cm_event *event, bool isv6) { /* this can be null in the listening path */ struct rds_connection *conn = cm_id->context; struct rds_transport *trans; int ret = 0; int *err; u8 len; rdsdebug("conn %p id %p handling event %u (%s)\n", conn, cm_id, event->event, rdma_event_msg(event->event)); if (cm_id->device->node_type == RDMA_NODE_IB_CA) trans = &rds_ib_transport; /* Prevent shutdown from tearing down the connection * while we're executing. */ if (conn) { mutex_lock(&conn->c_cm_lock); /* If the connection is being shut down, bail out * right away. We return 0 so cm_id doesn't get * destroyed prematurely */ if (rds_conn_state(conn) == RDS_CONN_DISCONNECTING) { /* Reject incoming connections while we're tearing * down an existing one. */ if (event->event == RDMA_CM_EVENT_CONNECT_REQUEST) ret = 1; goto out; } } switch (event->event) { case RDMA_CM_EVENT_CONNECT_REQUEST: ret = trans->cm_handle_connect(cm_id, event, isv6); break; case RDMA_CM_EVENT_ADDR_RESOLVED: if (conn) { rdma_set_service_type(cm_id, conn->c_tos); rdma_set_min_rnr_timer(cm_id, IB_RNR_TIMER_000_32); /* XXX do we need to clean up if this fails? */ ret = rdma_resolve_route(cm_id, RDS_RDMA_RESOLVE_TIMEOUT_MS); } break; case RDMA_CM_EVENT_ROUTE_RESOLVED: /* Connection could have been dropped so make sure the * cm_id is valid before proceeding */ if (conn) { struct rds_ib_connection *ibic; ibic = conn->c_transport_data; if (ibic && ibic->i_cm_id == cm_id) { cm_id->route.path_rec[0].sl = TOS_TO_SL(conn->c_tos); ret = trans->cm_initiate_connect(cm_id, isv6); } else { rds_conn_drop(conn); } } break; case RDMA_CM_EVENT_ESTABLISHED: if (conn) trans->cm_connect_complete(conn, event); break; case RDMA_CM_EVENT_REJECTED: if (!conn) break; err = (int *)rdma_consumer_reject_data(cm_id, event, &len); if (!err || (err && len >= sizeof(*err) && ((*err) <= RDS_RDMA_REJ_INCOMPAT))) { pr_warn("RDS/RDMA: conn <%pI6c, %pI6c> rejected, dropping connection\n", &conn->c_laddr, &conn->c_faddr); if (!conn->c_tos) conn->c_proposed_version = RDS_PROTOCOL_COMPAT_VERSION; rds_conn_drop(conn); } rdsdebug("Connection rejected: %s\n", rdma_reject_msg(cm_id, event->status)); break; case RDMA_CM_EVENT_ADDR_ERROR: case RDMA_CM_EVENT_ROUTE_ERROR: case RDMA_CM_EVENT_CONNECT_ERROR: case RDMA_CM_EVENT_UNREACHABLE: case RDMA_CM_EVENT_DEVICE_REMOVAL: case RDMA_CM_EVENT_ADDR_CHANGE: if (conn) rds_conn_drop(conn); break; case RDMA_CM_EVENT_DISCONNECTED: if (!conn) break; rdsdebug("DISCONNECT event - dropping connection " "%pI6c->%pI6c\n", &conn->c_laddr, &conn->c_faddr); rds_conn_drop(conn); break; case RDMA_CM_EVENT_TIMEWAIT_EXIT: if (conn) { pr_info("RDS: RDMA_CM_EVENT_TIMEWAIT_EXIT event: dropping connection %pI6c->%pI6c\n", &conn->c_laddr, &conn->c_faddr); rds_conn_drop(conn); } break; default: /* things like device disconnect? */ printk(KERN_ERR "RDS: unknown event %u (%s)!\n", event->event, rdma_event_msg(event->event)); break; } out: if (conn) mutex_unlock(&conn->c_cm_lock); rdsdebug("id %p event %u (%s) handling ret %d\n", cm_id, event->event, rdma_event_msg(event->event), ret); return ret; } int rds_rdma_cm_event_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { return rds_rdma_cm_event_handler_cmn(cm_id, event, false); } #if IS_ENABLED(CONFIG_IPV6) int rds6_rdma_cm_event_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { return rds_rdma_cm_event_handler_cmn(cm_id, event, true); } #endif static int rds_rdma_listen_init_common(rdma_cm_event_handler handler, struct sockaddr *sa, struct rdma_cm_id **ret_cm_id) { struct rdma_cm_id *cm_id; int ret; cm_id = rdma_create_id(&init_net, handler, NULL, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(cm_id)) { ret = PTR_ERR(cm_id); printk(KERN_ERR "RDS/RDMA: failed to setup listener, " "rdma_create_id() returned %d\n", ret); return ret; } /* * XXX I bet this binds the cm_id to a device. If we want to support * fail-over we'll have to take this into consideration. */ ret = rdma_bind_addr(cm_id, sa); if (ret) { printk(KERN_ERR "RDS/RDMA: failed to setup listener, " "rdma_bind_addr() returned %d\n", ret); goto out; } ret = rdma_listen(cm_id, 128); if (ret) { printk(KERN_ERR "RDS/RDMA: failed to setup listener, " "rdma_listen() returned %d\n", ret); goto out; } rdsdebug("cm %p listening on port %u\n", cm_id, RDS_PORT); *ret_cm_id = cm_id; cm_id = NULL; out: if (cm_id) rdma_destroy_id(cm_id); return ret; } /* Initialize the RDS RDMA listeners. We create two listeners for * compatibility reason. The one on RDS_PORT is used for IPv4 * requests only. The one on RDS_CM_PORT is used for IPv6 requests * only. So only IPv6 enabled RDS module will communicate using this * port. */ static int rds_rdma_listen_init(void) { int ret; #if IS_ENABLED(CONFIG_IPV6) struct sockaddr_in6 sin6; #endif struct sockaddr_in sin; sin.sin_family = PF_INET; sin.sin_addr.s_addr = htonl(INADDR_ANY); sin.sin_port = htons(RDS_PORT); ret = rds_rdma_listen_init_common(rds_rdma_cm_event_handler, (struct sockaddr *)&sin, &rds_rdma_listen_id); if (ret != 0) return ret; #if IS_ENABLED(CONFIG_IPV6) sin6.sin6_family = PF_INET6; sin6.sin6_addr = in6addr_any; sin6.sin6_port = htons(RDS_CM_PORT); sin6.sin6_scope_id = 0; sin6.sin6_flowinfo = 0; ret = rds_rdma_listen_init_common(rds6_rdma_cm_event_handler, (struct sockaddr *)&sin6, &rds6_rdma_listen_id); /* Keep going even when IPv6 is not enabled in the system. */ if (ret != 0) rdsdebug("Cannot set up IPv6 RDMA listener\n"); #endif return 0; } static void rds_rdma_listen_stop(void) { if (rds_rdma_listen_id) { rdsdebug("cm %p\n", rds_rdma_listen_id); rdma_destroy_id(rds_rdma_listen_id); rds_rdma_listen_id = NULL; } #if IS_ENABLED(CONFIG_IPV6) if (rds6_rdma_listen_id) { rdsdebug("cm %p\n", rds6_rdma_listen_id); rdma_destroy_id(rds6_rdma_listen_id); rds6_rdma_listen_id = NULL; } #endif } static int __init rds_rdma_init(void) { int ret; ret = rds_ib_init(); if (ret) goto out; ret = rds_rdma_listen_init(); if (ret) rds_ib_exit(); out: return ret; } module_init(rds_rdma_init); static void __exit rds_rdma_exit(void) { /* stop listening first to ensure no new connections are attempted */ rds_rdma_listen_stop(); rds_ib_exit(); } module_exit(rds_rdma_exit); MODULE_AUTHOR("Oracle Corporation <[email protected]>"); MODULE_DESCRIPTION("RDS: IB transport"); MODULE_LICENSE("Dual BSD/GPL");
linux-master
net/rds/rdma_transport.c
/* * Copyright (c) 2006, 2020 Oracle and/or its affiliates. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/skbuff.h> #include <linux/list.h> #include <linux/errqueue.h> #include "rds.h" static unsigned int rds_exthdr_size[__RDS_EXTHDR_MAX] = { [RDS_EXTHDR_NONE] = 0, [RDS_EXTHDR_VERSION] = sizeof(struct rds_ext_header_version), [RDS_EXTHDR_RDMA] = sizeof(struct rds_ext_header_rdma), [RDS_EXTHDR_RDMA_DEST] = sizeof(struct rds_ext_header_rdma_dest), [RDS_EXTHDR_NPATHS] = sizeof(u16), [RDS_EXTHDR_GEN_NUM] = sizeof(u32), }; void rds_message_addref(struct rds_message *rm) { rdsdebug("addref rm %p ref %d\n", rm, refcount_read(&rm->m_refcount)); refcount_inc(&rm->m_refcount); } EXPORT_SYMBOL_GPL(rds_message_addref); static inline bool rds_zcookie_add(struct rds_msg_zcopy_info *info, u32 cookie) { struct rds_zcopy_cookies *ck = &info->zcookies; int ncookies = ck->num; if (ncookies == RDS_MAX_ZCOOKIES) return false; ck->cookies[ncookies] = cookie; ck->num = ++ncookies; return true; } static struct rds_msg_zcopy_info *rds_info_from_znotifier(struct rds_znotifier *znotif) { return container_of(znotif, struct rds_msg_zcopy_info, znotif); } void rds_notify_msg_zcopy_purge(struct rds_msg_zcopy_queue *q) { unsigned long flags; LIST_HEAD(copy); struct rds_msg_zcopy_info *info, *tmp; spin_lock_irqsave(&q->lock, flags); list_splice(&q->zcookie_head, &copy); INIT_LIST_HEAD(&q->zcookie_head); spin_unlock_irqrestore(&q->lock, flags); list_for_each_entry_safe(info, tmp, &copy, rs_zcookie_next) { list_del(&info->rs_zcookie_next); kfree(info); } } static void rds_rm_zerocopy_callback(struct rds_sock *rs, struct rds_znotifier *znotif) { struct rds_msg_zcopy_info *info; struct rds_msg_zcopy_queue *q; u32 cookie = znotif->z_cookie; struct rds_zcopy_cookies *ck; struct list_head *head; unsigned long flags; mm_unaccount_pinned_pages(&znotif->z_mmp); q = &rs->rs_zcookie_queue; spin_lock_irqsave(&q->lock, flags); head = &q->zcookie_head; if (!list_empty(head)) { info = list_first_entry(head, struct rds_msg_zcopy_info, rs_zcookie_next); if (rds_zcookie_add(info, cookie)) { spin_unlock_irqrestore(&q->lock, flags); kfree(rds_info_from_znotifier(znotif)); /* caller invokes rds_wake_sk_sleep() */ return; } } info = rds_info_from_znotifier(znotif); ck = &info->zcookies; memset(ck, 0, sizeof(*ck)); WARN_ON(!rds_zcookie_add(info, cookie)); list_add_tail(&info->rs_zcookie_next, &q->zcookie_head); spin_unlock_irqrestore(&q->lock, flags); /* caller invokes rds_wake_sk_sleep() */ } /* * This relies on dma_map_sg() not touching sg[].page during merging. */ static void rds_message_purge(struct rds_message *rm) { unsigned long i, flags; bool zcopy = false; if (unlikely(test_bit(RDS_MSG_PAGEVEC, &rm->m_flags))) return; spin_lock_irqsave(&rm->m_rs_lock, flags); if (rm->m_rs) { struct rds_sock *rs = rm->m_rs; if (rm->data.op_mmp_znotifier) { zcopy = true; rds_rm_zerocopy_callback(rs, rm->data.op_mmp_znotifier); rds_wake_sk_sleep(rs); rm->data.op_mmp_znotifier = NULL; } sock_put(rds_rs_to_sk(rs)); rm->m_rs = NULL; } spin_unlock_irqrestore(&rm->m_rs_lock, flags); for (i = 0; i < rm->data.op_nents; i++) { /* XXX will have to put_page for page refs */ if (!zcopy) __free_page(sg_page(&rm->data.op_sg[i])); else put_page(sg_page(&rm->data.op_sg[i])); } rm->data.op_nents = 0; if (rm->rdma.op_active) rds_rdma_free_op(&rm->rdma); if (rm->rdma.op_rdma_mr) kref_put(&rm->rdma.op_rdma_mr->r_kref, __rds_put_mr_final); if (rm->atomic.op_active) rds_atomic_free_op(&rm->atomic); if (rm->atomic.op_rdma_mr) kref_put(&rm->atomic.op_rdma_mr->r_kref, __rds_put_mr_final); } void rds_message_put(struct rds_message *rm) { rdsdebug("put rm %p ref %d\n", rm, refcount_read(&rm->m_refcount)); WARN(!refcount_read(&rm->m_refcount), "danger refcount zero on %p\n", rm); if (refcount_dec_and_test(&rm->m_refcount)) { BUG_ON(!list_empty(&rm->m_sock_item)); BUG_ON(!list_empty(&rm->m_conn_item)); rds_message_purge(rm); kfree(rm); } } EXPORT_SYMBOL_GPL(rds_message_put); void rds_message_populate_header(struct rds_header *hdr, __be16 sport, __be16 dport, u64 seq) { hdr->h_flags = 0; hdr->h_sport = sport; hdr->h_dport = dport; hdr->h_sequence = cpu_to_be64(seq); hdr->h_exthdr[0] = RDS_EXTHDR_NONE; } EXPORT_SYMBOL_GPL(rds_message_populate_header); int rds_message_add_extension(struct rds_header *hdr, unsigned int type, const void *data, unsigned int len) { unsigned int ext_len = sizeof(u8) + len; unsigned char *dst; /* For now, refuse to add more than one extension header */ if (hdr->h_exthdr[0] != RDS_EXTHDR_NONE) return 0; if (type >= __RDS_EXTHDR_MAX || len != rds_exthdr_size[type]) return 0; if (ext_len >= RDS_HEADER_EXT_SPACE) return 0; dst = hdr->h_exthdr; *dst++ = type; memcpy(dst, data, len); dst[len] = RDS_EXTHDR_NONE; return 1; } EXPORT_SYMBOL_GPL(rds_message_add_extension); /* * If a message has extension headers, retrieve them here. * Call like this: * * unsigned int pos = 0; * * while (1) { * buflen = sizeof(buffer); * type = rds_message_next_extension(hdr, &pos, buffer, &buflen); * if (type == RDS_EXTHDR_NONE) * break; * ... * } */ int rds_message_next_extension(struct rds_header *hdr, unsigned int *pos, void *buf, unsigned int *buflen) { unsigned int offset, ext_type, ext_len; u8 *src = hdr->h_exthdr; offset = *pos; if (offset >= RDS_HEADER_EXT_SPACE) goto none; /* Get the extension type and length. For now, the * length is implied by the extension type. */ ext_type = src[offset++]; if (ext_type == RDS_EXTHDR_NONE || ext_type >= __RDS_EXTHDR_MAX) goto none; ext_len = rds_exthdr_size[ext_type]; if (offset + ext_len > RDS_HEADER_EXT_SPACE) goto none; *pos = offset + ext_len; if (ext_len < *buflen) *buflen = ext_len; memcpy(buf, src + offset, *buflen); return ext_type; none: *pos = RDS_HEADER_EXT_SPACE; *buflen = 0; return RDS_EXTHDR_NONE; } int rds_message_add_rdma_dest_extension(struct rds_header *hdr, u32 r_key, u32 offset) { struct rds_ext_header_rdma_dest ext_hdr; ext_hdr.h_rdma_rkey = cpu_to_be32(r_key); ext_hdr.h_rdma_offset = cpu_to_be32(offset); return rds_message_add_extension(hdr, RDS_EXTHDR_RDMA_DEST, &ext_hdr, sizeof(ext_hdr)); } EXPORT_SYMBOL_GPL(rds_message_add_rdma_dest_extension); /* * Each rds_message is allocated with extra space for the scatterlist entries * rds ops will need. This is to minimize memory allocation count. Then, each rds op * can grab SGs when initializing its part of the rds_message. */ struct rds_message *rds_message_alloc(unsigned int extra_len, gfp_t gfp) { struct rds_message *rm; if (extra_len > KMALLOC_MAX_SIZE - sizeof(struct rds_message)) return NULL; rm = kzalloc(sizeof(struct rds_message) + extra_len, gfp); if (!rm) goto out; rm->m_used_sgs = 0; rm->m_total_sgs = extra_len / sizeof(struct scatterlist); refcount_set(&rm->m_refcount, 1); INIT_LIST_HEAD(&rm->m_sock_item); INIT_LIST_HEAD(&rm->m_conn_item); spin_lock_init(&rm->m_rs_lock); init_waitqueue_head(&rm->m_flush_wait); out: return rm; } /* * RDS ops use this to grab SG entries from the rm's sg pool. */ struct scatterlist *rds_message_alloc_sgs(struct rds_message *rm, int nents) { struct scatterlist *sg_first = (struct scatterlist *) &rm[1]; struct scatterlist *sg_ret; if (nents <= 0) { pr_warn("rds: alloc sgs failed! nents <= 0\n"); return ERR_PTR(-EINVAL); } if (rm->m_used_sgs + nents > rm->m_total_sgs) { pr_warn("rds: alloc sgs failed! total %d used %d nents %d\n", rm->m_total_sgs, rm->m_used_sgs, nents); return ERR_PTR(-ENOMEM); } sg_ret = &sg_first[rm->m_used_sgs]; sg_init_table(sg_ret, nents); rm->m_used_sgs += nents; return sg_ret; } struct rds_message *rds_message_map_pages(unsigned long *page_addrs, unsigned int total_len) { struct rds_message *rm; unsigned int i; int num_sgs = DIV_ROUND_UP(total_len, PAGE_SIZE); int extra_bytes = num_sgs * sizeof(struct scatterlist); rm = rds_message_alloc(extra_bytes, GFP_NOWAIT); if (!rm) return ERR_PTR(-ENOMEM); set_bit(RDS_MSG_PAGEVEC, &rm->m_flags); rm->m_inc.i_hdr.h_len = cpu_to_be32(total_len); rm->data.op_nents = DIV_ROUND_UP(total_len, PAGE_SIZE); rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs); if (IS_ERR(rm->data.op_sg)) { void *err = ERR_CAST(rm->data.op_sg); rds_message_put(rm); return err; } for (i = 0; i < rm->data.op_nents; ++i) { sg_set_page(&rm->data.op_sg[i], virt_to_page((void *)page_addrs[i]), PAGE_SIZE, 0); } return rm; } static int rds_message_zcopy_from_user(struct rds_message *rm, struct iov_iter *from) { struct scatterlist *sg; int ret = 0; int length = iov_iter_count(from); struct rds_msg_zcopy_info *info; rm->m_inc.i_hdr.h_len = cpu_to_be32(iov_iter_count(from)); /* * now allocate and copy in the data payload. */ sg = rm->data.op_sg; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; INIT_LIST_HEAD(&info->rs_zcookie_next); rm->data.op_mmp_znotifier = &info->znotif; if (mm_account_pinned_pages(&rm->data.op_mmp_znotifier->z_mmp, length)) { ret = -ENOMEM; goto err; } while (iov_iter_count(from)) { struct page *pages; size_t start; ssize_t copied; copied = iov_iter_get_pages2(from, &pages, PAGE_SIZE, 1, &start); if (copied < 0) { struct mmpin *mmp; int i; for (i = 0; i < rm->data.op_nents; i++) put_page(sg_page(&rm->data.op_sg[i])); mmp = &rm->data.op_mmp_znotifier->z_mmp; mm_unaccount_pinned_pages(mmp); ret = -EFAULT; goto err; } length -= copied; sg_set_page(sg, pages, copied, start); rm->data.op_nents++; sg++; } WARN_ON_ONCE(length != 0); return ret; err: kfree(info); rm->data.op_mmp_znotifier = NULL; return ret; } int rds_message_copy_from_user(struct rds_message *rm, struct iov_iter *from, bool zcopy) { unsigned long to_copy, nbytes; unsigned long sg_off; struct scatterlist *sg; int ret = 0; rm->m_inc.i_hdr.h_len = cpu_to_be32(iov_iter_count(from)); /* now allocate and copy in the data payload. */ sg = rm->data.op_sg; sg_off = 0; /* Dear gcc, sg->page will be null from kzalloc. */ if (zcopy) return rds_message_zcopy_from_user(rm, from); while (iov_iter_count(from)) { if (!sg_page(sg)) { ret = rds_page_remainder_alloc(sg, iov_iter_count(from), GFP_HIGHUSER); if (ret) return ret; rm->data.op_nents++; sg_off = 0; } to_copy = min_t(unsigned long, iov_iter_count(from), sg->length - sg_off); rds_stats_add(s_copy_from_user, to_copy); nbytes = copy_page_from_iter(sg_page(sg), sg->offset + sg_off, to_copy, from); if (nbytes != to_copy) return -EFAULT; sg_off += to_copy; if (sg_off == sg->length) sg++; } return ret; } int rds_message_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to) { struct rds_message *rm; struct scatterlist *sg; unsigned long to_copy; unsigned long vec_off; int copied; int ret; u32 len; rm = container_of(inc, struct rds_message, m_inc); len = be32_to_cpu(rm->m_inc.i_hdr.h_len); sg = rm->data.op_sg; vec_off = 0; copied = 0; while (iov_iter_count(to) && copied < len) { to_copy = min_t(unsigned long, iov_iter_count(to), sg->length - vec_off); to_copy = min_t(unsigned long, to_copy, len - copied); rds_stats_add(s_copy_to_user, to_copy); ret = copy_page_to_iter(sg_page(sg), sg->offset + vec_off, to_copy, to); if (ret != to_copy) return -EFAULT; vec_off += to_copy; copied += to_copy; if (vec_off == sg->length) { vec_off = 0; sg++; } } return copied; } /* * If the message is still on the send queue, wait until the transport * is done with it. This is particularly important for RDMA operations. */ void rds_message_wait(struct rds_message *rm) { wait_event_interruptible(rm->m_flush_wait, !test_bit(RDS_MSG_MAPPED, &rm->m_flags)); } void rds_message_unmapped(struct rds_message *rm) { clear_bit(RDS_MSG_MAPPED, &rm->m_flags); wake_up_interruptible(&rm->m_flush_wait); } EXPORT_SYMBOL_GPL(rds_message_unmapped);
linux-master
net/rds/message.c
/* * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/in.h> #include <net/tcp.h> #include "rds_single_path.h" #include "rds.h" #include "tcp.h" void rds_tcp_xmit_path_prepare(struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; tcp_sock_set_cork(tc->t_sock->sk, true); } void rds_tcp_xmit_path_complete(struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; tcp_sock_set_cork(tc->t_sock->sk, false); } /* the core send_sem serializes this with other xmit and shutdown */ static int rds_tcp_sendmsg(struct socket *sock, void *data, unsigned int len) { struct kvec vec = { .iov_base = data, .iov_len = len, }; struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL, }; return kernel_sendmsg(sock, &msg, &vec, 1, vec.iov_len); } /* the core send_sem serializes this with other xmit and shutdown */ int rds_tcp_xmit(struct rds_connection *conn, struct rds_message *rm, unsigned int hdr_off, unsigned int sg, unsigned int off) { struct rds_conn_path *cp = rm->m_inc.i_conn_path; struct rds_tcp_connection *tc = cp->cp_transport_data; struct msghdr msg = {}; struct bio_vec bvec; int done = 0; int ret = 0; if (hdr_off == 0) { /* * m_ack_seq is set to the sequence number of the last byte of * header and data. see rds_tcp_is_acked(). */ tc->t_last_sent_nxt = rds_tcp_write_seq(tc); rm->m_ack_seq = tc->t_last_sent_nxt + sizeof(struct rds_header) + be32_to_cpu(rm->m_inc.i_hdr.h_len) - 1; smp_mb__before_atomic(); set_bit(RDS_MSG_HAS_ACK_SEQ, &rm->m_flags); tc->t_last_expected_una = rm->m_ack_seq + 1; if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED; rdsdebug("rm %p tcp nxt %u ack_seq %llu\n", rm, rds_tcp_write_seq(tc), (unsigned long long)rm->m_ack_seq); } if (hdr_off < sizeof(struct rds_header)) { /* see rds_tcp_write_space() */ set_bit(SOCK_NOSPACE, &tc->t_sock->sk->sk_socket->flags); ret = rds_tcp_sendmsg(tc->t_sock, (void *)&rm->m_inc.i_hdr + hdr_off, sizeof(rm->m_inc.i_hdr) - hdr_off); if (ret < 0) goto out; done += ret; if (hdr_off + done != sizeof(struct rds_header)) goto out; } while (sg < rm->data.op_nents) { msg.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL; if (sg + 1 < rm->data.op_nents) msg.msg_flags |= MSG_MORE; bvec_set_page(&bvec, sg_page(&rm->data.op_sg[sg]), rm->data.op_sg[sg].length - off, rm->data.op_sg[sg].offset + off); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, rm->data.op_sg[sg].length - off); ret = sock_sendmsg(tc->t_sock, &msg); rdsdebug("tcp sendpage %p:%u:%u ret %d\n", (void *)sg_page(&rm->data.op_sg[sg]), rm->data.op_sg[sg].offset + off, rm->data.op_sg[sg].length - off, ret); if (ret <= 0) break; off += ret; done += ret; if (off == rm->data.op_sg[sg].length) { off = 0; sg++; } } out: if (ret <= 0) { /* write_space will hit after EAGAIN, all else fatal */ if (ret == -EAGAIN) { rds_tcp_stats_inc(s_tcp_sndbuf_full); ret = 0; } else { /* No need to disconnect/reconnect if path_drop * has already been triggered, because, e.g., of * an incoming RST. */ if (rds_conn_path_up(cp)) { pr_warn("RDS/tcp: send to %pI6c on cp [%d]" "returned %d, " "disconnecting and reconnecting\n", &conn->c_faddr, cp->cp_index, ret); rds_conn_path_drop(cp, false); } } } if (done == 0) done = ret; return done; } /* * rm->m_ack_seq is set to the tcp sequence number that corresponds to the * last byte of the message, including the header. This means that the * entire message has been received if rm->m_ack_seq is "before" the next * unacked byte of the TCP sequence space. We have to do very careful * wrapping 32bit comparisons here. */ static int rds_tcp_is_acked(struct rds_message *rm, uint64_t ack) { if (!test_bit(RDS_MSG_HAS_ACK_SEQ, &rm->m_flags)) return 0; return (__s32)((u32)rm->m_ack_seq - (u32)ack) < 0; } void rds_tcp_write_space(struct sock *sk) { void (*write_space)(struct sock *sk); struct rds_conn_path *cp; struct rds_tcp_connection *tc; read_lock_bh(&sk->sk_callback_lock); cp = sk->sk_user_data; if (!cp) { write_space = sk->sk_write_space; goto out; } tc = cp->cp_transport_data; rdsdebug("write_space for tc %p\n", tc); write_space = tc->t_orig_write_space; rds_tcp_stats_inc(s_tcp_write_space_calls); rdsdebug("tcp una %u\n", rds_tcp_snd_una(tc)); tc->t_last_seen_una = rds_tcp_snd_una(tc); rds_send_path_drop_acked(cp, rds_tcp_snd_una(tc), rds_tcp_is_acked); rcu_read_lock(); if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf && !rds_destroy_pending(cp->cp_conn)) queue_delayed_work(rds_wq, &cp->cp_send_w, 0); rcu_read_unlock(); out: read_unlock_bh(&sk->sk_callback_lock); /* * write_space is only called when data leaves tcp's send queue if * SOCK_NOSPACE is set. We set SOCK_NOSPACE every time we put * data in tcp's send queue because we use write_space to parse the * sequence numbers and notice that rds messages have been fully * received. * * tcp's write_space clears SOCK_NOSPACE if the send queue has more * than a certain amount of space. So we need to set it again *after* * we call tcp's write_space or else we might only get called on the * first of a series of incoming tcp acks. */ write_space(sk); if (sk->sk_socket) set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); }
linux-master
net/rds/tcp_send.c
// SPDX-License-Identifier: GPL-2.0-only #include <linux/module.h> #include <linux/sock_diag.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/packet_diag.h> #include <linux/percpu.h> #include <net/net_namespace.h> #include <net/sock.h> #include "internal.h" static int pdiag_put_info(const struct packet_sock *po, struct sk_buff *nlskb) { struct packet_diag_info pinfo; pinfo.pdi_index = po->ifindex; pinfo.pdi_version = po->tp_version; pinfo.pdi_reserve = po->tp_reserve; pinfo.pdi_copy_thresh = po->copy_thresh; pinfo.pdi_tstamp = READ_ONCE(po->tp_tstamp); pinfo.pdi_flags = 0; if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) pinfo.pdi_flags |= PDI_RUNNING; if (packet_sock_flag(po, PACKET_SOCK_AUXDATA)) pinfo.pdi_flags |= PDI_AUXDATA; if (packet_sock_flag(po, PACKET_SOCK_ORIGDEV)) pinfo.pdi_flags |= PDI_ORIGDEV; if (READ_ONCE(po->vnet_hdr_sz)) pinfo.pdi_flags |= PDI_VNETHDR; if (packet_sock_flag(po, PACKET_SOCK_TP_LOSS)) pinfo.pdi_flags |= PDI_LOSS; return nla_put(nlskb, PACKET_DIAG_INFO, sizeof(pinfo), &pinfo); } static int pdiag_put_mclist(const struct packet_sock *po, struct sk_buff *nlskb) { struct nlattr *mca; struct packet_mclist *ml; mca = nla_nest_start_noflag(nlskb, PACKET_DIAG_MCLIST); if (!mca) return -EMSGSIZE; rtnl_lock(); for (ml = po->mclist; ml; ml = ml->next) { struct packet_diag_mclist *dml; dml = nla_reserve_nohdr(nlskb, sizeof(*dml)); if (!dml) { rtnl_unlock(); nla_nest_cancel(nlskb, mca); return -EMSGSIZE; } dml->pdmc_index = ml->ifindex; dml->pdmc_type = ml->type; dml->pdmc_alen = ml->alen; dml->pdmc_count = ml->count; BUILD_BUG_ON(sizeof(dml->pdmc_addr) != sizeof(ml->addr)); memcpy(dml->pdmc_addr, ml->addr, sizeof(ml->addr)); } rtnl_unlock(); nla_nest_end(nlskb, mca); return 0; } static int pdiag_put_ring(struct packet_ring_buffer *ring, int ver, int nl_type, struct sk_buff *nlskb) { struct packet_diag_ring pdr; if (!ring->pg_vec) return 0; pdr.pdr_block_size = ring->pg_vec_pages << PAGE_SHIFT; pdr.pdr_block_nr = ring->pg_vec_len; pdr.pdr_frame_size = ring->frame_size; pdr.pdr_frame_nr = ring->frame_max + 1; if (ver > TPACKET_V2) { pdr.pdr_retire_tmo = ring->prb_bdqc.retire_blk_tov; pdr.pdr_sizeof_priv = ring->prb_bdqc.blk_sizeof_priv; pdr.pdr_features = ring->prb_bdqc.feature_req_word; } else { pdr.pdr_retire_tmo = 0; pdr.pdr_sizeof_priv = 0; pdr.pdr_features = 0; } return nla_put(nlskb, nl_type, sizeof(pdr), &pdr); } static int pdiag_put_rings_cfg(struct packet_sock *po, struct sk_buff *skb) { int ret; mutex_lock(&po->pg_vec_lock); ret = pdiag_put_ring(&po->rx_ring, po->tp_version, PACKET_DIAG_RX_RING, skb); if (!ret) ret = pdiag_put_ring(&po->tx_ring, po->tp_version, PACKET_DIAG_TX_RING, skb); mutex_unlock(&po->pg_vec_lock); return ret; } static int pdiag_put_fanout(struct packet_sock *po, struct sk_buff *nlskb) { int ret = 0; mutex_lock(&fanout_mutex); if (po->fanout) { u32 val; val = (u32)po->fanout->id | ((u32)po->fanout->type << 16); ret = nla_put_u32(nlskb, PACKET_DIAG_FANOUT, val); } mutex_unlock(&fanout_mutex); return ret; } static int sk_diag_fill(struct sock *sk, struct sk_buff *skb, struct packet_diag_req *req, bool may_report_filterinfo, struct user_namespace *user_ns, u32 portid, u32 seq, u32 flags, int sk_ino) { struct nlmsghdr *nlh; struct packet_diag_msg *rp; struct packet_sock *po = pkt_sk(sk); nlh = nlmsg_put(skb, portid, seq, SOCK_DIAG_BY_FAMILY, sizeof(*rp), flags); if (!nlh) return -EMSGSIZE; rp = nlmsg_data(nlh); rp->pdiag_family = AF_PACKET; rp->pdiag_type = sk->sk_type; rp->pdiag_num = ntohs(READ_ONCE(po->num)); rp->pdiag_ino = sk_ino; sock_diag_save_cookie(sk, rp->pdiag_cookie); if ((req->pdiag_show & PACKET_SHOW_INFO) && pdiag_put_info(po, skb)) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_INFO) && nla_put_u32(skb, PACKET_DIAG_UID, from_kuid_munged(user_ns, sock_i_uid(sk)))) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_MCLIST) && pdiag_put_mclist(po, skb)) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_RING_CFG) && pdiag_put_rings_cfg(po, skb)) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_FANOUT) && pdiag_put_fanout(po, skb)) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_MEMINFO) && sock_diag_put_meminfo(sk, skb, PACKET_DIAG_MEMINFO)) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_FILTER) && sock_diag_put_filterinfo(may_report_filterinfo, sk, skb, PACKET_DIAG_FILTER)) goto out_nlmsg_trim; nlmsg_end(skb, nlh); return 0; out_nlmsg_trim: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int packet_diag_dump(struct sk_buff *skb, struct netlink_callback *cb) { int num = 0, s_num = cb->args[0]; struct packet_diag_req *req; struct net *net; struct sock *sk; bool may_report_filterinfo; net = sock_net(skb->sk); req = nlmsg_data(cb->nlh); may_report_filterinfo = netlink_net_capable(cb->skb, CAP_NET_ADMIN); mutex_lock(&net->packet.sklist_lock); sk_for_each(sk, &net->packet.sklist) { if (!net_eq(sock_net(sk), net)) continue; if (num < s_num) goto next; if (sk_diag_fill(sk, skb, req, may_report_filterinfo, sk_user_ns(NETLINK_CB(cb->skb).sk), NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, sock_i_ino(sk)) < 0) goto done; next: num++; } done: mutex_unlock(&net->packet.sklist_lock); cb->args[0] = num; return skb->len; } static int packet_diag_handler_dump(struct sk_buff *skb, struct nlmsghdr *h) { int hdrlen = sizeof(struct packet_diag_req); struct net *net = sock_net(skb->sk); struct packet_diag_req *req; if (nlmsg_len(h) < hdrlen) return -EINVAL; req = nlmsg_data(h); /* Make it possible to support protocol filtering later */ if (req->sdiag_protocol) return -EINVAL; if (h->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .dump = packet_diag_dump, }; return netlink_dump_start(net->diag_nlsk, skb, h, &c); } else return -EOPNOTSUPP; } static const struct sock_diag_handler packet_diag_handler = { .family = AF_PACKET, .dump = packet_diag_handler_dump, }; static int __init packet_diag_init(void) { return sock_diag_register(&packet_diag_handler); } static void __exit packet_diag_exit(void) { sock_diag_unregister(&packet_diag_handler); } module_init(packet_diag_init); module_exit(packet_diag_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_NETLINK, NETLINK_SOCK_DIAG, 17 /* AF_PACKET */);
linux-master
net/packet/diag.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * PACKET - implements raw packet sockets. * * Authors: Ross Biro * Fred N. van Kempen, <[email protected]> * Alan Cox, <[email protected]> * * Fixes: * Alan Cox : verify_area() now used correctly * Alan Cox : new skbuff lists, look ma no backlogs! * Alan Cox : tidied skbuff lists. * Alan Cox : Now uses generic datagram routines I * added. Also fixed the peek/read crash * from all old Linux datagram code. * Alan Cox : Uses the improved datagram code. * Alan Cox : Added NULL's for socket options. * Alan Cox : Re-commented the code. * Alan Cox : Use new kernel side addressing * Rob Janssen : Correct MTU usage. * Dave Platt : Counter leaks caused by incorrect * interrupt locking and some slightly * dubious gcc output. Can you read * compiler: it said _VOLATILE_ * Richard Kooijman : Timestamp fixes. * Alan Cox : New buffers. Use sk->mac.raw. * Alan Cox : sendmsg/recvmsg support. * Alan Cox : Protocol setting support * Alexey Kuznetsov : Untied from IPv4 stack. * Cyrus Durgin : Fixed kerneld for kmod. * Michal Ostrowski : Module initialization cleanup. * Ulises Alonso : Frame number limit removal and * packet_set_ring memory leak. * Eric Biederman : Allow for > 8 byte hardware addresses. * The convention is that longer addresses * will simply extend the hardware address * byte arrays at the end of sockaddr_ll * and packet_mreq. * Johann Baudy : Added TX RING. * Chetan Loke : Implemented TPACKET_V3 block abstraction * layer. * Copyright (C) 2011, <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/ethtool.h> #include <linux/filter.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/capability.h> #include <linux/fcntl.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/if_packet.h> #include <linux/wireless.h> #include <linux/kernel.h> #include <linux/kmod.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <net/net_namespace.h> #include <net/ip.h> #include <net/protocol.h> #include <linux/skbuff.h> #include <net/sock.h> #include <linux/errno.h> #include <linux/timer.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include <asm/page.h> #include <asm/cacheflush.h> #include <asm/io.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/poll.h> #include <linux/module.h> #include <linux/init.h> #include <linux/mutex.h> #include <linux/if_vlan.h> #include <linux/virtio_net.h> #include <linux/errqueue.h> #include <linux/net_tstamp.h> #include <linux/percpu.h> #ifdef CONFIG_INET #include <net/inet_common.h> #endif #include <linux/bpf.h> #include <net/compat.h> #include <linux/netfilter_netdev.h> #include "internal.h" /* Assumptions: - If the device has no dev->header_ops->create, there is no LL header visible above the device. In this case, its hard_header_len should be 0. The device may prepend its own header internally. In this case, its needed_headroom should be set to the space needed for it to add its internal header. For example, a WiFi driver pretending to be an Ethernet driver should set its hard_header_len to be the Ethernet header length, and set its needed_headroom to be (the real WiFi header length - the fake Ethernet header length). - packet socket receives packets with pulled ll header, so that SOCK_RAW should push it back. On receive: ----------- Incoming, dev_has_header(dev) == true mac_header -> ll header data -> data Outgoing, dev_has_header(dev) == true mac_header -> ll header data -> ll header Incoming, dev_has_header(dev) == false mac_header -> data However drivers often make it point to the ll header. This is incorrect because the ll header should be invisible to us. data -> data Outgoing, dev_has_header(dev) == false mac_header -> data. ll header is invisible to us. data -> data Resume If dev_has_header(dev) == false we are unable to restore the ll header, because it is invisible to us. On transmit: ------------ dev_has_header(dev) == true mac_header -> ll header data -> ll header dev_has_header(dev) == false (ll header is invisible to us) mac_header -> data data -> data We should set network_header on output to the correct position, packet classifier depends on it. */ /* Private packet socket structures. */ /* identical to struct packet_mreq except it has * a longer address field. */ struct packet_mreq_max { int mr_ifindex; unsigned short mr_type; unsigned short mr_alen; unsigned char mr_address[MAX_ADDR_LEN]; }; union tpacket_uhdr { struct tpacket_hdr *h1; struct tpacket2_hdr *h2; struct tpacket3_hdr *h3; void *raw; }; static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, int closing, int tx_ring); #define V3_ALIGNMENT (8) #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) #define BLK_PLUS_PRIV(sz_of_priv) \ (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) struct packet_sock; static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev); static void *packet_previous_frame(struct packet_sock *po, struct packet_ring_buffer *rb, int status); static void packet_increment_head(struct packet_ring_buffer *buff); static int prb_curr_blk_in_use(struct tpacket_block_desc *); static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, struct packet_sock *); static void prb_retire_current_block(struct tpacket_kbdq_core *, struct packet_sock *, unsigned int status); static int prb_queue_frozen(struct tpacket_kbdq_core *); static void prb_open_block(struct tpacket_kbdq_core *, struct tpacket_block_desc *); static void prb_retire_rx_blk_timer_expired(struct timer_list *); static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); static void prb_clear_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); static void prb_fill_vlan_info(struct tpacket_kbdq_core *, struct tpacket3_hdr *); static void packet_flush_mclist(struct sock *sk); static u16 packet_pick_tx_queue(struct sk_buff *skb); struct packet_skb_cb { union { struct sockaddr_pkt pkt; union { /* Trick: alias skb original length with * ll.sll_family and ll.protocol in order * to save room. */ unsigned int origlen; struct sockaddr_ll ll; }; } sa; }; #define vio_le() virtio_legacy_is_little_endian() #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) #define GET_PBLOCK_DESC(x, bid) \ ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) #define GET_NEXT_PRB_BLK_NUM(x) \ (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ ((x)->kactive_blk_num+1) : 0) static void __fanout_unlink(struct sock *sk, struct packet_sock *po); static void __fanout_link(struct sock *sk, struct packet_sock *po); #ifdef CONFIG_NETFILTER_EGRESS static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb) { struct sk_buff *next, *head = NULL, *tail; int rc; rcu_read_lock(); for (; skb != NULL; skb = next) { next = skb->next; skb_mark_not_on_list(skb); if (!nf_hook_egress(skb, &rc, skb->dev)) continue; if (!head) head = skb; else tail->next = skb; tail = skb; } rcu_read_unlock(); return head; } #endif static int packet_xmit(const struct packet_sock *po, struct sk_buff *skb) { if (!packet_sock_flag(po, PACKET_SOCK_QDISC_BYPASS)) return dev_queue_xmit(skb); #ifdef CONFIG_NETFILTER_EGRESS if (nf_hook_egress_active()) { skb = nf_hook_direct_egress(skb); if (!skb) return NET_XMIT_DROP; } #endif return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); } static struct net_device *packet_cached_dev_get(struct packet_sock *po) { struct net_device *dev; rcu_read_lock(); dev = rcu_dereference(po->cached_dev); dev_hold(dev); rcu_read_unlock(); return dev; } static void packet_cached_dev_assign(struct packet_sock *po, struct net_device *dev) { rcu_assign_pointer(po->cached_dev, dev); } static void packet_cached_dev_reset(struct packet_sock *po) { RCU_INIT_POINTER(po->cached_dev, NULL); } static u16 packet_pick_tx_queue(struct sk_buff *skb) { struct net_device *dev = skb->dev; const struct net_device_ops *ops = dev->netdev_ops; int cpu = raw_smp_processor_id(); u16 queue_index; #ifdef CONFIG_XPS skb->sender_cpu = cpu + 1; #endif skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); if (ops->ndo_select_queue) { queue_index = ops->ndo_select_queue(dev, skb, NULL); queue_index = netdev_cap_txqueue(dev, queue_index); } else { queue_index = netdev_pick_tx(dev, skb, NULL); } return queue_index; } /* __register_prot_hook must be invoked through register_prot_hook * or from a context in which asynchronous accesses to the packet * socket is not possible (packet_create()). */ static void __register_prot_hook(struct sock *sk) { struct packet_sock *po = pkt_sk(sk); if (!packet_sock_flag(po, PACKET_SOCK_RUNNING)) { if (po->fanout) __fanout_link(sk, po); else dev_add_pack(&po->prot_hook); sock_hold(sk); packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 1); } } static void register_prot_hook(struct sock *sk) { lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); __register_prot_hook(sk); } /* If the sync parameter is true, we will temporarily drop * the po->bind_lock and do a synchronize_net to make sure no * asynchronous packet processing paths still refer to the elements * of po->prot_hook. If the sync parameter is false, it is the * callers responsibility to take care of this. */ static void __unregister_prot_hook(struct sock *sk, bool sync) { struct packet_sock *po = pkt_sk(sk); lockdep_assert_held_once(&po->bind_lock); packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 0); if (po->fanout) __fanout_unlink(sk, po); else __dev_remove_pack(&po->prot_hook); __sock_put(sk); if (sync) { spin_unlock(&po->bind_lock); synchronize_net(); spin_lock(&po->bind_lock); } } static void unregister_prot_hook(struct sock *sk, bool sync) { struct packet_sock *po = pkt_sk(sk); if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) __unregister_prot_hook(sk, sync); } static inline struct page * __pure pgv_to_page(void *addr) { if (is_vmalloc_addr(addr)) return vmalloc_to_page(addr); return virt_to_page(addr); } static void __packet_set_status(struct packet_sock *po, void *frame, int status) { union tpacket_uhdr h; /* WRITE_ONCE() are paired with READ_ONCE() in __packet_get_status */ h.raw = frame; switch (po->tp_version) { case TPACKET_V1: WRITE_ONCE(h.h1->tp_status, status); flush_dcache_page(pgv_to_page(&h.h1->tp_status)); break; case TPACKET_V2: WRITE_ONCE(h.h2->tp_status, status); flush_dcache_page(pgv_to_page(&h.h2->tp_status)); break; case TPACKET_V3: WRITE_ONCE(h.h3->tp_status, status); flush_dcache_page(pgv_to_page(&h.h3->tp_status)); break; default: WARN(1, "TPACKET version not supported.\n"); BUG(); } smp_wmb(); } static int __packet_get_status(const struct packet_sock *po, void *frame) { union tpacket_uhdr h; smp_rmb(); /* READ_ONCE() are paired with WRITE_ONCE() in __packet_set_status */ h.raw = frame; switch (po->tp_version) { case TPACKET_V1: flush_dcache_page(pgv_to_page(&h.h1->tp_status)); return READ_ONCE(h.h1->tp_status); case TPACKET_V2: flush_dcache_page(pgv_to_page(&h.h2->tp_status)); return READ_ONCE(h.h2->tp_status); case TPACKET_V3: flush_dcache_page(pgv_to_page(&h.h3->tp_status)); return READ_ONCE(h.h3->tp_status); default: WARN(1, "TPACKET version not supported.\n"); BUG(); return 0; } } static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, unsigned int flags) { struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); if (shhwtstamps && (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) return TP_STATUS_TS_RAW_HARDWARE; if ((flags & SOF_TIMESTAMPING_SOFTWARE) && ktime_to_timespec64_cond(skb_tstamp(skb), ts)) return TP_STATUS_TS_SOFTWARE; return 0; } static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, struct sk_buff *skb) { union tpacket_uhdr h; struct timespec64 ts; __u32 ts_status; if (!(ts_status = tpacket_get_timestamp(skb, &ts, READ_ONCE(po->tp_tstamp)))) return 0; h.raw = frame; /* * versions 1 through 3 overflow the timestamps in y2106, since they * all store the seconds in a 32-bit unsigned integer. * If we create a version 4, that should have a 64-bit timestamp, * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit * nanoseconds. */ switch (po->tp_version) { case TPACKET_V1: h.h1->tp_sec = ts.tv_sec; h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; break; case TPACKET_V2: h.h2->tp_sec = ts.tv_sec; h.h2->tp_nsec = ts.tv_nsec; break; case TPACKET_V3: h.h3->tp_sec = ts.tv_sec; h.h3->tp_nsec = ts.tv_nsec; break; default: WARN(1, "TPACKET version not supported.\n"); BUG(); } /* one flush is safe, as both fields always lie on the same cacheline */ flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); smp_wmb(); return ts_status; } static void *packet_lookup_frame(const struct packet_sock *po, const struct packet_ring_buffer *rb, unsigned int position, int status) { unsigned int pg_vec_pos, frame_offset; union tpacket_uhdr h; pg_vec_pos = position / rb->frames_per_block; frame_offset = position % rb->frames_per_block; h.raw = rb->pg_vec[pg_vec_pos].buffer + (frame_offset * rb->frame_size); if (status != __packet_get_status(po, h.raw)) return NULL; return h.raw; } static void *packet_current_frame(struct packet_sock *po, struct packet_ring_buffer *rb, int status) { return packet_lookup_frame(po, rb, rb->head, status); } static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) { del_timer_sync(&pkc->retire_blk_timer); } static void prb_shutdown_retire_blk_timer(struct packet_sock *po, struct sk_buff_head *rb_queue) { struct tpacket_kbdq_core *pkc; pkc = GET_PBDQC_FROM_RB(&po->rx_ring); spin_lock_bh(&rb_queue->lock); pkc->delete_blk_timer = 1; spin_unlock_bh(&rb_queue->lock); prb_del_retire_blk_timer(pkc); } static void prb_setup_retire_blk_timer(struct packet_sock *po) { struct tpacket_kbdq_core *pkc; pkc = GET_PBDQC_FROM_RB(&po->rx_ring); timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 0); pkc->retire_blk_timer.expires = jiffies; } static int prb_calc_retire_blk_tmo(struct packet_sock *po, int blk_size_in_bytes) { struct net_device *dev; unsigned int mbits, div; struct ethtool_link_ksettings ecmd; int err; rtnl_lock(); dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); if (unlikely(!dev)) { rtnl_unlock(); return DEFAULT_PRB_RETIRE_TOV; } err = __ethtool_get_link_ksettings(dev, &ecmd); rtnl_unlock(); if (err) return DEFAULT_PRB_RETIRE_TOV; /* If the link speed is so slow you don't really * need to worry about perf anyways */ if (ecmd.base.speed < SPEED_1000 || ecmd.base.speed == SPEED_UNKNOWN) return DEFAULT_PRB_RETIRE_TOV; div = ecmd.base.speed / 1000; mbits = (blk_size_in_bytes * 8) / (1024 * 1024); if (div) mbits /= div; if (div) return mbits + 1; return mbits; } static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, union tpacket_req_u *req_u) { p1->feature_req_word = req_u->req3.tp_feature_req_word; } static void init_prb_bdqc(struct packet_sock *po, struct packet_ring_buffer *rb, struct pgv *pg_vec, union tpacket_req_u *req_u) { struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); struct tpacket_block_desc *pbd; memset(p1, 0x0, sizeof(*p1)); p1->knxt_seq_num = 1; p1->pkbdq = pg_vec; pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; p1->pkblk_start = pg_vec[0].buffer; p1->kblk_size = req_u->req3.tp_block_size; p1->knum_blocks = req_u->req3.tp_block_nr; p1->hdrlen = po->tp_hdrlen; p1->version = po->tp_version; p1->last_kactive_blk_num = 0; po->stats.stats3.tp_freeze_q_cnt = 0; if (req_u->req3.tp_retire_blk_tov) p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; else p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, req_u->req3.tp_block_size); p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; rwlock_init(&p1->blk_fill_in_prog_lock); p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); prb_init_ft_ops(p1, req_u); prb_setup_retire_blk_timer(po); prb_open_block(p1, pbd); } /* Do NOT update the last_blk_num first. * Assumes sk_buff_head lock is held. */ static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) { mod_timer(&pkc->retire_blk_timer, jiffies + pkc->tov_in_jiffies); pkc->last_kactive_blk_num = pkc->kactive_blk_num; } /* * Timer logic: * 1) We refresh the timer only when we open a block. * By doing this we don't waste cycles refreshing the timer * on packet-by-packet basis. * * With a 1MB block-size, on a 1Gbps line, it will take * i) ~8 ms to fill a block + ii) memcpy etc. * In this cut we are not accounting for the memcpy time. * * So, if the user sets the 'tmo' to 10ms then the timer * will never fire while the block is still getting filled * (which is what we want). However, the user could choose * to close a block early and that's fine. * * But when the timer does fire, we check whether or not to refresh it. * Since the tmo granularity is in msecs, it is not too expensive * to refresh the timer, lets say every '8' msecs. * Either the user can set the 'tmo' or we can derive it based on * a) line-speed and b) block-size. * prb_calc_retire_blk_tmo() calculates the tmo. * */ static void prb_retire_rx_blk_timer_expired(struct timer_list *t) { struct packet_sock *po = from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); unsigned int frozen; struct tpacket_block_desc *pbd; spin_lock(&po->sk.sk_receive_queue.lock); frozen = prb_queue_frozen(pkc); pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); if (unlikely(pkc->delete_blk_timer)) goto out; /* We only need to plug the race when the block is partially filled. * tpacket_rcv: * lock(); increment BLOCK_NUM_PKTS; unlock() * copy_bits() is in progress ... * timer fires on other cpu: * we can't retire the current block because copy_bits * is in progress. * */ if (BLOCK_NUM_PKTS(pbd)) { /* Waiting for skb_copy_bits to finish... */ write_lock(&pkc->blk_fill_in_prog_lock); write_unlock(&pkc->blk_fill_in_prog_lock); } if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { if (!frozen) { if (!BLOCK_NUM_PKTS(pbd)) { /* An empty block. Just refresh the timer. */ goto refresh_timer; } prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); if (!prb_dispatch_next_block(pkc, po)) goto refresh_timer; else goto out; } else { /* Case 1. Queue was frozen because user-space was * lagging behind. */ if (prb_curr_blk_in_use(pbd)) { /* * Ok, user-space is still behind. * So just refresh the timer. */ goto refresh_timer; } else { /* Case 2. queue was frozen,user-space caught up, * now the link went idle && the timer fired. * We don't have a block to close.So we open this * block and restart the timer. * opening a block thaws the queue,restarts timer * Thawing/timer-refresh is a side effect. */ prb_open_block(pkc, pbd); goto out; } } } refresh_timer: _prb_refresh_rx_retire_blk_timer(pkc); out: spin_unlock(&po->sk.sk_receive_queue.lock); } static void prb_flush_block(struct tpacket_kbdq_core *pkc1, struct tpacket_block_desc *pbd1, __u32 status) { /* Flush everything minus the block header */ #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 u8 *start, *end; start = (u8 *)pbd1; /* Skip the block header(we know header WILL fit in 4K) */ start += PAGE_SIZE; end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); for (; start < end; start += PAGE_SIZE) flush_dcache_page(pgv_to_page(start)); smp_wmb(); #endif /* Now update the block status. */ BLOCK_STATUS(pbd1) = status; /* Flush the block header */ #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 start = (u8 *)pbd1; flush_dcache_page(pgv_to_page(start)); smp_wmb(); #endif } /* * Side effect: * * 1) flush the block * 2) Increment active_blk_num * * Note:We DONT refresh the timer on purpose. * Because almost always the next block will be opened. */ static void prb_close_block(struct tpacket_kbdq_core *pkc1, struct tpacket_block_desc *pbd1, struct packet_sock *po, unsigned int stat) { __u32 status = TP_STATUS_USER | stat; struct tpacket3_hdr *last_pkt; struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; struct sock *sk = &po->sk; if (atomic_read(&po->tp_drops)) status |= TP_STATUS_LOSING; last_pkt = (struct tpacket3_hdr *)pkc1->prev; last_pkt->tp_next_offset = 0; /* Get the ts of the last pkt */ if (BLOCK_NUM_PKTS(pbd1)) { h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; } else { /* Ok, we tmo'd - so get the current time. * * It shouldn't really happen as we don't close empty * blocks. See prb_retire_rx_blk_timer_expired(). */ struct timespec64 ts; ktime_get_real_ts64(&ts); h1->ts_last_pkt.ts_sec = ts.tv_sec; h1->ts_last_pkt.ts_nsec = ts.tv_nsec; } smp_wmb(); /* Flush the block */ prb_flush_block(pkc1, pbd1, status); sk->sk_data_ready(sk); pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); } static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) { pkc->reset_pending_on_curr_blk = 0; } /* * Side effect of opening a block: * * 1) prb_queue is thawed. * 2) retire_blk_timer is refreshed. * */ static void prb_open_block(struct tpacket_kbdq_core *pkc1, struct tpacket_block_desc *pbd1) { struct timespec64 ts; struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; smp_rmb(); /* We could have just memset this but we will lose the * flexibility of making the priv area sticky */ BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; BLOCK_NUM_PKTS(pbd1) = 0; BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); ktime_get_real_ts64(&ts); h1->ts_first_pkt.ts_sec = ts.tv_sec; h1->ts_first_pkt.ts_nsec = ts.tv_nsec; pkc1->pkblk_start = (char *)pbd1; pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; pbd1->version = pkc1->version; pkc1->prev = pkc1->nxt_offset; pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; prb_thaw_queue(pkc1); _prb_refresh_rx_retire_blk_timer(pkc1); smp_wmb(); } /* * Queue freeze logic: * 1) Assume tp_block_nr = 8 blocks. * 2) At time 't0', user opens Rx ring. * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 * 4) user-space is either sleeping or processing block '0'. * 5) tpacket_rcv is currently filling block '7', since there is no space left, * it will close block-7,loop around and try to fill block '0'. * call-flow: * __packet_lookup_frame_in_block * prb_retire_current_block() * prb_dispatch_next_block() * |->(BLOCK_STATUS == USER) evaluates to true * 5.1) Since block-0 is currently in-use, we just freeze the queue. * 6) Now there are two cases: * 6.1) Link goes idle right after the queue is frozen. * But remember, the last open_block() refreshed the timer. * When this timer expires,it will refresh itself so that we can * re-open block-0 in near future. * 6.2) Link is busy and keeps on receiving packets. This is a simple * case and __packet_lookup_frame_in_block will check if block-0 * is free and can now be re-used. */ static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, struct packet_sock *po) { pkc->reset_pending_on_curr_blk = 1; po->stats.stats3.tp_freeze_q_cnt++; } #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) /* * If the next block is free then we will dispatch it * and return a good offset. * Else, we will freeze the queue. * So, caller must check the return value. */ static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, struct packet_sock *po) { struct tpacket_block_desc *pbd; smp_rmb(); /* 1. Get current block num */ pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); /* 2. If this block is currently in_use then freeze the queue */ if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { prb_freeze_queue(pkc, po); return NULL; } /* * 3. * open this block and return the offset where the first packet * needs to get stored. */ prb_open_block(pkc, pbd); return (void *)pkc->nxt_offset; } static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, struct packet_sock *po, unsigned int status) { struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); /* retire/close the current block */ if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { /* * Plug the case where copy_bits() is in progress on * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't * have space to copy the pkt in the current block and * called prb_retire_current_block() * * We don't need to worry about the TMO case because * the timer-handler already handled this case. */ if (!(status & TP_STATUS_BLK_TMO)) { /* Waiting for skb_copy_bits to finish... */ write_lock(&pkc->blk_fill_in_prog_lock); write_unlock(&pkc->blk_fill_in_prog_lock); } prb_close_block(pkc, pbd, po, status); return; } } static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) { return TP_STATUS_USER & BLOCK_STATUS(pbd); } static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) { return pkc->reset_pending_on_curr_blk; } static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) __releases(&pkc->blk_fill_in_prog_lock) { struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); read_unlock(&pkc->blk_fill_in_prog_lock); } static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, struct tpacket3_hdr *ppd) { ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); } static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, struct tpacket3_hdr *ppd) { ppd->hv1.tp_rxhash = 0; } static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, struct tpacket3_hdr *ppd) { if (skb_vlan_tag_present(pkc->skb)) { ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; } else { ppd->hv1.tp_vlan_tci = 0; ppd->hv1.tp_vlan_tpid = 0; ppd->tp_status = TP_STATUS_AVAILABLE; } } static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, struct tpacket3_hdr *ppd) { ppd->hv1.tp_padding = 0; prb_fill_vlan_info(pkc, ppd); if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) prb_fill_rxhash(pkc, ppd); else prb_clear_rxhash(pkc, ppd); } static void prb_fill_curr_block(char *curr, struct tpacket_kbdq_core *pkc, struct tpacket_block_desc *pbd, unsigned int len) __acquires(&pkc->blk_fill_in_prog_lock) { struct tpacket3_hdr *ppd; ppd = (struct tpacket3_hdr *)curr; ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); pkc->prev = curr; pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); BLOCK_NUM_PKTS(pbd) += 1; read_lock(&pkc->blk_fill_in_prog_lock); prb_run_all_ft_ops(pkc, ppd); } /* Assumes caller has the sk->rx_queue.lock */ static void *__packet_lookup_frame_in_block(struct packet_sock *po, struct sk_buff *skb, unsigned int len ) { struct tpacket_kbdq_core *pkc; struct tpacket_block_desc *pbd; char *curr, *end; pkc = GET_PBDQC_FROM_RB(&po->rx_ring); pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); /* Queue is frozen when user space is lagging behind */ if (prb_queue_frozen(pkc)) { /* * Check if that last block which caused the queue to freeze, * is still in_use by user-space. */ if (prb_curr_blk_in_use(pbd)) { /* Can't record this packet */ return NULL; } else { /* * Ok, the block was released by user-space. * Now let's open that block. * opening a block also thaws the queue. * Thawing is a side effect. */ prb_open_block(pkc, pbd); } } smp_mb(); curr = pkc->nxt_offset; pkc->skb = skb; end = (char *)pbd + pkc->kblk_size; /* first try the current block */ if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { prb_fill_curr_block(curr, pkc, pbd, len); return (void *)curr; } /* Ok, close the current block */ prb_retire_current_block(pkc, po, 0); /* Now, try to dispatch the next block */ curr = (char *)prb_dispatch_next_block(pkc, po); if (curr) { pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); prb_fill_curr_block(curr, pkc, pbd, len); return (void *)curr; } /* * No free blocks are available.user_space hasn't caught up yet. * Queue was just frozen and now this packet will get dropped. */ return NULL; } static void *packet_current_rx_frame(struct packet_sock *po, struct sk_buff *skb, int status, unsigned int len) { char *curr = NULL; switch (po->tp_version) { case TPACKET_V1: case TPACKET_V2: curr = packet_lookup_frame(po, &po->rx_ring, po->rx_ring.head, status); return curr; case TPACKET_V3: return __packet_lookup_frame_in_block(po, skb, len); default: WARN(1, "TPACKET version not supported\n"); BUG(); return NULL; } } static void *prb_lookup_block(const struct packet_sock *po, const struct packet_ring_buffer *rb, unsigned int idx, int status) { struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); if (status != BLOCK_STATUS(pbd)) return NULL; return pbd; } static int prb_previous_blk_num(struct packet_ring_buffer *rb) { unsigned int prev; if (rb->prb_bdqc.kactive_blk_num) prev = rb->prb_bdqc.kactive_blk_num-1; else prev = rb->prb_bdqc.knum_blocks-1; return prev; } /* Assumes caller has held the rx_queue.lock */ static void *__prb_previous_block(struct packet_sock *po, struct packet_ring_buffer *rb, int status) { unsigned int previous = prb_previous_blk_num(rb); return prb_lookup_block(po, rb, previous, status); } static void *packet_previous_rx_frame(struct packet_sock *po, struct packet_ring_buffer *rb, int status) { if (po->tp_version <= TPACKET_V2) return packet_previous_frame(po, rb, status); return __prb_previous_block(po, rb, status); } static void packet_increment_rx_head(struct packet_sock *po, struct packet_ring_buffer *rb) { switch (po->tp_version) { case TPACKET_V1: case TPACKET_V2: return packet_increment_head(rb); case TPACKET_V3: default: WARN(1, "TPACKET version not supported.\n"); BUG(); return; } } static void *packet_previous_frame(struct packet_sock *po, struct packet_ring_buffer *rb, int status) { unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; return packet_lookup_frame(po, rb, previous, status); } static void packet_increment_head(struct packet_ring_buffer *buff) { buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; } static void packet_inc_pending(struct packet_ring_buffer *rb) { this_cpu_inc(*rb->pending_refcnt); } static void packet_dec_pending(struct packet_ring_buffer *rb) { this_cpu_dec(*rb->pending_refcnt); } static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) { unsigned int refcnt = 0; int cpu; /* We don't use pending refcount in rx_ring. */ if (rb->pending_refcnt == NULL) return 0; for_each_possible_cpu(cpu) refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); return refcnt; } static int packet_alloc_pending(struct packet_sock *po) { po->rx_ring.pending_refcnt = NULL; po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); if (unlikely(po->tx_ring.pending_refcnt == NULL)) return -ENOBUFS; return 0; } static void packet_free_pending(struct packet_sock *po) { free_percpu(po->tx_ring.pending_refcnt); } #define ROOM_POW_OFF 2 #define ROOM_NONE 0x0 #define ROOM_LOW 0x1 #define ROOM_NORMAL 0x2 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) { int idx, len; len = READ_ONCE(po->rx_ring.frame_max) + 1; idx = READ_ONCE(po->rx_ring.head); if (pow_off) idx += len >> pow_off; if (idx >= len) idx -= len; return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); } static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) { int idx, len; len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); if (pow_off) idx += len >> pow_off; if (idx >= len) idx -= len; return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); } static int __packet_rcv_has_room(const struct packet_sock *po, const struct sk_buff *skb) { const struct sock *sk = &po->sk; int ret = ROOM_NONE; if (po->prot_hook.func != tpacket_rcv) { int rcvbuf = READ_ONCE(sk->sk_rcvbuf); int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) - (skb ? skb->truesize : 0); if (avail > (rcvbuf >> ROOM_POW_OFF)) return ROOM_NORMAL; else if (avail > 0) return ROOM_LOW; else return ROOM_NONE; } if (po->tp_version == TPACKET_V3) { if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) ret = ROOM_NORMAL; else if (__tpacket_v3_has_room(po, 0)) ret = ROOM_LOW; } else { if (__tpacket_has_room(po, ROOM_POW_OFF)) ret = ROOM_NORMAL; else if (__tpacket_has_room(po, 0)) ret = ROOM_LOW; } return ret; } static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) { bool pressure; int ret; ret = __packet_rcv_has_room(po, skb); pressure = ret != ROOM_NORMAL; if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) != pressure) packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, pressure); return ret; } static void packet_rcv_try_clear_pressure(struct packet_sock *po) { if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, false); } static void packet_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_error_queue); WARN_ON(atomic_read(&sk->sk_rmem_alloc)); WARN_ON(refcount_read(&sk->sk_wmem_alloc)); if (!sock_flag(sk, SOCK_DEAD)) { pr_err("Attempt to release alive packet socket: %p\n", sk); return; } } static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) { u32 *history = po->rollover->history; u32 victim, rxhash; int i, count = 0; rxhash = skb_get_hash(skb); for (i = 0; i < ROLLOVER_HLEN; i++) if (READ_ONCE(history[i]) == rxhash) count++; victim = get_random_u32_below(ROLLOVER_HLEN); /* Avoid dirtying the cache line if possible */ if (READ_ONCE(history[victim]) != rxhash) WRITE_ONCE(history[victim], rxhash); return count > (ROLLOVER_HLEN >> 1); } static unsigned int fanout_demux_hash(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { return reciprocal_scale(__skb_get_hash_symmetric(skb), num); } static unsigned int fanout_demux_lb(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { unsigned int val = atomic_inc_return(&f->rr_cur); return val % num; } static unsigned int fanout_demux_cpu(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { return smp_processor_id() % num; } static unsigned int fanout_demux_rnd(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { return get_random_u32_below(num); } static unsigned int fanout_demux_rollover(struct packet_fanout *f, struct sk_buff *skb, unsigned int idx, bool try_self, unsigned int num) { struct packet_sock *po, *po_next, *po_skip = NULL; unsigned int i, j, room = ROOM_NONE; po = pkt_sk(rcu_dereference(f->arr[idx])); if (try_self) { room = packet_rcv_has_room(po, skb); if (room == ROOM_NORMAL || (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) return idx; po_skip = po; } i = j = min_t(int, po->rollover->sock, num - 1); do { po_next = pkt_sk(rcu_dereference(f->arr[i])); if (po_next != po_skip && !packet_sock_flag(po_next, PACKET_SOCK_PRESSURE) && packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { if (i != j) po->rollover->sock = i; atomic_long_inc(&po->rollover->num); if (room == ROOM_LOW) atomic_long_inc(&po->rollover->num_huge); return i; } if (++i == num) i = 0; } while (i != j); atomic_long_inc(&po->rollover->num_failed); return idx; } static unsigned int fanout_demux_qm(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { return skb_get_queue_mapping(skb) % num; } static unsigned int fanout_demux_bpf(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { struct bpf_prog *prog; unsigned int ret = 0; rcu_read_lock(); prog = rcu_dereference(f->bpf_prog); if (prog) ret = bpf_prog_run_clear_cb(prog, skb) % num; rcu_read_unlock(); return ret; } static bool fanout_has_flag(struct packet_fanout *f, u16 flag) { return f->flags & (flag >> 8); } static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct packet_fanout *f = pt->af_packet_priv; unsigned int num = READ_ONCE(f->num_members); struct net *net = read_pnet(&f->net); struct packet_sock *po; unsigned int idx; if (!net_eq(dev_net(dev), net) || !num) { kfree_skb(skb); return 0; } if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); if (!skb) return 0; } switch (f->type) { case PACKET_FANOUT_HASH: default: idx = fanout_demux_hash(f, skb, num); break; case PACKET_FANOUT_LB: idx = fanout_demux_lb(f, skb, num); break; case PACKET_FANOUT_CPU: idx = fanout_demux_cpu(f, skb, num); break; case PACKET_FANOUT_RND: idx = fanout_demux_rnd(f, skb, num); break; case PACKET_FANOUT_QM: idx = fanout_demux_qm(f, skb, num); break; case PACKET_FANOUT_ROLLOVER: idx = fanout_demux_rollover(f, skb, 0, false, num); break; case PACKET_FANOUT_CBPF: case PACKET_FANOUT_EBPF: idx = fanout_demux_bpf(f, skb, num); break; } if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) idx = fanout_demux_rollover(f, skb, idx, true, num); po = pkt_sk(rcu_dereference(f->arr[idx])); return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); } DEFINE_MUTEX(fanout_mutex); EXPORT_SYMBOL_GPL(fanout_mutex); static LIST_HEAD(fanout_list); static u16 fanout_next_id; static void __fanout_link(struct sock *sk, struct packet_sock *po) { struct packet_fanout *f = po->fanout; spin_lock(&f->lock); rcu_assign_pointer(f->arr[f->num_members], sk); smp_wmb(); f->num_members++; if (f->num_members == 1) dev_add_pack(&f->prot_hook); spin_unlock(&f->lock); } static void __fanout_unlink(struct sock *sk, struct packet_sock *po) { struct packet_fanout *f = po->fanout; int i; spin_lock(&f->lock); for (i = 0; i < f->num_members; i++) { if (rcu_dereference_protected(f->arr[i], lockdep_is_held(&f->lock)) == sk) break; } BUG_ON(i >= f->num_members); rcu_assign_pointer(f->arr[i], rcu_dereference_protected(f->arr[f->num_members - 1], lockdep_is_held(&f->lock))); f->num_members--; if (f->num_members == 0) __dev_remove_pack(&f->prot_hook); spin_unlock(&f->lock); } static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) { if (sk->sk_family != PF_PACKET) return false; return ptype->af_packet_priv == pkt_sk(sk)->fanout; } static void fanout_init_data(struct packet_fanout *f) { switch (f->type) { case PACKET_FANOUT_LB: atomic_set(&f->rr_cur, 0); break; case PACKET_FANOUT_CBPF: case PACKET_FANOUT_EBPF: RCU_INIT_POINTER(f->bpf_prog, NULL); break; } } static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) { struct bpf_prog *old; spin_lock(&f->lock); old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); rcu_assign_pointer(f->bpf_prog, new); spin_unlock(&f->lock); if (old) { synchronize_net(); bpf_prog_destroy(old); } } static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, unsigned int len) { struct bpf_prog *new; struct sock_fprog fprog; int ret; if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) return -EPERM; ret = copy_bpf_fprog_from_user(&fprog, data, len); if (ret) return ret; ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); if (ret) return ret; __fanout_set_data_bpf(po->fanout, new); return 0; } static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, unsigned int len) { struct bpf_prog *new; u32 fd; if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) return -EPERM; if (len != sizeof(fd)) return -EINVAL; if (copy_from_sockptr(&fd, data, len)) return -EFAULT; new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); if (IS_ERR(new)) return PTR_ERR(new); __fanout_set_data_bpf(po->fanout, new); return 0; } static int fanout_set_data(struct packet_sock *po, sockptr_t data, unsigned int len) { switch (po->fanout->type) { case PACKET_FANOUT_CBPF: return fanout_set_data_cbpf(po, data, len); case PACKET_FANOUT_EBPF: return fanout_set_data_ebpf(po, data, len); default: return -EINVAL; } } static void fanout_release_data(struct packet_fanout *f) { switch (f->type) { case PACKET_FANOUT_CBPF: case PACKET_FANOUT_EBPF: __fanout_set_data_bpf(f, NULL); } } static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) { struct packet_fanout *f; list_for_each_entry(f, &fanout_list, list) { if (f->id == candidate_id && read_pnet(&f->net) == sock_net(sk)) { return false; } } return true; } static bool fanout_find_new_id(struct sock *sk, u16 *new_id) { u16 id = fanout_next_id; do { if (__fanout_id_is_free(sk, id)) { *new_id = id; fanout_next_id = id + 1; return true; } id++; } while (id != fanout_next_id); return false; } static int fanout_add(struct sock *sk, struct fanout_args *args) { struct packet_rollover *rollover = NULL; struct packet_sock *po = pkt_sk(sk); u16 type_flags = args->type_flags; struct packet_fanout *f, *match; u8 type = type_flags & 0xff; u8 flags = type_flags >> 8; u16 id = args->id; int err; switch (type) { case PACKET_FANOUT_ROLLOVER: if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) return -EINVAL; break; case PACKET_FANOUT_HASH: case PACKET_FANOUT_LB: case PACKET_FANOUT_CPU: case PACKET_FANOUT_RND: case PACKET_FANOUT_QM: case PACKET_FANOUT_CBPF: case PACKET_FANOUT_EBPF: break; default: return -EINVAL; } mutex_lock(&fanout_mutex); err = -EALREADY; if (po->fanout) goto out; if (type == PACKET_FANOUT_ROLLOVER || (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { err = -ENOMEM; rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); if (!rollover) goto out; atomic_long_set(&rollover->num, 0); atomic_long_set(&rollover->num_huge, 0); atomic_long_set(&rollover->num_failed, 0); } if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { if (id != 0) { err = -EINVAL; goto out; } if (!fanout_find_new_id(sk, &id)) { err = -ENOMEM; goto out; } /* ephemeral flag for the first socket in the group: drop it */ flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); } match = NULL; list_for_each_entry(f, &fanout_list, list) { if (f->id == id && read_pnet(&f->net) == sock_net(sk)) { match = f; break; } } err = -EINVAL; if (match) { if (match->flags != flags) goto out; if (args->max_num_members && args->max_num_members != match->max_num_members) goto out; } else { if (args->max_num_members > PACKET_FANOUT_MAX) goto out; if (!args->max_num_members) /* legacy PACKET_FANOUT_MAX */ args->max_num_members = 256; err = -ENOMEM; match = kvzalloc(struct_size(match, arr, args->max_num_members), GFP_KERNEL); if (!match) goto out; write_pnet(&match->net, sock_net(sk)); match->id = id; match->type = type; match->flags = flags; INIT_LIST_HEAD(&match->list); spin_lock_init(&match->lock); refcount_set(&match->sk_ref, 0); fanout_init_data(match); match->prot_hook.type = po->prot_hook.type; match->prot_hook.dev = po->prot_hook.dev; match->prot_hook.func = packet_rcv_fanout; match->prot_hook.af_packet_priv = match; match->prot_hook.af_packet_net = read_pnet(&match->net); match->prot_hook.id_match = match_fanout_group; match->max_num_members = args->max_num_members; match->prot_hook.ignore_outgoing = type_flags & PACKET_FANOUT_FLAG_IGNORE_OUTGOING; list_add(&match->list, &fanout_list); } err = -EINVAL; spin_lock(&po->bind_lock); if (packet_sock_flag(po, PACKET_SOCK_RUNNING) && match->type == type && match->prot_hook.type == po->prot_hook.type && match->prot_hook.dev == po->prot_hook.dev) { err = -ENOSPC; if (refcount_read(&match->sk_ref) < match->max_num_members) { __dev_remove_pack(&po->prot_hook); /* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */ WRITE_ONCE(po->fanout, match); po->rollover = rollover; rollover = NULL; refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); __fanout_link(sk, po); err = 0; } } spin_unlock(&po->bind_lock); if (err && !refcount_read(&match->sk_ref)) { list_del(&match->list); kvfree(match); } out: kfree(rollover); mutex_unlock(&fanout_mutex); return err; } /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. * It is the responsibility of the caller to call fanout_release_data() and * free the returned packet_fanout (after synchronize_net()) */ static struct packet_fanout *fanout_release(struct sock *sk) { struct packet_sock *po = pkt_sk(sk); struct packet_fanout *f; mutex_lock(&fanout_mutex); f = po->fanout; if (f) { po->fanout = NULL; if (refcount_dec_and_test(&f->sk_ref)) list_del(&f->list); else f = NULL; } mutex_unlock(&fanout_mutex); return f; } static bool packet_extra_vlan_len_allowed(const struct net_device *dev, struct sk_buff *skb) { /* Earlier code assumed this would be a VLAN pkt, double-check * this now that we have the actual packet in hand. We can only * do this check on Ethernet devices. */ if (unlikely(dev->type != ARPHRD_ETHER)) return false; skb_reset_mac_header(skb); return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); } static const struct proto_ops packet_ops; static const struct proto_ops packet_ops_spkt; static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct sock *sk; struct sockaddr_pkt *spkt; /* * When we registered the protocol we saved the socket in the data * field for just this event. */ sk = pt->af_packet_priv; /* * Yank back the headers [hope the device set this * right or kerboom...] * * Incoming packets have ll header pulled, * push it back. * * For outgoing ones skb->data == skb_mac_header(skb) * so that this procedure is noop. */ if (skb->pkt_type == PACKET_LOOPBACK) goto out; if (!net_eq(dev_net(dev), sock_net(sk))) goto out; skb = skb_share_check(skb, GFP_ATOMIC); if (skb == NULL) goto oom; /* drop any routing info */ skb_dst_drop(skb); /* drop conntrack reference */ nf_reset_ct(skb); spkt = &PACKET_SKB_CB(skb)->sa.pkt; skb_push(skb, skb->data - skb_mac_header(skb)); /* * The SOCK_PACKET socket receives _all_ frames. */ spkt->spkt_family = dev->type; strscpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); spkt->spkt_protocol = skb->protocol; /* * Charge the memory to the socket. This is done specifically * to prevent sockets using all the memory up. */ if (sock_queue_rcv_skb(sk, skb) == 0) return 0; out: kfree_skb(skb); oom: return 0; } static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) { int depth; if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && sock->type == SOCK_RAW) { skb_reset_mac_header(skb); skb->protocol = dev_parse_header_protocol(skb); } /* Move network header to the right position for VLAN tagged packets */ if (likely(skb->dev->type == ARPHRD_ETHER) && eth_type_vlan(skb->protocol) && vlan_get_protocol_and_depth(skb, skb->protocol, &depth) != 0) skb_set_network_header(skb, depth); skb_probe_transport_header(skb); } /* * Output a raw packet to a device layer. This bypasses all the other * protocol layers and you must therefore supply it with a complete frame */ static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); struct sk_buff *skb = NULL; struct net_device *dev; struct sockcm_cookie sockc; __be16 proto = 0; int err; int extra_len = 0; /* * Get and verify the address. */ if (saddr) { if (msg->msg_namelen < sizeof(struct sockaddr)) return -EINVAL; if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) proto = saddr->spkt_protocol; } else return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ /* * Find the device first to size check it */ saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; retry: rcu_read_lock(); dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); err = -ENODEV; if (dev == NULL) goto out_unlock; err = -ENETDOWN; if (!(dev->flags & IFF_UP)) goto out_unlock; /* * You may not queue a frame bigger than the mtu. This is the lowest level * raw protocol and you must do your own fragmentation at this level. */ if (unlikely(sock_flag(sk, SOCK_NOFCS))) { if (!netif_supports_nofcs(dev)) { err = -EPROTONOSUPPORT; goto out_unlock; } extra_len = 4; /* We're doing our own CRC */ } err = -EMSGSIZE; if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) goto out_unlock; if (!skb) { size_t reserved = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; rcu_read_unlock(); skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); if (skb == NULL) return -ENOBUFS; /* FIXME: Save some space for broken drivers that write a hard * header at transmission time by themselves. PPP is the notable * one here. This should really be fixed at the driver level. */ skb_reserve(skb, reserved); skb_reset_network_header(skb); /* Try to align data part correctly */ if (hhlen) { skb->data -= hhlen; skb->tail -= hhlen; if (len < hhlen) skb_reset_network_header(skb); } err = memcpy_from_msg(skb_put(skb, len), msg, len); if (err) goto out_free; goto retry; } if (!dev_validate_header(dev, skb->data, len) || !skb->len) { err = -EINVAL; goto out_unlock; } if (len > (dev->mtu + dev->hard_header_len + extra_len) && !packet_extra_vlan_len_allowed(dev, skb)) { err = -EMSGSIZE; goto out_unlock; } sockcm_init(&sockc, sk); if (msg->msg_controllen) { err = sock_cmsg_send(sk, msg, &sockc); if (unlikely(err)) goto out_unlock; } skb->protocol = proto; skb->dev = dev; skb->priority = READ_ONCE(sk->sk_priority); skb->mark = READ_ONCE(sk->sk_mark); skb->tstamp = sockc.transmit_time; skb_setup_tx_timestamp(skb, sockc.tsflags); if (unlikely(extra_len == 4)) skb->no_fcs = 1; packet_parse_headers(skb, sock); dev_queue_xmit(skb); rcu_read_unlock(); return len; out_unlock: rcu_read_unlock(); out_free: kfree_skb(skb); return err; } static unsigned int run_filter(struct sk_buff *skb, const struct sock *sk, unsigned int res) { struct sk_filter *filter; rcu_read_lock(); filter = rcu_dereference(sk->sk_filter); if (filter != NULL) res = bpf_prog_run_clear_cb(filter->prog, skb); rcu_read_unlock(); return res; } static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, size_t *len, int vnet_hdr_sz) { struct virtio_net_hdr_mrg_rxbuf vnet_hdr = { .num_buffers = 0 }; if (*len < vnet_hdr_sz) return -EINVAL; *len -= vnet_hdr_sz; if (virtio_net_hdr_from_skb(skb, (struct virtio_net_hdr *)&vnet_hdr, vio_le(), true, 0)) return -EINVAL; return memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_sz); } /* * This function makes lazy skb cloning in hope that most of packets * are discarded by BPF. * * Note tricky part: we DO mangle shared skb! skb->data, skb->len * and skb->cb are mangled. It works because (and until) packets * falling here are owned by current CPU. Output packets are cloned * by dev_queue_xmit_nit(), input packets are processed by net_bh * sequentially, so that if we return skb to original state on exit, * we will not harm anyone. */ static int packet_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct sock *sk; struct sockaddr_ll *sll; struct packet_sock *po; u8 *skb_head = skb->data; int skb_len = skb->len; unsigned int snaplen, res; bool is_drop_n_account = false; if (skb->pkt_type == PACKET_LOOPBACK) goto drop; sk = pt->af_packet_priv; po = pkt_sk(sk); if (!net_eq(dev_net(dev), sock_net(sk))) goto drop; skb->dev = dev; if (dev_has_header(dev)) { /* The device has an explicit notion of ll header, * exported to higher levels. * * Otherwise, the device hides details of its frame * structure, so that corresponding packet head is * never delivered to user. */ if (sk->sk_type != SOCK_DGRAM) skb_push(skb, skb->data - skb_mac_header(skb)); else if (skb->pkt_type == PACKET_OUTGOING) { /* Special case: outgoing packets have ll header at head */ skb_pull(skb, skb_network_offset(skb)); } } snaplen = skb->len; res = run_filter(skb, sk, snaplen); if (!res) goto drop_n_restore; if (snaplen > res) snaplen = res; if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) goto drop_n_acct; if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); if (nskb == NULL) goto drop_n_acct; if (skb_head != skb->data) { skb->data = skb_head; skb->len = skb_len; } consume_skb(skb); skb = nskb; } sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); sll = &PACKET_SKB_CB(skb)->sa.ll; sll->sll_hatype = dev->type; sll->sll_pkttype = skb->pkt_type; if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV))) sll->sll_ifindex = orig_dev->ifindex; else sll->sll_ifindex = dev->ifindex; sll->sll_halen = dev_parse_header(skb, sll->sll_addr); /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). * Use their space for storing the original skb length. */ PACKET_SKB_CB(skb)->sa.origlen = skb->len; if (pskb_trim(skb, snaplen)) goto drop_n_acct; skb_set_owner_r(skb, sk); skb->dev = NULL; skb_dst_drop(skb); /* drop conntrack reference */ nf_reset_ct(skb); spin_lock(&sk->sk_receive_queue.lock); po->stats.stats1.tp_packets++; sock_skb_set_dropcount(sk, skb); skb_clear_delivery_time(skb); __skb_queue_tail(&sk->sk_receive_queue, skb); spin_unlock(&sk->sk_receive_queue.lock); sk->sk_data_ready(sk); return 0; drop_n_acct: is_drop_n_account = true; atomic_inc(&po->tp_drops); atomic_inc(&sk->sk_drops); drop_n_restore: if (skb_head != skb->data && skb_shared(skb)) { skb->data = skb_head; skb->len = skb_len; } drop: if (!is_drop_n_account) consume_skb(skb); else kfree_skb(skb); return 0; } static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct sock *sk; struct packet_sock *po; struct sockaddr_ll *sll; union tpacket_uhdr h; u8 *skb_head = skb->data; int skb_len = skb->len; unsigned int snaplen, res; unsigned long status = TP_STATUS_USER; unsigned short macoff, hdrlen; unsigned int netoff; struct sk_buff *copy_skb = NULL; struct timespec64 ts; __u32 ts_status; bool is_drop_n_account = false; unsigned int slot_id = 0; int vnet_hdr_sz = 0; /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. * We may add members to them until current aligned size without forcing * userspace to call getsockopt(..., PACKET_HDRLEN, ...). */ BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); if (skb->pkt_type == PACKET_LOOPBACK) goto drop; sk = pt->af_packet_priv; po = pkt_sk(sk); if (!net_eq(dev_net(dev), sock_net(sk))) goto drop; if (dev_has_header(dev)) { if (sk->sk_type != SOCK_DGRAM) skb_push(skb, skb->data - skb_mac_header(skb)); else if (skb->pkt_type == PACKET_OUTGOING) { /* Special case: outgoing packets have ll header at head */ skb_pull(skb, skb_network_offset(skb)); } } snaplen = skb->len; res = run_filter(skb, sk, snaplen); if (!res) goto drop_n_restore; /* If we are flooded, just give up */ if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { atomic_inc(&po->tp_drops); goto drop_n_restore; } if (skb->ip_summed == CHECKSUM_PARTIAL) status |= TP_STATUS_CSUMNOTREADY; else if (skb->pkt_type != PACKET_OUTGOING && skb_csum_unnecessary(skb)) status |= TP_STATUS_CSUM_VALID; if (skb_is_gso(skb) && skb_is_gso_tcp(skb)) status |= TP_STATUS_GSO_TCP; if (snaplen > res) snaplen = res; if (sk->sk_type == SOCK_DGRAM) { macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + po->tp_reserve; } else { unsigned int maclen = skb_network_offset(skb); netoff = TPACKET_ALIGN(po->tp_hdrlen + (maclen < 16 ? 16 : maclen)) + po->tp_reserve; vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz); if (vnet_hdr_sz) netoff += vnet_hdr_sz; macoff = netoff - maclen; } if (netoff > USHRT_MAX) { atomic_inc(&po->tp_drops); goto drop_n_restore; } if (po->tp_version <= TPACKET_V2) { if (macoff + snaplen > po->rx_ring.frame_size) { if (po->copy_thresh && atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { if (skb_shared(skb)) { copy_skb = skb_clone(skb, GFP_ATOMIC); } else { copy_skb = skb_get(skb); skb_head = skb->data; } if (copy_skb) { memset(&PACKET_SKB_CB(copy_skb)->sa.ll, 0, sizeof(PACKET_SKB_CB(copy_skb)->sa.ll)); skb_set_owner_r(copy_skb, sk); } } snaplen = po->rx_ring.frame_size - macoff; if ((int)snaplen < 0) { snaplen = 0; vnet_hdr_sz = 0; } } } else if (unlikely(macoff + snaplen > GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { u32 nval; nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", snaplen, nval, macoff); snaplen = nval; if (unlikely((int)snaplen < 0)) { snaplen = 0; macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; vnet_hdr_sz = 0; } } spin_lock(&sk->sk_receive_queue.lock); h.raw = packet_current_rx_frame(po, skb, TP_STATUS_KERNEL, (macoff+snaplen)); if (!h.raw) goto drop_n_account; if (po->tp_version <= TPACKET_V2) { slot_id = po->rx_ring.head; if (test_bit(slot_id, po->rx_ring.rx_owner_map)) goto drop_n_account; __set_bit(slot_id, po->rx_ring.rx_owner_map); } if (vnet_hdr_sz && virtio_net_hdr_from_skb(skb, h.raw + macoff - sizeof(struct virtio_net_hdr), vio_le(), true, 0)) { if (po->tp_version == TPACKET_V3) prb_clear_blk_fill_status(&po->rx_ring); goto drop_n_account; } if (po->tp_version <= TPACKET_V2) { packet_increment_rx_head(po, &po->rx_ring); /* * LOSING will be reported till you read the stats, * because it's COR - Clear On Read. * Anyways, moving it for V1/V2 only as V3 doesn't need this * at packet level. */ if (atomic_read(&po->tp_drops)) status |= TP_STATUS_LOSING; } po->stats.stats1.tp_packets++; if (copy_skb) { status |= TP_STATUS_COPY; skb_clear_delivery_time(copy_skb); __skb_queue_tail(&sk->sk_receive_queue, copy_skb); } spin_unlock(&sk->sk_receive_queue.lock); skb_copy_bits(skb, 0, h.raw + macoff, snaplen); /* Always timestamp; prefer an existing software timestamp taken * closer to the time of capture. */ ts_status = tpacket_get_timestamp(skb, &ts, READ_ONCE(po->tp_tstamp) | SOF_TIMESTAMPING_SOFTWARE); if (!ts_status) ktime_get_real_ts64(&ts); status |= ts_status; switch (po->tp_version) { case TPACKET_V1: h.h1->tp_len = skb->len; h.h1->tp_snaplen = snaplen; h.h1->tp_mac = macoff; h.h1->tp_net = netoff; h.h1->tp_sec = ts.tv_sec; h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; hdrlen = sizeof(*h.h1); break; case TPACKET_V2: h.h2->tp_len = skb->len; h.h2->tp_snaplen = snaplen; h.h2->tp_mac = macoff; h.h2->tp_net = netoff; h.h2->tp_sec = ts.tv_sec; h.h2->tp_nsec = ts.tv_nsec; if (skb_vlan_tag_present(skb)) { h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; } else { h.h2->tp_vlan_tci = 0; h.h2->tp_vlan_tpid = 0; } memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); hdrlen = sizeof(*h.h2); break; case TPACKET_V3: /* tp_nxt_offset,vlan are already populated above. * So DONT clear those fields here */ h.h3->tp_status |= status; h.h3->tp_len = skb->len; h.h3->tp_snaplen = snaplen; h.h3->tp_mac = macoff; h.h3->tp_net = netoff; h.h3->tp_sec = ts.tv_sec; h.h3->tp_nsec = ts.tv_nsec; memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); hdrlen = sizeof(*h.h3); break; default: BUG(); } sll = h.raw + TPACKET_ALIGN(hdrlen); sll->sll_halen = dev_parse_header(skb, sll->sll_addr); sll->sll_family = AF_PACKET; sll->sll_hatype = dev->type; sll->sll_protocol = skb->protocol; sll->sll_pkttype = skb->pkt_type; if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV))) sll->sll_ifindex = orig_dev->ifindex; else sll->sll_ifindex = dev->ifindex; smp_mb(); #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 if (po->tp_version <= TPACKET_V2) { u8 *start, *end; end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + macoff + snaplen); for (start = h.raw; start < end; start += PAGE_SIZE) flush_dcache_page(pgv_to_page(start)); } smp_wmb(); #endif if (po->tp_version <= TPACKET_V2) { spin_lock(&sk->sk_receive_queue.lock); __packet_set_status(po, h.raw, status); __clear_bit(slot_id, po->rx_ring.rx_owner_map); spin_unlock(&sk->sk_receive_queue.lock); sk->sk_data_ready(sk); } else if (po->tp_version == TPACKET_V3) { prb_clear_blk_fill_status(&po->rx_ring); } drop_n_restore: if (skb_head != skb->data && skb_shared(skb)) { skb->data = skb_head; skb->len = skb_len; } drop: if (!is_drop_n_account) consume_skb(skb); else kfree_skb(skb); return 0; drop_n_account: spin_unlock(&sk->sk_receive_queue.lock); atomic_inc(&po->tp_drops); is_drop_n_account = true; sk->sk_data_ready(sk); kfree_skb(copy_skb); goto drop_n_restore; } static void tpacket_destruct_skb(struct sk_buff *skb) { struct packet_sock *po = pkt_sk(skb->sk); if (likely(po->tx_ring.pg_vec)) { void *ph; __u32 ts; ph = skb_zcopy_get_nouarg(skb); packet_dec_pending(&po->tx_ring); ts = __packet_set_timestamp(po, ph, skb); __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); if (!packet_read_pending(&po->tx_ring)) complete(&po->skb_completion); } sock_wfree(skb); } static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) { if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) return -EINVAL; return 0; } static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, struct virtio_net_hdr *vnet_hdr, int vnet_hdr_sz) { int ret; if (*len < vnet_hdr_sz) return -EINVAL; *len -= vnet_hdr_sz; if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) return -EFAULT; ret = __packet_snd_vnet_parse(vnet_hdr, *len); if (ret) return ret; /* move iter to point to the start of mac header */ if (vnet_hdr_sz != sizeof(struct virtio_net_hdr)) iov_iter_advance(&msg->msg_iter, vnet_hdr_sz - sizeof(struct virtio_net_hdr)); return 0; } static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, void *frame, struct net_device *dev, void *data, int tp_len, __be16 proto, unsigned char *addr, int hlen, int copylen, const struct sockcm_cookie *sockc) { union tpacket_uhdr ph; int to_write, offset, len, nr_frags, len_max; struct socket *sock = po->sk.sk_socket; struct page *page; int err; ph.raw = frame; skb->protocol = proto; skb->dev = dev; skb->priority = READ_ONCE(po->sk.sk_priority); skb->mark = READ_ONCE(po->sk.sk_mark); skb->tstamp = sockc->transmit_time; skb_setup_tx_timestamp(skb, sockc->tsflags); skb_zcopy_set_nouarg(skb, ph.raw); skb_reserve(skb, hlen); skb_reset_network_header(skb); to_write = tp_len; if (sock->type == SOCK_DGRAM) { err = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, tp_len); if (unlikely(err < 0)) return -EINVAL; } else if (copylen) { int hdrlen = min_t(int, copylen, tp_len); skb_push(skb, dev->hard_header_len); skb_put(skb, copylen - dev->hard_header_len); err = skb_store_bits(skb, 0, data, hdrlen); if (unlikely(err)) return err; if (!dev_validate_header(dev, skb->data, hdrlen)) return -EINVAL; data += hdrlen; to_write -= hdrlen; } offset = offset_in_page(data); len_max = PAGE_SIZE - offset; len = ((to_write > len_max) ? len_max : to_write); skb->data_len = to_write; skb->len += to_write; skb->truesize += to_write; refcount_add(to_write, &po->sk.sk_wmem_alloc); while (likely(to_write)) { nr_frags = skb_shinfo(skb)->nr_frags; if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { pr_err("Packet exceed the number of skb frags(%u)\n", (unsigned int)MAX_SKB_FRAGS); return -EFAULT; } page = pgv_to_page(data); data += len; flush_dcache_page(page); get_page(page); skb_fill_page_desc(skb, nr_frags, page, offset, len); to_write -= len; offset = 0; len_max = PAGE_SIZE; len = ((to_write > len_max) ? len_max : to_write); } packet_parse_headers(skb, sock); return tp_len; } static int tpacket_parse_header(struct packet_sock *po, void *frame, int size_max, void **data) { union tpacket_uhdr ph; int tp_len, off; ph.raw = frame; switch (po->tp_version) { case TPACKET_V3: if (ph.h3->tp_next_offset != 0) { pr_warn_once("variable sized slot not supported"); return -EINVAL; } tp_len = ph.h3->tp_len; break; case TPACKET_V2: tp_len = ph.h2->tp_len; break; default: tp_len = ph.h1->tp_len; break; } if (unlikely(tp_len > size_max)) { pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); return -EMSGSIZE; } if (unlikely(packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF))) { int off_min, off_max; off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); off_max = po->tx_ring.frame_size - tp_len; if (po->sk.sk_type == SOCK_DGRAM) { switch (po->tp_version) { case TPACKET_V3: off = ph.h3->tp_net; break; case TPACKET_V2: off = ph.h2->tp_net; break; default: off = ph.h1->tp_net; break; } } else { switch (po->tp_version) { case TPACKET_V3: off = ph.h3->tp_mac; break; case TPACKET_V2: off = ph.h2->tp_mac; break; default: off = ph.h1->tp_mac; break; } } if (unlikely((off < off_min) || (off_max < off))) return -EINVAL; } else { off = po->tp_hdrlen - sizeof(struct sockaddr_ll); } *data = frame + off; return tp_len; } static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) { struct sk_buff *skb = NULL; struct net_device *dev; struct virtio_net_hdr *vnet_hdr = NULL; struct sockcm_cookie sockc; __be16 proto; int err, reserve = 0; void *ph; DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz); unsigned char *addr = NULL; int tp_len, size_max; void *data; int len_sum = 0; int status = TP_STATUS_AVAILABLE; int hlen, tlen, copylen = 0; long timeo = 0; mutex_lock(&po->pg_vec_lock); /* packet_sendmsg() check on tx_ring.pg_vec was lockless, * we need to confirm it under protection of pg_vec_lock. */ if (unlikely(!po->tx_ring.pg_vec)) { err = -EBUSY; goto out; } if (likely(saddr == NULL)) { dev = packet_cached_dev_get(po); proto = READ_ONCE(po->num); } else { err = -EINVAL; if (msg->msg_namelen < sizeof(struct sockaddr_ll)) goto out; if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) goto out; proto = saddr->sll_protocol; dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); if (po->sk.sk_socket->type == SOCK_DGRAM) { if (dev && msg->msg_namelen < dev->addr_len + offsetof(struct sockaddr_ll, sll_addr)) goto out_put; addr = saddr->sll_addr; } } err = -ENXIO; if (unlikely(dev == NULL)) goto out; err = -ENETDOWN; if (unlikely(!(dev->flags & IFF_UP))) goto out_put; sockcm_init(&sockc, &po->sk); if (msg->msg_controllen) { err = sock_cmsg_send(&po->sk, msg, &sockc); if (unlikely(err)) goto out_put; } if (po->sk.sk_socket->type == SOCK_RAW) reserve = dev->hard_header_len; size_max = po->tx_ring.frame_size - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !vnet_hdr_sz) size_max = dev->mtu + reserve + VLAN_HLEN; reinit_completion(&po->skb_completion); do { ph = packet_current_frame(po, &po->tx_ring, TP_STATUS_SEND_REQUEST); if (unlikely(ph == NULL)) { if (need_wait && skb) { timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); if (timeo <= 0) { err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; goto out_put; } } /* check for additional frames */ continue; } skb = NULL; tp_len = tpacket_parse_header(po, ph, size_max, &data); if (tp_len < 0) goto tpacket_error; status = TP_STATUS_SEND_REQUEST; hlen = LL_RESERVED_SPACE(dev); tlen = dev->needed_tailroom; if (vnet_hdr_sz) { vnet_hdr = data; data += vnet_hdr_sz; tp_len -= vnet_hdr_sz; if (tp_len < 0 || __packet_snd_vnet_parse(vnet_hdr, tp_len)) { tp_len = -EINVAL; goto tpacket_error; } copylen = __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len); } copylen = max_t(int, copylen, dev->hard_header_len); skb = sock_alloc_send_skb(&po->sk, hlen + tlen + sizeof(struct sockaddr_ll) + (copylen - dev->hard_header_len), !need_wait, &err); if (unlikely(skb == NULL)) { /* we assume the socket was initially writeable ... */ if (likely(len_sum > 0)) err = len_sum; goto out_status; } tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, addr, hlen, copylen, &sockc); if (likely(tp_len >= 0) && tp_len > dev->mtu + reserve && !vnet_hdr_sz && !packet_extra_vlan_len_allowed(dev, skb)) tp_len = -EMSGSIZE; if (unlikely(tp_len < 0)) { tpacket_error: if (packet_sock_flag(po, PACKET_SOCK_TP_LOSS)) { __packet_set_status(po, ph, TP_STATUS_AVAILABLE); packet_increment_head(&po->tx_ring); kfree_skb(skb); continue; } else { status = TP_STATUS_WRONG_FORMAT; err = tp_len; goto out_status; } } if (vnet_hdr_sz) { if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { tp_len = -EINVAL; goto tpacket_error; } virtio_net_hdr_set_proto(skb, vnet_hdr); } skb->destructor = tpacket_destruct_skb; __packet_set_status(po, ph, TP_STATUS_SENDING); packet_inc_pending(&po->tx_ring); status = TP_STATUS_SEND_REQUEST; err = packet_xmit(po, skb); if (unlikely(err != 0)) { if (err > 0) err = net_xmit_errno(err); if (err && __packet_get_status(po, ph) == TP_STATUS_AVAILABLE) { /* skb was destructed already */ skb = NULL; goto out_status; } /* * skb was dropped but not destructed yet; * let's treat it like congestion or err < 0 */ err = 0; } packet_increment_head(&po->tx_ring); len_sum += tp_len; } while (likely((ph != NULL) || /* Note: packet_read_pending() might be slow if we have * to call it as it's per_cpu variable, but in fast-path * we already short-circuit the loop with the first * condition, and luckily don't have to go that path * anyway. */ (need_wait && packet_read_pending(&po->tx_ring)))); err = len_sum; goto out_put; out_status: __packet_set_status(po, ph, status); kfree_skb(skb); out_put: dev_put(dev); out: mutex_unlock(&po->pg_vec_lock); return err; } static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, size_t reserve, size_t len, size_t linear, int noblock, int *err) { struct sk_buff *skb; /* Under a page? Don't bother with paged skb. */ if (prepad + len < PAGE_SIZE || !linear) linear = len; if (len - linear > MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) linear = len - MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER); skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, err, PAGE_ALLOC_COSTLY_ORDER); if (!skb) return NULL; skb_reserve(skb, reserve); skb_put(skb, linear); skb->data_len = len - linear; skb->len += len - linear; return skb; } static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); struct sk_buff *skb; struct net_device *dev; __be16 proto; unsigned char *addr = NULL; int err, reserve = 0; struct sockcm_cookie sockc; struct virtio_net_hdr vnet_hdr = { 0 }; int offset = 0; struct packet_sock *po = pkt_sk(sk); int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz); int hlen, tlen, linear; int extra_len = 0; /* * Get and verify the address. */ if (likely(saddr == NULL)) { dev = packet_cached_dev_get(po); proto = READ_ONCE(po->num); } else { err = -EINVAL; if (msg->msg_namelen < sizeof(struct sockaddr_ll)) goto out; if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) goto out; proto = saddr->sll_protocol; dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); if (sock->type == SOCK_DGRAM) { if (dev && msg->msg_namelen < dev->addr_len + offsetof(struct sockaddr_ll, sll_addr)) goto out_unlock; addr = saddr->sll_addr; } } err = -ENXIO; if (unlikely(dev == NULL)) goto out_unlock; err = -ENETDOWN; if (unlikely(!