python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-only /* * ff.c - a part of driver for RME Fireface series * * Copyright (c) 2015-2017 Takashi Sakamoto */ #include "ff.h" #define OUI_RME 0x000a35 MODULE_DESCRIPTION("RME Fireface series Driver"); MODULE_AUTHOR("Takashi Sakamoto <[email protected]>"); MODULE_LICENSE("GPL"); static void name_card(struct snd_ff *ff) { struct fw_device *fw_dev = fw_parent_device(ff->unit); static const char *const names[] = { [SND_FF_UNIT_VERSION_FF800] = "Fireface800", [SND_FF_UNIT_VERSION_FF400] = "Fireface400", [SND_FF_UNIT_VERSION_UFX] = "FirefaceUFX", [SND_FF_UNIT_VERSION_UCX] = "FirefaceUCX", [SND_FF_UNIT_VERSION_802] = "Fireface802", }; const char *name; name = names[ff->unit_version]; strcpy(ff->card->driver, "Fireface"); strcpy(ff->card->shortname, name); strcpy(ff->card->mixername, name); snprintf(ff->card->longname, sizeof(ff->card->longname), "RME %s, GUID %08x%08x at %s, S%d", name, fw_dev->config_rom[3], fw_dev->config_rom[4], dev_name(&ff->unit->device), 100 << fw_dev->max_speed); } static void ff_card_free(struct snd_card *card) { struct snd_ff *ff = card->private_data; snd_ff_stream_destroy_duplex(ff); snd_ff_transaction_unregister(ff); kfree(ff->msg_parser); mutex_destroy(&ff->mutex); fw_unit_put(ff->unit); } static int snd_ff_probe(struct fw_unit *unit, const struct ieee1394_device_id *entry) { struct snd_card *card; struct snd_ff *ff; int err; err = snd_card_new(&unit->device, -1, NULL, THIS_MODULE, sizeof(*ff), &card); if (err < 0) return err; card->private_free = ff_card_free; ff = card->private_data; ff->unit = fw_unit_get(unit); dev_set_drvdata(&unit->device, ff); ff->card = card; mutex_init(&ff->mutex); spin_lock_init(&ff->lock); init_waitqueue_head(&ff->hwdep_wait); ff->unit_version = entry->version; ff->spec = (const struct snd_ff_spec *)entry->driver_data; err = snd_ff_transaction_register(ff); if (err < 0) goto error; name_card(ff); err = snd_ff_stream_init_duplex(ff); if (err < 0) goto error; snd_ff_proc_init(ff); err = snd_ff_create_midi_devices(ff); if (err < 0) goto error; err = snd_ff_create_pcm_devices(ff); if (err < 0) goto error; err = snd_ff_create_hwdep_devices(ff); if (err < 0) goto error; if (ff->spec->protocol->msg_parser_size > 0) { ff->msg_parser = kzalloc(ff->spec->protocol->msg_parser_size, GFP_KERNEL); if (!ff->msg_parser) { err = -ENOMEM; goto error; } } err = snd_card_register(card); if (err < 0) goto error; return 0; error: snd_card_free(card); return err; } static void snd_ff_update(struct fw_unit *unit) { struct snd_ff *ff = dev_get_drvdata(&unit->device); snd_ff_transaction_reregister(ff); snd_ff_stream_update_duplex(ff); } static void snd_ff_remove(struct fw_unit *unit) { struct snd_ff *ff = dev_get_drvdata(&unit->device); // Block till all of ALSA character devices are released. snd_card_free(ff->card); } static const struct snd_ff_spec spec_ff800 = { .pcm_capture_channels = {28, 20, 12}, .pcm_playback_channels = {28, 20, 12}, .midi_in_ports = 1, .midi_out_ports = 1, .protocol = &snd_ff_protocol_ff800, .midi_high_addr = 0x000200000320ull, .midi_addr_range = 12, .midi_rx_addrs = {0x000080180000ull, 0}, }; static const struct snd_ff_spec spec_ff400 = { .pcm_capture_channels = {18, 14, 10}, .pcm_playback_channels = {18, 14, 10}, .midi_in_ports = 2, .midi_out_ports = 2, .protocol = &snd_ff_protocol_ff400, .midi_high_addr = 0x0000801003f4ull, .midi_addr_range = SND_FF_MAXIMIM_MIDI_QUADS * 4, .midi_rx_addrs = {0x000080180000ull, 0x000080190000ull}, }; static const struct snd_ff_spec spec_ucx = { .pcm_capture_channels = {18, 14, 12}, .pcm_playback_channels = {18, 14, 12}, .midi_in_ports = 2, .midi_out_ports = 2, .protocol = &snd_ff_protocol_latter, .midi_high_addr = 0xffff00000034ull, .midi_addr_range = 0x80, .midi_rx_addrs = {0xffff00000030ull, 0xffff00000030ull}, }; static const struct snd_ff_spec spec_ufx_802 = { .pcm_capture_channels = {30, 22, 14}, .pcm_playback_channels = {30, 22, 14}, .midi_in_ports = 1, .midi_out_ports = 1, .protocol = &snd_ff_protocol_latter, .midi_high_addr = 0xffff00000034ull, .midi_addr_range = 0x80, .midi_rx_addrs = {0xffff00000030ull, 0xffff00000030ull}, }; static const struct ieee1394_device_id snd_ff_id_table[] = { /* Fireface 800 */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_RME, .specifier_id = OUI_RME, .version = SND_FF_UNIT_VERSION_FF800, .model_id = 0x101800, .driver_data = (kernel_ulong_t)&spec_ff800, }, /* Fireface 400 */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_RME, .specifier_id = OUI_RME, .version = SND_FF_UNIT_VERSION_FF400, .model_id = 0x101800, .driver_data = (kernel_ulong_t)&spec_ff400, }, // Fireface UFX. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_RME, .specifier_id = OUI_RME, .version = SND_FF_UNIT_VERSION_UFX, .model_id = 0x101800, .driver_data = (kernel_ulong_t)&spec_ufx_802, }, // Fireface UCX. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_RME, .specifier_id = OUI_RME, .version = SND_FF_UNIT_VERSION_UCX, .model_id = 0x101800, .driver_data = (kernel_ulong_t)&spec_ucx, }, // Fireface 802. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_RME, .specifier_id = OUI_RME, .version = SND_FF_UNIT_VERSION_802, .model_id = 0x101800, .driver_data = (kernel_ulong_t)&spec_ufx_802, }, {} }; MODULE_DEVICE_TABLE(ieee1394, snd_ff_id_table); static struct fw_driver ff_driver = { .driver = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .bus = &fw_bus_type, }, .probe = snd_ff_probe, .update = snd_ff_update, .remove = snd_ff_remove, .id_table = snd_ff_id_table, }; static int __init snd_ff_init(void) { return driver_register(&ff_driver.driver); } static void __exit snd_ff_exit(void) { driver_unregister(&ff_driver.driver); } module_init(snd_ff_init); module_exit(snd_ff_exit);
linux-master
sound/firewire/fireface/ff.c
// SPDX-License-Identifier: GPL-2.0-only /* * ff-hwdep.c - a part of driver for RME Fireface series * * Copyright (c) 2015-2017 Takashi Sakamoto */ /* * This codes give three functionality. * * 1.get firewire node information * 2.get notification about starting/stopping stream * 3.lock/unlock stream */ #include "ff.h" static bool has_msg(struct snd_ff *ff) { if (ff->spec->protocol->has_msg) return ff->spec->protocol->has_msg(ff); else return 0; } static long hwdep_read(struct snd_hwdep *hwdep, char __user *buf, long count, loff_t *offset) { struct snd_ff *ff = hwdep->private_data; DEFINE_WAIT(wait); spin_lock_irq(&ff->lock); while (!ff->dev_lock_changed && !has_msg(ff)) { prepare_to_wait(&ff->hwdep_wait, &wait, TASK_INTERRUPTIBLE); spin_unlock_irq(&ff->lock); schedule(); finish_wait(&ff->hwdep_wait, &wait); if (signal_pending(current)) return -ERESTARTSYS; spin_lock_irq(&ff->lock); } if (ff->dev_lock_changed && count >= sizeof(struct snd_firewire_event_lock_status)) { struct snd_firewire_event_lock_status ev = { .type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS, .status = (ff->dev_lock_count > 0), }; ff->dev_lock_changed = false; spin_unlock_irq(&ff->lock); if (copy_to_user(buf, &ev, sizeof(ev))) return -EFAULT; count = sizeof(ev); } else if (has_msg(ff)) { // NOTE: Acquired spin lock should be released before accessing to user space in the // callback since the access can cause page fault. count = ff->spec->protocol->copy_msg_to_user(ff, buf, count); spin_unlock_irq(&ff->lock); } else { spin_unlock_irq(&ff->lock); count = 0; } return count; } static __poll_t hwdep_poll(struct snd_hwdep *hwdep, struct file *file, poll_table *wait) { struct snd_ff *ff = hwdep->private_data; __poll_t events; poll_wait(file, &ff->hwdep_wait, wait); spin_lock_irq(&ff->lock); if (ff->dev_lock_changed || has_msg(ff)) events = EPOLLIN | EPOLLRDNORM; else events = 0; spin_unlock_irq(&ff->lock); return events; } static int hwdep_get_info(struct snd_ff *ff, void __user *arg) { struct fw_device *dev = fw_parent_device(ff->unit); struct snd_firewire_get_info info; memset(&info, 0, sizeof(info)); info.type = SNDRV_FIREWIRE_TYPE_FIREFACE; info.card = dev->card->index; *(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]); *(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]); strscpy(info.device_name, dev_name(&dev->device), sizeof(info.device_name)); if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int hwdep_lock(struct snd_ff *ff) { int err; spin_lock_irq(&ff->lock); if (ff->dev_lock_count == 0) { ff->dev_lock_count = -1; err = 0; } else { err = -EBUSY; } spin_unlock_irq(&ff->lock); return err; } static int hwdep_unlock(struct snd_ff *ff) { int err; spin_lock_irq(&ff->lock); if (ff->dev_lock_count == -1) { ff->dev_lock_count = 0; err = 0; } else { err = -EBADFD; } spin_unlock_irq(&ff->lock); return err; } static int hwdep_release(struct snd_hwdep *hwdep, struct file *file) { struct snd_ff *ff = hwdep->private_data; spin_lock_irq(&ff->lock); if (ff->dev_lock_count == -1) ff->dev_lock_count = 0; spin_unlock_irq(&ff->lock); return 0; } static int hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { struct snd_ff *ff = hwdep->private_data; switch (cmd) { case SNDRV_FIREWIRE_IOCTL_GET_INFO: return hwdep_get_info(ff, (void __user *)arg); case SNDRV_FIREWIRE_IOCTL_LOCK: return hwdep_lock(ff); case SNDRV_FIREWIRE_IOCTL_UNLOCK: return hwdep_unlock(ff); default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static int hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { return hwdep_ioctl(hwdep, file, cmd, (unsigned long)compat_ptr(arg)); } #else #define hwdep_compat_ioctl NULL #endif int snd_ff_create_hwdep_devices(struct snd_ff *ff) { static const struct snd_hwdep_ops hwdep_ops = { .read = hwdep_read, .release = hwdep_release, .poll = hwdep_poll, .ioctl = hwdep_ioctl, .ioctl_compat = hwdep_compat_ioctl, }; struct snd_hwdep *hwdep; int err; err = snd_hwdep_new(ff->card, ff->card->driver, 0, &hwdep); if (err < 0) return err; strcpy(hwdep->name, ff->card->driver); hwdep->iface = SNDRV_HWDEP_IFACE_FW_FIREFACE; hwdep->ops = hwdep_ops; hwdep->private_data = ff; hwdep->exclusive = true; return 0; }
linux-master
sound/firewire/fireface/ff-hwdep.c
// SPDX-License-Identifier: GPL-2.0-only /* * ff-stream.c - a part of driver for RME Fireface series * * Copyright (c) 2015-2017 Takashi Sakamoto */ #include "ff.h" #define READY_TIMEOUT_MS 200 int snd_ff_stream_get_multiplier_mode(enum cip_sfc sfc, enum snd_ff_stream_mode *mode) { static const enum snd_ff_stream_mode modes[] = { [CIP_SFC_32000] = SND_FF_STREAM_MODE_LOW, [CIP_SFC_44100] = SND_FF_STREAM_MODE_LOW, [CIP_SFC_48000] = SND_FF_STREAM_MODE_LOW, [CIP_SFC_88200] = SND_FF_STREAM_MODE_MID, [CIP_SFC_96000] = SND_FF_STREAM_MODE_MID, [CIP_SFC_176400] = SND_FF_STREAM_MODE_HIGH, [CIP_SFC_192000] = SND_FF_STREAM_MODE_HIGH, }; if (sfc >= CIP_SFC_COUNT) return -EINVAL; *mode = modes[sfc]; return 0; } static inline void finish_session(struct snd_ff *ff) { ff->spec->protocol->finish_session(ff); ff->spec->protocol->switch_fetching_mode(ff, false); } static int init_stream(struct snd_ff *ff, struct amdtp_stream *s) { struct fw_iso_resources *resources; enum amdtp_stream_direction dir; int err; if (s == &ff->tx_stream) { resources = &ff->tx_resources; dir = AMDTP_IN_STREAM; } else { resources = &ff->rx_resources; dir = AMDTP_OUT_STREAM; } err = fw_iso_resources_init(resources, ff->unit); if (err < 0) return err; err = amdtp_ff_init(s, ff->unit, dir); if (err < 0) fw_iso_resources_destroy(resources); return err; } static void destroy_stream(struct snd_ff *ff, struct amdtp_stream *s) { amdtp_stream_destroy(s); if (s == &ff->tx_stream) fw_iso_resources_destroy(&ff->tx_resources); else fw_iso_resources_destroy(&ff->rx_resources); } int snd_ff_stream_init_duplex(struct snd_ff *ff) { int err; err = init_stream(ff, &ff->rx_stream); if (err < 0) return err; err = init_stream(ff, &ff->tx_stream); if (err < 0) { destroy_stream(ff, &ff->rx_stream); return err; } err = amdtp_domain_init(&ff->domain); if (err < 0) { destroy_stream(ff, &ff->rx_stream); destroy_stream(ff, &ff->tx_stream); } return err; } /* * This function should be called before starting streams or after stopping * streams. */ void snd_ff_stream_destroy_duplex(struct snd_ff *ff) { amdtp_domain_destroy(&ff->domain); destroy_stream(ff, &ff->rx_stream); destroy_stream(ff, &ff->tx_stream); } int snd_ff_stream_reserve_duplex(struct snd_ff *ff, unsigned int rate, unsigned int frames_per_period, unsigned int frames_per_buffer) { unsigned int curr_rate; enum snd_ff_clock_src src; int err; err = ff->spec->protocol->get_clock(ff, &curr_rate, &src); if (err < 0) return err; if (ff->substreams_counter == 0 || curr_rate != rate) { enum snd_ff_stream_mode mode; int i; amdtp_domain_stop(&ff->domain); finish_session(ff); fw_iso_resources_free(&ff->tx_resources); fw_iso_resources_free(&ff->rx_resources); for (i = 0; i < CIP_SFC_COUNT; ++i) { if (amdtp_rate_table[i] == rate) break; } if (i >= CIP_SFC_COUNT) return -EINVAL; err = snd_ff_stream_get_multiplier_mode(i, &mode); if (err < 0) return err; err = amdtp_ff_set_parameters(&ff->tx_stream, rate, ff->spec->pcm_capture_channels[mode]); if (err < 0) return err; err = amdtp_ff_set_parameters(&ff->rx_stream, rate, ff->spec->pcm_playback_channels[mode]); if (err < 0) return err; err = ff->spec->protocol->allocate_resources(ff, rate); if (err < 0) return err; err = amdtp_domain_set_events_per_period(&ff->domain, frames_per_period, frames_per_buffer); if (err < 0) { fw_iso_resources_free(&ff->tx_resources); fw_iso_resources_free(&ff->rx_resources); return err; } } return 0; } int snd_ff_stream_start_duplex(struct snd_ff *ff, unsigned int rate) { int err; if (ff->substreams_counter == 0) return 0; if (amdtp_streaming_error(&ff->tx_stream) || amdtp_streaming_error(&ff->rx_stream)) { amdtp_domain_stop(&ff->domain); finish_session(ff); } /* * Regardless of current source of clock signal, drivers transfer some * packets. Then, the device transfers packets. */ if (!amdtp_stream_running(&ff->rx_stream)) { int spd = fw_parent_device(ff->unit)->max_speed; err = ff->spec->protocol->begin_session(ff, rate); if (err < 0) goto error; err = amdtp_domain_add_stream(&ff->domain, &ff->rx_stream, ff->rx_resources.channel, spd); if (err < 0) goto error; err = amdtp_domain_add_stream(&ff->domain, &ff->tx_stream, ff->tx_resources.channel, spd); if (err < 0) goto error; // NOTE: The device doesn't transfer packets unless receiving any packet. The // sequence of tx packets includes cycle skip corresponding to empty packet or // NODATA packet in IEC 61883-1/6. The sequence of the number of data blocks per // packet is important for media clock recovery. err = amdtp_domain_start(&ff->domain, 0, true, true); if (err < 0) goto error; if (!amdtp_domain_wait_ready(&ff->domain, READY_TIMEOUT_MS)) { err = -ETIMEDOUT; goto error; } err = ff->spec->protocol->switch_fetching_mode(ff, true); if (err < 0) goto error; } return 0; error: amdtp_domain_stop(&ff->domain); finish_session(ff); return err; } void snd_ff_stream_stop_duplex(struct snd_ff *ff) { if (ff->substreams_counter == 0) { amdtp_domain_stop(&ff->domain); finish_session(ff); fw_iso_resources_free(&ff->tx_resources); fw_iso_resources_free(&ff->rx_resources); } } void snd_ff_stream_update_duplex(struct snd_ff *ff) { amdtp_domain_stop(&ff->domain); // The device discontinue to transfer packets. amdtp_stream_pcm_abort(&ff->tx_stream); amdtp_stream_pcm_abort(&ff->rx_stream); } void snd_ff_stream_lock_changed(struct snd_ff *ff) { ff->dev_lock_changed = true; wake_up(&ff->hwdep_wait); } int snd_ff_stream_lock_try(struct snd_ff *ff) { int err; spin_lock_irq(&ff->lock); /* user land lock this */ if (ff->dev_lock_count < 0) { err = -EBUSY; goto end; } /* this is the first time */ if (ff->dev_lock_count++ == 0) snd_ff_stream_lock_changed(ff); err = 0; end: spin_unlock_irq(&ff->lock); return err; } void snd_ff_stream_lock_release(struct snd_ff *ff) { spin_lock_irq(&ff->lock); if (WARN_ON(ff->dev_lock_count <= 0)) goto end; if (--ff->dev_lock_count == 0) snd_ff_stream_lock_changed(ff); end: spin_unlock_irq(&ff->lock); }
linux-master
sound/firewire/fireface/ff-stream.c
// SPDX-License-Identifier: GPL-2.0 // ff-protocol-former.c - a part of driver for RME Fireface series // // Copyright (c) 2019 Takashi Sakamoto #include <linux/delay.h> #include "ff.h" #define FORMER_REG_SYNC_STATUS 0x0000801c0000ull /* For block write request. */ #define FORMER_REG_FETCH_PCM_FRAMES 0x0000801c0000ull #define FORMER_REG_CLOCK_CONFIG 0x0000801c0004ull static int parse_clock_bits(u32 data, unsigned int *rate, enum snd_ff_clock_src *src) { static const struct { unsigned int rate; u32 mask; } *rate_entry, rate_entries[] = { { 32000, 0x00000002, }, { 44100, 0x00000000, }, { 48000, 0x00000006, }, { 64000, 0x0000000a, }, { 88200, 0x00000008, }, { 96000, 0x0000000e, }, { 128000, 0x00000012, }, { 176400, 0x00000010, }, { 192000, 0x00000016, }, }; static const struct { enum snd_ff_clock_src src; u32 mask; } *clk_entry, clk_entries[] = { { SND_FF_CLOCK_SRC_ADAT1, 0x00000000, }, { SND_FF_CLOCK_SRC_ADAT2, 0x00000400, }, { SND_FF_CLOCK_SRC_SPDIF, 0x00000c00, }, { SND_FF_CLOCK_SRC_WORD, 0x00001000, }, { SND_FF_CLOCK_SRC_LTC, 0x00001800, }, }; int i; for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) { rate_entry = rate_entries + i; if ((data & 0x0000001e) == rate_entry->mask) { *rate = rate_entry->rate; break; } } if (i == ARRAY_SIZE(rate_entries)) return -EIO; if (data & 0x00000001) { *src = SND_FF_CLOCK_SRC_INTERNAL; } else { for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) { clk_entry = clk_entries + i; if ((data & 0x00001c00) == clk_entry->mask) { *src = clk_entry->src; break; } } if (i == ARRAY_SIZE(clk_entries)) return -EIO; } return 0; } static int former_get_clock(struct snd_ff *ff, unsigned int *rate, enum snd_ff_clock_src *src) { __le32 reg; u32 data; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, FORMER_REG_CLOCK_CONFIG, &reg, sizeof(reg), 0); if (err < 0) return err; data = le32_to_cpu(reg); return parse_clock_bits(data, rate, src); } static int former_switch_fetching_mode(struct snd_ff *ff, bool enable) { unsigned int count; __le32 *reg; int i; int err; count = 0; for (i = 0; i < SND_FF_STREAM_MODE_COUNT; ++i) count = max(count, ff->spec->pcm_playback_channels[i]); reg = kcalloc(count, sizeof(__le32), GFP_KERNEL); if (!reg) return -ENOMEM; if (!enable) { /* * Each quadlet is corresponding to data channels in a data * blocks in reverse order. Precisely, quadlets for available * data channels should be enabled. Here, I take second best * to fetch PCM frames from all of data channels regardless of * stf. */ for (i = 0; i < count; ++i) reg[i] = cpu_to_le32(0x00000001); } err = snd_fw_transaction(ff->unit, TCODE_WRITE_BLOCK_REQUEST, FORMER_REG_FETCH_PCM_FRAMES, reg, sizeof(__le32) * count, 0); kfree(reg); return err; } static void dump_clock_config(struct snd_ff *ff, struct snd_info_buffer *buffer) { __le32 reg; u32 data; unsigned int rate; enum snd_ff_clock_src src; const char *label; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST, FORMER_REG_CLOCK_CONFIG, &reg, sizeof(reg), 0); if (err < 0) return; data = le32_to_cpu(reg); snd_iprintf(buffer, "Output S/PDIF format: %s (Emphasis: %s)\n", (data & 0x00000020) ? "Professional" : "Consumer", (data & 0x00000040) ? "on" : "off"); snd_iprintf(buffer, "Optical output interface format: %s\n", (data & 0x00000100) ? "S/PDIF" : "ADAT"); snd_iprintf(buffer, "Word output single speed: %s\n", (data & 0x00002000) ? "on" : "off"); snd_iprintf(buffer, "S/PDIF input interface: %s\n", (data & 0x00000200) ? "Optical" : "Coaxial"); err = parse_clock_bits(data, &rate, &src); if (err < 0) return; label = snd_ff_proc_get_clk_label(src); if (!label) return; snd_iprintf(buffer, "Clock configuration: %d %s\n", rate, label); } static void dump_sync_status(struct snd_ff *ff, struct snd_info_buffer *buffer) { static const struct { char *const label; u32 locked_mask; u32 synced_mask; } *clk_entry, clk_entries[] = { { "WDClk", 0x40000000, 0x20000000, }, { "S/PDIF", 0x00080000, 0x00040000, }, { "ADAT1", 0x00000400, 0x00001000, }, { "ADAT2", 0x00000800, 0x00002000, }, }; static const struct { char *const label; u32 mask; } *referred_entry, referred_entries[] = { { "ADAT1", 0x00000000, }, { "ADAT2", 0x00400000, }, { "S/PDIF", 0x00c00000, }, { "WDclk", 0x01000000, }, { "TCO", 0x01400000, }, }; static const struct { unsigned int rate; u32 mask; } *rate_entry, rate_entries[] = { { 32000, 0x02000000, }, { 44100, 0x04000000, }, { 48000, 0x06000000, }, { 64000, 0x08000000, }, { 88200, 0x0a000000, }, { 96000, 0x0c000000, }, { 128000, 0x0e000000, }, { 176400, 0x10000000, }, { 192000, 0x12000000, }, }; __le32 reg[2]; u32 data[2]; int i; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST, FORMER_REG_SYNC_STATUS, reg, sizeof(reg), 0); if (err < 0) return; data[0] = le32_to_cpu(reg[0]); data[1] = le32_to_cpu(reg[1]); snd_iprintf(buffer, "External source detection:\n"); for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) { const char *state; clk_entry = clk_entries + i; if (data[0] & clk_entry->locked_mask) { if (data[0] & clk_entry->synced_mask) state = "sync"; else state = "lock"; } else { state = "none"; } snd_iprintf(buffer, "%s: %s\n", clk_entry->label, state); } snd_iprintf(buffer, "Referred clock:\n"); if (data[1] & 0x00000001) { snd_iprintf(buffer, "Internal\n"); } else { unsigned int rate; const char *label; for (i = 0; i < ARRAY_SIZE(referred_entries); ++i) { referred_entry = referred_entries + i; if ((data[0] & 0x1e0000) == referred_entry->mask) { label = referred_entry->label; break; } } if (i == ARRAY_SIZE(referred_entries)) label = "none"; for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) { rate_entry = rate_entries + i; if ((data[0] & 0x1e000000) == rate_entry->mask) { rate = rate_entry->rate; break; } } if (i == ARRAY_SIZE(rate_entries)) rate = 0; snd_iprintf(buffer, "%s %d\n", label, rate); } } static void former_dump_status(struct snd_ff *ff, struct snd_info_buffer *buffer) { dump_clock_config(ff, buffer); dump_sync_status(ff, buffer); } static int former_fill_midi_msg(struct snd_ff *ff, struct snd_rawmidi_substream *substream, unsigned int port) { u8 *buf = (u8 *)ff->msg_buf[port]; int len; int i; len = snd_rawmidi_transmit_peek(substream, buf, SND_FF_MAXIMIM_MIDI_QUADS); if (len <= 0) return len; // One quadlet includes one byte. for (i = len - 1; i >= 0; --i) ff->msg_buf[port][i] = cpu_to_le32(buf[i]); ff->rx_bytes[port] = len; return len; } #define FF800_STF 0x0000fc88f000 #define FF800_RX_PACKET_FORMAT 0x0000fc88f004 #define FF800_ALLOC_TX_STREAM 0x0000fc88f008 #define FF800_ISOC_COMM_START 0x0000fc88f00c #define FF800_TX_S800_FLAG 0x00000800 #define FF800_ISOC_COMM_STOP 0x0000fc88f010 #define FF800_TX_PACKET_ISOC_CH 0x0000801c0008 static int allocate_tx_resources(struct snd_ff *ff) { __le32 reg; unsigned int count; unsigned int tx_isoc_channel; int err; reg = cpu_to_le32(ff->tx_stream.data_block_quadlets); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_ALLOC_TX_STREAM, &reg, sizeof(reg), 0); if (err < 0) return err; // Wait till the format of tx packet is available. count = 0; while (count++ < 10) { u32 data; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, FF800_TX_PACKET_ISOC_CH, &reg, sizeof(reg), 0); if (err < 0) return err; data = le32_to_cpu(reg); if (data != 0xffffffff) { tx_isoc_channel = data; break; } msleep(50); } if (count >= 10) return -ETIMEDOUT; // NOTE: this is a makeshift to start OHCI 1394 IR context in the // channel. On the other hand, 'struct fw_iso_resources.allocated' is // not true and it's not deallocated at stop. ff->tx_resources.channel = tx_isoc_channel; return 0; } static int ff800_allocate_resources(struct snd_ff *ff, unsigned int rate) { u32 data; __le32 reg; int err; reg = cpu_to_le32(rate); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_STF, &reg, sizeof(reg), 0); if (err < 0) return err; // If starting isochronous communication immediately, change of STF has // no effect. In this case, the communication runs based on former STF. // Let's sleep for a bit. msleep(100); // Controllers should allocate isochronous resources for rx stream. err = fw_iso_resources_allocate(&ff->rx_resources, amdtp_stream_get_max_payload(&ff->rx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) return err; // Set isochronous channel and the number of quadlets of rx packets. // This should be done before the allocation of tx resources to avoid // periodical noise. data = ff->rx_stream.data_block_quadlets << 3; data = (data << 8) | ff->rx_resources.channel; reg = cpu_to_le32(data); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_RX_PACKET_FORMAT, &reg, sizeof(reg), 0); if (err < 0) return err; return allocate_tx_resources(ff); } static int ff800_begin_session(struct snd_ff *ff, unsigned int rate) { unsigned int generation = ff->rx_resources.generation; __le32 reg; if (generation != fw_parent_device(ff->unit)->card->generation) { int err = fw_iso_resources_update(&ff->rx_resources); if (err < 0) return err; } reg = cpu_to_le32(0x80000000); reg |= cpu_to_le32(ff->tx_stream.data_block_quadlets); if (fw_parent_device(ff->unit)->max_speed == SCODE_800) reg |= cpu_to_le32(FF800_TX_S800_FLAG); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_ISOC_COMM_START, &reg, sizeof(reg), 0); } static void ff800_finish_session(struct snd_ff *ff) { __le32 reg; reg = cpu_to_le32(0x80000000); snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_ISOC_COMM_STOP, &reg, sizeof(reg), 0); } // Fireface 800 doesn't allow drivers to register lower 4 bytes of destination // address. // A write transaction to clear registered higher 4 bytes of destination address // has an effect to suppress asynchronous transaction from device. static void ff800_handle_midi_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf, size_t length, u32 tstamp) { int i; for (i = 0; i < length / 4; i++) { u8 byte = le32_to_cpu(buf[i]) & 0xff; struct snd_rawmidi_substream *substream; substream = READ_ONCE(ff->tx_midi_substreams[0]); if (substream) snd_rawmidi_receive(substream, &byte, 1); } } const struct snd_ff_protocol snd_ff_protocol_ff800 = { .handle_msg = ff800_handle_midi_msg, .fill_midi_msg = former_fill_midi_msg, .get_clock = former_get_clock, .switch_fetching_mode = former_switch_fetching_mode, .allocate_resources = ff800_allocate_resources, .begin_session = ff800_begin_session, .finish_session = ff800_finish_session, .dump_status = former_dump_status, }; #define FF400_STF 0x000080100500ull #define FF400_RX_PACKET_FORMAT 0x000080100504ull #define FF400_ISOC_COMM_START 0x000080100508ull #define FF400_TX_PACKET_FORMAT 0x00008010050cull #define FF400_ISOC_COMM_STOP 0x000080100510ull // Fireface 400 manages isochronous channel number in 3 bit field. Therefore, // we can allocate between 0 and 7 channel. static int ff400_allocate_resources(struct snd_ff *ff, unsigned int rate) { __le32 reg; enum snd_ff_stream_mode mode; int i; int err; // Check whether the given value is supported or not. for (i = 0; i < CIP_SFC_COUNT; i++) { if (amdtp_rate_table[i] == rate) break; } if (i >= CIP_SFC_COUNT) return -EINVAL; // Set the number of data blocks transferred in a second. reg = cpu_to_le32(rate); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_STF, &reg, sizeof(reg), 0); if (err < 0) return err; msleep(100); err = snd_ff_stream_get_multiplier_mode(i, &mode); if (err < 0) return err; // Keep resources for in-stream. ff->tx_resources.channels_mask = 0x00000000000000ffuLL; err = fw_iso_resources_allocate(&ff->tx_resources, amdtp_stream_get_max_payload(&ff->tx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) return err; // Keep resources for out-stream. ff->rx_resources.channels_mask = 0x00000000000000ffuLL; err = fw_iso_resources_allocate(&ff->rx_resources, amdtp_stream_get_max_payload(&ff->rx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) fw_iso_resources_free(&ff->tx_resources); return err; } static int ff400_begin_session(struct snd_ff *ff, unsigned int rate) { unsigned int generation = ff->rx_resources.generation; __le32 reg; int err; if (generation != fw_parent_device(ff->unit)->card->generation) { err = fw_iso_resources_update(&ff->tx_resources); if (err < 0) return err; err = fw_iso_resources_update(&ff->rx_resources); if (err < 0) return err; } // Set isochronous channel and the number of quadlets of received // packets. reg = cpu_to_le32(((ff->rx_stream.data_block_quadlets << 3) << 8) | ff->rx_resources.channel); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_RX_PACKET_FORMAT, &reg, sizeof(reg), 0); if (err < 0) return err; // Set isochronous channel and the number of quadlets of transmitted // packet. // TODO: investigate the purpose of this 0x80. reg = cpu_to_le32((0x80 << 24) | (ff->tx_resources.channel << 5) | (ff->tx_stream.data_block_quadlets)); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_TX_PACKET_FORMAT, &reg, sizeof(reg), 0); if (err < 0) return err; // Allow to transmit packets. reg = cpu_to_le32(0x00000001); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_ISOC_COMM_START, &reg, sizeof(reg), 0); } static void ff400_finish_session(struct snd_ff *ff) { __le32 reg; reg = cpu_to_le32(0x80000000); snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_ISOC_COMM_STOP, &reg, sizeof(reg), 0); } static void parse_midi_msg(struct snd_ff *ff, u32 quad, unsigned int port) { struct snd_rawmidi_substream *substream = READ_ONCE(ff->tx_midi_substreams[port]); if (substream != NULL) { u8 byte = (quad >> (16 * port)) & 0x000000ff; snd_rawmidi_receive(substream, &byte, 1); } } #define FF400_QUEUE_SIZE 32 struct ff400_msg_parser { struct { u32 msg; u32 tstamp; } msgs[FF400_QUEUE_SIZE]; size_t push_pos; size_t pull_pos; }; static bool ff400_has_msg(struct snd_ff *ff) { struct ff400_msg_parser *parser = ff->msg_parser; return (parser->push_pos != parser->pull_pos); } // For Fireface 400, lower 4 bytes of destination address is configured by bit // flag in quadlet register (little endian) at 0x'0000'801'0051c. Drivers can // select one of 4 options: // // bit flags: offset of destination address // - 0x04000000: 0x'....'....'0000'0000 // - 0x08000000: 0x'....'....'0000'0080 // - 0x10000000: 0x'....'....'0000'0100 // - 0x20000000: 0x'....'....'0000'0180 // // Drivers can suppress the device to transfer asynchronous transactions by // using below 2 bits. // - 0x01000000: suppress transmission // - 0x02000000: suppress transmission // // Actually, the register is write-only and includes the other options such as // input attenuation. This driver allocates destination address with '0000'0000 // in its lower offset and expects userspace application to configure the // register for it. // When the message is for signal level operation, the upper 4 bits in MSB expresses the pair of // stereo physical port. // - 0: Microphone input 0/1 // - 1: Line input 0/1 // - [2-4]: Line output 0-5 // - 5: Headphone output 0/1 // - 6: S/PDIF output 0/1 // - [7-10]: ADAT output 0-7 // // The value of signal level can be detected by mask of 0x00fffc00. For signal level of microphone // input: // // - 0: 0.0 dB // - 10: +10.0 dB // - 11: +11.0 dB // - 12: +12.0 dB // - ... // - 63: +63.0 dB: // - 64: +64.0 dB: // - 65: +65.0 dB: // // For signal level of line input: // // - 0: 0.0 dB // - 1: +0.5 dB // - 2: +1.0 dB // - 3: +1.5 dB // - ... // - 34: +17.0 dB: // - 35: +17.5 dB: // - 36: +18.0 dB: // // For signal level of any type of output: // // - 63: -infinite // - 62: -58.0 dB // - 61: -56.0 dB // - 60: -54.0 dB // - 59: -53.0 dB // - 58: -52.0 dB // - ... // - 7: -1.0 dB // - 6: 0.0 dB // - 5: +1.0 dB // - ... // - 2: +4.0 dB // - 1: +5.0 dB // - 0: +6.0 dB // // When the message is not for signal level operation, it's for MIDI bytes. When matching to // FF400_MSG_FLAG_IS_MIDI_PORT_0, one MIDI byte can be detected by mask of 0x000000ff. When // matching to FF400_MSG_FLAG_IS_MIDI_PORT_1, one MIDI byte can be detected by mask of 0x00ff0000. #define FF400_MSG_FLAG_IS_SIGNAL_LEVEL 0x04000000 #define FF400_MSG_FLAG_IS_RIGHT_CHANNEL 0x08000000 #define FF400_MSG_FLAG_IS_STEREO_PAIRED 0x02000000 #define FF400_MSG_MASK_STEREO_PAIR 0xf0000000 #define FF400_MSG_MASK_SIGNAL_LEVEL 0x00fffc00 #define FF400_MSG_FLAG_IS_MIDI_PORT_0 0x00000100 #define FF400_MSG_MASK_MIDI_PORT_0 0x000000ff #define FF400_MSG_FLAG_IS_MIDI_PORT_1 0x01000000 #define FF400_MSG_MASK_MIDI_PORT_1 0x00ff0000 static void ff400_handle_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf, size_t length, u32 tstamp) { bool need_hwdep_wake_up = false; int i; for (i = 0; i < length / 4; i++) { u32 quad = le32_to_cpu(buf[i]); if (quad & FF400_MSG_FLAG_IS_SIGNAL_LEVEL) { struct ff400_msg_parser *parser = ff->msg_parser; parser->msgs[parser->push_pos].msg = quad; parser->msgs[parser->push_pos].tstamp = tstamp; ++parser->push_pos; if (parser->push_pos >= FF400_QUEUE_SIZE) parser->push_pos = 0; need_hwdep_wake_up = true; } else if (quad & FF400_MSG_FLAG_IS_MIDI_PORT_0) { parse_midi_msg(ff, quad, 0); } else if (quad & FF400_MSG_FLAG_IS_MIDI_PORT_1) { parse_midi_msg(ff, quad, 1); } } if (need_hwdep_wake_up) wake_up(&ff->hwdep_wait); } static long ff400_copy_msg_to_user(struct snd_ff *ff, char __user *buf, long count) { struct snd_firewire_event_ff400_message ev = { .type = SNDRV_FIREWIRE_EVENT_FF400_MESSAGE, .message_count = 0, }; struct ff400_msg_parser *parser = ff->msg_parser; long consumed = 0; long ret = 0; if (count < sizeof(ev) || parser->pull_pos == parser->push_pos) return 0; count -= sizeof(ev); consumed += sizeof(ev); while (count >= sizeof(*parser->msgs) && parser->pull_pos != parser->push_pos) { spin_unlock_irq(&ff->lock); if (copy_to_user(buf + consumed, parser->msgs + parser->pull_pos, sizeof(*parser->msgs))) ret = -EFAULT; spin_lock_irq(&ff->lock); if (ret) return ret; ++parser->pull_pos; if (parser->pull_pos >= FF400_QUEUE_SIZE) parser->pull_pos = 0; ++ev.message_count; count -= sizeof(*parser->msgs); consumed += sizeof(*parser->msgs); } spin_unlock_irq(&ff->lock); if (copy_to_user(buf, &ev, sizeof(ev))) ret = -EFAULT; spin_lock_irq(&ff->lock); if (ret) return ret; return consumed; } const struct snd_ff_protocol snd_ff_protocol_ff400 = { .msg_parser_size = sizeof(struct ff400_msg_parser), .has_msg = ff400_has_msg, .copy_msg_to_user = ff400_copy_msg_to_user, .handle_msg = ff400_handle_msg, .fill_midi_msg = former_fill_midi_msg, .get_clock = former_get_clock, .switch_fetching_mode = former_switch_fetching_mode, .allocate_resources = ff400_allocate_resources, .begin_session = ff400_begin_session, .finish_session = ff400_finish_session, .dump_status = former_dump_status, };
linux-master
sound/firewire/fireface/ff-protocol-former.c
// SPDX-License-Identifier: GPL-2.0 // ff-protocol-latter.c - a part of driver for RME Fireface series // // Copyright (c) 2019 Takashi Sakamoto #include <linux/delay.h> #include "ff.h" #define LATTER_STF 0xffff00000004ULL #define LATTER_ISOC_CHANNELS 0xffff00000008ULL #define LATTER_ISOC_START 0xffff0000000cULL #define LATTER_FETCH_MODE 0xffff00000010ULL #define LATTER_SYNC_STATUS 0x0000801c0000ULL // The content of sync status register differs between models. // // Fireface UCX: // 0xf0000000: (unidentified) // 0x0f000000: effective rate of sampling clock // 0x00f00000: detected rate of word clock on BNC interface // 0x000f0000: detected rate of ADAT or S/PDIF on optical interface // 0x0000f000: detected rate of S/PDIF on coaxial interface // 0x00000e00: effective source of sampling clock // 0x00000e00: Internal // 0x00000800: (unidentified) // 0x00000600: Word clock on BNC interface // 0x00000400: ADAT on optical interface // 0x00000200: S/PDIF on coaxial or optical interface // 0x00000100: Optical interface is used for ADAT signal // 0x00000080: (unidentified) // 0x00000040: Synchronized to word clock on BNC interface // 0x00000020: Synchronized to ADAT or S/PDIF on optical interface // 0x00000010: Synchronized to S/PDIF on coaxial interface // 0x00000008: (unidentified) // 0x00000004: Lock word clock on BNC interface // 0x00000002: Lock ADAT or S/PDIF on optical interface // 0x00000001: Lock S/PDIF on coaxial interface // // Fireface 802 (and perhaps UFX): // 0xf0000000: effective rate of sampling clock // 0x0f000000: detected rate of ADAT-B on 2nd optical interface // 0x00f00000: detected rate of ADAT-A on 1st optical interface // 0x000f0000: detected rate of AES/EBU on XLR or coaxial interface // 0x0000f000: detected rate of word clock on BNC interface // 0x00000e00: effective source of sampling clock // 0x00000e00: internal // 0x00000800: ADAT-B // 0x00000600: ADAT-A // 0x00000400: AES/EBU // 0x00000200: Word clock // 0x00000080: Synchronized to ADAT-B on 2nd optical interface // 0x00000040: Synchronized to ADAT-A on 1st optical interface // 0x00000020: Synchronized to AES/EBU on XLR or 2nd optical interface // 0x00000010: Synchronized to word clock on BNC interface // 0x00000008: Lock ADAT-B on 2nd optical interface // 0x00000004: Lock ADAT-A on 1st optical interface // 0x00000002: Lock AES/EBU on XLR or 2nd optical interface // 0x00000001: Lock word clock on BNC interface // // The pattern for rate bits: // 0x00: 32.0 kHz // 0x01: 44.1 kHz // 0x02: 48.0 kHz // 0x04: 64.0 kHz // 0x05: 88.2 kHz // 0x06: 96.0 kHz // 0x08: 128.0 kHz // 0x09: 176.4 kHz // 0x0a: 192.0 kHz static int parse_clock_bits(u32 data, unsigned int *rate, enum snd_ff_clock_src *src, enum snd_ff_unit_version unit_version) { static const struct { unsigned int rate; u32 flag; } *rate_entry, rate_entries[] = { { 32000, 0x00, }, { 44100, 0x01, }, { 48000, 0x02, }, { 64000, 0x04, }, { 88200, 0x05, }, { 96000, 0x06, }, { 128000, 0x08, }, { 176400, 0x09, }, { 192000, 0x0a, }, }; static const struct { enum snd_ff_clock_src src; u32 flag; } *clk_entry, *clk_entries, ucx_clk_entries[] = { { SND_FF_CLOCK_SRC_SPDIF, 0x00000200, }, { SND_FF_CLOCK_SRC_ADAT1, 0x00000400, }, { SND_FF_CLOCK_SRC_WORD, 0x00000600, }, { SND_FF_CLOCK_SRC_INTERNAL, 0x00000e00, }, }, ufx_ff802_clk_entries[] = { { SND_FF_CLOCK_SRC_WORD, 0x00000200, }, { SND_FF_CLOCK_SRC_SPDIF, 0x00000400, }, { SND_FF_CLOCK_SRC_ADAT1, 0x00000600, }, { SND_FF_CLOCK_SRC_ADAT2, 0x00000800, }, { SND_FF_CLOCK_SRC_INTERNAL, 0x00000e00, }, }; u32 rate_bits; unsigned int clk_entry_count; int i; if (unit_version == SND_FF_UNIT_VERSION_UCX) { rate_bits = (data & 0x0f000000) >> 24; clk_entries = ucx_clk_entries; clk_entry_count = ARRAY_SIZE(ucx_clk_entries); } else { rate_bits = (data & 0xf0000000) >> 28; clk_entries = ufx_ff802_clk_entries; clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries); } for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) { rate_entry = rate_entries + i; if (rate_bits == rate_entry->flag) { *rate = rate_entry->rate; break; } } if (i == ARRAY_SIZE(rate_entries)) return -EIO; for (i = 0; i < clk_entry_count; ++i) { clk_entry = clk_entries + i; if ((data & 0x000e00) == clk_entry->flag) { *src = clk_entry->src; break; } } if (i == clk_entry_count) return -EIO; return 0; } static int latter_get_clock(struct snd_ff *ff, unsigned int *rate, enum snd_ff_clock_src *src) { __le32 reg; u32 data; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, LATTER_SYNC_STATUS, &reg, sizeof(reg), 0); if (err < 0) return err; data = le32_to_cpu(reg); return parse_clock_bits(data, rate, src, ff->unit_version); } static int latter_switch_fetching_mode(struct snd_ff *ff, bool enable) { u32 data; __le32 reg; if (enable) data = 0x00000000; else data = 0xffffffff; reg = cpu_to_le32(data); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, LATTER_FETCH_MODE, &reg, sizeof(reg), 0); } static int latter_allocate_resources(struct snd_ff *ff, unsigned int rate) { enum snd_ff_stream_mode mode; unsigned int code; __le32 reg; unsigned int count; int i; int err; // Set the number of data blocks transferred in a second. if (rate % 48000 == 0) code = 0x04; else if (rate % 44100 == 0) code = 0x02; else if (rate % 32000 == 0) code = 0x00; else return -EINVAL; if (rate >= 64000 && rate < 128000) code |= 0x08; else if (rate >= 128000) code |= 0x10; reg = cpu_to_le32(code); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, LATTER_STF, &reg, sizeof(reg), 0); if (err < 0) return err; // Confirm to shift transmission clock. count = 0; while (count++ < 10) { unsigned int curr_rate; enum snd_ff_clock_src src; err = latter_get_clock(ff, &curr_rate, &src); if (err < 0) return err; if (curr_rate == rate) break; } if (count > 10) return -ETIMEDOUT; for (i = 0; i < ARRAY_SIZE(amdtp_rate_table); ++i) { if (rate == amdtp_rate_table[i]) break; } if (i == ARRAY_SIZE(amdtp_rate_table)) return -EINVAL; err = snd_ff_stream_get_multiplier_mode(i, &mode); if (err < 0) return err; // Keep resources for in-stream. ff->tx_resources.channels_mask = 0x00000000000000ffuLL; err = fw_iso_resources_allocate(&ff->tx_resources, amdtp_stream_get_max_payload(&ff->tx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) return err; // Keep resources for out-stream. ff->rx_resources.channels_mask = 0x00000000000000ffuLL; err = fw_iso_resources_allocate(&ff->rx_resources, amdtp_stream_get_max_payload(&ff->rx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) fw_iso_resources_free(&ff->tx_resources); return err; } static int latter_begin_session(struct snd_ff *ff, unsigned int rate) { unsigned int generation = ff->rx_resources.generation; unsigned int flag; u32 data; __le32 reg; int err; if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) { // For Fireface UCX. Always use the maximum number of data // channels in data block of packet. if (rate >= 32000 && rate <= 48000) flag = 0x92; else if (rate >= 64000 && rate <= 96000) flag = 0x8e; else if (rate >= 128000 && rate <= 192000) flag = 0x8c; else return -EINVAL; } else { // For Fireface UFX and 802. Due to bandwidth limitation on // IEEE 1394a (400 Mbps), Analog 1-12 and AES are available // without any ADAT at quadruple speed. if (rate >= 32000 && rate <= 48000) flag = 0x9e; else if (rate >= 64000 && rate <= 96000) flag = 0x96; else if (rate >= 128000 && rate <= 192000) flag = 0x8e; else return -EINVAL; } if (generation != fw_parent_device(ff->unit)->card->generation) { err = fw_iso_resources_update(&ff->tx_resources); if (err < 0) return err; err = fw_iso_resources_update(&ff->rx_resources); if (err < 0) return err; } data = (ff->tx_resources.channel << 8) | ff->rx_resources.channel; reg = cpu_to_le32(data); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, LATTER_ISOC_CHANNELS, &reg, sizeof(reg), 0); if (err < 0) return err; reg = cpu_to_le32(flag); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, LATTER_ISOC_START, &reg, sizeof(reg), 0); } static void latter_finish_session(struct snd_ff *ff) { __le32 reg; reg = cpu_to_le32(0x00000000); snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, LATTER_ISOC_START, &reg, sizeof(reg), 0); } static void latter_dump_status(struct snd_ff *ff, struct snd_info_buffer *buffer) { static const struct { char *const label; u32 locked_mask; u32 synced_mask; } *clk_entry, *clk_entries, ucx_clk_entries[] = { { "S/PDIF", 0x00000001, 0x00000010, }, { "ADAT", 0x00000002, 0x00000020, }, { "WDClk", 0x00000004, 0x00000040, }, }, ufx_ff802_clk_entries[] = { { "WDClk", 0x00000001, 0x00000010, }, { "AES/EBU", 0x00000002, 0x00000020, }, { "ADAT-A", 0x00000004, 0x00000040, }, { "ADAT-B", 0x00000008, 0x00000080, }, }; __le32 reg; u32 data; unsigned int rate; enum snd_ff_clock_src src; const char *label; unsigned int clk_entry_count; int i; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, LATTER_SYNC_STATUS, &reg, sizeof(reg), 0); if (err < 0) return; data = le32_to_cpu(reg); snd_iprintf(buffer, "External source detection:\n"); if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) { clk_entries = ucx_clk_entries; clk_entry_count = ARRAY_SIZE(ucx_clk_entries); } else { clk_entries = ufx_ff802_clk_entries; clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries); } for (i = 0; i < clk_entry_count; ++i) { clk_entry = clk_entries + i; snd_iprintf(buffer, "%s: ", clk_entry->label); if (data & clk_entry->locked_mask) { if (data & clk_entry->synced_mask) snd_iprintf(buffer, "sync\n"); else snd_iprintf(buffer, "lock\n"); } else { snd_iprintf(buffer, "none\n"); } } err = parse_clock_bits(data, &rate, &src, ff->unit_version); if (err < 0) return; label = snd_ff_proc_get_clk_label(src); if (!label) return; snd_iprintf(buffer, "Referred clock: %s %d\n", label, rate); } // NOTE: transactions are transferred within 0x00-0x7f in allocated range of // address. This seems to be for check of discontinuity in receiver side. // // Like Fireface 400, drivers can select one of 4 options for lower 4 bytes of // destination address by bit flags in quadlet register (little endian) at // 0x'ffff'0000'0014: // // bit flags: offset of destination address // - 0x00002000: 0x'....'....'0000'0000 // - 0x00004000: 0x'....'....'0000'0080 // - 0x00008000: 0x'....'....'0000'0100 // - 0x00010000: 0x'....'....'0000'0180 // // Drivers can suppress the device to transfer asynchronous transactions by // clear these bit flags. // // Actually, the register is write-only and includes the other settings such as // input attenuation. This driver allocates for the first option // (0x'....'....'0000'0000) and expects userspace application to configure the // register for it. static void latter_handle_midi_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf, size_t length, u32 tstamp) { u32 data = le32_to_cpu(*buf); unsigned int index = (data & 0x000000f0) >> 4; u8 byte[3]; struct snd_rawmidi_substream *substream; unsigned int len; if (index >= ff->spec->midi_in_ports) return; switch (data & 0x0000000f) { case 0x00000008: case 0x00000009: case 0x0000000a: case 0x0000000b: case 0x0000000e: len = 3; break; case 0x0000000c: case 0x0000000d: len = 2; break; default: len = data & 0x00000003; if (len == 0) len = 3; break; } byte[0] = (data & 0x0000ff00) >> 8; byte[1] = (data & 0x00ff0000) >> 16; byte[2] = (data & 0xff000000) >> 24; substream = READ_ONCE(ff->tx_midi_substreams[index]); if (substream) snd_rawmidi_receive(substream, byte, len); } /* * When return minus value, given argument is not MIDI status. * When return 0, given argument is a beginning of system exclusive. * When return the others, given argument is MIDI data. */ static inline int calculate_message_bytes(u8 status) { switch (status) { case 0xf6: /* Tune request. */ case 0xf8: /* Timing clock. */ case 0xfa: /* Start. */ case 0xfb: /* Continue. */ case 0xfc: /* Stop. */ case 0xfe: /* Active sensing. */ case 0xff: /* System reset. */ return 1; case 0xf1: /* MIDI time code quarter frame. */ case 0xf3: /* Song select. */ return 2; case 0xf2: /* Song position pointer. */ return 3; case 0xf0: /* Exclusive. */ return 0; case 0xf7: /* End of exclusive. */ break; case 0xf4: /* Undefined. */ case 0xf5: /* Undefined. */ case 0xf9: /* Undefined. */ case 0xfd: /* Undefined. */ break; default: switch (status & 0xf0) { case 0x80: /* Note on. */ case 0x90: /* Note off. */ case 0xa0: /* Polyphonic key pressure. */ case 0xb0: /* Control change and Mode change. */ case 0xe0: /* Pitch bend change. */ return 3; case 0xc0: /* Program change. */ case 0xd0: /* Channel pressure. */ return 2; default: break; } break; } return -EINVAL; } static int latter_fill_midi_msg(struct snd_ff *ff, struct snd_rawmidi_substream *substream, unsigned int port) { u32 data = {0}; u8 *buf = (u8 *)&data; int consumed; buf[0] = port << 4; consumed = snd_rawmidi_transmit_peek(substream, buf + 1, 3); if (consumed <= 0) return consumed; if (!ff->on_sysex[port]) { if (buf[1] != 0xf0) { if (consumed < calculate_message_bytes(buf[1])) return 0; } else { // The beginning of exclusives. ff->on_sysex[port] = true; } buf[0] |= consumed; } else { if (buf[1] != 0xf7) { if (buf[2] == 0xf7 || buf[3] == 0xf7) { // Transfer end code at next time. consumed -= 1; } buf[0] |= consumed; } else { // The end of exclusives. ff->on_sysex[port] = false; consumed = 1; buf[0] |= 0x0f; } } ff->msg_buf[port][0] = cpu_to_le32(data); ff->rx_bytes[port] = consumed; return 1; } const struct snd_ff_protocol snd_ff_protocol_latter = { .handle_msg = latter_handle_midi_msg, .fill_midi_msg = latter_fill_midi_msg, .get_clock = latter_get_clock, .switch_fetching_mode = latter_switch_fetching_mode, .allocate_resources = latter_allocate_resources, .begin_session = latter_begin_session, .finish_session = latter_finish_session, .dump_status = latter_dump_status, };
linux-master
sound/firewire/fireface/ff-protocol-latter.c
// SPDX-License-Identifier: GPL-2.0-only /* * ff-pcm.c - a part of driver for RME Fireface series * * Copyright (c) 2015-2017 Takashi Sakamoto */ #include "ff.h" static int hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { const unsigned int *pcm_channels = rule->private; struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); const struct snd_interval *c = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i; for (i = 0; i < ARRAY_SIZE(amdtp_rate_table); i++) { enum snd_ff_stream_mode mode; int err; err = snd_ff_stream_get_multiplier_mode(i, &mode); if (err < 0) continue; if (!snd_interval_test(c, pcm_channels[mode])) continue; t.min = min(t.min, amdtp_rate_table[i]); t.max = max(t.max, amdtp_rate_table[i]); } return snd_interval_refine(r, &t); } static int hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { const unsigned int *pcm_channels = rule->private; struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); const struct snd_interval *r = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i; for (i = 0; i < ARRAY_SIZE(amdtp_rate_table); i++) { enum snd_ff_stream_mode mode; int err; err = snd_ff_stream_get_multiplier_mode(i, &mode); if (err < 0) continue; if (!snd_interval_test(r, amdtp_rate_table[i])) continue; t.min = min(t.min, pcm_channels[mode]); t.max = max(t.max, pcm_channels[mode]); } return snd_interval_refine(c, &t); } static void limit_channels_and_rates(struct snd_pcm_hardware *hw, const unsigned int *pcm_channels) { unsigned int rate, channels; int i; hw->channels_min = UINT_MAX; hw->channels_max = 0; hw->rate_min = UINT_MAX; hw->rate_max = 0; for (i = 0; i < ARRAY_SIZE(amdtp_rate_table); i++) { enum snd_ff_stream_mode mode; int err; err = snd_ff_stream_get_multiplier_mode(i, &mode); if (err < 0) continue; channels = pcm_channels[mode]; if (pcm_channels[mode] == 0) continue; hw->channels_min = min(hw->channels_min, channels); hw->channels_max = max(hw->channels_max, channels); rate = amdtp_rate_table[i]; hw->rates |= snd_pcm_rate_to_rate_bit(rate); hw->rate_min = min(hw->rate_min, rate); hw->rate_max = max(hw->rate_max, rate); } } static int pcm_init_hw_params(struct snd_ff *ff, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct amdtp_stream *s; const unsigned int *pcm_channels; int err; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { runtime->hw.formats = SNDRV_PCM_FMTBIT_S32; s = &ff->tx_stream; pcm_channels = ff->spec->pcm_capture_channels; } else { runtime->hw.formats = SNDRV_PCM_FMTBIT_S32; s = &ff->rx_stream; pcm_channels = ff->spec->pcm_playback_channels; } limit_channels_and_rates(&runtime->hw, pcm_channels); err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, hw_rule_channels, (void *)pcm_channels, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) return err; err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, hw_rule_rate, (void *)pcm_channels, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (err < 0) return err; return amdtp_ff_add_pcm_hw_constraints(s, runtime); } static int pcm_open(struct snd_pcm_substream *substream) { struct snd_ff *ff = substream->private_data; struct amdtp_domain *d = &ff->domain; unsigned int rate; enum snd_ff_clock_src src; int i, err; err = snd_ff_stream_lock_try(ff); if (err < 0) return err; err = pcm_init_hw_params(ff, substream); if (err < 0) goto release_lock; err = ff->spec->protocol->get_clock(ff, &rate, &src); if (err < 0) goto release_lock; mutex_lock(&ff->mutex); // When source of clock is not internal or any stream is reserved for // transmission of PCM frames, the available sampling rate is limited // at current one. if (src != SND_FF_CLOCK_SRC_INTERNAL) { for (i = 0; i < CIP_SFC_COUNT; ++i) { if (amdtp_rate_table[i] == rate) break; } // The unit is configured at sampling frequency which packet // streaming engine can't support. if (i >= CIP_SFC_COUNT) { mutex_unlock(&ff->mutex); err = -EIO; goto release_lock; } substream->runtime->hw.rate_min = rate; substream->runtime->hw.rate_max = rate; } else { if (ff->substreams_counter > 0) { unsigned int frames_per_period = d->events_per_period; unsigned int frames_per_buffer = d->events_per_buffer; rate = amdtp_rate_table[ff->rx_stream.sfc]; substream->runtime->hw.rate_min = rate; substream->runtime->hw.rate_max = rate; err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, frames_per_period, frames_per_period); if (err < 0) { mutex_unlock(&ff->mutex); goto release_lock; } err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, frames_per_buffer, frames_per_buffer); if (err < 0) { mutex_unlock(&ff->mutex); goto release_lock; } } } mutex_unlock(&ff->mutex); snd_pcm_set_sync(substream); return 0; release_lock: snd_ff_stream_lock_release(ff); return err; } static int pcm_close(struct snd_pcm_substream *substream) { struct snd_ff *ff = substream->private_data; snd_ff_stream_lock_release(ff); return 0; } static int pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_ff *ff = substream->private_data; int err = 0; if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { unsigned int rate = params_rate(hw_params); unsigned int frames_per_period = params_period_size(hw_params); unsigned int frames_per_buffer = params_buffer_size(hw_params); mutex_lock(&ff->mutex); err = snd_ff_stream_reserve_duplex(ff, rate, frames_per_period, frames_per_buffer); if (err >= 0) ++ff->substreams_counter; mutex_unlock(&ff->mutex); } return err; } static int pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_ff *ff = substream->private_data; mutex_lock(&ff->mutex); if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) --ff->substreams_counter; snd_ff_stream_stop_duplex(ff); mutex_unlock(&ff->mutex); return 0; } static int pcm_capture_prepare(struct snd_pcm_substream *substream) { struct snd_ff *ff = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; int err; mutex_lock(&ff->mutex); err = snd_ff_stream_start_duplex(ff, runtime->rate); if (err >= 0) amdtp_stream_pcm_prepare(&ff->tx_stream); mutex_unlock(&ff->mutex); return err; } static int pcm_playback_prepare(struct snd_pcm_substream *substream) { struct snd_ff *ff = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; int err; mutex_lock(&ff->mutex); err = snd_ff_stream_start_duplex(ff, runtime->rate); if (err >= 0) amdtp_stream_pcm_prepare(&ff->rx_stream); mutex_unlock(&ff->mutex); return err; } static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_ff *ff = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&ff->tx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&ff->tx_stream, NULL); break; default: return -EINVAL; } return 0; } static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_ff *ff = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&ff->rx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&ff->rx_stream, NULL); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm) { struct snd_ff *ff = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&ff->domain, &ff->tx_stream); } static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm) { struct snd_ff *ff = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&ff->domain, &ff->rx_stream); } static int pcm_capture_ack(struct snd_pcm_substream *substream) { struct snd_ff *ff = substream->private_data; return amdtp_domain_stream_pcm_ack(&ff->domain, &ff->tx_stream); } static int pcm_playback_ack(struct snd_pcm_substream *substream) { struct snd_ff *ff = substream->private_data; return amdtp_domain_stream_pcm_ack(&ff->domain, &ff->rx_stream); } int snd_ff_create_pcm_devices(struct snd_ff *ff) { static const struct snd_pcm_ops pcm_capture_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_capture_prepare, .trigger = pcm_capture_trigger, .pointer = pcm_capture_pointer, .ack = pcm_capture_ack, }; static const struct snd_pcm_ops pcm_playback_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_playback_prepare, .trigger = pcm_playback_trigger, .pointer = pcm_playback_pointer, .ack = pcm_playback_ack, }; struct snd_pcm *pcm; int err; err = snd_pcm_new(ff->card, ff->card->driver, 0, 1, 1, &pcm); if (err < 0) return err; pcm->private_data = ff; snprintf(pcm->name, sizeof(pcm->name), "%s PCM", ff->card->shortname); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &pcm_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &pcm_capture_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0); return 0; }