(dev->flags & IFF_UP))) goto out_unlock; sockcm_init(&sockc, sk); sockc.mark = READ_ONCE(sk->sk_mark); if (msg->msg_controllen) { err = sock_cmsg_send(sk, msg, &sockc); if (unlikely(err)) goto out_unlock; } if (sock->type == SOCK_RAW) reserve = dev->hard_header_len; if (vnet_hdr_sz) { err = packet_snd_vnet_parse(msg, &len, &vnet_hdr, vnet_hdr_sz); if (err) goto out_unlock; } if (unlikely(sock_flag(sk, SOCK_NOFCS))) { if (!netif_supports_nofcs(dev)) { err = -EPROTONOSUPPORT; goto out_unlock; } extra_len = 4; /* We're doing our own CRC */ } err = -EMSGSIZE; if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) goto out_unlock; err = -ENOBUFS; hlen = LL_RESERVED_SPACE(dev); tlen = dev->needed_tailroom; linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); linear = max(linear, min_t(int, len, dev->hard_header_len)); skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, msg->msg_flags & MSG_DONTWAIT, &err); if (skb == NULL) goto out_unlock; skb_reset_network_header(skb); err = -EINVAL; if (sock->type == SOCK_DGRAM) { offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); if (unlikely(offset < 0)) goto out_free; } else if (reserve) { skb_reserve(skb, -reserve); if (len < reserve + sizeof(struct ipv6hdr) && dev->min_header_len != dev->hard_header_len) skb_reset_network_header(skb); } /* Returns -EFAULT on error */ err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); if (err) goto out_free; if ((sock->type == SOCK_RAW && !dev_validate_header(dev, skb->data, len)) || !skb->len) { err = -EINVAL; goto out_free; } skb_setup_tx_timestamp(skb, sockc.tsflags); if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && !packet_extra_vlan_len_allowed(dev, skb)) { err = -EMSGSIZE; goto out_free; } skb->protocol = proto; skb->dev = dev; skb->priority = READ_ONCE(sk->sk_priority); skb->mark = sockc.mark; skb->tstamp = sockc.transmit_time; if (unlikely(extra_len == 4)) skb->no_fcs = 1; packet_parse_headers(skb, sock); if (vnet_hdr_sz) { err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); if (err) goto out_free; len += vnet_hdr_sz; virtio_net_hdr_set_proto(skb, &vnet_hdr); } err = packet_xmit(po, skb); if (unlikely(err != 0)) { if (err > 0) err = net_xmit_errno(err); if (err) goto out_unlock; } dev_put(dev); return len; out_free: kfree_skb(skb); out_unlock: dev_put(dev); out: return err; } static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. * tpacket_snd() will redo the check safely. */ if (data_race(po->tx_ring.pg_vec)) return tpacket_snd(po, msg); return packet_snd(sock, msg, len); } /* * Close a PACKET socket. This is fairly simple. We immediately go * to 'closed' state and remove our protocol entry in the device list. */ static int packet_release(struct socket *sock) { struct sock *sk = sock->sk; struct packet_sock *po; struct packet_fanout *f; struct net *net; union tpacket_req_u req_u; if (!sk) return 0; net = sock_net(sk); po = pkt_sk(sk); mutex_lock(&net->packet.sklist_lock); sk_del_node_init_rcu(sk); mutex_unlock(&net->packet.sklist_lock); sock_prot_inuse_add(net, sk->sk_prot, -1); spin_lock(&po->bind_lock); unregister_prot_hook(sk, false); packet_cached_dev_reset(po); if (po->prot_hook.dev) { netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); po->prot_hook.dev = NULL; } spin_unlock(&po->bind_lock); packet_flush_mclist(sk); lock_sock(sk); if (po->rx_ring.pg_vec) { memset(&req_u, 0, sizeof(req_u)); packet_set_ring(sk, &req_u, 1, 0); } if (po->tx_ring.pg_vec) { memset(&req_u, 0, sizeof(req_u)); packet_set_ring(sk, &req_u, 1, 1); } release_sock(sk); f = fanout_release(sk); synchronize_net(); kfree(po->rollover); if (f) { fanout_release_data(f); kvfree(f); } /* * Now the socket is dead. No more input will appear. */ sock_orphan(sk); sock->sk = NULL; /* Purge queues */ skb_queue_purge(&sk->sk_receive_queue); packet_free_pending(po); sock_put(sk); return 0; } /* * Attach a packet hook. */ static int packet_do_bind(struct sock *sk, const char *name, int ifindex, __be16 proto) { struct packet_sock *po = pkt_sk(sk); struct net_device *dev = NULL; bool unlisted = false; bool need_rehook; int ret = 0; lock_sock(sk); spin_lock(&po->bind_lock); if (!proto) proto = po->num; rcu_read_lock(); if (po->fanout) { ret = -EINVAL; goto out_unlock; } if (name) { dev = dev_get_by_name_rcu(sock_net(sk), name); if (!dev) { ret = -ENODEV; goto out_unlock; } } else if (ifindex) { dev = dev_get_by_index_rcu(sock_net(sk), ifindex); if (!dev) { ret = -ENODEV; goto out_unlock; } } need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev; if (need_rehook) { dev_hold(dev); if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) { rcu_read_unlock(); /* prevents packet_notifier() from calling * register_prot_hook() */ WRITE_ONCE(po->num, 0); __unregister_prot_hook(sk, true); rcu_read_lock(); if (dev) unlisted = !dev_get_by_index_rcu(sock_net(sk), dev->ifindex); } BUG_ON(packet_sock_flag(po, PACKET_SOCK_RUNNING)); WRITE_ONCE(po->num, proto); po->prot_hook.type = proto; netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); if (unlikely(unlisted)) { po->prot_hook.dev = NULL; WRITE_ONCE(po->ifindex, -1); packet_cached_dev_reset(po); } else { netdev_hold(dev, &po->prot_hook.dev_tracker, GFP_ATOMIC); po->prot_hook.dev = dev; WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); packet_cached_dev_assign(po, dev); } dev_put(dev); } if (proto == 0 || !need_rehook) goto out_unlock; if (!unlisted && (!dev || (dev->flags & IFF_UP))) { register_prot_hook(sk); } else { sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); } out_unlock: rcu_read_unlock(); spin_unlock(&po->bind_lock); release_sock(sk); return ret; } /* * Bind a packet socket to a device */ static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; char name[sizeof(uaddr->sa_data_min) + 1]; /* * Check legality */ if (addr_len != sizeof(struct sockaddr)) return -EINVAL; /* uaddr->sa_data comes from the userspace, it's not guaranteed to be * zero-terminated. */ memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data_min)); name[sizeof(uaddr->sa_data_min)] = 0; return packet_do_bind(sk, name, 0, 0); } static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; struct sock *sk = sock->sk; /* * Check legality */ if (addr_len < sizeof(struct sockaddr_ll)) return -EINVAL; if (sll->sll_family != AF_PACKET) return -EINVAL; return packet_do_bind(sk, NULL, sll->sll_ifindex, sll->sll_protocol); } static struct proto packet_proto = { .name = "PACKET", .owner = THIS_MODULE, .obj_size = sizeof(struct packet_sock), }; /* * Create a packet of type SOCK_PACKET. */ static int packet_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; struct packet_sock *po; __be16 proto = (__force __be16)protocol; /* weird, but documented */ int err; if (!ns_capable(net->user_ns, CAP_NET_RAW)) return -EPERM; if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && sock->type != SOCK_PACKET) return -ESOCKTNOSUPPORT; sock->state = SS_UNCONNECTED; err = -ENOBUFS; sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); if (sk == NULL) goto out; sock->ops = &packet_ops; if (sock->type == SOCK_PACKET) sock->ops = &packet_ops_spkt; sock_init_data(sock, sk); po = pkt_sk(sk); init_completion(&po->skb_completion); sk->sk_family = PF_PACKET; po->num = proto; err = packet_alloc_pending(po); if (err) goto out2; packet_cached_dev_reset(po); sk->sk_destruct = packet_sock_destruct; /* * Attach a protocol block */ spin_lock_init(&po->bind_lock); mutex_init(&po->pg_vec_lock); po->rollover = NULL; po->prot_hook.func = packet_rcv; if (sock->type == SOCK_PACKET) po->prot_hook.func = packet_rcv_spkt; po->prot_hook.af_packet_priv = sk; po->prot_hook.af_packet_net = sock_net(sk); if (proto) { po->prot_hook.type = proto; __register_prot_hook(sk); } mutex_lock(&net->packet.sklist_lock); sk_add_node_tail_rcu(sk, &net->packet.sklist); mutex_unlock(&net->packet.sklist_lock); sock_prot_inuse_add(net, &packet_proto, 1); return 0; out2: sk_free(sk); out: return err; } /* * Pull a packet from our receive queue and hand it to the user. * If necessary we block. */ static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct sk_buff *skb; int copied, err; int vnet_hdr_len = READ_ONCE(pkt_sk(sk)->vnet_hdr_sz); unsigned int origlen = 0; err = -EINVAL; if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) goto out; #if 0 /* What error should we return now? EUNATTACH? */ if (pkt_sk(sk)->ifindex < 0) return -ENODEV; #endif if (flags & MSG_ERRQUEUE) { err = sock_recv_errqueue(sk, msg, len, SOL_PACKET, PACKET_TX_TIMESTAMP); goto out; } /* * Call the generic datagram receiver. This handles all sorts * of horrible races and re-entrancy so we can forget about it * in the protocol layers. * * Now it will return ENETDOWN, if device have just gone down, * but then it will block. */ skb = skb_recv_datagram(sk, flags, &err); /* * An error occurred so return it. Because skb_recv_datagram() * handles the blocking we don't see and worry about blocking * retries. */ if (skb == NULL) goto out; packet_rcv_try_clear_pressure(pkt_sk(sk)); if (vnet_hdr_len) { err = packet_rcv_vnet(msg, skb, &len, vnet_hdr_len); if (err) goto out_free; } /* You lose any data beyond the buffer you gave. If it worries * a user program they can ask the device for its MTU * anyway. */ copied = skb->len; if (copied > len) { copied = len; msg->msg_flags |= MSG_TRUNC; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto out_free; if (sock->type != SOCK_PACKET) { struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; /* Original length was stored in sockaddr_ll fields */ origlen = PACKET_SKB_CB(skb)->sa.origlen; sll->sll_family = AF_PACKET; sll->sll_protocol = skb->protocol; } sock_recv_cmsgs(msg, sk, skb); if (msg->msg_name) { const size_t max_len = min(sizeof(skb->cb), sizeof(struct sockaddr_storage)); int copy_len; /* If the address length field is there to be filled * in, we fill it in now. */ if (sock->type == SOCK_PACKET) { __sockaddr_check_size(sizeof(struct sockaddr_pkt)); msg->msg_namelen = sizeof(struct sockaddr_pkt); copy_len = msg->msg_namelen; } else { struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; msg->msg_namelen = sll->sll_halen + offsetof(struct sockaddr_ll, sll_addr); copy_len = msg->msg_namelen; if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { memset(msg->msg_name + offsetof(struct sockaddr_ll, sll_addr), 0, sizeof(sll->sll_addr)); msg->msg_namelen = sizeof(struct sockaddr_ll); } } if (WARN_ON_ONCE(copy_len > max_len)) { copy_len = max_len; msg->msg_namelen = copy_len; } memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); } if (packet_sock_flag(pkt_sk(sk), PACKET_SOCK_AUXDATA)) { struct tpacket_auxdata aux; aux.tp_status = TP_STATUS_USER; if (skb->ip_summed == CHECKSUM_PARTIAL) aux.tp_status |= TP_STATUS_CSUMNOTREADY; else if (skb->pkt_type != PACKET_OUTGOING && skb_csum_unnecessary(skb)) aux.tp_status |= TP_STATUS_CSUM_VALID; if (skb_is_gso(skb) && skb_is_gso_tcp(skb)) aux.tp_status |= TP_STATUS_GSO_TCP; aux.tp_len = origlen; aux.tp_snaplen = skb->len; aux.tp_mac = 0; aux.tp_net = skb_network_offset(skb); if (skb_vlan_tag_present(skb)) { aux.tp_vlan_tci = skb_vlan_tag_get(skb); aux.tp_vlan_tpid = ntohs(skb->vlan_proto); aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; } else { aux.tp_vlan_tci = 0; aux.tp_vlan_tpid = 0; } put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); } /* * Free or return the buffer as appropriate. Again this * hides all the races and re-entrancy issues from us. */ err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); out_free: skb_free_datagram(sk, skb); out: return err; } static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, int peer) { struct net_device *dev; struct sock *sk = sock->sk; if (peer) return -EOPNOTSUPP; uaddr->sa_family = AF_PACKET; memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data_min)); rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); if (dev) strscpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data_min)); rcu_read_unlock(); return sizeof(*uaddr); } static int packet_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct net_device *dev; struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); int ifindex; if (peer) return -EOPNOTSUPP; ifindex = READ_ONCE(po->ifindex); sll->sll_family = AF_PACKET; sll->sll_ifindex = ifindex; sll->sll_protocol = READ_ONCE(po->num); sll->sll_pkttype = 0; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), ifindex); if (dev) { sll->sll_hatype = dev->type; sll->sll_halen = dev->addr_len; memcpy(sll->sll_addr_flex, dev->dev_addr, dev->addr_len); } else { sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ sll->sll_halen = 0; } rcu_read_unlock(); return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; } static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, int what) { switch (i->type) { case PACKET_MR_MULTICAST: if (i->alen != dev->addr_len) return -EINVAL; if (what > 0) return dev_mc_add(dev, i->addr); else return dev_mc_del(dev, i->addr); break; case PACKET_MR_PROMISC: return dev_set_promiscuity(dev, what); case PACKET_MR_ALLMULTI: return dev_set_allmulti(dev, what); case PACKET_MR_UNICAST: if (i->alen != dev->addr_len) return -EINVAL; if (what > 0) return dev_uc_add(dev, i->addr); else return dev_uc_del(dev, i->addr); break; default: break; } return 0; } static void packet_dev_mclist_delete(struct net_device *dev, struct packet_mclist **mlp) { struct packet_mclist *ml; while ((ml = *mlp) != NULL) { if (ml->ifindex == dev->ifindex) { packet_dev_mc(dev, ml, -1); *mlp = ml->next; kfree(ml); } else mlp = &ml->next; } } static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) { struct packet_sock *po = pkt_sk(sk); struct packet_mclist *ml, *i; struct net_device *dev; int err; rtnl_lock(); err = -ENODEV; dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); if (!dev) goto done; err = -EINVAL; if (mreq->mr_alen > dev->addr_len) goto done; err = -ENOBUFS; i = kmalloc(sizeof(*i), GFP_KERNEL); if (i == NULL) goto done; err = 0; for (ml = po->mclist; ml; ml = ml->next) { if (ml->ifindex == mreq->mr_ifindex && ml->type == mreq->mr_type && ml->alen == mreq->mr_alen && memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { ml->count++; /* Free the new element ... */ kfree(i); goto done; } } i->type = mreq->mr_type; i->ifindex = mreq->mr_ifindex; i->alen = mreq->mr_alen; memcpy(i->addr, mreq->mr_address, i->alen); memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); i->count = 1; i->next = po->mclist; po->mclist = i; err = packet_dev_mc(dev, i, 1); if (err) { po->mclist = i->next; kfree(i); } done: rtnl_unlock(); return err; } static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) { struct packet_mclist *ml, **mlp; rtnl_lock(); for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { if (ml->ifindex == mreq->mr_ifindex && ml->type == mreq->mr_type && ml->alen == mreq->mr_alen && memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { if (--ml->count == 0) { struct net_device *dev; *mlp = ml->next; dev = __dev_get_by_index(sock_net(sk), ml->ifindex); if (dev) packet_dev_mc(dev, ml, -1); kfree(ml); } break; } } rtnl_unlock(); return 0; } static void packet_flush_mclist(struct sock *sk) { struct packet_sock *po = pkt_sk(sk); struct packet_mclist *ml; if (!po->mclist) return; rtnl_lock(); while ((ml = po->mclist) != NULL) { struct net_device *dev; po->mclist = ml->next; dev = __dev_get_by_index(sock_net(sk), ml->ifindex); if (dev != NULL) packet_dev_mc(dev, ml, -1); kfree(ml); } rtnl_unlock(); } static int packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); int ret; if (level != SOL_PACKET) return -ENOPROTOOPT; switch (optname) { case PACKET_ADD_MEMBERSHIP: case PACKET_DROP_MEMBERSHIP: { struct packet_mreq_max mreq; int len = optlen; memset(&mreq, 0, sizeof(mreq)); if (len < sizeof(struct packet_mreq)) return -EINVAL; if (len > sizeof(mreq)) len = sizeof(mreq); if (copy_from_sockptr(&mreq, optval, len)) return -EFAULT; if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) return -EINVAL; if (optname == PACKET_ADD_MEMBERSHIP) ret = packet_mc_add(sk, &mreq); else ret = packet_mc_drop(sk, &mreq); return ret; } case PACKET_RX_RING: case PACKET_TX_RING: { union tpacket_req_u req_u; int len; lock_sock(sk); switch (po->tp_version) { case TPACKET_V1: case TPACKET_V2: len = sizeof(req_u.req); break; case TPACKET_V3: default: len = sizeof(req_u.req3); break; } if (optlen < len) { ret = -EINVAL; } else { if (copy_from_sockptr(&req_u.req, optval, len)) ret = -EFAULT; else ret = packet_set_ring(sk, &req_u, 0, optname == PACKET_TX_RING); } release_sock(sk); return ret; } case PACKET_COPY_THRESH: { int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; pkt_sk(sk)->copy_thresh = val; return 0; } case PACKET_VERSION: { int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; switch (val) { case TPACKET_V1: case TPACKET_V2: case TPACKET_V3: break; default: return -EINVAL; } lock_sock(sk); if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { ret = -EBUSY; } else { po->tp_version = val; ret = 0; } release_sock(sk); return ret; } case PACKET_RESERVE: { unsigned int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; if (val > INT_MAX) return -EINVAL; lock_sock(sk); if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { ret = -EBUSY; } else { po->tp_reserve = val; ret = 0; } release_sock(sk); return ret; } case PACKET_LOSS: { unsigned int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; lock_sock(sk); if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { ret = -EBUSY; } else { packet_sock_flag_set(po, PACKET_SOCK_TP_LOSS, val); ret = 0; } release_sock(sk); return ret; } case PACKET_AUXDATA: { int val; if (optlen < sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; packet_sock_flag_set(po, PACKET_SOCK_AUXDATA, val); return 0; } case PACKET_ORIGDEV: { int val; if (optlen < sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; packet_sock_flag_set(po, PACKET_SOCK_ORIGDEV, val); return 0; } case PACKET_VNET_HDR: case PACKET_VNET_HDR_SZ: { int val, hdr_len; if (sock->type != SOCK_RAW) return -EINVAL; if (optlen < sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; if (optname == PACKET_VNET_HDR_SZ) { if (val && val != sizeof(struct virtio_net_hdr) && val != sizeof(struct virtio_net_hdr_mrg_rxbuf)) return -EINVAL; hdr_len = val; } else { hdr_len = val ? sizeof(struct virtio_net_hdr) : 0; } lock_sock(sk); if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { ret = -EBUSY; } else { WRITE_ONCE(po->vnet_hdr_sz, hdr_len); ret = 0; } release_sock(sk); return ret; } case PACKET_TIMESTAMP: { int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; WRITE_ONCE(po->tp_tstamp, val); return 0; } case PACKET_FANOUT: { struct fanout_args args = { 0 }; if (optlen != sizeof(int) && optlen != sizeof(args)) return -EINVAL; if (copy_from_sockptr(&args, optval, optlen)) return -EFAULT; return fanout_add(sk, &args); } case PACKET_FANOUT_DATA: { /* Paired with the WRITE_ONCE() in fanout_add() */ if (!READ_ONCE(po->fanout)) return -EINVAL; return fanout_set_data(po, optval, optlen); } case PACKET_IGNORE_OUTGOING: { int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; if (val < 0 || val > 1) return -EINVAL; po->prot_hook.ignore_outgoing = !!val; return 0; } case PACKET_TX_HAS_OFF: { unsigned int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; lock_sock(sk); if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) packet_sock_flag_set(po, PACKET_SOCK_TX_HAS_OFF, val); release_sock(sk); return 0; } case PACKET_QDISC_BYPASS: { int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; packet_sock_flag_set(po, PACKET_SOCK_QDISC_BYPASS, val); return 0; } default: return -ENOPROTOOPT; } } static int packet_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { int len; int val, lv = sizeof(val); struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); void *data = &val; union tpacket_stats_u st; struct tpacket_rollover_stats rstats; int drops; if (level != SOL_PACKET) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case PACKET_STATISTICS: spin_lock_bh(&sk->sk_receive_queue.lock); memcpy(&st, &po->stats, sizeof(st)); memset(&po->stats, 0, sizeof(po->stats)); spin_unlock_bh(&sk->sk_receive_queue.lock); drops = atomic_xchg(&po->tp_drops, 0); if (po->tp_version == TPACKET_V3) { lv = sizeof(struct tpacket_stats_v3); st.stats3.tp_drops = drops; st.stats3.tp_packets += drops; data = &st.stats3; } else { lv = sizeof(struct tpacket_stats); st.stats1.tp_drops = drops; st.stats1.tp_packets += drops; data = &st.stats1; } break; case PACKET_AUXDATA: val = packet_sock_flag(po, PACKET_SOCK_AUXDATA); break; case PACKET_ORIGDEV: val = packet_sock_flag(po, PACKET_SOCK_ORIGDEV); break; case PACKET_VNET_HDR: val = !!READ_ONCE(po->vnet_hdr_sz); break; case PACKET_VNET_HDR_SZ: val = READ_ONCE(po->vnet_hdr_sz); break; case PACKET_VERSION: val = po->tp_version; break; case PACKET_HDRLEN: if (len > sizeof(int)) len = sizeof(int); if (len < sizeof(int)) return -EINVAL; if (copy_from_user(&val, optval, len)) return -EFAULT; switch (val) { case TPACKET_V1: val = sizeof(struct tpacket_hdr); break; case TPACKET_V2: val = sizeof(struct tpacket2_hdr); break; case TPACKET_V3: val = sizeof(struct tpacket3_hdr); break; default: return -EINVAL; } break; case PACKET_RESERVE: val = po->tp_reserve; break; case PACKET_LOSS: val = packet_sock_flag(po, PACKET_SOCK_TP_LOSS); break; case PACKET_TIMESTAMP: val = READ_ONCE(po->tp_tstamp); break; case PACKET_FANOUT: val = (po->fanout ? ((u32)po->fanout->id | ((u32)po->fanout->type << 16) | ((u32)po->fanout->flags << 24)) : 0); break; case PACKET_IGNORE_OUTGOING: val = po->prot_hook.ignore_outgoing; break; case PACKET_ROLLOVER_STATS: if (!po->rollover) return -EINVAL; rstats.tp_all = atomic_long_read(&po->rollover->num); rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); data = &rstats; lv = sizeof(rstats); break; case PACKET_TX_HAS_OFF: val = packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF); break; case PACKET_QDISC_BYPASS: val = packet_sock_flag(po, PACKET_SOCK_QDISC_BYPASS); break; default: return -ENOPROTOOPT; } if (len > lv) len = lv; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, data, len)) return -EFAULT; return 0; } static int packet_notifier(struct notifier_block *this, unsigned long msg, void *ptr) { struct sock *sk; struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net *net = dev_net(dev); rcu_read_lock(); sk_for_each_rcu(sk, &net->packet.sklist) { struct packet_sock *po = pkt_sk(sk); switch (msg) { case NETDEV_UNREGISTER: if (po->mclist) packet_dev_mclist_delete(dev, &po->mclist); fallthrough; case NETDEV_DOWN: if (dev->ifindex == po->ifindex) { spin_lock(&po->bind_lock); if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) { __unregister_prot_hook(sk, false); sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); } if (msg == NETDEV_UNREGISTER) { packet_cached_dev_reset(po); WRITE_ONCE(po->ifindex, -1); netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); po->prot_hook.dev = NULL; } spin_unlock(&po->bind_lock); } break; case NETDEV_UP: if (dev->ifindex == po->ifindex) { spin_lock(&po->bind_lock); if (po->num) register_prot_hook(sk); spin_unlock(&po->bind_lock); } break; } } rcu_read_unlock(); return NOTIFY_DONE; } static int packet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; switch (cmd) { case SIOCOUTQ: { int amount = sk_wmem_alloc_get(sk); return put_user(amount, (int __user *)arg); } case SIOCINQ: { struct sk_buff *skb; int amount = 0; spin_lock_bh(&sk->sk_receive_queue.lock); skb = skb_peek(&sk->sk_receive_queue); if (skb) amount = skb->len; spin_unlock_bh(&sk->sk_receive_queue.lock); return put_user(amount, (int __user *)arg); } #ifdef CONFIG_INET case SIOCADDRT: case SIOCDELRT: case SIOCDARP: case SIOCGARP: case SIOCSARP: case SIOCGIFADDR: case SIOCSIFADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCSIFFLAGS: return inet_dgram_ops.ioctl(sock, cmd, arg); #endif default: return -ENOIOCTLCMD; } return 0; } static __poll_t packet_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); __poll_t mask = datagram_poll(file, sock, wait); spin_lock_bh(&sk->sk_receive_queue.lock); if (po->rx_ring.pg_vec) { if (!packet_previous_rx_frame(po, &po->rx_ring, TP_STATUS_KERNEL)) mask |= EPOLLIN | EPOLLRDNORM; } packet_rcv_try_clear_pressure(po); spin_unlock_bh(&sk->sk_receive_queue.lock); spin_lock_bh(&sk->sk_write_queue.lock); if (po->tx_ring.pg_vec) { if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) mask |= EPOLLOUT | EPOLLWRNORM; } spin_unlock_bh(&sk->sk_write_queue.lock); return mask; } /* Dirty? Well, I still did not learn better way to account * for user mmaps. */ static void packet_mm_open(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct socket *sock = file->private_data; struct sock *sk = sock->sk; if (sk) atomic_inc(&pkt_sk(sk)->mapped); } static void packet_mm_close(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct socket *sock = file->private_data; struct sock *sk = sock->sk; if (sk) atomic_dec(&pkt_sk(sk)->mapped); } static const struct vm_operations_struct packet_mmap_ops = { .open = packet_mm_open, .close = packet_mm_close, }; static void free_pg_vec(struct pgv *pg_vec, unsigned int order, unsigned int len) { int i; for (i = 0; i < len; i++) { if (likely(pg_vec[i].buffer)) { if (is_vmalloc_addr(pg_vec[i].buffer)) vfree(pg_vec[i].buffer); else free_pages((unsigned long)pg_vec[i].buffer, order); pg_vec[i].buffer = NULL; } } kfree(pg_vec); } static char *alloc_one_pg_vec_page(unsigned long order) { char *buffer; gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; buffer = (char *) __get_free_pages(gfp_flags, order); if (buffer) return buffer; /* __get_free_pages failed, fall back to vmalloc */ buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); if (buffer) return buffer; /* vmalloc failed, lets dig into swap here */ gfp_flags &= ~__GFP_NORETRY; buffer = (char *) __get_free_pages(gfp_flags, order); if (buffer) return buffer; /* complete and utter failure */ return NULL; } static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) { unsigned int block_nr = req->tp_block_nr; struct pgv *pg_vec; int i; pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); if (unlikely(!pg_vec)) goto out; for (i = 0; i < block_nr; i++) { pg_vec[i].buffer = alloc_one_pg_vec_page(order); if (unlikely(!pg_vec[i].buffer)) goto out_free_pgvec; } out: return pg_vec; out_free_pgvec: free_pg_vec(pg_vec, order, block_nr); pg_vec = NULL; goto out; } static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, int closing, int tx_ring) { struct pgv *pg_vec = NULL; struct packet_sock *po = pkt_sk(sk); unsigned long *rx_owner_map = NULL; int was_running, order = 0; struct packet_ring_buffer *rb; struct sk_buff_head *rb_queue; __be16 num; int err; /* Added to avoid minimal code churn */ struct tpacket_req *req = &req_u->req; rb = tx_ring ? &po->tx_ring : &po->rx_ring; rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; err = -EBUSY; if (!closing) { if (atomic_read(&po->mapped)) goto out; if (packet_read_pending(rb)) goto out; } if (req->tp_block_nr) { unsigned int min_frame_size; /* Sanity tests and some calculations */ err = -EBUSY; if (unlikely(rb->pg_vec)) goto out; switch (po->tp_version) { case TPACKET_V1: po->tp_hdrlen = TPACKET_HDRLEN; break; case TPACKET_V2: po->tp_hdrlen = TPACKET2_HDRLEN; break; case TPACKET_V3: po->tp_hdrlen = TPACKET3_HDRLEN; break; } err = -EINVAL; if (unlikely((int)req->tp_block_size <= 0)) goto out; if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) goto out; min_frame_size = po->tp_hdrlen + po->tp_reserve; if (po->tp_version >= TPACKET_V3 && req->tp_block_size < BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) goto out; if (unlikely(req->tp_frame_size < min_frame_size)) goto out; if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) goto out; rb->frames_per_block = req->tp_block_size / req->tp_frame_size; if (unlikely(rb->frames_per_block == 0)) goto out; if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) goto out; if (unlikely((rb->frames_per_block * req->tp_block_nr) != req->tp_frame_nr)) goto out; err = -ENOMEM; order = get_order(req->tp_block_size); pg_vec = alloc_pg_vec(req, order); if (unlikely(!pg_vec)) goto out; switch (po->tp_version) { case TPACKET_V3: /* Block transmit is not supported yet */ if (!tx_ring) { init_prb_bdqc(po, rb, pg_vec, req_u); } else { struct tpacket_req3 *req3 = &req_u->req3; if (req3->tp_retire_blk_tov || req3->tp_sizeof_priv || req3->tp_feature_req_word) { err = -EINVAL; goto out_free_pg_vec; } } break; default: if (!tx_ring) { rx_owner_map = bitmap_alloc(req->tp_frame_nr, GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); if (!rx_owner_map) goto out_free_pg_vec; } break; } } /* Done */ else { err = -EINVAL; if (unlikely(req->tp_frame_nr)) goto out; } /* Detach socket from network */ spin_lock(&po->bind_lock); was_running = packet_sock_flag(po, PACKET_SOCK_RUNNING); num = po->num; if (was_running) { WRITE_ONCE(po->num, 0); __unregister_prot_hook(sk, false); } spin_unlock(&po->bind_lock); synchronize_net(); err = -EBUSY; mutex_lock(&po->pg_vec_lock); if (closing || atomic_read(&po->mapped) == 0) { err = 0; spin_lock_bh(&rb_queue->lock); swap(rb->pg_vec, pg_vec); if (po->tp_version <= TPACKET_V2) swap(rb->rx_owner_map, rx_owner_map); rb->frame_max = (req->tp_frame_nr - 1); rb->head = 0; rb->frame_size = req->tp_frame_size; spin_unlock_bh(&rb_queue->lock); swap(rb->pg_vec_order, order); swap(rb->pg_vec_len, req->tp_block_nr); rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; po->prot_hook.func = (po->rx_ring.pg_vec) ? tpacket_rcv : packet_rcv; skb_queue_purge(rb_queue); if (atomic_read(&po->mapped)) pr_err("packet_mmap: vma is busy: %d\n", atomic_read(&po->mapped)); } mutex_unlock(&po->pg_vec_lock); spin_lock(&po->bind_lock); if (was_running) { WRITE_ONCE(po->num, num); register_prot_hook(sk); } spin_unlock(&po->bind_lock); if (pg_vec && (po->tp_version > TPACKET_V2)) { /* Because we don't support block-based V3 on tx-ring */ if (!tx_ring) prb_shutdown_retire_blk_timer(po, rb_queue); } out_free_pg_vec: if (pg_vec) { bitmap_free(rx_owner_map); free_pg_vec(pg_vec, order, req->tp_block_nr); } out: return err; } static int packet_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); unsigned long size, expected_size; struct packet_ring_buffer *rb; unsigned long start; int err = -EINVAL; int i; if (vma->vm_pgoff) return -EINVAL; mutex_lock(&po->pg_vec_lock); expected_size = 0; for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { if (rb->pg_vec) { expected_size += rb->pg_vec_len * rb->pg_vec_pages * PAGE_SIZE; } } if (expected_size == 0) goto out; size = vma->vm_end - vma->vm_start; if (size != expected_size) goto out; start = vma->vm_start; for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { if (rb->pg_vec == NULL) continue; for (i = 0; i < rb->pg_vec_len; i++) { struct page *page; void *kaddr = rb->pg_vec[i].buffer; int pg_num; for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { page = pgv_to_page(kaddr); err = vm_insert_page(vma, start, page); if (unlikely(err)) goto out; start += PAGE_SIZE; kaddr += PAGE_SIZE; } } } atomic_inc(&po->mapped); vma->vm_ops = &packet_mmap_ops; err = 0; out: mutex_unlock(&po->pg_vec_lock); return err; } static const struct proto_ops packet_ops_spkt = { .family = PF_PACKET, .owner = THIS_MODULE, .release = packet_release, .bind = packet_bind_spkt, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = packet_getname_spkt, .poll = datagram_poll, .ioctl = packet_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .sendmsg = packet_sendmsg_spkt, .recvmsg = packet_recvmsg, .mmap = sock_no_mmap, }; static const struct proto_ops packet_ops = { .family = PF_PACKET, .owner = THIS_MODULE, .release = packet_release, .bind = packet_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = packet_getname, .poll = packet_poll, .ioctl = packet_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = packet_setsockopt, .getsockopt = packet_getsockopt, .sendmsg = packet_sendmsg, .recvmsg = packet_recvmsg, .mmap = packet_mmap, }; static const struct net_proto_family packet_family_ops = { .family = PF_PACKET, .create = packet_create, .owner = THIS_MODULE, }; static struct notifier_block packet_netdev_notifier = { .notifier_call = packet_notifier, }; #ifdef CONFIG_PROC_FS static void *packet_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { struct net *net = seq_file_net(seq); rcu_read_lock(); return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); } static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct net *net = seq_file_net(seq); return seq_hlist_next_rcu(v, &net->packet.sklist, pos); } static void packet_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static int packet_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) seq_printf(seq, "%*sRefCnt Type Proto Iface R Rmem User Inode\n", IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); else { struct sock *s = sk_entry(v); const struct packet_sock *po = pkt_sk(s); seq_printf(seq, "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", s, refcount_read(&s->sk_refcnt), s->sk_type, ntohs(READ_ONCE(po->num)), READ_ONCE(po->ifindex), packet_sock_flag(po, PACKET_SOCK_RUNNING), atomic_read(&s->sk_rmem_alloc), from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), sock_i_ino(s)); } return 0; } static const struct seq_operations packet_seq_ops = { .start = packet_seq_start, .next = packet_seq_next, .stop = packet_seq_stop, .show = packet_seq_show, }; #endif static int __net_init packet_net_init(struct net *net) { mutex_init(&net->packet.sklist_lock); INIT_HLIST_HEAD(&net->packet.sklist); #ifdef CONFIG_PROC_FS if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, sizeof(struct seq_net_private))) return -ENOMEM; #endif /* CONFIG_PROC_FS */ return 0; } static void __net_exit packet_net_exit(struct net *net) { remove_proc_entry("packet", net->proc_net); WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); } static struct pernet_operations packet_net_ops = { .init = packet_net_init, .exit = packet_net_exit, }; static void __exit packet_exit(void) { sock_unregister(PF_PACKET); proto_unregister(&packet_proto); unregister_netdevice_notifier(&packet_netdev_notifier); unregister_pernet_subsys(&packet_net_ops); } static int __init packet_init(void) { int rc; rc = register_pernet_subsys(&packet_net_ops); if (rc) goto out; rc = register_netdevice_notifier(&packet_netdev_notifier); if (rc) goto out_pernet; rc = proto_register(&packet_proto, 0); if (rc) goto out_notifier; rc = sock_register(&packet_family_ops); if (rc) goto out_proto; return 0; out_proto: proto_unregister(&packet_proto); out_notifier: unregister_netdevice_notifier(&packet_netdev_notifier); out_pernet: unregister_pernet_subsys(&packet_net_ops); out: return rc; } module_init(packet_init); module_exit(packet_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_PACKET);
linux-master
net/packet/af_packet.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright 2011-2014 Autronica Fire and Security AS * * Author(s): * 2011-2014 Arvid Brodin, [email protected] * * Event handling for HSR and PRP devices. */ #include <linux/netdevice.h> #include <net/rtnetlink.h> #include <linux/rculist.h> #include <linux/timer.h> #include <linux/etherdevice.h> #include "hsr_main.h" #include "hsr_device.h" #include "hsr_netlink.h" #include "hsr_framereg.h" #include "hsr_slave.h" static bool hsr_slave_empty(struct hsr_priv *hsr) { struct hsr_port *port; hsr_for_each_port(hsr, port) if (port->type != HSR_PT_MASTER) return false; return true; } static int hsr_netdev_notify(struct notifier_block *nb, unsigned long event, void *ptr) { struct hsr_port *port, *master; struct net_device *dev; struct hsr_priv *hsr; LIST_HEAD(list_kill); int mtu_max; int res; dev = netdev_notifier_info_to_dev(ptr); port = hsr_port_get_rtnl(dev); if (!port) { if (!is_hsr_master(dev)) return NOTIFY_DONE; /* Not an HSR device */ hsr = netdev_priv(dev); port = hsr_port_get_hsr(hsr, HSR_PT_MASTER); if (!port) { /* Resend of notification concerning removed device? */ return NOTIFY_DONE; } } else { hsr = port->hsr; } switch (event) { case NETDEV_UP: /* Administrative state DOWN */ case NETDEV_DOWN: /* Administrative state UP */ case NETDEV_CHANGE: /* Link (carrier) state changes */ hsr_check_carrier_and_operstate(hsr); break; case NETDEV_CHANGENAME: if (is_hsr_master(dev)) hsr_debugfs_rename(dev); break; case NETDEV_CHANGEADDR: if (port->type == HSR_PT_MASTER) { /* This should not happen since there's no * ndo_set_mac_address() for HSR devices - i.e. not * supported. */ break; } master = hsr_port_get_hsr(hsr, HSR_PT_MASTER); if (port->type == HSR_PT_SLAVE_A) { eth_hw_addr_set(master->dev, dev->dev_addr); call_netdevice_notifiers(NETDEV_CHANGEADDR, master->dev); } /* Make sure we recognize frames from ourselves in hsr_rcv() */ port = hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); res = hsr_create_self_node(hsr, master->dev->dev_addr, port ? port->dev->dev_addr : master->dev->dev_addr); if (res) netdev_warn(master->dev, "Could not update HSR node address.\n"); break; case NETDEV_CHANGEMTU: if (port->type == HSR_PT_MASTER) break; /* Handled in ndo_change_mtu() */ mtu_max = hsr_get_max_mtu(port->hsr); master = hsr_port_get_hsr(port->hsr, HSR_PT_MASTER); master->dev->mtu = mtu_max; break; case NETDEV_UNREGISTER: if (!is_hsr_master(dev)) { master = hsr_port_get_hsr(port->hsr, HSR_PT_MASTER); hsr_del_port(port); if (hsr_slave_empty(master->hsr)) { const struct rtnl_link_ops *ops; ops = master->dev->rtnl_link_ops; ops->dellink(master->dev, &list_kill); unregister_netdevice_many(&list_kill); } } break; case NETDEV_PRE_TYPE_CHANGE: /* HSR works only on Ethernet devices. Refuse slave to change * its type. */ return NOTIFY_BAD; } return NOTIFY_DONE; } struct hsr_port *hsr_port_get_hsr(struct hsr_priv *hsr, enum hsr_port_type pt) { struct hsr_port *port; hsr_for_each_port(hsr, port) if (port->type == pt) return port; return NULL; } int hsr_get_version(struct net_device *dev, enum hsr_version *ver) { struct hsr_priv *hsr; hsr = netdev_priv(dev); *ver = hsr->prot_version; return 0; } EXPORT_SYMBOL(hsr_get_version); static struct notifier_block hsr_nb = { .notifier_call = hsr_netdev_notify, /* Slave event notifications */ }; static int __init hsr_init(void) { int res; BUILD_BUG_ON(sizeof(struct hsr_tag) != HSR_HLEN); register_netdevice_notifier(&hsr_nb); res = hsr_netlink_init(); return res; } static void __exit hsr_exit(void) { hsr_netlink_exit(); hsr_debugfs_remove_root(); unregister_netdevice_notifier(&hsr_nb); } module_init(hsr_init); module_exit(hsr_exit); MODULE_LICENSE("GPL");
linux-master
net/hsr/hsr_main.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright 2011-2014 Autronica Fire and Security AS * * Author(s): * 2011-2014 Arvid Brodin, [email protected] * * The HSR spec says never to forward the same frame twice on the same * interface. A frame is identified by its source MAC address and its HSR * sequence number. This code keeps track of senders and their sequence numbers * to allow filtering of duplicate frames, and to detect HSR ring errors. * Same code handles filtering of duplicates for PRP as well. */ #include <linux/if_ether.h> #include <linux/etherdevice.h> #include <linux/slab.h> #include <linux/rculist.h> #include "hsr_main.h" #include "hsr_framereg.h" #include "hsr_netlink.h" /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, * false otherwise. */ static bool seq_nr_after(u16 a, u16 b) { /* Remove inconsistency where * seq_nr_after(a, b) == seq_nr_before(a, b) */ if ((int)b - a == 32768) return false; return (((s16)(b - a)) < 0); } #define seq_nr_before(a, b) seq_nr_after((b), (a)) #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr) { struct hsr_self_node *sn; bool ret = false; rcu_read_lock(); sn = rcu_dereference(hsr->self_node); if (!sn) { WARN_ONCE(1, "HSR: No self node\n"); goto out; } if (ether_addr_equal(addr, sn->macaddress_A) || ether_addr_equal(addr, sn->macaddress_B)) ret = true; out: rcu_read_unlock(); return ret; } /* Search for mac entry. Caller must hold rcu read lock. */ static struct hsr_node *find_node_by_addr_A(struct list_head *node_db, const unsigned char addr[ETH_ALEN]) { struct hsr_node *node; list_for_each_entry_rcu(node, node_db, mac_list) { if (ether_addr_equal(node->macaddress_A, addr)) return node; } return NULL; } /* Helper for device init; the self_node is used in hsr_rcv() to recognize * frames from self that's been looped over the HSR ring. */ int hsr_create_self_node(struct hsr_priv *hsr, const unsigned char addr_a[ETH_ALEN], const unsigned char addr_b[ETH_ALEN]) { struct hsr_self_node *sn, *old; sn = kmalloc(sizeof(*sn), GFP_KERNEL); if (!sn) return -ENOMEM; ether_addr_copy(sn->macaddress_A, addr_a); ether_addr_copy(sn->macaddress_B, addr_b); spin_lock_bh(&hsr->list_lock); old = rcu_replace_pointer(hsr->self_node, sn, lockdep_is_held(&hsr->list_lock)); spin_unlock_bh(&hsr->list_lock); if (old) kfree_rcu(old, rcu_head); return 0; } void hsr_del_self_node(struct hsr_priv *hsr) { struct hsr_self_node *old; spin_lock_bh(&hsr->list_lock); old = rcu_replace_pointer(hsr->self_node, NULL, lockdep_is_held(&hsr->list_lock)); spin_unlock_bh(&hsr->list_lock); if (old) kfree_rcu(old, rcu_head); } void hsr_del_nodes(struct list_head *node_db) { struct hsr_node *node; struct hsr_node *tmp; list_for_each_entry_safe(node, tmp, node_db, mac_list) kfree(node); } void prp_handle_san_frame(bool san, enum hsr_port_type port, struct hsr_node *node) { /* Mark if the SAN node is over LAN_A or LAN_B */ if (port == HSR_PT_SLAVE_A) { node->san_a = true; return; } if (port == HSR_PT_SLAVE_B) node->san_b = true; } /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A; * seq_out is used to initialize filtering of outgoing duplicate frames * originating from the newly added node. */ static struct hsr_node *hsr_add_node(struct hsr_priv *hsr, struct list_head *node_db, unsigned char addr[], u16 seq_out, bool san, enum hsr_port_type rx_port) { struct hsr_node *new_node, *node; unsigned long now; int i; new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); if (!new_node) return NULL; ether_addr_copy(new_node->macaddress_A, addr); spin_lock_init(&new_node->seq_out_lock); /* We are only interested in time diffs here, so use current jiffies * as initialization. (0 could trigger an spurious ring error warning). */ now = jiffies; for (i = 0; i < HSR_PT_PORTS; i++) { new_node->time_in[i] = now; new_node->time_out[i] = now; } for (i = 0; i < HSR_PT_PORTS; i++) new_node->seq_out[i] = seq_out; if (san && hsr->proto_ops->handle_san_frame) hsr->proto_ops->handle_san_frame(san, rx_port, new_node); spin_lock_bh(&hsr->list_lock); list_for_each_entry_rcu(node, node_db, mac_list, lockdep_is_held(&hsr->list_lock)) { if (ether_addr_equal(node->macaddress_A, addr)) goto out; if (ether_addr_equal(node->macaddress_B, addr)) goto out; } list_add_tail_rcu(&new_node->mac_list, node_db); spin_unlock_bh(&hsr->list_lock); return new_node; out: spin_unlock_bh(&hsr->list_lock); kfree(new_node); return node; } void prp_update_san_info(struct hsr_node *node, bool is_sup) { if (!is_sup) return; node->san_a = false; node->san_b = false; } /* Get the hsr_node from which 'skb' was sent. */ struct hsr_node *hsr_get_node(struct hsr_port *port, struct list_head *node_db, struct sk_buff *skb, bool is_sup, enum hsr_port_type rx_port) { struct hsr_priv *hsr = port->hsr; struct hsr_node *node; struct ethhdr *ethhdr; struct prp_rct *rct; bool san = false; u16 seq_out; if (!skb_mac_header_was_set(skb)) return NULL; ethhdr = (struct ethhdr *)skb_mac_header(skb); list_for_each_entry_rcu(node, node_db, mac_list) { if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) { if (hsr->proto_ops->update_san_info) hsr->proto_ops->update_san_info(node, is_sup); return node; } if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) { if (hsr->proto_ops->update_san_info) hsr->proto_ops->update_san_info(node, is_sup); return node; } } /* Everyone may create a node entry, connected node to a HSR/PRP * device. */ if (ethhdr->h_proto == htons(ETH_P_PRP) || ethhdr->h_proto == htons(ETH_P_HSR)) { /* Use the existing sequence_nr from the tag as starting point * for filtering duplicate frames. */ seq_out = hsr_get_skb_sequence_nr(skb) - 1; } else { rct = skb_get_PRP_rct(skb); if (rct && prp_check_lsdu_size(skb, rct, is_sup)) { seq_out = prp_get_skb_sequence_nr(rct); } else { if (rx_port != HSR_PT_MASTER) san = true; seq_out = HSR_SEQNR_START; } } return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out, san, rx_port); } /* Use the Supervision frame's info about an eventual macaddress_B for merging * nodes that has previously had their macaddress_B registered as a separate * node. */ void hsr_handle_sup_frame(struct hsr_frame_info *frame) { struct hsr_node *node_curr = frame->node_src; struct hsr_port *port_rcv = frame->port_rcv; struct hsr_priv *hsr = port_rcv->hsr; struct hsr_sup_payload *hsr_sp; struct hsr_sup_tlv *hsr_sup_tlv; struct hsr_node *node_real; struct sk_buff *skb = NULL; struct list_head *node_db; struct ethhdr *ethhdr; int i; unsigned int pull_size = 0; unsigned int total_pull_size = 0; /* Here either frame->skb_hsr or frame->skb_prp should be * valid as supervision frame always will have protocol * header info. */ if (frame->skb_hsr) skb = frame->skb_hsr; else if (frame->skb_prp) skb = frame->skb_prp; else if (frame->skb_std) skb = frame->skb_std; if (!skb) return; /* Leave the ethernet header. */ pull_size = sizeof(struct ethhdr); skb_pull(skb, pull_size); total_pull_size += pull_size; ethhdr = (struct ethhdr *)skb_mac_header(skb); /* And leave the HSR tag. */ if (ethhdr->h_proto == htons(ETH_P_HSR)) { pull_size = sizeof(struct hsr_tag); skb_pull(skb, pull_size); total_pull_size += pull_size; } /* And leave the HSR sup tag. */ pull_size = sizeof(struct hsr_sup_tag); skb_pull(skb, pull_size); total_pull_size += pull_size; /* get HSR sup payload */ hsr_sp = (struct hsr_sup_payload *)skb->data; /* Merge node_curr (registered on macaddress_B) into node_real */ node_db = &port_rcv->hsr->node_db; node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A); if (!node_real) /* No frame received from AddrA of this node yet */ node_real = hsr_add_node(hsr, node_db, hsr_sp->macaddress_A, HSR_SEQNR_START - 1, true, port_rcv->type); if (!node_real) goto done; /* No mem */ if (node_real == node_curr) /* Node has already been merged */ goto done; /* Leave the first HSR sup payload. */ pull_size = sizeof(struct hsr_sup_payload); skb_pull(skb, pull_size); total_pull_size += pull_size; /* Get second supervision tlv */ hsr_sup_tlv = (struct hsr_sup_tlv *)skb->data; /* And check if it is a redbox mac TLV */ if (hsr_sup_tlv->HSR_TLV_type == PRP_TLV_REDBOX_MAC) { /* We could stop here after pushing hsr_sup_payload, * or proceed and allow macaddress_B and for redboxes. */ /* Sanity check length */ if (hsr_sup_tlv->HSR_TLV_length != 6) goto done; /* Leave the second HSR sup tlv. */ pull_size = sizeof(struct hsr_sup_tlv); skb_pull(skb, pull_size); total_pull_size += pull_size; /* Get redbox mac address. */ hsr_sp = (struct hsr_sup_payload *)skb->data; /* Check if redbox mac and node mac are equal. */ if (!ether_addr_equal(node_real->macaddress_A, hsr_sp->macaddress_A)) { /* This is a redbox supervision frame for a VDAN! */ goto done; } } ether_addr_copy(node_real->macaddress_B, ethhdr->h_source); spin_lock_bh(&node_real->seq_out_lock); for (i = 0; i < HSR_PT_PORTS; i++) { if (!node_curr->time_in_stale[i] && time_after(node_curr->time_in[i], node_real->time_in[i])) { node_real->time_in[i] = node_curr->time_in[i]; node_real->time_in_stale[i] = node_curr->time_in_stale[i]; } if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i])) node_real->seq_out[i] = node_curr->seq_out[i]; } spin_unlock_bh(&node_real->seq_out_lock); node_real->addr_B_port = port_rcv->type; spin_lock_bh(&hsr->list_lock); if (!node_curr->removed) { list_del_rcu(&node_curr->mac_list); node_curr->removed = true; kfree_rcu(node_curr, rcu_head); } spin_unlock_bh(&hsr->list_lock); done: /* Push back here */ skb_push(skb, total_pull_size); } /* 'skb' is a frame meant for this host, that is to be passed to upper layers. * * If the frame was sent by a node's B interface, replace the source * address with that node's "official" address (macaddress_A) so that upper * layers recognize where it came from. */ void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb) { if (!skb_mac_header_was_set(skb)) { WARN_ONCE(1, "%s: Mac header not set\n", __func__); return; } memcpy(&eth_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN); } /* 'skb' is a frame meant for another host. * 'port' is the outgoing interface * * Substitute the target (dest) MAC address if necessary, so the it matches the * recipient interface MAC address, regardless of whether that is the * recipient's A or B interface. * This is needed to keep the packets flowing through switches that learn on * which "side" the different interfaces are. */ void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb, struct hsr_port *port) { struct hsr_node *node_dst; if (!skb_mac_header_was_set(skb)) { WARN_ONCE(1, "%s: Mac header not set\n", __func__); return; } if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest)) return; node_dst = find_node_by_addr_A(&port->hsr->node_db, eth_hdr(skb)->h_dest); if (!node_dst) { if (port->hsr->prot_version != PRP_V1 && net_ratelimit()) netdev_err(skb->dev, "%s: Unknown node\n", __func__); return; } if (port->type != node_dst->addr_B_port) return; if (is_valid_ether_addr(node_dst->macaddress_B)) ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B); } void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port, u16 sequence_nr) { /* Don't register incoming frames without a valid sequence number. This * ensures entries of restarted nodes gets pruned so that they can * re-register and resume communications. */ if (!(port->dev->features & NETIF_F_HW_HSR_TAG_RM) && seq_nr_before(sequence_nr, node->seq_out[port->type])) return; node->time_in[port->type] = jiffies; node->time_in_stale[port->type] = false; } /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid * ethhdr->h_source address and skb->mac_header set. * * Return: * 1 if frame can be shown to have been sent recently on this interface, * 0 otherwise, or * negative error code on error */ int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node, u16 sequence_nr) { spin_lock_bh(&node->seq_out_lock); if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type]) && time_is_after_jiffies(node->time_out[port->type] + msecs_to_jiffies(HSR_ENTRY_FORGET_TIME))) { spin_unlock_bh(&node->seq_out_lock); return 1; } node->time_out[port->type] = jiffies; node->seq_out[port->type] = sequence_nr; spin_unlock_bh(&node->seq_out_lock); return 0; } static struct hsr_port *get_late_port(struct hsr_priv *hsr, struct hsr_node *node) { if (node->time_in_stale[HSR_PT_SLAVE_A]) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); if (node->time_in_stale[HSR_PT_SLAVE_B]) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); if (time_after(node->time_in[HSR_PT_SLAVE_B], node->time_in[HSR_PT_SLAVE_A] + msecs_to_jiffies(MAX_SLAVE_DIFF))) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); if (time_after(node->time_in[HSR_PT_SLAVE_A], node->time_in[HSR_PT_SLAVE_B] + msecs_to_jiffies(MAX_SLAVE_DIFF))) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); return NULL; } /* Remove stale sequence_nr records. Called by timer every * HSR_LIFE_CHECK_INTERVAL (two seconds or so). */ void hsr_prune_nodes(struct timer_list *t) { struct hsr_priv *hsr = from_timer(hsr, t, prune_timer); struct hsr_node *node; struct hsr_node *tmp; struct hsr_port *port; unsigned long timestamp; unsigned long time_a, time_b; spin_lock_bh(&hsr->list_lock); list_for_each_entry_safe(node, tmp, &hsr->node_db, mac_list) { /* Don't prune own node. Neither time_in[HSR_PT_SLAVE_A] * nor time_in[HSR_PT_SLAVE_B], will ever be updated for * the master port. Thus the master node will be repeatedly * pruned leading to packet loss. */ if (hsr_addr_is_self(hsr, node->macaddress_A)) continue; /* Shorthand */ time_a = node->time_in[HSR_PT_SLAVE_A]; time_b = node->time_in[HSR_PT_SLAVE_B]; /* Check for timestamps old enough to risk wrap-around */ if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2)) node->time_in_stale[HSR_PT_SLAVE_A] = true; if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2)) node->time_in_stale[HSR_PT_SLAVE_B] = true; /* Get age of newest frame from node. * At least one time_in is OK here; nodes get pruned long * before both time_ins can get stale */ timestamp = time_a; if (node->time_in_stale[HSR_PT_SLAVE_A] || (!node->time_in_stale[HSR_PT_SLAVE_B] && time_after(time_b, time_a))) timestamp = time_b; /* Warn of ring error only as long as we get frames at all */ if (time_is_after_jiffies(timestamp + msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) { rcu_read_lock(); port = get_late_port(hsr, node); if (port) hsr_nl_ringerror(hsr, node->macaddress_A, port); rcu_read_unlock(); } /* Prune old entries */ if (time_is_before_jiffies(timestamp + msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { hsr_nl_nodedown(hsr, node->macaddress_A); if (!node->removed) { list_del_rcu(&node->mac_list); node->removed = true; /* Note that we need to free this entry later: */ kfree_rcu(node, rcu_head); } } } spin_unlock_bh(&hsr->list_lock); /* Restart timer */ mod_timer(&hsr->prune_timer, jiffies + msecs_to_jiffies(PRUNE_PERIOD)); } void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos, unsigned char addr[ETH_ALEN]) { struct hsr_node *node; if (!_pos) { node = list_first_or_null_rcu(&hsr->node_db, struct hsr_node, mac_list); if (node) ether_addr_copy(addr, node->macaddress_A); return node; } node = _pos; list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) { ether_addr_copy(addr, node->macaddress_A); return node; } return NULL; } int hsr_get_node_data(struct hsr_priv *hsr, const unsigned char *addr, unsigned char addr_b[ETH_ALEN], unsigned int *addr_b_ifindex, int *if1_age, u16 *if1_seq, int *if2_age, u16 *if2_seq) { struct hsr_node *node; struct hsr_port *port; unsigned long tdiff; node = find_node_by_addr_A(&hsr->node_db, addr); if (!node) return -ENOENT; ether_addr_copy(addr_b, node->macaddress_B); tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A]; if (node->time_in_stale[HSR_PT_SLAVE_A]) *if1_age = INT_MAX; #if HZ <= MSEC_PER_SEC else if (tdiff > msecs_to_jiffies(INT_MAX)) *if1_age = INT_MAX; #endif else *if1_age = jiffies_to_msecs(tdiff); tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B]; if (node->time_in_stale[HSR_PT_SLAVE_B]) *if2_age = INT_MAX; #if HZ <= MSEC_PER_SEC else if (tdiff > msecs_to_jiffies(INT_MAX)) *if2_age = INT_MAX; #endif else *if2_age = jiffies_to_msecs(tdiff); /* Present sequence numbers as if they were incoming on interface */ *if1_seq = node->seq_out[HSR_PT_SLAVE_B]; *if2_seq = node->seq_out[HSR_PT_SLAVE_A]; if (node->addr_B_port != HSR_PT_NONE) { port = hsr_port_get_hsr(hsr, node->addr_B_port); *addr_b_ifindex = port->dev->ifindex; } else { *addr_b_ifindex = -1; } return 0; }
linux-master
net/hsr/hsr_framereg.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright 2011-2014 Autronica Fire and Security AS * * Author(s): * 2011-2014 Arvid Brodin, [email protected] * * Routines for handling Netlink messages for HSR and PRP. */ #include "hsr_netlink.h" #include <linux/kernel.h> #include <net/rtnetlink.h> #include <net/genetlink.h> #include "hsr_main.h" #include "hsr_device.h" #include "hsr_framereg.h" static const struct nla_policy hsr_policy[IFLA_HSR_MAX + 1] = { [IFLA_HSR_SLAVE1] = { .type = NLA_U32 }, [IFLA_HSR_SLAVE2] = { .type = NLA_U32 }, [IFLA_HSR_MULTICAST_SPEC] = { .type = NLA_U8 }, [IFLA_HSR_VERSION] = { .type = NLA_U8 }, [IFLA_HSR_SUPERVISION_ADDR] = { .len = ETH_ALEN }, [IFLA_HSR_SEQ_NR] = { .type = NLA_U16 }, [IFLA_HSR_PROTOCOL] = { .type = NLA_U8 }, }; /* Here, it seems a netdevice has already been allocated for us, and the * hsr_dev_setup routine has been executed. Nice! */ static int hsr_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { enum hsr_version proto_version; unsigned char multicast_spec; u8 proto = HSR_PROTOCOL_HSR; struct net_device *link[2]; if (!data) { NL_SET_ERR_MSG_MOD(extack, "No slave devices specified"); return -EINVAL; } if (!data[IFLA_HSR_SLAVE1]) { NL_SET_ERR_MSG_MOD(extack, "Slave1 device not specified"); return -EINVAL; } link[0] = __dev_get_by_index(src_net, nla_get_u32(data[IFLA_HSR_SLAVE1])); if (!link[0]) { NL_SET_ERR_MSG_MOD(extack, "Slave1 does not exist"); return -EINVAL; } if (!data[IFLA_HSR_SLAVE2]) { NL_SET_ERR_MSG_MOD(extack, "Slave2 device not specified"); return -EINVAL; } link[1] = __dev_get_by_index(src_net, nla_get_u32(data[IFLA_HSR_SLAVE2])); if (!link[1]) { NL_SET_ERR_MSG_MOD(extack, "Slave2 does not exist"); return -EINVAL; } if (link[0] == link[1]) { NL_SET_ERR_MSG_MOD(extack, "Slave1 and Slave2 are same"); return -EINVAL; } if (!data[IFLA_HSR_MULTICAST_SPEC]) multicast_spec = 0; else multicast_spec = nla_get_u8(data[IFLA_HSR_MULTICAST_SPEC]); if (data[IFLA_HSR_PROTOCOL]) proto = nla_get_u8(data[IFLA_HSR_PROTOCOL]); if (proto >= HSR_PROTOCOL_MAX) { NL_SET_ERR_MSG_MOD(extack, "Unsupported protocol"); return -EINVAL; } if (!data[IFLA_HSR_VERSION]) { proto_version = HSR_V0; } else { if (proto == HSR_PROTOCOL_PRP) { NL_SET_ERR_MSG_MOD(extack, "PRP version unsupported"); return -EINVAL; } proto_version = nla_get_u8(data[IFLA_HSR_VERSION]); if (proto_version > HSR_V1) { NL_SET_ERR_MSG_MOD(extack, "Only HSR version 0/1 supported"); return -EINVAL; } } if (proto == HSR_PROTOCOL_PRP) proto_version = PRP_V1; return hsr_dev_finalize(dev, link, multicast_spec, proto_version, extack); } static void hsr_dellink(struct net_device *dev, struct list_head *head) { struct hsr_priv *hsr = netdev_priv(dev); del_timer_sync(&hsr->prune_timer); del_timer_sync(&hsr->announce_timer); hsr_debugfs_term(hsr); hsr_del_ports(hsr); hsr_del_self_node(hsr); hsr_del_nodes(&hsr->node_db); unregister_netdevice_queue(dev, head); } static int hsr_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct hsr_priv *hsr = netdev_priv(dev); u8 proto = HSR_PROTOCOL_HSR; struct hsr_port *port; port = hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); if (port) { if (nla_put_u32(skb, IFLA_HSR_SLAVE1, port->dev->ifindex)) goto nla_put_failure; } port = hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); if (port) { if (nla_put_u32(skb, IFLA_HSR_SLAVE2, port->dev->ifindex)) goto nla_put_failure; } if (nla_put(skb, IFLA_HSR_SUPERVISION_ADDR, ETH_ALEN, hsr->sup_multicast_addr) || nla_put_u16(skb, IFLA_HSR_SEQ_NR, hsr->sequence_nr)) goto nla_put_failure; if (hsr->prot_version == PRP_V1) proto = HSR_PROTOCOL_PRP; if (nla_put_u8(skb, IFLA_HSR_PROTOCOL, proto)) goto nla_put_failure; return 0; nla_put_failure: return -EMSGSIZE; } static struct rtnl_link_ops hsr_link_ops __read_mostly = { .kind = "hsr", .maxtype = IFLA_HSR_MAX, .policy = hsr_policy, .priv_size = sizeof(struct hsr_priv), .setup = hsr_dev_setup, .newlink = hsr_newlink, .dellink = hsr_dellink, .fill_info = hsr_fill_info, }; /* attribute policy */ static const struct nla_policy hsr_genl_policy[HSR_A_MAX + 1] = { [HSR_A_NODE_ADDR] = { .len = ETH_ALEN }, [HSR_A_NODE_ADDR_B] = { .len = ETH_ALEN }, [HSR_A_IFINDEX] = { .type = NLA_U32 }, [HSR_A_IF1_AGE] = { .type = NLA_U32 }, [HSR_A_IF2_AGE] = { .type = NLA_U32 }, [HSR_A_IF1_SEQ] = { .type = NLA_U16 }, [HSR_A_IF2_SEQ] = { .type = NLA_U16 }, }; static struct genl_family hsr_genl_family; static const struct genl_multicast_group hsr_mcgrps[] = { { .name = "hsr-network", }, }; /* This is called if for some node with MAC address addr, we only get frames * over one of the slave interfaces. This would indicate an open network ring * (i.e. a link has failed somewhere). */ void hsr_nl_ringerror(struct hsr_priv *hsr, unsigned char addr[ETH_ALEN], struct hsr_port *port) { struct sk_buff *skb; void *msg_head; struct hsr_port *master; int res; skb = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC); if (!skb) goto fail; msg_head = genlmsg_put(skb, 0, 0, &hsr_genl_family, 0, HSR_C_RING_ERROR); if (!msg_head) goto nla_put_failure; res = nla_put(skb, HSR_A_NODE_ADDR, ETH_ALEN, addr); if (res < 0) goto nla_put_failure; res = nla_put_u32(skb, HSR_A_IFINDEX, port->dev->ifindex); if (res < 0) goto nla_put_failure; genlmsg_end(skb, msg_head); genlmsg_multicast(&hsr_genl_family, skb, 0, 0, GFP_ATOMIC); return; nla_put_failure: kfree_skb(skb); fail: rcu_read_lock(); master = hsr_port_get_hsr(hsr, HSR_PT_MASTER); netdev_warn(master->dev, "Could not send HSR ring error message\n"); rcu_read_unlock(); } /* This is called when we haven't heard from the node with MAC address addr for * some time (just before the node is removed from the node table/list). */ void hsr_nl_nodedown(struct hsr_priv *hsr, unsigned char addr[ETH_ALEN]) { struct sk_buff *skb; void *msg_head; struct hsr_port *master; int res; skb = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC); if (!skb) goto fail; msg_head = genlmsg_put(skb, 0, 0, &hsr_genl_family, 0, HSR_C_NODE_DOWN); if (!msg_head) goto nla_put_failure; res = nla_put(skb, HSR_A_NODE_ADDR, ETH_ALEN, addr); if (res < 0) goto nla_put_failure; genlmsg_end(skb, msg_head); genlmsg_multicast(&hsr_genl_family, skb, 0, 0, GFP_ATOMIC); return; nla_put_failure: kfree_skb(skb); fail: rcu_read_lock(); master = hsr_port_get_hsr(hsr, HSR_PT_MASTER); netdev_warn(master->dev, "Could not send HSR node down\n"); rcu_read_unlock(); } /* HSR_C_GET_NODE_STATUS lets userspace query the internal HSR node table * about the status of a specific node in the network, defined by its MAC * address. * * Input: hsr ifindex, node mac address * Output: hsr ifindex, node mac address (copied from request), * age of latest frame from node over slave 1, slave 2 [ms] */ static int hsr_get_node_status(struct sk_buff *skb_in, struct genl_info *info) { /* For receiving */ struct nlattr *na; struct net_device *hsr_dev; /* For sending */ struct sk_buff *skb_out; void *msg_head; struct hsr_priv *hsr; struct hsr_port *port; unsigned char hsr_node_addr_b[ETH_ALEN]; int hsr_node_if1_age; u16 hsr_node_if1_seq; int hsr_node_if2_age; u16 hsr_node_if2_seq; int addr_b_ifindex; int res; if (!info) goto invalid; na = info->attrs[HSR_A_IFINDEX]; if (!na) goto invalid; na = info->attrs[HSR_A_NODE_ADDR]; if (!na) goto invalid; rcu_read_lock(); hsr_dev = dev_get_by_index_rcu(genl_info_net(info), nla_get_u32(info->attrs[HSR_A_IFINDEX])); if (!hsr_dev) goto rcu_unlock; if (!is_hsr_master(hsr_dev)) goto rcu_unlock; /* Send reply */ skb_out = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC); if (!skb_out) { res = -ENOMEM; goto fail; } msg_head = genlmsg_put(skb_out, NETLINK_CB(skb_in).portid, info->snd_seq, &hsr_genl_family, 0, HSR_C_SET_NODE_STATUS); if (!msg_head) { res = -ENOMEM; goto nla_put_failure; } res = nla_put_u32(skb_out, HSR_A_IFINDEX, hsr_dev->ifindex); if (res < 0) goto nla_put_failure; hsr = netdev_priv(hsr_dev); res = hsr_get_node_data(hsr, (unsigned char *) nla_data(info->attrs[HSR_A_NODE_ADDR]), hsr_node_addr_b, &addr_b_ifindex, &hsr_node_if1_age, &hsr_node_if1_seq, &hsr_node_if2_age, &hsr_node_if2_seq); if (res < 0) goto nla_put_failure; res = nla_put(skb_out, HSR_A_NODE_ADDR, ETH_ALEN, nla_data(info->attrs[HSR_A_NODE_ADDR])); if (res < 0) goto nla_put_failure; if (addr_b_ifindex > -1) { res = nla_put(skb_out, HSR_A_NODE_ADDR_B, ETH_ALEN, hsr_node_addr_b); if (res < 0) goto nla_put_failure; res = nla_put_u32(skb_out, HSR_A_ADDR_B_IFINDEX, addr_b_ifindex); if (res < 0) goto nla_put_failure; } res = nla_put_u32(skb_out, HSR_A_IF1_AGE, hsr_node_if1_age); if (res < 0) goto nla_put_failure; res = nla_put_u16(skb_out, HSR_A_IF1_SEQ, hsr_node_if1_seq); if (res < 0) goto nla_put_failure; port = hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); if (port) res = nla_put_u32(skb_out, HSR_A_IF1_IFINDEX, port->dev->ifindex); if (res < 0) goto nla_put_failure; res = nla_put_u32(skb_out, HSR_A_IF2_AGE, hsr_node_if2_age); if (res < 0) goto nla_put_failure; res = nla_put_u16(skb_out, HSR_A_IF2_SEQ, hsr_node_if2_seq); if (res < 0) goto nla_put_failure; port = hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); if (port) res = nla_put_u32(skb_out, HSR_A_IF2_IFINDEX, port->dev->ifindex); if (res < 0) goto nla_put_failure; rcu_read_unlock(); genlmsg_end(skb_out, msg_head); genlmsg_unicast(genl_info_net(info), skb_out, info->snd_portid); return 0; rcu_unlock: rcu_read_unlock(); invalid: netlink_ack(skb_in, nlmsg_hdr(skb_in), -EINVAL, NULL); return 0; nla_put_failure: kfree_skb(skb_out); /* Fall through */ fail: rcu_read_unlock(); return res; } /* Get a list of MacAddressA of all nodes known to this node (including self). */ static int hsr_get_node_list(struct sk_buff *skb_in, struct genl_info *info) { unsigned char addr[ETH_ALEN]; struct net_device *hsr_dev; struct sk_buff *skb_out; struct hsr_priv *hsr; bool restart = false; struct nlattr *na; void *pos = NULL; void *msg_head; int res; if (!info) goto invalid; na = info->attrs[HSR_A_IFINDEX]; if (!na) goto invalid; rcu_read_lock(); hsr_dev = dev_get_by_index_rcu(genl_info_net(info), nla_get_u32(info->attrs[HSR_A_IFINDEX])); if (!hsr_dev) goto rcu_unlock; if (!is_hsr_master(hsr_dev)) goto rcu_unlock; restart: /* Send reply */ skb_out = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!skb_out) { res = -ENOMEM; goto fail; } msg_head = genlmsg_put(skb_out, NETLINK_CB(skb_in).portid, info->snd_seq, &hsr_genl_family, 0, HSR_C_SET_NODE_LIST); if (!msg_head) { res = -ENOMEM; goto nla_put_failure; } if (!restart) { res = nla_put_u32(skb_out, HSR_A_IFINDEX, hsr_dev->ifindex); if (res < 0) goto nla_put_failure; } hsr = netdev_priv(hsr_dev); if (!pos) pos = hsr_get_next_node(hsr, NULL, addr); while (pos) { res = nla_put(skb_out, HSR_A_NODE_ADDR, ETH_ALEN, addr); if (res < 0) { if (res == -EMSGSIZE) { genlmsg_end(skb_out, msg_head); genlmsg_unicast(genl_info_net(info), skb_out, info->snd_portid); restart = true; goto restart; } goto nla_put_failure; } pos = hsr_get_next_node(hsr, pos, addr); } rcu_read_unlock(); genlmsg_end(skb_out, msg_head); genlmsg_unicast(genl_info_net(info), skb_out, info->snd_portid); return 0; rcu_unlock: rcu_read_unlock(); invalid: netlink_ack(skb_in, nlmsg_hdr(skb_in), -EINVAL, NULL); return 0; nla_put_failure: nlmsg_free(skb_out); /* Fall through */ fail: rcu_read_unlock(); return res; } static const struct genl_small_ops hsr_ops[] = { { .cmd = HSR_C_GET_NODE_STATUS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, .doit = hsr_get_node_status, .dumpit = NULL, }, { .cmd = HSR_C_GET_NODE_LIST, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, .doit = hsr_get_node_list, .dumpit = NULL, }, }; static struct genl_family hsr_genl_family __ro_after_init = { .hdrsize = 0, .name = "HSR", .version = 1, .maxattr = HSR_A_MAX, .policy = hsr_genl_policy, .netnsok = true, .module = THIS_MODULE, .small_ops = hsr_ops, .n_small_ops = ARRAY_SIZE(hsr_ops), .resv_start_op = HSR_C_SET_NODE_LIST + 1, .mcgrps = hsr_mcgrps, .n_mcgrps = ARRAY_SIZE(hsr_mcgrps), }; int __init hsr_netlink_init(void) { int rc; rc = rtnl_link_register(&hsr_link_ops); if (rc) goto fail_rtnl_link_register; rc = genl_register_family(&hsr_genl_family); if (rc) goto fail_genl_register_family; hsr_debugfs_create_root(); return 0; fail_genl_register_family: rtnl_link_unregister(&hsr_link_ops); fail_rtnl_link_register: return rc; } void __exit hsr_netlink_exit(void) { genl_unregister_family(&hsr_genl_family); rtnl_link_unregister(&hsr_link_ops); } MODULE_ALIAS_RTNL_LINK("hsr");
linux-master
net/hsr/hsr_netlink.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright 2011-2014 Autronica Fire and Security AS * * Author(s): * 2011-2014 Arvid Brodin, [email protected] * This file contains device methods for creating, using and destroying * virtual HSR or PRP devices. */ #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <linux/pkt_sched.h> #include "hsr_device.h" #include "hsr_slave.h" #include "hsr_framereg.h" #include "hsr_main.h" #include "hsr_forward.h" static bool is_admin_up(struct net_device *dev) { return dev && (dev->flags & IFF_UP); } static bool is_slave_up(struct net_device *dev) { return dev && is_admin_up(dev) && netif_oper_up(dev); } static void __hsr_set_operstate(struct net_device *dev, int transition) { write_lock(&dev_base_lock); if (dev->operstate != transition) { dev->operstate = transition; write_unlock(&dev_base_lock); netdev_state_change(dev); } else { write_unlock(&dev_base_lock); } } static void hsr_set_operstate(struct hsr_port *master, bool has_carrier) { if (!is_admin_up(master->dev)) { __hsr_set_operstate(master->dev, IF_OPER_DOWN); return; } if (has_carrier) __hsr_set_operstate(master->dev, IF_OPER_UP); else __hsr_set_operstate(master->dev, IF_OPER_LOWERLAYERDOWN); } static bool hsr_check_carrier(struct hsr_port *master) { struct hsr_port *port; ASSERT_RTNL(); hsr_for_each_port(master->hsr, port) { if (port->type != HSR_PT_MASTER && is_slave_up(port->dev)) { netif_carrier_on(master->dev); return true; } } netif_carrier_off(master->dev); return false; } static void hsr_check_announce(struct net_device *hsr_dev, unsigned char old_operstate) { struct hsr_priv *hsr; hsr = netdev_priv(hsr_dev); if (hsr_dev->operstate == IF_OPER_UP && old_operstate != IF_OPER_UP) { /* Went up */ hsr->announce_count = 0; mod_timer(&hsr->announce_timer, jiffies + msecs_to_jiffies(HSR_ANNOUNCE_INTERVAL)); } if (hsr_dev->operstate != IF_OPER_UP && old_operstate == IF_OPER_UP) /* Went down */ del_timer(&hsr->announce_timer); } void hsr_check_carrier_and_operstate(struct hsr_priv *hsr) { struct hsr_port *master; unsigned char old_operstate; bool has_carrier; master = hsr_port_get_hsr(hsr, HSR_PT_MASTER); /* netif_stacked_transfer_operstate() cannot be used here since * it doesn't set IF_OPER_LOWERLAYERDOWN (?) */ old_operstate = master->dev->operstate; has_carrier = hsr_check_carrier(master); hsr_set_operstate(master, has_carrier); hsr_check_announce(master->dev, old_operstate); } int hsr_get_max_mtu(struct hsr_priv *hsr) { unsigned int mtu_max; struct hsr_port *port; mtu_max = ETH_DATA_LEN; hsr_for_each_port(hsr, port) if (port->type != HSR_PT_MASTER) mtu_max = min(port->dev->mtu, mtu_max); if (mtu_max < HSR_HLEN) return 0; return mtu_max - HSR_HLEN; } static int hsr_dev_change_mtu(struct net_device *dev, int new_mtu) { struct hsr_priv *hsr; hsr = netdev_priv(dev); if (new_mtu > hsr_get_max_mtu(hsr)) { netdev_info(dev, "A HSR master's MTU cannot be greater than the smallest MTU of its slaves minus the HSR Tag length (%d octets).\n", HSR_HLEN); return -EINVAL; } dev->mtu = new_mtu; return 0; } static int hsr_dev_open(struct net_device *dev) { struct hsr_priv *hsr; struct hsr_port *port; char designation; hsr = netdev_priv(dev); designation = '\0'; hsr_for_each_port(hsr, port) { if (port->type == HSR_PT_MASTER) continue; switch (port->type) { case HSR_PT_SLAVE_A: designation = 'A'; break; case HSR_PT_SLAVE_B: designation = 'B'; break; default: designation = '?'; } if (!is_slave_up(port->dev)) netdev_warn(dev, "Slave %c (%s) is not up; please bring it up to get a fully working HSR network\n", designation, port->dev->name); } if (designation == '\0') netdev_warn(dev, "No slave devices configured\n"); return 0; } static int hsr_dev_close(struct net_device *dev) { /* Nothing to do here. */ return 0; } static netdev_features_t hsr_features_recompute(struct hsr_priv *hsr, netdev_features_t features) { netdev_features_t mask; struct hsr_port *port; mask = features; /* Mask out all features that, if supported by one device, should be * enabled for all devices (see NETIF_F_ONE_FOR_ALL). * * Anything that's off in mask will not be enabled - so only things * that were in features originally, and also is in NETIF_F_ONE_FOR_ALL, * may become enabled. */ features &= ~NETIF_F_ONE_FOR_ALL; hsr_for_each_port(hsr, port) features = netdev_increment_features(features, port->dev->features, mask); return features; } static netdev_features_t hsr_fix_features(struct net_device *dev, netdev_features_t features) { struct hsr_priv *hsr = netdev_priv(dev); return hsr_features_recompute(hsr, features); } static netdev_tx_t hsr_dev_xmit(struct sk_buff *skb, struct net_device *dev) { struct hsr_priv *hsr = netdev_priv(dev); struct hsr_port *master; master = hsr_port_get_hsr(hsr, HSR_PT_MASTER); if (master) { skb->dev = master->dev; skb_reset_mac_header(skb); skb_reset_mac_len(skb); spin_lock_bh(&hsr->seqnr_lock); hsr_forward_skb(skb, master); spin_unlock_bh(&hsr->seqnr_lock); } else { dev_core_stats_tx_dropped_inc(dev); dev_kfree_skb_any(skb); } return NETDEV_TX_OK; } static const struct header_ops hsr_header_ops = { .create = eth_header, .parse = eth_header_parse, }; static struct sk_buff *hsr_init_skb(struct hsr_port *master) { struct hsr_priv *hsr = master->hsr; struct sk_buff *skb; int hlen, tlen; hlen = LL_RESERVED_SPACE(master->dev); tlen = master->dev->needed_tailroom; /* skb size is same for PRP/HSR frames, only difference * being, for PRP it is a trailer and for HSR it is a * header */ skb = dev_alloc_skb(sizeof(struct hsr_sup_tag) + sizeof(struct hsr_sup_payload) + hlen + tlen); if (!skb) return skb; skb_reserve(skb, hlen); skb->dev = master->dev; skb->priority = TC_PRIO_CONTROL; if (dev_hard_header(skb, skb->dev, ETH_P_PRP, hsr->sup_multicast_addr, skb->dev->dev_addr, skb->len) <= 0) goto out; skb_reset_mac_header(skb); skb_reset_mac_len(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); return skb; out: kfree_skb(skb); return NULL; } static void send_hsr_supervision_frame(struct hsr_port *master, unsigned long *interval) { struct hsr_priv *hsr = master->hsr; __u8 type = HSR_TLV_LIFE_CHECK; struct hsr_sup_payload *hsr_sp; struct hsr_sup_tag *hsr_stag; struct sk_buff *skb; *interval = msecs_to_jiffies(HSR_LIFE_CHECK_INTERVAL); if (hsr->announce_count < 3 && hsr->prot_version == 0) { type = HSR_TLV_ANNOUNCE; *interval = msecs_to_jiffies(HSR_ANNOUNCE_INTERVAL); hsr->announce_count++; } skb = hsr_init_skb(master); if (!skb) { WARN_ONCE(1, "HSR: Could not send supervision frame\n"); return; } hsr_stag = skb_put(skb, sizeof(struct hsr_sup_tag)); set_hsr_stag_path(hsr_stag, (hsr->prot_version ? 0x0 : 0xf)); set_hsr_stag_HSR_ver(hsr_stag, hsr->prot_version); /* From HSRv1 on we have separate supervision sequence numbers. */ spin_lock_bh(&hsr->seqnr_lock); if (hsr->prot_version > 0) { hsr_stag->sequence_nr = htons(hsr->sup_sequence_nr); hsr->sup_sequence_nr++; } else { hsr_stag->sequence_nr = htons(hsr->sequence_nr); hsr->sequence_nr++; } hsr_stag->tlv.HSR_TLV_type = type; /* TODO: Why 12 in HSRv0? */ hsr_stag->tlv.HSR_TLV_length = hsr->prot_version ? sizeof(struct hsr_sup_payload) : 12; /* Payload: MacAddressA */ hsr_sp = skb_put(skb, sizeof(struct hsr_sup_payload)); ether_addr_copy(hsr_sp->macaddress_A, master->dev->dev_addr); if (skb_put_padto(skb, ETH_ZLEN)) { spin_unlock_bh(&hsr->seqnr_lock); return; } hsr_forward_skb(skb, master); spin_unlock_bh(&hsr->seqnr_lock); return; } static void send_prp_supervision_frame(struct hsr_port *master, unsigned long *interval) { struct hsr_priv *hsr = master->hsr; struct hsr_sup_payload *hsr_sp; struct hsr_sup_tag *hsr_stag; struct sk_buff *skb; skb = hsr_init_skb(master); if (!skb) { WARN_ONCE(1, "PRP: Could not send supervision frame\n"); return; } *interval = msecs_to_jiffies(HSR_LIFE_CHECK_INTERVAL); hsr_stag = skb_put(skb, sizeof(struct hsr_sup_tag)); set_hsr_stag_path(hsr_stag, (hsr->prot_version ? 0x0 : 0xf)); set_hsr_stag_HSR_ver(hsr_stag, (hsr->prot_version ? 1 : 0)); /* From HSRv1 on we have separate supervision sequence numbers. */ spin_lock_bh(&hsr->seqnr_lock); hsr_stag->sequence_nr = htons(hsr->sup_sequence_nr); hsr->sup_sequence_nr++; hsr_stag->tlv.HSR_TLV_type = PRP_TLV_LIFE_CHECK_DD; hsr_stag->tlv.HSR_TLV_length = sizeof(struct hsr_sup_payload); /* Payload: MacAddressA */ hsr_sp = skb_put(skb, sizeof(struct hsr_sup_payload)); ether_addr_copy(hsr_sp->macaddress_A, master->dev->dev_addr); if (skb_put_padto(skb, ETH_ZLEN)) { spin_unlock_bh(&hsr->seqnr_lock); return; } hsr_forward_skb(skb, master); spin_unlock_bh(&hsr->seqnr_lock); } /* Announce (supervision frame) timer function */ static void hsr_announce(struct timer_list *t) { struct hsr_priv *hsr; struct hsr_port *master; unsigned long interval; hsr = from_timer(hsr, t, announce_timer); rcu_read_lock(); master = hsr_port_get_hsr(hsr, HSR_PT_MASTER); hsr->proto_ops->send_sv_frame(master, &interval); if (is_admin_up(master->dev)) mod_timer(&hsr->announce_timer, jiffies + interval); rcu_read_unlock(); } void hsr_del_ports(struct hsr_priv *hsr) { struct hsr_port *port; port = hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); if (port) hsr_del_port(port); port = hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); if (port) hsr_del_port(port); port = hsr_port_get_hsr(hsr, HSR_PT_MASTER); if (port) hsr_del_port(port); } static const struct net_device_ops hsr_device_ops = { .ndo_change_mtu = hsr_dev_change_mtu, .ndo_open = hsr_dev_open, .ndo_stop = hsr_dev_close, .ndo_start_xmit = hsr_dev_xmit, .ndo_fix_features = hsr_fix_features, }; static struct device_type hsr_type = { .name = "hsr", }; static struct hsr_proto_ops hsr_ops = { .send_sv_frame = send_hsr_supervision_frame, .create_tagged_frame = hsr_create_tagged_frame, .get_untagged_frame = hsr_get_untagged_frame, .drop_frame = hsr_drop_frame, .fill_frame_info = hsr_fill_frame_info, .invalid_dan_ingress_frame = hsr_invalid_dan_ingress_frame, }; static struct hsr_proto_ops prp_ops = { .send_sv_frame = send_prp_supervision_frame, .create_tagged_frame = prp_create_tagged_frame, .get_untagged_frame = prp_get_untagged_frame, .drop_frame = prp_drop_frame, .fill_frame_info = prp_fill_frame_info, .handle_san_frame = prp_handle_san_frame, .update_san_info = prp_update_san_info, }; void hsr_dev_setup(struct net_device *dev) { eth_hw_addr_random(dev); ether_setup(dev); dev->min_mtu = 0; dev->header_ops = &hsr_header_ops; dev->netdev_ops = &hsr_device_ops; SET_NETDEV_DEVTYPE(dev, &hsr_type); dev->priv_flags |= IFF_NO_QUEUE | IFF_DISABLE_NETPOLL; dev->needs_free_netdev = true; dev->hw_features = NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA | NETIF_F_GSO_MASK | NETIF_F_HW_CSUM | NETIF_F_HW_VLAN_CTAG_TX; dev->features = dev->hw_features; /* Prevent recursive tx locking */ dev->features |= NETIF_F_LLTX; /* VLAN on top of HSR needs testing and probably some work on * hsr_header_create() etc. */ dev->features |= NETIF_F_VLAN_CHALLENGED; /* Not sure about this. Taken from bridge code. netdev_features.h says * it means "Does not change network namespaces". */ dev->features |= NETIF_F_NETNS_LOCAL; } /* Return true if dev is a HSR master; return false otherwise. */ bool is_hsr_master(struct net_device *dev) { return (dev->netdev_ops->ndo_start_xmit == hsr_dev_xmit); } EXPORT_SYMBOL(is_hsr_master); /* Default multicast address for HSR Supervision frames */ static const unsigned char def_multicast_addr[ETH_ALEN] __aligned(2) = { 0x01, 0x15, 0x4e, 0x00, 0x01, 0x00 }; int hsr_dev_finalize(struct net_device *hsr_dev, struct net_device *slave[2], unsigned char multicast_spec, u8 protocol_version, struct netlink_ext_ack *extack) { bool unregister = false; struct hsr_priv *hsr; int res; hsr = netdev_priv(hsr_dev); INIT_LIST_HEAD(&hsr->ports); INIT_LIST_HEAD(&hsr->node_db); spin_lock_init(&hsr->list_lock); eth_hw_addr_set(hsr_dev, slave[0]->dev_addr); /* initialize protocol specific functions */ if (protocol_version == PRP_V1) { /* For PRP, lan_id has most significant 3 bits holding * the net_id of PRP_LAN_ID */ hsr->net_id = PRP_LAN_ID << 1; hsr->proto_ops = &prp_ops; } else { hsr->proto_ops = &hsr_ops; } /* Make sure we recognize frames from ourselves in hsr_rcv() */ res = hsr_create_self_node(hsr, hsr_dev->dev_addr, slave[1]->dev_addr); if (res < 0) return res; spin_lock_init(&hsr->seqnr_lock); /* Overflow soon to find bugs easier: */ hsr->sequence_nr = HSR_SEQNR_START; hsr->sup_sequence_nr = HSR_SUP_SEQNR_START; timer_setup(&hsr->announce_timer, hsr_announce, 0); timer_setup(&hsr->prune_timer, hsr_prune_nodes, 0); ether_addr_copy(hsr->sup_multicast_addr, def_multicast_addr); hsr->sup_multicast_addr[ETH_ALEN - 1] = multicast_spec; hsr->prot_version = protocol_version; /* Make sure the 1st call to netif_carrier_on() gets through */ netif_carrier_off(hsr_dev); res = hsr_add_port(hsr, hsr_dev, HSR_PT_MASTER, extack); if (res) goto err_add_master; /* HSR forwarding offload supported in lower device? */ if ((slave[0]->features & NETIF_F_HW_HSR_FWD) && (slave[1]->features & NETIF_F_HW_HSR_FWD)) hsr->fwd_offloaded = true; res = register_netdevice(hsr_dev); if (res) goto err_unregister; unregister = true; res = hsr_add_port(hsr, slave[0], HSR_PT_SLAVE_A, extack); if (res) goto err_unregister; res = hsr_add_port(hsr, slave[1], HSR_PT_SLAVE_B, extack); if (res) goto err_unregister; hsr_debugfs_init(hsr, hsr_dev); mod_timer(&hsr->prune_timer, jiffies + msecs_to_jiffies(PRUNE_PERIOD)); return 0; err_unregister: hsr_del_ports(hsr); err_add_master: hsr_del_self_node(hsr); if (unregister) unregister_netdevice(hsr_dev); return res; }
linux-master
net/hsr/hsr_device.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright 2011-2014 Autronica Fire and Security AS * * Author(s): * 2011-2014 Arvid Brodin, [email protected] * * Frame handler other utility functions for HSR and PRP. */ #include "hsr_slave.h" #include <linux/etherdevice.h> #include <linux/if_arp.h> #include <linux/if_vlan.h> #include "hsr_main.h" #include "hsr_device.h" #include "hsr_forward.h" #include "hsr_framereg.h" bool hsr_invalid_dan_ingress_frame(__be16 protocol) { return (protocol != htons(ETH_P_PRP) && protocol != htons(ETH_P_HSR)); } static rx_handler_result_t hsr_handle_frame(struct sk_buff **pskb) { struct sk_buff *skb = *pskb; struct hsr_port *port; struct hsr_priv *hsr; __be16 protocol; /* Packets from dev_loopback_xmit() do not have L2 header, bail out */ if (unlikely(skb->pkt_type == PACKET_LOOPBACK)) return RX_HANDLER_PASS; if (!skb_mac_header_was_set(skb)) { WARN_ONCE(1, "%s: skb invalid", __func__); return RX_HANDLER_PASS; } port = hsr_port_get_rcu(skb->dev); if (!port) goto finish_pass; hsr = port->hsr; if (hsr_addr_is_self(port->hsr, eth_hdr(skb)->h_source)) { /* Directly kill frames sent by ourselves */ kfree_skb(skb); goto finish_consume; } /* For HSR, only tagged frames are expected (unless the device offloads * HSR tag removal), but for PRP there could be non tagged frames as * well from Single attached nodes (SANs). */ protocol = eth_hdr(skb)->h_proto; if (!(port->dev->features & NETIF_F_HW_HSR_TAG_RM) && hsr->proto_ops->invalid_dan_ingress_frame && hsr->proto_ops->invalid_dan_ingress_frame(protocol)) goto finish_pass; skb_push(skb, ETH_HLEN); skb_reset_mac_header(skb); if ((!hsr->prot_version && protocol == htons(ETH_P_PRP)) || protocol == htons(ETH_P_HSR)) skb_set_network_header(skb, ETH_HLEN + HSR_HLEN); skb_reset_mac_len(skb); hsr_forward_skb(skb, port); finish_consume: return RX_HANDLER_CONSUMED; finish_pass: return RX_HANDLER_PASS; } bool hsr_port_exists(const struct net_device *dev) { return rcu_access_pointer(dev->rx_handler) == hsr_handle_frame; } static int hsr_check_dev_ok(struct net_device *dev, struct netlink_ext_ack *extack) { /* Don't allow HSR on non-ethernet like devices */ if ((dev->flags & IFF_LOOPBACK) || dev->type != ARPHRD_ETHER || dev->addr_len != ETH_ALEN) { NL_SET_ERR_MSG_MOD(extack, "Cannot use loopback or non-ethernet device as HSR slave."); return -EINVAL; } /* Don't allow enslaving hsr devices */ if (is_hsr_master(dev)) { NL_SET_ERR_MSG_MOD(extack, "Cannot create trees of HSR devices."); return -EINVAL; } if (hsr_port_exists(dev)) { NL_SET_ERR_MSG_MOD(extack, "This device is already a HSR slave."); return -EINVAL; } if (is_vlan_dev(dev)) { NL_SET_ERR_MSG_MOD(extack, "HSR on top of VLAN is not yet supported in this driver."); return -EINVAL; } if (dev->priv_flags & IFF_DONT_BRIDGE) { NL_SET_ERR_MSG_MOD(extack, "This device does not support bridging."); return -EOPNOTSUPP; } /* HSR over bonded devices has not been tested, but I'm not sure it * won't work... */ return 0; } /* Setup device to be added to the HSR bridge. */ static int hsr_portdev_setup(struct hsr_priv *hsr, struct net_device *dev, struct hsr_port *port, struct netlink_ext_ack *extack) { struct net_device *hsr_dev; struct hsr_port *master; int res; /* Don't use promiscuous mode for offload since L2 frame forward * happens at the offloaded hardware. */ if (!port->hsr->fwd_offloaded) { res = dev_set_promiscuity(dev, 1); if (res) return res; } master = hsr_port_get_hsr(hsr, HSR_PT_MASTER); hsr_dev = master->dev; res = netdev_upper_dev_link(dev, hsr_dev, extack); if (res) goto fail_upper_dev_link; res = netdev_rx_handler_register(dev, hsr_handle_frame, port); if (res) goto fail_rx_handler; dev_disable_lro(dev); return 0; fail_rx_handler: netdev_upper_dev_unlink(dev, hsr_dev); fail_upper_dev_link: if (!port->hsr->fwd_offloaded) dev_set_promiscuity(dev, -1); return res; } int hsr_add_port(struct hsr_priv *hsr, struct net_device *dev, enum hsr_port_type type, struct netlink_ext_ack *extack) { struct hsr_port *port, *master; int res; if (type != HSR_PT_MASTER) { res = hsr_check_dev_ok(dev, extack); if (res) return res; } port = hsr_port_get_hsr(hsr, type); if (port) return -EBUSY; /* This port already exists */ port = kzalloc(sizeof(*port), GFP_KERNEL); if (!port) return -ENOMEM; port->hsr = hsr; port->dev = dev; port->type = type; if (type != HSR_PT_MASTER) { res = hsr_portdev_setup(hsr, dev, port, extack); if (res) goto fail_dev_setup; } list_add_tail_rcu(&port->port_list, &hsr->ports); synchronize_rcu(); master = hsr_port_get_hsr(hsr, HSR_PT_MASTER); netdev_update_features(master->dev); dev_set_mtu(master->dev, hsr_get_max_mtu(hsr)); return 0; fail_dev_setup: kfree(port); return res; } void hsr_del_port(struct hsr_port *port) { struct hsr_priv *hsr; struct hsr_port *master; hsr = port->hsr; master = hsr_port_get_hsr(hsr, HSR_PT_MASTER); list_del_rcu(&port->port_list); if (port != master) { netdev_update_features(master->dev); dev_set_mtu(master->dev, hsr_get_max_mtu(hsr)); netdev_rx_handler_unregister(port->dev); dev_set_promiscuity(port->dev, -1); netdev_upper_dev_unlink(port->dev, master->dev); } synchronize_rcu(); kfree(port); }
linux-master
net/hsr/hsr_slave.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright 2011-2014 Autronica Fire and Security AS * * Author(s): * 2011-2014 Arvid Brodin, [email protected] * * Frame router for HSR and PRP. */ #include "hsr_forward.h" #include <linux/types.h> #include <linux/skbuff.h> #include <linux/etherdevice.h> #include <linux/if_vlan.h> #include "hsr_main.h" #include "hsr_framereg.h" struct hsr_node; /* The uses I can see for these HSR supervision frames are: * 1) Use the frames that are sent after node initialization ("HSR_TLV.Type = * 22") to reset any sequence_nr counters belonging to that node. Useful if * the other node's counter has been reset for some reason. * -- * Or not - resetting the counter and bridging the frame would create a * loop, unfortunately. * * 2) Use the LifeCheck frames to detect ring breaks. I.e. if no LifeCheck * frame is received from a particular node, we know something is wrong. * We just register these (as with normal frames) and throw them away. * * 3) Allow different MAC addresses for the two slave interfaces, using the * MacAddressA field. */ static bool is_supervision_frame(struct hsr_priv *hsr, struct sk_buff *skb) { struct ethhdr *eth_hdr; struct hsr_sup_tag *hsr_sup_tag; struct hsrv1_ethhdr_sp *hsr_V1_hdr; struct hsr_sup_tlv *hsr_sup_tlv; u16 total_length = 0; WARN_ON_ONCE(!skb_mac_header_was_set(skb)); eth_hdr = (struct ethhdr *)skb_mac_header(skb); /* Correct addr? */ if (!ether_addr_equal(eth_hdr->h_dest, hsr->sup_multicast_addr)) return false; /* Correct ether type?. */ if (!(eth_hdr->h_proto == htons(ETH_P_PRP) || eth_hdr->h_proto == htons(ETH_P_HSR))) return false; /* Get the supervision header from correct location. */ if (eth_hdr->h_proto == htons(ETH_P_HSR)) { /* Okay HSRv1. */ total_length = sizeof(struct hsrv1_ethhdr_sp); if (!pskb_may_pull(skb, total_length)) return false; hsr_V1_hdr = (struct hsrv1_ethhdr_sp *)skb_mac_header(skb); if (hsr_V1_hdr->hsr.encap_proto != htons(ETH_P_PRP)) return false; hsr_sup_tag = &hsr_V1_hdr->hsr_sup; } else { total_length = sizeof(struct hsrv0_ethhdr_sp); if (!pskb_may_pull(skb, total_length)) return false; hsr_sup_tag = &((struct hsrv0_ethhdr_sp *)skb_mac_header(skb))->hsr_sup; } if (hsr_sup_tag->tlv.HSR_TLV_type != HSR_TLV_ANNOUNCE && hsr_sup_tag->tlv.HSR_TLV_type != HSR_TLV_LIFE_CHECK && hsr_sup_tag->tlv.HSR_TLV_type != PRP_TLV_LIFE_CHECK_DD && hsr_sup_tag->tlv.HSR_TLV_type != PRP_TLV_LIFE_CHECK_DA) return false; if (hsr_sup_tag->tlv.HSR_TLV_length != 12 && hsr_sup_tag->tlv.HSR_TLV_length != sizeof(struct hsr_sup_payload)) return false; /* Get next tlv */ total_length += sizeof(struct hsr_sup_tlv) + hsr_sup_tag->tlv.HSR_TLV_length; if (!pskb_may_pull(skb, total_length)) return false; skb_pull(skb, total_length); hsr_sup_tlv = (struct hsr_sup_tlv *)skb->data; skb_push(skb, total_length); /* if this is a redbox supervision frame we need to verify * that more data is available */ if (hsr_sup_tlv->HSR_TLV_type == PRP_TLV_REDBOX_MAC) { /* tlv length must be a length of a mac address */ if (hsr_sup_tlv->HSR_TLV_length != sizeof(struct hsr_sup_payload)) return false; /* make sure another tlv follows */ total_length += sizeof(struct hsr_sup_tlv) + hsr_sup_tlv->HSR_TLV_length; if (!pskb_may_pull(skb, total_length)) return false; /* get next tlv */ skb_pull(skb, total_length); hsr_sup_tlv = (struct hsr_sup_tlv *)skb->data; skb_push(skb, total_length); } /* end of tlvs must follow at the end */ if (hsr_sup_tlv->HSR_TLV_type == HSR_TLV_EOT && hsr_sup_tlv->HSR_TLV_length != 0) return false; return true; } static struct sk_buff *create_stripped_skb_hsr(struct sk_buff *skb_in, struct hsr_frame_info *frame) { struct sk_buff *skb; int copylen; unsigned char *dst, *src; skb_pull(skb_in, HSR_HLEN); skb = __pskb_copy(skb_in, skb_headroom(skb_in) - HSR_HLEN, GFP_ATOMIC); skb_push(skb_in, HSR_HLEN); if (!skb) return NULL; skb_reset_mac_header(skb); if (skb->ip_summed == CHECKSUM_PARTIAL) skb->csum_start -= HSR_HLEN; copylen = 2 * ETH_ALEN; if (frame->is_vlan) copylen += VLAN_HLEN; src = skb_mac_header(skb_in); dst = skb_mac_header(skb); memcpy(dst, src, copylen); skb->protocol = eth_hdr(skb)->h_proto; return skb; } struct sk_buff *hsr_get_untagged_frame(struct hsr_frame_info *frame, struct hsr_port *port) { if (!frame->skb_std) { if (frame->skb_hsr) frame->skb_std = create_stripped_skb_hsr(frame->skb_hsr, frame); else netdev_warn_once(port->dev, "Unexpected frame received in hsr_get_untagged_frame()\n"); if (!frame->skb_std) return NULL; } return skb_clone(frame->skb_std, GFP_ATOMIC); } struct sk_buff *prp_get_untagged_frame(struct hsr_frame_info *frame, struct hsr_port *port) { if (!frame->skb_std) { if (frame->skb_prp) { /* trim the skb by len - HSR_HLEN to exclude RCT */ skb_trim(frame->skb_prp, frame->skb_prp->len - HSR_HLEN); frame->skb_std = __pskb_copy(frame->skb_prp, skb_headroom(frame->skb_prp), GFP_ATOMIC); } else { /* Unexpected */ WARN_ONCE(1, "%s:%d: Unexpected frame received (port_src %s)\n", __FILE__, __LINE__, port->dev->name); return NULL; } } return skb_clone(frame->skb_std, GFP_ATOMIC); } static void prp_set_lan_id(struct prp_rct *trailer, struct hsr_port *port) { int lane_id; if (port->type == HSR_PT_SLAVE_A) lane_id = 0; else lane_id = 1; /* Add net_id in the upper 3 bits of lane_id */ lane_id |= port->hsr->net_id; set_prp_lan_id(trailer, lane_id); } /* Tailroom for PRP rct should have been created before calling this */ static struct sk_buff *prp_fill_rct(struct sk_buff *skb, struct hsr_frame_info *frame, struct hsr_port *port) { struct prp_rct *trailer; int min_size = ETH_ZLEN; int lsdu_size; if (!skb) return skb; if (frame->is_vlan) min_size = VLAN_ETH_ZLEN; if (skb_put_padto(skb, min_size)) return NULL; trailer = (struct prp_rct *)skb_put(skb, HSR_HLEN); lsdu_size = skb->len - 14; if (frame->is_vlan) lsdu_size -= 4; prp_set_lan_id(trailer, port); set_prp_LSDU_size(trailer, lsdu_size); trailer->sequence_nr = htons(frame->sequence_nr); trailer->PRP_suffix = htons(ETH_P_PRP); skb->protocol = eth_hdr(skb)->h_proto; return skb; } static void hsr_set_path_id(struct hsr_ethhdr *hsr_ethhdr, struct hsr_port *port) { int path_id; if (port->type == HSR_PT_SLAVE_A) path_id = 0; else path_id = 1; set_hsr_tag_path(&hsr_ethhdr->hsr_tag, path_id); } static struct sk_buff *hsr_fill_tag(struct sk_buff *skb, struct hsr_frame_info *frame, struct hsr_port *port, u8 proto_version) { struct hsr_ethhdr *hsr_ethhdr; int lsdu_size; /* pad to minimum packet size which is 60 + 6 (HSR tag) */ if (skb_put_padto(skb, ETH_ZLEN + HSR_HLEN)) return NULL; lsdu_size = skb->len - 14; if (frame->is_vlan) lsdu_size -= 4; hsr_ethhdr = (struct hsr_ethhdr *)skb_mac_header(skb); hsr_set_path_id(hsr_ethhdr, port); set_hsr_tag_LSDU_size(&hsr_ethhdr->hsr_tag, lsdu_size); hsr_ethhdr->hsr_tag.sequence_nr = htons(frame->sequence_nr); hsr_ethhdr->hsr_tag.encap_proto = hsr_ethhdr->ethhdr.h_proto; hsr_ethhdr->ethhdr.h_proto = htons(proto_version ? ETH_P_HSR : ETH_P_PRP); skb->protocol = hsr_ethhdr->ethhdr.h_proto; return skb; } /* If the original frame was an HSR tagged frame, just clone it to be sent * unchanged. Otherwise, create a private frame especially tagged for 'port'. */ struct sk_buff *hsr_create_tagged_frame(struct hsr_frame_info *frame, struct hsr_port *port) { unsigned char *dst, *src; struct sk_buff *skb; int movelen; if (frame->skb_hsr) { struct hsr_ethhdr *hsr_ethhdr = (struct hsr_ethhdr *)skb_mac_header(frame->skb_hsr); /* set the lane id properly */ hsr_set_path_id(hsr_ethhdr, port); return skb_clone(frame->skb_hsr, GFP_ATOMIC); } else if (port->dev->features & NETIF_F_HW_HSR_TAG_INS) { return skb_clone(frame->skb_std, GFP_ATOMIC); } /* Create the new skb with enough headroom to fit the HSR tag */ skb = __pskb_copy(frame->skb_std, skb_headroom(frame->skb_std) + HSR_HLEN, GFP_ATOMIC); if (!skb) return NULL; skb_reset_mac_header(skb); if (skb->ip_summed == CHECKSUM_PARTIAL) skb->csum_start += HSR_HLEN; movelen = ETH_HLEN; if (frame->is_vlan) movelen += VLAN_HLEN; src = skb_mac_header(skb); dst = skb_push(skb, HSR_HLEN); memmove(dst, src, movelen); skb_reset_mac_header(skb); /* skb_put_padto free skb on error and hsr_fill_tag returns NULL in * that case */ return hsr_fill_tag(skb, frame, port, port->hsr->prot_version); } struct sk_buff *prp_create_tagged_frame(struct hsr_frame_info *frame, struct hsr_port *port) { struct sk_buff *skb; if (frame->skb_prp) { struct prp_rct *trailer = skb_get_PRP_rct(frame->skb_prp); if (trailer) { prp_set_lan_id(trailer, port); } else { WARN_ONCE(!trailer, "errored PRP skb"); return NULL; } return skb_clone(frame->skb_prp, GFP_ATOMIC); } else if (port->dev->features & NETIF_F_HW_HSR_TAG_INS) { return skb_clone(frame->skb_std, GFP_ATOMIC); } skb = skb_copy_expand(frame->skb_std, 0, skb_tailroom(frame->skb_std) + HSR_HLEN, GFP_ATOMIC); prp_fill_rct(skb, frame, port); return skb; } static void hsr_deliver_master(struct sk_buff *skb, struct net_device *dev, struct hsr_node *node_src) { bool was_multicast_frame; int res, recv_len; was_multicast_frame = (skb->pkt_type == PACKET_MULTICAST); hsr_addr_subst_source(node_src, skb); skb_pull(skb, ETH_HLEN); recv_len = skb->len; res = netif_rx(skb); if (res == NET_RX_DROP) { dev->stats.rx_dropped++; } else { dev->stats.rx_packets++; dev->stats.rx_bytes += recv_len; if (was_multicast_frame) dev->stats.multicast++; } } static int hsr_xmit(struct sk_buff *skb, struct hsr_port *port, struct hsr_frame_info *frame) { if (frame->port_rcv->type == HSR_PT_MASTER) { hsr_addr_subst_dest(frame->node_src, skb, port); /* Address substitution (IEC62439-3 pp 26, 50): replace mac * address of outgoing frame with that of the outgoing slave's. */ ether_addr_copy(eth_hdr(skb)->h_source, port->dev->dev_addr); } return dev_queue_xmit(skb); } bool prp_drop_frame(struct hsr_frame_info *frame, struct hsr_port *port) { return ((frame->port_rcv->type == HSR_PT_SLAVE_A && port->type == HSR_PT_SLAVE_B) || (frame->port_rcv->type == HSR_PT_SLAVE_B && port->type == HSR_PT_SLAVE_A)); } bool hsr_drop_frame(struct hsr_frame_info *frame, struct hsr_port *port) { if (port->dev->features & NETIF_F_HW_HSR_FWD) return prp_drop_frame(frame, port); return false; } /* Forward the frame through all devices except: * - Back through the receiving device * - If it's a HSR frame: through a device where it has passed before * - if it's a PRP frame: through another PRP slave device (no bridge) * - To the local HSR master only if the frame is directly addressed to it, or * a non-supervision multicast or broadcast frame. * * HSR slave devices should insert a HSR tag into the frame, or forward the * frame unchanged if it's already tagged. Interlink devices should strip HSR * tags if they're of the non-HSR type (but only after duplicate discard). The * master device always strips HSR tags. */ static void hsr_forward_do(struct hsr_frame_info *frame) { struct hsr_port *port; struct sk_buff *skb; bool sent = false; hsr_for_each_port(frame->port_rcv->hsr, port) { struct hsr_priv *hsr = port->hsr; /* Don't send frame back the way it came */ if (port == frame->port_rcv) continue; /* Don't deliver locally unless we should */ if (port->type == HSR_PT_MASTER && !frame->is_local_dest) continue; /* Deliver frames directly addressed to us to master only */ if (port->type != HSR_PT_MASTER && frame->is_local_exclusive) continue; /* If hardware duplicate generation is enabled, only send out * one port. */ if ((port->dev->features & NETIF_F_HW_HSR_DUP) && sent) continue; /* Don't send frame over port where it has been sent before. * Also fro SAN, this shouldn't be done. */ if (!frame->is_from_san && hsr_register_frame_out(port, frame->node_src, frame->sequence_nr)) continue; if (frame->is_supervision && port->type == HSR_PT_MASTER) { hsr_handle_sup_frame(frame); continue; } /* Check if frame is to be dropped. Eg. for PRP no forward * between ports. */ if (hsr->proto_ops->drop_frame && hsr->proto_ops->drop_frame(frame, port)) continue; if (port->type != HSR_PT_MASTER) skb = hsr->proto_ops->create_tagged_frame(frame, port); else skb = hsr->proto_ops->get_untagged_frame(frame, port); if (!skb) { frame->port_rcv->dev->stats.rx_dropped++; continue; } skb->dev = port->dev; if (port->type == HSR_PT_MASTER) { hsr_deliver_master(skb, port->dev, frame->node_src); } else { if (!hsr_xmit(skb, port, frame)) sent = true; } } } static void check_local_dest(struct hsr_priv *hsr, struct sk_buff *skb, struct hsr_frame_info *frame) { if (hsr_addr_is_self(hsr, eth_hdr(skb)->h_dest)) { frame->is_local_exclusive = true; skb->pkt_type = PACKET_HOST; } else { frame->is_local_exclusive = false; } if (skb->pkt_type == PACKET_HOST || skb->pkt_type == PACKET_MULTICAST || skb->pkt_type == PACKET_BROADCAST) { frame->is_local_dest = true; } else { frame->is_local_dest = false; } } static void handle_std_frame(struct sk_buff *skb, struct hsr_frame_info *frame) { struct hsr_port *port = frame->port_rcv; struct hsr_priv *hsr = port->hsr; frame->skb_hsr = NULL; frame->skb_prp = NULL; frame->skb_std = skb; if (port->type != HSR_PT_MASTER) { frame->is_from_san = true; } else { /* Sequence nr for the master node */ lockdep_assert_held(&hsr->seqnr_lock); frame->sequence_nr = hsr->sequence_nr; hsr->sequence_nr++; } } int hsr_fill_frame_info(__be16 proto, struct sk_buff *skb, struct hsr_frame_info *frame) { struct hsr_port *port = frame->port_rcv; struct hsr_priv *hsr = port->hsr; /* HSRv0 supervisory frames double as a tag so treat them as tagged. */ if ((!hsr->prot_version && proto == htons(ETH_P_PRP)) || proto == htons(ETH_P_HSR)) { /* Check if skb contains hsr_ethhdr */ if (skb->mac_len < sizeof(struct hsr_ethhdr)) return -EINVAL; /* HSR tagged frame :- Data or Supervision */ frame->skb_std = NULL; frame->skb_prp = NULL; frame->skb_hsr = skb; frame->sequence_nr = hsr_get_skb_sequence_nr(skb); return 0; } /* Standard frame or PRP from master port */ handle_std_frame(skb, frame); return 0; } int prp_fill_frame_info(__be16 proto, struct sk_buff *skb, struct hsr_frame_info *frame) { /* Supervision frame */ struct prp_rct *rct = skb_get_PRP_rct(skb); if (rct && prp_check_lsdu_size(skb, rct, frame->is_supervision)) { frame->skb_hsr = NULL; frame->skb_std = NULL; frame->skb_prp = skb; frame->sequence_nr = prp_get_skb_sequence_nr(rct); return 0; } handle_std_frame(skb, frame); return 0; } static int fill_frame_info(struct hsr_frame_info *frame, struct sk_buff *skb, struct hsr_port *port) { struct hsr_priv *hsr = port->hsr; struct hsr_vlan_ethhdr *vlan_hdr; struct ethhdr *ethhdr; __be16 proto; int ret; /* Check if skb contains ethhdr */ if (skb->mac_len < sizeof(struct ethhdr)) return -EINVAL; memset(frame, 0, sizeof(*frame)); frame->is_supervision = is_supervision_frame(port->hsr, skb); frame->node_src = hsr_get_node(port, &hsr->node_db, skb, frame->is_supervision, port->type); if (!frame->node_src) return -1; /* Unknown node and !is_supervision, or no mem */ ethhdr = (struct ethhdr *)skb_mac_header(skb); frame->is_vlan = false; proto = ethhdr->h_proto; if (proto == htons(ETH_P_8021Q)) frame->is_vlan = true; if (frame->is_vlan) { vlan_hdr = (struct hsr_vlan_ethhdr *)ethhdr; proto = vlan_hdr->vlanhdr.h_vlan_encapsulated_proto; /* FIXME: */ netdev_warn_once(skb->dev, "VLAN not yet supported"); return -EINVAL; } frame->is_from_san = false; frame->port_rcv = port; ret = hsr->proto_ops->fill_frame_info(proto, skb, frame); if (ret) return ret; check_local_dest(port->hsr, skb, frame); return 0; } /* Must be called holding rcu read lock (because of the port parameter) */ void hsr_forward_skb(struct sk_buff *skb, struct hsr_port *port) { struct hsr_frame_info frame; rcu_read_lock(); if (fill_frame_info(&frame, skb, port) < 0) goto out_drop; hsr_register_frame_in(frame.node_src, port, frame.sequence_nr); hsr_forward_do(&frame); rcu_read_unlock(); /* Gets called for ingress frames as well as egress from master port. * So check and increment stats for master port only here. */ if (port->type == HSR_PT_MASTER) { port->dev->stats.tx_packets++; port->dev->stats.tx_bytes += skb->len; } kfree_skb(frame.skb_hsr); kfree_skb(frame.skb_prp); kfree_skb(frame.skb_std); return; out_drop: rcu_read_unlock(); port->dev->stats.tx_dropped++; kfree_skb(skb); }