linux-master
sound/firewire/fireface/ff-pcm.c
// SPDX-License-Identifier: GPL-2.0-only /* * ff-proc.c - a part of driver for RME Fireface series * * Copyright (c) 2015-2017 Takashi Sakamoto */ #include "./ff.h" const char *snd_ff_proc_get_clk_label(enum snd_ff_clock_src src) { static const char *const labels[] = { "Internal", "S/PDIF", "ADAT1", "ADAT2", "Word", "LTC", }; if (src >= ARRAY_SIZE(labels)) return NULL; return labels[src]; } static void proc_dump_status(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_ff *ff = entry->private_data; ff->spec->protocol->dump_status(ff, buffer); } static void add_node(struct snd_ff *ff, struct snd_info_entry *root, const char *name, void (*op)(struct snd_info_entry *e, struct snd_info_buffer *b)) { struct snd_info_entry *entry; entry = snd_info_create_card_entry(ff->card, name, root); if (entry) snd_info_set_text_ops(entry, ff, op); } void snd_ff_proc_init(struct snd_ff *ff) { struct snd_info_entry *root; /* * All nodes are automatically removed at snd_card_disconnect(), * by following to link list. */ root = snd_info_create_card_entry(ff->card, "firewire", ff->card->proc_root); if (root == NULL) return; root->mode = S_IFDIR | 0555; add_node(ff, root, "status", proc_dump_status); }
linux-master
sound/firewire/fireface/ff-proc.c
// SPDX-License-Identifier: GPL-2.0-only /* * ff-midi.c - a part of driver for RME Fireface series * * Copyright (c) 2015-2017 Takashi Sakamoto */ #include "ff.h" static int midi_capture_open(struct snd_rawmidi_substream *substream) { /* Do nothing. */ return 0; } static int midi_playback_open(struct snd_rawmidi_substream *substream) { struct snd_ff *ff = substream->rmidi->private_data; /* Initialize internal status. */ ff->on_sysex[substream->number] = 0; ff->rx_midi_error[substream->number] = false; WRITE_ONCE(ff->rx_midi_substreams[substream->number], substream); return 0; } static int midi_capture_close(struct snd_rawmidi_substream *substream) { /* Do nothing. */ return 0; } static int midi_playback_close(struct snd_rawmidi_substream *substream) { struct snd_ff *ff = substream->rmidi->private_data; cancel_work_sync(&ff->rx_midi_work[substream->number]); WRITE_ONCE(ff->rx_midi_substreams[substream->number], NULL); return 0; } static void midi_capture_trigger(struct snd_rawmidi_substream *substream, int up) { struct snd_ff *ff = substream->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&ff->lock, flags); if (up) WRITE_ONCE(ff->tx_midi_substreams[substream->number], substream); else WRITE_ONCE(ff->tx_midi_substreams[substream->number], NULL); spin_unlock_irqrestore(&ff->lock, flags); } static void midi_playback_trigger(struct snd_rawmidi_substream *substream, int up) { struct snd_ff *ff = substream->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&ff->lock, flags); if (up || !ff->rx_midi_error[substream->number]) schedule_work(&ff->rx_midi_work[substream->number]); spin_unlock_irqrestore(&ff->lock, flags); } static void set_midi_substream_names(struct snd_rawmidi_str *stream, const char *const name) { struct snd_rawmidi_substream *substream; list_for_each_entry(substream, &stream->substreams, list) { scnprintf(substream->name, sizeof(substream->name), "%s MIDI %d", name, substream->number + 1); } } int snd_ff_create_midi_devices(struct snd_ff *ff) { static const struct snd_rawmidi_ops midi_capture_ops = { .open = midi_capture_open, .close = midi_capture_close, .trigger = midi_capture_trigger, }; static const struct snd_rawmidi_ops midi_playback_ops = { .open = midi_playback_open, .close = midi_playback_close, .trigger = midi_playback_trigger, }; struct snd_rawmidi *rmidi; struct snd_rawmidi_str *stream; int err; err = snd_rawmidi_new(ff->card, ff->card->driver, 0, ff->spec->midi_out_ports, ff->spec->midi_in_ports, &rmidi); if (err < 0) return err; snprintf(rmidi->name, sizeof(rmidi->name), "%s MIDI", ff->card->shortname); rmidi->private_data = ff; rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &midi_capture_ops); stream = &rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT]; set_midi_substream_names(stream, ff->card->shortname); rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &midi_playback_ops); stream = &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT]; set_midi_substream_names(stream, ff->card->shortname); rmidi->info_flags |= SNDRV_RAWMIDI_INFO_DUPLEX; return 0; }
linux-master
sound/firewire/fireface/ff-midi.c
// SPDX-License-Identifier: GPL-2.0-only /* * amdtp-ff.c - a part of driver for RME Fireface series * * Copyright (c) 2015-2017 Takashi Sakamoto */ #include <sound/pcm.h> #include "ff.h" struct amdtp_ff { unsigned int pcm_channels; }; int amdtp_ff_set_parameters(struct amdtp_stream *s, unsigned int rate, unsigned int pcm_channels) { struct amdtp_ff *p = s->protocol; unsigned int data_channels; if (amdtp_stream_running(s)) return -EBUSY; p->pcm_channels = pcm_channels; data_channels = pcm_channels; return amdtp_stream_set_parameters(s, rate, data_channels, 1); } static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __le32 *buffer, unsigned int frames, unsigned int pcm_frames) { struct amdtp_ff *p = s->protocol; unsigned int channels = p->pcm_channels; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int pcm_buffer_pointer; int remaining_frames; const u32 *src; int i, c; pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames; pcm_buffer_pointer %= runtime->buffer_size; src = (void *)runtime->dma_area + frames_to_bytes(runtime, pcm_buffer_pointer); remaining_frames = runtime->buffer_size - pcm_buffer_pointer; for (i = 0; i < frames; ++i) { for (c = 0; c < channels; ++c) { buffer[c] = cpu_to_le32(*src); src++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) src = (void *)runtime->dma_area; } } static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __le32 *buffer, unsigned int frames, unsigned int pcm_frames) { struct amdtp_ff *p = s->protocol; unsigned int channels = p->pcm_channels; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int pcm_buffer_pointer; int remaining_frames; u32 *dst; int i, c; pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames; pcm_buffer_pointer %= runtime->buffer_size; dst = (void *)runtime->dma_area + frames_to_bytes(runtime, pcm_buffer_pointer); remaining_frames = runtime->buffer_size - pcm_buffer_pointer; for (i = 0; i < frames; ++i) { for (c = 0; c < channels; ++c) { *dst = le32_to_cpu(buffer[c]) & 0xffffff00; dst++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) dst = (void *)runtime->dma_area; } } static void write_pcm_silence(struct amdtp_stream *s, __le32 *buffer, unsigned int frames) { struct amdtp_ff *p = s->protocol; unsigned int i, c, channels = p->pcm_channels; for (i = 0; i < frames; ++i) { for (c = 0; c < channels; ++c) buffer[c] = cpu_to_le32(0x00000000); buffer += s->data_block_quadlets; } } int amdtp_ff_add_pcm_hw_constraints(struct amdtp_stream *s, struct snd_pcm_runtime *runtime) { int err; err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); if (err < 0) return err; return amdtp_stream_add_pcm_hw_constraints(s, runtime); } static void process_it_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count, struct snd_pcm_substream *pcm) { unsigned int pcm_frames = 0; int i; for (i = 0; i < count; ++i) { __le32 *buf = (__le32 *)desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; if (pcm) { write_pcm_s32(s, pcm, buf, data_blocks, pcm_frames); pcm_frames += data_blocks; } else { write_pcm_silence(s, buf, data_blocks); } desc = amdtp_stream_next_packet_desc(s, desc); } } static void process_ir_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count, struct snd_pcm_substream *pcm) { unsigned int pcm_frames = 0; int i; for (i = 0; i < count; ++i) { __le32 *buf = (__le32 *)desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; if (pcm) { read_pcm_s32(s, pcm, buf, data_blocks, pcm_frames); pcm_frames += data_blocks; } desc = amdtp_stream_next_packet_desc(s, desc); } } int amdtp_ff_init(struct amdtp_stream *s, struct fw_unit *unit, enum amdtp_stream_direction dir) { amdtp_stream_process_ctx_payloads_t process_ctx_payloads; if (dir == AMDTP_IN_STREAM) process_ctx_payloads = process_ir_ctx_payloads; else process_ctx_payloads = process_it_ctx_payloads; return amdtp_stream_init(s, unit, dir, CIP_BLOCKING | CIP_UNAWARE_SYT | CIP_NO_HEADER, 0, process_ctx_payloads, sizeof(struct amdtp_ff)); }
linux-master
sound/firewire/fireface/amdtp-ff.c
// SPDX-License-Identifier: GPL-2.0-only /* * fireworks.c - a part of driver for Fireworks based devices * * Copyright (c) 2009-2010 Clemens Ladisch * Copyright (c) 2013-2014 Takashi Sakamoto */ /* * Fireworks is a board module which Echo Audio produced. This module consists * of three chipsets: * - Communication chipset for IEEE1394 PHY/Link and IEC 61883-1/6 * - DSP or/and FPGA for signal processing * - Flash Memory to store firmwares */ #include "fireworks.h" MODULE_DESCRIPTION("Echo Fireworks driver"); MODULE_AUTHOR("Takashi Sakamoto <[email protected]>"); MODULE_LICENSE("GPL"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; unsigned int snd_efw_resp_buf_size = 1024; bool snd_efw_resp_buf_debug = false; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "card index"); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string"); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "enable Fireworks sound card"); module_param_named(resp_buf_size, snd_efw_resp_buf_size, uint, 0444); MODULE_PARM_DESC(resp_buf_size, "response buffer size (max 4096, default 1024)"); module_param_named(resp_buf_debug, snd_efw_resp_buf_debug, bool, 0444); MODULE_PARM_DESC(resp_buf_debug, "store all responses to buffer"); static DEFINE_MUTEX(devices_mutex); static DECLARE_BITMAP(devices_used, SNDRV_CARDS); #define VENDOR_LOUD 0x000ff2 #define MODEL_MACKIE_400F 0x00400f #define MODEL_MACKIE_1200F 0x01200f #define VENDOR_ECHO 0x001486 #define MODEL_ECHO_AUDIOFIRE_12 0x00af12 #define MODEL_ECHO_AUDIOFIRE_12HD 0x0af12d #define MODEL_ECHO_AUDIOFIRE_12_APPLE 0x0af12a /* This is applied for AudioFire8 (until 2009 July) */ #define MODEL_ECHO_AUDIOFIRE_8 0x000af8 #define MODEL_ECHO_AUDIOFIRE_2 0x000af2 #define MODEL_ECHO_AUDIOFIRE_4 0x000af4 /* AudioFire9 is applied for AudioFire8(since 2009 July) and AudioFirePre8 */ #define MODEL_ECHO_AUDIOFIRE_9 0x000af9 /* unknown as product */ #define MODEL_ECHO_FIREWORKS_8 0x0000f8 #define MODEL_ECHO_FIREWORKS_HDMI 0x00afd1 #define VENDOR_GIBSON 0x00075b /* for Robot Interface Pack of Dark Fire, Dusk Tiger, Les Paul Standard 2010 */ #define MODEL_GIBSON_RIP 0x00afb2 /* unknown as product */ #define MODEL_GIBSON_GOLDTOP 0x00afb9 /* part of hardware capability flags */ #define FLAG_RESP_ADDR_CHANGABLE 0 static int get_hardware_info(struct snd_efw *efw) { struct fw_device *fw_dev = fw_parent_device(efw->unit); struct snd_efw_hwinfo *hwinfo; char version[12] = {0}; int err; hwinfo = kzalloc(sizeof(struct snd_efw_hwinfo), GFP_KERNEL); if (hwinfo == NULL) return -ENOMEM; err = snd_efw_command_get_hwinfo(efw, hwinfo); if (err < 0) goto end; /* firmware version for communication chipset */ snprintf(version, sizeof(version), "%u.%u", (hwinfo->arm_version >> 24) & 0xff, (hwinfo->arm_version >> 16) & 0xff); efw->firmware_version = hwinfo->arm_version; strcpy(efw->card->driver, "Fireworks"); strcpy(efw->card->shortname, hwinfo->model_name); strcpy(efw->card->mixername, hwinfo->model_name); scnprintf(efw->card->longname, sizeof(efw->card->longname), "%s %s v%s, GUID %08x%08x at %s, S%d", hwinfo->vendor_name, hwinfo->model_name, version, hwinfo->guid_hi, hwinfo->guid_lo, dev_name(&efw->unit->device), 100 << fw_dev->max_speed); if (hwinfo->flags & BIT(FLAG_RESP_ADDR_CHANGABLE)) efw->resp_addr_changable = true; efw->supported_sampling_rate = 0; if ((hwinfo->min_sample_rate <= 22050) && (22050 <= hwinfo->max_sample_rate)) efw->supported_sampling_rate |= SNDRV_PCM_RATE_22050; if ((hwinfo->min_sample_rate <= 32000) && (32000 <= hwinfo->max_sample_rate)) efw->supported_sampling_rate |= SNDRV_PCM_RATE_32000; if ((hwinfo->min_sample_rate <= 44100) && (44100 <= hwinfo->max_sample_rate)) efw->supported_sampling_rate |= SNDRV_PCM_RATE_44100; if ((hwinfo->min_sample_rate <= 48000) && (48000 <= hwinfo->max_sample_rate)) efw->supported_sampling_rate |= SNDRV_PCM_RATE_48000; if ((hwinfo->min_sample_rate <= 88200) && (88200 <= hwinfo->max_sample_rate)) efw->supported_sampling_rate |= SNDRV_PCM_RATE_88200; if ((hwinfo->min_sample_rate <= 96000) && (96000 <= hwinfo->max_sample_rate)) efw->supported_sampling_rate |= SNDRV_PCM_RATE_96000; if ((hwinfo->min_sample_rate <= 176400) && (176400 <= hwinfo->max_sample_rate)) efw->supported_sampling_rate |= SNDRV_PCM_RATE_176400; if ((hwinfo->min_sample_rate <= 192000) && (192000 <= hwinfo->max_sample_rate)) efw->supported_sampling_rate |= SNDRV_PCM_RATE_192000; /* the number of MIDI ports, not of MIDI conformant data channels */ if (hwinfo->midi_out_ports > SND_EFW_MAX_MIDI_OUT_PORTS || hwinfo->midi_in_ports > SND_EFW_MAX_MIDI_IN_PORTS) { err = -EIO; goto end; } efw->midi_out_ports = hwinfo->midi_out_ports; efw->midi_in_ports = hwinfo->midi_in_ports; if (hwinfo->amdtp_tx_pcm_channels > AM824_MAX_CHANNELS_FOR_PCM || hwinfo->amdtp_tx_pcm_channels_2x > AM824_MAX_CHANNELS_FOR_PCM || hwinfo->amdtp_tx_pcm_channels_4x > AM824_MAX_CHANNELS_FOR_PCM || hwinfo->amdtp_rx_pcm_channels > AM824_MAX_CHANNELS_FOR_PCM || hwinfo->amdtp_rx_pcm_channels_2x > AM824_MAX_CHANNELS_FOR_PCM || hwinfo->amdtp_rx_pcm_channels_4x > AM824_MAX_CHANNELS_FOR_PCM) { err = -ENOSYS; goto end; } efw->pcm_capture_channels[0] = hwinfo->amdtp_tx_pcm_channels; efw->pcm_capture_channels[1] = hwinfo->amdtp_tx_pcm_channels_2x; efw->pcm_capture_channels[2] = hwinfo->amdtp_tx_pcm_channels_4x; efw->pcm_playback_channels[0] = hwinfo->amdtp_rx_pcm_channels; efw->pcm_playback_channels[1] = hwinfo->amdtp_rx_pcm_channels_2x; efw->pcm_playback_channels[2] = hwinfo->amdtp_rx_pcm_channels_4x; /* Hardware metering. */ if (hwinfo->phys_in_grp_count > HWINFO_MAX_CAPS_GROUPS || hwinfo->phys_out_grp_count > HWINFO_MAX_CAPS_GROUPS) { err = -EIO; goto end; } efw->phys_in = hwinfo->phys_in; efw->phys_out = hwinfo->phys_out; efw->phys_in_grp_count = hwinfo->phys_in_grp_count; efw->phys_out_grp_count = hwinfo->phys_out_grp_count; memcpy(&efw->phys_in_grps, hwinfo->phys_in_grps, sizeof(struct snd_efw_phys_grp) * hwinfo->phys_in_grp_count); memcpy(&efw->phys_out_grps, hwinfo->phys_out_grps, sizeof(struct snd_efw_phys_grp) * hwinfo->phys_out_grp_count); /* AudioFire8 (since 2009) and AudioFirePre8 */ if (hwinfo->type == MODEL_ECHO_AUDIOFIRE_9) efw->is_af9 = true; /* These models uses the same firmware. */ if (hwinfo->type == MODEL_ECHO_AUDIOFIRE_2 || hwinfo->type == MODEL_ECHO_AUDIOFIRE_4 || hwinfo->type == MODEL_ECHO_AUDIOFIRE_9 || hwinfo->type == MODEL_GIBSON_RIP || hwinfo->type == MODEL_GIBSON_GOLDTOP) efw->is_fireworks3 = true; end: kfree(hwinfo); return err; } static void efw_card_free(struct snd_card *card) { struct snd_efw *efw = card->private_data; mutex_lock(&devices_mutex); clear_bit(efw->card_index, devices_used); mutex_unlock(&devices_mutex); snd_efw_stream_destroy_duplex(efw); snd_efw_transaction_remove_instance(efw); mutex_destroy(&efw->mutex); fw_unit_put(efw->unit); } static int efw_probe(struct fw_unit *unit, const struct ieee1394_device_id *entry) { unsigned int card_index; struct snd_card *card; struct snd_efw *efw; int err; // check registered cards. mutex_lock(&devices_mutex); for (card_index = 0; card_index < SNDRV_CARDS; ++card_index) { if (!test_bit(card_index, devices_used) && enable[card_index]) break; } if (card_index >= SNDRV_CARDS) { mutex_unlock(&devices_mutex); return -ENOENT; } err = snd_card_new(&unit->device, index[card_index], id[card_index], THIS_MODULE, sizeof(*efw), &card); if (err < 0) { mutex_unlock(&devices_mutex); return err; } card->private_free = efw_card_free; set_bit(card_index, devices_used); mutex_unlock(&devices_mutex); efw = card->private_data; efw->unit = fw_unit_get(unit); dev_set_drvdata(&unit->device, efw); efw->card = card; efw->card_index = card_index; mutex_init(&efw->mutex); spin_lock_init(&efw->lock); init_waitqueue_head(&efw->hwdep_wait); // prepare response buffer. snd_efw_resp_buf_size = clamp(snd_efw_resp_buf_size, SND_EFW_RESPONSE_MAXIMUM_BYTES, 4096U); efw->resp_buf = devm_kzalloc(&card->card_dev, snd_efw_resp_buf_size, GFP_KERNEL); if (!efw->resp_buf) { err = -ENOMEM; goto error; } efw->pull_ptr = efw->push_ptr = efw->resp_buf; snd_efw_transaction_add_instance(efw); err = get_hardware_info(efw); if (err < 0) goto error; err = snd_efw_stream_init_duplex(efw); if (err < 0) goto error; snd_efw_proc_init(efw); if (efw->midi_out_ports || efw->midi_in_ports) { err = snd_efw_create_midi_devices(efw); if (err < 0) goto error; } err = snd_efw_create_pcm_devices(efw); if (err < 0) goto error; err = snd_efw_create_hwdep_device(efw); if (err < 0) goto error; err = snd_card_register(card); if (err < 0) goto error; return 0; error: snd_card_free(card); return err; } static void efw_update(struct fw_unit *unit) { struct snd_efw *efw = dev_get_drvdata(&unit->device); snd_efw_transaction_bus_reset(efw->unit); mutex_lock(&efw->mutex); snd_efw_stream_update_duplex(efw); mutex_unlock(&efw->mutex); } static void efw_remove(struct fw_unit *unit) { struct snd_efw *efw = dev_get_drvdata(&unit->device); // Block till all of ALSA character devices are released. snd_card_free(efw->card); } #define SPECIFIER_1394TA 0x00a02d #define VERSION_EFW 0x010000 #define SND_EFW_DEV_ENTRY(vendor, model) \ { \ .match_flags = IEEE1394_MATCH_VENDOR_ID | \ IEEE1394_MATCH_MODEL_ID | \ IEEE1394_MATCH_SPECIFIER_ID | \ IEEE1394_MATCH_VERSION, \ .vendor_id = vendor,\ .model_id = model, \ .specifier_id = SPECIFIER_1394TA, \ .version = VERSION_EFW, \ } static const struct ieee1394_device_id efw_id_table[] = { SND_EFW_DEV_ENTRY(VENDOR_LOUD, MODEL_MACKIE_400F), SND_EFW_DEV_ENTRY(VENDOR_LOUD, MODEL_MACKIE_1200F), SND_EFW_DEV_ENTRY(VENDOR_ECHO, MODEL_ECHO_AUDIOFIRE_8), SND_EFW_DEV_ENTRY(VENDOR_ECHO, MODEL_ECHO_AUDIOFIRE_12), SND_EFW_DEV_ENTRY(VENDOR_ECHO, MODEL_ECHO_AUDIOFIRE_12HD), SND_EFW_DEV_ENTRY(VENDOR_ECHO, MODEL_ECHO_AUDIOFIRE_12_APPLE), SND_EFW_DEV_ENTRY(VENDOR_ECHO, MODEL_ECHO_AUDIOFIRE_2), SND_EFW_DEV_ENTRY(VENDOR_ECHO, MODEL_ECHO_AUDIOFIRE_4), SND_EFW_DEV_ENTRY(VENDOR_ECHO, MODEL_ECHO_AUDIOFIRE_9), SND_EFW_DEV_ENTRY(VENDOR_ECHO, MODEL_ECHO_FIREWORKS_8), SND_EFW_DEV_ENTRY(VENDOR_ECHO, MODEL_ECHO_FIREWORKS_HDMI), SND_EFW_DEV_ENTRY(VENDOR_GIBSON, MODEL_GIBSON_RIP), SND_EFW_DEV_ENTRY(VENDOR_GIBSON, MODEL_GIBSON_GOLDTOP), {} }; MODULE_DEVICE_TABLE(ieee1394, efw_id_table); static struct fw_driver efw_driver = { .driver = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .bus = &fw_bus_type, }, .probe = efw_probe, .update = efw_update, .remove = efw_remove, .id_table = efw_id_table, }; static int __init snd_efw_init(void) { int err; err = snd_efw_transaction_register(); if (err < 0) goto end; err = driver_register(&efw_driver.driver); if (err < 0) snd_efw_transaction_unregister(); end: return err; } static void __exit snd_efw_exit(void) { snd_efw_transaction_unregister(); driver_unregister(&efw_driver.driver); } module_init(snd_efw_init); module_exit(snd_efw_exit);
linux-master
sound/firewire/fireworks/fireworks.c
// SPDX-License-Identifier: GPL-2.0-only /* * fireworks_pcm.c - a part of driver for Fireworks based devices * * Copyright (c) 2009-2010 Clemens Ladisch * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./fireworks.h" /* * NOTE: * Fireworks changes its AMDTP channels for PCM data according to its sampling * rate. There are three modes. Here _XX is either _rx or _tx. * 0: 32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied * 1: 88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied * 2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied * * The number of PCM channels for analog input and output are always fixed but * the number of PCM channels for digital input and output are differed. * * Additionally, according to "AudioFire Owner's Manual Version 2.2", in some * model, the number of PCM channels for digital input has more restriction * depending on which digital interface is selected. * - S/PDIF coaxial and optical : use input 1-2 * - ADAT optical at 32.0-48.0 kHz : use input 1-8 * - ADAT optical at 88.2-96.0 kHz : use input 1-4 (S/MUX format) * * The data in AMDTP channels for blank PCM channels are zero. */ static const unsigned int freq_table[] = { /* multiplier mode 0 */ [0] = 32000, [1] = 44100, [2] = 48000, /* multiplier mode 1 */ [3] = 88200, [4] = 96000, /* multiplier mode 2 */ [5] = 176400, [6] = 192000, }; static inline unsigned int get_multiplier_mode_with_index(unsigned int index) { return ((int)index - 1) / 2; } int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode) { unsigned int i; for (i = 0; i < ARRAY_SIZE(freq_table); i++) { if (freq_table[i] == sampling_rate) { *mode = get_multiplier_mode_with_index(i); return 0; } } return -EINVAL; } static int hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { unsigned int *pcm_channels = rule->private; struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); const struct snd_interval *c = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i, mode; for (i = 0; i < ARRAY_SIZE(freq_table); i++) { mode = get_multiplier_mode_with_index(i); if (!snd_interval_test(c, pcm_channels[mode])) continue; t.min = min(t.min, freq_table[i]); t.max = max(t.max, freq_table[i]); } return snd_interval_refine(r, &t); } static int hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { unsigned int *pcm_channels = rule->private; struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); const struct snd_interval *r = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i, mode; for (i = 0; i < ARRAY_SIZE(freq_table); i++) { mode = get_multiplier_mode_with_index(i); if (!snd_interval_test(r, freq_table[i])) continue; t.min = min(t.min, pcm_channels[mode]); t.max = max(t.max, pcm_channels[mode]); } return snd_interval_refine(c, &t); } static void limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels) { unsigned int i, mode; hw->channels_min = UINT_MAX; hw->channels_max = 0; for (i = 0; i < ARRAY_SIZE(freq_table); i++) { mode = get_multiplier_mode_with_index(i); if (pcm_channels[mode] == 0) continue; hw->channels_min = min(hw->channels_min, pcm_channels[mode]); hw->channels_max = max(hw->channels_max, pcm_channels[mode]); } } static int pcm_init_hw_params(struct snd_efw *efw, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct amdtp_stream *s; unsigned int *pcm_channels; int err; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS; s = &efw->tx_stream; pcm_channels = efw->pcm_capture_channels; } else { runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS; s = &efw->rx_stream; pcm_channels = efw->pcm_playback_channels; } /* limit rates */ runtime->hw.rates = efw->supported_sampling_rate; snd_pcm_limit_hw_rates(runtime); limit_channels(&runtime->hw, pcm_channels); err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, hw_rule_channels, pcm_channels, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) goto end; err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, hw_rule_rate, pcm_channels, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (err < 0) goto end; err = amdtp_am824_add_pcm_hw_constraints(s, runtime); end: return err; } static int pcm_open(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; struct amdtp_domain *d = &efw->domain; enum snd_efw_clock_source clock_source; int err; err = snd_efw_stream_lock_try(efw); if (err < 0) return err; err = pcm_init_hw_params(efw, substream); if (err < 0) goto err_locked; err = snd_efw_command_get_clock_source(efw, &clock_source); if (err < 0) goto err_locked; mutex_lock(&efw->mutex); // When source of clock is not internal or any stream is reserved for // transmission of PCM frames, the available sampling rate is limited // at current one. if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) || (efw->substreams_counter > 0 && d->events_per_period > 0)) { unsigned int frames_per_period = d->events_per_period; unsigned int frames_per_buffer = d->events_per_buffer; unsigned int sampling_rate; err = snd_efw_command_get_sampling_rate(efw, &sampling_rate); if (err < 0) { mutex_unlock(&efw->mutex); goto err_locked; } substream->runtime->hw.rate_min = sampling_rate; substream->runtime->hw.rate_max = sampling_rate; if (frames_per_period > 0) { err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, frames_per_period, frames_per_period); if (err < 0) { mutex_unlock(&efw->mutex); goto err_locked; } err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, frames_per_buffer, frames_per_buffer); if (err < 0) { mutex_unlock(&efw->mutex); goto err_locked; } } } mutex_unlock(&efw->mutex); snd_pcm_set_sync(substream); return 0; err_locked: snd_efw_stream_lock_release(efw); return err; } static int pcm_close(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; snd_efw_stream_lock_release(efw); return 0; } static int pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_efw *efw = substream->private_data; int err = 0; if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { unsigned int rate = params_rate(hw_params); unsigned int frames_per_period = params_period_size(hw_params); unsigned int frames_per_buffer = params_buffer_size(hw_params); mutex_lock(&efw->mutex); err = snd_efw_stream_reserve_duplex(efw, rate, frames_per_period, frames_per_buffer); if (err >= 0) ++efw->substreams_counter; mutex_unlock(&efw->mutex); } return err; } static int pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; mutex_lock(&efw->mutex); if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) --efw->substreams_counter; snd_efw_stream_stop_duplex(efw); mutex_unlock(&efw->mutex); return 0; } static int pcm_capture_prepare(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; int err; err = snd_efw_stream_start_duplex(efw); if (err >= 0) amdtp_stream_pcm_prepare(&efw->tx_stream); return err; } static int pcm_playback_prepare(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; int err; err = snd_efw_stream_start_duplex(efw); if (err >= 0) amdtp_stream_pcm_prepare(&efw->rx_stream); return err; } static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_efw *efw = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&efw->tx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&efw->tx_stream, NULL); break; default: return -EINVAL; } return 0; } static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_efw *efw = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&efw->rx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&efw->rx_stream, NULL); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm) { struct snd_efw *efw = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->tx_stream); } static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm) { struct snd_efw *efw = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->rx_stream); } static int pcm_capture_ack(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->tx_stream); } static int pcm_playback_ack(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->rx_stream); } int snd_efw_create_pcm_devices(struct snd_efw *efw) { static const struct snd_pcm_ops capture_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_capture_prepare, .trigger = pcm_capture_trigger, .pointer = pcm_capture_pointer, .ack = pcm_capture_ack, }; static const struct snd_pcm_ops playback_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_playback_prepare, .trigger = pcm_playback_trigger, .pointer = pcm_playback_pointer, .ack = pcm_playback_ack, }; struct snd_pcm *pcm; int err; err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm); if (err < 0) goto end; pcm->private_data = efw; snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0); end: return err; }
linux-master
sound/firewire/fireworks/fireworks_pcm.c
// SPDX-License-Identifier: GPL-2.0-only /* * fireworks_proc.c - a part of driver for Fireworks based devices * * Copyright (c) 2009-2010 Clemens Ladisch * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./fireworks.h" static inline const char* get_phys_name(struct snd_efw_phys_grp *grp, bool input) { static const char *const ch_type[] = { "Analog", "S/PDIF", "ADAT", "S/PDIF or ADAT", "Mirroring", "Headphones", "I2S", "Guitar", "Pirzo Guitar", "Guitar String", }; if (grp->type < ARRAY_SIZE(ch_type)) return ch_type[grp->type]; else if (input) return "Input"; else return "Output"; } static void proc_read_hwinfo(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_efw *efw = entry->private_data; unsigned short i; struct snd_efw_hwinfo *hwinfo; hwinfo = kmalloc(sizeof(struct snd_efw_hwinfo), GFP_KERNEL); if (hwinfo == NULL) return; if (snd_efw_command_get_hwinfo(efw, hwinfo) < 0) goto end; snd_iprintf(buffer, "guid_hi: 0x%X\n", hwinfo->guid_hi); snd_iprintf(buffer, "guid_lo: 0x%X\n", hwinfo->guid_lo); snd_iprintf(buffer, "type: 0x%X\n", hwinfo->type); snd_iprintf(buffer, "version: 0x%X\n", hwinfo->version); snd_iprintf(buffer, "vendor_name: %s\n", hwinfo->vendor_name); snd_iprintf(buffer, "model_name: %s\n", hwinfo->model_name); snd_iprintf(buffer, "dsp_version: 0x%X\n", hwinfo->dsp_version); snd_iprintf(buffer, "arm_version: 0x%X\n", hwinfo->arm_version); snd_iprintf(buffer, "fpga_version: 0x%X\n", hwinfo->fpga_version); snd_iprintf(buffer, "flags: 0x%X\n", hwinfo->flags); snd_iprintf(buffer, "max_sample_rate: 0x%X\n", hwinfo->max_sample_rate); snd_iprintf(buffer, "min_sample_rate: 0x%X\n", hwinfo->min_sample_rate); snd_iprintf(buffer, "supported_clock: 0x%X\n", hwinfo->supported_clocks); snd_iprintf(buffer, "phys out: 0x%X\n", hwinfo->phys_out); snd_iprintf(buffer, "phys in: 0x%X\n", hwinfo->phys_in); snd_iprintf(buffer, "phys in grps: 0x%X\n", hwinfo->phys_in_grp_count); for (i = 0; i < hwinfo->phys_in_grp_count; i++) { snd_iprintf(buffer, "phys in grp[%d]: type 0x%X, count 0x%X\n", i, hwinfo->phys_out_grps[i].type, hwinfo->phys_out_grps[i].count); } snd_iprintf(buffer, "phys out grps: 0x%X\n", hwinfo->phys_out_grp_count); for (i = 0; i < hwinfo->phys_out_grp_count; i++) { snd_iprintf(buffer, "phys out grps[%d]: type 0x%X, count 0x%X\n", i, hwinfo->phys_out_grps[i].type, hwinfo->phys_out_grps[i].count); } snd_iprintf(buffer, "amdtp rx pcm channels 1x: 0x%X\n", hwinfo->amdtp_rx_pcm_channels); snd_iprintf(buffer, "amdtp tx pcm channels 1x: 0x%X\n", hwinfo->amdtp_tx_pcm_channels); snd_iprintf(buffer, "amdtp rx pcm channels 2x: 0x%X\n", hwinfo->amdtp_rx_pcm_channels_2x); snd_iprintf(buffer, "amdtp tx pcm channels 2x: 0x%X\n", hwinfo->amdtp_tx_pcm_channels_2x); snd_iprintf(buffer, "amdtp rx pcm channels 4x: 0x%X\n", hwinfo->amdtp_rx_pcm_channels_4x); snd_iprintf(buffer, "amdtp tx pcm channels 4x: 0x%X\n", hwinfo->amdtp_tx_pcm_channels_4x); snd_iprintf(buffer, "midi out ports: 0x%X\n", hwinfo->midi_out_ports); snd_iprintf(buffer, "midi in ports: 0x%X\n", hwinfo->midi_in_ports); snd_iprintf(buffer, "mixer playback channels: 0x%X\n", hwinfo->mixer_playback_channels); snd_iprintf(buffer, "mixer capture channels: 0x%X\n", hwinfo->mixer_capture_channels); end: kfree(hwinfo); } static void proc_read_clock(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_efw *efw = entry->private_data; enum snd_efw_clock_source clock_source; unsigned int sampling_rate; if (snd_efw_command_get_clock_source(efw, &clock_source) < 0) return; if (snd_efw_command_get_sampling_rate(efw, &sampling_rate) < 0) return; snd_iprintf(buffer, "Clock Source: %d\n", clock_source); snd_iprintf(buffer, "Sampling Rate: %d\n", sampling_rate); } /* * NOTE: * dB = 20 * log10(linear / 0x01000000) * -144.0 dB when linear is 0 */ static void proc_read_phys_meters(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_efw *efw = entry->private_data; struct snd_efw_phys_meters *meters; unsigned int g, c, m, max, size; const char *name; u32 *linear; int err; size = sizeof(struct snd_efw_phys_meters) + (efw->phys_in + efw->phys_out) * sizeof(u32); meters = kzalloc(size, GFP_KERNEL); if (meters == NULL) return; err = snd_efw_command_get_phys_meters(efw, meters, size); if (err < 0) goto end; snd_iprintf(buffer, "Physical Meters:\n"); m = 0; max = min(efw->phys_out, meters->out_meters); linear = meters->values; snd_iprintf(buffer, " %d Outputs:\n", max); for (g = 0; g < efw->phys_out_grp_count; g++) { name = get_phys_name(&efw->phys_out_grps[g], false); for (c = 0; c < efw->phys_out_grps[g].count; c++) { if (m < max) snd_iprintf(buffer, "\t%s [%d]: %d\n", name, c, linear[m++]); } } m = 0; max = min(efw->phys_in, meters->in_meters); linear = meters->values + meters->out_meters; snd_iprintf(buffer, " %d Inputs:\n", max); for (g = 0; g < efw->phys_in_grp_count; g++) { name = get_phys_name(&efw->phys_in_grps[g], true); for (c = 0; c < efw->phys_in_grps[g].count; c++) if (m < max) snd_iprintf(buffer, "\t%s [%d]: %d\n", name, c, linear[m++]); } end: kfree(meters); } static void proc_read_queues_state(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_efw *efw = entry->private_data; unsigned int consumed; if (efw->pull_ptr > efw->push_ptr) consumed = snd_efw_resp_buf_size - (unsigned int)(efw->pull_ptr - efw->push_ptr); else consumed = (unsigned int)(efw->push_ptr - efw->pull_ptr); snd_iprintf(buffer, "%d/%d\n", consumed, snd_efw_resp_buf_size); } static void add_node(struct snd_efw *efw, struct snd_info_entry *root, const char *name, void (*op)(struct snd_info_entry *e, struct snd_info_buffer *b)) { struct snd_info_entry *entry; entry = snd_info_create_card_entry(efw->card, name, root); if (entry) snd_info_set_text_ops(entry, efw, op); } void snd_efw_proc_init(struct snd_efw *efw) { struct snd_info_entry *root; /* * All nodes are automatically removed at snd_card_disconnect(), * by following to link list. */ root = snd_info_create_card_entry(efw->card, "firewire", efw->card->proc_root); if (root == NULL) return; root->mode = S_IFDIR | 0555; add_node(efw, root, "clock", proc_read_clock); add_node(efw, root, "firmware", proc_read_hwinfo); add_node(efw, root, "meters", proc_read_phys_meters); add_node(efw, root, "queues", proc_read_queues_state); }
linux-master
sound/firewire/fireworks/fireworks_proc.c
// SPDX-License-Identifier: GPL-2.0-only /* * fireworks_midi.c - a part of driver for Fireworks based devices * * Copyright (c) 2009-2010 Clemens Ladisch * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "fireworks.h" static int midi_open(struct snd_rawmidi_substream *substream) { struct snd_efw *efw = substream->rmidi->private_data; int err; err = snd_efw_stream_lock_try(efw); if (err < 0) goto end; mutex_lock(&efw->mutex); err = snd_efw_stream_reserve_duplex(efw, 0, 0, 0); if (err >= 0) { ++efw->substreams_counter; err = snd_efw_stream_start_duplex(efw); if (err < 0) --efw->substreams_counter; } mutex_unlock(&efw->mutex); if (err < 0) snd_efw_stream_lock_release(efw); end: return err; } static int midi_close(struct snd_rawmidi_substream *substream) { struct snd_efw *efw = substream->rmidi->private_data; mutex_lock(&efw->mutex); --efw->substreams_counter; snd_efw_stream_stop_duplex(efw); mutex_unlock(&efw->mutex); snd_efw_stream_lock_release(efw); return 0; } static void midi_capture_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_efw *efw = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&efw->lock, flags); if (up) amdtp_am824_midi_trigger(&efw->tx_stream, substrm->number, substrm); else amdtp_am824_midi_trigger(&efw->tx_stream, substrm->number, NULL); spin_unlock_irqrestore(&efw->lock, flags); } static void midi_playback_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_efw *efw = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&efw->lock, flags); if (up) amdtp_am824_midi_trigger(&efw->rx_stream, substrm->number, substrm); else amdtp_am824_midi_trigger(&efw->rx_stream, substrm->number, NULL); spin_unlock_irqrestore(&efw->lock, flags); } static void set_midi_substream_names(struct snd_efw *efw, struct snd_rawmidi_str *str) { struct snd_rawmidi_substream *subs; list_for_each_entry(subs, &str->substreams, list) { scnprintf(subs->name, sizeof(subs->name), "%s MIDI %d", efw->card->shortname, subs->number + 1); } } int snd_efw_create_midi_devices(struct snd_efw *efw) { static const struct snd_rawmidi_ops capture_ops = { .open = midi_open, .close = midi_close, .trigger = midi_capture_trigger, }; static const struct snd_rawmidi_ops playback_ops = { .open = midi_open, .close = midi_close, .trigger = midi_playback_trigger, }; struct snd_rawmidi *rmidi; struct snd_rawmidi_str *str; int err; /* create midi ports */ err = snd_rawmidi_new(efw->card, efw->card->driver, 0, efw->midi_out_ports, efw->midi_in_ports, &rmidi); if (err < 0) return err; snprintf(rmidi->name, sizeof(rmidi->name), "%s MIDI", efw->card->shortname); rmidi->private_data = efw; if (efw->midi_in_ports > 0) { rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &capture_ops); str = &rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT]; set_midi_substream_names(efw, str); } if (efw->midi_out_ports > 0) { rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &playback_ops); str = &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT]; set_midi_substream_names(efw, str); } if ((efw->midi_out_ports > 0) && (efw->midi_in_ports > 0)) rmidi->info_flags |= SNDRV_RAWMIDI_INFO_DUPLEX; return 0; }
linux-master
sound/firewire/fireworks/fireworks_midi.c
// SPDX-License-Identifier: GPL-2.0-only /* * fireworks_transaction.c - a part of driver for Fireworks based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ /* * Fireworks have its own transaction. The transaction can be delivered by AV/C * Vendor Specific command frame or usual asynchronous transaction. At least, * Windows driver and firmware version 5.5 or later don't use AV/C command. * * Transaction substance: * At first, 6 data exist. Following to the data, parameters for each command * exist. All of the parameters are 32 bit aligned to big endian. * data[0]: Length of transaction substance * data[1]: Transaction version * data[2]: Sequence number. This is incremented by the device * data[3]: Transaction category * data[4]: Transaction command * data[5]: Return value in response. * data[6-]: Parameters * * Transaction address: * command: 0xecc000000000 * response: 0xecc080000000 (default) * * I note that the address for response can be changed by command. But this * module uses the default address. */ #include "./fireworks.h" #define MEMORY_SPACE_EFW_COMMAND 0xecc000000000ULL #define MEMORY_SPACE_EFW_RESPONSE 0xecc080000000ULL #define ERROR_RETRIES 3 #define ERROR_DELAY_MS 5 #define EFC_TIMEOUT_MS 125 static DEFINE_SPINLOCK(instances_lock); static struct snd_efw *instances[SNDRV_CARDS] = SNDRV_DEFAULT_PTR; static DEFINE_SPINLOCK(transaction_queues_lock); static LIST_HEAD(transaction_queues); enum transaction_queue_state { STATE_PENDING, STATE_BUS_RESET, STATE_COMPLETE }; struct transaction_queue { struct list_head list; struct fw_unit *unit; void *buf; unsigned int size; u32 seqnum; enum transaction_queue_state state; wait_queue_head_t wait; }; int snd_efw_transaction_cmd(struct fw_unit *unit, const void *cmd, unsigned int size) { return snd_fw_transaction(unit, TCODE_WRITE_BLOCK_REQUEST, MEMORY_SPACE_EFW_COMMAND, (void *)cmd, size, 0); } int snd_efw_transaction_run(struct fw_unit *unit, const void *cmd, unsigned int cmd_size, void *resp, unsigned int resp_size) { struct transaction_queue t; unsigned int tries; int ret; t.unit = unit; t.buf = resp; t.size = resp_size; t.seqnum = be32_to_cpu(((struct snd_efw_transaction *)cmd)->seqnum) + 1; t.state = STATE_PENDING; init_waitqueue_head(&t.wait); spin_lock_irq(&transaction_queues_lock); list_add_tail(&t.list, &transaction_queues); spin_unlock_irq(&transaction_queues_lock); tries = 0; do { ret = snd_efw_transaction_cmd(t.unit, (void *)cmd, cmd_size); if (ret < 0) break; wait_event_timeout(t.wait, t.state != STATE_PENDING, msecs_to_jiffies(EFC_TIMEOUT_MS)); if (t.state == STATE_COMPLETE) { ret = t.size; break; } else if (t.state == STATE_BUS_RESET) { msleep(ERROR_DELAY_MS); } else if (++tries >= ERROR_RETRIES) { dev_err(&t.unit->device, "EFW transaction timed out\n"); ret = -EIO; break; } } while (1); spin_lock_irq(&transaction_queues_lock); list_del(&t.list); spin_unlock_irq(&transaction_queues_lock); return ret; } static void copy_resp_to_buf(struct snd_efw *efw, void *data, size_t length, int *rcode) { size_t capacity, till_end; struct snd_efw_transaction *t; t = (struct snd_efw_transaction *)data; length = min_t(size_t, be32_to_cpu(t->length) * sizeof(u32), length); spin_lock(&efw->lock); if (efw->push_ptr < efw->pull_ptr) capacity = (unsigned int)(efw->pull_ptr - efw->push_ptr); else capacity = snd_efw_resp_buf_size - (unsigned int)(efw->push_ptr - efw->pull_ptr); /* confirm enough space for this response */ if (capacity < length) { *rcode = RCODE_CONFLICT_ERROR; goto end; } /* copy to ring buffer */ while (length > 0) { till_end = snd_efw_resp_buf_size - (unsigned int)(efw->push_ptr - efw->resp_buf); till_end = min_t(unsigned int, length, till_end); memcpy(efw->push_ptr, data, till_end); efw->push_ptr += till_end; if (efw->push_ptr >= efw->resp_buf + snd_efw_resp_buf_size) efw->push_ptr -= snd_efw_resp_buf_size; length -= till_end; data += till_end; } /* for hwdep */ wake_up(&efw->hwdep_wait); *rcode = RCODE_COMPLETE; end: spin_unlock_irq(&efw->lock); } static void handle_resp_for_user(struct fw_card *card, int generation, int source, void *data, size_t length, int *rcode) { struct fw_device *device; struct snd_efw *efw; unsigned int i; spin_lock_irq(&instances_lock); for (i = 0; i < SNDRV_CARDS; i++) { efw = instances[i]; if (efw == NULL) continue; device = fw_parent_device(efw->unit); if ((device->card != card) || (device->generation != generation)) continue; smp_rmb(); /* node id vs. generation */ if (device->node_id != source) continue; break; } if (i == SNDRV_CARDS) goto end; copy_resp_to_buf(efw, data, length, rcode); end: spin_unlock(&instances_lock); } static void handle_resp_for_kernel(struct fw_card *card, int generation, int source, void *data, size_t length, int *rcode, u32 seqnum) { struct fw_device *device; struct transaction_queue *t; unsigned long flags; spin_lock_irqsave(&transaction_queues_lock, flags); list_for_each_entry(t, &transaction_queues, list) { device = fw_parent_device(t->unit); if ((device->card != card) || (device->generation != generation)) continue; smp_rmb(); /* node_id vs. generation */ if (device->node_id != source) continue; if ((t->state == STATE_PENDING) && (t->seqnum == seqnum)) { t->state = STATE_COMPLETE; t->size = min_t(unsigned int, length, t->size); memcpy(t->buf, data, t->size); wake_up(&t->wait); *rcode = RCODE_COMPLETE; } } spin_unlock_irqrestore(&transaction_queues_lock, flags); } static void efw_response(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *data, size_t length, void *callback_data) { int rcode, dummy; u32 seqnum; rcode = RCODE_TYPE_ERROR; if (length < sizeof(struct snd_efw_transaction)) { rcode = RCODE_DATA_ERROR; goto end; } else if (offset != MEMORY_SPACE_EFW_RESPONSE) { rcode = RCODE_ADDRESS_ERROR; goto end; } seqnum = be32_to_cpu(((struct snd_efw_transaction *)data)->seqnum); if (seqnum > SND_EFW_TRANSACTION_USER_SEQNUM_MAX + 1) { handle_resp_for_kernel(card, generation, source, data, length, &rcode, seqnum); if (snd_efw_resp_buf_debug) handle_resp_for_user(card, generation, source, data, length, &dummy); } else { handle_resp_for_user(card, generation, source, data, length, &rcode); } end: fw_send_response(card, request, rcode); } void snd_efw_transaction_add_instance(struct snd_efw *efw) { unsigned int i; spin_lock_irq(&instances_lock); for (i = 0; i < SNDRV_CARDS; i++) { if (instances[i] != NULL) continue; instances[i] = efw; break; } spin_unlock_irq(&instances_lock); } void snd_efw_transaction_remove_instance(struct snd_efw *efw) { unsigned int i; spin_lock_irq(&instances_lock); for (i = 0; i < SNDRV_CARDS; i++) { if (instances[i] != efw) continue; instances[i] = NULL; } spin_unlock_irq(&instances_lock); } void snd_efw_transaction_bus_reset(struct fw_unit *unit) { struct transaction_queue *t; spin_lock_irq(&transaction_queues_lock); list_for_each_entry(t, &transaction_queues, list) { if ((t->unit == unit) && (t->state == STATE_PENDING)) { t->state = STATE_BUS_RESET; wake_up(&t->wait); } } spin_unlock_irq(&transaction_queues_lock); } static struct fw_address_handler resp_register_handler = { .length = SND_EFW_RESPONSE_MAXIMUM_BYTES, .address_callback = efw_response }; int snd_efw_transaction_register(void) { static const struct fw_address_region resp_register_region = { .start = MEMORY_SPACE_EFW_RESPONSE, .end = MEMORY_SPACE_EFW_RESPONSE + SND_EFW_RESPONSE_MAXIMUM_BYTES }; return fw_core_add_address_handler(&resp_register_handler, &resp_register_region); } void snd_efw_transaction_unregister(void) { WARN_ON(!list_empty(&transaction_queues)); fw_core_remove_address_handler(&resp_register_handler); }
linux-master
sound/firewire/fireworks/fireworks_transaction.c
// SPDX-License-Identifier: GPL-2.0-only /* * fireworks_hwdep.c - a part of driver for Fireworks based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ /* * This codes have five functionalities. * * 1.get information about firewire node * 2.get notification about starting/stopping stream * 3.lock/unlock streaming * 4.transmit command of EFW transaction * 5.receive response of EFW transaction * */ #include "fireworks.h" static long hwdep_read_resp_buf(struct snd_efw *efw, char __user *buf, long remained, loff_t *offset) { unsigned int length, till_end, type; struct snd_efw_transaction *t; u8 *pull_ptr; long count = 0; if (remained < sizeof(type) + sizeof(struct snd_efw_transaction)) return -ENOSPC; /* data type is SNDRV_FIREWIRE_EVENT_EFW_RESPONSE */ type = SNDRV_FIREWIRE_EVENT_EFW_RESPONSE; if (copy_to_user(buf, &type, sizeof(type))) return -EFAULT; count += sizeof(type); remained -= sizeof(type); buf += sizeof(type); /* write into buffer as many responses as possible */ spin_lock_irq(&efw->lock); /* * When another task reaches here during this task's access to user * space, it picks up current position in buffer and can read the same * series of responses. */ pull_ptr = efw->pull_ptr; while (efw->push_ptr != pull_ptr) { t = (struct snd_efw_transaction *)(pull_ptr); length = be32_to_cpu(t->length) * sizeof(__be32); /* confirm enough space for this response */ if (remained < length) break; /* copy from ring buffer to user buffer */ while (length > 0) { till_end = snd_efw_resp_buf_size - (unsigned int)(pull_ptr - efw->resp_buf); till_end = min_t(unsigned int, length, till_end); spin_unlock_irq(&efw->lock); if (copy_to_user(buf, pull_ptr, till_end)) return -EFAULT; spin_lock_irq(&efw->lock); pull_ptr += till_end; if (pull_ptr >= efw->resp_buf + snd_efw_resp_buf_size) pull_ptr -= snd_efw_resp_buf_size; length -= till_end; buf += till_end; count += till_end; remained -= till_end; } } /* * All of tasks can read from the buffer nearly simultaneously, but the * last position for each task is different depending on the length of * given buffer. Here, for simplicity, a position of buffer is set by * the latest task. It's better for a listening application to allow one * thread to read from the buffer. Unless, each task can read different * sequence of responses depending on variation of buffer length. */ efw->pull_ptr = pull_ptr; spin_unlock_irq(&efw->lock); return count; } static long hwdep_read_locked(struct snd_efw *efw, char __user *buf, long count, loff_t *offset) { union snd_firewire_event event = { .lock_status.type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS, }; spin_lock_irq(&efw->lock); event.lock_status.status = (efw->dev_lock_count > 0); efw->dev_lock_changed = false; spin_unlock_irq(&efw->lock); count = min_t(long, count, sizeof(event.lock_status)); if (copy_to_user(buf, &event, count)) return -EFAULT; return count; } static long hwdep_read(struct snd_hwdep *hwdep, char __user *buf, long count, loff_t *offset) { struct snd_efw *efw = hwdep->private_data; DEFINE_WAIT(wait); bool dev_lock_changed; bool queued; spin_lock_irq(&efw->lock); dev_lock_changed = efw->dev_lock_changed; queued = efw->push_ptr != efw->pull_ptr; while (!dev_lock_changed && !queued) { prepare_to_wait(&efw->hwdep_wait, &wait, TASK_INTERRUPTIBLE); spin_unlock_irq(&efw->lock); schedule(); finish_wait(&efw->hwdep_wait, &wait); if (signal_pending(current)) return -ERESTARTSYS; spin_lock_irq(&efw->lock); dev_lock_changed = efw->dev_lock_changed; queued = efw->push_ptr != efw->pull_ptr; } spin_unlock_irq(&efw->lock); if (dev_lock_changed) count = hwdep_read_locked(efw, buf, count, offset); else if (queued) count = hwdep_read_resp_buf(efw, buf, count, offset); return count; } static long hwdep_write(struct snd_hwdep *hwdep, const char __user *data, long count, loff_t *offset) { struct snd_efw *efw = hwdep->private_data; u32 seqnum; u8 *buf; if (count < sizeof(struct snd_efw_transaction) || SND_EFW_RESPONSE_MAXIMUM_BYTES < count) return -EINVAL; buf = memdup_user(data, count); if (IS_ERR(buf)) return PTR_ERR(buf); /* check seqnum is not for kernel-land */ seqnum = be32_to_cpu(((struct snd_efw_transaction *)buf)->seqnum); if (seqnum > SND_EFW_TRANSACTION_USER_SEQNUM_MAX) { count = -EINVAL; goto end; } if (snd_efw_transaction_cmd(efw->unit, buf, count) < 0) count = -EIO; end: kfree(buf); return count; } static __poll_t hwdep_poll(struct snd_hwdep *hwdep, struct file *file, poll_table *wait) { struct snd_efw *efw = hwdep->private_data; __poll_t events; poll_wait(file, &efw->hwdep_wait, wait); spin_lock_irq(&efw->lock); if (efw->dev_lock_changed || efw->pull_ptr != efw->push_ptr) events = EPOLLIN | EPOLLRDNORM; else events = 0; spin_unlock_irq(&efw->lock); return events | EPOLLOUT; } static int hwdep_get_info(struct snd_efw *efw, void __user *arg) { struct fw_device *dev = fw_parent_device(efw->unit); struct snd_firewire_get_info info; memset(&info, 0, sizeof(info)); info.type = SNDRV_FIREWIRE_TYPE_FIREWORKS; info.card = dev->card->index; *(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]); *(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]); strscpy(info.device_name, dev_name(&dev->device), sizeof(info.device_name)); if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int hwdep_lock(struct snd_efw *efw) { int err; spin_lock_irq(&efw->lock); if (efw->dev_lock_count == 0) { efw->dev_lock_count = -1; err = 0; } else { err = -EBUSY; } spin_unlock_irq(&efw->lock); return err; } static int hwdep_unlock(struct snd_efw *efw) { int err; spin_lock_irq(&efw->lock); if (efw->dev_lock_count == -1) { efw->dev_lock_count = 0; err = 0; } else { err = -EBADFD; } spin_unlock_irq(&efw->lock); return err; } static int hwdep_release(struct snd_hwdep *hwdep, struct file *file) { struct snd_efw *efw = hwdep->private_data; spin_lock_irq(&efw->lock); if (efw->dev_lock_count == -1) efw->dev_lock_count = 0; spin_unlock_irq(&efw->lock); return 0; } static int hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { struct snd_efw *efw = hwdep->private_data; switch (cmd) { case SNDRV_FIREWIRE_IOCTL_GET_INFO: return hwdep_get_info(efw, (void __user *)arg); case SNDRV_FIREWIRE_IOCTL_LOCK: return hwdep_lock(efw); case SNDRV_FIREWIRE_IOCTL_UNLOCK: return hwdep_unlock(efw); default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static int hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { return hwdep_ioctl(hwdep, file, cmd, (unsigned long)compat_ptr(arg)); } #else #define hwdep_compat_ioctl NULL #endif int snd_efw_create_hwdep_device(struct snd_efw *efw) { static const struct snd_hwdep_ops ops = { .read = hwdep_read, .write = hwdep_write, .release = hwdep_release, .poll = hwdep_poll, .ioctl = hwdep_ioctl, .ioctl_compat = hwdep_compat_ioctl, }; struct snd_hwdep *hwdep; int err; err = snd_hwdep_new(efw->card, "Fireworks", 0, &hwdep); if (err < 0) goto end; strcpy(hwdep->name, "Fireworks"); hwdep->iface = SNDRV_HWDEP_IFACE_FW_FIREWORKS; hwdep->ops = ops; hwdep->private_data = efw; hwdep->exclusive = true; end: return err; }
linux-master
sound/firewire/fireworks/fireworks_hwdep.c
// SPDX-License-Identifier: GPL-2.0-only /* * fireworks_stream.c - a part of driver for Fireworks based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./fireworks.h" #define READY_TIMEOUT_MS 1000 static int init_stream(struct snd_efw *efw, struct amdtp_stream *stream) { struct cmp_connection *conn; enum cmp_direction c_dir; enum amdtp_stream_direction s_dir; int err; if (stream == &efw->tx_stream) { conn = &efw->out_conn; c_dir = CMP_OUTPUT; s_dir = AMDTP_IN_STREAM; } else { conn = &efw->in_conn; c_dir = CMP_INPUT; s_dir = AMDTP_OUT_STREAM; } err = cmp_connection_init(conn, efw->unit, c_dir, 0); if (err < 0) return err; err = amdtp_am824_init(stream, efw->unit, s_dir, CIP_BLOCKING | CIP_UNAWARE_SYT); if (err < 0) { amdtp_stream_destroy(stream); cmp_connection_destroy(conn); return err; } if (stream == &efw->tx_stream) { // Fireworks transmits NODATA packets with TAG0. efw->tx_stream.flags |= CIP_EMPTY_WITH_TAG0; // Fireworks has its own meaning for dbc. efw->tx_stream.flags |= CIP_DBC_IS_END_EVENT; // Fireworks reset dbc at bus reset. efw->tx_stream.flags |= CIP_SKIP_DBC_ZERO_CHECK; // But Recent firmwares starts packets with non-zero dbc. // Driver version 5.7.6 installs firmware version 5.7.3. if (efw->is_fireworks3 && (efw->firmware_version == 0x5070000 || efw->firmware_version == 0x5070300 || efw->firmware_version == 0x5080000)) efw->tx_stream.flags |= CIP_UNALIGHED_DBC; // AudioFire9 always reports wrong dbs. Onyx 1200F with the latest firmware (v4.6.0) // also report wrong dbs at 88.2 kHz or greater. if (efw->is_af9 || efw->firmware_version == 0x4060000) efw->tx_stream.flags |= CIP_WRONG_DBS; // Firmware version 5.5 reports fixed interval for dbc. if (efw->firmware_version == 0x5050000) efw->tx_stream.ctx_data.tx.dbc_interval = 8; } return err; } static int start_stream(struct snd_efw *efw, struct amdtp_stream *stream, unsigned int rate) { struct cmp_connection *conn; int err; if (stream == &efw->tx_stream) conn = &efw->out_conn; else conn = &efw->in_conn; // Establish connection via CMP. err = cmp_connection_establish(conn); if (err < 0) return err; // Start amdtp stream. err = amdtp_domain_add_stream(&efw->domain, stream, conn->resources.channel, conn->speed); if (err < 0) { cmp_connection_break(conn); return err; } return 0; } // This function should be called before starting the stream or after stopping // the streams. static void destroy_stream(struct snd_efw *efw, struct amdtp_stream *stream) { amdtp_stream_destroy(stream); if (stream == &efw->tx_stream) cmp_connection_destroy(&efw->out_conn); else cmp_connection_destroy(&efw->in_conn); } static int check_connection_used_by_others(struct snd_efw *efw, struct amdtp_stream *s) { struct cmp_connection *conn; bool used; int err; if (s == &efw->tx_stream) conn = &efw->out_conn; else conn = &efw->in_conn; err = cmp_connection_check_used(conn, &used); if ((err >= 0) && used && !amdtp_stream_running(s)) { dev_err(&efw->unit->device, "Connection established by others: %cPCR[%d]\n", (conn->direction == CMP_OUTPUT) ? 'o' : 'i', conn->pcr_index); err = -EBUSY; } return err; } int snd_efw_stream_init_duplex(struct snd_efw *efw) { int err; err = init_stream(efw, &efw->tx_stream); if (err < 0) return err; err = init_stream(efw, &efw->rx_stream); if (err < 0) { destroy_stream(efw, &efw->tx_stream); return err; } err = amdtp_domain_init(&efw->domain); if (err < 0) { destroy_stream(efw, &efw->tx_stream); destroy_stream(efw, &efw->rx_stream); return err; } // set IEC61883 compliant mode (actually not fully compliant...). err = snd_efw_command_set_tx_mode(efw, SND_EFW_TRANSPORT_MODE_IEC61883); if (err < 0) { destroy_stream(efw, &efw->tx_stream); destroy_stream(efw, &efw->rx_stream); } return err; } static int keep_resources(struct snd_efw *efw, struct amdtp_stream *stream, unsigned int rate, unsigned int mode) { unsigned int pcm_channels; unsigned int midi_ports; struct cmp_connection *conn; int err; if (stream == &efw->tx_stream) { pcm_channels = efw->pcm_capture_channels[mode]; midi_ports = efw->midi_out_ports; conn = &efw->out_conn; } else { pcm_channels = efw->pcm_playback_channels[mode]; midi_ports = efw->midi_in_ports; conn = &efw->in_conn; } err = amdtp_am824_set_parameters(stream, rate, pcm_channels, midi_ports, false); if (err < 0) return err; return cmp_connection_reserve(conn, amdtp_stream_get_max_payload(stream)); } int snd_efw_stream_reserve_duplex(struct snd_efw *efw, unsigned int rate, unsigned int frames_per_period, unsigned int frames_per_buffer) { unsigned int curr_rate; int err; // Considering JACK/FFADO streaming: // TODO: This can be removed hwdep functionality becomes popular. err = check_connection_used_by_others(efw, &efw->rx_stream); if (err < 0) return err; // stop streams if rate is different. err = snd_efw_command_get_sampling_rate(efw, &curr_rate); if (err < 0) return err; if (rate == 0) rate = curr_rate; if (rate != curr_rate) { amdtp_domain_stop(&efw->domain); cmp_connection_break(&efw->out_conn); cmp_connection_break(&efw->in_conn); cmp_connection_release(&efw->out_conn); cmp_connection_release(&efw->in_conn); } if (efw->substreams_counter == 0 || rate != curr_rate) { unsigned int mode; err = snd_efw_command_set_sampling_rate(efw, rate); if (err < 0) return err; err = snd_efw_get_multiplier_mode(rate, &mode); if (err < 0) return err; err = keep_resources(efw, &efw->tx_stream, rate, mode); if (err < 0) return err; err = keep_resources(efw, &efw->rx_stream, rate, mode); if (err < 0) { cmp_connection_release(&efw->in_conn); return err; } err = amdtp_domain_set_events_per_period(&efw->domain, frames_per_period, frames_per_buffer); if (err < 0) { cmp_connection_release(&efw->in_conn); cmp_connection_release(&efw->out_conn); return err; } } return 0; } int snd_efw_stream_start_duplex(struct snd_efw *efw) { unsigned int rate; int err = 0; // Need no substreams. if (efw->substreams_counter == 0) return -EIO; if (amdtp_streaming_error(&efw->rx_stream) || amdtp_streaming_error(&efw->tx_stream)) { amdtp_domain_stop(&efw->domain); cmp_connection_break(&efw->out_conn); cmp_connection_break(&efw->in_conn); } err = snd_efw_command_get_sampling_rate(efw, &rate); if (err < 0) return err; if (!amdtp_stream_running(&efw->rx_stream)) { unsigned int tx_init_skip_cycles; // Audiofire 2/4 skip an isochronous cycle several thousands after starting // packet transmission. if (efw->is_fireworks3 && !efw->is_af9) tx_init_skip_cycles = 6000; else tx_init_skip_cycles = 0; err = start_stream(efw, &efw->rx_stream, rate); if (err < 0) goto error; err = start_stream(efw, &efw->tx_stream, rate); if (err < 0) goto error; // NOTE: The device ignores presentation time expressed by the value of syt field // of CIP header in received packets. The sequence of the number of data blocks per // packet is important for media clock recovery. err = amdtp_domain_start(&efw->domain, tx_init_skip_cycles, true, false); if (err < 0) goto error; if (!amdtp_domain_wait_ready(&efw->domain, READY_TIMEOUT_MS)) { err = -ETIMEDOUT; goto error; } } return 0; error: amdtp_domain_stop(&efw->domain); cmp_connection_break(&efw->out_conn); cmp_connection_break(&efw->in_conn); return err; } void snd_efw_stream_stop_duplex(struct snd_efw *efw) { if (efw->substreams_counter == 0) { amdtp_domain_stop(&efw->domain); cmp_connection_break(&efw->out_conn); cmp_connection_break(&efw->in_conn); cmp_connection_release(&efw->out_conn); cmp_connection_release(&efw->in_conn); } } void snd_efw_stream_update_duplex(struct snd_efw *efw) { amdtp_domain_stop(&efw->domain); cmp_connection_break(&efw->out_conn); cmp_connection_break(&efw->in_conn); amdtp_stream_pcm_abort(&efw->rx_stream); amdtp_stream_pcm_abort(&efw->tx_stream); } void snd_efw_stream_destroy_duplex(struct snd_efw *efw) { amdtp_domain_destroy(&efw->domain); destroy_stream(efw, &efw->rx_stream); destroy_stream(efw, &efw->tx_stream); } void snd_efw_stream_lock_changed(struct snd_efw *efw) { efw->dev_lock_changed = true; wake_up(&efw->hwdep_wait); } int snd_efw_stream_lock_try(struct snd_efw *efw) { int err; spin_lock_irq(&efw->lock); /* user land lock this */ if (efw->dev_lock_count < 0) { err = -EBUSY; goto end; } /* this is the first time */ if (efw->dev_lock_count++ == 0) snd_efw_stream_lock_changed(efw); err = 0; end: spin_unlock_irq(&efw->lock); return err; } void snd_efw_stream_lock_release(struct snd_efw *efw) { spin_lock_irq(&efw->lock); if (WARN_ON(efw->dev_lock_count <= 0)) goto end; if (--efw->dev_lock_count == 0) snd_efw_stream_lock_changed(efw); end: spin_unlock_irq(&efw->lock); }
linux-master
sound/firewire/fireworks/fireworks_stream.c
// SPDX-License-Identifier: GPL-2.0-only /* * fireworks_command.c - a part of driver for Fireworks based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./fireworks.h" /* * This driver uses transaction version 1 or later to use extended hardware * information. Then too old devices are not available. * * Each commands are not required to have continuous sequence numbers. This * number is just used to match command and response. * * This module support a part of commands. Please see FFADO if you want to see * whole commands. But there are some commands which FFADO don't implement. * * Fireworks also supports AV/C general commands and AV/C Stream Format * Information commands. But this module don't use them. */ #define KERNEL_SEQNUM_MIN (SND_EFW_TRANSACTION_USER_SEQNUM_MAX + 2) #define KERNEL_SEQNUM_MAX ((u32)~0) /* for clock source and sampling rate */ struct efc_clock { u32 source; u32 sampling_rate; u32 index; }; /* command categories */ enum efc_category { EFC_CAT_HWINFO = 0, EFC_CAT_TRANSPORT = 2, EFC_CAT_HWCTL = 3, }; /* hardware info category commands */ enum efc_cmd_hwinfo { EFC_CMD_HWINFO_GET_CAPS = 0, EFC_CMD_HWINFO_GET_POLLED = 1, EFC_CMD_HWINFO_SET_RESP_ADDR = 2 }; enum efc_cmd_transport { EFC_CMD_TRANSPORT_SET_TX_MODE = 0 }; /* hardware control category commands */ enum efc_cmd_hwctl { EFC_CMD_HWCTL_SET_CLOCK = 0, EFC_CMD_HWCTL_GET_CLOCK = 1, EFC_CMD_HWCTL_IDENTIFY = 5 }; /* return values in response */ enum efr_status { EFR_STATUS_OK = 0, EFR_STATUS_BAD = 1, EFR_STATUS_BAD_COMMAND = 2, EFR_STATUS_COMM_ERR = 3, EFR_STATUS_BAD_QUAD_COUNT = 4, EFR_STATUS_UNSUPPORTED = 5, EFR_STATUS_1394_TIMEOUT = 6, EFR_STATUS_DSP_TIMEOUT = 7, EFR_STATUS_BAD_RATE = 8, EFR_STATUS_BAD_CLOCK = 9, EFR_STATUS_BAD_CHANNEL = 10, EFR_STATUS_BAD_PAN = 11, EFR_STATUS_FLASH_BUSY = 12, EFR_STATUS_BAD_MIRROR = 13, EFR_STATUS_BAD_LED = 14, EFR_STATUS_BAD_PARAMETER = 15, EFR_STATUS_INCOMPLETE = 0x80000000 }; static const char *const efr_status_names[] = { [EFR_STATUS_OK] = "OK", [EFR_STATUS_BAD] = "bad", [EFR_STATUS_BAD_COMMAND] = "bad command", [EFR_STATUS_COMM_ERR] = "comm err", [EFR_STATUS_BAD_QUAD_COUNT] = "bad quad count", [EFR_STATUS_UNSUPPORTED] = "unsupported", [EFR_STATUS_1394_TIMEOUT] = "1394 timeout", [EFR_STATUS_DSP_TIMEOUT] = "DSP timeout", [EFR_STATUS_BAD_RATE] = "bad rate", [EFR_STATUS_BAD_CLOCK] = "bad clock", [EFR_STATUS_BAD_CHANNEL] = "bad channel", [EFR_STATUS_BAD_PAN] = "bad pan", [EFR_STATUS_FLASH_BUSY] = "flash busy", [EFR_STATUS_BAD_MIRROR] = "bad mirror", [EFR_STATUS_BAD_LED] = "bad LED", [EFR_STATUS_BAD_PARAMETER] = "bad parameter", [EFR_STATUS_BAD_PARAMETER + 1] = "incomplete" }; static int efw_transaction(struct snd_efw *efw, unsigned int category, unsigned int command, const __be32 *params, unsigned int param_bytes, const __be32 *resp, unsigned int resp_bytes) { struct snd_efw_transaction *header; __be32 *buf; u32 seqnum; unsigned int buf_bytes, cmd_bytes; int err; /* calculate buffer size*/ buf_bytes = sizeof(struct snd_efw_transaction) + max(param_bytes, resp_bytes); /* keep buffer */ buf = kzalloc(buf_bytes, GFP_KERNEL); if (buf == NULL) return -ENOMEM; /* to keep consistency of sequence number */ spin_lock(&efw->lock); if ((efw->seqnum < KERNEL_SEQNUM_MIN) || (efw->seqnum >= KERNEL_SEQNUM_MAX - 2)) efw->seqnum = KERNEL_SEQNUM_MIN; else efw->seqnum += 2; seqnum = efw->seqnum; spin_unlock(&efw->lock); /* fill transaction header fields */ cmd_bytes = sizeof(struct snd_efw_transaction) + param_bytes; header = (struct snd_efw_transaction *)buf; header->length = cpu_to_be32(cmd_bytes / sizeof(__be32)); header->version = cpu_to_be32(1); header->seqnum = cpu_to_be32(seqnum); header->category = cpu_to_be32(category); header->command = cpu_to_be32(command); header->status = 0; /* fill transaction command parameters */ memcpy(header->params, params, param_bytes); err = snd_efw_transaction_run(efw->unit, buf, cmd_bytes, buf, buf_bytes); if (err < 0) goto end; /* check transaction header fields */ if ((be32_to_cpu(header->version) < 1) || (be32_to_cpu(header->category) != category) || (be32_to_cpu(header->command) != command) || (be32_to_cpu(header->status) != EFR_STATUS_OK)) { dev_err(&efw->unit->device, "EFW command failed [%u/%u]: %s\n", be32_to_cpu(header->category), be32_to_cpu(header->command), efr_status_names[be32_to_cpu(header->status)]); err = -EIO; goto end; } if (resp == NULL) goto end; /* fill transaction response parameters */ memset((void *)resp, 0, resp_bytes); resp_bytes = min_t(unsigned int, resp_bytes, be32_to_cpu(header->length) * sizeof(__be32) - sizeof(struct snd_efw_transaction)); memcpy((void *)resp, &buf[6], resp_bytes); end: kfree(buf); return err; } /* * The address in host system for transaction response is changable when the * device supports. struct hwinfo.flags includes its flag. The default is * MEMORY_SPACE_EFW_RESPONSE. */ int snd_efw_command_set_resp_addr(struct snd_efw *efw, u16 addr_high, u32 addr_low) { __be32 addr[2]; addr[0] = cpu_to_be32(addr_high); addr[1] = cpu_to_be32(addr_low); if (!efw->resp_addr_changable) return -ENOSYS; return efw_transaction(efw, EFC_CAT_HWCTL, EFC_CMD_HWINFO_SET_RESP_ADDR, addr, sizeof(addr), NULL, 0); } /* * This is for timestamp processing. In Windows mode, all 32bit fields of second * CIP header in AMDTP transmit packet is used for 'presentation timestamp'. In * 'no data' packet the value of this field is 0x90ffffff. */ int snd_efw_command_set_tx_mode(struct snd_efw *efw, enum snd_efw_transport_mode mode) { __be32 param = cpu_to_be32(mode); return efw_transaction(efw, EFC_CAT_TRANSPORT, EFC_CMD_TRANSPORT_SET_TX_MODE, &param, sizeof(param), NULL, 0); } int snd_efw_command_get_hwinfo(struct snd_efw *efw, struct snd_efw_hwinfo *hwinfo) { int err; err = efw_transaction(efw, EFC_CAT_HWINFO, EFC_CMD_HWINFO_GET_CAPS, NULL, 0, (__be32 *)hwinfo, sizeof(*hwinfo)); if (err < 0) goto end; be32_to_cpus(&hwinfo->flags); be32_to_cpus(&hwinfo->guid_hi); be32_to_cpus(&hwinfo->guid_lo); be32_to_cpus(&hwinfo->type); be32_to_cpus(&hwinfo->version); be32_to_cpus(&hwinfo->supported_clocks); be32_to_cpus(&hwinfo->amdtp_rx_pcm_channels); be32_to_cpus(&hwinfo->amdtp_tx_pcm_channels); be32_to_cpus(&hwinfo->phys_out); be32_to_cpus(&hwinfo->phys_in); be32_to_cpus(&hwinfo->phys_out_grp_count); be32_to_cpus(&hwinfo->phys_in_grp_count); be32_to_cpus(&hwinfo->midi_out_ports); be32_to_cpus(&hwinfo->midi_in_ports); be32_to_cpus(&hwinfo->max_sample_rate); be32_to_cpus(&hwinfo->min_sample_rate); be32_to_cpus(&hwinfo->dsp_version); be32_to_cpus(&hwinfo->arm_version); be32_to_cpus(&hwinfo->mixer_playback_channels); be32_to_cpus(&hwinfo->mixer_capture_channels); be32_to_cpus(&hwinfo->fpga_version); be32_to_cpus(&hwinfo->amdtp_rx_pcm_channels_2x); be32_to_cpus(&hwinfo->amdtp_tx_pcm_channels_2x); be32_to_cpus(&hwinfo->amdtp_rx_pcm_channels_4x); be32_to_cpus(&hwinfo->amdtp_tx_pcm_channels_4x); /* ensure terminated */ hwinfo->vendor_name[HWINFO_NAME_SIZE_BYTES - 1] = '\0'; hwinfo->model_name[HWINFO_NAME_SIZE_BYTES - 1] = '\0'; end: return err; } int snd_efw_command_get_phys_meters(struct snd_efw *efw, struct snd_efw_phys_meters *meters, unsigned int len) { u32 *buf = (u32 *)meters; unsigned int i; int err; err = efw_transaction(efw, EFC_CAT_HWINFO, EFC_CMD_HWINFO_GET_POLLED, NULL, 0, (__be32 *)meters, len); if (err >= 0) for (i = 0; i < len / sizeof(u32); i++) be32_to_cpus(&buf[i]); return err; } static int command_get_clock(struct snd_efw *efw, struct efc_clock *clock) { int err; err = efw_transaction(efw, EFC_CAT_HWCTL, EFC_CMD_HWCTL_GET_CLOCK, NULL, 0, (__be32 *)clock, sizeof(struct efc_clock)); if (err >= 0) { be32_to_cpus(&clock->source); be32_to_cpus(&clock->sampling_rate); be32_to_cpus(&clock->index); } return err; } /* give UINT_MAX if set nothing */ static int command_set_clock(struct snd_efw *efw, unsigned int source, unsigned int rate) { struct efc_clock clock = {0}; int err; /* check arguments */ if ((source == UINT_MAX) && (rate == UINT_MAX)) { err = -EINVAL; goto end; } /* get current status */ err = command_get_clock(efw, &clock); if (err < 0) goto end; /* no need */ if ((clock.source == source) && (clock.sampling_rate == rate)) goto end; /* set params */ if ((source != UINT_MAX) && (clock.source != source)) clock.source = source; if ((rate != UINT_MAX) && (clock.sampling_rate != rate)) clock.sampling_rate = rate; clock.index = 0; cpu_to_be32s(&clock.source); cpu_to_be32s(&clock.sampling_rate); cpu_to_be32s(&clock.index); err = efw_transaction(efw, EFC_CAT_HWCTL, EFC_CMD_HWCTL_SET_CLOCK, (__be32 *)&clock, sizeof(struct efc_clock), NULL, 0); if (err < 0) goto end; /* * With firmware version 5.8, just after changing clock state, these * parameters are not immediately retrieved by get command. In my * trial, there needs to be 100msec to get changed parameters. */ msleep(150); end: return err; } int snd_efw_command_get_clock_source(struct snd_efw *efw, enum snd_efw_clock_source *source) { int err; struct efc_clock clock = {0}; err = command_get_clock(efw, &clock); if (err >= 0) *source = clock.source; return err; } int snd_efw_command_get_sampling_rate(struct snd_efw *efw, unsigned int *rate) { int err; struct efc_clock clock = {0}; err = command_get_clock(efw, &clock); if (err >= 0) *rate = clock.sampling_rate; return err; } int snd_efw_command_set_sampling_rate(struct snd_efw *efw, unsigned int rate) { return command_set_clock(efw, UINT_MAX, rate); }
linux-master
sound/firewire/fireworks/fireworks_command.c
// SPDX-License-Identifier: GPL-2.0-only /* * dice_stream.c - a part of driver for DICE based devices * * Copyright (c) Clemens Ladisch <[email protected]> * Copyright (c) 2014 Takashi Sakamoto <[email protected]> */ #include "dice.h" #define READY_TIMEOUT_MS 200 #define NOTIFICATION_TIMEOUT_MS 100 struct reg_params { unsigned int count; unsigned int size; }; const unsigned int snd_dice_rates[SND_DICE_RATES_COUNT] = { /* mode 0 */ [0] = 32000, [1] = 44100, [2] = 48000, /* mode 1 */ [3] = 88200, [4] = 96000, /* mode 2 */ [5] = 176400, [6] = 192000, }; int snd_dice_stream_get_rate_mode(struct snd_dice *dice, unsigned int rate, enum snd_dice_rate_mode *mode) { /* Corresponding to each entry in snd_dice_rates. */ static const enum snd_dice_rate_mode modes[] = { [0] = SND_DICE_RATE_MODE_LOW, [1] = SND_DICE_RATE_MODE_LOW, [2] = SND_DICE_RATE_MODE_LOW, [3] = SND_DICE_RATE_MODE_MIDDLE, [4] = SND_DICE_RATE_MODE_MIDDLE, [5] = SND_DICE_RATE_MODE_HIGH, [6] = SND_DICE_RATE_MODE_HIGH, }; int i; for (i = 0; i < ARRAY_SIZE(snd_dice_rates); i++) { if (!(dice->clock_caps & BIT(i))) continue; if (snd_dice_rates[i] != rate) continue; *mode = modes[i]; return 0; } return -EINVAL; } static int select_clock(struct snd_dice *dice, unsigned int rate) { __be32 reg, new; u32 data; int i; int err; err = snd_dice_transaction_read_global(dice, GLOBAL_CLOCK_SELECT, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); data &= ~CLOCK_RATE_MASK; for (i = 0; i < ARRAY_SIZE(snd_dice_rates); ++i) { if (snd_dice_rates[i] == rate) break; } if (i == ARRAY_SIZE(snd_dice_rates)) return -EINVAL; data |= i << CLOCK_RATE_SHIFT; if (completion_done(&dice->clock_accepted)) reinit_completion(&dice->clock_accepted); new = cpu_to_be32(data); err = snd_dice_transaction_write_global(dice, GLOBAL_CLOCK_SELECT, &new, sizeof(new)); if (err < 0) return err; if (wait_for_completion_timeout(&dice->clock_accepted, msecs_to_jiffies(NOTIFICATION_TIMEOUT_MS)) == 0) { if (reg != new) return -ETIMEDOUT; } return 0; } static int get_register_params(struct snd_dice *dice, struct reg_params *tx_params, struct reg_params *rx_params) { __be32 reg[2]; int err; err = snd_dice_transaction_read_tx(dice, TX_NUMBER, reg, sizeof(reg)); if (err < 0) return err; tx_params->count = min_t(unsigned int, be32_to_cpu(reg[0]), MAX_STREAMS); tx_params->size = be32_to_cpu(reg[1]) * 4; err = snd_dice_transaction_read_rx(dice, RX_NUMBER, reg, sizeof(reg)); if (err < 0) return err; rx_params->count = min_t(unsigned int, be32_to_cpu(reg[0]), MAX_STREAMS); rx_params->size = be32_to_cpu(reg[1]) * 4; return 0; } static void release_resources(struct snd_dice *dice) { int i; for (i = 0; i < MAX_STREAMS; ++i) { fw_iso_resources_free(&dice->tx_resources[i]); fw_iso_resources_free(&dice->rx_resources[i]); } } static void stop_streams(struct snd_dice *dice, enum amdtp_stream_direction dir, struct reg_params *params) { __be32 reg; unsigned int i; for (i = 0; i < params->count; i++) { reg = cpu_to_be32((u32)-1); if (dir == AMDTP_IN_STREAM) { snd_dice_transaction_write_tx(dice, params->size * i + TX_ISOCHRONOUS, &reg, sizeof(reg)); } else { snd_dice_transaction_write_rx(dice, params->size * i + RX_ISOCHRONOUS, &reg, sizeof(reg)); } } } static int keep_resources(struct snd_dice *dice, struct amdtp_stream *stream, struct fw_iso_resources *resources, unsigned int rate, unsigned int pcm_chs, unsigned int midi_ports) { bool double_pcm_frames; unsigned int i; int err; // At 176.4/192.0 kHz, Dice has a quirk to transfer two PCM frames in // one data block of AMDTP packet. Thus sampling transfer frequency is // a half of PCM sampling frequency, i.e. PCM frames at 192.0 kHz are // transferred on AMDTP packets at 96 kHz. Two successive samples of a // channel are stored consecutively in the packet. This quirk is called // as 'Dual Wire'. // For this quirk, blocking mode is required and PCM buffer size should // be aligned to SYT_INTERVAL. double_pcm_frames = (rate > 96000 && !dice->disable_double_pcm_frames); if (double_pcm_frames) { rate /= 2; pcm_chs *= 2; } err = amdtp_am824_set_parameters(stream, rate, pcm_chs, midi_ports, double_pcm_frames); if (err < 0) return err; if (double_pcm_frames) { pcm_chs /= 2; for (i = 0; i < pcm_chs; i++) { amdtp_am824_set_pcm_position(stream, i, i * 2); amdtp_am824_set_pcm_position(stream, i + pcm_chs, i * 2 + 1); } } return fw_iso_resources_allocate(resources, amdtp_stream_get_max_payload(stream), fw_parent_device(dice->unit)->max_speed); } static int keep_dual_resources(struct snd_dice *dice, unsigned int rate, enum amdtp_stream_direction dir, struct reg_params *params) { enum snd_dice_rate_mode mode; int i; int err; err = snd_dice_stream_get_rate_mode(dice, rate, &mode); if (err < 0) return err; for (i = 0; i < params->count; ++i) { __be32 reg[2]; struct amdtp_stream *stream; struct fw_iso_resources *resources; unsigned int pcm_cache; unsigned int pcm_chs; unsigned int midi_ports; if (dir == AMDTP_IN_STREAM) { stream = &dice->tx_stream[i]; resources = &dice->tx_resources[i]; pcm_cache = dice->tx_pcm_chs[i][mode]; err = snd_dice_transaction_read_tx(dice, params->size * i + TX_NUMBER_AUDIO, reg, sizeof(reg)); } else { stream = &dice->rx_stream[i]; resources = &dice->rx_resources[i]; pcm_cache = dice->rx_pcm_chs[i][mode]; err = snd_dice_transaction_read_rx(dice, params->size * i + RX_NUMBER_AUDIO, reg, sizeof(reg)); } if (err < 0) return err; pcm_chs = be32_to_cpu(reg[0]); midi_ports = be32_to_cpu(reg[1]); // These are important for developer of this driver. if (pcm_chs != pcm_cache) { dev_info(&dice->unit->device, "cache mismatch: pcm: %u:%u, midi: %u\n", pcm_chs, pcm_cache, midi_ports); return -EPROTO; } err = keep_resources(dice, stream, resources, rate, pcm_chs, midi_ports); if (err < 0) return err; } return 0; } static void finish_session(struct snd_dice *dice, struct reg_params *tx_params, struct reg_params *rx_params) { stop_streams(dice, AMDTP_IN_STREAM, tx_params); stop_streams(dice, AMDTP_OUT_STREAM, rx_params); snd_dice_transaction_clear_enable(dice); } int snd_dice_stream_reserve_duplex(struct snd_dice *dice, unsigned int rate, unsigned int events_per_period, unsigned int events_per_buffer) { unsigned int curr_rate; int err; // Check sampling transmission frequency. err = snd_dice_transaction_get_rate(dice, &curr_rate); if (err < 0) return err; if (rate == 0) rate = curr_rate; if (dice->substreams_counter == 0 || curr_rate != rate) { struct reg_params tx_params, rx_params; amdtp_domain_stop(&dice->domain); err = get_register_params(dice, &tx_params, &rx_params); if (err < 0) return err; finish_session(dice, &tx_params, &rx_params); release_resources(dice); // Just after owning the unit (GLOBAL_OWNER), the unit can // return invalid stream formats. Selecting clock parameters // have an effect for the unit to refine it. err = select_clock(dice, rate); if (err < 0) return err; // After changing sampling transfer frequency, the value of // register can be changed. err = get_register_params(dice, &tx_params, &rx_params); if (err < 0) return err; err = keep_dual_resources(dice, rate, AMDTP_IN_STREAM, &tx_params); if (err < 0) goto error; err = keep_dual_resources(dice, rate, AMDTP_OUT_STREAM, &rx_params); if (err < 0) goto error; err = amdtp_domain_set_events_per_period(&dice->domain, events_per_period, events_per_buffer); if (err < 0) goto error; } return 0; error: release_resources(dice); return err; } static int start_streams(struct snd_dice *dice, enum amdtp_stream_direction dir, unsigned int rate, struct reg_params *params) { unsigned int max_speed = fw_parent_device(dice->unit)->max_speed; int i; int err; for (i = 0; i < params->count; i++) { struct amdtp_stream *stream; struct fw_iso_resources *resources; __be32 reg; if (dir == AMDTP_IN_STREAM) { stream = dice->tx_stream + i; resources = dice->tx_resources + i; } else { stream = dice->rx_stream + i; resources = dice->rx_resources + i; } reg = cpu_to_be32(resources->channel); if (dir == AMDTP_IN_STREAM) { err = snd_dice_transaction_write_tx(dice, params->size * i + TX_ISOCHRONOUS, &reg, sizeof(reg)); } else { err = snd_dice_transaction_write_rx(dice, params->size * i + RX_ISOCHRONOUS, &reg, sizeof(reg)); } if (err < 0) return err; if (dir == AMDTP_IN_STREAM) { reg = cpu_to_be32(max_speed); err = snd_dice_transaction_write_tx(dice, params->size * i + TX_SPEED, &reg, sizeof(reg)); if (err < 0) return err; } err = amdtp_domain_add_stream(&dice->domain, stream, resources->channel, max_speed); if (err < 0) return err; } return 0; } /* * MEMO: After this function, there're two states of streams: * - None streams are running. * - All streams are running. */ int snd_dice_stream_start_duplex(struct snd_dice *dice) { unsigned int generation = dice->rx_resources[0].generation; struct reg_params tx_params, rx_params; unsigned int i; unsigned int rate; enum snd_dice_rate_mode mode; int err; if (dice->substreams_counter == 0) return -EIO; err = get_register_params(dice, &tx_params, &rx_params); if (err < 0) return err; // Check error of packet streaming. for (i = 0; i < MAX_STREAMS; ++i) { if (amdtp_streaming_error(&dice->tx_stream[i]) || amdtp_streaming_error(&dice->rx_stream[i])) { amdtp_domain_stop(&dice->domain); finish_session(dice, &tx_params, &rx_params); break; } } if (generation != fw_parent_device(dice->unit)->card->generation) { for (i = 0; i < MAX_STREAMS; ++i) { if (i < tx_params.count) fw_iso_resources_update(dice->tx_resources + i); if (i < rx_params.count) fw_iso_resources_update(dice->rx_resources + i); } } // Check required streams are running or not. err = snd_dice_transaction_get_rate(dice, &rate); if (err < 0) return err; err = snd_dice_stream_get_rate_mode(dice, rate, &mode); if (err < 0) return err; for (i = 0; i < MAX_STREAMS; ++i) { if (dice->tx_pcm_chs[i][mode] > 0 && !amdtp_stream_running(&dice->tx_stream[i])) break; if (dice->rx_pcm_chs[i][mode] > 0 && !amdtp_stream_running(&dice->rx_stream[i])) break; } if (i < MAX_STREAMS) { // Start both streams. err = start_streams(dice, AMDTP_IN_STREAM, rate, &tx_params); if (err < 0) goto error; err = start_streams(dice, AMDTP_OUT_STREAM, rate, &rx_params); if (err < 0) goto error; err = snd_dice_transaction_set_enable(dice); if (err < 0) { dev_err(&dice->unit->device, "fail to enable interface\n"); goto error; } // MEMO: The device immediately starts packet transmission when enabled. Some // devices are strictly to generate any discontinuity in the sequence of tx packet // when they receives invalid sequence of presentation time in CIP header. The // sequence replay for media clock recovery can suppress the behaviour. err = amdtp_domain_start(&dice->domain, 0, true, false); if (err < 0) goto error; if (!amdtp_domain_wait_ready(&dice->domain, READY_TIMEOUT_MS)) { err = -ETIMEDOUT; goto error; } } return 0; error: amdtp_domain_stop(&dice->domain); finish_session(dice, &tx_params, &rx_params); return err; } /* * MEMO: After this function, there're two states of streams: * - None streams are running. * - All streams are running. */ void snd_dice_stream_stop_duplex(struct snd_dice *dice) { struct reg_params tx_params, rx_params; if (dice->substreams_counter == 0) { if (get_register_params(dice, &tx_params, &rx_params) >= 0) finish_session(dice, &tx_params, &rx_params); amdtp_domain_stop(&dice->domain); release_resources(dice); } } static int init_stream(struct snd_dice *dice, enum amdtp_stream_direction dir, unsigned int index) { struct amdtp_stream *stream; struct fw_iso_resources *resources; int err; if (dir == AMDTP_IN_STREAM) { stream = &dice->tx_stream[index]; resources = &dice->tx_resources[index]; } else { stream = &dice->rx_stream[index]; resources = &dice->rx_resources[index]; } err = fw_iso_resources_init(resources, dice->unit); if (err < 0) goto end; resources->channels_mask = 0x00000000ffffffffuLL; err = amdtp_am824_init(stream, dice->unit, dir, CIP_BLOCKING); if (err < 0) { amdtp_stream_destroy(stream); fw_iso_resources_destroy(resources); } end: return err; } /* * This function should be called before starting streams or after stopping * streams. */ static void destroy_stream(struct snd_dice *dice, enum amdtp_stream_direction dir, unsigned int index) { struct amdtp_stream *stream; struct fw_iso_resources *resources; if (dir == AMDTP_IN_STREAM) { stream = &dice->tx_stream[index]; resources = &dice->tx_resources[index]; } else { stream = &dice->rx_stream[index]; resources = &dice->rx_resources[index]; } amdtp_stream_destroy(stream); fw_iso_resources_destroy(resources); } int snd_dice_stream_init_duplex(struct snd_dice *dice) { int i, err; for (i = 0; i < MAX_STREAMS; i++) { err = init_stream(dice, AMDTP_IN_STREAM, i); if (err < 0) { for (; i >= 0; i--) destroy_stream(dice, AMDTP_IN_STREAM, i); goto end; } } for (i = 0; i < MAX_STREAMS; i++) { err = init_stream(dice, AMDTP_OUT_STREAM, i); if (err < 0) { for (; i >= 0; i--) destroy_stream(dice, AMDTP_OUT_STREAM, i); for (i = 0; i < MAX_STREAMS; i++) destroy_stream(dice, AMDTP_IN_STREAM, i); goto end; } } err = amdtp_domain_init(&dice->domain); if (err < 0) { for (i = 0; i < MAX_STREAMS; ++i) { destroy_stream(dice, AMDTP_OUT_STREAM, i); destroy_stream(dice, AMDTP_IN_STREAM, i); } } end: return err; } void snd_dice_stream_destroy_duplex(struct snd_dice *dice) { unsigned int i; for (i = 0; i < MAX_STREAMS; i++) { destroy_stream(dice, AMDTP_IN_STREAM, i); destroy_stream(dice, AMDTP_OUT_STREAM, i); } amdtp_domain_destroy(&dice->domain); } void snd_dice_stream_update_duplex(struct snd_dice *dice) { struct reg_params tx_params, rx_params; /* * On a bus reset, the DICE firmware disables streaming and then goes * off contemplating its own navel for hundreds of milliseconds before * it can react to any of our attempts to reenable streaming. This * means that we lose synchronization anyway, so we force our streams * to stop so that the application can restart them in an orderly * manner. */ dice->global_enabled = false; if (get_register_params(dice, &tx_params, &rx_params) == 0) { amdtp_domain_stop(&dice->domain); stop_streams(dice, AMDTP_IN_STREAM, &tx_params); stop_streams(dice, AMDTP_OUT_STREAM, &rx_params); } } int snd_dice_stream_detect_current_formats(struct snd_dice *dice) { unsigned int rate; enum snd_dice_rate_mode mode; __be32 reg[2]; struct reg_params tx_params, rx_params; int i; int err; /* If extended protocol is available, detect detail spec. */ err = snd_dice_detect_extension_formats(dice); if (err >= 0) return err; /* * Available stream format is restricted at current mode of sampling * clock. */ err = snd_dice_transaction_get_rate(dice, &rate); if (err < 0) return err; err = snd_dice_stream_get_rate_mode(dice, rate, &mode); if (err < 0) return err; /* * Just after owning the unit (GLOBAL_OWNER), the unit can return * invalid stream formats. Selecting clock parameters have an effect * for the unit to refine it. */ err = select_clock(dice, rate); if (err < 0) return err; err = get_register_params(dice, &tx_params, &rx_params); if (err < 0) return err; for (i = 0; i < tx_params.count; ++i) { err = snd_dice_transaction_read_tx(dice, tx_params.size * i + TX_NUMBER_AUDIO, reg, sizeof(reg)); if (err < 0) return err; dice->tx_pcm_chs[i][mode] = be32_to_cpu(reg[0]); dice->tx_midi_ports[i] = max_t(unsigned int, be32_to_cpu(reg[1]), dice->tx_midi_ports[i]); } for (i = 0; i < rx_params.count; ++i) { err = snd_dice_transaction_read_rx(dice, rx_params.size * i + RX_NUMBER_AUDIO, reg, sizeof(reg)); if (err < 0) return err; dice->rx_pcm_chs[i][mode] = be32_to_cpu(reg[0]); dice->rx_midi_ports[i] = max_t(unsigned int, be32_to_cpu(reg[1]), dice->rx_midi_ports[i]); } return 0; } static void dice_lock_changed(struct snd_dice *dice) { dice->dev_lock_changed = true; wake_up(&dice->hwdep_wait); } int snd_dice_stream_lock_try(struct snd_dice *dice) { int err; spin_lock_irq(&dice->lock); if (dice->dev_lock_count < 0) { err = -EBUSY; goto out; } if (dice->dev_lock_count++ == 0) dice_lock_changed(dice); err = 0; out: spin_unlock_irq(&dice->lock); return err; } void snd_dice_stream_lock_release(struct snd_dice *dice) { spin_lock_irq(&dice->lock); if (WARN_ON(dice->dev_lock_count <= 0)) goto out; if (--dice->dev_lock_count == 0) dice_lock_changed(dice); out: spin_unlock_irq(&dice->lock); }
linux-master
sound/firewire/dice/dice-stream.c
// SPDX-License-Identifier: GPL-2.0 // dice-weiss.c - a part of driver for DICE based devices // // Copyright (c) 2023 Rolf Anderegg and Michele Perrone #include "dice.h" struct dice_weiss_spec { unsigned int tx_pcm_chs[MAX_STREAMS][SND_DICE_RATE_MODE_COUNT]; unsigned int rx_pcm_chs[MAX_STREAMS][SND_DICE_RATE_MODE_COUNT]; }; // Weiss DAC202: 192kHz 2-channel DAC static const struct dice_weiss_spec dac202 = { .tx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, .rx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, }; // Weiss MAN301: 192kHz 2-channel music archive network player static const struct dice_weiss_spec man301 = { .tx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, .rx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, }; // Weiss INT202: 192kHz unidirectional 2-channel digital Firewire nterface static const struct dice_weiss_spec int202 = { .tx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, .rx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, }; // Weiss INT203: 192kHz bidirectional 2-channel digital Firewire nterface static const struct dice_weiss_spec int203 = { .tx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, .rx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, }; // Weiss ADC2: 192kHz A/D converter with microphone preamps and line nputs static const struct dice_weiss_spec adc2 = { .tx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, .rx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, }; // Weiss DAC2/Minerva: 192kHz 2-channel DAC static const struct dice_weiss_spec dac2_minerva = { .tx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, .rx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, }; // Weiss Vesta: 192kHz 2-channel Firewire to AES/EBU interface static const struct dice_weiss_spec vesta = { .tx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, .rx_pcm_chs = {{2, 2, 2}, {0, 0, 0} }, }; // Weiss AFI1: 192kHz 24-channel Firewire to ADAT or AES/EBU interface static const struct dice_weiss_spec afi1 = { .tx_pcm_chs = {{24, 16, 8}, {0, 0, 0} }, .rx_pcm_chs = {{24, 16, 8}, {0, 0, 0} }, }; int snd_dice_detect_weiss_formats(struct snd_dice *dice) { static const struct { u32 model_id; const struct dice_weiss_spec *spec; } *entry, entries[] = { {0x000007, &dac202}, {0x000008, &dac202}, // Maya edition: same audio I/O as DAC202. {0x000006, &int202}, {0x00000a, &int203}, {0x00000b, &man301}, {0x000001, &adc2}, {0x000003, &dac2_minerva}, {0x000002, &vesta}, {0x000004, &afi1}, }; struct fw_csr_iterator it; int key, val, model_id; int i; model_id = 0; fw_csr_iterator_init(&it, dice->unit->directory); while (fw_csr_iterator_next(&it, &key, &val)) { if (key == CSR_MODEL) { model_id = val; break; } } for (i = 0; i < ARRAY_SIZE(entries); ++i) { entry = entries + i; if (entry->model_id == model_id) break; } if (i == ARRAY_SIZE(entries)) return -ENODEV; memcpy(dice->tx_pcm_chs, entry->spec->tx_pcm_chs, MAX_STREAMS * SND_DICE_RATE_MODE_COUNT * sizeof(unsigned int)); memcpy(dice->rx_pcm_chs, entry->spec->rx_pcm_chs, MAX_STREAMS * SND_DICE_RATE_MODE_COUNT * sizeof(unsigned int)); return 0; }
linux-master
sound/firewire/dice/dice-weiss.c
// SPDX-License-Identifier: GPL-2.0-only /* * TC Applied Technologies Digital Interface Communications Engine driver * * Copyright (c) Clemens Ladisch <[email protected]> */ #include "dice.h" MODULE_DESCRIPTION("DICE driver"); MODULE_AUTHOR("Clemens Ladisch <[email protected]>"); MODULE_LICENSE("GPL"); #define OUI_WEISS 0x001c6a #define OUI_LOUD 0x000ff2 #define OUI_FOCUSRITE 0x00130e #define OUI_TCELECTRONIC 0x000166 #define OUI_ALESIS 0x000595 #define OUI_MAUDIO 0x000d6c #define OUI_MYTEK 0x001ee8 #define OUI_SSL 0x0050c2 // Actually ID reserved by IEEE. #define OUI_PRESONUS 0x000a92 #define OUI_HARMAN 0x000fd7 #define OUI_AVID 0x00a07e #define DICE_CATEGORY_ID 0x04 #define WEISS_CATEGORY_ID 0x00 #define LOUD_CATEGORY_ID 0x10 #define HARMAN_CATEGORY_ID 0x20 #define MODEL_ALESIS_IO_BOTH 0x000001 static int check_dice_category(struct fw_unit *unit) { struct fw_device *device = fw_parent_device(unit); struct fw_csr_iterator it; int key, val, vendor = -1, model = -1; unsigned int category; /* * Check that GUID and unit directory are constructed according to DICE * rules, i.e., that the specifier ID is the GUID's OUI, and that the * GUID chip ID consists of the 8-bit category ID, the 10-bit product * ID, and a 22-bit serial number. */ fw_csr_iterator_init(&it, unit->directory); while (fw_csr_iterator_next(&it, &key, &val)) { switch (key) { case CSR_SPECIFIER_ID: vendor = val; break; case CSR_MODEL: model = val; break; } } if (vendor == OUI_WEISS) category = WEISS_CATEGORY_ID; else if (vendor == OUI_LOUD) category = LOUD_CATEGORY_ID; else if (vendor == OUI_HARMAN) category = HARMAN_CATEGORY_ID; else category = DICE_CATEGORY_ID; if (device->config_rom[3] != ((vendor << 8) | category) || device->config_rom[4] >> 22 != model) return -ENODEV; return 0; } static int check_clock_caps(struct snd_dice *dice) { __be32 value; int err; /* some very old firmwares don't tell about their clock support */ if (dice->clock_caps > 0) { err = snd_dice_transaction_read_global(dice, GLOBAL_CLOCK_CAPABILITIES, &value, 4); if (err < 0) return err; dice->clock_caps = be32_to_cpu(value); } else { /* this should be supported by any device */ dice->clock_caps = CLOCK_CAP_RATE_44100 | CLOCK_CAP_RATE_48000 | CLOCK_CAP_SOURCE_ARX1 | CLOCK_CAP_SOURCE_INTERNAL; } return 0; } static void dice_card_strings(struct snd_dice *dice) { struct snd_card *card = dice->card; struct fw_device *dev = fw_parent_device(dice->unit); char vendor[32], model[32]; unsigned int i; int err; strcpy(card->driver, "DICE"); strcpy(card->shortname, "DICE"); BUILD_BUG_ON(NICK_NAME_SIZE < sizeof(card->shortname)); err = snd_dice_transaction_read_global(dice, GLOBAL_NICK_NAME, card->shortname, sizeof(card->shortname)); if (err >= 0) { /* DICE strings are returned in "always-wrong" endianness */ BUILD_BUG_ON(sizeof(card->shortname) % 4 != 0); for (i = 0; i < sizeof(card->shortname); i += 4) swab32s((u32 *)&card->shortname[i]); card->shortname[sizeof(card->shortname) - 1] = '\0'; } strcpy(vendor, "?"); fw_csr_string(dev->config_rom + 5, CSR_VENDOR, vendor, sizeof(vendor)); strcpy(model, "?"); fw_csr_string(dice->unit->directory, CSR_MODEL, model, sizeof(model)); snprintf(card->longname, sizeof(card->longname), "%s %s (serial %u) at %s, S%d", vendor, model, dev->config_rom[4] & 0x3fffff, dev_name(&dice->unit->device), 100 << dev->max_speed); strcpy(card->mixername, "DICE"); } static void dice_card_free(struct snd_card *card) { struct snd_dice *dice = card->private_data; snd_dice_stream_destroy_duplex(dice); snd_dice_transaction_destroy(dice); mutex_destroy(&dice->mutex); fw_unit_put(dice->unit); } static int dice_probe(struct fw_unit *unit, const struct ieee1394_device_id *entry) { struct snd_card *card; struct snd_dice *dice; snd_dice_detect_formats_t detect_formats; int err; if (!entry->driver_data && entry->vendor_id != OUI_SSL) { err = check_dice_category(unit); if (err < 0) return -ENODEV; } err = snd_card_new(&unit->device, -1, NULL, THIS_MODULE, sizeof(*dice), &card); if (err < 0) return err; card->private_free = dice_card_free; dice = card->private_data; dice->unit = fw_unit_get(unit); dev_set_drvdata(&unit->device, dice); dice->card = card; if (!entry->driver_data) detect_formats = snd_dice_stream_detect_current_formats; else detect_formats = (snd_dice_detect_formats_t)entry->driver_data; // Below models are compliant to IEC 61883-1/6 and have no quirk at high sampling transfer // frequency. // * Avid M-Box 3 Pro // * M-Audio Profire 610 // * M-Audio Profire 2626 if (entry->vendor_id == OUI_MAUDIO || entry->vendor_id == OUI_AVID) dice->disable_double_pcm_frames = true; spin_lock_init(&dice->lock); mutex_init(&dice->mutex); init_completion(&dice->clock_accepted); init_waitqueue_head(&dice->hwdep_wait); err = snd_dice_transaction_init(dice); if (err < 0) goto error; err = check_clock_caps(dice); if (err < 0) goto error; dice_card_strings(dice); err = detect_formats(dice); if (err < 0) goto error; err = snd_dice_stream_init_duplex(dice); if (err < 0) goto error; snd_dice_create_proc(dice); err = snd_dice_create_pcm(dice); if (err < 0) goto error; err = snd_dice_create_midi(dice); if (err < 0) goto error; err = snd_dice_create_hwdep(dice); if (err < 0) goto error; err = snd_card_register(card); if (err < 0) goto error; return 0; error: snd_card_free(card); return err; } static void dice_remove(struct fw_unit *unit) { struct snd_dice *dice = dev_get_drvdata(&unit->device); // Block till all of ALSA character devices are released. snd_card_free(dice->card); } static void dice_bus_reset(struct fw_unit *unit) { struct snd_dice *dice = dev_get_drvdata(&unit->device); /* The handler address register becomes initialized. */ snd_dice_transaction_reinit(dice); mutex_lock(&dice->mutex); snd_dice_stream_update_duplex(dice); mutex_unlock(&dice->mutex); } #define DICE_INTERFACE 0x000001 #define DICE_DEV_ENTRY_TYPICAL(vendor, model, data) \ { \ .match_flags = IEEE1394_MATCH_VENDOR_ID | \ IEEE1394_MATCH_MODEL_ID | \ IEEE1394_MATCH_SPECIFIER_ID | \ IEEE1394_MATCH_VERSION, \ .vendor_id = (vendor), \ .model_id = (model), \ .specifier_id = (vendor), \ .version = DICE_INTERFACE, \ .driver_data = (kernel_ulong_t)(data), \ } static const struct ieee1394_device_id dice_id_table[] = { // Avid M-Box 3 Pro. To match in probe function. DICE_DEV_ENTRY_TYPICAL(OUI_AVID, 0x000004, snd_dice_detect_extension_formats), /* M-Audio Profire 2626 has a different value in version field. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_MAUDIO, .model_id = 0x000010, .driver_data = (kernel_ulong_t)snd_dice_detect_extension_formats, }, /* M-Audio Profire 610 has a different value in version field. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_MAUDIO, .model_id = 0x000011, .driver_data = (kernel_ulong_t)snd_dice_detect_extension_formats, }, /* TC Electronic Konnekt 24D. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_TCELECTRONIC, .model_id = 0x000020, .driver_data = (kernel_ulong_t)snd_dice_detect_tcelectronic_formats, }, /* TC Electronic Konnekt 8. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_TCELECTRONIC, .model_id = 0x000021, .driver_data = (kernel_ulong_t)snd_dice_detect_tcelectronic_formats, }, /* TC Electronic Studio Konnekt 48. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_TCELECTRONIC, .model_id = 0x000022, .driver_data = (kernel_ulong_t)snd_dice_detect_tcelectronic_formats, }, /* TC Electronic Konnekt Live. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_TCELECTRONIC, .model_id = 0x000023, .driver_data = (kernel_ulong_t)snd_dice_detect_tcelectronic_formats, }, /* TC Electronic Desktop Konnekt 6. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_TCELECTRONIC, .model_id = 0x000024, .driver_data = (kernel_ulong_t)snd_dice_detect_tcelectronic_formats, }, /* TC Electronic Impact Twin. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_TCELECTRONIC, .model_id = 0x000027, .driver_data = (kernel_ulong_t)snd_dice_detect_tcelectronic_formats, }, /* TC Electronic Digital Konnekt x32. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_TCELECTRONIC, .model_id = 0x000030, .driver_data = (kernel_ulong_t)snd_dice_detect_tcelectronic_formats, }, /* Alesis iO14/iO26. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_ALESIS, .model_id = MODEL_ALESIS_IO_BOTH, .driver_data = (kernel_ulong_t)snd_dice_detect_alesis_formats, }, // Alesis MasterControl. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_ALESIS, .model_id = 0x000002, .driver_data = (kernel_ulong_t)snd_dice_detect_alesis_mastercontrol_formats, }, /* Mytek Stereo 192 DSD-DAC. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_MYTEK, .model_id = 0x000002, .driver_data = (kernel_ulong_t)snd_dice_detect_mytek_formats, }, // Solid State Logic, Duende Classic and Mini. // NOTE: each field of GUID in config ROM is not compliant to standard // DICE scheme. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_SSL, .model_id = 0x000070, }, // Presonus FireStudio. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_PRESONUS, .model_id = 0x000008, .driver_data = (kernel_ulong_t)snd_dice_detect_presonus_formats, }, // Lexicon I-ONYX FW810S. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_HARMAN, .model_id = 0x000001, .driver_data = (kernel_ulong_t)snd_dice_detect_harman_formats, }, // Focusrite Saffire Pro 40 with TCD3070-CH. // The model has quirk in its GUID, in which model field is 0x000013 and different from // model ID (0x0000de) in its root/unit directory. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_FOCUSRITE, .model_id = 0x0000de, .driver_data = (kernel_ulong_t)snd_dice_detect_focusrite_pro40_tcd3070_formats, }, // Weiss DAC202: 192kHz 2-channel DAC { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_WEISS, .model_id = 0x000007, .driver_data = (kernel_ulong_t)snd_dice_detect_weiss_formats, }, // Weiss DAC202: 192kHz 2-channel DAC (Maya edition) { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_WEISS, .model_id = 0x000008, .driver_data = (kernel_ulong_t)snd_dice_detect_weiss_formats, }, // Weiss MAN301: 192kHz 2-channel music archive network player { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_WEISS, .model_id = 0x00000b, .driver_data = (kernel_ulong_t)snd_dice_detect_weiss_formats, }, // Weiss INT202: 192kHz unidirectional 2-channel digital Firewire face { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_WEISS, .model_id = 0x000006, .driver_data = (kernel_ulong_t)snd_dice_detect_weiss_formats, }, // Weiss INT203: 192kHz bidirectional 2-channel digital Firewire face { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_WEISS, .model_id = 0x00000a, .driver_data = (kernel_ulong_t)snd_dice_detect_weiss_formats, }, // Weiss ADC2: 192kHz A/D converter with microphone preamps and inputs { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_WEISS, .model_id = 0x000001, .driver_data = (kernel_ulong_t)snd_dice_detect_weiss_formats, }, // Weiss DAC2/Minerva: 192kHz 2-channel DAC { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_WEISS, .model_id = 0x000003, .driver_data = (kernel_ulong_t)snd_dice_detect_weiss_formats, }, // Weiss Vesta: 192kHz 2-channel Firewire to AES/EBU interface { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_WEISS, .model_id = 0x000002, .driver_data = (kernel_ulong_t)snd_dice_detect_weiss_formats, }, // Weiss AFI1: 192kHz 24-channel Firewire to ADAT or AES/EBU face { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_MODEL_ID, .vendor_id = OUI_WEISS, .model_id = 0x000004, .driver_data = (kernel_ulong_t)snd_dice_detect_weiss_formats, }, { .match_flags = IEEE1394_MATCH_VERSION, .version = DICE_INTERFACE, }, { } }; MODULE_DEVICE_TABLE(ieee1394, dice_id_table); static struct fw_driver dice_driver = { .driver = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .bus = &fw_bus_type, }, .probe = dice_probe, .update = dice_bus_reset, .remove = dice_remove, .id_table = dice_id_table, }; static int __init alsa_dice_init(void) { return driver_register(&dice_driver.driver); } static void __exit alsa_dice_exit(void) { driver_unregister(&dice_driver.driver); } module_init(alsa_dice_init); module_exit(alsa_dice_exit);
linux-master
sound/firewire/dice/dice.c
// SPDX-License-Identifier: GPL-2.0 /* * dice-mytek.c - a part of driver for DICE based devices * * Copyright (c) 2018 Melvin Vermeeren */ #include "dice.h" struct dice_mytek_spec { unsigned int tx_pcm_chs[MAX_STREAMS][SND_DICE_RATE_MODE_COUNT]; unsigned int rx_pcm_chs[MAX_STREAMS][SND_DICE_RATE_MODE_COUNT]; }; static const struct dice_mytek_spec stereo_192_dsd_dac = { /* AES, TOSLINK, SPDIF, ADAT inputs on device */ .tx_pcm_chs = {{8, 8, 8}, {0, 0, 0} }, /* PCM 44.1-192, native DSD64/DSD128 to device */ .rx_pcm_chs = {{4, 4, 4}, {0, 0, 0} } }; /* * Mytek has a few other firewire-capable devices, though newer models appear * to lack the port more often than not. As I don't have access to any of them * they are missing here. An example is the Mytek 8x192 ADDA, which is DICE. */ int snd_dice_detect_mytek_formats(struct snd_dice *dice) { int i; const struct dice_mytek_spec *dev; dev = &stereo_192_dsd_dac; memcpy(dice->tx_pcm_chs, dev->tx_pcm_chs, MAX_STREAMS * SND_DICE_RATE_MODE_COUNT * sizeof(unsigned int)); memcpy(dice->rx_pcm_chs, dev->rx_pcm_chs, MAX_STREAMS * SND_DICE_RATE_MODE_COUNT * sizeof(unsigned int)); for (i = 0; i < MAX_STREAMS; ++i) { dice->tx_midi_ports[i] = 0; dice->rx_midi_ports[i] = 0; } return 0; }
linux-master
sound/firewire/dice/dice-mytek.c
// SPDX-License-Identifier: GPL-2.0 // dice-presonus.c - a part of driver for DICE based devices // // Copyright (c) 2019 Takashi Sakamoto #include "dice.h" struct dice_presonus_spec { unsigned int tx_pcm_chs[MAX_STREAMS][SND_DICE_RATE_MODE_COUNT]; unsigned int rx_pcm_chs[MAX_STREAMS][SND_DICE_RATE_MODE_COUNT]; bool has_midi; }; static const struct dice_presonus_spec dice_presonus_firesutio = { .tx_pcm_chs = {{16, 16, 0}, {10, 2, 0} }, .rx_pcm_chs = {{16, 16, 0}, {10, 2, 0} }, .has_midi = true, }; int snd_dice_detect_presonus_formats(struct snd_dice *dice) { static const struct { u32 model_id; const struct dice_presonus_spec *spec; } *entry, entries[] = { {0x000008, &dice_presonus_firesutio}, }; struct fw_csr_iterator it; int key, val, model_id; int i; model_id = 0; fw_csr_iterator_init(&it, dice->unit->directory); while (fw_csr_iterator_next(&it, &key, &val)) { if (key == CSR_MODEL) { model_id = val; break; } } for (i = 0; i < ARRAY_SIZE(entries); ++i) { entry = entries + i; if (entry->model_id == model_id) break; } if (i == ARRAY_SIZE(entries)) return -ENODEV; memcpy(dice->tx_pcm_chs, entry->spec->tx_pcm_chs, MAX_STREAMS * SND_DICE_RATE_MODE_COUNT * sizeof(unsigned int)); memcpy(dice->rx_pcm_chs, entry->spec->rx_pcm_chs, MAX_STREAMS * SND_DICE_RATE_MODE_COUNT * sizeof(unsigned int)); if (entry->spec->has_midi) { dice->tx_midi_ports[0] = 1; dice->rx_midi_ports[0] = 1; } return 0; }
linux-master
sound/firewire/dice/dice-presonus.c
// SPDX-License-Identifier: GPL-2.0 // dice-focusrite.c - a part of driver for DICE based devices // // Copyright (c) 2022 Takashi Sakamoto #include "dice.h" int snd_dice_detect_focusrite_pro40_tcd3070_formats(struct snd_dice *dice) { // Focusrite shipped several variants of Saffire Pro 40. One of them is based on TCD3070-CH // apart from the others with TCD2220. It doesn't support TCAT protocol extension. dice->tx_pcm_chs[0][0] = 20; dice->tx_midi_ports[0] = 1; dice->rx_pcm_chs[0][0] = 20; dice->rx_midi_ports[0] = 1; dice->tx_pcm_chs[0][1] = 16; dice->tx_midi_ports[1] = 1; dice->rx_pcm_chs[0][1] = 16; dice->rx_midi_ports[1] = 1; return 0; }
linux-master
sound/firewire/dice/dice-focusrite.c
// SPDX-License-Identifier: GPL-2.0-only /* * dice_pcm.c - a part of driver for DICE based devices * * Copyright (c) Clemens Ladisch <[email protected]> * Copyright (c) 2014 Takashi Sakamoto <[email protected]> */ #include "dice.h" static int dice_rate_constraint(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_pcm_substream *substream = rule->private; struct snd_dice *dice = substream->private_data; unsigned int index = substream->pcm->device; const struct snd_interval *c = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval rates = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int *pcm_channels; enum snd_dice_rate_mode mode; unsigned int i, rate; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) pcm_channels = dice->tx_pcm_chs[index]; else pcm_channels = dice->rx_pcm_chs[index]; for (i = 0; i < ARRAY_SIZE(snd_dice_rates); ++i) { rate = snd_dice_rates[i]; if (snd_dice_stream_get_rate_mode(dice, rate, &mode) < 0) continue; if (!snd_interval_test(c, pcm_channels[mode])) continue; rates.min = min(rates.min, rate); rates.max = max(rates.max, rate); } return snd_interval_refine(r, &rates); } static int dice_channels_constraint(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_pcm_substream *substream = rule->private; struct snd_dice *dice = substream->private_data; unsigned int index = substream->pcm->device; const struct snd_interval *r = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval channels = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int *pcm_channels; enum snd_dice_rate_mode mode; unsigned int i, rate; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) pcm_channels = dice->tx_pcm_chs[index]; else pcm_channels = dice->rx_pcm_chs[index]; for (i = 0; i < ARRAY_SIZE(snd_dice_rates); ++i) { rate = snd_dice_rates[i]; if (snd_dice_stream_get_rate_mode(dice, rate, &mode) < 0) continue; if (!snd_interval_test(r, rate)) continue; channels.min = min(channels.min, pcm_channels[mode]); channels.max = max(channels.max, pcm_channels[mode]); } return snd_interval_refine(c, &channels); } static int limit_channels_and_rates(struct snd_dice *dice, struct snd_pcm_runtime *runtime, enum amdtp_stream_direction dir, unsigned int index) { struct snd_pcm_hardware *hw = &runtime->hw; unsigned int *pcm_channels; unsigned int i; if (dir == AMDTP_IN_STREAM) pcm_channels = dice->tx_pcm_chs[index]; else pcm_channels = dice->rx_pcm_chs[index]; hw->channels_min = UINT_MAX; hw->channels_max = 0; for (i = 0; i < ARRAY_SIZE(snd_dice_rates); ++i) { enum snd_dice_rate_mode mode; unsigned int rate, channels; rate = snd_dice_rates[i]; if (snd_dice_stream_get_rate_mode(dice, rate, &mode) < 0) continue; hw->rates |= snd_pcm_rate_to_rate_bit(rate); channels = pcm_channels[mode]; if (channels == 0) continue; hw->channels_min = min(hw->channels_min, channels); hw->channels_max = max(hw->channels_max, channels); } snd_pcm_limit_hw_rates(runtime); return 0; } static int init_hw_info(struct snd_dice *dice, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_pcm_hardware *hw = &runtime->hw; unsigned int index = substream->pcm->device; enum amdtp_stream_direction dir; struct amdtp_stream *stream; int err; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { hw->formats = AM824_IN_PCM_FORMAT_BITS; dir = AMDTP_IN_STREAM; stream = &dice->tx_stream[index]; } else { hw->formats = AM824_OUT_PCM_FORMAT_BITS; dir = AMDTP_OUT_STREAM; stream = &dice->rx_stream[index]; } err = limit_channels_and_rates(dice, substream->runtime, dir, index); if (err < 0) return err; err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, dice_rate_constraint, substream, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (err < 0) return err; err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, dice_channels_constraint, substream, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) return err; return amdtp_am824_add_pcm_hw_constraints(stream, runtime); } static int pcm_open(struct snd_pcm_substream *substream) { struct snd_dice *dice = substream->private_data; struct amdtp_domain *d = &dice->domain; unsigned int source; bool internal; int err; err = snd_dice_stream_lock_try(dice); if (err < 0) return err; err = init_hw_info(dice, substream); if (err < 0) goto err_locked; err = snd_dice_transaction_get_clock_source(dice, &source); if (err < 0) goto err_locked; switch (source) { case CLOCK_SOURCE_AES1: case CLOCK_SOURCE_AES2: case CLOCK_SOURCE_AES3: case CLOCK_SOURCE_AES4: case CLOCK_SOURCE_AES_ANY: case CLOCK_SOURCE_ADAT: case CLOCK_SOURCE_TDIF: case CLOCK_SOURCE_WC: internal = false; break; default: internal = true; break; } mutex_lock(&dice->mutex); // When source of clock is not internal or any stream is reserved for // transmission of PCM frames, the available sampling rate is limited // at current one. if (!internal || (dice->substreams_counter > 0 && d->events_per_period > 0)) { unsigned int frames_per_period = d->events_per_period; unsigned int frames_per_buffer = d->events_per_buffer; unsigned int rate; err = snd_dice_transaction_get_rate(dice, &rate); if (err < 0) { mutex_unlock(&dice->mutex); goto err_locked; } substream->runtime->hw.rate_min = rate; substream->runtime->hw.rate_max = rate; if (frames_per_period > 0) { // For double_pcm_frame quirk. if (rate > 96000 && !dice->disable_double_pcm_frames) { frames_per_period *= 2; frames_per_buffer *= 2; } err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, frames_per_period, frames_per_period); if (err < 0) { mutex_unlock(&dice->mutex); goto err_locked; } err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, frames_per_buffer, frames_per_buffer); if (err < 0) { mutex_unlock(&dice->mutex); goto err_locked; } } } mutex_unlock(&dice->mutex); snd_pcm_set_sync(substream); return 0; err_locked: snd_dice_stream_lock_release(dice); return err; } static int pcm_close(struct snd_pcm_substream *substream) { struct snd_dice *dice = substream->private_data; snd_dice_stream_lock_release(dice); return 0; } static int pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_dice *dice = substream->private_data; int err = 0; if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { unsigned int rate = params_rate(hw_params); unsigned int events_per_period = params_period_size(hw_params); unsigned int events_per_buffer = params_buffer_size(hw_params); mutex_lock(&dice->mutex); // For double_pcm_frame quirk. if (rate > 96000 && !dice->disable_double_pcm_frames) { events_per_period /= 2; events_per_buffer /= 2; } err = snd_dice_stream_reserve_duplex(dice, rate, events_per_period, events_per_buffer); if (err >= 0) ++dice->substreams_counter; mutex_unlock(&dice->mutex); } return err; } static int pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_dice *dice = substream->private_data; mutex_lock(&dice->mutex); if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) --dice->substreams_counter; snd_dice_stream_stop_duplex(dice); mutex_unlock(&dice->mutex); return 0; } static int capture_prepare(struct snd_pcm_substream *substream) { struct snd_dice *dice = substream->private_data; struct amdtp_stream *stream = &dice->tx_stream[substream->pcm->device]; int err; mutex_lock(&dice->mutex); err = snd_dice_stream_start_duplex(dice); mutex_unlock(&dice->mutex); if (err >= 0) amdtp_stream_pcm_prepare(stream); return 0; } static int playback_prepare(struct snd_pcm_substream *substream) { struct snd_dice *dice = substream->private_data; struct amdtp_stream *stream = &dice->rx_stream[substream->pcm->device]; int err; mutex_lock(&dice->mutex); err = snd_dice_stream_start_duplex(dice); mutex_unlock(&dice->mutex); if (err >= 0) amdtp_stream_pcm_prepare(stream); return err; } static int capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_dice *dice = substream->private_data; struct amdtp_stream *stream = &dice->tx_stream[substream->pcm->device]; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(stream, NULL); break; default: return -EINVAL; } return 0; } static int playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_dice *dice = substream->private_data; struct amdtp_stream *stream = &dice->rx_stream[substream->pcm->device]; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(stream, NULL); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t capture_pointer(struct snd_pcm_substream *substream) { struct snd_dice *dice = substream->private_data; struct amdtp_stream *stream = &dice->tx_stream[substream->pcm->device]; return amdtp_domain_stream_pcm_pointer(&dice->domain, stream); } static snd_pcm_uframes_t playback_pointer(struct snd_pcm_substream *substream) { struct snd_dice *dice = substream->private_data; struct amdtp_stream *stream = &dice->rx_stream[substream->pcm->device]; return amdtp_domain_stream_pcm_pointer(&dice->domain, stream); } static int capture_ack(struct snd_pcm_substream *substream) { struct snd_dice *dice = substream->private_data; struct amdtp_stream *stream = &dice->tx_stream[substream->pcm->device]; return amdtp_domain_stream_pcm_ack(&dice->domain, stream); } static int playback_ack(struct snd_pcm_substream *substream) { struct snd_dice *dice = substream->private_data; struct amdtp_stream *stream = &dice->rx_stream[substream->pcm->device]; return amdtp_domain_stream_pcm_ack(&dice->domain, stream); } int snd_dice_create_pcm(struct snd_dice *dice) { static const struct snd_pcm_ops capture_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = capture_prepare, .trigger = capture_trigger, .pointer = capture_pointer, .ack = capture_ack, }; static const struct snd_pcm_ops playback_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = playback_prepare, .trigger = playback_trigger, .pointer = playback_pointer, .ack = playback_ack, }; struct snd_pcm *pcm; unsigned int capture, playback; int i, j; int err; for (i = 0; i < MAX_STREAMS; i++) { capture = playback = 0; for (j = 0; j < SND_DICE_RATE_MODE_COUNT; ++j) { if (dice->tx_pcm_chs[i][j] > 0) capture = 1; if (dice->rx_pcm_chs[i][j] > 0) playback = 1; } err = snd_pcm_new(dice->card, "DICE", i, playback, capture, &pcm); if (err < 0) return err; pcm->private_data = dice; strcpy(pcm->name, dice->card->shortname); if (capture > 0) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops); if (playback > 0) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0); } return 0; }