linux-master
net/hsr/hsr_forward.c
// SPDX-License-Identifier: GPL-2.0-only /* * debugfs code for HSR & PRP * Copyright (C) 2019 Texas Instruments Incorporated * * Author(s): * Murali Karicheri <[email protected]> */ #include <linux/module.h> #include <linux/errno.h> #include <linux/debugfs.h> #include "hsr_main.h" #include "hsr_framereg.h" static struct dentry *hsr_debugfs_root_dir; /* hsr_node_table_show - Formats and prints node_table entries */ static int hsr_node_table_show(struct seq_file *sfp, void *data) { struct hsr_priv *priv = (struct hsr_priv *)sfp->private; struct hsr_node *node; seq_printf(sfp, "Node Table entries for (%s) device\n", (priv->prot_version == PRP_V1 ? "PRP" : "HSR")); seq_puts(sfp, "MAC-Address-A, MAC-Address-B, time_in[A], "); seq_puts(sfp, "time_in[B], Address-B port, "); if (priv->prot_version == PRP_V1) seq_puts(sfp, "SAN-A, SAN-B, DAN-P\n"); else seq_puts(sfp, "DAN-H\n"); rcu_read_lock(); list_for_each_entry_rcu(node, &priv->node_db, mac_list) { /* skip self node */ if (hsr_addr_is_self(priv, node->macaddress_A)) continue; seq_printf(sfp, "%pM ", &node->macaddress_A[0]); seq_printf(sfp, "%pM ", &node->macaddress_B[0]); seq_printf(sfp, "%10lx, ", node->time_in[HSR_PT_SLAVE_A]); seq_printf(sfp, "%10lx, ", node->time_in[HSR_PT_SLAVE_B]); seq_printf(sfp, "%14x, ", node->addr_B_port); if (priv->prot_version == PRP_V1) seq_printf(sfp, "%5x, %5x, %5x\n", node->san_a, node->san_b, (node->san_a == 0 && node->san_b == 0)); else seq_printf(sfp, "%5x\n", 1); } rcu_read_unlock(); return 0; } DEFINE_SHOW_ATTRIBUTE(hsr_node_table); void hsr_debugfs_rename(struct net_device *dev) { struct hsr_priv *priv = netdev_priv(dev); struct dentry *d; d = debugfs_rename(hsr_debugfs_root_dir, priv->node_tbl_root, hsr_debugfs_root_dir, dev->name); if (IS_ERR(d)) netdev_warn(dev, "failed to rename\n"); else priv->node_tbl_root = d; } /* hsr_debugfs_init - create hsr node_table file for dumping * the node table * * Description: * When debugfs is configured this routine sets up the node_table file per * hsr device for dumping the node_table entries */ void hsr_debugfs_init(struct hsr_priv *priv, struct net_device *hsr_dev) { struct dentry *de = NULL; de = debugfs_create_dir(hsr_dev->name, hsr_debugfs_root_dir); if (IS_ERR(de)) { pr_err("Cannot create hsr debugfs directory\n"); return; } priv->node_tbl_root = de; de = debugfs_create_file("node_table", S_IFREG | 0444, priv->node_tbl_root, priv, &hsr_node_table_fops); if (IS_ERR(de)) { pr_err("Cannot create hsr node_table file\n"); debugfs_remove(priv->node_tbl_root); priv->node_tbl_root = NULL; return; } } /* hsr_debugfs_term - Tear down debugfs intrastructure * * Description: * When Debugfs is configured this routine removes debugfs file system * elements that are specific to hsr */ void hsr_debugfs_term(struct hsr_priv *priv) { debugfs_remove_recursive(priv->node_tbl_root); priv->node_tbl_root = NULL; } void hsr_debugfs_create_root(void) { hsr_debugfs_root_dir = debugfs_create_dir("hsr", NULL); if (IS_ERR(hsr_debugfs_root_dir)) { pr_err("Cannot create hsr debugfs root directory\n"); hsr_debugfs_root_dir = NULL; } } void hsr_debugfs_remove_root(void) { /* debugfs_remove() internally checks NULL and ERROR */ debugfs_remove(hsr_debugfs_root_dir); }
linux-master
net/hsr/hsr_debugfs.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015 Nicira, Inc. */ #include <linux/module.h> #include <linux/openvswitch.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/sctp.h> #include <linux/static_key.h> #include <linux/string_helpers.h> #include <net/ip.h> #include <net/genetlink.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_count.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_labels.h> #include <net/netfilter/nf_conntrack_seqadj.h> #include <net/netfilter/nf_conntrack_timeout.h> #include <net/netfilter/nf_conntrack_zones.h> #include <net/netfilter/ipv6/nf_defrag_ipv6.h> #include <net/ipv6_frag.h> #if IS_ENABLED(CONFIG_NF_NAT) #include <net/netfilter/nf_nat.h> #endif #include <net/netfilter/nf_conntrack_act_ct.h> #include "datapath.h" #include "drop.h" #include "conntrack.h" #include "flow.h" #include "flow_netlink.h" struct ovs_ct_len_tbl { int maxlen; int minlen; }; /* Metadata mark for masked write to conntrack mark */ struct md_mark { u32 value; u32 mask; }; /* Metadata label for masked write to conntrack label. */ struct md_labels { struct ovs_key_ct_labels value; struct ovs_key_ct_labels mask; }; enum ovs_ct_nat { OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ }; /* Conntrack action context for execution. */ struct ovs_conntrack_info { struct nf_conntrack_helper *helper; struct nf_conntrack_zone zone; struct nf_conn *ct; u8 commit : 1; u8 nat : 3; /* enum ovs_ct_nat */ u8 force : 1; u8 have_eventmask : 1; u16 family; u32 eventmask; /* Mask of 1 << IPCT_*. */ struct md_mark mark; struct md_labels labels; char timeout[CTNL_TIMEOUT_NAME_MAX]; struct nf_ct_timeout *nf_ct_timeout; #if IS_ENABLED(CONFIG_NF_NAT) struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */ #endif }; #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) #define OVS_CT_LIMIT_UNLIMITED 0 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED #define CT_LIMIT_HASH_BUCKETS 512 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled); struct ovs_ct_limit { /* Elements in ovs_ct_limit_info->limits hash table */ struct hlist_node hlist_node; struct rcu_head rcu; u16 zone; u32 limit; }; struct ovs_ct_limit_info { u32 default_limit; struct hlist_head *limits; struct nf_conncount_data *data; }; static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = { [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, }, }; #endif static bool labels_nonzero(const struct ovs_key_ct_labels *labels); static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); static u16 key_to_nfproto(const struct sw_flow_key *key) { switch (ntohs(key->eth.type)) { case ETH_P_IP: return NFPROTO_IPV4; case ETH_P_IPV6: return NFPROTO_IPV6; default: return NFPROTO_UNSPEC; } } /* Map SKB connection state into the values used by flow definition. */ static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) { u8 ct_state = OVS_CS_F_TRACKED; switch (ctinfo) { case IP_CT_ESTABLISHED_REPLY: case IP_CT_RELATED_REPLY: ct_state |= OVS_CS_F_REPLY_DIR; break; default: break; } switch (ctinfo) { case IP_CT_ESTABLISHED: case IP_CT_ESTABLISHED_REPLY: ct_state |= OVS_CS_F_ESTABLISHED; break; case IP_CT_RELATED: case IP_CT_RELATED_REPLY: ct_state |= OVS_CS_F_RELATED; break; case IP_CT_NEW: ct_state |= OVS_CS_F_NEW; break; default: break; } return ct_state; } static u32 ovs_ct_get_mark(const struct nf_conn *ct) { #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) return ct ? READ_ONCE(ct->mark) : 0; #else return 0; #endif } /* Guard against conntrack labels max size shrinking below 128 bits. */ #if NF_CT_LABELS_MAX_SIZE < 16 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes #endif static void ovs_ct_get_labels(const struct nf_conn *ct, struct ovs_key_ct_labels *labels) { struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; if (cl) memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); else memset(labels, 0, OVS_CT_LABELS_LEN); } static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, const struct nf_conntrack_tuple *orig, u8 icmp_proto) { key->ct_orig_proto = orig->dst.protonum; if (orig->dst.protonum == icmp_proto) { key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); } else { key->ct.orig_tp.src = orig->src.u.all; key->ct.orig_tp.dst = orig->dst.u.all; } } static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, const struct nf_conntrack_zone *zone, const struct nf_conn *ct) { key->ct_state = state; key->ct_zone = zone->id; key->ct.mark = ovs_ct_get_mark(ct); ovs_ct_get_labels(ct, &key->ct.labels); if (ct) { const struct nf_conntrack_tuple *orig; /* Use the master if we have one. */ if (ct->master) ct = ct->master; orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; /* IP version must match with the master connection. */ if (key->eth.type == htons(ETH_P_IP) && nf_ct_l3num(ct) == NFPROTO_IPV4) { key->ipv4.ct_orig.src = orig->src.u3.ip; key->ipv4.ct_orig.dst = orig->dst.u3.ip; __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); return; } else if (key->eth.type == htons(ETH_P_IPV6) && !sw_flow_key_is_nd(key) && nf_ct_l3num(ct) == NFPROTO_IPV6) { key->ipv6.ct_orig.src = orig->src.u3.in6; key->ipv6.ct_orig.dst = orig->dst.u3.in6; __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); return; } } /* Clear 'ct_orig_proto' to mark the non-existence of conntrack * original direction key fields. */ key->ct_orig_proto = 0; } /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has * previously sent the packet to conntrack via the ct action. If * 'keep_nat_flags' is true, the existing NAT flags retained, else they are * initialized from the connection status. */ static void ovs_ct_update_key(const struct sk_buff *skb, const struct ovs_conntrack_info *info, struct sw_flow_key *key, bool post_ct, bool keep_nat_flags) { const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; enum ip_conntrack_info ctinfo; struct nf_conn *ct; u8 state = 0; ct = nf_ct_get(skb, &ctinfo); if (ct) { state = ovs_ct_get_state(ctinfo); /* All unconfirmed entries are NEW connections. */ if (!nf_ct_is_confirmed(ct)) state |= OVS_CS_F_NEW; /* OVS persists the related flag for the duration of the * connection. */ if (ct->master) state |= OVS_CS_F_RELATED; if (keep_nat_flags) { state |= key->ct_state & OVS_CS_F_NAT_MASK; } else { if (ct->status & IPS_SRC_NAT) state |= OVS_CS_F_SRC_NAT; if (ct->status & IPS_DST_NAT) state |= OVS_CS_F_DST_NAT; } zone = nf_ct_zone(ct); } else if (post_ct) { state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; if (info) zone = &info->zone; } __ovs_ct_update_key(key, state, zone, ct); } /* This is called to initialize CT key fields possibly coming in from the local * stack. */ void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key, bool post_ct) { ovs_ct_update_key(skb, NULL, key, post_ct, false); } int ovs_ct_put_key(const struct sw_flow_key *swkey, const struct sw_flow_key *output, struct sk_buff *skb) { if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), &output->ct.labels)) return -EMSGSIZE; if (swkey->ct_orig_proto) { if (swkey->eth.type == htons(ETH_P_IP)) { struct ovs_key_ct_tuple_ipv4 orig; memset(&orig, 0, sizeof(orig)); orig.ipv4_src = output->ipv4.ct_orig.src; orig.ipv4_dst = output->ipv4.ct_orig.dst; orig.src_port = output->ct.orig_tp.src; orig.dst_port = output->ct.orig_tp.dst; orig.ipv4_proto = output->ct_orig_proto; if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, sizeof(orig), &orig)) return -EMSGSIZE; } else if (swkey->eth.type == htons(ETH_P_IPV6)) { struct ovs_key_ct_tuple_ipv6 orig; memset(&orig, 0, sizeof(orig)); memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32, sizeof(orig.ipv6_src)); memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32, sizeof(orig.ipv6_dst)); orig.src_port = output->ct.orig_tp.src; orig.dst_port = output->ct.orig_tp.dst; orig.ipv6_proto = output->ct_orig_proto; if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, sizeof(orig), &orig)) return -EMSGSIZE; } } return 0; } static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, u32 ct_mark, u32 mask) { #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) u32 new_mark; new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask)); if (READ_ONCE(ct->mark) != new_mark) { WRITE_ONCE(ct->mark, new_mark); if (nf_ct_is_confirmed(ct)) nf_conntrack_event_cache(IPCT_MARK, ct); key->ct.mark = new_mark; } return 0; #else return -ENOTSUPP; #endif } static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) { struct nf_conn_labels *cl; cl = nf_ct_labels_find(ct); if (!cl) { nf_ct_labels_ext_add(ct); cl = nf_ct_labels_find(ct); } return cl; } /* Initialize labels for a new, yet to be committed conntrack entry. Note that * since the new connection is not yet confirmed, and thus no-one else has * access to it's labels, we simply write them over. */ static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, const struct ovs_key_ct_labels *labels, const struct ovs_key_ct_labels *mask) { struct nf_conn_labels *cl, *master_cl; bool have_mask = labels_nonzero(mask); /* Inherit master's labels to the related connection? */ master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; if (!master_cl && !have_mask) return 0; /* Nothing to do. */ cl = ovs_ct_get_conn_labels(ct); if (!cl) return -ENOSPC; /* Inherit the master's labels, if any. */ if (master_cl) *cl = *master_cl; if (have_mask) { u32 *dst = (u32 *)cl->bits; int i; for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | (labels->ct_labels_32[i] & mask->ct_labels_32[i]); } /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the * IPCT_LABEL bit is set in the event cache. */ nf_conntrack_event_cache(IPCT_LABEL, ct); memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); return 0; } static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, const struct ovs_key_ct_labels *labels, const struct ovs_key_ct_labels *mask) { struct nf_conn_labels *cl; int err; cl = ovs_ct_get_conn_labels(ct); if (!cl) return -ENOSPC; err = nf_connlabels_replace(ct, labels->ct_labels_32, mask->ct_labels_32, OVS_CT_LABELS_LEN_32); if (err) return err; memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); return 0; } static int ovs_ct_handle_fragments(struct net *net, struct sw_flow_key *key, u16 zone, int family, struct sk_buff *skb) { struct ovs_skb_cb ovs_cb = *OVS_CB(skb); int err; err = nf_ct_handle_fragments(net, skb, zone, family, &key->ip.proto, &ovs_cb.mru); if (err) return err; /* The key extracted from the fragment that completed this datagram * likely didn't have an L4 header, so regenerate it. */ ovs_flow_key_update_l3l4(skb, key); key->ip.frag = OVS_FRAG_TYPE_NONE; *OVS_CB(skb) = ovs_cb; return 0; } /* This replicates logic from nf_conntrack_core.c that is not exported. */ static enum ip_conntrack_info ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) { const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) return IP_CT_ESTABLISHED_REPLY; /* Once we've had two way comms, always ESTABLISHED. */ if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) return IP_CT_ESTABLISHED; if (test_bit(IPS_EXPECTED_BIT, &ct->status)) return IP_CT_RELATED; return IP_CT_NEW; } /* Find an existing connection which this packet belongs to without * re-attributing statistics or modifying the connection state. This allows an * skb->_nfct lost due to an upcall to be recovered during actions execution. * * Must be called with rcu_read_lock. * * On success, populates skb->_nfct and returns the connection. Returns NULL * if there is no existing entry. */ static struct nf_conn * ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, u8 l3num, struct sk_buff *skb, bool natted) { struct nf_conntrack_tuple tuple; struct nf_conntrack_tuple_hash *h; struct nf_conn *ct; if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num, net, &tuple)) { pr_debug("ovs_ct_find_existing: Can't get tuple\n"); return NULL; } /* Must invert the tuple if skb has been transformed by NAT. */ if (natted) { struct nf_conntrack_tuple inverse; if (!nf_ct_invert_tuple(&inverse, &tuple)) { pr_debug("ovs_ct_find_existing: Inversion failed!\n"); return NULL; } tuple = inverse; } /* look for tuple match */ h = nf_conntrack_find_get(net, zone, &tuple); if (!h) return NULL; /* Not found. */ ct = nf_ct_tuplehash_to_ctrack(h); /* Inverted packet tuple matches the reverse direction conntrack tuple, * select the other tuplehash to get the right 'ctinfo' bits for this * packet. */ if (natted) h = &ct->tuplehash[!h->tuple.dst.dir]; nf_ct_set(skb, ct, ovs_ct_get_info(h)); return ct; } static struct nf_conn *ovs_ct_executed(struct net *net, const struct sw_flow_key *key, const struct ovs_conntrack_info *info, struct sk_buff *skb, bool *ct_executed) { struct nf_conn *ct = NULL; /* If no ct, check if we have evidence that an existing conntrack entry * might be found for this skb. This happens when we lose a skb->_nfct * due to an upcall, or if the direction is being forced. If the * connection was not confirmed, it is not cached and needs to be run * through conntrack again. */ *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) && !(key->ct_state & OVS_CS_F_INVALID) && (key->ct_zone == info->zone.id); if (*ct_executed || (!key->ct_state && info->force)) { ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, !!(key->ct_state & OVS_CS_F_NAT_MASK)); } return ct; } /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ static bool skb_nfct_cached(struct net *net, const struct sw_flow_key *key, const struct ovs_conntrack_info *info, struct sk_buff *skb) { enum ip_conntrack_info ctinfo; struct nf_conn *ct; bool ct_executed = true; ct = nf_ct_get(skb, &ctinfo); if (!ct) ct = ovs_ct_executed(net, key, info, skb, &ct_executed); if (ct) nf_ct_get(skb, &ctinfo); else return false; if (!net_eq(net, read_pnet(&ct->ct_net))) return false; if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) return false; if (info->helper) { struct nf_conn_help *help; help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); if (help && rcu_access_pointer(help->helper) != info->helper) return false; } if (info->nf_ct_timeout) { struct nf_conn_timeout *timeout_ext; timeout_ext = nf_ct_timeout_find(ct); if (!timeout_ext || info->nf_ct_timeout != rcu_dereference(timeout_ext->timeout)) return false; } /* Force conntrack entry direction to the current packet? */ if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { /* Delete the conntrack entry if confirmed, else just release * the reference. */ if (nf_ct_is_confirmed(ct)) nf_ct_delete(ct, 0, 0); nf_ct_put(ct); nf_ct_set(skb, NULL, 0); return false; } return ct_executed; } #if IS_ENABLED(CONFIG_NF_NAT) static void ovs_nat_update_key(struct sw_flow_key *key, const struct sk_buff *skb, enum nf_nat_manip_type maniptype) { if (maniptype == NF_NAT_MANIP_SRC) { __be16 src; key->ct_state |= OVS_CS_F_SRC_NAT; if (key->eth.type == htons(ETH_P_IP)) key->ipv4.addr.src = ip_hdr(skb)->saddr; else if (key->eth.type == htons(ETH_P_IPV6)) memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, sizeof(key->ipv6.addr.src)); else return; if (key->ip.proto == IPPROTO_UDP) src = udp_hdr(skb)->source; else if (key->ip.proto == IPPROTO_TCP) src = tcp_hdr(skb)->source; else if (key->ip.proto == IPPROTO_SCTP) src = sctp_hdr(skb)->source; else return; key->tp.src = src; } else { __be16 dst; key->ct_state |= OVS_CS_F_DST_NAT; if (key->eth.type == htons(ETH_P_IP)) key->ipv4.addr.dst = ip_hdr(skb)->daddr; else if (key->eth.type == htons(ETH_P_IPV6)) memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, sizeof(key->ipv6.addr.dst)); else return; if (key->ip.proto == IPPROTO_UDP) dst = udp_hdr(skb)->dest; else if (key->ip.proto == IPPROTO_TCP) dst = tcp_hdr(skb)->dest; else if (key->ip.proto == IPPROTO_SCTP) dst = sctp_hdr(skb)->dest; else return; key->tp.dst = dst; } } /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, const struct ovs_conntrack_info *info, struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo) { int err, action = 0; if (!(info->nat & OVS_CT_NAT)) return NF_ACCEPT; if (info->nat & OVS_CT_SRC_NAT) action |= BIT(NF_NAT_MANIP_SRC); if (info->nat & OVS_CT_DST_NAT) action |= BIT(NF_NAT_MANIP_DST); err = nf_ct_nat(skb, ct, ctinfo, &action, &info->range, info->commit); if (action & BIT(NF_NAT_MANIP_SRC)) ovs_nat_update_key(key, skb, NF_NAT_MANIP_SRC); if (action & BIT(NF_NAT_MANIP_DST)) ovs_nat_update_key(key, skb, NF_NAT_MANIP_DST); return err; } #else /* !CONFIG_NF_NAT */ static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, const struct ovs_conntrack_info *info, struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo) { return NF_ACCEPT; } #endif /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if * not done already. Update key with new CT state after passing the packet * through conntrack. * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be * set to NULL and 0 will be returned. */ static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, const struct ovs_conntrack_info *info, struct sk_buff *skb) { /* If we are recirculating packets to match on conntrack fields and * committing with a separate conntrack action, then we don't need to * actually run the packet through conntrack twice unless it's for a * different zone. */ bool cached = skb_nfct_cached(net, key, info, skb); enum ip_conntrack_info ctinfo; struct nf_conn *ct; if (!cached) { struct nf_hook_state state = { .hook = NF_INET_PRE_ROUTING, .pf = info->family, .net = net, }; struct nf_conn *tmpl = info->ct; int err; /* Associate skb with specified zone. */ if (tmpl) { ct = nf_ct_get(skb, &ctinfo); nf_ct_put(ct); nf_conntrack_get(&tmpl->ct_general); nf_ct_set(skb, tmpl, IP_CT_NEW); } err = nf_conntrack_in(skb, &state); if (err != NF_ACCEPT) return -ENOENT; /* Clear CT state NAT flags to mark that we have not yet done * NAT after the nf_conntrack_in() call. We can actually clear * the whole state, as it will be re-initialized below. */ key->ct_state = 0; /* Update the key, but keep the NAT flags. */ ovs_ct_update_key(skb, info, key, true, true); } ct = nf_ct_get(skb, &ctinfo); if (ct) { bool add_helper = false; /* Packets starting a new connection must be NATted before the * helper, so that the helper knows about the NAT. We enforce * this by delaying both NAT and helper calls for unconfirmed * connections until the committing CT action. For later * packets NAT and Helper may be called in either order. * * NAT will be done only if the CT action has NAT, and only * once per packet (per zone), as guarded by the NAT bits in * the key->ct_state. */ if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && (nf_ct_is_confirmed(ct) || info->commit) && ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { return -EINVAL; } /* Userspace may decide to perform a ct lookup without a helper * specified followed by a (recirculate and) commit with one, * or attach a helper in a later commit. Therefore, for * connections which we will commit, we may need to attach * the helper here. */ if (!nf_ct_is_confirmed(ct) && info->commit && info->helper && !nfct_help(ct)) { int err = __nf_ct_try_assign_helper(ct, info->ct, GFP_ATOMIC); if (err) return err; add_helper = true; /* helper installed, add seqadj if NAT is required */ if (info->nat && !nfct_seqadj(ct)) { if (!nfct_seqadj_ext_add(ct)) return -EINVAL; } } /* Call the helper only if: * - nf_conntrack_in() was executed above ("!cached") or a * helper was just attached ("add_helper") for a confirmed * connection, or * - When committing an unconfirmed connection. */ if ((nf_ct_is_confirmed(ct) ? !cached || add_helper : info->commit) && nf_ct_helper(skb, ct, ctinfo, info->family) != NF_ACCEPT) { return -EINVAL; } if (nf_ct_protonum(ct) == IPPROTO_TCP && nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) { /* Be liberal for tcp packets so that out-of-window * packets are not marked invalid. */ nf_ct_set_tcp_be_liberal(ct); } nf_conn_act_ct_ext_fill(skb, ct, ctinfo); } return 0; } /* Lookup connection and read fields into key. */ static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, const struct ovs_conntrack_info *info, struct sk_buff *skb) { struct nf_conn *ct; int err; err = __ovs_ct_lookup(net, key, info, skb); if (err) return err; ct = (struct nf_conn *)skb_nfct(skb); if (ct) nf_ct_deliver_cached_events(ct); return 0; } static bool labels_nonzero(const struct ovs_key_ct_labels *labels) { size_t i; for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) if (labels->ct_labels_32[i]) return true; return false; } #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) static struct hlist_head *ct_limit_hash_bucket( const struct ovs_ct_limit_info *info, u16 zone) { return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)]; } /* Call with ovs_mutex */ static void ct_limit_set(const struct ovs_ct_limit_info *info, struct ovs_ct_limit *new_ct_limit) { struct ovs_ct_limit *ct_limit; struct hlist_head *head; head = ct_limit_hash_bucket(info, new_ct_limit->zone); hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { if (ct_limit->zone == new_ct_limit->zone) { hlist_replace_rcu(&ct_limit->hlist_node, &new_ct_limit->hlist_node); kfree_rcu(ct_limit, rcu); return; } } hlist_add_head_rcu(&new_ct_limit->hlist_node, head); } /* Call with ovs_mutex */ static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone) { struct ovs_ct_limit *ct_limit; struct hlist_head *head; struct hlist_node *n; head = ct_limit_hash_bucket(info, zone); hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) { if (ct_limit->zone == zone) { hlist_del_rcu(&ct_limit->hlist_node); kfree_rcu(ct_limit, rcu); return; } } } /* Call with RCU read lock */ static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone) { struct ovs_ct_limit *ct_limit; struct hlist_head *head; head = ct_limit_hash_bucket(info, zone); hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { if (ct_limit->zone == zone) return ct_limit->limit; } return info->default_limit; } static int ovs_ct_check_limit(struct net *net, const struct ovs_conntrack_info *info, const struct nf_conntrack_tuple *tuple) { struct ovs_net *ovs_net = net_generic(net, ovs_net_id); const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; u32 per_zone_limit, connections; u32 conncount_key; conncount_key = info->zone.id; per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id); if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED) return 0; connections = nf_conncount_count(net, ct_limit_info->data, &conncount_key, tuple, &info->zone); if (connections > per_zone_limit) return -ENOMEM; return 0; } #endif /* Lookup connection and confirm if unconfirmed. */ static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, const struct ovs_conntrack_info *info, struct sk_buff *skb) { enum ip_conntrack_info ctinfo; struct nf_conn *ct; int err; err = __ovs_ct_lookup(net, key, info, skb); if (err) return err; /* The connection could be invalid, in which case this is a no-op.*/ ct = nf_ct_get(skb, &ctinfo); if (!ct) return 0; #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) if (static_branch_unlikely(&ovs_ct_limit_enabled)) { if (!nf_ct_is_confirmed(ct)) { err = ovs_ct_check_limit(net, info, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); if (err) { net_warn_ratelimited("openvswitch: zone: %u " "exceeds conntrack limit\n", info->zone.id); return err; } } } #endif /* Set the conntrack event mask if given. NEW and DELETE events have * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener * typically would receive many kinds of updates. Setting the event * mask allows those events to be filtered. The set event mask will * remain in effect for the lifetime of the connection unless changed * by a further CT action with both the commit flag and the eventmask * option. */ if (info->have_eventmask) { struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); if (cache) cache->ctmask = info->eventmask; } /* Apply changes before confirming the connection so that the initial * conntrack NEW netlink event carries the values given in the CT * action. */ if (info->mark.mask) { err = ovs_ct_set_mark(ct, key, info->mark.value, info->mark.mask); if (err) return err; } if (!nf_ct_is_confirmed(ct)) { err = ovs_ct_init_labels(ct, key, &info->labels.value, &info->labels.mask); if (err) return err; nf_conn_act_ct_ext_add(ct); } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && labels_nonzero(&info->labels.mask)) { err = ovs_ct_set_labels(ct, key, &info->labels.value, &info->labels.mask); if (err) return err; } /* This will take care of sending queued events even if the connection * is already confirmed. */ if (nf_conntrack_confirm(skb) != NF_ACCEPT) return -EINVAL; return 0; } /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero * value if 'skb' is freed. */ int ovs_ct_execute(struct net *net, struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_conntrack_info *info) { int nh_ofs; int err; /* The conntrack module expects to be working at L3. */ nh_ofs = skb_network_offset(skb); skb_pull_rcsum(skb, nh_ofs); err = nf_ct_skb_network_trim(skb, info->family); if (err) { kfree_skb(skb); return err; } if (key->ip.frag != OVS_FRAG_TYPE_NONE) { err = ovs_ct_handle_fragments(net, key, info->zone.id, info->family, skb); if (err) return err; } if (info->commit) err = ovs_ct_commit(net, key, info, skb); else err = ovs_ct_lookup(net, key, info, skb); skb_push_rcsum(skb, nh_ofs); if (err) ovs_kfree_skb_reason(skb, OVS_DROP_CONNTRACK); return err; } int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key) { enum ip_conntrack_info ctinfo; struct nf_conn *ct; ct = nf_ct_get(skb, &ctinfo); nf_ct_put(ct); nf_ct_set(skb, NULL, IP_CT_UNTRACKED); if (key) ovs_ct_fill_key(skb, key, false); return 0; } #if IS_ENABLED(CONFIG_NF_NAT) static int parse_nat(const struct nlattr *attr, struct ovs_conntrack_info *info, bool log) { struct nlattr *a; int rem; bool have_ip_max = false; bool have_proto_max = false; bool ip_vers = (info->family == NFPROTO_IPV6); nla_for_each_nested(a, attr, rem) { static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { [OVS_NAT_ATTR_SRC] = {0, 0}, [OVS_NAT_ATTR_DST] = {0, 0}, [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), sizeof(struct in6_addr)}, [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), sizeof(struct in6_addr)}, [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, }; int type = nla_type(a); if (type > OVS_NAT_ATTR_MAX) { OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)", type, OVS_NAT_ATTR_MAX); return -EINVAL; } if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)", type, nla_len(a), ovs_nat_attr_lens[type][ip_vers]); return -EINVAL; } switch (type) { case OVS_NAT_ATTR_SRC: case OVS_NAT_ATTR_DST: if (info->nat) { OVS_NLERR(log, "Only one type of NAT may be specified"); return -ERANGE; } info->nat |= OVS_CT_NAT; info->nat |= ((type == OVS_NAT_ATTR_SRC) ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); break; case OVS_NAT_ATTR_IP_MIN: nla_memcpy(&info->range.min_addr, a, sizeof(info->range.min_addr)); info->range.flags |= NF_NAT_RANGE_MAP_IPS; break; case OVS_NAT_ATTR_IP_MAX: have_ip_max = true; nla_memcpy(&info->range.max_addr, a, sizeof(info->range.max_addr)); info->range.flags |= NF_NAT_RANGE_MAP_IPS; break; case OVS_NAT_ATTR_PROTO_MIN: info->range.min_proto.all = htons(nla_get_u16(a)); info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; break; case OVS_NAT_ATTR_PROTO_MAX: have_proto_max = true; info->range.max_proto.all = htons(nla_get_u16(a)); info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; break; case OVS_NAT_ATTR_PERSISTENT: info->range.flags |= NF_NAT_RANGE_PERSISTENT; break; case OVS_NAT_ATTR_PROTO_HASH: info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; break; case OVS_NAT_ATTR_PROTO_RANDOM: info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; break; default: OVS_NLERR(log, "Unknown nat attribute (%d)", type); return -EINVAL; } } if (rem > 0) { OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem); return -EINVAL; } if (!info->nat) { /* Do not allow flags if no type is given. */ if (info->range.flags) { OVS_NLERR(log, "NAT flags may be given only when NAT range (SRC or DST) is also specified." ); return -EINVAL; } info->nat = OVS_CT_NAT; /* NAT existing connections. */ } else if (!info->commit) { OVS_NLERR(log, "NAT attributes may be specified only when CT COMMIT flag is also specified." ); return -EINVAL; } /* Allow missing IP_MAX. */ if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { memcpy(&info->range.max_addr, &info->range.min_addr, sizeof(info->range.max_addr)); } /* Allow missing PROTO_MAX. */ if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && !have_proto_max) { info->range.max_proto.all = info->range.min_proto.all; } return 0; } #endif static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), .maxlen = sizeof(u16) }, [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), .maxlen = sizeof(struct md_mark) }, [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), .maxlen = sizeof(struct md_labels) }, [OVS_CT_ATTR_HELPER] = { .minlen = 1, .maxlen = NF_CT_HELPER_NAME_LEN }, #if IS_ENABLED(CONFIG_NF_NAT) /* NAT length is checked when parsing the nested attributes. */ [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, #endif [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), .maxlen = sizeof(u32) }, [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1, .maxlen = CTNL_TIMEOUT_NAME_MAX }, }; static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, const char **helper, bool log) { struct nlattr *a; int rem; nla_for_each_nested(a, attr, rem) { int type = nla_type(a); int maxlen; int minlen; if (type > OVS_CT_ATTR_MAX) { OVS_NLERR(log, "Unknown conntrack attr (type=%d, max=%d)", type, OVS_CT_ATTR_MAX); return -EINVAL; } maxlen = ovs_ct_attr_lens[type].maxlen; minlen = ovs_ct_attr_lens[type].minlen; if (nla_len(a) < minlen || nla_len(a) > maxlen) { OVS_NLERR(log, "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", type, nla_len(a), maxlen); return -EINVAL; } switch (type) { case OVS_CT_ATTR_FORCE_COMMIT: info->force = true; fallthrough; case OVS_CT_ATTR_COMMIT: info->commit = true; break; #ifdef CONFIG_NF_CONNTRACK_ZONES case OVS_CT_ATTR_ZONE: info->zone.id = nla_get_u16(a); break; #endif #ifdef CONFIG_NF_CONNTRACK_MARK case OVS_CT_ATTR_MARK: { struct md_mark *mark = nla_data(a); if (!mark->mask) { OVS_NLERR(log, "ct_mark mask cannot be 0"); return -EINVAL; } info->mark = *mark; break; } #endif #ifdef CONFIG_NF_CONNTRACK_LABELS case OVS_CT_ATTR_LABELS: { struct md_labels *labels = nla_data(a); if (!labels_nonzero(&labels->mask)) { OVS_NLERR(log, "ct_labels mask cannot be 0"); return -EINVAL; } info->labels = *labels; break; } #endif case OVS_CT_ATTR_HELPER: *helper = nla_data(a); if (!string_is_terminated(*helper, nla_len(a))) { OVS_NLERR(log, "Invalid conntrack helper"); return -EINVAL; } break; #if IS_ENABLED(CONFIG_NF_NAT) case OVS_CT_ATTR_NAT: { int err = parse_nat(a, info, log); if (err) return err; break; } #endif case OVS_CT_ATTR_EVENTMASK: info->have_eventmask = true; info->eventmask = nla_get_u32(a); break; #ifdef CONFIG_NF_CONNTRACK_TIMEOUT case OVS_CT_ATTR_TIMEOUT: memcpy(info->timeout, nla_data(a), nla_len(a)); if (!string_is_terminated(info->timeout, nla_len(a))) { OVS_NLERR(log, "Invalid conntrack timeout"); return -EINVAL; } break; #endif default: OVS_NLERR(log, "Unknown conntrack attr (%d)", type); return -EINVAL; } } #ifdef CONFIG_NF_CONNTRACK_MARK if (!info->commit && info->mark.mask) { OVS_NLERR(log, "Setting conntrack mark requires 'commit' flag."); return -EINVAL; } #endif #ifdef CONFIG_NF_CONNTRACK_LABELS if (!info->commit && labels_nonzero(&info->labels.mask)) { OVS_NLERR(log, "Setting conntrack labels requires 'commit' flag."); return -EINVAL; } #endif if (rem > 0) { OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); return -EINVAL; } return 0; } bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) { if (attr == OVS_KEY_ATTR_CT_STATE) return true; if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && attr == OVS_KEY_ATTR_CT_ZONE) return true; if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && attr == OVS_KEY_ATTR_CT_MARK) return true; if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && attr == OVS_KEY_ATTR_CT_LABELS) { struct ovs_net *ovs_net = net_generic(net, ovs_net_id); return ovs_net->xt_label; } return false; } int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, bool log) { struct ovs_conntrack_info ct_info; const char *helper = NULL; u16 family; int err; family = key_to_nfproto(key); if (family == NFPROTO_UNSPEC) { OVS_NLERR(log, "ct family unspecified"); return -EINVAL; } memset(&ct_info, 0, sizeof(ct_info)); ct_info.family = family; nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, NF_CT_DEFAULT_ZONE_DIR, 0); err = parse_ct(attr, &ct_info, &helper, log); if (err) return err; /* Set up template for tracking connections in specific zones. */ ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); if (!ct_info.ct) { OVS_NLERR(log, "Failed to allocate conntrack template"); return -ENOMEM; } if (ct_info.timeout[0]) { if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto, ct_info.timeout)) pr_info_ratelimited("Failed to associated timeout " "policy `%s'\n", ct_info.timeout); else ct_info.nf_ct_timeout = rcu_dereference( nf_ct_timeout_find(ct_info.ct)->timeout); } if (helper) { err = nf_ct_add_helper(ct_info.ct, helper, ct_info.family, key->ip.proto, ct_info.nat, &ct_info.helper); if (err) { OVS_NLERR(log, "Failed to add %s helper %d", helper, err); goto err_free_ct; } } err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, sizeof(ct_info), log); if (err) goto err_free_ct; if (ct_info.commit) __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); return 0; err_free_ct: __ovs_ct_free_action(&ct_info); return err; } #if IS_ENABLED(CONFIG_NF_NAT) static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, struct sk_buff *skb) { struct nlattr *start; start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT); if (!start) return false; if (info->nat & OVS_CT_SRC_NAT) { if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) return false; } else if (info->nat & OVS_CT_DST_NAT) { if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) return false; } else { goto out; } if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { if (IS_ENABLED(CONFIG_NF_NAT) && info->family == NFPROTO_IPV4) { if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, info->range.min_addr.ip) || (info->range.max_addr.ip != info->range.min_addr.ip && (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, info->range.max_addr.ip)))) return false; } else if (IS_ENABLED(CONFIG_IPV6) && info->family == NFPROTO_IPV6) { if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, &info->range.min_addr.in6) || (memcmp(&info->range.max_addr.in6, &info->range.min_addr.in6, sizeof(info->range.max_addr.in6)) && (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, &info->range.max_addr.in6)))) return false; } else { return false; } } if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, ntohs(info->range.min_proto.all)) || (info->range.max_proto.all != info->range.min_proto.all && nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, ntohs(info->range.max_proto.all))))) return false; if (info->range.flags & NF_NAT_RANGE_PERSISTENT && nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) return false; if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) return false; if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) return false; out: nla_nest_end(skb, start); return true; } #endif int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, struct sk_buff *skb) { struct nlattr *start; start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT); if (!start) return -EMSGSIZE; if (ct_info->commit && nla_put_flag(skb, ct_info->force ? OVS_CT_ATTR_FORCE_COMMIT : OVS_CT_ATTR_COMMIT)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), &ct_info->mark)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && labels_nonzero(&ct_info->labels.mask) && nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), &ct_info->labels)) return -EMSGSIZE; if (ct_info->helper) { if (nla_put_string(skb, OVS_CT_ATTR_HELPER, ct_info->helper->name)) return -EMSGSIZE; } if (ct_info->have_eventmask && nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask)) return -EMSGSIZE; if (ct_info->timeout[0]) { if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout)) return -EMSGSIZE; } #if IS_ENABLED(CONFIG_NF_NAT) if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) return -EMSGSIZE; #endif nla_nest_end(skb, start); return 0; } void ovs_ct_free_action(const struct nlattr *a) { struct ovs_conntrack_info *ct_info = nla_data(a); __ovs_ct_free_action(ct_info); } static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) { if (ct_info->helper) { #if IS_ENABLED(CONFIG_NF_NAT) if (ct_info->nat) nf_nat_helper_put(ct_info->helper); #endif nf_conntrack_helper_put(ct_info->helper); } if (ct_info->ct) { if (ct_info->timeout[0]) nf_ct_destroy_timeout(ct_info->ct); nf_ct_tmpl_free(ct_info->ct); } } #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net) { int i, err; ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info), GFP_KERNEL); if (!ovs_net->ct_limit_info) return -ENOMEM; ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT; ovs_net->ct_limit_info->limits = kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head), GFP_KERNEL); if (!ovs_net->ct_limit_info->limits) { kfree(ovs_net->ct_limit_info); return -ENOMEM; } for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++) INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]); ovs_net->ct_limit_info->data = nf_conncount_init(net, NFPROTO_INET, sizeof(u32)); if (IS_ERR(ovs_net->ct_limit_info->data)) { err = PTR_ERR(ovs_net->ct_limit_info->data); kfree(ovs_net->ct_limit_info->limits); kfree(ovs_net->ct_limit_info); pr_err("openvswitch: failed to init nf_conncount %d\n", err); return err; } return 0; } static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net) { const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info; int i; nf_conncount_destroy(net, NFPROTO_INET, info->data); for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { struct hlist_head *head = &info->limits[i]; struct ovs_ct_limit *ct_limit; hlist_for_each_entry_rcu(ct_limit, head, hlist_node, lockdep_ovsl_is_held()) kfree_rcu(ct_limit, rcu); } kfree(info->limits); kfree(info); } static struct sk_buff * ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd, struct ovs_header **ovs_reply_header) { struct ovs_header *ovs_header = genl_info_userhdr(info); struct sk_buff *skb; skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return ERR_PTR(-ENOMEM); *ovs_reply_header = genlmsg_put(skb, info->snd_portid, info->snd_seq, &dp_ct_limit_genl_family, 0, cmd); if (!*ovs_reply_header) { nlmsg_free(skb); return ERR_PTR(-EMSGSIZE); } (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; return skb; } static bool check_zone_id(int zone_id, u16 *pzone) { if (zone_id >= 0 && zone_id <= 65535) { *pzone = (u16)zone_id; return true; } return false; } static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit, struct ovs_ct_limit_info *info) { struct ovs_zone_limit *zone_limit; int rem; u16 zone; rem = NLA_ALIGN(nla_len(nla_zone_limit)); zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); while (rem >= sizeof(*zone_limit)) { if (unlikely(zone_limit->zone_id == OVS_ZONE_LIMIT_DEFAULT_ZONE)) { ovs_lock(); info->default_limit = zone_limit->limit; ovs_unlock(); } else if (unlikely(!check_zone_id( zone_limit->zone_id, &zone))) { OVS_NLERR(true, "zone id is out of range"); } else { struct ovs_ct_limit *ct_limit; ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL_ACCOUNT); if (!ct_limit) return -ENOMEM; ct_limit->zone = zone; ct_limit->limit = zone_limit->limit; ovs_lock(); ct_limit_set(info, ct_limit); ovs_unlock(); } rem -= NLA_ALIGN(sizeof(*zone_limit)); zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + NLA_ALIGN(sizeof(*zone_limit))); } if (rem) OVS_NLERR(true, "set zone limit has %d unknown bytes", rem); return 0; } static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit, struct ovs_ct_limit_info *info) { struct ovs_zone_limit *zone_limit; int rem; u16 zone; rem = NLA_ALIGN(nla_len(nla_zone_limit)); zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); while (rem >= sizeof(*zone_limit)) { if (unlikely(zone_limit->zone_id == OVS_ZONE_LIMIT_DEFAULT_ZONE)) { ovs_lock(); info->default_limit = OVS_CT_LIMIT_DEFAULT; ovs_unlock(); } else if (unlikely(!check_zone_id( zone_limit->zone_id, &zone))) { OVS_NLERR(true, "zone id is out of range"); } else { ovs_lock(); ct_limit_del(info, zone); ovs_unlock(); } rem -= NLA_ALIGN(sizeof(*zone_limit)); zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + NLA_ALIGN(sizeof(*zone_limit))); } if (rem) OVS_NLERR(true, "del zone limit has %d unknown bytes", rem); return 0; } static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info, struct sk_buff *reply) { struct ovs_zone_limit zone_limit = { .zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE, .limit = info->default_limit, }; return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); } static int __ovs_ct_limit_get_zone_limit(struct net *net, struct nf_conncount_data *data, u16 zone_id, u32 limit, struct sk_buff *reply) { struct nf_conntrack_zone ct_zone; struct ovs_zone_limit zone_limit; u32 conncount_key = zone_id; zone_limit.zone_id = zone_id; zone_limit.limit = limit; nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0); zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL, &ct_zone); return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); } static int ovs_ct_limit_get_zone_limit(struct net *net, struct nlattr *nla_zone_limit, struct ovs_ct_limit_info *info, struct sk_buff *reply) { struct ovs_zone_limit *zone_limit; int rem, err; u32 limit; u16 zone; rem = NLA_ALIGN(nla_len(nla_zone_limit)); zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); while (rem >= sizeof(*zone_limit)) { if (unlikely(zone_limit->zone_id == OVS_ZONE_LIMIT_DEFAULT_ZONE)) { err = ovs_ct_limit_get_default_limit(info, reply); if (err) return err; } else if (unlikely(!check_zone_id(zone_limit->zone_id, &zone))) { OVS_NLERR(true, "zone id is out of range"); } else { rcu_read_lock(); limit = ct_limit_get(info, zone); rcu_read_unlock(); err = __ovs_ct_limit_get_zone_limit( net, info->data, zone, limit, reply); if (err) return err; } rem -= NLA_ALIGN(sizeof(*zone_limit)); zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + NLA_ALIGN(sizeof(*zone_limit))); } if (rem) OVS_NLERR(true, "get zone limit has %d unknown bytes", rem); return 0; } static int ovs_ct_limit_get_all_zone_limit(struct net *net, struct ovs_ct_limit_info *info, struct sk_buff *reply) { struct ovs_ct_limit *ct_limit; struct hlist_head *head; int i, err = 0; err = ovs_ct_limit_get_default_limit(info, reply); if (err) return err; rcu_read_lock(); for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { head = &info->limits[i]; hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { err = __ovs_ct_limit_get_zone_limit(net, info->data, ct_limit->zone, ct_limit->limit, reply); if (err) goto exit_err; } } exit_err: rcu_read_unlock(); return err; } static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct sk_buff *reply; struct ovs_header *ovs_reply_header; struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; int err; reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { err = -EINVAL; goto exit_err; } err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info); if (err) goto exit_err; static_branch_enable(&ovs_ct_limit_enabled); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_err: nlmsg_free(reply); return err; } static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct sk_buff *reply; struct ovs_header *ovs_reply_header; struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; int err; reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { err = -EINVAL; goto exit_err; } err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info); if (err) goto exit_err; genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_err: nlmsg_free(reply); return err; } static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct nlattr *nla_reply; struct sk_buff *reply; struct ovs_header *ovs_reply_header; struct net *net = sock_net(skb->sk); struct ovs_net *ovs_net = net_generic(net, ovs_net_id); struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; int err; reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT); if (!nla_reply) { err = -EMSGSIZE; goto exit_err; } if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { err = ovs_ct_limit_get_zone_limit( net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info, reply); if (err) goto exit_err; } else { err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info, reply); if (err) goto exit_err; } nla_nest_end(reply, nla_reply); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_err: nlmsg_free(reply); return err; } static const struct genl_small_ops ct_limit_genl_ops[] = { { .cmd = OVS_CT_LIMIT_CMD_SET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN * privilege. */ .doit = ovs_ct_limit_cmd_set, }, { .cmd = OVS_CT_LIMIT_CMD_DEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN * privilege. */ .doit = ovs_ct_limit_cmd_del, }, { .cmd = OVS_CT_LIMIT_CMD_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, /* OK for unprivileged users. */ .doit = ovs_ct_limit_cmd_get, }, }; static const struct genl_multicast_group ovs_ct_limit_multicast_group = { .name = OVS_CT_LIMIT_MCGROUP, }; struct genl_family dp_ct_limit_genl_family __ro_after_init = { .hdrsize = sizeof(struct ovs_header), .name = OVS_CT_LIMIT_FAMILY, .version = OVS_CT_LIMIT_VERSION, .maxattr = OVS_CT_LIMIT_ATTR_MAX, .policy = ct_limit_policy, .netnsok = true, .parallel_ops = true, .small_ops = ct_limit_genl_ops, .n_small_ops = ARRAY_SIZE(ct_limit_genl_ops), .resv_start_op = OVS_CT_LIMIT_CMD_GET + 1, .mcgrps = &ovs_ct_limit_multicast_group, .n_mcgrps = 1, .module = THIS_MODULE, }; #endif int ovs_ct_init(struct net *net) { unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; struct ovs_net *ovs_net = net_generic(net, ovs_net_id); if (nf_connlabels_get(net, n_bits - 1)) { ovs_net->xt_label = false; OVS_NLERR(true, "Failed to set connlabel length"); } else { ovs_net->xt_label = true; } #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) return ovs_ct_limit_init(net, ovs_net); #else return 0; #endif } void ovs_ct_exit(struct net *net) { struct ovs_net *ovs_net = net_generic(net, ovs_net_id); #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) ovs_ct_limit_exit(net, ovs_net); #endif if (ovs_net->xt_label) nf_connlabels_put(net); }
linux-master
net/openvswitch/conntrack.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2014 Nicira, Inc. */ #include <linux/uaccess.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <net/llc_pdu.h> #include <linux/kernel.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/llc.h> #include <linux/module.h> #include <linux/in.h> #include <linux/rcupdate.h> #include <linux/cpumask.h> #include <linux/if_arp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/mpls.h> #include <linux/sctp.h> #include <linux/smp.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/icmp.h> #include <linux/icmpv6.h> #include <linux/rculist.h> #include <net/ip.h> #include <net/ip_tunnels.h> #include <net/ipv6.h> #include <net/mpls.h> #include <net/ndisc.h> #include <net/nsh.h> #include <net/pkt_cls.h> #include <net/netfilter/nf_conntrack_zones.h> #include "conntrack.h" #include "datapath.h" #include "flow.h" #include "flow_netlink.h" #include "vport.h" u64 ovs_flow_used_time(unsigned long flow_jiffies) { struct timespec64 cur_ts; u64 cur_ms, idle_ms; ktime_get_ts64(&cur_ts); idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC + cur_ts.tv_nsec / NSEC_PER_MSEC; return cur_ms - idle_ms; } #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, const struct sk_buff *skb) { struct sw_flow_stats *stats; unsigned int cpu = smp_processor_id(); int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); stats = rcu_dereference(flow->stats[cpu]); /* Check if already have CPU-specific stats. */ if (likely(stats)) { spin_lock(&stats->lock); /* Mark if we write on the pre-allocated stats. */ if (cpu == 0 && unlikely(flow->stats_last_writer != cpu)) flow->stats_last_writer = cpu; } else { stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ spin_lock(&stats->lock); /* If the current CPU is the only writer on the * pre-allocated stats keep using them. */ if (unlikely(flow->stats_last_writer != cpu)) { /* A previous locker may have already allocated the * stats, so we need to check again. If CPU-specific * stats were already allocated, we update the pre- * allocated stats as we have already locked them. */ if (likely(flow->stats_last_writer != -1) && likely(!rcu_access_pointer(flow->stats[cpu]))) { /* Try to allocate CPU-specific stats. */ struct sw_flow_stats *new_stats; new_stats = kmem_cache_alloc_node(flow_stats_cache, GFP_NOWAIT | __GFP_THISNODE | __GFP_NOWARN | __GFP_NOMEMALLOC, numa_node_id()); if (likely(new_stats)) { new_stats->used = jiffies; new_stats->packet_count = 1; new_stats->byte_count = len; new_stats->tcp_flags = tcp_flags; spin_lock_init(&new_stats->lock); rcu_assign_pointer(flow->stats[cpu], new_stats); cpumask_set_cpu(cpu, flow->cpu_used_mask); goto unlock; } } flow->stats_last_writer = cpu; } } stats->used = jiffies; stats->packet_count++; stats->byte_count += len; stats->tcp_flags |= tcp_flags; unlock: spin_unlock(&stats->lock); } /* Must be called with rcu_read_lock or ovs_mutex. */ void ovs_flow_stats_get(const struct sw_flow *flow, struct ovs_flow_stats *ovs_stats, unsigned long *used, __be16 *tcp_flags) { int cpu; *used = 0; *tcp_flags = 0; memset(ovs_stats, 0, sizeof(*ovs_stats)); /* We open code this to make sure cpu 0 is always considered */ for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, flow->cpu_used_mask)) { struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]); if (stats) { /* Local CPU may write on non-local stats, so we must * block bottom-halves here. */ spin_lock_bh(&stats->lock); if (!*used || time_after(stats->used, *used)) *used = stats->used; *tcp_flags |= stats->tcp_flags; ovs_stats->n_packets += stats->packet_count; ovs_stats->n_bytes += stats->byte_count; spin_unlock_bh(&stats->lock); } } } /* Called with ovs_mutex. */ void ovs_flow_stats_clear(struct sw_flow *flow) { int cpu; /* We open code this to make sure cpu 0 is always considered */ for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, flow->cpu_used_mask)) { struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]); if (stats) { spin_lock_bh(&stats->lock); stats->used = 0; stats->packet_count = 0; stats->byte_count = 0; stats->tcp_flags = 0; spin_unlock_bh(&stats->lock); } } } static int check_header(struct sk_buff *skb, int len) { if (unlikely(skb->len < len)) return -EINVAL; if (unlikely(!pskb_may_pull(skb, len))) return -ENOMEM; return 0; } static bool arphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_network_offset(skb) + sizeof(struct arp_eth_header)); } static int check_iphdr(struct sk_buff *skb) { unsigned int nh_ofs = skb_network_offset(skb); unsigned int ip_len; int err; err = check_header(skb, nh_ofs + sizeof(struct iphdr)); if (unlikely(err)) return err; ip_len = ip_hdrlen(skb); if (unlikely(ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len)) return -EINVAL; skb_set_transport_header(skb, nh_ofs + ip_len); return 0; } static bool tcphdr_ok(struct sk_buff *skb) { int th_ofs = skb_transport_offset(skb); int tcp_len; if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) return false; tcp_len = tcp_hdrlen(skb); if (unlikely(tcp_len < sizeof(struct tcphdr) || skb->len < th_ofs + tcp_len)) return false; return true; } static bool udphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)); } static bool sctphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct sctphdr)); } static bool icmphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct icmphdr)); } /** * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags. * * @skb: buffer where extension header data starts in packet * @nh: ipv6 header * @ext_hdrs: flags are stored here * * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header * is unexpectedly encountered. (Two destination options headers may be * expected and would not cause this bit to be set.) * * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order * preferred (but not required) by RFC 2460: * * When more than one extension header is used in the same packet, it is * recommended that those headers appear in the following order: * IPv6 header * Hop-by-Hop Options header * Destination Options header * Routing header * Fragment header * Authentication header * Encapsulating Security Payload header * Destination Options header * upper-layer header */ static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh, u16 *ext_hdrs) { u8 next_type = nh->nexthdr; unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr); int dest_options_header_count = 0; *ext_hdrs = 0; while (ipv6_ext_hdr(next_type)) { struct ipv6_opt_hdr _hdr, *hp; switch (next_type) { case IPPROTO_NONE: *ext_hdrs |= OFPIEH12_NONEXT; /* stop parsing */ return; case IPPROTO_ESP: if (*ext_hdrs & OFPIEH12_ESP) *ext_hdrs |= OFPIEH12_UNREP; if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER | IPPROTO_FRAGMENT | OFPIEH12_AUTH | OFPIEH12_UNREP)) || dest_options_header_count >= 2) { *ext_hdrs |= OFPIEH12_UNSEQ; } *ext_hdrs |= OFPIEH12_ESP; break; case IPPROTO_AH: if (*ext_hdrs & OFPIEH12_AUTH) *ext_hdrs |= OFPIEH12_UNREP; if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER | IPPROTO_FRAGMENT | OFPIEH12_UNREP)) || dest_options_header_count >= 2) { *ext_hdrs |= OFPIEH12_UNSEQ; } *ext_hdrs |= OFPIEH12_AUTH; break; case IPPROTO_DSTOPTS: if (dest_options_header_count == 0) { if (*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_UNREP)) *ext_hdrs |= OFPIEH12_UNSEQ; *ext_hdrs |= OFPIEH12_DEST; } else if (dest_options_header_count == 1) { if (*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER | OFPIEH12_FRAG | OFPIEH12_AUTH | OFPIEH12_ESP | OFPIEH12_UNREP)) { *ext_hdrs |= OFPIEH12_UNSEQ; } } else { *ext_hdrs |= OFPIEH12_UNREP; } dest_options_header_count++; break; case IPPROTO_FRAGMENT: if (*ext_hdrs & OFPIEH12_FRAG) *ext_hdrs |= OFPIEH12_UNREP; if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER | OFPIEH12_UNREP)) || dest_options_header_count >= 2) { *ext_hdrs |= OFPIEH12_UNSEQ; } *ext_hdrs |= OFPIEH12_FRAG; break; case IPPROTO_ROUTING: if (*ext_hdrs & OFPIEH12_ROUTER) *ext_hdrs |= OFPIEH12_UNREP; if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_UNREP)) || dest_options_header_count >= 2) { *ext_hdrs |= OFPIEH12_UNSEQ; } *ext_hdrs |= OFPIEH12_ROUTER; break; case IPPROTO_HOPOPTS: if (*ext_hdrs & OFPIEH12_HOP) *ext_hdrs |= OFPIEH12_UNREP; /* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6 * extension header is present as the first * extension header in the packet. */ if (*ext_hdrs == 0) *ext_hdrs |= OFPIEH12_HOP; else *ext_hdrs |= OFPIEH12_UNSEQ; break; default: return; } hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr); if (!hp) break; next_type = hp->nexthdr; start += ipv6_optlen(hp); } } static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) { unsigned short frag_off; unsigned int payload_ofs = 0; unsigned int nh_ofs = skb_network_offset(skb); unsigned int nh_len; struct ipv6hdr *nh; int err, nexthdr, flags = 0; err = check_header(skb, nh_ofs + sizeof(*nh)); if (unlikely(err)) return err; nh = ipv6_hdr(skb); get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs); key->ip.proto = NEXTHDR_NONE; key->ip.tos = ipv6_get_dsfield(nh); key->ip.ttl = nh->hop_limit; key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); key->ipv6.addr.src = nh->saddr; key->ipv6.addr.dst = nh->daddr; nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); if (flags & IP6_FH_F_FRAG) { if (frag_off) { key->ip.frag = OVS_FRAG_TYPE_LATER; key->ip.proto = NEXTHDR_FRAGMENT; return 0; } key->ip.frag = OVS_FRAG_TYPE_FIRST; } else { key->ip.frag = OVS_FRAG_TYPE_NONE; } /* Delayed handling of error in ipv6_find_hdr() as it * always sets flags and frag_off to a valid value which may be * used to set key->ip.frag above. */ if (unlikely(nexthdr < 0)) return -EPROTO; nh_len = payload_ofs - nh_ofs; skb_set_transport_header(skb, nh_ofs + nh_len); key->ip.proto = nexthdr; return nh_len; } static bool icmp6hdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct icmp6hdr)); } /** * parse_vlan_tag - Parse vlan tag from vlan header. * @skb: skb containing frame to parse * @key_vh: pointer to parsed vlan tag * @untag_vlan: should the vlan header be removed from the frame * * Return: ERROR on memory error. * %0 if it encounters a non-vlan or incomplete packet. * %1 after successfully parsing vlan tag. */ static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh, bool untag_vlan) { struct vlan_head *vh = (struct vlan_head *)skb->data; if (likely(!eth_type_vlan(vh->tpid))) return 0; if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16))) return 0; if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) + sizeof(__be16)))) return -ENOMEM; vh = (struct vlan_head *)skb->data; key_vh->tci = vh->tci | htons(VLAN_CFI_MASK); key_vh->tpid = vh->tpid; if (unlikely(untag_vlan)) { int offset = skb->data - skb_mac_header(skb); u16 tci; int err; __skb_push(skb, offset); err = __skb_vlan_pop(skb, &tci); __skb_pull(skb, offset); if (err) return err; __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci); } else { __skb_pull(skb, sizeof(struct vlan_head)); } return 1; } static void clear_vlan(struct sw_flow_key *key) { key->eth.vlan.tci = 0; key->eth.vlan.tpid = 0; key->eth.cvlan.tci = 0; key->eth.cvlan.tpid = 0; } static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) { int res; if (skb_vlan_tag_present(skb)) { key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK); key->eth.vlan.tpid = skb->vlan_proto; } else { /* Parse outer vlan tag in the non-accelerated case. */ res = parse_vlan_tag(skb, &key->eth.vlan, true); if (res <= 0) return res; } /* Parse inner vlan tag. */ res = parse_vlan_tag(skb, &key->eth.cvlan, false); if (res <= 0) return res; return 0; } static __be16 parse_ethertype(struct sk_buff *skb) { struct llc_snap_hdr { u8 dsap; /* Always 0xAA */ u8 ssap; /* Always 0xAA */ u8 ctrl; u8 oui[3]; __be16 ethertype; }; struct llc_snap_hdr *llc; __be16 proto; proto = *(__be16 *) skb->data; __skb_pull(skb, sizeof(__be16)); if (eth_proto_is_802_3(proto)) return proto; if (skb->len < sizeof(struct llc_snap_hdr)) return htons(ETH_P_802_2); if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) return htons(0); llc = (struct llc_snap_hdr *) skb->data; if (llc->dsap != LLC_SAP_SNAP || llc->ssap != LLC_SAP_SNAP || (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) return htons(ETH_P_802_2); __skb_pull(skb, sizeof(struct llc_snap_hdr)); if (eth_proto_is_802_3(llc->ethertype)) return llc->ethertype; return htons(ETH_P_802_2); } static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, int nh_len) { struct icmp6hdr *icmp = icmp6_hdr(skb); /* The ICMPv6 type and code fields use the 16-bit transport port * fields, so we need to store them in 16-bit network byte order. */ key->tp.src = htons(icmp->icmp6_type); key->tp.dst = htons(icmp->icmp6_code); memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); if (icmp->icmp6_code == 0 && (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { int icmp_len = skb->len - skb_transport_offset(skb); struct nd_msg *nd; int offset; /* In order to process neighbor discovery options, we need the * entire packet. */ if (unlikely(icmp_len < sizeof(*nd))) return 0; if (unlikely(skb_linearize(skb))) return -ENOMEM; nd = (struct nd_msg *)skb_transport_header(skb); key->ipv6.nd.target = nd->target; icmp_len -= sizeof(*nd); offset = 0; while (icmp_len >= 8) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd->opt + offset); int opt_len = nd_opt->nd_opt_len * 8; if (unlikely(!opt_len || opt_len > icmp_len)) return 0; /* Store the link layer address if the appropriate * option is provided. It is considered an error if * the same link layer option is specified twice. */ if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR && opt_len == 8) { if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) goto invalid; ether_addr_copy(key->ipv6.nd.sll, &nd->opt[offset+sizeof(*nd_opt)]); } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR && opt_len == 8) { if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) goto invalid; ether_addr_copy(key->ipv6.nd.tll, &nd->opt[offset+sizeof(*nd_opt)]); } icmp_len -= opt_len; offset += opt_len; } } return 0; invalid: memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); return 0; } static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key) { struct nshhdr *nh; unsigned int nh_ofs = skb_network_offset(skb); u8 version, length; int err; err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN); if (unlikely(err)) return err; nh = nsh_hdr(skb); version = nsh_get_ver(nh); length = nsh_hdr_len(nh); if (version != 0) return -EINVAL; err = check_header(skb, nh_ofs + length); if (unlikely(err)) return err; nh = nsh_hdr(skb); key->nsh.base.flags = nsh_get_flags(nh); key->nsh.base.ttl = nsh_get_ttl(nh); key->nsh.base.mdtype = nh->mdtype; key->nsh.base.np = nh->np; key->nsh.base.path_hdr = nh->path_hdr; switch (key->nsh.base.mdtype) { case NSH_M_TYPE1: if (length != NSH_M_TYPE1_LEN) return -EINVAL; memcpy(key->nsh.context, nh->md1.context, sizeof(nh->md1)); break; case NSH_M_TYPE2: memset(key->nsh.context, 0, sizeof(nh->md1)); break; default: return -EINVAL; } return 0; } /** * key_extract_l3l4 - extracts L3/L4 header information. * @skb: sk_buff that contains the frame, with skb->data pointing to the * L3 header * @key: output flow key * * Return: %0 if successful, otherwise a negative errno value. */ static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key) { int error; /* Network layer. */ if (key->eth.type == htons(ETH_P_IP)) { struct iphdr *nh; __be16 offset; error = check_iphdr(skb); if (unlikely(error)) { memset(&key->ip, 0, sizeof(key->ip)); memset(&key->ipv4, 0, sizeof(key->ipv4)); if (error == -EINVAL) { skb->transport_header = skb->network_header; error = 0; } return error; } nh = ip_hdr(skb); key->ipv4.addr.src = nh->saddr; key->ipv4.addr.dst = nh->daddr; key->ip.proto = nh->protocol; key->ip.tos = nh->tos; key->ip.ttl = nh->ttl; offset = nh->frag_off & htons(IP_OFFSET); if (offset) { key->ip.frag = OVS_FRAG_TYPE_LATER; memset(&key->tp, 0, sizeof(key->tp)); return 0; } if (nh->frag_off & htons(IP_MF) || skb_shinfo(skb)->gso_type & SKB_GSO_UDP) key->ip.frag = OVS_FRAG_TYPE_FIRST; else key->ip.frag = OVS_FRAG_TYPE_NONE; /* Transport layer. */ if (key->ip.proto == IPPROTO_TCP) { if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->tp.src = tcp->source; key->tp.dst = tcp->dest; key->tp.flags = TCP_FLAGS_BE16(tcp); } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == IPPROTO_UDP) { if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->tp.src = udp->source; key->tp.dst = udp->dest; } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == IPPROTO_SCTP) { if (sctphdr_ok(skb)) { struct sctphdr *sctp = sctp_hdr(skb); key->tp.src = sctp->source; key->tp.dst = sctp->dest; } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == IPPROTO_ICMP) { if (icmphdr_ok(skb)) { struct icmphdr *icmp = icmp_hdr(skb); /* The ICMP type and code fields use the 16-bit * transport port fields, so we need to store * them in 16-bit network byte order. */ key->tp.src = htons(icmp->type); key->tp.dst = htons(icmp->code); } else { memset(&key->tp, 0, sizeof(key->tp)); } } } else if (key->eth.type == htons(ETH_P_ARP) || key->eth.type == htons(ETH_P_RARP)) { struct arp_eth_header *arp; bool arp_available = arphdr_ok(skb); arp = (struct arp_eth_header *)skb_network_header(skb); if (arp_available && arp->ar_hrd == htons(ARPHRD_ETHER) && arp->ar_pro == htons(ETH_P_IP) && arp->ar_hln == ETH_ALEN && arp->ar_pln == 4) { /* We only match on the lower 8 bits of the opcode. */ if (ntohs(arp->ar_op) <= 0xff) key->ip.proto = ntohs(arp->ar_op); else key->ip.proto = 0; memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); } else { memset(&key->ip, 0, sizeof(key->ip)); memset(&key->ipv4, 0, sizeof(key->ipv4)); } } else if (eth_p_mpls(key->eth.type)) { u8 label_count = 1; memset(&key->mpls, 0, sizeof(key->mpls)); skb_set_inner_network_header(skb, skb->mac_len); while (1) { __be32 lse; error = check_header(skb, skb->mac_len + label_count * MPLS_HLEN); if (unlikely(error)) return 0; memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN); if (label_count <= MPLS_LABEL_DEPTH) memcpy(&key->mpls.lse[label_count - 1], &lse, MPLS_HLEN); skb_set_inner_network_header(skb, skb->mac_len + label_count * MPLS_HLEN); if (lse & htonl(MPLS_LS_S_MASK)) break; label_count++; } if (label_count > MPLS_LABEL_DEPTH) label_count = MPLS_LABEL_DEPTH; key->mpls.num_labels_mask = GENMASK(label_count - 1, 0); } else if (key->eth.type == htons(ETH_P_IPV6)) { int nh_len; /* IPv6 Header + Extensions */ nh_len = parse_ipv6hdr(skb, key); if (unlikely(nh_len < 0)) { switch (nh_len) { case -EINVAL: memset(&key->ip, 0, sizeof(key->ip)); memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); fallthrough; case -EPROTO: skb->transport_header = skb->network_header; error = 0; break; default: error = nh_len; } return error; } if (key->ip.frag == OVS_FRAG_TYPE_LATER) { memset(&key->tp, 0, sizeof(key->tp)); return 0; } if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) key->ip.frag = OVS_FRAG_TYPE_FIRST; /* Transport layer. */ if (key->ip.proto == NEXTHDR_TCP) { if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->tp.src = tcp->source; key->tp.dst = tcp->dest; key->tp.flags = TCP_FLAGS_BE16(tcp); } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == NEXTHDR_UDP) { if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->tp.src = udp->source; key->tp.dst = udp->dest; } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == NEXTHDR_SCTP) { if (sctphdr_ok(skb)) { struct sctphdr *sctp = sctp_hdr(skb); key->tp.src = sctp->source; key->tp.dst = sctp->dest; } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == NEXTHDR_ICMP) { if (icmp6hdr_ok(skb)) { error = parse_icmpv6(skb, key, nh_len); if (error) return error; } else { memset(&key->tp, 0, sizeof(key->tp)); } } } else if (key->eth.type == htons(ETH_P_NSH)) { error = parse_nsh(skb, key); if (error) return error; } return 0; } /** * key_extract - extracts a flow key from an Ethernet frame. * @skb: sk_buff that contains the frame, with skb->data pointing to the * Ethernet header * @key: output flow key * * The caller must ensure that skb->len >= ETH_HLEN. * * Initializes @skb header fields as follows: * * - skb->mac_header: the L2 header. * * - skb->network_header: just past the L2 header, or just past the * VLAN header, to the first byte of the L2 payload. * * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 * on output, then just past the IP header, if one is present and * of a correct length, otherwise the same as skb->network_header. * For other key->eth.type values it is left untouched. * * - skb->protocol: the type of the data starting at skb->network_header. * Equals to key->eth.type. * * Return: %0 if successful, otherwise a negative errno value. */ static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) { struct ethhdr *eth; /* Flags are always used as part of stats */ key->tp.flags = 0; skb_reset_mac_header(skb); /* Link layer. */ clear_vlan(key); if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) { if (unlikely(eth_type_vlan(skb->protocol))) return -EINVAL; skb_reset_network_header(skb); key->eth.type = skb->protocol; } else { eth = eth_hdr(skb); ether_addr_copy(key->eth.src, eth->h_source); ether_addr_copy(key->eth.dst, eth->h_dest); __skb_pull(skb, 2 * ETH_ALEN); /* We are going to push all headers that we pull, so no need to * update skb->csum here. */ if (unlikely(parse_vlan(skb, key))) return -ENOMEM; key->eth.type = parse_ethertype(skb); if (unlikely(key->eth.type == htons(0))) return -ENOMEM; /* Multiple tagged packets need to retain TPID to satisfy * skb_vlan_pop(), which will later shift the ethertype into * skb->protocol. */ if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK)) skb->protocol = key->eth.cvlan.tpid; else skb->protocol = key->eth.type; skb_reset_network_header(skb); __skb_push(skb, skb->data - skb_mac_header(skb)); } skb_reset_mac_len(skb); /* Fill out L3/L4 key info, if any */ return key_extract_l3l4(skb, key); } /* In the case of conntrack fragment handling it expects L3 headers, * add a helper. */ int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key) { return key_extract_l3l4(skb, key); } int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) { int res; res = key_extract(skb, key); if (!res) key->mac_proto &= ~SW_FLOW_KEY_INVALID; return res; } static int key_extract_mac_proto(struct sk_buff *skb) { switch (skb->dev->type) { case ARPHRD_ETHER: return MAC_PROTO_ETHERNET; case ARPHRD_NONE: if (skb->protocol == htons(ETH_P_TEB)) return MAC_PROTO_ETHERNET; return MAC_PROTO_NONE; } WARN_ON_ONCE(1); return -EINVAL; } int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, struct sk_buff *skb, struct sw_flow_key *key) { #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) struct tc_skb_ext *tc_ext; #endif bool post_ct = false, post_ct_snat = false, post_ct_dnat = false; int res, err; u16 zone = 0; /* Extract metadata from packet. */ if (tun_info) { key->tun_proto = ip_tunnel_info_af(tun_info); memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); if (tun_info->options_len) { BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 8)) - 1 > sizeof(key->tun_opts)); ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len), tun_info); key->tun_opts_len = tun_info->options_len; } else { key->tun_opts_len = 0; } } else { key->tun_proto = 0; key->tun_opts_len = 0; memset(&key->tun_key, 0, sizeof(key->tun_key)); } key->phy.priority = skb->priority; key->phy.in_port = OVS_CB(skb)->input_vport->port_no; key->phy.skb_mark = skb->mark; key->ovs_flow_hash = 0; res = key_extract_mac_proto(skb); if (res < 0) return res; key->mac_proto = res; #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) if (tc_skb_ext_tc_enabled()) { tc_ext = skb_ext_find(skb, TC_SKB_EXT); key->recirc_id = tc_ext && !tc_ext->act_miss ? tc_ext->chain : 0; OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0; post_ct = tc_ext ? tc_ext->post_ct : false; post_ct_snat = post_ct ? tc_ext->post_ct_snat : false; post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false; zone = post_ct ? tc_ext->zone : 0; } else { key->recirc_id = 0; } #else key->recirc_id = 0; #endif err = key_extract(skb, key); if (!err) { ovs_ct_fill_key(skb, key, post_ct); /* Must be after key_extract(). */ if (post_ct) { if (!skb_get_nfct(skb)) { key->ct_zone = zone; } else { if (!post_ct_dnat) key->ct_state &= ~OVS_CS_F_DST_NAT; if (!post_ct_snat) key->ct_state &= ~OVS_CS_F_SRC_NAT; } } } return err; } int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, struct sk_buff *skb, struct sw_flow_key *key, bool log) { const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; u64 attrs = 0; int err; err = parse_flow_nlattrs(attr, a, &attrs, log); if (err) return -EINVAL; /* Extract metadata from netlink attributes. */ err = ovs_nla_get_flow_metadata(net, a, attrs, key, log); if (err) return err; /* key_extract assumes that skb->protocol is set-up for * layer 3 packets which is the case for other callers, * in particular packets received from the network stack. * Here the correct value can be set from the metadata * extracted above. * For L2 packet key eth type would be zero. skb protocol * would be set to correct value later during key-extact. */ skb->protocol = key->eth.type; err = key_extract(skb, key); if (err) return err; /* Check that we have conntrack original direction tuple metadata only * for packets for which it makes sense. Otherwise the key may be * corrupted due to overlapping key fields. */ if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) && key->eth.type != htons(ETH_P_IP)) return -EINVAL; if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) && (key->eth.type != htons(ETH_P_IPV6) || sw_flow_key_is_nd(key))) return -EINVAL; return 0; }
linux-master
net/openvswitch/flow.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2012 Nicira, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/if_arp.h> #include <linux/if_bridge.h> #include <linux/if_vlan.h> #include <linux/kernel.h> #include <linux/llc.h> #include <linux/rtnetlink.h> #include <linux/skbuff.h> #include <linux/openvswitch.h> #include <linux/export.h> #include <net/ip_tunnels.h> #include <net/rtnetlink.h> #include "datapath.h" #include "vport.h" #include "vport-internal_dev.h" #include "vport-netdev.h" static struct vport_ops ovs_netdev_vport_ops; /* Must be called with rcu_read_lock. */ static void netdev_port_receive(struct sk_buff *skb) { struct vport *vport; vport = ovs_netdev_get_vport(skb->dev); if (unlikely(!vport)) goto error; if (unlikely(skb_warn_if_lro(skb))) goto error; /* Make our own copy of the packet. Otherwise we will mangle the * packet for anyone who came before us (e.g. tcpdump via AF_PACKET). */ skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) return; if (skb->dev->type == ARPHRD_ETHER) skb_push_rcsum(skb, ETH_HLEN); ovs_vport_receive(vport, skb, skb_tunnel_info(skb)); return; error: kfree_skb(skb); } /* Called with rcu_read_lock and bottom-halves disabled. */ static rx_handler_result_t netdev_frame_hook(struct sk_buff **pskb) { struct sk_buff *skb = *pskb; if (unlikely(skb->pkt_type == PACKET_LOOPBACK)) return RX_HANDLER_PASS; netdev_port_receive(skb); return RX_HANDLER_CONSUMED; } static struct net_device *get_dpdev(const struct datapath *dp) { struct vport *local; local = ovs_vport_ovsl(dp, OVSP_LOCAL); return local->dev; } struct vport *ovs_netdev_link(struct vport *vport, const char *name) { int err; vport->dev = dev_get_by_name(ovs_dp_get_net(vport->dp), name); if (!vport->dev) { err = -ENODEV; goto error_free_vport; } netdev_tracker_alloc(vport->dev, &vport->dev_tracker, GFP_KERNEL); if (vport->dev->flags & IFF_LOOPBACK || (vport->dev->type != ARPHRD_ETHER && vport->dev->type != ARPHRD_NONE) || ovs_is_internal_dev(vport->dev)) { err = -EINVAL; goto error_put; } rtnl_lock(); err = netdev_master_upper_dev_link(vport->dev, get_dpdev(vport->dp), NULL, NULL, NULL); if (err) goto error_unlock; err = netdev_rx_handler_register(vport->dev, netdev_frame_hook, vport); if (err) goto error_master_upper_dev_unlink; dev_disable_lro(vport->dev); dev_set_promiscuity(vport->dev, 1); vport->dev->priv_flags |= IFF_OVS_DATAPATH; rtnl_unlock(); return vport; error_master_upper_dev_unlink: netdev_upper_dev_unlink(vport->dev, get_dpdev(vport->dp)); error_unlock: rtnl_unlock(); error_put: netdev_put(vport->dev, &vport->dev_tracker); error_free_vport: ovs_vport_free(vport); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(ovs_netdev_link); static struct vport *netdev_create(const struct vport_parms *parms) { struct vport *vport; vport = ovs_vport_alloc(0, &ovs_netdev_vport_ops, parms); if (IS_ERR(vport)) return vport; return ovs_netdev_link(vport, parms->name); } static void vport_netdev_free(struct rcu_head *rcu) { struct vport *vport = container_of(rcu, struct vport, rcu); netdev_put(vport->dev, &vport->dev_tracker); ovs_vport_free(vport); } void ovs_netdev_detach_dev(struct vport *vport) { ASSERT_RTNL(); vport->dev->priv_flags &= ~IFF_OVS_DATAPATH; netdev_rx_handler_unregister(vport->dev); netdev_upper_dev_unlink(vport->dev, netdev_master_upper_dev_get(vport->dev)); dev_set_promiscuity(vport->dev, -1); } static void netdev_destroy(struct vport *vport) { rtnl_lock(); if (netif_is_ovs_port(vport->dev)) ovs_netdev_detach_dev(vport); rtnl_unlock(); call_rcu(&vport->rcu, vport_netdev_free); } void ovs_netdev_tunnel_destroy(struct vport *vport) { rtnl_lock(); if (netif_is_ovs_port(vport->dev)) ovs_netdev_detach_dev(vport); /* We can be invoked by both explicit vport deletion and * underlying netdev deregistration; delete the link only * if it's not already shutting down. */ if (vport->dev->reg_state == NETREG_REGISTERED) rtnl_delete_link(vport->dev, 0, NULL); netdev_put(vport->dev, &vport->dev_tracker); vport->dev = NULL; rtnl_unlock(); call_rcu(&vport->rcu, vport_netdev_free); } EXPORT_SYMBOL_GPL(ovs_netdev_tunnel_destroy); /* Returns null if this device is not attached to a datapath. */ struct vport *ovs_netdev_get_vport(struct net_device *dev) { if (likely(netif_is_ovs_port(dev))) return (struct vport *) rcu_dereference_rtnl(dev->rx_handler_data); else return NULL; } static struct vport_ops ovs_netdev_vport_ops = { .type = OVS_VPORT_TYPE_NETDEV, .create = netdev_create, .destroy = netdev_destroy, .send = dev_queue_xmit, }; int __init ovs_netdev_init(void) { return ovs_vport_ops_register(&ovs_netdev_vport_ops); } void ovs_netdev_exit(void) { ovs_vport_ops_unregister(&ovs_netdev_vport_ops); }
linux-master
net/openvswitch/vport-netdev.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2014 Nicira, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/if.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/if_tunnel.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <linux/in_route.h> #include <linux/inetdevice.h> #include <linux/jhash.h> #include <linux/list.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/workqueue.h> #include <linux/rculist.h> #include <net/route.h> #include <net/xfrm.h> #include <net/icmp.h> #include <net/ip.h> #include <net/ip_tunnels.h> #include <net/gre.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/protocol.h> #include "datapath.h" #include "vport.h" #include "vport-netdev.h" static struct vport_ops ovs_gre_vport_ops; static struct vport *gre_tnl_create(const struct vport_parms *parms) { struct net *net = ovs_dp_get_net(parms->dp); struct net_device *dev; struct vport *vport; int err; vport = ovs_vport_alloc(0, &ovs_gre_vport_ops, parms); if (IS_ERR(vport)) return vport; rtnl_lock(); dev = gretap_fb_dev_create(net, parms->name, NET_NAME_USER); if (IS_ERR(dev)) { rtnl_unlock(); ovs_vport_free(vport); return ERR_CAST(dev); } err = dev_change_flags(dev, dev->flags | IFF_UP, NULL); if (err < 0) { rtnl_delete_link(dev, 0, NULL); rtnl_unlock(); ovs_vport_free(vport); return ERR_PTR(err); } rtnl_unlock(); return vport; } static struct vport *gre_create(const struct vport_parms *parms) { struct vport *vport; vport = gre_tnl_create(parms); if (IS_ERR(vport)) return vport; return ovs_netdev_link(vport, parms->name); } static struct vport_ops ovs_gre_vport_ops = { .type = OVS_VPORT_TYPE_GRE, .create = gre_create, .send = dev_queue_xmit, .destroy = ovs_netdev_tunnel_destroy, }; static int __init ovs_gre_tnl_init(void) { return ovs_vport_ops_register(&ovs_gre_vport_ops); } static void __exit ovs_gre_tnl_exit(void) { ovs_vport_ops_unregister(&ovs_gre_vport_ops); } module_init(ovs_gre_tnl_init); module_exit(ovs_gre_tnl_exit); MODULE_DESCRIPTION("OVS: GRE switching port"); MODULE_LICENSE("GPL"); MODULE_ALIAS("vport-type-3");
linux-master
net/openvswitch/vport-gre.c
// SPDX-License-Identifier: GPL-2.0 /* bug in tracepoint.h, it should include this */ #include <linux/module.h> /* sparse isn't too happy with all macros... */ #ifndef __CHECKER__ #define CREATE_TRACE_POINTS #include "openvswitch_trace.h" #endif
linux-master