linux-master
sound/firewire/dice/dice-pcm.c
// SPDX-License-Identifier: GPL-2.0-only /* * dice_hwdep.c - a part of driver for DICE based devices * * Copyright (c) Clemens Ladisch <[email protected]> * Copyright (c) 2014 Takashi Sakamoto <[email protected]> */ #include "dice.h" static long hwdep_read(struct snd_hwdep *hwdep, char __user *buf, long count, loff_t *offset) { struct snd_dice *dice = hwdep->private_data; DEFINE_WAIT(wait); union snd_firewire_event event; spin_lock_irq(&dice->lock); while (!dice->dev_lock_changed && dice->notification_bits == 0) { prepare_to_wait(&dice->hwdep_wait, &wait, TASK_INTERRUPTIBLE); spin_unlock_irq(&dice->lock); schedule(); finish_wait(&dice->hwdep_wait, &wait); if (signal_pending(current)) return -ERESTARTSYS; spin_lock_irq(&dice->lock); } memset(&event, 0, sizeof(event)); if (dice->dev_lock_changed) { event.lock_status.type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS; event.lock_status.status = dice->dev_lock_count > 0; dice->dev_lock_changed = false; count = min_t(long, count, sizeof(event.lock_status)); } else { event.dice_notification.type = SNDRV_FIREWIRE_EVENT_DICE_NOTIFICATION; event.dice_notification.notification = dice->notification_bits; dice->notification_bits = 0; count = min_t(long, count, sizeof(event.dice_notification)); } spin_unlock_irq(&dice->lock); if (copy_to_user(buf, &event, count)) return -EFAULT; return count; } static __poll_t hwdep_poll(struct snd_hwdep *hwdep, struct file *file, poll_table *wait) { struct snd_dice *dice = hwdep->private_data; __poll_t events; poll_wait(file, &dice->hwdep_wait, wait); spin_lock_irq(&dice->lock); if (dice->dev_lock_changed || dice->notification_bits != 0) events = EPOLLIN | EPOLLRDNORM; else events = 0; spin_unlock_irq(&dice->lock); return events; } static int hwdep_get_info(struct snd_dice *dice, void __user *arg) { struct fw_device *dev = fw_parent_device(dice->unit); struct snd_firewire_get_info info; memset(&info, 0, sizeof(info)); info.type = SNDRV_FIREWIRE_TYPE_DICE; info.card = dev->card->index; *(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]); *(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]); strscpy(info.device_name, dev_name(&dev->device), sizeof(info.device_name)); if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int hwdep_lock(struct snd_dice *dice) { int err; spin_lock_irq(&dice->lock); if (dice->dev_lock_count == 0) { dice->dev_lock_count = -1; err = 0; } else { err = -EBUSY; } spin_unlock_irq(&dice->lock); return err; } static int hwdep_unlock(struct snd_dice *dice) { int err; spin_lock_irq(&dice->lock); if (dice->dev_lock_count == -1) { dice->dev_lock_count = 0; err = 0; } else { err = -EBADFD; } spin_unlock_irq(&dice->lock); return err; } static int hwdep_release(struct snd_hwdep *hwdep, struct file *file) { struct snd_dice *dice = hwdep->private_data; spin_lock_irq(&dice->lock); if (dice->dev_lock_count == -1) dice->dev_lock_count = 0; spin_unlock_irq(&dice->lock); return 0; } static int hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { struct snd_dice *dice = hwdep->private_data; switch (cmd) { case SNDRV_FIREWIRE_IOCTL_GET_INFO: return hwdep_get_info(dice, (void __user *)arg); case SNDRV_FIREWIRE_IOCTL_LOCK: return hwdep_lock(dice); case SNDRV_FIREWIRE_IOCTL_UNLOCK: return hwdep_unlock(dice); default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static int hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { return hwdep_ioctl(hwdep, file, cmd, (unsigned long)compat_ptr(arg)); } #else #define hwdep_compat_ioctl NULL #endif int snd_dice_create_hwdep(struct snd_dice *dice) { static const struct snd_hwdep_ops ops = { .read = hwdep_read, .release = hwdep_release, .poll = hwdep_poll, .ioctl = hwdep_ioctl, .ioctl_compat = hwdep_compat_ioctl, }; struct snd_hwdep *hwdep; int err; err = snd_hwdep_new(dice->card, "DICE", 0, &hwdep); if (err < 0) return err; strcpy(hwdep->name, "DICE"); hwdep->iface = SNDRV_HWDEP_IFACE_FW_DICE; hwdep->ops = ops; hwdep->private_data = dice; hwdep->exclusive = true; return 0; }
linux-master
sound/firewire/dice/dice-hwdep.c
// SPDX-License-Identifier: GPL-2.0-only /* * dice_transaction.c - a part of driver for Dice based devices * * Copyright (c) Clemens Ladisch * Copyright (c) 2014 Takashi Sakamoto */ #include "dice.h" static u64 get_subaddr(struct snd_dice *dice, enum snd_dice_addr_type type, u64 offset) { switch (type) { case SND_DICE_ADDR_TYPE_TX: offset += dice->tx_offset; break; case SND_DICE_ADDR_TYPE_RX: offset += dice->rx_offset; break; case SND_DICE_ADDR_TYPE_SYNC: offset += dice->sync_offset; break; case SND_DICE_ADDR_TYPE_RSRV: offset += dice->rsrv_offset; break; case SND_DICE_ADDR_TYPE_GLOBAL: default: offset += dice->global_offset; break; } offset += DICE_PRIVATE_SPACE; return offset; } int snd_dice_transaction_write(struct snd_dice *dice, enum snd_dice_addr_type type, unsigned int offset, void *buf, unsigned int len) { return snd_fw_transaction(dice->unit, (len == 4) ? TCODE_WRITE_QUADLET_REQUEST : TCODE_WRITE_BLOCK_REQUEST, get_subaddr(dice, type, offset), buf, len, 0); } int snd_dice_transaction_read(struct snd_dice *dice, enum snd_dice_addr_type type, unsigned int offset, void *buf, unsigned int len) { return snd_fw_transaction(dice->unit, (len == 4) ? TCODE_READ_QUADLET_REQUEST : TCODE_READ_BLOCK_REQUEST, get_subaddr(dice, type, offset), buf, len, 0); } static unsigned int get_clock_info(struct snd_dice *dice, __be32 *info) { return snd_dice_transaction_read_global(dice, GLOBAL_CLOCK_SELECT, info, 4); } int snd_dice_transaction_get_clock_source(struct snd_dice *dice, unsigned int *source) { __be32 info; int err; err = get_clock_info(dice, &info); if (err >= 0) *source = be32_to_cpu(info) & CLOCK_SOURCE_MASK; return err; } int snd_dice_transaction_get_rate(struct snd_dice *dice, unsigned int *rate) { __be32 info; unsigned int index; int err; err = get_clock_info(dice, &info); if (err < 0) goto end; index = (be32_to_cpu(info) & CLOCK_RATE_MASK) >> CLOCK_RATE_SHIFT; if (index >= SND_DICE_RATES_COUNT) { err = -ENOSYS; goto end; } *rate = snd_dice_rates[index]; end: return err; } int snd_dice_transaction_set_enable(struct snd_dice *dice) { __be32 value; int err = 0; if (dice->global_enabled) goto end; value = cpu_to_be32(1); err = snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST, get_subaddr(dice, SND_DICE_ADDR_TYPE_GLOBAL, GLOBAL_ENABLE), &value, 4, FW_FIXED_GENERATION | dice->owner_generation); if (err < 0) goto end; dice->global_enabled = true; end: return err; } void snd_dice_transaction_clear_enable(struct snd_dice *dice) { __be32 value; value = 0; snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST, get_subaddr(dice, SND_DICE_ADDR_TYPE_GLOBAL, GLOBAL_ENABLE), &value, 4, FW_QUIET | FW_FIXED_GENERATION | dice->owner_generation); dice->global_enabled = false; } static void dice_notification(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *data, size_t length, void *callback_data) { struct snd_dice *dice = callback_data; u32 bits; unsigned long flags; if (tcode != TCODE_WRITE_QUADLET_REQUEST) { fw_send_response(card, request, RCODE_TYPE_ERROR); return; } if ((offset & 3) != 0) { fw_send_response(card, request, RCODE_ADDRESS_ERROR); return; } bits = be32_to_cpup(data); spin_lock_irqsave(&dice->lock, flags); dice->notification_bits |= bits; spin_unlock_irqrestore(&dice->lock, flags); fw_send_response(card, request, RCODE_COMPLETE); if (bits & NOTIFY_CLOCK_ACCEPTED) complete(&dice->clock_accepted); wake_up(&dice->hwdep_wait); } static int register_notification_address(struct snd_dice *dice, bool retry) { struct fw_device *device = fw_parent_device(dice->unit); __be64 *buffer; unsigned int retries; int err; retries = (retry) ? 3 : 0; buffer = kmalloc(2 * 8, GFP_KERNEL); if (!buffer) return -ENOMEM; for (;;) { buffer[0] = cpu_to_be64(OWNER_NO_OWNER); buffer[1] = cpu_to_be64( ((u64)device->card->node_id << OWNER_NODE_SHIFT) | dice->notification_handler.offset); dice->owner_generation = device->generation; smp_rmb(); /* node_id vs. generation */ err = snd_fw_transaction(dice->unit, TCODE_LOCK_COMPARE_SWAP, get_subaddr(dice, SND_DICE_ADDR_TYPE_GLOBAL, GLOBAL_OWNER), buffer, 2 * 8, FW_FIXED_GENERATION | dice->owner_generation); if (err == 0) { /* success */ if (buffer[0] == cpu_to_be64(OWNER_NO_OWNER)) break; /* The address seems to be already registered. */ if (buffer[0] == buffer[1]) break; dev_err(&dice->unit->device, "device is already in use\n"); err = -EBUSY; } if (err != -EAGAIN || retries-- > 0) break; msleep(20); } kfree(buffer); if (err < 0) dice->owner_generation = -1; return err; } static void unregister_notification_address(struct snd_dice *dice) { struct fw_device *device = fw_parent_device(dice->unit); __be64 *buffer; buffer = kmalloc(2 * 8, GFP_KERNEL); if (buffer == NULL) return; buffer[0] = cpu_to_be64( ((u64)device->card->node_id << OWNER_NODE_SHIFT) | dice->notification_handler.offset); buffer[1] = cpu_to_be64(OWNER_NO_OWNER); snd_fw_transaction(dice->unit, TCODE_LOCK_COMPARE_SWAP, get_subaddr(dice, SND_DICE_ADDR_TYPE_GLOBAL, GLOBAL_OWNER), buffer, 2 * 8, FW_QUIET | FW_FIXED_GENERATION | dice->owner_generation); kfree(buffer); dice->owner_generation = -1; } void snd_dice_transaction_destroy(struct snd_dice *dice) { struct fw_address_handler *handler = &dice->notification_handler; if (handler->callback_data == NULL) return; unregister_notification_address(dice); fw_core_remove_address_handler(handler); handler->callback_data = NULL; } int snd_dice_transaction_reinit(struct snd_dice *dice) { struct fw_address_handler *handler = &dice->notification_handler; if (handler->callback_data == NULL) return -EINVAL; return register_notification_address(dice, false); } static int get_subaddrs(struct snd_dice *dice) { static const int min_values[10] = { 10, 0x60 / 4, 10, 0x18 / 4, 10, 0x18 / 4, 0, 0, 0, 0, }; __be32 *pointers; __be32 version; u32 data; unsigned int i; int err; pointers = kmalloc_array(ARRAY_SIZE(min_values), sizeof(__be32), GFP_KERNEL); if (pointers == NULL) return -ENOMEM; /* * Check that the sub address spaces exist and are located inside the * private address space. The minimum values are chosen so that all * minimally required registers are included. */ err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST, DICE_PRIVATE_SPACE, pointers, sizeof(__be32) * ARRAY_SIZE(min_values), 0); if (err < 0) goto end; for (i = 0; i < ARRAY_SIZE(min_values); ++i) { data = be32_to_cpu(pointers[i]); if (data < min_values[i] || data >= 0x40000) { err = -ENODEV; goto end; } } if (be32_to_cpu(pointers[1]) > 0x18) { /* * Check that the implemented DICE driver specification major * version number matches. */ err = snd_fw_transaction(dice->unit, TCODE_READ_QUADLET_REQUEST, DICE_PRIVATE_SPACE + be32_to_cpu(pointers[0]) * 4 + GLOBAL_VERSION, &version, sizeof(version), 0); if (err < 0) goto end; if ((version & cpu_to_be32(0xff000000)) != cpu_to_be32(0x01000000)) { dev_err(&dice->unit->device, "unknown DICE version: 0x%08x\n", be32_to_cpu(version)); err = -ENODEV; goto end; } /* Set up later. */ dice->clock_caps = 1; } dice->global_offset = be32_to_cpu(pointers[0]) * 4; dice->tx_offset = be32_to_cpu(pointers[2]) * 4; dice->rx_offset = be32_to_cpu(pointers[4]) * 4; /* Old firmware doesn't support these fields. */ if (pointers[7]) dice->sync_offset = be32_to_cpu(pointers[6]) * 4; if (pointers[9]) dice->rsrv_offset = be32_to_cpu(pointers[8]) * 4; end: kfree(pointers); return err; } int snd_dice_transaction_init(struct snd_dice *dice) { struct fw_address_handler *handler = &dice->notification_handler; int err; err = get_subaddrs(dice); if (err < 0) return err; /* Allocation callback in address space over host controller */ handler->length = 4; handler->address_callback = dice_notification; handler->callback_data = dice; err = fw_core_add_address_handler(handler, &fw_high_memory_region); if (err < 0) { handler->callback_data = NULL; return err; } /* Register the address space */ err = register_notification_address(dice, true); if (err < 0) { fw_core_remove_address_handler(handler); handler->callback_data = NULL; } return err; }
linux-master
sound/firewire/dice/dice-transaction.c
// SPDX-License-Identifier: GPL-2.0 // dice-harman.c - a part of driver for DICE based devices // // Copyright (c) 2021 Takashi Sakamoto #include "dice.h" int snd_dice_detect_harman_formats(struct snd_dice *dice) { int i; // Lexicon I-ONYX FW810s supports sampling transfer frequency up to // 96.0 kHz, 12 PCM channels and 1 MIDI channel in its first tx stream // , 10 PCM channels and 1 MIDI channel in its first rx stream for all // of the frequencies. for (i = 0; i < 2; ++i) { dice->tx_pcm_chs[0][i] = 12; dice->tx_midi_ports[0] = 1; dice->rx_pcm_chs[0][i] = 10; dice->rx_midi_ports[0] = 1; } return 0; }
linux-master
sound/firewire/dice/dice-harman.c
// SPDX-License-Identifier: GPL-2.0-only /* * dice_proc.c - a part of driver for Dice based devices * * Copyright (c) Clemens Ladisch * Copyright (c) 2014 Takashi Sakamoto */ #include "dice.h" static int dice_proc_read_mem(struct snd_dice *dice, void *buffer, unsigned int offset_q, unsigned int quadlets) { unsigned int i; int err; err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST, DICE_PRIVATE_SPACE + 4 * offset_q, buffer, 4 * quadlets, 0); if (err < 0) return err; for (i = 0; i < quadlets; ++i) be32_to_cpus(&((u32 *)buffer)[i]); return 0; } static const char *str_from_array(const char *const strs[], unsigned int count, unsigned int i) { if (i < count) return strs[i]; return "(unknown)"; } static void dice_proc_fixup_string(char *s, unsigned int size) { unsigned int i; for (i = 0; i < size; i += 4) cpu_to_le32s((u32 *)(s + i)); for (i = 0; i < size - 2; ++i) { if (s[i] == '\0') return; if (s[i] == '\\' && s[i + 1] == '\\') { s[i + 2] = '\0'; return; } } s[size - 1] = '\0'; } static void dice_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { static const char *const section_names[5] = { "global", "tx", "rx", "ext_sync", "unused2" }; static const char *const clock_sources[] = { "aes1", "aes2", "aes3", "aes4", "aes", "adat", "tdif", "wc", "arx1", "arx2", "arx3", "arx4", "internal" }; static const char *const rates[] = { "32000", "44100", "48000", "88200", "96000", "176400", "192000", "any low", "any mid", "any high", "none" }; struct snd_dice *dice = entry->private_data; u32 sections[ARRAY_SIZE(section_names) * 2]; struct { u32 number; u32 size; } tx_rx_header; union { struct { u32 owner_hi, owner_lo; u32 notification; char nick_name[NICK_NAME_SIZE]; u32 clock_select; u32 enable; u32 status; u32 extended_status; u32 sample_rate; u32 version; u32 clock_caps; char clock_source_names[CLOCK_SOURCE_NAMES_SIZE]; } global; struct { u32 iso; u32 number_audio; u32 number_midi; u32 speed; char names[TX_NAMES_SIZE]; u32 ac3_caps; u32 ac3_enable; } tx; struct { u32 iso; u32 seq_start; u32 number_audio; u32 number_midi; char names[RX_NAMES_SIZE]; u32 ac3_caps; u32 ac3_enable; } rx; struct { u32 clock_source; u32 locked; u32 rate; u32 adat_user_data; } ext_sync; } buf; unsigned int quadlets, stream, i; if (dice_proc_read_mem(dice, sections, 0, ARRAY_SIZE(sections)) < 0) return; snd_iprintf(buffer, "sections:\n"); for (i = 0; i < ARRAY_SIZE(section_names); ++i) snd_iprintf(buffer, " %s: offset %u, size %u\n", section_names[i], sections[i * 2], sections[i * 2 + 1]); quadlets = min_t(u32, sections[1], sizeof(buf.global) / 4); if (dice_proc_read_mem(dice, &buf.global, sections[0], quadlets) < 0) return; snd_iprintf(buffer, "global:\n"); snd_iprintf(buffer, " owner: %04x:%04x%08x\n", buf.global.owner_hi >> 16, buf.global.owner_hi & 0xffff, buf.global.owner_lo); snd_iprintf(buffer, " notification: %08x\n", buf.global.notification); dice_proc_fixup_string(buf.global.nick_name, NICK_NAME_SIZE); snd_iprintf(buffer, " nick name: %s\n", buf.global.nick_name); snd_iprintf(buffer, " clock select: %s %s\n", str_from_array(clock_sources, ARRAY_SIZE(clock_sources), buf.global.clock_select & CLOCK_SOURCE_MASK), str_from_array(rates, ARRAY_SIZE(rates), (buf.global.clock_select & CLOCK_RATE_MASK) >> CLOCK_RATE_SHIFT)); snd_iprintf(buffer, " enable: %u\n", buf.global.enable); snd_iprintf(buffer, " status: %slocked %s\n", buf.global.status & STATUS_SOURCE_LOCKED ? "" : "un", str_from_array(rates, ARRAY_SIZE(rates), (buf.global.status & STATUS_NOMINAL_RATE_MASK) >> CLOCK_RATE_SHIFT)); snd_iprintf(buffer, " ext status: %08x\n", buf.global.extended_status); snd_iprintf(buffer, " sample rate: %u\n", buf.global.sample_rate); if (quadlets >= 90) { snd_iprintf(buffer, " version: %u.%u.%u.%u\n", (buf.global.version >> 24) & 0xff, (buf.global.version >> 16) & 0xff, (buf.global.version >> 8) & 0xff, (buf.global.version >> 0) & 0xff); snd_iprintf(buffer, " clock caps:"); for (i = 0; i <= 6; ++i) if (buf.global.clock_caps & (1 << i)) snd_iprintf(buffer, " %s", rates[i]); for (i = 0; i <= 12; ++i) if (buf.global.clock_caps & (1 << (16 + i))) snd_iprintf(buffer, " %s", clock_sources[i]); snd_iprintf(buffer, "\n"); dice_proc_fixup_string(buf.global.clock_source_names, CLOCK_SOURCE_NAMES_SIZE); snd_iprintf(buffer, " clock source names: %s\n", buf.global.clock_source_names); } if (dice_proc_read_mem(dice, &tx_rx_header, sections[2], 2) < 0) return; quadlets = min_t(u32, tx_rx_header.size, sizeof(buf.tx) / 4); for (stream = 0; stream < tx_rx_header.number; ++stream) { if (dice_proc_read_mem(dice, &buf.tx, sections[2] + 2 + stream * tx_rx_header.size, quadlets) < 0) break; snd_iprintf(buffer, "tx %u:\n", stream); snd_iprintf(buffer, " iso channel: %d\n", (int)buf.tx.iso); snd_iprintf(buffer, " audio channels: %u\n", buf.tx.number_audio); snd_iprintf(buffer, " midi ports: %u\n", buf.tx.number_midi); snd_iprintf(buffer, " speed: S%u\n", 100u << buf.tx.speed); if (quadlets >= 68) { dice_proc_fixup_string(buf.tx.names, TX_NAMES_SIZE); snd_iprintf(buffer, " names: %s\n", buf.tx.names); } if (quadlets >= 70) { snd_iprintf(buffer, " ac3 caps: %08x\n", buf.tx.ac3_caps); snd_iprintf(buffer, " ac3 enable: %08x\n", buf.tx.ac3_enable); } } if (dice_proc_read_mem(dice, &tx_rx_header, sections[4], 2) < 0) return; quadlets = min_t(u32, tx_rx_header.size, sizeof(buf.rx) / 4); for (stream = 0; stream < tx_rx_header.number; ++stream) { if (dice_proc_read_mem(dice, &buf.rx, sections[4] + 2 + stream * tx_rx_header.size, quadlets) < 0) break; snd_iprintf(buffer, "rx %u:\n", stream); snd_iprintf(buffer, " iso channel: %d\n", (int)buf.rx.iso); snd_iprintf(buffer, " sequence start: %u\n", buf.rx.seq_start); snd_iprintf(buffer, " audio channels: %u\n", buf.rx.number_audio); snd_iprintf(buffer, " midi ports: %u\n", buf.rx.number_midi); if (quadlets >= 68) { dice_proc_fixup_string(buf.rx.names, RX_NAMES_SIZE); snd_iprintf(buffer, " names: %s\n", buf.rx.names); } if (quadlets >= 70) { snd_iprintf(buffer, " ac3 caps: %08x\n", buf.rx.ac3_caps); snd_iprintf(buffer, " ac3 enable: %08x\n", buf.rx.ac3_enable); } } quadlets = min_t(u32, sections[7], sizeof(buf.ext_sync) / 4); if (quadlets >= 4) { if (dice_proc_read_mem(dice, &buf.ext_sync, sections[6], 4) < 0) return; snd_iprintf(buffer, "ext status:\n"); snd_iprintf(buffer, " clock source: %s\n", str_from_array(clock_sources, ARRAY_SIZE(clock_sources), buf.ext_sync.clock_source)); snd_iprintf(buffer, " locked: %u\n", buf.ext_sync.locked); snd_iprintf(buffer, " rate: %s\n", str_from_array(rates, ARRAY_SIZE(rates), buf.ext_sync.rate)); snd_iprintf(buffer, " adat user data: "); if (buf.ext_sync.adat_user_data & ADAT_USER_DATA_NO_DATA) snd_iprintf(buffer, "-\n"); else snd_iprintf(buffer, "%x\n", buf.ext_sync.adat_user_data); } } static void dice_proc_read_formation(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { static const char *const rate_labels[] = { [SND_DICE_RATE_MODE_LOW] = "low", [SND_DICE_RATE_MODE_MIDDLE] = "middle", [SND_DICE_RATE_MODE_HIGH] = "high", }; struct snd_dice *dice = entry->private_data; int i, j; snd_iprintf(buffer, "Output stream from unit:\n"); for (i = 0; i < SND_DICE_RATE_MODE_COUNT; ++i) snd_iprintf(buffer, "\t%s", rate_labels[i]); snd_iprintf(buffer, "\tMIDI\n"); for (i = 0; i < MAX_STREAMS; ++i) { snd_iprintf(buffer, "Tx %u:", i); for (j = 0; j < SND_DICE_RATE_MODE_COUNT; ++j) snd_iprintf(buffer, "\t%u", dice->tx_pcm_chs[i][j]); snd_iprintf(buffer, "\t%u\n", dice->tx_midi_ports[i]); } snd_iprintf(buffer, "Input stream to unit:\n"); for (i = 0; i < SND_DICE_RATE_MODE_COUNT; ++i) snd_iprintf(buffer, "\t%s", rate_labels[i]); snd_iprintf(buffer, "\n"); for (i = 0; i < MAX_STREAMS; ++i) { snd_iprintf(buffer, "Rx %u:", i); for (j = 0; j < SND_DICE_RATE_MODE_COUNT; ++j) snd_iprintf(buffer, "\t%u", dice->rx_pcm_chs[i][j]); snd_iprintf(buffer, "\t%u\n", dice->rx_midi_ports[i]); } } static void add_node(struct snd_dice *dice, struct snd_info_entry *root, const char *name, void (*op)(struct snd_info_entry *entry, struct snd_info_buffer *buffer)) { struct snd_info_entry *entry; entry = snd_info_create_card_entry(dice->card, name, root); if (entry) snd_info_set_text_ops(entry, dice, op); } void snd_dice_create_proc(struct snd_dice *dice) { struct snd_info_entry *root; /* * All nodes are automatically removed at snd_card_disconnect(), * by following to link list. */ root = snd_info_create_card_entry(dice->card, "firewire", dice->card->proc_root); if (!root) return; root->mode = S_IFDIR | 0555; add_node(dice, root, "dice", dice_proc_read); add_node(dice, root, "formation", dice_proc_read_formation); }
linux-master
sound/firewire/dice/dice-proc.c
// SPDX-License-Identifier: GPL-2.0-only /* * dice_midi.c - a part of driver for Dice based devices * * Copyright (c) 2014 Takashi Sakamoto */ #include "dice.h" static int midi_open(struct snd_rawmidi_substream *substream) { struct snd_dice *dice = substream->rmidi->private_data; int err; err = snd_dice_stream_lock_try(dice); if (err < 0) return err; mutex_lock(&dice->mutex); err = snd_dice_stream_reserve_duplex(dice, 0, 0, 0); if (err >= 0) { ++dice->substreams_counter; err = snd_dice_stream_start_duplex(dice); if (err < 0) --dice->substreams_counter; } mutex_unlock(&dice->mutex); if (err < 0) snd_dice_stream_lock_release(dice); return err; } static int midi_close(struct snd_rawmidi_substream *substream) { struct snd_dice *dice = substream->rmidi->private_data; mutex_lock(&dice->mutex); --dice->substreams_counter; snd_dice_stream_stop_duplex(dice); mutex_unlock(&dice->mutex); snd_dice_stream_lock_release(dice); return 0; } static void midi_capture_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_dice *dice = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&dice->lock, flags); if (up) amdtp_am824_midi_trigger(&dice->tx_stream[0], substrm->number, substrm); else amdtp_am824_midi_trigger(&dice->tx_stream[0], substrm->number, NULL); spin_unlock_irqrestore(&dice->lock, flags); } static void midi_playback_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_dice *dice = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&dice->lock, flags); if (up) amdtp_am824_midi_trigger(&dice->rx_stream[0], substrm->number, substrm); else amdtp_am824_midi_trigger(&dice->rx_stream[0], substrm->number, NULL); spin_unlock_irqrestore(&dice->lock, flags); } static void set_midi_substream_names(struct snd_dice *dice, struct snd_rawmidi_str *str) { struct snd_rawmidi_substream *subs; list_for_each_entry(subs, &str->substreams, list) { scnprintf(subs->name, sizeof(subs->name), "%s MIDI %d", dice->card->shortname, subs->number + 1); } } int snd_dice_create_midi(struct snd_dice *dice) { static const struct snd_rawmidi_ops capture_ops = { .open = midi_open, .close = midi_close, .trigger = midi_capture_trigger, }; static const struct snd_rawmidi_ops playback_ops = { .open = midi_open, .close = midi_close, .trigger = midi_playback_trigger, }; struct snd_rawmidi *rmidi; struct snd_rawmidi_str *str; unsigned int midi_in_ports, midi_out_ports; int i; int err; midi_in_ports = 0; midi_out_ports = 0; for (i = 0; i < MAX_STREAMS; ++i) { midi_in_ports = max(midi_in_ports, dice->tx_midi_ports[i]); midi_out_ports = max(midi_out_ports, dice->rx_midi_ports[i]); } if (midi_in_ports + midi_out_ports == 0) return 0; /* create midi ports */ err = snd_rawmidi_new(dice->card, dice->card->driver, 0, midi_out_ports, midi_in_ports, &rmidi); if (err < 0) return err; snprintf(rmidi->name, sizeof(rmidi->name), "%s MIDI", dice->card->shortname); rmidi->private_data = dice; if (midi_in_ports > 0) { rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &capture_ops); str = &rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT]; set_midi_substream_names(dice, str); } if (midi_out_ports > 0) { rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &playback_ops); str = &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT]; set_midi_substream_names(dice, str); } if ((midi_out_ports > 0) && (midi_in_ports > 0)) rmidi->info_flags |= SNDRV_RAWMIDI_INFO_DUPLEX; return 0; }
linux-master
sound/firewire/dice/dice-midi.c
// SPDX-License-Identifier: GPL-2.0 /* * dice-extension.c - a part of driver for DICE based devices * * Copyright (c) 2018 Takashi Sakamoto */ #include "dice.h" /* For TCD2210/2220, TCAT defines extension of application protocol. */ #define DICE_EXT_APP_SPACE 0xffffe0200000uLL #define DICE_EXT_APP_CAPS_OFFSET 0x00 #define DICE_EXT_APP_CAPS_SIZE 0x04 #define DICE_EXT_APP_CMD_OFFSET 0x08 #define DICE_EXT_APP_CMD_SIZE 0x0c #define DICE_EXT_APP_MIXER_OFFSET 0x10 #define DICE_EXT_APP_MIXER_SIZE 0x14 #define DICE_EXT_APP_PEAK_OFFSET 0x18 #define DICE_EXT_APP_PEAK_SIZE 0x1c #define DICE_EXT_APP_ROUTER_OFFSET 0x20 #define DICE_EXT_APP_ROUTER_SIZE 0x24 #define DICE_EXT_APP_STREAM_OFFSET 0x28 #define DICE_EXT_APP_STREAM_SIZE 0x2c #define DICE_EXT_APP_CURRENT_OFFSET 0x30 #define DICE_EXT_APP_CURRENT_SIZE 0x34 #define DICE_EXT_APP_STANDALONE_OFFSET 0x38 #define DICE_EXT_APP_STANDALONE_SIZE 0x3c #define DICE_EXT_APP_APPLICATION_OFFSET 0x40 #define DICE_EXT_APP_APPLICATION_SIZE 0x44 #define EXT_APP_STREAM_TX_NUMBER 0x0000 #define EXT_APP_STREAM_RX_NUMBER 0x0004 #define EXT_APP_STREAM_ENTRIES 0x0008 #define EXT_APP_STREAM_ENTRY_SIZE 0x010c #define EXT_APP_NUMBER_AUDIO 0x0000 #define EXT_APP_NUMBER_MIDI 0x0004 #define EXT_APP_NAMES 0x0008 #define EXT_APP_NAMES_SIZE 256 #define EXT_APP_AC3 0x0108 #define EXT_APP_CONFIG_LOW_ROUTER 0x0000 #define EXT_APP_CONFIG_LOW_STREAM 0x1000 #define EXT_APP_CONFIG_MIDDLE_ROUTER 0x2000 #define EXT_APP_CONFIG_MIDDLE_STREAM 0x3000 #define EXT_APP_CONFIG_HIGH_ROUTER 0x4000 #define EXT_APP_CONFIG_HIGH_STREAM 0x5000 static inline int read_transaction(struct snd_dice *dice, u64 section_addr, u32 offset, void *buf, size_t len) { return snd_fw_transaction(dice->unit, len == 4 ? TCODE_READ_QUADLET_REQUEST : TCODE_READ_BLOCK_REQUEST, section_addr + offset, buf, len, 0); } static int read_stream_entries(struct snd_dice *dice, u64 section_addr, u32 base_offset, unsigned int stream_count, unsigned int mode, unsigned int pcm_channels[MAX_STREAMS][3], unsigned int midi_ports[MAX_STREAMS]) { u32 entry_offset; __be32 reg[2]; int err; int i; for (i = 0; i < stream_count; ++i) { entry_offset = base_offset + i * EXT_APP_STREAM_ENTRY_SIZE; err = read_transaction(dice, section_addr, entry_offset + EXT_APP_NUMBER_AUDIO, reg, sizeof(reg)); if (err < 0) return err; pcm_channels[i][mode] = be32_to_cpu(reg[0]); midi_ports[i] = max(midi_ports[i], be32_to_cpu(reg[1])); } return 0; } static int detect_stream_formats(struct snd_dice *dice, u64 section_addr) { u32 base_offset; __be32 reg[2]; unsigned int stream_count; int mode; int err = 0; for (mode = 0; mode < SND_DICE_RATE_MODE_COUNT; ++mode) { unsigned int cap; /* * Some models report stream formats at highest mode, however * they don't support the mode. Check clock capabilities. */ if (mode == 2) { cap = CLOCK_CAP_RATE_176400 | CLOCK_CAP_RATE_192000; } else if (mode == 1) { cap = CLOCK_CAP_RATE_88200 | CLOCK_CAP_RATE_96000; } else { cap = CLOCK_CAP_RATE_32000 | CLOCK_CAP_RATE_44100 | CLOCK_CAP_RATE_48000; } if (!(cap & dice->clock_caps)) continue; base_offset = 0x2000 * mode + 0x1000; err = read_transaction(dice, section_addr, base_offset + EXT_APP_STREAM_TX_NUMBER, &reg, sizeof(reg)); if (err < 0) break; base_offset += EXT_APP_STREAM_ENTRIES; stream_count = be32_to_cpu(reg[0]); err = read_stream_entries(dice, section_addr, base_offset, stream_count, mode, dice->tx_pcm_chs, dice->tx_midi_ports); if (err < 0) break; base_offset += stream_count * EXT_APP_STREAM_ENTRY_SIZE; stream_count = be32_to_cpu(reg[1]); err = read_stream_entries(dice, section_addr, base_offset, stream_count, mode, dice->rx_pcm_chs, dice->rx_midi_ports); if (err < 0) break; } return err; } int snd_dice_detect_extension_formats(struct snd_dice *dice) { __be32 *pointers; unsigned int i; u64 section_addr; int err; pointers = kmalloc_array(9, sizeof(__be32) * 2, GFP_KERNEL); if (pointers == NULL) return -ENOMEM; err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST, DICE_EXT_APP_SPACE, pointers, 9 * sizeof(__be32) * 2, 0); if (err < 0) goto end; /* Check two of them for offset have the same value or not. */ for (i = 0; i < 9; ++i) { int j; for (j = i + 1; j < 9; ++j) { if (pointers[i * 2] == pointers[j * 2]) { // Fallback to limited functionality. err = -ENXIO; goto end; } } } section_addr = DICE_EXT_APP_SPACE + be32_to_cpu(pointers[12]) * 4; err = detect_stream_formats(dice, section_addr); end: kfree(pointers); return err; }
linux-master
sound/firewire/dice/dice-extension.c
// SPDX-License-Identifier: GPL-2.0 /* * dice-alesis.c - a part of driver for DICE based devices * * Copyright (c) 2018 Takashi Sakamoto */ #include "dice.h" static const unsigned int alesis_io14_tx_pcm_chs[MAX_STREAMS][SND_DICE_RATE_MODE_COUNT] = { {6, 6, 4}, /* Tx0 = Analog + S/PDIF. */ {8, 4, 0}, /* Tx1 = ADAT1. */ }; static const unsigned int alesis_io26_tx_pcm_chs[MAX_STREAMS][SND_DICE_RATE_MODE_COUNT] = { {10, 10, 4}, /* Tx0 = Analog + S/PDIF. */ {16, 4, 0}, /* Tx1 = ADAT1 + ADAT2 (available at low rate). */ }; int snd_dice_detect_alesis_formats(struct snd_dice *dice) { __be32 reg; u32 data; int i; int err; err = snd_dice_transaction_read_tx(dice, TX_NUMBER_AUDIO, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); if (data == 4 || data == 6) { memcpy(dice->tx_pcm_chs, alesis_io14_tx_pcm_chs, MAX_STREAMS * SND_DICE_RATE_MODE_COUNT * sizeof(unsigned int)); } else { memcpy(dice->tx_pcm_chs, alesis_io26_tx_pcm_chs, MAX_STREAMS * SND_DICE_RATE_MODE_COUNT * sizeof(unsigned int)); } for (i = 0; i < SND_DICE_RATE_MODE_COUNT; ++i) dice->rx_pcm_chs[0][i] = 8; dice->tx_midi_ports[0] = 1; dice->rx_midi_ports[0] = 1; return 0; } int snd_dice_detect_alesis_mastercontrol_formats(struct snd_dice *dice) { int i; dice->tx_pcm_chs[0][SND_DICE_RATE_MODE_LOW] = 16; dice->tx_pcm_chs[1][SND_DICE_RATE_MODE_LOW] = 12; dice->tx_pcm_chs[0][SND_DICE_RATE_MODE_MIDDLE] = 12; dice->tx_pcm_chs[1][SND_DICE_RATE_MODE_MIDDLE] = 4; dice->tx_pcm_chs[0][SND_DICE_RATE_MODE_HIGH] = 8; dice->tx_pcm_chs[1][SND_DICE_RATE_MODE_HIGH] = 0; for (i = 0; i < SND_DICE_RATE_MODE_COUNT; ++i) { dice->rx_pcm_chs[0][i] = 6; dice->rx_pcm_chs[1][i] = 0; } for (i = 0; i < MAX_STREAMS; ++i) { dice->tx_midi_ports[i] = 2; dice->rx_midi_ports[i] = 2; } return 0; }
linux-master
sound/firewire/dice/dice-alesis.c
// SPDX-License-Identifier: GPL-2.0 /* * dice-tc_electronic.c - a part of driver for DICE based devices * * Copyright (c) 2018 Takashi Sakamoto */ #include "dice.h" struct dice_tc_spec { unsigned int tx_pcm_chs[MAX_STREAMS][SND_DICE_RATE_MODE_COUNT]; unsigned int rx_pcm_chs[MAX_STREAMS][SND_DICE_RATE_MODE_COUNT]; bool has_midi; }; static const struct dice_tc_spec desktop_konnekt6 = { .tx_pcm_chs = {{6, 6, 2}, {0, 0, 0} }, .rx_pcm_chs = {{6, 6, 4}, {0, 0, 0} }, .has_midi = false, }; static const struct dice_tc_spec impact_twin = { .tx_pcm_chs = {{14, 10, 6}, {0, 0, 0} }, .rx_pcm_chs = {{14, 10, 6}, {0, 0, 0} }, .has_midi = true, }; static const struct dice_tc_spec konnekt_8 = { .tx_pcm_chs = {{4, 4, 3}, {0, 0, 0} }, .rx_pcm_chs = {{4, 4, 3}, {0, 0, 0} }, .has_midi = true, }; static const struct dice_tc_spec konnekt_24d = { .tx_pcm_chs = {{16, 16, 6}, {0, 0, 0} }, .rx_pcm_chs = {{16, 16, 6}, {0, 0, 0} }, .has_midi = true, }; static const struct dice_tc_spec konnekt_live = { .tx_pcm_chs = {{16, 16, 6}, {0, 0, 0} }, .rx_pcm_chs = {{16, 16, 6}, {0, 0, 0} }, .has_midi = true, }; static const struct dice_tc_spec studio_konnekt_48 = { .tx_pcm_chs = {{16, 16, 8}, {16, 16, 7} }, .rx_pcm_chs = {{16, 16, 8}, {14, 14, 7} }, .has_midi = true, }; static const struct dice_tc_spec digital_konnekt_x32 = { .tx_pcm_chs = {{16, 16, 4}, {0, 0, 0} }, .rx_pcm_chs = {{16, 16, 4}, {0, 0, 0} }, .has_midi = false, }; int snd_dice_detect_tcelectronic_formats(struct snd_dice *dice) { static const struct { u32 model_id; const struct dice_tc_spec *spec; } *entry, entries[] = { {0x00000020, &konnekt_24d}, {0x00000021, &konnekt_8}, {0x00000022, &studio_konnekt_48}, {0x00000023, &konnekt_live}, {0x00000024, &desktop_konnekt6}, {0x00000027, &impact_twin}, {0x00000030, &digital_konnekt_x32}, }; struct fw_csr_iterator it; int key, val, model_id; int i; model_id = 0; fw_csr_iterator_init(&it, dice->unit->directory); while (fw_csr_iterator_next(&it, &key, &val)) { if (key == CSR_MODEL) { model_id = val; break; } } for (i = 0; i < ARRAY_SIZE(entries); ++i) { entry = entries + i; if (entry->model_id == model_id) break; } if (i == ARRAY_SIZE(entries)) return -ENODEV; memcpy(dice->tx_pcm_chs, entry->spec->tx_pcm_chs, MAX_STREAMS * SND_DICE_RATE_MODE_COUNT * sizeof(unsigned int)); memcpy(dice->rx_pcm_chs, entry->spec->rx_pcm_chs, MAX_STREAMS * SND_DICE_RATE_MODE_COUNT * sizeof(unsigned int)); if (entry->spec->has_midi) { dice->tx_midi_ports[0] = 1; dice->rx_midi_ports[0] = 1; } return 0; }
linux-master
sound/firewire/dice/dice-tcelectronic.c
// SPDX-License-Identifier: GPL-2.0-only /* * amdtp-motu.c - a part of driver for MOTU FireWire series * * Copyright (c) 2015-2017 Takashi Sakamoto <[email protected]> */ #include <linux/slab.h> #include <sound/pcm.h> #include "motu.h" #define CREATE_TRACE_POINTS #include "amdtp-motu-trace.h" #define CIP_FMT_MOTU 0x02 #define CIP_FMT_MOTU_TX_V3 0x22 #define MOTU_FDF_AM824 0x22 #define TICKS_PER_CYCLE 3072 #define CYCLES_PER_SECOND 8000 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) #define CIP_SPH_CYCLE_SHIFT 12 #define CIP_SPH_CYCLE_MASK 0x01fff000 #define CIP_SPH_OFFSET_MASK 0x00000fff /* * Nominally 3125 bytes/second, but the MIDI port's clock might be * 1% too slow, and the bus clock 100 ppm too fast. */ #define MIDI_BYTES_PER_SECOND 3093 struct amdtp_motu { unsigned int pcm_chunks; unsigned int pcm_byte_offset; struct snd_rawmidi_substream *midi; unsigned int midi_ports; unsigned int midi_flag_offset; unsigned int midi_byte_offset; int midi_db_count; unsigned int midi_db_interval; struct amdtp_motu_cache *cache; }; int amdtp_motu_set_parameters(struct amdtp_stream *s, unsigned int rate, unsigned int midi_ports, struct snd_motu_packet_format *formats) { struct amdtp_motu *p = s->protocol; unsigned int pcm_chunks, data_chunks, data_block_quadlets; unsigned int mode; int i, err; if (amdtp_stream_running(s)) return -EBUSY; for (i = 0; i < ARRAY_SIZE(snd_motu_clock_rates); ++i) { if (snd_motu_clock_rates[i] == rate) { mode = i >> 1; break; } } if (i == ARRAY_SIZE(snd_motu_clock_rates)) return -EINVAL; // Each data block includes SPH in its head. Data chunks follow with // 3 byte alignment. Padding follows with zero to conform to quadlet // alignment. pcm_chunks = formats->pcm_chunks[mode]; data_chunks = formats->msg_chunks + pcm_chunks; data_block_quadlets = 1 + DIV_ROUND_UP(data_chunks * 3, 4); err = amdtp_stream_set_parameters(s, rate, data_block_quadlets, 1); if (err < 0) return err; p->pcm_chunks = pcm_chunks; p->pcm_byte_offset = formats->pcm_byte_offset; p->midi_ports = midi_ports; p->midi_flag_offset = formats->midi_flag_offset; p->midi_byte_offset = formats->midi_byte_offset; p->midi_db_count = 0; p->midi_db_interval = rate / MIDI_BYTES_PER_SECOND; return 0; } static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __be32 *buffer, unsigned int data_blocks, unsigned int pcm_frames) { struct amdtp_motu *p = s->protocol; unsigned int channels = p->pcm_chunks; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int pcm_buffer_pointer; int remaining_frames; u8 *byte; u32 *dst; int i, c; pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames; pcm_buffer_pointer %= runtime->buffer_size; dst = (void *)runtime->dma_area + frames_to_bytes(runtime, pcm_buffer_pointer); remaining_frames = runtime->buffer_size - pcm_buffer_pointer; for (i = 0; i < data_blocks; ++i) { byte = (u8 *)buffer + p->pcm_byte_offset; for (c = 0; c < channels; ++c) { *dst = (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8); byte += 3; dst++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) dst = (void *)runtime->dma_area; } } static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __be32 *buffer, unsigned int data_blocks, unsigned int pcm_frames) { struct amdtp_motu *p = s->protocol; unsigned int channels = p->pcm_chunks; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int pcm_buffer_pointer; int remaining_frames; u8 *byte; const u32 *src; int i, c; pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames; pcm_buffer_pointer %= runtime->buffer_size; src = (void *)runtime->dma_area + frames_to_bytes(runtime, pcm_buffer_pointer); remaining_frames = runtime->buffer_size - pcm_buffer_pointer; for (i = 0; i < data_blocks; ++i) { byte = (u8 *)buffer + p->pcm_byte_offset; for (c = 0; c < channels; ++c) { byte[0] = (*src >> 24) & 0xff; byte[1] = (*src >> 16) & 0xff; byte[2] = (*src >> 8) & 0xff; byte += 3; src++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) src = (void *)runtime->dma_area; } } static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks) { struct amdtp_motu *p = s->protocol; unsigned int channels, i, c; u8 *byte; channels = p->pcm_chunks; for (i = 0; i < data_blocks; ++i) { byte = (u8 *)buffer + p->pcm_byte_offset; for (c = 0; c < channels; ++c) { byte[0] = 0; byte[1] = 0; byte[2] = 0; byte += 3; } buffer += s->data_block_quadlets; } } int amdtp_motu_add_pcm_hw_constraints(struct amdtp_stream *s, struct snd_pcm_runtime *runtime) { int err; /* TODO: how to set an constraint for exactly 24bit PCM sample? */ err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); if (err < 0) return err; return amdtp_stream_add_pcm_hw_constraints(s, runtime); } void amdtp_motu_midi_trigger(struct amdtp_stream *s, unsigned int port, struct snd_rawmidi_substream *midi) { struct amdtp_motu *p = s->protocol; if (port < p->midi_ports) WRITE_ONCE(p->midi, midi); } static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks) { struct amdtp_motu *p = s->protocol; struct snd_rawmidi_substream *midi = READ_ONCE(p->midi); u8 *b; int i; for (i = 0; i < data_blocks; i++) { b = (u8 *)buffer; if (midi && p->midi_db_count == 0 && snd_rawmidi_transmit(midi, b + p->midi_byte_offset, 1) == 1) { b[p->midi_flag_offset] = 0x01; } else { b[p->midi_byte_offset] = 0x00; b[p->midi_flag_offset] = 0x00; } buffer += s->data_block_quadlets; if (--p->midi_db_count < 0) p->midi_db_count = p->midi_db_interval; } } static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks) { struct amdtp_motu *p = s->protocol; struct snd_rawmidi_substream *midi; u8 *b; int i; for (i = 0; i < data_blocks; i++) { b = (u8 *)buffer; midi = READ_ONCE(p->midi); if (midi && (b[p->midi_flag_offset] & 0x01)) snd_rawmidi_receive(midi, b + p->midi_byte_offset, 1); buffer += s->data_block_quadlets; } } /* For tracepoints. */ static void __maybe_unused copy_sph(u32 *frames, __be32 *buffer, unsigned int data_blocks, unsigned int data_block_quadlets) { unsigned int i; for (i = 0; i < data_blocks; ++i) { *frames = be32_to_cpu(*buffer); buffer += data_block_quadlets; frames++; } } /* For tracepoints. */ static void __maybe_unused copy_message(u64 *frames, __be32 *buffer, unsigned int data_blocks, unsigned int data_block_quadlets) { unsigned int i; /* This is just for v2/v3 protocol. */ for (i = 0; i < data_blocks; ++i) { *frames = be32_to_cpu(buffer[1]); *frames <<= 16; *frames |= be32_to_cpu(buffer[2]) >> 16; ++frames; buffer += data_block_quadlets; } } static void probe_tracepoints_events(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count) { int i; for (i = 0; i < count; ++i) { __be32 *buf = desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; trace_data_block_sph(s, data_blocks, buf); trace_data_block_message(s, data_blocks, buf); desc = amdtp_stream_next_packet_desc(s, desc); } } static void cache_event_offsets(struct amdtp_motu_cache *cache, const __be32 *buf, unsigned int data_blocks, unsigned int data_block_quadlets) { unsigned int *event_offsets = cache->event_offsets; const unsigned int cache_size = cache->size; unsigned int cache_tail = cache->tail; unsigned int base_tick = cache->tx_cycle_count * TICKS_PER_CYCLE; int i; for (i = 0; i < data_blocks; ++i) { u32 sph = be32_to_cpu(*buf); unsigned int tick; tick = ((sph & CIP_SPH_CYCLE_MASK) >> CIP_SPH_CYCLE_SHIFT) * TICKS_PER_CYCLE + (sph & CIP_SPH_OFFSET_MASK); if (tick < base_tick) tick += TICKS_PER_SECOND; event_offsets[cache_tail] = tick - base_tick; cache_tail = (cache_tail + 1) % cache_size; buf += data_block_quadlets; } cache->tail = cache_tail; cache->tx_cycle_count = (cache->tx_cycle_count + 1) % CYCLES_PER_SECOND; } static void process_ir_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count, struct snd_pcm_substream *pcm) { struct snd_motu *motu = container_of(s, struct snd_motu, tx_stream); struct amdtp_motu *p = s->protocol; const struct pkt_desc *cursor = desc; unsigned int pcm_frames = 0; int i; if (p->cache->tx_cycle_count == UINT_MAX) p->cache->tx_cycle_count = (s->domain->processing_cycle.tx_start % CYCLES_PER_SECOND); // For data block processing. for (i = 0; i < count; ++i) { __be32 *buf = desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; cache_event_offsets(p->cache, buf, data_blocks, s->data_block_quadlets); if (pcm) { read_pcm_s32(s, pcm, buf, data_blocks, pcm_frames); pcm_frames += data_blocks; } if (p->midi_ports) read_midi_messages(s, buf, data_blocks); desc = amdtp_stream_next_packet_desc(s, desc); } desc = cursor; if (motu->spec->flags & SND_MOTU_SPEC_REGISTER_DSP) snd_motu_register_dsp_message_parser_parse(s, desc, count); else if (motu->spec->flags & SND_MOTU_SPEC_COMMAND_DSP) snd_motu_command_dsp_message_parser_parse(s, desc, count); // For tracepoints. if (trace_data_block_sph_enabled() || trace_data_block_message_enabled()) probe_tracepoints_events(s, desc, count); } static void write_sph(struct amdtp_motu_cache *cache, __be32 *buffer, unsigned int data_blocks, unsigned int data_block_quadlets) { unsigned int *event_offsets = cache->event_offsets; const unsigned int cache_size = cache->size; unsigned int cache_head = cache->head; unsigned int base_tick = cache->rx_cycle_count * TICKS_PER_CYCLE; int i; for (i = 0; i < data_blocks; i++) { unsigned int tick = (base_tick + event_offsets[cache_head]) % TICKS_PER_SECOND; u32 sph = ((tick / TICKS_PER_CYCLE) << CIP_SPH_CYCLE_SHIFT) | (tick % TICKS_PER_CYCLE); *buffer = cpu_to_be32(sph); cache_head = (cache_head + 1) % cache_size; buffer += data_block_quadlets; } cache->head = cache_head; cache->rx_cycle_count = (cache->rx_cycle_count + 1) % CYCLES_PER_SECOND; } static void process_it_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count, struct snd_pcm_substream *pcm) { struct amdtp_motu *p = s->protocol; const struct pkt_desc *cursor = desc; unsigned int pcm_frames = 0; int i; if (p->cache->rx_cycle_count == UINT_MAX) p->cache->rx_cycle_count = (s->domain->processing_cycle.rx_start % CYCLES_PER_SECOND); // For data block processing. for (i = 0; i < count; ++i) { __be32 *buf = desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; if (pcm) { write_pcm_s32(s, pcm, buf, data_blocks, pcm_frames); pcm_frames += data_blocks; } else { write_pcm_silence(s, buf, data_blocks); } if (p->midi_ports) write_midi_messages(s, buf, data_blocks); write_sph(p->cache, buf, data_blocks, s->data_block_quadlets); desc = amdtp_stream_next_packet_desc(s, desc); } desc = cursor; // For tracepoints. if (trace_data_block_sph_enabled() || trace_data_block_message_enabled()) probe_tracepoints_events(s, desc, count); } int amdtp_motu_init(struct amdtp_stream *s, struct fw_unit *unit, enum amdtp_stream_direction dir, const struct snd_motu_spec *spec, struct amdtp_motu_cache *cache) { amdtp_stream_process_ctx_payloads_t process_ctx_payloads; int fmt = CIP_FMT_MOTU; unsigned int flags = CIP_BLOCKING | CIP_UNAWARE_SYT; struct amdtp_motu *p; int err; if (dir == AMDTP_IN_STREAM) { process_ctx_payloads = process_ir_ctx_payloads; /* * Units of version 3 transmits packets with invalid CIP header * against IEC 61883-1. */ if (spec->protocol_version == SND_MOTU_PROTOCOL_V3) { flags |= CIP_WRONG_DBS | CIP_SKIP_DBC_ZERO_CHECK | CIP_HEADER_WITHOUT_EOH; fmt = CIP_FMT_MOTU_TX_V3; } if (spec == &snd_motu_spec_8pre || spec == &snd_motu_spec_ultralite) { // 8pre has some quirks. flags |= CIP_WRONG_DBS | CIP_SKIP_DBC_ZERO_CHECK; } } else { process_ctx_payloads = process_it_ctx_payloads; flags |= CIP_DBC_IS_END_EVENT; } err = amdtp_stream_init(s, unit, dir, flags, fmt, process_ctx_payloads, sizeof(struct amdtp_motu)); if (err < 0) return err; s->sph = 1; if (dir == AMDTP_OUT_STREAM) { // Use fixed value for FDF field. s->ctx_data.rx.fdf = MOTU_FDF_AM824; } p = s->protocol; p->cache = cache; return 0; }
linux-master
sound/firewire/motu/amdtp-motu.c