net/openvswitch/openvswitch_trace.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2017 Nicira, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "flow.h" #include "datapath.h" #include <linux/uaccess.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <net/llc_pdu.h> #include <linux/kernel.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/llc.h> #include <linux/module.h> #include <linux/in.h> #include <linux/rcupdate.h> #include <linux/if_arp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/sctp.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/icmp.h> #include <linux/icmpv6.h> #include <linux/rculist.h> #include <net/geneve.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/ndisc.h> #include <net/mpls.h> #include <net/vxlan.h> #include <net/tun_proto.h> #include <net/erspan.h> #include "drop.h" #include "flow_netlink.h" struct ovs_len_tbl { int len; const struct ovs_len_tbl *next; }; #define OVS_ATTR_NESTED -1 #define OVS_ATTR_VARIABLE -2 static bool actions_may_change_flow(const struct nlattr *actions) { struct nlattr *nla; int rem; nla_for_each_nested(nla, actions, rem) { u16 action = nla_type(nla); switch (action) { case OVS_ACTION_ATTR_OUTPUT: case OVS_ACTION_ATTR_RECIRC: case OVS_ACTION_ATTR_TRUNC: case OVS_ACTION_ATTR_USERSPACE: case OVS_ACTION_ATTR_DROP: break; case OVS_ACTION_ATTR_CT: case OVS_ACTION_ATTR_CT_CLEAR: case OVS_ACTION_ATTR_HASH: case OVS_ACTION_ATTR_POP_ETH: case OVS_ACTION_ATTR_POP_MPLS: case OVS_ACTION_ATTR_POP_NSH: case OVS_ACTION_ATTR_POP_VLAN: case OVS_ACTION_ATTR_PUSH_ETH: case OVS_ACTION_ATTR_PUSH_MPLS: case OVS_ACTION_ATTR_PUSH_NSH: case OVS_ACTION_ATTR_PUSH_VLAN: case OVS_ACTION_ATTR_SAMPLE: case OVS_ACTION_ATTR_SET: case OVS_ACTION_ATTR_SET_MASKED: case OVS_ACTION_ATTR_METER: case OVS_ACTION_ATTR_CHECK_PKT_LEN: case OVS_ACTION_ATTR_ADD_MPLS: case OVS_ACTION_ATTR_DEC_TTL: default: return true; } } return false; } static void update_range(struct sw_flow_match *match, size_t offset, size_t size, bool is_mask) { struct sw_flow_key_range *range; size_t start = rounddown(offset, sizeof(long)); size_t end = roundup(offset + size, sizeof(long)); if (!is_mask) range = &match->range; else range = &match->mask->range; if (range->start == range->end) { range->start = start; range->end = end; return; } if (range->start > start) range->start = start; if (range->end < end) range->end = end; } #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ do { \ update_range(match, offsetof(struct sw_flow_key, field), \ sizeof((match)->key->field), is_mask); \ if (is_mask) \ (match)->mask->key.field = value; \ else \ (match)->key->field = value; \ } while (0) #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ do { \ update_range(match, offset, len, is_mask); \ if (is_mask) \ memcpy((u8 *)&(match)->mask->key + offset, value_p, \ len); \ else \ memcpy((u8 *)(match)->key + offset, value_p, len); \ } while (0) #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ value_p, len, is_mask) #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ do { \ update_range(match, offsetof(struct sw_flow_key, field), \ sizeof((match)->key->field), is_mask); \ if (is_mask) \ memset((u8 *)&(match)->mask->key.field, value, \ sizeof((match)->mask->key.field)); \ else \ memset((u8 *)&(match)->key->field, value, \ sizeof((match)->key->field)); \ } while (0) static bool match_validate(const struct sw_flow_match *match, u64 key_attrs, u64 mask_attrs, bool log) { u64 key_expected = 0; u64 mask_allowed = key_attrs; /* At most allow all key attributes */ /* The following mask attributes allowed only if they * pass the validation tests. */ mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) | (1 << OVS_KEY_ATTR_IPV6) | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) | (1 << OVS_KEY_ATTR_TCP) | (1 << OVS_KEY_ATTR_TCP_FLAGS) | (1 << OVS_KEY_ATTR_UDP) | (1 << OVS_KEY_ATTR_SCTP) | (1 << OVS_KEY_ATTR_ICMP) | (1 << OVS_KEY_ATTR_ICMPV6) | (1 << OVS_KEY_ATTR_ARP) | (1 << OVS_KEY_ATTR_ND) | (1 << OVS_KEY_ATTR_MPLS) | (1 << OVS_KEY_ATTR_NSH)); /* Always allowed mask fields. */ mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) | (1 << OVS_KEY_ATTR_IN_PORT) | (1 << OVS_KEY_ATTR_ETHERTYPE)); /* Check key attributes. */ if (match->key->eth.type == htons(ETH_P_ARP) || match->key->eth.type == htons(ETH_P_RARP)) { key_expected |= 1 << OVS_KEY_ATTR_ARP; if (match->mask && (match->mask->key.eth.type == htons(0xffff))) mask_allowed |= 1 << OVS_KEY_ATTR_ARP; } if (eth_p_mpls(match->key->eth.type)) { key_expected |= 1 << OVS_KEY_ATTR_MPLS; if (match->mask && (match->mask->key.eth.type == htons(0xffff))) mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; } if (match->key->eth.type == htons(ETH_P_IP)) { key_expected |= 1 << OVS_KEY_ATTR_IPV4; if (match->mask && match->mask->key.eth.type == htons(0xffff)) { mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4; } if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { if (match->key->ip.proto == IPPROTO_UDP) { key_expected |= 1 << OVS_KEY_ATTR_UDP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_UDP; } if (match->key->ip.proto == IPPROTO_SCTP) { key_expected |= 1 << OVS_KEY_ATTR_SCTP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; } if (match->key->ip.proto == IPPROTO_TCP) { key_expected |= 1 << OVS_KEY_ATTR_TCP; key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; if (match->mask && (match->mask->key.ip.proto == 0xff)) { mask_allowed |= 1 << OVS_KEY_ATTR_TCP; mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; } } if (match->key->ip.proto == IPPROTO_ICMP) { key_expected |= 1 << OVS_KEY_ATTR_ICMP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; } } } if (match->key->eth.type == htons(ETH_P_IPV6)) { key_expected |= 1 << OVS_KEY_ATTR_IPV6; if (match->mask && match->mask->key.eth.type == htons(0xffff)) { mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6; } if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { if (match->key->ip.proto == IPPROTO_UDP) { key_expected |= 1 << OVS_KEY_ATTR_UDP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_UDP; } if (match->key->ip.proto == IPPROTO_SCTP) { key_expected |= 1 << OVS_KEY_ATTR_SCTP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; } if (match->key->ip.proto == IPPROTO_TCP) { key_expected |= 1 << OVS_KEY_ATTR_TCP; key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; if (match->mask && (match->mask->key.ip.proto == 0xff)) { mask_allowed |= 1 << OVS_KEY_ATTR_TCP; mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; } } if (match->key->ip.proto == IPPROTO_ICMPV6) { key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; if (match->key->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { key_expected |= 1 << OVS_KEY_ATTR_ND; /* Original direction conntrack tuple * uses the same space as the ND fields * in the key, so both are not allowed * at the same time. */ mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); if (match->mask && (match->mask->key.tp.src == htons(0xff))) mask_allowed |= 1 << OVS_KEY_ATTR_ND; } } } } if (match->key->eth.type == htons(ETH_P_NSH)) { key_expected |= 1 << OVS_KEY_ATTR_NSH; if (match->mask && match->mask->key.eth.type == htons(0xffff)) { mask_allowed |= 1 << OVS_KEY_ATTR_NSH; } } if ((key_attrs & key_expected) != key_expected) { /* Key attributes check failed. */ OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", (unsigned long long)key_attrs, (unsigned long long)key_expected); return false; } if ((mask_attrs & mask_allowed) != mask_attrs) { /* Mask attributes check failed. */ OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", (unsigned long long)mask_attrs, (unsigned long long)mask_allowed); return false; } return true; } size_t ovs_tun_key_attr_size(void) { /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider * updating this function. */ return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. */ + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ } static size_t ovs_nsh_key_attr_size(void) { /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider * updating this function. */ return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */ /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are * mutually exclusive, so the bigger one can cover * the small one. */ + nla_total_size(NSH_CTX_HDRS_MAX_LEN); } size_t ovs_key_attr_size(void) { /* Whenever adding new OVS_KEY_ FIELDS, we should consider * updating this function. */ BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32); return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ + ovs_tun_key_attr_size() + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */ + nla_total_size(0) /* OVS_KEY_ATTR_NSH */ + ovs_nsh_key_attr_size() + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ + nla_total_size(28) /* OVS_KEY_ATTR_ND */ + nla_total_size(2); /* OVS_KEY_ATTR_IPV6_EXTHDRS */ } static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, }; static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, .next = ovs_vxlan_ext_key_lens }, [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE }, [OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE] = { .len = 0 }, }; static const struct ovs_len_tbl ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = { [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) }, [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) }, [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE }, }; /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, .next = ovs_tunnel_key_lens, }, [OVS_KEY_ATTR_MPLS] = { .len = OVS_ATTR_VARIABLE }, [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = { .len = sizeof(struct ovs_key_ct_tuple_ipv4) }, [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = { .len = sizeof(struct ovs_key_ct_tuple_ipv6) }, [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED, .next = ovs_nsh_key_attr_lens, }, [OVS_KEY_ATTR_IPV6_EXTHDRS] = { .len = sizeof(struct ovs_key_ipv6_exthdrs) }, }; static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) { return expected_len == attr_len || expected_len == OVS_ATTR_NESTED || expected_len == OVS_ATTR_VARIABLE; } static bool is_all_zero(const u8 *fp, size_t size) { int i; if (!fp) return false; for (i = 0; i < size; i++) if (fp[i]) return false; return true; } static int __parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], u64 *attrsp, bool log, bool nz) { const struct nlattr *nla; u64 attrs; int rem; attrs = *attrsp; nla_for_each_nested(nla, attr, rem) { u16 type = nla_type(nla); int expected_len; if (type > OVS_KEY_ATTR_MAX) { OVS_NLERR(log, "Key type %d is out of range max %d", type, OVS_KEY_ATTR_MAX); return -EINVAL; } if (type == OVS_KEY_ATTR_PACKET_TYPE || type == OVS_KEY_ATTR_ND_EXTENSIONS || type == OVS_KEY_ATTR_TUNNEL_INFO) { OVS_NLERR(log, "Key type %d is not supported", type); return -EINVAL; } if (attrs & (1ULL << type)) { OVS_NLERR(log, "Duplicate key (type %d).", type); return -EINVAL; } expected_len = ovs_key_lens[type].len; if (!check_attr_len(nla_len(nla), expected_len)) { OVS_NLERR(log, "Key %d has unexpected len %d expected %d", type, nla_len(nla), expected_len); return -EINVAL; } if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) { attrs |= 1ULL << type; a[type] = nla; } } if (rem) { OVS_NLERR(log, "Message has %d unknown bytes.", rem); return -EINVAL; } *attrsp = attrs; return 0; } static int parse_flow_mask_nlattrs(const struct nlattr *attr, const struct nlattr *a[], u64 *attrsp, bool log) { return __parse_flow_nlattrs(attr, a, attrsp, log, true); } int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], u64 *attrsp, bool log) { return __parse_flow_nlattrs(attr, a, attrsp, log, false); } static int genev_tun_opt_from_nlattr(const struct nlattr *a, struct sw_flow_match *match, bool is_mask, bool log) { unsigned long opt_key_offset; if (nla_len(a) > sizeof(match->key->tun_opts)) { OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", nla_len(a), sizeof(match->key->tun_opts)); return -EINVAL; } if (nla_len(a) % 4 != 0) { OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", nla_len(a)); return -EINVAL; } /* We need to record the length of the options passed * down, otherwise packets with the same format but * additional options will be silently matched. */ if (!is_mask) { SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), false); } else { /* This is somewhat unusual because it looks at * both the key and mask while parsing the * attributes (and by extension assumes the key * is parsed first). Normally, we would verify * that each is the correct length and that the * attributes line up in the validate function. * However, that is difficult because this is * variable length and we won't have the * information later. */ if (match->key->tun_opts_len != nla_len(a)) { OVS_NLERR(log, "Geneve option len %d != mask len %d", match->key->tun_opts_len, nla_len(a)); return -EINVAL; } SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); } opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), nla_len(a), is_mask); return 0; } static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, struct sw_flow_match *match, bool is_mask, bool log) { struct nlattr *a; int rem; unsigned long opt_key_offset; struct vxlan_metadata opts; BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); memset(&opts, 0, sizeof(opts)); nla_for_each_nested(a, attr, rem) { int type = nla_type(a); if (type > OVS_VXLAN_EXT_MAX) { OVS_NLERR(log, "VXLAN extension %d out of range max %d", type, OVS_VXLAN_EXT_MAX); return -EINVAL; } if (!check_attr_len(nla_len(a), ovs_vxlan_ext_key_lens[type].len)) { OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", type, nla_len(a), ovs_vxlan_ext_key_lens[type].len); return -EINVAL; } switch (type) { case OVS_VXLAN_EXT_GBP: opts.gbp = nla_get_u32(a); break; default: OVS_NLERR(log, "Unknown VXLAN extension attribute %d", type); return -EINVAL; } } if (rem) { OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", rem); return -EINVAL; } if (!is_mask) SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); else SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), is_mask); return 0; } static int erspan_tun_opt_from_nlattr(const struct nlattr *a, struct sw_flow_match *match, bool is_mask, bool log) { unsigned long opt_key_offset; BUILD_BUG_ON(sizeof(struct erspan_metadata) > sizeof(match->key->tun_opts)); if (nla_len(a) > sizeof(match->key->tun_opts)) { OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).", nla_len(a), sizeof(match->key->tun_opts)); return -EINVAL; } if (!is_mask) SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(struct erspan_metadata), false); else SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), nla_len(a), is_mask); return 0; } static int ip_tun_from_nlattr(const struct nlattr *attr, struct sw_flow_match *match, bool is_mask, bool log) { bool ttl = false, ipv4 = false, ipv6 = false; bool info_bridge_mode = false; __be16 tun_flags = 0; int opts_type = 0; struct nlattr *a; int rem; nla_for_each_nested(a, attr, rem) { int type = nla_type(a); int err; if (type > OVS_TUNNEL_KEY_ATTR_MAX) { OVS_NLERR(log, "Tunnel attr %d out of range max %d", type, OVS_TUNNEL_KEY_ATTR_MAX); return -EINVAL; } if (!check_attr_len(nla_len(a), ovs_tunnel_key_lens[type].len)) { OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", type, nla_len(a), ovs_tunnel_key_lens[type].len); return -EINVAL; } switch (type) { case OVS_TUNNEL_KEY_ATTR_ID: SW_FLOW_KEY_PUT(match, tun_key.tun_id, nla_get_be64(a), is_mask); tun_flags |= TUNNEL_KEY; break; case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, nla_get_in_addr(a), is_mask); ipv4 = true; break; case OVS_TUNNEL_KEY_ATTR_IPV4_DST: SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, nla_get_in_addr(a), is_mask); ipv4 = true; break; case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src, nla_get_in6_addr(a), is_mask); ipv6 = true; break; case OVS_TUNNEL_KEY_ATTR_IPV6_DST: SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, nla_get_in6_addr(a), is_mask); ipv6 = true; break; case OVS_TUNNEL_KEY_ATTR_TOS: SW_FLOW_KEY_PUT(match, tun_key.tos, nla_get_u8(a), is_mask); break; case OVS_TUNNEL_KEY_ATTR_TTL: SW_FLOW_KEY_PUT(match, tun_key.ttl, nla_get_u8(a), is_mask); ttl = true; break; case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: tun_flags |= TUNNEL_DONT_FRAGMENT; break; case OVS_TUNNEL_KEY_ATTR_CSUM: tun_flags |= TUNNEL_CSUM; break; case OVS_TUNNEL_KEY_ATTR_TP_SRC: SW_FLOW_KEY_PUT(match, tun_key.tp_src, nla_get_be16(a), is_mask); break; case OVS_TUNNEL_KEY_ATTR_TP_DST: SW_FLOW_KEY_PUT(match, tun_key.tp_dst, nla_get_be16(a), is_mask); break; case OVS_TUNNEL_KEY_ATTR_OAM: tun_flags |= TUNNEL_OAM; break; case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: if (opts_type) { OVS_NLERR(log, "Multiple metadata blocks provided"); return -EINVAL; } err = genev_tun_opt_from_nlattr(a, match, is_mask, log); if (err) return err; tun_flags |= TUNNEL_GENEVE_OPT; opts_type = type; break; case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: if (opts_type) { OVS_NLERR(log, "Multiple metadata blocks provided"); return -EINVAL; } err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); if (err) return err; tun_flags |= TUNNEL_VXLAN_OPT; opts_type = type; break; case OVS_TUNNEL_KEY_ATTR_PAD: break; case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: if (opts_type) { OVS_NLERR(log, "Multiple metadata blocks provided"); return -EINVAL; } err = erspan_tun_opt_from_nlattr(a, match, is_mask, log); if (err) return err; tun_flags |= TUNNEL_ERSPAN_OPT; opts_type = type; break; case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE: info_bridge_mode = true; ipv4 = true; break; default: OVS_NLERR(log, "Unknown IP tunnel attribute %d", type); return -EINVAL; } } SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); if (is_mask) SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); else SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, false); if (rem > 0) { OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", rem); return -EINVAL; } if (ipv4 && ipv6) { OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); return -EINVAL; } if (!is_mask) { if (!ipv4 && !ipv6) { OVS_NLERR(log, "IP tunnel dst address not specified"); return -EINVAL; } if (ipv4) { if (info_bridge_mode) { if (match->key->tun_key.u.ipv4.src || match->key->tun_key.u.ipv4.dst || match->key->tun_key.tp_src || match->key->tun_key.tp_dst || match->key->tun_key.ttl || match->key->tun_key.tos || tun_flags & ~TUNNEL_KEY) { OVS_NLERR(log, "IPv4 tun info is not correct"); return -EINVAL; } } else if (!match->key->tun_key.u.ipv4.dst) { OVS_NLERR(log, "IPv4 tunnel dst address is zero"); return -EINVAL; } } if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { OVS_NLERR(log, "IPv6 tunnel dst address is zero"); return -EINVAL; } if (!ttl && !info_bridge_mode) { OVS_NLERR(log, "IP tunnel TTL not specified."); return -EINVAL; } } return opts_type; } static int vxlan_opt_to_nlattr(struct sk_buff *skb, const void *tun_opts, int swkey_tun_opts_len) { const struct vxlan_metadata *opts = tun_opts; struct nlattr *nla; nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); if (!nla) return -EMSGSIZE; if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) return -EMSGSIZE; nla_nest_end(skb, nla); return 0; } static int __ip_tun_to_nlattr(struct sk_buff *skb, const struct ip_tunnel_key *output, const void *tun_opts, int swkey_tun_opts_len, unsigned short tun_proto, u8 mode) { if (output->tun_flags & TUNNEL_KEY && nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, OVS_TUNNEL_KEY_ATTR_PAD)) return -EMSGSIZE; if (mode & IP_TUNNEL_INFO_BRIDGE) return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE) ? -EMSGSIZE : 0; switch (tun_proto) { case AF_INET: if (output->u.ipv4.src && nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->u.ipv4.src)) return -EMSGSIZE; if (output->u.ipv4.dst && nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->u.ipv4.dst)) return -EMSGSIZE; break; case AF_INET6: if (!ipv6_addr_any(&output->u.ipv6.src) && nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, &output->u.ipv6.src)) return -EMSGSIZE; if (!ipv6_addr_any(&output->u.ipv6.dst) && nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, &output->u.ipv6.dst)) return -EMSGSIZE; break; } if (output->tos && nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) return -EMSGSIZE; if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) return -EMSGSIZE; if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) return -EMSGSIZE; if ((output->tun_flags & TUNNEL_CSUM) && nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) return -EMSGSIZE; if (output->tp_src && nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) return -EMSGSIZE; if (output->tp_dst && nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) return -EMSGSIZE; if ((output->tun_flags & TUNNEL_OAM) && nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) return -EMSGSIZE; if (swkey_tun_opts_len) { if (output->tun_flags & TUNNEL_GENEVE_OPT && nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, swkey_tun_opts_len, tun_opts)) return -EMSGSIZE; else if (output->tun_flags & TUNNEL_VXLAN_OPT && vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) return -EMSGSIZE; else if (output->tun_flags & TUNNEL_ERSPAN_OPT && nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS, swkey_tun_opts_len, tun_opts)) return -EMSGSIZE; } return 0; } static int ip_tun_to_nlattr(struct sk_buff *skb, const struct ip_tunnel_key *output, const void *tun_opts, int swkey_tun_opts_len, unsigned short tun_proto, u8 mode) { struct nlattr *nla; int err; nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL); if (!nla) return -EMSGSIZE; err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, tun_proto, mode); if (err) return err; nla_nest_end(skb, nla); return 0; } int ovs_nla_put_tunnel_info(struct sk_buff *skb, struct ip_tunnel_info *tun_info) { return __ip_tun_to_nlattr(skb, &tun_info->key, ip_tunnel_info_opts(tun_info), tun_info->options_len, ip_tunnel_info_af(tun_info), tun_info->mode); } static int encode_vlan_from_nlattrs(struct sw_flow_match *match, const struct nlattr *a[], bool is_mask, bool inner) { __be16 tci = 0; __be16 tpid = 0; if (a[OVS_KEY_ATTR_VLAN]) tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); if (a[OVS_KEY_ATTR_ETHERTYPE]) tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); if (likely(!inner)) { SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask); SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask); } else { SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask); SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask); } return 0; } static int validate_vlan_from_nlattrs(const struct sw_flow_match *match, u64 key_attrs, bool inner, const struct nlattr **a, bool log) { __be16 tci = 0; if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) { /* Not a VLAN. */ return 0; } if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN"); return -EINVAL; } if (a[OVS_KEY_ATTR_VLAN]) tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); if (!(tci & htons(VLAN_CFI_MASK))) { if (tci) { OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.", (inner) ? "C-VLAN" : "VLAN"); return -EINVAL; } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) { /* Corner case for truncated VLAN header. */ OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.", (inner) ? "C-VLAN" : "VLAN"); return -EINVAL; } } return 1; } static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match, u64 key_attrs, bool inner, const struct nlattr **a, bool log) { __be16 tci = 0; __be16 tpid = 0; bool encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK)); bool i_encap_valid = !!(match->key->eth.cvlan.tci & htons(VLAN_CFI_MASK)); if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) { /* Not a VLAN. */ return 0; } if ((!inner && !encap_valid) || (inner && !i_encap_valid)) { OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.", (inner) ? "C-VLAN" : "VLAN"); return -EINVAL; } if (a[OVS_KEY_ATTR_VLAN]) tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); if (a[OVS_KEY_ATTR_ETHERTYPE]) tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); if (tpid != htons(0xffff)) { OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).", (inner) ? "C-VLAN" : "VLAN", ntohs(tpid)); return -EINVAL; } if (!(tci & htons(VLAN_CFI_MASK))) { OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.", (inner) ? "C-VLAN" : "VLAN"); return -EINVAL; } return 1; } static int __parse_vlan_from_nlattrs(struct sw_flow_match *match, u64 *key_attrs, bool inner, const struct nlattr **a, bool is_mask, bool log) { int err; const struct nlattr *encap; if (!is_mask) err = validate_vlan_from_nlattrs(match, *key_attrs, inner, a, log); else err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner, a, log); if (err <= 0) return err; err = encode_vlan_from_nlattrs(match, a, is_mask, inner); if (err) return err; *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN); *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); encap = a[OVS_KEY_ATTR_ENCAP]; if (!is_mask) err = parse_flow_nlattrs(encap, a, key_attrs, log); else err = parse_flow_mask_nlattrs(encap, a, key_attrs, log); return err; } static int parse_vlan_from_nlattrs(struct sw_flow_match *match, u64 *key_attrs, const struct nlattr **a, bool is_mask, bool log) { int err; bool encap_valid = false; err = __parse_vlan_from_nlattrs(match, key_attrs, false, a, is_mask, log); if (err) return err; encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK)); if (encap_valid) { err = __parse_vlan_from_nlattrs(match, key_attrs, true, a, is_mask, log); if (err) return err; } return 0; } static int parse_eth_type_from_nlattrs(struct sw_flow_match *match, u64 *attrs, const struct nlattr **a, bool is_mask, bool log) { __be16 eth_type; eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); if (is_mask) { /* Always exact match EtherType. */ eth_type = htons(0xffff); } else if (!eth_proto_is_802_3(eth_type)) { OVS_NLERR(log, "EtherType %x is less than min %x", ntohs(eth_type), ETH_P_802_3_MIN); return -EINVAL; } SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); return 0; } static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, u64 *attrs, const struct nlattr **a, bool is_mask, bool log) { u8 mac_proto = MAC_PROTO_ETHERNET; if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); } if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); } if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { SW_FLOW_KEY_PUT(match, phy.priority, nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); } if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); if (is_mask) { in_port = 0xffffffff; /* Always exact match in_port. */ } else if (in_port >= DP_MAX_PORTS) { OVS_NLERR(log, "Port %d exceeds max allowable %d", in_port, DP_MAX_PORTS); return -EINVAL; } SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); } else if (!is_mask) { SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); } if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); } if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, is_mask, log) < 0) return -EINVAL; *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); } if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); if (ct_state & ~CT_SUPPORTED_MASK) { OVS_NLERR(log, "ct_state flags %08x unsupported", ct_state); return -EINVAL; } SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); } if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); } if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); } if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { const struct ovs_key_ct_labels *cl; cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, sizeof(*cl), is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); } if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) { const struct ovs_key_ct_tuple_ipv4 *ct; ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]); SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask); SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask); SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4); } if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) { const struct ovs_key_ct_tuple_ipv6 *ct; ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]); SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src, sizeof(match->key->ipv6.ct_orig.src), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst, sizeof(match->key->ipv6.ct_orig.dst), is_mask); SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); } /* For layer 3 packets the Ethernet type is provided * and treated as metadata but no MAC addresses are provided. */ if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) && (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE))) mac_proto = MAC_PROTO_NONE; /* Always exact match mac_proto */ SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask); if (mac_proto == MAC_PROTO_NONE) return parse_eth_type_from_nlattrs(match, attrs, a, is_mask, log); return 0; } int nsh_hdr_from_nlattr(const struct nlattr *attr, struct nshhdr *nh, size_t size) { struct nlattr *a; int rem; u8 flags = 0; u8 ttl = 0; int mdlen = 0; /* validate_nsh has check this, so we needn't do duplicate check here */ if (size < NSH_BASE_HDR_LEN) return -ENOBUFS; nla_for_each_nested(a, attr, rem) { int type = nla_type(a); switch (type) { case OVS_NSH_KEY_ATTR_BASE: { const struct ovs_nsh_key_base *base = nla_data(a); flags = base->flags; ttl = base->ttl; nh->np = base->np; nh->mdtype = base->mdtype; nh->path_hdr = base->path_hdr; break; } case OVS_NSH_KEY_ATTR_MD1: mdlen = nla_len(a); if (mdlen > size - NSH_BASE_HDR_LEN) return -ENOBUFS; memcpy(&nh->md1, nla_data(a), mdlen); break; case OVS_NSH_KEY_ATTR_MD2: mdlen = nla_len(a); if (mdlen > size - NSH_BASE_HDR_LEN) return -ENOBUFS; memcpy(&nh->md2, nla_data(a), mdlen); break; default: return -EINVAL; } } /* nsh header length = NSH_BASE_HDR_LEN + mdlen */ nh->ver_flags_ttl_len = 0; nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen); return 0; } int nsh_key_from_nlattr(const struct nlattr *attr, struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask) { struct nlattr *a; int rem; /* validate_nsh has check this, so we needn't do duplicate check here */ nla_for_each_nested(a, attr, rem) { int type = nla_type(a); switch (type) { case OVS_NSH_KEY_ATTR_BASE: { const struct ovs_nsh_key_base *base = nla_data(a); const struct ovs_nsh_key_base *base_mask = base + 1; nsh->base = *base; nsh_mask->base = *base_mask; break; } case OVS_NSH_KEY_ATTR_MD1: { const struct ovs_nsh_key_md1 *md1 = nla_data(a); const struct ovs_nsh_key_md1 *md1_mask = md1 + 1; memcpy(nsh->context, md1->context, sizeof(*md1)); memcpy(nsh_mask->context, md1_mask->context, sizeof(*md1_mask)); break; } case OVS_NSH_KEY_ATTR_MD2: /* Not supported yet */ return -ENOTSUPP; default: return -EINVAL; } } return 0; } static int nsh_key_put_from_nlattr(const struct nlattr *attr, struct sw_flow_match *match, bool is_mask, bool is_push_nsh, bool log) { struct nlattr *a; int rem; bool has_base = false; bool has_md1 = false; bool has_md2 = false; u8 mdtype = 0; int mdlen = 0; if (WARN_ON(is_push_nsh && is_mask)) return -EINVAL; nla_for_each_nested(a, attr, rem) { int type = nla_type(a); int i; if (type > OVS_NSH_KEY_ATTR_MAX) { OVS_NLERR(log, "nsh attr %d is out of range max %d", type, OVS_NSH_KEY_ATTR_MAX); return -EINVAL; } if (!check_attr_len(nla_len(a), ovs_nsh_key_attr_lens[type].len)) { OVS_NLERR( log, "nsh attr %d has unexpected len %d expected %d", type, nla_len(a), ovs_nsh_key_attr_lens[type].len ); return -EINVAL; } switch (type) { case OVS_NSH_KEY_ATTR_BASE: { const struct ovs_nsh_key_base *base = nla_data(a); has_base = true; mdtype = base->mdtype; SW_FLOW_KEY_PUT(match, nsh.base.flags, base->flags, is_mask); SW_FLOW_KEY_PUT(match, nsh.base.ttl, base->ttl, is_mask); SW_FLOW_KEY_PUT(match, nsh.base.mdtype, base->mdtype, is_mask); SW_FLOW_KEY_PUT(match, nsh.base.np, base->np, is_mask); SW_FLOW_KEY_PUT(match, nsh.base.path_hdr, base->path_hdr, is_mask); break; } case OVS_NSH_KEY_ATTR_MD1: { const struct ovs_nsh_key_md1 *md1 = nla_data(a); has_md1 = true; for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) SW_FLOW_KEY_PUT(match, nsh.context[i], md1->context[i], is_mask); break; } case OVS_NSH_KEY_ATTR_MD2: if (!is_push_nsh) /* Not supported MD type 2 yet */ return -ENOTSUPP; has_md2 = true; mdlen = nla_len(a); if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) { OVS_NLERR( log, "Invalid MD length %d for MD type %d", mdlen, mdtype ); return -EINVAL; } break; default: OVS_NLERR(log, "Unknown nsh attribute %d", type); return -EINVAL; } } if (rem > 0) { OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem); return -EINVAL; } if (has_md1 && has_md2) { OVS_NLERR( 1, "invalid nsh attribute: md1 and md2 are exclusive." ); return -EINVAL; } if (!is_mask) { if ((has_md1 && mdtype != NSH_M_TYPE1) || (has_md2 && mdtype != NSH_M_TYPE2)) { OVS_NLERR(1, "nsh attribute has unmatched MD type %d.", mdtype); return -EINVAL; } if (is_push_nsh && (!has_base || (!has_md1 && !has_md2))) { OVS_NLERR( 1, "push_nsh: missing base or metadata attributes" ); return -EINVAL; } } return 0; } static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, u64 attrs, const struct nlattr **a, bool is_mask, bool log) { int err; err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); if (err) return err; if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { const struct ovs_key_ethernet *eth_key; eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); SW_FLOW_KEY_MEMCPY(match, eth.src, eth_key->eth_src, ETH_ALEN, is_mask); SW_FLOW_KEY_MEMCPY(match, eth.dst, eth_key->eth_dst, ETH_ALEN, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { /* VLAN attribute is always parsed before getting here since it * may occur multiple times. */ OVS_NLERR(log, "VLAN attribute unexpected."); return -EINVAL; } if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask, log); if (err) return err; } else if (!is_mask) { SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); } } else if (!match->key->eth.type) { OVS_NLERR(log, "Either Ethernet header or EtherType is required."); return -EINVAL; } if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { const struct ovs_key_ipv4 *ipv4_key; ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); return -EINVAL; } SW_FLOW_KEY_PUT(match, ip.proto, ipv4_key->ipv4_proto, is_mask); SW_FLOW_KEY_PUT(match, ip.tos, ipv4_key->ipv4_tos, is_mask); SW_FLOW_KEY_PUT(match, ip.ttl, ipv4_key->ipv4_ttl, is_mask); SW_FLOW_KEY_PUT(match, ip.frag, ipv4_key->ipv4_frag, is_mask); SW_FLOW_KEY_PUT(match, ipv4.addr.src, ipv4_key->ipv4_src, is_mask); SW_FLOW_KEY_PUT(match, ipv4.addr.dst, ipv4_key->ipv4_dst, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_IPV4); } if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { const struct ovs_key_ipv6 *ipv6_key; ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); return -EINVAL; } if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)", ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); return -EINVAL; } SW_FLOW_KEY_PUT(match, ipv6.label, ipv6_key->ipv6_label, is_mask); SW_FLOW_KEY_PUT(match, ip.proto, ipv6_key->ipv6_proto, is_mask); SW_FLOW_KEY_PUT(match, ip.tos, ipv6_key->ipv6_tclass, is_mask); SW_FLOW_KEY_PUT(match, ip.ttl, ipv6_key->ipv6_hlimit, is_mask); SW_FLOW_KEY_PUT(match, ip.frag, ipv6_key->ipv6_frag, is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, ipv6_key->ipv6_src, sizeof(match->key->ipv6.addr.src), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, ipv6_key->ipv6_dst, sizeof(match->key->ipv6.addr.dst), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_IPV6); } if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) { const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key; ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]); SW_FLOW_KEY_PUT(match, ipv6.exthdrs, ipv6_exthdrs_key->hdrs, is_mask); attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS); } if (attrs & (1 << OVS_KEY_ATTR_ARP)) { const struct ovs_key_arp *arp_key; arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); if (!is_mask && (arp_key->arp_op & htons(0xff00))) { OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", arp_key->arp_op); return -EINVAL; } SW_FLOW_KEY_PUT(match, ipv4.addr.src, arp_key->arp_sip, is_mask); SW_FLOW_KEY_PUT(match, ipv4.addr.dst, arp_key->arp_tip, is_mask); SW_FLOW_KEY_PUT(match, ip.proto, ntohs(arp_key->arp_op), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN, is_mask); SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ARP); } if (attrs & (1 << OVS_KEY_ATTR_NSH)) { if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match, is_mask, false, log) < 0) return -EINVAL; attrs &= ~(1 << OVS_KEY_ATTR_NSH); } if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { const struct ovs_key_mpls *mpls_key; u32 hdr_len; u32 label_count, label_count_mask, i; mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]); label_count = hdr_len / sizeof(struct ovs_key_mpls); if (label_count == 0 || label_count > MPLS_LABEL_DEPTH || hdr_len % sizeof(struct ovs_key_mpls)) return -EINVAL; label_count_mask = GENMASK(label_count - 1, 0); for (i = 0 ; i < label_count; i++) SW_FLOW_KEY_PUT(match, mpls.lse[i], mpls_key[i].mpls_lse, is_mask); SW_FLOW_KEY_PUT(match, mpls.num_labels_mask, label_count_mask, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_MPLS); } if (attrs & (1 << OVS_KEY_ATTR_TCP)) { const struct ovs_key_tcp *tcp_key; tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_TCP); } if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { SW_FLOW_KEY_PUT(match, tp.flags, nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); } if (attrs & (1 << OVS_KEY_ATTR_UDP)) { const struct ovs_key_udp *udp_key; udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_UDP); } if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { const struct ovs_key_sctp *sctp_key; sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_SCTP); } if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { const struct ovs_key_icmp *icmp_key; icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); SW_FLOW_KEY_PUT(match, tp.src, htons(icmp_key->icmp_type), is_mask); SW_FLOW_KEY_PUT(match, tp.dst, htons(icmp_key->icmp_code), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ICMP); } if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { const struct ovs_key_icmpv6 *icmpv6_key; icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); SW_FLOW_KEY_PUT(match, tp.src, htons(icmpv6_key->icmpv6_type), is_mask); SW_FLOW_KEY_PUT(match, tp.dst, htons(icmpv6_key->icmpv6_code), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); } if (attrs & (1 << OVS_KEY_ATTR_ND)) { const struct ovs_key_nd *nd_key; nd_key = nla_data(a[OVS_KEY_ATTR_ND]); SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, nd_key->nd_target, sizeof(match->key->ipv6.nd.target), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN, is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ND); } if (attrs != 0) { OVS_NLERR(log, "Unknown key attributes %llx", (unsigned long long)attrs); return -EINVAL; } return 0; } static void nlattr_set(struct nlattr *attr, u8 val, const struct ovs_len_tbl *tbl) { struct nlattr *nla; int rem; /* The nlattr stream should already have been validated */ nla_for_each_nested(nla, attr, rem) { if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl); else memset(nla_data(nla), val, nla_len(nla)); if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; } } static void mask_set_nlattr(struct nlattr *attr, u8 val) { nlattr_set(attr, val, ovs_key_lens); } /** * ovs_nla_get_match - parses Netlink attributes into a flow key and * mask. In case the 'mask' is NULL, the flow is treated as exact match * flow. Otherwise, it is treated as a wildcarded flow, except the mask * does not include any don't care bit. * @net: Used to determine per-namespace field support. * @match: receives the extracted flow match information. * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute * sequence. The fields should of the packet that triggered the creation * of this flow. * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* * Netlink attribute specifies the mask field of the wildcarded flow. * @log: Boolean to allow kernel error logging. Normally true, but when * probing for feature compatibility this should be passed in as false to * suppress unnecessary error logging. */ int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, const struct nlattr *nla_key, const struct nlattr *nla_mask, bool log) { const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; struct nlattr *newmask = NULL; u64 key_attrs = 0; u64 mask_attrs = 0; int err; err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); if (err) return err; err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log); if (err) return err; err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); if (err) return err; if (match->mask) { if (!nla_mask) { /* Create an exact match mask. We need to set to 0xff * all the 'match->mask' fields that have been touched * in 'match->key'. We cannot simply memset * 'match->mask', because padding bytes and fields not * specified in 'match->key' should be left to 0. * Instead, we use a stream of netlink attributes, * copied from 'key' and set to 0xff. * ovs_key_from_nlattrs() will take care of filling * 'match->mask' appropriately. */ newmask = kmemdup(nla_key, nla_total_size(nla_len(nla_key)), GFP_KERNEL); if (!newmask) return -ENOMEM; mask_set_nlattr(newmask, 0xff); /* The userspace does not send tunnel attributes that * are 0, but we should not wildcard them nonetheless. */ if (match->key->tun_proto) SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 0xff, true); nla_mask = newmask; } err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); if (err) goto free_newmask; /* Always match on tci. */ SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true); SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true); err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log); if (err) goto free_newmask; err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, log); if (err) goto free_newmask; } if (!match_validate(match, key_attrs, mask_attrs, log)) err = -EINVAL; free_newmask: kfree(newmask); return err; } static size_t get_ufid_len(const struct nlattr *attr, bool log) { size_t len; if (!attr) return 0; len = nla_len(attr); if (len < 1 || len > MAX_UFID_LENGTH) { OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", nla_len(attr), MAX_UFID_LENGTH); return 0; } return len; } /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, * or false otherwise. */ bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, bool log) { sfid->ufid_len = get_ufid_len(attr, log); if (sfid->ufid_len) memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); return sfid->ufid_len; } int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, const struct sw_flow_key *key, bool log) { struct sw_flow_key *new_key; if (ovs_nla_get_ufid(sfid, ufid, log)) return 0; /* If UFID was not provided, use unmasked key. */ new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); if (!new_key) return -ENOMEM; memcpy(new_key, key, sizeof(*key)); sfid->unmasked_key = new_key; return 0; } u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) { return attr ? nla_get_u32(attr) : 0; } /** * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. * @net: Network namespace. * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack * metadata. * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink * attributes. * @attrs: Bit mask for the netlink attributes included in @a. * @log: Boolean to allow kernel error logging. Normally true, but when * probing for feature compatibility this should be passed in as false to * suppress unnecessary error logging. * * This parses a series of Netlink attributes that form a flow key, which must * take the same form accepted by flow_from_nlattrs(), but only enough of it to * get the metadata, that is, the parts of the flow key that cannot be * extracted from the packet itself. * * This must be called before the packet key fields are filled in 'key'. */ int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *a[OVS_KEY_ATTR_MAX + 1], u64 attrs, struct sw_flow_key *key, bool log) { struct sw_flow_match match; memset(&match, 0, sizeof(match)); match.key = key; key->ct_state = 0; key->ct_zone = 0; key->ct_orig_proto = 0; memset(&key->ct, 0, sizeof(key->ct)); memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig)); memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig)); key->phy.in_port = DP_MAX_PORTS; return metadata_from_nlattrs(net, &match, &attrs, a, false, log); } static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh, bool is_mask) { __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff); if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci)) return -EMSGSIZE; return 0; } static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask, struct sk_buff *skb) { struct nlattr *start; start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH); if (!start) return -EMSGSIZE; if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base)) goto nla_put_failure; if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) { if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1, sizeof(nsh->context), nsh->context)) goto nla_put_failure; } /* Don't support MD type 2 yet */ nla_nest_end(skb, start); return 0; nla_put_failure: return -EMSGSIZE; } static int __ovs_nla_put_key(const struct sw_flow_key *swkey, const struct sw_flow_key *output, bool is_mask, struct sk_buff *skb) { struct ovs_key_ethernet *eth_key; struct nlattr *nla; struct nlattr *encap = NULL; struct nlattr *in_encap = NULL; if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) goto nla_put_failure; if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) goto nla_put_failure; if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) goto nla_put_failure; if ((swkey->tun_proto || is_mask)) { const void *opts = NULL; if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); if (ip_tun_to_nlattr(skb, &output->tun_key, opts, swkey->tun_opts_len, swkey->tun_proto, 0)) goto nla_put_failure; } if (swkey->phy.in_port == DP_MAX_PORTS) { if (is_mask && (output->phy.in_port == 0xffff)) if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) goto nla_put_failure; } else { u16 upper_u16; upper_u16 = !is_mask ? 0 : 0xffff; if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, (upper_u16 << 16) | output->phy.in_port)) goto nla_put_failure; } if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) goto nla_put_failure; if (ovs_ct_put_key(swkey, output, skb)) goto nla_put_failure; if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) { nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); if (!nla) goto nla_put_failure; eth_key = nla_data(nla); ether_addr_copy(eth_key->eth_src, output->eth.src); ether_addr_copy(eth_key->eth_dst, output->eth.dst); if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) { if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask)) goto nla_put_failure; encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP); if (!swkey->eth.vlan.tci) goto unencap; if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) { if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask)) goto nla_put_failure; in_encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP); if (!swkey->eth.cvlan.tci) goto unencap; } } if (swkey->eth.type == htons(ETH_P_802_2)) { /* * Ethertype 802.2 is represented in the netlink with omitted * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and * 0xffff in the mask attribute. Ethertype can also * be wildcarded. */ if (is_mask && output->eth.type) if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) goto nla_put_failure; goto unencap; } } if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) goto nla_put_failure; if (eth_type_vlan(swkey->eth.type)) { /* There are 3 VLAN tags, we don't know anything about the rest * of the packet, so truncate here. */ WARN_ON_ONCE(!(encap && in_encap)); goto unencap; } if (swkey->eth.type == htons(ETH_P_IP)) { struct ovs_key_ipv4 *ipv4_key; nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); if (!nla) goto nla_put_failure; ipv4_key = nla_data(nla); ipv4_key->ipv4_src = output->ipv4.addr.src; ipv4_key->ipv4_dst = output->ipv4.addr.dst; ipv4_key->ipv4_proto = output->ip.proto; ipv4_key->ipv4_tos = output->ip.tos; ipv4_key->ipv4_ttl = output->ip.ttl; ipv4_key->ipv4_frag = output->ip.frag; } else if (swkey->eth.type == htons(ETH_P_IPV6)) { struct ovs_key_ipv6 *ipv6_key; struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key; nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); if (!nla) goto nla_put_failure; ipv6_key = nla_data(nla); memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, sizeof(ipv6_key->ipv6_src)); memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, sizeof(ipv6_key->ipv6_dst)); ipv6_key->ipv6_label = output->ipv6.label; ipv6_key->ipv6_proto = output->ip.proto; ipv6_key->ipv6_tclass = output->ip.tos; ipv6_key->ipv6_hlimit = output->ip.ttl; ipv6_key->ipv6_frag = output->ip.frag; nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS, sizeof(*ipv6_exthdrs_key)); if (!nla) goto nla_put_failure; ipv6_exthdrs_key = nla_data(nla); ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs; } else if (swkey->eth.type == htons(ETH_P_NSH)) { if (nsh_key_to_nlattr(&output->nsh, is_mask, skb)) goto nla_put_failure; } else if (swkey->eth.type == htons(ETH_P_ARP) || swkey->eth.type == htons(ETH_P_RARP)) { struct ovs_key_arp *arp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); if (!nla) goto nla_put_failure; arp_key = nla_data(nla); memset(arp_key, 0, sizeof(struct ovs_key_arp)); arp_key->arp_sip = output->ipv4.addr.src; arp_key->arp_tip = output->ipv4.addr.dst; arp_key->arp_op = htons(output->ip.proto); ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); } else if (eth_p_mpls(swkey->eth.type)) { u8 i, num_labels; struct ovs_key_mpls *mpls_key; num_labels = hweight_long(output->mpls.num_labels_mask); nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, num_labels * sizeof(*mpls_key)); if (!nla) goto nla_put_failure; mpls_key = nla_data(nla); for (i = 0; i < num_labels; i++) mpls_key[i].mpls_lse = output->mpls.lse[i]; } if ((swkey->eth.type == htons(ETH_P_IP) || swkey->eth.type == htons(ETH_P_IPV6)) && swkey->ip.frag != OVS_FRAG_TYPE_LATER) { if (swkey->ip.proto == IPPROTO_TCP) { struct ovs_key_tcp *tcp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); if (!nla) goto nla_put_failure; tcp_key = nla_data(nla); tcp_key->tcp_src = output->tp.src; tcp_key->tcp_dst = output->tp.dst; if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, output->tp.flags)) goto nla_put_failure; } else if (swkey->ip.proto == IPPROTO_UDP) { struct ovs_key_udp *udp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); if (!nla) goto nla_put_failure; udp_key = nla_data(nla); udp_key->udp_src = output->tp.src; udp_key->udp_dst = output->tp.dst; } else if (swkey->ip.proto == IPPROTO_SCTP) { struct ovs_key_sctp *sctp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); if (!nla) goto nla_put_failure; sctp_key = nla_data(nla); sctp_key->sctp_src = output->tp.src; sctp_key->sctp_dst = output->tp.dst; } else if (swkey->eth.type == htons(ETH_P_IP) && swkey->ip.proto == IPPROTO_ICMP) { struct ovs_key_icmp *icmp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); if (!nla) goto nla_put_failure; icmp_key = nla_data(nla); icmp_key->icmp_type = ntohs(output->tp.src); icmp_key->icmp_code = ntohs(output->tp.dst); } else if (swkey->eth.type == htons(ETH_P_IPV6) && swkey->ip.proto == IPPROTO_ICMPV6) { struct ovs_key_icmpv6 *icmpv6_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, sizeof(*icmpv6_key)); if (!nla) goto nla_put_failure; icmpv6_key = nla_data(nla); icmpv6_key->icmpv6_type = ntohs(output->tp.src); icmpv6_key->icmpv6_code = ntohs(output->tp.dst); if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { struct ovs_key_nd *nd_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); if (!nla) goto nla_put_failure; nd_key = nla_data(nla); memcpy(nd_key->nd_target, &output->ipv6.nd.target, sizeof(nd_key->nd_target)); ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); } } } unencap: if (in_encap) nla_nest_end(skb, in_encap); if (encap) nla_nest_end(skb, encap); return 0; nla_put_failure: return -EMSGSIZE; } int ovs_nla_put_key(const struct sw_flow_key *swkey, const struct sw_flow_key *output, int attr, bool is_mask, struct sk_buff *skb) { int err; struct nlattr *nla; nla = nla_nest_start_noflag(skb, attr); if (!nla) return -EMSGSIZE; err = __ovs_nla_put_key(swkey, output, is_mask, skb); if (err) return err; nla_nest_end(skb, nla); return 0; } /* Called with ovs_mutex or RCU read lock. */ int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) { if (ovs_identifier_is_ufid(&flow->id)) return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, flow->id.ufid); return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, OVS_FLOW_ATTR_KEY, false, skb); } /* Called with ovs_mutex or RCU read lock. */ int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) { return ovs_nla_put_key(&flow->key, &flow->key, OVS_FLOW_ATTR_KEY, false, skb); } /* Called with ovs_mutex or RCU read lock. */ int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) { return ovs_nla_put_key(&flow->key, &flow->mask->key, OVS_FLOW_ATTR_MASK, true, skb); } #define MAX_ACTIONS_BUFSIZE (32 * 1024) static struct sw_flow_actions *nla_alloc_flow_actions(int size) { struct sw_flow_actions *sfa; WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE); sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL); if (!sfa) return ERR_PTR(-ENOMEM); sfa->actions_len = 0; return sfa; } static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len); static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action) { const struct nlattr *a; int rem; nla_for_each_nested(a, action, rem) { switch (nla_type(a)) { case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL: case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER: ovs_nla_free_nested_actions(nla_data(a), nla_len(a)); break; } } } static void ovs_nla_free_clone_action(const struct nlattr *action) { const struct nlattr *a = nla_data(action); int rem = nla_len(action); switch (nla_type(a)) { case OVS_CLONE_ATTR_EXEC: /* The real list of actions follows this attribute. */ a = nla_next(a, &rem); ovs_nla_free_nested_actions(a, rem); break; } } static void ovs_nla_free_dec_ttl_action(const struct nlattr *action) { const struct nlattr *a = nla_data(action); switch (nla_type(a)) { case OVS_DEC_TTL_ATTR_ACTION: ovs_nla_free_nested_actions(nla_data(a), nla_len(a)); break; } } static void ovs_nla_free_sample_action(const struct nlattr *action) { const struct nlattr *a = nla_data(action); int rem = nla_len(action); switch (nla_type(a)) { case OVS_SAMPLE_ATTR_ARG: /* The real list of actions follows this attribute. */ a = nla_next(a, &rem); ovs_nla_free_nested_actions(a, rem); break; } } static void ovs_nla_free_set_action(const struct nlattr *a) { const struct nlattr *ovs_key = nla_data(a); struct ovs_tunnel_info *ovs_tun; switch (nla_type(ovs_key)) { case OVS_KEY_ATTR_TUNNEL_INFO: ovs_tun = nla_data(ovs_key); dst_release((struct dst_entry *)ovs_tun->tun_dst); break; } } static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len) { const struct nlattr *a; int rem; /* Whenever new actions are added, the need to update this * function should be considered. */ BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 24); if (!actions) return; nla_for_each_attr(a, actions, len, rem) { switch (nla_type(a)) { case OVS_ACTION_ATTR_CHECK_PKT_LEN: ovs_nla_free_check_pkt_len_action(a); break; case OVS_ACTION_ATTR_CLONE: ovs_nla_free_clone_action(a); break; case OVS_ACTION_ATTR_CT: ovs_ct_free_action(a); break; case OVS_ACTION_ATTR_DEC_TTL: ovs_nla_free_dec_ttl_action(a); break; case OVS_ACTION_ATTR_SAMPLE: ovs_nla_free_sample_action(a); break; case OVS_ACTION_ATTR_SET: ovs_nla_free_set_action(a); break; } } } void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) { if (!sf_acts) return; ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len); kfree(sf_acts); } static void __ovs_nla_free_flow_actions(struct rcu_head *head) { ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); } /* Schedules 'sf_acts' to be freed after the next RCU grace period. * The caller must hold rcu_read_lock for this to be sensible. */ void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) { call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); } static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, int attr_len, bool log) { struct sw_flow_actions *acts; int new_acts_size; size_t req_size = NLA_ALIGN(attr_len); int next_offset = offsetof(struct sw_flow_actions, actions) + (*sfa)->actions_len; if (req_size <= (ksize(*sfa) - next_offset)) goto out; new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2); if (new_acts_size > MAX_ACTIONS_BUFSIZE) { if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) { OVS_NLERR(log, "Flow action size exceeds max %u", MAX_ACTIONS_BUFSIZE); return ERR_PTR(-EMSGSIZE); } new_acts_size = MAX_ACTIONS_BUFSIZE; } acts = nla_alloc_flow_actions(new_acts_size); if (IS_ERR(acts)) return (void *)acts; memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); acts->actions_len = (*sfa)->actions_len; acts->orig_len = (*sfa)->orig_len; kfree(*sfa); *sfa = acts; out: (*sfa)->actions_len += req_size; return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); } static struct nlattr *__add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len, bool log) { struct nlattr *a; a = reserve_sfa_size(sfa, nla_attr_size(len), log); if (IS_ERR(a)) return a; a->nla_type = attrtype; a->nla_len = nla_attr_size(len); if (data) memcpy(nla_data(a), data, len); memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); return a; } int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len, bool log) { struct nlattr *a; a = __add_action(sfa, attrtype, data, len, log); return PTR_ERR_OR_ZERO(a); } static inline int add_nested_action_start(struct sw_flow_actions **sfa, int attrtype, bool log) { int used = (*sfa)->actions_len; int err; err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); if (err) return err; return used; } static inline void add_nested_action_end(struct sw_flow_actions *sfa, int st_offset) { struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + st_offset); a->nla_len = sfa->actions_len - st_offset; } static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log); static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log, bool last) { const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; const struct nlattr *probability, *actions; const struct nlattr *a; int rem, start, err; struct sample_arg arg; memset(attrs, 0, sizeof(attrs)); nla_for_each_nested(a, attr, rem) { int type = nla_type(a); if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) return -EINVAL; attrs[type] = a; } if (rem) return -EINVAL; probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; if (!probability || nla_len(probability) != sizeof(u32)) return -EINVAL; actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) return -EINVAL; /* validation done, copy sample action. */ start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); if (start < 0) return start; /* When both skb and flow may be changed, put the sample * into a deferred fifo. On the other hand, if only skb * may be modified, the actions can be executed in place. * * Do this analysis at the flow installation time. * Set 'clone_action->exec' to true if the actions can be * executed without being deferred. * * If the sample is the last action, it can always be excuted * rather than deferred. */ arg.exec = last || !actions_may_change_flow(actions); arg.probability = nla_get_u32(probability); err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg), log); if (err) return err; err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; add_nested_action_end(*sfa, start); return 0; } static int validate_and_copy_dec_ttl(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log) { const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1]; int start, action_start, err, rem; const struct nlattr *a, *actions; memset(attrs, 0, sizeof(attrs)); nla_for_each_nested(a, attr, rem) { int type = nla_type(a); /* Ignore unknown attributes to be future proof. */ if (type > OVS_DEC_TTL_ATTR_MAX) continue; if (!type || attrs[type]) { OVS_NLERR(log, "Duplicate or invalid key (type %d).", type); return -EINVAL; } attrs[type] = a; } if (rem) { OVS_NLERR(log, "Message has %d unknown bytes.", rem); return -EINVAL; } actions = attrs[OVS_DEC_TTL_ATTR_ACTION]; if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) { OVS_NLERR(log, "Missing valid actions attribute."); return -EINVAL; } start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log); if (start < 0) return start; action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log); if (action_start < 0) return action_start; err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; add_nested_action_end(*sfa, action_start); add_nested_action_end(*sfa, start); return 0; } static int validate_and_copy_clone(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log, bool last) { int start, err; u32 exec; if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN) return -EINVAL; start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log); if (start < 0) return start; exec = last || !actions_may_change_flow(attr); err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec, sizeof(exec), log); if (err) return err; err = __ovs_nla_copy_actions(net, attr, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; add_nested_action_end(*sfa, start); return 0; } void ovs_match_init(struct sw_flow_match *match, struct sw_flow_key *key, bool reset_key, struct sw_flow_mask *mask) { memset(match, 0, sizeof(*match)); match->key = key; match->mask = mask; if (reset_key) memset(key, 0, sizeof(*key)); if (mask) { memset(&mask->key, 0, sizeof(mask->key)); mask->range.start = mask->range.end = 0; } } static int validate_geneve_opts(struct sw_flow_key *key) { struct geneve_opt *option; int opts_len = key->tun_opts_len; bool crit_opt = false; option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); while (opts_len > 0) { int len; if (opts_len < sizeof(*option)) return -EINVAL; len = sizeof(*option) + option->length * 4; if (len > opts_len) return -EINVAL; crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); option = (struct geneve_opt *)((u8 *)option + len); opts_len -= len; } key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; return 0; } static int validate_and_copy_set_tun(const struct nlattr *attr, struct sw_flow_actions **sfa, bool log) { struct sw_flow_match match; struct sw_flow_key key; struct metadata_dst *tun_dst; struct ip_tunnel_info *tun_info; struct ovs_tunnel_info *ovs_tun; struct nlattr *a; int err = 0, start, opts_type; __be16 dst_opt_type; dst_opt_type = 0; ovs_match_init(&match, &key, true, NULL); opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); if (opts_type < 0) return opts_type; if (key.tun_opts_len) { switch (opts_type) { case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: err = validate_geneve_opts(&key); if (err < 0) return err; dst_opt_type = TUNNEL_GENEVE_OPT; break; case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: dst_opt_type = TUNNEL_VXLAN_OPT; break; case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: dst_opt_type = TUNNEL_ERSPAN_OPT; break; } } start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); if (start < 0) return start; tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL, GFP_KERNEL); if (!tun_dst) return -ENOMEM; err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); if (err) { dst_release((struct dst_entry *)tun_dst); return err; } a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, sizeof(*ovs_tun), log); if (IS_ERR(a)) { dst_release((struct dst_entry *)tun_dst); return PTR_ERR(a); } ovs_tun = nla_data(a); ovs_tun->tun_dst = tun_dst; tun_info = &tun_dst->u.tun_info; tun_info->mode = IP_TUNNEL_INFO_TX; if (key.tun_proto == AF_INET6) tun_info->mode |= IP_TUNNEL_INFO_IPV6; else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0) tun_info->mode |= IP_TUNNEL_INFO_BRIDGE; tun_info->key = key.tun_key; /* We need to store the options in the action itself since * everything else will go away after flow setup. We can append * it to tun_info and then point there. */ ip_tunnel_info_opts_set(tun_info, TUN_METADATA_OPTS(&key, key.tun_opts_len), key.tun_opts_len, dst_opt_type); add_nested_action_end(*sfa, start); return err; } static bool validate_nsh(const struct nlattr *attr, bool is_mask, bool is_push_nsh, bool log) { struct sw_flow_match match; struct sw_flow_key key; int ret = 0; ovs_match_init(&match, &key, true, NULL); ret = nsh_key_put_from_nlattr(attr, &match, is_mask, is_push_nsh, log); return !ret; } /* Return false if there are any non-masked bits set. * Mask follows data immediately, before any netlink padding. */ static bool validate_masked(u8 *data, int len) { u8 *mask = data + len; while (len--) if (*data++ & ~*mask++) return false; return true; } static int validate_set(const struct nlattr *a, const struct sw_flow_key *flow_key, struct sw_flow_actions **sfa, bool *skip_copy, u8 mac_proto, __be16 eth_type, bool masked, bool log) { const struct nlattr *ovs_key = nla_data(a); int key_type = nla_type(ovs_key); size_t key_len; /* There can be only one key in a action */ if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) return -EINVAL; key_len = nla_len(ovs_key); if (masked) key_len /= 2; if (key_type > OVS_KEY_ATTR_MAX || !check_attr_len(key_len, ovs_key_lens[key_type].len)) return -EINVAL; if (masked && !validate_masked(nla_data(ovs_key), key_len)) return -EINVAL; switch (key_type) { case OVS_KEY_ATTR_PRIORITY: case OVS_KEY_ATTR_SKB_MARK: case OVS_KEY_ATTR_CT_MARK: case OVS_KEY_ATTR_CT_LABELS: break; case OVS_KEY_ATTR_ETHERNET: if (mac_proto != MAC_PROTO_ETHERNET) return -EINVAL; break; case OVS_KEY_ATTR_TUNNEL: { int err; if (masked) return -EINVAL; /* Masked tunnel set not supported. */ *skip_copy = true; err = validate_and_copy_set_tun(a, sfa, log); if (err) return err; break; } case OVS_KEY_ATTR_IPV4: { const struct ovs_key_ipv4 *ipv4_key; if (eth_type != htons(ETH_P_IP)) return -EINVAL; ipv4_key = nla_data(ovs_key); if (masked) { const struct ovs_key_ipv4 *mask = ipv4_key + 1; /* Non-writeable fields. */ if (mask->ipv4_proto || mask->ipv4_frag) return -EINVAL; } else { if (ipv4_key->ipv4_proto != flow_key->ip.proto) return -EINVAL; if (ipv4_key->ipv4_frag != flow_key->ip.frag) return -EINVAL; } break; } case OVS_KEY_ATTR_IPV6: { const struct ovs_key_ipv6 *ipv6_key; if (eth_type != htons(ETH_P_IPV6)) return -EINVAL; ipv6_key = nla_data(ovs_key); if (masked) { const struct ovs_key_ipv6 *mask = ipv6_key + 1; /* Non-writeable fields. */ if (mask->ipv6_proto || mask->ipv6_frag) return -EINVAL; /* Invalid bits in the flow label mask? */ if (ntohl(mask->ipv6_label) & 0xFFF00000) return -EINVAL; } else { if (ipv6_key->ipv6_proto != flow_key->ip.proto) return -EINVAL; if (ipv6_key->ipv6_frag != flow_key->ip.frag) return -EINVAL; } if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) return -EINVAL; break; } case OVS_KEY_ATTR_TCP: if ((eth_type != htons(ETH_P_IP) && eth_type != htons(ETH_P_IPV6)) || flow_key->ip.proto != IPPROTO_TCP) return -EINVAL; break; case OVS_KEY_ATTR_UDP: if ((eth_type != htons(ETH_P_IP) && eth_type != htons(ETH_P_IPV6)) || flow_key->ip.proto != IPPROTO_UDP) return -EINVAL; break; case OVS_KEY_ATTR_MPLS: if (!eth_p_mpls(eth_type)) return -EINVAL; break; case OVS_KEY_ATTR_SCTP: if ((eth_type != htons(ETH_P_IP) && eth_type != htons(ETH_P_IPV6)) || flow_key->ip.proto != IPPROTO_SCTP) return -EINVAL; break; case OVS_KEY_ATTR_NSH: if (eth_type != htons(ETH_P_NSH)) return -EINVAL; if (!validate_nsh(nla_data(a), masked, false, log)) return -EINVAL; break; default: return -EINVAL; } /* Convert non-masked non-tunnel set actions to masked set actions. */ if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { int start, len = key_len * 2; struct nlattr *at; *skip_copy = true; start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET_TO_MASKED, log); if (start < 0) return start; at = __add_action(sfa, key_type, NULL, len, log); if (IS_ERR(at)) return PTR_ERR(at); memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ /* Clear non-writeable bits from otherwise writeable fields. */ if (key_type == OVS_KEY_ATTR_IPV6) { struct ovs_key_ipv6 *mask = nla_data(at) + key_len; mask->ipv6_label &= htonl(0x000FFFFF); } add_nested_action_end(*sfa, start); } return 0; } static int validate_userspace(const struct nlattr *attr) { static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, }; struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; int error; error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr, userspace_policy, NULL); if (error) return error; if (!a[OVS_USERSPACE_ATTR_PID] || !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) return -EINVAL; return 0; } static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = { [OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 }, [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED }, [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED }, }; static int validate_and_copy_check_pkt_len(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log, bool last) { const struct nlattr *acts_if_greater, *acts_if_lesser_eq; struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1]; struct check_pkt_len_arg arg; int nested_acts_start; int start, err; err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX, nla_data(attr), nla_len(attr), cpl_policy, NULL); if (err) return err; if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] || !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN])) return -EINVAL; acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL]; acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER]; /* Both the nested action should be present. */ if (!acts_if_greater || !acts_if_lesser_eq) return -EINVAL; /* validation done, copy the nested actions. */ start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN, log); if (start < 0) return start; arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]); arg.exec_for_lesser_equal = last || !actions_may_change_flow(acts_if_lesser_eq); arg.exec_for_greater = last || !actions_may_change_flow(acts_if_greater); err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg, sizeof(arg), log); if (err) return err; nested_acts_start = add_nested_action_start(sfa, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log); if (nested_acts_start < 0) return nested_acts_start; err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; add_nested_action_end(*sfa, nested_acts_start); nested_acts_start = add_nested_action_start(sfa, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log); if (nested_acts_start < 0) return nested_acts_start; err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; add_nested_action_end(*sfa, nested_acts_start); add_nested_action_end(*sfa, start); return 0; } static int copy_action(const struct nlattr *from, struct sw_flow_actions **sfa, bool log) { int totlen = NLA_ALIGN(from->nla_len); struct nlattr *to; to = reserve_sfa_size(sfa, from->nla_len, log); if (IS_ERR(to)) return PTR_ERR(to); memcpy(to, from, totlen); return 0; } static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log) { u8 mac_proto = ovs_key_mac_proto(key); const struct nlattr *a; int rem, err; nla_for_each_nested(a, attr, rem) { /* Expected argument lengths, (u32)-1 for variable length. */ static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), [OVS_ACTION_ATTR_POP_VLAN] = 0, [OVS_ACTION_ATTR_SET] = (u32)-1, [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), [OVS_ACTION_ATTR_CT] = (u32)-1, [OVS_ACTION_ATTR_CT_CLEAR] = 0, [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc), [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth), [OVS_ACTION_ATTR_POP_ETH] = 0, [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1, [OVS_ACTION_ATTR_POP_NSH] = 0, [OVS_ACTION_ATTR_METER] = sizeof(u32), [OVS_ACTION_ATTR_CLONE] = (u32)-1, [OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1, [OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls), [OVS_ACTION_ATTR_DEC_TTL] = (u32)-1, [OVS_ACTION_ATTR_DROP] = sizeof(u32), }; const struct ovs_action_push_vlan *vlan; int type = nla_type(a); bool skip_copy; if (type > OVS_ACTION_ATTR_MAX || (action_lens[type] != nla_len(a) && action_lens[type] != (u32)-1)) return -EINVAL; skip_copy = false; switch (type) { case OVS_ACTION_ATTR_UNSPEC: return -EINVAL; case OVS_ACTION_ATTR_USERSPACE: err = validate_userspace(a); if (err) return err; break; case OVS_ACTION_ATTR_OUTPUT: if (nla_get_u32(a) >= DP_MAX_PORTS) return -EINVAL; break; case OVS_ACTION_ATTR_TRUNC: { const struct ovs_action_trunc *trunc = nla_data(a); if (trunc->max_len < ETH_HLEN) return -EINVAL; break; } case OVS_ACTION_ATTR_HASH: { const struct ovs_action_hash *act_hash = nla_data(a); switch (act_hash->hash_alg) { case OVS_HASH_ALG_L4: fallthrough; case OVS_HASH_ALG_SYM_L4: break; default: return -EINVAL; } break; } case OVS_ACTION_ATTR_POP_VLAN: if (mac_proto != MAC_PROTO_ETHERNET) return -EINVAL; vlan_tci = htons(0); break; case OVS_ACTION_ATTR_PUSH_VLAN: if (mac_proto != MAC_PROTO_ETHERNET) return -EINVAL; vlan = nla_data(a); if (!eth_type_vlan(vlan->vlan_tpid)) return -EINVAL; if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK))) return -EINVAL; vlan_tci = vlan->vlan_tci; break; case OVS_ACTION_ATTR_RECIRC: break; case OVS_ACTION_ATTR_ADD_MPLS: { const struct ovs_action_add_mpls *mpls = nla_data(a); if (!eth_p_mpls(mpls->mpls_ethertype)) return -EINVAL; if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) { if (vlan_tci & htons(VLAN_CFI_MASK) || (eth_type != htons(ETH_P_IP) && eth_type != htons(ETH_P_IPV6) && eth_type != htons(ETH_P_ARP) && eth_type != htons(ETH_P_RARP) && !eth_p_mpls(eth_type))) return -EINVAL; mpls_label_count++; } else { if (mac_proto == MAC_PROTO_ETHERNET) { mpls_label_count = 1; mac_proto = MAC_PROTO_NONE; } else { mpls_label_count++; } } eth_type = mpls->mpls_ethertype; break; } case OVS_ACTION_ATTR_PUSH_MPLS: { const struct ovs_action_push_mpls *mpls = nla_data(a); if (!eth_p_mpls(mpls->mpls_ethertype)) return -EINVAL; /* Prohibit push MPLS other than to a white list * for packets that have a known tag order. */ if (vlan_tci & htons(VLAN_CFI_MASK) || (eth_type != htons(ETH_P_IP) && eth_type != htons(ETH_P_IPV6) && eth_type != htons(ETH_P_ARP) && eth_type != htons(ETH_P_RARP) && !eth_p_mpls(eth_type))) return -EINVAL; eth_type = mpls->mpls_ethertype; mpls_label_count++; break; } case OVS_ACTION_ATTR_POP_MPLS: { __be16 proto; if (vlan_tci & htons(VLAN_CFI_MASK) || !eth_p_mpls(eth_type)) return -EINVAL; /* Disallow subsequent L2.5+ set actions and mpls_pop * actions once the last MPLS label in the packet is * popped as there is no check here to ensure that * the new eth type is valid and thus set actions could * write off the end of the packet or otherwise corrupt * it. * * Support for these actions is planned using packet * recirculation. */ proto = nla_get_be16(a); if (proto == htons(ETH_P_TEB) && mac_proto != MAC_PROTO_NONE) return -EINVAL; mpls_label_count--; if (!eth_p_mpls(proto) || !mpls_label_count) eth_type = htons(0); else eth_type = proto; break; } case OVS_ACTION_ATTR_SET: err = validate_set(a, key, sfa, &skip_copy, mac_proto, eth_type, false, log); if (err) return err; break; case OVS_ACTION_ATTR_SET_MASKED: err = validate_set(a, key, sfa, &skip_copy, mac_proto, eth_type, true, log); if (err) return err; break; case OVS_ACTION_ATTR_SAMPLE: { bool last = nla_is_last(a, rem); err = validate_and_copy_sample(net, a, key, sfa, eth_type, vlan_tci, mpls_label_count, log, last); if (err) return err; skip_copy = true; break; } case OVS_ACTION_ATTR_CT: err = ovs_ct_copy_action(net, a, key, sfa, log); if (err) return err; skip_copy = true; break; case OVS_ACTION_ATTR_CT_CLEAR: break; case OVS_ACTION_ATTR_PUSH_ETH: /* Disallow pushing an Ethernet header if one * is already present */ if (mac_proto != MAC_PROTO_NONE) return -EINVAL; mac_proto = MAC_PROTO_ETHERNET; break; case OVS_ACTION_ATTR_POP_ETH: if (mac_proto != MAC_PROTO_ETHERNET) return -EINVAL; if (vlan_tci & htons(VLAN_CFI_MASK)) return -EINVAL; mac_proto = MAC_PROTO_NONE; break; case OVS_ACTION_ATTR_PUSH_NSH: if (mac_proto != MAC_PROTO_ETHERNET) { u8 next_proto; next_proto = tun_p_from_eth_p(eth_type); if (!next_proto) return -EINVAL; } mac_proto = MAC_PROTO_NONE; if (!validate_nsh(nla_data(a), false, true, true)) return -EINVAL; break; case OVS_ACTION_ATTR_POP_NSH: { __be16 inner_proto; if (eth_type != htons(ETH_P_NSH)) return -EINVAL; inner_proto = tun_p_to_eth_p(key->nsh.base.np); if (!inner_proto) return -EINVAL; if (key->nsh.base.np == TUN_P_ETHERNET) mac_proto = MAC_PROTO_ETHERNET; else mac_proto = MAC_PROTO_NONE; break; } case OVS_ACTION_ATTR_METER: /* Non-existent meters are simply ignored. */ break; case OVS_ACTION_ATTR_CLONE: { bool last = nla_is_last(a, rem); err = validate_and_copy_clone(net, a, key, sfa, eth_type, vlan_tci, mpls_label_count, log, last); if (err) return err; skip_copy = true; break; } case OVS_ACTION_ATTR_CHECK_PKT_LEN: { bool last = nla_is_last(a, rem); err = validate_and_copy_check_pkt_len(net, a, key, sfa, eth_type, vlan_tci, mpls_label_count, log, last); if (err) return err; skip_copy = true; break; } case OVS_ACTION_ATTR_DEC_TTL: err = validate_and_copy_dec_ttl(net, a, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; skip_copy = true; break; case OVS_ACTION_ATTR_DROP: if (!nla_is_last(a, rem)) return -EINVAL; break; default: OVS_NLERR(log, "Unknown Action type %d", type); return -EINVAL; } if (!skip_copy) { err = copy_action(a, sfa, log); if (err) return err; } } if (rem > 0) return -EINVAL; return 0; } /* 'key' must be the masked key. */ int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, bool log) { int err; u32 mpls_label_count = 0; *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE)); if (IS_ERR(*sfa)) return PTR_ERR(*sfa); if (eth_p_mpls(key->eth.type)) mpls_label_count = hweight_long(key->mpls.num_labels_mask); (*sfa)->orig_len = nla_len(attr); err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type, key->eth.vlan.tci, mpls_label_count, log); if (err) ovs_nla_free_flow_actions(*sfa); return err; } static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) { struct nlattr *start, *ac_start = NULL, *sample_arg; int err = 0, rem = nla_len(attr); const struct sample_arg *arg; struct nlattr *actions; start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE); if (!start) return -EMSGSIZE; sample_arg = nla_data(attr); arg = nla_data(sample_arg); actions = nla_next(sample_arg, &rem); if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) { err = -EMSGSIZE; goto out; } ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS); if (!ac_start) { err = -EMSGSIZE; goto out; } err = ovs_nla_put_actions(actions, rem, skb); out: if (err) { nla_nest_cancel(skb, ac_start); nla_nest_cancel(skb, start); } else { nla_nest_end(skb, ac_start); nla_nest_end(skb, start); } return err; } static int clone_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) { struct nlattr *start; int err = 0, rem = nla_len(attr); start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE); if (!start) return -EMSGSIZE; /* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */ attr = nla_next(nla_data(attr), &rem); err = ovs_nla_put_actions(attr, rem, skb); if (err) nla_nest_cancel(skb, start); else nla_nest_end(skb, start); return err; } static int check_pkt_len_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) { struct nlattr *start, *ac_start = NULL; const struct check_pkt_len_arg *arg; const struct nlattr *a, *cpl_arg; int err = 0, rem = nla_len(attr); start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN); if (!start) return -EMSGSIZE; /* The first nested attribute in 'attr' is always * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. */ cpl_arg = nla_data(attr); arg = nla_data(cpl_arg); if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) { err = -EMSGSIZE; goto out; } /* Second nested attribute in 'attr' is always * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. */ a = nla_next(cpl_arg, &rem); ac_start = nla_nest_start_noflag(skb, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL); if (!ac_start) { err = -EMSGSIZE; goto out; } err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); if (err) { nla_nest_cancel(skb, ac_start); goto out; } else { nla_nest_end(skb, ac_start); } /* Third nested attribute in 'attr' is always * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER. */ a = nla_next(a, &rem); ac_start = nla_nest_start_noflag(skb, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER); if (!ac_start) { err = -EMSGSIZE; goto out; } err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); if (err) { nla_nest_cancel(skb, ac_start); goto out; } else { nla_nest_end(skb, ac_start); } nla_nest_end(skb, start); return 0; out: nla_nest_cancel(skb, start); return err; } static int dec_ttl_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) { struct nlattr *start, *action_start; const struct nlattr *a; int err = 0, rem; start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL); if (!start) return -EMSGSIZE; nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) { switch (nla_type(a)) { case OVS_DEC_TTL_ATTR_ACTION: action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION); if (!action_start) { err = -EMSGSIZE; goto out; } err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); if (err) goto out; nla_nest_end(skb, action_start); break; default: /* Ignore all other option to be future compatible */ break; } } nla_nest_end(skb, start); return 0; out: nla_nest_cancel(skb, start); return err; } static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) { const struct nlattr *ovs_key = nla_data(a); int key_type = nla_type(ovs_key); struct nlattr *start; int err; switch (key_type) { case OVS_KEY_ATTR_TUNNEL_INFO: { struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET); if (!start) return -EMSGSIZE; err = ip_tun_to_nlattr(skb, &tun_info->key, ip_tunnel_info_opts(tun_info), tun_info->options_len, ip_tunnel_info_af(tun_info), tun_info->mode); if (err) return err; nla_nest_end(skb, start); break; } default: if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) return -EMSGSIZE; break; } return 0; } static int masked_set_action_to_set_action_attr(const struct nlattr *a, struct sk_buff *skb) { const struct nlattr *ovs_key = nla_data(a); struct nlattr *nla; size_t key_len = nla_len(ovs_key) / 2; /* Revert the conversion we did from a non-masked set action to * masked set action. */ nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET); if (!nla) return -EMSGSIZE; if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) return -EMSGSIZE; nla_nest_end(skb, nla); return 0; } int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) { const struct nlattr *a; int rem, err; nla_for_each_attr(a, attr, len, rem) { int type = nla_type(a); switch (type) { case OVS_ACTION_ATTR_SET: err = set_action_to_attr(a, skb); if (err) return err; break; case OVS_ACTION_ATTR_SET_TO_MASKED: err = masked_set_action_to_set_action_attr(a, skb); if (err) return err; break; case OVS_ACTION_ATTR_SAMPLE: err = sample_action_to_attr(a, skb); if (err) return err; break; case OVS_ACTION_ATTR_CT: err = ovs_ct_action_to_attr(nla_data(a), skb); if (err) return err; break; case OVS_ACTION_ATTR_CLONE: err = clone_action_to_attr(a, skb); if (err) return err; break; case OVS_ACTION_ATTR_CHECK_PKT_LEN: err = check_pkt_len_action_to_attr(a, skb); if (err) return err; break; case OVS_ACTION_ATTR_DEC_TTL: err = dec_ttl_action_to_attr(a, skb); if (err) return err; break; default: if (nla_put(skb, type, nla_len(a), nla_data(a))) return -EMSGSIZE; break; } } return 0; }
linux-master
net/openvswitch/flow_netlink.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2017 Nicira, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/skbuff.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/openvswitch.h> #include <linux/sctp.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/in6.h> #include <linux/if_arp.h> #include <linux/if_vlan.h> #include <net/dst.h> #include <net/gso.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/ip6_fib.h> #include <net/checksum.h> #include <net/dsfield.h> #include <net/mpls.h> #include <net/sctp/checksum.h> #include "datapath.h" #include "drop.h" #include "flow.h" #include "conntrack.h" #include "vport.h" #include "flow_netlink.h" #include "openvswitch_trace.h" struct deferred_action { struct sk_buff *skb; const struct nlattr *actions; int actions_len; /* Store pkt_key clone when creating deferred action. */ struct sw_flow_key pkt_key; }; #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) struct ovs_frag_data { unsigned long dst; struct vport *vport; struct ovs_skb_cb cb; __be16 inner_protocol; u16 network_offset; /* valid only for MPLS */ u16 vlan_tci; __be16 vlan_proto; unsigned int l2_len; u8 mac_proto; u8 l2_data[MAX_L2_LEN]; }; static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); #define DEFERRED_ACTION_FIFO_SIZE 10 #define OVS_RECURSION_LIMIT 5 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) struct action_fifo { int head; int tail; /* Deferred action fifo queue storage. */ struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; }; struct action_flow_keys { struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; }; static struct action_fifo __percpu *action_fifos; static struct action_flow_keys __percpu *flow_keys; static DEFINE_PER_CPU(int, exec_actions_level); /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' * space. Return NULL if out of key spaces. */ static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) { struct action_flow_keys *keys = this_cpu_ptr(flow_keys); int level = this_cpu_read(exec_actions_level); struct sw_flow_key *key = NULL; if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { key = &keys->key[level - 1]; *key = *key_; } return key; } static void action_fifo_init(struct action_fifo *fifo) { fifo->head = 0; fifo->tail = 0; } static bool action_fifo_is_empty(const struct action_fifo *fifo) { return (fifo->head == fifo->tail); } static struct deferred_action *action_fifo_get(struct action_fifo *fifo) { if (action_fifo_is_empty(fifo)) return NULL; return &fifo->fifo[fifo->tail++]; } static struct deferred_action *action_fifo_put(struct action_fifo *fifo) { if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) return NULL; return &fifo->fifo[fifo->head++]; } /* Return true if fifo is not full */ static struct deferred_action *add_deferred_actions(struct sk_buff *skb, const struct sw_flow_key *key, const struct nlattr *actions, const int actions_len) { struct action_fifo *fifo; struct deferred_action *da; fifo = this_cpu_ptr(action_fifos); da = action_fifo_put(fifo); if (da) { da->skb = skb; da->actions = actions; da->actions_len = actions_len; da->pkt_key = *key; } return da; } static void invalidate_flow_key(struct sw_flow_key *key) { key->mac_proto |= SW_FLOW_KEY_INVALID; } static bool is_flow_key_valid(const struct sw_flow_key *key) { return !(key->mac_proto & SW_FLOW_KEY_INVALID); } static int clone_execute(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, u32 recirc_id, const struct nlattr *actions, int len, bool last, bool clone_flow_key); static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr, int len); static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len) { int err; err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len); if (err) return err; if (!mac_len) key->mac_proto = MAC_PROTO_NONE; invalidate_flow_key(key); return 0; } static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, const __be16 ethertype) { int err; err = skb_mpls_pop(skb, ethertype, skb->mac_len, ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET); if (err) return err; if (ethertype == htons(ETH_P_TEB)) key->mac_proto = MAC_PROTO_ETHERNET; invalidate_flow_key(key); return 0; } static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, const __be32 *mpls_lse, const __be32 *mask) { struct mpls_shim_hdr *stack; __be32 lse; int err; if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) return -ENOMEM; stack = mpls_hdr(skb); lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); err = skb_mpls_update_lse(skb, lse); if (err) return err; flow_key->mpls.lse[0] = lse; return 0; } static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) { int err; err = skb_vlan_pop(skb); if (skb_vlan_tag_present(skb)) { invalidate_flow_key(key); } else { key->eth.vlan.tci = 0; key->eth.vlan.tpid = 0; } return err; } static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_action_push_vlan *vlan) { if (skb_vlan_tag_present(skb)) { invalidate_flow_key(key); } else { key->eth.vlan.tci = vlan->vlan_tci; key->eth.vlan.tpid = vlan->vlan_tpid; } return skb_vlan_push(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK); } /* 'src' is already properly masked. */ static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) { u16 *dst = (u16 *)dst_; const u16 *src = (const u16 *)src_; const u16 *mask = (const u16 *)mask_; OVS_SET_MASKED(dst[0], src[0], mask[0]); OVS_SET_MASKED(dst[1], src[1], mask[1]); OVS_SET_MASKED(dst[2], src[2], mask[2]); } static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, const struct ovs_key_ethernet *key, const struct ovs_key_ethernet *mask) { int err; err = skb_ensure_writable(skb, ETH_HLEN); if (unlikely(err)) return err; skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, mask->eth_src); ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, mask->eth_dst); skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); return 0; } /* pop_eth does not support VLAN packets as this action is never called * for them. */ static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) { int err; err = skb_eth_pop(skb); if (err) return err; /* safe right before invalidate_flow_key */ key->mac_proto = MAC_PROTO_NONE; invalidate_flow_key(key); return 0; } static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_action_push_eth *ethh) { int err; err = skb_eth_push(skb, ethh->addresses.eth_dst, ethh->addresses.eth_src); if (err) return err; /* safe right before invalidate_flow_key */ key->mac_proto = MAC_PROTO_ETHERNET; invalidate_flow_key(key); return 0; } static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key, const struct nshhdr *nh) { int err; err = nsh_push(skb, nh); if (err) return err; /* safe right before invalidate_flow_key */ key->mac_proto = MAC_PROTO_NONE; invalidate_flow_key(key); return 0; } static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key) { int err; err = nsh_pop(skb); if (err) return err; /* safe right before invalidate_flow_key */ if (skb->protocol == htons(ETH_P_TEB)) key->mac_proto = MAC_PROTO_ETHERNET; else key->mac_proto = MAC_PROTO_NONE; invalidate_flow_key(key); return 0; } static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, __be32 addr, __be32 new_addr) { int transport_len = skb->len - skb_transport_offset(skb); if (nh->frag_off & htons(IP_OFFSET)) return; if (nh->protocol == IPPROTO_TCP) { if (likely(transport_len >= sizeof(struct tcphdr))) inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, addr, new_addr, true); } else if (nh->protocol == IPPROTO_UDP) { if (likely(transport_len >= sizeof(struct udphdr))) { struct udphdr *uh = udp_hdr(skb); if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { inet_proto_csum_replace4(&uh->check, skb, addr, new_addr, true); if (!uh->check) uh->check = CSUM_MANGLED_0; } } } } static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, __be32 *addr, __be32 new_addr) { update_ip_l4_checksum(skb, nh, *addr, new_addr); csum_replace4(&nh->check, *addr, new_addr); skb_clear_hash(skb); ovs_ct_clear(skb, NULL); *addr = new_addr; } static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, __be32 addr[4], const __be32 new_addr[4]) { int transport_len = skb->len - skb_transport_offset(skb); if (l4_proto == NEXTHDR_TCP) { if (likely(transport_len >= sizeof(struct tcphdr))) inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, addr, new_addr, true); } else if (l4_proto == NEXTHDR_UDP) { if (likely(transport_len >= sizeof(struct udphdr))) { struct udphdr *uh = udp_hdr(skb); if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { inet_proto_csum_replace16(&uh->check, skb, addr, new_addr, true); if (!uh->check) uh->check = CSUM_MANGLED_0; } } } else if (l4_proto == NEXTHDR_ICMP) { if (likely(transport_len >= sizeof(struct icmp6hdr))) inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, skb, addr, new_addr, true); } } static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], const __be32 mask[4], __be32 masked[4]) { masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); } static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, __be32 addr[4], const __be32 new_addr[4], bool recalculate_csum) { if (recalculate_csum) update_ipv6_checksum(skb, l4_proto, addr, new_addr); skb_clear_hash(skb); ovs_ct_clear(skb, NULL); memcpy(addr, new_addr, sizeof(__be32[4])); } static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask) { u8 old_ipv6_tclass = ipv6_get_dsfield(nh); ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask); if (skb->ip_summed == CHECKSUM_COMPLETE) csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12), (__force __wsum)(ipv6_tclass << 12)); ipv6_change_dsfield(nh, ~mask, ipv6_tclass); } static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask) { u32 ofl; ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2]; fl = OVS_MASKED(ofl, fl, mask); /* Bits 21-24 are always unmasked, so this retains their values. */ nh->flow_lbl[0] = (u8)(fl >> 16); nh->flow_lbl[1] = (u8)(fl >> 8); nh->flow_lbl[2] = (u8)fl; if (skb->ip_summed == CHECKSUM_COMPLETE) csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl)); } static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask) { new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask); if (skb->ip_summed == CHECKSUM_COMPLETE) csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8), (__force __wsum)(new_ttl << 8)); nh->hop_limit = new_ttl; } static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, u8 mask) { new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); nh->ttl = new_ttl; } static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, const struct ovs_key_ipv4 *key, const struct ovs_key_ipv4 *mask) { struct iphdr *nh; __be32 new_addr; int err; err = skb_ensure_writable(skb, skb_network_offset(skb) + sizeof(struct iphdr)); if (unlikely(err)) return err; nh = ip_hdr(skb); /* Setting an IP addresses is typically only a side effect of * matching on them in the current userspace implementation, so it * makes sense to check if the value actually changed. */ if (mask->ipv4_src) { new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); if (unlikely(new_addr != nh->saddr)) { set_ip_addr(skb, nh, &nh->saddr, new_addr); flow_key->ipv4.addr.src = new_addr; } } if (mask->ipv4_dst) { new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); if (unlikely(new_addr != nh->daddr)) { set_ip_addr(skb, nh, &nh->daddr, new_addr); flow_key->ipv4.addr.dst = new_addr; } } if (mask->ipv4_tos) { ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); flow_key->ip.tos = nh->tos; } if (mask->ipv4_ttl) { set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); flow_key->ip.ttl = nh->ttl; } return 0; } static bool is_ipv6_mask_nonzero(const __be32 addr[4]) { return !!(addr[0] | addr[1] | addr[2] | addr[3]); } static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, const struct ovs_key_ipv6 *key, const struct ovs_key_ipv6 *mask) { struct ipv6hdr *nh; int err; err = skb_ensure_writable(skb, skb_network_offset(skb) + sizeof(struct ipv6hdr)); if (unlikely(err)) return err; nh = ipv6_hdr(skb); /* Setting an IP addresses is typically only a side effect of * matching on them in the current userspace implementation, so it * makes sense to check if the value actually changed. */ if (is_ipv6_mask_nonzero(mask->ipv6_src)) { __be32 *saddr = (__be32 *)&nh->saddr; __be32 masked[4]; mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, true); memcpy(&flow_key->ipv6.addr.src, masked, sizeof(flow_key->ipv6.addr.src)); } } if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { unsigned int offset = 0; int flags = IP6_FH_F_SKIP_RH; bool recalc_csum = true; __be32 *daddr = (__be32 *)&nh->daddr; __be32 masked[4]; mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { if (ipv6_ext_hdr(nh->nexthdr)) recalc_csum = (ipv6_find_hdr(skb, &offset, NEXTHDR_ROUTING, NULL, &flags) != NEXTHDR_ROUTING); set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, recalc_csum); memcpy(&flow_key->ipv6.addr.dst, masked, sizeof(flow_key->ipv6.addr.dst)); } } if (mask->ipv6_tclass) { set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass); flow_key->ip.tos = ipv6_get_dsfield(nh); } if (mask->ipv6_label) { set_ipv6_fl(skb, nh, ntohl(key->ipv6_label), ntohl(mask->ipv6_label)); flow_key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); } if (mask->ipv6_hlimit) { set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit); flow_key->ip.ttl = nh->hop_limit; } return 0; } static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key, const struct nlattr *a) { struct nshhdr *nh; size_t length; int err; u8 flags; u8 ttl; int i; struct ovs_key_nsh key; struct ovs_key_nsh mask; err = nsh_key_from_nlattr(a, &key, &mask); if (err) return err; /* Make sure the NSH base header is there */ if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN)) return -ENOMEM; nh = nsh_hdr(skb); length = nsh_hdr_len(nh); /* Make sure the whole NSH header is there */ err = skb_ensure_writable(skb, skb_network_offset(skb) + length); if (unlikely(err)) return err; nh = nsh_hdr(skb); skb_postpull_rcsum(skb, nh, length); flags = nsh_get_flags(nh); flags = OVS_MASKED(flags, key.base.flags, mask.base.flags); flow_key->nsh.base.flags = flags; ttl = nsh_get_ttl(nh); ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl); flow_key->nsh.base.ttl = ttl; nsh_set_flags_and_ttl(nh, flags, ttl); nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr, mask.base.path_hdr); flow_key->nsh.base.path_hdr = nh->path_hdr; switch (nh->mdtype) { case NSH_M_TYPE1: for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) { nh->md1.context[i] = OVS_MASKED(nh->md1.context[i], key.context[i], mask.context[i]); } memcpy(flow_key->nsh.context, nh->md1.context, sizeof(nh->md1.context)); break; case NSH_M_TYPE2: memset(flow_key->nsh.context, 0, sizeof(flow_key->nsh.context)); break; default: return -EINVAL; } skb_postpush_rcsum(skb, nh, length); return 0; } /* Must follow skb_ensure_writable() since that can move the skb data. */ static void set_tp_port(struct sk_buff *skb, __be16 *port, __be16 new_port, __sum16 *check) { ovs_ct_clear(skb, NULL); inet_proto_csum_replace2(check, skb, *port, new_port, false); *port = new_port; } static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, const struct ovs_key_udp *key, const struct ovs_key_udp *mask) { struct udphdr *uh; __be16 src, dst; int err; err = skb_ensure_writable(skb, skb_transport_offset(skb) + sizeof(struct udphdr)); if (unlikely(err)) return err; uh = udp_hdr(skb); /* Either of the masks is non-zero, so do not bother checking them. */ src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { if (likely(src != uh->source)) { set_tp_port(skb, &uh->source, src, &uh->check); flow_key->tp.src = src; } if (likely(dst != uh->dest)) { set_tp_port(skb, &uh->dest, dst, &uh->check); flow_key->tp.dst = dst; } if (unlikely(!uh->check)) uh->check = CSUM_MANGLED_0; } else { uh->source = src; uh->dest = dst; flow_key->tp.src = src; flow_key->tp.dst = dst; ovs_ct_clear(skb, NULL); } skb_clear_hash(skb); return 0; } static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, const struct ovs_key_tcp *key, const struct ovs_key_tcp *mask) { struct tcphdr *th; __be16 src, dst; int err; err = skb_ensure_writable(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)); if (unlikely(err)) return err; th = tcp_hdr(skb); src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); if (likely(src != th->source)) { set_tp_port(skb, &th->source, src, &th->check); flow_key->tp.src = src; } dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); if (likely(dst != th->dest)) { set_tp_port(skb, &th->dest, dst, &th->check); flow_key->tp.dst = dst; } skb_clear_hash(skb); return 0; } static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, const struct ovs_key_sctp *key, const struct ovs_key_sctp *mask) { unsigned int sctphoff = skb_transport_offset(skb); struct sctphdr *sh; __le32 old_correct_csum, new_csum, old_csum; int err; err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); if (unlikely(err)) return err; sh = sctp_hdr(skb); old_csum = sh->checksum; old_correct_csum = sctp_compute_cksum(skb, sctphoff); sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); new_csum = sctp_compute_cksum(skb, sctphoff); /* Carry any checksum errors through. */ sh->checksum = old_csum ^ old_correct_csum ^ new_csum; skb_clear_hash(skb); ovs_ct_clear(skb, NULL); flow_key->tp.src = sh->source; flow_key->tp.dst = sh->dest; return 0; } static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); struct vport *vport = data->vport; if (skb_cow_head(skb, data->l2_len) < 0) { kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM); return -ENOMEM; } __skb_dst_copy(skb, data->dst); *OVS_CB(skb) = data->cb; skb->inner_protocol = data->inner_protocol; if (data->vlan_tci & VLAN_CFI_MASK) __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK); else __vlan_hwaccel_clear_tag(skb); /* Reconstruct the MAC header. */ skb_push(skb, data->l2_len); memcpy(skb->data, &data->l2_data, data->l2_len); skb_postpush_rcsum(skb, skb->data, data->l2_len); skb_reset_mac_header(skb); if (eth_p_mpls(skb->protocol)) { skb->inner_network_header = skb->network_header; skb_set_network_header(skb, data->network_offset); skb_reset_mac_len(skb); } ovs_vport_send(vport, skb, data->mac_proto); return 0; } static unsigned int ovs_dst_get_mtu(const struct dst_entry *dst) { return dst->dev->mtu; } static struct dst_ops ovs_dst_ops = { .family = AF_UNSPEC, .mtu = ovs_dst_get_mtu, }; /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is * ovs_vport_output(), which is called once per fragmented packet. */ static void prepare_frag(struct vport *vport, struct sk_buff *skb, u16 orig_network_offset, u8 mac_proto) { unsigned int hlen = skb_network_offset(skb); struct ovs_frag_data *data; data = this_cpu_ptr(&ovs_frag_data_storage); data->dst = skb->_skb_refdst; data->vport = vport; data->cb = *OVS_CB(skb); data->inner_protocol = skb->inner_protocol; data->network_offset = orig_network_offset; if (skb_vlan_tag_present(skb)) data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK; else data->vlan_tci = 0; data->vlan_proto = skb->vlan_proto; data->mac_proto = mac_proto; data->l2_len = hlen; memcpy(&data->l2_data, skb->data, hlen); memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); skb_pull(skb, hlen); } static void ovs_fragment(struct net *net, struct vport *vport, struct sk_buff *skb, u16 mru, struct sw_flow_key *key) { enum ovs_drop_reason reason; u16 orig_network_offset = 0; if (eth_p_mpls(skb->protocol)) { orig_network_offset = skb_network_offset(skb); skb->network_header = skb->inner_network_header; } if (skb_network_offset(skb) > MAX_L2_LEN) { OVS_NLERR(1, "L2 header too long to fragment"); reason = OVS_DROP_FRAG_L2_TOO_LONG; goto err; } if (key->eth.type == htons(ETH_P_IP)) { struct rtable ovs_rt = { 0 }; unsigned long orig_dst; prepare_frag(vport, skb, orig_network_offset, ovs_key_mac_proto(key)); dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, DST_OBSOLETE_NONE, DST_NOCOUNT); ovs_rt.dst.dev = vport->dev; orig_dst = skb->_skb_refdst; skb_dst_set_noref(skb, &ovs_rt.dst); IPCB(skb)->frag_max_size = mru; ip_do_fragment(net, skb->sk, skb, ovs_vport_output); refdst_drop(orig_dst); } else if (key->eth.type == htons(ETH_P_IPV6)) { unsigned long orig_dst; struct rt6_info ovs_rt; prepare_frag(vport, skb, orig_network_offset, ovs_key_mac_proto(key)); memset(&ovs_rt, 0, sizeof(ovs_rt)); dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, DST_OBSOLETE_NONE, DST_NOCOUNT); ovs_rt.dst.dev = vport->dev; orig_dst = skb->_skb_refdst; skb_dst_set_noref(skb, &ovs_rt.dst); IP6CB(skb)->frag_max_size = mru; ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output); refdst_drop(orig_dst); } else { WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", ovs_vport_name(vport), ntohs(key->eth.type), mru, vport->dev->mtu); reason = OVS_DROP_FRAG_INVALID_PROTO; goto err; } return; err: ovs_kfree_skb_reason(skb, reason); } static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, struct sw_flow_key *key) { struct vport *vport = ovs_vport_rcu(dp, out_port); if (likely(vport && netif_carrier_ok(vport->dev))) { u16 mru = OVS_CB(skb)->mru; u32 cutlen = OVS_CB(skb)->cutlen; if (unlikely(cutlen > 0)) { if (skb->len - cutlen > ovs_mac_header_len(key)) pskb_trim(skb, skb->len - cutlen); else pskb_trim(skb, ovs_mac_header_len(key)); } if (likely(!mru || (skb->len <= mru + vport->dev->hard_header_len))) { ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); } else if (mru <= vport->dev->mtu) { struct net *net = read_pnet(&dp->net); ovs_fragment(net, vport, skb, mru, key); } else { kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG); } } else { kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY); } } static int output_userspace(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr, const struct nlattr *actions, int actions_len, uint32_t cutlen) { struct dp_upcall_info upcall; const struct nlattr *a; int rem; memset(&upcall, 0, sizeof(upcall)); upcall.cmd = OVS_PACKET_CMD_ACTION; upcall.mru = OVS_CB(skb)->mru; for (a = nla_data(attr), rem = nla_len(attr); rem > 0; a = nla_next(a, &rem)) { switch (nla_type(a)) { case OVS_USERSPACE_ATTR_USERDATA: upcall.userdata = a; break; case OVS_USERSPACE_ATTR_PID: if (dp->user_features & OVS_DP_F_DISPATCH_UPCALL_PER_CPU) upcall.portid = ovs_dp_get_upcall_portid(dp, smp_processor_id()); else upcall.portid = nla_get_u32(a); break; case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { /* Get out tunnel info. */ struct vport *vport; vport = ovs_vport_rcu(dp, nla_get_u32(a)); if (vport) { int err; err = dev_fill_metadata_dst(vport->dev, skb); if (!err) upcall.egress_tun_info = skb_tunnel_info(skb); } break; } case OVS_USERSPACE_ATTR_ACTIONS: { /* Include actions. */ upcall.actions = actions; upcall.actions_len = actions_len; break; } } /* End of switch. */ } return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); } static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr) { /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */ struct nlattr *actions = nla_data(attr); if (nla_len(actions)) return clone_execute(dp, skb, key, 0, nla_data(actions), nla_len(actions), true, false); ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL); return 0; } /* When 'last' is true, sample() should always consume the 'skb'. * Otherwise, sample() should keep 'skb' intact regardless what * actions are executed within sample(). */ static int sample(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr, bool last) { struct nlattr *actions; struct nlattr *sample_arg; int rem = nla_len(attr); const struct sample_arg *arg; bool clone_flow_key; /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ sample_arg = nla_data(attr); arg = nla_data(sample_arg); actions = nla_next(sample_arg, &rem); if ((arg->probability != U32_MAX) && (!arg->probability || get_random_u32() > arg->probability)) { if (last) ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION); return 0; } clone_flow_key = !arg->exec; return clone_execute(dp, skb, key, 0, actions, rem, last, clone_flow_key); } /* When 'last' is true, clone() should always consume the 'skb'. * Otherwise, clone() should keep 'skb' intact regardless what * actions are executed within clone(). */ static int clone(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr, bool last) { struct nlattr *actions; struct nlattr *clone_arg; int rem = nla_len(attr); bool dont_clone_flow_key; /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */ clone_arg = nla_data(attr); dont_clone_flow_key = nla_get_u32(clone_arg); actions = nla_next(clone_arg, &rem); return clone_execute(dp, skb, key, 0, actions, rem, last, !dont_clone_flow_key); } static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr) { struct ovs_action_hash *hash_act = nla_data(attr); u32 hash = 0; if (hash_act->hash_alg == OVS_HASH_ALG_L4) { /* OVS_HASH_ALG_L4 hasing type. */ hash = skb_get_hash(skb); } else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) { /* OVS_HASH_ALG_SYM_L4 hashing type. NOTE: this doesn't * extend past an encapsulated header. */ hash = __skb_get_hash_symmetric(skb); } hash = jhash_1word(hash, hash_act->hash_basis); if (!hash) hash = 0x1; key->ovs_flow_hash = hash; } static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *flow_key, const struct nlattr *a) { /* Only tunnel set execution is supported without a mask. */ if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { struct ovs_tunnel_info *tun = nla_data(a); skb_dst_drop(skb); dst_hold((struct dst_entry *)tun->tun_dst); skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); return 0; } return -EINVAL; } /* Mask is at the midpoint of the data. */ #define get_mask(a, type) ((const type)nla_data(a) + 1) static int execute_masked_set_action(struct sk_buff *skb, struct sw_flow_key *flow_key, const struct nlattr *a) { int err = 0; switch (nla_type(a)) { case OVS_KEY_ATTR_PRIORITY: OVS_SET_MASKED(skb->priority, nla_get_u32(a), *get_mask(a, u32 *)); flow_key->phy.priority = skb->priority; break; case OVS_KEY_ATTR_SKB_MARK: OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); flow_key->phy.skb_mark = skb->mark; break; case OVS_KEY_ATTR_TUNNEL_INFO: /* Masked data not supported for tunnel. */ err = -EINVAL; break; case OVS_KEY_ATTR_ETHERNET: err = set_eth_addr(skb, flow_key, nla_data(a), get_mask(a, struct ovs_key_ethernet *)); break; case OVS_KEY_ATTR_NSH: err = set_nsh(skb, flow_key, a); break; case OVS_KEY_ATTR_IPV4: err = set_ipv4(skb, flow_key, nla_data(a), get_mask(a, struct ovs_key_ipv4 *)); break; case OVS_KEY_ATTR_IPV6: err = set_ipv6(skb, flow_key, nla_data(a), get_mask(a, struct ovs_key_ipv6 *)); break; case OVS_KEY_ATTR_TCP: err = set_tcp(skb, flow_key, nla_data(a), get_mask(a, struct ovs_key_tcp *)); break; case OVS_KEY_ATTR_UDP: err = set_udp(skb, flow_key, nla_data(a), get_mask(a, struct ovs_key_udp *)); break; case OVS_KEY_ATTR_SCTP: err = set_sctp(skb, flow_key, nla_data(a), get_mask(a, struct ovs_key_sctp *)); break; case OVS_KEY_ATTR_MPLS: err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, __be32 *)); break; case OVS_KEY_ATTR_CT_STATE: case OVS_KEY_ATTR_CT_ZONE: case OVS_KEY_ATTR_CT_MARK: case OVS_KEY_ATTR_CT_LABELS: case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: err = -EINVAL; break; } return err; } static int execute_recirc(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *a, bool last) { u32 recirc_id; if (!is_flow_key_valid(key)) { int err; err = ovs_flow_key_update(skb, key); if (err) return err; } BUG_ON(!is_flow_key_valid(key)); recirc_id = nla_get_u32(a); return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); } static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr, bool last) { struct ovs_skb_cb *ovs_cb = OVS_CB(skb); const struct nlattr *actions, *cpl_arg; int len, max_len, rem = nla_len(attr); const struct check_pkt_len_arg *arg; bool clone_flow_key; /* The first netlink attribute in 'attr' is always * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. */ cpl_arg = nla_data(attr); arg = nla_data(cpl_arg); len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len; max_len = arg->pkt_len; if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) || len <= max_len) { /* Second netlink attribute in 'attr' is always * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. */ actions = nla_next(cpl_arg, &rem); clone_flow_key = !arg->exec_for_lesser_equal; } else { /* Third netlink attribute in 'attr' is always * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'. */ actions = nla_next(cpl_arg, &rem); actions = nla_next(actions, &rem); clone_flow_key = !arg->exec_for_greater; } return clone_execute(dp, skb, key, 0, nla_data(actions), nla_len(actions), last, clone_flow_key); } static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key) { int err; if (skb->protocol == htons(ETH_P_IPV6)) { struct ipv6hdr *nh; err = skb_ensure_writable(skb, skb_network_offset(skb) + sizeof(*nh)); if (unlikely(err)) return err; nh = ipv6_hdr(skb); if (nh->hop_limit <= 1) return -EHOSTUNREACH; key->ip.ttl = --nh->hop_limit; } else if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *nh; u8 old_ttl; err = skb_ensure_writable(skb, skb_network_offset(skb) + sizeof(*nh)); if (unlikely(err)) return err; nh = ip_hdr(skb); if (nh->ttl <= 1) return -EHOSTUNREACH; old_ttl = nh->ttl--; csum_replace2(&nh->check, htons(old_ttl << 8), htons(nh->ttl << 8)); key->ip.ttl = nh->ttl; } return 0; } /* Execute a list of actions against 'skb'. */ static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr, int len) { const struct nlattr *a; int rem; for (a = attr, rem = len; rem > 0; a = nla_next(a, &rem)) { int err = 0; if (trace_ovs_do_execute_action_enabled()) trace_ovs_do_execute_action(dp, skb, key, a, rem); /* Actions that rightfully have to consume the skb should do it * and return directly. */ switch (nla_type(a)) { case OVS_ACTION_ATTR_OUTPUT: { int port = nla_get_u32(a); struct sk_buff *clone; /* Every output action needs a separate clone * of 'skb', In case the output action is the * last action, cloning can be avoided. */ if (nla_is_last(a, rem)) { do_output(dp, skb, port, key); /* 'skb' has been used for output. */ return 0; } clone = skb_clone(skb, GFP_ATOMIC); if (clone) do_output(dp, clone, port, key); OVS_CB(skb)->cutlen = 0; break; } case OVS_ACTION_ATTR_TRUNC: { struct ovs_action_trunc *trunc = nla_data(a); if (skb->len > trunc->max_len) OVS_CB(skb)->cutlen = skb->len - trunc->max_len; break; } case OVS_ACTION_ATTR_USERSPACE: output_userspace(dp, skb, key, a, attr, len, OVS_CB(skb)->cutlen); OVS_CB(skb)->cutlen = 0; if (nla_is_last(a, rem)) { consume_skb(skb); return 0; } break; case OVS_ACTION_ATTR_HASH: execute_hash(skb, key, a); break; case OVS_ACTION_ATTR_PUSH_MPLS: { struct ovs_action_push_mpls *mpls = nla_data(a); err = push_mpls(skb, key, mpls->mpls_lse, mpls->mpls_ethertype, skb->mac_len); break; } case OVS_ACTION_ATTR_ADD_MPLS: { struct ovs_action_add_mpls *mpls = nla_data(a); __u16 mac_len = 0; if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) mac_len = skb->mac_len; err = push_mpls(skb, key, mpls->mpls_lse, mpls->mpls_ethertype, mac_len); break; } case OVS_ACTION_ATTR_POP_MPLS: err = pop_mpls(skb, key, nla_get_be16(a)); break; case OVS_ACTION_ATTR_PUSH_VLAN: err = push_vlan(skb, key, nla_data(a)); break; case OVS_ACTION_ATTR_POP_VLAN: err = pop_vlan(skb, key); break; case OVS_ACTION_ATTR_RECIRC: { bool last = nla_is_last(a, rem); err = execute_recirc(dp, skb, key, a, last); if (last) { /* If this is the last action, the skb has * been consumed or freed. * Return immediately. */ return err; } break; } case OVS_ACTION_ATTR_SET: err = execute_set_action(skb, key, nla_data(a)); break; case OVS_ACTION_ATTR_SET_MASKED: case OVS_ACTION_ATTR_SET_TO_MASKED: err = execute_masked_set_action(skb, key, nla_data(a)); break; case OVS_ACTION_ATTR_SAMPLE: { bool last = nla_is_last(a, rem); err = sample(dp, skb, key, a, last); if (last) return err; break; } case OVS_ACTION_ATTR_CT: if (!is_flow_key_valid(key)) { err = ovs_flow_key_update(skb, key); if (err) return err; } err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, nla_data(a)); /* Hide stolen IP fragments from user space. */ if (err) return err == -EINPROGRESS ? 0 : err; break; case OVS_ACTION_ATTR_CT_CLEAR: err = ovs_ct_clear(skb, key); break; case OVS_ACTION_ATTR_PUSH_ETH: err = push_eth(skb, key, nla_data(a)); break; case OVS_ACTION_ATTR_POP_ETH: err = pop_eth(skb, key); break; case OVS_ACTION_ATTR_PUSH_NSH: { u8 buffer[NSH_HDR_MAX_LEN]; struct nshhdr *nh = (struct nshhdr *)buffer; err = nsh_hdr_from_nlattr(nla_data(a), nh, NSH_HDR_MAX_LEN); if (unlikely(err)) break; err = push_nsh(skb, key, nh); break; } case OVS_ACTION_ATTR_POP_NSH: err = pop_nsh(skb, key); break; case OVS_ACTION_ATTR_METER: if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) { ovs_kfree_skb_reason(skb, OVS_DROP_METER); return 0; } break; case OVS_ACTION_ATTR_CLONE: { bool last = nla_is_last(a, rem); err = clone(dp, skb, key, a, last); if (last) return err; break; } case OVS_ACTION_ATTR_CHECK_PKT_LEN: { bool last = nla_is_last(a, rem); err = execute_check_pkt_len(dp, skb, key, a, last); if (last) return err; break; } case OVS_ACTION_ATTR_DEC_TTL: err = execute_dec_ttl(skb, key); if (err == -EHOSTUNREACH) return dec_ttl_exception_handler(dp, skb, key, a); break; case OVS_ACTION_ATTR_DROP: { enum ovs_drop_reason reason = nla_get_u32(a) ? OVS_DROP_EXPLICIT_WITH_ERROR : OVS_DROP_EXPLICIT; ovs_kfree_skb_reason(skb, reason); return 0; } } if (unlikely(err)) { ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR); return err; } } ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION); return 0; } /* Execute the actions on the clone of the packet. The effect of the * execution does not affect the original 'skb' nor the original 'key'. * * The execution may be deferred in case the actions can not be executed * immediately. */ static int clone_execute(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, u32 recirc_id, const struct nlattr *actions, int len, bool last, bool clone_flow_key) { struct deferred_action *da; struct sw_flow_key *clone; skb = last ? skb : skb_clone(skb, GFP_ATOMIC); if (!skb) { /* Out of memory, skip this action. */ return 0; } /* When clone_flow_key is false, the 'key' will not be change * by the actions, then the 'key' can be used directly. * Otherwise, try to clone key from the next recursion level of * 'flow_keys'. If clone is successful, execute the actions * without deferring. */ clone = clone_flow_key ? clone_key(key) : key; if (clone) { int err = 0; if (actions) { /* Sample action */ if (clone_flow_key) __this_cpu_inc(exec_actions_level); err = do_execute_actions(dp, skb, clone, actions, len); if (clone_flow_key) __this_cpu_dec(exec_actions_level); } else { /* Recirc action */ clone->recirc_id = recirc_id; ovs_dp_process_packet(skb, clone); } return err; } /* Out of 'flow_keys' space. Defer actions */ da = add_deferred_actions(skb, key, actions, len); if (da) { if (!actions) { /* Recirc action */ key = &da->pkt_key; key->recirc_id = recirc_id; } } else { /* Out of per CPU action FIFO space. Drop the 'skb' and * log an error. */ ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT); if (net_ratelimit()) { if (actions) { /* Sample action */ pr_warn("%s: deferred action limit reached, drop sample action\n", ovs_dp_name(dp)); } else { /* Recirc action */ pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n", ovs_dp_name(dp), recirc_id); } } } return 0; } static void process_deferred_actions(struct datapath *dp) { struct action_fifo *fifo = this_cpu_ptr(action_fifos); /* Do not touch the FIFO in case there is no deferred actions. */ if (action_fifo_is_empty(fifo)) return; /* Finishing executing all deferred actions. */ do { struct deferred_action *da = action_fifo_get(fifo); struct sk_buff *skb = da->skb; struct sw_flow_key *key = &da->pkt_key; const struct nlattr *actions = da->actions; int actions_len = da->actions_len; if (actions) do_execute_actions(dp, skb, key, actions, actions_len); else ovs_dp_process_packet(skb, key); } while (!action_fifo_is_empty(fifo)); /* Reset FIFO for the next packet. */ action_fifo_init(fifo); } /* Execute a list of actions against 'skb'. */ int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, const struct sw_flow_actions *acts, struct sw_flow_key *key) { int err, level; level = __this_cpu_inc_return(exec_actions_level); if (unlikely(level > OVS_RECURSION_LIMIT)) { net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", ovs_dp_name(dp)); ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT); err = -ENETDOWN; goto out; } OVS_CB(skb)->acts_origlen = acts->orig_len; err = do_execute_actions(dp, skb, key, acts->actions, acts->actions_len); if (level == 1) process_deferred_actions(dp); out: __this_cpu_dec(exec_actions_level); return err; } int action_fifos_init(void) { action_fifos = alloc_percpu(struct action_fifo); if (!action_fifos) return -ENOMEM; flow_keys = alloc_percpu(struct action_flow_keys); if (!flow_keys) { free_percpu(action_fifos); return -ENOMEM; } return 0; } void action_fifos_exit(void) { free_percpu(action_fifos); free_percpu(flow_keys); }
linux-master
net/openvswitch/actions.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2014 Nicira, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/in.h> #include <linux/ip.h> #include <linux/net.h> #include <linux/rculist.h> #include <linux/udp.h> #include <linux/if_vlan.h> #include <linux/module.h> #include <net/geneve.h> #include <net/icmp.h> #include <net/ip.h> #include <net/route.h> #include <net/udp.h> #include <net/xfrm.h> #include "datapath.h" #include "vport.h" #include "vport-netdev.h" static struct vport_ops ovs_geneve_vport_ops; /** * struct geneve_port - Keeps track of open UDP ports * @dst_port: destination port. */ struct geneve_port { u16 dst_port; }; static inline struct geneve_port *geneve_vport(const struct vport *vport) { return vport_priv(vport); } static int geneve_get_options(const struct vport *vport, struct sk_buff *skb) { struct geneve_port *geneve_port = geneve_vport(vport); if (nla_put_u16(skb, OVS_TUNNEL_ATTR_DST_PORT, geneve_port->dst_port)) return -EMSGSIZE; return 0; } static struct vport *geneve_tnl_create(const struct vport_parms *parms) { struct net *net = ovs_dp_get_net(parms->dp); struct nlattr *options = parms->options; struct geneve_port *geneve_port; struct net_device *dev; struct vport *vport; struct nlattr *a; u16 dst_port; int err; if (!options) { err = -EINVAL; goto error; } a = nla_find_nested(options, OVS_TUNNEL_ATTR_DST_PORT); if (a && nla_len(a) == sizeof(u16)) { dst_port = nla_get_u16(a); } else { /* Require destination port from userspace. */ err = -EINVAL; goto error; } vport = ovs_vport_alloc(sizeof(struct geneve_port), &ovs_geneve_vport_ops, parms); if (IS_ERR(vport)) return vport; geneve_port = geneve_vport(vport); geneve_port->dst_port = dst_port; rtnl_lock(); dev = geneve_dev_create_fb(net, parms->name, NET_NAME_USER, dst_port); if (IS_ERR(dev)) { rtnl_unlock(); ovs_vport_free(vport); return ERR_CAST(dev); } err = dev_change_flags(dev, dev->flags | IFF_UP, NULL); if (err < 0) { rtnl_delete_link(dev, 0, NULL); rtnl_unlock(); ovs_vport_free(vport); goto error; } rtnl_unlock(); return vport; error: return ERR_PTR(err); } static struct vport *geneve_create(const struct vport_parms *parms) { struct vport *vport; vport = geneve_tnl_create(parms); if (IS_ERR(vport)) return vport; return ovs_netdev_link(vport, parms->name); } static struct vport_ops ovs_geneve_vport_ops = { .type = OVS_VPORT_TYPE_GENEVE, .create = geneve_create, .destroy = ovs_netdev_tunnel_destroy, .get_options = geneve_get_options, .send = dev_queue_xmit, }; static int __init ovs_geneve_tnl_init(void) { return ovs_vport_ops_register(&ovs_geneve_vport_ops); } static void __exit ovs_geneve_tnl_exit(void) { ovs_vport_ops_unregister(&ovs_geneve_vport_ops); } module_init(ovs_geneve_tnl_init); module_exit(ovs_geneve_tnl_exit); MODULE_DESCRIPTION("OVS: Geneve switching port"); MODULE_LICENSE("GPL"); MODULE_ALIAS("vport-type-5");
linux-master
net/openvswitch/vport-geneve.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2014 Nicira, Inc. */ #include "flow.h" #include "datapath.h" #include "flow_netlink.h" #include <linux/uaccess.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <net/llc_pdu.h> #include <linux/kernel.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/llc.h> #include <linux/module.h> #include <linux/in.h> #include <linux/rcupdate.h> #include <linux/cpumask.h> #include <linux/if_arp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/sctp.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/icmp.h> #include <linux/icmpv6.h> #include <linux/rculist.h> #include <linux/sort.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/ndisc.h> #define TBL_MIN_BUCKETS 1024 #define MASK_ARRAY_SIZE_MIN 16 #define REHASH_INTERVAL (10 * 60 * HZ) #define MC_DEFAULT_HASH_ENTRIES 256 #define MC_HASH_SHIFT 8 #define MC_HASH_SEGS ((sizeof(uint32_t) * 8) / MC_HASH_SHIFT) static struct kmem_cache *flow_cache; struct kmem_cache *flow_stats_cache __read_mostly; static u16 range_n_bytes(const struct sw_flow_key_range *range) { return range->end - range->start; } void ovs_flow_mask_key(struct sw_flow_key *dst, const struct sw_flow_key *src, bool full, const struct sw_flow_mask *mask) { int start = full ? 0 : mask->range.start; int len = full ? sizeof *dst : range_n_bytes(&mask->range); const long *m = (const long *)((const u8 *)&mask->key + start); const long *s = (const long *)((const u8 *)src + start); long *d = (long *)((u8 *)dst + start); int i; /* If 'full' is true then all of 'dst' is fully initialized. Otherwise, * if 'full' is false the memory outside of the 'mask->range' is left * uninitialized. This can be used as an optimization when further * operations on 'dst' only use contents within 'mask->range'. */ for (i = 0; i < len; i += sizeof(long)) *d++ = *s++ & *m++; } struct sw_flow *ovs_flow_alloc(void) { struct sw_flow *flow; struct sw_flow_stats *stats; flow = kmem_cache_zalloc(flow_cache, GFP_KERNEL); if (!flow) return ERR_PTR(-ENOMEM); flow->stats_last_writer = -1; flow->cpu_used_mask = (struct cpumask *)&flow->stats[nr_cpu_ids]; /* Initialize the default stat node. */ stats = kmem_cache_alloc_node(flow_stats_cache, GFP_KERNEL | __GFP_ZERO, node_online(0) ? 0 : NUMA_NO_NODE); if (!stats) goto err; spin_lock_init(&stats->lock); RCU_INIT_POINTER(flow->stats[0], stats); cpumask_set_cpu(0, flow->cpu_used_mask); return flow; err: kmem_cache_free(flow_cache, flow); return ERR_PTR(-ENOMEM); } int ovs_flow_tbl_count(const struct flow_table *table) { return table->count; } static void flow_free(struct sw_flow *flow) { int cpu; if (ovs_identifier_is_key(&flow->id)) kfree(flow->id.unmasked_key); if (flow->sf_acts) ovs_nla_free_flow_actions((struct sw_flow_actions __force *) flow->sf_acts); /* We open code this to make sure cpu 0 is always considered */ for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, flow->cpu_used_mask)) { if (flow->stats[cpu]) kmem_cache_free(flow_stats_cache, (struct sw_flow_stats __force *)flow->stats[cpu]); } kmem_cache_free(flow_cache, flow); } static void rcu_free_flow_callback(struct rcu_head *rcu) { struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); flow_free(flow); } void ovs_flow_free(struct sw_flow *flow, bool deferred) { if (!flow) return; if (deferred) call_rcu(&flow->rcu, rcu_free_flow_callback); else flow_free(flow); } static void __table_instance_destroy(struct table_instance *ti) { kvfree(ti->buckets); kfree(ti); } static struct table_instance *table_instance_alloc(int new_size) { struct table_instance *ti = kmalloc(sizeof(*ti), GFP_KERNEL); int i; if (!ti) return NULL; ti->buckets = kvmalloc_array(new_size, sizeof(struct hlist_head), GFP_KERNEL); if (!ti->buckets) { kfree(ti); return NULL; } for (i = 0; i < new_size; i++) INIT_HLIST_HEAD(&ti->buckets[i]); ti->n_buckets = new_size; ti->node_ver = 0; get_random_bytes(&ti->hash_seed, sizeof(u32)); return ti; } static void __mask_array_destroy(struct mask_array *ma) { free_percpu(ma->masks_usage_stats); kfree(ma); } static void mask_array_rcu_cb(struct rcu_head *rcu) { struct mask_array *ma = container_of(rcu, struct mask_array, rcu); __mask_array_destroy(ma); } static void tbl_mask_array_reset_counters(struct mask_array *ma) { int i, cpu; /* As the per CPU counters are not atomic we can not go ahead and * reset them from another CPU. To be able to still have an approximate * zero based counter we store the value at reset, and subtract it * later when processing. */ for (i = 0; i < ma->max; i++) { ma->masks_usage_zero_cntr[i] = 0; for_each_possible_cpu(cpu) { struct mask_array_stats *stats; unsigned int start; u64 counter; stats = per_cpu_ptr(ma->masks_usage_stats, cpu); do { start = u64_stats_fetch_begin(&stats->syncp); counter = stats->usage_cntrs[i]; } while (u64_stats_fetch_retry(&stats->syncp, start)); ma->masks_usage_zero_cntr[i] += counter; } } } static struct mask_array *tbl_mask_array_alloc(int size) { struct mask_array *new; size = max(MASK_ARRAY_SIZE_MIN, size); new = kzalloc(sizeof(struct mask_array) + sizeof(struct sw_flow_mask *) * size + sizeof(u64) * size, GFP_KERNEL); if (!new) return NULL; new->masks_usage_zero_cntr = (u64 *)((u8 *)new + sizeof(struct mask_array) + sizeof(struct sw_flow_mask *) * size); new->masks_usage_stats = __alloc_percpu(sizeof(struct mask_array_stats) + sizeof(u64) * size, __alignof__(u64)); if (!new->masks_usage_stats) { kfree(new); return NULL; } new->count = 0; new->max = size; return new; } static int tbl_mask_array_realloc(struct flow_table *tbl, int size) { struct mask_array *old; struct mask_array *new; new = tbl_mask_array_alloc(size); if (!new) return -ENOMEM; old = ovsl_dereference(tbl->mask_array); if (old) { int i; for (i = 0; i < old->max; i++) { if (ovsl_dereference(old->masks[i])) new->masks[new->count++] = old->masks[i]; } call_rcu(&old->rcu, mask_array_rcu_cb); } rcu_assign_pointer(tbl->mask_array, new); return 0; } static int tbl_mask_array_add_mask(struct flow_table *tbl, struct sw_flow_mask *new) { struct mask_array *ma = ovsl_dereference(tbl->mask_array); int err, ma_count = READ_ONCE(ma->count); if (ma_count >= ma->max) { err = tbl_mask_array_realloc(tbl, ma->max + MASK_ARRAY_SIZE_MIN); if (err) return err; ma = ovsl_dereference(tbl->mask_array); } else { /* On every add or delete we need to reset the counters so * every new mask gets a fair chance of being prioritized. */ tbl_mask_array_reset_counters(ma); } BUG_ON(ovsl_dereference(ma->masks[ma_count])); rcu_assign_pointer(ma->masks[ma_count], new); WRITE_ONCE(ma->count, ma_count + 1); return 0; } static void tbl_mask_array_del_mask(struct flow_table *tbl, struct sw_flow_mask *mask) { struct mask_array *ma = ovsl_dereference(tbl->mask_array); int i, ma_count = READ_ONCE(ma->count); /* Remove the deleted mask pointers from the array */ for (i = 0; i < ma_count; i++) { if (mask == ovsl_dereference(ma->masks[i])) goto found; } BUG(); return; found: WRITE_ONCE(ma->count, ma_count - 1); rcu_assign_pointer(ma->masks[i], ma->masks[ma_count - 1]); RCU_INIT_POINTER(ma->masks[ma_count - 1], NULL); kfree_rcu(mask, rcu); /* Shrink the mask array if necessary. */ if (ma->max >= (MASK_ARRAY_SIZE_MIN * 2) && ma_count <= (ma->max / 3)) tbl_mask_array_realloc(tbl, ma->max / 2); else tbl_mask_array_reset_counters(ma); } /* Remove 'mask' from the mask list, if it is not needed any more. */ static void flow_mask_remove(struct flow_table *tbl, struct sw_flow_mask *mask) { if (mask) { /* ovs-lock is required to protect mask-refcount and * mask list. */ ASSERT_OVSL(); BUG_ON(!mask->ref_count); mask->ref_count--; if (!mask->ref_count) tbl_mask_array_del_mask(tbl, mask); } } static void __mask_cache_destroy(struct mask_cache *mc) { free_percpu(mc->mask_cache); kfree(mc); } static void mask_cache_rcu_cb(struct rcu_head *rcu) { struct mask_cache *mc = container_of(rcu, struct mask_cache, rcu); __mask_cache_destroy(mc); } static struct mask_cache *tbl_mask_cache_alloc(u32 size) { struct mask_cache_entry __percpu *cache = NULL; struct mask_cache *new; /* Only allow size to be 0, or a power of 2, and does not exceed * percpu allocation size. */ if ((!is_power_of_2(size) && size != 0) || (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE) return NULL; new = kzalloc(sizeof(*new), GFP_KERNEL); if (!new) return NULL; new->cache_size = size; if (new->cache_size > 0) { cache = __alloc_percpu(array_size(sizeof(struct mask_cache_entry), new->cache_size), __alignof__(struct mask_cache_entry)); if (!cache) { kfree(new); return NULL; } } new->mask_cache = cache; return new; } int ovs_flow_tbl_masks_cache_resize(struct flow_table *table, u32 size) { struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache); struct mask_cache *new; if (size == mc->cache_size) return 0; if ((!is_power_of_2(size) && size != 0) || (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE) return -EINVAL; new = tbl_mask_cache_alloc(size); if (!new) return -ENOMEM; rcu_assign_pointer(table->mask_cache, new); call_rcu(&mc->rcu, mask_cache_rcu_cb); return 0; } int ovs_flow_tbl_init(struct flow_table *table) { struct table_instance *ti, *ufid_ti; struct mask_cache *mc; struct mask_array *ma; mc = tbl_mask_cache_alloc(MC_DEFAULT_HASH_ENTRIES); if (!mc) return -ENOMEM; ma = tbl_mask_array_alloc(MASK_ARRAY_SIZE_MIN); if (!ma) goto free_mask_cache; ti = table_instance_alloc(TBL_MIN_BUCKETS); if (!ti) goto free_mask_array; ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS); if (!ufid_ti) goto free_ti; rcu_assign_pointer(table->ti, ti); rcu_assign_pointer(table->ufid_ti, ufid_ti); rcu_assign_pointer(table->mask_array, ma); rcu_assign_pointer(table->mask_cache, mc); table->last_rehash = jiffies; table->count = 0; table->ufid_count = 0; return 0; free_ti: __table_instance_destroy(ti); free_mask_array: __mask_array_destroy(ma); free_mask_cache: __mask_cache_destroy(mc); return -ENOMEM; } static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) { struct table_instance *ti; ti = container_of(rcu, struct table_instance, rcu); __table_instance_destroy(ti); } static void table_instance_flow_free(struct flow_table *table, struct table_instance *ti, struct table_instance *ufid_ti, struct sw_flow *flow) { hlist_del_rcu(&flow->flow_table.node[ti->node_ver]); table->count--; if (ovs_identifier_is_ufid(&flow->id)) { hlist_del_rcu(&flow->ufid_table.node[ufid_ti->node_ver]); table->ufid_count--; } flow_mask_remove(table, flow->mask); } /* Must be called with OVS mutex held. */ void table_instance_flow_flush(struct flow_table *table, struct table_instance *ti, struct table_instance *ufid_ti) { int i; for (i = 0; i < ti->n_buckets; i++) { struct hlist_head *head = &ti->buckets[i]; struct hlist_node *n; struct sw_flow *flow; hlist_for_each_entry_safe(flow, n, head, flow_table.node[ti->node_ver]) { table_instance_flow_free(table, ti, ufid_ti, flow); ovs_flow_free(flow, true); } } if (WARN_ON(table->count != 0 || table->ufid_count != 0)) { table->count = 0; table->ufid_count = 0; } } static void table_instance_destroy(struct table_instance *ti, struct table_instance *ufid_ti) { call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb); call_rcu(&ufid_ti->rcu, flow_tbl_destroy_rcu_cb); } /* No need for locking this function is called from RCU callback or * error path. */ void ovs_flow_tbl_destroy(struct flow_table *table) { struct table_instance *ti = rcu_dereference_raw(table->ti); struct table_instance *ufid_ti = rcu_dereference_raw(table->ufid_ti); struct mask_cache *mc = rcu_dereference_raw(table->mask_cache); struct mask_array *ma = rcu_dereference_raw(table->mask_array); call_rcu(&mc->rcu, mask_cache_rcu_cb); call_rcu(&ma->rcu, mask_array_rcu_cb); table_instance_destroy(ti, ufid_ti); } struct sw_flow *ovs_flow_tbl_dump_next(struct table_instance *ti, u32 *bucket, u32 *last) { struct sw_flow *flow; struct hlist_head *head; int ver; int i; ver = ti->node_ver; while (*bucket < ti->n_buckets) { i = 0; head = &ti->buckets[*bucket]; hlist_for_each_entry_rcu(flow, head, flow_table.node[ver]) { if (i < *last) { i++; continue; } *last = i + 1; return flow; } (*bucket)++; *last = 0; } return NULL; } static struct hlist_head *find_bucket(struct table_instance *ti, u32 hash) { hash = jhash_1word(hash, ti->hash_seed); return &ti->buckets[hash & (ti->n_buckets - 1)]; } static void table_instance_insert(struct table_instance *ti, struct sw_flow *flow) { struct hlist_head *head; head = find_bucket(ti, flow->flow_table.hash); hlist_add_head_rcu(&flow->flow_table.node[ti->node_ver], head); } static void ufid_table_instance_insert(struct table_instance *ti, struct sw_flow *flow) { struct hlist_head *head; head = find_bucket(ti, flow->ufid_table.hash); hlist_add_head_rcu(&flow->ufid_table.node[ti->node_ver], head); } static void flow_table_copy_flows(struct table_instance *old, struct table_instance *new, bool ufid) { int old_ver; int i; old_ver = old->node_ver; new->node_ver = !old_ver; /* Insert in new table. */ for (i = 0; i < old->n_buckets; i++) { struct sw_flow *flow; struct hlist_head *head = &old->buckets[i]; if (ufid) hlist_for_each_entry_rcu(flow, head, ufid_table.node[old_ver], lockdep_ovsl_is_held()) ufid_table_instance_insert(new, flow); else hlist_for_each_entry_rcu(flow, head, flow_table.node[old_ver], lockdep_ovsl_is_held()) table_instance_insert(new, flow); } } static struct table_instance *table_instance_rehash(struct table_instance *ti, int n_buckets, bool ufid) { struct table_instance *new_ti; new_ti = table_instance_alloc(n_buckets); if (!new_ti) return NULL; flow_table_copy_flows(ti, new_ti, ufid); return new_ti; } int ovs_flow_tbl_flush(struct flow_table *flow_table) { struct table_instance *old_ti, *new_ti; struct table_instance *old_ufid_ti, *new_ufid_ti; new_ti = table_instance_alloc(TBL_MIN_BUCKETS); if (!new_ti) return -ENOMEM; new_ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS); if (!new_ufid_ti) goto err_free_ti; old_ti = ovsl_dereference(flow_table->ti); old_ufid_ti = ovsl_dereference(flow_table->ufid_ti); rcu_assign_pointer(flow_table->ti, new_ti); rcu_assign_pointer(flow_table->ufid_ti, new_ufid_ti); flow_table->last_rehash = jiffies; table_instance_flow_flush(flow_table, old_ti, old_ufid_ti); table_instance_destroy(old_ti, old_ufid_ti); return 0; err_free_ti: __table_instance_destroy(new_ti); return -ENOMEM; } static u32 flow_hash(const struct sw_flow_key *key, const struct sw_flow_key_range *range) { const u32 *hash_key = (const u32 *)((const u8 *)key + range->start); /* Make sure number of hash bytes are multiple of u32. */ int hash_u32s = range_n_bytes(range) >> 2; return jhash2(hash_key, hash_u32s, 0); } static int flow_key_start(const struct sw_flow_key *key) { if (key->tun_proto) return 0; else return rounddown(offsetof(struct sw_flow_key, phy), sizeof(long)); } static bool cmp_key(const struct sw_flow_key *key1, const struct sw_flow_key *key2, int key_start, int key_end) { const long *cp1 = (const long *)((const u8 *)key1 + key_start); const long *cp2 = (const long *)((const u8 *)key2 + key_start); int i; for (i = key_start; i < key_end; i += sizeof(long)) if (*cp1++ ^ *cp2++) return false; return true; } static bool flow_cmp_masked_key(const struct sw_flow *flow, const struct sw_flow_key *key, const struct sw_flow_key_range *range) { return cmp_key(&flow->key, key, range->start, range->end); } static bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow, const struct sw_flow_match *match) { struct sw_flow_key *key = match->key; int key_start = flow_key_start(key); int key_end = match->range.end; BUG_ON(ovs_identifier_is_ufid(&flow->id)); return cmp_key(flow->id.unmasked_key, key, key_start, key_end); } static struct sw_flow *masked_flow_lookup(struct table_instance *ti, const struct sw_flow_key *unmasked, const struct sw_flow_mask *mask, u32 *n_mask_hit) { struct sw_flow *flow; struct hlist_head *head; u32 hash; struct sw_flow_key masked_key; ovs_flow_mask_key(&masked_key, unmasked, false, mask); hash = flow_hash(&masked_key, &mask->range); head = find_bucket(ti, hash); (*n_mask_hit)++; hlist_for_each_entry_rcu(flow, head, flow_table.node[ti->node_ver], lockdep_ovsl_is_held()) { if (flow->mask == mask && flow->flow_table.hash == hash && flow_cmp_masked_key(flow, &masked_key, &mask->range)) return flow; } return NULL; } /* Flow lookup does full lookup on flow table. It starts with * mask from index passed in *index. * This function MUST be called with BH disabled due to the use * of CPU specific variables. */ static struct sw_flow *flow_lookup(struct flow_table *tbl, struct table_instance *ti, struct mask_array *ma, const struct sw_flow_key *key, u32 *n_mask_hit, u32 *n_cache_hit, u32 *index) { struct mask_array_stats *stats = this_cpu_ptr(ma->masks_usage_stats); struct sw_flow *flow; struct sw_flow_mask *mask; int i; if (likely(*index < ma->max)) { mask = rcu_dereference_ovsl(ma->masks[*index]); if (mask) { flow = masked_flow_lookup(ti, key, mask, n_mask_hit); if (flow) { u64_stats_update_begin(&stats->syncp); stats->usage_cntrs[*index]++; u64_stats_update_end(&stats->syncp); (*n_cache_hit)++; return flow; } } } for (i = 0; i < ma->max; i++) { if (i == *index) continue; mask = rcu_dereference_ovsl(ma->masks[i]); if (unlikely(!mask)) break; flow = masked_flow_lookup(ti, key, mask, n_mask_hit); if (flow) { /* Found */ *index = i; u64_stats_update_begin(&stats->syncp); stats->usage_cntrs[*index]++; u64_stats_update_end(&stats->syncp); return flow; } } return NULL; } /* * mask_cache maps flow to probable mask. This cache is not tightly * coupled cache, It means updates to mask list can result in inconsistent * cache entry in mask cache. * This is per cpu cache and is divided in MC_HASH_SEGS segments. * In case of a hash collision the entry is hashed in next segment. * */ struct sw_flow *ovs_flow_tbl_lookup_stats(struct flow_table *tbl, const struct sw_flow_key *key, u32 skb_hash, u32 *n_mask_hit, u32 *n_cache_hit) { struct mask_cache *mc = rcu_dereference(tbl->mask_cache); struct mask_array *ma = rcu_dereference(tbl->mask_array); struct table_instance *ti = rcu_dereference(tbl->ti); struct mask_cache_entry *entries, *ce; struct sw_flow *flow; u32 hash; int seg; *n_mask_hit = 0; *n_cache_hit = 0; if (unlikely(!skb_hash || mc->cache_size == 0)) { u32 mask_index = 0; u32 cache = 0; return flow_lookup(tbl, ti, ma, key, n_mask_hit, &cache, &mask_index); } /* Pre and post recirulation flows usually have the same skb_hash * value. To avoid hash collisions, rehash the 'skb_hash' with * 'recirc_id'. */ if (key->recirc_id) skb_hash = jhash_1word(skb_hash, key->recirc_id); ce = NULL; hash = skb_hash; entries = this_cpu_ptr(mc->mask_cache); /* Find the cache entry 'ce' to operate on. */ for (seg = 0; seg < MC_HASH_SEGS; seg++) { int index = hash & (mc->cache_size - 1); struct mask_cache_entry *e; e = &entries[index]; if (e->skb_hash == skb_hash) { flow = flow_lookup(tbl, ti, ma, key, n_mask_hit, n_cache_hit, &e->mask_index); if (!flow) e->skb_hash = 0; return flow; } if (!ce || e->skb_hash < ce->skb_hash) ce = e; /* A better replacement cache candidate. */ hash >>= MC_HASH_SHIFT; } /* Cache miss, do full lookup. */ flow = flow_lookup(tbl, ti, ma, key, n_mask_hit, n_cache_hit, &ce->mask_index); if (flow) ce->skb_hash = skb_hash; *n_cache_hit = 0; return flow; } struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *tbl, const struct sw_flow_key *key) { struct table_instance *ti = rcu_dereference_ovsl(tbl->ti); struct mask_array *ma = rcu_dereference_ovsl(tbl->mask_array); u32 __always_unused n_mask_hit; u32 __always_unused n_cache_hit; struct sw_flow *flow; u32 index = 0; /* This function gets called trough the netlink interface and therefore * is preemptible. However, flow_lookup() function needs to be called * with BH disabled due to CPU specific variables. */ local_bh_disable(); flow = flow_lookup(tbl, ti, ma, key, &n_mask_hit, &n_cache_hit, &index); local_bh_enable(); return flow; } struct sw_flow *ovs_flow_tbl_lookup_exact(struct flow_table *tbl, const struct sw_flow_match *match) { struct mask_array *ma = ovsl_dereference(tbl->mask_array); int i; /* Always called under ovs-mutex. */ for (i = 0; i < ma->max; i++) { struct table_instance *ti = rcu_dereference_ovsl(tbl->ti); u32 __always_unused n_mask_hit; struct sw_flow_mask *mask; struct sw_flow *flow; mask = ovsl_dereference(ma->masks[i]); if (!mask) continue; flow = masked_flow_lookup(ti, match->key, mask, &n_mask_hit); if (flow && ovs_identifier_is_key(&flow->id) && ovs_flow_cmp_unmasked_key(flow, match)) { return flow; } } return NULL; } static u32 ufid_hash(const struct sw_flow_id *sfid) { return jhash(sfid->ufid, sfid->ufid_len, 0); } static bool ovs_flow_cmp_ufid(const struct sw_flow *flow, const struct sw_flow_id *sfid) { if (flow->id.ufid_len != sfid->ufid_len) return false; return !memcmp(flow->id.ufid, sfid->ufid, sfid->ufid_len); } bool ovs_flow_cmp(const struct sw_flow *flow, const struct sw_flow_match *match) { if (ovs_identifier_is_ufid(&flow->id)) return flow_cmp_masked_key(flow, match->key, &match->range); return ovs_flow_cmp_unmasked_key(flow, match); } struct sw_flow *ovs_flow_tbl_lookup_ufid(struct flow_table *tbl, const struct sw_flow_id *ufid) { struct table_instance *ti = rcu_dereference_ovsl(tbl->ufid_ti); struct sw_flow *flow; struct hlist_head *head; u32 hash; hash = ufid_hash(ufid); head = find_bucket(ti, hash); hlist_for_each_entry_rcu(flow, head, ufid_table.node[ti->node_ver], lockdep_ovsl_is_held()) { if (flow->ufid_table.hash == hash && ovs_flow_cmp_ufid(flow, ufid)) return flow; } return NULL; } int ovs_flow_tbl_num_masks(const struct flow_table *table) { struct mask_array *ma = rcu_dereference_ovsl(table->mask_array); return READ_ONCE(ma->count); } u32 ovs_flow_tbl_masks_cache_size(const struct flow_table *table) { struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache); return READ_ONCE(mc->cache_size); } static struct table_instance *table_instance_expand(struct table_instance *ti, bool ufid) { return table_instance_rehash(ti, ti->n_buckets * 2, ufid); } /* Must be called with OVS mutex held. */ void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) { struct table_instance *ti = ovsl_dereference(table->ti); struct table_instance *ufid_ti = ovsl_dereference(table->ufid_ti); BUG_ON(table->count == 0); table_instance_flow_free(table, ti, ufid_ti, flow); } static struct sw_flow_mask *mask_alloc(void) { struct sw_flow_mask *mask; mask = kmalloc(sizeof(*mask), GFP_KERNEL); if (mask) mask->ref_count = 1; return mask; } static bool mask_equal(const struct sw_flow_mask *a, const struct sw_flow_mask *b) { const u8 *a_ = (const u8 *)&a->key + a->range.start; const u8 *b_ = (const u8 *)&b->key + b->range.start; return (a->range.end == b->range.end) && (a->range.start == b->range.start) && (memcmp(a_, b_, range_n_bytes(&a->range)) == 0); } static struct sw_flow_mask *flow_mask_find(const struct flow_table *tbl, const struct sw_flow_mask *mask) { struct mask_array *ma; int i; ma = ovsl_dereference(tbl->mask_array); for (i = 0; i < ma->max; i++) { struct sw_flow_mask *t; t = ovsl_dereference(ma->masks[i]); if (t && mask_equal(mask, t)) return t; } return NULL; } /* Add 'mask' into the mask list, if it is not already there. */ static int flow_mask_insert(struct flow_table *tbl, struct sw_flow *flow, const struct sw_flow_mask *new) { struct sw_flow_mask *mask; mask = flow_mask_find(tbl, new); if (!mask) { /* Allocate a new mask if none exists. */ mask = mask_alloc(); if (!mask) return -ENOMEM; mask->key = new->key; mask->range = new->range; /* Add mask to mask-list. */ if (tbl_mask_array_add_mask(tbl, mask)) { kfree(mask); return -ENOMEM; } } else { BUG_ON(!mask->ref_count); mask->ref_count++; } flow->mask = mask; return 0; } /* Must be called with OVS mutex held. */ static void flow_key_insert(struct flow_table *table, struct sw_flow *flow) { struct table_instance *new_ti = NULL; struct table_instance *ti; flow->flow_table.hash = flow_hash(&flow->key, &flow->mask->range); ti = ovsl_dereference(table->ti); table_instance_insert(ti, flow); table->count++; /* Expand table, if necessary, to make room. */ if (table->count > ti->n_buckets) new_ti = table_instance_expand(ti, false); else if (time_after(jiffies, table->last_rehash + REHASH_INTERVAL)) new_ti = table_instance_rehash(ti, ti->n_buckets, false); if (new_ti) { rcu_assign_pointer(table->ti, new_ti); call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb); table->last_rehash = jiffies; } } /* Must be called with OVS mutex held. */ static void flow_ufid_insert(struct flow_table *table, struct sw_flow *flow) { struct table_instance *ti; flow->ufid_table.hash = ufid_hash(&flow->id); ti = ovsl_dereference(table->ufid_ti); ufid_table_instance_insert(ti, flow); table->ufid_count++; /* Expand table, if necessary, to make room. */ if (table->ufid_count > ti->n_buckets) { struct table_instance *new_ti; new_ti = table_instance_expand(ti, true); if (new_ti) { rcu_assign_pointer(table->ufid_ti, new_ti); call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb); } } } /* Must be called with OVS mutex held. */ int ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow, const struct sw_flow_mask *mask) { int err; err = flow_mask_insert(table, flow, mask); if (err) return err; flow_key_insert(table, flow); if (ovs_identifier_is_ufid(&flow->id)) flow_ufid_insert(table, flow); return 0; } static int compare_mask_and_count(const void *a, const void *b) { const struct mask_count *mc_a = a; const struct mask_count *mc_b = b; return (s64)mc_b->counter - (s64)mc_a->counter; } /* Must be called with OVS mutex held. */ void ovs_flow_masks_rebalance(struct flow_table *table) { struct mask_array *ma = rcu_dereference_ovsl(table->mask_array); struct mask_count *masks_and_count; struct mask_array *new; int masks_entries = 0; int i; /* Build array of all current entries with use counters. */ masks_and_count = kmalloc_array(ma->max, sizeof(*masks_and_count), GFP_KERNEL); if (!masks_and_count) return; for (i = 0; i < ma->max; i++) { struct sw_flow_mask *mask; int cpu; mask = rcu_dereference_ovsl(ma->masks[i]); if (unlikely(!mask)) break; masks_and_count[i].index = i; masks_and_count[i].counter = 0; for_each_possible_cpu(cpu) { struct mask_array_stats *stats; unsigned int start; u64 counter; stats = per_cpu_ptr(ma->masks_usage_stats, cpu); do { start = u64_stats_fetch_begin(&stats->syncp); counter = stats->usage_cntrs[i]; } while (u64_stats_fetch_retry(&stats->syncp, start)); masks_and_count[i].counter += counter; } /* Subtract the zero count value. */ masks_and_count[i].counter -= ma->masks_usage_zero_cntr[i]; /* Rather than calling tbl_mask_array_reset_counters() * below when no change is needed, do it inline here. */ ma->masks_usage_zero_cntr[i] += masks_and_count[i].counter; } if (i == 0) goto free_mask_entries; /* Sort the entries */ masks_entries = i; sort(masks_and_count, masks_entries, sizeof(*masks_and_count), compare_mask_and_count, NULL); /* If the order is the same, nothing to do... */ for (i = 0; i < masks_entries; i++) { if (i != masks_and_count[i].index) break; } if (i == masks_entries) goto free_mask_entries; /* Rebuilt the new list in order of usage. */ new = tbl_mask_array_alloc(ma->max); if (!new) goto free_mask_entries; for (i = 0; i < masks_entries; i++) { int index = masks_and_count[i].index; if (ovsl_dereference(ma->masks[index])) new->masks[new->count++] = ma->masks[index]; } rcu_assign_pointer(table->mask_array, new); call_rcu(&ma->rcu, mask_array_rcu_cb); free_mask_entries: kfree(masks_and_count); } /* Initializes the flow module. * Returns zero if successful or a negative error code. */ int ovs_flow_init(void) { BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long)); BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long)); flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow) + (nr_cpu_ids * sizeof(struct sw_flow_stats *)) + cpumask_size(), 0, 0, NULL); if (flow_cache == NULL) return -ENOMEM; flow_stats_cache = kmem_cache_create("sw_flow_stats", sizeof(struct sw_flow_stats), 0, SLAB_HWCACHE_ALIGN, NULL); if (flow_stats_cache == NULL) { kmem_cache_destroy(flow_cache); flow_cache = NULL; return -ENOMEM; } return 0; } /* Uninitializes the flow module. */ void ovs_flow_exit(void) { kmem_cache_destroy(flow_stats_cache); kmem_cache_destroy(flow_cache); }
linux-master
net/openvswitch/flow_table.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014 Nicira, Inc. * Copyright (c) 2013 Cisco Systems, Inc. */ #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/openvswitch.h> #include <linux/module.h> #include <net/udp.h> #include <net/ip_tunnels.h> #include <net/rtnetlink.h> #include <net/vxlan.h> #include "datapath.h" #include "vport.h" #include "vport-netdev.h" static struct vport_ops ovs_vxlan_netdev_vport_ops; static int vxlan_get_options(const struct vport *vport, struct sk_buff *skb) { struct vxlan_dev *vxlan = netdev_priv(vport->dev); __be16 dst_port = vxlan->cfg.dst_port; if (nla_put_u16(skb, OVS_TUNNEL_ATTR_DST_PORT, ntohs(dst_port))) return -EMSGSIZE; if (vxlan->cfg.flags & VXLAN_F_GBP) { struct nlattr *exts; exts = nla_nest_start_noflag(skb, OVS_TUNNEL_ATTR_EXTENSION); if (!exts) return -EMSGSIZE; if (vxlan->cfg.flags & VXLAN_F_GBP && nla_put_flag(skb, OVS_VXLAN_EXT_GBP)) return -EMSGSIZE; nla_nest_end(skb, exts); } return 0; } static const struct nla_policy exts_policy[OVS_VXLAN_EXT_MAX + 1] = { [OVS_VXLAN_EXT_GBP] = { .type = NLA_FLAG, }, }; static int vxlan_configure_exts(struct vport *vport, struct nlattr *attr, struct vxlan_config *conf) { struct nlattr *exts[OVS_VXLAN_EXT_MAX + 1]; int err; if (nla_len(attr) < sizeof(struct nlattr)) return -EINVAL; err = nla_parse_nested_deprecated(exts, OVS_VXLAN_EXT_MAX, attr, exts_policy, NULL); if (err < 0) return err; if (exts[OVS_VXLAN_EXT_GBP]) conf->flags |= VXLAN_F_GBP; return 0; } static struct vport *vxlan_tnl_create(const struct vport_parms *parms) { struct net *net = ovs_dp_get_net(parms->dp); struct nlattr *options = parms->options; struct net_device *dev; struct vport *vport; struct nlattr *a; int err; struct vxlan_config conf = { .no_share = true, .flags = VXLAN_F_COLLECT_METADATA | VXLAN_F_UDP_ZERO_CSUM6_RX, /* Don't restrict the packets that can be sent by MTU */ .mtu = IP_MAX_MTU, }; if (!options) { err = -EINVAL; goto error; } a = nla_find_nested(options, OVS_TUNNEL_ATTR_DST_PORT); if (a && nla_len(a) == sizeof(u16)) { conf.dst_port = htons(nla_get_u16(a)); } else { /* Require destination port from userspace. */ err = -EINVAL; goto error; } vport = ovs_vport_alloc(0, &ovs_vxlan_netdev_vport_ops, parms); if (IS_ERR(vport)) return vport; a = nla_find_nested(options, OVS_TUNNEL_ATTR_EXTENSION); if (a) { err = vxlan_configure_exts(vport, a, &conf); if (err) { ovs_vport_free(vport); goto error; } } rtnl_lock(); dev = vxlan_dev_create(net, parms->name, NET_NAME_USER, &conf); if (IS_ERR(dev)) { rtnl_unlock(); ovs_vport_free(vport); return ERR_CAST(dev); } err = dev_change_flags(dev, dev->flags | IFF_UP, NULL); if (err < 0) { rtnl_delete_link(dev, 0, NULL); rtnl_unlock(); ovs_vport_free(vport); goto error; } rtnl_unlock(); return vport; error: return ERR_PTR(err); } static struct vport *vxlan_create(const struct vport_parms *parms) { struct vport *vport; vport = vxlan_tnl_create(parms); if (IS_ERR(vport)) return vport; return ovs_netdev_link(vport, parms->name); } static struct vport_ops ovs_vxlan_netdev_vport_ops = { .type = OVS_VPORT_TYPE_VXLAN, .create = vxlan_create, .destroy = ovs_netdev_tunnel_destroy, .get_options = vxlan_get_options, .send = dev_queue_xmit, }; static int __init ovs_vxlan_tnl_init(void) { return ovs_vport_ops_register(&ovs_vxlan_netdev_vport_ops); } static void __exit ovs_vxlan_tnl_exit(void) { ovs_vport_ops_unregister(&ovs_vxlan_netdev_vport_ops); } module_init(ovs_vxlan_tnl_init); module_exit(ovs_vxlan_tnl_exit); MODULE_DESCRIPTION("OVS: VXLAN switching port"); MODULE_LICENSE("GPL"); MODULE_ALIAS("vport-type-4");
linux-master
net/openvswitch/vport-vxlan.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2012 Nicira, Inc. */ #include <linux/netdevice.h> #include <net/genetlink.h> #include <net/netns/generic.h> #include "datapath.h" #include "vport-internal_dev.h" #include "vport-netdev.h" static void dp_detach_port_notify(struct vport *vport) { struct sk_buff *notify; struct datapath *dp; dp = vport->dp; notify = ovs_vport_cmd_build_info(vport, ovs_dp_get_net(dp), 0, 0, OVS_VPORT_CMD_DEL); ovs_dp_detach_port(vport); if (IS_ERR(notify)) { genl_set_err(&dp_vport_genl_family, ovs_dp_get_net(dp), 0, 0, PTR_ERR(notify)); return; } genlmsg_multicast_netns(&dp_vport_genl_family, ovs_dp_get_net(dp), notify, 0, 0, GFP_KERNEL); } void ovs_dp_notify_wq(struct work_struct *work) { struct ovs_net *ovs_net = container_of(work, struct ovs_net, dp_notify_work); struct datapath *dp; ovs_lock(); list_for_each_entry(dp, &ovs_net->dps, list_node) { int i; for (i = 0; i < DP_VPORT_HASH_BUCKETS; i++) { struct vport *vport; struct hlist_node *n; hlist_for_each_entry_safe(vport, n, &dp->ports[i], dp_hash_node) { if (vport->ops->type == OVS_VPORT_TYPE_INTERNAL) continue; if (!(netif_is_ovs_port(vport->dev))) dp_detach_port_notify(vport); } } } ovs_unlock(); } static int dp_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct ovs_net *ovs_net; struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct vport *vport = NULL; if (!ovs_is_internal_dev(dev)) vport = ovs_netdev_get_vport(dev); if (!vport) return NOTIFY_DONE; if (event == NETDEV_UNREGISTER) { /* upper_dev_unlink and decrement promisc immediately */ ovs_netdev_detach_dev(vport); /* schedule vport destroy, dev_put and genl notification */ ovs_net = net_generic(dev_net(dev), ovs_net_id); queue_work(system_wq, &ovs_net->dp_notify_work); } return NOTIFY_DONE; } struct notifier_block ovs_dp_device_notifier = { .notifier_call = dp_device_event };
linux-master
net/openvswitch/dp_notify.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2014 Nicira, Inc. */ #include <linux/etherdevice.h> #include <linux/if.h> #include <linux/if_vlan.h> #include <linux/jhash.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/percpu.h> #include <linux/rcupdate.h> #include <linux/rtnetlink.h> #include <linux/compat.h> #include <net/net_namespace.h> #include <linux/module.h> #include "datapath.h" #include "vport.h" #include "vport-internal_dev.h" static LIST_HEAD(vport_ops_list); /* Protected by RCU read lock for reading, ovs_mutex for writing. */ static struct hlist_head *dev_table; #define VPORT_HASH_BUCKETS 1024 /** * ovs_vport_init - initialize vport subsystem * * Called at module load time to initialize the vport subsystem. */ int ovs_vport_init(void) { dev_table = kcalloc(VPORT_HASH_BUCKETS, sizeof(struct hlist_head), GFP_KERNEL); if (!dev_table) return -ENOMEM; return 0; } /** * ovs_vport_exit - shutdown vport subsystem * * Called at module exit time to shutdown the vport subsystem. */ void ovs_vport_exit(void) { kfree(dev_table); } static struct hlist_head *hash_bucket(const struct net *net, const char *name) { unsigned int hash = jhash(name, strlen(name), (unsigned long) net); return &dev_table[hash & (VPORT_HASH_BUCKETS - 1)]; } int __ovs_vport_ops_register(struct vport_ops *ops) { int err = -EEXIST; struct vport_ops *o; ovs_lock(); list_for_each_entry(o, &vport_ops_list, list) if (ops->type == o->type) goto errout; list_add_tail(&ops->list, &vport_ops_list); err = 0; errout: ovs_unlock(); return err; } EXPORT_SYMBOL_GPL(__ovs_vport_ops_register); void ovs_vport_ops_unregister(struct vport_ops *ops) { ovs_lock(); list_del(&ops->list); ovs_unlock(); } EXPORT_SYMBOL_GPL(ovs_vport_ops_unregister); /** * ovs_vport_locate - find a port that has already been created * * @net: network namespace * @name: name of port to find * * Must be called with ovs or RCU read lock. */ struct vport *ovs_vport_locate(const struct net *net, const char *name) { struct hlist_head *bucket = hash_bucket(net, name); struct vport *vport; hlist_for_each_entry_rcu(vport, bucket, hash_node, lockdep_ovsl_is_held()) if (!strcmp(name, ovs_vport_name(vport)) && net_eq(ovs_dp_get_net(vport->dp), net)) return vport; return NULL; } /** * ovs_vport_alloc - allocate and initialize new vport * * @priv_size: Size of private data area to allocate. * @ops: vport device ops * @parms: information about new vport. * * Allocate and initialize a new vport defined by @ops. The vport will contain * a private data area of size @priv_size that can be accessed using * vport_priv(). Some parameters of the vport will be initialized from @parms. * @vports that are no longer needed should be released with * vport_free(). */ struct vport *ovs_vport_alloc(int priv_size, const struct vport_ops *ops, const struct vport_parms *parms) { struct vport *vport; size_t alloc_size; int err; alloc_size = sizeof(struct vport); if (priv_size) { alloc_size = ALIGN(alloc_size, VPORT_ALIGN); alloc_size += priv_size; } vport = kzalloc(alloc_size, GFP_KERNEL); if (!vport) return ERR_PTR(-ENOMEM); vport->upcall_stats = netdev_alloc_pcpu_stats(struct vport_upcall_stats_percpu); if (!vport->upcall_stats) { err = -ENOMEM; goto err_kfree_vport; } vport->dp = parms->dp; vport->port_no = parms->port_no; vport->ops = ops; INIT_HLIST_NODE(&vport->dp_hash_node); if (ovs_vport_set_upcall_portids(vport, parms->upcall_portids)) { err = -EINVAL; goto err_free_percpu; } return vport; err_free_percpu: free_percpu(vport->upcall_stats); err_kfree_vport: kfree(vport); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(ovs_vport_alloc); /** * ovs_vport_free - uninitialize and free vport * * @vport: vport to free * * Frees a vport allocated with vport_alloc() when it is no longer needed. * * The caller must ensure that an RCU grace period has passed since the last * time @vport was in a datapath. */ void ovs_vport_free(struct vport *vport) { /* vport is freed from RCU callback or error path, Therefore * it is safe to use raw dereference. */ kfree(rcu_dereference_raw(vport->upcall_portids)); free_percpu(vport->upcall_stats); kfree(vport); } EXPORT_SYMBOL_GPL(ovs_vport_free); static struct vport_ops *ovs_vport_lookup(const struct vport_parms *parms) { struct vport_ops *ops; list_for_each_entry(ops, &vport_ops_list, list) if (ops->type == parms->type) return ops; return NULL; } /** * ovs_vport_add - add vport device (for kernel callers) * * @parms: Information about new vport. * * Creates a new vport with the specified configuration (which is dependent on * device type). ovs_mutex must be held. */ struct vport *ovs_vport_add(const struct vport_parms *parms) { struct vport_ops *ops; struct vport *vport; ops = ovs_vport_lookup(parms); if (ops) { struct hlist_head *bucket; if (!try_module_get(ops->owner)) return ERR_PTR(-EAFNOSUPPORT); vport = ops->create(parms); if (IS_ERR(vport)) { module_put(ops->owner); return vport; } bucket = hash_bucket(ovs_dp_get_net(vport->dp), ovs_vport_name(vport)); hlist_add_head_rcu(&vport->hash_node, bucket); return vport; } /* Unlock to attempt module load and return -EAGAIN if load * was successful as we need to restart the port addition * workflow. */ ovs_unlock(); request_module("vport-type-%d", parms->type); ovs_lock(); if (!ovs_vport_lookup(parms)) return ERR_PTR(-EAFNOSUPPORT); else return ERR_PTR(-EAGAIN); } /** * ovs_vport_set_options - modify existing vport device (for kernel callers) * * @vport: vport to modify. * @options: New configuration. * * Modifies an existing device with the specified configuration (which is * dependent on device type). ovs_mutex must be held. */ int ovs_vport_set_options(struct vport *vport, struct nlattr *options) { if (!vport->ops->set_options) return -EOPNOTSUPP; return vport->ops->set_options(vport, options); } /** * ovs_vport_del - delete existing vport device * * @vport: vport to delete. * * Detaches @vport from its datapath and destroys it. ovs_mutex must * be held. */ void ovs_vport_del(struct vport *vport) { hlist_del_rcu(&vport->hash_node); module_put(vport->ops->owner); vport->ops->destroy(vport); } /** * ovs_vport_get_stats - retrieve device stats * * @vport: vport from which to retrieve the stats * @stats: location to store stats * * Retrieves transmit, receive, and error stats for the given device. * * Must be called with ovs_mutex or rcu_read_lock. */ void ovs_vport_get_stats(struct vport *vport, struct ovs_vport_stats *stats) { const struct rtnl_link_stats64 *dev_stats; struct rtnl_link_stats64 temp; dev_stats = dev_get_stats(vport->dev, &temp); stats->rx_errors = dev_stats->rx_errors; stats->tx_errors = dev_stats->tx_errors; stats->tx_dropped = dev_stats->tx_dropped; stats->rx_dropped = dev_stats->rx_dropped; stats->rx_bytes = dev_stats->rx_bytes; stats->rx_packets = dev_stats->rx_packets; stats->tx_bytes = dev_stats->tx_bytes; stats->tx_packets = dev_stats->tx_packets; } /** * ovs_vport_get_upcall_stats - retrieve upcall stats * * @vport: vport from which to retrieve the stats. * @skb: sk_buff where upcall stats should be appended. * * Retrieves upcall stats for the given device. * * Must be called with ovs_mutex or rcu_read_lock. */ int ovs_vport_get_upcall_stats(struct vport *vport, struct sk_buff *skb) { struct nlattr *nla; int i; __u64 tx_success = 0; __u64 tx_fail = 0; for_each_possible_cpu(i) { const struct vport_upcall_stats_percpu *stats; unsigned int start; stats = per_cpu_ptr(vport->upcall_stats, i); do { start = u64_stats_fetch_begin(&stats->syncp); tx_success += u64_stats_read(&stats->n_success); tx_fail += u64_stats_read(&stats->n_fail); } while (u64_stats_fetch_retry(&stats->syncp, start)); } nla = nla_nest_start_noflag(skb, OVS_VPORT_ATTR_UPCALL_STATS); if (!nla) return -EMSGSIZE; if (nla_put_u64_64bit(skb, OVS_VPORT_UPCALL_ATTR_SUCCESS, tx_success, OVS_VPORT_ATTR_PAD)) { nla_nest_cancel(skb, nla); return -EMSGSIZE; } if (nla_put_u64_64bit(skb, OVS_VPORT_UPCALL_ATTR_FAIL, tx_fail, OVS_VPORT_ATTR_PAD)) { nla_nest_cancel(skb, nla); return -EMSGSIZE; } nla_nest_end(skb, nla); return 0; } /** * ovs_vport_get_options - retrieve device options * * @vport: vport from which to retrieve the options. * @skb: sk_buff where options should be appended. * * Retrieves the configuration of the given device, appending an * %OVS_VPORT_ATTR_OPTIONS attribute that in turn contains nested * vport-specific attributes to @skb. * * Returns 0 if successful, -EMSGSIZE if @skb has insufficient room, or another * negative error code if a real error occurred. If an error occurs, @skb is * left unmodified. * * Must be called with ovs_mutex or rcu_read_lock. */ int ovs_vport_get_options(const struct vport *vport, struct sk_buff *skb) { struct nlattr *nla; int err; if (!vport->ops->get_options) return 0; nla = nla_nest_start_noflag(skb, OVS_VPORT_ATTR_OPTIONS); if (!nla) return -EMSGSIZE; err = vport->ops->get_options(vport, skb); if (err) { nla_nest_cancel(skb, nla); return err; } nla_nest_end(skb, nla); return 0; } /** * ovs_vport_set_upcall_portids - set upcall portids of @vport. * * @vport: vport to modify. * @ids: new configuration, an array of port ids. * * Sets the vport's upcall_portids to @ids. * * Returns 0 if successful, -EINVAL if @ids is zero length or cannot be parsed * as an array of U32. * * Must be called with ovs_mutex. */ int ovs_vport_set_upcall_portids(struct vport *vport, const struct nlattr *ids) { struct vport_portids *old, *vport_portids; if (!nla_len(ids) || nla_len(ids) % sizeof(u32)) return -EINVAL; old = ovsl_dereference(vport->upcall_portids); vport_portids = kmalloc(sizeof(*vport_portids) + nla_len(ids), GFP_KERNEL); if (!vport_portids) return -ENOMEM; vport_portids->n_ids = nla_len(ids) / sizeof(u32); vport_portids->rn_ids = reciprocal_value(vport_portids->n_ids); nla_memcpy(vport_portids->ids, ids, nla_len(ids)); rcu_assign_pointer(vport->upcall_portids, vport_portids); if (old) kfree_rcu(old, rcu); return 0; } /** * ovs_vport_get_upcall_portids - get the upcall_portids of @vport. * * @vport: vport from which to retrieve the portids. * @skb: sk_buff where portids should be appended. * * Retrieves the configuration of the given vport, appending the * %OVS_VPORT_ATTR_UPCALL_PID attribute which is the array of upcall * portids to @skb. * * Returns 0 if successful, -EMSGSIZE if @skb has insufficient room. * If an error occurs, @skb is left unmodified. Must be called with * ovs_mutex or rcu_read_lock. */ int ovs_vport_get_upcall_portids(const struct vport *vport, struct sk_buff *skb) { struct vport_portids *ids; ids = rcu_dereference_ovsl(vport->upcall_portids); if (vport->dp->user_features & OVS_DP_F_VPORT_PIDS) return nla_put(skb, OVS_VPORT_ATTR_UPCALL_PID, ids->n_ids * sizeof(u32), (void *)ids->ids); else return nla_put_u32(skb, OVS_VPORT_ATTR_UPCALL_PID, ids->ids[0]); } /** * ovs_vport_find_upcall_portid - find the upcall portid to send upcall. * * @vport: vport from which the missed packet is received. * @skb: skb that the missed packet was received. * * Uses the skb_get_hash() to select the upcall portid to send the * upcall. * * Returns the portid of the target socket. Must be called with rcu_read_lock. */ u32 ovs_vport_find_upcall_portid(const struct vport *vport, struct sk_buff *skb) { struct vport_portids *ids; u32 ids_index; u32 hash; ids = rcu_dereference(vport->upcall_portids); /* If there is only one portid, select it in the fast-path. */ if (ids->n_ids == 1) return ids->ids[0]; hash = skb_get_hash(skb); ids_index = hash - ids->n_ids * reciprocal_divide(hash, ids->rn_ids); return ids->ids[ids_index]; } /** * ovs_vport_receive - pass up received packet to the datapath for processing * * @vport: vport that received the packet * @skb: skb that was received * @tun_info: tunnel (if any) that carried packet * * Must be called with rcu_read_lock. The packet cannot be shared and * skb->data should point to the Ethernet header. */ int ovs_vport_receive(struct vport *vport, struct sk_buff *skb, const struct ip_tunnel_info *tun_info) { struct sw_flow_key key; int error; OVS_CB(skb)->input_vport = vport; OVS_CB(skb)->mru = 0; OVS_CB(skb)->cutlen = 0; if (unlikely(dev_net(skb->dev) != ovs_dp_get_net(vport->dp))) { u32 mark; mark = skb->mark; skb_scrub_packet(skb, true); skb->mark = mark; tun_info = NULL; } /* Extract flow from 'skb' into 'key'. */ error = ovs_flow_key_extract(tun_info, skb, &key); if (unlikely(error)) { kfree_skb(skb); return error; } ovs_dp_process_packet(skb, &key); return 0; } static int packet_length(const struct sk_buff *skb, struct net_device *dev) { int length = skb->len - dev->hard_header_len; if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) length -= VLAN_HLEN; /* Don't subtract for multiple VLAN tags. Most (all?) drivers allow * (ETH_LEN + VLAN_HLEN) in addition to the mtu value, but almost none * account for 802.1ad. e.g. is_skb_forwardable(). */ return length > 0 ? length : 0; } void ovs_vport_send(struct vport *vport, struct sk_buff *skb, u8 mac_proto) { int mtu = vport->dev->mtu; switch (vport->dev->type) { case ARPHRD_NONE: if (mac_proto == MAC_PROTO_ETHERNET) { skb_reset_network_header(skb); skb_reset_mac_len(skb); skb->protocol = htons(ETH_P_TEB); } else if (mac_proto != MAC_PROTO_NONE) { WARN_ON_ONCE(1); goto drop; } break; case ARPHRD_ETHER: if (mac_proto != MAC_PROTO_ETHERNET) goto drop; break; default: goto drop; } if (unlikely(packet_length(skb, vport->dev) > mtu && !skb_is_gso(skb))) { vport->dev->stats.tx_errors++; if (vport->dev->flags & IFF_UP) net_warn_ratelimited("%s: dropped over-mtu packet: " "%d > %d\n", vport->dev->name, packet_length(skb, vport->dev), mtu); goto drop; } skb->dev = vport->dev; skb_clear_tstamp(skb); vport->ops->send(skb); return; drop: kfree_skb(skb); }
linux-master
net/openvswitch/vport.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2014 Nicira, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/module.h> #include <linux/if_arp.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/jhash.h> #include <linux/delay.h> #include <linux/time.h> #include <linux/etherdevice.h> #include <linux/genetlink.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/mutex.h> #include <linux/percpu.h> #include <linux/rcupdate.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/ethtool.h> #include <linux/wait.h> #include <asm/div64.h> #include <linux/highmem.h> #include <linux/netfilter_bridge.h> #include <linux/netfilter_ipv4.h> #include <linux/inetdevice.h> #include <linux/list.h> #include <linux/openvswitch.h> #include <linux/rculist.h> #include <linux/dmi.h> #include <net/genetlink.h> #include <net/gso.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/pkt_cls.h> #include "datapath.h" #include "drop.h" #include "flow.h" #include "flow_table.h" #include "flow_netlink.h" #include "meter.h" #include "openvswitch_trace.h" #include "vport-internal_dev.h" #include "vport-netdev.h" unsigned int ovs_net_id __read_mostly; static struct genl_family dp_packet_genl_family; static struct genl_family dp_flow_genl_family; static struct genl_family dp_datapath_genl_family; static const struct nla_policy flow_policy[]; static const struct genl_multicast_group ovs_dp_flow_multicast_group = { .name = OVS_FLOW_MCGROUP, }; static const struct genl_multicast_group ovs_dp_datapath_multicast_group = { .name = OVS_DATAPATH_MCGROUP, }; static const struct genl_multicast_group ovs_dp_vport_multicast_group = { .name = OVS_VPORT_MCGROUP, }; /* Check if need to build a reply message. * OVS userspace sets the NLM_F_ECHO flag if it needs the reply. */ static bool ovs_must_notify(struct genl_family *family, struct genl_info *info, unsigned int group) { return info->nlhdr->nlmsg_flags & NLM_F_ECHO || genl_has_listeners(family, genl_info_net(info), group); } static void ovs_notify(struct genl_family *family, struct sk_buff *skb, struct genl_info *info) { genl_notify(family, skb, info, 0, GFP_KERNEL); } /** * DOC: Locking: * * All writes e.g. Writes to device state (add/remove datapath, port, set * operations on vports, etc.), Writes to other state (flow table * modifications, set miscellaneous datapath parameters, etc.) are protected * by ovs_lock. * * Reads are protected by RCU. * * There are a few special cases (mostly stats) that have their own * synchronization but they nest under all of above and don't interact with * each other. * * The RTNL lock nests inside ovs_mutex. */ static DEFINE_MUTEX(ovs_mutex); void ovs_lock(void) { mutex_lock(&ovs_mutex); } void ovs_unlock(void) { mutex_unlock(&ovs_mutex); } #ifdef CONFIG_LOCKDEP int lockdep_ovsl_is_held(void) { if (debug_locks) return lockdep_is_held(&ovs_mutex); else return 1; } #endif static struct vport *new_vport(const struct vport_parms *); static int queue_gso_packets(struct datapath *dp, struct sk_buff *, const struct sw_flow_key *, const struct dp_upcall_info *, uint32_t cutlen); static int queue_userspace_packet(struct datapath *dp, struct sk_buff *, const struct sw_flow_key *, const struct dp_upcall_info *, uint32_t cutlen); static void ovs_dp_masks_rebalance(struct work_struct *work); static int ovs_dp_set_upcall_portids(struct datapath *, const struct nlattr *); /* Must be called with rcu_read_lock or ovs_mutex. */ const char *ovs_dp_name(const struct datapath *dp) { struct vport *vport = ovs_vport_ovsl_rcu(dp, OVSP_LOCAL); return ovs_vport_name(vport); } static int get_dpifindex(const struct datapath *dp) { struct vport *local; int ifindex; rcu_read_lock(); local = ovs_vport_rcu(dp, OVSP_LOCAL); if (local) ifindex = local->dev->ifindex; else ifindex = 0; rcu_read_unlock(); return ifindex; } static void destroy_dp_rcu(struct rcu_head *rcu) { struct datapath *dp = container_of(rcu, struct datapath, rcu); ovs_flow_tbl_destroy(&dp->table); free_percpu(dp->stats_percpu); kfree(dp->ports); ovs_meters_exit(dp); kfree(rcu_dereference_raw(dp->upcall_portids)); kfree(dp); } static struct hlist_head *vport_hash_bucket(const struct datapath *dp, u16 port_no) { return &dp->ports[port_no & (DP_VPORT_HASH_BUCKETS - 1)]; } /* Called with ovs_mutex or RCU read lock. */ struct vport *ovs_lookup_vport(const struct datapath *dp, u16 port_no) { struct vport *vport; struct hlist_head *head; head = vport_hash_bucket(dp, port_no); hlist_for_each_entry_rcu(vport, head, dp_hash_node, lockdep_ovsl_is_held()) { if (vport->port_no == port_no) return vport; } return NULL; } /* Called with ovs_mutex. */ static struct vport *new_vport(const struct vport_parms *parms) { struct vport *vport; vport = ovs_vport_add(parms); if (!IS_ERR(vport)) { struct datapath *dp = parms->dp; struct hlist_head *head = vport_hash_bucket(dp, vport->port_no); hlist_add_head_rcu(&vport->dp_hash_node, head); } return vport; } static void ovs_vport_update_upcall_stats(struct sk_buff *skb, const struct dp_upcall_info *upcall_info, bool upcall_result) { struct vport *p = OVS_CB(skb)->input_vport; struct vport_upcall_stats_percpu *stats; if (upcall_info->cmd != OVS_PACKET_CMD_MISS && upcall_info->cmd != OVS_PACKET_CMD_ACTION) return; stats = this_cpu_ptr(p->upcall_stats); u64_stats_update_begin(&stats->syncp); if (upcall_result) u64_stats_inc(&stats->n_success); else u64_stats_inc(&stats->n_fail); u64_stats_update_end(&stats->syncp); } void ovs_dp_detach_port(struct vport *p) { ASSERT_OVSL(); /* First drop references to device. */ hlist_del_rcu(&p->dp_hash_node); /* Then destroy it. */ ovs_vport_del(p); } /* Must be called with rcu_read_lock. */ void ovs_dp_process_packet(struct sk_buff *skb, struct sw_flow_key *key) { const struct vport *p = OVS_CB(skb)->input_vport; struct datapath *dp = p->dp; struct sw_flow *flow; struct sw_flow_actions *sf_acts; struct dp_stats_percpu *stats; u64 *stats_counter; u32 n_mask_hit; u32 n_cache_hit; int error; stats = this_cpu_ptr(dp->stats_percpu); /* Look up flow. */ flow = ovs_flow_tbl_lookup_stats(&dp->table, key, skb_get_hash(skb), &n_mask_hit, &n_cache_hit); if (unlikely(!flow)) { struct dp_upcall_info upcall; memset(&upcall, 0, sizeof(upcall)); upcall.cmd = OVS_PACKET_CMD_MISS; if (dp->user_features & OVS_DP_F_DISPATCH_UPCALL_PER_CPU) upcall.portid = ovs_dp_get_upcall_portid(dp, smp_processor_id()); else upcall.portid = ovs_vport_find_upcall_portid(p, skb); upcall.mru = OVS_CB(skb)->mru; error = ovs_dp_upcall(dp, skb, key, &upcall, 0); switch (error) { case 0: case -EAGAIN: case -ERESTARTSYS: case -EINTR: consume_skb(skb); break; default: kfree_skb(skb); break; } stats_counter = &stats->n_missed; goto out; } ovs_flow_stats_update(flow, key->tp.flags, skb); sf_acts = rcu_dereference(flow->sf_acts); error = ovs_execute_actions(dp, skb, sf_acts, key); if (unlikely(error)) net_dbg_ratelimited("ovs: action execution error on datapath %s: %d\n", ovs_dp_name(dp), error); stats_counter = &stats->n_hit; out: /* Update datapath statistics. */ u64_stats_update_begin(&stats->syncp); (*stats_counter)++; stats->n_mask_hit += n_mask_hit; stats->n_cache_hit += n_cache_hit; u64_stats_update_end(&stats->syncp); } int ovs_dp_upcall(struct datapath *dp, struct sk_buff *skb, const struct sw_flow_key *key, const struct dp_upcall_info *upcall_info, uint32_t cutlen) { struct dp_stats_percpu *stats; int err; if (trace_ovs_dp_upcall_enabled()) trace_ovs_dp_upcall(dp, skb, key, upcall_info); if (upcall_info->portid == 0) { err = -ENOTCONN; goto err; } if (!skb_is_gso(skb)) err = queue_userspace_packet(dp, skb, key, upcall_info, cutlen); else err = queue_gso_packets(dp, skb, key, upcall_info, cutlen); ovs_vport_update_upcall_stats(skb, upcall_info, !err); if (err) goto err; return 0; err: stats = this_cpu_ptr(dp->stats_percpu); u64_stats_update_begin(&stats->syncp); stats->n_lost++; u64_stats_update_end(&stats->syncp); return err; } static int queue_gso_packets(struct datapath *dp, struct sk_buff *skb, const struct sw_flow_key *key, const struct dp_upcall_info *upcall_info, uint32_t cutlen) { unsigned int gso_type = skb_shinfo(skb)->gso_type; struct sw_flow_key later_key; struct sk_buff *segs, *nskb; int err; BUILD_BUG_ON(sizeof(*OVS_CB(skb)) > SKB_GSO_CB_OFFSET); segs = __skb_gso_segment(skb, NETIF_F_SG, false); if (IS_ERR(segs)) return PTR_ERR(segs); if (segs == NULL) return -EINVAL; if (gso_type & SKB_GSO_UDP) { /* The initial flow key extracted by ovs_flow_key_extract() * in this case is for a first fragment, so we need to * properly mark later fragments. */ later_key = *key; later_key.ip.frag = OVS_FRAG_TYPE_LATER; } /* Queue all of the segments. */ skb_list_walk_safe(segs, skb, nskb) { if (gso_type & SKB_GSO_UDP && skb != segs) key = &later_key; err = queue_userspace_packet(dp, skb, key, upcall_info, cutlen); if (err) break; } /* Free all of the segments. */ skb_list_walk_safe(segs, skb, nskb) { if (err) kfree_skb(skb); else consume_skb(skb); } return err; } static size_t upcall_msg_size(const struct dp_upcall_info *upcall_info, unsigned int hdrlen, int actions_attrlen) { size_t size = NLMSG_ALIGN(sizeof(struct ovs_header)) + nla_total_size(hdrlen) /* OVS_PACKET_ATTR_PACKET */ + nla_total_size(ovs_key_attr_size()) /* OVS_PACKET_ATTR_KEY */ + nla_total_size(sizeof(unsigned int)) /* OVS_PACKET_ATTR_LEN */ + nla_total_size(sizeof(u64)); /* OVS_PACKET_ATTR_HASH */ /* OVS_PACKET_ATTR_USERDATA */ if (upcall_info->userdata) size += NLA_ALIGN(upcall_info->userdata->nla_len); /* OVS_PACKET_ATTR_EGRESS_TUN_KEY */ if (upcall_info->egress_tun_info) size += nla_total_size(ovs_tun_key_attr_size()); /* OVS_PACKET_ATTR_ACTIONS */ if (upcall_info->actions_len) size += nla_total_size(actions_attrlen); /* OVS_PACKET_ATTR_MRU */ if (upcall_info->mru) size += nla_total_size(sizeof(upcall_info->mru)); return size; } static void pad_packet(struct datapath *dp, struct sk_buff *skb) { if (!(dp->user_features & OVS_DP_F_UNALIGNED)) { size_t plen = NLA_ALIGN(skb->len) - skb->len; if (plen > 0) skb_put_zero(skb, plen); } } static int queue_userspace_packet(struct datapath *dp, struct sk_buff *skb, const struct sw_flow_key *key, const struct dp_upcall_info *upcall_info, uint32_t cutlen) { struct ovs_header *upcall; struct sk_buff *nskb = NULL; struct sk_buff *user_skb = NULL; /* to be queued to userspace */ struct nlattr *nla; size_t len; unsigned int hlen; int err, dp_ifindex; u64 hash; dp_ifindex = get_dpifindex(dp); if (!dp_ifindex) return -ENODEV; if (skb_vlan_tag_present(skb)) { nskb = skb_clone(skb, GFP_ATOMIC); if (!nskb) return -ENOMEM; nskb = __vlan_hwaccel_push_inside(nskb); if (!nskb) return -ENOMEM; skb = nskb; } if (nla_attr_size(skb->len) > USHRT_MAX) { err = -EFBIG; goto out; } /* Complete checksum if needed */ if (skb->ip_summed == CHECKSUM_PARTIAL && (err = skb_csum_hwoffload_help(skb, 0))) goto out; /* Older versions of OVS user space enforce alignment of the last * Netlink attribute to NLA_ALIGNTO which would require extensive * padding logic. Only perform zerocopy if padding is not required. */ if (dp->user_features & OVS_DP_F_UNALIGNED) hlen = skb_zerocopy_headlen(skb); else hlen = skb->len; len = upcall_msg_size(upcall_info, hlen - cutlen, OVS_CB(skb)->acts_origlen); user_skb = genlmsg_new(len, GFP_ATOMIC); if (!user_skb) { err = -ENOMEM; goto out; } upcall = genlmsg_put(user_skb, 0, 0, &dp_packet_genl_family, 0, upcall_info->cmd); if (!upcall) { err = -EINVAL; goto out; } upcall->dp_ifindex = dp_ifindex; err = ovs_nla_put_key(key, key, OVS_PACKET_ATTR_KEY, false, user_skb); if (err) goto out; if (upcall_info->userdata) __nla_put(user_skb, OVS_PACKET_ATTR_USERDATA, nla_len(upcall_info->userdata), nla_data(upcall_info->userdata)); if (upcall_info->egress_tun_info) { nla = nla_nest_start_noflag(user_skb, OVS_PACKET_ATTR_EGRESS_TUN_KEY); if (!nla) { err = -EMSGSIZE; goto out; } err = ovs_nla_put_tunnel_info(user_skb, upcall_info->egress_tun_info); if (err) goto out; nla_nest_end(user_skb, nla); } if (upcall_info->actions_len) { nla = nla_nest_start_noflag(user_skb, OVS_PACKET_ATTR_ACTIONS); if (!nla) { err = -EMSGSIZE; goto out; } err = ovs_nla_put_actions(upcall_info->actions, upcall_info->actions_len, user_skb); if (!err) nla_nest_end(user_skb, nla); else nla_nest_cancel(user_skb, nla); } /* Add OVS_PACKET_ATTR_MRU */ if (upcall_info->mru && nla_put_u16(user_skb, OVS_PACKET_ATTR_MRU, upcall_info->mru)) { err = -ENOBUFS; goto out; } /* Add OVS_PACKET_ATTR_LEN when packet is truncated */ if (cutlen > 0 && nla_put_u32(user_skb, OVS_PACKET_ATTR_LEN, skb->len)) { err = -ENOBUFS; goto out; } /* Add OVS_PACKET_ATTR_HASH */ hash = skb_get_hash_raw(skb); if (skb->sw_hash) hash |= OVS_PACKET_HASH_SW_BIT; if (skb->l4_hash) hash |= OVS_PACKET_HASH_L4_BIT; if (nla_put(user_skb, OVS_PACKET_ATTR_HASH, sizeof (u64), &hash)) { err = -ENOBUFS; goto out; } /* Only reserve room for attribute header, packet data is added * in skb_zerocopy() */ if (!(nla = nla_reserve(user_skb, OVS_PACKET_ATTR_PACKET, 0))) { err = -ENOBUFS; goto out; } nla->nla_len = nla_attr_size(skb->len - cutlen); err = skb_zerocopy(user_skb, skb, skb->len - cutlen, hlen); if (err) goto out; /* Pad OVS_PACKET_ATTR_PACKET if linear copy was performed */ pad_packet(dp, user_skb); ((struct nlmsghdr *) user_skb->data)->nlmsg_len = user_skb->len; err = genlmsg_unicast(ovs_dp_get_net(dp), user_skb, upcall_info->portid); user_skb = NULL; out: if (err) skb_tx_error(skb); consume_skb(user_skb); consume_skb(nskb); return err; } static int ovs_packet_cmd_execute(struct sk_buff *skb, struct genl_info *info) { struct ovs_header *ovs_header = genl_info_userhdr(info); struct net *net = sock_net(skb->sk); struct nlattr **a = info->attrs; struct sw_flow_actions *acts; struct sk_buff *packet; struct sw_flow *flow; struct sw_flow_actions *sf_acts; struct datapath *dp; struct vport *input_vport; u16 mru = 0; u64 hash; int len; int err; bool log = !a[OVS_PACKET_ATTR_PROBE]; err = -EINVAL; if (!a[OVS_PACKET_ATTR_PACKET] || !a[OVS_PACKET_ATTR_KEY] || !a[OVS_PACKET_ATTR_ACTIONS]) goto err; len = nla_len(a[OVS_PACKET_ATTR_PACKET]); packet = __dev_alloc_skb(NET_IP_ALIGN + len, GFP_KERNEL); err = -ENOMEM; if (!packet) goto err; skb_reserve(packet, NET_IP_ALIGN); nla_memcpy(__skb_put(packet, len), a[OVS_PACKET_ATTR_PACKET], len); /* Set packet's mru */ if (a[OVS_PACKET_ATTR_MRU]) { mru = nla_get_u16(a[OVS_PACKET_ATTR_MRU]); packet->ignore_df = 1; } OVS_CB(packet)->mru = mru; if (a[OVS_PACKET_ATTR_HASH]) { hash = nla_get_u64(a[OVS_PACKET_ATTR_HASH]); __skb_set_hash(packet, hash & 0xFFFFFFFFULL, !!(hash & OVS_PACKET_HASH_SW_BIT), !!(hash & OVS_PACKET_HASH_L4_BIT)); } /* Build an sw_flow for sending this packet. */ flow = ovs_flow_alloc(); err = PTR_ERR(flow); if (IS_ERR(flow)) goto err_kfree_skb; err = ovs_flow_key_extract_userspace(net, a[OVS_PACKET_ATTR_KEY], packet, &flow->key, log); if (err) goto err_flow_free; err = ovs_nla_copy_actions(net, a[OVS_PACKET_ATTR_ACTIONS], &flow->key, &acts, log); if (err) goto err_flow_free; rcu_assign_pointer(flow->sf_acts, acts); packet->priority = flow->key.phy.priority; packet->mark = flow->key.phy.skb_mark; rcu_read_lock(); dp = get_dp_rcu(net, ovs_header->dp_ifindex); err = -ENODEV; if (!dp) goto err_unlock; input_vport = ovs_vport_rcu(dp, flow->key.phy.in_port); if (!input_vport) input_vport = ovs_vport_rcu(dp, OVSP_LOCAL); if (!input_vport) goto err_unlock; packet->dev = input_vport->dev; OVS_CB(packet)->input_vport = input_vport; sf_acts = rcu_dereference(flow->sf_acts); local_bh_disable(); err = ovs_execute_actions(dp, packet, sf_acts, &flow->key); local_bh_enable(); rcu_read_unlock(); ovs_flow_free(flow, false); return err; err_unlock: rcu_read_unlock(); err_flow_free: ovs_flow_free(flow, false); err_kfree_skb: kfree_skb(packet); err: return err; } static const struct nla_policy packet_policy[OVS_PACKET_ATTR_MAX + 1] = { [OVS_PACKET_ATTR_PACKET] = { .len = ETH_HLEN }, [OVS_PACKET_ATTR_KEY] = { .type = NLA_NESTED }, [OVS_PACKET_ATTR_ACTIONS] = { .type = NLA_NESTED }, [OVS_PACKET_ATTR_PROBE] = { .type = NLA_FLAG }, [OVS_PACKET_ATTR_MRU] = { .type = NLA_U16 }, [OVS_PACKET_ATTR_HASH] = { .type = NLA_U64 }, }; static const struct genl_small_ops dp_packet_genl_ops[] = { { .cmd = OVS_PACKET_CMD_EXECUTE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .doit = ovs_packet_cmd_execute } }; static struct genl_family dp_packet_genl_family __ro_after_init = { .hdrsize = sizeof(struct ovs_header), .name = OVS_PACKET_FAMILY, .version = OVS_PACKET_VERSION, .maxattr = OVS_PACKET_ATTR_MAX, .policy = packet_policy, .netnsok = true, .parallel_ops = true, .small_ops = dp_packet_genl_ops, .n_small_ops = ARRAY_SIZE(dp_packet_genl_ops), .resv_start_op = OVS_PACKET_CMD_EXECUTE + 1, .module = THIS_MODULE, }; static void get_dp_stats(const struct datapath *dp, struct ovs_dp_stats *stats, struct ovs_dp_megaflow_stats *mega_stats) { int i; memset(mega_stats, 0, sizeof(*mega_stats)); stats->n_flows = ovs_flow_tbl_count(&dp->table); mega_stats->n_masks = ovs_flow_tbl_num_masks(&dp->table); stats->n_hit = stats->n_missed = stats->n_lost = 0; for_each_possible_cpu(i) { const struct dp_stats_percpu *percpu_stats; struct dp_stats_percpu local_stats; unsigned int start; percpu_stats = per_cpu_ptr(dp->stats_percpu, i); do { start = u64_stats_fetch_begin(&percpu_stats->syncp); local_stats = *percpu_stats; } while (u64_stats_fetch_retry(&percpu_stats->syncp, start)); stats->n_hit += local_stats.n_hit; stats->n_missed += local_stats.n_missed; stats->n_lost += local_stats.n_lost; mega_stats->n_mask_hit += local_stats.n_mask_hit; mega_stats->n_cache_hit += local_stats.n_cache_hit; } } static bool should_fill_key(const struct sw_flow_id *sfid, uint32_t ufid_flags) { return ovs_identifier_is_ufid(sfid) && !(ufid_flags & OVS_UFID_F_OMIT_KEY); } static bool should_fill_mask(uint32_t ufid_flags) { return !(ufid_flags & OVS_UFID_F_OMIT_MASK); } static bool should_fill_actions(uint32_t ufid_flags) { return !(ufid_flags & OVS_UFID_F_OMIT_ACTIONS); } static size_t ovs_flow_cmd_msg_size(const struct sw_flow_actions *acts, const struct sw_flow_id *sfid, uint32_t ufid_flags) { size_t len = NLMSG_ALIGN(sizeof(struct ovs_header)); /* OVS_FLOW_ATTR_UFID, or unmasked flow key as fallback * see ovs_nla_put_identifier() */ if (sfid && ovs_identifier_is_ufid(sfid)) len += nla_total_size(sfid->ufid_len); else len += nla_total_size(ovs_key_attr_size()); /* OVS_FLOW_ATTR_KEY */ if (!sfid || should_fill_key(sfid, ufid_flags)) len += nla_total_size(ovs_key_attr_size()); /* OVS_FLOW_ATTR_MASK */ if (should_fill_mask(ufid_flags)) len += nla_total_size(ovs_key_attr_size()); /* OVS_FLOW_ATTR_ACTIONS */ if (should_fill_actions(ufid_flags)) len += nla_total_size(acts->orig_len); return len + nla_total_size_64bit(sizeof(struct ovs_flow_stats)) /* OVS_FLOW_ATTR_STATS */ + nla_total_size(1) /* OVS_FLOW_ATTR_TCP_FLAGS */ + nla_total_size_64bit(8); /* OVS_FLOW_ATTR_USED */ } /* Called with ovs_mutex or RCU read lock. */ static int ovs_flow_cmd_fill_stats(const struct sw_flow *flow, struct sk_buff *skb) { struct ovs_flow_stats stats; __be16 tcp_flags; unsigned long used; ovs_flow_stats_get(flow, &stats, &used, &tcp_flags); if (used && nla_put_u64_64bit(skb, OVS_FLOW_ATTR_USED, ovs_flow_used_time(used), OVS_FLOW_ATTR_PAD)) return -EMSGSIZE; if (stats.n_packets && nla_put_64bit(skb, OVS_FLOW_ATTR_STATS, sizeof(struct ovs_flow_stats), &stats, OVS_FLOW_ATTR_PAD)) return -EMSGSIZE; if ((u8)ntohs(tcp_flags) && nla_put_u8(skb, OVS_FLOW_ATTR_TCP_FLAGS, (u8)ntohs(tcp_flags))) return -EMSGSIZE; return 0; } /* Called with ovs_mutex or RCU read lock. */ static int ovs_flow_cmd_fill_actions(const struct sw_flow *flow, struct sk_buff *skb, int skb_orig_len) { struct nlattr *start; int err; /* If OVS_FLOW_ATTR_ACTIONS doesn't fit, skip dumping the actions if * this is the first flow to be dumped into 'skb'. This is unusual for * Netlink but individual action lists can be longer than * NLMSG_GOODSIZE and thus entirely undumpable if we didn't do this. * The userspace caller can always fetch the actions separately if it * really wants them. (Most userspace callers in fact don't care.) * * This can only fail for dump operations because the skb is always * properly sized for single flows. */ start = nla_nest_start_noflag(skb, OVS_FLOW_ATTR_ACTIONS); if (start) { const struct sw_flow_actions *sf_acts; sf_acts = rcu_dereference_ovsl(flow->sf_acts); err = ovs_nla_put_actions(sf_acts->actions, sf_acts->actions_len, skb); if (!err) nla_nest_end(skb, start); else { if (skb_orig_len) return err; nla_nest_cancel(skb, start); } } else if (skb_orig_len) { return -EMSGSIZE; } return 0; } /* Called with ovs_mutex or RCU read lock. */ static int ovs_flow_cmd_fill_info(const struct sw_flow *flow, int dp_ifindex, struct sk_buff *skb, u32 portid, u32 seq, u32 flags, u8 cmd, u32 ufid_flags) { const int skb_orig_len = skb->len; struct ovs_header *ovs_header; int err; ovs_header = genlmsg_put(skb, portid, seq, &dp_flow_genl_family, flags, cmd); if (!ovs_header) return -EMSGSIZE; ovs_header->dp_ifindex = dp_ifindex; err = ovs_nla_put_identifier(flow, skb); if (err) goto error; if (should_fill_key(&flow->id, ufid_flags)) { err = ovs_nla_put_masked_key(flow, skb); if (err) goto error; } if (should_fill_mask(ufid_flags)) { err = ovs_nla_put_mask(flow, skb); if (err) goto error; } err = ovs_flow_cmd_fill_stats(flow, skb); if (err) goto error; if (should_fill_actions(ufid_flags)) { err = ovs_flow_cmd_fill_actions(flow, skb, skb_orig_len); if (err) goto error; } genlmsg_end(skb, ovs_header); return 0; error: genlmsg_cancel(skb, ovs_header); return err; } /* May not be called with RCU read lock. */ static struct sk_buff *ovs_flow_cmd_alloc_info(const struct sw_flow_actions *acts, const struct sw_flow_id *sfid, struct genl_info *info, bool always, uint32_t ufid_flags) { struct sk_buff *skb; size_t len; if (!always && !ovs_must_notify(&dp_flow_genl_family, info, 0)) return NULL; len = ovs_flow_cmd_msg_size(acts, sfid, ufid_flags); skb = genlmsg_new(len, GFP_KERNEL); if (!skb) return ERR_PTR(-ENOMEM); return skb; } /* Called with ovs_mutex. */ static struct sk_buff *ovs_flow_cmd_build_info(const struct sw_flow *flow, int dp_ifindex, struct genl_info *info, u8 cmd, bool always, u32 ufid_flags) { struct sk_buff *skb; int retval; skb = ovs_flow_cmd_alloc_info(ovsl_dereference(flow->sf_acts), &flow->id, info, always, ufid_flags); if (IS_ERR_OR_NULL(skb)) return skb; retval = ovs_flow_cmd_fill_info(flow, dp_ifindex, skb, info->snd_portid, info->snd_seq, 0, cmd, ufid_flags); if (WARN_ON_ONCE(retval < 0)) { kfree_skb(skb); skb = ERR_PTR(retval); } return skb; } static int ovs_flow_cmd_new(struct sk_buff *skb, struct genl_info *info) { struct net *net = sock_net(skb->sk); struct nlattr **a = info->attrs; struct ovs_header *ovs_header = genl_info_userhdr(info); struct sw_flow *flow = NULL, *new_flow; struct sw_flow_mask mask; struct sk_buff *reply; struct datapath *dp; struct sw_flow_key *key; struct sw_flow_actions *acts; struct sw_flow_match match; u32 ufid_flags = ovs_nla_get_ufid_flags(a[OVS_FLOW_ATTR_UFID_FLAGS]); int error; bool log = !a[OVS_FLOW_ATTR_PROBE]; /* Must have key and actions. */ error = -EINVAL; if (!a[OVS_FLOW_ATTR_KEY]) { OVS_NLERR(log, "Flow key attr not present in new flow."); goto error; } if (!a[OVS_FLOW_ATTR_ACTIONS]) { OVS_NLERR(log, "Flow actions attr not present in new flow."); goto error; } /* Most of the time we need to allocate a new flow, do it before * locking. */ new_flow = ovs_flow_alloc(); if (IS_ERR(new_flow)) { error = PTR_ERR(new_flow); goto error; } /* Extract key. */ key = kzalloc(sizeof(*key), GFP_KERNEL); if (!key) { error = -ENOMEM; goto err_kfree_flow; } ovs_match_init(&match, key, false, &mask); error = ovs_nla_get_match(net, &match, a[OVS_FLOW_ATTR_KEY], a[OVS_FLOW_ATTR_MASK], log); if (error) goto err_kfree_key; ovs_flow_mask_key(&new_flow->key, key, true, &mask); /* Extract flow identifier. */ error = ovs_nla_get_identifier(&new_flow->id, a[OVS_FLOW_ATTR_UFID], key, log); if (error) goto err_kfree_key; /* Validate actions. */ error = ovs_nla_copy_actions(net, a[OVS_FLOW_ATTR_ACTIONS], &new_flow->key, &acts, log); if (error) { OVS_NLERR(log, "Flow actions may not be safe on all matching packets."); goto err_kfree_key; } reply = ovs_flow_cmd_alloc_info(acts, &new_flow->id, info, false, ufid_flags); if (IS_ERR(reply)) { error = PTR_ERR(reply); goto err_kfree_acts; } ovs_lock(); dp = get_dp(net, ovs_header->dp_ifindex); if (unlikely(!dp)) { error = -ENODEV; goto err_unlock_ovs; } /* Check if this is a duplicate flow */ if (ovs_identifier_is_ufid(&new_flow->id)) flow = ovs_flow_tbl_lookup_ufid(&dp->table, &new_flow->id); if (!flow) flow = ovs_flow_tbl_lookup(&dp->table, key); if (likely(!flow)) { rcu_assign_pointer(new_flow->sf_acts, acts); /* Put flow in bucket. */ error = ovs_flow_tbl_insert(&dp->table, new_flow, &mask); if (unlikely(error)) { acts = NULL; goto err_unlock_ovs; } if (unlikely(reply)) { error = ovs_flow_cmd_fill_info(new_flow, ovs_header->dp_ifindex, reply, info->snd_portid, info->snd_seq, 0, OVS_FLOW_CMD_NEW, ufid_flags); BUG_ON(error < 0); } ovs_unlock(); } else { struct sw_flow_actions *old_acts; /* Bail out if we're not allowed to modify an existing flow. * We accept NLM_F_CREATE in place of the intended NLM_F_EXCL * because Generic Netlink treats the latter as a dump * request. We also accept NLM_F_EXCL in case that bug ever * gets fixed. */ if (unlikely(info->nlhdr->nlmsg_flags & (NLM_F_CREATE | NLM_F_EXCL))) { error = -EEXIST; goto err_unlock_ovs; } /* The flow identifier has to be the same for flow updates. * Look for any overlapping flow. */ if (unlikely(!ovs_flow_cmp(flow, &match))) { if (ovs_identifier_is_key(&flow->id)) flow = ovs_flow_tbl_lookup_exact(&dp->table, &match); else /* UFID matches but key is different */ flow = NULL; if (!flow) { error = -ENOENT; goto err_unlock_ovs; } } /* Update actions. */ old_acts = ovsl_dereference(flow->sf_acts); rcu_assign_pointer(flow->sf_acts, acts); if (unlikely(reply)) { error = ovs_flow_cmd_fill_info(flow, ovs_header->dp_ifindex, reply, info->snd_portid, info->snd_seq, 0, OVS_FLOW_CMD_NEW, ufid_flags); BUG_ON(error < 0); } ovs_unlock(); ovs_nla_free_flow_actions_rcu(old_acts); ovs_flow_free(new_flow, false); } if (reply) ovs_notify(&dp_flow_genl_family, reply, info); kfree(key); return 0; err_unlock_ovs: ovs_unlock(); kfree_skb(reply); err_kfree_acts: ovs_nla_free_flow_actions(acts); err_kfree_key: kfree(key); err_kfree_flow: ovs_flow_free(new_flow, false); error: return error; } /* Factor out action copy to avoid "Wframe-larger-than=1024" warning. */ static noinline_for_stack struct sw_flow_actions *get_flow_actions(struct net *net, const struct nlattr *a, const struct sw_flow_key *key, const struct sw_flow_mask *mask, bool log) { struct sw_flow_actions *acts; struct sw_flow_key masked_key; int error; ovs_flow_mask_key(&masked_key, key, true, mask); error = ovs_nla_copy_actions(net, a, &masked_key, &acts, log); if (error) { OVS_NLERR(log, "Actions may not be safe on all matching packets"); return ERR_PTR(error); } return acts; } /* Factor out match-init and action-copy to avoid * "Wframe-larger-than=1024" warning. Because mask is only * used to get actions, we new a function to save some * stack space. * * If there are not key and action attrs, we return 0 * directly. In the case, the caller will also not use the * match as before. If there is action attr, we try to get * actions and save them to *acts. Before returning from * the function, we reset the match->mask pointer. Because * we should not to return match object with dangling reference * to mask. * */ static noinline_for_stack int ovs_nla_init_match_and_action(struct net *net, struct sw_flow_match *match, struct sw_flow_key *key, struct nlattr **a, struct sw_flow_actions **acts, bool log) { struct sw_flow_mask mask; int error = 0; if (a[OVS_FLOW_ATTR_KEY]) { ovs_match_init(match, key, true, &mask); error = ovs_nla_get_match(net, match, a[OVS_FLOW_ATTR_KEY], a[OVS_FLOW_ATTR_MASK], log); if (error) goto error; } if (a[OVS_FLOW_ATTR_ACTIONS]) { if (!a[OVS_FLOW_ATTR_KEY]) { OVS_NLERR(log, "Flow key attribute not present in set flow."); error = -EINVAL; goto error; } *acts = get_flow_actions(net, a[OVS_FLOW_ATTR_ACTIONS], key, &mask, log); if (IS_ERR(*acts)) { error = PTR_ERR(*acts); goto error; } } /* On success, error is 0. */ error: match->mask = NULL; return error; } static int ovs_flow_cmd_set(struct sk_buff *skb, struct genl_info *info) { struct net *net = sock_net(skb->sk); struct nlattr **a = info->attrs; struct ovs_header *ovs_header = genl_info_userhdr(info); struct sw_flow_key key; struct sw_flow *flow; struct sk_buff *reply = NULL; struct datapath *dp; struct sw_flow_actions *old_acts = NULL, *acts = NULL; struct sw_flow_match match; struct sw_flow_id sfid; u32 ufid_flags = ovs_nla_get_ufid_flags(a[OVS_FLOW_ATTR_UFID_FLAGS]); int error = 0; bool log = !a[OVS_FLOW_ATTR_PROBE]; bool ufid_present; ufid_present = ovs_nla_get_ufid(&sfid, a[OVS_FLOW_ATTR_UFID], log); if (!a[OVS_FLOW_ATTR_KEY] && !ufid_present) { OVS_NLERR(log, "Flow set message rejected, Key attribute missing."); return -EINVAL; } error = ovs_nla_init_match_and_action(net, &match, &key, a, &acts, log); if (error) goto error; if (acts) { /* Can allocate before locking if have acts. */ reply = ovs_flow_cmd_alloc_info(acts, &sfid, info, false, ufid_flags); if (IS_ERR(reply)) { error = PTR_ERR(reply); goto err_kfree_acts; } } ovs_lock(); dp = get_dp(net, ovs_header->dp_ifindex); if (unlikely(!dp)) { error = -ENODEV; goto err_unlock_ovs; } /* Check that the flow exists. */ if (ufid_present) flow = ovs_flow_tbl_lookup_ufid(&dp->table, &sfid); else flow = ovs_flow_tbl_lookup_exact(&dp->table, &match); if (unlikely(!flow)) { error = -ENOENT; goto err_unlock_ovs; } /* Update actions, if present. */ if (likely(acts)) { old_acts = ovsl_dereference(flow->sf_acts); rcu_assign_pointer(flow->sf_acts, acts); if (unlikely(reply)) { error = ovs_flow_cmd_fill_info(flow, ovs_header->dp_ifindex, reply, info->snd_portid, info->snd_seq, 0, OVS_FLOW_CMD_SET, ufid_flags); BUG_ON(error < 0); } } else { /* Could not alloc without acts before locking. */ reply = ovs_flow_cmd_build_info(flow, ovs_header->dp_ifindex, info, OVS_FLOW_CMD_SET, false, ufid_flags); if (IS_ERR(reply)) { error = PTR_ERR(reply); goto err_unlock_ovs; } } /* Clear stats. */ if (a[OVS_FLOW_ATTR_CLEAR]) ovs_flow_stats_clear(flow); ovs_unlock(); if (reply) ovs_notify(&dp_flow_genl_family, reply, info); if (old_acts) ovs_nla_free_flow_actions_rcu(old_acts); return 0; err_unlock_ovs: ovs_unlock(); kfree_skb(reply); err_kfree_acts: ovs_nla_free_flow_actions(acts); error: return error; } static int ovs_flow_cmd_get(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct ovs_header *ovs_header = genl_info_userhdr(info); struct net *net = sock_net(skb->sk); struct sw_flow_key key; struct sk_buff *reply; struct sw_flow *flow; struct datapath *dp; struct sw_flow_match match; struct sw_flow_id ufid; u32 ufid_flags = ovs_nla_get_ufid_flags(a[OVS_FLOW_ATTR_UFID_FLAGS]); int err = 0; bool log = !a[OVS_FLOW_ATTR_PROBE]; bool ufid_present; ufid_present = ovs_nla_get_ufid(&ufid, a[OVS_FLOW_ATTR_UFID], log); if (a[OVS_FLOW_ATTR_KEY]) { ovs_match_init(&match, &key, true, NULL); err = ovs_nla_get_match(net, &match, a[OVS_FLOW_ATTR_KEY], NULL, log); } else if (!ufid_present) { OVS_NLERR(log, "Flow get message rejected, Key attribute missing."); err = -EINVAL; } if (err) return err; ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto unlock; } if (ufid_present) flow = ovs_flow_tbl_lookup_ufid(&dp->table, &ufid); else flow = ovs_flow_tbl_lookup_exact(&dp->table, &match); if (!flow) { err = -ENOENT; goto unlock; } reply = ovs_flow_cmd_build_info(flow, ovs_header->dp_ifindex, info, OVS_FLOW_CMD_GET, true, ufid_flags); if (IS_ERR(reply)) { err = PTR_ERR(reply); goto unlock; } ovs_unlock(); return genlmsg_reply(reply, info); unlock: ovs_unlock(); return err; } static int ovs_flow_cmd_del(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct ovs_header *ovs_header = genl_info_userhdr(info); struct net *net = sock_net(skb->sk); struct sw_flow_key key; struct sk_buff *reply; struct sw_flow *flow = NULL; struct datapath *dp; struct sw_flow_match match; struct sw_flow_id ufid; u32 ufid_flags = ovs_nla_get_ufid_flags(a[OVS_FLOW_ATTR_UFID_FLAGS]); int err; bool log = !a[OVS_FLOW_ATTR_PROBE]; bool ufid_present; ufid_present = ovs_nla_get_ufid(&ufid, a[OVS_FLOW_ATTR_UFID], log); if (a[OVS_FLOW_ATTR_KEY]) { ovs_match_init(&match, &key, true, NULL); err = ovs_nla_get_match(net, &match, a[OVS_FLOW_ATTR_KEY], NULL, log); if (unlikely(err)) return err; } ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (unlikely(!dp)) { err = -ENODEV; goto unlock; } if (unlikely(!a[OVS_FLOW_ATTR_KEY] && !ufid_present)) { err = ovs_flow_tbl_flush(&dp->table); goto unlock; } if (ufid_present) flow = ovs_flow_tbl_lookup_ufid(&dp->table, &ufid); else flow = ovs_flow_tbl_lookup_exact(&dp->table, &match); if (unlikely(!flow)) { err = -ENOENT; goto unlock; } ovs_flow_tbl_remove(&dp->table, flow); ovs_unlock(); reply = ovs_flow_cmd_alloc_info((const struct sw_flow_actions __force *) flow->sf_acts, &flow->id, info, false, ufid_flags); if (likely(reply)) { if (!IS_ERR(reply)) { rcu_read_lock(); /*To keep RCU checker happy. */ err = ovs_flow_cmd_fill_info(flow, ovs_header->dp_ifindex, reply, info->snd_portid, info->snd_seq, 0, OVS_FLOW_CMD_DEL, ufid_flags); rcu_read_unlock(); if (WARN_ON_ONCE(err < 0)) { kfree_skb(reply); goto out_free; } ovs_notify(&dp_flow_genl_family, reply, info); } else { netlink_set_err(sock_net(skb->sk)->genl_sock, 0, 0, PTR_ERR(reply)); } } out_free: ovs_flow_free(flow, true); return 0; unlock: ovs_unlock(); return err; } static int ovs_flow_cmd_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct nlattr *a[__OVS_FLOW_ATTR_MAX]; struct ovs_header *ovs_header = genlmsg_data(nlmsg_data(cb->nlh)); struct table_instance *ti; struct datapath *dp; u32 ufid_flags; int err; err = genlmsg_parse_deprecated(cb->nlh, &dp_flow_genl_family, a, OVS_FLOW_ATTR_MAX, flow_policy, NULL); if (err) return err; ufid_flags = ovs_nla_get_ufid_flags(a[OVS_FLOW_ATTR_UFID_FLAGS]); rcu_read_lock(); dp = get_dp_rcu(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { rcu_read_unlock(); return -ENODEV; } ti = rcu_dereference(dp->table.ti); for (;;) { struct sw_flow *flow; u32 bucket, obj; bucket = cb->args[0]; obj = cb->args[1]; flow = ovs_flow_tbl_dump_next(ti, &bucket, &obj); if (!flow) break; if (ovs_flow_cmd_fill_info(flow, ovs_header->dp_ifindex, skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, OVS_FLOW_CMD_GET, ufid_flags) < 0) break; cb->args[0] = bucket; cb->args[1] = obj; } rcu_read_unlock(); return skb->len; } static const struct nla_policy flow_policy[OVS_FLOW_ATTR_MAX + 1] = { [OVS_FLOW_ATTR_KEY] = { .type = NLA_NESTED }, [OVS_FLOW_ATTR_MASK] = { .type = NLA_NESTED }, [OVS_FLOW_ATTR_ACTIONS] = { .type = NLA_NESTED }, [OVS_FLOW_ATTR_CLEAR] = { .type = NLA_FLAG }, [OVS_FLOW_ATTR_PROBE] = { .type = NLA_FLAG }, [OVS_FLOW_ATTR_UFID] = { .type = NLA_UNSPEC, .len = 1 }, [OVS_FLOW_ATTR_UFID_FLAGS] = { .type = NLA_U32 }, }; static const struct genl_small_ops dp_flow_genl_ops[] = { { .cmd = OVS_FLOW_CMD_NEW, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .doit = ovs_flow_cmd_new }, { .cmd = OVS_FLOW_CMD_DEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .doit = ovs_flow_cmd_del }, { .cmd = OVS_FLOW_CMD_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, /* OK for unprivileged users. */ .doit = ovs_flow_cmd_get, .dumpit = ovs_flow_cmd_dump }, { .cmd = OVS_FLOW_CMD_SET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .doit = ovs_flow_cmd_set, }, }; static struct genl_family dp_flow_genl_family __ro_after_init = { .hdrsize = sizeof(struct ovs_header), .name = OVS_FLOW_FAMILY, .version = OVS_FLOW_VERSION, .maxattr = OVS_FLOW_ATTR_MAX, .policy = flow_policy, .netnsok = true, .parallel_ops = true, .small_ops = dp_flow_genl_ops, .n_small_ops = ARRAY_SIZE(dp_flow_genl_ops), .resv_start_op = OVS_FLOW_CMD_SET + 1, .mcgrps = &ovs_dp_flow_multicast_group, .n_mcgrps = 1, .module = THIS_MODULE, }; static size_t ovs_dp_cmd_msg_size(void) { size_t msgsize = NLMSG_ALIGN(sizeof(struct ovs_header)); msgsize += nla_total_size(IFNAMSIZ); msgsize += nla_total_size_64bit(sizeof(struct ovs_dp_stats)); msgsize += nla_total_size_64bit(sizeof(struct ovs_dp_megaflow_stats)); msgsize += nla_total_size(sizeof(u32)); /* OVS_DP_ATTR_USER_FEATURES */ msgsize += nla_total_size(sizeof(u32)); /* OVS_DP_ATTR_MASKS_CACHE_SIZE */ msgsize += nla_total_size(sizeof(u32) * nr_cpu_ids); /* OVS_DP_ATTR_PER_CPU_PIDS */ return msgsize; } /* Called with ovs_mutex. */ static int ovs_dp_cmd_fill_info(struct datapath *dp, struct sk_buff *skb, u32 portid, u32 seq, u32 flags, u8 cmd) { struct ovs_header *ovs_header; struct ovs_dp_stats dp_stats; struct ovs_dp_megaflow_stats dp_megaflow_stats; struct dp_nlsk_pids *pids = ovsl_dereference(dp->upcall_portids); int err, pids_len; ovs_header = genlmsg_put(skb, portid, seq, &dp_datapath_genl_family, flags, cmd); if (!ovs_header) goto error; ovs_header->dp_ifindex = get_dpifindex(dp); err = nla_put_string(skb, OVS_DP_ATTR_NAME, ovs_dp_name(dp)); if (err) goto nla_put_failure; get_dp_stats(dp, &dp_stats, &dp_megaflow_stats); if (nla_put_64bit(skb, OVS_DP_ATTR_STATS, sizeof(struct ovs_dp_stats), &dp_stats, OVS_DP_ATTR_PAD)) goto nla_put_failure; if (nla_put_64bit(skb, OVS_DP_ATTR_MEGAFLOW_STATS, sizeof(struct ovs_dp_megaflow_stats), &dp_megaflow_stats, OVS_DP_ATTR_PAD)) goto nla_put_failure; if (nla_put_u32(skb, OVS_DP_ATTR_USER_FEATURES, dp->user_features)) goto nla_put_failure; if (nla_put_u32(skb, OVS_DP_ATTR_MASKS_CACHE_SIZE, ovs_flow_tbl_masks_cache_size(&dp->table))) goto nla_put_failure; if (dp->user_features & OVS_DP_F_DISPATCH_UPCALL_PER_CPU && pids) { pids_len = min(pids->n_pids, nr_cpu_ids) * sizeof(u32); if (nla_put(skb, OVS_DP_ATTR_PER_CPU_PIDS, pids_len, &pids->pids)) goto nla_put_failure; } genlmsg_end(skb, ovs_header); return 0; nla_put_failure: genlmsg_cancel(skb, ovs_header); error: return -EMSGSIZE; } static struct sk_buff *ovs_dp_cmd_alloc_info(void) { return genlmsg_new(ovs_dp_cmd_msg_size(), GFP_KERNEL); } /* Called with rcu_read_lock or ovs_mutex. */ static struct datapath *lookup_datapath(struct net *net, const struct ovs_header *ovs_header, struct nlattr *a[OVS_DP_ATTR_MAX + 1]) { struct datapath *dp; if (!a[OVS_DP_ATTR_NAME]) dp = get_dp(net, ovs_header->dp_ifindex); else { struct vport *vport; vport = ovs_vport_locate(net, nla_data(a[OVS_DP_ATTR_NAME])); dp = vport && vport->port_no == OVSP_LOCAL ? vport->dp : NULL; } return dp ? dp : ERR_PTR(-ENODEV); } static void ovs_dp_reset_user_features(struct sk_buff *skb, struct genl_info *info) { struct datapath *dp; dp = lookup_datapath(sock_net(skb->sk), genl_info_userhdr(info), info->attrs); if (IS_ERR(dp)) return; pr_warn("%s: Dropping previously announced user features\n", ovs_dp_name(dp)); dp->user_features = 0; } static int ovs_dp_set_upcall_portids(struct datapath *dp, const struct nlattr *ids) { struct dp_nlsk_pids *old, *dp_nlsk_pids; if (!nla_len(ids) || nla_len(ids) % sizeof(u32)) return -EINVAL; old = ovsl_dereference(dp->upcall_portids); dp_nlsk_pids = kmalloc(sizeof(*dp_nlsk_pids) + nla_len(ids), GFP_KERNEL); if (!dp_nlsk_pids) return -ENOMEM; dp_nlsk_pids->n_pids = nla_len(ids) / sizeof(u32); nla_memcpy(dp_nlsk_pids->pids, ids, nla_len(ids)); rcu_assign_pointer(dp->upcall_portids, dp_nlsk_pids); kfree_rcu(old, rcu); return 0; } u32 ovs_dp_get_upcall_portid(const struct datapath *dp, uint32_t cpu_id) { struct dp_nlsk_pids *dp_nlsk_pids; dp_nlsk_pids = rcu_dereference(dp->upcall_portids); if (dp_nlsk_pids) { if (cpu_id < dp_nlsk_pids->n_pids) { return dp_nlsk_pids->pids[cpu_id]; } else if (dp_nlsk_pids->n_pids > 0 && cpu_id >= dp_nlsk_pids->n_pids) { /* If the number of netlink PIDs is mismatched with * the number of CPUs as seen by the kernel, log this * and send the upcall to an arbitrary socket (0) in * order to not drop packets */ pr_info_ratelimited("cpu_id mismatch with handler threads"); return dp_nlsk_pids->pids[cpu_id % dp_nlsk_pids->n_pids]; } else { return 0; } } else { return 0; } } static int ovs_dp_change(struct datapath *dp, struct nlattr *a[]) { u32 user_features = 0, old_features = dp->user_features; int err; if (a[OVS_DP_ATTR_USER_FEATURES]) { user_features = nla_get_u32(a[OVS_DP_ATTR_USER_FEATURES]); if (user_features & ~(OVS_DP_F_VPORT_PIDS | OVS_DP_F_UNALIGNED | OVS_DP_F_TC_RECIRC_SHARING | OVS_DP_F_DISPATCH_UPCALL_PER_CPU)) return -EOPNOTSUPP; #if !IS_ENABLED(CONFIG_NET_TC_SKB_EXT) if (user_features & OVS_DP_F_TC_RECIRC_SHARING) return -EOPNOTSUPP; #endif } if (a[OVS_DP_ATTR_MASKS_CACHE_SIZE]) { int err; u32 cache_size; cache_size = nla_get_u32(a[OVS_DP_ATTR_MASKS_CACHE_SIZE]); err = ovs_flow_tbl_masks_cache_resize(&dp->table, cache_size); if (err) return err; } dp->user_features = user_features; if (dp->user_features & OVS_DP_F_DISPATCH_UPCALL_PER_CPU && a[OVS_DP_ATTR_PER_CPU_PIDS]) { /* Upcall Netlink Port IDs have been updated */ err = ovs_dp_set_upcall_portids(dp, a[OVS_DP_ATTR_PER_CPU_PIDS]); if (err) return err; } if ((dp->user_features & OVS_DP_F_TC_RECIRC_SHARING) && !