// SPDX-License-Identifier: GPL-2.0-only // // motu-register-dsp-message-parser.c - a part of driver for MOTU FireWire series // // Copyright (c) 2021 Takashi Sakamoto <[email protected]> // Below models allow software to configure their DSP functions by asynchronous transaction // to access their internal registers. // * 828 mk2 // * 896hd // * Traveler // * 8 pre // * Ultralite // * 4 pre // * Audio Express // // Additionally, isochronous packets from the above models include messages to notify state of // DSP. The messages are two set of 3 byte data in 2nd and 3rd quadlet of data block. When user // operates hardware components such as dial and switch, corresponding messages are transferred. // The messages include Hardware metering and MIDI messages as well. #include "motu.h" #define MSG_FLAG_POS 4 #define MSG_FLAG_TYPE_MASK 0xf8 #define MSG_FLAG_MIDI_MASK 0x01 #define MSG_FLAG_MODEL_SPECIFIC_MASK 0x06 #define MSG_FLAG_8PRE 0x00 #define MSG_FLAG_ULTRALITE 0x04 #define MSG_FLAG_TRAVELER 0x04 #define MSG_FLAG_828MK2 0x04 #define MSG_FLAG_896HD 0x04 #define MSG_FLAG_4PRE 0x05 // MIDI mask is in 8th byte. #define MSG_FLAG_AUDIOEXPRESS 0x05 // MIDI mask is in 8th byte. #define MSG_FLAG_TYPE_SHIFT 3 #define MSG_VALUE_POS 5 #define MSG_MIDI_BYTE_POS 6 #define MSG_METER_IDX_POS 7 // In 4 pre and Audio express, meter index is in 6th byte. MIDI flag is in 8th byte and MIDI byte // is in 7th byte. #define MSG_METER_IDX_POS_4PRE_AE 6 #define MSG_MIDI_BYTE_POS_4PRE_AE 7 #define MSG_FLAG_MIDI_POS_4PRE_AE 8 enum register_dsp_msg_type { // Used for messages with no information. INVALID = 0x00, MIXER_SELECT = 0x01, MIXER_SRC_GAIN = 0x02, MIXER_SRC_PAN = 0x03, MIXER_SRC_FLAG = 0x04, MIXER_OUTPUT_PAIRED_VOLUME = 0x05, MIXER_OUTPUT_PAIRED_FLAG = 0x06, MAIN_OUTPUT_PAIRED_VOLUME = 0x07, HP_OUTPUT_PAIRED_VOLUME = 0x08, HP_OUTPUT_PAIRED_ASSIGNMENT = 0x09, // Transferred by all models but the purpose is still unknown. UNKNOWN_0 = 0x0a, // Specific to 828mk2, 896hd, Traveler. UNKNOWN_2 = 0x0c, // Specific to 828mk2, Traveler, and 896hd (not functional). LINE_INPUT_BOOST = 0x0d, // Specific to 828mk2, Traveler, and 896hd (not functional). LINE_INPUT_NOMINAL_LEVEL = 0x0e, // Specific to Ultralite, 4 pre, Audio express, and 8 pre (not functional). INPUT_GAIN_AND_INVERT = 0x15, // Specific to 4 pre, and Audio express. INPUT_FLAG = 0x16, // Specific to 4 pre, and Audio express. MIXER_SRC_PAIRED_BALANCE = 0x17, // Specific to 4 pre, and Audio express. MIXER_SRC_PAIRED_WIDTH = 0x18, // Transferred by all models. This type of message interposes the series of the other // messages. The message delivers signal level up to 96.0 kHz. In 828mk2, 896hd, and // Traveler, one of physical outputs is selected for the message. The selection is done // by LSB one byte in asynchronous write quadlet transaction to 0x'ffff'f000'0b2c. METER = 0x1f, }; #define EVENT_QUEUE_SIZE 16 struct msg_parser { spinlock_t lock; struct snd_firewire_motu_register_dsp_meter meter; bool meter_pos_quirk; struct snd_firewire_motu_register_dsp_parameter param; u8 prev_mixer_src_type; u8 mixer_ch; u8 mixer_src_ch; u8 input_ch; u8 prev_msg_type; u32 event_queue[EVENT_QUEUE_SIZE]; unsigned int push_pos; unsigned int pull_pos; }; int snd_motu_register_dsp_message_parser_new(struct snd_motu *motu) { struct msg_parser *parser; parser = devm_kzalloc(&motu->card->card_dev, sizeof(*parser), GFP_KERNEL); if (!parser) return -ENOMEM; spin_lock_init(&parser->lock); if (motu->spec == &snd_motu_spec_4pre || motu->spec == &snd_motu_spec_audio_express) parser->meter_pos_quirk = true; motu->message_parser = parser; return 0; } int snd_motu_register_dsp_message_parser_init(struct snd_motu *motu) { struct msg_parser *parser = motu->message_parser; parser->prev_mixer_src_type = INVALID; parser->mixer_ch = 0xff; parser->mixer_src_ch = 0xff; parser->prev_msg_type = INVALID; return 0; } // Rough implementaion of queue without overrun check. static void queue_event(struct snd_motu *motu, u8 msg_type, u8 identifier0, u8 identifier1, u8 val) { struct msg_parser *parser = motu->message_parser; unsigned int pos = parser->push_pos; u32 entry; if (!motu->hwdep || motu->hwdep->used == 0) return; entry = (msg_type << 24) | (identifier0 << 16) | (identifier1 << 8) | val; parser->event_queue[pos] = entry; ++pos; if (pos >= EVENT_QUEUE_SIZE) pos = 0; parser->push_pos = pos; } void snd_motu_register_dsp_message_parser_parse(const struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count) { struct snd_motu *motu = container_of(s, struct snd_motu, tx_stream); unsigned int data_block_quadlets = s->data_block_quadlets; struct msg_parser *parser = motu->message_parser; bool meter_pos_quirk = parser->meter_pos_quirk; unsigned int pos = parser->push_pos; unsigned long flags; int i; spin_lock_irqsave(&parser->lock, flags); for (i = 0; i < count; ++i) { __be32 *buffer = desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; int j; desc = amdtp_stream_next_packet_desc(s, desc); for (j = 0; j < data_blocks; ++j) { u8 *b = (u8 *)buffer; u8 msg_type = (b[MSG_FLAG_POS] & MSG_FLAG_TYPE_MASK) >> MSG_FLAG_TYPE_SHIFT; u8 val = b[MSG_VALUE_POS]; buffer += data_block_quadlets; switch (msg_type) { case MIXER_SELECT: { u8 mixer_ch = val / 0x20; if (mixer_ch < SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_COUNT) { parser->mixer_src_ch = 0; parser->mixer_ch = mixer_ch; } break; } case MIXER_SRC_GAIN: case MIXER_SRC_PAN: case MIXER_SRC_FLAG: case MIXER_SRC_PAIRED_BALANCE: case MIXER_SRC_PAIRED_WIDTH: { struct snd_firewire_motu_register_dsp_parameter *param = &parser->param; u8 mixer_ch = parser->mixer_ch; u8 mixer_src_ch = parser->mixer_src_ch; if (msg_type != parser->prev_mixer_src_type) mixer_src_ch = 0; else ++mixer_src_ch; parser->prev_mixer_src_type = msg_type; if (mixer_ch < SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_COUNT && mixer_src_ch < SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_SRC_COUNT) { u8 mixer_ch = parser->mixer_ch; switch (msg_type) { case MIXER_SRC_GAIN: if (param->mixer.source[mixer_ch].gain[mixer_src_ch] != val) { queue_event(motu, msg_type, mixer_ch, mixer_src_ch, val); param->mixer.source[mixer_ch].gain[mixer_src_ch] = val; } break; case MIXER_SRC_PAN: if (param->mixer.source[mixer_ch].pan[mixer_src_ch] != val) { queue_event(motu, msg_type, mixer_ch, mixer_src_ch, val); param->mixer.source[mixer_ch].pan[mixer_src_ch] = val; } break; case MIXER_SRC_FLAG: if (param->mixer.source[mixer_ch].flag[mixer_src_ch] != val) { queue_event(motu, msg_type, mixer_ch, mixer_src_ch, val); param->mixer.source[mixer_ch].flag[mixer_src_ch] = val; } break; case MIXER_SRC_PAIRED_BALANCE: if (param->mixer.source[mixer_ch].paired_balance[mixer_src_ch] != val) { queue_event(motu, msg_type, mixer_ch, mixer_src_ch, val); param->mixer.source[mixer_ch].paired_balance[mixer_src_ch] = val; } break; case MIXER_SRC_PAIRED_WIDTH: if (param->mixer.source[mixer_ch].paired_width[mixer_src_ch] != val) { queue_event(motu, msg_type, mixer_ch, mixer_src_ch, val); param->mixer.source[mixer_ch].paired_width[mixer_src_ch] = val; } break; default: break; } parser->mixer_src_ch = mixer_src_ch; } break; } case MIXER_OUTPUT_PAIRED_VOLUME: case MIXER_OUTPUT_PAIRED_FLAG: { struct snd_firewire_motu_register_dsp_parameter *param = &parser->param; u8 mixer_ch = parser->mixer_ch; if (mixer_ch < SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_COUNT) { switch (msg_type) { case MIXER_OUTPUT_PAIRED_VOLUME: if (param->mixer.output.paired_volume[mixer_ch] != val) { queue_event(motu, msg_type, mixer_ch, 0, val); param->mixer.output.paired_volume[mixer_ch] = val; } break; case MIXER_OUTPUT_PAIRED_FLAG: if (param->mixer.output.paired_flag[mixer_ch] != val) { queue_event(motu, msg_type, mixer_ch, 0, val); param->mixer.output.paired_flag[mixer_ch] = val; } break; default: break; } } break; } case MAIN_OUTPUT_PAIRED_VOLUME: if (parser->param.output.main_paired_volume != val) { queue_event(motu, msg_type, 0, 0, val); parser->param.output.main_paired_volume = val; } break; case HP_OUTPUT_PAIRED_VOLUME: if (parser->param.output.hp_paired_volume != val) { queue_event(motu, msg_type, 0, 0, val); parser->param.output.hp_paired_volume = val; } break; case HP_OUTPUT_PAIRED_ASSIGNMENT: if (parser->param.output.hp_paired_assignment != val) { queue_event(motu, msg_type, 0, 0, val); parser->param.output.hp_paired_assignment = val; } break; case LINE_INPUT_BOOST: if (parser->param.line_input.boost_flag != val) { queue_event(motu, msg_type, 0, 0, val); parser->param.line_input.boost_flag = val; } break; case LINE_INPUT_NOMINAL_LEVEL: if (parser->param.line_input.nominal_level_flag != val) { queue_event(motu, msg_type, 0, 0, val); parser->param.line_input.nominal_level_flag = val; } break; case INPUT_GAIN_AND_INVERT: case INPUT_FLAG: { struct snd_firewire_motu_register_dsp_parameter *param = &parser->param; u8 input_ch = parser->input_ch; if (parser->prev_msg_type != msg_type) input_ch = 0; else ++input_ch; if (input_ch < SNDRV_FIREWIRE_MOTU_REGISTER_DSP_INPUT_COUNT) { switch (msg_type) { case INPUT_GAIN_AND_INVERT: if (param->input.gain_and_invert[input_ch] != val) { queue_event(motu, msg_type, input_ch, 0, val); param->input.gain_and_invert[input_ch] = val; } break; case INPUT_FLAG: if (param->input.flag[input_ch] != val) { queue_event(motu, msg_type, input_ch, 0, val); param->input.flag[input_ch] = val; } break; default: break; } parser->input_ch = input_ch; } break; } case UNKNOWN_0: case UNKNOWN_2: break; case METER: { u8 pos; if (!meter_pos_quirk) pos = b[MSG_METER_IDX_POS]; else pos = b[MSG_METER_IDX_POS_4PRE_AE]; if (pos < SNDRV_FIREWIRE_MOTU_REGISTER_DSP_METER_INPUT_COUNT) { parser->meter.data[pos] = val; } else if (pos >= 0x80) { pos -= (0x80 - SNDRV_FIREWIRE_MOTU_REGISTER_DSP_METER_INPUT_COUNT); if (pos < SNDRV_FIREWIRE_MOTU_REGISTER_DSP_METER_COUNT) parser->meter.data[pos] = val; } // The message for meter is interruptible to the series of other // types of messages. Don't cache it. fallthrough; } case INVALID: default: // Don't cache it. continue; } parser->prev_msg_type = msg_type; } } if (pos != parser->push_pos) wake_up(&motu->hwdep_wait); spin_unlock_irqrestore(&parser->lock, flags); } void snd_motu_register_dsp_message_parser_copy_meter(struct snd_motu *motu, struct snd_firewire_motu_register_dsp_meter *meter) { struct msg_parser *parser = motu->message_parser; unsigned long flags; spin_lock_irqsave(&parser->lock, flags); memcpy(meter, &parser->meter, sizeof(*meter)); spin_unlock_irqrestore(&parser->lock, flags); } void snd_motu_register_dsp_message_parser_copy_parameter(struct snd_motu *motu, struct snd_firewire_motu_register_dsp_parameter *param) { struct msg_parser *parser = motu->message_parser; unsigned long flags; spin_lock_irqsave(&parser->lock, flags); memcpy(param, &parser->param, sizeof(*param)); spin_unlock_irqrestore(&parser->lock, flags); } unsigned int snd_motu_register_dsp_message_parser_count_event(struct snd_motu *motu) { struct msg_parser *parser = motu->message_parser; if (parser->pull_pos > parser->push_pos) return EVENT_QUEUE_SIZE - parser->pull_pos + parser->push_pos; else return parser->push_pos - parser->pull_pos; } bool snd_motu_register_dsp_message_parser_copy_event(struct snd_motu *motu, u32 *event) { struct msg_parser *parser = motu->message_parser; unsigned int pos = parser->pull_pos; unsigned long flags; if (pos == parser->push_pos) return false; spin_lock_irqsave(&parser->lock, flags); *event = parser->event_queue[pos]; ++pos; if (pos >= EVENT_QUEUE_SIZE) pos = 0; parser->pull_pos = pos; spin_unlock_irqrestore(&parser->lock, flags); return true; }
linux-master
sound/firewire/motu/motu-register-dsp-message-parser.c
// SPDX-License-Identifier: GPL-2.0-only /* * motu-midi.h - a part of driver for MOTU FireWire series * * Copyright (c) 2015-2017 Takashi Sakamoto <[email protected]> */ #include "motu.h" static int midi_open(struct snd_rawmidi_substream *substream) { struct snd_motu *motu = substream->rmidi->private_data; int err; err = snd_motu_stream_lock_try(motu); if (err < 0) return err; mutex_lock(&motu->mutex); err = snd_motu_stream_reserve_duplex(motu, 0, 0, 0); if (err >= 0) { ++motu->substreams_counter; err = snd_motu_stream_start_duplex(motu); if (err < 0) --motu->substreams_counter; } mutex_unlock(&motu->mutex); if (err < 0) snd_motu_stream_lock_release(motu); return err; } static int midi_close(struct snd_rawmidi_substream *substream) { struct snd_motu *motu = substream->rmidi->private_data; mutex_lock(&motu->mutex); --motu->substreams_counter; snd_motu_stream_stop_duplex(motu); mutex_unlock(&motu->mutex); snd_motu_stream_lock_release(motu); return 0; } static void midi_capture_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_motu *motu = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&motu->lock, flags); if (up) amdtp_motu_midi_trigger(&motu->tx_stream, substrm->number, substrm); else amdtp_motu_midi_trigger(&motu->tx_stream, substrm->number, NULL); spin_unlock_irqrestore(&motu->lock, flags); } static void midi_playback_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_motu *motu = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&motu->lock, flags); if (up) amdtp_motu_midi_trigger(&motu->rx_stream, substrm->number, substrm); else amdtp_motu_midi_trigger(&motu->rx_stream, substrm->number, NULL); spin_unlock_irqrestore(&motu->lock, flags); } static void set_midi_substream_names(struct snd_motu *motu, struct snd_rawmidi_str *str) { struct snd_rawmidi_substream *subs; list_for_each_entry(subs, &str->substreams, list) { scnprintf(subs->name, sizeof(subs->name), "%s MIDI %d", motu->card->shortname, subs->number + 1); } } int snd_motu_create_midi_devices(struct snd_motu *motu) { static const struct snd_rawmidi_ops capture_ops = { .open = midi_open, .close = midi_close, .trigger = midi_capture_trigger, }; static const struct snd_rawmidi_ops playback_ops = { .open = midi_open, .close = midi_close, .trigger = midi_playback_trigger, }; struct snd_rawmidi *rmidi; struct snd_rawmidi_str *str; int err; /* create midi ports */ err = snd_rawmidi_new(motu->card, motu->card->driver, 0, 1, 1, &rmidi); if (err < 0) return err; snprintf(rmidi->name, sizeof(rmidi->name), "%s MIDI", motu->card->shortname); rmidi->private_data = motu; rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_DUPLEX; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &capture_ops); str = &rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT]; set_midi_substream_names(motu, str); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &playback_ops); str = &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT]; set_midi_substream_names(motu, str); return 0; }
linux-master
sound/firewire/motu/motu-midi.c
// SPDX-License-Identifier: GPL-2.0-only /* * motu-proc.c - a part of driver for MOTU FireWire series * * Copyright (c) 2015-2017 Takashi Sakamoto <[email protected]> */ #include "./motu.h" static const char *const clock_names[] = { [SND_MOTU_CLOCK_SOURCE_INTERNAL] = "Internal", [SND_MOTU_CLOCK_SOURCE_ADAT_ON_DSUB] = "ADAT on Dsub-9pin interface", [SND_MOTU_CLOCK_SOURCE_ADAT_ON_OPT] = "ADAT on optical interface", [SND_MOTU_CLOCK_SOURCE_ADAT_ON_OPT_A] = "ADAT on optical interface A", [SND_MOTU_CLOCK_SOURCE_ADAT_ON_OPT_B] = "ADAT on optical interface B", [SND_MOTU_CLOCK_SOURCE_SPDIF_ON_OPT] = "S/PDIF on optical interface", [SND_MOTU_CLOCK_SOURCE_SPDIF_ON_OPT_A] = "S/PDIF on optical interface A", [SND_MOTU_CLOCK_SOURCE_SPDIF_ON_OPT_B] = "S/PDIF on optical interface B", [SND_MOTU_CLOCK_SOURCE_SPDIF_ON_COAX] = "S/PDIF on coaxial interface", [SND_MOTU_CLOCK_SOURCE_AESEBU_ON_XLR] = "AESEBU on XLR interface", [SND_MOTU_CLOCK_SOURCE_WORD_ON_BNC] = "Word clock on BNC interface", [SND_MOTU_CLOCK_SOURCE_SPH] = "Source packet header", [SND_MOTU_CLOCK_SOURCE_UNKNOWN] = "Unknown", }; static void proc_read_clock(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_motu *motu = entry->private_data; unsigned int rate; enum snd_motu_clock_source source; if (snd_motu_protocol_get_clock_rate(motu, &rate) < 0) return; if (snd_motu_protocol_get_clock_source(motu, &source) < 0) return; snd_iprintf(buffer, "Rate:\t%d\n", rate); snd_iprintf(buffer, "Source:\t%s\n", clock_names[source]); } static void proc_read_format(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_motu *motu = entry->private_data; unsigned int mode; struct snd_motu_packet_format *formats; int i; if (snd_motu_protocol_cache_packet_formats(motu) < 0) return; snd_iprintf(buffer, "tx:\tmsg\tfixed\ttotal\n"); for (i = 0; i < SND_MOTU_CLOCK_RATE_COUNT; ++i) { mode = i >> 1; formats = &motu->tx_packet_formats; snd_iprintf(buffer, "%u:\t%u\t%u\t%u\n", snd_motu_clock_rates[i], formats->msg_chunks, motu->spec->tx_fixed_pcm_chunks[mode], formats->pcm_chunks[mode]); } snd_iprintf(buffer, "rx:\tmsg\tfixed\ttotal\n"); for (i = 0; i < SND_MOTU_CLOCK_RATE_COUNT; ++i) { mode = i >> 1; formats = &motu->rx_packet_formats; snd_iprintf(buffer, "%u:\t%u\t%u\t%u\n", snd_motu_clock_rates[i], formats->msg_chunks, motu->spec->rx_fixed_pcm_chunks[mode], formats->pcm_chunks[mode]); } } static void add_node(struct snd_motu *motu, struct snd_info_entry *root, const char *name, void (*op)(struct snd_info_entry *e, struct snd_info_buffer *b)) { struct snd_info_entry *entry; entry = snd_info_create_card_entry(motu->card, name, root); if (entry) snd_info_set_text_ops(entry, motu, op); } void snd_motu_proc_init(struct snd_motu *motu) { struct snd_info_entry *root; /* * All nodes are automatically removed at snd_card_disconnect(), * by following to link list. */ root = snd_info_create_card_entry(motu->card, "firewire", motu->card->proc_root); if (root == NULL) return; root->mode = S_IFDIR | 0555; add_node(motu, root, "clock", proc_read_clock); add_node(motu, root, "format", proc_read_format); }
linux-master
sound/firewire/motu/motu-proc.c
// SPDX-License-Identifier: GPL-2.0-only /* * motu-protocol-v3.c - a part of driver for MOTU FireWire series * * Copyright (c) 2015-2017 Takashi Sakamoto <[email protected]> */ #include <linux/delay.h> #include "motu.h" #define V3_CLOCK_STATUS_OFFSET 0x0b14 #define V3_FETCH_PCM_FRAMES 0x02000000 #define V3_CLOCK_RATE_MASK 0x0000ff00 #define V3_CLOCK_RATE_SHIFT 8 #define V3_CLOCK_SOURCE_MASK 0x000000ff #define V3_CLOCK_SRC_INTERNAL 0x00 #define V3_CLOCK_SRC_WORD_ON_BNC 0x01 #define V3_CLOCK_SRC_SPH 0x02 #define V3_CLOCK_SRC_AESEBU_ON_XLR 0x08 #define V3_CLOCK_SRC_SPDIF_ON_COAX 0x10 #define V3_CLOCK_SRC_OPT_IFACE_A 0x18 #define V3_CLOCK_SRC_OPT_IFACE_B 0x19 #define V3_OPT_IFACE_MODE_OFFSET 0x0c94 #define V3_ENABLE_OPT_IN_IFACE_A 0x00000001 #define V3_ENABLE_OPT_IN_IFACE_B 0x00000002 #define V3_ENABLE_OPT_OUT_IFACE_A 0x00000100 #define V3_ENABLE_OPT_OUT_IFACE_B 0x00000200 #define V3_NO_ADAT_OPT_IN_IFACE_A 0x00010000 #define V3_NO_ADAT_OPT_IN_IFACE_B 0x00100000 #define V3_NO_ADAT_OPT_OUT_IFACE_A 0x00040000 #define V3_NO_ADAT_OPT_OUT_IFACE_B 0x00400000 #define V3_MSG_FLAG_CLK_CHANGED 0x00000002 #define V3_CLK_WAIT_MSEC 4000 int snd_motu_protocol_v3_get_clock_rate(struct snd_motu *motu, unsigned int *rate) { __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, V3_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); data = (data & V3_CLOCK_RATE_MASK) >> V3_CLOCK_RATE_SHIFT; if (data >= ARRAY_SIZE(snd_motu_clock_rates)) return -EIO; *rate = snd_motu_clock_rates[data]; return 0; } int snd_motu_protocol_v3_set_clock_rate(struct snd_motu *motu, unsigned int rate) { __be32 reg; u32 data; bool need_to_wait; int i, err; for (i = 0; i < ARRAY_SIZE(snd_motu_clock_rates); ++i) { if (snd_motu_clock_rates[i] == rate) break; } if (i == ARRAY_SIZE(snd_motu_clock_rates)) return -EINVAL; err = snd_motu_transaction_read(motu, V3_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); data &= ~(V3_CLOCK_RATE_MASK | V3_FETCH_PCM_FRAMES); data |= i << V3_CLOCK_RATE_SHIFT; need_to_wait = data != be32_to_cpu(reg); reg = cpu_to_be32(data); err = snd_motu_transaction_write(motu, V3_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; if (need_to_wait) { int result; motu->msg = 0; result = wait_event_interruptible_timeout(motu->hwdep_wait, motu->msg & V3_MSG_FLAG_CLK_CHANGED, msecs_to_jiffies(V3_CLK_WAIT_MSEC)); if (result < 0) return result; if (result == 0) return -ETIMEDOUT; } return 0; } int snd_motu_protocol_v3_get_clock_source(struct snd_motu *motu, enum snd_motu_clock_source *src) { __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, V3_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg) & V3_CLOCK_SOURCE_MASK; switch (data) { case V3_CLOCK_SRC_INTERNAL: *src = SND_MOTU_CLOCK_SOURCE_INTERNAL; break; case V3_CLOCK_SRC_WORD_ON_BNC: *src = SND_MOTU_CLOCK_SOURCE_WORD_ON_BNC; break; case V3_CLOCK_SRC_SPH: *src = SND_MOTU_CLOCK_SOURCE_SPH; break; case V3_CLOCK_SRC_AESEBU_ON_XLR: *src = SND_MOTU_CLOCK_SOURCE_AESEBU_ON_XLR; break; case V3_CLOCK_SRC_SPDIF_ON_COAX: *src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_COAX; break; case V3_CLOCK_SRC_OPT_IFACE_A: case V3_CLOCK_SRC_OPT_IFACE_B: { __be32 reg; u32 options; err = snd_motu_transaction_read(motu, V3_OPT_IFACE_MODE_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; options = be32_to_cpu(reg); if (data == V3_CLOCK_SRC_OPT_IFACE_A) { if (options & V3_NO_ADAT_OPT_IN_IFACE_A) *src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_OPT_A; else *src = SND_MOTU_CLOCK_SOURCE_ADAT_ON_OPT_A; } else { if (options & V3_NO_ADAT_OPT_IN_IFACE_B) *src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_OPT_B; else *src = SND_MOTU_CLOCK_SOURCE_ADAT_ON_OPT_B; } break; } default: *src = SND_MOTU_CLOCK_SOURCE_UNKNOWN; break; } return 0; } int snd_motu_protocol_v3_switch_fetching_mode(struct snd_motu *motu, bool enable) { __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, V3_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return 0; data = be32_to_cpu(reg); if (enable) data |= V3_FETCH_PCM_FRAMES; else data &= ~V3_FETCH_PCM_FRAMES; reg = cpu_to_be32(data); return snd_motu_transaction_write(motu, V3_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); } static int detect_packet_formats_with_opt_ifaces(struct snd_motu *motu, u32 data) { if (data & V3_ENABLE_OPT_IN_IFACE_A) { if (data & V3_NO_ADAT_OPT_IN_IFACE_A) { motu->tx_packet_formats.pcm_chunks[0] += 4; motu->tx_packet_formats.pcm_chunks[1] += 4; } else { motu->tx_packet_formats.pcm_chunks[0] += 8; motu->tx_packet_formats.pcm_chunks[1] += 4; } } if (data & V3_ENABLE_OPT_IN_IFACE_B) { if (data & V3_NO_ADAT_OPT_IN_IFACE_B) { motu->tx_packet_formats.pcm_chunks[0] += 4; motu->tx_packet_formats.pcm_chunks[1] += 4; } else { motu->tx_packet_formats.pcm_chunks[0] += 8; motu->tx_packet_formats.pcm_chunks[1] += 4; } } if (data & V3_ENABLE_OPT_OUT_IFACE_A) { if (data & V3_NO_ADAT_OPT_OUT_IFACE_A) { motu->rx_packet_formats.pcm_chunks[0] += 4; motu->rx_packet_formats.pcm_chunks[1] += 4; } else { motu->rx_packet_formats.pcm_chunks[0] += 8; motu->rx_packet_formats.pcm_chunks[1] += 4; } } if (data & V3_ENABLE_OPT_OUT_IFACE_B) { if (data & V3_NO_ADAT_OPT_OUT_IFACE_B) { motu->rx_packet_formats.pcm_chunks[0] += 4; motu->rx_packet_formats.pcm_chunks[1] += 4; } else { motu->rx_packet_formats.pcm_chunks[0] += 8; motu->rx_packet_formats.pcm_chunks[1] += 4; } } return 0; } int snd_motu_protocol_v3_cache_packet_formats(struct snd_motu *motu) { __be32 reg; u32 data; int err; motu->tx_packet_formats.pcm_byte_offset = 10; motu->rx_packet_formats.pcm_byte_offset = 10; motu->tx_packet_formats.msg_chunks = 2; motu->rx_packet_formats.msg_chunks = 2; err = snd_motu_transaction_read(motu, V3_OPT_IFACE_MODE_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); memcpy(motu->tx_packet_formats.pcm_chunks, motu->spec->tx_fixed_pcm_chunks, sizeof(motu->tx_packet_formats.pcm_chunks)); memcpy(motu->rx_packet_formats.pcm_chunks, motu->spec->rx_fixed_pcm_chunks, sizeof(motu->rx_packet_formats.pcm_chunks)); if (motu->spec == &snd_motu_spec_828mk3_fw || motu->spec == &snd_motu_spec_828mk3_hybrid || motu->spec == &snd_motu_spec_traveler_mk3 || motu->spec == &snd_motu_spec_track16) return detect_packet_formats_with_opt_ifaces(motu, data); else return 0; } const struct snd_motu_spec snd_motu_spec_828mk3_fw = { .name = "828mk3", .protocol_version = SND_MOTU_PROTOCOL_V3, .flags = SND_MOTU_SPEC_RX_MIDI_3RD_Q | SND_MOTU_SPEC_TX_MIDI_3RD_Q | SND_MOTU_SPEC_COMMAND_DSP, .tx_fixed_pcm_chunks = {18, 18, 14}, .rx_fixed_pcm_chunks = {14, 14, 10}, }; const struct snd_motu_spec snd_motu_spec_828mk3_hybrid = { .name = "828mk3", .protocol_version = SND_MOTU_PROTOCOL_V3, .flags = SND_MOTU_SPEC_RX_MIDI_3RD_Q | SND_MOTU_SPEC_TX_MIDI_3RD_Q | SND_MOTU_SPEC_COMMAND_DSP, .tx_fixed_pcm_chunks = {18, 18, 14}, .rx_fixed_pcm_chunks = {14, 14, 14}, // Additional 4 dummy chunks at higher rate. }; const struct snd_motu_spec snd_motu_spec_traveler_mk3 = { .name = "TravelerMk3", .protocol_version = SND_MOTU_PROTOCOL_V3, .flags = SND_MOTU_SPEC_RX_MIDI_3RD_Q | SND_MOTU_SPEC_TX_MIDI_3RD_Q | SND_MOTU_SPEC_COMMAND_DSP, .tx_fixed_pcm_chunks = {18, 14, 10}, .rx_fixed_pcm_chunks = {14, 14, 10}, }; const struct snd_motu_spec snd_motu_spec_ultralite_mk3 = { .name = "UltraLiteMk3", .protocol_version = SND_MOTU_PROTOCOL_V3, .flags = SND_MOTU_SPEC_RX_MIDI_3RD_Q | SND_MOTU_SPEC_TX_MIDI_3RD_Q | SND_MOTU_SPEC_COMMAND_DSP, .tx_fixed_pcm_chunks = {18, 14, 10}, .rx_fixed_pcm_chunks = {14, 14, 14}, }; const struct snd_motu_spec snd_motu_spec_audio_express = { .name = "AudioExpress", .protocol_version = SND_MOTU_PROTOCOL_V3, .flags = SND_MOTU_SPEC_RX_MIDI_2ND_Q | SND_MOTU_SPEC_TX_MIDI_3RD_Q | SND_MOTU_SPEC_REGISTER_DSP, .tx_fixed_pcm_chunks = {10, 10, 0}, .rx_fixed_pcm_chunks = {10, 10, 0}, }; const struct snd_motu_spec snd_motu_spec_track16 = { .name = "Track16", .protocol_version = SND_MOTU_PROTOCOL_V3, .flags = SND_MOTU_SPEC_RX_MIDI_3RD_Q | SND_MOTU_SPEC_TX_MIDI_3RD_Q | SND_MOTU_SPEC_COMMAND_DSP, .tx_fixed_pcm_chunks = {14, 14, 14}, .rx_fixed_pcm_chunks = {6, 6, 6}, }; const struct snd_motu_spec snd_motu_spec_4pre = { .name = "4pre", .protocol_version = SND_MOTU_PROTOCOL_V3, .flags = SND_MOTU_SPEC_REGISTER_DSP, .tx_fixed_pcm_chunks = {10, 10, 0}, .rx_fixed_pcm_chunks = {10, 10, 0}, };
linux-master
sound/firewire/motu/motu-protocol-v3.c
// SPDX-License-Identifier: GPL-2.0-only /* * motu.c - a part of driver for MOTU FireWire series * * Copyright (c) 2015-2017 Takashi Sakamoto <[email protected]> */ #include "motu.h" #define OUI_MOTU 0x0001f2 MODULE_DESCRIPTION("MOTU FireWire driver"); MODULE_AUTHOR("Takashi Sakamoto <[email protected]>"); MODULE_LICENSE("GPL"); const unsigned int snd_motu_clock_rates[SND_MOTU_CLOCK_RATE_COUNT] = { /* mode 0 */ [0] = 44100, [1] = 48000, /* mode 1 */ [2] = 88200, [3] = 96000, /* mode 2 */ [4] = 176400, [5] = 192000, }; static void name_card(struct snd_motu *motu) { struct fw_device *fw_dev = fw_parent_device(motu->unit); struct fw_csr_iterator it; int key, val; u32 version = 0; fw_csr_iterator_init(&it, motu->unit->directory); while (fw_csr_iterator_next(&it, &key, &val)) { switch (key) { case CSR_MODEL: version = val; break; } } strcpy(motu->card->driver, "FW-MOTU"); strcpy(motu->card->shortname, motu->spec->name); strcpy(motu->card->mixername, motu->spec->name); snprintf(motu->card->longname, sizeof(motu->card->longname), "MOTU %s (version:%06x), GUID %08x%08x at %s, S%d", motu->spec->name, version, fw_dev->config_rom[3], fw_dev->config_rom[4], dev_name(&motu->unit->device), 100 << fw_dev->max_speed); } static void motu_card_free(struct snd_card *card) { struct snd_motu *motu = card->private_data; snd_motu_transaction_unregister(motu); snd_motu_stream_destroy_duplex(motu); mutex_destroy(&motu->mutex); fw_unit_put(motu->unit); } static int motu_probe(struct fw_unit *unit, const struct ieee1394_device_id *entry) { struct snd_card *card; struct snd_motu *motu; int err; err = snd_card_new(&unit->device, -1, NULL, THIS_MODULE, sizeof(*motu), &card); if (err < 0) return err; card->private_free = motu_card_free; motu = card->private_data; motu->unit = fw_unit_get(unit); dev_set_drvdata(&unit->device, motu); motu->card = card; motu->spec = (const struct snd_motu_spec *)entry->driver_data; mutex_init(&motu->mutex); spin_lock_init(&motu->lock); init_waitqueue_head(&motu->hwdep_wait); name_card(motu); err = snd_motu_transaction_register(motu); if (err < 0) goto error; err = snd_motu_stream_init_duplex(motu); if (err < 0) goto error; snd_motu_proc_init(motu); err = snd_motu_create_pcm_devices(motu); if (err < 0) goto error; if ((motu->spec->flags & SND_MOTU_SPEC_RX_MIDI_2ND_Q) || (motu->spec->flags & SND_MOTU_SPEC_RX_MIDI_3RD_Q) || (motu->spec->flags & SND_MOTU_SPEC_TX_MIDI_2ND_Q) || (motu->spec->flags & SND_MOTU_SPEC_TX_MIDI_3RD_Q)) { err = snd_motu_create_midi_devices(motu); if (err < 0) goto error; } err = snd_motu_create_hwdep_device(motu); if (err < 0) goto error; if (motu->spec->flags & SND_MOTU_SPEC_REGISTER_DSP) { err = snd_motu_register_dsp_message_parser_new(motu); if (err < 0) goto error; } else if (motu->spec->flags & SND_MOTU_SPEC_COMMAND_DSP) { err = snd_motu_command_dsp_message_parser_new(motu); if (err < 0) goto error; } err = snd_card_register(card); if (err < 0) goto error; return 0; error: snd_card_free(card); return err; } static void motu_remove(struct fw_unit *unit) { struct snd_motu *motu = dev_get_drvdata(&unit->device); // Block till all of ALSA character devices are released. snd_card_free(motu->card); } static void motu_bus_update(struct fw_unit *unit) { struct snd_motu *motu = dev_get_drvdata(&unit->device); /* The handler address register becomes initialized. */ snd_motu_transaction_reregister(motu); } #define SND_MOTU_DEV_ENTRY(model, data) \ { \ .match_flags = IEEE1394_MATCH_VENDOR_ID | \ IEEE1394_MATCH_SPECIFIER_ID | \ IEEE1394_MATCH_VERSION, \ .vendor_id = OUI_MOTU, \ .specifier_id = OUI_MOTU, \ .version = model, \ .driver_data = (kernel_ulong_t)data, \ } static const struct ieee1394_device_id motu_id_table[] = { SND_MOTU_DEV_ENTRY(0x000001, &snd_motu_spec_828), SND_MOTU_DEV_ENTRY(0x000002, &snd_motu_spec_896), SND_MOTU_DEV_ENTRY(0x000003, &snd_motu_spec_828mk2), SND_MOTU_DEV_ENTRY(0x000005, &snd_motu_spec_896hd), SND_MOTU_DEV_ENTRY(0x000009, &snd_motu_spec_traveler), SND_MOTU_DEV_ENTRY(0x00000d, &snd_motu_spec_ultralite), SND_MOTU_DEV_ENTRY(0x00000f, &snd_motu_spec_8pre), SND_MOTU_DEV_ENTRY(0x000015, &snd_motu_spec_828mk3_fw), // FireWire only. SND_MOTU_DEV_ENTRY(0x000019, &snd_motu_spec_ultralite_mk3), // FireWire only. SND_MOTU_DEV_ENTRY(0x00001b, &snd_motu_spec_traveler_mk3), SND_MOTU_DEV_ENTRY(0x000030, &snd_motu_spec_ultralite_mk3), // Hybrid. SND_MOTU_DEV_ENTRY(0x000035, &snd_motu_spec_828mk3_hybrid), // Hybrid. SND_MOTU_DEV_ENTRY(0x000033, &snd_motu_spec_audio_express), SND_MOTU_DEV_ENTRY(0x000039, &snd_motu_spec_track16), SND_MOTU_DEV_ENTRY(0x000045, &snd_motu_spec_4pre), { } }; MODULE_DEVICE_TABLE(ieee1394, motu_id_table); static struct fw_driver motu_driver = { .driver = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .bus = &fw_bus_type, }, .probe = motu_probe, .update = motu_bus_update, .remove = motu_remove, .id_table = motu_id_table, }; static int __init alsa_motu_init(void) { return driver_register(&motu_driver.driver); } static void __exit alsa_motu_exit(void) { driver_unregister(&motu_driver.driver); } module_init(alsa_motu_init); module_exit(alsa_motu_exit);
linux-master
sound/firewire/motu/motu.c
// SPDX-License-Identifier: GPL-2.0-only /* * motu-transaction.c - a part of driver for MOTU FireWire series * * Copyright (c) 2015-2017 Takashi Sakamoto <[email protected]> */ #include "motu.h" #define SND_MOTU_ADDR_BASE 0xfffff0000000ULL #define ASYNC_ADDR_HI 0x0b04 #define ASYNC_ADDR_LO 0x0b08 int snd_motu_transaction_read(struct snd_motu *motu, u32 offset, __be32 *reg, size_t size) { int tcode; if (size % sizeof(__be32) > 0 || size <= 0) return -EINVAL; if (size == sizeof(__be32)) tcode = TCODE_READ_QUADLET_REQUEST; else tcode = TCODE_READ_BLOCK_REQUEST; return snd_fw_transaction(motu->unit, tcode, SND_MOTU_ADDR_BASE + offset, reg, size, 0); } int snd_motu_transaction_write(struct snd_motu *motu, u32 offset, __be32 *reg, size_t size) { int tcode; if (size % sizeof(__be32) > 0 || size <= 0) return -EINVAL; if (size == sizeof(__be32)) tcode = TCODE_WRITE_QUADLET_REQUEST; else tcode = TCODE_WRITE_BLOCK_REQUEST; return snd_fw_transaction(motu->unit, tcode, SND_MOTU_ADDR_BASE + offset, reg, size, 0); } static void handle_message(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *data, size_t length, void *callback_data) { struct snd_motu *motu = callback_data; __be32 *buf = (__be32 *)data; unsigned long flags; if (tcode != TCODE_WRITE_QUADLET_REQUEST) { fw_send_response(card, request, RCODE_COMPLETE); return; } if (offset != motu->async_handler.offset || length != 4) { fw_send_response(card, request, RCODE_ADDRESS_ERROR); return; } spin_lock_irqsave(&motu->lock, flags); motu->msg = be32_to_cpu(*buf); spin_unlock_irqrestore(&motu->lock, flags); fw_send_response(card, request, RCODE_COMPLETE); wake_up(&motu->hwdep_wait); } int snd_motu_transaction_reregister(struct snd_motu *motu) { struct fw_device *device = fw_parent_device(motu->unit); __be32 data; int err; if (motu->async_handler.callback_data == NULL) return -EINVAL; /* Register messaging address. Block transaction is not allowed. */ data = cpu_to_be32((device->card->node_id << 16) | (motu->async_handler.offset >> 32)); err = snd_motu_transaction_write(motu, ASYNC_ADDR_HI, &data, sizeof(data)); if (err < 0) return err; data = cpu_to_be32(motu->async_handler.offset); return snd_motu_transaction_write(motu, ASYNC_ADDR_LO, &data, sizeof(data)); } int snd_motu_transaction_register(struct snd_motu *motu) { static const struct fw_address_region resp_register_region = { .start = 0xffffe0000000ull, .end = 0xffffe000ffffull, }; int err; /* Perhaps, 4 byte messages are transferred. */ motu->async_handler.length = 4; motu->async_handler.address_callback = handle_message; motu->async_handler.callback_data = motu; err = fw_core_add_address_handler(&motu->async_handler, &resp_register_region); if (err < 0) return err; err = snd_motu_transaction_reregister(motu); if (err < 0) { fw_core_remove_address_handler(&motu->async_handler); motu->async_handler.address_callback = NULL; } return err; } void snd_motu_transaction_unregister(struct snd_motu *motu) { __be32 data; if (motu->async_handler.address_callback != NULL) fw_core_remove_address_handler(&motu->async_handler); motu->async_handler.address_callback = NULL; /* Unregister the address. */ data = cpu_to_be32(0x00000000); snd_motu_transaction_write(motu, ASYNC_ADDR_HI, &data, sizeof(data)); snd_motu_transaction_write(motu, ASYNC_ADDR_LO, &data, sizeof(data)); }
linux-master
sound/firewire/motu/motu-transaction.c
// SPDX-License-Identifier: GPL-2.0-only /* * motu-hwdep.c - a part of driver for MOTU FireWire series * * Copyright (c) 2015-2017 Takashi Sakamoto <[email protected]> */ /* * This codes have five functionalities. * * 1.get information about firewire node * 2.get notification about starting/stopping stream * 3.lock/unlock streaming * */ #include "motu.h" static bool has_dsp_event(struct snd_motu *motu) { if (motu->spec->flags & SND_MOTU_SPEC_REGISTER_DSP) return (snd_motu_register_dsp_message_parser_count_event(motu) > 0); else return false; } static long hwdep_read(struct snd_hwdep *hwdep, char __user *buf, long count, loff_t *offset) { struct snd_motu *motu = hwdep->private_data; DEFINE_WAIT(wait); union snd_firewire_event event; spin_lock_irq(&motu->lock); while (!motu->dev_lock_changed && motu->msg == 0 && !has_dsp_event(motu)) { prepare_to_wait(&motu->hwdep_wait, &wait, TASK_INTERRUPTIBLE); spin_unlock_irq(&motu->lock); schedule(); finish_wait(&motu->hwdep_wait, &wait); if (signal_pending(current)) return -ERESTARTSYS; spin_lock_irq(&motu->lock); } memset(&event, 0, sizeof(event)); if (motu->dev_lock_changed) { event.lock_status.type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS; event.lock_status.status = (motu->dev_lock_count > 0); motu->dev_lock_changed = false; spin_unlock_irq(&motu->lock); count = min_t(long, count, sizeof(event)); if (copy_to_user(buf, &event, count)) return -EFAULT; } else if (motu->msg > 0) { event.motu_notification.type = SNDRV_FIREWIRE_EVENT_MOTU_NOTIFICATION; event.motu_notification.message = motu->msg; motu->msg = 0; spin_unlock_irq(&motu->lock); count = min_t(long, count, sizeof(event)); if (copy_to_user(buf, &event, count)) return -EFAULT; } else if (has_dsp_event(motu)) { size_t consumed = 0; u32 __user *ptr; u32 ev; spin_unlock_irq(&motu->lock); // Header is filled later. consumed += sizeof(event.motu_register_dsp_change); while (consumed < count && snd_motu_register_dsp_message_parser_copy_event(motu, &ev)) { ptr = (u32 __user *)(buf + consumed); if (put_user(ev, ptr)) return -EFAULT; consumed += sizeof(ev); } event.motu_register_dsp_change.type = SNDRV_FIREWIRE_EVENT_MOTU_REGISTER_DSP_CHANGE; event.motu_register_dsp_change.count = (consumed - sizeof(event.motu_register_dsp_change)) / 4; if (copy_to_user(buf, &event, sizeof(event.motu_register_dsp_change))) return -EFAULT; count = consumed; } else { spin_unlock_irq(&motu->lock); count = 0; } return count; } static __poll_t hwdep_poll(struct snd_hwdep *hwdep, struct file *file, poll_table *wait) { struct snd_motu *motu = hwdep->private_data; __poll_t events; poll_wait(file, &motu->hwdep_wait, wait); spin_lock_irq(&motu->lock); if (motu->dev_lock_changed || motu->msg || has_dsp_event(motu)) events = EPOLLIN | EPOLLRDNORM; else events = 0; spin_unlock_irq(&motu->lock); return events | EPOLLOUT; } static int hwdep_get_info(struct snd_motu *motu, void __user *arg) { struct fw_device *dev = fw_parent_device(motu->unit); struct snd_firewire_get_info info; memset(&info, 0, sizeof(info)); info.type = SNDRV_FIREWIRE_TYPE_MOTU; info.card = dev->card->index; *(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]); *(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]); strscpy(info.device_name, dev_name(&dev->device), sizeof(info.device_name)); if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int hwdep_lock(struct snd_motu *motu) { int err; spin_lock_irq(&motu->lock); if (motu->dev_lock_count == 0) { motu->dev_lock_count = -1; err = 0; } else { err = -EBUSY; } spin_unlock_irq(&motu->lock); return err; } static int hwdep_unlock(struct snd_motu *motu) { int err; spin_lock_irq(&motu->lock); if (motu->dev_lock_count == -1) { motu->dev_lock_count = 0; err = 0; } else { err = -EBADFD; } spin_unlock_irq(&motu->lock); return err; } static int hwdep_release(struct snd_hwdep *hwdep, struct file *file) { struct snd_motu *motu = hwdep->private_data; spin_lock_irq(&motu->lock); if (motu->dev_lock_count == -1) motu->dev_lock_count = 0; spin_unlock_irq(&motu->lock); return 0; } static int hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { struct snd_motu *motu = hwdep->private_data; switch (cmd) { case SNDRV_FIREWIRE_IOCTL_GET_INFO: return hwdep_get_info(motu, (void __user *)arg); case SNDRV_FIREWIRE_IOCTL_LOCK: return hwdep_lock(motu); case SNDRV_FIREWIRE_IOCTL_UNLOCK: return hwdep_unlock(motu); case SNDRV_FIREWIRE_IOCTL_MOTU_REGISTER_DSP_METER: { struct snd_firewire_motu_register_dsp_meter *meter; int err; if (!(motu->spec->flags & SND_MOTU_SPEC_REGISTER_DSP)) return -ENXIO; meter = kzalloc(sizeof(*meter), GFP_KERNEL); if (!meter) return -ENOMEM; snd_motu_register_dsp_message_parser_copy_meter(motu, meter); err = copy_to_user((void __user *)arg, meter, sizeof(*meter)); kfree(meter); if (err) return -EFAULT; return 0; } case SNDRV_FIREWIRE_IOCTL_MOTU_COMMAND_DSP_METER: { struct snd_firewire_motu_command_dsp_meter *meter; int err; if (!(motu->spec->flags & SND_MOTU_SPEC_COMMAND_DSP)) return -ENXIO; meter = kzalloc(sizeof(*meter), GFP_KERNEL); if (!meter) return -ENOMEM; snd_motu_command_dsp_message_parser_copy_meter(motu, meter); err = copy_to_user((void __user *)arg, meter, sizeof(*meter)); kfree(meter); if (err) return -EFAULT; return 0; } case SNDRV_FIREWIRE_IOCTL_MOTU_REGISTER_DSP_PARAMETER: { struct snd_firewire_motu_register_dsp_parameter *param; int err; if (!(motu->spec->flags & SND_MOTU_SPEC_REGISTER_DSP)) return -ENXIO; param = kzalloc(sizeof(*param), GFP_KERNEL); if (!param) return -ENOMEM; snd_motu_register_dsp_message_parser_copy_parameter(motu, param); err = copy_to_user((void __user *)arg, param, sizeof(*param)); kfree(param); if (err) return -EFAULT; return 0; } default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static int hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { return hwdep_ioctl(hwdep, file, cmd, (unsigned long)compat_ptr(arg)); } #else #define hwdep_compat_ioctl NULL #endif int snd_motu_create_hwdep_device(struct snd_motu *motu) { static const struct snd_hwdep_ops ops = { .read = hwdep_read, .release = hwdep_release, .poll = hwdep_poll, .ioctl = hwdep_ioctl, .ioctl_compat = hwdep_compat_ioctl, }; struct snd_hwdep *hwdep; int err; err = snd_hwdep_new(motu->card, motu->card->driver, 0, &hwdep); if (err < 0) return err; strcpy(hwdep->name, "MOTU"); hwdep->iface = SNDRV_HWDEP_IFACE_FW_MOTU; hwdep->ops = ops; hwdep->private_data = motu; hwdep->exclusive = true; motu->hwdep = hwdep; return 0; }
linux-master
sound/firewire/motu/motu-hwdep.c
// SPDX-License-Identifier: GPL-2.0-only // motu-protocol-v1.c - a part of driver for MOTU FireWire series // // Copyright (c) 2021 Takashi Sakamoto <[email protected]> #include "motu.h" #include <linux/delay.h> // Status register for MOTU 828 (0x'ffff'f000'0b00). // // 0xffff0000: ISOC_COMM_CONTROL_MASK in motu-stream.c. // 0x00008000: mode of optical input interface. // 0x00008000: for S/PDIF signal. // 0x00000000: disabled or for ADAT signal. // 0x00004000: mode of optical output interface. // 0x00004000: for S/PDIF signal. // 0x00000000: disabled or for ADAT signal. // 0x00003f00: monitor input mode. // 0x00000800: analog-1/2 // 0x00001a00: analog-3/4 // 0x00002c00: analog-5/6 // 0x00003e00: analog-7/8 // 0x00000000: analog-1 // 0x00000900: analog-2 // 0x00001200: analog-3 // 0x00001b00: analog-4 // 0x00002400: analog-5 // 0x00002d00: analog-6 // 0x00003600: analog-7 // 0x00003f00: analog-8 // 0x00000080: enable stream input. // 0x00000040: disable monitor input. // 0x00000008: enable main out. // 0x00000004: rate of sampling clock. // 0x00000004: 48.0 kHz // 0x00000000: 44.1 kHz // 0x00000023: source of sampling clock. // 0x00000003: source packet header (SPH) // 0x00000002: S/PDIF on optical/coaxial interface. // 0x00000021: ADAT on optical interface // 0x00000001: ADAT on Dsub 9pin // 0x00000000: internal #define CLK_828_STATUS_OFFSET 0x0b00 #define CLK_828_STATUS_MASK 0x0000ffff #define CLK_828_STATUS_FLAG_OPT_IN_IFACE_IS_SPDIF 0x00008000 #define CLK_828_STATUS_FLAG_OPT_OUT_IFACE_IS_SPDIF 0x00004000 #define CLK_828_STATUS_FLAG_FETCH_PCM_FRAMES 0x00000080 #define CLK_828_STATUS_FLAG_ENABLE_OUTPUT 0x00000008 #define CLK_828_STATUS_FLAG_RATE_48000 0x00000004 #define CLK_828_STATUS_MASK_SRC 0x00000023 #define CLK_828_STATUS_FLAG_SRC_ADAT_ON_OPT 0x00000021 #define CLK_828_STATUS_FLAG_SRC_SPH 0x00000003 #define CLK_828_STATUS_FLAG_SRC_SPDIF 0x00000002 #define CLK_828_STATUS_FLAG_SRC_ADAT_ON_DSUB 0x00000001 #define CLK_828_STATUS_FLAG_SRC_INTERNAL 0x00000000 // Status register for MOTU 896 (0x'ffff'f000'0b14). // // 0xf0000000: enable physical and stream input to DAC. // 0x80000000: disable // 0x40000000: disable // 0x20000000: enable (prior to the other bits) // 0x10000000: disable // 0x00000000: disable // 0x08000000: speed of word clock signal output on BNC interface. // 0x00000000: force to low rate (44.1/48.0 kHz). // 0x08000000: follow to system clock. // 0x04000000: something relevant to clock. // 0x03000000: enable output. // 0x02000000: enabled irreversibly once standing unless the device voluntarily disables it. // 0x01000000: enabled irreversibly once standing unless the device voluntarily disables it. // 0x00ffff00: monitor input mode. // 0x00000000: disabled // 0x00004800: analog-1/2 // 0x00005a00: analog-3/4 // 0x00006c00: analog-5/6 // 0x00007e00: analog-7/8 // 0x00104800: AES/EBU-1/2 // 0x00004000: analog-1 // 0x00004900: analog-2 // 0x00005200: analog-3 // 0x00005b00: analog-4 // 0x00006400: analog-5 // 0x00006d00: analog-6 // 0x00007600: analog-7 // 0x00007f00: analog-8 // 0x00104000: AES/EBU-1 // 0x00104900: AES/EBU-2 // 0x00000060: sample rate conversion for AES/EBU input/output. // 0x00000000: None // 0x00000020: input signal is converted to system rate // 0x00000040: output is slave to input, ignoring system rate // 0x00000060: output is double rate than system rate // 0x00000018: nominal rate of sampling clock. // 0x00000000: 44.1 kHz // 0x00000008: 48.0 kHz // 0x00000010: 88.2 kHz // 0x00000018: 96.0 kHz // 0x00000007: source of sampling clock. // 0x00000000: internal // 0x00000001: ADAT on optical interface // 0x00000002: AES/EBU on XLR // 0x00000003: source packet header (SPH) // 0x00000004: word clock on BNC // 0x00000005: ADAT on Dsub 9pin #define CLK_896_STATUS_OFFSET 0x0b14 #define CLK_896_STATUS_FLAG_FETCH_ENABLE 0x20000000 #define CLK_896_STATUS_FLAG_OUTPUT_ON 0x03000000 #define CLK_896_STATUS_MASK_SRC 0x00000007 #define CLK_896_STATUS_FLAG_SRC_INTERNAL 0x00000000 #define CLK_896_STATUS_FLAG_SRC_ADAT_ON_OPT 0x00000001 #define CLK_896_STATUS_FLAG_SRC_AESEBU 0x00000002 #define CLK_896_STATUS_FLAG_SRC_SPH 0x00000003 #define CLK_896_STATUS_FLAG_SRC_WORD 0x00000004 #define CLK_896_STATUS_FLAG_SRC_ADAT_ON_DSUB 0x00000005 #define CLK_896_STATUS_MASK_RATE 0x00000018 #define CLK_896_STATUS_FLAG_RATE_44100 0x00000000 #define CLK_896_STATUS_FLAG_RATE_48000 0x00000008 #define CLK_896_STATUS_FLAG_RATE_88200 0x00000010 #define CLK_896_STATUS_FLAG_RATE_96000 0x00000018 static void parse_clock_rate_828(u32 data, unsigned int *rate) { if (data & CLK_828_STATUS_FLAG_RATE_48000) *rate = 48000; else *rate = 44100; } static int get_clock_rate_828(struct snd_motu *motu, unsigned int *rate) { __be32 reg; int err; err = snd_motu_transaction_read(motu, CLK_828_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; parse_clock_rate_828(be32_to_cpu(reg), rate); return 0; } static int parse_clock_rate_896(u32 data, unsigned int *rate) { switch (data & CLK_896_STATUS_MASK_RATE) { case CLK_896_STATUS_FLAG_RATE_44100: *rate = 44100; break; case CLK_896_STATUS_FLAG_RATE_48000: *rate = 48000; break; case CLK_896_STATUS_FLAG_RATE_88200: *rate = 88200; break; case CLK_896_STATUS_FLAG_RATE_96000: *rate = 96000; break; default: return -ENXIO; } return 0; } static int get_clock_rate_896(struct snd_motu *motu, unsigned int *rate) { __be32 reg; int err; err = snd_motu_transaction_read(motu, CLK_896_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; return parse_clock_rate_896(be32_to_cpu(reg), rate); } int snd_motu_protocol_v1_get_clock_rate(struct snd_motu *motu, unsigned int *rate) { if (motu->spec == &snd_motu_spec_828) return get_clock_rate_828(motu, rate); else if (motu->spec == &snd_motu_spec_896) return get_clock_rate_896(motu, rate); else return -ENXIO; } static int set_clock_rate_828(struct snd_motu *motu, unsigned int rate) { __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, CLK_828_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg) & CLK_828_STATUS_MASK; data &= ~CLK_828_STATUS_FLAG_RATE_48000; if (rate == 48000) data |= CLK_828_STATUS_FLAG_RATE_48000; reg = cpu_to_be32(data); return snd_motu_transaction_write(motu, CLK_828_STATUS_OFFSET, &reg, sizeof(reg)); } static int set_clock_rate_896(struct snd_motu *motu, unsigned int rate) { unsigned int flag; __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, CLK_896_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); switch (rate) { case 44100: flag = CLK_896_STATUS_FLAG_RATE_44100; break; case 48000: flag = CLK_896_STATUS_FLAG_RATE_48000; break; case 88200: flag = CLK_896_STATUS_FLAG_RATE_88200; break; case 96000: flag = CLK_896_STATUS_FLAG_RATE_96000; break; default: return -EINVAL; } data &= ~CLK_896_STATUS_MASK_RATE; data |= flag; reg = cpu_to_be32(data); return snd_motu_transaction_write(motu, CLK_896_STATUS_OFFSET, &reg, sizeof(reg)); } int snd_motu_protocol_v1_set_clock_rate(struct snd_motu *motu, unsigned int rate) { if (motu->spec == &snd_motu_spec_828) return set_clock_rate_828(motu, rate); else if (motu->spec == &snd_motu_spec_896) return set_clock_rate_896(motu, rate); else return -ENXIO; } static int get_clock_source_828(struct snd_motu *motu, enum snd_motu_clock_source *src) { __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, CLK_828_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg) & CLK_828_STATUS_MASK; switch (data & CLK_828_STATUS_MASK_SRC) { case CLK_828_STATUS_FLAG_SRC_ADAT_ON_OPT: *src = SND_MOTU_CLOCK_SOURCE_ADAT_ON_OPT; break; case CLK_828_STATUS_FLAG_SRC_SPH: *src = SND_MOTU_CLOCK_SOURCE_SPH; break; case CLK_828_STATUS_FLAG_SRC_SPDIF: { if (data & CLK_828_STATUS_FLAG_OPT_IN_IFACE_IS_SPDIF) *src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_COAX; else *src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_OPT; break; } case CLK_828_STATUS_FLAG_SRC_ADAT_ON_DSUB: *src = SND_MOTU_CLOCK_SOURCE_ADAT_ON_DSUB; break; case CLK_828_STATUS_FLAG_SRC_INTERNAL: *src = SND_MOTU_CLOCK_SOURCE_INTERNAL; break; default: return -ENXIO; } return 0; } static int get_clock_source_896(struct snd_motu *motu, enum snd_motu_clock_source *src) { __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, CLK_896_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); switch (data & CLK_896_STATUS_MASK_SRC) { case CLK_896_STATUS_FLAG_SRC_INTERNAL: *src = SND_MOTU_CLOCK_SOURCE_INTERNAL; break; case CLK_896_STATUS_FLAG_SRC_ADAT_ON_OPT: *src = SND_MOTU_CLOCK_SOURCE_ADAT_ON_OPT; break; case CLK_896_STATUS_FLAG_SRC_AESEBU: *src = SND_MOTU_CLOCK_SOURCE_AESEBU_ON_XLR; break; case CLK_896_STATUS_FLAG_SRC_SPH: *src = SND_MOTU_CLOCK_SOURCE_SPH; break; case CLK_896_STATUS_FLAG_SRC_WORD: *src = SND_MOTU_CLOCK_SOURCE_WORD_ON_BNC; break; case CLK_896_STATUS_FLAG_SRC_ADAT_ON_DSUB: *src = SND_MOTU_CLOCK_SOURCE_ADAT_ON_DSUB; break; default: return -ENXIO; } return 0; } int snd_motu_protocol_v1_get_clock_source(struct snd_motu *motu, enum snd_motu_clock_source *src) { if (motu->spec == &snd_motu_spec_828) return get_clock_source_828(motu, src); else if (motu->spec == &snd_motu_spec_896) return get_clock_source_896(motu, src); else return -ENXIO; } static int switch_fetching_mode_828(struct snd_motu *motu, bool enable) { __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, CLK_828_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg) & CLK_828_STATUS_MASK; data &= ~(CLK_828_STATUS_FLAG_FETCH_PCM_FRAMES | CLK_828_STATUS_FLAG_ENABLE_OUTPUT); if (enable) { // This transaction should be initiated after the device receives batch of packets // since the device voluntarily mutes outputs. As a workaround, yield processor over // 100 msec. msleep(100); data |= CLK_828_STATUS_FLAG_FETCH_PCM_FRAMES | CLK_828_STATUS_FLAG_ENABLE_OUTPUT; } reg = cpu_to_be32(data); return snd_motu_transaction_write(motu, CLK_828_STATUS_OFFSET, &reg, sizeof(reg)); } static int switch_fetching_mode_896(struct snd_motu *motu, bool enable) { __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, CLK_896_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); data &= ~CLK_896_STATUS_FLAG_FETCH_ENABLE; if (enable) data |= CLK_896_STATUS_FLAG_FETCH_ENABLE | CLK_896_STATUS_FLAG_OUTPUT_ON; reg = cpu_to_be32(data); return snd_motu_transaction_write(motu, CLK_896_STATUS_OFFSET, &reg, sizeof(reg)); } int snd_motu_protocol_v1_switch_fetching_mode(struct snd_motu *motu, bool enable) { if (motu->spec == &snd_motu_spec_828) return switch_fetching_mode_828(motu, enable); else if (motu->spec == &snd_motu_spec_896) return switch_fetching_mode_896(motu, enable); else return -ENXIO; } static int detect_packet_formats_828(struct snd_motu *motu) { __be32 reg; u32 data; int err; motu->tx_packet_formats.pcm_byte_offset = 4; motu->tx_packet_formats.msg_chunks = 2; motu->rx_packet_formats.pcm_byte_offset = 4; motu->rx_packet_formats.msg_chunks = 0; err = snd_motu_transaction_read(motu, CLK_828_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg) & CLK_828_STATUS_MASK; // The number of chunks is just reduced when SPDIF is activated. if (!(data & CLK_828_STATUS_FLAG_OPT_IN_IFACE_IS_SPDIF)) motu->tx_packet_formats.pcm_chunks[0] += 8; if (!(data & CLK_828_STATUS_FLAG_OPT_OUT_IFACE_IS_SPDIF)) motu->rx_packet_formats.pcm_chunks[0] += 8; return 0; } static int detect_packet_formats_896(struct snd_motu *motu) { // 24bit PCM frames follow to source packet header without message chunk. motu->tx_packet_formats.pcm_byte_offset = 4; motu->rx_packet_formats.pcm_byte_offset = 4; // No message chunk in data block. motu->tx_packet_formats.msg_chunks = 0; motu->rx_packet_formats.msg_chunks = 0; // Always enable optical interface for ADAT signal since the device have no registers // to refer to current configuration. motu->tx_packet_formats.pcm_chunks[0] += 8; motu->tx_packet_formats.pcm_chunks[1] += 8; motu->rx_packet_formats.pcm_chunks[0] += 8; motu->rx_packet_formats.pcm_chunks[1] += 8; return 0; } int snd_motu_protocol_v1_cache_packet_formats(struct snd_motu *motu) { memcpy(motu->tx_packet_formats.pcm_chunks, motu->spec->tx_fixed_pcm_chunks, sizeof(motu->tx_packet_formats.pcm_chunks)); memcpy(motu->rx_packet_formats.pcm_chunks, motu->spec->rx_fixed_pcm_chunks, sizeof(motu->rx_packet_formats.pcm_chunks)); if (motu->spec == &snd_motu_spec_828) return detect_packet_formats_828(motu); else if (motu->spec == &snd_motu_spec_896) return detect_packet_formats_896(motu); else return 0; } const struct snd_motu_spec snd_motu_spec_828 = { .name = "828", .protocol_version = SND_MOTU_PROTOCOL_V1, .tx_fixed_pcm_chunks = {10, 0, 0}, .rx_fixed_pcm_chunks = {10, 0, 0}, }; const struct snd_motu_spec snd_motu_spec_896 = { .name = "896", .tx_fixed_pcm_chunks = {10, 10, 0}, .rx_fixed_pcm_chunks = {10, 10, 0}, };
linux-master
sound/firewire/motu/motu-protocol-v1.c
// SPDX-License-Identifier: GPL-2.0-only /* * motu-pcm.c - a part of driver for MOTU FireWire series * * Copyright (c) 2015-2017 Takashi Sakamoto <[email protected]> */ #include <sound/pcm_params.h> #include "motu.h" static int motu_rate_constraint(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_motu_packet_format *formats = rule->private; const struct snd_interval *c = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval rates = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i, pcm_channels, rate, mode; for (i = 0; i < ARRAY_SIZE(snd_motu_clock_rates); ++i) { rate = snd_motu_clock_rates[i]; mode = i / 2; pcm_channels = formats->pcm_chunks[mode]; if (!snd_interval_test(c, pcm_channels)) continue; rates.min = min(rates.min, rate); rates.max = max(rates.max, rate); } return snd_interval_refine(r, &rates); } static int motu_channels_constraint(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_motu_packet_format *formats = rule->private; const struct snd_interval *r = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval channels = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i, pcm_channels, rate, mode; for (i = 0; i < ARRAY_SIZE(snd_motu_clock_rates); ++i) { rate = snd_motu_clock_rates[i]; mode = i / 2; if (!snd_interval_test(r, rate)) continue; pcm_channels = formats->pcm_chunks[mode]; channels.min = min(channels.min, pcm_channels); channels.max = max(channels.max, pcm_channels); } return snd_interval_refine(c, &channels); } static void limit_channels_and_rates(struct snd_motu *motu, struct snd_pcm_runtime *runtime, struct snd_motu_packet_format *formats) { struct snd_pcm_hardware *hw = &runtime->hw; unsigned int i, pcm_channels, rate, mode; hw->channels_min = UINT_MAX; hw->channels_max = 0; for (i = 0; i < ARRAY_SIZE(snd_motu_clock_rates); ++i) { rate = snd_motu_clock_rates[i]; mode = i / 2; pcm_channels = formats->pcm_chunks[mode]; if (pcm_channels == 0) continue; hw->rates |= snd_pcm_rate_to_rate_bit(rate); hw->channels_min = min(hw->channels_min, pcm_channels); hw->channels_max = max(hw->channels_max, pcm_channels); } snd_pcm_limit_hw_rates(runtime); } static int init_hw_info(struct snd_motu *motu, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_pcm_hardware *hw = &runtime->hw; struct amdtp_stream *stream; struct snd_motu_packet_format *formats; int err; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { hw->formats = SNDRV_PCM_FMTBIT_S32; stream = &motu->tx_stream; formats = &motu->tx_packet_formats; } else { hw->formats = SNDRV_PCM_FMTBIT_S32; stream = &motu->rx_stream; formats = &motu->rx_packet_formats; } limit_channels_and_rates(motu, runtime, formats); err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, motu_rate_constraint, formats, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (err < 0) return err; err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, motu_channels_constraint, formats, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) return err; return amdtp_motu_add_pcm_hw_constraints(stream, runtime); } static int pcm_open(struct snd_pcm_substream *substream) { struct snd_motu *motu = substream->private_data; struct amdtp_domain *d = &motu->domain; enum snd_motu_clock_source src; int err; err = snd_motu_stream_lock_try(motu); if (err < 0) return err; mutex_lock(&motu->mutex); err = snd_motu_stream_cache_packet_formats(motu); if (err < 0) goto err_locked; err = init_hw_info(motu, substream); if (err < 0) goto err_locked; err = snd_motu_protocol_get_clock_source(motu, &src); if (err < 0) goto err_locked; // When source of clock is not internal or any stream is reserved for // transmission of PCM frames, the available sampling rate is limited // at current one. if ((src != SND_MOTU_CLOCK_SOURCE_INTERNAL && src != SND_MOTU_CLOCK_SOURCE_SPH) || (motu->substreams_counter > 0 && d->events_per_period > 0)) { unsigned int frames_per_period = d->events_per_period; unsigned int frames_per_buffer = d->events_per_buffer; unsigned int rate; err = snd_motu_protocol_get_clock_rate(motu, &rate); if (err < 0) goto err_locked; substream->runtime->hw.rate_min = rate; substream->runtime->hw.rate_max = rate; if (frames_per_period > 0) { err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, frames_per_period, frames_per_period); if (err < 0) goto err_locked; err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, frames_per_buffer, frames_per_buffer); if (err < 0) goto err_locked; } } snd_pcm_set_sync(substream); mutex_unlock(&motu->mutex); return 0; err_locked: mutex_unlock(&motu->mutex); snd_motu_stream_lock_release(motu); return err; } static int pcm_close(struct snd_pcm_substream *substream) { struct snd_motu *motu = substream->private_data; snd_motu_stream_lock_release(motu); return 0; } static int pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_motu *motu = substream->private_data; int err = 0; if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { unsigned int rate = params_rate(hw_params); unsigned int frames_per_period = params_period_size(hw_params); unsigned int frames_per_buffer = params_buffer_size(hw_params); mutex_lock(&motu->mutex); err = snd_motu_stream_reserve_duplex(motu, rate, frames_per_period, frames_per_buffer); if (err >= 0) ++motu->substreams_counter; mutex_unlock(&motu->mutex); } return err; } static int pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_motu *motu = substream->private_data; mutex_lock(&motu->mutex); if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) --motu->substreams_counter; snd_motu_stream_stop_duplex(motu); mutex_unlock(&motu->mutex); return 0; } static int capture_prepare(struct snd_pcm_substream *substream) { struct snd_motu *motu = substream->private_data; int err; mutex_lock(&motu->mutex); err = snd_motu_stream_start_duplex(motu); mutex_unlock(&motu->mutex); if (err >= 0) amdtp_stream_pcm_prepare(&motu->tx_stream); return 0; } static int playback_prepare(struct snd_pcm_substream *substream) { struct snd_motu *motu = substream->private_data; int err; mutex_lock(&motu->mutex); err = snd_motu_stream_start_duplex(motu); mutex_unlock(&motu->mutex); if (err >= 0) amdtp_stream_pcm_prepare(&motu->rx_stream); return err; } static int capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_motu *motu = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&motu->tx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&motu->tx_stream, NULL); break; default: return -EINVAL; } return 0; } static int playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_motu *motu = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&motu->rx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&motu->rx_stream, NULL); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t capture_pointer(struct snd_pcm_substream *substream) { struct snd_motu *motu = substream->private_data; return amdtp_domain_stream_pcm_pointer(&motu->domain, &motu->tx_stream); } static snd_pcm_uframes_t playback_pointer(struct snd_pcm_substream *substream) { struct snd_motu *motu = substream->private_data; return amdtp_domain_stream_pcm_pointer(&motu->domain, &motu->rx_stream); } static int capture_ack(struct snd_pcm_substream *substream) { struct snd_motu *motu = substream->private_data; return amdtp_domain_stream_pcm_ack(&motu->domain, &motu->tx_stream); } static int playback_ack(struct snd_pcm_substream *substream) { struct snd_motu *motu = substream->private_data; return amdtp_domain_stream_pcm_ack(&motu->domain, &motu->rx_stream); } int snd_motu_create_pcm_devices(struct snd_motu *motu) { static const struct snd_pcm_ops capture_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = capture_prepare, .trigger = capture_trigger, .pointer = capture_pointer, .ack = capture_ack, }; static const struct snd_pcm_ops playback_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = playback_prepare, .trigger = playback_trigger, .pointer = playback_pointer, .ack = playback_ack, }; struct snd_pcm *pcm; int err; err = snd_pcm_new(motu->card, motu->card->driver, 0, 1, 1, &pcm); if (err < 0) return err; pcm->private_data = motu; strcpy(pcm->name, motu->card->shortname); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0); return 0; }