(old_features & OVS_DP_F_TC_RECIRC_SHARING)) tc_skb_ext_tc_enable(); else if (!(dp->user_features & OVS_DP_F_TC_RECIRC_SHARING) && (old_features & OVS_DP_F_TC_RECIRC_SHARING)) tc_skb_ext_tc_disable(); return 0; } static int ovs_dp_stats_init(struct datapath *dp) { dp->stats_percpu = netdev_alloc_pcpu_stats(struct dp_stats_percpu); if (!dp->stats_percpu) return -ENOMEM; return 0; } static int ovs_dp_vport_init(struct datapath *dp) { int i; dp->ports = kmalloc_array(DP_VPORT_HASH_BUCKETS, sizeof(struct hlist_head), GFP_KERNEL); if (!dp->ports) return -ENOMEM; for (i = 0; i < DP_VPORT_HASH_BUCKETS; i++) INIT_HLIST_HEAD(&dp->ports[i]); return 0; } static int ovs_dp_cmd_new(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct vport_parms parms; struct sk_buff *reply; struct datapath *dp; struct vport *vport; struct ovs_net *ovs_net; int err; err = -EINVAL; if (!a[OVS_DP_ATTR_NAME] || !a[OVS_DP_ATTR_UPCALL_PID]) goto err; reply = ovs_dp_cmd_alloc_info(); if (!reply) return -ENOMEM; err = -ENOMEM; dp = kzalloc(sizeof(*dp), GFP_KERNEL); if (dp == NULL) goto err_destroy_reply; ovs_dp_set_net(dp, sock_net(skb->sk)); /* Allocate table. */ err = ovs_flow_tbl_init(&dp->table); if (err) goto err_destroy_dp; err = ovs_dp_stats_init(dp); if (err) goto err_destroy_table; err = ovs_dp_vport_init(dp); if (err) goto err_destroy_stats; err = ovs_meters_init(dp); if (err) goto err_destroy_ports; /* Set up our datapath device. */ parms.name = nla_data(a[OVS_DP_ATTR_NAME]); parms.type = OVS_VPORT_TYPE_INTERNAL; parms.options = NULL; parms.dp = dp; parms.port_no = OVSP_LOCAL; parms.upcall_portids = a[OVS_DP_ATTR_UPCALL_PID]; parms.desired_ifindex = a[OVS_DP_ATTR_IFINDEX] ? nla_get_s32(a[OVS_DP_ATTR_IFINDEX]) : 0; /* So far only local changes have been made, now need the lock. */ ovs_lock(); err = ovs_dp_change(dp, a); if (err) goto err_unlock_and_destroy_meters; vport = new_vport(&parms); if (IS_ERR(vport)) { err = PTR_ERR(vport); if (err == -EBUSY) err = -EEXIST; if (err == -EEXIST) { /* An outdated user space instance that does not understand * the concept of user_features has attempted to create a new * datapath and is likely to reuse it. Drop all user features. */ if (info->genlhdr->version < OVS_DP_VER_FEATURES) ovs_dp_reset_user_features(skb, info); } goto err_destroy_portids; } err = ovs_dp_cmd_fill_info(dp, reply, info->snd_portid, info->snd_seq, 0, OVS_DP_CMD_NEW); BUG_ON(err < 0); ovs_net = net_generic(ovs_dp_get_net(dp), ovs_net_id); list_add_tail_rcu(&dp->list_node, &ovs_net->dps); ovs_unlock(); ovs_notify(&dp_datapath_genl_family, reply, info); return 0; err_destroy_portids: kfree(rcu_dereference_raw(dp->upcall_portids)); err_unlock_and_destroy_meters: ovs_unlock(); ovs_meters_exit(dp); err_destroy_ports: kfree(dp->ports); err_destroy_stats: free_percpu(dp->stats_percpu); err_destroy_table: ovs_flow_tbl_destroy(&dp->table); err_destroy_dp: kfree(dp); err_destroy_reply: kfree_skb(reply); err: return err; } /* Called with ovs_mutex. */ static void __dp_destroy(struct datapath *dp) { struct flow_table *table = &dp->table; int i; if (dp->user_features & OVS_DP_F_TC_RECIRC_SHARING) tc_skb_ext_tc_disable(); for (i = 0; i < DP_VPORT_HASH_BUCKETS; i++) { struct vport *vport; struct hlist_node *n; hlist_for_each_entry_safe(vport, n, &dp->ports[i], dp_hash_node) if (vport->port_no != OVSP_LOCAL) ovs_dp_detach_port(vport); } list_del_rcu(&dp->list_node); /* OVSP_LOCAL is datapath internal port. We need to make sure that * all ports in datapath are destroyed first before freeing datapath. */ ovs_dp_detach_port(ovs_vport_ovsl(dp, OVSP_LOCAL)); /* Flush sw_flow in the tables. RCU cb only releases resource * such as dp, ports and tables. That may avoid some issues * such as RCU usage warning. */ table_instance_flow_flush(table, ovsl_dereference(table->ti), ovsl_dereference(table->ufid_ti)); /* RCU destroy the ports, meters and flow tables. */ call_rcu(&dp->rcu, destroy_dp_rcu); } static int ovs_dp_cmd_del(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *reply; struct datapath *dp; int err; reply = ovs_dp_cmd_alloc_info(); if (!reply) return -ENOMEM; ovs_lock(); dp = lookup_datapath(sock_net(skb->sk), genl_info_userhdr(info), info->attrs); err = PTR_ERR(dp); if (IS_ERR(dp)) goto err_unlock_free; err = ovs_dp_cmd_fill_info(dp, reply, info->snd_portid, info->snd_seq, 0, OVS_DP_CMD_DEL); BUG_ON(err < 0); __dp_destroy(dp); ovs_unlock(); ovs_notify(&dp_datapath_genl_family, reply, info); return 0; err_unlock_free: ovs_unlock(); kfree_skb(reply); return err; } static int ovs_dp_cmd_set(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *reply; struct datapath *dp; int err; reply = ovs_dp_cmd_alloc_info(); if (!reply) return -ENOMEM; ovs_lock(); dp = lookup_datapath(sock_net(skb->sk), genl_info_userhdr(info), info->attrs); err = PTR_ERR(dp); if (IS_ERR(dp)) goto err_unlock_free; err = ovs_dp_change(dp, info->attrs); if (err) goto err_unlock_free; err = ovs_dp_cmd_fill_info(dp, reply, info->snd_portid, info->snd_seq, 0, OVS_DP_CMD_SET); BUG_ON(err < 0); ovs_unlock(); ovs_notify(&dp_datapath_genl_family, reply, info); return 0; err_unlock_free: ovs_unlock(); kfree_skb(reply); return err; } static int ovs_dp_cmd_get(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *reply; struct datapath *dp; int err; reply = ovs_dp_cmd_alloc_info(); if (!reply) return -ENOMEM; ovs_lock(); dp = lookup_datapath(sock_net(skb->sk), genl_info_userhdr(info), info->attrs); if (IS_ERR(dp)) { err = PTR_ERR(dp); goto err_unlock_free; } err = ovs_dp_cmd_fill_info(dp, reply, info->snd_portid, info->snd_seq, 0, OVS_DP_CMD_GET); BUG_ON(err < 0); ovs_unlock(); return genlmsg_reply(reply, info); err_unlock_free: ovs_unlock(); kfree_skb(reply); return err; } static int ovs_dp_cmd_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); struct datapath *dp; int skip = cb->args[0]; int i = 0; ovs_lock(); list_for_each_entry(dp, &ovs_net->dps, list_node) { if (i >= skip && ovs_dp_cmd_fill_info(dp, skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, OVS_DP_CMD_GET) < 0) break; i++; } ovs_unlock(); cb->args[0] = i; return skb->len; } static const struct nla_policy datapath_policy[OVS_DP_ATTR_MAX + 1] = { [OVS_DP_ATTR_NAME] = { .type = NLA_NUL_STRING, .len = IFNAMSIZ - 1 }, [OVS_DP_ATTR_UPCALL_PID] = { .type = NLA_U32 }, [OVS_DP_ATTR_USER_FEATURES] = { .type = NLA_U32 }, [OVS_DP_ATTR_MASKS_CACHE_SIZE] = NLA_POLICY_RANGE(NLA_U32, 0, PCPU_MIN_UNIT_SIZE / sizeof(struct mask_cache_entry)), [OVS_DP_ATTR_IFINDEX] = NLA_POLICY_MIN(NLA_S32, 0), }; static const struct genl_small_ops dp_datapath_genl_ops[] = { { .cmd = OVS_DP_CMD_NEW, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .doit = ovs_dp_cmd_new }, { .cmd = OVS_DP_CMD_DEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .doit = ovs_dp_cmd_del }, { .cmd = OVS_DP_CMD_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, /* OK for unprivileged users. */ .doit = ovs_dp_cmd_get, .dumpit = ovs_dp_cmd_dump }, { .cmd = OVS_DP_CMD_SET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .doit = ovs_dp_cmd_set, }, }; static struct genl_family dp_datapath_genl_family __ro_after_init = { .hdrsize = sizeof(struct ovs_header), .name = OVS_DATAPATH_FAMILY, .version = OVS_DATAPATH_VERSION, .maxattr = OVS_DP_ATTR_MAX, .policy = datapath_policy, .netnsok = true, .parallel_ops = true, .small_ops = dp_datapath_genl_ops, .n_small_ops = ARRAY_SIZE(dp_datapath_genl_ops), .resv_start_op = OVS_DP_CMD_SET + 1, .mcgrps = &ovs_dp_datapath_multicast_group, .n_mcgrps = 1, .module = THIS_MODULE, }; /* Called with ovs_mutex or RCU read lock. */ static int ovs_vport_cmd_fill_info(struct vport *vport, struct sk_buff *skb, struct net *net, u32 portid, u32 seq, u32 flags, u8 cmd, gfp_t gfp) { struct ovs_header *ovs_header; struct ovs_vport_stats vport_stats; int err; ovs_header = genlmsg_put(skb, portid, seq, &dp_vport_genl_family, flags, cmd); if (!ovs_header) return -EMSGSIZE; ovs_header->dp_ifindex = get_dpifindex(vport->dp); if (nla_put_u32(skb, OVS_VPORT_ATTR_PORT_NO, vport->port_no) || nla_put_u32(skb, OVS_VPORT_ATTR_TYPE, vport->ops->type) || nla_put_string(skb, OVS_VPORT_ATTR_NAME, ovs_vport_name(vport)) || nla_put_u32(skb, OVS_VPORT_ATTR_IFINDEX, vport->dev->ifindex)) goto nla_put_failure; if (!net_eq(net, dev_net(vport->dev))) { int id = peernet2id_alloc(net, dev_net(vport->dev), gfp); if (nla_put_s32(skb, OVS_VPORT_ATTR_NETNSID, id)) goto nla_put_failure; } ovs_vport_get_stats(vport, &vport_stats); if (nla_put_64bit(skb, OVS_VPORT_ATTR_STATS, sizeof(struct ovs_vport_stats), &vport_stats, OVS_VPORT_ATTR_PAD)) goto nla_put_failure; if (ovs_vport_get_upcall_stats(vport, skb)) goto nla_put_failure; if (ovs_vport_get_upcall_portids(vport, skb)) goto nla_put_failure; err = ovs_vport_get_options(vport, skb); if (err == -EMSGSIZE) goto error; genlmsg_end(skb, ovs_header); return 0; nla_put_failure: err = -EMSGSIZE; error: genlmsg_cancel(skb, ovs_header); return err; } static struct sk_buff *ovs_vport_cmd_alloc_info(void) { return nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); } /* Called with ovs_mutex, only via ovs_dp_notify_wq(). */ struct sk_buff *ovs_vport_cmd_build_info(struct vport *vport, struct net *net, u32 portid, u32 seq, u8 cmd) { struct sk_buff *skb; int retval; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return ERR_PTR(-ENOMEM); retval = ovs_vport_cmd_fill_info(vport, skb, net, portid, seq, 0, cmd, GFP_KERNEL); BUG_ON(retval < 0); return skb; } /* Called with ovs_mutex or RCU read lock. */ static struct vport *lookup_vport(struct net *net, const struct ovs_header *ovs_header, struct nlattr *a[OVS_VPORT_ATTR_MAX + 1]) { struct datapath *dp; struct vport *vport; if (a[OVS_VPORT_ATTR_IFINDEX]) return ERR_PTR(-EOPNOTSUPP); if (a[OVS_VPORT_ATTR_NAME]) { vport = ovs_vport_locate(net, nla_data(a[OVS_VPORT_ATTR_NAME])); if (!vport) return ERR_PTR(-ENODEV); if (ovs_header->dp_ifindex && ovs_header->dp_ifindex != get_dpifindex(vport->dp)) return ERR_PTR(-ENODEV); return vport; } else if (a[OVS_VPORT_ATTR_PORT_NO]) { u32 port_no = nla_get_u32(a[OVS_VPORT_ATTR_PORT_NO]); if (port_no >= DP_MAX_PORTS) return ERR_PTR(-EFBIG); dp = get_dp(net, ovs_header->dp_ifindex); if (!dp) return ERR_PTR(-ENODEV); vport = ovs_vport_ovsl_rcu(dp, port_no); if (!vport) return ERR_PTR(-ENODEV); return vport; } else return ERR_PTR(-EINVAL); } static unsigned int ovs_get_max_headroom(struct datapath *dp) { unsigned int dev_headroom, max_headroom = 0; struct net_device *dev; struct vport *vport; int i; for (i = 0; i < DP_VPORT_HASH_BUCKETS; i++) { hlist_for_each_entry_rcu(vport, &dp->ports[i], dp_hash_node, lockdep_ovsl_is_held()) { dev = vport->dev; dev_headroom = netdev_get_fwd_headroom(dev); if (dev_headroom > max_headroom) max_headroom = dev_headroom; } } return max_headroom; } /* Called with ovs_mutex */ static void ovs_update_headroom(struct datapath *dp, unsigned int new_headroom) { struct vport *vport; int i; dp->max_headroom = new_headroom; for (i = 0; i < DP_VPORT_HASH_BUCKETS; i++) { hlist_for_each_entry_rcu(vport, &dp->ports[i], dp_hash_node, lockdep_ovsl_is_held()) netdev_set_rx_headroom(vport->dev, new_headroom); } } static int ovs_vport_cmd_new(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct ovs_header *ovs_header = genl_info_userhdr(info); struct vport_parms parms; struct sk_buff *reply; struct vport *vport; struct datapath *dp; unsigned int new_headroom; u32 port_no; int err; if (!a[OVS_VPORT_ATTR_NAME] || !a[OVS_VPORT_ATTR_TYPE] || !a[OVS_VPORT_ATTR_UPCALL_PID]) return -EINVAL; parms.type = nla_get_u32(a[OVS_VPORT_ATTR_TYPE]); if (a[OVS_VPORT_ATTR_IFINDEX] && parms.type != OVS_VPORT_TYPE_INTERNAL) return -EOPNOTSUPP; port_no = a[OVS_VPORT_ATTR_PORT_NO] ? nla_get_u32(a[OVS_VPORT_ATTR_PORT_NO]) : 0; if (port_no >= DP_MAX_PORTS) return -EFBIG; reply = ovs_vport_cmd_alloc_info(); if (!reply) return -ENOMEM; ovs_lock(); restart: dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); err = -ENODEV; if (!dp) goto exit_unlock_free; if (port_no) { vport = ovs_vport_ovsl(dp, port_no); err = -EBUSY; if (vport) goto exit_unlock_free; } else { for (port_no = 1; ; port_no++) { if (port_no >= DP_MAX_PORTS) { err = -EFBIG; goto exit_unlock_free; } vport = ovs_vport_ovsl(dp, port_no); if (!vport) break; } } parms.name = nla_data(a[OVS_VPORT_ATTR_NAME]); parms.options = a[OVS_VPORT_ATTR_OPTIONS]; parms.dp = dp; parms.port_no = port_no; parms.upcall_portids = a[OVS_VPORT_ATTR_UPCALL_PID]; parms.desired_ifindex = a[OVS_VPORT_ATTR_IFINDEX] ? nla_get_s32(a[OVS_VPORT_ATTR_IFINDEX]) : 0; vport = new_vport(&parms); err = PTR_ERR(vport); if (IS_ERR(vport)) { if (err == -EAGAIN) goto restart; goto exit_unlock_free; } err = ovs_vport_cmd_fill_info(vport, reply, genl_info_net(info), info->snd_portid, info->snd_seq, 0, OVS_VPORT_CMD_NEW, GFP_KERNEL); new_headroom = netdev_get_fwd_headroom(vport->dev); if (new_headroom > dp->max_headroom) ovs_update_headroom(dp, new_headroom); else netdev_set_rx_headroom(vport->dev, dp->max_headroom); BUG_ON(err < 0); ovs_unlock(); ovs_notify(&dp_vport_genl_family, reply, info); return 0; exit_unlock_free: ovs_unlock(); kfree_skb(reply); return err; } static int ovs_vport_cmd_set(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct sk_buff *reply; struct vport *vport; int err; reply = ovs_vport_cmd_alloc_info(); if (!reply) return -ENOMEM; ovs_lock(); vport = lookup_vport(sock_net(skb->sk), genl_info_userhdr(info), a); err = PTR_ERR(vport); if (IS_ERR(vport)) goto exit_unlock_free; if (a[OVS_VPORT_ATTR_TYPE] && nla_get_u32(a[OVS_VPORT_ATTR_TYPE]) != vport->ops->type) { err = -EINVAL; goto exit_unlock_free; } if (a[OVS_VPORT_ATTR_OPTIONS]) { err = ovs_vport_set_options(vport, a[OVS_VPORT_ATTR_OPTIONS]); if (err) goto exit_unlock_free; } if (a[OVS_VPORT_ATTR_UPCALL_PID]) { struct nlattr *ids = a[OVS_VPORT_ATTR_UPCALL_PID]; err = ovs_vport_set_upcall_portids(vport, ids); if (err) goto exit_unlock_free; } err = ovs_vport_cmd_fill_info(vport, reply, genl_info_net(info), info->snd_portid, info->snd_seq, 0, OVS_VPORT_CMD_SET, GFP_KERNEL); BUG_ON(err < 0); ovs_unlock(); ovs_notify(&dp_vport_genl_family, reply, info); return 0; exit_unlock_free: ovs_unlock(); kfree_skb(reply); return err; } static int ovs_vport_cmd_del(struct sk_buff *skb, struct genl_info *info) { bool update_headroom = false; struct nlattr **a = info->attrs; struct sk_buff *reply; struct datapath *dp; struct vport *vport; unsigned int new_headroom; int err; reply = ovs_vport_cmd_alloc_info(); if (!reply) return -ENOMEM; ovs_lock(); vport = lookup_vport(sock_net(skb->sk), genl_info_userhdr(info), a); err = PTR_ERR(vport); if (IS_ERR(vport)) goto exit_unlock_free; if (vport->port_no == OVSP_LOCAL) { err = -EINVAL; goto exit_unlock_free; } err = ovs_vport_cmd_fill_info(vport, reply, genl_info_net(info), info->snd_portid, info->snd_seq, 0, OVS_VPORT_CMD_DEL, GFP_KERNEL); BUG_ON(err < 0); /* the vport deletion may trigger dp headroom update */ dp = vport->dp; if (netdev_get_fwd_headroom(vport->dev) == dp->max_headroom) update_headroom = true; netdev_reset_rx_headroom(vport->dev); ovs_dp_detach_port(vport); if (update_headroom) { new_headroom = ovs_get_max_headroom(dp); if (new_headroom < dp->max_headroom) ovs_update_headroom(dp, new_headroom); } ovs_unlock(); ovs_notify(&dp_vport_genl_family, reply, info); return 0; exit_unlock_free: ovs_unlock(); kfree_skb(reply); return err; } static int ovs_vport_cmd_get(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct ovs_header *ovs_header = genl_info_userhdr(info); struct sk_buff *reply; struct vport *vport; int err; reply = ovs_vport_cmd_alloc_info(); if (!reply) return -ENOMEM; rcu_read_lock(); vport = lookup_vport(sock_net(skb->sk), ovs_header, a); err = PTR_ERR(vport); if (IS_ERR(vport)) goto exit_unlock_free; err = ovs_vport_cmd_fill_info(vport, reply, genl_info_net(info), info->snd_portid, info->snd_seq, 0, OVS_VPORT_CMD_GET, GFP_ATOMIC); BUG_ON(err < 0); rcu_read_unlock(); return genlmsg_reply(reply, info); exit_unlock_free: rcu_read_unlock(); kfree_skb(reply); return err; } static int ovs_vport_cmd_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct ovs_header *ovs_header = genlmsg_data(nlmsg_data(cb->nlh)); struct datapath *dp; int bucket = cb->args[0], skip = cb->args[1]; int i, j = 0; rcu_read_lock(); dp = get_dp_rcu(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { rcu_read_unlock(); return -ENODEV; } for (i = bucket; i < DP_VPORT_HASH_BUCKETS; i++) { struct vport *vport; j = 0; hlist_for_each_entry_rcu(vport, &dp->ports[i], dp_hash_node) { if (j >= skip && ovs_vport_cmd_fill_info(vport, skb, sock_net(skb->sk), NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, OVS_VPORT_CMD_GET, GFP_ATOMIC) < 0) goto out; j++; } skip = 0; } out: rcu_read_unlock(); cb->args[0] = i; cb->args[1] = j; return skb->len; } static void ovs_dp_masks_rebalance(struct work_struct *work) { struct ovs_net *ovs_net = container_of(work, struct ovs_net, masks_rebalance.work); struct datapath *dp; ovs_lock(); list_for_each_entry(dp, &ovs_net->dps, list_node) ovs_flow_masks_rebalance(&dp->table); ovs_unlock(); schedule_delayed_work(&ovs_net->masks_rebalance, msecs_to_jiffies(DP_MASKS_REBALANCE_INTERVAL)); } static const struct nla_policy vport_policy[OVS_VPORT_ATTR_MAX + 1] = { [OVS_VPORT_ATTR_NAME] = { .type = NLA_NUL_STRING, .len = IFNAMSIZ - 1 }, [OVS_VPORT_ATTR_STATS] = { .len = sizeof(struct ovs_vport_stats) }, [OVS_VPORT_ATTR_PORT_NO] = { .type = NLA_U32 }, [OVS_VPORT_ATTR_TYPE] = { .type = NLA_U32 }, [OVS_VPORT_ATTR_UPCALL_PID] = { .type = NLA_UNSPEC }, [OVS_VPORT_ATTR_OPTIONS] = { .type = NLA_NESTED }, [OVS_VPORT_ATTR_IFINDEX] = NLA_POLICY_MIN(NLA_S32, 0), [OVS_VPORT_ATTR_NETNSID] = { .type = NLA_S32 }, [OVS_VPORT_ATTR_UPCALL_STATS] = { .type = NLA_NESTED }, }; static const struct genl_small_ops dp_vport_genl_ops[] = { { .cmd = OVS_VPORT_CMD_NEW, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .doit = ovs_vport_cmd_new }, { .cmd = OVS_VPORT_CMD_DEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .doit = ovs_vport_cmd_del }, { .cmd = OVS_VPORT_CMD_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, /* OK for unprivileged users. */ .doit = ovs_vport_cmd_get, .dumpit = ovs_vport_cmd_dump }, { .cmd = OVS_VPORT_CMD_SET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .doit = ovs_vport_cmd_set, }, }; struct genl_family dp_vport_genl_family __ro_after_init = { .hdrsize = sizeof(struct ovs_header), .name = OVS_VPORT_FAMILY, .version = OVS_VPORT_VERSION, .maxattr = OVS_VPORT_ATTR_MAX, .policy = vport_policy, .netnsok = true, .parallel_ops = true, .small_ops = dp_vport_genl_ops, .n_small_ops = ARRAY_SIZE(dp_vport_genl_ops), .resv_start_op = OVS_VPORT_CMD_SET + 1, .mcgrps = &ovs_dp_vport_multicast_group, .n_mcgrps = 1, .module = THIS_MODULE, }; static struct genl_family * const dp_genl_families[] = { &dp_datapath_genl_family, &dp_vport_genl_family, &dp_flow_genl_family, &dp_packet_genl_family, &dp_meter_genl_family, #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) &dp_ct_limit_genl_family, #endif }; static void dp_unregister_genl(int n_families) { int i; for (i = 0; i < n_families; i++) genl_unregister_family(dp_genl_families[i]); } static int __init dp_register_genl(void) { int err; int i; for (i = 0; i < ARRAY_SIZE(dp_genl_families); i++) { err = genl_register_family(dp_genl_families[i]); if (err) goto error; } return 0; error: dp_unregister_genl(i); return err; } static int __net_init ovs_init_net(struct net *net) { struct ovs_net *ovs_net = net_generic(net, ovs_net_id); int err; INIT_LIST_HEAD(&ovs_net->dps); INIT_WORK(&ovs_net->dp_notify_work, ovs_dp_notify_wq); INIT_DELAYED_WORK(&ovs_net->masks_rebalance, ovs_dp_masks_rebalance); err = ovs_ct_init(net); if (err) return err; schedule_delayed_work(&ovs_net->masks_rebalance, msecs_to_jiffies(DP_MASKS_REBALANCE_INTERVAL)); return 0; } static void __net_exit list_vports_from_net(struct net *net, struct net *dnet, struct list_head *head) { struct ovs_net *ovs_net = net_generic(net, ovs_net_id); struct datapath *dp; list_for_each_entry(dp, &ovs_net->dps, list_node) { int i; for (i = 0; i < DP_VPORT_HASH_BUCKETS; i++) { struct vport *vport; hlist_for_each_entry(vport, &dp->ports[i], dp_hash_node) { if (vport->ops->type != OVS_VPORT_TYPE_INTERNAL) continue; if (dev_net(vport->dev) == dnet) list_add(&vport->detach_list, head); } } } } static void __net_exit ovs_exit_net(struct net *dnet) { struct datapath *dp, *dp_next; struct ovs_net *ovs_net = net_generic(dnet, ovs_net_id); struct vport *vport, *vport_next; struct net *net; LIST_HEAD(head); ovs_lock(); ovs_ct_exit(dnet); list_for_each_entry_safe(dp, dp_next, &ovs_net->dps, list_node) __dp_destroy(dp); down_read(&net_rwsem); for_each_net(net) list_vports_from_net(net, dnet, &head); up_read(&net_rwsem); /* Detach all vports from given namespace. */ list_for_each_entry_safe(vport, vport_next, &head, detach_list) { list_del(&vport->detach_list); ovs_dp_detach_port(vport); } ovs_unlock(); cancel_delayed_work_sync(&ovs_net->masks_rebalance); cancel_work_sync(&ovs_net->dp_notify_work); } static struct pernet_operations ovs_net_ops = { .init = ovs_init_net, .exit = ovs_exit_net, .id = &ovs_net_id, .size = sizeof(struct ovs_net), }; static const char * const ovs_drop_reasons[] = { #define S(x) (#x), OVS_DROP_REASONS(S) #undef S }; static struct drop_reason_list drop_reason_list_ovs = { .reasons = ovs_drop_reasons, .n_reasons = ARRAY_SIZE(ovs_drop_reasons), }; static int __init dp_init(void) { int err; BUILD_BUG_ON(sizeof(struct ovs_skb_cb) > sizeof_field(struct sk_buff, cb)); pr_info("Open vSwitch switching datapath\n"); err = action_fifos_init(); if (err) goto error; err = ovs_internal_dev_rtnl_link_register(); if (err) goto error_action_fifos_exit; err = ovs_flow_init(); if (err) goto error_unreg_rtnl_link; err = ovs_vport_init(); if (err) goto error_flow_exit; err = register_pernet_device(&ovs_net_ops); if (err) goto error_vport_exit; err = register_netdevice_notifier(&ovs_dp_device_notifier); if (err) goto error_netns_exit; err = ovs_netdev_init(); if (err) goto error_unreg_notifier; err = dp_register_genl(); if (err < 0) goto error_unreg_netdev; drop_reasons_register_subsys(SKB_DROP_REASON_SUBSYS_OPENVSWITCH, &drop_reason_list_ovs); return 0; error_unreg_netdev: ovs_netdev_exit(); error_unreg_notifier: unregister_netdevice_notifier(&ovs_dp_device_notifier); error_netns_exit: unregister_pernet_device(&ovs_net_ops); error_vport_exit: ovs_vport_exit(); error_flow_exit: ovs_flow_exit(); error_unreg_rtnl_link: ovs_internal_dev_rtnl_link_unregister(); error_action_fifos_exit: action_fifos_exit(); error: return err; } static void dp_cleanup(void) { dp_unregister_genl(ARRAY_SIZE(dp_genl_families)); ovs_netdev_exit(); unregister_netdevice_notifier(&ovs_dp_device_notifier); unregister_pernet_device(&ovs_net_ops); drop_reasons_unregister_subsys(SKB_DROP_REASON_SUBSYS_OPENVSWITCH); rcu_barrier(); ovs_vport_exit(); ovs_flow_exit(); ovs_internal_dev_rtnl_link_unregister(); action_fifos_exit(); } module_init(dp_init); module_exit(dp_cleanup); MODULE_DESCRIPTION("Open vSwitch switching datapath"); MODULE_LICENSE("GPL"); MODULE_ALIAS_GENL_FAMILY(OVS_DATAPATH_FAMILY); MODULE_ALIAS_GENL_FAMILY(OVS_VPORT_FAMILY); MODULE_ALIAS_GENL_FAMILY(OVS_FLOW_FAMILY); MODULE_ALIAS_GENL_FAMILY(OVS_PACKET_FAMILY); MODULE_ALIAS_GENL_FAMILY(OVS_METER_FAMILY); MODULE_ALIAS_GENL_FAMILY(OVS_CT_LIMIT_FAMILY);
linux-master
net/openvswitch/datapath.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2012 Nicira, Inc. */ #include <linux/if_vlan.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/skbuff.h> #include <net/dst.h> #include <net/xfrm.h> #include <net/rtnetlink.h> #include "datapath.h" #include "vport-internal_dev.h" #include "vport-netdev.h" struct internal_dev { struct vport *vport; }; static struct vport_ops ovs_internal_vport_ops; static struct internal_dev *internal_dev_priv(struct net_device *netdev) { return netdev_priv(netdev); } /* Called with rcu_read_lock_bh. */ static netdev_tx_t internal_dev_xmit(struct sk_buff *skb, struct net_device *netdev) { int len, err; /* store len value because skb can be freed inside ovs_vport_receive() */ len = skb->len; rcu_read_lock(); err = ovs_vport_receive(internal_dev_priv(netdev)->vport, skb, NULL); rcu_read_unlock(); if (likely(!err)) dev_sw_netstats_tx_add(netdev, 1, len); else netdev->stats.tx_errors++; return NETDEV_TX_OK; } static int internal_dev_open(struct net_device *netdev) { netif_start_queue(netdev); return 0; } static int internal_dev_stop(struct net_device *netdev) { netif_stop_queue(netdev); return 0; } static void internal_dev_getinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { strscpy(info->driver, "openvswitch", sizeof(info->driver)); } static const struct ethtool_ops internal_dev_ethtool_ops = { .get_drvinfo = internal_dev_getinfo, .get_link = ethtool_op_get_link, }; static void internal_dev_destructor(struct net_device *dev) { struct vport *vport = ovs_internal_dev_get_vport(dev); ovs_vport_free(vport); } static const struct net_device_ops internal_dev_netdev_ops = { .ndo_open = internal_dev_open, .ndo_stop = internal_dev_stop, .ndo_start_xmit = internal_dev_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_get_stats64 = dev_get_tstats64, }; static struct rtnl_link_ops internal_dev_link_ops __read_mostly = { .kind = "openvswitch", }; static void do_setup(struct net_device *netdev) { ether_setup(netdev); netdev->max_mtu = ETH_MAX_MTU; netdev->netdev_ops = &internal_dev_netdev_ops; netdev->priv_flags &= ~IFF_TX_SKB_SHARING; netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE | IFF_OPENVSWITCH | IFF_NO_QUEUE; netdev->needs_free_netdev = true; netdev->priv_destructor = NULL; netdev->ethtool_ops = &internal_dev_ethtool_ops; netdev->rtnl_link_ops = &internal_dev_link_ops; netdev->features = NETIF_F_LLTX | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL; netdev->vlan_features = netdev->features; netdev->hw_enc_features = netdev->features; netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; netdev->hw_features = netdev->features & ~NETIF_F_LLTX; eth_hw_addr_random(netdev); } static struct vport *internal_dev_create(const struct vport_parms *parms) { struct vport *vport; struct internal_dev *internal_dev; struct net_device *dev; int err; vport = ovs_vport_alloc(0, &ovs_internal_vport_ops, parms); if (IS_ERR(vport)) { err = PTR_ERR(vport); goto error; } dev = alloc_netdev(sizeof(struct internal_dev), parms->name, NET_NAME_USER, do_setup); vport->dev = dev; if (!vport->dev) { err = -ENOMEM; goto error_free_vport; } vport->dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); if (!vport->dev->tstats) { err = -ENOMEM; goto error_free_netdev; } dev_net_set(vport->dev, ovs_dp_get_net(vport->dp)); dev->ifindex = parms->desired_ifindex; internal_dev = internal_dev_priv(vport->dev); internal_dev->vport = vport; /* Restrict bridge port to current netns. */ if (vport->port_no == OVSP_LOCAL) vport->dev->features |= NETIF_F_NETNS_LOCAL; rtnl_lock(); err = register_netdevice(vport->dev); if (err) goto error_unlock; vport->dev->priv_destructor = internal_dev_destructor; dev_set_promiscuity(vport->dev, 1); rtnl_unlock(); netif_start_queue(vport->dev); return vport; error_unlock: rtnl_unlock(); free_percpu(dev->tstats); error_free_netdev: free_netdev(dev); error_free_vport: ovs_vport_free(vport); error: return ERR_PTR(err); } static void internal_dev_destroy(struct vport *vport) { netif_stop_queue(vport->dev); rtnl_lock(); dev_set_promiscuity(vport->dev, -1); /* unregister_netdevice() waits for an RCU grace period. */ unregister_netdevice(vport->dev); free_percpu(vport->dev->tstats); rtnl_unlock(); } static int internal_dev_recv(struct sk_buff *skb) { struct net_device *netdev = skb->dev; if (unlikely(!(netdev->flags & IFF_UP))) { kfree_skb(skb); netdev->stats.rx_dropped++; return NETDEV_TX_OK; } skb_dst_drop(skb); nf_reset_ct(skb); secpath_reset(skb); skb->pkt_type = PACKET_HOST; skb->protocol = eth_type_trans(skb, netdev); skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); dev_sw_netstats_rx_add(netdev, skb->len); netif_rx(skb); return NETDEV_TX_OK; } static struct vport_ops ovs_internal_vport_ops = { .type = OVS_VPORT_TYPE_INTERNAL, .create = internal_dev_create, .destroy = internal_dev_destroy, .send = internal_dev_recv, }; int ovs_is_internal_dev(const struct net_device *netdev) { return netdev->netdev_ops == &internal_dev_netdev_ops; } struct vport *ovs_internal_dev_get_vport(struct net_device *netdev) { if (!ovs_is_internal_dev(netdev)) return NULL; return internal_dev_priv(netdev)->vport; } int ovs_internal_dev_rtnl_link_register(void) { int err; err = rtnl_link_register(&internal_dev_link_ops); if (err < 0) return err; err = ovs_vport_ops_register(&ovs_internal_vport_ops); if (err < 0) rtnl_link_unregister(&internal_dev_link_ops); return err; } void ovs_internal_dev_rtnl_link_unregister(void) { ovs_vport_ops_unregister(&ovs_internal_vport_ops); rtnl_link_unregister(&internal_dev_link_ops); }
linux-master
net/openvswitch/vport-internal_dev.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017 Nicira, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/if.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/openvswitch.h> #include <linux/netlink.h> #include <linux/rculist.h> #include <net/netlink.h> #include <net/genetlink.h> #include "datapath.h" #include "meter.h" static const struct nla_policy meter_policy[OVS_METER_ATTR_MAX + 1] = { [OVS_METER_ATTR_ID] = { .type = NLA_U32, }, [OVS_METER_ATTR_KBPS] = { .type = NLA_FLAG }, [OVS_METER_ATTR_STATS] = { .len = sizeof(struct ovs_flow_stats) }, [OVS_METER_ATTR_BANDS] = { .type = NLA_NESTED }, [OVS_METER_ATTR_USED] = { .type = NLA_U64 }, [OVS_METER_ATTR_CLEAR] = { .type = NLA_FLAG }, [OVS_METER_ATTR_MAX_METERS] = { .type = NLA_U32 }, [OVS_METER_ATTR_MAX_BANDS] = { .type = NLA_U32 }, }; static const struct nla_policy band_policy[OVS_BAND_ATTR_MAX + 1] = { [OVS_BAND_ATTR_TYPE] = { .type = NLA_U32, }, [OVS_BAND_ATTR_RATE] = { .type = NLA_U32, }, [OVS_BAND_ATTR_BURST] = { .type = NLA_U32, }, [OVS_BAND_ATTR_STATS] = { .len = sizeof(struct ovs_flow_stats) }, }; static u32 meter_hash(struct dp_meter_instance *ti, u32 id) { return id % ti->n_meters; } static void ovs_meter_free(struct dp_meter *meter) { if (!meter) return; kfree_rcu(meter, rcu); } /* Call with ovs_mutex or RCU read lock. */ static struct dp_meter *lookup_meter(const struct dp_meter_table *tbl, u32 meter_id) { struct dp_meter_instance *ti = rcu_dereference_ovsl(tbl->ti); u32 hash = meter_hash(ti, meter_id); struct dp_meter *meter; meter = rcu_dereference_ovsl(ti->dp_meters[hash]); if (meter && likely(meter->id == meter_id)) return meter; return NULL; } static struct dp_meter_instance *dp_meter_instance_alloc(const u32 size) { struct dp_meter_instance *ti; ti = kvzalloc(struct_size(ti, dp_meters, size), GFP_KERNEL); if (!ti) return NULL; ti->n_meters = size; return ti; } static void dp_meter_instance_free(struct dp_meter_instance *ti) { kvfree(ti); } static void dp_meter_instance_free_rcu(struct rcu_head *rcu) { struct dp_meter_instance *ti; ti = container_of(rcu, struct dp_meter_instance, rcu); kvfree(ti); } static int dp_meter_instance_realloc(struct dp_meter_table *tbl, u32 size) { struct dp_meter_instance *ti = rcu_dereference_ovsl(tbl->ti); int n_meters = min(size, ti->n_meters); struct dp_meter_instance *new_ti; int i; new_ti = dp_meter_instance_alloc(size); if (!new_ti) return -ENOMEM; for (i = 0; i < n_meters; i++) if (rcu_dereference_ovsl(ti->dp_meters[i])) new_ti->dp_meters[i] = ti->dp_meters[i]; rcu_assign_pointer(tbl->ti, new_ti); call_rcu(&ti->rcu, dp_meter_instance_free_rcu); return 0; } static void dp_meter_instance_insert(struct dp_meter_instance *ti, struct dp_meter *meter) { u32 hash; hash = meter_hash(ti, meter->id); rcu_assign_pointer(ti->dp_meters[hash], meter); } static void dp_meter_instance_remove(struct dp_meter_instance *ti, struct dp_meter *meter) { u32 hash; hash = meter_hash(ti, meter->id); RCU_INIT_POINTER(ti->dp_meters[hash], NULL); } static int attach_meter(struct dp_meter_table *tbl, struct dp_meter *meter) { struct dp_meter_instance *ti = rcu_dereference_ovsl(tbl->ti); u32 hash = meter_hash(ti, meter->id); int err; /* In generally, slots selected should be empty, because * OvS uses id-pool to fetch a available id. */ if (unlikely(rcu_dereference_ovsl(ti->dp_meters[hash]))) return -EBUSY; dp_meter_instance_insert(ti, meter); /* That function is thread-safe. */ tbl->count++; if (tbl->count >= tbl->max_meters_allowed) { err = -EFBIG; goto attach_err; } if (tbl->count >= ti->n_meters && dp_meter_instance_realloc(tbl, ti->n_meters * 2)) { err = -ENOMEM; goto attach_err; } return 0; attach_err: dp_meter_instance_remove(ti, meter); tbl->count--; return err; } static int detach_meter(struct dp_meter_table *tbl, struct dp_meter *meter) { struct dp_meter_instance *ti; ASSERT_OVSL(); if (!meter) return 0; ti = rcu_dereference_ovsl(tbl->ti); dp_meter_instance_remove(ti, meter); tbl->count--; /* Shrink the meter array if necessary. */ if (ti->n_meters > DP_METER_ARRAY_SIZE_MIN && tbl->count <= (ti->n_meters / 4)) { int half_size = ti->n_meters / 2; int i; /* Avoid hash collision, don't move slots to other place. * Make sure there are no references of meters in array * which will be released. */ for (i = half_size; i < ti->n_meters; i++) if (rcu_dereference_ovsl(ti->dp_meters[i])) goto out; if (dp_meter_instance_realloc(tbl, half_size)) goto shrink_err; } out: return 0; shrink_err: dp_meter_instance_insert(ti, meter); tbl->count++; return -ENOMEM; } static struct sk_buff * ovs_meter_cmd_reply_start(struct genl_info *info, u8 cmd, struct ovs_header **ovs_reply_header) { struct sk_buff *skb; struct ovs_header *ovs_header = genl_info_userhdr(info); skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!skb) return ERR_PTR(-ENOMEM); *ovs_reply_header = genlmsg_put(skb, info->snd_portid, info->snd_seq, &dp_meter_genl_family, 0, cmd); if (!*ovs_reply_header) { nlmsg_free(skb); return ERR_PTR(-EMSGSIZE); } (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; return skb; } static int ovs_meter_cmd_reply_stats(struct sk_buff *reply, u32 meter_id, struct dp_meter *meter) { struct nlattr *nla; struct dp_meter_band *band; u16 i; if (nla_put_u32(reply, OVS_METER_ATTR_ID, meter_id)) goto error; if (nla_put(reply, OVS_METER_ATTR_STATS, sizeof(struct ovs_flow_stats), &meter->stats)) goto error; if (nla_put_u64_64bit(reply, OVS_METER_ATTR_USED, meter->used, OVS_METER_ATTR_PAD)) goto error; nla = nla_nest_start_noflag(reply, OVS_METER_ATTR_BANDS); if (!nla) goto error; band = meter->bands; for (i = 0; i < meter->n_bands; ++i, ++band) { struct nlattr *band_nla; band_nla = nla_nest_start_noflag(reply, OVS_BAND_ATTR_UNSPEC); if (!band_nla || nla_put(reply, OVS_BAND_ATTR_STATS, sizeof(struct ovs_flow_stats), &band->stats)) goto error; nla_nest_end(reply, band_nla); } nla_nest_end(reply, nla); return 0; error: return -EMSGSIZE; } static int ovs_meter_cmd_features(struct sk_buff *skb, struct genl_info *info) { struct ovs_header *ovs_header = genl_info_userhdr(info); struct ovs_header *ovs_reply_header; struct nlattr *nla, *band_nla; struct sk_buff *reply; struct datapath *dp; int err = -EMSGSIZE; reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_FEATURES, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } if (nla_put_u32(reply, OVS_METER_ATTR_MAX_METERS, dp->meter_tbl.max_meters_allowed)) goto exit_unlock; ovs_unlock(); if (nla_put_u32(reply, OVS_METER_ATTR_MAX_BANDS, DP_MAX_BANDS)) goto nla_put_failure; nla = nla_nest_start_noflag(reply, OVS_METER_ATTR_BANDS); if (!nla) goto nla_put_failure; band_nla = nla_nest_start_noflag(reply, OVS_BAND_ATTR_UNSPEC); if (!band_nla) goto nla_put_failure; /* Currently only DROP band type is supported. */ if (nla_put_u32(reply, OVS_BAND_ATTR_TYPE, OVS_METER_BAND_TYPE_DROP)) goto nla_put_failure; nla_nest_end(reply, band_nla); nla_nest_end(reply, nla); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_unlock: ovs_unlock(); nla_put_failure: nlmsg_free(reply); return err; } static struct dp_meter *dp_meter_create(struct nlattr **a) { struct nlattr *nla; int rem; u16 n_bands = 0; struct dp_meter *meter; struct dp_meter_band *band; int err; /* Validate attributes, count the bands. */ if (!a[OVS_METER_ATTR_BANDS]) return ERR_PTR(-EINVAL); nla_for_each_nested(nla, a[OVS_METER_ATTR_BANDS], rem) if (++n_bands > DP_MAX_BANDS) return ERR_PTR(-EINVAL); /* Allocate and set up the meter before locking anything. */ meter = kzalloc(struct_size(meter, bands, n_bands), GFP_KERNEL_ACCOUNT); if (!meter) return ERR_PTR(-ENOMEM); meter->id = nla_get_u32(a[OVS_METER_ATTR_ID]); meter->used = div_u64(ktime_get_ns(), 1000 * 1000); meter->kbps = a[OVS_METER_ATTR_KBPS] ? 1 : 0; meter->keep_stats = !a[OVS_METER_ATTR_CLEAR]; spin_lock_init(&meter->lock); if (meter->keep_stats && a[OVS_METER_ATTR_STATS]) { meter->stats = *(struct ovs_flow_stats *) nla_data(a[OVS_METER_ATTR_STATS]); } meter->n_bands = n_bands; /* Set up meter bands. */ band = meter->bands; nla_for_each_nested(nla, a[OVS_METER_ATTR_BANDS], rem) { struct nlattr *attr[OVS_BAND_ATTR_MAX + 1]; u32 band_max_delta_t; err = nla_parse_deprecated((struct nlattr **)&attr, OVS_BAND_ATTR_MAX, nla_data(nla), nla_len(nla), band_policy, NULL); if (err) goto exit_free_meter; if (!attr[OVS_BAND_ATTR_TYPE] || !attr[OVS_BAND_ATTR_RATE] || !attr[OVS_BAND_ATTR_BURST]) { err = -EINVAL; goto exit_free_meter; } band->type = nla_get_u32(attr[OVS_BAND_ATTR_TYPE]); band->rate = nla_get_u32(attr[OVS_BAND_ATTR_RATE]); if (band->rate == 0) { err = -EINVAL; goto exit_free_meter; } band->burst_size = nla_get_u32(attr[OVS_BAND_ATTR_BURST]); /* Figure out max delta_t that is enough to fill any bucket. * Keep max_delta_t size to the bucket units: * pkts => 1/1000 packets, kilobits => bits. * * Start with a full bucket. */ band->bucket = band->burst_size * 1000ULL; band_max_delta_t = div_u64(band->bucket, band->rate); if (band_max_delta_t > meter->max_delta_t) meter->max_delta_t = band_max_delta_t; band++; } return meter; exit_free_meter: kfree(meter); return ERR_PTR(err); } static int ovs_meter_cmd_set(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct dp_meter *meter, *old_meter; struct sk_buff *reply; struct ovs_header *ovs_reply_header; struct ovs_header *ovs_header = genl_info_userhdr(info); struct dp_meter_table *meter_tbl; struct datapath *dp; int err; u32 meter_id; bool failed; if (!a[OVS_METER_ATTR_ID]) return -EINVAL; meter = dp_meter_create(a); if (IS_ERR(meter)) return PTR_ERR(meter); reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_SET, &ovs_reply_header); if (IS_ERR(reply)) { err = PTR_ERR(reply); goto exit_free_meter; } ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } meter_tbl = &dp->meter_tbl; meter_id = nla_get_u32(a[OVS_METER_ATTR_ID]); old_meter = lookup_meter(meter_tbl, meter_id); err = detach_meter(meter_tbl, old_meter); if (err) goto exit_unlock; err = attach_meter(meter_tbl, meter); if (err) goto exit_free_old_meter; ovs_unlock(); /* Build response with the meter_id and stats from * the old meter, if any. */ failed = nla_put_u32(reply, OVS_METER_ATTR_ID, meter_id); WARN_ON(failed); if (old_meter) { spin_lock_bh(&old_meter->lock); if (old_meter->keep_stats) { err = ovs_meter_cmd_reply_stats(reply, meter_id, old_meter); WARN_ON(err); } spin_unlock_bh(&old_meter->lock); ovs_meter_free(old_meter); } genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_free_old_meter: ovs_meter_free(old_meter); exit_unlock: ovs_unlock(); nlmsg_free(reply); exit_free_meter: kfree(meter); return err; } static int ovs_meter_cmd_get(struct sk_buff *skb, struct genl_info *info) { struct ovs_header *ovs_header = genl_info_userhdr(info); struct ovs_header *ovs_reply_header; struct nlattr **a = info->attrs; struct dp_meter *meter; struct sk_buff *reply; struct datapath *dp; u32 meter_id; int err; if (!a[OVS_METER_ATTR_ID]) return -EINVAL; meter_id = nla_get_u32(a[OVS_METER_ATTR_ID]); reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_GET, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } /* Locate meter, copy stats. */ meter = lookup_meter(&dp->meter_tbl, meter_id); if (!meter) { err = -ENOENT; goto exit_unlock; } spin_lock_bh(&meter->lock); err = ovs_meter_cmd_reply_stats(reply, meter_id, meter); spin_unlock_bh(&meter->lock); if (err) goto exit_unlock; ovs_unlock(); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_unlock: ovs_unlock(); nlmsg_free(reply); return err; } static int ovs_meter_cmd_del(struct sk_buff *skb, struct genl_info *info) { struct ovs_header *ovs_header = genl_info_userhdr(info); struct ovs_header *ovs_reply_header; struct nlattr **a = info->attrs; struct dp_meter *old_meter; struct sk_buff *reply; struct datapath *dp; u32 meter_id; int err; if (!a[OVS_METER_ATTR_ID]) return -EINVAL; reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_DEL, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } meter_id = nla_get_u32(a[OVS_METER_ATTR_ID]); old_meter = lookup_meter(&dp->meter_tbl, meter_id); if (old_meter) { spin_lock_bh(&old_meter->lock); err = ovs_meter_cmd_reply_stats(reply, meter_id, old_meter); WARN_ON(err); spin_unlock_bh(&old_meter->lock); err = detach_meter(&dp->meter_tbl, old_meter); if (err) goto exit_unlock; } ovs_unlock(); ovs_meter_free(old_meter); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_unlock: ovs_unlock(); nlmsg_free(reply); return err; } /* Meter action execution. * * Return true 'meter_id' drop band is triggered. The 'skb' should be * dropped by the caller'. */ bool ovs_meter_execute(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, u32 meter_id) { long long int now_ms = div_u64(ktime_get_ns(), 1000 * 1000); long long int long_delta_ms; struct dp_meter_band *band; struct dp_meter *meter; int i, band_exceeded_max = -1; u32 band_exceeded_rate = 0; u32 delta_ms; u32 cost; meter = lookup_meter(&dp->meter_tbl, meter_id); /* Do not drop the packet when there is no meter. */ if (!meter) return false; /* Lock the meter while using it. */ spin_lock(&meter->lock); long_delta_ms = (now_ms - meter->used); /* ms */ if (long_delta_ms < 0) { /* This condition means that we have several threads fighting * for a meter lock, and the one who received the packets a * bit later wins. Assuming that all racing threads received * packets at the same time to avoid overflow. */ long_delta_ms = 0; } /* Make sure delta_ms will not be too large, so that bucket will not * wrap around below. */ delta_ms = (long_delta_ms > (long long int)meter->max_delta_t) ? meter->max_delta_t : (u32)long_delta_ms; /* Update meter statistics. */ meter->used = now_ms; meter->stats.n_packets += 1; meter->stats.n_bytes += skb->len; /* Bucket rate is either in kilobits per second, or in packets per * second. We maintain the bucket in the units of either bits or * 1/1000th of a packet, correspondingly. * Then, when rate is multiplied with milliseconds, we get the * bucket units: * msec * kbps = bits, and * msec * packets/sec = 1/1000 packets. * * 'cost' is the number of bucket units in this packet. */ cost = (meter->kbps) ? skb->len * 8 : 1000; /* Update all bands and find the one hit with the highest rate. */ for (i = 0; i < meter->n_bands; ++i) { long long int max_bucket_size; band = &meter->bands[i]; max_bucket_size = band->burst_size * 1000LL; band->bucket += delta_ms * band->rate; if (band->bucket > max_bucket_size) band->bucket = max_bucket_size; if (band->bucket >= cost) { band->bucket -= cost; } else if (band->rate > band_exceeded_rate) { band_exceeded_rate = band->rate; band_exceeded_max = i; } } if (band_exceeded_max >= 0) { /* Update band statistics. */ band = &meter->bands[band_exceeded_max]; band->stats.n_packets += 1; band->stats.n_bytes += skb->len; /* Drop band triggered, let the caller drop the 'skb'. */ if (band->type == OVS_METER_BAND_TYPE_DROP) { spin_unlock(&meter->lock); return true; } } spin_unlock(&meter->lock); return false; } static const struct genl_small_ops dp_meter_genl_ops[] = { { .cmd = OVS_METER_CMD_FEATURES, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, /* OK for unprivileged users. */ .doit = ovs_meter_cmd_features }, { .cmd = OVS_METER_CMD_SET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN * privilege. */ .doit = ovs_meter_cmd_set, }, { .cmd = OVS_METER_CMD_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, /* OK for unprivileged users. */ .doit = ovs_meter_cmd_get, }, { .cmd = OVS_METER_CMD_DEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN * privilege. */ .doit = ovs_meter_cmd_del }, }; static const struct genl_multicast_group ovs_meter_multicast_group = { .name = OVS_METER_MCGROUP, }; struct genl_family dp_meter_genl_family __ro_after_init = { .hdrsize = sizeof(struct ovs_header), .name = OVS_METER_FAMILY, .version = OVS_METER_VERSION, .maxattr = OVS_METER_ATTR_MAX, .policy = meter_policy, .netnsok = true, .parallel_ops = true, .small_ops = dp_meter_genl_ops, .n_small_ops = ARRAY_SIZE(dp_meter_genl_ops), .resv_start_op = OVS_METER_CMD_GET + 1, .mcgrps = &ovs_meter_multicast_group, .n_mcgrps = 1, .module = THIS_MODULE, }; int ovs_meters_init(struct datapath *dp) { struct dp_meter_table *tbl = &dp->meter_tbl; struct dp_meter_instance *ti; unsigned long free_mem_bytes; ti = dp_meter_instance_alloc(DP_METER_ARRAY_SIZE_MIN); if (!ti) return -ENOMEM; /* Allow meters in a datapath to use ~3.12% of physical memory. */ free_mem_bytes = nr_free_buffer_pages() * (PAGE_SIZE >> 5); tbl->max_meters_allowed = min(free_mem_bytes / sizeof(struct dp_meter), DP_METER_NUM_MAX); if (!tbl->max_meters_allowed) goto out_err; rcu_assign_pointer(tbl->ti, ti); tbl->count = 0; return 0; out_err: dp_meter_instance_free(ti); return -ENOMEM; } void ovs_meters_exit(struct datapath *dp) { struct dp_meter_table *tbl = &dp->meter_tbl; struct dp_meter_instance *ti = rcu_dereference_raw(tbl->ti); int i; for (i = 0; i < ti->n_meters; i++) ovs_meter_free(rcu_dereference_raw(ti->dp_meters[i])); dp_meter_instance_free(ti); }
linux-master
net/openvswitch/meter.c
// SPDX-License-Identifier: GPL-2.0-only /* * Kernel Connection Multiplexor * * Copyright (c) 2016 Tom Herbert <[email protected]> */ #include <linux/bpf.h> #include <linux/errno.h> #include <linux/errqueue.h> #include <linux/file.h> #include <linux/filter.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/poll.h> #include <linux/rculist.h> #include <linux/skbuff.h> #include <linux/socket.h> #include <linux/uaccess.h> #include <linux/workqueue.h> #include <linux/syscalls.h> #include <linux/sched/signal.h> #include <net/kcm.h> #include <net/netns/generic.h> #include <net/sock.h> #include <uapi/linux/kcm.h> #include <trace/events/sock.h> unsigned int kcm_net_id; static struct kmem_cache *kcm_psockp __read_mostly; static struct kmem_cache *kcm_muxp __read_mostly; static struct workqueue_struct *kcm_wq; static inline struct kcm_sock *kcm_sk(const struct sock *sk) { return (struct kcm_sock *)sk; } static inline struct kcm_tx_msg *kcm_tx_msg(struct sk_buff *skb) { return (struct kcm_tx_msg *)skb->cb; } static void report_csk_error(struct sock *csk, int err) { csk->sk_err = EPIPE; sk_error_report(csk); } static void kcm_abort_tx_psock(struct kcm_psock *psock, int err, bool wakeup_kcm) { struct sock *csk = psock->sk; struct kcm_mux *mux = psock->mux; /* Unrecoverable error in transmit */ spin_lock_bh(&mux->lock); if (psock->tx_stopped) { spin_unlock_bh(&mux->lock); return; } psock->tx_stopped = 1; KCM_STATS_INCR(psock->stats.tx_aborts); if (!psock->tx_kcm) { /* Take off psocks_avail list */ list_del(&psock->psock_avail_list); } else if (wakeup_kcm) { /* In this case psock is being aborted while outside of * write_msgs and psock is reserved. Schedule tx_work * to handle the failure there. Need to commit tx_stopped * before queuing work. */ smp_mb(); queue_work(kcm_wq, &psock->tx_kcm->tx_work); } spin_unlock_bh(&mux->lock); /* Report error on lower socket */ report_csk_error(csk, err); } /* RX mux lock held. */ static void kcm_update_rx_mux_stats(struct kcm_mux *mux, struct kcm_psock *psock) { STRP_STATS_ADD(mux->stats.rx_bytes, psock->strp.stats.bytes - psock->saved_rx_bytes); mux->stats.rx_msgs += psock->strp.stats.msgs - psock->saved_rx_msgs; psock->saved_rx_msgs = psock->strp.stats.msgs; psock->saved_rx_bytes = psock->strp.stats.bytes; } static void kcm_update_tx_mux_stats(struct kcm_mux *mux, struct kcm_psock *psock) { KCM_STATS_ADD(mux->stats.tx_bytes, psock->stats.tx_bytes - psock->saved_tx_bytes); mux->stats.tx_msgs += psock->stats.tx_msgs - psock->saved_tx_msgs; psock->saved_tx_msgs = psock->stats.tx_msgs; psock->saved_tx_bytes = psock->stats.tx_bytes; } static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); /* KCM is ready to receive messages on its queue-- either the KCM is new or * has become unblocked after being blocked on full socket buffer. Queue any * pending ready messages on a psock. RX mux lock held. */ static void kcm_rcv_ready(struct kcm_sock *kcm) { struct kcm_mux *mux = kcm->mux; struct kcm_psock *psock; struct sk_buff *skb; if (unlikely(kcm->rx_wait || kcm->rx_psock || kcm->rx_disabled)) return; while (unlikely((skb = __skb_dequeue(&mux->rx_hold_queue)))) { if (kcm_queue_rcv_skb(&kcm->sk, skb)) { /* Assuming buffer limit has been reached */ skb_queue_head(&mux->rx_hold_queue, skb); WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); return; } } while (!list_empty(&mux->psocks_ready)) { psock = list_first_entry(&mux->psocks_ready, struct kcm_psock, psock_ready_list); if (kcm_queue_rcv_skb(&kcm->sk, psock->ready_rx_msg)) { /* Assuming buffer limit has been reached */ WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); return; } /* Consumed the ready message on the psock. Schedule rx_work to * get more messages. */ list_del(&psock->psock_ready_list); psock->ready_rx_msg = NULL; /* Commit clearing of ready_rx_msg for queuing work */ smp_mb(); strp_unpause(&psock->strp); strp_check_rcv(&psock->strp); } /* Buffer limit is okay now, add to ready list */ list_add_tail(&kcm->wait_rx_list, &kcm->mux->kcm_rx_waiters); /* paired with lockless reads in kcm_rfree() */ WRITE_ONCE(kcm->rx_wait, true); } static void kcm_rfree(struct sk_buff *skb) { struct sock *sk = skb->sk; struct kcm_sock *kcm = kcm_sk(sk); struct kcm_mux *mux = kcm->mux; unsigned int len = skb->truesize; sk_mem_uncharge(sk, len); atomic_sub(len, &sk->sk_rmem_alloc); /* For reading rx_wait and rx_psock without holding lock */ smp_mb__after_atomic(); if (!READ_ONCE(kcm->rx_wait) && !READ_ONCE(kcm->rx_psock) && sk_rmem_alloc_get(sk) < sk->sk_rcvlowat) { spin_lock_bh(&mux->rx_lock); kcm_rcv_ready(kcm); spin_unlock_bh(&mux->rx_lock); } } static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { struct sk_buff_head *list = &sk->sk_receive_queue; if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) return -ENOMEM; if (!sk_rmem_schedule(sk, skb, skb->truesize)) return -ENOBUFS; skb->dev = NULL; skb_orphan(skb); skb->sk = sk; skb->destructor = kcm_rfree; atomic_add(skb->truesize, &sk->sk_rmem_alloc); sk_mem_charge(sk, skb->truesize); skb_queue_tail(list, skb); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); return 0; } /* Requeue received messages for a kcm socket to other kcm sockets. This is * called with a kcm socket is receive disabled. * RX mux lock held. */ static void requeue_rx_msgs(struct kcm_mux *mux, struct sk_buff_head *head) { struct sk_buff *skb; struct kcm_sock *kcm; while ((skb = skb_dequeue(head))) { /* Reset destructor to avoid calling kcm_rcv_ready */ skb->destructor = sock_rfree; skb_orphan(skb); try_again: if (list_empty(&mux->kcm_rx_waiters)) { skb_queue_tail(&mux->rx_hold_queue, skb); continue; } kcm = list_first_entry(&mux->kcm_rx_waiters, struct kcm_sock, wait_rx_list); if (kcm_queue_rcv_skb(&kcm->sk, skb)) { /* Should mean socket buffer full */ list_del(&kcm->wait_rx_list); /* paired with lockless reads in kcm_rfree() */ WRITE_ONCE(kcm->rx_wait, false); /* Commit rx_wait to read in kcm_free */ smp_wmb(); goto try_again; } } } /* Lower sock lock held */ static struct kcm_sock *reserve_rx_kcm(struct kcm_psock *psock, struct sk_buff *head) { struct kcm_mux *mux = psock->mux; struct kcm_sock *kcm; WARN_ON(psock->ready_rx_msg); if (psock->rx_kcm) return psock->rx_kcm; spin_lock_bh(&mux->rx_lock); if (psock->rx_kcm) { spin_unlock_bh(&mux->rx_lock); return psock->rx_kcm; } kcm_update_rx_mux_stats(mux, psock); if (list_empty(&mux->kcm_rx_waiters)) { psock->ready_rx_msg = head; strp_pause(&psock->strp); list_add_tail(&psock->psock_ready_list, &mux->psocks_ready); spin_unlock_bh(&mux->rx_lock); return NULL; } kcm = list_first_entry(&mux->kcm_rx_waiters, struct kcm_sock, wait_rx_list); list_del(&kcm->wait_rx_list); /* paired with lockless reads in kcm_rfree() */ WRITE_ONCE(kcm->rx_wait, false); psock->rx_kcm = kcm; /* paired with lockless reads in kcm_rfree() */ WRITE_ONCE(kcm->rx_psock, psock); spin_unlock_bh(&mux->rx_lock); return kcm; } static void kcm_done(struct kcm_sock *kcm); static void kcm_done_work(struct work_struct *w) { kcm_done(container_of(w, struct kcm_sock, done_work)); } /* Lower sock held */ static void unreserve_rx_kcm(struct kcm_psock *psock, bool rcv_ready) { struct kcm_sock *kcm = psock->rx_kcm; struct kcm_mux *mux = psock->mux; if (!kcm) return; spin_lock_bh(&mux->rx_lock); psock->rx_kcm = NULL; /* paired with lockless reads in kcm_rfree() */ WRITE_ONCE(kcm->rx_psock, NULL); /* Commit kcm->rx_psock before sk_rmem_alloc_get to sync with * kcm_rfree */ smp_mb(); if (unlikely(kcm->done)) { spin_unlock_bh(&mux->rx_lock); /* Need to run kcm_done in a task since we need to qcquire * callback locks which may already be held here. */ INIT_WORK(&kcm->done_work, kcm_done_work); schedule_work(&kcm->done_work); return; } if (unlikely(kcm->rx_disabled)) { requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); } else if (rcv_ready || unlikely(!sk_rmem_alloc_get(&kcm->sk))) { /* Check for degenerative race with rx_wait that all * data was dequeued (accounted for in kcm_rfree). */ kcm_rcv_ready(kcm); } spin_unlock_bh(&mux->rx_lock); } /* Lower sock lock held */ static void psock_data_ready(struct sock *sk) { struct kcm_psock *psock; trace_sk_data_ready(sk); read_lock_bh(&sk->sk_callback_lock); psock = (struct kcm_psock *)sk->sk_user_data; if (likely(psock)) strp_data_ready(&psock->strp); read_unlock_bh(&sk->sk_callback_lock); } /* Called with lower sock held */ static void kcm_rcv_strparser(struct strparser *strp, struct sk_buff *skb) { struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); struct kcm_sock *kcm; try_queue: kcm = reserve_rx_kcm(psock, skb); if (!kcm) { /* Unable to reserve a KCM, message is held in psock and strp * is paused. */ return; } if (kcm_queue_rcv_skb(&kcm->sk, skb)) { /* Should mean socket buffer full */ unreserve_rx_kcm(psock, false); goto try_queue; } } static int kcm_parse_func_strparser(struct strparser *strp, struct sk_buff *skb) { struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); struct bpf_prog *prog = psock->bpf_prog; int res; res = bpf_prog_run_pin_on_cpu(prog, skb); return res; } static int kcm_read_sock_done(struct strparser *strp, int err) { struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); unreserve_rx_kcm(psock, true); return err; } static void psock_state_change(struct sock *sk) { /* TCP only does a EPOLLIN for a half close. Do a EPOLLHUP here * since application will normally not poll with EPOLLIN * on the TCP sockets. */ report_csk_error(sk, EPIPE); } static void psock_write_space(struct sock *sk) { struct kcm_psock *psock; struct kcm_mux *mux; struct kcm_sock *kcm; read_lock_bh(&sk->sk_callback_lock); psock = (struct kcm_psock *)sk->sk_user_data; if (unlikely(!psock)) goto out; mux = psock->mux; spin_lock_bh(&mux->lock); /* Check if the socket is reserved so someone is waiting for sending. */ kcm = psock->tx_kcm; if (kcm && !unlikely(kcm->tx_stopped)) queue_work(kcm_wq, &kcm->tx_work); spin_unlock_bh(&mux->lock); out: read_unlock_bh(&sk->sk_callback_lock); } static void unreserve_psock(struct kcm_sock *kcm); /* kcm sock is locked. */ static struct kcm_psock *reserve_psock(struct kcm_sock *kcm) { struct kcm_mux *mux = kcm->mux; struct kcm_psock *psock; psock = kcm->tx_psock; smp_rmb(); /* Must read tx_psock before tx_wait */ if (psock) { WARN_ON(kcm->tx_wait); if (unlikely(psock->tx_stopped)) unreserve_psock(kcm); else return kcm->tx_psock; } spin_lock_bh(&mux->lock); /* Check again under lock to see if psock was reserved for this * psock via psock_unreserve. */ psock = kcm->tx_psock; if (unlikely(psock)) { WARN_ON(kcm->tx_wait); spin_unlock_bh(&mux->lock); return kcm->tx_psock; } if (!list_empty(&mux->psocks_avail)) { psock = list_first_entry(&mux->psocks_avail, struct kcm_psock, psock_avail_list); list_del(&psock->psock_avail_list); if (kcm->tx_wait) { list_del(&kcm->wait_psock_list); kcm->tx_wait = false; } kcm->tx_psock = psock; psock->tx_kcm = kcm; KCM_STATS_INCR(psock->stats.reserved); } else if (!kcm->tx_wait) { list_add_tail(&kcm->wait_psock_list, &mux->kcm_tx_waiters); kcm->tx_wait = true; } spin_unlock_bh(&mux->lock); return psock; } /* mux lock held */ static void psock_now_avail(struct kcm_psock *psock) { struct kcm_mux *mux = psock->mux; struct kcm_sock *kcm; if (list_empty(&mux->kcm_tx_waiters)) { list_add_tail(&psock->psock_avail_list, &mux->psocks_avail); } else { kcm = list_first_entry(&mux->kcm_tx_waiters, struct kcm_sock, wait_psock_list); list_del(&kcm->wait_psock_list); kcm->tx_wait = false; psock->tx_kcm = kcm; /* Commit before changing tx_psock since that is read in * reserve_psock before queuing work. */ smp_mb(); kcm->tx_psock = psock; KCM_STATS_INCR(psock->stats.reserved); queue_work(kcm_wq, &kcm->tx_work); } } /* kcm sock is locked. */ static void unreserve_psock(struct kcm_sock *kcm) { struct kcm_psock *psock; struct kcm_mux *mux = kcm->mux; spin_lock_bh(&mux->lock); psock = kcm->tx_psock; if (WARN_ON(!psock)) { spin_unlock_bh(&mux->lock); return; } smp_rmb(); /* Read tx_psock before tx_wait */ kcm_update_tx_mux_stats(mux, psock); WARN_ON(kcm->tx_wait); kcm->tx_psock = NULL; psock->tx_kcm = NULL; KCM_STATS_INCR(psock->stats.unreserved); if (unlikely(psock->tx_stopped)) { if (psock->done) { /* Deferred free */ list_del(&psock->psock_list); mux->psocks_cnt--; sock_put(psock->sk); fput(psock->sk->sk_socket->file); kmem_cache_free(kcm_psockp, psock); } /* Don't put back on available list */ spin_unlock_bh(&mux->lock); return; } psock_now_avail(psock); spin_unlock_bh(&mux->lock); } static void kcm_report_tx_retry(struct kcm_sock *kcm) { struct kcm_mux *mux = kcm->mux; spin_lock_bh(&mux->lock); KCM_STATS_INCR(mux->stats.tx_retries); spin_unlock_bh(&mux->lock); } /* Write any messages ready on the kcm socket. Called with kcm sock lock * held. Return bytes actually sent or error. */ static int kcm_write_msgs(struct kcm_sock *kcm) { unsigned int total_sent = 0; struct sock *sk = &kcm->sk; struct kcm_psock *psock; struct sk_buff *head; int ret = 0; kcm->tx_wait_more = false; psock = kcm->tx_psock; if (unlikely(psock && psock->tx_stopped)) { /* A reserved psock was aborted asynchronously. Unreserve * it and we'll retry the message. */ unreserve_psock(kcm); kcm_report_tx_retry(kcm); if (skb_queue_empty(&sk->sk_write_queue)) return 0; kcm_tx_msg(skb_peek(&sk->sk_write_queue))->started_tx = false; } retry: while ((head = skb_peek(&sk->sk_write_queue))) { struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; struct kcm_tx_msg *txm = kcm_tx_msg(head); struct sk_buff *skb; unsigned int msize; int i; if (!txm->started_tx) { psock = reserve_psock(kcm); if (!psock) goto out; skb = head; txm->frag_offset = 0; txm->sent = 0; txm->started_tx = true; } else { if (WARN_ON(!psock)) { ret = -EINVAL; goto out; } skb = txm->frag_skb; } if (WARN_ON(!skb_shinfo(skb)->nr_frags)) { ret = -EINVAL; goto out; } msize = 0; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) msize += skb_shinfo(skb)->frags[i].bv_len; iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, skb_shinfo(skb)->frags, skb_shinfo(skb)->nr_frags, msize); iov_iter_advance(&msg.msg_iter, txm->frag_offset); do { ret = sock_sendmsg(psock->sk->sk_socket, &msg); if (ret <= 0) { if (ret == -EAGAIN) { /* Save state to try again when there's * write space on the socket */ txm->frag_skb = skb; ret = 0; goto out; } /* Hard failure in sending message, abort this * psock since it has lost framing * synchronization and retry sending the * message from the beginning. */ kcm_abort_tx_psock(psock, ret ? -ret : EPIPE, true); unreserve_psock(kcm); psock = NULL; txm->started_tx = false; kcm_report_tx_retry(kcm); ret = 0; goto retry; } txm->sent += ret; txm->frag_offset += ret; KCM_STATS_ADD(psock->stats.tx_bytes, ret); } while (msg.msg_iter.count > 0); if (skb == head) { if (skb_has_frag_list(skb)) { txm->frag_skb = skb_shinfo(skb)->frag_list; txm->frag_offset = 0; continue; } } else if (skb->next) { txm->frag_skb = skb->next; txm->frag_offset = 0; continue; } /* Successfully sent the whole packet, account for it. */ sk->sk_wmem_queued -= txm->sent; total_sent += txm->sent; skb_dequeue(&sk->sk_write_queue); kfree_skb(head); KCM_STATS_INCR(psock->stats.tx_msgs); } out: if (!head) { /* Done with all queued messages. */ WARN_ON(!skb_queue_empty(&sk->sk_write_queue)); if (psock) unreserve_psock(kcm); } /* Check if write space is available */ sk->sk_write_space(sk); return total_sent ? : ret; } static void kcm_tx_work(struct work_struct *w) { struct kcm_sock *kcm = container_of(w, struct kcm_sock, tx_work); struct sock *sk = &kcm->sk; int err; lock_sock(sk); /* Primarily for SOCK_DGRAM sockets, also handle asynchronous tx * aborts */ err = kcm_write_msgs(kcm); if (err < 0) { /* Hard failure in write, report error on KCM socket */ pr_warn("KCM: Hard failure on kcm_write_msgs %d\n", err); report_csk_error(&kcm->sk, -err); goto out; } /* Primarily for SOCK_SEQPACKET sockets */ if (likely(sk->sk_socket) && test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); sk->sk_write_space(sk); } out: release_sock(sk); } static void kcm_push(struct kcm_sock *kcm) { if (kcm->tx_wait_more) kcm_write_msgs(kcm); } static int kcm_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct kcm_sock *kcm = kcm_sk(sk); struct sk_buff *skb = NULL, *head = NULL; size_t copy, copied = 0; long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); int eor = (sock->type == SOCK_DGRAM) ? !(msg->msg_flags & MSG_MORE) : !!(msg->msg_flags & MSG_EOR); int err = -EPIPE; lock_sock(sk); /* Per tcp_sendmsg this should be in poll */ sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); if (sk->sk_err) goto out_error; if (kcm->seq_skb) { /* Previously opened message */ head = kcm->seq_skb; skb = kcm_tx_msg(head)->last_skb; goto start; } /* Call the sk_stream functions to manage the sndbuf mem. */ if (!sk_stream_memory_free(sk)) { kcm_push(kcm); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); err = sk_stream_wait_memory(sk, &timeo); if (err) goto out_error; } if (msg_data_left(msg)) { /* New message, alloc head skb */ head = alloc_skb(0, sk->sk_allocation); while (!head) { kcm_push(kcm); err = sk_stream_wait_memory(sk, &timeo); if (err) goto out_error; head = alloc_skb(0, sk->sk_allocation); } skb = head; /* Set ip_summed to CHECKSUM_UNNECESSARY to avoid calling * csum_and_copy_from_iter from skb_do_copy_data_nocache. */ skb->ip_summed = CHECKSUM_UNNECESSARY; } start: while (msg_data_left(msg)) { bool merge = true; int i = skb_shinfo(skb)->nr_frags; struct page_frag *pfrag = sk_page_frag(sk); if (!sk_page_frag_refill(sk, pfrag)) goto wait_for_memory; if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { if (i == MAX_SKB_FRAGS) { struct sk_buff *tskb; tskb = alloc_skb(0, sk->sk_allocation); if (!tskb) goto wait_for_memory; if (head == skb) skb_shinfo(head)->frag_list = tskb; else skb->next = tskb; skb = tskb; skb->ip_summed = CHECKSUM_UNNECESSARY; continue; } merge = false; } if (msg->msg_flags & MSG_SPLICE_PAGES) { copy = msg_data_left(msg); if (!sk_wmem_schedule(sk, copy)) goto wait_for_memory; err = skb_splice_from_iter(skb, &msg->msg_iter, copy, sk->sk_allocation); if (err < 0) { if (err == -EMSGSIZE) goto wait_for_memory; goto out_error; } copy = err; skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; sk_wmem_queued_add(sk, copy); sk_mem_charge(sk, copy); if (head != skb) head->truesize += copy; } else { copy = min_t(int, msg_data_left(msg), pfrag->size - pfrag->offset); if (!sk_wmem_schedule(sk, copy)) goto wait_for_memory; err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, pfrag->page, pfrag->offset, copy); if (err) goto out_error; /* Update the skb. */ if (merge) { skb_frag_size_add( &skb_shinfo(skb)->frags[i - 1], copy); } else { skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, copy); get_page(pfrag->page); } pfrag->offset += copy; } copied += copy; if (head != skb) { head->len += copy; head->data_len += copy; } continue; wait_for_memory: kcm_push(kcm); err = sk_stream_wait_memory(sk, &timeo); if (err) goto out_error; } if (eor) { bool not_busy = skb_queue_empty(&sk->sk_write_queue); if (head) { /* Message complete, queue it on send buffer */ __skb_queue_tail(&sk->sk_write_queue, head); kcm->seq_skb = NULL; KCM_STATS_INCR(kcm->stats.tx_msgs); } if (msg->msg_flags & MSG_BATCH) { kcm->tx_wait_more = true; } else if (kcm->tx_wait_more || not_busy) { err = kcm_write_msgs(kcm); if (err < 0) { /* We got a hard error in write_msgs but have * already queued this message. Report an error * in the socket, but don't affect return value * from sendmsg */ pr_warn("KCM: Hard failure on kcm_write_msgs\n"); report_csk_error(&kcm->sk, -err); } } } else { /* Message not complete, save state */ partial_message: if (head) { kcm->seq_skb = head; kcm_tx_msg(head)->last_skb = skb; } } KCM_STATS_ADD(kcm->stats.tx_bytes, copied); release_sock(sk); return copied; out_error: kcm_push(kcm); if (sock->type == SOCK_SEQPACKET) { /* Wrote some bytes before encountering an * error, return partial success. */ if (copied) goto partial_message; if (head != kcm->seq_skb) kfree_skb(head); } else { kfree_skb(head); kcm->seq_skb = NULL; } err = sk_stream_error(sk, msg->msg_flags, err); /* make sure we wake any epoll edge trigger waiter */ if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) sk->sk_write_space(sk); release_sock(sk); return err; } static void kcm_splice_eof(struct socket *sock) { struct sock *sk = sock->sk; struct kcm_sock *kcm = kcm_sk(sk); if (skb_queue_empty_lockless(&sk->sk_write_queue)) return; lock_sock(sk); kcm_write_msgs(kcm); release_sock(sk); } static int kcm_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct kcm_sock *kcm = kcm_sk(sk); int err = 0; struct strp_msg *stm; int copied = 0; struct sk_buff *skb; skb = skb_recv_datagram(sk, flags, &err); if (!skb) goto out; /* Okay, have a message on the receive queue */ stm = strp_msg(skb); if (len > stm->full_len) len = stm->full_len; err = skb_copy_datagram_msg(skb, stm->offset, msg, len); if (err < 0) goto out; copied = len; if (likely(!(flags & MSG_PEEK))) { KCM_STATS_ADD(kcm->stats.rx_bytes, copied); if (copied < stm->full_len) { if (sock->type == SOCK_DGRAM) { /* Truncated message */ msg->msg_flags |= MSG_TRUNC; goto msg_finished; } stm->offset += copied; stm->full_len -= copied; } else { msg_finished: /* Finished with message */ msg->msg_flags |= MSG_EOR; KCM_STATS_INCR(kcm->stats.rx_msgs); } } out: skb_free_datagram(sk, skb); return copied ? : err; } static ssize_t kcm_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct sock *sk = sock->sk; struct kcm_sock *kcm = kcm_sk(sk); struct strp_msg *stm; int err = 0; ssize_t copied; struct sk_buff *skb; /* Only support splice for SOCKSEQPACKET */ skb = skb_recv_datagram(sk, flags, &err); if (!skb) goto err_out; /* Okay, have a message on the receive queue */ stm = strp_msg(skb); if (len > stm->full_len) len = stm->full_len; copied = skb_splice_bits(skb, sk, stm->offset, pipe, len, flags); if (copied < 0) { err = copied; goto err_out; } KCM_STATS_ADD(kcm->stats.rx_bytes, copied); stm->offset += copied; stm->full_len -= copied; /* We have no way to return MSG_EOR. If all the bytes have been * read we still leave the message in the receive socket buffer. * A subsequent recvmsg needs to be done to return MSG_EOR and * finish reading the message. */ skb_free_datagram(sk, skb); return copied; err_out: skb_free_datagram(sk, skb); return err; } /* kcm sock lock held */ static void kcm_recv_disable(struct kcm_sock *kcm) { struct kcm_mux *mux = kcm->mux; if (kcm->rx_disabled) return; spin_lock_bh(&mux->rx_lock); kcm->rx_disabled = 1; /* If a psock is reserved we'll do cleanup in unreserve */ if (!kcm->rx_psock) { if (kcm->rx_wait) { list_del(&kcm->wait_rx_list); /* paired with lockless reads in kcm_rfree() */ WRITE_ONCE(kcm->rx_wait, false); } requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); } spin_unlock_bh(&mux->rx_lock); } /* kcm sock lock held */ static void kcm_recv_enable(struct kcm_sock *kcm) { struct kcm_mux *mux = kcm->mux; if (!kcm->rx_disabled) return; spin_lock_bh(&mux->rx_lock); kcm->rx_disabled = 0; kcm_rcv_ready(kcm); spin_unlock_bh(&mux->rx_lock); } static int kcm_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct kcm_sock *kcm = kcm_sk(sock->sk); int val, valbool; int err = 0; if (level != SOL_KCM) return -ENOPROTOOPT; if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(int))) return -EFAULT; valbool = val ? 1 : 0; switch (optname) { case KCM_RECV_DISABLE: lock_sock(&kcm->sk); if (valbool) kcm_recv_disable(kcm); else kcm_recv_enable(kcm); release_sock(&kcm->sk); break; default: err = -ENOPROTOOPT; } return err; } static int kcm_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct kcm_sock *kcm = kcm_sk(sock->sk); int val, len; if (level != SOL_KCM) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; len = min_t(unsigned int, len, sizeof(int)); if (len < 0) return -EINVAL; switch (optname) { case KCM_RECV_DISABLE: val = kcm->rx_disabled; break; default: return -ENOPROTOOPT; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static void init_kcm_sock(struct kcm_sock *kcm, struct kcm_mux *mux) { struct kcm_sock *tkcm; struct list_head *head; int index = 0; /* For SOCK_SEQPACKET sock type, datagram_poll checks the sk_state, so * we set sk_state, otherwise epoll_wait always returns right away with * EPOLLHUP */ kcm->sk.sk_state = TCP_ESTABLISHED; /* Add to mux's kcm sockets list */ kcm->mux = mux; spin_lock_bh(&mux->lock); head = &mux->kcm_socks; list_for_each_entry(tkcm, &mux->kcm_socks, kcm_sock_list) { if (tkcm->index != index) break; head = &tkcm->kcm_sock_list; index++; } list_add(&kcm->kcm_sock_list, head); kcm->index = index; mux->kcm_socks_cnt++; spin_unlock_bh(&mux->lock); INIT_WORK(&kcm->tx_work, kcm_tx_work); spin_lock_bh(&mux->rx_lock); kcm_rcv_ready(kcm); spin_unlock_bh(&mux->rx_lock); } static int kcm_attach(struct socket *sock, struct socket *csock, struct bpf_prog *prog) { struct kcm_sock *kcm = kcm_sk(sock->sk); struct kcm_mux *mux = kcm->mux; struct sock *csk; struct kcm_psock *psock = NULL, *tpsock; struct list_head *head; int index = 0; static const struct strp_callbacks cb = { .rcv_msg = kcm_rcv_strparser, .parse_msg = kcm_parse_func_strparser, .read_sock_done = kcm_read_sock_done, }; int err = 0; csk = csock->sk; if (!csk) return -EINVAL; lock_sock(csk); /* Only allow TCP sockets to be attached for now */ if ((csk->sk_family != AF_INET && csk->sk_family != AF_INET6) || csk->sk_protocol != IPPROTO_TCP) { err = -EOPNOTSUPP; goto out; } /* Don't allow listeners or closed sockets */ if (csk->sk_state == TCP_LISTEN || csk->sk_state == TCP_CLOSE) { err = -EOPNOTSUPP; goto out; } psock = kmem_cache_zalloc(kcm_psockp, GFP_KERNEL); if (!psock) { err = -ENOMEM; goto out; } psock->mux = mux; psock->sk = csk; psock->bpf_prog = prog; write_lock_bh(&csk->sk_callback_lock); /* Check if sk_user_data is already by KCM or someone else. * Must be done under lock to prevent race conditions. */ if (csk->sk_user_data) { write_unlock_bh(&csk->sk_callback_lock); kmem_cache_free(kcm_psockp, psock); err = -EALREADY; goto out; } err = strp_init(&psock->strp, csk, &cb); if (err) { write_unlock_bh(&csk->sk_callback_lock); kmem_cache_free(kcm_psockp, psock); goto out; } psock->save_data_ready = csk->sk_data_ready; psock->save_write_space = csk->sk_write_space; psock->save_state_change = csk->sk_state_change; csk->sk_user_data = psock; csk->sk_data_ready = psock_data_ready; csk->sk_write_space = psock_write_space; csk->sk_state_change = psock_state_change; write_unlock_bh(&csk->sk_callback_lock); sock_hold(csk); /* Finished initialization, now add the psock to the MUX. */ spin_lock_bh(&mux->lock); head = &mux->psocks; list_for_each_entry(tpsock, &mux->psocks, psock_list) { if (tpsock->index != index) break; head = &tpsock->psock_list; index++; } list_add(&psock->psock_list, head); psock->index = index; KCM_STATS_INCR(mux->stats.psock_attach); mux->psocks_cnt++; psock_now_avail(psock); spin_unlock_bh(&mux->lock); /* Schedule RX work in case there are already bytes queued */ strp_check_rcv(&psock->strp); out: release_sock(csk); return err; } static int kcm_attach_ioctl(struct socket *sock, struct kcm_attach *info) { struct socket *csock; struct bpf_prog *prog; int err; csock = sockfd_lookup(info->fd, &err); if (!csock) return -ENOENT; prog = bpf_prog_get_type(info->bpf_fd, BPF_PROG_TYPE_SOCKET_FILTER); if (IS_ERR(prog)) { err = PTR_ERR(prog); goto out; } err = kcm_attach(sock, csock, prog); if (err) { bpf_prog_put(prog); goto out; } /* Keep reference on file also */ return 0; out: sockfd_put(csock); return err; } static void kcm_unattach(struct kcm_psock *psock) { struct sock *csk = psock->sk; struct kcm_mux *mux = psock->mux; lock_sock(csk); /* Stop getting callbacks from TCP socket. After this there should * be no way to reserve a kcm for this psock. */ write_lock_bh(&csk->sk_callback_lock); csk->sk_user_data = NULL; csk->sk_data_ready = psock->save_data_ready; csk->sk_write_space = psock->save_write_space; csk->sk_state_change = psock->save_state_change; strp_stop(&psock->strp); if (WARN_ON(psock->rx_kcm)) { write_unlock_bh(&csk->sk_callback_lock); release_sock(csk); return; } spin_lock_bh(&mux->rx_lock); /* Stop receiver activities. After this point psock should not be * able to get onto ready list either through callbacks or work. */ if (psock->ready_rx_msg) { list_del(&psock->psock_ready_list); kfree_skb(psock->ready_rx_msg); psock->ready_rx_msg = NULL; KCM_STATS_INCR(mux->stats.rx_ready_drops); } spin_unlock_bh(&mux->rx_lock); write_unlock_bh(&csk->sk_callback_lock); /* Call strp_done without sock lock */ release_sock(csk); strp_done(&psock->strp); lock_sock(csk); bpf_prog_put(psock->bpf_prog); spin_lock_bh(&mux->lock); aggregate_psock_stats(&psock->stats, &mux->aggregate_psock_stats); save_strp_stats(&psock->strp, &mux->aggregate_strp_stats); KCM_STATS_INCR(mux->stats.psock_unattach); if (psock->tx_kcm) { /* psock was reserved. Just mark it finished and we will clean * up in the kcm paths, we need kcm lock which can not be * acquired here. */ KCM_STATS_INCR(mux->stats.psock_unattach_rsvd); spin_unlock_bh(&mux->lock); /* We are unattaching a socket that is reserved. Abort the * socket since we may be out of sync in sending on it. We need * to do this without the mux lock. */ kcm_abort_tx_psock(psock, EPIPE, false); spin_lock_bh(&mux->lock); if (!psock->tx_kcm) { /* psock now unreserved in window mux was unlocked */ goto no_reserved; } psock->done = 1; /* Commit done before queuing work to process it */ smp_mb(); /* Queue tx work to make sure psock->done is handled */ queue_work(kcm_wq, &psock->tx_kcm->tx_work); spin_unlock_bh(&mux->lock); } else { no_reserved: if (!psock->tx_stopped) list_del(&psock->psock_avail_list); list_del(&psock->psock_list); mux->psocks_cnt--; spin_unlock_bh(&mux->lock); sock_put(csk); fput(csk->sk_socket->file); kmem_cache_free(kcm_psockp, psock); } release_sock(csk); } static int kcm_unattach_ioctl(struct socket *sock, struct kcm_unattach *info) { struct kcm_sock *kcm = kcm_sk(sock->sk); struct kcm_mux *mux = kcm->mux; struct kcm_psock *psock; struct socket *csock; struct sock *csk; int err; csock = sockfd_lookup(info->fd, &err); if (!csock) return -ENOENT; csk = csock->sk; if (!csk) { err = -EINVAL; goto out; } err = -ENOENT; spin_lock_bh(&mux->lock); list_for_each_entry(psock, &mux->psocks, psock_list) { if (psock->sk != csk) continue; /* Found the matching psock */ if (psock->unattaching || WARN_ON(psock->done)) { err = -EALREADY; break; } psock->unattaching = 1; spin_unlock_bh(&mux->lock); /* Lower socket lock should already be held */ kcm_unattach(psock); err = 0; goto out; } spin_unlock_bh(&mux->lock); out: sockfd_put(csock); return err; } static struct proto kcm_proto = { .name = "KCM", .owner = THIS_MODULE, .obj_size = sizeof(struct kcm_sock), }; /* Clone a kcm socket. */ static struct file *kcm_clone(struct socket *osock) { struct socket *newsock; struct sock *newsk; newsock = sock_alloc(); if (!newsock) return ERR_PTR(-ENFILE); newsock->type = osock->type; newsock->ops = osock->ops; __module_get(newsock->ops->owner); newsk = sk_alloc(sock_net(osock->sk), PF_KCM, GFP_KERNEL, &kcm_proto, false); if (!newsk) { sock_release(newsock); return ERR_PTR(-ENOMEM); } sock_init_data(newsock, newsk); init_kcm_sock(kcm_sk(newsk), kcm_sk(osock->sk)->mux); return sock_alloc_file(newsock, 0, osock->sk->sk_prot_creator->name); } static int kcm_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { int err; switch (cmd) { case SIOCKCMATTACH: { struct kcm_attach info; if (copy_from_user(&info, (void __user *)arg, sizeof(info))) return -EFAULT; err = kcm_attach_ioctl(sock, &info); break; } case SIOCKCMUNATTACH: { struct kcm_unattach info; if (copy_from_user(&info, (void __user *)arg, sizeof(info))) return -EFAULT; err = kcm_unattach_ioctl(sock, &info); break; } case SIOCKCMCLONE: { struct kcm_clone info; struct file *file; info.fd = get_unused_fd_flags(0); if (unlikely(info.fd < 0)) return info.fd; file = kcm_clone(sock); if (IS_ERR(file)) { put_unused_fd(info.fd); return PTR_ERR(file); } if (copy_to_user((void __user *)arg, &info, sizeof(info))) { put_unused_fd(info.fd); fput(file); return -EFAULT; } fd_install(info.fd, file); err = 0; break; } default: err = -ENOIOCTLCMD; break; } return err; } static void free_mux(struct rcu_head *rcu) { struct kcm_mux *mux = container_of(rcu, struct kcm_mux, rcu); kmem_cache_free(kcm_muxp, mux); } static void release_mux(struct kcm_mux *mux) { struct kcm_net *knet = mux->knet; struct kcm_psock *psock, *tmp_psock; /* Release psocks */ list_for_each_entry_safe(psock, tmp_psock, &mux->psocks, psock_list) { if (!WARN_ON(psock->unattaching)) kcm_unattach(psock); } if (WARN_ON(mux->psocks_cnt)) return; __skb_queue_purge(&mux->rx_hold_queue); mutex_lock(&knet->mutex); aggregate_mux_stats(&mux->stats, &knet->aggregate_mux_stats); aggregate_psock_stats(&mux->aggregate_psock_stats, &knet->aggregate_psock_stats); aggregate_strp_stats(&mux->aggregate_strp_stats, &knet->aggregate_strp_stats); list_del_rcu(&mux->kcm_mux_list); knet->count--; mutex_unlock(&knet->mutex); call_rcu(&mux->rcu, free_mux); } static void kcm_done(struct kcm_sock *kcm) { struct kcm_mux *mux = kcm->mux; struct sock *sk = &kcm->sk; int socks_cnt; spin_lock_bh(&mux->rx_lock); if (kcm->rx_psock) { /* Cleanup in unreserve_rx_kcm */ WARN_ON(kcm->done); kcm->rx_disabled = 1; kcm->done = 1; spin_unlock_bh(&mux->rx_lock); return; } if (kcm->rx_wait) { list_del(&kcm->wait_rx_list); /* paired with lockless reads in kcm_rfree() */ WRITE_ONCE(kcm->rx_wait, false); } /* Move any pending receive messages to other kcm sockets */ requeue_rx_msgs(mux, &sk->sk_receive_queue); spin_unlock_bh(&mux->rx_lock); if (WARN_ON(sk_rmem_alloc_get(sk))) return; /* Detach from MUX */ spin_lock_bh(&mux->lock); list_del(&kcm->kcm_sock_list); mux->kcm_socks_cnt--; socks_cnt = mux->kcm_socks_cnt; spin_unlock_bh(&mux->lock); if (!socks_cnt) { /* We are done with the mux now. */ release_mux(mux); } WARN_ON(kcm->rx_wait); sock_put(&kcm->sk); } /* Called by kcm_release to close a KCM socket. * If this is the last KCM socket on the MUX, destroy the MUX. */ static int kcm_release(struct socket *sock) { struct sock *sk = sock->sk; struct kcm_sock *kcm; struct kcm_mux *mux; struct kcm_psock *psock; if (!sk) return 0; kcm = kcm_sk(sk); mux = kcm->mux; lock_sock(sk); sock_orphan(sk); kfree_skb(kcm->seq_skb); /* Purge queue under lock to avoid race condition with tx_work trying * to act when queue is nonempty. If tx_work runs after this point * it will just return. */ __skb_queue_purge(&sk->sk_write_queue); /* Set tx_stopped. This is checked when psock is bound to a kcm and we * get a writespace callback. This prevents further work being queued * from the callback (unbinding the psock occurs after canceling work. */ kcm->tx_stopped = 1; release_sock(sk); spin_lock_bh(&mux->lock); if (kcm->tx_wait) { /* Take of tx_wait list, after this point there should be no way * that a psock will be assigned to this kcm. */ list_del(&kcm->wait_psock_list); kcm->tx_wait = false; } spin_unlock_bh(&mux->lock); /* Cancel work. After this point there should be no outside references * to the kcm socket. */ cancel_work_sync(&kcm->tx_work); lock_sock(sk); psock = kcm->tx_psock; if (psock) { /* A psock was reserved, so we need to kill it since it * may already have some bytes queued from a message. We * need to do this after removing kcm from tx_wait list. */ kcm_abort_tx_psock(psock, EPIPE, false); unreserve_psock(kcm); } release_sock(sk); WARN_ON(kcm->tx_wait); WARN_ON(kcm->tx_psock); sock->sk = NULL; kcm_done(kcm); return 0; } static const struct proto_ops kcm_dgram_ops = { .family = PF_KCM, .owner = THIS_MODULE, .release = kcm_release, .bind = sock_no_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = datagram_poll, .ioctl = kcm_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = kcm_setsockopt, .getsockopt = kcm_getsockopt, .sendmsg = kcm_sendmsg, .recvmsg = kcm_recvmsg, .mmap = sock_no_mmap, .splice_eof = kcm_splice_eof, }; static const struct proto_ops kcm_seqpacket_ops = { .family = PF_KCM, .owner = THIS_MODULE, .release = kcm_release, .bind = sock_no_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = datagram_poll, .ioctl = kcm_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = kcm_setsockopt, .getsockopt = kcm_getsockopt, .sendmsg = kcm_sendmsg, .recvmsg = kcm_recvmsg, .mmap = sock_no_mmap, .splice_eof = kcm_splice_eof, .splice_read = kcm_splice_read, }; /* Create proto operation for kcm sockets */ static int kcm_create(struct net *net, struct socket *sock, int protocol, int kern) { struct kcm_net *knet = net_generic(net, kcm_net_id); struct sock *sk; struct kcm_mux *mux; switch (sock->type) { case SOCK_DGRAM: sock->ops = &kcm_dgram_ops; break; case SOCK_SEQPACKET: sock->ops = &kcm_seqpacket_ops; break; default: return -ESOCKTNOSUPPORT; } if (protocol != KCMPROTO_CONNECTED) return -EPROTONOSUPPORT; sk = sk_alloc(net, PF_KCM, GFP_KERNEL, &kcm_proto, kern); if (!sk) return -ENOMEM; /* Allocate a kcm mux, shared between KCM sockets */ mux = kmem_cache_zalloc(kcm_muxp, GFP_KERNEL); if (!mux) { sk_free(sk); return -ENOMEM; } spin_lock_init(&mux->lock); spin_lock_init(&mux->rx_lock); INIT_LIST_HEAD(&mux->kcm_socks); INIT_LIST_HEAD(&mux->kcm_rx_waiters); INIT_LIST_HEAD(&mux->kcm_tx_waiters); INIT_LIST_HEAD(&mux->psocks); INIT_LIST_HEAD(&mux->psocks_ready); INIT_LIST_HEAD(&mux->psocks_avail); mux->knet = knet; /* Add new MUX to list */ mutex_lock(&knet->mutex); list_add_rcu(&mux->kcm_mux_list, &knet->mux_list); knet->count++; mutex_unlock(&knet->mutex); skb_queue_head_init(&mux->rx_hold_queue); /* Init KCM socket */ sock_init_data(sock, sk); init_kcm_sock(kcm_sk(sk), mux); return 0; } static const struct net_proto_family kcm_family_ops = { .family = PF_KCM, .create = kcm_create, .owner = THIS_MODULE, }; static __net_init int kcm_init_net(struct net *net) { struct kcm_net *knet = net_generic(net, kcm_net_id); INIT_LIST_HEAD_RCU(&knet->mux_list); mutex_init(&knet->mutex); return 0; } static __net_exit void kcm_exit_net(struct net *net) { struct kcm_net *knet = net_generic(net, kcm_net_id); /* All KCM sockets should be closed at this point, which should mean * that all multiplexors and psocks have been destroyed. */ WARN_ON(!list_empty(&knet->mux_list)); mutex_destroy(&knet->mutex); } static struct pernet_operations kcm_net_ops = { .init = kcm_init_net, .exit = kcm_exit_net, .id = &kcm_net_id, .size = sizeof(struct kcm_net), }; static int __init kcm_init(void) { int err = -ENOMEM; kcm_muxp = kmem_cache_create("kcm_mux_cache", sizeof(struct kcm_mux), 0, SLAB_HWCACHE_ALIGN, NULL); if (!kcm_muxp) goto fail; kcm_psockp = kmem_cache_create("kcm_psock_cache", sizeof(struct kcm_psock), 0, SLAB_HWCACHE_ALIGN, NULL); if (!kcm_psockp) goto fail; kcm_wq = create_singlethread_workqueue("kkcmd"); if (!kcm_wq) goto fail; err = proto_register(&kcm_proto, 1); if (err) goto fail; err = register_pernet_device(&kcm_net_ops); if (err) goto net_ops_fail; err = sock_register(&kcm_family_ops); if (err) goto sock_register_fail; err = kcm_proc_init(); if (err) goto proc_init_fail; return 0; proc_init_fail: sock_unregister(PF_KCM); sock_register_fail: unregister_pernet_device(&kcm_net_ops); net_ops_fail: proto_unregister(&kcm_proto); fail: kmem_cache_destroy(kcm_muxp); kmem_cache_destroy(kcm_psockp); if (kcm_wq) destroy_workqueue(kcm_wq); return err; } static void __exit kcm_exit(void) { kcm_proc_exit(); sock_unregister(PF_KCM); unregister_pernet_device(&kcm_net_ops); proto_unregister(&kcm_proto); destroy_workqueue(kcm_wq); kmem_cache_destroy(kcm_muxp); kmem_cache_destroy(kcm_psockp); } module_init(kcm_init); module_exit(kcm_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_KCM);
linux-master
net/kcm/kcmsock.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/in.h> #include <linux/inet.h> #include <linux/list.h> #include <linux/module.h> #include <linux/net.h> #include <linux/proc_fs.h> #include <linux/rculist.h> #include <linux/seq_file.h> #include <linux/socket.h> #include <net/inet_sock.h> #include <net/kcm.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/tcp.h> #ifdef CONFIG_PROC_FS static struct kcm_mux *kcm_get_first(struct seq_file *seq) { struct net *net = seq_file_net(seq); struct kcm_net *knet = net_generic(net, kcm_net_id); return list_first_or_null_rcu(&knet->mux_list, struct kcm_mux, kcm_mux_list); } static struct kcm_mux *kcm_get_next(struct kcm_mux *mux) { struct kcm_net *knet = mux->knet; return list_next_or_null_rcu(&knet->mux_list, &mux->kcm_mux_list, struct kcm_mux, kcm_mux_list); } static struct kcm_mux *kcm_get_idx(struct seq_file *seq, loff_t pos) { struct net *net = seq_file_net(seq); struct kcm_net *knet = net_generic(net, kcm_net_id); struct kcm_mux *m; list_for_each_entry_rcu(m, &knet->mux_list, kcm_mux_list) { if (!pos) return m; --pos; } return NULL; } static void *kcm_seq_next(struct seq_file *seq, void *v, loff_t *pos) { void *p; if (v == SEQ_START_TOKEN) p = kcm_get_first(seq); else p = kcm_get_next(v); ++*pos; return p; } static void *kcm_seq_start(struct seq_file *seq, loff_t *pos) __acquires(rcu) { rcu_read_lock(); if (!*pos) return SEQ_START_TOKEN; else return kcm_get_idx(seq, *pos - 1); } static void kcm_seq_stop(struct seq_file *seq, void *v) __releases(rcu) { rcu_read_unlock(); } struct kcm_proc_mux_state { struct seq_net_private p; int idx; }; static void kcm_format_mux_header(struct seq_file *seq) { struct net *net = seq_file_net(seq); struct kcm_net *knet = net_generic(net, kcm_net_id); seq_printf(seq, "*** KCM statistics (%d MUX) ****\n", knet->count); seq_printf(seq, "%-14s %-10s %-16s %-10s %-16s %-8s %-8s %-8s %-8s %s", "Object", "RX-Msgs", "RX-Bytes", "TX-Msgs", "TX-Bytes", "Recv-Q", "Rmem", "Send-Q", "Smem", "Status"); /* XXX: pdsts header stuff here */ seq_puts(seq, "\n"); } static void kcm_format_sock(struct kcm_sock *kcm, struct seq_file *seq, int i, int *len) { seq_printf(seq, " kcm-%-7u %-10llu %-16llu %-10llu %-16llu %-8d %-8d %-8d %-8s ", kcm->index, kcm->stats.rx_msgs, kcm->stats.rx_bytes, kcm->stats.tx_msgs, kcm->stats.tx_bytes, kcm->sk.sk_receive_queue.qlen, sk_rmem_alloc_get(&kcm->sk), kcm->sk.sk_write_queue.qlen, "-"); if (kcm->tx_psock) seq_printf(seq, "Psck-%u ", kcm->tx_psock->index); if (kcm->tx_wait) seq_puts(seq, "TxWait "); if (kcm->tx_wait_more) seq_puts(seq, "WMore "); if (kcm->rx_wait) seq_puts(seq, "RxWait "); seq_puts(seq, "\n"); } static void kcm_format_psock(struct kcm_psock *psock, struct seq_file *seq, int i, int *len) { seq_printf(seq, " psock-%-5u %-10llu %-16llu %-10llu %-16llu %-8d %-8d %-8d %-8d ", psock->index, psock->strp.stats.msgs, psock->strp.stats.bytes, psock->stats.tx_msgs, psock->stats.tx_bytes, psock->sk->sk_receive_queue.qlen, atomic_read(&psock->sk->sk_rmem_alloc), psock->sk->sk_write_queue.qlen, refcount_read(&psock->sk->sk_wmem_alloc)); if (psock->done) seq_puts(seq, "Done "); if (psock->tx_stopped) seq_puts(seq, "TxStop "); if (psock->strp.stopped) seq_puts(seq, "RxStop "); if (psock->tx_kcm) seq_printf(seq, "Rsvd-%d ", psock->tx_kcm->index); if (!psock->strp.paused && !psock->ready_rx_msg) { if (psock->sk->sk_receive_queue.qlen) { if (psock->strp.need_bytes) seq_printf(seq, "RxWait=%u ", psock->strp.need_bytes); else seq_printf(seq, "RxWait "); } } else { if (psock->strp.paused) seq_puts(seq, "RxPause "); if (psock->ready_rx_msg) seq_puts(seq, "RdyRx "); } seq_puts(seq, "\n"); } static void kcm_format_mux(struct kcm_mux *mux, loff_t idx, struct seq_file *seq) { int i, len; struct kcm_sock *kcm; struct kcm_psock *psock; /* mux information */ seq_printf(seq, "%-6s%-8s %-10llu %-16llu %-10llu %-16llu %-8s %-8s %-8s %-8s ", "mux", "", mux->stats.rx_msgs, mux->stats.rx_bytes, mux->stats.tx_msgs, mux->stats.tx_bytes, "-", "-", "-", "-"); seq_printf(seq, "KCMs: %d, Psocks %d\n", mux->kcm_socks_cnt, mux->psocks_cnt); /* kcm sock information */ i = 0; spin_lock_bh(&mux->lock); list_for_each_entry(kcm, &mux->kcm_socks, kcm_sock_list) { kcm_format_sock(kcm, seq, i, &len); i++; } i = 0; list_for_each_entry(psock, &mux->psocks, psock_list) { kcm_format_psock(psock, seq, i, &len); i++; } spin_unlock_bh(&mux->lock); } static int kcm_seq_show(struct seq_file *seq, void *v) { struct kcm_proc_mux_state *mux_state; mux_state = seq->private; if (v == SEQ_START_TOKEN) { mux_state->idx = 0; kcm_format_mux_header(seq); } else { kcm_format_mux(v, mux_state->idx, seq); mux_state->idx++; } return 0; } static const struct seq_operations kcm_seq_ops = { .show = kcm_seq_show, .start = kcm_seq_start, .next = kcm_seq_next, .stop = kcm_seq_stop, }; static int kcm_stats_seq_show(struct seq_file *seq, void *v) { struct kcm_psock_stats psock_stats; struct kcm_mux_stats mux_stats; struct strp_aggr_stats strp_stats; struct kcm_mux *mux; struct kcm_psock *psock; struct net *net = seq->private; struct kcm_net *knet = net_generic(net, kcm_net_id); memset(&mux_stats, 0, sizeof(mux_stats)); memset(&psock_stats, 0, sizeof(psock_stats)); memset(&strp_stats, 0, sizeof(strp_stats)); mutex_lock(&knet->mutex); aggregate_mux_stats(&knet->aggregate_mux_stats, &mux_stats); aggregate_psock_stats(&knet->aggregate_psock_stats, &psock_stats); aggregate_strp_stats(&knet->aggregate_strp_stats, &strp_stats); list_for_each_entry(mux, &knet->mux_list, kcm_mux_list) { spin_lock_bh(&mux->lock); aggregate_mux_stats(&mux->stats, &mux_stats); aggregate_psock_stats(&mux->aggregate_psock_stats, &psock_stats); aggregate_strp_stats(&mux->aggregate_strp_stats, &strp_stats); list_for_each_entry(psock, &mux->psocks, psock_list) { aggregate_psock_stats(&psock->stats, &psock_stats); save_strp_stats(&psock->strp, &strp_stats); } spin_unlock_bh(&mux->lock); } mutex_unlock(&knet->mutex); seq_printf(seq, "%-8s %-10s %-16s %-10s %-16s %-10s %-10s %-10s %-10s %-10s\n", "MUX", "RX-Msgs", "RX-Bytes", "TX-Msgs", "TX-Bytes", "TX-Retries", "Attach", "Unattach", "UnattchRsvd", "RX-RdyDrops"); seq_printf(seq, "%-8s %-10llu %-16llu %-10llu %-16llu %-10u %-10u %-10u %-10u %-10u\n", "", mux_stats.rx_msgs, mux_stats.rx_bytes, mux_stats.tx_msgs, mux_stats.tx_bytes, mux_stats.tx_retries, mux_stats.psock_attach, mux_stats.psock_unattach_rsvd, mux_stats.psock_unattach, mux_stats.rx_ready_drops); seq_printf(seq, "%-8s %-10s %-16s %-10s %-16s %-10s %-10s %-10s %-10s %-10s %-10s %-10s %-10s %-10s %-10s %-10s\n", "Psock", "RX-Msgs", "RX-Bytes", "TX-Msgs", "TX-Bytes", "Reserved", "Unreserved", "RX-Aborts", "RX-Intr", "RX-Unrecov", "RX-MemFail", "RX-NeedMor", "RX-BadLen", "RX-TooBig", "RX-Timeout", "TX-Aborts"); seq_printf(seq, "%-8s %-10llu %-16llu %-10llu %-16llu %-10llu %-10llu %-10u %-10u %-10u %-10u %-10u %-10u %-10u %-10u %-10u\n", "", strp_stats.msgs, strp_stats.bytes, psock_stats.tx_msgs, psock_stats.tx_bytes, psock_stats.reserved, psock_stats.unreserved, strp_stats.aborts, strp_stats.interrupted, strp_stats.unrecov_intr, strp_stats.mem_fail, strp_stats.need_more_hdr, strp_stats.bad_hdr_len, strp_stats.msg_too_big, strp_stats.msg_timeouts, psock_stats.tx_aborts); return 0; } static int kcm_proc_init_net(struct net *net) { if (!proc_create_net_single("kcm_stats", 0444, net->proc_net, kcm_stats_seq_show, NULL)) goto out_kcm_stats; if (!proc_create_net("kcm", 0444, net->proc_net, &kcm_seq_ops, sizeof(struct kcm_proc_mux_state))) goto out_kcm; return 0; out_kcm: remove_proc_entry("kcm_stats", net->proc_net); out_kcm_stats: return -ENOMEM; } static void kcm_proc_exit_net(struct net *net) { remove_proc_entry("kcm", net->proc_net); remove_proc_entry("kcm_stats", net->proc_net); } static struct pernet_operations kcm_net_ops = { .init = kcm_proc_init_net, .exit = kcm_proc_exit_net, }; int __init kcm_proc_init(void) { return register_pernet_subsys(&kcm_net_ops); } void __exit kcm_proc_exit(void) { unregister_pernet_subsys(&kcm_net_ops); } #endif /* CONFIG_PROC_FS */
linux-master
net/kcm/kcmproc.c
// SPDX-License-Identifier: GPL-2.0-only /* * IUCV protocol stack for Linux on zSeries * * Copyright IBM Corp. 2006, 2009 * * Author(s): Jennifer Hunt <[email protected]> * Hendrik Brueckner <[email protected]> * PM functions: * Ursula Braun <[email protected]> */ #define KMSG_COMPONENT "af_iucv" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/filter.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/types.h> #include <linux/limits.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/poll.h> #include <linux/security.h> #include <net/sock.h> #include <asm/ebcdic.h> #include <asm/cpcmd.h> #include <linux/kmod.h> #include <net/iucv/af_iucv.h> #define VERSION "1.2" static char iucv_userid[80]; static struct proto iucv_proto = { .name = "AF_IUCV", .owner = THIS_MODULE, .obj_size = sizeof(struct iucv_sock), }; static struct iucv_interface *pr_iucv; static struct iucv_handler af_iucv_handler; /* special AF_IUCV IPRM messages */ static const u8 iprm_shutdown[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}; #define TRGCLS_SIZE sizeof_field(struct iucv_message, class) #define __iucv_sock_wait(sk, condition, timeo, ret) \ do { \ DEFINE_WAIT(__wait); \ long __timeo = timeo; \ ret = 0; \ prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \ while (!(condition)) { \ if (!__timeo) { \ ret = -EAGAIN; \ break; \ } \ if (signal_pending(current)) { \ ret = sock_intr_errno(__timeo); \ break; \ } \ release_sock(sk); \ __timeo = schedule_timeout(__timeo); \ lock_sock(sk); \ ret = sock_error(sk); \ if (ret) \ break; \ } \ finish_wait(sk_sleep(sk), &__wait); \ } while (0) #define iucv_sock_wait(sk, condition, timeo) \ ({ \ int __ret = 0; \ if (!(condition)) \ __iucv_sock_wait(sk, condition, timeo, __ret); \ __ret; \ }) static struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock); static void iucv_sock_kill(struct sock *sk); static void iucv_sock_close(struct sock *sk); static void afiucv_hs_callback_txnotify(struct sock *sk, enum iucv_tx_notify); static struct iucv_sock_list iucv_sk_list = { .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock), .autobind_name = ATOMIC_INIT(0) }; static inline void high_nmcpy(unsigned char *dst, char *src) { memcpy(dst, src, 8); } static inline void low_nmcpy(unsigned char *dst, char *src) { memcpy(&dst[8], src, 8); } /** * iucv_msg_length() - Returns the length of an iucv message. * @msg: Pointer to struct iucv_message, MUST NOT be NULL * * The function returns the length of the specified iucv message @msg of data * stored in a buffer and of data stored in the parameter list (PRMDATA). * * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket * data: * PRMDATA[0..6] socket data (max 7 bytes); * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7]) * * The socket data length is computed by subtracting the socket data length * value from 0xFF. * If the socket data len is greater 7, then PRMDATA can be used for special * notifications (see iucv_sock_shutdown); and further, * if the socket data len is > 7, the function returns 8. * * Use this function to allocate socket buffers to store iucv message data. */ static inline size_t iucv_msg_length(struct iucv_message *msg) { size_t datalen; if (msg->flags & IUCV_IPRMDATA) { datalen = 0xff - msg->rmmsg[7]; return (datalen < 8) ? datalen : 8; } return msg->length; } /** * iucv_sock_in_state() - check for specific states * @sk: sock structure * @state: first iucv sk state * @state2: second iucv sk state * * Returns true if the socket in either in the first or second state. */ static int iucv_sock_in_state(struct sock *sk, int state, int state2) { return (sk->sk_state == state || sk->sk_state == state2); } /** * iucv_below_msglim() - function to check if messages can be sent * @sk: sock structure * * Returns true if the send queue length is lower than the message limit. * Always returns true if the socket is not connected (no iucv path for * checking the message limit). */ static inline int iucv_below_msglim(struct sock *sk) { struct iucv_sock *iucv = iucv_sk(sk); if (sk->sk_state != IUCV_CONNECTED) return 1; if (iucv->transport == AF_IUCV_TRANS_IUCV) return (atomic_read(&iucv->skbs_in_xmit) < iucv->path->msglim); else return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) && (atomic_read(&iucv->pendings) <= 0)); } /* * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit */ static void iucv_sock_wake_msglim(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_all(&wq->wait); sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); rcu_read_unlock(); } /* * afiucv_hs_send() - send a message through HiperSockets transport */ static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock, struct sk_buff *skb, u8 flags) { struct iucv_sock *iucv = iucv_sk(sock); struct af_iucv_trans_hdr *phs_hdr; int err, confirm_recv = 0; phs_hdr = skb_push(skb, sizeof(*phs_hdr)); memset(phs_hdr, 0, sizeof(*phs_hdr)); skb_reset_network_header(skb); phs_hdr->magic = ETH_P_AF_IUCV; phs_hdr->version = 1; phs_hdr->flags = flags; if (flags == AF_IUCV_FLAG_SYN) phs_hdr->window = iucv->msglimit; else if ((flags == AF_IUCV_FLAG_WIN) || !flags) { confirm_recv = atomic_read(&iucv->msg_recv); phs_hdr->window = confirm_recv; if (confirm_recv) phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN; } memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8); memcpy(phs_hdr->destAppName, iucv->dst_name, 8); memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8); memcpy(phs_hdr->srcAppName, iucv->src_name, 8); ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID)); ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName)); ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID)); ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName)); if (imsg) memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message)); skb->dev = iucv->hs_dev; if (!skb->dev) { err = -ENODEV; goto err_free; } dev_hard_header(skb, skb->dev, ETH_P_AF_IUCV, NULL, NULL, skb->len); if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev)) { err = -ENETDOWN; goto err_free; } if (skb->len > skb->dev->mtu) { if (sock->sk_type == SOCK_SEQPACKET) { err = -EMSGSIZE; goto err_free; } err = pskb_trim(skb, skb->dev->mtu); if (err) goto err_free; } skb->protocol = cpu_to_be16(ETH_P_AF_IUCV); atomic_inc(&iucv->skbs_in_xmit); err = dev_queue_xmit(skb); if (net_xmit_eval(err)) { atomic_dec(&iucv->skbs_in_xmit); } else { atomic_sub(confirm_recv, &iucv->msg_recv); WARN_ON(atomic_read(&iucv->msg_recv) < 0); } return net_xmit_eval(err); err_free: kfree_skb(skb); return err; } static struct sock *__iucv_get_sock_by_name(char *nm) { struct sock *sk; sk_for_each(sk, &iucv_sk_list.head) if (!memcmp(&iucv_sk(sk)->src_name, nm, 8)) return sk; return NULL; } static void iucv_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_receive_queue); skb_queue_purge(&sk->sk_error_queue); if (!sock_flag(sk, SOCK_DEAD)) { pr_err("Attempt to release alive iucv socket %p\n", sk); return; } WARN_ON(atomic_read(&sk->sk_rmem_alloc)); WARN_ON(refcount_read(&sk->sk_wmem_alloc)); WARN_ON(sk->sk_wmem_queued); WARN_ON(sk->sk_forward_alloc); } /* Cleanup Listen */ static void iucv_sock_cleanup_listen(struct sock *parent) { struct sock *sk; /* Close non-accepted connections */ while ((sk = iucv_accept_dequeue(parent, NULL))) { iucv_sock_close(sk); iucv_sock_kill(sk); } parent->sk_state = IUCV_CLOSED; } static void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk) { write_lock_bh(&l->lock); sk_add_node(sk, &l->head); write_unlock_bh(&l->lock); } static void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk) { write_lock_bh(&l->lock); sk_del_node_init(sk); write_unlock_bh(&l->lock); } /* Kill socket (only if zapped and orphaned) */ static void iucv_sock_kill(struct sock *sk) { if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket) return; iucv_sock_unlink(&iucv_sk_list, sk); sock_set_flag(sk, SOCK_DEAD); sock_put(sk); } /* Terminate an IUCV path */ static void iucv_sever_path(struct sock *sk, int with_user_data) { unsigned char user_data[16]; struct iucv_sock *iucv = iucv_sk(sk); struct iucv_path *path = iucv->path; if (iucv->path) { iucv->path = NULL; if (with_user_data) { low_nmcpy(user_data, iucv->src_name); high_nmcpy(user_data, iucv->dst_name); ASCEBC(user_data, sizeof(user_data)); pr_iucv->path_sever(path, user_data); } else pr_iucv->path_sever(path, NULL); iucv_path_free(path); } } /* Send controlling flags through an IUCV socket for HIPER transport */ static int iucv_send_ctrl(struct sock *sk, u8 flags) { struct iucv_sock *iucv = iucv_sk(sk); int err = 0; int blen; struct sk_buff *skb; u8 shutdown = 0; blen = sizeof(struct af_iucv_trans_hdr) + LL_RESERVED_SPACE(iucv->hs_dev); if (sk->sk_shutdown & SEND_SHUTDOWN) { /* controlling flags should be sent anyway */ shutdown = sk->sk_shutdown; sk->sk_shutdown &= RCV_SHUTDOWN; } skb = sock_alloc_send_skb(sk, blen, 1, &err); if (skb) { skb_reserve(skb, blen); err = afiucv_hs_send(NULL, sk, skb, flags); } if (shutdown) sk->sk_shutdown = shutdown; return err; } /* Close an IUCV socket */ static void iucv_sock_close(struct sock *sk) { struct iucv_sock *iucv = iucv_sk(sk); unsigned long timeo; int err = 0; lock_sock(sk); switch (sk->sk_state) { case IUCV_LISTEN: iucv_sock_cleanup_listen(sk); break; case IUCV_CONNECTED: if (iucv->transport == AF_IUCV_TRANS_HIPER) { err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN); sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); } fallthrough; case IUCV_DISCONN: sk->sk_state = IUCV_CLOSING; sk->sk_state_change(sk); if (!err && atomic_read(&iucv->skbs_in_xmit) > 0) { if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime) timeo = sk->sk_lingertime; else timeo = IUCV_DISCONN_TIMEOUT; iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CLOSED, 0), timeo); } fallthrough; case IUCV_CLOSING: sk->sk_state = IUCV_CLOSED; sk->sk_state_change(sk); sk->sk_err = ECONNRESET; sk->sk_state_change(sk); skb_queue_purge(&iucv->send_skb_q); skb_queue_purge(&iucv->backlog_skb_q); fallthrough; default: iucv_sever_path(sk, 1); } if (iucv->hs_dev) { dev_put(iucv->hs_dev); iucv->hs_dev = NULL; sk->sk_bound_dev_if = 0; } /* mark socket for deletion by iucv_sock_kill() */ sock_set_flag(sk, SOCK_ZAPPED); release_sock(sk); } static void iucv_sock_init(struct sock *sk, struct sock *parent) { if (parent) { sk->sk_type = parent->sk_type; security_sk_clone(parent, sk); } } static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio, int kern) { struct sock *sk; struct iucv_sock *iucv; sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto, kern); if (!sk) return NULL; iucv = iucv_sk(sk); sock_init_data(sock, sk); INIT_LIST_HEAD(&iucv->accept_q); spin_lock_init(&iucv->accept_q_lock); skb_queue_head_init(&iucv->send_skb_q); INIT_LIST_HEAD(&iucv->message_q.list); spin_lock_init(&iucv->message_q.lock); skb_queue_head_init(&iucv->backlog_skb_q); iucv->send_tag = 0; atomic_set(&iucv->pendings, 0); iucv->flags = 0; iucv->msglimit = 0; atomic_set(&iucv->skbs_in_xmit, 0); atomic_set(&iucv->msg_sent, 0); atomic_set(&iucv->msg_recv, 0); iucv->path = NULL; iucv->sk_txnotify = afiucv_hs_callback_txnotify; memset(&iucv->init, 0, sizeof(iucv->init)); if (pr_iucv) iucv->transport = AF_IUCV_TRANS_IUCV; else iucv->transport = AF_IUCV_TRANS_HIPER; sk->sk_destruct = iucv_sock_destruct; sk->sk_sndtimeo = IUCV_CONN_TIMEOUT; sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = proto; sk->sk_state = IUCV_OPEN; iucv_sock_link(&iucv_sk_list, sk); return sk; } static void iucv_accept_enqueue(struct sock *parent, struct sock *sk) { unsigned long flags; struct iucv_sock *par = iucv_sk(parent); sock_hold(sk); spin_lock_irqsave(&par->accept_q_lock, flags); list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q); spin_unlock_irqrestore(&par->accept_q_lock, flags); iucv_sk(sk)->parent = parent; sk_acceptq_added(parent); } static void iucv_accept_unlink(struct sock *sk) { unsigned long flags; struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent); spin_lock_irqsave(&par->accept_q_lock, flags); list_del_init(&iucv_sk(sk)->accept_q); spin_unlock_irqrestore(&par->accept_q_lock, flags); sk_acceptq_removed(iucv_sk(sk)->parent); iucv_sk(sk)->parent = NULL; sock_put(sk); } static struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock) { struct iucv_sock *isk, *n; struct sock *sk; list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) { sk = (struct sock *) isk; lock_sock(sk); if (sk->sk_state == IUCV_CLOSED) { iucv_accept_unlink(sk); release_sock(sk); continue; } if (sk->sk_state == IUCV_CONNECTED || sk->sk_state == IUCV_DISCONN || !newsock) { iucv_accept_unlink(sk); if (newsock) sock_graft(sk, newsock); release_sock(sk); return sk; } release_sock(sk); } return NULL; } static void __iucv_auto_name(struct iucv_sock *iucv) { char name[12]; sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name)); while (__iucv_get_sock_by_name(name)) { sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name)); } memcpy(iucv->src_name, name, 8); } /* Bind an unbound socket */ static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { DECLARE_SOCKADDR(struct sockaddr_iucv *, sa, addr); char uid[sizeof(sa->siucv_user_id)]; struct sock *sk = sock->sk; struct iucv_sock *iucv; int err = 0; struct net_device *dev; /* Verify the input sockaddr */ if (addr_len < sizeof(struct sockaddr_iucv) || addr->sa_family != AF_IUCV) return -EINVAL; lock_sock(sk); if (sk->sk_state != IUCV_OPEN) { err = -EBADFD; goto done; } write_lock_bh(&iucv_sk_list.lock); iucv = iucv_sk(sk); if (__iucv_get_sock_by_name(sa->siucv_name)) { err = -EADDRINUSE; goto done_unlock; } if (iucv->path) goto done_unlock; /* Bind the socket */ if (pr_iucv) if (!memcmp(sa->siucv_user_id, iucv_userid, 8)) goto vm_bind; /* VM IUCV transport */ /* try hiper transport */ memcpy(uid, sa->siucv_user_id, sizeof(uid)); ASCEBC(uid, 8); rcu_read_lock(); for_each_netdev_rcu(&init_net, dev) { if (!memcmp(dev->perm_addr, uid, 8)) { memcpy(iucv->src_user_id, sa->siucv_user_id, 8); /* Check for uninitialized siucv_name */ if (strncmp(sa->siucv_name, " ", 8) == 0) __iucv_auto_name(iucv); else memcpy(iucv->src_name, sa->siucv_name, 8); sk->sk_bound_dev_if = dev->ifindex; iucv->hs_dev = dev; dev_hold(dev); sk->sk_state = IUCV_BOUND; iucv->transport = AF_IUCV_TRANS_HIPER; if (!iucv->msglimit) iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT; rcu_read_unlock(); goto done_unlock; } } rcu_read_unlock(); vm_bind: if (pr_iucv) { /* use local userid for backward compat */ memcpy(iucv->src_name, sa->siucv_name, 8); memcpy(iucv->src_user_id, iucv_userid, 8); sk->sk_state = IUCV_BOUND; iucv->transport = AF_IUCV_TRANS_IUCV; sk->sk_allocation |= GFP_DMA; if (!iucv->msglimit) iucv->msglimit = IUCV_QUEUELEN_DEFAULT; goto done_unlock; } /* found no dev to bind */ err = -ENODEV; done_unlock: /* Release the socket list lock */ write_unlock_bh(&iucv_sk_list.lock); done: release_sock(sk); return err; } /* Automatically bind an unbound socket */ static int iucv_sock_autobind(struct sock *sk) { struct iucv_sock *iucv = iucv_sk(sk); int err = 0; if (unlikely(!pr_iucv)) return -EPROTO; memcpy(iucv->src_user_id, iucv_userid, 8); iucv->transport = AF_IUCV_TRANS_IUCV; sk->sk_allocation |= GFP_DMA; write_lock_bh(&iucv_sk_list.lock); __iucv_auto_name(iucv); write_unlock_bh(&iucv_sk_list.lock); if (!iucv->msglimit) iucv->msglimit = IUCV_QUEUELEN_DEFAULT; return err; } static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr) { DECLARE_SOCKADDR(struct sockaddr_iucv *, sa, addr); struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); unsigned char user_data[16]; int err; high_nmcpy(user_data, sa->siucv_name); low_nmcpy(user_data, iucv->src_name); ASCEBC(user_data, sizeof(user_data)); /* Create path. */ iucv->path = iucv_path_alloc(iucv->msglimit, IUCV_IPRMDATA, GFP_KERNEL); if (!iucv->path) { err = -ENOMEM; goto done; } err = pr_iucv->path_connect(iucv->path, &af_iucv_handler, sa->siucv_user_id, NULL, user_data, sk); if (err) { iucv_path_free(iucv->path); iucv->path = NULL; switch (err) { case 0x0b: /* Target communicator is not logged on */ err = -ENETUNREACH; break; case 0x0d: /* Max connections for this guest exceeded */ case 0x0e: /* Max connections for target guest exceeded */ err = -EAGAIN; break; case 0x0f: /* Missing IUCV authorization */ err = -EACCES; break; default: err = -ECONNREFUSED; break; } } done: return err; } /* Connect an unconnected socket */ static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { DECLARE_SOCKADDR(struct sockaddr_iucv *, sa, addr); struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); int err; if (alen < sizeof(struct sockaddr_iucv) || addr->sa_family != AF_IUCV) return -EINVAL; if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND) return -EBADFD; if (sk->sk_state == IUCV_OPEN && iucv->transport == AF_IUCV_TRANS_HIPER) return -EBADFD; /* explicit bind required */ if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET) return -EINVAL; if (sk->sk_state == IUCV_OPEN) { err = iucv_sock_autobind(sk); if (unlikely(err)) return err; } lock_sock(sk); /* Set the destination information */ memcpy(iucv->dst_user_id, sa->siucv_user_id, 8); memcpy(iucv->dst_name, sa->siucv_name, 8); if (iucv->transport == AF_IUCV_TRANS_HIPER) err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN); else err = afiucv_path_connect(sock, addr); if (err) goto done; if (sk->sk_state != IUCV_CONNECTED) err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED, IUCV_DISCONN), sock_sndtimeo(sk, flags & O_NONBLOCK)); if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED) err = -ECONNREFUSED; if (err && iucv->transport == AF_IUCV_TRANS_IUCV) iucv_sever_path(sk, 0); done: release_sock(sk); return err; } /* Move a socket into listening state. */ static int iucv_sock_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; int err; lock_sock(sk); err = -EINVAL; if (sk->sk_state != IUCV_BOUND) goto done; if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) goto done; sk->sk_max_ack_backlog = backlog; sk->sk_ack_backlog = 0; sk->sk_state = IUCV_LISTEN; err = 0; done: release_sock(sk); return err; } /* Accept a pending connection */ static int iucv_sock_accept(struct socket *sock, struct socket *newsock, int flags, bool kern) { DECLARE_WAITQUEUE(wait, current); struct sock *sk = sock->sk, *nsk; long timeo; int err = 0; lock_sock_nested(sk, SINGLE_DEPTH_NESTING); if (sk->sk_state != IUCV_LISTEN) { err = -EBADFD; goto done; } timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); /* Wait for an incoming connection */ add_wait_queue_exclusive(sk_sleep(sk), &wait); while (!(nsk = iucv_accept_dequeue(sk, newsock))) { set_current_state(TASK_INTERRUPTIBLE); if (!timeo) { err = -EAGAIN; break; } release_sock(sk); timeo = schedule_timeout(timeo); lock_sock_nested(sk, SINGLE_DEPTH_NESTING); if (sk->sk_state != IUCV_LISTEN) { err = -EBADFD; break; } if (signal_pending(current)) { err = sock_intr_errno(timeo); break; } } set_current_state(TASK_RUNNING); remove_wait_queue(sk_sleep(sk), &wait); if (err) goto done; newsock->state = SS_CONNECTED; done: release_sock(sk); return err; } static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr, int peer) { DECLARE_SOCKADDR(struct sockaddr_iucv *, siucv, addr); struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); addr->sa_family = AF_IUCV; if (peer) { memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8); memcpy(siucv->siucv_name, iucv->dst_name, 8); } else { memcpy(siucv->siucv_user_id, iucv->src_user_id, 8); memcpy(siucv->siucv_name, iucv->src_name, 8); } memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port)); memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr)); memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid)); return sizeof(struct sockaddr_iucv); } /** * iucv_send_iprm() - Send socket data in parameter list of an iucv message. * @path: IUCV path * @msg: Pointer to a struct iucv_message * @skb: The socket data to send, skb->len MUST BE <= 7 * * Send the socket data in the parameter list in the iucv message * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter * list and the socket data len at index 7 (last byte). * See also iucv_msg_length(). * * Returns the error code from the iucv_message_send() call. */ static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg, struct sk_buff *skb) { u8 prmdata[8]; memcpy(prmdata, (void *) skb->data, skb->len); prmdata[7] = 0xff - (u8) skb->len; return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0, (void *) prmdata, 8); } static int iucv_sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); size_t headroom = 0; size_t linear; struct sk_buff *skb; struct iucv_message txmsg = {0}; struct cmsghdr *cmsg; int cmsg_done; long timeo; char user_id[9]; char appl_id[9]; int err; int noblock = msg->msg_flags & MSG_DONTWAIT; err = sock_error(sk); if (err) return err; if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; /* SOCK_SEQPACKET: we do not support segmented records */ if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR)) return -EOPNOTSUPP; lock_sock(sk); if (sk->sk_shutdown & SEND_SHUTDOWN) { err = -EPIPE; goto out; } /* Return if the socket is not in connected state */ if (sk->sk_state != IUCV_CONNECTED) { err = -ENOTCONN; goto out; } /* initialize defaults */ cmsg_done = 0; /* check for duplicate headers */ /* iterate over control messages */ for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) { err = -EINVAL; goto out; } if (cmsg->cmsg_level != SOL_IUCV) continue; if (cmsg->cmsg_type & cmsg_done) { err = -EINVAL; goto out; } cmsg_done |= cmsg->cmsg_type; switch (cmsg->cmsg_type) { case SCM_IUCV_TRGCLS: if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) { err = -EINVAL; goto out; } /* set iucv message target class */ memcpy(&txmsg.class, (void *) CMSG_DATA(cmsg), TRGCLS_SIZE); break; default: err = -EINVAL; goto out; } } /* allocate one skb for each iucv message: * this is fine for SOCK_SEQPACKET (unless we want to support * segmented records using the MSG_EOR flag), but * for SOCK_STREAM we might want to improve it in future */ if (iucv->transport == AF_IUCV_TRANS_HIPER) { headroom = sizeof(struct af_iucv_trans_hdr) + LL_RESERVED_SPACE(iucv->hs_dev); linear = min(len, PAGE_SIZE - headroom); } else { if (len < PAGE_SIZE) { linear = len; } else { /* In nonlinear "classic" iucv skb, * reserve space for iucv_array */ headroom = sizeof(struct iucv_array) * (MAX_SKB_FRAGS + 1); linear = PAGE_SIZE - headroom; } } skb = sock_alloc_send_pskb(sk, headroom + linear, len - linear, noblock, &err, 0); if (!skb) goto out; if (headroom) skb_reserve(skb, headroom); skb_put(skb, linear); skb->len = len; skb->data_len = len - linear; err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); if (err) goto fail; /* wait if outstanding messages for iucv path has reached */ timeo = sock_sndtimeo(sk, noblock); err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo); if (err) goto fail; /* return -ECONNRESET if the socket is no longer connected */ if (sk->sk_state != IUCV_CONNECTED) { err = -ECONNRESET; goto fail; } /* increment and save iucv message tag for msg_completion cbk */ txmsg.tag = iucv->send_tag++; IUCV_SKB_CB(skb)->tag = txmsg.tag; if (iucv->transport == AF_IUCV_TRANS_HIPER) { atomic_inc(&iucv->msg_sent); err = afiucv_hs_send(&txmsg, sk, skb, 0); if (err) { atomic_dec(&iucv->msg_sent); goto out; } } else { /* Classic VM IUCV transport */ skb_queue_tail(&iucv->send_skb_q, skb); atomic_inc(&iucv->skbs_in_xmit); if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags) && skb->len <= 7) { err = iucv_send_iprm(iucv->path, &txmsg, skb); /* on success: there is no message_complete callback */ /* for an IPRMDATA msg; remove skb from send queue */ if (err == 0) { atomic_dec(&iucv->skbs_in_xmit); skb_unlink(skb, &iucv->send_skb_q); consume_skb(skb); } /* this error should never happen since the */ /* IUCV_IPRMDATA path flag is set... sever path */ if (err == 0x15) { pr_iucv->path_sever(iucv->path, NULL); atomic_dec(&iucv->skbs_in_xmit); skb_unlink(skb, &iucv->send_skb_q); err = -EPIPE; goto fail; } } else if (skb_is_nonlinear(skb)) { struct iucv_array *iba = (struct iucv_array *)skb->head; int i; /* skip iucv_array lying in the headroom */ iba[0].address = (u32)(addr_t)skb->data; iba[0].length = (u32)skb_headlen(skb); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; iba[i + 1].address = (u32)(addr_t)skb_frag_address(frag); iba[i + 1].length = (u32)skb_frag_size(frag); } err = pr_iucv->message_send(iucv->path, &txmsg, IUCV_IPBUFLST, 0, (void *)iba, skb->len); } else { /* non-IPRM Linear skb */ err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0, (void *)skb->data, skb->len); } if (err) { if (err == 3) { user_id[8] = 0; memcpy(user_id, iucv->dst_user_id, 8); appl_id[8] = 0; memcpy(appl_id, iucv->dst_name, 8); pr_err( "Application %s on z/VM guest %s exceeds message limit\n", appl_id, user_id); err = -EAGAIN; } else { err = -EPIPE; } atomic_dec(&iucv->skbs_in_xmit); skb_unlink(skb, &iucv->send_skb_q); goto fail; } } release_sock(sk); return len; fail: kfree_skb(skb); out: release_sock(sk); return err; } static struct sk_buff *alloc_iucv_recv_skb(unsigned long len) { size_t headroom, linear; struct sk_buff *skb; int err; if (len < PAGE_SIZE) { headroom = 0; linear = len; } else { headroom = sizeof(struct iucv_array) * (MAX_SKB_FRAGS + 1); linear = PAGE_SIZE - headroom; } skb = alloc_skb_with_frags(headroom + linear, len - linear, 0, &err, GFP_ATOMIC | GFP_DMA); WARN_ONCE(!skb, "alloc of recv iucv skb len=%lu failed with errcode=%d\n", len, err); if (skb) { if (headroom) skb_reserve(skb, headroom); skb_put(skb, linear); skb->len = len; skb->data_len = len - linear; } return skb; } /* iucv_process_message() - Receive a single outstanding IUCV message * * Locking: must be called with message_q.lock held */ static void iucv_process_message(struct sock *sk, struct sk_buff *skb, struct iucv_path *path, struct iucv_message *msg) { int rc; unsigned int len; len = iucv_msg_length(msg); /* store msg target class in the second 4 bytes of skb ctrl buffer */ /* Note: the first 4 bytes are reserved for msg tag */ IUCV_SKB_CB(skb)->class = msg->class; /* check for special IPRM messages (e.g. iucv_sock_shutdown) */ if ((msg->flags & IUCV_IPRMDATA) && len > 7) { if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) { skb->data = NULL; skb->len = 0; } } else { if (skb_is_nonlinear(skb)) { struct iucv_array *iba = (struct iucv_array *)skb->head; int i; iba[0].address = (u32)(addr_t)skb->data; iba[0].length = (u32)skb_headlen(skb); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; iba[i + 1].address = (u32)(addr_t)skb_frag_address(frag); iba[i + 1].length = (u32)skb_frag_size(frag); } rc = pr_iucv->message_receive(path, msg, IUCV_IPBUFLST, (void *)iba, len, NULL); } else { rc = pr_iucv->message_receive(path, msg, msg->flags & IUCV_IPRMDATA, skb->data, len, NULL); } if (rc) { kfree_skb(skb); return; } WARN_ON_ONCE(skb->len != len); } IUCV_SKB_CB(skb)->offset = 0; if (sk_filter(sk, skb)) { atomic_inc(&sk->sk_drops); /* skb rejected by filter */ kfree_skb(skb); return; } if (__sock_queue_rcv_skb(sk, skb)) /* handle rcv queue full */ skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb); } /* iucv_process_message_q() - Process outstanding IUCV messages * * Locking: must be called with message_q.lock held */ static void iucv_process_message_q(struct sock *sk) { struct iucv_sock *iucv = iucv_sk(sk); struct sk_buff *skb; struct sock_msg_q *p, *n; list_for_each_entry_safe(p, n, &iucv->message_q.list, list) { skb = alloc_iucv_recv_skb(iucv_msg_length(&p->msg)); if (!skb) break; iucv_process_message(sk, skb, p->path, &p->msg); list_del(&p->list); kfree(p); if (!skb_queue_empty(&iucv->backlog_skb_q)) break; } } static int iucv_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); unsigned int copied, rlen; struct sk_buff *skb, *rskb, *cskb; int err = 0; u32 offset; if ((sk->sk_state == IUCV_DISCONN) && skb_queue_empty(&iucv->backlog_skb_q) && skb_queue_empty(&sk->sk_receive_queue) && list_empty(&iucv->message_q.list)) return 0; if (flags & (MSG_OOB)) return -EOPNOTSUPP; /* receive/dequeue next skb: * the function understands MSG_PEEK and, thus, does not dequeue skb */ skb = skb_recv_datagram(sk, flags, &err); if (!skb) { if (sk->sk_shutdown & RCV_SHUTDOWN) return 0; return err; } offset = IUCV_SKB_CB(skb)->offset; rlen = skb->len - offset; /* real length of skb */ copied = min_t(unsigned int, rlen, len); if (!rlen) sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN; cskb = skb; if (skb_copy_datagram_msg(cskb, offset, msg, copied)) { if (!(flags & MSG_PEEK)) skb_queue_head(&sk->sk_receive_queue, skb); return -EFAULT; } /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */ if (sk->sk_type == SOCK_SEQPACKET) { if (copied < rlen) msg->msg_flags |= MSG_TRUNC; /* each iucv message contains a complete record */ msg->msg_flags |= MSG_EOR; } /* create control message to store iucv msg target class: * get the trgcls from the control buffer of the skb due to * fragmentation of original iucv message. */ err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS, sizeof(IUCV_SKB_CB(skb)->class), (void *)&IUCV_SKB_CB(skb)->class); if (err) { if (!(flags & MSG_PEEK)) skb_queue_head(&sk->sk_receive_queue, skb); return err; } /* Mark read part of skb as used */ if (!(flags & MSG_PEEK)) { /* SOCK_STREAM: re-queue skb if it contains unreceived data */ if (sk->sk_type == SOCK_STREAM) { if (copied < rlen) { IUCV_SKB_CB(skb)->offset = offset + copied; skb_queue_head(&sk->sk_receive_queue, skb); goto done; } } consume_skb(skb); if (iucv->transport == AF_IUCV_TRANS_HIPER) { atomic_inc(&iucv->msg_recv); if (atomic_read(&iucv->msg_recv) > iucv->msglimit) { WARN_ON(1); iucv_sock_close(sk); return -EFAULT; } } /* Queue backlog skbs */ spin_lock_bh(&iucv->message_q.lock); rskb = skb_dequeue(&iucv->backlog_skb_q); while (rskb) { IUCV_SKB_CB(rskb)->offset = 0; if (__sock_queue_rcv_skb(sk, rskb)) { /* handle rcv queue full */ skb_queue_head(&iucv->backlog_skb_q, rskb); break; } rskb = skb_dequeue(&iucv->backlog_skb_q); } if (skb_queue_empty(&iucv->backlog_skb_q)) { if (!list_empty(&iucv->message_q.list)) iucv_process_message_q(sk); if (atomic_read(&iucv->msg_recv) >= iucv->msglimit / 2) { err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN); if (err) { sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); } } } spin_unlock_bh(&iucv->message_q.lock); } done: /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */ if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC)) copied = rlen; return copied; } static inline __poll_t iucv_accept_poll(struct sock *parent) { struct iucv_sock *isk, *n; struct sock *sk; list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) { sk = (struct sock *) isk; if (sk->sk_state == IUCV_CONNECTED) return EPOLLIN | EPOLLRDNORM; } return 0; } static __poll_t iucv_sock_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; __poll_t mask = 0; sock_poll_wait(file, sock, wait); if (sk->sk_state == IUCV_LISTEN) return iucv_accept_poll(sk); if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) mask |= EPOLLERR | (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= EPOLLRDHUP; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= EPOLLHUP; if (!skb_queue_empty(&sk->sk_receive_queue) || (sk->sk_shutdown & RCV_SHUTDOWN)) mask |= EPOLLIN | EPOLLRDNORM; if (sk->sk_state == IUCV_CLOSED) mask |= EPOLLHUP; if (sk->sk_state == IUCV_DISCONN) mask |= EPOLLIN; if (sock_writeable(sk) && iucv_below_msglim(sk)) mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; else sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); return mask; } static int iucv_sock_shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); struct iucv_message txmsg; int err = 0; how++; if ((how & ~SHUTDOWN_MASK) || !how) return -EINVAL; lock_sock(sk); switch (sk->sk_state) { case IUCV_LISTEN: case IUCV_DISCONN: case IUCV_CLOSING: case IUCV_CLOSED: err = -ENOTCONN; goto fail; default: break; } if ((how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) && sk->sk_state == IUCV_CONNECTED) { if (iucv->transport == AF_IUCV_TRANS_IUCV) { txmsg.class = 0; txmsg.tag = 0; err = pr_iucv->message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8); if (err) { switch (err) { case 1: err = -ENOTCONN; break; case 2: err = -ECONNRESET; break; default: err = -ENOTCONN; break; } } } else iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT); } sk->sk_shutdown |= how; if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) { if ((iucv->transport == AF_IUCV_TRANS_IUCV) && iucv->path) { err = pr_iucv->path_quiesce(iucv->path, NULL); if (err) err = -ENOTCONN; /* skb_queue_purge(&sk->sk_receive_queue); */ } skb_queue_purge(&sk->sk_receive_queue); } /* Wake up anyone sleeping in poll */ sk->sk_state_change(sk); fail: release_sock(sk); return err; } static int iucv_sock_release(struct socket *sock) { struct sock *sk = sock->sk; int err = 0; if (!sk) return 0; iucv_sock_close(sk); sock_orphan(sk); iucv_sock_kill(sk); return err; } /* getsockopt and setsockopt */ static int iucv_sock_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); int val; int rc; if (level != SOL_IUCV) return -ENOPROTOOPT; if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(int))) return -EFAULT; rc = 0; lock_sock(sk); switch (optname) { case SO_IPRMDATA_MSG: if (val) iucv->flags |= IUCV_IPRMDATA; else iucv->flags &= ~IUCV_IPRMDATA; break; case SO_MSGLIMIT: switch (sk->sk_state) { case IUCV_OPEN: case IUCV_BOUND: if (val < 1 || val > U16_MAX) rc = -EINVAL; else iucv->msglimit = val; break; default: rc = -EINVAL; break; } break; default: rc = -ENOPROTOOPT; break; } release_sock(sk); return rc; } static int iucv_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); unsigned int val; int len; if (level != SOL_IUCV) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; len = min_t(unsigned int, len, sizeof(int)); switch (optname) { case SO_IPRMDATA_MSG: val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0; break; case SO_MSGLIMIT: lock_sock(sk); val = (iucv->path != NULL) ? iucv->path->msglim /* connected */ : iucv->msglimit; /* default */ release_sock(sk); break; case SO_MSGSIZE: if (sk->sk_state == IUCV_OPEN) return -EBADFD; val = (iucv->hs_dev) ? iucv->hs_dev->mtu - sizeof(struct af_iucv_trans_hdr) - ETH_HLEN : 0x7fffffff; break; default: return -ENOPROTOOPT; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* Callback wrappers - called from iucv base support */ static int iucv_callback_connreq(struct iucv_path *path, u8 ipvmid[8], u8 ipuser[16]) { unsigned char user_data[16]; unsigned char nuser_data[16]; unsigned char src_name[8]; struct sock *sk, *nsk; struct iucv_sock *iucv, *niucv; int err; memcpy(src_name, ipuser, 8); EBCASC(src_name, 8); /* Find out if this path belongs to af_iucv. */ read_lock(&iucv_sk_list.lock); iucv = NULL; sk = NULL; sk_for_each(sk, &iucv_sk_list.head) if (sk->sk_state == IUCV_LISTEN && !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) { /* * Found a listening socket with * src_name == ipuser[0-7]. */ iucv = iucv_sk(sk); break; } read_unlock(&iucv_sk_list.lock); if (!iucv) /* No socket found, not one of our paths. */ return -EINVAL; bh_lock_sock(sk); /* Check if parent socket is listening */ low_nmcpy(user_data, iucv->src_name); high_nmcpy(user_data, iucv->dst_name); ASCEBC(user_data, sizeof(user_data)); if (sk->sk_state != IUCV_LISTEN) { err = pr_iucv->path_sever(path, user_data); iucv_path_free(path); goto fail; } /* Check for backlog size */ if (sk_acceptq_is_full(sk)) { err = pr_iucv->path_sever(path, user_data); iucv_path_free(path); goto fail; } /* Create the new socket */ nsk = iucv_sock_alloc(NULL, sk->sk_protocol, GFP_ATOMIC, 0); if (!nsk) { err = pr_iucv->path_sever(path, user_data); iucv_path_free(path); goto fail; } niucv = iucv_sk(nsk); iucv_sock_init(nsk, sk); niucv->transport = AF_IUCV_TRANS_IUCV; nsk->sk_allocation |= GFP_DMA; /* Set the new iucv_sock */ memcpy(niucv->dst_name, ipuser + 8, 8); EBCASC(niucv->dst_name, 8); memcpy(niucv->dst_user_id, ipvmid, 8); memcpy(niucv->src_name, iucv->src_name, 8); memcpy(niucv->src_user_id, iucv->src_user_id, 8); niucv->path = path; /* Call iucv_accept */ high_nmcpy(nuser_data, ipuser + 8); memcpy(nuser_data + 8, niucv->src_name, 8); ASCEBC(nuser_data + 8, 8); /* set message limit for path based on msglimit of accepting socket */ niucv->msglimit = iucv->msglimit; path->msglim = iucv->msglimit; err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk); if (err) { iucv_sever_path(nsk, 1); iucv_sock_kill(nsk); goto fail; } iucv_accept_enqueue(sk, nsk); /* Wake up accept */ nsk->sk_state = IUCV_CONNECTED; sk->sk_data_ready(sk); err = 0; fail: bh_unlock_sock(sk); return 0; } static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16]) { struct sock *sk = path->private; sk->sk_state = IUCV_CONNECTED; sk->sk_state_change(sk); } static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg) { struct sock *sk = path->private; struct iucv_sock *iucv = iucv_sk(sk); struct sk_buff *skb; struct sock_msg_q *save_msg; int len; if (sk->sk_shutdown & RCV_SHUTDOWN) { pr_iucv->message_reject(path, msg); return; } spin_lock(&iucv->message_q.lock); if (!list_empty(&iucv->message_q.list) || !skb_queue_empty(&iucv->backlog_skb_q)) goto save_message; len = atomic_read(&sk->sk_rmem_alloc); len += SKB_TRUESIZE(iucv_msg_length(msg)); if (len > sk->sk_rcvbuf) goto save_message; skb = alloc_iucv_recv_skb(iucv_msg_length(msg)); if (!skb) goto save_message; iucv_process_message(sk, skb, path, msg); goto out_unlock; save_message: save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA); if (!save_msg) goto out_unlock; save_msg->path = path; save_msg->msg = *msg; list_add_tail(&save_msg->list, &iucv->message_q.list); out_unlock: spin_unlock(&iucv->message_q.lock); } static void iucv_callback_txdone(struct iucv_path *path, struct iucv_message *msg) { struct sock *sk = path->private; struct sk_buff *this = NULL; struct sk_buff_head *list; struct sk_buff *list_skb; struct iucv_sock *iucv; unsigned long flags; iucv = iucv_sk(sk); list = &iucv->send_skb_q; bh_lock_sock(sk); spin_lock_irqsave(&list->lock, flags); skb_queue_walk(list, list_skb) { if (msg->tag == IUCV_SKB_CB(list_skb)->tag) { this = list_skb; break; } } if (this) { atomic_dec(&iucv->skbs_in_xmit); __skb_unlink(this, list); } spin_unlock_irqrestore(&list->lock, flags); if (this) { consume_skb(this); /* wake up any process waiting for sending */ iucv_sock_wake_msglim(sk); } if (sk->sk_state == IUCV_CLOSING) { if (atomic_read(&iucv->skbs_in_xmit) == 0) { sk->sk_state = IUCV_CLOSED; sk->sk_state_change(sk); } } bh_unlock_sock(sk); } static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16]) { struct sock *sk = path->private; if (sk->sk_state == IUCV_CLOSED) return; bh_lock_sock(sk); iucv_sever_path(sk, 1); sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); bh_unlock_sock(sk); } /* called if the other communication side shuts down its RECV direction; * in turn, the callback sets SEND_SHUTDOWN to disable sending of data. */ static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16]) { struct sock *sk = path->private; bh_lock_sock(sk); if (sk->sk_state != IUCV_CLOSED) { sk->sk_shutdown |= SEND_SHUTDOWN; sk->sk_state_change(sk); } bh_unlock_sock(sk); } static struct iucv_handler af_iucv_handler = { .path_pending = iucv_callback_connreq, .path_complete = iucv_callback_connack, .path_severed = iucv_callback_connrej, .message_pending = iucv_callback_rx, .message_complete = iucv_callback_txdone, .path_quiesced = iucv_callback_shutdown, }; /***************** HiperSockets transport callbacks ********************/ static void afiucv_swap_src_dest(struct sk_buff *skb) { struct af_iucv_trans_hdr *trans_hdr = iucv_trans_hdr(skb); char tmpID[8]; char tmpName[8]; ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID)); ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName)); ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID)); ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName)); memcpy(tmpID, trans_hdr->srcUserID, 8); memcpy(tmpName, trans_hdr->srcAppName, 8); memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8); memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8); memcpy(trans_hdr->destUserID, tmpID, 8); memcpy(trans_hdr->destAppName, tmpName, 8); skb_push(skb, ETH_HLEN); memset(skb->data, 0, ETH_HLEN); } /* * afiucv_hs_callback_syn - react on received SYN */ static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb) { struct af_iucv_trans_hdr *trans_hdr = iucv_trans_hdr(skb); struct sock *nsk; struct iucv_sock *iucv, *niucv; int err; iucv = iucv_sk(sk); if (!iucv) { /* no sock - connection refused */ afiucv_swap_src_dest(skb); trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN; err = dev_queue_xmit(skb); goto out; } nsk = iucv_sock_alloc(NULL, sk->sk_protocol, GFP_ATOMIC, 0); bh_lock_sock(sk); if ((sk->sk_state != IUCV_LISTEN) || sk_acceptq_is_full(sk) || !nsk) { /* error on server socket - connection refused */ afiucv_swap_src_dest(skb); trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN; err = dev_queue_xmit(skb); iucv_sock_kill(nsk); bh_unlock_sock(sk); goto out; } niucv = iucv_sk(nsk); iucv_sock_init(nsk, sk); niucv->transport = AF_IUCV_TRANS_HIPER; niucv->msglimit = iucv->msglimit; if (!trans_hdr->window) niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT; else niucv->msglimit_peer = trans_hdr->window; memcpy(niucv->dst_name, trans_hdr->srcAppName, 8); memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8); memcpy(niucv->src_name, iucv->src_name, 8); memcpy(niucv->src_user_id, iucv->src_user_id, 8); nsk->sk_bound_dev_if = sk->sk_bound_dev_if; niucv->hs_dev = iucv->hs_dev; dev_hold(niucv->hs_dev); afiucv_swap_src_dest(skb); trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK; trans_hdr->window = niucv->msglimit; /* if receiver acks the xmit connection is established */ err = dev_queue_xmit(skb); if (!err) { iucv_accept_enqueue(sk, nsk); nsk->sk_state = IUCV_CONNECTED; sk->sk_data_ready(sk); } else iucv_sock_kill(nsk); bh_unlock_sock(sk); out: return NET_RX_SUCCESS; } /* * afiucv_hs_callback_synack() - react on received SYN-ACK */ static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb) { struct iucv_sock *iucv = iucv_sk(sk); if (!iucv || sk->sk_state != IUCV_BOUND) { kfree_skb(skb); return NET_RX_SUCCESS; } bh_lock_sock(sk); iucv->msglimit_peer = iucv_trans_hdr(skb)->window; sk->sk_state = IUCV_CONNECTED; sk->sk_state_change(sk); bh_unlock_sock(sk); consume_skb(skb); return NET_RX_SUCCESS; } /* * afiucv_hs_callback_synfin() - react on received SYN_FIN */ static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb) { struct iucv_sock *iucv = iucv_sk(sk); if (!iucv || sk->sk_state != IUCV_BOUND) { kfree_skb(skb); return NET_RX_SUCCESS; } bh_lock_sock(sk); sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); bh_unlock_sock(sk); consume_skb(skb); return NET_RX_SUCCESS; } /* * afiucv_hs_callback_fin() - react on received FIN */ static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb) { struct iucv_sock *iucv = iucv_sk(sk); /* other end of connection closed */ if (!iucv) { kfree_skb(skb); return NET_RX_SUCCESS; } bh_lock_sock(sk); if (sk->sk_state == IUCV_CONNECTED) { sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); } bh_unlock_sock(sk); consume_skb(skb); return NET_RX_SUCCESS; } /* * afiucv_hs_callback_win() - react on received WIN */ static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb) { struct iucv_sock *iucv = iucv_sk(sk); if (!iucv) return NET_RX_SUCCESS; if (sk->sk_state != IUCV_CONNECTED) return NET_RX_SUCCESS; atomic_sub(iucv_trans_hdr(skb)->window, &iucv->msg_sent); iucv_sock_wake_msglim(sk); return NET_RX_SUCCESS; } /* * afiucv_hs_callback_rx() - react on received data */ static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb) { struct iucv_sock *iucv = iucv_sk(sk); if (!iucv) { kfree_skb(skb); return NET_RX_SUCCESS; } if (sk->sk_state != IUCV_CONNECTED) { kfree_skb(skb); return NET_RX_SUCCESS; } if (sk->sk_shutdown & RCV_SHUTDOWN) { kfree_skb(skb); return NET_RX_SUCCESS; } /* write stuff from iucv_msg to skb cb */ skb_pull(skb, sizeof(struct af_iucv_trans_hdr)); skb_reset_transport_header(skb); skb_reset_network_header(skb); IUCV_SKB_CB(skb)->offset = 0; if (sk_filter(sk, skb)) { atomic_inc(&sk->sk_drops); /* skb rejected by filter */ kfree_skb(skb); return NET_RX_SUCCESS; } spin_lock(&iucv->message_q.lock); if (skb_queue_empty(&iucv->backlog_skb_q)) { if (__sock_queue_rcv_skb(sk, skb)) /* handle rcv queue full */ skb_queue_tail(&iucv->backlog_skb_q, skb); } else skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb); spin_unlock(&iucv->message_q.lock); return NET_RX_SUCCESS; } /* * afiucv_hs_rcv() - base function for arriving data through HiperSockets * transport * called from netif RX softirq */ static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct sock *sk; struct iucv_sock *iucv; struct af_iucv_trans_hdr *trans_hdr; int err = NET_RX_SUCCESS; char nullstring[8]; if (!pskb_may_pull(skb, sizeof(*trans_hdr))) { kfree_skb(skb); return NET_RX_SUCCESS; } trans_hdr = iucv_trans_hdr(skb); EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName)); EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID)); EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName)); EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID)); memset(nullstring, 0, sizeof(nullstring)); iucv = NULL; sk = NULL; read_lock(&iucv_sk_list.lock); sk_for_each(sk, &iucv_sk_list.head) { if (trans_hdr->flags == AF_IUCV_FLAG_SYN) { if ((!memcmp(&iucv_sk(sk)->src_name, trans_hdr->destAppName, 8)) && (!memcmp(&iucv_sk(sk)->src_user_id, trans_hdr->destUserID, 8)) && (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) && (!memcmp(&iucv_sk(sk)->dst_user_id, nullstring, 8))) { iucv = iucv_sk(sk); break; } } else { if ((!memcmp(&iucv_sk(sk)->src_name, trans_hdr->destAppName, 8)) && (!memcmp(&iucv_sk(sk)->src_user_id, trans_hdr->destUserID, 8)) && (!memcmp(&iucv_sk(sk)->dst_name, trans_hdr->srcAppName, 8)) && (!memcmp(&iucv_sk(sk)->dst_user_id, trans_hdr->srcUserID, 8))) { iucv = iucv_sk(sk); break; } } } read_unlock(&iucv_sk_list.lock); if (!iucv) sk = NULL; /* no sock how should we send with no sock 1) send without sock no send rc checking? 2) introduce default sock to handle this cases SYN -> send SYN|ACK in good case, send SYN|FIN in bad case data -> send FIN SYN|ACK, SYN|FIN, FIN -> no action? */ switch (trans_hdr->flags) { case AF_IUCV_FLAG_SYN: /* connect request */ err = afiucv_hs_callback_syn(sk, skb); break; case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK): /* connect request confirmed */ err = afiucv_hs_callback_synack(sk, skb); break; case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN): /* connect request refused */ err = afiucv_hs_callback_synfin(sk, skb); break; case (AF_IUCV_FLAG_FIN): /* close request */ err = afiucv_hs_callback_fin(sk, skb); break; case (AF_IUCV_FLAG_WIN): err = afiucv_hs_callback_win(sk, skb); if (skb->len == sizeof(struct af_iucv_trans_hdr)) { consume_skb(skb); break; } fallthrough; /* and receive non-zero length data */ case (AF_IUCV_FLAG_SHT): /* shutdown request */ fallthrough; /* and receive zero length data */ case 0: /* plain data frame */ IUCV_SKB_CB(skb)->class = trans_hdr->iucv_hdr.class; err = afiucv_hs_callback_rx(sk, skb); break; default: kfree_skb(skb); } return err; } /* * afiucv_hs_callback_txnotify() - handle send notifications from HiperSockets * transport */ static void afiucv_hs_callback_txnotify(struct sock *sk, enum iucv_tx_notify n) { struct iucv_sock *iucv = iucv_sk(sk); if (sock_flag(sk, SOCK_ZAPPED)) return; switch (n) { case TX_NOTIFY_OK: atomic_dec(&iucv->skbs_in_xmit); iucv_sock_wake_msglim(sk); break; case TX_NOTIFY_PENDING: atomic_inc(&iucv->pendings); break; case TX_NOTIFY_DELAYED_OK: atomic_dec(&iucv->skbs_in_xmit); if (atomic_dec_return(&iucv->pendings) <= 0) iucv_sock_wake_msglim(sk); break; default: atomic_dec(&iucv->skbs_in_xmit); if (sk->sk_state == IUCV_CONNECTED) { sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); } } if (sk->sk_state == IUCV_CLOSING) { if (atomic_read(&iucv->skbs_in_xmit) == 0) { sk->sk_state = IUCV_CLOSED; sk->sk_state_change(sk); } } } /* * afiucv_netdev_event: handle netdev notifier chain events */ static int afiucv_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); struct sock *sk; struct iucv_sock *iucv; switch (event) { case NETDEV_REBOOT: case NETDEV_GOING_DOWN: sk_for_each(sk, &iucv_sk_list.head) { iucv = iucv_sk(sk); if ((iucv->hs_dev == event_dev) && (sk->sk_state == IUCV_CONNECTED)) { if (event == NETDEV_GOING_DOWN) iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN); sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); } } break; case NETDEV_DOWN: case NETDEV_UNREGISTER: default: break; } return NOTIFY_DONE; } static struct notifier_block afiucv_netdev_notifier = { .notifier_call = afiucv_netdev_event, }; static const struct proto_ops iucv_sock_ops = { .family = PF_IUCV, .owner = THIS_MODULE, .release = iucv_sock_release, .bind = iucv_sock_bind, .connect = iucv_sock_connect, .listen = iucv_sock_listen, .accept = iucv_sock_accept, .getname = iucv_sock_getname, .sendmsg = iucv_sock_sendmsg, .recvmsg = iucv_sock_recvmsg, .poll = iucv_sock_poll, .ioctl = sock_no_ioctl, .mmap = sock_no_mmap, .socketpair = sock_no_socketpair, .shutdown = iucv_sock_shutdown, .setsockopt = iucv_sock_setsockopt, .getsockopt = iucv_sock_getsockopt, }; static int iucv_sock_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; if (protocol && protocol != PF_IUCV) return -EPROTONOSUPPORT; sock->state = SS_UNCONNECTED; switch (sock->type) { case SOCK_STREAM: case SOCK_SEQPACKET: /* currently, proto ops can handle both sk types */ sock->ops = &iucv_sock_ops; break; default: return -ESOCKTNOSUPPORT; } sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL, kern); if (!sk) return -ENOMEM; iucv_sock_init(sk, NULL); return 0; } static const struct net_proto_family iucv_sock_family_ops = { .family = AF_IUCV, .owner = THIS_MODULE, .create = iucv_sock_create, }; static struct packet_type iucv_packet_type = { .type = cpu_to_be16(ETH_P_AF_IUCV), .func = afiucv_hs_rcv, }; static int __init afiucv_init(void) { int err; if (MACHINE_IS_VM && IS_ENABLED(CONFIG_IUCV)) { cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err); if (unlikely(err)) { WARN_ON(err); err = -EPROTONOSUPPORT; goto out; } pr_iucv = &iucv_if; } else { memset(&iucv_userid, 0, sizeof(iucv_userid)); pr_iucv = NULL; } err = proto_register(&iucv_proto, 0); if (err) goto out; err = sock_register(&iucv_sock_family_ops); if (err) goto out_proto; if (pr_iucv) { err = pr_iucv->iucv_register(&af_iucv_handler, 0); if (err) goto out_sock; } err = register_netdevice_notifier(&afiucv_netdev_notifier); if (err) goto out_notifier; dev_add_pack(&iucv_packet_type); return 0; out_notifier: if (pr_iucv) pr_iucv->iucv_unregister(&af_iucv_handler, 0); out_sock: sock_unregister(PF_IUCV); out_proto: proto_unregister(&iucv_proto); out: return err; } static void __exit afiucv_exit(void) { if (pr_iucv) pr_iucv->iucv_unregister(&af_iucv_handler, 0); unregister_netdevice_notifier(&afiucv_netdev_notifier); dev_remove_pack(&iucv_packet_type); sock_unregister(PF_IUCV); proto_unregister(&iucv_proto); } module_init(afiucv_init); module_exit(afiucv_exit); MODULE_AUTHOR("Jennifer Hunt <[email protected]>"); MODULE_DESCRIPTION("IUCV Sockets ver " VERSION); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_IUCV);
linux-master
net/iucv/af_iucv.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IUCV base infrastructure. * * Copyright IBM Corp. 2001, 2009 * * Author(s): * Original source: * Alan Altmark ([email protected]) Sept. 2000 * Xenia Tkatschow ([email protected]) * 2Gb awareness and general cleanup: * Fritz Elfert ([email protected], [email protected]) * Rewritten for af_iucv: * Martin Schwidefsky <[email protected]> * PM functions: * Ursula Braun ([email protected]) * * Documentation used: * The original source * CP Programming Service, IBM document # SC24-5760 */ #define KMSG_COMPONENT "iucv" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel_stat.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/spinlock.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/device.h> #include <linux/cpu.h> #include <linux/reboot.h> #include <net/iucv/iucv.h> #include <linux/atomic.h> #include <asm/ebcdic.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/smp.h> /* * FLAGS: * All flags are defined in the field IPFLAGS1 of each function * and can be found in CP Programming Services. * IPSRCCLS - Indicates you have specified a source class. * IPTRGCLS - Indicates you have specified a target class. * IPFGPID - Indicates you have specified a pathid. * IPFGMID - Indicates you have specified a message ID. * IPNORPY - Indicates a one-way message. No reply expected. * IPALL - Indicates that all paths are affected. */ #define IUCV_IPSRCCLS 0x01 #define IUCV_IPTRGCLS 0x01 #define IUCV_IPFGPID 0x02 #define IUCV_IPFGMID 0x04 #define IUCV_IPNORPY 0x10 #define IUCV_IPALL 0x80 static int iucv_bus_match(struct device *dev, struct device_driver *drv) { return 0; } struct bus_type iucv_bus = { .name = "iucv", .match = iucv_bus_match, }; EXPORT_SYMBOL(iucv_bus); struct device *iucv_root; EXPORT_SYMBOL(iucv_root); static int iucv_available; /* General IUCV interrupt structure */ struct iucv_irq_data { u16 ippathid; u8 ipflags1; u8 iptype; u32 res2[9]; }; struct iucv_irq_list { struct list_head list; struct iucv_irq_data data; }; static struct iucv_irq_data *iucv_irq_data[NR_CPUS]; static cpumask_t iucv_buffer_cpumask = { CPU_BITS_NONE }; static cpumask_t iucv_irq_cpumask = { CPU_BITS_NONE }; /* * Queue of interrupt buffers lock for delivery via the tasklet * (fast but can't call smp_call_function). */ static LIST_HEAD(iucv_task_queue); /* * The tasklet for fast delivery of iucv interrupts. */ static void iucv_tasklet_fn(unsigned long); static DECLARE_TASKLET_OLD(iucv_tasklet, iucv_tasklet_fn); /* * Queue of interrupt buffers for delivery via a work queue * (slower but can call smp_call_function). */ static LIST_HEAD(iucv_work_queue); /* * The work element to deliver path pending interrupts. */ static void iucv_work_fn(struct work_struct *work); static DECLARE_WORK(iucv_work, iucv_work_fn); /* * Spinlock protecting task and work queue. */ static DEFINE_SPINLOCK(iucv_queue_lock); enum iucv_command_codes { IUCV_QUERY = 0, IUCV_RETRIEVE_BUFFER = 2, IUCV_SEND = 4, IUCV_RECEIVE = 5, IUCV_REPLY = 6, IUCV_REJECT = 8, IUCV_PURGE = 9, IUCV_ACCEPT = 10, IUCV_CONNECT = 11, IUCV_DECLARE_BUFFER = 12, IUCV_QUIESCE = 13, IUCV_RESUME = 14, IUCV_SEVER = 15, IUCV_SETMASK = 16, IUCV_SETCONTROLMASK = 17, }; /* * Error messages that are used with the iucv_sever function. They get * converted to EBCDIC. */ static char iucv_error_no_listener[16] = "NO LISTENER"; static char iucv_error_no_memory[16] = "NO MEMORY"; static char iucv_error_pathid[16] = "INVALID PATHID"; /* * iucv_handler_list: List of registered handlers. */ static LIST_HEAD(iucv_handler_list); /* * iucv_path_table: an array of iucv_path structures. */ static struct iucv_path **iucv_path_table; static unsigned long iucv_max_pathid; /* * iucv_lock: spinlock protecting iucv_handler_list and iucv_pathid_table */ static DEFINE_SPINLOCK(iucv_table_lock); /* * iucv_active_cpu: contains the number of the cpu executing the tasklet * or the work handler. Needed for iucv_path_sever called from tasklet. */ static int iucv_active_cpu = -1; /* * Mutex and wait queue for iucv_register/iucv_unregister. */ static DEFINE_MUTEX(iucv_register_mutex); /* * Counter for number of non-smp capable handlers. */ static int iucv_nonsmp_handler; /* * IUCV control data structure. Used by iucv_path_accept, iucv_path_connect, * iucv_path_quiesce and iucv_path_sever. */ struct iucv_cmd_control { u16 ippathid; u8 ipflags1; u8 iprcode; u16 ipmsglim; u16 res1; u8 ipvmid[8]; u8 ipuser[16]; u8 iptarget[8]; } __attribute__ ((packed,aligned(8))); /* * Data in parameter list iucv structure. Used by iucv_message_send, * iucv_message_send2way and iucv_message_reply. */ struct iucv_cmd_dpl { u16 ippathid; u8 ipflags1; u8 iprcode; u32 ipmsgid; u32 iptrgcls; u8 iprmmsg[8]; u32 ipsrccls; u32 ipmsgtag; u32 ipbfadr2; u32 ipbfln2f; u32 res; } __attribute__ ((packed,aligned(8))); /* * Data in buffer iucv structure. Used by iucv_message_receive, * iucv_message_reject, iucv_message_send, iucv_message_send2way * and iucv_declare_cpu. */ struct iucv_cmd_db { u16 ippathid; u8 ipflags1; u8 iprcode; u32 ipmsgid; u32 iptrgcls; u32 ipbfadr1; u32 ipbfln1f; u32 ipsrccls; u32 ipmsgtag; u32 ipbfadr2; u32 ipbfln2f; u32 res; } __attribute__ ((packed,aligned(8))); /* * Purge message iucv structure. Used by iucv_message_purge. */ struct iucv_cmd_purge { u16 ippathid; u8 ipflags1; u8 iprcode; u32 ipmsgid; u8 ipaudit[3]; u8 res1[5]; u32 res2; u32 ipsrccls; u32 ipmsgtag; u32 res3[3]; } __attribute__ ((packed,aligned(8))); /* * Set mask iucv structure. Used by iucv_enable_cpu. */ struct iucv_cmd_set_mask { u8 ipmask; u8 res1[2]; u8 iprcode; u32 res2[9]; } __attribute__ ((packed,aligned(8))); union iucv_param { struct iucv_cmd_control ctrl; struct iucv_cmd_dpl dpl; struct iucv_cmd_db db; struct iucv_cmd_purge purge; struct iucv_cmd_set_mask set_mask; }; /* * Anchor for per-cpu IUCV command parameter block. */ static union iucv_param *iucv_param[NR_CPUS]; static union iucv_param *iucv_param_irq[NR_CPUS]; /** * __iucv_call_b2f0 * @command: identifier of IUCV call to CP. * @parm: pointer to a struct iucv_parm block * * Calls CP to execute IUCV commands. * * Returns the result of the CP IUCV call. */ static inline int __iucv_call_b2f0(int command, union iucv_param *parm) { int cc; asm volatile( " lgr 0,%[reg0]\n" " lgr 1,%[reg1]\n" " .long 0xb2f01000\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (cc), "+m" (*parm) : [reg0] "d" ((unsigned long)command), [reg1] "d" ((unsigned long)parm) : "cc", "0", "1"); return cc; } static inline int iucv_call_b2f0(int command, union iucv_param *parm) { int ccode; ccode = __iucv_call_b2f0(command, parm); return ccode == 1 ? parm->ctrl.iprcode : ccode; } /* * iucv_query_maxconn * * Determines the maximum number of connections that may be established. * * Returns the maximum number of connections or -EPERM is IUCV is not * available. */ static int __iucv_query_maxconn(void *param, unsigned long *max_pathid) { unsigned long reg1 = virt_to_phys(param); int cc; asm volatile ( " lghi 0,%[cmd]\n" " lgr 1,%[reg1]\n" " .long 0xb2f01000\n" " ipm %[cc]\n" " srl %[cc],28\n" " lgr %[reg1],1\n" : [cc] "=&d" (cc), [reg1] "+&d" (reg1) : [cmd] "K" (IUCV_QUERY) : "cc", "0", "1"); *max_pathid = reg1; return cc; } static int iucv_query_maxconn(void) { unsigned long max_pathid; void *param; int ccode; param = kzalloc(sizeof(union iucv_param), GFP_KERNEL | GFP_DMA); if (!param) return -ENOMEM; ccode = __iucv_query_maxconn(param, &max_pathid); if (ccode == 0) iucv_max_pathid = max_pathid; kfree(param); return ccode ? -EPERM : 0; } /** * iucv_allow_cpu * @data: unused * * Allow iucv interrupts on this cpu. */ static void iucv_allow_cpu(void *data) { int cpu = smp_processor_id(); union iucv_param *parm; /* * Enable all iucv interrupts. * ipmask contains bits for the different interrupts * 0x80 - Flag to allow nonpriority message pending interrupts * 0x40 - Flag to allow priority message pending interrupts * 0x20 - Flag to allow nonpriority message completion interrupts * 0x10 - Flag to allow priority message completion interrupts * 0x08 - Flag to allow IUCV control interrupts */ parm = iucv_param_irq[cpu]; memset(parm, 0, sizeof(union iucv_param)); parm->set_mask.ipmask = 0xf8; iucv_call_b2f0(IUCV_SETMASK, parm); /* * Enable all iucv control interrupts. * ipmask contains bits for the different interrupts * 0x80 - Flag to allow pending connections interrupts * 0x40 - Flag to allow connection complete interrupts * 0x20 - Flag to allow connection severed interrupts * 0x10 - Flag to allow connection quiesced interrupts * 0x08 - Flag to allow connection resumed interrupts */ memset(parm, 0, sizeof(union iucv_param)); parm->set_mask.ipmask = 0xf8; iucv_call_b2f0(IUCV_SETCONTROLMASK, parm); /* Set indication that iucv interrupts are allowed for this cpu. */ cpumask_set_cpu(cpu, &iucv_irq_cpumask); } /** * iucv_block_cpu * @data: unused * * Block iucv interrupts on this cpu. */ static void iucv_block_cpu(void *data) { int cpu = smp_processor_id(); union iucv_param *parm; /* Disable all iucv interrupts. */ parm = iucv_param_irq[cpu]; memset(parm, 0, sizeof(union iucv_param)); iucv_call_b2f0(IUCV_SETMASK, parm); /* Clear indication that iucv interrupts are allowed for this cpu. */ cpumask_clear_cpu(cpu, &iucv_irq_cpumask); } /** * iucv_declare_cpu * @data: unused * * Declare a interrupt buffer on this cpu. */ static void iucv_declare_cpu(void *data) { int cpu = smp_processor_id(); union iucv_param *parm; int rc; if (cpumask_test_cpu(cpu, &iucv_buffer_cpumask)) return; /* Declare interrupt buffer. */ parm = iucv_param_irq[cpu]; memset(parm, 0, sizeof(union iucv_param)); parm->db.ipbfadr1 = virt_to_phys(iucv_irq_data[cpu]); rc = iucv_call_b2f0(IUCV_DECLARE_BUFFER, parm); if (rc) { char *err = "Unknown"; switch (rc) { case 0x03: err = "Directory error"; break; case 0x0a: err = "Invalid length"; break; case 0x13: err = "Buffer already exists"; break; case 0x3e: err = "Buffer overlap"; break; case 0x5c: err = "Paging or storage error"; break; } pr_warn("Defining an interrupt buffer on CPU %i failed with 0x%02x (%s)\n", cpu, rc, err); return; } /* Set indication that an iucv buffer exists for this cpu. */ cpumask_set_cpu(cpu, &iucv_buffer_cpumask); if (iucv_nonsmp_handler == 0 || cpumask_empty(&iucv_irq_cpumask)) /* Enable iucv interrupts on this cpu. */ iucv_allow_cpu(NULL); else /* Disable iucv interrupts on this cpu. */ iucv_block_cpu(NULL); } /** * iucv_retrieve_cpu * @data: unused * * Retrieve interrupt buffer on this cpu. */ static void iucv_retrieve_cpu(void *data) { int cpu = smp_processor_id(); union iucv_param *parm; if (!cpumask_test_cpu(cpu, &iucv_buffer_cpumask)) return; /* Block iucv interrupts. */ iucv_block_cpu(NULL); /* Retrieve interrupt buffer. */ parm = iucv_param_irq[cpu]; iucv_call_b2f0(IUCV_RETRIEVE_BUFFER, parm); /* Clear indication that an iucv buffer exists for this cpu. */ cpumask_clear_cpu(cpu, &iucv_buffer_cpumask); } /* * iucv_setmask_mp * * Allow iucv interrupts on all cpus. */ static void iucv_setmask_mp(void) { int cpu; cpus_read_lock(); for_each_online_cpu(cpu) /* Enable all cpus with a declared buffer. */ if (cpumask_test_cpu(cpu, &iucv_buffer_cpumask) && !cpumask_test_cpu(cpu, &iucv_irq_cpumask)) smp_call_function_single(cpu, iucv_allow_cpu, NULL, 1); cpus_read_unlock(); } /* * iucv_setmask_up * * Allow iucv interrupts on a single cpu. */ static void iucv_setmask_up(void) { cpumask_t cpumask; int cpu; /* Disable all cpu but the first in cpu_irq_cpumask. */ cpumask_copy(&cpumask, &iucv_irq_cpumask); cpumask_clear_cpu(cpumask_first(&iucv_irq_cpumask), &cpumask); for_each_cpu(cpu, &cpumask) smp_call_function_single(cpu, iucv_block_cpu, NULL, 1); } /* * iucv_enable * * This function makes iucv ready for use. It allocates the pathid * table, declares an iucv interrupt buffer and enables the iucv * interrupts. Called when the first user has registered an iucv * handler. */ static int iucv_enable(void) { size_t alloc_size; int cpu, rc; cpus_read_lock(); rc = -ENOMEM; alloc_size = iucv_max_pathid * sizeof(struct iucv_path); iucv_path_table = kzalloc(alloc_size, GFP_KERNEL); if (!iucv_path_table) goto out; /* Declare per cpu buffers. */ rc = -EIO; for_each_online_cpu(cpu) smp_call_function_single(cpu, iucv_declare_cpu, NULL, 1); if (cpumask_empty(&iucv_buffer_cpumask)) /* No cpu could declare an iucv buffer. */ goto out; cpus_read_unlock(); return 0; out: kfree(iucv_path_table); iucv_path_table = NULL; cpus_read_unlock(); return rc; } /* * iucv_disable * * This function shuts down iucv. It disables iucv interrupts, retrieves * the iucv interrupt buffer and frees the pathid table. Called after the * last user unregister its iucv handler. */ static void iucv_disable(void) { cpus_read_lock(); on_each_cpu(iucv_retrieve_cpu, NULL, 1); kfree(iucv_path_table); iucv_path_table = NULL; cpus_read_unlock(); } static int iucv_cpu_dead(unsigned int cpu) { kfree(iucv_param_irq[cpu]); iucv_param_irq[cpu] = NULL; kfree(iucv_param[cpu]); iucv_param[cpu] = NULL; kfree(iucv_irq_data[cpu]); iucv_irq_data[cpu] = NULL; return 0; } static int iucv_cpu_prepare(unsigned int cpu) { /* Note: GFP_DMA used to get memory below 2G */ iucv_irq_data[cpu] = kmalloc_node(sizeof(struct iucv_irq_data), GFP_KERNEL|GFP_DMA, cpu_to_node(cpu)); if (!iucv_irq_data[cpu]) goto out_free; /* Allocate parameter blocks. */ iucv_param[cpu] = kmalloc_node(sizeof(union iucv_param), GFP_KERNEL|GFP_DMA, cpu_to_node(cpu)); if (!iucv_param[cpu]) goto out_free; iucv_param_irq[cpu] = kmalloc_node(sizeof(union iucv_param), GFP_KERNEL|GFP_DMA, cpu_to_node(cpu)); if (!iucv_param_irq[cpu]) goto out_free; return 0; out_free: iucv_cpu_dead(cpu); return -ENOMEM; } static int iucv_cpu_online(unsigned int cpu) { if (!iucv_path_table) return 0; iucv_declare_cpu(NULL); return 0; } static int iucv_cpu_down_prep(unsigned int cpu) { cpumask_t cpumask; if (!iucv_path_table) return 0; cpumask_copy(&cpumask, &iucv_buffer_cpumask); cpumask_clear_cpu(cpu, &cpumask); if (cpumask_empty(&cpumask)) /* Can't offline last IUCV enabled cpu. */ return -EINVAL; iucv_retrieve_cpu(NULL); if (!cpumask_empty(&iucv_irq_cpumask)) return 0; smp_call_function_single(cpumask_first(&iucv_buffer_cpumask), iucv_allow_cpu, NULL, 1); return 0; } /** * iucv_sever_pathid * @pathid: path identification number. * @userdata: 16-bytes of user data. * * Sever an iucv path to free up the pathid. Used internally. */ static int iucv_sever_pathid(u16 pathid, u8 *userdata) { union iucv_param *parm; parm = iucv_param_irq[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); if (userdata) memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser)); parm->ctrl.ippathid = pathid; return iucv_call_b2f0(IUCV_SEVER, parm); } /** * __iucv_cleanup_queue * @dummy: unused dummy argument * * Nop function called via smp_call_function to force work items from * pending external iucv interrupts to the work queue. */ static void __iucv_cleanup_queue(void *dummy) { } /** * iucv_cleanup_queue * * Function called after a path has been severed to find all remaining * work items for the now stale pathid. The caller needs to hold the * iucv_table_lock. */ static void iucv_cleanup_queue(void) { struct iucv_irq_list *p, *n; /* * When a path is severed, the pathid can be reused immediately * on a iucv connect or a connection pending interrupt. Remove * all entries from the task queue that refer to a stale pathid * (iucv_path_table[ix] == NULL). Only then do the iucv connect * or deliver the connection pending interrupt. To get all the * pending interrupts force them to the work queue by calling * an empty function on all cpus. */ smp_call_function(__iucv_cleanup_queue, NULL, 1); spin_lock_irq(&iucv_queue_lock); list_for_each_entry_safe(p, n, &iucv_task_queue, list) { /* Remove stale work items from the task queue. */ if (iucv_path_table[p->data.ippathid] == NULL) { list_del(&p->list); kfree(p); } } spin_unlock_irq(&iucv_queue_lock); } /** * iucv_register: * @handler: address of iucv handler structure * @smp: != 0 indicates that the handler can deal with out of order messages * * Registers a driver with IUCV. * * Returns 0 on success, -ENOMEM if the memory allocation for the pathid * table failed, or -EIO if IUCV_DECLARE_BUFFER failed on all cpus. */ int iucv_register(struct iucv_handler *handler, int smp) { int rc; if (!iucv_available) return -ENOSYS; mutex_lock(&iucv_register_mutex); if (!smp) iucv_nonsmp_handler++; if (list_empty(&iucv_handler_list)) { rc = iucv_enable(); if (rc) goto out_mutex; } else if (!smp && iucv_nonsmp_handler == 1) iucv_setmask_up(); INIT_LIST_HEAD(&handler->paths); spin_lock_bh(&iucv_table_lock); list_add_tail(&handler->list, &iucv_handler_list); spin_unlock_bh(&iucv_table_lock); rc = 0; out_mutex: mutex_unlock(&iucv_register_mutex); return rc; } EXPORT_SYMBOL(iucv_register); /** * iucv_unregister * @handler: address of iucv handler structure * @smp: != 0 indicates that the handler can deal with out of order messages * * Unregister driver from IUCV. */ void iucv_unregister(struct iucv_handler *handler, int smp) { struct iucv_path *p, *n; mutex_lock(&iucv_register_mutex); spin_lock_bh(&iucv_table_lock); /* Remove handler from the iucv_handler_list. */ list_del_init(&handler->list); /* Sever all pathids still referring to the handler. */ list_for_each_entry_safe(p, n, &handler->paths, list) { iucv_sever_pathid(p->pathid, NULL); iucv_path_table[p->pathid] = NULL; list_del(&p->list); iucv_path_free(p); } spin_unlock_bh(&iucv_table_lock); if (!smp) iucv_nonsmp_handler--; if (list_empty(&iucv_handler_list)) iucv_disable(); else if (!smp && iucv_nonsmp_handler == 0) iucv_setmask_mp(); mutex_unlock(&iucv_register_mutex); } EXPORT_SYMBOL(iucv_unregister); static int iucv_reboot_event(struct notifier_block *this, unsigned long event, void *ptr) { int i; if (cpumask_empty(&iucv_irq_cpumask)) return NOTIFY_DONE; cpus_read_lock(); on_each_cpu_mask(&iucv_irq_cpumask, iucv_block_cpu, NULL, 1); preempt_disable(); for (i = 0; i < iucv_max_pathid; i++) { if (iucv_path_table[i]) iucv_sever_pathid(i, NULL); } preempt_enable(); cpus_read_unlock(); iucv_disable(); return NOTIFY_DONE; } static struct notifier_block iucv_reboot_notifier = { .notifier_call = iucv_reboot_event, }; /** * iucv_path_accept * @path: address of iucv path structure * @handler: address of iucv handler structure * @userdata: 16 bytes of data reflected to the communication partner * @private: private data passed to interrupt handlers for this path * * This function is issued after the user received a connection pending * external interrupt and now wishes to complete the IUCV communication path. * * Returns the result of the CP IUCV call. */ int iucv_path_accept(struct iucv_path *path, struct iucv_handler *handler, u8 *userdata, void *private) { union iucv_param *parm; int rc; local_bh_disable(); if (cpumask_empty(&iucv_buffer_cpumask)) { rc = -EIO; goto out; } /* Prepare parameter block. */ parm = iucv_param[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); parm->ctrl.ippathid = path->pathid; parm->ctrl.ipmsglim = path->msglim; if (userdata) memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser)); parm->ctrl.ipflags1 = path->flags; rc = iucv_call_b2f0(IUCV_ACCEPT, parm); if (!rc) { path->private = private; path->msglim = parm->ctrl.ipmsglim; path->flags = parm->ctrl.ipflags1; } out: local_bh_enable(); return rc; } EXPORT_SYMBOL(iucv_path_accept); /** * iucv_path_connect * @path: address of iucv path structure * @handler: address of iucv handler structure * @userid: 8-byte user identification * @system: 8-byte target system identification * @userdata: 16 bytes of data reflected to the communication partner * @private: private data passed to interrupt handlers for this path * * This function establishes an IUCV path. Although the connect may complete * successfully, you are not able to use the path until you receive an IUCV * Connection Complete external interrupt. * * Returns the result of the CP IUCV call. */ int iucv_path_connect(struct iucv_path *path, struct iucv_handler *handler, u8 *userid, u8 *system, u8 *userdata, void *private) { union iucv_param *parm; int rc; spin_lock_bh(&iucv_table_lock); iucv_cleanup_queue(); if (cpumask_empty(&iucv_buffer_cpumask)) { rc = -EIO; goto out; } parm = iucv_param[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); parm->ctrl.ipmsglim = path->msglim; parm->ctrl.ipflags1 = path->flags; if (userid) { memcpy(parm->ctrl.ipvmid, userid, sizeof(parm->ctrl.ipvmid)); ASCEBC(parm->ctrl.ipvmid, sizeof(parm->ctrl.ipvmid)); EBC_TOUPPER(parm->ctrl.ipvmid, sizeof(parm->ctrl.ipvmid)); } if (system) { memcpy(parm->ctrl.iptarget, system, sizeof(parm->ctrl.iptarget)); ASCEBC(parm->ctrl.iptarget, sizeof(parm->ctrl.iptarget)); EBC_TOUPPER(parm->ctrl.iptarget, sizeof(parm->ctrl.iptarget)); } if (userdata) memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser)); rc = iucv_call_b2f0(IUCV_CONNECT, parm); if (!rc) { if (parm->ctrl.ippathid < iucv_max_pathid) { path->pathid = parm->ctrl.ippathid; path->msglim = parm->ctrl.ipmsglim; path->flags = parm->ctrl.ipflags1; path->handler = handler; path->private = private; list_add_tail(&path->list, &handler->paths); iucv_path_table[path->pathid] = path; } else { iucv_sever_pathid(parm->ctrl.ippathid, iucv_error_pathid); rc = -EIO; } } out: spin_unlock_bh(&iucv_table_lock); return rc; } EXPORT_SYMBOL(iucv_path_connect); /** * iucv_path_quiesce: * @path: address of iucv path structure * @userdata: 16 bytes of data reflected to the communication partner * * This function temporarily suspends incoming messages on an IUCV path. * You can later reactivate the path by invoking the iucv_resume function. * * Returns the result from the CP IUCV call. */ int iucv_path_quiesce(struct iucv_path *path, u8 *userdata) { union iucv_param *parm; int rc; local_bh_disable(); if (cpumask_empty(&iucv_buffer_cpumask)) { rc = -EIO; goto out; } parm = iucv_param[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); if (userdata) memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser)); parm->ctrl.ippathid = path->pathid; rc = iucv_call_b2f0(IUCV_QUIESCE, parm); out: local_bh_enable(); return rc; } EXPORT_SYMBOL(iucv_path_quiesce); /** * iucv_path_resume: * @path: address of iucv path structure * @userdata: 16 bytes of data reflected to the communication partner * * This function resumes incoming messages on an IUCV path that has * been stopped with iucv_path_quiesce. * * Returns the result from the CP IUCV call. */ int iucv_path_resume(struct iucv_path *path, u8 *userdata) { union iucv_param *parm; int rc; local_bh_disable(); if (cpumask_empty(&iucv_buffer_cpumask)) { rc = -EIO; goto out; } parm = iucv_param[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); if (userdata) memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser)); parm->ctrl.ippathid = path->pathid; rc = iucv_call_b2f0(IUCV_RESUME, parm); out: local_bh_enable(); return rc; } /** * iucv_path_sever * @path: address of iucv path structure * @userdata: 16 bytes of data reflected to the communication partner * * This function terminates an IUCV path. * * Returns the result from the CP IUCV call. */ int iucv_path_sever(struct iucv_path *path, u8 *userdata) { int rc; preempt_disable(); if (cpumask_empty(&iucv_buffer_cpumask)) { rc = -EIO; goto out; } if (iucv_active_cpu != smp_processor_id()) spin_lock_bh(&iucv_table_lock); rc = iucv_sever_pathid(path->pathid, userdata); iucv_path_table[path->pathid] = NULL; list_del_init(&path->list); if (iucv_active_cpu != smp_processor_id()) spin_unlock_bh(&iucv_table_lock); out: preempt_enable(); return rc; } EXPORT_SYMBOL(iucv_path_sever); /** * iucv_message_purge * @path: address of iucv path structure * @msg: address of iucv msg structure * @srccls: source class of message * * Cancels a message you have sent. * * Returns the result from the CP IUCV call. */ int iucv_message_purge(struct iucv_path *path, struct iucv_message *msg, u32 srccls) { union iucv_param *parm; int rc; local_bh_disable(); if (cpumask_empty(&iucv_buffer_cpumask)) { rc = -EIO; goto out; } parm = iucv_param[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); parm->purge.ippathid = path->pathid; parm->purge.ipmsgid = msg->id; parm->purge.ipsrccls = srccls; parm->purge.ipflags1 = IUCV_IPSRCCLS | IUCV_IPFGMID | IUCV_IPFGPID; rc = iucv_call_b2f0(IUCV_PURGE, parm); if (!rc) { msg->audit = (*(u32 *) &parm->purge.ipaudit) >> 8; msg->tag = parm->purge.ipmsgtag; } out: local_bh_enable(); return rc; } EXPORT_SYMBOL(iucv_message_purge); /** * iucv_message_receive_iprmdata * @path: address of iucv path structure * @msg: address of iucv msg structure * @flags: how the message is received (IUCV_IPBUFLST) * @buffer: address of data buffer or address of struct iucv_array * @size: length of data buffer * @residual: * * Internal function used by iucv_message_receive and __iucv_message_receive * to receive RMDATA data stored in struct iucv_message. */ static int iucv_message_receive_iprmdata(struct iucv_path *path, struct iucv_message *msg, u8 flags, void *buffer, size_t size, size_t *residual) { struct iucv_array *array; u8 *rmmsg; size_t copy; /* * Message is 8 bytes long and has been stored to the * message descriptor itself. */ if (residual) *residual = abs(size - 8); rmmsg = msg->rmmsg; if (flags & IUCV_IPBUFLST) { /* Copy to struct iucv_array. */ size = (size < 8) ? size : 8; for (array = buffer; size > 0; array++) { copy = min_t(size_t, size, array->length); memcpy((u8 *)(addr_t) array->address, rmmsg, copy); rmmsg += copy; size -= copy; } } else { /* Copy to direct buffer. */ memcpy(buffer, rmmsg, min_t(size_t, size, 8)); } return 0; } /** * __iucv_message_receive * @path: address of iucv path structure * @msg: address of iucv msg structure * @flags: how the message is received (IUCV_IPBUFLST) * @buffer: address of data buffer or address of struct iucv_array * @size: length of data buffer * @residual: * * This function receives messages that are being sent to you over * established paths. This function will deal with RMDATA messages * embedded in struct iucv_message as well. * * Locking: no locking * * Returns the result from the CP IUCV call. */ int __iucv_message_receive(struct iucv_path *path, struct iucv_message *msg, u8 flags, void *buffer, size_t size, size_t *residual) { union iucv_param *parm; int rc; if (msg->flags & IUCV_IPRMDATA) return iucv_message_receive_iprmdata(path, msg, flags, buffer, size, residual); if (cpumask_empty(&iucv_buffer_cpumask)) return -EIO; parm = iucv_param[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); parm->db.ipbfadr1 = (u32)(addr_t) buffer; parm->db.ipbfln1f = (u32) size; parm->db.ipmsgid = msg->id; parm->db.ippathid = path->pathid; parm->db.iptrgcls = msg->class; parm->db.ipflags1 = (flags | IUCV_IPFGPID | IUCV_IPFGMID | IUCV_IPTRGCLS); rc = iucv_call_b2f0(IUCV_RECEIVE, parm); if (!rc || rc == 5) { msg->flags = parm->db.ipflags1; if (residual) *residual = parm->db.ipbfln1f; } return rc; } EXPORT_SYMBOL(__iucv_message_receive); /** * iucv_message_receive * @path: address of iucv path structure * @msg: address of iucv msg structure * @flags: how the message is received (IUCV_IPBUFLST) * @buffer: address of data buffer or address of struct iucv_array * @size: length of data buffer * @residual: * * This function receives messages that are being sent to you over * established paths. This function will deal with RMDATA messages * embedded in struct iucv_message as well. * * Locking: local_bh_enable/local_bh_disable * * Returns the result from the CP IUCV call. */ int iucv_message_receive(struct iucv_path *path, struct iucv_message *msg, u8 flags, void *buffer, size_t size, size_t *residual) { int rc; if (msg->flags & IUCV_IPRMDATA) return iucv_message_receive_iprmdata(path, msg, flags, buffer, size, residual); local_bh_disable(); rc = __iucv_message_receive(path, msg, flags, buffer, size, residual); local_bh_enable(); return rc; } EXPORT_SYMBOL(iucv_message_receive); /** * iucv_message_reject * @path: address of iucv path structure * @msg: address of iucv msg structure * * The reject function refuses a specified message. Between the time you * are notified of a message and the time that you complete the message, * the message may be rejected. * * Returns the result from the CP IUCV call. */ int iucv_message_reject(struct iucv_path *path, struct iucv_message *msg) { union iucv_param *parm; int rc; local_bh_disable(); if (cpumask_empty(&iucv_buffer_cpumask)) { rc = -EIO; goto out; } parm = iucv_param[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); parm->db.ippathid = path->pathid; parm->db.ipmsgid = msg->id; parm->db.iptrgcls = msg->class; parm->db.ipflags1 = (IUCV_IPTRGCLS | IUCV_IPFGMID | IUCV_IPFGPID); rc = iucv_call_b2f0(IUCV_REJECT, parm); out: local_bh_enable(); return rc; } EXPORT_SYMBOL(iucv_message_reject); /** * iucv_message_reply * @path: address of iucv path structure * @msg: address of iucv msg structure * @flags: how the reply is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST) * @reply: address of reply data buffer or address of struct iucv_array * @size: length of reply data buffer * * This function responds to the two-way messages that you receive. You * must identify completely the message to which you wish to reply. ie, * pathid, msgid, and trgcls. Prmmsg signifies the data is moved into * the parameter list. * * Returns the result from the CP IUCV call. */ int iucv_message_reply(struct iucv_path *path, struct iucv_message *msg, u8 flags, void *reply, size_t size) { union iucv_param *parm; int rc; local_bh_disable(); if (cpumask_empty(&iucv_buffer_cpumask)) { rc = -EIO; goto out; } parm = iucv_param[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); if (flags & IUCV_IPRMDATA) { parm->dpl.ippathid = path->pathid; parm->dpl.ipflags1 = flags; parm->dpl.ipmsgid = msg->id; parm->dpl.iptrgcls = msg->class; memcpy(parm->dpl.iprmmsg, reply, min_t(size_t, size, 8)); } else { parm->db.ipbfadr1 = (u32)(addr_t) reply; parm->db.ipbfln1f = (u32) size; parm->db.ippathid = path->pathid; parm->db.ipflags1 = flags; parm->db.ipmsgid = msg->id; parm->db.iptrgcls = msg->class; } rc = iucv_call_b2f0(IUCV_REPLY, parm); out: local_bh_enable(); return rc; } EXPORT_SYMBOL(iucv_message_reply); /** * __iucv_message_send * @path: address of iucv path structure * @msg: address of iucv msg structure * @flags: how the message is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST) * @srccls: source class of message * @buffer: address of send buffer or address of struct iucv_array * @size: length of send buffer * * This function transmits data to another application. Data to be * transmitted is in a buffer and this is a one-way message and the * receiver will not reply to the message. * * Locking: no locking * * Returns the result from the CP IUCV call. */ int __iucv_message_send(struct iucv_path *path, struct iucv_message *msg, u8 flags, u32 srccls, void *buffer, size_t size) { union iucv_param *parm; int rc; if (cpumask_empty(&iucv_buffer_cpumask)) { rc = -EIO; goto out; } parm = iucv_param[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); if (flags & IUCV_IPRMDATA) { /* Message of 8 bytes can be placed into the parameter list. */ parm->dpl.ippathid = path->pathid; parm->dpl.ipflags1 = flags | IUCV_IPNORPY; parm->dpl.iptrgcls = msg->class; parm->dpl.ipsrccls = srccls; parm->dpl.ipmsgtag = msg->tag; memcpy(parm->dpl.iprmmsg, buffer, 8); } else { parm->db.ipbfadr1 = (u32)(addr_t) buffer; parm->db.ipbfln1f = (u32) size; parm->db.ippathid = path->pathid; parm->db.ipflags1 = flags | IUCV_IPNORPY; parm->db.iptrgcls = msg->class; parm->db.ipsrccls = srccls; parm->db.ipmsgtag = msg->tag; } rc = iucv_call_b2f0(IUCV_SEND, parm); if (!rc) msg->id = parm->db.ipmsgid; out: return rc; } EXPORT_SYMBOL(__iucv_message_send); /** * iucv_message_send * @path: address of iucv path structure * @msg: address of iucv msg structure * @flags: how the message is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST) * @srccls: source class of message * @buffer: address of send buffer or address of struct iucv_array * @size: length of send buffer * * This function transmits data to another application. Data to be * transmitted is in a buffer and this is a one-way message and the * receiver will not reply to the message. * * Locking: local_bh_enable/local_bh_disable * * Returns the result from the CP IUCV call. */ int iucv_message_send(struct iucv_path *path, struct iucv_message *msg, u8 flags, u32 srccls, void *buffer, size_t size) { int rc; local_bh_disable(); rc = __iucv_message_send(path, msg, flags, srccls, buffer, size); local_bh_enable(); return rc; } EXPORT_SYMBOL(iucv_message_send); /** * iucv_message_send2way * @path: address of iucv path structure * @msg: address of iucv msg structure * @flags: how the message is sent and the reply is received * (IUCV_IPRMDATA, IUCV_IPBUFLST, IUCV_IPPRTY, IUCV_ANSLST) * @srccls: source class of message * @buffer: address of send buffer or address of struct iucv_array * @size: length of send buffer * @answer: address of answer buffer or address of struct iucv_array * @asize: size of reply buffer * @residual: ignored * * This function transmits data to another application. Data to be * transmitted is in a buffer. The receiver of the send is expected to * reply to the message and a buffer is provided into which IUCV moves * the reply to this message. * * Returns the result from the CP IUCV call. */ int iucv_message_send2way(struct iucv_path *path, struct iucv_message *msg, u8 flags, u32 srccls, void *buffer, size_t size, void *answer, size_t asize, size_t *residual) { union iucv_param *parm; int rc; local_bh_disable(); if (cpumask_empty(&iucv_buffer_cpumask)) { rc = -EIO; goto out; } parm = iucv_param[smp_processor_id()]; memset(parm, 0, sizeof(union iucv_param)); if (flags & IUCV_IPRMDATA) { parm->dpl.ippathid = path->pathid; parm->dpl.ipflags1 = path->flags; /* priority message */ parm->dpl.iptrgcls = msg->class; parm->dpl.ipsrccls = srccls; parm->dpl.ipmsgtag = msg->tag; parm->dpl.ipbfadr2 = (u32)(addr_t) answer; parm->dpl.ipbfln2f = (u32) asize; memcpy(parm->dpl.iprmmsg, buffer, 8); } else { parm->db.ippathid = path->pathid; parm->db.ipflags1 = path->flags; /* priority message */ parm->db.iptrgcls = msg->class; parm->db.ipsrccls = srccls; parm->db.ipmsgtag = msg->tag; parm->db.ipbfadr1 = (u32)(addr_t) buffer; parm->db.ipbfln1f = (u32) size; parm->db.ipbfadr2 = (u32)(addr_t) answer; parm->db.ipbfln2f = (u32) asize; } rc = iucv_call_b2f0(IUCV_SEND, parm); if (!rc) msg->id = parm->db.ipmsgid; out: local_bh_enable(); return rc; } EXPORT_SYMBOL(iucv_message_send2way); struct iucv_path_pending { u16 ippathid; u8 ipflags1; u8 iptype; u16 ipmsglim; u16 res1; u8 ipvmid[8]; u8 ipuser[16]; u32 res3; u8 ippollfg; u8 res4[3]; } __packed; /** * iucv_path_pending * @data: Pointer to external interrupt buffer * * Process connection pending work item. Called from tasklet while holding * iucv_table_lock. */ static void iucv_path_pending(struct iucv_irq_data *data) { struct iucv_path_pending *ipp = (void *) data; struct iucv_handler *handler; struct iucv_path *path; char *error; BUG_ON(iucv_path_table[ipp->ippathid]); /* New pathid, handler found. Create a new path struct. */ error = iucv_error_no_memory; path = iucv_path_alloc(ipp->ipmsglim, ipp->ipflags1, GFP_ATOMIC); if (!path) goto out_sever; path->pathid = ipp->ippathid; iucv_path_table[path->pathid] = path; EBCASC(ipp->ipvmid, 8); /* Call registered handler until one is found that wants the path. */ list_for_each_entry(handler, &iucv_handler_list, list) { if (!handler->path_pending) continue; /* * Add path to handler to allow a call to iucv_path_sever * inside the path_pending function. If the handler returns * an error remove the path from the handler again. */ list_add(&path->list, &handler->paths); path->handler = handler; if (!handler->path_pending(path, ipp->ipvmid, ipp->ipuser)) return; list_del(&path->list); path->handler = NULL; } /* No handler wanted the path. */ iucv_path_table[path->pathid] = NULL; iucv_path_free(path); error = iucv_error_no_listener; out_sever: iucv_sever_pathid(ipp->ippathid, error); } struct iucv_path_complete { u16 ippathid; u8 ipflags1; u8 iptype; u16 ipmsglim; u16 res1; u8 res2[8]; u8 ipuser[16]; u32 res3; u8 ippollfg; u8 res4[3]; } __packed; /** * iucv_path_complete * @data: Pointer to external interrupt buffer * * Process connection complete work item. Called from tasklet while holding * iucv_table_lock. */ static void iucv_path_complete(struct iucv_irq_data *data) { struct iucv_path_complete *ipc = (void *) data; struct iucv_path *path = iucv_path_table[ipc->ippathid]; if (path) path->flags = ipc->ipflags1; if (path && path->handler && path->handler->path_complete) path->handler->path_complete(path, ipc->ipuser); } struct iucv_path_severed { u16 ippathid; u8 res1; u8 iptype; u32 res2; u8 res3[8]; u8 ipuser[16]; u32 res4; u8 ippollfg; u8 res5[3]; } __packed; /** * iucv_path_severed * @data: Pointer to external interrupt buffer * * Process connection severed work item. Called from tasklet while holding * iucv_table_lock. */ static void iucv_path_severed(struct iucv_irq_data *data) { struct iucv_path_severed *ips = (void *) data; struct iucv_path *path = iucv_path_table[ips->ippathid]; if (!path || !path->handler) /* Already severed */ return; if (path->handler->path_severed) path->handler->path_severed(path, ips->ipuser); else { iucv_sever_pathid(path->pathid, NULL); iucv_path_table[path->pathid] = NULL; list_del(&path->list); iucv_path_free(path); } } struct iucv_path_quiesced { u16 ippathid; u8 res1; u8 iptype; u32 res2; u8 res3[8]; u8 ipuser[16]; u32 res4; u8 ippollfg; u8 res5[3]; } __packed; /** * iucv_path_quiesced * @data: Pointer to external interrupt buffer * * Process connection quiesced work item. Called from tasklet while holding * iucv_table_lock. */ static void iucv_path_quiesced(struct iucv_irq_data *data) { struct iucv_path_quiesced *ipq = (void *) data; struct iucv_path *path = iucv_path_table[ipq->ippathid]; if (path && path->handler && path->handler->path_quiesced) path->handler->path_quiesced(path, ipq->ipuser); } struct iucv_path_resumed { u16 ippathid; u8 res1; u8 iptype; u32 res2; u8 res3[8]; u8 ipuser[16]; u32 res4; u8 ippollfg; u8 res5[3]; } __packed; /** * iucv_path_resumed * @data: Pointer to external interrupt buffer * * Process connection resumed work item. Called from tasklet while holding * iucv_table_lock. */ static void iucv_path_resumed(struct iucv_irq_data *data) { struct iucv_path_resumed *ipr = (void *) data; struct iucv_path *path = iucv_path_table[ipr->ippathid]; if (path && path->handler && path->handler->path_resumed) path->handler->path_resumed(path, ipr->ipuser); } struct iucv_message_complete { u16 ippathid; u8 ipflags1; u8 iptype; u32 ipmsgid; u32 ipaudit; u8 iprmmsg[8]; u32 ipsrccls; u32 ipmsgtag; u32 res; u32 ipbfln2f; u8 ippollfg; u8 res2[3]; } __packed; /** * iucv_message_complete * @data: Pointer to external interrupt buffer * * Process message complete work item. Called from tasklet while holding * iucv_table_lock. */ static void iucv_message_complete(struct iucv_irq_data *data) { struct iucv_message_complete *imc = (void *) data; struct iucv_path *path = iucv_path_table[imc->ippathid]; struct iucv_message msg; if (path && path->handler && path->handler->message_complete) { msg.flags = imc->ipflags1; msg.id = imc->ipmsgid; msg.audit = imc->ipaudit; memcpy(msg.rmmsg, imc->iprmmsg, 8); msg.class = imc->ipsrccls; msg.tag = imc->ipmsgtag; msg.length = imc->ipbfln2f; path->handler->message_complete(path, &msg); } } struct iucv_message_pending { u16 ippathid; u8 ipflags1; u8 iptype; u32 ipmsgid; u32 iptrgcls; struct { union { u32 iprmmsg1_u32; u8 iprmmsg1[4]; } ln1msg1; union { u32 ipbfln1f; u8 iprmmsg2[4]; } ln1msg2; } rmmsg; u32 res1[3]; u32 ipbfln2f; u8 ippollfg; u8 res2[3]; } __packed; /** * iucv_message_pending * @data: Pointer to external interrupt buffer * * Process message pending work item. Called from tasklet while holding * iucv_table_lock. */ static void iucv_message_pending(struct iucv_irq_data *data) { struct iucv_message_pending *imp = (void *) data; struct iucv_path *path = iucv_path_table[imp->ippathid]; struct iucv_message msg; if (path && path->handler && path->handler->message_pending) { msg.flags = imp->ipflags1; msg.id = imp->ipmsgid; msg.class = imp->iptrgcls; if (imp->ipflags1 & IUCV_IPRMDATA) { memcpy(msg.rmmsg, &imp->rmmsg, 8); msg.length = 8; } else msg.length = imp->rmmsg.ln1msg2.ipbfln1f; msg.reply_size = imp->ipbfln2f; path->handler->message_pending(path, &msg); } } /* * iucv_tasklet_fn: * * This tasklet loops over the queue of irq buffers created by * iucv_external_interrupt, calls the appropriate action handler * and then frees the buffer. */ static void iucv_tasklet_fn(unsigned long ignored) { typedef void iucv_irq_fn(struct iucv_irq_data *); static iucv_irq_fn *irq_fn[] = { [0x02] = iucv_path_complete, [0x03] = iucv_path_severed, [0x04] = iucv_path_quiesced, [0x05] = iucv_path_resumed, [0x06] = iucv_message_complete, [0x07] = iucv_message_complete, [0x08] = iucv_message_pending, [0x09] = iucv_message_pending, }; LIST_HEAD(task_queue); struct iucv_irq_list *p, *n; /* Serialize tasklet, iucv_path_sever and iucv_path_connect. */ if (!spin_trylock(&iucv_table_lock)) { tasklet_schedule(&iucv_tasklet); return; } iucv_active_cpu = smp_processor_id(); spin_lock_irq(&iucv_queue_lock); list_splice_init(&iucv_task_queue, &task_queue); spin_unlock_irq(&iucv_queue_lock); list_for_each_entry_safe(p, n, &task_queue, list) { list_del_init(&p->list); irq_fn[p->data.iptype](&p->data); kfree(p); } iucv_active_cpu = -1; spin_unlock(&iucv_table_lock); } /* * iucv_work_fn: * * This work function loops over the queue of path pending irq blocks * created by iucv_external_interrupt, calls the appropriate action * handler and then frees the buffer. */ static void iucv_work_fn(struct work_struct *work) { LIST_HEAD(work_queue); struct iucv_irq_list *p, *n; /* Serialize tasklet, iucv_path_sever and iucv_path_connect. */ spin_lock_bh(&iucv_table_lock); iucv_active_cpu = smp_processor_id(); spin_lock_irq(&iucv_queue_lock); list_splice_init(&iucv_work_queue, &work_queue); spin_unlock_irq(&iucv_queue_lock); iucv_cleanup_queue(); list_for_each_entry_safe(p, n, &work_queue, list) { list_del_init(&p->list); iucv_path_pending(&p->data); kfree(p); } iucv_active_cpu = -1; spin_unlock_bh(&iucv_table_lock); } /* * iucv_external_interrupt * * Handles external interrupts coming in from CP. * Places the interrupt buffer on a queue and schedules iucv_tasklet_fn(). */ static void iucv_external_interrupt(struct ext_code ext_code, unsigned int param32, unsigned long param64) { struct iucv_irq_data *p; struct iucv_irq_list *work; inc_irq_stat(IRQEXT_IUC); p = iucv_irq_data[smp_processor_id()]; if (p->ippathid >= iucv_max_pathid) { WARN_ON(p->ippathid >= iucv_max_pathid); iucv_sever_pathid(p->ippathid, iucv_error_no_listener); return; } BUG_ON(p->iptype < 0x01 || p->iptype > 0x09); work = kmalloc(sizeof(struct iucv_irq_list), GFP_ATOMIC); if (!work) { pr_warn("iucv_external_interrupt: out of memory\n"); return; } memcpy(&work->data, p, sizeof(work->data)); spin_lock(&iucv_queue_lock); if (p->iptype == 0x01) { /* Path pending interrupt. */ list_add_tail(&work->list, &iucv_work_queue); schedule_work(&iucv_work); } else { /* The other interrupts. */ list_add_tail(&work->list, &iucv_task_queue); tasklet_schedule(&iucv_tasklet); } spin_unlock(&iucv_queue_lock); } struct iucv_interface iucv_if = { .message_receive = iucv_message_receive, .__message_receive = __iucv_message_receive, .message_reply = iucv_message_reply, .message_reject = iucv_message_reject, .message_send = iucv_message_send, .__message_send = __iucv_message_send, .message_send2way = iucv_message_send2way, .message_purge = iucv_message_purge, .path_accept = iucv_path_accept, .path_connect = iucv_path_connect, .path_quiesce = iucv_path_quiesce, .path_resume = iucv_path_resume, .path_sever = iucv_path_sever, .iucv_register = iucv_register, .iucv_unregister = iucv_unregister, .bus = NULL, .root = NULL, }; EXPORT_SYMBOL(iucv_if); static enum cpuhp_state iucv_online; /** * iucv_init * * Allocates and initializes various data structures. */ static int __init iucv_init(void) { int rc; if (!MACHINE_IS_VM) { rc = -EPROTONOSUPPORT; goto out; } ctl_set_bit(0, 1); rc = iucv_query_maxconn(); if (rc) goto out_ctl; rc = register_external_irq(EXT_IRQ_IUCV, iucv_external_interrupt); if (rc) goto out_ctl; iucv_root = root_device_register("iucv"); if (IS_ERR(iucv_root)) { rc = PTR_ERR(iucv_root); goto out_int; } rc = cpuhp_setup_state(CPUHP_NET_IUCV_PREPARE, "net/iucv:prepare", iucv_cpu_prepare, iucv_cpu_dead); if (rc) goto out_dev; rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "net/iucv:online", iucv_cpu_online, iucv_cpu_down_prep); if (rc < 0) goto out_prep; iucv_online = rc; rc = register_reboot_notifier(&iucv_reboot_notifier); if (rc) goto out_remove_hp; ASCEBC(iucv_error_no_listener, 16); ASCEBC(iucv_error_no_memory, 16); ASCEBC(iucv_error_pathid, 16); iucv_available = 1; rc = bus_register(&iucv_bus); if (rc) goto out_reboot; iucv_if.root = iucv_root; iucv_if.bus = &iucv_bus; return 0; out_reboot: unregister_reboot_notifier(&iucv_reboot_notifier); out_remove_hp: cpuhp_remove_state(iucv_online); out_prep: cpuhp_remove_state(CPUHP_NET_IUCV_PREPARE); out_dev: root_device_unregister(iucv_root); out_int: unregister_external_irq(EXT_IRQ_IUCV, iucv_external_interrupt); out_ctl: ctl_clear_bit(0, 1); out: return rc; } /** * iucv_exit * * Frees everything allocated from iucv_init. */ static void __exit iucv_exit(void) { struct iucv_irq_list *p, *n; spin_lock_irq(&iucv_queue_lock); list_for_each_entry_safe(p, n, &iucv_task_queue, list) kfree(p); list_for_each_entry_safe(p, n, &iucv_work_queue, list) kfree(p); spin_unlock_irq(&iucv_queue_lock); unregister_reboot_notifier(&iucv_reboot_notifier); cpuhp_remove_state_nocalls(iucv_online); cpuhp_remove_state(CPUHP_NET_IUCV_PREPARE); root_device_unregister(iucv_root); bus_unregister(&iucv_bus); unregister_external_irq(EXT_IRQ_IUCV, iucv_external_interrupt); } subsys_initcall(iucv_init); module_exit(iucv_exit); MODULE_AUTHOR("(C) 2001 IBM Corp. by Fritz Elfert ([email protected])"); MODULE_DESCRIPTION("Linux for S/390 IUCV lowlevel driver"); MODULE_LICENSE("GPL");