linux-master
sound/firewire/motu/motu-pcm.c
// SPDX-License-Identifier: GPL-2.0-only /* * motu-stream.c - a part of driver for MOTU FireWire series * * Copyright (c) 2015-2017 Takashi Sakamoto <[email protected]> */ #include "motu.h" #define READY_TIMEOUT_MS 200 #define ISOC_COMM_CONTROL_OFFSET 0x0b00 #define ISOC_COMM_CONTROL_MASK 0xffff0000 #define CHANGE_RX_ISOC_COMM_STATE 0x80000000 #define RX_ISOC_COMM_IS_ACTIVATED 0x40000000 #define RX_ISOC_COMM_CHANNEL_MASK 0x3f000000 #define RX_ISOC_COMM_CHANNEL_SHIFT 24 #define CHANGE_TX_ISOC_COMM_STATE 0x00800000 #define TX_ISOC_COMM_IS_ACTIVATED 0x00400000 #define TX_ISOC_COMM_CHANNEL_MASK 0x003f0000 #define TX_ISOC_COMM_CHANNEL_SHIFT 16 #define PACKET_FORMAT_OFFSET 0x0b10 #define TX_PACKET_EXCLUDE_DIFFERED_DATA_CHUNKS 0x00000080 #define RX_PACKET_EXCLUDE_DIFFERED_DATA_CHUNKS 0x00000040 #define TX_PACKET_TRANSMISSION_SPEED_MASK 0x0000000f static int keep_resources(struct snd_motu *motu, unsigned int rate, struct amdtp_stream *stream) { struct fw_iso_resources *resources; struct snd_motu_packet_format *packet_format; unsigned int midi_ports = 0; int err; if (stream == &motu->rx_stream) { resources = &motu->rx_resources; packet_format = &motu->rx_packet_formats; if ((motu->spec->flags & SND_MOTU_SPEC_RX_MIDI_2ND_Q) || (motu->spec->flags & SND_MOTU_SPEC_RX_MIDI_3RD_Q)) midi_ports = 1; } else { resources = &motu->tx_resources; packet_format = &motu->tx_packet_formats; if ((motu->spec->flags & SND_MOTU_SPEC_TX_MIDI_2ND_Q) || (motu->spec->flags & SND_MOTU_SPEC_TX_MIDI_3RD_Q)) midi_ports = 1; } err = amdtp_motu_set_parameters(stream, rate, midi_ports, packet_format); if (err < 0) return err; return fw_iso_resources_allocate(resources, amdtp_stream_get_max_payload(stream), fw_parent_device(motu->unit)->max_speed); } static int begin_session(struct snd_motu *motu) { __be32 reg; u32 data; int err; // Configure the unit to start isochronous communication. err = snd_motu_transaction_read(motu, ISOC_COMM_CONTROL_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg) & ~ISOC_COMM_CONTROL_MASK; data |= CHANGE_RX_ISOC_COMM_STATE | RX_ISOC_COMM_IS_ACTIVATED | (motu->rx_resources.channel << RX_ISOC_COMM_CHANNEL_SHIFT) | CHANGE_TX_ISOC_COMM_STATE | TX_ISOC_COMM_IS_ACTIVATED | (motu->tx_resources.channel << TX_ISOC_COMM_CHANNEL_SHIFT); reg = cpu_to_be32(data); return snd_motu_transaction_write(motu, ISOC_COMM_CONTROL_OFFSET, &reg, sizeof(reg)); } static void finish_session(struct snd_motu *motu) { __be32 reg; u32 data; int err; err = snd_motu_protocol_switch_fetching_mode(motu, false); if (err < 0) return; err = snd_motu_transaction_read(motu, ISOC_COMM_CONTROL_OFFSET, &reg, sizeof(reg)); if (err < 0) return; data = be32_to_cpu(reg); data &= ~(RX_ISOC_COMM_IS_ACTIVATED | TX_ISOC_COMM_IS_ACTIVATED); data |= CHANGE_RX_ISOC_COMM_STATE | CHANGE_TX_ISOC_COMM_STATE; reg = cpu_to_be32(data); snd_motu_transaction_write(motu, ISOC_COMM_CONTROL_OFFSET, &reg, sizeof(reg)); } int snd_motu_stream_cache_packet_formats(struct snd_motu *motu) { int err; err = snd_motu_protocol_cache_packet_formats(motu); if (err < 0) return err; if (motu->spec->flags & SND_MOTU_SPEC_TX_MIDI_2ND_Q) { motu->tx_packet_formats.midi_flag_offset = 4; motu->tx_packet_formats.midi_byte_offset = 6; } else if (motu->spec->flags & SND_MOTU_SPEC_TX_MIDI_3RD_Q) { motu->tx_packet_formats.midi_flag_offset = 8; motu->tx_packet_formats.midi_byte_offset = 7; } if (motu->spec->flags & SND_MOTU_SPEC_RX_MIDI_2ND_Q) { motu->rx_packet_formats.midi_flag_offset = 4; motu->rx_packet_formats.midi_byte_offset = 6; } else if (motu->spec->flags & SND_MOTU_SPEC_RX_MIDI_3RD_Q) { motu->rx_packet_formats.midi_flag_offset = 8; motu->rx_packet_formats.midi_byte_offset = 7; } return 0; } int snd_motu_stream_reserve_duplex(struct snd_motu *motu, unsigned int rate, unsigned int frames_per_period, unsigned int frames_per_buffer) { unsigned int curr_rate; int err; err = snd_motu_protocol_get_clock_rate(motu, &curr_rate); if (err < 0) return err; if (rate == 0) rate = curr_rate; if (motu->substreams_counter == 0 || curr_rate != rate) { amdtp_domain_stop(&motu->domain); finish_session(motu); fw_iso_resources_free(&motu->tx_resources); fw_iso_resources_free(&motu->rx_resources); kfree(motu->cache.event_offsets); motu->cache.event_offsets = NULL; err = snd_motu_protocol_set_clock_rate(motu, rate); if (err < 0) { dev_err(&motu->unit->device, "fail to set sampling rate: %d\n", err); return err; } err = snd_motu_stream_cache_packet_formats(motu); if (err < 0) return err; err = keep_resources(motu, rate, &motu->tx_stream); if (err < 0) return err; err = keep_resources(motu, rate, &motu->rx_stream); if (err < 0) { fw_iso_resources_free(&motu->tx_resources); return err; } err = amdtp_domain_set_events_per_period(&motu->domain, frames_per_period, frames_per_buffer); if (err < 0) { fw_iso_resources_free(&motu->tx_resources); fw_iso_resources_free(&motu->rx_resources); return err; } motu->cache.size = motu->tx_stream.syt_interval * frames_per_buffer; motu->cache.event_offsets = kcalloc(motu->cache.size, sizeof(*motu->cache.event_offsets), GFP_KERNEL); if (!motu->cache.event_offsets) { fw_iso_resources_free(&motu->tx_resources); fw_iso_resources_free(&motu->rx_resources); return -ENOMEM; } } return 0; } static int ensure_packet_formats(struct snd_motu *motu) { __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, PACKET_FORMAT_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); data &= ~(TX_PACKET_EXCLUDE_DIFFERED_DATA_CHUNKS | RX_PACKET_EXCLUDE_DIFFERED_DATA_CHUNKS| TX_PACKET_TRANSMISSION_SPEED_MASK); if (motu->spec->tx_fixed_pcm_chunks[0] == motu->tx_packet_formats.pcm_chunks[0]) data |= TX_PACKET_EXCLUDE_DIFFERED_DATA_CHUNKS; if (motu->spec->rx_fixed_pcm_chunks[0] == motu->rx_packet_formats.pcm_chunks[0]) data |= RX_PACKET_EXCLUDE_DIFFERED_DATA_CHUNKS; data |= fw_parent_device(motu->unit)->max_speed; reg = cpu_to_be32(data); return snd_motu_transaction_write(motu, PACKET_FORMAT_OFFSET, &reg, sizeof(reg)); } int snd_motu_stream_start_duplex(struct snd_motu *motu) { unsigned int generation = motu->rx_resources.generation; int err = 0; if (motu->substreams_counter == 0) return 0; if (amdtp_streaming_error(&motu->rx_stream) || amdtp_streaming_error(&motu->tx_stream)) { amdtp_domain_stop(&motu->domain); finish_session(motu); } if (generation != fw_parent_device(motu->unit)->card->generation) { err = fw_iso_resources_update(&motu->rx_resources); if (err < 0) return err; err = fw_iso_resources_update(&motu->tx_resources); if (err < 0) return err; } if (!amdtp_stream_running(&motu->rx_stream)) { int spd = fw_parent_device(motu->unit)->max_speed; err = ensure_packet_formats(motu); if (err < 0) return err; if (motu->spec->flags & SND_MOTU_SPEC_REGISTER_DSP) { err = snd_motu_register_dsp_message_parser_init(motu); if (err < 0) return err; } else if (motu->spec->flags & SND_MOTU_SPEC_COMMAND_DSP) { err = snd_motu_command_dsp_message_parser_init(motu, motu->tx_stream.sfc); if (err < 0) return err; } err = begin_session(motu); if (err < 0) { dev_err(&motu->unit->device, "fail to start isochronous comm: %d\n", err); goto stop_streams; } err = amdtp_domain_add_stream(&motu->domain, &motu->tx_stream, motu->tx_resources.channel, spd); if (err < 0) goto stop_streams; err = amdtp_domain_add_stream(&motu->domain, &motu->rx_stream, motu->rx_resources.channel, spd); if (err < 0) goto stop_streams; motu->cache.tail = 0; motu->cache.tx_cycle_count = UINT_MAX; motu->cache.head = 0; motu->cache.rx_cycle_count = UINT_MAX; // NOTE: The device requires both of replay; the sequence of the number of data // blocks per packet, and the sequence of source packet header per data block as // presentation time. err = amdtp_domain_start(&motu->domain, 0, true, false); if (err < 0) goto stop_streams; if (!amdtp_domain_wait_ready(&motu->domain, READY_TIMEOUT_MS)) { err = -ETIMEDOUT; goto stop_streams; } err = snd_motu_protocol_switch_fetching_mode(motu, true); if (err < 0) { dev_err(&motu->unit->device, "fail to enable frame fetching: %d\n", err); goto stop_streams; } } return 0; stop_streams: amdtp_domain_stop(&motu->domain); finish_session(motu); return err; } void snd_motu_stream_stop_duplex(struct snd_motu *motu) { if (motu->substreams_counter == 0) { amdtp_domain_stop(&motu->domain); finish_session(motu); fw_iso_resources_free(&motu->tx_resources); fw_iso_resources_free(&motu->rx_resources); kfree(motu->cache.event_offsets); motu->cache.event_offsets = NULL; } } static int init_stream(struct snd_motu *motu, struct amdtp_stream *s) { struct fw_iso_resources *resources; enum amdtp_stream_direction dir; int err; if (s == &motu->tx_stream) { resources = &motu->tx_resources; dir = AMDTP_IN_STREAM; } else { resources = &motu->rx_resources; dir = AMDTP_OUT_STREAM; } err = fw_iso_resources_init(resources, motu->unit); if (err < 0) return err; err = amdtp_motu_init(s, motu->unit, dir, motu->spec, &motu->cache); if (err < 0) fw_iso_resources_destroy(resources); return err; } static void destroy_stream(struct snd_motu *motu, struct amdtp_stream *s) { amdtp_stream_destroy(s); if (s == &motu->tx_stream) fw_iso_resources_destroy(&motu->tx_resources); else fw_iso_resources_destroy(&motu->rx_resources); } int snd_motu_stream_init_duplex(struct snd_motu *motu) { int err; err = init_stream(motu, &motu->tx_stream); if (err < 0) return err; err = init_stream(motu, &motu->rx_stream); if (err < 0) { destroy_stream(motu, &motu->tx_stream); return err; } err = amdtp_domain_init(&motu->domain); if (err < 0) { destroy_stream(motu, &motu->tx_stream); destroy_stream(motu, &motu->rx_stream); } return err; } // This function should be called before starting streams or after stopping // streams. void snd_motu_stream_destroy_duplex(struct snd_motu *motu) { amdtp_domain_destroy(&motu->domain); destroy_stream(motu, &motu->rx_stream); destroy_stream(motu, &motu->tx_stream); motu->substreams_counter = 0; } static void motu_lock_changed(struct snd_motu *motu) { motu->dev_lock_changed = true; wake_up(&motu->hwdep_wait); } int snd_motu_stream_lock_try(struct snd_motu *motu) { int err; spin_lock_irq(&motu->lock); if (motu->dev_lock_count < 0) { err = -EBUSY; goto out; } if (motu->dev_lock_count++ == 0) motu_lock_changed(motu); err = 0; out: spin_unlock_irq(&motu->lock); return err; } void snd_motu_stream_lock_release(struct snd_motu *motu) { spin_lock_irq(&motu->lock); if (WARN_ON(motu->dev_lock_count <= 0)) goto out; if (--motu->dev_lock_count == 0) motu_lock_changed(motu); out: spin_unlock_irq(&motu->lock); }
linux-master
sound/firewire/motu/motu-stream.c
// SPDX-License-Identifier: GPL-2.0-only // // motu-command-dsp-message-parser.c - a part of driver for MOTU FireWire series // // Copyright (c) 2021 Takashi Sakamoto <[email protected]> // Below models allow software to configure their DSP function by command transferred in // asynchronous transaction: // * 828 mk3 (FireWire only and Hybrid) // * 896 mk3 (FireWire only and Hybrid) // * Ultralite mk3 (FireWire only and Hybrid) // * Traveler mk3 // * Track 16 // // Isochronous packets from the above models includes messages to report state of hardware meter. #include "motu.h" enum msg_parser_state { INITIALIZED, FRAGMENT_DETECTED, AVAILABLE, }; struct msg_parser { spinlock_t lock; enum msg_parser_state state; unsigned int interval; unsigned int message_count; unsigned int fragment_pos; unsigned int value_index; u64 value; struct snd_firewire_motu_command_dsp_meter meter; }; int snd_motu_command_dsp_message_parser_new(struct snd_motu *motu) { struct msg_parser *parser; parser = devm_kzalloc(&motu->card->card_dev, sizeof(*parser), GFP_KERNEL); if (!parser) return -ENOMEM; spin_lock_init(&parser->lock); motu->message_parser = parser; return 0; } int snd_motu_command_dsp_message_parser_init(struct snd_motu *motu, enum cip_sfc sfc) { struct msg_parser *parser = motu->message_parser; parser->state = INITIALIZED; // All of data blocks don't have messages with meaningful information. switch (sfc) { case CIP_SFC_176400: case CIP_SFC_192000: parser->interval = 4; break; case CIP_SFC_88200: case CIP_SFC_96000: parser->interval = 2; break; case CIP_SFC_32000: case CIP_SFC_44100: case CIP_SFC_48000: default: parser->interval = 1; break; } return 0; } #define FRAGMENT_POS 6 #define MIDI_BYTE_POS 7 #define MIDI_FLAG_POS 8 // One value of hardware meter consists of 4 messages. #define FRAGMENTS_PER_VALUE 4 #define VALUES_AT_IMAGE_END 0xffffffffffffffff void snd_motu_command_dsp_message_parser_parse(const struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count) { struct snd_motu *motu = container_of(s, struct snd_motu, tx_stream); unsigned int data_block_quadlets = s->data_block_quadlets; struct msg_parser *parser = motu->message_parser; unsigned int interval = parser->interval; unsigned long flags; int i; spin_lock_irqsave(&parser->lock, flags); for (i = 0; i < count; ++i) { __be32 *buffer = desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; int j; desc = amdtp_stream_next_packet_desc(s, desc); for (j = 0; j < data_blocks; ++j) { u8 *b = (u8 *)buffer; buffer += data_block_quadlets; switch (parser->state) { case INITIALIZED: { u8 fragment = b[FRAGMENT_POS]; if (fragment > 0) { parser->value = fragment; parser->message_count = 1; parser->state = FRAGMENT_DETECTED; } break; } case FRAGMENT_DETECTED: { if (parser->message_count % interval == 0) { u8 fragment = b[FRAGMENT_POS]; parser->value >>= 8; parser->value |= (u64)fragment << 56; if (parser->value == VALUES_AT_IMAGE_END) { parser->state = AVAILABLE; parser->fragment_pos = 0; parser->value_index = 0; parser->message_count = 0; } } ++parser->message_count; break; } case AVAILABLE: default: { if (parser->message_count % interval == 0) { u8 fragment = b[FRAGMENT_POS]; parser->value >>= 8; parser->value |= (u64)fragment << 56; ++parser->fragment_pos; if (parser->fragment_pos == 4) { // Skip the last two quadlets since they could be // invalid value (0xffffffff) as floating point // number. if (parser->value_index < SNDRV_FIREWIRE_MOTU_COMMAND_DSP_METER_COUNT - 2) { u32 val = (u32)(parser->value >> 32); parser->meter.data[parser->value_index] = val; } ++parser->value_index; parser->fragment_pos = 0; } if (parser->value == VALUES_AT_IMAGE_END) { parser->value_index = 0; parser->fragment_pos = 0; parser->message_count = 0; } } ++parser->message_count; break; } } } } spin_unlock_irqrestore(&parser->lock, flags); } void snd_motu_command_dsp_message_parser_copy_meter(struct snd_motu *motu, struct snd_firewire_motu_command_dsp_meter *meter) { struct msg_parser *parser = motu->message_parser; unsigned long flags; spin_lock_irqsave(&parser->lock, flags); memcpy(meter, &parser->meter, sizeof(*meter)); spin_unlock_irqrestore(&parser->lock, flags); }
linux-master
sound/firewire/motu/motu-command-dsp-message-parser.c
// SPDX-License-Identifier: GPL-2.0-only /* * motu-protocol-v2.c - a part of driver for MOTU FireWire series * * Copyright (c) 2015-2017 Takashi Sakamoto <[email protected]> */ #include "motu.h" #define V2_CLOCK_STATUS_OFFSET 0x0b14 #define V2_CLOCK_RATE_MASK 0x00000038 #define V2_CLOCK_RATE_SHIFT 3 #define V2_CLOCK_SRC_MASK 0x00000007 #define V2_CLOCK_SRC_SHIFT 0 #define V2_CLOCK_SRC_AESEBU_ON_XLR 0x07 // In Traveler. #define V2_CLOCK_SRC_ADAT_ON_DSUB 0x05 #define V2_CLOCK_SRC_WORD_ON_BNC 0x04 #define V2_CLOCK_SRC_SPH 0x03 #define V2_CLOCK_SRC_SPDIF 0x02 // on either coaxial or optical. AES/EBU in 896HD. #define V2_CLOCK_SRC_ADAT_ON_OPT 0x01 #define V2_CLOCK_SRC_INTERNAL 0x00 #define V2_CLOCK_FETCH_ENABLE 0x02000000 #define V2_CLOCK_MODEL_SPECIFIC 0x04000000 #define V2_IN_OUT_CONF_OFFSET 0x0c04 #define V2_OPT_OUT_IFACE_MASK 0x00000c00 #define V2_OPT_OUT_IFACE_SHIFT 10 #define V2_OPT_IN_IFACE_MASK 0x00000300 #define V2_OPT_IN_IFACE_SHIFT 8 #define V2_OPT_IFACE_MODE_NONE 0 #define V2_OPT_IFACE_MODE_ADAT 1 #define V2_OPT_IFACE_MODE_SPDIF 2 static int get_clock_rate(u32 data, unsigned int *rate) { unsigned int index = (data & V2_CLOCK_RATE_MASK) >> V2_CLOCK_RATE_SHIFT; if (index >= ARRAY_SIZE(snd_motu_clock_rates)) return -EIO; *rate = snd_motu_clock_rates[index]; return 0; } int snd_motu_protocol_v2_get_clock_rate(struct snd_motu *motu, unsigned int *rate) { __be32 reg; int err; err = snd_motu_transaction_read(motu, V2_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; return get_clock_rate(be32_to_cpu(reg), rate); } int snd_motu_protocol_v2_set_clock_rate(struct snd_motu *motu, unsigned int rate) { __be32 reg; u32 data; int i; int err; for (i = 0; i < ARRAY_SIZE(snd_motu_clock_rates); ++i) { if (snd_motu_clock_rates[i] == rate) break; } if (i == ARRAY_SIZE(snd_motu_clock_rates)) return -EINVAL; err = snd_motu_transaction_read(motu, V2_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); data &= ~V2_CLOCK_RATE_MASK; data |= i << V2_CLOCK_RATE_SHIFT; reg = cpu_to_be32(data); return snd_motu_transaction_write(motu, V2_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); } static int get_clock_source(struct snd_motu *motu, u32 data, enum snd_motu_clock_source *src) { switch (data & V2_CLOCK_SRC_MASK) { case V2_CLOCK_SRC_INTERNAL: *src = SND_MOTU_CLOCK_SOURCE_INTERNAL; break; case V2_CLOCK_SRC_ADAT_ON_OPT: *src = SND_MOTU_CLOCK_SOURCE_ADAT_ON_OPT; break; case V2_CLOCK_SRC_SPDIF: { bool support_iec60958_on_opt = (motu->spec == &snd_motu_spec_828mk2 || motu->spec == &snd_motu_spec_traveler); if (motu->spec == &snd_motu_spec_896hd) { *src = SND_MOTU_CLOCK_SOURCE_AESEBU_ON_XLR; } else if (!support_iec60958_on_opt) { *src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_COAX; } else { __be32 reg; // To check the configuration of optical interface. int err = snd_motu_transaction_read(motu, V2_IN_OUT_CONF_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; if (((data & V2_OPT_IN_IFACE_MASK) >> V2_OPT_IN_IFACE_SHIFT) == V2_OPT_IFACE_MODE_SPDIF) *src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_OPT; else *src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_COAX; } break; } case V2_CLOCK_SRC_SPH: *src = SND_MOTU_CLOCK_SOURCE_SPH; break; case V2_CLOCK_SRC_WORD_ON_BNC: *src = SND_MOTU_CLOCK_SOURCE_WORD_ON_BNC; break; case V2_CLOCK_SRC_ADAT_ON_DSUB: *src = SND_MOTU_CLOCK_SOURCE_ADAT_ON_DSUB; break; case V2_CLOCK_SRC_AESEBU_ON_XLR: // For Traveler. *src = SND_MOTU_CLOCK_SOURCE_AESEBU_ON_XLR; break; default: *src = SND_MOTU_CLOCK_SOURCE_UNKNOWN; break; } return 0; } int snd_motu_protocol_v2_get_clock_source(struct snd_motu *motu, enum snd_motu_clock_source *src) { __be32 reg; int err; err = snd_motu_transaction_read(motu, V2_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; return get_clock_source(motu, be32_to_cpu(reg), src); } // Expected for Traveler, which implements Altera Cyclone EP1C3. static int switch_fetching_mode_cyclone(struct snd_motu *motu, u32 *data, bool enable) { *data |= V2_CLOCK_MODEL_SPECIFIC; return 0; } // For UltraLite and 8pre, which implements Xilinx Spartan XC3S200. static int switch_fetching_mode_spartan(struct snd_motu *motu, u32 *data, bool enable) { unsigned int rate; enum snd_motu_clock_source src; int err; err = get_clock_source(motu, *data, &src); if (err < 0) return err; err = get_clock_rate(*data, &rate); if (err < 0) return err; if (src == SND_MOTU_CLOCK_SOURCE_SPH && rate > 48000) *data |= V2_CLOCK_MODEL_SPECIFIC; return 0; } int snd_motu_protocol_v2_switch_fetching_mode(struct snd_motu *motu, bool enable) { if (motu->spec == &snd_motu_spec_828mk2) { // 828mkII implements Altera ACEX 1K EP1K30. Nothing to do. return 0; } else if (motu->spec == &snd_motu_spec_896hd) { // 896HD implements Altera Cyclone EP1C3 but nothing to do. return 0; } else { __be32 reg; u32 data; int err; err = snd_motu_transaction_read(motu, V2_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); data &= ~(V2_CLOCK_FETCH_ENABLE | V2_CLOCK_MODEL_SPECIFIC); if (enable) data |= V2_CLOCK_FETCH_ENABLE; if (motu->spec == &snd_motu_spec_traveler) err = switch_fetching_mode_cyclone(motu, &data, enable); else err = switch_fetching_mode_spartan(motu, &data, enable); if (err < 0) return err; reg = cpu_to_be32(data); return snd_motu_transaction_write(motu, V2_CLOCK_STATUS_OFFSET, &reg, sizeof(reg)); } } int snd_motu_protocol_v2_cache_packet_formats(struct snd_motu *motu) { bool has_two_opt_ifaces = (motu->spec == &snd_motu_spec_8pre); __be32 reg; u32 data; int err; motu->tx_packet_formats.pcm_byte_offset = 10; motu->rx_packet_formats.pcm_byte_offset = 10; motu->tx_packet_formats.msg_chunks = 2; motu->rx_packet_formats.msg_chunks = 2; err = snd_motu_transaction_read(motu, V2_IN_OUT_CONF_OFFSET, &reg, sizeof(reg)); if (err < 0) return err; data = be32_to_cpu(reg); memcpy(motu->tx_packet_formats.pcm_chunks, motu->spec->tx_fixed_pcm_chunks, sizeof(motu->tx_packet_formats.pcm_chunks)); memcpy(motu->rx_packet_formats.pcm_chunks, motu->spec->rx_fixed_pcm_chunks, sizeof(motu->rx_packet_formats.pcm_chunks)); if (((data & V2_OPT_IN_IFACE_MASK) >> V2_OPT_IN_IFACE_SHIFT) == V2_OPT_IFACE_MODE_ADAT) { motu->tx_packet_formats.pcm_chunks[0] += 8; if (!has_two_opt_ifaces) motu->tx_packet_formats.pcm_chunks[1] += 4; else motu->tx_packet_formats.pcm_chunks[1] += 8; } if (((data & V2_OPT_OUT_IFACE_MASK) >> V2_OPT_OUT_IFACE_SHIFT) == V2_OPT_IFACE_MODE_ADAT) { motu->rx_packet_formats.pcm_chunks[0] += 8; if (!has_two_opt_ifaces) motu->rx_packet_formats.pcm_chunks[1] += 4; else motu->rx_packet_formats.pcm_chunks[1] += 8; } return 0; } const struct snd_motu_spec snd_motu_spec_828mk2 = { .name = "828mk2", .protocol_version = SND_MOTU_PROTOCOL_V2, .flags = SND_MOTU_SPEC_RX_MIDI_2ND_Q | SND_MOTU_SPEC_TX_MIDI_2ND_Q | SND_MOTU_SPEC_REGISTER_DSP, .tx_fixed_pcm_chunks = {14, 14, 0}, .rx_fixed_pcm_chunks = {14, 14, 0}, }; const struct snd_motu_spec snd_motu_spec_896hd = { .name = "896HD", .protocol_version = SND_MOTU_PROTOCOL_V2, .flags = SND_MOTU_SPEC_REGISTER_DSP, .tx_fixed_pcm_chunks = {14, 14, 8}, .rx_fixed_pcm_chunks = {14, 14, 8}, }; const struct snd_motu_spec snd_motu_spec_traveler = { .name = "Traveler", .protocol_version = SND_MOTU_PROTOCOL_V2, .flags = SND_MOTU_SPEC_RX_MIDI_2ND_Q | SND_MOTU_SPEC_TX_MIDI_2ND_Q | SND_MOTU_SPEC_REGISTER_DSP, .tx_fixed_pcm_chunks = {14, 14, 8}, .rx_fixed_pcm_chunks = {14, 14, 8}, }; const struct snd_motu_spec snd_motu_spec_ultralite = { .name = "UltraLite", .protocol_version = SND_MOTU_PROTOCOL_V2, .flags = SND_MOTU_SPEC_RX_MIDI_2ND_Q | SND_MOTU_SPEC_TX_MIDI_2ND_Q | SND_MOTU_SPEC_REGISTER_DSP, .tx_fixed_pcm_chunks = {14, 14, 0}, .rx_fixed_pcm_chunks = {14, 14, 0}, }; const struct snd_motu_spec snd_motu_spec_8pre = { .name = "8pre", .protocol_version = SND_MOTU_PROTOCOL_V2, .flags = SND_MOTU_SPEC_RX_MIDI_2ND_Q | SND_MOTU_SPEC_TX_MIDI_2ND_Q | SND_MOTU_SPEC_REGISTER_DSP, // Two dummy chunks always in the end of data block. .tx_fixed_pcm_chunks = {10, 10, 0}, .rx_fixed_pcm_chunks = {6, 6, 0}, };
linux-master
sound/firewire/motu/motu-protocol-v2.c
// SPDX-License-Identifier: GPL-2.0-only /* * amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family * * Copyright (c) 2014-2015 Takashi Sakamoto * Copyright (C) 2012 Robin Gareus <[email protected]> * Copyright (C) 2012 Damien Zammit <[email protected]> */ #include <sound/pcm.h> #include "digi00x.h" #define CIP_FMT_AM 0x10 /* 'Clock-based rate control mode' is just supported. */ #define AMDTP_FDF_AM824 0x00 /* * Nominally 3125 bytes/second, but the MIDI port's clock might be * 1% too slow, and the bus clock 100 ppm too fast. */ #define MIDI_BYTES_PER_SECOND 3093 /* * Several devices look only at the first eight data blocks. * In any case, this is more than enough for the MIDI data rate. */ #define MAX_MIDI_RX_BLOCKS 8 /* 3 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) + 1. */ #define MAX_MIDI_PORTS 3 /* * The double-oh-three algorithm was discovered by Robin Gareus and Damien * Zammit in 2012, with reverse-engineering for Digi 003 Rack. */ struct dot_state { u8 carry; u8 idx; unsigned int off; }; struct amdtp_dot { unsigned int pcm_channels; struct dot_state state; struct snd_rawmidi_substream *midi[MAX_MIDI_PORTS]; int midi_fifo_used[MAX_MIDI_PORTS]; int midi_fifo_limit; }; /* * double-oh-three look up table * * @param idx index byte (audio-sample data) 0x00..0xff * @param off channel offset shift * @return salt to XOR with given data */ #define BYTE_PER_SAMPLE (4) #define MAGIC_DOT_BYTE (2) #define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE) static u8 dot_scrt(const u8 idx, const unsigned int off) { /* * the length of the added pattern only depends on the lower nibble * of the last non-zero data */ static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14, 12, 10, 8, 6, 4, 2, 0}; /* * the lower nibble of the salt. Interleaved sequence. * this is walked backwards according to len[] */ static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4, 0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf}; /* circular list for the salt's hi nibble. */ static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4, 0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa}; /* * start offset for upper nibble mapping. * note: 9 is /special/. In the case where the high nibble == 0x9, * hir[] is not used and - coincidentally - the salt's hi nibble is * 0x09 regardless of the offset. */ static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4, 3, 0x00, 14, 13, 8, 9, 10, 2}; const u8 ln = idx & 0xf; const u8 hn = (idx >> 4) & 0xf; const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15]; if (len[ln] < off) return 0x00; return ((nib[14 + off - len[ln]]) | (hr << 4)); } static void dot_encode_step(struct dot_state *state, __be32 *const buffer) { u8 * const data = (u8 *) buffer; if (data[MAGIC_DOT_BYTE] != 0x00) { state->off = 0; state->idx = data[MAGIC_DOT_BYTE] ^ state->carry; } data[MAGIC_DOT_BYTE] ^= state->carry; state->carry = dot_scrt(state->idx, ++(state->off)); } int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate, unsigned int pcm_channels) { struct amdtp_dot *p = s->protocol; int err; if (amdtp_stream_running(s)) return -EBUSY; /* * A first data channel is for MIDI messages, the rest is Multi Bit * Linear Audio data channel. */ err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1, 1); if (err < 0) return err; s->ctx_data.rx.fdf = AMDTP_FDF_AM824 | s->sfc; p->pcm_channels = pcm_channels; /* * We do not know the actual MIDI FIFO size of most devices. Just * assume two bytes, i.e., one byte can be received over the bus while * the previous one is transmitted over MIDI. * (The value here is adjusted for midi_ratelimit_per_packet().) */ p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1; return 0; } static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __be32 *buffer, unsigned int frames, unsigned int pcm_frames) { struct amdtp_dot *p = s->protocol; unsigned int channels = p->pcm_channels; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int pcm_buffer_pointer; int remaining_frames; const u32 *src; int i, c; pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames; pcm_buffer_pointer %= runtime->buffer_size; src = (void *)runtime->dma_area + frames_to_bytes(runtime, pcm_buffer_pointer); remaining_frames = runtime->buffer_size - pcm_buffer_pointer; buffer++; for (i = 0; i < frames; ++i) { for (c = 0; c < channels; ++c) { buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000); dot_encode_step(&p->state, &buffer[c]); src++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) src = (void *)runtime->dma_area; } } static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __be32 *buffer, unsigned int frames, unsigned int pcm_frames) { struct amdtp_dot *p = s->protocol; unsigned int channels = p->pcm_channels; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int pcm_buffer_pointer; int remaining_frames; u32 *dst; int i, c; pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames; pcm_buffer_pointer %= runtime->buffer_size; dst = (void *)runtime->dma_area + frames_to_bytes(runtime, pcm_buffer_pointer); remaining_frames = runtime->buffer_size - pcm_buffer_pointer; buffer++; for (i = 0; i < frames; ++i) { for (c = 0; c < channels; ++c) { *dst = be32_to_cpu(buffer[c]) << 8; dst++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) dst = (void *)runtime->dma_area; } } static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks) { struct amdtp_dot *p = s->protocol; unsigned int channels, i, c; channels = p->pcm_channels; buffer++; for (i = 0; i < data_blocks; ++i) { for (c = 0; c < channels; ++c) buffer[c] = cpu_to_be32(0x40000000); buffer += s->data_block_quadlets; } } static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port) { struct amdtp_dot *p = s->protocol; int used; used = p->midi_fifo_used[port]; if (used == 0) return true; used -= MIDI_BYTES_PER_SECOND * s->syt_interval; used = max(used, 0); p->midi_fifo_used[port] = used; return used < p->midi_fifo_limit; } static inline void midi_use_bytes(struct amdtp_stream *s, unsigned int port, unsigned int count) { struct amdtp_dot *p = s->protocol; p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count; } static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks, unsigned int data_block_counter) { struct amdtp_dot *p = s->protocol; unsigned int f, port; int len; u8 *b; for (f = 0; f < data_blocks; f++) { port = (data_block_counter + f) % 8; b = (u8 *)&buffer[0]; len = 0; if (port < MAX_MIDI_PORTS && midi_ratelimit_per_packet(s, port) && p->midi[port] != NULL) len = snd_rawmidi_transmit(p->midi[port], b + 1, 2); if (len > 0) { /* * Upper 4 bits of LSB represent port number. * - 0000b: physical MIDI port 1. * - 0010b: physical MIDI port 2. * - 1110b: console MIDI port. */ if (port == 2) b[3] = 0xe0; else if (port == 1) b[3] = 0x20; else b[3] = 0x00; b[3] |= len; midi_use_bytes(s, port, len); } else { b[1] = 0; b[2] = 0; b[3] = 0; } b[0] = 0x80; buffer += s->data_block_quadlets; } } static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks) { struct amdtp_dot *p = s->protocol; unsigned int f, port, len; u8 *b; for (f = 0; f < data_blocks; f++) { b = (u8 *)&buffer[0]; len = b[3] & 0x0f; if (len > 0) { /* * Upper 4 bits of LSB represent port number. * - 0000b: physical MIDI port 1. Use port 0. * - 1110b: console MIDI port. Use port 2. */ if (b[3] >> 4 > 0) port = 2; else port = 0; if (port < MAX_MIDI_PORTS && p->midi[port]) snd_rawmidi_receive(p->midi[port], b + 1, len); } buffer += s->data_block_quadlets; } } int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s, struct snd_pcm_runtime *runtime) { int err; /* This protocol delivers 24 bit data in 32bit data channel. */ err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); if (err < 0) return err; return amdtp_stream_add_pcm_hw_constraints(s, runtime); } void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port, struct snd_rawmidi_substream *midi) { struct amdtp_dot *p = s->protocol; if (port < MAX_MIDI_PORTS) WRITE_ONCE(p->midi[port], midi); } static void process_ir_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count, struct snd_pcm_substream *pcm) { unsigned int pcm_frames = 0; int i; for (i = 0; i < count; ++i) { __be32 *buf = desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; if (pcm) { read_pcm_s32(s, pcm, buf, data_blocks, pcm_frames); pcm_frames += data_blocks; } read_midi_messages(s, buf, data_blocks); desc = amdtp_stream_next_packet_desc(s, desc); } } static void process_it_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count, struct snd_pcm_substream *pcm) { unsigned int pcm_frames = 0; int i; for (i = 0; i < count; ++i) { __be32 *buf = desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; if (pcm) { write_pcm_s32(s, pcm, buf, data_blocks, pcm_frames); pcm_frames += data_blocks; } else { write_pcm_silence(s, buf, data_blocks); } write_midi_messages(s, buf, data_blocks, desc->data_block_counter); desc = amdtp_stream_next_packet_desc(s, desc); } } int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit, enum amdtp_stream_direction dir) { amdtp_stream_process_ctx_payloads_t process_ctx_payloads; unsigned int flags = CIP_NONBLOCKING | CIP_UNAWARE_SYT; // Use different mode between incoming/outgoing. if (dir == AMDTP_IN_STREAM) process_ctx_payloads = process_ir_ctx_payloads; else process_ctx_payloads = process_it_ctx_payloads; return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM, process_ctx_payloads, sizeof(struct amdtp_dot)); } void amdtp_dot_reset(struct amdtp_stream *s) { struct amdtp_dot *p = s->protocol; p->state.carry = 0x00; p->state.idx = 0x00; p->state.off = 0; }
linux-master
sound/firewire/digi00x/amdtp-dot.c
// SPDX-License-Identifier: GPL-2.0-only /* * digi00x-midi.h - a part of driver for Digidesign Digi 002/003 family * * Copyright (c) 2014-2015 Takashi Sakamoto */ #include "digi00x.h" static int midi_open(struct snd_rawmidi_substream *substream) { struct snd_dg00x *dg00x = substream->rmidi->private_data; int err; err = snd_dg00x_stream_lock_try(dg00x); if (err < 0) return err; mutex_lock(&dg00x->mutex); err = snd_dg00x_stream_reserve_duplex(dg00x, 0, 0, 0); if (err >= 0) { ++dg00x->substreams_counter; err = snd_dg00x_stream_start_duplex(dg00x); if (err < 0) --dg00x->substreams_counter; } mutex_unlock(&dg00x->mutex); if (err < 0) snd_dg00x_stream_lock_release(dg00x); return err; } static int midi_close(struct snd_rawmidi_substream *substream) { struct snd_dg00x *dg00x = substream->rmidi->private_data; mutex_lock(&dg00x->mutex); --dg00x->substreams_counter; snd_dg00x_stream_stop_duplex(dg00x); mutex_unlock(&dg00x->mutex); snd_dg00x_stream_lock_release(dg00x); return 0; } static void midi_capture_trigger(struct snd_rawmidi_substream *substream, int up) { struct snd_dg00x *dg00x = substream->rmidi->private_data; unsigned int port; unsigned long flags; if (substream->rmidi->device == 0) port = substream->number; else port = 2; spin_lock_irqsave(&dg00x->lock, flags); if (up) amdtp_dot_midi_trigger(&dg00x->tx_stream, port, substream); else amdtp_dot_midi_trigger(&dg00x->tx_stream, port, NULL); spin_unlock_irqrestore(&dg00x->lock, flags); } static void midi_playback_trigger(struct snd_rawmidi_substream *substream, int up) { struct snd_dg00x *dg00x = substream->rmidi->private_data; unsigned int port; unsigned long flags; if (substream->rmidi->device == 0) port = substream->number; else port = 2; spin_lock_irqsave(&dg00x->lock, flags); if (up) amdtp_dot_midi_trigger(&dg00x->rx_stream, port, substream); else amdtp_dot_midi_trigger(&dg00x->rx_stream, port, NULL); spin_unlock_irqrestore(&dg00x->lock, flags); } static void set_substream_names(struct snd_dg00x *dg00x, struct snd_rawmidi *rmidi, bool is_console) { struct snd_rawmidi_substream *subs; struct snd_rawmidi_str *str; int i; for (i = 0; i < 2; ++i) { str = &rmidi->streams[i]; list_for_each_entry(subs, &str->substreams, list) { if (!is_console) { scnprintf(subs->name, sizeof(subs->name), "%s MIDI %d", dg00x->card->shortname, subs->number + 1); } else { scnprintf(subs->name, sizeof(subs->name), "%s control", dg00x->card->shortname); } } } } static int add_substream_pair(struct snd_dg00x *dg00x, unsigned int out_ports, unsigned int in_ports, bool is_console) { static const struct snd_rawmidi_ops capture_ops = { .open = midi_open, .close = midi_close, .trigger = midi_capture_trigger, }; static const struct snd_rawmidi_ops playback_ops = { .open = midi_open, .close = midi_close, .trigger = midi_playback_trigger, }; const char *label; struct snd_rawmidi *rmidi; int err; /* Add physical midi ports. */ err = snd_rawmidi_new(dg00x->card, dg00x->card->driver, is_console, out_ports, in_ports, &rmidi); if (err < 0) return err; rmidi->private_data = dg00x; if (!is_console) label = "%s control"; else label = "%s MIDI"; snprintf(rmidi->name, sizeof(rmidi->name), label, dg00x->card->shortname); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &playback_ops); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &capture_ops); rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_DUPLEX; set_substream_names(dg00x, rmidi, is_console); return 0; } int snd_dg00x_create_midi_devices(struct snd_dg00x *dg00x) { int err; /* Add physical midi ports. */ err = add_substream_pair(dg00x, DOT_MIDI_OUT_PORTS, DOT_MIDI_IN_PORTS, false); if (err < 0) return err; if (dg00x->is_console) err = add_substream_pair(dg00x, 1, 1, true); return err; }
linux-master
sound/firewire/digi00x/digi00x-midi.c
// SPDX-License-Identifier: GPL-2.0-only /* * digi00x-proc.c - a part of driver for Digidesign Digi 002/003 family * * Copyright (c) 2014-2015 Takashi Sakamoto */ #include "digi00x.h" static int get_optical_iface_mode(struct snd_dg00x *dg00x, enum snd_dg00x_optical_mode *mode) { __be32 data; int err; err = snd_fw_transaction(dg00x->unit, TCODE_READ_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_OPT_IFACE_MODE, &data, sizeof(data), 0); if (err >= 0) *mode = be32_to_cpu(data) & 0x01; return err; } static void proc_read_clock(struct snd_info_entry *entry, struct snd_info_buffer *buf) { static const char *const source_name[] = { [SND_DG00X_CLOCK_INTERNAL] = "internal", [SND_DG00X_CLOCK_SPDIF] = "s/pdif", [SND_DG00X_CLOCK_ADAT] = "adat", [SND_DG00X_CLOCK_WORD] = "word clock", }; static const char *const optical_name[] = { [SND_DG00X_OPT_IFACE_MODE_ADAT] = "adat", [SND_DG00X_OPT_IFACE_MODE_SPDIF] = "s/pdif", }; struct snd_dg00x *dg00x = entry->private_data; enum snd_dg00x_optical_mode mode; unsigned int rate; enum snd_dg00x_clock clock; bool detect; if (get_optical_iface_mode(dg00x, &mode) < 0) return; if (snd_dg00x_stream_get_local_rate(dg00x, &rate) < 0) return; if (snd_dg00x_stream_get_clock(dg00x, &clock) < 0) return; snd_iprintf(buf, "Optical mode: %s\n", optical_name[mode]); snd_iprintf(buf, "Sampling Rate: %d\n", rate); snd_iprintf(buf, "Clock Source: %s\n", source_name[clock]); if (clock == SND_DG00X_CLOCK_INTERNAL) return; if (snd_dg00x_stream_check_external_clock(dg00x, &detect) < 0) return; snd_iprintf(buf, "External source: %s\n", detect ? "detected" : "not"); if (!detect) return; if (snd_dg00x_stream_get_external_rate(dg00x, &rate) >= 0) snd_iprintf(buf, "External sampling rate: %d\n", rate); } void snd_dg00x_proc_init(struct snd_dg00x *dg00x) { struct snd_info_entry *root, *entry; /* * All nodes are automatically removed at snd_card_disconnect(), * by following to link list. */ root = snd_info_create_card_entry(dg00x->card, "firewire", dg00x->card->proc_root); if (root == NULL) return; root->mode = S_IFDIR | 0555; entry = snd_info_create_card_entry(dg00x->card, "clock", root); if (entry) snd_info_set_text_ops(entry, dg00x, proc_read_clock); }
linux-master
sound/firewire/digi00x/digi00x-proc.c
// SPDX-License-Identifier: GPL-2.0-only /* * digi00x.c - a part of driver for Digidesign Digi 002/003 family * * Copyright (c) 2014-2015 Takashi Sakamoto */ #include "digi00x.h" MODULE_DESCRIPTION("Digidesign Digi 002/003 family Driver"); MODULE_AUTHOR("Takashi Sakamoto <[email protected]>"); MODULE_LICENSE("GPL"); #define VENDOR_DIGIDESIGN 0x00a07e #define MODEL_CONSOLE 0x000001 #define MODEL_RACK 0x000002 #define SPEC_VERSION 0x000001 static int name_card(struct snd_dg00x *dg00x) { struct fw_device *fw_dev = fw_parent_device(dg00x->unit); char name[32] = {0}; char *model; int err; err = fw_csr_string(dg00x->unit->directory, CSR_MODEL, name, sizeof(name)); if (err < 0) return err; model = skip_spaces(name); strcpy(dg00x->card->driver, "Digi00x"); strcpy(dg00x->card->shortname, model); strcpy(dg00x->card->mixername, model); snprintf(dg00x->card->longname, sizeof(dg00x->card->longname), "Digidesign %s, GUID %08x%08x at %s, S%d", model, fw_dev->config_rom[3], fw_dev->config_rom[4], dev_name(&dg00x->unit->device), 100 << fw_dev->max_speed); return 0; } static void dg00x_card_free(struct snd_card *card) { struct snd_dg00x *dg00x = card->private_data; snd_dg00x_stream_destroy_duplex(dg00x); snd_dg00x_transaction_unregister(dg00x); mutex_destroy(&dg00x->mutex); fw_unit_put(dg00x->unit); } static int snd_dg00x_probe(struct fw_unit *unit, const struct ieee1394_device_id *entry) { struct snd_card *card; struct snd_dg00x *dg00x; int err; err = snd_card_new(&unit->device, -1, NULL, THIS_MODULE, sizeof(*dg00x), &card); if (err < 0) return err; card->private_free = dg00x_card_free; dg00x = card->private_data; dg00x->unit = fw_unit_get(unit); dev_set_drvdata(&unit->device, dg00x); dg00x->card = card; mutex_init(&dg00x->mutex); spin_lock_init(&dg00x->lock); init_waitqueue_head(&dg00x->hwdep_wait); dg00x->is_console = entry->model_id == MODEL_CONSOLE; err = name_card(dg00x); if (err < 0) goto error; err = snd_dg00x_stream_init_duplex(dg00x); if (err < 0) goto error; snd_dg00x_proc_init(dg00x); err = snd_dg00x_create_pcm_devices(dg00x); if (err < 0) goto error; err = snd_dg00x_create_midi_devices(dg00x); if (err < 0) goto error; err = snd_dg00x_create_hwdep_device(dg00x); if (err < 0) goto error; err = snd_dg00x_transaction_register(dg00x); if (err < 0) goto error; err = snd_card_register(card); if (err < 0) goto error; return 0; error: snd_card_free(card); return err; } static void snd_dg00x_update(struct fw_unit *unit) { struct snd_dg00x *dg00x = dev_get_drvdata(&unit->device); snd_dg00x_transaction_reregister(dg00x); mutex_lock(&dg00x->mutex); snd_dg00x_stream_update_duplex(dg00x); mutex_unlock(&dg00x->mutex); } static void snd_dg00x_remove(struct fw_unit *unit) { struct snd_dg00x *dg00x = dev_get_drvdata(&unit->device); // Block till all of ALSA character devices are released. snd_card_free(dg00x->card); } static const struct ieee1394_device_id snd_dg00x_id_table[] = { /* Both of 002/003 use the same ID. */ { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_VERSION | IEEE1394_MATCH_MODEL_ID, .vendor_id = VENDOR_DIGIDESIGN, .version = SPEC_VERSION, .model_id = MODEL_CONSOLE, }, { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_VERSION | IEEE1394_MATCH_MODEL_ID, .vendor_id = VENDOR_DIGIDESIGN, .version = SPEC_VERSION, .model_id = MODEL_RACK, }, {} }; MODULE_DEVICE_TABLE(ieee1394, snd_dg00x_id_table); static struct fw_driver dg00x_driver = { .driver = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .bus = &fw_bus_type, }, .probe = snd_dg00x_probe, .update = snd_dg00x_update, .remove = snd_dg00x_remove, .id_table = snd_dg00x_id_table, }; static int __init snd_dg00x_init(void) { return driver_register(&dg00x_driver.driver); } static void __exit snd_dg00x_exit(void) { driver_unregister(&dg00x_driver.driver); } module_init(snd_dg00x_init); module_exit(snd_dg00x_exit);
linux-master
sound/firewire/digi00x/digi00x.c
// SPDX-License-Identifier: GPL-2.0-only /* * digi00x-pcm.c - a part of driver for Digidesign Digi 002/003 family * * Copyright (c) 2014-2015 Takashi Sakamoto */ #include "digi00x.h" static int hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); const struct snd_interval *c = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1, }; unsigned int i; for (i = 0; i < SND_DG00X_RATE_COUNT; i++) { if (!snd_interval_test(c, snd_dg00x_stream_pcm_channels[i])) continue; t.min = min(t.min, snd_dg00x_stream_rates[i]); t.max = max(t.max, snd_dg00x_stream_rates[i]); } return snd_interval_refine(r, &t); } static int hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); const struct snd_interval *r = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1, }; unsigned int i; for (i = 0; i < SND_DG00X_RATE_COUNT; i++) { if (!snd_interval_test(r, snd_dg00x_stream_rates[i])) continue; t.min = min(t.min, snd_dg00x_stream_pcm_channels[i]); t.max = max(t.max, snd_dg00x_stream_pcm_channels[i]); } return snd_interval_refine(c, &t); } static int pcm_init_hw_params(struct snd_dg00x *dg00x, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_pcm_hardware *hw = &runtime->hw; struct amdtp_stream *s; int err; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { substream->runtime->hw.formats = SNDRV_PCM_FMTBIT_S32; s = &dg00x->tx_stream; } else { substream->runtime->hw.formats = SNDRV_PCM_FMTBIT_S32; s = &dg00x->rx_stream; } hw->channels_min = 10; hw->channels_max = 18; hw->rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; snd_pcm_limit_hw_rates(runtime); err = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, hw_rule_channels, NULL, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) return err; err = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, hw_rule_rate, NULL, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (err < 0) return err; return amdtp_dot_add_pcm_hw_constraints(s, substream->runtime); } static int pcm_open(struct snd_pcm_substream *substream) { struct snd_dg00x *dg00x = substream->private_data; struct amdtp_domain *d = &dg00x->domain; enum snd_dg00x_clock clock; bool detect; int err; err = snd_dg00x_stream_lock_try(dg00x); if (err < 0) return err; err = pcm_init_hw_params(dg00x, substream); if (err < 0) goto err_locked; /* Check current clock source. */ err = snd_dg00x_stream_get_clock(dg00x, &clock); if (err < 0) goto err_locked; if (clock != SND_DG00X_CLOCK_INTERNAL) { err = snd_dg00x_stream_check_external_clock(dg00x, &detect); if (err < 0) goto err_locked; if (!detect) { err = -EBUSY; goto err_locked; } } mutex_lock(&dg00x->mutex); // When source of clock is not internal or any stream is reserved for // transmission of PCM frames, the available sampling rate is limited // at current one. if ((clock != SND_DG00X_CLOCK_INTERNAL) || (dg00x->substreams_counter > 0 && d->events_per_period > 0)) { unsigned int frames_per_period = d->events_per_period; unsigned int frames_per_buffer = d->events_per_buffer; unsigned int rate; err = snd_dg00x_stream_get_external_rate(dg00x, &rate); if (err < 0) { mutex_unlock(&dg00x->mutex); goto err_locked; } substream->runtime->hw.rate_min = rate; substream->runtime->hw.rate_max = rate; if (frames_per_period > 0) { err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, frames_per_period, frames_per_period); if (err < 0) { mutex_unlock(&dg00x->mutex); goto err_locked; } err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, frames_per_buffer, frames_per_buffer); if (err < 0) { mutex_unlock(&dg00x->mutex); goto err_locked; } } } mutex_unlock(&dg00x->mutex); snd_pcm_set_sync(substream); return 0; err_locked: snd_dg00x_stream_lock_release(dg00x); return err; } static int pcm_close(struct snd_pcm_substream *substream) { struct snd_dg00x *dg00x = substream->private_data; snd_dg00x_stream_lock_release(dg00x); return 0; } static int pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_dg00x *dg00x = substream->private_data; int err = 0; if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { unsigned int rate = params_rate(hw_params); unsigned int frames_per_period = params_period_size(hw_params); unsigned int frames_per_buffer = params_buffer_size(hw_params); mutex_lock(&dg00x->mutex); err = snd_dg00x_stream_reserve_duplex(dg00x, rate, frames_per_period, frames_per_buffer); if (err >= 0) ++dg00x->substreams_counter; mutex_unlock(&dg00x->mutex); } return err; } static int pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_dg00x *dg00x = substream->private_data; mutex_lock(&dg00x->mutex); if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) --dg00x->substreams_counter; snd_dg00x_stream_stop_duplex(dg00x); mutex_unlock(&dg00x->mutex); return 0; } static int pcm_capture_prepare(struct snd_pcm_substream *substream) { struct snd_dg00x *dg00x = substream->private_data; int err; mutex_lock(&dg00x->mutex); err = snd_dg00x_stream_start_duplex(dg00x); if (err >= 0) amdtp_stream_pcm_prepare(&dg00x->tx_stream); mutex_unlock(&dg00x->mutex); return err; } static int pcm_playback_prepare(struct snd_pcm_substream *substream) { struct snd_dg00x *dg00x = substream->private_data; int err; mutex_lock(&dg00x->mutex); err = snd_dg00x_stream_start_duplex(dg00x); if (err >= 0) { amdtp_stream_pcm_prepare(&dg00x->rx_stream); amdtp_dot_reset(&dg00x->rx_stream); } mutex_unlock(&dg00x->mutex); return err; } static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_dg00x *dg00x = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&dg00x->tx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&dg00x->tx_stream, NULL); break; default: return -EINVAL; } return 0; } static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_dg00x *dg00x = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&dg00x->rx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&dg00x->rx_stream, NULL); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm) { struct snd_dg00x *dg00x = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&dg00x->domain, &dg00x->tx_stream); } static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm) { struct snd_dg00x *dg00x = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&dg00x->domain, &dg00x->rx_stream); } static int pcm_capture_ack(struct snd_pcm_substream *substream) { struct snd_dg00x *dg00x = substream->private_data; return amdtp_domain_stream_pcm_ack(&dg00x->domain, &dg00x->tx_stream); } static int pcm_playback_ack(struct snd_pcm_substream *substream) { struct snd_dg00x *dg00x = substream->private_data; return amdtp_domain_stream_pcm_ack(&dg00x->domain, &dg00x->rx_stream); } int snd_dg00x_create_pcm_devices(struct snd_dg00x *dg00x) { static const struct snd_pcm_ops capture_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_capture_prepare, .trigger = pcm_capture_trigger, .pointer = pcm_capture_pointer, .ack = pcm_capture_ack, }; static const struct snd_pcm_ops playback_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_playback_prepare, .trigger = pcm_playback_trigger, .pointer = pcm_playback_pointer, .ack = pcm_playback_ack, }; struct snd_pcm *pcm; int err; err = snd_pcm_new(dg00x->card, dg00x->card->driver, 0, 1, 1, &pcm); if (err < 0) return err; pcm->private_data = dg00x; snprintf(pcm->name, sizeof(pcm->name), "%s PCM", dg00x->card->shortname); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0); return 0; }
linux-master
sound/firewire/digi00x/digi00x-pcm.c
// SPDX-License-Identifier: GPL-2.0-only /* * digi00x-transaction.c - a part of driver for Digidesign Digi 002/003 family * * Copyright (c) 2014-2015 Takashi Sakamoto */ #include <sound/asound.h> #include "digi00x.h" static void handle_unknown_message(struct snd_dg00x *dg00x, unsigned long long offset, __be32 *buf) { unsigned long flags; spin_lock_irqsave(&dg00x->lock, flags); dg00x->msg = be32_to_cpu(*buf); spin_unlock_irqrestore(&dg00x->lock, flags); wake_up(&dg00x->hwdep_wait); } static void handle_message(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *data, size_t length, void *callback_data) { struct snd_dg00x *dg00x = callback_data; __be32 *buf = (__be32 *)data; fw_send_response(card, request, RCODE_COMPLETE); if (offset == dg00x->async_handler.offset) handle_unknown_message(dg00x, offset, buf); } int snd_dg00x_transaction_reregister(struct snd_dg00x *dg00x) { struct fw_device *device = fw_parent_device(dg00x->unit); __be32 data[2]; /* Unknown. 4bytes. */ data[0] = cpu_to_be32((device->card->node_id << 16) | (dg00x->async_handler.offset >> 32)); data[1] = cpu_to_be32(dg00x->async_handler.offset); return snd_fw_transaction(dg00x->unit, TCODE_WRITE_BLOCK_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_MESSAGE_ADDR, &data, sizeof(data), 0); } void snd_dg00x_transaction_unregister(struct snd_dg00x *dg00x) { if (dg00x->async_handler.callback_data == NULL) return; fw_core_remove_address_handler(&dg00x->async_handler); dg00x->async_handler.callback_data = NULL; } int snd_dg00x_transaction_register(struct snd_dg00x *dg00x) { static const struct fw_address_region resp_register_region = { .start = 0xffffe0000000ull, .end = 0xffffe000ffffull, }; int err; dg00x->async_handler.length = 4; dg00x->async_handler.address_callback = handle_message; dg00x->async_handler.callback_data = dg00x; err = fw_core_add_address_handler(&dg00x->async_handler, &resp_register_region); if (err < 0) return err; err = snd_dg00x_transaction_reregister(dg00x); if (err < 0) snd_dg00x_transaction_unregister(dg00x); return err; }
linux-master
sound/firewire/digi00x/digi00x-transaction.c
// SPDX-License-Identifier: GPL-2.0-only /* * digi00x-hwdep.c - a part of driver for Digidesign Digi 002/003 family * * Copyright (c) 2014-2015 Takashi Sakamoto */ /* * This codes give three functionality. * * 1.get firewire node information * 2.get notification about starting/stopping stream * 3.lock/unlock stream * 4.get asynchronous messaging */ #include "digi00x.h" static long hwdep_read(struct snd_hwdep *hwdep, char __user *buf, long count, loff_t *offset) { struct snd_dg00x *dg00x = hwdep->private_data; DEFINE_WAIT(wait); union snd_firewire_event event; spin_lock_irq(&dg00x->lock); while (!dg00x->dev_lock_changed && dg00x->msg == 0) { prepare_to_wait(&dg00x->hwdep_wait, &wait, TASK_INTERRUPTIBLE); spin_unlock_irq(&dg00x->lock); schedule(); finish_wait(&dg00x->hwdep_wait, &wait); if (signal_pending(current)) return -ERESTARTSYS; spin_lock_irq(&dg00x->lock); } memset(&event, 0, sizeof(event)); if (dg00x->dev_lock_changed) { event.lock_status.type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS; event.lock_status.status = (dg00x->dev_lock_count > 0); dg00x->dev_lock_changed = false; count = min_t(long, count, sizeof(event.lock_status)); } else { event.digi00x_message.type = SNDRV_FIREWIRE_EVENT_DIGI00X_MESSAGE; event.digi00x_message.message = dg00x->msg; dg00x->msg = 0; count = min_t(long, count, sizeof(event.digi00x_message)); } spin_unlock_irq(&dg00x->lock); if (copy_to_user(buf, &event, count)) return -EFAULT; return count; } static __poll_t hwdep_poll(struct snd_hwdep *hwdep, struct file *file, poll_table *wait) { struct snd_dg00x *dg00x = hwdep->private_data; __poll_t events; poll_wait(file, &dg00x->hwdep_wait, wait); spin_lock_irq(&dg00x->lock); if (dg00x->dev_lock_changed || dg00x->msg) events = EPOLLIN | EPOLLRDNORM; else events = 0; spin_unlock_irq(&dg00x->lock); return events; } static int hwdep_get_info(struct snd_dg00x *dg00x, void __user *arg) { struct fw_device *dev = fw_parent_device(dg00x->unit); struct snd_firewire_get_info info; memset(&info, 0, sizeof(info)); info.type = SNDRV_FIREWIRE_TYPE_DIGI00X; info.card = dev->card->index; *(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]); *(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]); strscpy(info.device_name, dev_name(&dev->device), sizeof(info.device_name)); if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int hwdep_lock(struct snd_dg00x *dg00x) { int err; spin_lock_irq(&dg00x->lock); if (dg00x->dev_lock_count == 0) { dg00x->dev_lock_count = -1; err = 0; } else { err = -EBUSY; } spin_unlock_irq(&dg00x->lock); return err; } static int hwdep_unlock(struct snd_dg00x *dg00x) { int err; spin_lock_irq(&dg00x->lock); if (dg00x->dev_lock_count == -1) { dg00x->dev_lock_count = 0; err = 0; } else { err = -EBADFD; } spin_unlock_irq(&dg00x->lock); return err; } static int hwdep_release(struct snd_hwdep *hwdep, struct file *file) { struct snd_dg00x *dg00x = hwdep->private_data; spin_lock_irq(&dg00x->lock); if (dg00x->dev_lock_count == -1) dg00x->dev_lock_count = 0; spin_unlock_irq(&dg00x->lock); return 0; } static int hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { struct snd_dg00x *dg00x = hwdep->private_data; switch (cmd) { case SNDRV_FIREWIRE_IOCTL_GET_INFO: return hwdep_get_info(dg00x, (void __user *)arg); case SNDRV_FIREWIRE_IOCTL_LOCK: return hwdep_lock(dg00x); case SNDRV_FIREWIRE_IOCTL_UNLOCK: return hwdep_unlock(dg00x); default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static int hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { return hwdep_ioctl(hwdep, file, cmd, (unsigned long)compat_ptr(arg)); } #else #define hwdep_compat_ioctl NULL #endif int snd_dg00x_create_hwdep_device(struct snd_dg00x *dg00x) { static const struct snd_hwdep_ops ops = { .read = hwdep_read, .release = hwdep_release, .poll = hwdep_poll, .ioctl = hwdep_ioctl, .ioctl_compat = hwdep_compat_ioctl, }; struct snd_hwdep *hwdep; int err; err = snd_hwdep_new(dg00x->card, "Digi00x", 0, &hwdep); if (err < 0) return err; strcpy(hwdep->name, "Digi00x"); hwdep->iface = SNDRV_HWDEP_IFACE_FW_DIGI00X; hwdep->ops = ops; hwdep->private_data = dg00x; hwdep->exclusive = true; return err; }
linux-master
sound/firewire/digi00x/digi00x-hwdep.c
// SPDX-License-Identifier: GPL-2.0-only /* * digi00x-stream.c - a part of driver for Digidesign Digi 002/003 family * * Copyright (c) 2014-2015 Takashi Sakamoto */ #include "digi00x.h" #define READY_TIMEOUT_MS 200 const unsigned int snd_dg00x_stream_rates[SND_DG00X_RATE_COUNT] = { [SND_DG00X_RATE_44100] = 44100, [SND_DG00X_RATE_48000] = 48000, [SND_DG00X_RATE_88200] = 88200, [SND_DG00X_RATE_96000] = 96000, }; /* Multi Bit Linear Audio data channels for each sampling transfer frequency. */ const unsigned int snd_dg00x_stream_pcm_channels[SND_DG00X_RATE_COUNT] = { /* Analog/ADAT/SPDIF */ [SND_DG00X_RATE_44100] = (8 + 8 + 2), [SND_DG00X_RATE_48000] = (8 + 8 + 2), /* Analog/SPDIF */ [SND_DG00X_RATE_88200] = (8 + 2), [SND_DG00X_RATE_96000] = (8 + 2), }; int snd_dg00x_stream_get_local_rate(struct snd_dg00x *dg00x, unsigned int *rate) { u32 data; __be32 reg; int err; err = snd_fw_transaction(dg00x->unit, TCODE_READ_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_LOCAL_RATE, &reg, sizeof(reg), 0); if (err < 0) return err; data = be32_to_cpu(reg) & 0x0f; if (data < ARRAY_SIZE(snd_dg00x_stream_rates)) *rate = snd_dg00x_stream_rates[data]; else err = -EIO; return err; } int snd_dg00x_stream_set_local_rate(struct snd_dg00x *dg00x, unsigned int rate) { __be32 reg; unsigned int i; for (i = 0; i < ARRAY_SIZE(snd_dg00x_stream_rates); i++) { if (rate == snd_dg00x_stream_rates[i]) break; } if (i == ARRAY_SIZE(snd_dg00x_stream_rates)) return -EINVAL; reg = cpu_to_be32(i); return snd_fw_transaction(dg00x->unit, TCODE_WRITE_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_LOCAL_RATE, &reg, sizeof(reg), 0); } int snd_dg00x_stream_get_clock(struct snd_dg00x *dg00x, enum snd_dg00x_clock *clock) { __be32 reg; int err; err = snd_fw_transaction(dg00x->unit, TCODE_READ_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_CLOCK_SOURCE, &reg, sizeof(reg), 0); if (err < 0) return err; *clock = be32_to_cpu(reg) & 0x0f; if (*clock >= SND_DG00X_CLOCK_COUNT) err = -EIO; return err; } int snd_dg00x_stream_check_external_clock(struct snd_dg00x *dg00x, bool *detect) { __be32 reg; int err; err = snd_fw_transaction(dg00x->unit, TCODE_READ_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_DETECT_EXTERNAL, &reg, sizeof(reg), 0); if (err >= 0) *detect = be32_to_cpu(reg) > 0; return err; } int snd_dg00x_stream_get_external_rate(struct snd_dg00x *dg00x, unsigned int *rate) { u32 data; __be32 reg; int err; err = snd_fw_transaction(dg00x->unit, TCODE_READ_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_EXTERNAL_RATE, &reg, sizeof(reg), 0); if (err < 0) return err; data = be32_to_cpu(reg) & 0x0f; if (data < ARRAY_SIZE(snd_dg00x_stream_rates)) *rate = snd_dg00x_stream_rates[data]; /* This means desync. */ else err = -EBUSY; return err; } static void finish_session(struct snd_dg00x *dg00x) { __be32 data; data = cpu_to_be32(0x00000003); snd_fw_transaction(dg00x->unit, TCODE_WRITE_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_STREAMING_SET, &data, sizeof(data), 0); // Unregister isochronous channels for both direction. data = 0; snd_fw_transaction(dg00x->unit, TCODE_WRITE_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_ISOC_CHANNELS, &data, sizeof(data), 0); // Just after finishing the session, the device may lost transmitting // functionality for a short time. msleep(50); } static int begin_session(struct snd_dg00x *dg00x) { __be32 data; u32 curr; int err; // Register isochronous channels for both direction. data = cpu_to_be32((dg00x->tx_resources.channel << 16) | dg00x->rx_resources.channel); err = snd_fw_transaction(dg00x->unit, TCODE_WRITE_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_ISOC_CHANNELS, &data, sizeof(data), 0); if (err < 0) return err; err = snd_fw_transaction(dg00x->unit, TCODE_READ_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_STREAMING_STATE, &data, sizeof(data), 0); if (err < 0) return err; curr = be32_to_cpu(data); if (curr == 0) curr = 2; curr--; while (curr > 0) { data = cpu_to_be32(curr); err = snd_fw_transaction(dg00x->unit, TCODE_WRITE_QUADLET_REQUEST, DG00X_ADDR_BASE + DG00X_OFFSET_STREAMING_SET, &data, sizeof(data), 0); if (err < 0) break; msleep(20); curr--; } return err; } static int keep_resources(struct snd_dg00x *dg00x, struct amdtp_stream *stream, unsigned int rate) { struct fw_iso_resources *resources; int i; int err; // Check sampling rate. for (i = 0; i < SND_DG00X_RATE_COUNT; i++) { if (snd_dg00x_stream_rates[i] == rate) break; } if (i == SND_DG00X_RATE_COUNT) return -EINVAL; if (stream == &dg00x->tx_stream) resources = &dg00x->tx_resources; else resources = &dg00x->rx_resources; err = amdtp_dot_set_parameters(stream, rate, snd_dg00x_stream_pcm_channels[i]); if (err < 0) return err; return fw_iso_resources_allocate(resources, amdtp_stream_get_max_payload(stream), fw_parent_device(dg00x->unit)->max_speed); } static int init_stream(struct snd_dg00x *dg00x, struct amdtp_stream *s) { struct fw_iso_resources *resources; enum amdtp_stream_direction dir; int err; if (s == &dg00x->tx_stream) { resources = &dg00x->tx_resources; dir = AMDTP_IN_STREAM; } else { resources = &dg00x->rx_resources; dir = AMDTP_OUT_STREAM; } err = fw_iso_resources_init(resources, dg00x->unit); if (err < 0) return err; err = amdtp_dot_init(s, dg00x->unit, dir); if (err < 0) fw_iso_resources_destroy(resources); return err; } static void destroy_stream(struct snd_dg00x *dg00x, struct amdtp_stream *s) { amdtp_stream_destroy(s); if (s == &dg00x->tx_stream) fw_iso_resources_destroy(&dg00x->tx_resources); else fw_iso_resources_destroy(&dg00x->rx_resources); } int snd_dg00x_stream_init_duplex(struct snd_dg00x *dg00x) { int err; err = init_stream(dg00x, &dg00x->rx_stream); if (err < 0) return err; err = init_stream(dg00x, &dg00x->tx_stream); if (err < 0) { destroy_stream(dg00x, &dg00x->rx_stream); return err; } err = amdtp_domain_init(&dg00x->domain); if (err < 0) { destroy_stream(dg00x, &dg00x->rx_stream); destroy_stream(dg00x, &dg00x->tx_stream); } return err; } /* * This function should be called before starting streams or after stopping * streams. */ void snd_dg00x_stream_destroy_duplex(struct snd_dg00x *dg00x) { amdtp_domain_destroy(&dg00x->domain); destroy_stream(dg00x, &dg00x->rx_stream); destroy_stream(dg00x, &dg00x->tx_stream); } int snd_dg00x_stream_reserve_duplex(struct snd_dg00x *dg00x, unsigned int rate, unsigned int frames_per_period, unsigned int frames_per_buffer) { unsigned int curr_rate; int err; err = snd_dg00x_stream_get_local_rate(dg00x, &curr_rate); if (err < 0) return err; if (rate == 0) rate = curr_rate; if (dg00x->substreams_counter == 0 || curr_rate != rate) { amdtp_domain_stop(&dg00x->domain); finish_session(dg00x); fw_iso_resources_free(&dg00x->tx_resources); fw_iso_resources_free(&dg00x->rx_resources); err = snd_dg00x_stream_set_local_rate(dg00x, rate); if (err < 0) return err; err = keep_resources(dg00x, &dg00x->rx_stream, rate); if (err < 0) return err; err = keep_resources(dg00x, &dg00x->tx_stream, rate); if (err < 0) { fw_iso_resources_free(&dg00x->rx_resources); return err; } err = amdtp_domain_set_events_per_period(&dg00x->domain, frames_per_period, frames_per_buffer); if (err < 0) { fw_iso_resources_free(&dg00x->rx_resources); fw_iso_resources_free(&dg00x->tx_resources); return err; } } return 0; } int snd_dg00x_stream_start_duplex(struct snd_dg00x *dg00x) { unsigned int generation = dg00x->rx_resources.generation; int err = 0; if (dg00x->substreams_counter == 0) return 0; if (amdtp_streaming_error(&dg00x->tx_stream) || amdtp_streaming_error(&dg00x->rx_stream)) { amdtp_domain_stop(&dg00x->domain); finish_session(dg00x); } if (generation != fw_parent_device(dg00x->unit)->card->generation) { err = fw_iso_resources_update(&dg00x->tx_resources); if (err < 0) goto error; err = fw_iso_resources_update(&dg00x->rx_resources); if (err < 0) goto error; } /* * No packets are transmitted without receiving packets, reagardless of * which source of clock is used. */ if (!amdtp_stream_running(&dg00x->rx_stream)) { int spd = fw_parent_device(dg00x->unit)->max_speed; err = begin_session(dg00x); if (err < 0) goto error; err = amdtp_domain_add_stream(&dg00x->domain, &dg00x->rx_stream, dg00x->rx_resources.channel, spd); if (err < 0) goto error; err = amdtp_domain_add_stream(&dg00x->domain, &dg00x->tx_stream, dg00x->tx_resources.channel, spd); if (err < 0) goto error; // NOTE: The device doesn't start packet transmission till receiving any packet. // It ignores presentation time expressed by the value of syt field of CIP header // in received packets. The sequence of the number of data blocks per packet is // important for media clock recovery. err = amdtp_domain_start(&dg00x->domain, 0, true, true); if (err < 0) goto error; if (!amdtp_domain_wait_ready(&dg00x->domain, READY_TIMEOUT_MS)) { err = -ETIMEDOUT; goto error; } } return 0; error: amdtp_domain_stop(&dg00x->domain); finish_session(dg00x); return err; } void snd_dg00x_stream_stop_duplex(struct snd_dg00x *dg00x) { if (dg00x->substreams_counter == 0) { amdtp_domain_stop(&dg00x->domain); finish_session(dg00x); fw_iso_resources_free(&dg00x->tx_resources); fw_iso_resources_free(&dg00x->rx_resources); } } void snd_dg00x_stream_update_duplex(struct snd_dg00x *dg00x) { fw_iso_resources_update(&dg00x->tx_resources); fw_iso_resources_update(&dg00x->rx_resources); amdtp_stream_update(&dg00x->tx_stream); amdtp_stream_update(&dg00x->rx_stream); } void snd_dg00x_stream_lock_changed(struct snd_dg00x *dg00x) { dg00x->dev_lock_changed = true; wake_up(&dg00x->hwdep_wait); } int snd_dg00x_stream_lock_try(struct snd_dg00x *dg00x) { int err; spin_lock_irq(&dg00x->lock); /* user land lock this */ if (dg00x->dev_lock_count < 0) { err = -EBUSY; goto end; } /* this is the first time */ if (dg00x->dev_lock_count++ == 0) snd_dg00x_stream_lock_changed(dg00x); err = 0; end: spin_unlock_irq(&dg00x->lock); return err; } void snd_dg00x_stream_lock_release(struct snd_dg00x *dg00x) { spin_lock_irq(&dg00x->lock); if (WARN_ON(dg00x->dev_lock_count <= 0)) goto end; if (--dg00x->dev_lock_count == 0) snd_dg00x_stream_lock_changed(dg00x); end: spin_unlock_irq(&dg00x->lock); }
linux-master
sound/firewire/digi00x/digi00x-stream.c
// SPDX-License-Identifier: GPL-2.0-only /* * tascam-proc.h - a part of driver for TASCAM FireWire series * * Copyright (c) 2015 Takashi Sakamoto */ #include "./tascam.h" static void proc_read_firmware(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_tscm *tscm = entry->private_data; __be32 data; unsigned int reg, fpga, arm, hw; int err; err = snd_fw_transaction(tscm->unit, TCODE_READ_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_FIRMWARE_REGISTER, &data, sizeof(data), 0); if (err < 0) return; reg = be32_to_cpu(data); err = snd_fw_transaction(tscm->unit, TCODE_READ_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_FIRMWARE_FPGA, &data, sizeof(data), 0); if (err < 0) return; fpga = be32_to_cpu(data); err = snd_fw_transaction(tscm->unit, TCODE_READ_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_FIRMWARE_ARM, &data, sizeof(data), 0); if (err < 0) return; arm = be32_to_cpu(data); err = snd_fw_transaction(tscm->unit, TCODE_READ_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_FIRMWARE_HW, &data, sizeof(data), 0); if (err < 0) return; hw = be32_to_cpu(data); snd_iprintf(buffer, "Register: %d (0x%08x)\n", reg & 0xffff, reg); snd_iprintf(buffer, "FPGA: %d (0x%08x)\n", fpga & 0xffff, fpga); snd_iprintf(buffer, "ARM: %d (0x%08x)\n", arm & 0xffff, arm); snd_iprintf(buffer, "Hardware: %d (0x%08x)\n", hw >> 16, hw); } static void add_node(struct snd_tscm *tscm, struct snd_info_entry *root, const char *name, void (*op)(struct snd_info_entry *e, struct snd_info_buffer *b)) { struct snd_info_entry *entry; entry = snd_info_create_card_entry(tscm->card, name, root); if (entry) snd_info_set_text_ops(entry, tscm, op); } void snd_tscm_proc_init(struct snd_tscm *tscm) { struct snd_info_entry *root; /* * All nodes are automatically removed at snd_card_disconnect(), * by following to link list. */ root = snd_info_create_card_entry(tscm->card, "firewire", tscm->card->proc_root); if (root == NULL) return; root->mode = S_IFDIR | 0555; add_node(tscm, root, "firmware", proc_read_firmware); }
linux-master
sound/firewire/tascam/tascam-proc.c
// SPDX-License-Identifier: GPL-2.0-only /* * tascam-midi.c - a part of driver for TASCAM FireWire series * * Copyright (c) 2015 Takashi Sakamoto */ #include "tascam.h" static int midi_capture_open(struct snd_rawmidi_substream *substream) { /* Do nothing. */ return 0; } static int midi_playback_open(struct snd_rawmidi_substream *substream) { struct snd_tscm *tscm = substream->rmidi->private_data; snd_fw_async_midi_port_init(&tscm->out_ports[substream->number]); return 0; } static int midi_capture_close(struct snd_rawmidi_substream *substream) { /* Do nothing. */ return 0; } static int midi_playback_close(struct snd_rawmidi_substream *substream) { return 0; } static void midi_playback_drain(struct snd_rawmidi_substream *substream) { struct snd_tscm *tscm = substream->rmidi->private_data; snd_fw_async_midi_port_finish(&tscm->out_ports[substream->number]); } static void midi_capture_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_tscm *tscm = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&tscm->lock, flags); if (up) tscm->tx_midi_substreams[substrm->number] = substrm; else tscm->tx_midi_substreams[substrm->number] = NULL; spin_unlock_irqrestore(&tscm->lock, flags); } static void midi_playback_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_tscm *tscm = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&tscm->lock, flags); if (up) snd_fw_async_midi_port_run(&tscm->out_ports[substrm->number], substrm); spin_unlock_irqrestore(&tscm->lock, flags); } int snd_tscm_create_midi_devices(struct snd_tscm *tscm) { static const struct snd_rawmidi_ops capture_ops = { .open = midi_capture_open, .close = midi_capture_close, .trigger = midi_capture_trigger, }; static const struct snd_rawmidi_ops playback_ops = { .open = midi_playback_open, .close = midi_playback_close, .drain = midi_playback_drain, .trigger = midi_playback_trigger, }; struct snd_rawmidi *rmidi; struct snd_rawmidi_str *stream; struct snd_rawmidi_substream *subs; int err; err = snd_rawmidi_new(tscm->card, tscm->card->driver, 0, tscm->spec->midi_playback_ports, tscm->spec->midi_capture_ports, &rmidi); if (err < 0) return err; snprintf(rmidi->name, sizeof(rmidi->name), "%s MIDI", tscm->card->shortname); rmidi->private_data = tscm; rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &capture_ops); stream = &rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT]; /* Set port names for MIDI input. */ list_for_each_entry(subs, &stream->substreams, list) { /* TODO: support virtual MIDI ports. */ if (subs->number < tscm->spec->midi_capture_ports) { /* Hardware MIDI ports. */ scnprintf(subs->name, sizeof(subs->name), "%s MIDI %d", tscm->card->shortname, subs->number + 1); } } rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &playback_ops); stream = &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT]; /* Set port names for MIDI ourput. */ list_for_each_entry(subs, &stream->substreams, list) { if (subs->number < tscm->spec->midi_playback_ports) { /* Hardware MIDI ports only. */ scnprintf(subs->name, sizeof(subs->name), "%s MIDI %d", tscm->card->shortname, subs->number + 1); } } rmidi->info_flags |= SNDRV_RAWMIDI_INFO_DUPLEX; return 0; }
linux-master
sound/firewire/tascam/tascam-midi.c
// SPDX-License-Identifier: GPL-2.0-only /* * tascam-transaction.c - a part of driver for TASCAM FireWire series * * Copyright (c) 2015 Takashi Sakamoto */ #include "tascam.h" /* * When return minus value, given argument is not MIDI status. * When return 0, given argument is a beginning of system exclusive. * When return the others, given argument is MIDI data. */ static inline int calculate_message_bytes(u8 status) { switch (status) { case 0xf6: /* Tune request. */ case 0xf8: /* Timing clock. */ case 0xfa: /* Start. */ case 0xfb: /* Continue. */ case 0xfc: /* Stop. */ case 0xfe: /* Active sensing. */ case 0xff: /* System reset. */ return 1; case 0xf1: /* MIDI time code quarter frame. */ case 0xf3: /* Song select. */ return 2; case 0xf2: /* Song position pointer. */ return 3; case 0xf0: /* Exclusive. */ return 0; case 0xf7: /* End of exclusive. */ break; case 0xf4: /* Undefined. */ case 0xf5: /* Undefined. */ case 0xf9: /* Undefined. */ case 0xfd: /* Undefined. */ break; default: switch (status & 0xf0) { case 0x80: /* Note on. */ case 0x90: /* Note off. */ case 0xa0: /* Polyphonic key pressure. */ case 0xb0: /* Control change and Mode change. */ case 0xe0: /* Pitch bend change. */ return 3; case 0xc0: /* Program change. */ case 0xd0: /* Channel pressure. */ return 2; default: break; } break; } return -EINVAL; } static int fill_message(struct snd_fw_async_midi_port *port, struct snd_rawmidi_substream *substream) { int i, len, consume; u8 *label, *msg; u8 status; /* The first byte is used for label, the rest for MIDI bytes. */ label = port->buf; msg = port->buf + 1; consume = snd_rawmidi_transmit_peek(substream, msg, 3); if (consume == 0) return 0; /* On exclusive message. */ if (port->on_sysex) { /* Seek the end of exclusives. */ for (i = 0; i < consume; ++i) { if (msg[i] == 0xf7) { port->on_sysex = false; break; } } /* At the end of exclusive message, use label 0x07. */ if (!port->on_sysex) { consume = i + 1; *label = (substream->number << 4) | 0x07; /* During exclusive message, use label 0x04. */ } else if (consume == 3) { *label = (substream->number << 4) | 0x04; /* We need to fill whole 3 bytes. Go to next change. */ } else { return 0; } len = consume; } else { /* The beginning of exclusives. */ if (msg[0] == 0xf0) { /* Transfer it in next chance in another condition. */ port->on_sysex = true; return 0; } else { /* On running-status. */ if ((msg[0] & 0x80) != 0x80) status = port->running_status; else status = msg[0]; /* Calculate consume bytes. */ len = calculate_message_bytes(status); if (len <= 0) return 0; /* On running-status. */ if ((msg[0] & 0x80) != 0x80) { /* Enough MIDI bytes were not retrieved. */ if (consume < len - 1) return 0; consume = len - 1; msg[2] = msg[1]; msg[1] = msg[0]; msg[0] = port->running_status; } else { /* Enough MIDI bytes were not retrieved. */ if (consume < len) return 0; consume = len; port->running_status = msg[0]; } } *label = (substream->number << 4) | (msg[0] >> 4); } if (len > 0 && len < 3) memset(msg + len, 0, 3 - len); return consume; } static void async_midi_port_callback(struct fw_card *card, int rcode, void *data, size_t length, void *callback_data) { struct snd_fw_async_midi_port *port = callback_data; struct snd_rawmidi_substream *substream = READ_ONCE(port->substream); /* This port is closed. */ if (substream == NULL) return; if (rcode == RCODE_COMPLETE) snd_rawmidi_transmit_ack(substream, port->consume_bytes); else if (!rcode_is_permanent_error(rcode)) /* To start next transaction immediately for recovery. */ port->next_ktime = 0; else /* Don't continue processing. */ port->error = true; port->idling = true; if (!snd_rawmidi_transmit_empty(substream)) schedule_work(&port->work); } static void midi_port_work(struct work_struct *work) { struct snd_fw_async_midi_port *port = container_of(work, struct snd_fw_async_midi_port, work); struct snd_rawmidi_substream *substream = READ_ONCE(port->substream); int generation; /* Under transacting or error state. */ if (!port->idling || port->error) return; /* Nothing to do. */ if (substream == NULL || snd_rawmidi_transmit_empty(substream)) return; /* Do it in next chance. */ if (ktime_after(port->next_ktime, ktime_get())) { schedule_work(&port->work); return; } /* * Fill the buffer. The callee must use snd_rawmidi_transmit_peek(). * Later, snd_rawmidi_transmit_ack() is called. */ memset(port->buf, 0, 4); port->consume_bytes = fill_message(port, substream); if (port->consume_bytes <= 0) { /* Do it in next chance, immediately. */ if (port->consume_bytes == 0) { port->next_ktime = 0; schedule_work(&port->work); } else { /* Fatal error. */ port->error = true; } return; } /* Set interval to next transaction. */ port->next_ktime = ktime_add_ns(ktime_get(), port->consume_bytes * 8 * (NSEC_PER_SEC / 31250)); /* Start this transaction. */ port->idling = false; /* * In Linux FireWire core, when generation is updated with memory * barrier, node id has already been updated. In this module, After * this smp_rmb(), load/store instructions to memory are completed. * Thus, both of generation and node id are available with recent * values. This is a light-serialization solution to handle bus reset * events on IEEE 1394 bus. */ generation = port->parent->generation; smp_rmb(); fw_send_request(port->parent->card, &port->transaction, TCODE_WRITE_QUADLET_REQUEST, port->parent->node_id, generation, port->parent->max_speed, TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_RX_QUAD, port->buf, 4, async_midi_port_callback, port); } void snd_fw_async_midi_port_init(struct snd_fw_async_midi_port *port) { port->idling = true; port->error = false; port->running_status = 0; port->on_sysex = false; } static void handle_midi_tx(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *data, size_t length, void *callback_data) { struct snd_tscm *tscm = callback_data; u32 *buf = (u32 *)data; unsigned int messages; unsigned int i; unsigned int port; struct snd_rawmidi_substream *substream; u8 *b; int bytes; if (offset != tscm->async_handler.offset) goto end; messages = length / 8; for (i = 0; i < messages; i++) { b = (u8 *)(buf + i * 2); port = b[0] >> 4; /* TODO: support virtual MIDI ports. */ if (port >= tscm->spec->midi_capture_ports) goto end; /* Assume the message length. */ bytes = calculate_message_bytes(b[1]); /* On MIDI data or exclusives. */ if (bytes <= 0) { /* Seek the end of exclusives. */ for (bytes = 1; bytes < 4; bytes++) { if (b[bytes] == 0xf7) break; } if (bytes == 4) bytes = 3; } substream = READ_ONCE(tscm->tx_midi_substreams[port]); if (substream != NULL) snd_rawmidi_receive(substream, b + 1, bytes); } end: fw_send_response(card, request, RCODE_COMPLETE); } int snd_tscm_transaction_register(struct snd_tscm *tscm) { static const struct fw_address_region resp_register_region = { .start = 0xffffe0000000ull, .end = 0xffffe000ffffull, }; unsigned int i; int err; /* * Usually, two quadlets are transferred by one transaction. The first * quadlet has MIDI messages, the rest includes timestamp. * Sometimes, 8 set of the data is transferred by a block transaction. */ tscm->async_handler.length = 8 * 8; tscm->async_handler.address_callback = handle_midi_tx; tscm->async_handler.callback_data = tscm; err = fw_core_add_address_handler(&tscm->async_handler, &resp_register_region); if (err < 0) return err; err = snd_tscm_transaction_reregister(tscm); if (err < 0) goto error; for (i = 0; i < TSCM_MIDI_OUT_PORT_MAX; i++) { tscm->out_ports[i].parent = fw_parent_device(tscm->unit); tscm->out_ports[i].next_ktime = 0; INIT_WORK(&tscm->out_ports[i].work, midi_port_work); } return err; error: fw_core_remove_address_handler(&tscm->async_handler); tscm->async_handler.callback_data = NULL; return err; } /* At bus reset, these registers are cleared. */ int snd_tscm_transaction_reregister(struct snd_tscm *tscm) { struct fw_device *device = fw_parent_device(tscm->unit); __be32 reg; int err; /* Register messaging address. Block transaction is not allowed. */ reg = cpu_to_be32((device->card->node_id << 16) | (tscm->async_handler.offset >> 32)); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_HI, &reg, sizeof(reg), 0); if (err < 0) return err; reg = cpu_to_be32(tscm->async_handler.offset); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_LO, &reg, sizeof(reg), 0); if (err < 0) return err; /* Turn on messaging. */ reg = cpu_to_be32(0x00000001); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ON, &reg, sizeof(reg), 0); if (err < 0) return err; /* Turn on FireWire LED. */ reg = cpu_to_be32(0x0001008e); return snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_LED_POWER, &reg, sizeof(reg), 0); } void snd_tscm_transaction_unregister(struct snd_tscm *tscm) { __be32 reg; if (tscm->async_handler.callback_data == NULL) return; /* Turn off FireWire LED. */ reg = cpu_to_be32(0x0000008e); snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_LED_POWER, &reg, sizeof(reg), 0); /* Turn off messaging. */ reg = cpu_to_be32(0x00000000); snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ON, &reg, sizeof(reg), 0); /* Unregister the address. */ snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_HI, &reg, sizeof(reg), 0); snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_LO, &reg, sizeof(reg), 0); fw_core_remove_address_handler(&tscm->async_handler); tscm->async_handler.callback_data = NULL; }
linux-master
sound/firewire/tascam/tascam-transaction.c
// SPDX-License-Identifier: GPL-2.0-only /* * tascam-hwdep.c - a part of driver for TASCAM FireWire series * * Copyright (c) 2015 Takashi Sakamoto */ /* * This codes give three functionality. * * 1.get firewire node information * 2.get notification about starting/stopping stream * 3.lock/unlock stream */ #include "tascam.h" static long tscm_hwdep_read_locked(struct snd_tscm *tscm, char __user *buf, long count, loff_t *offset) __releases(&tscm->lock) { struct snd_firewire_event_lock_status event = { .type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS, }; event.status = (tscm->dev_lock_count > 0); tscm->dev_lock_changed = false; count = min_t(long, count, sizeof(event)); spin_unlock_irq(&tscm->lock); if (copy_to_user(buf, &event, count)) return -EFAULT; return count; } static long tscm_hwdep_read_queue(struct snd_tscm *tscm, char __user *buf, long remained, loff_t *offset) __releases(&tscm->lock) { char __user *pos = buf; unsigned int type = SNDRV_FIREWIRE_EVENT_TASCAM_CONTROL; struct snd_firewire_tascam_change *entries = tscm->queue; long count; // At least, one control event can be copied. if (remained < sizeof(type) + sizeof(*entries)) { spin_unlock_irq(&tscm->lock); return -EINVAL; } // Copy the type field later. count = sizeof(type); remained -= sizeof(type); pos += sizeof(type); while (true) { unsigned int head_pos; unsigned int tail_pos; unsigned int length; if (tscm->pull_pos == tscm->push_pos) break; else if (tscm->pull_pos < tscm->push_pos) tail_pos = tscm->push_pos; else tail_pos = SND_TSCM_QUEUE_COUNT; head_pos = tscm->pull_pos; length = (tail_pos - head_pos) * sizeof(*entries); if (remained < length) length = rounddown(remained, sizeof(*entries)); if (length == 0) break; spin_unlock_irq(&tscm->lock); if (copy_to_user(pos, &entries[head_pos], length)) return -EFAULT; spin_lock_irq(&tscm->lock); tscm->pull_pos = tail_pos % SND_TSCM_QUEUE_COUNT; count += length; remained -= length; pos += length; } spin_unlock_irq(&tscm->lock); if (copy_to_user(buf, &type, sizeof(type))) return -EFAULT; return count; } static long hwdep_read(struct snd_hwdep *hwdep, char __user *buf, long count, loff_t *offset) { struct snd_tscm *tscm = hwdep->private_data; DEFINE_WAIT(wait); spin_lock_irq(&tscm->lock); while (!tscm->dev_lock_changed && tscm->push_pos == tscm->pull_pos) { prepare_to_wait(&tscm->hwdep_wait, &wait, TASK_INTERRUPTIBLE); spin_unlock_irq(&tscm->lock); schedule(); finish_wait(&tscm->hwdep_wait, &wait); if (signal_pending(current)) return -ERESTARTSYS; spin_lock_irq(&tscm->lock); } // NOTE: The acquired lock should be released in callee side. if (tscm->dev_lock_changed) { count = tscm_hwdep_read_locked(tscm, buf, count, offset); } else if (tscm->push_pos != tscm->pull_pos) { count = tscm_hwdep_read_queue(tscm, buf, count, offset); } else { spin_unlock_irq(&tscm->lock); count = 0; } return count; } static __poll_t hwdep_poll(struct snd_hwdep *hwdep, struct file *file, poll_table *wait) { struct snd_tscm *tscm = hwdep->private_data; __poll_t events; poll_wait(file, &tscm->hwdep_wait, wait); spin_lock_irq(&tscm->lock); if (tscm->dev_lock_changed || tscm->push_pos != tscm->pull_pos) events = EPOLLIN | EPOLLRDNORM; else events = 0; spin_unlock_irq(&tscm->lock); return events; } static int hwdep_get_info(struct snd_tscm *tscm, void __user *arg) { struct fw_device *dev = fw_parent_device(tscm->unit); struct snd_firewire_get_info info; memset(&info, 0, sizeof(info)); info.type = SNDRV_FIREWIRE_TYPE_TASCAM; info.card = dev->card->index; *(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]); *(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]); strscpy(info.device_name, dev_name(&dev->device), sizeof(info.device_name)); if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int hwdep_lock(struct snd_tscm *tscm) { int err; spin_lock_irq(&tscm->lock); if (tscm->dev_lock_count == 0) { tscm->dev_lock_count = -1; err = 0; } else { err = -EBUSY; } spin_unlock_irq(&tscm->lock); return err; } static int hwdep_unlock(struct snd_tscm *tscm) { int err; spin_lock_irq(&tscm->lock); if (tscm->dev_lock_count == -1) { tscm->dev_lock_count = 0; err = 0; } else { err = -EBADFD; } spin_unlock_irq(&tscm->lock); return err; } static int tscm_hwdep_state(struct snd_tscm *tscm, void __user *arg) { if (copy_to_user(arg, tscm->state, sizeof(tscm->state))) return -EFAULT; return 0; } static int hwdep_release(struct snd_hwdep *hwdep, struct file *file) { struct snd_tscm *tscm = hwdep->private_data; spin_lock_irq(&tscm->lock); if (tscm->dev_lock_count == -1) tscm->dev_lock_count = 0; spin_unlock_irq(&tscm->lock); return 0; } static int hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { struct snd_tscm *tscm = hwdep->private_data; switch (cmd) { case SNDRV_FIREWIRE_IOCTL_GET_INFO: return hwdep_get_info(tscm, (void __user *)arg); case SNDRV_FIREWIRE_IOCTL_LOCK: return hwdep_lock(tscm); case SNDRV_FIREWIRE_IOCTL_UNLOCK: return hwdep_unlock(tscm); case SNDRV_FIREWIRE_IOCTL_TASCAM_STATE: return tscm_hwdep_state(tscm, (void __user *)arg); default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static int hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { return hwdep_ioctl(hwdep, file, cmd, (unsigned long)compat_ptr(arg)); } #else #define hwdep_compat_ioctl NULL #endif int snd_tscm_create_hwdep_device(struct snd_tscm *tscm) { static const struct snd_hwdep_ops ops = { .read = hwdep_read, .release = hwdep_release, .poll = hwdep_poll, .ioctl = hwdep_ioctl, .ioctl_compat = hwdep_compat_ioctl, }; struct snd_hwdep *hwdep; int err; err = snd_hwdep_new(tscm->card, "Tascam", 0, &hwdep); if (err < 0) return err; strcpy(hwdep->name, "Tascam"); hwdep->iface = SNDRV_HWDEP_IFACE_FW_TASCAM; hwdep->ops = ops; hwdep->private_data = tscm; hwdep->exclusive = true; tscm->hwdep = hwdep; return err; }
linux-master
sound/firewire/tascam/tascam-hwdep.c
// SPDX-License-Identifier: GPL-2.0-only /* * amdtp-tascam.c - a part of driver for TASCAM FireWire series * * Copyright (c) 2015 Takashi Sakamoto */ #include <sound/pcm.h> #include "tascam.h" #define AMDTP_FMT_TSCM_TX 0x1e #define AMDTP_FMT_TSCM_RX 0x3e struct amdtp_tscm { unsigned int pcm_channels; }; int amdtp_tscm_set_parameters(struct amdtp_stream *s, unsigned int rate) { struct amdtp_tscm *p = s->protocol; unsigned int data_channels; if (amdtp_stream_running(s)) return -EBUSY; data_channels = p->pcm_channels; /* Packets in in-stream have extra 2 data channels. */ if (s->direction == AMDTP_IN_STREAM) data_channels += 2; return amdtp_stream_set_parameters(s, rate, data_channels, 1); } static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __be32 *buffer, unsigned int frames, unsigned int pcm_frames) { struct amdtp_tscm *p = s->protocol; unsigned int channels = p->pcm_channels; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int pcm_buffer_pointer; int remaining_frames; const u32 *src; int i, c; pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames; pcm_buffer_pointer %= runtime->buffer_size; src = (void *)runtime->dma_area + frames_to_bytes(runtime, pcm_buffer_pointer); remaining_frames = runtime->buffer_size - pcm_buffer_pointer; for (i = 0; i < frames; ++i) { for (c = 0; c < channels; ++c) { buffer[c] = cpu_to_be32(*src); src++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) src = (void *)runtime->dma_area; } } static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __be32 *buffer, unsigned int frames, unsigned int pcm_frames) { struct amdtp_tscm *p = s->protocol; unsigned int channels = p->pcm_channels; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int pcm_buffer_pointer; int remaining_frames; u32 *dst; int i, c; pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames; pcm_buffer_pointer %= runtime->buffer_size; dst = (void *)runtime->dma_area + frames_to_bytes(runtime, pcm_buffer_pointer); remaining_frames = runtime->buffer_size - pcm_buffer_pointer; /* The first data channel is for event counter. */ buffer += 1; for (i = 0; i < frames; ++i) { for (c = 0; c < channels; ++c) { *dst = be32_to_cpu(buffer[c]); dst++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) dst = (void *)runtime->dma_area; } } static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks) { struct amdtp_tscm *p = s->protocol; unsigned int channels, i, c; channels = p->pcm_channels; for (i = 0; i < data_blocks; ++i) { for (c = 0; c < channels; ++c) buffer[c] = 0x00000000; buffer += s->data_block_quadlets; } } int amdtp_tscm_add_pcm_hw_constraints(struct amdtp_stream *s, struct snd_pcm_runtime *runtime) { int err; /* * Our implementation allows this protocol to deliver 24 bit sample in * 32bit data channel. */ err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); if (err < 0) return err; return amdtp_stream_add_pcm_hw_constraints(s, runtime); } static void read_status_messages(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks) { struct snd_tscm *tscm = container_of(s, struct snd_tscm, tx_stream); bool used = READ_ONCE(tscm->hwdep->used); int i; for (i = 0; i < data_blocks; i++) { unsigned int index; __be32 before; __be32 after; index = be32_to_cpu(buffer[0]) % SNDRV_FIREWIRE_TASCAM_STATE_COUNT; before = tscm->state[index]; after = buffer[s->data_block_quadlets - 1]; if (used && index > 4 && index < 16) { __be32 mask; if (index == 5) mask = cpu_to_be32(~0x0000ffff); else if (index == 6) mask = cpu_to_be32(~0x0000ffff); else if (index == 8) mask = cpu_to_be32(~0x000f0f00); else mask = cpu_to_be32(~0x00000000); if ((before ^ after) & mask) { struct snd_firewire_tascam_change *entry = &tscm->queue[tscm->push_pos]; unsigned long flag; spin_lock_irqsave(&tscm->lock, flag); entry->index = index; entry->before = before; entry->after = after; if (++tscm->push_pos >= SND_TSCM_QUEUE_COUNT) tscm->push_pos = 0; spin_unlock_irqrestore(&tscm->lock, flag); wake_up(&tscm->hwdep_wait); } } tscm->state[index] = after; buffer += s->data_block_quadlets; } } static void process_ir_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count, struct snd_pcm_substream *pcm) { unsigned int pcm_frames = 0; int i; for (i = 0; i < count; ++i) { __be32 *buf = desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; if (pcm) { read_pcm_s32(s, pcm, buf, data_blocks, pcm_frames); pcm_frames += data_blocks; } read_status_messages(s, buf, data_blocks); desc = amdtp_stream_next_packet_desc(s, desc); } } static void process_it_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count, struct snd_pcm_substream *pcm) { unsigned int pcm_frames = 0; int i; for (i = 0; i < count; ++i) { __be32 *buf = desc->ctx_payload; unsigned int data_blocks = desc->data_blocks; if (pcm) { write_pcm_s32(s, pcm, buf, data_blocks, pcm_frames); pcm_frames += data_blocks; } else { write_pcm_silence(s, buf, data_blocks); } desc = amdtp_stream_next_packet_desc(s, desc); } } int amdtp_tscm_init(struct amdtp_stream *s, struct fw_unit *unit, enum amdtp_stream_direction dir, unsigned int pcm_channels) { amdtp_stream_process_ctx_payloads_t process_ctx_payloads; unsigned int flags = CIP_NONBLOCKING | CIP_SKIP_DBC_ZERO_CHECK | CIP_UNAWARE_SYT; struct amdtp_tscm *p; unsigned int fmt; int err; if (dir == AMDTP_IN_STREAM) { fmt = AMDTP_FMT_TSCM_TX; process_ctx_payloads = process_ir_ctx_payloads; } else { fmt = AMDTP_FMT_TSCM_RX; process_ctx_payloads = process_it_ctx_payloads; } err = amdtp_stream_init(s, unit, dir, flags, fmt, process_ctx_payloads, sizeof(struct amdtp_tscm)); if (err < 0) return 0; if (dir == AMDTP_OUT_STREAM) { // Use fixed value for FDF field. s->ctx_data.rx.fdf = 0x00; } /* This protocol uses fixed number of data channels for PCM samples. */ p = s->protocol; p->pcm_channels = pcm_channels; return 0; }
linux-master
sound/firewire/tascam/amdtp-tascam.c
// SPDX-License-Identifier: GPL-2.0-only /* * tascam-stream.c - a part of driver for TASCAM FireWire series * * Copyright (c) 2015 Takashi Sakamoto */ #include <linux/delay.h> #include "tascam.h" #define CLOCK_STATUS_MASK 0xffff0000 #define CLOCK_CONFIG_MASK 0x0000ffff #define READY_TIMEOUT_MS 4000 static int get_clock(struct snd_tscm *tscm, u32 *data) { int trial = 0; __be32 reg; int err; while (trial++ < 5) { err = snd_fw_transaction(tscm->unit, TCODE_READ_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_CLOCK_STATUS, &reg, sizeof(reg), 0); if (err < 0) return err; *data = be32_to_cpu(reg); if (*data & CLOCK_STATUS_MASK) break; // In intermediate state after changing clock status. msleep(50); } // Still in the intermediate state. if (trial >= 5) return -EAGAIN; return 0; } static int set_clock(struct snd_tscm *tscm, unsigned int rate, enum snd_tscm_clock clock) { u32 data; __be32 reg; int err; err = get_clock(tscm, &data); if (err < 0) return err; data &= CLOCK_CONFIG_MASK; if (rate > 0) { data &= 0x000000ff; /* Base rate. */ if ((rate % 44100) == 0) { data |= 0x00000100; /* Multiplier. */ if (rate / 44100 == 2) data |= 0x00008000; } else if ((rate % 48000) == 0) { data |= 0x00000200; /* Multiplier. */ if (rate / 48000 == 2) data |= 0x00008000; } else { return -EAGAIN; } } if (clock != INT_MAX) { data &= 0x0000ff00; data |= clock + 1; } reg = cpu_to_be32(data); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_CLOCK_STATUS, &reg, sizeof(reg), 0); if (err < 0) return err; if (data & 0x00008000) reg = cpu_to_be32(0x0000001a); else reg = cpu_to_be32(0x0000000d); return snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_MULTIPLEX_MODE, &reg, sizeof(reg), 0); } int snd_tscm_stream_get_rate(struct snd_tscm *tscm, unsigned int *rate) { u32 data; int err; err = get_clock(tscm, &data); if (err < 0) return err; data = (data & 0xff000000) >> 24; /* Check base rate. */ if ((data & 0x0f) == 0x01) *rate = 44100; else if ((data & 0x0f) == 0x02) *rate = 48000; else return -EAGAIN; /* Check multiplier. */ if ((data & 0xf0) == 0x80) *rate *= 2; else if ((data & 0xf0) != 0x00) return -EAGAIN; return err; } int snd_tscm_stream_get_clock(struct snd_tscm *tscm, enum snd_tscm_clock *clock) { u32 data; int err; err = get_clock(tscm, &data); if (err < 0) return err; *clock = ((data & 0x00ff0000) >> 16) - 1; if (*clock < 0 || *clock > SND_TSCM_CLOCK_ADAT) return -EIO; return 0; } static int enable_data_channels(struct snd_tscm *tscm) { __be32 reg; u32 data; unsigned int i; int err; data = 0; for (i = 0; i < tscm->spec->pcm_capture_analog_channels; ++i) data |= BIT(i); if (tscm->spec->has_adat) data |= 0x0000ff00; if (tscm->spec->has_spdif) data |= 0x00030000; reg = cpu_to_be32(data); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_TX_PCM_CHANNELS, &reg, sizeof(reg), 0); if (err < 0) return err; data = 0; for (i = 0; i < tscm->spec->pcm_playback_analog_channels; ++i) data |= BIT(i); if (tscm->spec->has_adat) data |= 0x0000ff00; if (tscm->spec->has_spdif) data |= 0x00030000; reg = cpu_to_be32(data); return snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_RX_PCM_CHANNELS, &reg, sizeof(reg), 0); } static int set_stream_formats(struct snd_tscm *tscm, unsigned int rate) { __be32 reg; int err; // Set an option for unknown purpose. reg = cpu_to_be32(0x00200000); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_SET_OPTION, &reg, sizeof(reg), 0); if (err < 0) return err; return enable_data_channels(tscm); } static void finish_session(struct snd_tscm *tscm) { __be32 reg; reg = 0; snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_START_STREAMING, &reg, sizeof(reg), 0); reg = 0; snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_ISOC_RX_ON, &reg, sizeof(reg), 0); // Unregister channels. reg = cpu_to_be32(0x00000000); snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_ISOC_TX_CH, &reg, sizeof(reg), 0); reg = cpu_to_be32(0x00000000); snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_UNKNOWN, &reg, sizeof(reg), 0); reg = cpu_to_be32(0x00000000); snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_ISOC_RX_CH, &reg, sizeof(reg), 0); } static int begin_session(struct snd_tscm *tscm) { __be32 reg; int err; // Register the isochronous channel for transmitting stream. reg = cpu_to_be32(tscm->tx_resources.channel); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_ISOC_TX_CH, &reg, sizeof(reg), 0); if (err < 0) return err; // Unknown. reg = cpu_to_be32(0x00000002); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_UNKNOWN, &reg, sizeof(reg), 0); if (err < 0) return err; // Register the isochronous channel for receiving stream. reg = cpu_to_be32(tscm->rx_resources.channel); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_ISOC_RX_CH, &reg, sizeof(reg), 0); if (err < 0) return err; reg = cpu_to_be32(0x00000001); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_START_STREAMING, &reg, sizeof(reg), 0); if (err < 0) return err; reg = cpu_to_be32(0x00000001); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_ISOC_RX_ON, &reg, sizeof(reg), 0); if (err < 0) return err; // Set an option for unknown purpose. reg = cpu_to_be32(0x00002000); err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_SET_OPTION, &reg, sizeof(reg), 0); if (err < 0) return err; // Start multiplexing PCM samples on packets. reg = cpu_to_be32(0x00000001); return snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST, TSCM_ADDR_BASE + TSCM_OFFSET_ISOC_TX_ON, &reg, sizeof(reg), 0); } static int keep_resources(struct snd_tscm *tscm, unsigned int rate, struct amdtp_stream *stream) { struct fw_iso_resources *resources; int err; if (stream == &tscm->tx_stream) resources = &tscm->tx_resources; else resources = &tscm->rx_resources; err = amdtp_tscm_set_parameters(stream, rate); if (err < 0) return err; return fw_iso_resources_allocate(resources, amdtp_stream_get_max_payload(stream), fw_parent_device(tscm->unit)->max_speed); } static int init_stream(struct snd_tscm *tscm, struct amdtp_stream *s) { struct fw_iso_resources *resources; enum amdtp_stream_direction dir; unsigned int pcm_channels; int err; if (s == &tscm->tx_stream) { resources = &tscm->tx_resources; dir = AMDTP_IN_STREAM; pcm_channels = tscm->spec->pcm_capture_analog_channels; } else { resources = &tscm->rx_resources; dir = AMDTP_OUT_STREAM; pcm_channels = tscm->spec->pcm_playback_analog_channels; } if (tscm->spec->has_adat) pcm_channels += 8; if (tscm->spec->has_spdif) pcm_channels += 2; err = fw_iso_resources_init(resources, tscm->unit); if (err < 0) return err; err = amdtp_tscm_init(s, tscm->unit, dir, pcm_channels); if (err < 0) fw_iso_resources_free(resources); return err; } static void destroy_stream(struct snd_tscm *tscm, struct amdtp_stream *s) { amdtp_stream_destroy(s); if (s == &tscm->tx_stream) fw_iso_resources_destroy(&tscm->tx_resources); else fw_iso_resources_destroy(&tscm->rx_resources); } int snd_tscm_stream_init_duplex(struct snd_tscm *tscm) { int err; err = init_stream(tscm, &tscm->tx_stream); if (err < 0) return err; err = init_stream(tscm, &tscm->rx_stream); if (err < 0) { destroy_stream(tscm, &tscm->tx_stream); return err; } err = amdtp_domain_init(&tscm->domain); if (err < 0) { destroy_stream(tscm, &tscm->tx_stream); destroy_stream(tscm, &tscm->rx_stream); } return err; } // At bus reset, streaming is stopped and some registers are clear. void snd_tscm_stream_update_duplex(struct snd_tscm *tscm) { amdtp_domain_stop(&tscm->domain); amdtp_stream_pcm_abort(&tscm->tx_stream); amdtp_stream_pcm_abort(&tscm->rx_stream); } // This function should be called before starting streams or after stopping // streams. void snd_tscm_stream_destroy_duplex(struct snd_tscm *tscm) { amdtp_domain_destroy(&tscm->domain); destroy_stream(tscm, &tscm->rx_stream); destroy_stream(tscm, &tscm->tx_stream); } int snd_tscm_stream_reserve_duplex(struct snd_tscm *tscm, unsigned int rate, unsigned int frames_per_period, unsigned int frames_per_buffer) { unsigned int curr_rate; int err; err = snd_tscm_stream_get_rate(tscm, &curr_rate); if (err < 0) return err; if (tscm->substreams_counter == 0 || rate != curr_rate) { amdtp_domain_stop(&tscm->domain); finish_session(tscm); fw_iso_resources_free(&tscm->tx_resources); fw_iso_resources_free(&tscm->rx_resources); err = set_clock(tscm, rate, INT_MAX); if (err < 0) return err; err = keep_resources(tscm, rate, &tscm->tx_stream); if (err < 0) return err; err = keep_resources(tscm, rate, &tscm->rx_stream); if (err < 0) { fw_iso_resources_free(&tscm->tx_resources); return err; } err = amdtp_domain_set_events_per_period(&tscm->domain, frames_per_period, frames_per_buffer); if (err < 0) { fw_iso_resources_free(&tscm->tx_resources); fw_iso_resources_free(&tscm->rx_resources); return err; } tscm->need_long_tx_init_skip = (rate != curr_rate); } return 0; } int snd_tscm_stream_start_duplex(struct snd_tscm *tscm, unsigned int rate) { unsigned int generation = tscm->rx_resources.generation; int err; if (tscm->substreams_counter == 0) return 0; if (amdtp_streaming_error(&tscm->rx_stream) || amdtp_streaming_error(&tscm->tx_stream)) { amdtp_domain_stop(&tscm->domain); finish_session(tscm); } if (generation != fw_parent_device(tscm->unit)->card->generation) { err = fw_iso_resources_update(&tscm->tx_resources); if (err < 0) goto error; err = fw_iso_resources_update(&tscm->rx_resources); if (err < 0) goto error; } if (!amdtp_stream_running(&tscm->rx_stream)) { int spd = fw_parent_device(tscm->unit)->max_speed; unsigned int tx_init_skip_cycles; err = set_stream_formats(tscm, rate); if (err < 0) goto error; err = begin_session(tscm); if (err < 0) goto error; err = amdtp_domain_add_stream(&tscm->domain, &tscm->rx_stream, tscm->rx_resources.channel, spd); if (err < 0) goto error; err = amdtp_domain_add_stream(&tscm->domain, &tscm->tx_stream, tscm->tx_resources.channel, spd); if (err < 0) goto error; if (tscm->need_long_tx_init_skip) tx_init_skip_cycles = 16000; else tx_init_skip_cycles = 0; // MEMO: Just after starting packet streaming, it transfers packets without any // event. Enough after receiving the sequence of packets, it multiplexes events into // the packet. However, just after changing sampling transfer frequency, it stops // multiplexing during packet transmission. Enough after, it restarts multiplexing // again. The device ignores presentation time expressed by the value of syt field // of CIP header in received packets. The sequence of the number of data blocks per // packet is important for media clock recovery. err = amdtp_domain_start(&tscm->domain, tx_init_skip_cycles, true, true); if (err < 0) goto error; if (!amdtp_domain_wait_ready(&tscm->domain, READY_TIMEOUT_MS)) { err = -ETIMEDOUT; goto error; } } return 0; error: amdtp_domain_stop(&tscm->domain); finish_session(tscm); return err; } void snd_tscm_stream_stop_duplex(struct snd_tscm *tscm) { if (tscm->substreams_counter == 0) { amdtp_domain_stop(&tscm->domain); finish_session(tscm); fw_iso_resources_free(&tscm->tx_resources); fw_iso_resources_free(&tscm->rx_resources); tscm->need_long_tx_init_skip = false; } } void snd_tscm_stream_lock_changed(struct snd_tscm *tscm) { tscm->dev_lock_changed = true; wake_up(&tscm->hwdep_wait); } int snd_tscm_stream_lock_try(struct snd_tscm *tscm) { int err; spin_lock_irq(&tscm->lock); /* user land lock this */ if (tscm->dev_lock_count < 0) { err = -EBUSY; goto end; } /* this is the first time */ if (tscm->dev_lock_count++ == 0) snd_tscm_stream_lock_changed(tscm); err = 0; end: spin_unlock_irq(&tscm->lock); return err; } void snd_tscm_stream_lock_release(struct snd_tscm *tscm) { spin_lock_irq(&tscm->lock); if (WARN_ON(tscm->dev_lock_count <= 0)) goto end; if (--tscm->dev_lock_count == 0) snd_tscm_stream_lock_changed(tscm); end: spin_unlock_irq(&tscm->lock); }
linux-master
sound/firewire/tascam/tascam-stream.c
// SPDX-License-Identifier: GPL-2.0-only /* * tascam.c - a part of driver for TASCAM FireWire series * * Copyright (c) 2015 Takashi Sakamoto */ #include "tascam.h" MODULE_DESCRIPTION("TASCAM FireWire series Driver"); MODULE_AUTHOR("Takashi Sakamoto <[email protected]>"); MODULE_LICENSE("GPL"); static const struct snd_tscm_spec model_specs[] = { { .name = "FW-1884", .has_adat = true, .has_spdif = true, .pcm_capture_analog_channels = 8, .pcm_playback_analog_channels = 8, .midi_capture_ports = 4, .midi_playback_ports = 4, }, { .name = "FW-1082", .has_adat = false, .has_spdif = true, .pcm_capture_analog_channels = 8, .pcm_playback_analog_channels = 2, .midi_capture_ports = 2, .midi_playback_ports = 2, }, { .name = "FW-1804", .has_adat = true, .has_spdif = true, .pcm_capture_analog_channels = 8, .pcm_playback_analog_channels = 2, .midi_capture_ports = 2, .midi_playback_ports = 4, }, }; static int identify_model(struct snd_tscm *tscm) { struct fw_device *fw_dev = fw_parent_device(tscm->unit); const u32 *config_rom = fw_dev->config_rom; char model[9]; unsigned int i; u8 c; if (fw_dev->config_rom_length < 30) { dev_err(&tscm->unit->device, "Configuration ROM is too short.\n"); return -ENODEV; } /* Pick up model name from certain addresses. */ for (i = 0; i < 8; i++) { c = config_rom[28 + i / 4] >> (24 - 8 * (i % 4)); if (c == '\0') break; model[i] = c; } model[i] = '\0'; for (i = 0; i < ARRAY_SIZE(model_specs); i++) { if (strcmp(model, model_specs[i].name) == 0) { tscm->spec = &model_specs[i]; break; } } if (tscm->spec == NULL) return -ENODEV; strcpy(tscm->card->driver, "FW-TASCAM"); strcpy(tscm->card->shortname, model); strcpy(tscm->card->mixername, model); snprintf(tscm->card->longname, sizeof(tscm->card->longname), "TASCAM %s, GUID %08x%08x at %s, S%d", model, fw_dev->config_rom[3], fw_dev->config_rom[4], dev_name(&tscm->unit->device), 100 << fw_dev->max_speed); return 0; } static void tscm_card_free(struct snd_card *card) { struct snd_tscm *tscm = card->private_data; snd_tscm_transaction_unregister(tscm); snd_tscm_stream_destroy_duplex(tscm); mutex_destroy(&tscm->mutex); fw_unit_put(tscm->unit); } static int snd_tscm_probe(struct fw_unit *unit, const struct ieee1394_device_id *entry) { struct snd_card *card; struct snd_tscm *tscm; int err; err = snd_card_new(&unit->device, -1, NULL, THIS_MODULE, sizeof(*tscm), &card); if (err < 0) return err; card->private_free = tscm_card_free; tscm = card->private_data; tscm->unit = fw_unit_get(unit); dev_set_drvdata(&unit->device, tscm); tscm->card = card; mutex_init(&tscm->mutex); spin_lock_init(&tscm->lock); init_waitqueue_head(&tscm->hwdep_wait); err = identify_model(tscm); if (err < 0) goto error; err = snd_tscm_transaction_register(tscm); if (err < 0) goto error; err = snd_tscm_stream_init_duplex(tscm); if (err < 0) goto error; snd_tscm_proc_init(tscm); err = snd_tscm_create_pcm_devices(tscm); if (err < 0) goto error; err = snd_tscm_create_midi_devices(tscm); if (err < 0) goto error; err = snd_tscm_create_hwdep_device(tscm); if (err < 0) goto error; err = snd_card_register(card); if (err < 0) goto error; return 0; error: snd_card_free(card); return err; } static void snd_tscm_update(struct fw_unit *unit) { struct snd_tscm *tscm = dev_get_drvdata(&unit->device); snd_tscm_transaction_reregister(tscm); mutex_lock(&tscm->mutex); snd_tscm_stream_update_duplex(tscm); mutex_unlock(&tscm->mutex); } static void snd_tscm_remove(struct fw_unit *unit) { struct snd_tscm *tscm = dev_get_drvdata(&unit->device); // Block till all of ALSA character devices are released. snd_card_free(tscm->card); } static const struct ieee1394_device_id snd_tscm_id_table[] = { // Tascam, FW-1884. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, .vendor_id = 0x00022e, .specifier_id = 0x00022e, .version = 0x800000, }, // Tascam, FE-8 (.version = 0x800001) // This kernel module doesn't support FE-8 because the most of features // can be implemented in userspace without any specific support of this // module. // // .version = 0x800002 is unknown. // // Tascam, FW-1082. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, .vendor_id = 0x00022e, .specifier_id = 0x00022e, .version = 0x800003, }, // Tascam, FW-1804. { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, .vendor_id = 0x00022e, .specifier_id = 0x00022e, .version = 0x800004, }, {} }; MODULE_DEVICE_TABLE(ieee1394, snd_tscm_id_table); static struct fw_driver tscm_driver = { .driver = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .bus = &fw_bus_type, }, .probe = snd_tscm_probe, .update = snd_tscm_update, .remove = snd_tscm_remove, .id_table = snd_tscm_id_table, }; static int __init snd_tscm_init(void) { return driver_register(&tscm_driver.driver); } static void __exit snd_tscm_exit(void) { driver_unregister(&tscm_driver.driver); } module_init(snd_tscm_init); module_exit(snd_tscm_exit);
linux-master
sound/firewire/tascam/tascam.c