linux-master
net/iucv/iucv.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/spmi.h> /* * SPMI register addr */ #define SPMI_CHANNEL_OFFSET 0x0300 #define SPMI_SLAVE_OFFSET 0x20 #define SPMI_APB_SPMI_CMD_BASE_ADDR 0x0100 #define SPMI_APB_SPMI_WDATA0_BASE_ADDR 0x0104 #define SPMI_APB_SPMI_WDATA1_BASE_ADDR 0x0108 #define SPMI_APB_SPMI_WDATA2_BASE_ADDR 0x010c #define SPMI_APB_SPMI_WDATA3_BASE_ADDR 0x0110 #define SPMI_APB_SPMI_STATUS_BASE_ADDR 0x0200 #define SPMI_APB_SPMI_RDATA0_BASE_ADDR 0x0204 #define SPMI_APB_SPMI_RDATA1_BASE_ADDR 0x0208 #define SPMI_APB_SPMI_RDATA2_BASE_ADDR 0x020c #define SPMI_APB_SPMI_RDATA3_BASE_ADDR 0x0210 #define SPMI_PER_DATAREG_BYTE 4 /* * SPMI cmd register */ #define SPMI_APB_SPMI_CMD_EN BIT(31) #define SPMI_APB_SPMI_CMD_TYPE_OFFSET 24 #define SPMI_APB_SPMI_CMD_LENGTH_OFFSET 20 #define SPMI_APB_SPMI_CMD_SLAVEID_OFFSET 16 #define SPMI_APB_SPMI_CMD_ADDR_OFFSET 0 /* Command Opcodes */ enum spmi_controller_cmd_op_code { SPMI_CMD_REG_ZERO_WRITE = 0, SPMI_CMD_REG_WRITE = 1, SPMI_CMD_REG_READ = 2, SPMI_CMD_EXT_REG_WRITE = 3, SPMI_CMD_EXT_REG_READ = 4, SPMI_CMD_EXT_REG_WRITE_L = 5, SPMI_CMD_EXT_REG_READ_L = 6, SPMI_CMD_REG_RESET = 7, SPMI_CMD_REG_SLEEP = 8, SPMI_CMD_REG_SHUTDOWN = 9, SPMI_CMD_REG_WAKEUP = 10, }; /* * SPMI status register */ #define SPMI_APB_TRANS_DONE BIT(0) #define SPMI_APB_TRANS_FAIL BIT(2) /* Command register fields */ #define SPMI_CONTROLLER_CMD_MAX_BYTE_COUNT 16 /* Maximum number of support PMIC peripherals */ #define SPMI_CONTROLLER_TIMEOUT_US 1000 #define SPMI_CONTROLLER_MAX_TRANS_BYTES 16 struct spmi_controller_dev { struct spmi_controller *controller; struct device *dev; void __iomem *base; spinlock_t lock; u32 channel; }; static int spmi_controller_wait_for_done(struct device *dev, struct spmi_controller_dev *ctrl_dev, void __iomem *base, u8 sid, u16 addr) { u32 timeout = SPMI_CONTROLLER_TIMEOUT_US; u32 status, offset; offset = SPMI_APB_SPMI_STATUS_BASE_ADDR; offset += SPMI_CHANNEL_OFFSET * ctrl_dev->channel + SPMI_SLAVE_OFFSET * sid; do { status = readl(base + offset); if (status & SPMI_APB_TRANS_DONE) { if (status & SPMI_APB_TRANS_FAIL) { dev_err(dev, "%s: transaction failed (0x%x)\n", __func__, status); return -EIO; } dev_dbg(dev, "%s: status 0x%x\n", __func__, status); return 0; } udelay(1); } while (timeout--); dev_err(dev, "%s: timeout, status 0x%x\n", __func__, status); return -ETIMEDOUT; } static int spmi_read_cmd(struct spmi_controller *ctrl, u8 opc, u8 slave_id, u16 slave_addr, u8 *__buf, size_t bc) { struct spmi_controller_dev *spmi_controller = dev_get_drvdata(&ctrl->dev); u32 chnl_ofst = SPMI_CHANNEL_OFFSET * spmi_controller->channel; unsigned long flags; u8 *buf = __buf; u32 cmd, data; int rc; u8 op_code, i; if (bc > SPMI_CONTROLLER_MAX_TRANS_BYTES) { dev_err(&ctrl->dev, "spmi_controller supports 1..%d bytes per trans, but:%zu requested\n", SPMI_CONTROLLER_MAX_TRANS_BYTES, bc); return -EINVAL; } switch (opc) { case SPMI_CMD_READ: op_code = SPMI_CMD_REG_READ; break; case SPMI_CMD_EXT_READ: op_code = SPMI_CMD_EXT_REG_READ; break; case SPMI_CMD_EXT_READL: op_code = SPMI_CMD_EXT_REG_READ_L; break; default: dev_err(&ctrl->dev, "invalid read cmd 0x%x\n", opc); return -EINVAL; } cmd = SPMI_APB_SPMI_CMD_EN | (op_code << SPMI_APB_SPMI_CMD_TYPE_OFFSET) | ((bc - 1) << SPMI_APB_SPMI_CMD_LENGTH_OFFSET) | ((slave_id & 0xf) << SPMI_APB_SPMI_CMD_SLAVEID_OFFSET) | /* slvid */ ((slave_addr & 0xffff) << SPMI_APB_SPMI_CMD_ADDR_OFFSET); /* slave_addr */ spin_lock_irqsave(&spmi_controller->lock, flags); writel(cmd, spmi_controller->base + chnl_ofst + SPMI_APB_SPMI_CMD_BASE_ADDR); rc = spmi_controller_wait_for_done(&ctrl->dev, spmi_controller, spmi_controller->base, slave_id, slave_addr); if (rc) goto done; for (i = 0; bc > i * SPMI_PER_DATAREG_BYTE; i++) { data = readl(spmi_controller->base + chnl_ofst + SPMI_SLAVE_OFFSET * slave_id + SPMI_APB_SPMI_RDATA0_BASE_ADDR + i * SPMI_PER_DATAREG_BYTE); data = be32_to_cpu((__be32 __force)data); if ((bc - i * SPMI_PER_DATAREG_BYTE) >> 2) { memcpy(buf, &data, sizeof(data)); buf += sizeof(data); } else { memcpy(buf, &data, bc % SPMI_PER_DATAREG_BYTE); buf += (bc % SPMI_PER_DATAREG_BYTE); } } done: spin_unlock_irqrestore(&spmi_controller->lock, flags); if (rc) dev_err(&ctrl->dev, "spmi read wait timeout op:0x%x slave_id:%d slave_addr:0x%x bc:%zu\n", opc, slave_id, slave_addr, bc + 1); else dev_dbg(&ctrl->dev, "%s: id:%d slave_addr:0x%x, read value: %*ph\n", __func__, slave_id, slave_addr, (int)bc, __buf); return rc; } static int spmi_write_cmd(struct spmi_controller *ctrl, u8 opc, u8 slave_id, u16 slave_addr, const u8 *__buf, size_t bc) { struct spmi_controller_dev *spmi_controller = dev_get_drvdata(&ctrl->dev); u32 chnl_ofst = SPMI_CHANNEL_OFFSET * spmi_controller->channel; const u8 *buf = __buf; unsigned long flags; u32 cmd, data; int rc; u8 op_code, i; if (bc > SPMI_CONTROLLER_MAX_TRANS_BYTES) { dev_err(&ctrl->dev, "spmi_controller supports 1..%d bytes per trans, but:%zu requested\n", SPMI_CONTROLLER_MAX_TRANS_BYTES, bc); return -EINVAL; } switch (opc) { case SPMI_CMD_WRITE: op_code = SPMI_CMD_REG_WRITE; break; case SPMI_CMD_EXT_WRITE: op_code = SPMI_CMD_EXT_REG_WRITE; break; case SPMI_CMD_EXT_WRITEL: op_code = SPMI_CMD_EXT_REG_WRITE_L; break; default: dev_err(&ctrl->dev, "invalid write cmd 0x%x\n", opc); return -EINVAL; } cmd = SPMI_APB_SPMI_CMD_EN | (op_code << SPMI_APB_SPMI_CMD_TYPE_OFFSET) | ((bc - 1) << SPMI_APB_SPMI_CMD_LENGTH_OFFSET) | ((slave_id & 0xf) << SPMI_APB_SPMI_CMD_SLAVEID_OFFSET) | ((slave_addr & 0xffff) << SPMI_APB_SPMI_CMD_ADDR_OFFSET); /* Write data to FIFOs */ spin_lock_irqsave(&spmi_controller->lock, flags); for (i = 0; bc > i * SPMI_PER_DATAREG_BYTE; i++) { data = 0; if ((bc - i * SPMI_PER_DATAREG_BYTE) >> 2) { memcpy(&data, buf, sizeof(data)); buf += sizeof(data); } else { memcpy(&data, buf, bc % SPMI_PER_DATAREG_BYTE); buf += (bc % SPMI_PER_DATAREG_BYTE); } writel((u32 __force)cpu_to_be32(data), spmi_controller->base + chnl_ofst + SPMI_APB_SPMI_WDATA0_BASE_ADDR + SPMI_PER_DATAREG_BYTE * i); } /* Start the transaction */ writel(cmd, spmi_controller->base + chnl_ofst + SPMI_APB_SPMI_CMD_BASE_ADDR); rc = spmi_controller_wait_for_done(&ctrl->dev, spmi_controller, spmi_controller->base, slave_id, slave_addr); spin_unlock_irqrestore(&spmi_controller->lock, flags); if (rc) dev_err(&ctrl->dev, "spmi write wait timeout op:0x%x slave_id:%d slave_addr:0x%x bc:%zu\n", opc, slave_id, slave_addr, bc); else dev_dbg(&ctrl->dev, "%s: id:%d slave_addr:0x%x, wrote value: %*ph\n", __func__, slave_id, slave_addr, (int)bc, __buf); return rc; } static int spmi_controller_probe(struct platform_device *pdev) { struct spmi_controller_dev *spmi_controller; struct spmi_controller *ctrl; struct resource *iores; int ret; ctrl = spmi_controller_alloc(&pdev->dev, sizeof(*spmi_controller)); if (!ctrl) { dev_err(&pdev->dev, "can not allocate spmi_controller data\n"); return -ENOMEM; } spmi_controller = spmi_controller_get_drvdata(ctrl); spmi_controller->controller = ctrl; iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!iores) { dev_err(&pdev->dev, "can not get resource!\n"); ret = -EINVAL; goto err_put_controller; } spmi_controller->base = devm_ioremap(&pdev->dev, iores->start, resource_size(iores)); if (!spmi_controller->base) { dev_err(&pdev->dev, "can not remap base addr!\n"); ret = -EADDRNOTAVAIL; goto err_put_controller; } ret = of_property_read_u32(pdev->dev.of_node, "hisilicon,spmi-channel", &spmi_controller->channel); if (ret) { dev_err(&pdev->dev, "can not get channel\n"); ret = -ENODEV; goto err_put_controller; } platform_set_drvdata(pdev, spmi_controller); dev_set_drvdata(&ctrl->dev, spmi_controller); spin_lock_init(&spmi_controller->lock); ctrl->nr = spmi_controller->channel; ctrl->dev.parent = pdev->dev.parent; ctrl->dev.of_node = of_node_get(pdev->dev.of_node); /* Callbacks */ ctrl->read_cmd = spmi_read_cmd; ctrl->write_cmd = spmi_write_cmd; ret = spmi_controller_add(ctrl); if (ret) { dev_err(&pdev->dev, "spmi_controller_add failed with error %d!\n", ret); goto err_put_controller; } return 0; err_put_controller: spmi_controller_put(ctrl); return ret; } static void spmi_del_controller(struct platform_device *pdev) { struct spmi_controller *ctrl = platform_get_drvdata(pdev); spmi_controller_remove(ctrl); spmi_controller_put(ctrl); } static const struct of_device_id spmi_controller_match_table[] = { { .compatible = "hisilicon,kirin970-spmi-controller", }, {} }; MODULE_DEVICE_TABLE(of, spmi_controller_match_table); static struct platform_driver spmi_controller_driver = { .probe = spmi_controller_probe, .remove_new = spmi_del_controller, .driver = { .name = "hisi_spmi_controller", .of_match_table = spmi_controller_match_table, }, }; static int __init spmi_controller_init(void) { return platform_driver_register(&spmi_controller_driver); } postcore_initcall(spmi_controller_init); static void __exit spmi_controller_exit(void) { platform_driver_unregister(&spmi_controller_driver); } module_exit(spmi_controller_exit); MODULE_LICENSE("GPL v2"); MODULE_VERSION("1.0"); MODULE_ALIAS("platform:spmi_controller");
linux-master
drivers/spmi/hisi-spmi-controller.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2015, 2017, 2021, The Linux Foundation. All rights reserved. */ #include <linux/bitmap.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irqchip/chained_irq.h> #include <linux/irqdomain.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spmi.h> /* PMIC Arbiter configuration registers */ #define PMIC_ARB_VERSION 0x0000 #define PMIC_ARB_VERSION_V2_MIN 0x20010000 #define PMIC_ARB_VERSION_V3_MIN 0x30000000 #define PMIC_ARB_VERSION_V5_MIN 0x50000000 #define PMIC_ARB_VERSION_V7_MIN 0x70000000 #define PMIC_ARB_INT_EN 0x0004 #define PMIC_ARB_FEATURES 0x0004 #define PMIC_ARB_FEATURES_PERIPH_MASK GENMASK(10, 0) #define PMIC_ARB_FEATURES1 0x0008 /* PMIC Arbiter channel registers offsets */ #define PMIC_ARB_CMD 0x00 #define PMIC_ARB_CONFIG 0x04 #define PMIC_ARB_STATUS 0x08 #define PMIC_ARB_WDATA0 0x10 #define PMIC_ARB_WDATA1 0x14 #define PMIC_ARB_RDATA0 0x18 #define PMIC_ARB_RDATA1 0x1C /* Mapping Table */ #define SPMI_MAPPING_TABLE_REG(N) (0x0B00 + (4 * (N))) #define SPMI_MAPPING_BIT_INDEX(X) (((X) >> 18) & 0xF) #define SPMI_MAPPING_BIT_IS_0_FLAG(X) (((X) >> 17) & 0x1) #define SPMI_MAPPING_BIT_IS_0_RESULT(X) (((X) >> 9) & 0xFF) #define SPMI_MAPPING_BIT_IS_1_FLAG(X) (((X) >> 8) & 0x1) #define SPMI_MAPPING_BIT_IS_1_RESULT(X) (((X) >> 0) & 0xFF) #define SPMI_MAPPING_TABLE_TREE_DEPTH 16 /* Maximum of 16-bits */ #define PMIC_ARB_MAX_PPID BIT(12) /* PPID is 12bit */ #define PMIC_ARB_APID_VALID BIT(15) #define PMIC_ARB_CHAN_IS_IRQ_OWNER(reg) ((reg) & BIT(24)) #define INVALID_EE 0xFF /* Ownership Table */ #define SPMI_OWNERSHIP_PERIPH2OWNER(X) ((X) & 0x7) /* Channel Status fields */ enum pmic_arb_chnl_status { PMIC_ARB_STATUS_DONE = BIT(0), PMIC_ARB_STATUS_FAILURE = BIT(1), PMIC_ARB_STATUS_DENIED = BIT(2), PMIC_ARB_STATUS_DROPPED = BIT(3), }; /* Command register fields */ #define PMIC_ARB_CMD_MAX_BYTE_COUNT 8 /* Command Opcodes */ enum pmic_arb_cmd_op_code { PMIC_ARB_OP_EXT_WRITEL = 0, PMIC_ARB_OP_EXT_READL = 1, PMIC_ARB_OP_EXT_WRITE = 2, PMIC_ARB_OP_RESET = 3, PMIC_ARB_OP_SLEEP = 4, PMIC_ARB_OP_SHUTDOWN = 5, PMIC_ARB_OP_WAKEUP = 6, PMIC_ARB_OP_AUTHENTICATE = 7, PMIC_ARB_OP_MSTR_READ = 8, PMIC_ARB_OP_MSTR_WRITE = 9, PMIC_ARB_OP_EXT_READ = 13, PMIC_ARB_OP_WRITE = 14, PMIC_ARB_OP_READ = 15, PMIC_ARB_OP_ZERO_WRITE = 16, }; /* * PMIC arbiter version 5 uses different register offsets for read/write vs * observer channels. */ enum pmic_arb_channel { PMIC_ARB_CHANNEL_RW, PMIC_ARB_CHANNEL_OBS, }; /* Maximum number of support PMIC peripherals */ #define PMIC_ARB_MAX_PERIPHS 512 #define PMIC_ARB_MAX_PERIPHS_V7 1024 #define PMIC_ARB_TIMEOUT_US 1000 #define PMIC_ARB_MAX_TRANS_BYTES (8) #define PMIC_ARB_APID_MASK 0xFF #define PMIC_ARB_PPID_MASK 0xFFF /* interrupt enable bit */ #define SPMI_PIC_ACC_ENABLE_BIT BIT(0) #define spec_to_hwirq(slave_id, periph_id, irq_id, apid) \ ((((slave_id) & 0xF) << 28) | \ (((periph_id) & 0xFF) << 20) | \ (((irq_id) & 0x7) << 16) | \ (((apid) & 0x3FF) << 0)) #define hwirq_to_sid(hwirq) (((hwirq) >> 28) & 0xF) #define hwirq_to_per(hwirq) (((hwirq) >> 20) & 0xFF) #define hwirq_to_irq(hwirq) (((hwirq) >> 16) & 0x7) #define hwirq_to_apid(hwirq) (((hwirq) >> 0) & 0x3FF) struct pmic_arb_ver_ops; struct apid_data { u16 ppid; u8 write_ee; u8 irq_ee; }; /** * struct spmi_pmic_arb - SPMI PMIC Arbiter object * * @rd_base: on v1 "core", on v2 "observer" register base off DT. * @wr_base: on v1 "core", on v2 "chnls" register base off DT. * @intr: address of the SPMI interrupt control registers. * @cnfg: address of the PMIC Arbiter configuration registers. * @lock: lock to synchronize accesses. * @channel: execution environment channel to use for accesses. * @irq: PMIC ARB interrupt. * @ee: the current Execution Environment * @bus_instance: on v7: 0 = primary SPMI bus, 1 = secondary SPMI bus * @min_apid: minimum APID (used for bounding IRQ search) * @max_apid: maximum APID * @base_apid: on v7: minimum APID associated with the particular SPMI * bus instance * @apid_count: on v5 and v7: number of APIDs associated with the * particular SPMI bus instance * @mapping_table: in-memory copy of PPID -> APID mapping table. * @domain: irq domain object for PMIC IRQ domain * @spmic: SPMI controller object * @ver_ops: version dependent operations. * @ppid_to_apid: in-memory copy of PPID -> APID mapping table. * @last_apid: Highest value APID in use * @apid_data: Table of data for all APIDs * @max_periphs: Number of elements in apid_data[] */ struct spmi_pmic_arb { void __iomem *rd_base; void __iomem *wr_base; void __iomem *intr; void __iomem *cnfg; void __iomem *core; resource_size_t core_size; raw_spinlock_t lock; u8 channel; int irq; u8 ee; u32 bus_instance; u16 min_apid; u16 max_apid; u16 base_apid; int apid_count; u32 *mapping_table; DECLARE_BITMAP(mapping_table_valid, PMIC_ARB_MAX_PERIPHS); struct irq_domain *domain; struct spmi_controller *spmic; const struct pmic_arb_ver_ops *ver_ops; u16 *ppid_to_apid; u16 last_apid; struct apid_data *apid_data; int max_periphs; }; /** * struct pmic_arb_ver_ops - version dependent functionality. * * @ver_str: version string. * @ppid_to_apid: finds the apid for a given ppid. * @non_data_cmd: on v1 issues an spmi non-data command. * on v2 no HW support, returns -EOPNOTSUPP. * @offset: on v1 offset of per-ee channel. * on v2 offset of per-ee and per-ppid channel. * @fmt_cmd: formats a GENI/SPMI command. * @owner_acc_status: on v1 address of PMIC_ARB_SPMI_PIC_OWNERm_ACC_STATUSn * on v2 address of SPMI_PIC_OWNERm_ACC_STATUSn. * @acc_enable: on v1 address of PMIC_ARB_SPMI_PIC_ACC_ENABLEn * on v2 address of SPMI_PIC_ACC_ENABLEn. * @irq_status: on v1 address of PMIC_ARB_SPMI_PIC_IRQ_STATUSn * on v2 address of SPMI_PIC_IRQ_STATUSn. * @irq_clear: on v1 address of PMIC_ARB_SPMI_PIC_IRQ_CLEARn * on v2 address of SPMI_PIC_IRQ_CLEARn. * @apid_map_offset: offset of PMIC_ARB_REG_CHNLn * @apid_owner: on v2 and later address of SPMI_PERIPHn_2OWNER_TABLE_REG */ struct pmic_arb_ver_ops { const char *ver_str; int (*ppid_to_apid)(struct spmi_pmic_arb *pmic_arb, u16 ppid); /* spmi commands (read_cmd, write_cmd, cmd) functionality */ int (*offset)(struct spmi_pmic_arb *pmic_arb, u8 sid, u16 addr, enum pmic_arb_channel ch_type); u32 (*fmt_cmd)(u8 opc, u8 sid, u16 addr, u8 bc); int (*non_data_cmd)(struct spmi_controller *ctrl, u8 opc, u8 sid); /* Interrupts controller functionality (offset of PIC registers) */ void __iomem *(*owner_acc_status)(struct spmi_pmic_arb *pmic_arb, u8 m, u16 n); void __iomem *(*acc_enable)(struct spmi_pmic_arb *pmic_arb, u16 n); void __iomem *(*irq_status)(struct spmi_pmic_arb *pmic_arb, u16 n); void __iomem *(*irq_clear)(struct spmi_pmic_arb *pmic_arb, u16 n); u32 (*apid_map_offset)(u16 n); void __iomem *(*apid_owner)(struct spmi_pmic_arb *pmic_arb, u16 n); }; static inline void pmic_arb_base_write(struct spmi_pmic_arb *pmic_arb, u32 offset, u32 val) { writel_relaxed(val, pmic_arb->wr_base + offset); } static inline void pmic_arb_set_rd_cmd(struct spmi_pmic_arb *pmic_arb, u32 offset, u32 val) { writel_relaxed(val, pmic_arb->rd_base + offset); } /** * pmic_arb_read_data: reads pmic-arb's register and copy 1..4 bytes to buf * @bc: byte count -1. range: 0..3 * @reg: register's address * @buf: output parameter, length must be bc + 1 */ static void pmic_arb_read_data(struct spmi_pmic_arb *pmic_arb, u8 *buf, u32 reg, u8 bc) { u32 data = __raw_readl(pmic_arb->rd_base + reg); memcpy(buf, &data, (bc & 3) + 1); } /** * pmic_arb_write_data: write 1..4 bytes from buf to pmic-arb's register * @bc: byte-count -1. range: 0..3. * @reg: register's address. * @buf: buffer to write. length must be bc + 1. */ static void pmic_arb_write_data(struct spmi_pmic_arb *pmic_arb, const u8 *buf, u32 reg, u8 bc) { u32 data = 0; memcpy(&data, buf, (bc & 3) + 1); __raw_writel(data, pmic_arb->wr_base + reg); } static int pmic_arb_wait_for_done(struct spmi_controller *ctrl, void __iomem *base, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl); u32 status = 0; u32 timeout = PMIC_ARB_TIMEOUT_US; u32 offset; int rc; rc = pmic_arb->ver_ops->offset(pmic_arb, sid, addr, ch_type); if (rc < 0) return rc; offset = rc; offset += PMIC_ARB_STATUS; while (timeout--) { status = readl_relaxed(base + offset); if (status & PMIC_ARB_STATUS_DONE) { if (status & PMIC_ARB_STATUS_DENIED) { dev_err(&ctrl->dev, "%s: %#x %#x: transaction denied (%#x)\n", __func__, sid, addr, status); return -EPERM; } if (status & PMIC_ARB_STATUS_FAILURE) { dev_err(&ctrl->dev, "%s: %#x %#x: transaction failed (%#x)\n", __func__, sid, addr, status); WARN_ON(1); return -EIO; } if (status & PMIC_ARB_STATUS_DROPPED) { dev_err(&ctrl->dev, "%s: %#x %#x: transaction dropped (%#x)\n", __func__, sid, addr, status); return -EIO; } return 0; } udelay(1); } dev_err(&ctrl->dev, "%s: %#x %#x: timeout, status %#x\n", __func__, sid, addr, status); return -ETIMEDOUT; } static int pmic_arb_non_data_cmd_v1(struct spmi_controller *ctrl, u8 opc, u8 sid) { struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl); unsigned long flags; u32 cmd; int rc; u32 offset; rc = pmic_arb->ver_ops->offset(pmic_arb, sid, 0, PMIC_ARB_CHANNEL_RW); if (rc < 0) return rc; offset = rc; cmd = ((opc | 0x40) << 27) | ((sid & 0xf) << 20); raw_spin_lock_irqsave(&pmic_arb->lock, flags); pmic_arb_base_write(pmic_arb, offset + PMIC_ARB_CMD, cmd); rc = pmic_arb_wait_for_done(ctrl, pmic_arb->wr_base, sid, 0, PMIC_ARB_CHANNEL_RW); raw_spin_unlock_irqrestore(&pmic_arb->lock, flags); return rc; } static int pmic_arb_non_data_cmd_v2(struct spmi_controller *ctrl, u8 opc, u8 sid) { return -EOPNOTSUPP; } /* Non-data command */ static int pmic_arb_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid) { struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl); dev_dbg(&ctrl->dev, "cmd op:0x%x sid:%d\n", opc, sid); /* Check for valid non-data command */ if (opc < SPMI_CMD_RESET || opc > SPMI_CMD_WAKEUP) return -EINVAL; return pmic_arb->ver_ops->non_data_cmd(ctrl, opc, sid); } static int pmic_arb_fmt_read_cmd(struct spmi_pmic_arb *pmic_arb, u8 opc, u8 sid, u16 addr, size_t len, u32 *cmd, u32 *offset) { u8 bc = len - 1; int rc; rc = pmic_arb->ver_ops->offset(pmic_arb, sid, addr, PMIC_ARB_CHANNEL_OBS); if (rc < 0) return rc; *offset = rc; if (bc >= PMIC_ARB_MAX_TRANS_BYTES) { dev_err(&pmic_arb->spmic->dev, "pmic-arb supports 1..%d bytes per trans, but:%zu requested", PMIC_ARB_MAX_TRANS_BYTES, len); return -EINVAL; } /* Check the opcode */ if (opc >= 0x60 && opc <= 0x7F) opc = PMIC_ARB_OP_READ; else if (opc >= 0x20 && opc <= 0x2F) opc = PMIC_ARB_OP_EXT_READ; else if (opc >= 0x38 && opc <= 0x3F) opc = PMIC_ARB_OP_EXT_READL; else return -EINVAL; *cmd = pmic_arb->ver_ops->fmt_cmd(opc, sid, addr, bc); return 0; } static int pmic_arb_read_cmd_unlocked(struct spmi_controller *ctrl, u32 cmd, u32 offset, u8 sid, u16 addr, u8 *buf, size_t len) { struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl); u8 bc = len - 1; int rc; pmic_arb_set_rd_cmd(pmic_arb, offset + PMIC_ARB_CMD, cmd); rc = pmic_arb_wait_for_done(ctrl, pmic_arb->rd_base, sid, addr, PMIC_ARB_CHANNEL_OBS); if (rc) return rc; pmic_arb_read_data(pmic_arb, buf, offset + PMIC_ARB_RDATA0, min_t(u8, bc, 3)); if (bc > 3) pmic_arb_read_data(pmic_arb, buf + 4, offset + PMIC_ARB_RDATA1, bc - 4); return 0; } static int pmic_arb_read_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid, u16 addr, u8 *buf, size_t len) { struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl); unsigned long flags; u32 cmd, offset; int rc; rc = pmic_arb_fmt_read_cmd(pmic_arb, opc, sid, addr, len, &cmd, &offset); if (rc) return rc; raw_spin_lock_irqsave(&pmic_arb->lock, flags); rc = pmic_arb_read_cmd_unlocked(ctrl, cmd, offset, sid, addr, buf, len); raw_spin_unlock_irqrestore(&pmic_arb->lock, flags); return rc; } static int pmic_arb_fmt_write_cmd(struct spmi_pmic_arb *pmic_arb, u8 opc, u8 sid, u16 addr, size_t len, u32 *cmd, u32 *offset) { u8 bc = len - 1; int rc; rc = pmic_arb->ver_ops->offset(pmic_arb, sid, addr, PMIC_ARB_CHANNEL_RW); if (rc < 0) return rc; *offset = rc; if (bc >= PMIC_ARB_MAX_TRANS_BYTES) { dev_err(&pmic_arb->spmic->dev, "pmic-arb supports 1..%d bytes per trans, but:%zu requested", PMIC_ARB_MAX_TRANS_BYTES, len); return -EINVAL; } /* Check the opcode */ if (opc >= 0x40 && opc <= 0x5F) opc = PMIC_ARB_OP_WRITE; else if (opc <= 0x0F) opc = PMIC_ARB_OP_EXT_WRITE; else if (opc >= 0x30 && opc <= 0x37) opc = PMIC_ARB_OP_EXT_WRITEL; else if (opc >= 0x80) opc = PMIC_ARB_OP_ZERO_WRITE; else return -EINVAL; *cmd = pmic_arb->ver_ops->fmt_cmd(opc, sid, addr, bc); return 0; } static int pmic_arb_write_cmd_unlocked(struct spmi_controller *ctrl, u32 cmd, u32 offset, u8 sid, u16 addr, const u8 *buf, size_t len) { struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl); u8 bc = len - 1; /* Write data to FIFOs */ pmic_arb_write_data(pmic_arb, buf, offset + PMIC_ARB_WDATA0, min_t(u8, bc, 3)); if (bc > 3) pmic_arb_write_data(pmic_arb, buf + 4, offset + PMIC_ARB_WDATA1, bc - 4); /* Start the transaction */ pmic_arb_base_write(pmic_arb, offset + PMIC_ARB_CMD, cmd); return pmic_arb_wait_for_done(ctrl, pmic_arb->wr_base, sid, addr, PMIC_ARB_CHANNEL_RW); } static int pmic_arb_write_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid, u16 addr, const u8 *buf, size_t len) { struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl); unsigned long flags; u32 cmd, offset; int rc; rc = pmic_arb_fmt_write_cmd(pmic_arb, opc, sid, addr, len, &cmd, &offset); if (rc) return rc; raw_spin_lock_irqsave(&pmic_arb->lock, flags); rc = pmic_arb_write_cmd_unlocked(ctrl, cmd, offset, sid, addr, buf, len); raw_spin_unlock_irqrestore(&pmic_arb->lock, flags); return rc; } static int pmic_arb_masked_write(struct spmi_controller *ctrl, u8 sid, u16 addr, const u8 *buf, const u8 *mask, size_t len) { struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl); u32 read_cmd, read_offset, write_cmd, write_offset; u8 temp[PMIC_ARB_MAX_TRANS_BYTES]; unsigned long flags; int rc, i; rc = pmic_arb_fmt_read_cmd(pmic_arb, SPMI_CMD_EXT_READL, sid, addr, len, &read_cmd, &read_offset); if (rc) return rc; rc = pmic_arb_fmt_write_cmd(pmic_arb, SPMI_CMD_EXT_WRITEL, sid, addr, len, &write_cmd, &write_offset); if (rc) return rc; raw_spin_lock_irqsave(&pmic_arb->lock, flags); rc = pmic_arb_read_cmd_unlocked(ctrl, read_cmd, read_offset, sid, addr, temp, len); if (rc) goto done; for (i = 0; i < len; i++) temp[i] = (temp[i] & ~mask[i]) | (buf[i] & mask[i]); rc = pmic_arb_write_cmd_unlocked(ctrl, write_cmd, write_offset, sid, addr, temp, len); done: raw_spin_unlock_irqrestore(&pmic_arb->lock, flags); return rc; } enum qpnpint_regs { QPNPINT_REG_RT_STS = 0x10, QPNPINT_REG_SET_TYPE = 0x11, QPNPINT_REG_POLARITY_HIGH = 0x12, QPNPINT_REG_POLARITY_LOW = 0x13, QPNPINT_REG_LATCHED_CLR = 0x14, QPNPINT_REG_EN_SET = 0x15, QPNPINT_REG_EN_CLR = 0x16, QPNPINT_REG_LATCHED_STS = 0x18, }; struct spmi_pmic_arb_qpnpint_type { u8 type; /* 1 -> edge */ u8 polarity_high; u8 polarity_low; } __packed; /* Simplified accessor functions for irqchip callbacks */ static void qpnpint_spmi_write(struct irq_data *d, u8 reg, void *buf, size_t len) { struct spmi_pmic_arb *pmic_arb = irq_data_get_irq_chip_data(d); u8 sid = hwirq_to_sid(d->hwirq); u8 per = hwirq_to_per(d->hwirq); if (pmic_arb_write_cmd(pmic_arb->spmic, SPMI_CMD_EXT_WRITEL, sid, (per << 8) + reg, buf, len)) dev_err_ratelimited(&pmic_arb->spmic->dev, "failed irqchip transaction on %x\n", d->irq); } static void qpnpint_spmi_read(struct irq_data *d, u8 reg, void *buf, size_t len) { struct spmi_pmic_arb *pmic_arb = irq_data_get_irq_chip_data(d); u8 sid = hwirq_to_sid(d->hwirq); u8 per = hwirq_to_per(d->hwirq); if (pmic_arb_read_cmd(pmic_arb->spmic, SPMI_CMD_EXT_READL, sid, (per << 8) + reg, buf, len)) dev_err_ratelimited(&pmic_arb->spmic->dev, "failed irqchip transaction on %x\n", d->irq); } static int qpnpint_spmi_masked_write(struct irq_data *d, u8 reg, const void *buf, const void *mask, size_t len) { struct spmi_pmic_arb *pmic_arb = irq_data_get_irq_chip_data(d); u8 sid = hwirq_to_sid(d->hwirq); u8 per = hwirq_to_per(d->hwirq); int rc; rc = pmic_arb_masked_write(pmic_arb->spmic, sid, (per << 8) + reg, buf, mask, len); if (rc) dev_err_ratelimited(&pmic_arb->spmic->dev, "failed irqchip transaction on %x rc=%d\n", d->irq, rc); return rc; } static void cleanup_irq(struct spmi_pmic_arb *pmic_arb, u16 apid, int id) { u16 ppid = pmic_arb->apid_data[apid].ppid; u8 sid = ppid >> 8; u8 per = ppid & 0xFF; u8 irq_mask = BIT(id); dev_err_ratelimited(&pmic_arb->spmic->dev, "%s apid=%d sid=0x%x per=0x%x irq=%d\n", __func__, apid, sid, per, id); writel_relaxed(irq_mask, pmic_arb->ver_ops->irq_clear(pmic_arb, apid)); } static int periph_interrupt(struct spmi_pmic_arb *pmic_arb, u16 apid) { unsigned int irq; u32 status, id; int handled = 0; u8 sid = (pmic_arb->apid_data[apid].ppid >> 8) & 0xF; u8 per = pmic_arb->apid_data[apid].ppid & 0xFF; status = readl_relaxed(pmic_arb->ver_ops->irq_status(pmic_arb, apid)); while (status) { id = ffs(status) - 1; status &= ~BIT(id); irq = irq_find_mapping(pmic_arb->domain, spec_to_hwirq(sid, per, id, apid)); if (irq == 0) { cleanup_irq(pmic_arb, apid, id); continue; } generic_handle_irq(irq); handled++; } return handled; } static void pmic_arb_chained_irq(struct irq_desc *desc) { struct spmi_pmic_arb *pmic_arb = irq_desc_get_handler_data(desc); const struct pmic_arb_ver_ops *ver_ops = pmic_arb->ver_ops; struct irq_chip *chip = irq_desc_get_chip(desc); int first = pmic_arb->min_apid; int last = pmic_arb->max_apid; /* * acc_offset will be non-zero for the secondary SPMI bus instance on * v7 controllers. */ int acc_offset = pmic_arb->base_apid >> 5; u8 ee = pmic_arb->ee; u32 status, enable, handled = 0; int i, id, apid; /* status based dispatch */ bool acc_valid = false; u32 irq_status = 0; chained_irq_enter(chip, desc); for (i = first >> 5; i <= last >> 5; ++i) { status = readl_relaxed(ver_ops->owner_acc_status(pmic_arb, ee, i - acc_offset)); if (status) acc_valid = true; while (status) { id = ffs(status) - 1; status &= ~BIT(id); apid = id + i * 32; if (apid < first || apid > last) { WARN_ONCE(true, "spurious spmi irq received for apid=%d\n", apid); continue; } enable = readl_relaxed( ver_ops->acc_enable(pmic_arb, apid)); if (enable & SPMI_PIC_ACC_ENABLE_BIT) if (periph_interrupt(pmic_arb, apid) != 0) handled++; } } /* ACC_STATUS is empty but IRQ fired check IRQ_STATUS */ if (!acc_valid) { for (i = first; i <= last; i++) { /* skip if APPS is not irq owner */ if (pmic_arb->apid_data[i].irq_ee != pmic_arb->ee) continue; irq_status = readl_relaxed( ver_ops->irq_status(pmic_arb, i)); if (irq_status) { enable = readl_relaxed( ver_ops->acc_enable(pmic_arb, i)); if (enable & SPMI_PIC_ACC_ENABLE_BIT) { dev_dbg(&pmic_arb->spmic->dev, "Dispatching IRQ for apid=%d status=%x\n", i, irq_status); if (periph_interrupt(pmic_arb, i) != 0) handled++; } } } } if (handled == 0) handle_bad_irq(desc); chained_irq_exit(chip, desc); } static void qpnpint_irq_ack(struct irq_data *d) { struct spmi_pmic_arb *pmic_arb = irq_data_get_irq_chip_data(d); u8 irq = hwirq_to_irq(d->hwirq); u16 apid = hwirq_to_apid(d->hwirq); u8 data; writel_relaxed(BIT(irq), pmic_arb->ver_ops->irq_clear(pmic_arb, apid)); data = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &data, 1); } static void qpnpint_irq_mask(struct irq_data *d) { u8 irq = hwirq_to_irq(d->hwirq); u8 data = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &data, 1); } static void qpnpint_irq_unmask(struct irq_data *d) { struct spmi_pmic_arb *pmic_arb = irq_data_get_irq_chip_data(d); const struct pmic_arb_ver_ops *ver_ops = pmic_arb->ver_ops; u8 irq = hwirq_to_irq(d->hwirq); u16 apid = hwirq_to_apid(d->hwirq); u8 buf[2]; writel_relaxed(SPMI_PIC_ACC_ENABLE_BIT, ver_ops->acc_enable(pmic_arb, apid)); qpnpint_spmi_read(d, QPNPINT_REG_EN_SET, &buf[0], 1); if (!(buf[0] & BIT(irq))) { /* * Since the interrupt is currently disabled, write to both the * LATCHED_CLR and EN_SET registers so that a spurious interrupt * cannot be triggered when the interrupt is enabled */ buf[0] = BIT(irq); buf[1] = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 2); } } static int qpnpint_irq_set_type(struct irq_data *d, unsigned int flow_type) { struct spmi_pmic_arb_qpnpint_type type = {0}; struct spmi_pmic_arb_qpnpint_type mask; irq_flow_handler_t flow_handler; u8 irq_bit = BIT(hwirq_to_irq(d->hwirq)); int rc; if (flow_type & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)) { type.type = irq_bit; if (flow_type & IRQF_TRIGGER_RISING) type.polarity_high = irq_bit; if (flow_type & IRQF_TRIGGER_FALLING) type.polarity_low = irq_bit; flow_handler = handle_edge_irq; } else { if ((flow_type & (IRQF_TRIGGER_HIGH)) && (flow_type & (IRQF_TRIGGER_LOW))) return -EINVAL; if (flow_type & IRQF_TRIGGER_HIGH) type.polarity_high = irq_bit; else type.polarity_low = irq_bit; flow_handler = handle_level_irq; } mask.type = irq_bit; mask.polarity_high = irq_bit; mask.polarity_low = irq_bit; rc = qpnpint_spmi_masked_write(d, QPNPINT_REG_SET_TYPE, &type, &mask, sizeof(type)); irq_set_handler_locked(d, flow_handler); return rc; } static int qpnpint_irq_set_wake(struct irq_data *d, unsigned int on) { struct spmi_pmic_arb *pmic_arb = irq_data_get_irq_chip_data(d); return irq_set_irq_wake(pmic_arb->irq, on); } static int qpnpint_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state) { u8 irq = hwirq_to_irq(d->hwirq); u8 status = 0; if (which != IRQCHIP_STATE_LINE_LEVEL) return -EINVAL; qpnpint_spmi_read(d, QPNPINT_REG_RT_STS, &status, 1); *state = !!(status & BIT(irq)); return 0; } static int qpnpint_irq_domain_activate(struct irq_domain *domain, struct irq_data *d, bool reserve) { struct spmi_pmic_arb *pmic_arb = irq_data_get_irq_chip_data(d); u16 periph = hwirq_to_per(d->hwirq); u16 apid = hwirq_to_apid(d->hwirq); u16 sid = hwirq_to_sid(d->hwirq); u16 irq = hwirq_to_irq(d->hwirq); u8 buf; if (pmic_arb->apid_data[apid].irq_ee != pmic_arb->ee) { dev_err(&pmic_arb->spmic->dev, "failed to xlate sid = %#x, periph = %#x, irq = %u: ee=%u but owner=%u\n", sid, periph, irq, pmic_arb->ee, pmic_arb->apid_data[apid].irq_ee); return -ENODEV; } buf = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &buf, 1); qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 1); return 0; } static struct irq_chip pmic_arb_irqchip = { .name = "pmic_arb", .irq_ack = qpnpint_irq_ack, .irq_mask = qpnpint_irq_mask, .irq_unmask = qpnpint_irq_unmask, .irq_set_type = qpnpint_irq_set_type, .irq_set_wake = qpnpint_irq_set_wake, .irq_get_irqchip_state = qpnpint_get_irqchip_state, .flags = IRQCHIP_MASK_ON_SUSPEND, }; static int qpnpint_irq_domain_translate(struct irq_domain *d, struct irq_fwspec *fwspec, unsigned long *out_hwirq, unsigned int *out_type) { struct spmi_pmic_arb *pmic_arb = d->host_data; u32 *intspec = fwspec->param; u16 apid, ppid; int rc; dev_dbg(&pmic_arb->spmic->dev, "intspec[0] 0x%1x intspec[1] 0x%02x intspec[2] 0x%02x\n", intspec[0], intspec[1], intspec[2]); if (irq_domain_get_of_node(d) != pmic_arb->spmic->dev.of_node) return -EINVAL; if (fwspec->param_count != 4) return -EINVAL; if (intspec[0] > 0xF || intspec[1] > 0xFF || intspec[2] > 0x7) return -EINVAL; ppid = intspec[0] << 8 | intspec[1]; rc = pmic_arb->ver_ops->ppid_to_apid(pmic_arb, ppid); if (rc < 0) { dev_err(&pmic_arb->spmic->dev, "failed to xlate sid = %#x, periph = %#x, irq = %u rc = %d\n", intspec[0], intspec[1], intspec[2], rc); return rc; } apid = rc; /* Keep track of {max,min}_apid for bounding search during interrupt */ if (apid > pmic_arb->max_apid) pmic_arb->max_apid = apid; if (apid < pmic_arb->min_apid) pmic_arb->min_apid = apid; *out_hwirq = spec_to_hwirq(intspec[0], intspec[1], intspec[2], apid); *out_type = intspec[3] & IRQ_TYPE_SENSE_MASK; dev_dbg(&pmic_arb->spmic->dev, "out_hwirq = %lu\n", *out_hwirq); return 0; } static struct lock_class_key qpnpint_irq_lock_class, qpnpint_irq_request_class; static void qpnpint_irq_domain_map(struct spmi_pmic_arb *pmic_arb, struct irq_domain *domain, unsigned int virq, irq_hw_number_t hwirq, unsigned int type) { irq_flow_handler_t handler; dev_dbg(&pmic_arb->spmic->dev, "virq = %u, hwirq = %lu, type = %u\n", virq, hwirq, type); if (type & IRQ_TYPE_EDGE_BOTH) handler = handle_edge_irq; else handler = handle_level_irq; irq_set_lockdep_class(virq, &qpnpint_irq_lock_class, &qpnpint_irq_request_class); irq_domain_set_info(domain, virq, hwirq, &pmic_arb_irqchip, pmic_arb, handler, NULL, NULL); } static int qpnpint_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *data) { struct spmi_pmic_arb *pmic_arb = domain->host_data; struct irq_fwspec *fwspec = data; irq_hw_number_t hwirq; unsigned int type; int ret, i; ret = qpnpint_irq_domain_translate(domain, fwspec, &hwirq, &type); if (ret) return ret; for (i = 0; i < nr_irqs; i++) qpnpint_irq_domain_map(pmic_arb, domain, virq + i, hwirq + i, type); return 0; } static int pmic_arb_ppid_to_apid_v1(struct spmi_pmic_arb *pmic_arb, u16 ppid) { u32 *mapping_table = pmic_arb->mapping_table; int index = 0, i; u16 apid_valid; u16 apid; u32 data; apid_valid = pmic_arb->ppid_to_apid[ppid]; if (apid_valid & PMIC_ARB_APID_VALID) { apid = apid_valid & ~PMIC_ARB_APID_VALID; return apid; } for (i = 0; i < SPMI_MAPPING_TABLE_TREE_DEPTH; ++i) { if (!test_and_set_bit(index, pmic_arb->mapping_table_valid)) mapping_table[index] = readl_relaxed(pmic_arb->cnfg + SPMI_MAPPING_TABLE_REG(index)); data = mapping_table[index]; if (ppid & BIT(SPMI_MAPPING_BIT_INDEX(data))) { if (SPMI_MAPPING_BIT_IS_1_FLAG(data)) { index = SPMI_MAPPING_BIT_IS_1_RESULT(data); } else { apid = SPMI_MAPPING_BIT_IS_1_RESULT(data); pmic_arb->ppid_to_apid[ppid] = apid | PMIC_ARB_APID_VALID; pmic_arb->apid_data[apid].ppid = ppid; return apid; } } else { if (SPMI_MAPPING_BIT_IS_0_FLAG(data)) { index = SPMI_MAPPING_BIT_IS_0_RESULT(data); } else { apid = SPMI_MAPPING_BIT_IS_0_RESULT(data); pmic_arb->ppid_to_apid[ppid] = apid | PMIC_ARB_APID_VALID; pmic_arb->apid_data[apid].ppid = ppid; return apid; } } } return -ENODEV; } /* v1 offset per ee */ static int pmic_arb_offset_v1(struct spmi_pmic_arb *pmic_arb, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { return 0x800 + 0x80 * pmic_arb->channel; } static u16 pmic_arb_find_apid(struct spmi_pmic_arb *pmic_arb, u16 ppid) { struct apid_data *apidd = &pmic_arb->apid_data[pmic_arb->last_apid]; u32 regval, offset; u16 id, apid; for (apid = pmic_arb->last_apid; ; apid++, apidd++) { offset = pmic_arb->ver_ops->apid_map_offset(apid); if (offset >= pmic_arb->core_size) break; regval = readl_relaxed(pmic_arb->ver_ops->apid_owner(pmic_arb, apid)); apidd->irq_ee = SPMI_OWNERSHIP_PERIPH2OWNER(regval); apidd->write_ee = apidd->irq_ee; regval = readl_relaxed(pmic_arb->core + offset); if (!regval) continue; id = (regval >> 8) & PMIC_ARB_PPID_MASK; pmic_arb->ppid_to_apid[id] = apid | PMIC_ARB_APID_VALID; apidd->ppid = id; if (id == ppid) { apid |= PMIC_ARB_APID_VALID; break; } } pmic_arb->last_apid = apid & ~PMIC_ARB_APID_VALID; return apid; } static int pmic_arb_ppid_to_apid_v2(struct spmi_pmic_arb *pmic_arb, u16 ppid) { u16 apid_valid; apid_valid = pmic_arb->ppid_to_apid[ppid]; if (!(apid_valid & PMIC_ARB_APID_VALID)) apid_valid = pmic_arb_find_apid(pmic_arb, ppid); if (!(apid_valid & PMIC_ARB_APID_VALID)) return -ENODEV; return apid_valid & ~PMIC_ARB_APID_VALID; } static int pmic_arb_read_apid_map_v5(struct spmi_pmic_arb *pmic_arb) { struct apid_data *apidd; struct apid_data *prev_apidd; u16 i, apid, ppid, apid_max; bool valid, is_irq_ee; u32 regval, offset; /* * In order to allow multiple EEs to write to a single PPID in arbiter * version 5 and 7, there is more than one APID mapped to each PPID. * The owner field for each of these mappings specifies the EE which is * allowed to write to the APID. The owner of the last (highest) APID * which has the IRQ owner bit set for a given PPID will receive * interrupts from the PPID. * * In arbiter version 7, the APID numbering space is divided between * the primary bus (0) and secondary bus (1) such that: * APID = 0 to N-1 are assigned to the primary bus * APID = N to N+M-1 are assigned to the secondary bus * where N = number of APIDs supported by the primary bus and * M = number of APIDs supported by the secondary bus */ apidd = &pmic_arb->apid_data[pmic_arb->base_apid]; apid_max = pmic_arb->base_apid + pmic_arb->apid_count; for (i = pmic_arb->base_apid; i < apid_max; i++, apidd++) { offset = pmic_arb->ver_ops->apid_map_offset(i); if (offset >= pmic_arb->core_size) break; regval = readl_relaxed(pmic_arb->core + offset); if (!regval) continue; ppid = (regval >> 8) & PMIC_ARB_PPID_MASK; is_irq_ee = PMIC_ARB_CHAN_IS_IRQ_OWNER(regval); regval = readl_relaxed(pmic_arb->ver_ops->apid_owner(pmic_arb, i)); apidd->write_ee = SPMI_OWNERSHIP_PERIPH2OWNER(regval); apidd->irq_ee = is_irq_ee ? apidd->write_ee : INVALID_EE; valid = pmic_arb->ppid_to_apid[ppid] & PMIC_ARB_APID_VALID; apid = pmic_arb->ppid_to_apid[ppid] & ~PMIC_ARB_APID_VALID; prev_apidd = &pmic_arb->apid_data[apid]; if (!valid || apidd->write_ee == pmic_arb->ee) { /* First PPID mapping or one for this EE */ pmic_arb->ppid_to_apid[ppid] = i | PMIC_ARB_APID_VALID; } else if (valid && is_irq_ee && prev_apidd->write_ee == pmic_arb->ee) { /* * Duplicate PPID mapping after the one for this EE; * override the irq owner */ prev_apidd->irq_ee = apidd->irq_ee; } apidd->ppid = ppid; pmic_arb->last_apid = i; } /* Dump the mapping table for debug purposes. */ dev_dbg(&pmic_arb->spmic->dev, "PPID APID Write-EE IRQ-EE\n"); for (ppid = 0; ppid < PMIC_ARB_MAX_PPID; ppid++) { apid = pmic_arb->ppid_to_apid[ppid]; if (apid & PMIC_ARB_APID_VALID) { apid &= ~PMIC_ARB_APID_VALID; apidd = &pmic_arb->apid_data[apid]; dev_dbg(&pmic_arb->spmic->dev, "%#03X %3u %2u %2u\n", ppid, apid, apidd->write_ee, apidd->irq_ee); } } return 0; } static int pmic_arb_ppid_to_apid_v5(struct spmi_pmic_arb *pmic_arb, u16 ppid) { if (!(pmic_arb->ppid_to_apid[ppid] & PMIC_ARB_APID_VALID)) return -ENODEV; return pmic_arb->ppid_to_apid[ppid] & ~PMIC_ARB_APID_VALID; } /* v2 offset per ppid and per ee */ static int pmic_arb_offset_v2(struct spmi_pmic_arb *pmic_arb, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { u16 apid; u16 ppid; int rc; ppid = sid << 8 | ((addr >> 8) & 0xFF); rc = pmic_arb_ppid_to_apid_v2(pmic_arb, ppid); if (rc < 0) return rc; apid = rc; return 0x1000 * pmic_arb->ee + 0x8000 * apid; } /* * v5 offset per ee and per apid for observer channels and per apid for * read/write channels. */ static int pmic_arb_offset_v5(struct spmi_pmic_arb *pmic_arb, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { u16 apid; int rc; u32 offset = 0; u16 ppid = (sid << 8) | (addr >> 8); rc = pmic_arb_ppid_to_apid_v5(pmic_arb, ppid); if (rc < 0) return rc; apid = rc; switch (ch_type) { case PMIC_ARB_CHANNEL_OBS: offset = 0x10000 * pmic_arb->ee + 0x80 * apid; break; case PMIC_ARB_CHANNEL_RW: if (pmic_arb->apid_data[apid].write_ee != pmic_arb->ee) { dev_err(&pmic_arb->spmic->dev, "disallowed SPMI write to sid=%u, addr=0x%04X\n", sid, addr); return -EPERM; } offset = 0x10000 * apid; break; } return offset; } /* * v7 offset per ee and per apid for observer channels and per apid for * read/write channels. */ static int pmic_arb_offset_v7(struct spmi_pmic_arb *pmic_arb, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { u16 apid; int rc; u32 offset = 0; u16 ppid = (sid << 8) | (addr >> 8); rc = pmic_arb->ver_ops->ppid_to_apid(pmic_arb, ppid); if (rc < 0) return rc; apid = rc; switch (ch_type) { case PMIC_ARB_CHANNEL_OBS: offset = 0x8000 * pmic_arb->ee + 0x20 * apid; break; case PMIC_ARB_CHANNEL_RW: if (pmic_arb->apid_data[apid].write_ee != pmic_arb->ee) { dev_err(&pmic_arb->spmic->dev, "disallowed SPMI write to sid=%u, addr=0x%04X\n", sid, addr); return -EPERM; } offset = 0x1000 * apid; break; } return offset; } static u32 pmic_arb_fmt_cmd_v1(u8 opc, u8 sid, u16 addr, u8 bc) { return (opc << 27) | ((sid & 0xf) << 20) | (addr << 4) | (bc & 0x7); } static u32 pmic_arb_fmt_cmd_v2(u8 opc, u8 sid, u16 addr, u8 bc) { return (opc << 27) | ((addr & 0xff) << 4) | (bc & 0x7); } static void __iomem * pmic_arb_owner_acc_status_v1(struct spmi_pmic_arb *pmic_arb, u8 m, u16 n) { return pmic_arb->intr + 0x20 * m + 0x4 * n; } static void __iomem * pmic_arb_owner_acc_status_v2(struct spmi_pmic_arb *pmic_arb, u8 m, u16 n) { return pmic_arb->intr + 0x100000 + 0x1000 * m + 0x4 * n; } static void __iomem * pmic_arb_owner_acc_status_v3(struct spmi_pmic_arb *pmic_arb, u8 m, u16 n) { return pmic_arb->intr + 0x200000 + 0x1000 * m + 0x4 * n; } static void __iomem * pmic_arb_owner_acc_status_v5(struct spmi_pmic_arb *pmic_arb, u8 m, u16 n) { return pmic_arb->intr + 0x10000 * m + 0x4 * n; } static void __iomem * pmic_arb_owner_acc_status_v7(struct spmi_pmic_arb *pmic_arb, u8 m, u16 n) { return pmic_arb->intr + 0x1000 * m + 0x4 * n; } static void __iomem * pmic_arb_acc_enable_v1(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->intr + 0x200 + 0x4 * n; } static void __iomem * pmic_arb_acc_enable_v2(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->intr + 0x1000 * n; } static void __iomem * pmic_arb_acc_enable_v5(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->wr_base + 0x100 + 0x10000 * n; } static void __iomem * pmic_arb_acc_enable_v7(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->wr_base + 0x100 + 0x1000 * n; } static void __iomem * pmic_arb_irq_status_v1(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->intr + 0x600 + 0x4 * n; } static void __iomem * pmic_arb_irq_status_v2(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->intr + 0x4 + 0x1000 * n; } static void __iomem * pmic_arb_irq_status_v5(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->wr_base + 0x104 + 0x10000 * n; } static void __iomem * pmic_arb_irq_status_v7(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->wr_base + 0x104 + 0x1000 * n; } static void __iomem * pmic_arb_irq_clear_v1(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->intr + 0xA00 + 0x4 * n; } static void __iomem * pmic_arb_irq_clear_v2(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->intr + 0x8 + 0x1000 * n; } static void __iomem * pmic_arb_irq_clear_v5(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->wr_base + 0x108 + 0x10000 * n; } static void __iomem * pmic_arb_irq_clear_v7(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->wr_base + 0x108 + 0x1000 * n; } static u32 pmic_arb_apid_map_offset_v2(u16 n) { return 0x800 + 0x4 * n; } static u32 pmic_arb_apid_map_offset_v5(u16 n) { return 0x900 + 0x4 * n; } static u32 pmic_arb_apid_map_offset_v7(u16 n) { return 0x2000 + 0x4 * n; } static void __iomem * pmic_arb_apid_owner_v2(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->cnfg + 0x700 + 0x4 * n; } /* * For arbiter version 7, APID ownership table registers have independent * numbering space for each SPMI bus instance, so each is indexed starting from * 0. */ static void __iomem * pmic_arb_apid_owner_v7(struct spmi_pmic_arb *pmic_arb, u16 n) { return pmic_arb->cnfg + 0x4 * (n - pmic_arb->base_apid); } static const struct pmic_arb_ver_ops pmic_arb_v1 = { .ver_str = "v1", .ppid_to_apid = pmic_arb_ppid_to_apid_v1, .non_data_cmd = pmic_arb_non_data_cmd_v1, .offset = pmic_arb_offset_v1, .fmt_cmd = pmic_arb_fmt_cmd_v1, .owner_acc_status = pmic_arb_owner_acc_status_v1, .acc_enable = pmic_arb_acc_enable_v1, .irq_status = pmic_arb_irq_status_v1, .irq_clear = pmic_arb_irq_clear_v1, .apid_map_offset = pmic_arb_apid_map_offset_v2, .apid_owner = pmic_arb_apid_owner_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v2 = { .ver_str = "v2", .ppid_to_apid = pmic_arb_ppid_to_apid_v2, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v2, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v2, .acc_enable = pmic_arb_acc_enable_v2, .irq_status = pmic_arb_irq_status_v2, .irq_clear = pmic_arb_irq_clear_v2, .apid_map_offset = pmic_arb_apid_map_offset_v2, .apid_owner = pmic_arb_apid_owner_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v3 = { .ver_str = "v3", .ppid_to_apid = pmic_arb_ppid_to_apid_v2, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v2, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v3, .acc_enable = pmic_arb_acc_enable_v2, .irq_status = pmic_arb_irq_status_v2, .irq_clear = pmic_arb_irq_clear_v2, .apid_map_offset = pmic_arb_apid_map_offset_v2, .apid_owner = pmic_arb_apid_owner_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v5 = { .ver_str = "v5", .ppid_to_apid = pmic_arb_ppid_to_apid_v5, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v5, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v5, .acc_enable = pmic_arb_acc_enable_v5, .irq_status = pmic_arb_irq_status_v5, .irq_clear = pmic_arb_irq_clear_v5, .apid_map_offset = pmic_arb_apid_map_offset_v5, .apid_owner = pmic_arb_apid_owner_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v7 = { .ver_str = "v7", .ppid_to_apid = pmic_arb_ppid_to_apid_v5, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v7, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v7, .acc_enable = pmic_arb_acc_enable_v7, .irq_status = pmic_arb_irq_status_v7, .irq_clear = pmic_arb_irq_clear_v7, .apid_map_offset = pmic_arb_apid_map_offset_v7, .apid_owner = pmic_arb_apid_owner_v7, }; static const struct irq_domain_ops pmic_arb_irq_domain_ops = { .activate = qpnpint_irq_domain_activate, .alloc = qpnpint_irq_domain_alloc, .free = irq_domain_free_irqs_common, .translate = qpnpint_irq_domain_translate, }; static int spmi_pmic_arb_probe(struct platform_device *pdev) { struct spmi_pmic_arb *pmic_arb; struct spmi_controller *ctrl; struct resource *res; void __iomem *core; u32 *mapping_table; u32 channel, ee, hw_ver; int err; ctrl = spmi_controller_alloc(&pdev->dev, sizeof(*pmic_arb)); if (!ctrl) return -ENOMEM; pmic_arb = spmi_controller_get_drvdata(ctrl); pmic_arb->spmic = ctrl; /* * Please don't replace this with devm_platform_ioremap_resource() or * devm_ioremap_resource(). These both result in a call to * devm_request_mem_region() which prevents multiple mappings of this * register address range. SoCs with PMIC arbiter v7 may define two * arbiter devices, for the two physical SPMI interfaces, which share * some register address ranges (i.e. "core", "obsrvr", and "chnls"). * Ensure that both devices probe successfully by calling devm_ioremap() * which does not result in a devm_request_mem_region() call. */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "core"); core = devm_ioremap(&ctrl->dev, res->start, resource_size(res)); if (IS_ERR(core)) { err = PTR_ERR(core); goto err_put_ctrl; } pmic_arb->core_size = resource_size(res); pmic_arb->ppid_to_apid = devm_kcalloc(&ctrl->dev, PMIC_ARB_MAX_PPID, sizeof(*pmic_arb->ppid_to_apid), GFP_KERNEL); if (!pmic_arb->ppid_to_apid) { err = -ENOMEM; goto err_put_ctrl; } hw_ver = readl_relaxed(core + PMIC_ARB_VERSION); if (hw_ver < PMIC_ARB_VERSION_V2_MIN) { pmic_arb->ver_ops = &pmic_arb_v1; pmic_arb->wr_base = core; pmic_arb->rd_base = core; } else { pmic_arb->core = core; if (hw_ver < PMIC_ARB_VERSION_V3_MIN) pmic_arb->ver_ops = &pmic_arb_v2; else if (hw_ver < PMIC_ARB_VERSION_V5_MIN) pmic_arb->ver_ops = &pmic_arb_v3; else if (hw_ver < PMIC_ARB_VERSION_V7_MIN) pmic_arb->ver_ops = &pmic_arb_v5; else pmic_arb->ver_ops = &pmic_arb_v7; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "obsrvr"); pmic_arb->rd_base = devm_ioremap(&ctrl->dev, res->start, resource_size(res)); if (IS_ERR(pmic_arb->rd_base)) { err = PTR_ERR(pmic_arb->rd_base); goto err_put_ctrl; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "chnls"); pmic_arb->wr_base = devm_ioremap(&ctrl->dev, res->start, resource_size(res)); if (IS_ERR(pmic_arb->wr_base)) { err = PTR_ERR(pmic_arb->wr_base); goto err_put_ctrl; } } pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS; if (hw_ver >= PMIC_ARB_VERSION_V7_MIN) { pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS_V7; /* Optional property for v7: */ of_property_read_u32(pdev->dev.of_node, "qcom,bus-id", &pmic_arb->bus_instance); if (pmic_arb->bus_instance > 1) { err = -EINVAL; dev_err(&pdev->dev, "invalid bus instance (%u) specified\n", pmic_arb->bus_instance); goto err_put_ctrl; } if (pmic_arb->bus_instance == 0) { pmic_arb->base_apid = 0; pmic_arb->apid_count = readl_relaxed(core + PMIC_ARB_FEATURES) & PMIC_ARB_FEATURES_PERIPH_MASK; } else { pmic_arb->base_apid = readl_relaxed(core + PMIC_ARB_FEATURES) & PMIC_ARB_FEATURES_PERIPH_MASK; pmic_arb->apid_count = readl_relaxed(core + PMIC_ARB_FEATURES1) & PMIC_ARB_FEATURES_PERIPH_MASK; } if (pmic_arb->base_apid + pmic_arb->apid_count > pmic_arb->max_periphs) { err = -EINVAL; dev_err(&pdev->dev, "Unsupported APID count %d detected\n", pmic_arb->base_apid + pmic_arb->apid_count); goto err_put_ctrl; } } else if (hw_ver >= PMIC_ARB_VERSION_V5_MIN) { pmic_arb->base_apid = 0; pmic_arb->apid_count = readl_relaxed(core + PMIC_ARB_FEATURES) & PMIC_ARB_FEATURES_PERIPH_MASK; if (pmic_arb->apid_count > pmic_arb->max_periphs) { err = -EINVAL; dev_err(&pdev->dev, "Unsupported APID count %d detected\n", pmic_arb->apid_count); goto err_put_ctrl; } } pmic_arb->apid_data = devm_kcalloc(&ctrl->dev, pmic_arb->max_periphs, sizeof(*pmic_arb->apid_data), GFP_KERNEL); if (!pmic_arb->apid_data) { err = -ENOMEM; goto err_put_ctrl; } dev_info(&ctrl->dev, "PMIC arbiter version %s (0x%x)\n", pmic_arb->ver_ops->ver_str, hw_ver); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "intr"); pmic_arb->intr = devm_ioremap_resource(&ctrl->dev, res); if (IS_ERR(pmic_arb->intr)) { err = PTR_ERR(pmic_arb->intr); goto err_put_ctrl; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cnfg"); pmic_arb->cnfg = devm_ioremap_resource(&ctrl->dev, res); if (IS_ERR(pmic_arb->cnfg)) { err = PTR_ERR(pmic_arb->cnfg); goto err_put_ctrl; } pmic_arb->irq = platform_get_irq_byname(pdev, "periph_irq"); if (pmic_arb->irq < 0) { err = pmic_arb->irq; goto err_put_ctrl; } err = of_property_read_u32(pdev->dev.of_node, "qcom,channel", &channel); if (err) { dev_err(&pdev->dev, "channel unspecified.\n"); goto err_put_ctrl; } if (channel > 5) { dev_err(&pdev->dev, "invalid channel (%u) specified.\n", channel); err = -EINVAL; goto err_put_ctrl; } pmic_arb->channel = channel; err = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &ee); if (err) { dev_err(&pdev->dev, "EE unspecified.\n"); goto err_put_ctrl; } if (ee > 5) { dev_err(&pdev->dev, "invalid EE (%u) specified\n", ee); err = -EINVAL; goto err_put_ctrl; } pmic_arb->ee = ee; mapping_table = devm_kcalloc(&ctrl->dev, pmic_arb->max_periphs, sizeof(*mapping_table), GFP_KERNEL); if (!mapping_table) { err = -ENOMEM; goto err_put_ctrl; } pmic_arb->mapping_table = mapping_table; /* Initialize max_apid/min_apid to the opposite bounds, during * the irq domain translation, we are sure to update these */ pmic_arb->max_apid = 0; pmic_arb->min_apid = pmic_arb->max_periphs - 1; platform_set_drvdata(pdev, ctrl); raw_spin_lock_init(&pmic_arb->lock); ctrl->cmd = pmic_arb_cmd; ctrl->read_cmd = pmic_arb_read_cmd; ctrl->write_cmd = pmic_arb_write_cmd; if (hw_ver >= PMIC_ARB_VERSION_V5_MIN) { err = pmic_arb_read_apid_map_v5(pmic_arb); if (err) { dev_err(&pdev->dev, "could not read APID->PPID mapping table, rc= %d\n", err); goto err_put_ctrl; } } dev_dbg(&pdev->dev, "adding irq domain\n"); pmic_arb->domain = irq_domain_add_tree(pdev->dev.of_node, &pmic_arb_irq_domain_ops, pmic_arb); if (!pmic_arb->domain) { dev_err(&pdev->dev, "unable to create irq_domain\n"); err = -ENOMEM; goto err_put_ctrl; } irq_set_chained_handler_and_data(pmic_arb->irq, pmic_arb_chained_irq, pmic_arb); err = spmi_controller_add(ctrl); if (err) goto err_domain_remove; return 0; err_domain_remove: irq_set_chained_handler_and_data(pmic_arb->irq, NULL, NULL); irq_domain_remove(pmic_arb->domain); err_put_ctrl: spmi_controller_put(ctrl); return err; } static void spmi_pmic_arb_remove(struct platform_device *pdev) { struct spmi_controller *ctrl = platform_get_drvdata(pdev); struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl); spmi_controller_remove(ctrl); irq_set_chained_handler_and_data(pmic_arb->irq, NULL, NULL); irq_domain_remove(pmic_arb->domain); spmi_controller_put(ctrl); } static const struct of_device_id spmi_pmic_arb_match_table[] = { { .compatible = "qcom,spmi-pmic-arb", }, {}, }; MODULE_DEVICE_TABLE(of, spmi_pmic_arb_match_table); static struct platform_driver spmi_pmic_arb_driver = { .probe = spmi_pmic_arb_probe, .remove_new = spmi_pmic_arb_remove, .driver = { .name = "spmi_pmic_arb", .of_match_table = spmi_pmic_arb_match_table, }, }; module_platform_driver(spmi_pmic_arb_driver); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:spmi_pmic_arb");
linux-master
drivers/spmi/spmi-pmic-arb.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/idr.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/spmi.h> #include <linux/pm_runtime.h> #include <dt-bindings/spmi/spmi.h> #define CREATE_TRACE_POINTS #include <trace/events/spmi.h> static bool is_registered; static DEFINE_IDA(ctrl_ida); static void spmi_dev_release(struct device *dev) { struct spmi_device *sdev = to_spmi_device(dev); kfree(sdev); } static const struct device_type spmi_dev_type = { .release = spmi_dev_release, }; static void spmi_ctrl_release(struct device *dev) { struct spmi_controller *ctrl = to_spmi_controller(dev); ida_free(&ctrl_ida, ctrl->nr); kfree(ctrl); } static const struct device_type spmi_ctrl_type = { .release = spmi_ctrl_release, }; static int spmi_device_match(struct device *dev, struct device_driver *drv) { if (of_driver_match_device(dev, drv)) return 1; if (drv->name) return strncmp(dev_name(dev), drv->name, SPMI_NAME_SIZE) == 0; return 0; } /** * spmi_device_add() - add a device previously constructed via spmi_device_alloc() * @sdev: spmi_device to be added */ int spmi_device_add(struct spmi_device *sdev) { struct spmi_controller *ctrl = sdev->ctrl; int err; dev_set_name(&sdev->dev, "%d-%02x", ctrl->nr, sdev->usid); err = device_add(&sdev->dev); if (err < 0) { dev_err(&sdev->dev, "Can't add %s, status %d\n", dev_name(&sdev->dev), err); goto err_device_add; } dev_dbg(&sdev->dev, "device %s registered\n", dev_name(&sdev->dev)); err_device_add: return err; } EXPORT_SYMBOL_GPL(spmi_device_add); /** * spmi_device_remove(): remove an SPMI device * @sdev: spmi_device to be removed */ void spmi_device_remove(struct spmi_device *sdev) { device_unregister(&sdev->dev); } EXPORT_SYMBOL_GPL(spmi_device_remove); static inline int spmi_cmd(struct spmi_controller *ctrl, u8 opcode, u8 sid) { int ret; if (!ctrl || !ctrl->cmd || ctrl->dev.type != &spmi_ctrl_type) return -EINVAL; ret = ctrl->cmd(ctrl, opcode, sid); trace_spmi_cmd(opcode, sid, ret); return ret; } static inline int spmi_read_cmd(struct spmi_controller *ctrl, u8 opcode, u8 sid, u16 addr, u8 *buf, size_t len) { int ret; if (!ctrl || !ctrl->read_cmd || ctrl->dev.type != &spmi_ctrl_type) return -EINVAL; trace_spmi_read_begin(opcode, sid, addr); ret = ctrl->read_cmd(ctrl, opcode, sid, addr, buf, len); trace_spmi_read_end(opcode, sid, addr, ret, len, buf); return ret; } static inline int spmi_write_cmd(struct spmi_controller *ctrl, u8 opcode, u8 sid, u16 addr, const u8 *buf, size_t len) { int ret; if (!ctrl || !ctrl->write_cmd || ctrl->dev.type != &spmi_ctrl_type) return -EINVAL; trace_spmi_write_begin(opcode, sid, addr, len, buf); ret = ctrl->write_cmd(ctrl, opcode, sid, addr, buf, len); trace_spmi_write_end(opcode, sid, addr, ret); return ret; } /** * spmi_register_read() - register read * @sdev: SPMI device. * @addr: slave register address (5-bit address). * @buf: buffer to be populated with data from the Slave. * * Reads 1 byte of data from a Slave device register. */ int spmi_register_read(struct spmi_device *sdev, u8 addr, u8 *buf) { /* 5-bit register address */ if (addr > 0x1F) return -EINVAL; return spmi_read_cmd(sdev->ctrl, SPMI_CMD_READ, sdev->usid, addr, buf, 1); } EXPORT_SYMBOL_GPL(spmi_register_read); /** * spmi_ext_register_read() - extended register read * @sdev: SPMI device. * @addr: slave register address (8-bit address). * @buf: buffer to be populated with data from the Slave. * @len: the request number of bytes to read (up to 16 bytes). * * Reads up to 16 bytes of data from the extended register space on a * Slave device. */ int spmi_ext_register_read(struct spmi_device *sdev, u8 addr, u8 *buf, size_t len) { /* 8-bit register address, up to 16 bytes */ if (len == 0 || len > 16) return -EINVAL; return spmi_read_cmd(sdev->ctrl, SPMI_CMD_EXT_READ, sdev->usid, addr, buf, len); } EXPORT_SYMBOL_GPL(spmi_ext_register_read); /** * spmi_ext_register_readl() - extended register read long * @sdev: SPMI device. * @addr: slave register address (16-bit address). * @buf: buffer to be populated with data from the Slave. * @len: the request number of bytes to read (up to 8 bytes). * * Reads up to 8 bytes of data from the extended register space on a * Slave device using 16-bit address. */ int spmi_ext_register_readl(struct spmi_device *sdev, u16 addr, u8 *buf, size_t len) { /* 16-bit register address, up to 8 bytes */ if (len == 0 || len > 8) return -EINVAL; return spmi_read_cmd(sdev->ctrl, SPMI_CMD_EXT_READL, sdev->usid, addr, buf, len); } EXPORT_SYMBOL_GPL(spmi_ext_register_readl); /** * spmi_register_write() - register write * @sdev: SPMI device * @addr: slave register address (5-bit address). * @data: buffer containing the data to be transferred to the Slave. * * Writes 1 byte of data to a Slave device register. */ int spmi_register_write(struct spmi_device *sdev, u8 addr, u8 data) { /* 5-bit register address */ if (addr > 0x1F) return -EINVAL; return spmi_write_cmd(sdev->ctrl, SPMI_CMD_WRITE, sdev->usid, addr, &data, 1); } EXPORT_SYMBOL_GPL(spmi_register_write); /** * spmi_register_zero_write() - register zero write * @sdev: SPMI device. * @data: the data to be written to register 0 (7-bits). * * Writes data to register 0 of the Slave device. */ int spmi_register_zero_write(struct spmi_device *sdev, u8 data) { return spmi_write_cmd(sdev->ctrl, SPMI_CMD_ZERO_WRITE, sdev->usid, 0, &data, 1); } EXPORT_SYMBOL_GPL(spmi_register_zero_write); /** * spmi_ext_register_write() - extended register write * @sdev: SPMI device. * @addr: slave register address (8-bit address). * @buf: buffer containing the data to be transferred to the Slave. * @len: the request number of bytes to read (up to 16 bytes). * * Writes up to 16 bytes of data to the extended register space of a * Slave device. */ int spmi_ext_register_write(struct spmi_device *sdev, u8 addr, const u8 *buf, size_t len) { /* 8-bit register address, up to 16 bytes */ if (len == 0 || len > 16) return -EINVAL; return spmi_write_cmd(sdev->ctrl, SPMI_CMD_EXT_WRITE, sdev->usid, addr, buf, len); } EXPORT_SYMBOL_GPL(spmi_ext_register_write); /** * spmi_ext_register_writel() - extended register write long * @sdev: SPMI device. * @addr: slave register address (16-bit address). * @buf: buffer containing the data to be transferred to the Slave. * @len: the request number of bytes to read (up to 8 bytes). * * Writes up to 8 bytes of data to the extended register space of a * Slave device using 16-bit address. */ int spmi_ext_register_writel(struct spmi_device *sdev, u16 addr, const u8 *buf, size_t len) { /* 4-bit Slave Identifier, 16-bit register address, up to 8 bytes */ if (len == 0 || len > 8) return -EINVAL; return spmi_write_cmd(sdev->ctrl, SPMI_CMD_EXT_WRITEL, sdev->usid, addr, buf, len); } EXPORT_SYMBOL_GPL(spmi_ext_register_writel); /** * spmi_command_reset() - sends RESET command to the specified slave * @sdev: SPMI device. * * The Reset command initializes the Slave and forces all registers to * their reset values. The Slave shall enter the STARTUP state after * receiving a Reset command. */ int spmi_command_reset(struct spmi_device *sdev) { return spmi_cmd(sdev->ctrl, SPMI_CMD_RESET, sdev->usid); } EXPORT_SYMBOL_GPL(spmi_command_reset); /** * spmi_command_sleep() - sends SLEEP command to the specified SPMI device * @sdev: SPMI device. * * The Sleep command causes the Slave to enter the user defined SLEEP state. */ int spmi_command_sleep(struct spmi_device *sdev) { return spmi_cmd(sdev->ctrl, SPMI_CMD_SLEEP, sdev->usid); } EXPORT_SYMBOL_GPL(spmi_command_sleep); /** * spmi_command_wakeup() - sends WAKEUP command to the specified SPMI device * @sdev: SPMI device. * * The Wakeup command causes the Slave to move from the SLEEP state to * the ACTIVE state. */ int spmi_command_wakeup(struct spmi_device *sdev) { return spmi_cmd(sdev->ctrl, SPMI_CMD_WAKEUP, sdev->usid); } EXPORT_SYMBOL_GPL(spmi_command_wakeup); /** * spmi_command_shutdown() - sends SHUTDOWN command to the specified SPMI device * @sdev: SPMI device. * * The Shutdown command causes the Slave to enter the SHUTDOWN state. */ int spmi_command_shutdown(struct spmi_device *sdev) { return spmi_cmd(sdev->ctrl, SPMI_CMD_SHUTDOWN, sdev->usid); } EXPORT_SYMBOL_GPL(spmi_command_shutdown); static int spmi_drv_probe(struct device *dev) { const struct spmi_driver *sdrv = to_spmi_driver(dev->driver); struct spmi_device *sdev = to_spmi_device(dev); int err; pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); err = sdrv->probe(sdev); if (err) goto fail_probe; return 0; fail_probe: pm_runtime_disable(dev); pm_runtime_set_suspended(dev); pm_runtime_put_noidle(dev); return err; } static void spmi_drv_remove(struct device *dev) { const struct spmi_driver *sdrv = to_spmi_driver(dev->driver); pm_runtime_get_sync(dev); if (sdrv->remove) sdrv->remove(to_spmi_device(dev)); pm_runtime_put_noidle(dev); pm_runtime_disable(dev); pm_runtime_set_suspended(dev); pm_runtime_put_noidle(dev); } static void spmi_drv_shutdown(struct device *dev) { const struct spmi_driver *sdrv = to_spmi_driver(dev->driver); if (sdrv && sdrv->shutdown) sdrv->shutdown(to_spmi_device(dev)); } static int spmi_drv_uevent(const struct device *dev, struct kobj_uevent_env *env) { int ret; ret = of_device_uevent_modalias(dev, env); if (ret != -ENODEV) return ret; return 0; } static struct bus_type spmi_bus_type = { .name = "spmi", .match = spmi_device_match, .probe = spmi_drv_probe, .remove = spmi_drv_remove, .shutdown = spmi_drv_shutdown, .uevent = spmi_drv_uevent, }; /** * spmi_device_from_of() - get the associated SPMI device from a device node * * @np: device node * * Returns the struct spmi_device associated with a device node or NULL. */ struct spmi_device *spmi_device_from_of(struct device_node *np) { struct device *dev = bus_find_device_by_of_node(&spmi_bus_type, np); if (dev) return to_spmi_device(dev); return NULL; } EXPORT_SYMBOL_GPL(spmi_device_from_of); /** * spmi_device_alloc() - Allocate a new SPMI device * @ctrl: associated controller * * Caller is responsible for either calling spmi_device_add() to add the * newly allocated controller, or calling spmi_device_put() to discard it. */ struct spmi_device *spmi_device_alloc(struct spmi_controller *ctrl) { struct spmi_device *sdev; sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); if (!sdev) return NULL; sdev->ctrl = ctrl; device_initialize(&sdev->dev); sdev->dev.parent = &ctrl->dev; sdev->dev.bus = &spmi_bus_type; sdev->dev.type = &spmi_dev_type; return sdev; } EXPORT_SYMBOL_GPL(spmi_device_alloc); /** * spmi_controller_alloc() - Allocate a new SPMI controller * @parent: parent device * @size: size of private data * * Caller is responsible for either calling spmi_controller_add() to add the * newly allocated controller, or calling spmi_controller_put() to discard it. * The allocated private data region may be accessed via * spmi_controller_get_drvdata() */ struct spmi_controller *spmi_controller_alloc(struct device *parent, size_t size) { struct spmi_controller *ctrl; int id; if (WARN_ON(!parent)) return NULL; ctrl = kzalloc(sizeof(*ctrl) + size, GFP_KERNEL); if (!ctrl) return NULL; device_initialize(&ctrl->dev); ctrl->dev.type = &spmi_ctrl_type; ctrl->dev.bus = &spmi_bus_type; ctrl->dev.parent = parent; ctrl->dev.of_node = parent->of_node; spmi_controller_set_drvdata(ctrl, &ctrl[1]); id = ida_alloc(&ctrl_ida, GFP_KERNEL); if (id < 0) { dev_err(parent, "unable to allocate SPMI controller identifier.\n"); spmi_controller_put(ctrl); return NULL; } ctrl->nr = id; dev_set_name(&ctrl->dev, "spmi-%d", id); dev_dbg(&ctrl->dev, "allocated controller 0x%p id %d\n", ctrl, id); return ctrl; } EXPORT_SYMBOL_GPL(spmi_controller_alloc); static void of_spmi_register_devices(struct spmi_controller *ctrl) { struct device_node *node; int err; if (!ctrl->dev.of_node) return; for_each_available_child_of_node(ctrl->dev.of_node, node) { struct spmi_device *sdev; u32 reg[2]; dev_dbg(&ctrl->dev, "adding child %pOF\n", node); err = of_property_read_u32_array(node, "reg", reg, 2); if (err) { dev_err(&ctrl->dev, "node %pOF err (%d) does not have 'reg' property\n", node, err); continue; } if (reg[1] != SPMI_USID) { dev_err(&ctrl->dev, "node %pOF contains unsupported 'reg' entry\n", node); continue; } if (reg[0] >= SPMI_MAX_SLAVE_ID) { dev_err(&ctrl->dev, "invalid usid on node %pOF\n", node); continue; } dev_dbg(&ctrl->dev, "read usid %02x\n", reg[0]); sdev = spmi_device_alloc(ctrl); if (!sdev) continue; sdev->dev.of_node = node; sdev->usid = (u8)reg[0]; err = spmi_device_add(sdev); if (err) { dev_err(&sdev->dev, "failure adding device. status %d\n", err); spmi_device_put(sdev); } } } /** * spmi_controller_add() - Add an SPMI controller * @ctrl: controller to be registered. * * Register a controller previously allocated via spmi_controller_alloc() with * the SPMI core. */ int spmi_controller_add(struct spmi_controller *ctrl) { int ret; /* Can't register until after driver model init */ if (WARN_ON(!is_registered)) return -EAGAIN; ret = device_add(&ctrl->dev); if (ret) return ret; if (IS_ENABLED(CONFIG_OF)) of_spmi_register_devices(ctrl); dev_dbg(&ctrl->dev, "spmi-%d registered: dev:%p\n", ctrl->nr, &ctrl->dev); return 0; }; EXPORT_SYMBOL_GPL(spmi_controller_add); /* Remove a device associated with a controller */ static int spmi_ctrl_remove_device(struct device *dev, void *data) { struct spmi_device *spmidev = to_spmi_device(dev); if (dev->type == &spmi_dev_type) spmi_device_remove(spmidev); return 0; } /** * spmi_controller_remove(): remove an SPMI controller * @ctrl: controller to remove * * Remove a SPMI controller. Caller is responsible for calling * spmi_controller_put() to discard the allocated controller. */ void spmi_controller_remove(struct spmi_controller *ctrl) { if (!ctrl) return; device_for_each_child(&ctrl->dev, NULL, spmi_ctrl_remove_device); device_del(&ctrl->dev); } EXPORT_SYMBOL_GPL(spmi_controller_remove); /** * __spmi_driver_register() - Register client driver with SPMI core * @sdrv: client driver to be associated with client-device. * @owner: module owner * * This API will register the client driver with the SPMI framework. * It is typically called from the driver's module-init function. */ int __spmi_driver_register(struct spmi_driver *sdrv, struct module *owner) { sdrv->driver.bus = &spmi_bus_type; sdrv->driver.owner = owner; return driver_register(&sdrv->driver); } EXPORT_SYMBOL_GPL(__spmi_driver_register); static void __exit spmi_exit(void) { bus_unregister(&spmi_bus_type); } module_exit(spmi_exit); static int __init spmi_init(void) { int ret; ret = bus_register(&spmi_bus_type); if (ret) return ret; is_registered = true; return 0; } postcore_initcall(spmi_init); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("SPMI module"); MODULE_ALIAS("platform:spmi");
linux-master
drivers/spmi/spmi.c
// SPDX-License-Identifier: GPL-2.0 // // Copyright (c) 2021 MediaTek Inc. #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/spmi.h> #define SWINF_IDLE 0x00 #define SWINF_WFVLDCLR 0x06 #define GET_SWINF(x) (((x) >> 1) & 0x7) #define PMIF_CMD_REG_0 0 #define PMIF_CMD_REG 1 #define PMIF_CMD_EXT_REG 2 #define PMIF_CMD_EXT_REG_LONG 3 #define PMIF_DELAY_US 10 #define PMIF_TIMEOUT_US (10 * 1000) #define PMIF_CHAN_OFFSET 0x5 #define PMIF_MAX_CLKS 3 #define SPMI_OP_ST_BUSY 1 struct ch_reg { u32 ch_sta; u32 wdata; u32 rdata; u32 ch_send; u32 ch_rdy; }; struct pmif_data { const u32 *regs; const u32 *spmimst_regs; u32 soc_chan; }; struct pmif { void __iomem *base; void __iomem *spmimst_base; struct ch_reg chan; struct clk_bulk_data clks[PMIF_MAX_CLKS]; size_t nclks; const struct pmif_data *data; }; static const char * const pmif_clock_names[] = { "pmif_sys_ck", "pmif_tmr_ck", "spmimst_clk_mux", }; enum pmif_regs { PMIF_INIT_DONE, PMIF_INF_EN, PMIF_ARB_EN, PMIF_CMDISSUE_EN, PMIF_TIMER_CTRL, PMIF_SPI_MODE_CTRL, PMIF_IRQ_EVENT_EN_0, PMIF_IRQ_FLAG_0, PMIF_IRQ_CLR_0, PMIF_IRQ_EVENT_EN_1, PMIF_IRQ_FLAG_1, PMIF_IRQ_CLR_1, PMIF_IRQ_EVENT_EN_2, PMIF_IRQ_FLAG_2, PMIF_IRQ_CLR_2, PMIF_IRQ_EVENT_EN_3, PMIF_IRQ_FLAG_3, PMIF_IRQ_CLR_3, PMIF_IRQ_EVENT_EN_4, PMIF_IRQ_FLAG_4, PMIF_IRQ_CLR_4, PMIF_WDT_EVENT_EN_0, PMIF_WDT_FLAG_0, PMIF_WDT_EVENT_EN_1, PMIF_WDT_FLAG_1, PMIF_SWINF_0_STA, PMIF_SWINF_0_WDATA_31_0, PMIF_SWINF_0_RDATA_31_0, PMIF_SWINF_0_ACC, PMIF_SWINF_0_VLD_CLR, PMIF_SWINF_1_STA, PMIF_SWINF_1_WDATA_31_0, PMIF_SWINF_1_RDATA_31_0, PMIF_SWINF_1_ACC, PMIF_SWINF_1_VLD_CLR, PMIF_SWINF_2_STA, PMIF_SWINF_2_WDATA_31_0, PMIF_SWINF_2_RDATA_31_0, PMIF_SWINF_2_ACC, PMIF_SWINF_2_VLD_CLR, PMIF_SWINF_3_STA, PMIF_SWINF_3_WDATA_31_0, PMIF_SWINF_3_RDATA_31_0, PMIF_SWINF_3_ACC, PMIF_SWINF_3_VLD_CLR, }; static const u32 mt6873_regs[] = { [PMIF_INIT_DONE] = 0x0000, [PMIF_INF_EN] = 0x0024, [PMIF_ARB_EN] = 0x0150, [PMIF_CMDISSUE_EN] = 0x03B4, [PMIF_TIMER_CTRL] = 0x03E0, [PMIF_SPI_MODE_CTRL] = 0x0400, [PMIF_IRQ_EVENT_EN_0] = 0x0418, [PMIF_IRQ_FLAG_0] = 0x0420, [PMIF_IRQ_CLR_0] = 0x0424, [PMIF_IRQ_EVENT_EN_1] = 0x0428, [PMIF_IRQ_FLAG_1] = 0x0430, [PMIF_IRQ_CLR_1] = 0x0434, [PMIF_IRQ_EVENT_EN_2] = 0x0438, [PMIF_IRQ_FLAG_2] = 0x0440, [PMIF_IRQ_CLR_2] = 0x0444, [PMIF_IRQ_EVENT_EN_3] = 0x0448, [PMIF_IRQ_FLAG_3] = 0x0450, [PMIF_IRQ_CLR_3] = 0x0454, [PMIF_IRQ_EVENT_EN_4] = 0x0458, [PMIF_IRQ_FLAG_4] = 0x0460, [PMIF_IRQ_CLR_4] = 0x0464, [PMIF_WDT_EVENT_EN_0] = 0x046C, [PMIF_WDT_FLAG_0] = 0x0470, [PMIF_WDT_EVENT_EN_1] = 0x0474, [PMIF_WDT_FLAG_1] = 0x0478, [PMIF_SWINF_0_ACC] = 0x0C00, [PMIF_SWINF_0_WDATA_31_0] = 0x0C04, [PMIF_SWINF_0_RDATA_31_0] = 0x0C14, [PMIF_SWINF_0_VLD_CLR] = 0x0C24, [PMIF_SWINF_0_STA] = 0x0C28, [PMIF_SWINF_1_ACC] = 0x0C40, [PMIF_SWINF_1_WDATA_31_0] = 0x0C44, [PMIF_SWINF_1_RDATA_31_0] = 0x0C54, [PMIF_SWINF_1_VLD_CLR] = 0x0C64, [PMIF_SWINF_1_STA] = 0x0C68, [PMIF_SWINF_2_ACC] = 0x0C80, [PMIF_SWINF_2_WDATA_31_0] = 0x0C84, [PMIF_SWINF_2_RDATA_31_0] = 0x0C94, [PMIF_SWINF_2_VLD_CLR] = 0x0CA4, [PMIF_SWINF_2_STA] = 0x0CA8, [PMIF_SWINF_3_ACC] = 0x0CC0, [PMIF_SWINF_3_WDATA_31_0] = 0x0CC4, [PMIF_SWINF_3_RDATA_31_0] = 0x0CD4, [PMIF_SWINF_3_VLD_CLR] = 0x0CE4, [PMIF_SWINF_3_STA] = 0x0CE8, }; static const u32 mt8195_regs[] = { [PMIF_INIT_DONE] = 0x0000, [PMIF_INF_EN] = 0x0024, [PMIF_ARB_EN] = 0x0150, [PMIF_CMDISSUE_EN] = 0x03B8, [PMIF_TIMER_CTRL] = 0x03E4, [PMIF_SPI_MODE_CTRL] = 0x0408, [PMIF_IRQ_EVENT_EN_0] = 0x0420, [PMIF_IRQ_FLAG_0] = 0x0428, [PMIF_IRQ_CLR_0] = 0x042C, [PMIF_IRQ_EVENT_EN_1] = 0x0430, [PMIF_IRQ_FLAG_1] = 0x0438, [PMIF_IRQ_CLR_1] = 0x043C, [PMIF_IRQ_EVENT_EN_2] = 0x0440, [PMIF_IRQ_FLAG_2] = 0x0448, [PMIF_IRQ_CLR_2] = 0x044C, [PMIF_IRQ_EVENT_EN_3] = 0x0450, [PMIF_IRQ_FLAG_3] = 0x0458, [PMIF_IRQ_CLR_3] = 0x045C, [PMIF_IRQ_EVENT_EN_4] = 0x0460, [PMIF_IRQ_FLAG_4] = 0x0468, [PMIF_IRQ_CLR_4] = 0x046C, [PMIF_WDT_EVENT_EN_0] = 0x0474, [PMIF_WDT_FLAG_0] = 0x0478, [PMIF_WDT_EVENT_EN_1] = 0x047C, [PMIF_WDT_FLAG_1] = 0x0480, [PMIF_SWINF_0_ACC] = 0x0800, [PMIF_SWINF_0_WDATA_31_0] = 0x0804, [PMIF_SWINF_0_RDATA_31_0] = 0x0814, [PMIF_SWINF_0_VLD_CLR] = 0x0824, [PMIF_SWINF_0_STA] = 0x0828, [PMIF_SWINF_1_ACC] = 0x0840, [PMIF_SWINF_1_WDATA_31_0] = 0x0844, [PMIF_SWINF_1_RDATA_31_0] = 0x0854, [PMIF_SWINF_1_VLD_CLR] = 0x0864, [PMIF_SWINF_1_STA] = 0x0868, [PMIF_SWINF_2_ACC] = 0x0880, [PMIF_SWINF_2_WDATA_31_0] = 0x0884, [PMIF_SWINF_2_RDATA_31_0] = 0x0894, [PMIF_SWINF_2_VLD_CLR] = 0x08A4, [PMIF_SWINF_2_STA] = 0x08A8, [PMIF_SWINF_3_ACC] = 0x08C0, [PMIF_SWINF_3_WDATA_31_0] = 0x08C4, [PMIF_SWINF_3_RDATA_31_0] = 0x08D4, [PMIF_SWINF_3_VLD_CLR] = 0x08E4, [PMIF_SWINF_3_STA] = 0x08E8, }; enum spmi_regs { SPMI_OP_ST_CTRL, SPMI_GRP_ID_EN, SPMI_OP_ST_STA, SPMI_MST_SAMPL, SPMI_MST_REQ_EN, SPMI_REC_CTRL, SPMI_REC0, SPMI_REC1, SPMI_REC2, SPMI_REC3, SPMI_REC4, SPMI_MST_DBG, /* MT8195 spmi regs */ SPMI_MST_RCS_CTRL, SPMI_SLV_3_0_EINT, SPMI_SLV_7_4_EINT, SPMI_SLV_B_8_EINT, SPMI_SLV_F_C_EINT, SPMI_REC_CMD_DEC, SPMI_DEC_DBG, }; static const u32 mt6873_spmi_regs[] = { [SPMI_OP_ST_CTRL] = 0x0000, [SPMI_GRP_ID_EN] = 0x0004, [SPMI_OP_ST_STA] = 0x0008, [SPMI_MST_SAMPL] = 0x000c, [SPMI_MST_REQ_EN] = 0x0010, [SPMI_REC_CTRL] = 0x0040, [SPMI_REC0] = 0x0044, [SPMI_REC1] = 0x0048, [SPMI_REC2] = 0x004c, [SPMI_REC3] = 0x0050, [SPMI_REC4] = 0x0054, [SPMI_MST_DBG] = 0x00fc, }; static const u32 mt8195_spmi_regs[] = { [SPMI_OP_ST_CTRL] = 0x0000, [SPMI_GRP_ID_EN] = 0x0004, [SPMI_OP_ST_STA] = 0x0008, [SPMI_MST_SAMPL] = 0x000C, [SPMI_MST_REQ_EN] = 0x0010, [SPMI_MST_RCS_CTRL] = 0x0014, [SPMI_SLV_3_0_EINT] = 0x0020, [SPMI_SLV_7_4_EINT] = 0x0024, [SPMI_SLV_B_8_EINT] = 0x0028, [SPMI_SLV_F_C_EINT] = 0x002C, [SPMI_REC_CTRL] = 0x0040, [SPMI_REC0] = 0x0044, [SPMI_REC1] = 0x0048, [SPMI_REC2] = 0x004C, [SPMI_REC3] = 0x0050, [SPMI_REC4] = 0x0054, [SPMI_REC_CMD_DEC] = 0x005C, [SPMI_DEC_DBG] = 0x00F8, [SPMI_MST_DBG] = 0x00FC, }; static u32 pmif_readl(struct pmif *arb, enum pmif_regs reg) { return readl(arb->base + arb->data->regs[reg]); } static void pmif_writel(struct pmif *arb, u32 val, enum pmif_regs reg) { writel(val, arb->base + arb->data->regs[reg]); } static void mtk_spmi_writel(struct pmif *arb, u32 val, enum spmi_regs reg) { writel(val, arb->spmimst_base + arb->data->spmimst_regs[reg]); } static bool pmif_is_fsm_vldclr(struct pmif *arb) { u32 reg_rdata; reg_rdata = pmif_readl(arb, arb->chan.ch_sta); return GET_SWINF(reg_rdata) == SWINF_WFVLDCLR; } static int pmif_arb_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid) { struct pmif *arb = spmi_controller_get_drvdata(ctrl); u32 rdata, cmd; int ret; /* Check the opcode */ if (opc < SPMI_CMD_RESET || opc > SPMI_CMD_WAKEUP) return -EINVAL; cmd = opc - SPMI_CMD_RESET; mtk_spmi_writel(arb, (cmd << 0x4) | sid, SPMI_OP_ST_CTRL); ret = readl_poll_timeout_atomic(arb->spmimst_base + arb->data->spmimst_regs[SPMI_OP_ST_STA], rdata, (rdata & SPMI_OP_ST_BUSY) == SPMI_OP_ST_BUSY, PMIF_DELAY_US, PMIF_TIMEOUT_US); if (ret < 0) dev_err(&ctrl->dev, "timeout, err = %d\n", ret); return ret; } static int pmif_spmi_read_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid, u16 addr, u8 *buf, size_t len) { struct pmif *arb = spmi_controller_get_drvdata(ctrl); struct ch_reg *inf_reg; int ret; u32 data, cmd; /* Check for argument validation. */ if (sid & ~0xf) { dev_err(&ctrl->dev, "exceed the max slv id\n"); return -EINVAL; } if (len > 4) { dev_err(&ctrl->dev, "pmif supports 1..4 bytes per trans, but:%zu requested", len); return -EINVAL; } if (opc >= 0x60 && opc <= 0x7f) opc = PMIF_CMD_REG; else if ((opc >= 0x20 && opc <= 0x2f) || (opc >= 0x38 && opc <= 0x3f)) opc = PMIF_CMD_EXT_REG_LONG; else return -EINVAL; /* Wait for Software Interface FSM state to be IDLE. */ inf_reg = &arb->chan; ret = readl_poll_timeout_atomic(arb->base + arb->data->regs[inf_reg->ch_sta], data, GET_SWINF(data) == SWINF_IDLE, PMIF_DELAY_US, PMIF_TIMEOUT_US); if (ret < 0) { /* set channel ready if the data has transferred */ if (pmif_is_fsm_vldclr(arb)) pmif_writel(arb, 1, inf_reg->ch_rdy); dev_err(&ctrl->dev, "failed to wait for SWINF_IDLE\n"); return ret; } /* Send the command. */ cmd = (opc << 30) | (sid << 24) | ((len - 1) << 16) | addr; pmif_writel(arb, cmd, inf_reg->ch_send); /* * Wait for Software Interface FSM state to be WFVLDCLR, * read the data and clear the valid flag. */ ret = readl_poll_timeout_atomic(arb->base + arb->data->regs[inf_reg->ch_sta], data, GET_SWINF(data) == SWINF_WFVLDCLR, PMIF_DELAY_US, PMIF_TIMEOUT_US); if (ret < 0) { dev_err(&ctrl->dev, "failed to wait for SWINF_WFVLDCLR\n"); return ret; } data = pmif_readl(arb, inf_reg->rdata); memcpy(buf, &data, len); pmif_writel(arb, 1, inf_reg->ch_rdy); return 0; } static int pmif_spmi_write_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid, u16 addr, const u8 *buf, size_t len) { struct pmif *arb = spmi_controller_get_drvdata(ctrl); struct ch_reg *inf_reg; int ret; u32 data, cmd; if (len > 4) { dev_err(&ctrl->dev, "pmif supports 1..4 bytes per trans, but:%zu requested", len); return -EINVAL; } /* Check the opcode */ if (opc >= 0x40 && opc <= 0x5F) opc = PMIF_CMD_REG; else if ((opc <= 0xF) || (opc >= 0x30 && opc <= 0x37)) opc = PMIF_CMD_EXT_REG_LONG; else if (opc >= 0x80) opc = PMIF_CMD_REG_0; else return -EINVAL; /* Wait for Software Interface FSM state to be IDLE. */ inf_reg = &arb->chan; ret = readl_poll_timeout_atomic(arb->base + arb->data->regs[inf_reg->ch_sta], data, GET_SWINF(data) == SWINF_IDLE, PMIF_DELAY_US, PMIF_TIMEOUT_US); if (ret < 0) { /* set channel ready if the data has transferred */ if (pmif_is_fsm_vldclr(arb)) pmif_writel(arb, 1, inf_reg->ch_rdy); dev_err(&ctrl->dev, "failed to wait for SWINF_IDLE\n"); return ret; } /* Set the write data. */ memcpy(&data, buf, len); pmif_writel(arb, data, inf_reg->wdata); /* Send the command. */ cmd = (opc << 30) | BIT(29) | (sid << 24) | ((len - 1) << 16) | addr; pmif_writel(arb, cmd, inf_reg->ch_send); return 0; } static const struct pmif_data mt6873_pmif_arb = { .regs = mt6873_regs, .spmimst_regs = mt6873_spmi_regs, .soc_chan = 2, }; static const struct pmif_data mt8195_pmif_arb = { .regs = mt8195_regs, .spmimst_regs = mt8195_spmi_regs, .soc_chan = 2, }; static int mtk_spmi_probe(struct platform_device *pdev) { struct pmif *arb; struct spmi_controller *ctrl; int err, i; u32 chan_offset; ctrl = spmi_controller_alloc(&pdev->dev, sizeof(*arb)); if (!ctrl) return -ENOMEM; arb = spmi_controller_get_drvdata(ctrl); arb->data = device_get_match_data(&pdev->dev); if (!arb->data) { err = -EINVAL; dev_err(&pdev->dev, "Cannot get drv_data\n"); goto err_put_ctrl; } arb->base = devm_platform_ioremap_resource_byname(pdev, "pmif"); if (IS_ERR(arb->base)) { err = PTR_ERR(arb->base); goto err_put_ctrl; } arb->spmimst_base = devm_platform_ioremap_resource_byname(pdev, "spmimst"); if (IS_ERR(arb->spmimst_base)) { err = PTR_ERR(arb->spmimst_base); goto err_put_ctrl; } arb->nclks = ARRAY_SIZE(pmif_clock_names); for (i = 0; i < arb->nclks; i++) arb->clks[i].id = pmif_clock_names[i]; err = devm_clk_bulk_get(&pdev->dev, arb->nclks, arb->clks); if (err) { dev_err(&pdev->dev, "Failed to get clocks: %d\n", err); goto err_put_ctrl; } err = clk_bulk_prepare_enable(arb->nclks, arb->clks); if (err) { dev_err(&pdev->dev, "Failed to enable clocks: %d\n", err); goto err_put_ctrl; } ctrl->cmd = pmif_arb_cmd; ctrl->read_cmd = pmif_spmi_read_cmd; ctrl->write_cmd = pmif_spmi_write_cmd; chan_offset = PMIF_CHAN_OFFSET * arb->data->soc_chan; arb->chan.ch_sta = PMIF_SWINF_0_STA + chan_offset; arb->chan.wdata = PMIF_SWINF_0_WDATA_31_0 + chan_offset; arb->chan.rdata = PMIF_SWINF_0_RDATA_31_0 + chan_offset; arb->chan.ch_send = PMIF_SWINF_0_ACC + chan_offset; arb->chan.ch_rdy = PMIF_SWINF_0_VLD_CLR + chan_offset; platform_set_drvdata(pdev, ctrl); err = spmi_controller_add(ctrl); if (err) goto err_domain_remove; return 0; err_domain_remove: clk_bulk_disable_unprepare(arb->nclks, arb->clks); err_put_ctrl: spmi_controller_put(ctrl); return err; } static void mtk_spmi_remove(struct platform_device *pdev) { struct spmi_controller *ctrl = platform_get_drvdata(pdev); struct pmif *arb = spmi_controller_get_drvdata(ctrl); clk_bulk_disable_unprepare(arb->nclks, arb->clks); spmi_controller_remove(ctrl); spmi_controller_put(ctrl); } static const struct of_device_id mtk_spmi_match_table[] = { { .compatible = "mediatek,mt6873-spmi", .data = &mt6873_pmif_arb, }, { .compatible = "mediatek,mt8195-spmi", .data = &mt8195_pmif_arb, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mtk_spmi_match_table); static struct platform_driver mtk_spmi_driver = { .driver = { .name = "spmi-mtk", .of_match_table = mtk_spmi_match_table, }, .probe = mtk_spmi_probe, .remove_new = mtk_spmi_remove, }; module_platform_driver(mtk_spmi_driver); MODULE_AUTHOR("Hsin-Hsiung Wang <[email protected]>"); MODULE_DESCRIPTION("MediaTek SPMI Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/spmi/spmi-mtk-pmif.c
// SPDX-License-Identifier: GPL-2.0-only /* * EISA bus support functions for sysfs. * * (C) 2002, 2003 Marc Zyngier <[email protected]> */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/eisa.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/ioport.h> #include <asm/io.h> #define SLOT_ADDRESS(r,n) (r->bus_base_addr + (0x1000 * n)) #define EISA_DEVINFO(i,s) { .id = { .sig = i }, .name = s } struct eisa_device_info { struct eisa_device_id id; char name[50]; }; #ifdef CONFIG_EISA_NAMES static struct eisa_device_info __initdata eisa_table[] = { #include "devlist.h" }; #define EISA_INFOS (sizeof (eisa_table) / (sizeof (struct eisa_device_info))) #endif #define EISA_MAX_FORCED_DEV 16 static int enable_dev[EISA_MAX_FORCED_DEV]; static unsigned int enable_dev_count; static int disable_dev[EISA_MAX_FORCED_DEV]; static unsigned int disable_dev_count; static int is_forced_dev(int *forced_tab, int forced_count, struct eisa_root_device *root, struct eisa_device *edev) { int i, x; for (i = 0; i < forced_count; i++) { x = (root->bus_nr << 8) | edev->slot; if (forced_tab[i] == x) return 1; } return 0; } static void __init eisa_name_device(struct eisa_device *edev) { #ifdef CONFIG_EISA_NAMES int i; for (i = 0; i < EISA_INFOS; i++) { if (!strcmp(edev->id.sig, eisa_table[i].id.sig)) { strscpy(edev->pretty_name, eisa_table[i].name, sizeof(edev->pretty_name)); return; } } /* No name was found */ sprintf(edev->pretty_name, "EISA device %.7s", edev->id.sig); #endif } static char __init *decode_eisa_sig(unsigned long addr) { static char sig_str[EISA_SIG_LEN]; u8 sig[4]; u16 rev; int i; for (i = 0; i < 4; i++) { #ifdef CONFIG_EISA_VLB_PRIMING /* * This ugly stuff is used to wake up VL-bus cards * (AHA-284x is the only known example), so we can * read the EISA id. * * Thankfully, this only exists on x86... */ outb(0x80 + i, addr); #endif sig[i] = inb(addr + i); if (!i && (sig[0] & 0x80)) return NULL; } sig_str[0] = ((sig[0] >> 2) & 0x1f) + ('A' - 1); sig_str[1] = (((sig[0] & 3) << 3) | (sig[1] >> 5)) + ('A' - 1); sig_str[2] = (sig[1] & 0x1f) + ('A' - 1); rev = (sig[2] << 8) | sig[3]; sprintf(sig_str + 3, "%04X", rev); return sig_str; } static int eisa_bus_match(struct device *dev, struct device_driver *drv) { struct eisa_device *edev = to_eisa_device(dev); struct eisa_driver *edrv = to_eisa_driver(drv); const struct eisa_device_id *eids = edrv->id_table; if (!eids) return 0; while (strlen(eids->sig)) { if (!strcmp(eids->sig, edev->id.sig) && edev->state & EISA_CONFIG_ENABLED) { edev->id.driver_data = eids->driver_data; return 1; } eids++; } return 0; } static int eisa_bus_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct eisa_device *edev = to_eisa_device(dev); add_uevent_var(env, "MODALIAS=" EISA_DEVICE_MODALIAS_FMT, edev->id.sig); return 0; } struct bus_type eisa_bus_type = { .name = "eisa", .match = eisa_bus_match, .uevent = eisa_bus_uevent, }; EXPORT_SYMBOL(eisa_bus_type); int eisa_driver_register(struct eisa_driver *edrv) { edrv->driver.bus = &eisa_bus_type; return driver_register(&edrv->driver); } EXPORT_SYMBOL(eisa_driver_register); void eisa_driver_unregister(struct eisa_driver *edrv) { driver_unregister(&edrv->driver); } EXPORT_SYMBOL(eisa_driver_unregister); static ssize_t signature_show(struct device *dev, struct device_attribute *attr, char *buf) { struct eisa_device *edev = to_eisa_device(dev); return sprintf(buf, "%s\n", edev->id.sig); } static DEVICE_ATTR_RO(signature); static ssize_t enabled_show(struct device *dev, struct device_attribute *attr, char *buf) { struct eisa_device *edev = to_eisa_device(dev); return sprintf(buf, "%d\n", edev->state & EISA_CONFIG_ENABLED); } static DEVICE_ATTR_RO(enabled); static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { struct eisa_device *edev = to_eisa_device(dev); return sprintf(buf, EISA_DEVICE_MODALIAS_FMT "\n", edev->id.sig); } static DEVICE_ATTR_RO(modalias); static int __init eisa_init_device(struct eisa_root_device *root, struct eisa_device *edev, int slot) { char *sig; unsigned long sig_addr; int i; sig_addr = SLOT_ADDRESS(root, slot) + EISA_VENDOR_ID_OFFSET; sig = decode_eisa_sig(sig_addr); if (!sig) return -1; /* No EISA device here */ memcpy(edev->id.sig, sig, EISA_SIG_LEN); edev->slot = slot; edev->state = inb(SLOT_ADDRESS(root, slot) + EISA_CONFIG_OFFSET) & EISA_CONFIG_ENABLED; edev->base_addr = SLOT_ADDRESS(root, slot); edev->dma_mask = root->dma_mask; /* Default DMA mask */ eisa_name_device(edev); edev->dev.parent = root->dev; edev->dev.bus = &eisa_bus_type; edev->dev.dma_mask = &edev->dma_mask; edev->dev.coherent_dma_mask = edev->dma_mask; dev_set_name(&edev->dev, "%02X:%02X", root->bus_nr, slot); for (i = 0; i < EISA_MAX_RESOURCES; i++) { #ifdef CONFIG_EISA_NAMES edev->res[i].name = edev->pretty_name; #else edev->res[i].name = edev->id.sig; #endif } if (is_forced_dev(enable_dev, enable_dev_count, root, edev)) edev->state = EISA_CONFIG_ENABLED | EISA_CONFIG_FORCED; if (is_forced_dev(disable_dev, disable_dev_count, root, edev)) edev->state = EISA_CONFIG_FORCED; return 0; } static int __init eisa_register_device(struct eisa_device *edev) { int rc = device_register(&edev->dev); if (rc) { put_device(&edev->dev); return rc; } rc = device_create_file(&edev->dev, &dev_attr_signature); if (rc) goto err_devreg; rc = device_create_file(&edev->dev, &dev_attr_enabled); if (rc) goto err_sig; rc = device_create_file(&edev->dev, &dev_attr_modalias); if (rc) goto err_enab; return 0; err_enab: device_remove_file(&edev->dev, &dev_attr_enabled); err_sig: device_remove_file(&edev->dev, &dev_attr_signature); err_devreg: device_unregister(&edev->dev); return rc; } static int __init eisa_request_resources(struct eisa_root_device *root, struct eisa_device *edev, int slot) { int i; for (i = 0; i < EISA_MAX_RESOURCES; i++) { /* Don't register resource for slot 0, since this is * very likely to fail... :-( Instead, grab the EISA * id, now we can display something in /proc/ioports. */ /* Only one region for mainboard */ if (!slot && i > 0) { edev->res[i].start = edev->res[i].end = 0; continue; } if (slot) { edev->res[i].name = NULL; edev->res[i].start = SLOT_ADDRESS(root, slot) + (i * 0x400); edev->res[i].end = edev->res[i].start + 0xff; edev->res[i].flags = IORESOURCE_IO; } else { edev->res[i].name = NULL; edev->res[i].start = SLOT_ADDRESS(root, slot) + EISA_VENDOR_ID_OFFSET; edev->res[i].end = edev->res[i].start + 3; edev->res[i].flags = IORESOURCE_IO | IORESOURCE_BUSY; } if (request_resource(root->res, &edev->res[i])) goto failed; } return 0; failed: while (--i >= 0) release_resource(&edev->res[i]); return -1; } static void __init eisa_release_resources(struct eisa_device *edev) { int i; for (i = 0; i < EISA_MAX_RESOURCES; i++) if (edev->res[i].start || edev->res[i].end) release_resource(&edev->res[i]); } static int __init eisa_probe(struct eisa_root_device *root) { int i, c; struct eisa_device *edev; char *enabled_str; dev_info(root->dev, "Probing EISA bus %d\n", root->bus_nr); /* First try to get hold of slot 0. If there is no device * here, simply fail, unless root->force_probe is set. */ edev = kzalloc(sizeof(*edev), GFP_KERNEL); if (!edev) return -ENOMEM; if (eisa_request_resources(root, edev, 0)) { dev_warn(root->dev, "EISA: Cannot allocate resource for mainboard\n"); kfree(edev); if (!root->force_probe) return -EBUSY; goto force_probe; } if (eisa_init_device(root, edev, 0)) { eisa_release_resources(edev); kfree(edev); if (!root->force_probe) return -ENODEV; goto force_probe; } dev_info(&edev->dev, "EISA: Mainboard %s detected\n", edev->id.sig); if (eisa_register_device(edev)) { dev_err(&edev->dev, "EISA: Failed to register %s\n", edev->id.sig); eisa_release_resources(edev); kfree(edev); } force_probe: for (c = 0, i = 1; i <= root->slots; i++) { edev = kzalloc(sizeof(*edev), GFP_KERNEL); if (!edev) { dev_err(root->dev, "EISA: Out of memory for slot %d\n", i); continue; } if (eisa_request_resources(root, edev, i)) { dev_warn(root->dev, "Cannot allocate resource for EISA slot %d\n", i); kfree(edev); continue; } if (eisa_init_device(root, edev, i)) { eisa_release_resources(edev); kfree(edev); continue; } if (edev->state == (EISA_CONFIG_ENABLED | EISA_CONFIG_FORCED)) enabled_str = " (forced enabled)"; else if (edev->state == EISA_CONFIG_FORCED) enabled_str = " (forced disabled)"; else if (edev->state == 0) enabled_str = " (disabled)"; else enabled_str = ""; dev_info(&edev->dev, "EISA: slot %d: %s detected%s\n", i, edev->id.sig, enabled_str); c++; if (eisa_register_device(edev)) { dev_err(&edev->dev, "EISA: Failed to register %s\n", edev->id.sig); eisa_release_resources(edev); kfree(edev); } } dev_info(root->dev, "EISA: Detected %d card%s\n", c, c == 1 ? "" : "s"); return 0; } static struct resource eisa_root_res = { .name = "EISA root resource", .start = 0, .end = 0xffffffff, .flags = IORESOURCE_IO, }; static int eisa_bus_count; int __init eisa_root_register(struct eisa_root_device *root) { int err; /* Use our own resources to check if this bus base address has * been already registered. This prevents the virtual root * device from registering after the real one has, for * example... */ root->eisa_root_res.name = eisa_root_res.name; root->eisa_root_res.start = root->res->start; root->eisa_root_res.end = root->res->end; root->eisa_root_res.flags = IORESOURCE_BUSY; err = request_resource(&eisa_root_res, &root->eisa_root_res); if (err) return err; root->bus_nr = eisa_bus_count++; err = eisa_probe(root); if (err) release_resource(&root->eisa_root_res); return err; } static int __init eisa_init(void) { int r; r = bus_register(&eisa_bus_type); if (r) return r; printk(KERN_INFO "EISA bus registered\n"); return 0; } module_param_array(enable_dev, int, &enable_dev_count, 0444); module_param_array(disable_dev, int, &disable_dev_count, 0444); postcore_initcall(eisa_init); int EISA_bus; /* for legacy drivers */ EXPORT_SYMBOL(EISA_bus);
linux-master
drivers/eisa/eisa-bus.c