// SPDX-License-Identifier: GPL-2.0-only /* * tascam-pcm.c - a part of driver for TASCAM FireWire series * * Copyright (c) 2015 Takashi Sakamoto */ #include "tascam.h" static int pcm_init_hw_params(struct snd_tscm *tscm, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_pcm_hardware *hw = &runtime->hw; struct amdtp_stream *stream; unsigned int pcm_channels; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { runtime->hw.formats = SNDRV_PCM_FMTBIT_S32; stream = &tscm->tx_stream; pcm_channels = tscm->spec->pcm_capture_analog_channels; } else { runtime->hw.formats = SNDRV_PCM_FMTBIT_S32; stream = &tscm->rx_stream; pcm_channels = tscm->spec->pcm_playback_analog_channels; } if (tscm->spec->has_adat) pcm_channels += 8; if (tscm->spec->has_spdif) pcm_channels += 2; runtime->hw.channels_min = runtime->hw.channels_max = pcm_channels; hw->rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; snd_pcm_limit_hw_rates(runtime); return amdtp_tscm_add_pcm_hw_constraints(stream, runtime); } static int pcm_open(struct snd_pcm_substream *substream) { struct snd_tscm *tscm = substream->private_data; struct amdtp_domain *d = &tscm->domain; enum snd_tscm_clock clock; int err; err = snd_tscm_stream_lock_try(tscm); if (err < 0) return err; err = pcm_init_hw_params(tscm, substream); if (err < 0) goto err_locked; err = snd_tscm_stream_get_clock(tscm, &clock); if (err < 0) goto err_locked; mutex_lock(&tscm->mutex); // When source of clock is not internal or any stream is reserved for // transmission of PCM frames, the available sampling rate is limited // at current one. if (clock != SND_TSCM_CLOCK_INTERNAL || tscm->substreams_counter > 0) { unsigned int frames_per_period = d->events_per_period; unsigned int frames_per_buffer = d->events_per_buffer; unsigned int rate; err = snd_tscm_stream_get_rate(tscm, &rate); if (err < 0) { mutex_unlock(&tscm->mutex); goto err_locked; } substream->runtime->hw.rate_min = rate; substream->runtime->hw.rate_max = rate; err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, frames_per_period, frames_per_period); if (err < 0) { mutex_unlock(&tscm->mutex); goto err_locked; } err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, frames_per_buffer, frames_per_buffer); if (err < 0) { mutex_unlock(&tscm->mutex); goto err_locked; } } mutex_unlock(&tscm->mutex); snd_pcm_set_sync(substream); return 0; err_locked: snd_tscm_stream_lock_release(tscm); return err; } static int pcm_close(struct snd_pcm_substream *substream) { struct snd_tscm *tscm = substream->private_data; snd_tscm_stream_lock_release(tscm); return 0; } static int pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_tscm *tscm = substream->private_data; int err = 0; if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { unsigned int rate = params_rate(hw_params); unsigned int frames_per_period = params_period_size(hw_params); unsigned int frames_per_buffer = params_buffer_size(hw_params); mutex_lock(&tscm->mutex); err = snd_tscm_stream_reserve_duplex(tscm, rate, frames_per_period, frames_per_buffer); if (err >= 0) ++tscm->substreams_counter; mutex_unlock(&tscm->mutex); } return err; } static int pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_tscm *tscm = substream->private_data; mutex_lock(&tscm->mutex); if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) --tscm->substreams_counter; snd_tscm_stream_stop_duplex(tscm); mutex_unlock(&tscm->mutex); return 0; } static int pcm_capture_prepare(struct snd_pcm_substream *substream) { struct snd_tscm *tscm = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; int err; mutex_lock(&tscm->mutex); err = snd_tscm_stream_start_duplex(tscm, runtime->rate); if (err >= 0) amdtp_stream_pcm_prepare(&tscm->tx_stream); mutex_unlock(&tscm->mutex); return err; } static int pcm_playback_prepare(struct snd_pcm_substream *substream) { struct snd_tscm *tscm = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; int err; mutex_lock(&tscm->mutex); err = snd_tscm_stream_start_duplex(tscm, runtime->rate); if (err >= 0) amdtp_stream_pcm_prepare(&tscm->rx_stream); mutex_unlock(&tscm->mutex); return err; } static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_tscm *tscm = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&tscm->tx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&tscm->tx_stream, NULL); break; default: return -EINVAL; } return 0; } static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_tscm *tscm = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&tscm->rx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&tscm->rx_stream, NULL); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm) { struct snd_tscm *tscm = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&tscm->domain, &tscm->tx_stream); } static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm) { struct snd_tscm *tscm = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&tscm->domain, &tscm->rx_stream); } static int pcm_capture_ack(struct snd_pcm_substream *substream) { struct snd_tscm *tscm = substream->private_data; return amdtp_domain_stream_pcm_ack(&tscm->domain, &tscm->tx_stream); } static int pcm_playback_ack(struct snd_pcm_substream *substream) { struct snd_tscm *tscm = substream->private_data; return amdtp_domain_stream_pcm_ack(&tscm->domain, &tscm->rx_stream); } int snd_tscm_create_pcm_devices(struct snd_tscm *tscm) { static const struct snd_pcm_ops capture_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_capture_prepare, .trigger = pcm_capture_trigger, .pointer = pcm_capture_pointer, .ack = pcm_capture_ack, }; static const struct snd_pcm_ops playback_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_playback_prepare, .trigger = pcm_playback_trigger, .pointer = pcm_playback_pointer, .ack = pcm_playback_ack, }; struct snd_pcm *pcm; int err; err = snd_pcm_new(tscm->card, tscm->card->driver, 0, 1, 1, &pcm); if (err < 0) return err; pcm->private_data = tscm; snprintf(pcm->name, sizeof(pcm->name), "%s PCM", tscm->card->shortname); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0); return 0; }
linux-master
sound/firewire/tascam/tascam-pcm.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob_yamaha.c - a part of driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./bebob.h" /* * NOTE: * Yamaha GO44 is not designed to be used as stand-alone mixer. So any streams * must be accompanied. If changing the state, a LED on the device starts to * blink and its sync status is false. In this state, the device sounds nothing * even if streaming. To start streaming at the current sampling rate is only * way to recover this state. GO46 is better for stand-alone mixer. * * Both of them have a capability to change its sampling rate up to 192.0kHz. * At 192.0kHz, the device reports 4 PCM-in, 1 MIDI-in, 6 PCM-out, 1 MIDI-out. * But Yamaha's driver reduce 2 PCM-in, 1 MIDI-in, 2 PCM-out, 1 MIDI-out to use * 'Extended Stream Format Information Command - Single Request' in 'Additional * AVC commands' defined by BridgeCo. * This ALSA driver don't do this because a bit tiresome. Then isochronous * streaming with many asynchronous transactions brings sounds with noises. * Unfortunately current 'ffado-mixer' generated many asynchronous transaction * to observe device's state, mainly check cmp connection and signal format. I * recommend users to close ffado-mixer at 192.0kHz if mixer is needless. * * Terratec PHASE 24 FW and PHASE X24 FW are internally the same as * Yamaha GO 44 and GO 46. Yamaha and Terratec had cooperated for these models. */ static const enum snd_bebob_clock_type clk_src_types[] = { SND_BEBOB_CLOCK_TYPE_INTERNAL, SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* S/PDIF */ }; static int clk_src_get(struct snd_bebob *bebob, unsigned int *id) { int err; err = avc_audio_get_selector(bebob->unit, 0, 4, id); if (err < 0) return err; if (*id >= ARRAY_SIZE(clk_src_types)) return -EIO; return 0; } static const struct snd_bebob_clock_spec clock_spec = { .num = ARRAY_SIZE(clk_src_types), .types = clk_src_types, .get = &clk_src_get, }; static const struct snd_bebob_rate_spec rate_spec = { .get = &snd_bebob_stream_get_rate, .set = &snd_bebob_stream_set_rate, }; const struct snd_bebob_spec yamaha_terratec_spec = { .clock = &clock_spec, .rate = &rate_spec, .meter = NULL };
linux-master
sound/firewire/bebob/bebob_yamaha_terratec.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob_maudio.c - a part of driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./bebob.h" #include <sound/control.h> /* * Just powering on, Firewire 410/Audiophile/1814 and ProjectMix I/O wait to * download firmware blob. To enable these devices, drivers should upload * firmware blob and send a command to initialize configuration to factory * settings when completing uploading. Then these devices generate bus reset * and are recognized as new devices with the firmware. * * But with firmware version 5058 or later, the firmware is stored to flash * memory in the device and drivers can tell bootloader to load the firmware * by sending a cue. This cue must be sent one time. * * For streaming, both of output and input streams are needed for Firewire 410 * and Ozonic. The single stream is OK for the other devices even if the clock * source is not SYT-Match (I note no devices use SYT-Match). * * Without streaming, the devices except for Firewire Audiophile can mix any * input and output. For this reason, Audiophile cannot be used as standalone * mixer. * * Firewire 1814 and ProjectMix I/O uses special firmware. It will be freezed * when receiving any commands which the firmware can't understand. These * devices utilize completely different system to control. It is some * write-transaction directly into a certain address. All of addresses for mixer * functionality is between 0xffc700700000 to 0xffc70070009c. */ /* Offset from information register */ #define INFO_OFFSET_SW_DATE 0x20 /* Bootloader Protocol Version 1 */ #define MAUDIO_BOOTLOADER_CUE1 0x00000001 /* * Initializing configuration to factory settings (= 0x1101), (swapped in line), * Command code is zero (= 0x00), * the number of operands is zero (= 0x00)(at least significant byte) */ #define MAUDIO_BOOTLOADER_CUE2 0x01110000 /* padding */ #define MAUDIO_BOOTLOADER_CUE3 0x00000000 #define MAUDIO_SPECIFIC_ADDRESS 0xffc700000000ULL #define METER_OFFSET 0x00600000 /* some device has sync info after metering data */ #define METER_SIZE_SPECIAL 84 /* with sync info */ #define METER_SIZE_FW410 76 /* with sync info */ #define METER_SIZE_AUDIOPHILE 60 /* with sync info */ #define METER_SIZE_SOLO 52 /* with sync info */ #define METER_SIZE_OZONIC 48 #define METER_SIZE_NRV10 80 /* labels for metering */ #define ANA_IN "Analog In" #define ANA_OUT "Analog Out" #define DIG_IN "Digital In" #define SPDIF_IN "S/PDIF In" #define ADAT_IN "ADAT In" #define DIG_OUT "Digital Out" #define SPDIF_OUT "S/PDIF Out" #define ADAT_OUT "ADAT Out" #define STRM_IN "Stream In" #define AUX_OUT "Aux Out" #define HP_OUT "HP Out" /* for NRV */ #define UNKNOWN_METER "Unknown" struct special_params { bool is1814; unsigned int clk_src; unsigned int dig_in_fmt; unsigned int dig_out_fmt; unsigned int clk_lock; struct snd_ctl_elem_id *ctl_id_sync; }; /* * For some M-Audio devices, this module just send cue to load firmware. After * loading, the device generates bus reset and newly detected. * * If we make any transactions to load firmware, the operation may failed. */ int snd_bebob_maudio_load_firmware(struct fw_unit *unit) { struct fw_device *device = fw_parent_device(unit); int err, rcode; u64 date; __le32 *cues; /* check date of software used to build */ err = snd_bebob_read_block(unit, INFO_OFFSET_SW_DATE, &date, sizeof(u64)); if (err < 0) return err; /* * firmware version 5058 or later has date later than "20070401", but * 'date' is not null-terminated. */ if (date < 0x3230303730343031LL) { dev_err(&unit->device, "Use firmware version 5058 or later\n"); return -ENXIO; } cues = kmalloc_array(3, sizeof(*cues), GFP_KERNEL); if (!cues) return -ENOMEM; cues[0] = cpu_to_le32(MAUDIO_BOOTLOADER_CUE1); cues[1] = cpu_to_le32(MAUDIO_BOOTLOADER_CUE2); cues[2] = cpu_to_le32(MAUDIO_BOOTLOADER_CUE3); rcode = fw_run_transaction(device->card, TCODE_WRITE_BLOCK_REQUEST, device->node_id, device->generation, device->max_speed, BEBOB_ADDR_REG_REQ, cues, 3 * sizeof(*cues)); kfree(cues); if (rcode != RCODE_COMPLETE) { dev_err(&unit->device, "Failed to send a cue to load firmware\n"); err = -EIO; } return err; } static inline int get_meter(struct snd_bebob *bebob, void *buf, unsigned int size) { return snd_fw_transaction(bebob->unit, TCODE_READ_BLOCK_REQUEST, MAUDIO_SPECIFIC_ADDRESS + METER_OFFSET, buf, size, 0); } static int check_clk_sync(struct snd_bebob *bebob, unsigned int size, bool *sync) { int err; u8 *buf; buf = kmalloc(size, GFP_KERNEL); if (buf == NULL) return -ENOMEM; err = get_meter(bebob, buf, size); if (err < 0) goto end; /* if synced, this value is the same as SFC of FDF in CIP header */ *sync = (buf[size - 2] != 0xff); end: kfree(buf); return err; } /* * dig_fmt: 0x00:S/PDIF, 0x01:ADAT * clk_lock: 0x00:unlock, 0x01:lock */ static int avc_maudio_set_special_clk(struct snd_bebob *bebob, unsigned int clk_src, unsigned int dig_in_fmt, unsigned int dig_out_fmt, unsigned int clk_lock) { struct special_params *params = bebob->maudio_special_quirk; int err; u8 *buf; if (amdtp_stream_running(&bebob->rx_stream) || amdtp_stream_running(&bebob->tx_stream)) return -EBUSY; buf = kmalloc(12, GFP_KERNEL); if (buf == NULL) return -ENOMEM; buf[0] = 0x00; /* CONTROL */ buf[1] = 0xff; /* UNIT */ buf[2] = 0x00; /* vendor dependent */ buf[3] = 0x04; /* company ID high */ buf[4] = 0x00; /* company ID middle */ buf[5] = 0x04; /* company ID low */ buf[6] = 0xff & clk_src; /* clock source */ buf[7] = 0xff & dig_in_fmt; /* input digital format */ buf[8] = 0xff & dig_out_fmt; /* output digital format */ buf[9] = 0xff & clk_lock; /* lock these settings */ buf[10] = 0x00; /* padding */ buf[11] = 0x00; /* padding */ err = fcp_avc_transaction(bebob->unit, buf, 12, buf, 12, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(8) | BIT(9)); if ((err > 0) && (err < 10)) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENOSYS; else if (buf[0] == 0x0a) /* REJECTED */ err = -EINVAL; if (err < 0) goto end; params->clk_src = buf[6]; params->dig_in_fmt = buf[7]; params->dig_out_fmt = buf[8]; params->clk_lock = buf[9]; if (params->ctl_id_sync) snd_ctl_notify(bebob->card, SNDRV_CTL_EVENT_MASK_VALUE, params->ctl_id_sync); err = 0; end: kfree(buf); return err; } static void special_stream_formation_set(struct snd_bebob *bebob) { static const unsigned int ch_table[2][2][3] = { /* AMDTP_OUT_STREAM */ { { 6, 6, 4 }, /* SPDIF */ { 12, 8, 4 } }, /* ADAT */ /* AMDTP_IN_STREAM */ { { 10, 10, 2 }, /* SPDIF */ { 16, 12, 2 } } /* ADAT */ }; struct special_params *params = bebob->maudio_special_quirk; unsigned int i, max; max = SND_BEBOB_STRM_FMT_ENTRIES - 1; if (!params->is1814) max -= 2; for (i = 0; i < max; i++) { bebob->tx_stream_formations[i + 1].pcm = ch_table[AMDTP_IN_STREAM][params->dig_in_fmt][i / 2]; bebob->tx_stream_formations[i + 1].midi = 1; bebob->rx_stream_formations[i + 1].pcm = ch_table[AMDTP_OUT_STREAM][params->dig_out_fmt][i / 2]; bebob->rx_stream_formations[i + 1].midi = 1; } } static int add_special_controls(struct snd_bebob *bebob); int snd_bebob_maudio_special_discover(struct snd_bebob *bebob, bool is1814) { struct special_params *params; int err; params = devm_kzalloc(&bebob->card->card_dev, sizeof(struct special_params), GFP_KERNEL); if (!params) return -ENOMEM; mutex_lock(&bebob->mutex); bebob->maudio_special_quirk = (void *)params; params->is1814 = is1814; /* initialize these parameters because driver is not allowed to ask */ bebob->rx_stream.context = ERR_PTR(-1); bebob->tx_stream.context = ERR_PTR(-1); err = avc_maudio_set_special_clk(bebob, 0x03, 0x00, 0x00, 0x00); if (err < 0) { dev_err(&bebob->unit->device, "fail to initialize clock params: %d\n", err); goto end; } err = add_special_controls(bebob); if (err < 0) goto end; special_stream_formation_set(bebob); if (params->is1814) { bebob->midi_input_ports = 1; bebob->midi_output_ports = 1; } else { bebob->midi_input_ports = 2; bebob->midi_output_ports = 2; } end: mutex_unlock(&bebob->mutex); return err; } /* Input plug shows actual rate. Output plug is needless for this purpose. */ static int special_get_rate(struct snd_bebob *bebob, unsigned int *rate) { int err, trials; trials = 0; do { err = avc_general_get_sig_fmt(bebob->unit, rate, AVC_GENERAL_PLUG_DIR_IN, 0); } while (err == -EAGAIN && ++trials < 3); return err; } static int special_set_rate(struct snd_bebob *bebob, unsigned int rate) { struct special_params *params = bebob->maudio_special_quirk; int err; err = avc_general_set_sig_fmt(bebob->unit, rate, AVC_GENERAL_PLUG_DIR_OUT, 0); if (err < 0) goto end; /* * Just after changing sampling rate for output, a followed command * for input is easy to fail. This is a workaround fot this issue. */ msleep(100); err = avc_general_set_sig_fmt(bebob->unit, rate, AVC_GENERAL_PLUG_DIR_IN, 0); if (err < 0) goto end; if (params->ctl_id_sync) snd_ctl_notify(bebob->card, SNDRV_CTL_EVENT_MASK_VALUE, params->ctl_id_sync); end: return err; } /* Clock source control for special firmware */ static const enum snd_bebob_clock_type special_clk_types[] = { SND_BEBOB_CLOCK_TYPE_INTERNAL, /* With digital mute */ SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* SPDIF/ADAT */ SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* Word Clock */ SND_BEBOB_CLOCK_TYPE_INTERNAL, }; static int special_clk_get(struct snd_bebob *bebob, unsigned int *id) { struct special_params *params = bebob->maudio_special_quirk; *id = params->clk_src; return 0; } static int special_clk_ctl_info(struct snd_kcontrol *kctl, struct snd_ctl_elem_info *einf) { static const char *const special_clk_labels[] = { "Internal with Digital Mute", "Digital", "Word Clock", "Internal" }; return snd_ctl_enum_info(einf, 1, ARRAY_SIZE(special_clk_types), special_clk_labels); } static int special_clk_ctl_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uval) { struct snd_bebob *bebob = snd_kcontrol_chip(kctl); struct special_params *params = bebob->maudio_special_quirk; uval->value.enumerated.item[0] = params->clk_src; return 0; } static int special_clk_ctl_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uval) { struct snd_bebob *bebob = snd_kcontrol_chip(kctl); struct special_params *params = bebob->maudio_special_quirk; int err, id; id = uval->value.enumerated.item[0]; if (id >= ARRAY_SIZE(special_clk_types)) return -EINVAL; mutex_lock(&bebob->mutex); err = avc_maudio_set_special_clk(bebob, id, params->dig_in_fmt, params->dig_out_fmt, params->clk_lock); mutex_unlock(&bebob->mutex); if (err >= 0) err = 1; return err; } static const struct snd_kcontrol_new special_clk_ctl = { .name = "Clock Source", .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = special_clk_ctl_info, .get = special_clk_ctl_get, .put = special_clk_ctl_put }; /* Clock synchronization control for special firmware */ static int special_sync_ctl_info(struct snd_kcontrol *kctl, struct snd_ctl_elem_info *einf) { einf->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; einf->count = 1; einf->value.integer.min = 0; einf->value.integer.max = 1; return 0; } static int special_sync_ctl_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uval) { struct snd_bebob *bebob = snd_kcontrol_chip(kctl); int err; bool synced = 0; err = check_clk_sync(bebob, METER_SIZE_SPECIAL, &synced); if (err >= 0) uval->value.integer.value[0] = synced; return 0; } static const struct snd_kcontrol_new special_sync_ctl = { .name = "Sync Status", .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = special_sync_ctl_info, .get = special_sync_ctl_get, }; /* Digital input interface control for special firmware */ static const char *const special_dig_in_iface_labels[] = { "S/PDIF Optical", "S/PDIF Coaxial", "ADAT Optical" }; static int special_dig_in_iface_ctl_info(struct snd_kcontrol *kctl, struct snd_ctl_elem_info *einf) { return snd_ctl_enum_info(einf, 1, ARRAY_SIZE(special_dig_in_iface_labels), special_dig_in_iface_labels); } static int special_dig_in_iface_ctl_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uval) { struct snd_bebob *bebob = snd_kcontrol_chip(kctl); struct special_params *params = bebob->maudio_special_quirk; unsigned int dig_in_iface; int err, val; mutex_lock(&bebob->mutex); err = avc_audio_get_selector(bebob->unit, 0x00, 0x04, &dig_in_iface); if (err < 0) { dev_err(&bebob->unit->device, "fail to get digital input interface: %d\n", err); goto end; } /* encoded id for user value */ val = (params->dig_in_fmt << 1) | (dig_in_iface & 0x01); /* for ADAT Optical */ if (val > 2) val = 2; uval->value.enumerated.item[0] = val; end: mutex_unlock(&bebob->mutex); return err; } static int special_dig_in_iface_ctl_set(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uval) { struct snd_bebob *bebob = snd_kcontrol_chip(kctl); struct special_params *params = bebob->maudio_special_quirk; unsigned int id, dig_in_fmt, dig_in_iface; int err; id = uval->value.enumerated.item[0]; if (id >= ARRAY_SIZE(special_dig_in_iface_labels)) return -EINVAL; /* decode user value */ dig_in_fmt = (id >> 1) & 0x01; dig_in_iface = id & 0x01; mutex_lock(&bebob->mutex); err = avc_maudio_set_special_clk(bebob, params->clk_src, dig_in_fmt, params->dig_out_fmt, params->clk_lock); if (err < 0) goto end; /* For ADAT, optical interface is only available. */ if (params->dig_in_fmt > 0) { err = 1; goto end; } /* For S/PDIF, optical/coaxial interfaces are selectable. */ err = avc_audio_set_selector(bebob->unit, 0x00, 0x04, dig_in_iface); if (err < 0) dev_err(&bebob->unit->device, "fail to set digital input interface: %d\n", err); err = 1; end: special_stream_formation_set(bebob); mutex_unlock(&bebob->mutex); return err; } static const struct snd_kcontrol_new special_dig_in_iface_ctl = { .name = "Digital Input Interface", .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = special_dig_in_iface_ctl_info, .get = special_dig_in_iface_ctl_get, .put = special_dig_in_iface_ctl_set }; /* Digital output interface control for special firmware */ static const char *const special_dig_out_iface_labels[] = { "S/PDIF Optical and Coaxial", "ADAT Optical" }; static int special_dig_out_iface_ctl_info(struct snd_kcontrol *kctl, struct snd_ctl_elem_info *einf) { return snd_ctl_enum_info(einf, 1, ARRAY_SIZE(special_dig_out_iface_labels), special_dig_out_iface_labels); } static int special_dig_out_iface_ctl_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uval) { struct snd_bebob *bebob = snd_kcontrol_chip(kctl); struct special_params *params = bebob->maudio_special_quirk; mutex_lock(&bebob->mutex); uval->value.enumerated.item[0] = params->dig_out_fmt; mutex_unlock(&bebob->mutex); return 0; } static int special_dig_out_iface_ctl_set(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uval) { struct snd_bebob *bebob = snd_kcontrol_chip(kctl); struct special_params *params = bebob->maudio_special_quirk; unsigned int id; int err; id = uval->value.enumerated.item[0]; if (id >= ARRAY_SIZE(special_dig_out_iface_labels)) return -EINVAL; mutex_lock(&bebob->mutex); err = avc_maudio_set_special_clk(bebob, params->clk_src, params->dig_in_fmt, id, params->clk_lock); if (err >= 0) { special_stream_formation_set(bebob); err = 1; } mutex_unlock(&bebob->mutex); return err; } static const struct snd_kcontrol_new special_dig_out_iface_ctl = { .name = "Digital Output Interface", .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = special_dig_out_iface_ctl_info, .get = special_dig_out_iface_ctl_get, .put = special_dig_out_iface_ctl_set }; static int add_special_controls(struct snd_bebob *bebob) { struct snd_kcontrol *kctl; struct special_params *params = bebob->maudio_special_quirk; int err; kctl = snd_ctl_new1(&special_clk_ctl, bebob); err = snd_ctl_add(bebob->card, kctl); if (err < 0) goto end; kctl = snd_ctl_new1(&special_sync_ctl, bebob); err = snd_ctl_add(bebob->card, kctl); if (err < 0) goto end; params->ctl_id_sync = &kctl->id; kctl = snd_ctl_new1(&special_dig_in_iface_ctl, bebob); err = snd_ctl_add(bebob->card, kctl); if (err < 0) goto end; kctl = snd_ctl_new1(&special_dig_out_iface_ctl, bebob); err = snd_ctl_add(bebob->card, kctl); end: return err; } /* Hardware metering for special firmware */ static const char *const special_meter_labels[] = { ANA_IN, ANA_IN, ANA_IN, ANA_IN, SPDIF_IN, ADAT_IN, ADAT_IN, ADAT_IN, ADAT_IN, ANA_OUT, ANA_OUT, SPDIF_OUT, ADAT_OUT, ADAT_OUT, ADAT_OUT, ADAT_OUT, HP_OUT, HP_OUT, AUX_OUT }; static int special_meter_get(struct snd_bebob *bebob, u32 *target, unsigned int size) { __be16 *buf; unsigned int i, c, channels; int err; channels = ARRAY_SIZE(special_meter_labels) * 2; if (size < channels * sizeof(u32)) return -EINVAL; /* omit last 4 bytes because it's clock info. */ buf = kmalloc(METER_SIZE_SPECIAL - 4, GFP_KERNEL); if (buf == NULL) return -ENOMEM; err = get_meter(bebob, (void *)buf, METER_SIZE_SPECIAL - 4); if (err < 0) goto end; /* Its format is u16 and some channels are unknown. */ i = 0; for (c = 2; c < channels + 2; c++) target[i++] = be16_to_cpu(buf[c]) << 16; end: kfree(buf); return err; } /* last 4 bytes are omitted because it's clock info. */ static const char *const fw410_meter_labels[] = { ANA_IN, DIG_IN, ANA_OUT, ANA_OUT, ANA_OUT, ANA_OUT, DIG_OUT, HP_OUT }; static const char *const audiophile_meter_labels[] = { ANA_IN, DIG_IN, ANA_OUT, ANA_OUT, DIG_OUT, HP_OUT, AUX_OUT, }; static const char *const solo_meter_labels[] = { ANA_IN, DIG_IN, STRM_IN, STRM_IN, ANA_OUT, DIG_OUT }; /* no clock info */ static const char *const ozonic_meter_labels[] = { ANA_IN, ANA_IN, STRM_IN, STRM_IN, ANA_OUT, ANA_OUT }; /* TODO: need testers. these positions are based on authour's assumption */ static const char *const nrv10_meter_labels[] = { ANA_IN, ANA_IN, ANA_IN, ANA_IN, DIG_IN, ANA_OUT, ANA_OUT, ANA_OUT, ANA_OUT, DIG_IN }; static int normal_meter_get(struct snd_bebob *bebob, u32 *buf, unsigned int size) { const struct snd_bebob_meter_spec *spec = bebob->spec->meter; unsigned int c, channels; int err; channels = spec->num * 2; if (size < channels * sizeof(u32)) return -EINVAL; err = get_meter(bebob, (void *)buf, size); if (err < 0) goto end; for (c = 0; c < channels; c++) be32_to_cpus(&buf[c]); /* swap stream channels because inverted */ if (spec->labels == solo_meter_labels) { swap(buf[4], buf[6]); swap(buf[5], buf[7]); } end: return err; } /* for special customized devices */ static const struct snd_bebob_rate_spec special_rate_spec = { .get = &special_get_rate, .set = &special_set_rate, }; static const struct snd_bebob_clock_spec special_clk_spec = { .num = ARRAY_SIZE(special_clk_types), .types = special_clk_types, .get = &special_clk_get, }; static const struct snd_bebob_meter_spec special_meter_spec = { .num = ARRAY_SIZE(special_meter_labels), .labels = special_meter_labels, .get = &special_meter_get }; const struct snd_bebob_spec maudio_special_spec = { .clock = &special_clk_spec, .rate = &special_rate_spec, .meter = &special_meter_spec }; /* Firewire 410 specification */ static const struct snd_bebob_rate_spec usual_rate_spec = { .get = &snd_bebob_stream_get_rate, .set = &snd_bebob_stream_set_rate, }; static const struct snd_bebob_meter_spec fw410_meter_spec = { .num = ARRAY_SIZE(fw410_meter_labels), .labels = fw410_meter_labels, .get = &normal_meter_get }; const struct snd_bebob_spec maudio_fw410_spec = { .clock = NULL, .rate = &usual_rate_spec, .meter = &fw410_meter_spec }; /* Firewire Audiophile specification */ static const struct snd_bebob_meter_spec audiophile_meter_spec = { .num = ARRAY_SIZE(audiophile_meter_labels), .labels = audiophile_meter_labels, .get = &normal_meter_get }; const struct snd_bebob_spec maudio_audiophile_spec = { .clock = NULL, .rate = &usual_rate_spec, .meter = &audiophile_meter_spec }; /* Firewire Solo specification */ static const struct snd_bebob_meter_spec solo_meter_spec = { .num = ARRAY_SIZE(solo_meter_labels), .labels = solo_meter_labels, .get = &normal_meter_get }; const struct snd_bebob_spec maudio_solo_spec = { .clock = NULL, .rate = &usual_rate_spec, .meter = &solo_meter_spec }; /* Ozonic specification */ static const struct snd_bebob_meter_spec ozonic_meter_spec = { .num = ARRAY_SIZE(ozonic_meter_labels), .labels = ozonic_meter_labels, .get = &normal_meter_get }; const struct snd_bebob_spec maudio_ozonic_spec = { .clock = NULL, .rate = &usual_rate_spec, .meter = &ozonic_meter_spec }; /* NRV10 specification */ static const struct snd_bebob_meter_spec nrv10_meter_spec = { .num = ARRAY_SIZE(nrv10_meter_labels), .labels = nrv10_meter_labels, .get = &normal_meter_get }; const struct snd_bebob_spec maudio_nrv10_spec = { .clock = NULL, .rate = &usual_rate_spec, .meter = &nrv10_meter_spec };
linux-master
sound/firewire/bebob/bebob_maudio.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob_command.c - driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./bebob.h" int avc_audio_set_selector(struct fw_unit *unit, unsigned int subunit_id, unsigned int fb_id, unsigned int num) { u8 *buf; int err; buf = kzalloc(12, GFP_KERNEL); if (buf == NULL) return -ENOMEM; buf[0] = 0x00; /* AV/C CONTROL */ buf[1] = 0x08 | (0x07 & subunit_id); /* AUDIO SUBUNIT ID */ buf[2] = 0xb8; /* FUNCTION BLOCK */ buf[3] = 0x80; /* type is 'selector'*/ buf[4] = 0xff & fb_id; /* function block id */ buf[5] = 0x10; /* control attribute is CURRENT */ buf[6] = 0x02; /* selector length is 2 */ buf[7] = 0xff & num; /* input function block plug number */ buf[8] = 0x01; /* control selector is SELECTOR_CONTROL */ err = fcp_avc_transaction(unit, buf, 12, buf, 12, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(8)); if (err < 0) ; else if (err < 9) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENOSYS; else if (buf[0] == 0x0a) /* REJECTED */ err = -EINVAL; else err = 0; kfree(buf); return err; } int avc_audio_get_selector(struct fw_unit *unit, unsigned int subunit_id, unsigned int fb_id, unsigned int *num) { u8 *buf; int err; buf = kzalloc(12, GFP_KERNEL); if (buf == NULL) return -ENOMEM; buf[0] = 0x01; /* AV/C STATUS */ buf[1] = 0x08 | (0x07 & subunit_id); /* AUDIO SUBUNIT ID */ buf[2] = 0xb8; /* FUNCTION BLOCK */ buf[3] = 0x80; /* type is 'selector'*/ buf[4] = 0xff & fb_id; /* function block id */ buf[5] = 0x10; /* control attribute is CURRENT */ buf[6] = 0x02; /* selector length is 2 */ buf[7] = 0xff; /* input function block plug number */ buf[8] = 0x01; /* control selector is SELECTOR_CONTROL */ err = fcp_avc_transaction(unit, buf, 12, buf, 12, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(8)); if (err < 0) ; else if (err < 9) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENOSYS; else if (buf[0] == 0x0a) /* REJECTED */ err = -EINVAL; else if (buf[0] == 0x0b) /* IN TRANSITION */ err = -EAGAIN; if (err < 0) goto end; *num = buf[7]; err = 0; end: kfree(buf); return err; } static inline void avc_bridgeco_fill_extension_addr(u8 *buf, u8 *addr) { buf[1] = addr[0]; memcpy(buf + 4, addr + 1, 5); } static inline void avc_bridgeco_fill_plug_info_extension_command(u8 *buf, u8 *addr, unsigned int itype) { buf[0] = 0x01; /* AV/C STATUS */ buf[2] = 0x02; /* AV/C GENERAL PLUG INFO */ buf[3] = 0xc0; /* BridgeCo extension */ avc_bridgeco_fill_extension_addr(buf, addr); buf[9] = itype; /* info type */ } int avc_bridgeco_get_plug_type(struct fw_unit *unit, u8 addr[AVC_BRIDGECO_ADDR_BYTES], enum avc_bridgeco_plug_type *type) { u8 *buf; int err; buf = kzalloc(12, GFP_KERNEL); if (buf == NULL) return -ENOMEM; /* Info type is 'plug type'. */ avc_bridgeco_fill_plug_info_extension_command(buf, addr, 0x00); err = fcp_avc_transaction(unit, buf, 12, buf, 12, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(9)); if (err < 0) ; else if (err < 11) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENOSYS; else if (buf[0] == 0x0a) /* REJECTED */ err = -EINVAL; else if (buf[0] == 0x0b) /* IN TRANSITION */ err = -EAGAIN; if (err < 0) goto end; *type = buf[10]; err = 0; end: kfree(buf); return err; } int avc_bridgeco_get_plug_ch_count(struct fw_unit *unit, u8 addr[AVC_BRIDGECO_ADDR_BYTES], unsigned int *ch_count) { u8 *buf; int err; buf = kzalloc(12, GFP_KERNEL); if (buf == NULL) return -ENOMEM; // Info type is 'plug type'. avc_bridgeco_fill_plug_info_extension_command(buf, addr, 0x02); err = fcp_avc_transaction(unit, buf, 12, buf, 12, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(9)); if (err < 0) ; else if (err < 11) err = -EIO; else if (buf[0] == 0x08) // NOT IMPLEMENTED err = -ENOSYS; else if (buf[0] == 0x0a) // REJECTED err = -EINVAL; else if (buf[0] == 0x0b) // IN TRANSITION err = -EAGAIN; if (err < 0) goto end; *ch_count = buf[10]; err = 0; end: kfree(buf); return err; } int avc_bridgeco_get_plug_ch_pos(struct fw_unit *unit, u8 addr[AVC_BRIDGECO_ADDR_BYTES], u8 *buf, unsigned int len) { int err; /* Info type is 'channel position'. */ avc_bridgeco_fill_plug_info_extension_command(buf, addr, 0x03); err = fcp_avc_transaction(unit, buf, 12, buf, 256, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(9)); if (err < 0) ; else if (err < 11) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENOSYS; else if (buf[0] == 0x0a) /* REJECTED */ err = -EINVAL; else if (buf[0] == 0x0b) /* IN TRANSITION */ err = -EAGAIN; if (err < 0) goto end; /* Pick up specific data. */ memmove(buf, buf + 10, err - 10); err = 0; end: return err; } int avc_bridgeco_get_plug_section_type(struct fw_unit *unit, u8 addr[AVC_BRIDGECO_ADDR_BYTES], unsigned int id, u8 *type) { u8 *buf; int err; /* section info includes charactors but this module don't need it */ buf = kzalloc(12, GFP_KERNEL); if (buf == NULL) return -ENOMEM; /* Info type is 'section info'. */ avc_bridgeco_fill_plug_info_extension_command(buf, addr, 0x07); buf[10] = 0xff & ++id; /* section id */ err = fcp_avc_transaction(unit, buf, 12, buf, 12, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(9) | BIT(10)); if (err < 0) ; else if (err < 12) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENOSYS; else if (buf[0] == 0x0a) /* REJECTED */ err = -EINVAL; else if (buf[0] == 0x0b) /* IN TRANSITION */ err = -EAGAIN; if (err < 0) goto end; *type = buf[11]; err = 0; end: kfree(buf); return err; } int avc_bridgeco_get_plug_input(struct fw_unit *unit, u8 addr[AVC_BRIDGECO_ADDR_BYTES], u8 input[7]) { int err; u8 *buf; buf = kzalloc(18, GFP_KERNEL); if (buf == NULL) return -ENOMEM; /* Info type is 'plug input'. */ avc_bridgeco_fill_plug_info_extension_command(buf, addr, 0x05); err = fcp_avc_transaction(unit, buf, 16, buf, 16, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7)); if (err < 0) ; else if (err < 16) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENOSYS; else if (buf[0] == 0x0a) /* REJECTED */ err = -EINVAL; else if (buf[0] == 0x0b) /* IN TRANSITION */ err = -EAGAIN; if (err < 0) goto end; memcpy(input, buf + 10, 5); err = 0; end: kfree(buf); return err; } int avc_bridgeco_get_plug_strm_fmt(struct fw_unit *unit, u8 addr[AVC_BRIDGECO_ADDR_BYTES], u8 *buf, unsigned int *len, unsigned int eid) { int err; /* check given buffer */ if ((buf == NULL) || (*len < 12)) { err = -EINVAL; goto end; } buf[0] = 0x01; /* AV/C STATUS */ buf[2] = 0x2f; /* AV/C STREAM FORMAT SUPPORT */ buf[3] = 0xc1; /* Bridgeco extension - List Request */ avc_bridgeco_fill_extension_addr(buf, addr); buf[10] = 0xff & eid; /* Entry ID */ err = fcp_avc_transaction(unit, buf, 12, buf, *len, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(10)); if (err < 0) ; else if (err < 12) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENOSYS; else if (buf[0] == 0x0a) /* REJECTED */ err = -EINVAL; else if (buf[0] == 0x0b) /* IN TRANSITION */ err = -EAGAIN; else if (buf[10] != eid) err = -EIO; if (err < 0) goto end; /* Pick up 'stream format info'. */ memmove(buf, buf + 11, err - 11); *len = err - 11; err = 0; end: return err; }
linux-master
sound/firewire/bebob/bebob_command.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob_proc.c - a part of driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./bebob.h" /* contents of information register */ struct hw_info { u64 manufacturer; u32 protocol_ver; u32 bld_ver; u32 guid[2]; u32 model_id; u32 model_rev; u64 fw_date; u64 fw_time; u32 fw_id; u32 fw_ver; u32 base_addr; u32 max_size; u64 bld_date; u64 bld_time; /* may not used in product u64 dbg_date; u64 dbg_time; u32 dbg_id; u32 dbg_version; */ } __packed; static void proc_read_hw_info(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_bebob *bebob = entry->private_data; struct hw_info *info; info = kzalloc(sizeof(struct hw_info), GFP_KERNEL); if (info == NULL) return; if (snd_bebob_read_block(bebob->unit, 0, info, sizeof(struct hw_info)) < 0) goto end; snd_iprintf(buffer, "Manufacturer:\t%.8s\n", (char *)&info->manufacturer); snd_iprintf(buffer, "Protocol Ver:\t%d\n", info->protocol_ver); snd_iprintf(buffer, "Build Ver:\t%d\n", info->bld_ver); snd_iprintf(buffer, "GUID:\t\t0x%.8X%.8X\n", info->guid[0], info->guid[1]); snd_iprintf(buffer, "Model ID:\t0x%02X\n", info->model_id); snd_iprintf(buffer, "Model Rev:\t%d\n", info->model_rev); snd_iprintf(buffer, "Firmware Date:\t%.8s\n", (char *)&info->fw_date); snd_iprintf(buffer, "Firmware Time:\t%.8s\n", (char *)&info->fw_time); snd_iprintf(buffer, "Firmware ID:\t0x%X\n", info->fw_id); snd_iprintf(buffer, "Firmware Ver:\t%d\n", info->fw_ver); snd_iprintf(buffer, "Base Addr:\t0x%X\n", info->base_addr); snd_iprintf(buffer, "Max Size:\t%d\n", info->max_size); snd_iprintf(buffer, "Loader Date:\t%.8s\n", (char *)&info->bld_date); snd_iprintf(buffer, "Loader Time:\t%.8s\n", (char *)&info->bld_time); end: kfree(info); } static void proc_read_meters(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_bebob *bebob = entry->private_data; const struct snd_bebob_meter_spec *spec = bebob->spec->meter; u32 *buf; unsigned int i, c, channels, size; if (spec == NULL) return; channels = spec->num * 2; size = channels * sizeof(u32); buf = kmalloc(size, GFP_KERNEL); if (buf == NULL) return; if (spec->get(bebob, buf, size) < 0) goto end; for (i = 0, c = 1; i < channels; i++) { snd_iprintf(buffer, "%s %d:\t%d\n", spec->labels[i / 2], c++, buf[i]); if ((i + 1 < channels - 1) && (strcmp(spec->labels[i / 2], spec->labels[(i + 1) / 2]) != 0)) c = 1; } end: kfree(buf); } static void proc_read_formation(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_bebob *bebob = entry->private_data; struct snd_bebob_stream_formation *formation; unsigned int i; snd_iprintf(buffer, "Output Stream from device:\n"); snd_iprintf(buffer, "\tRate\tPCM\tMIDI\n"); formation = bebob->tx_stream_formations; for (i = 0; i < SND_BEBOB_STRM_FMT_ENTRIES; i++) { snd_iprintf(buffer, "\t%d\t%d\t%d\n", snd_bebob_rate_table[i], formation[i].pcm, formation[i].midi); } snd_iprintf(buffer, "Input Stream to device:\n"); snd_iprintf(buffer, "\tRate\tPCM\tMIDI\n"); formation = bebob->rx_stream_formations; for (i = 0; i < SND_BEBOB_STRM_FMT_ENTRIES; i++) { snd_iprintf(buffer, "\t%d\t%d\t%d\n", snd_bebob_rate_table[i], formation[i].pcm, formation[i].midi); } } static void proc_read_clock(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { static const char *const clk_labels[] = { "Internal", "External", "SYT-Match", }; struct snd_bebob *bebob = entry->private_data; const struct snd_bebob_rate_spec *rate_spec = bebob->spec->rate; const struct snd_bebob_clock_spec *clk_spec = bebob->spec->clock; enum snd_bebob_clock_type src; unsigned int rate; if (rate_spec->get(bebob, &rate) >= 0) snd_iprintf(buffer, "Sampling rate: %d\n", rate); if (snd_bebob_stream_get_clock_src(bebob, &src) >= 0) { if (clk_spec) snd_iprintf(buffer, "Clock Source: %s\n", clk_labels[src]); else snd_iprintf(buffer, "Clock Source: %s (MSU-dest: %d)\n", clk_labels[src], bebob->sync_input_plug); } } static void add_node(struct snd_bebob *bebob, struct snd_info_entry *root, const char *name, void (*op)(struct snd_info_entry *e, struct snd_info_buffer *b)) { struct snd_info_entry *entry; entry = snd_info_create_card_entry(bebob->card, name, root); if (entry) snd_info_set_text_ops(entry, bebob, op); } void snd_bebob_proc_init(struct snd_bebob *bebob) { struct snd_info_entry *root; /* * All nodes are automatically removed at snd_card_disconnect(), * by following to link list. */ root = snd_info_create_card_entry(bebob->card, "firewire", bebob->card->proc_root); if (root == NULL) return; root->mode = S_IFDIR | 0555; add_node(bebob, root, "clock", proc_read_clock); add_node(bebob, root, "firmware", proc_read_hw_info); add_node(bebob, root, "formation", proc_read_formation); if (bebob->spec->meter != NULL) add_node(bebob, root, "meter", proc_read_meters); }
linux-master
sound/firewire/bebob/bebob_proc.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob_midi.c - a part of driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "bebob.h" static int midi_open(struct snd_rawmidi_substream *substream) { struct snd_bebob *bebob = substream->rmidi->private_data; int err; err = snd_bebob_stream_lock_try(bebob); if (err < 0) return err; mutex_lock(&bebob->mutex); err = snd_bebob_stream_reserve_duplex(bebob, 0, 0, 0); if (err >= 0) { ++bebob->substreams_counter; err = snd_bebob_stream_start_duplex(bebob); if (err < 0) --bebob->substreams_counter; } mutex_unlock(&bebob->mutex); if (err < 0) snd_bebob_stream_lock_release(bebob); return err; } static int midi_close(struct snd_rawmidi_substream *substream) { struct snd_bebob *bebob = substream->rmidi->private_data; mutex_lock(&bebob->mutex); bebob->substreams_counter--; snd_bebob_stream_stop_duplex(bebob); mutex_unlock(&bebob->mutex); snd_bebob_stream_lock_release(bebob); return 0; } static void midi_capture_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_bebob *bebob = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&bebob->lock, flags); if (up) amdtp_am824_midi_trigger(&bebob->tx_stream, substrm->number, substrm); else amdtp_am824_midi_trigger(&bebob->tx_stream, substrm->number, NULL); spin_unlock_irqrestore(&bebob->lock, flags); } static void midi_playback_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_bebob *bebob = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&bebob->lock, flags); if (up) amdtp_am824_midi_trigger(&bebob->rx_stream, substrm->number, substrm); else amdtp_am824_midi_trigger(&bebob->rx_stream, substrm->number, NULL); spin_unlock_irqrestore(&bebob->lock, flags); } static void set_midi_substream_names(struct snd_bebob *bebob, struct snd_rawmidi_str *str) { struct snd_rawmidi_substream *subs; list_for_each_entry(subs, &str->substreams, list) { scnprintf(subs->name, sizeof(subs->name), "%s MIDI %d", bebob->card->shortname, subs->number + 1); } } int snd_bebob_create_midi_devices(struct snd_bebob *bebob) { static const struct snd_rawmidi_ops capture_ops = { .open = midi_open, .close = midi_close, .trigger = midi_capture_trigger, }; static const struct snd_rawmidi_ops playback_ops = { .open = midi_open, .close = midi_close, .trigger = midi_playback_trigger, }; struct snd_rawmidi *rmidi; struct snd_rawmidi_str *str; int err; /* create midi ports */ err = snd_rawmidi_new(bebob->card, bebob->card->driver, 0, bebob->midi_output_ports, bebob->midi_input_ports, &rmidi); if (err < 0) return err; snprintf(rmidi->name, sizeof(rmidi->name), "%s MIDI", bebob->card->shortname); rmidi->private_data = bebob; if (bebob->midi_input_ports > 0) { rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &capture_ops); str = &rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT]; set_midi_substream_names(bebob, str); } if (bebob->midi_output_ports > 0) { rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &playback_ops); str = &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT]; set_midi_substream_names(bebob, str); } if ((bebob->midi_output_ports > 0) && (bebob->midi_input_ports > 0)) rmidi->info_flags |= SNDRV_RAWMIDI_INFO_DUPLEX; return 0; }
linux-master
sound/firewire/bebob/bebob_midi.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob.c - a part of driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ /* * BeBoB is 'BridgeCo enhanced Breakout Box'. This is installed to firewire * devices with DM1000/DM1100/DM1500 chipset. It gives common way for host * system to handle BeBoB based devices. */ #include "bebob.h" MODULE_DESCRIPTION("BridgeCo BeBoB driver"); MODULE_AUTHOR("Takashi Sakamoto <[email protected]>"); MODULE_LICENSE("GPL"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "card index"); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string"); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "enable BeBoB sound card"); static DEFINE_MUTEX(devices_mutex); static DECLARE_BITMAP(devices_used, SNDRV_CARDS); /* Offsets from information register. */ #define INFO_OFFSET_BEBOB_VERSION 0x08 #define INFO_OFFSET_GUID 0x10 #define INFO_OFFSET_HW_MODEL_ID 0x18 #define INFO_OFFSET_HW_MODEL_REVISION 0x1c #define VEN_EDIROL 0x000040ab #define VEN_PRESONUS 0x00000a92 #define VEN_BRIDGECO 0x000007f5 #define VEN_MACKIE 0x00000ff2 #define VEN_STANTON 0x00001260 #define VEN_TASCAM 0x0000022e #define VEN_BEHRINGER 0x00001564 #define VEN_APOGEE 0x000003db #define VEN_ESI 0x00000f1b #define VEN_CME 0x0000000a #define VEN_PHONIC 0x00001496 #define VEN_LYNX 0x000019e5 #define VEN_ICON 0x00001a9e #define VEN_PRISMSOUND 0x00001198 #define VEN_TERRATEC 0x00000aac #define VEN_YAMAHA 0x0000a0de #define VEN_FOCUSRITE 0x0000130e #define VEN_MAUDIO 0x00000d6c #define VEN_DIGIDESIGN 0x00a07e #define OUI_SHOUYO 0x002327 #define MODEL_FOCUSRITE_SAFFIRE_BOTH 0x00000000 #define MODEL_MAUDIO_AUDIOPHILE_BOTH 0x00010060 #define MODEL_MAUDIO_FW1814 0x00010071 #define MODEL_MAUDIO_PROJECTMIX 0x00010091 #define MODEL_MAUDIO_PROFIRELIGHTBRIDGE 0x000100a1 static int name_device(struct snd_bebob *bebob) { struct fw_device *fw_dev = fw_parent_device(bebob->unit); char vendor[24] = {0}; char model[32] = {0}; u32 hw_id; u32 data[2] = {0}; u32 revision; int err; /* get vendor name from root directory */ err = fw_csr_string(fw_dev->config_rom + 5, CSR_VENDOR, vendor, sizeof(vendor)); if (err < 0) goto end; /* get model name from unit directory */ err = fw_csr_string(bebob->unit->directory, CSR_MODEL, model, sizeof(model)); if (err < 0) goto end; /* get hardware id */ err = snd_bebob_read_quad(bebob->unit, INFO_OFFSET_HW_MODEL_ID, &hw_id); if (err < 0) goto end; /* get hardware revision */ err = snd_bebob_read_quad(bebob->unit, INFO_OFFSET_HW_MODEL_REVISION, &revision); if (err < 0) goto end; /* get GUID */ err = snd_bebob_read_block(bebob->unit, INFO_OFFSET_GUID, data, sizeof(data)); if (err < 0) goto end; strcpy(bebob->card->driver, "BeBoB"); strcpy(bebob->card->shortname, model); strcpy(bebob->card->mixername, model); snprintf(bebob->card->longname, sizeof(bebob->card->longname), "%s %s (id:%d, rev:%d), GUID %08x%08x at %s, S%d", vendor, model, hw_id, revision, data[0], data[1], dev_name(&bebob->unit->device), 100 << fw_dev->max_speed); end: return err; } static void bebob_card_free(struct snd_card *card) { struct snd_bebob *bebob = card->private_data; mutex_lock(&devices_mutex); clear_bit(bebob->card_index, devices_used); mutex_unlock(&devices_mutex); snd_bebob_stream_destroy_duplex(bebob); mutex_destroy(&bebob->mutex); fw_unit_put(bebob->unit); } static const struct snd_bebob_spec * get_saffire_spec(struct fw_unit *unit) { char name[24] = {0}; if (fw_csr_string(unit->directory, CSR_MODEL, name, sizeof(name)) < 0) return NULL; if (strcmp(name, "SaffireLE") == 0) return &saffire_le_spec; else return &saffire_spec; } static bool check_audiophile_booted(struct fw_unit *unit) { char name[28] = {0}; if (fw_csr_string(unit->directory, CSR_MODEL, name, sizeof(name)) < 0) return false; return strncmp(name, "FW Audiophile Bootloader", 24) != 0; } static int detect_quirks(struct snd_bebob *bebob, const struct ieee1394_device_id *entry) { if (entry->vendor_id == VEN_MAUDIO) { switch (entry->model_id) { case MODEL_MAUDIO_PROFIRELIGHTBRIDGE: // M-Audio ProFire Lightbridge has a quirk to transfer packets with // discontinuous cycle or data block counter in early stage of packet // streaming. The cycle span from the first packet with event is variable. bebob->quirks |= SND_BEBOB_QUIRK_INITIAL_DISCONTINUOUS_DBC; break; case MODEL_MAUDIO_FW1814: case MODEL_MAUDIO_PROJECTMIX: // At high sampling rate, M-Audio special firmware transmits empty packet // with the value of dbc incremented by 8. bebob->quirks |= SND_BEBOB_QUIRK_WRONG_DBC; break; default: break; } } return 0; } static int bebob_probe(struct fw_unit *unit, const struct ieee1394_device_id *entry) { unsigned int card_index; struct snd_card *card; struct snd_bebob *bebob; const struct snd_bebob_spec *spec; int err; if (entry->vendor_id == VEN_FOCUSRITE && entry->model_id == MODEL_FOCUSRITE_SAFFIRE_BOTH) spec = get_saffire_spec(unit); else if (entry->vendor_id == VEN_MAUDIO && entry->model_id == MODEL_MAUDIO_AUDIOPHILE_BOTH && !check_audiophile_booted(unit)) spec = NULL; else spec = (const struct snd_bebob_spec *)entry->driver_data; if (spec == NULL) { // To boot up M-Audio models. if (entry->vendor_id == VEN_MAUDIO || entry->vendor_id == VEN_BRIDGECO) return snd_bebob_maudio_load_firmware(unit); else return -ENODEV; } mutex_lock(&devices_mutex); for (card_index = 0; card_index < SNDRV_CARDS; card_index++) { if (!test_bit(card_index, devices_used) && enable[card_index]) break; } if (card_index >= SNDRV_CARDS) { mutex_unlock(&devices_mutex); return -ENOENT; } err = snd_card_new(&unit->device, index[card_index], id[card_index], THIS_MODULE, sizeof(*bebob), &card); if (err < 0) { mutex_unlock(&devices_mutex); return err; } card->private_free = bebob_card_free; set_bit(card_index, devices_used); mutex_unlock(&devices_mutex); bebob = card->private_data; bebob->unit = fw_unit_get(unit); dev_set_drvdata(&unit->device, bebob); bebob->card = card; bebob->card_index = card_index; bebob->spec = spec; mutex_init(&bebob->mutex); spin_lock_init(&bebob->lock); init_waitqueue_head(&bebob->hwdep_wait); err = name_device(bebob); if (err < 0) goto error; err = detect_quirks(bebob, entry); if (err < 0) goto error; if (bebob->spec == &maudio_special_spec) { if (entry->model_id == MODEL_MAUDIO_FW1814) err = snd_bebob_maudio_special_discover(bebob, true); else err = snd_bebob_maudio_special_discover(bebob, false); } else { err = snd_bebob_stream_discover(bebob); } if (err < 0) goto error; err = snd_bebob_stream_init_duplex(bebob); if (err < 0) goto error; snd_bebob_proc_init(bebob); if (bebob->midi_input_ports > 0 || bebob->midi_output_ports > 0) { err = snd_bebob_create_midi_devices(bebob); if (err < 0) goto error; } err = snd_bebob_create_pcm_devices(bebob); if (err < 0) goto error; err = snd_bebob_create_hwdep_device(bebob); if (err < 0) goto error; err = snd_card_register(card); if (err < 0) goto error; if (entry->vendor_id == VEN_MAUDIO && (entry->model_id == MODEL_MAUDIO_FW1814 || entry->model_id == MODEL_MAUDIO_PROJECTMIX)) { // This is a workaround. This bus reset seems to have an effect to make devices // correctly handling transactions. Without this, the devices have gap_count // mismatch. This causes much failure of transaction. // // Just after registration, user-land application receive signals from dbus and // starts I/Os. To avoid I/Os till the future bus reset, registration is done in // next update(). fw_schedule_bus_reset(fw_parent_device(bebob->unit)->card, false, true); } return 0; error: snd_card_free(card); return err; } /* * This driver doesn't update streams in bus reset handler. * * DM1000/ DM1100/DM1500 chipsets with BeBoB firmware transfer packets with * discontinued counter at bus reset. This discontinuity is immediately * detected in packet streaming layer, then it sets XRUN to PCM substream. * * ALSA PCM applications can know the XRUN by getting -EPIPE from PCM operation. * Then, they can recover the PCM substream by executing ioctl(2) with * SNDRV_PCM_IOCTL_PREPARE. 'struct snd_pcm_ops.prepare' is called and drivers * restart packet streaming. * * The above processing may be executed before this bus-reset handler is * executed. When this handler updates streams with current isochronous * channels, the streams already have the current ones. */ static void bebob_update(struct fw_unit *unit) { struct snd_bebob *bebob = dev_get_drvdata(&unit->device); if (bebob == NULL) return; fcp_bus_reset(bebob->unit); } static void bebob_remove(struct fw_unit *unit) { struct snd_bebob *bebob = dev_get_drvdata(&unit->device); if (bebob == NULL) return; // Block till all of ALSA character devices are released. snd_card_free(bebob->card); } static const struct snd_bebob_rate_spec normal_rate_spec = { .get = &snd_bebob_stream_get_rate, .set = &snd_bebob_stream_set_rate }; static const struct snd_bebob_spec spec_normal = { .clock = NULL, .rate = &normal_rate_spec, .meter = NULL }; #define SPECIFIER_1394TA 0x00a02d // The immediate entry for version in unit directory differs depending on models: // * 0x010001 // * 0x014001 #define SND_BEBOB_DEV_ENTRY(vendor, model, data) \ { \ .match_flags = IEEE1394_MATCH_VENDOR_ID | \ IEEE1394_MATCH_MODEL_ID | \ IEEE1394_MATCH_SPECIFIER_ID, \ .vendor_id = vendor, \ .model_id = model, \ .specifier_id = SPECIFIER_1394TA, \ .driver_data = (kernel_ulong_t)data \ } static const struct ieee1394_device_id bebob_id_table[] = { /* Edirol, FA-66 */ SND_BEBOB_DEV_ENTRY(VEN_EDIROL, 0x00010049, &spec_normal), /* Edirol, FA-101 */ SND_BEBOB_DEV_ENTRY(VEN_EDIROL, 0x00010048, &spec_normal), /* Presonus, FIREBOX */ SND_BEBOB_DEV_ENTRY(VEN_PRESONUS, 0x00010000, &spec_normal), /* PreSonus, FIREPOD/FP10 */ SND_BEBOB_DEV_ENTRY(VEN_PRESONUS, 0x00010066, &spec_normal), /* PreSonus, Inspire1394 */ SND_BEBOB_DEV_ENTRY(VEN_PRESONUS, 0x00010001, &spec_normal), /* BridgeCo, RDAudio1 */ SND_BEBOB_DEV_ENTRY(VEN_BRIDGECO, 0x00010048, &spec_normal), /* BridgeCo, Audio5 */ SND_BEBOB_DEV_ENTRY(VEN_BRIDGECO, 0x00010049, &spec_normal), /* Mackie, Onyx 1220/1620/1640 (Firewire I/O Card) */ SND_BEBOB_DEV_ENTRY(VEN_MACKIE, 0x00010065, &spec_normal), // Mackie, d.2 (optional Firewire card with DM1000). SND_BEBOB_DEV_ENTRY(VEN_MACKIE, 0x00010067, &spec_normal), /* Stanton, ScratchAmp */ SND_BEBOB_DEV_ENTRY(VEN_STANTON, 0x00000001, &spec_normal), /* Tascam, IF-FW DM */ SND_BEBOB_DEV_ENTRY(VEN_TASCAM, 0x00010067, &spec_normal), /* Behringer, XENIX UFX 1204 */ SND_BEBOB_DEV_ENTRY(VEN_BEHRINGER, 0x00001204, &spec_normal), /* Behringer, XENIX UFX 1604 */ SND_BEBOB_DEV_ENTRY(VEN_BEHRINGER, 0x00001604, &spec_normal), /* Behringer, Digital Mixer X32 series (X-UF Card) */ SND_BEBOB_DEV_ENTRY(VEN_BEHRINGER, 0x00000006, &spec_normal), /* Behringer, F-Control Audio 1616 */ SND_BEBOB_DEV_ENTRY(VEN_BEHRINGER, 0x001616, &spec_normal), /* Behringer, F-Control Audio 610 */ SND_BEBOB_DEV_ENTRY(VEN_BEHRINGER, 0x000610, &spec_normal), /* Apogee Electronics, Rosetta 200/400 (X-FireWire card) */ /* Apogee Electronics, DA/AD/DD-16X (X-FireWire card) */ SND_BEBOB_DEV_ENTRY(VEN_APOGEE, 0x00010048, &spec_normal), /* Apogee Electronics, Ensemble */ SND_BEBOB_DEV_ENTRY(VEN_APOGEE, 0x01eeee, &spec_normal), /* ESI, Quatafire610 */ SND_BEBOB_DEV_ENTRY(VEN_ESI, 0x00010064, &spec_normal), /* CME, MatrixKFW */ SND_BEBOB_DEV_ENTRY(VEN_CME, 0x00030000, &spec_normal), // Phonic Helix Board 12 FireWire MkII. SND_BEBOB_DEV_ENTRY(VEN_PHONIC, 0x00050000, &spec_normal), // Phonic Helix Board 18 FireWire MkII. SND_BEBOB_DEV_ENTRY(VEN_PHONIC, 0x00060000, &spec_normal), // Phonic Helix Board 24 FireWire MkII. SND_BEBOB_DEV_ENTRY(VEN_PHONIC, 0x00070000, &spec_normal), // Phonic FireFly 808 FireWire. SND_BEBOB_DEV_ENTRY(VEN_PHONIC, 0x00080000, &spec_normal), // Phonic FireFly 202, 302, 808 Universal. // Phinic Helix Board 12/18/24 FireWire, 12/18/24 Universal SND_BEBOB_DEV_ENTRY(VEN_PHONIC, 0x00000000, &spec_normal), /* Lynx, Aurora 8/16 (LT-FW) */ SND_BEBOB_DEV_ENTRY(VEN_LYNX, 0x00000001, &spec_normal), /* ICON, FireXon */ SND_BEBOB_DEV_ENTRY(VEN_ICON, 0x00000001, &spec_normal), /* PrismSound, Orpheus */ SND_BEBOB_DEV_ENTRY(VEN_PRISMSOUND, 0x00010048, &spec_normal), /* PrismSound, ADA-8XR */ SND_BEBOB_DEV_ENTRY(VEN_PRISMSOUND, 0x0000ada8, &spec_normal), /* TerraTec Electronic GmbH, PHASE 88 Rack FW */ SND_BEBOB_DEV_ENTRY(VEN_TERRATEC, 0x00000003, &phase88_rack_spec), /* TerraTec Electronic GmbH, PHASE 24 FW */ SND_BEBOB_DEV_ENTRY(VEN_TERRATEC, 0x00000004, &yamaha_terratec_spec), /* TerraTec Electronic GmbH, Phase X24 FW */ SND_BEBOB_DEV_ENTRY(VEN_TERRATEC, 0x00000007, &yamaha_terratec_spec), /* TerraTec Electronic GmbH, EWS MIC2/MIC8 */ SND_BEBOB_DEV_ENTRY(VEN_TERRATEC, 0x00000005, &spec_normal), // Terratec Electronic GmbH, Aureon 7.1 Firewire. // AcousticReality, eAR Master One, Eroica, Figaro, and Ciaccona. Perhaps Terratec OEM. SND_BEBOB_DEV_ENTRY(VEN_TERRATEC, 0x00000002, &spec_normal), /* Yamaha, GO44 */ SND_BEBOB_DEV_ENTRY(VEN_YAMAHA, 0x0010000b, &yamaha_terratec_spec), /* YAMAHA, GO46 */ SND_BEBOB_DEV_ENTRY(VEN_YAMAHA, 0x0010000c, &yamaha_terratec_spec), /* Focusrite, SaffirePro 26 I/O */ SND_BEBOB_DEV_ENTRY(VEN_FOCUSRITE, 0x00000003, &saffirepro_26_spec), /* Focusrite, SaffirePro 10 I/O */ SND_BEBOB_DEV_ENTRY(VEN_FOCUSRITE, 0x000006, &saffirepro_10_spec), /* Focusrite, Saffire(no label and LE) */ SND_BEBOB_DEV_ENTRY(VEN_FOCUSRITE, MODEL_FOCUSRITE_SAFFIRE_BOTH, &saffire_spec), // M-Audio, Firewire 410. The vendor field is left as BridgeCo. AG. SND_BEBOB_DEV_ENTRY(VEN_BRIDGECO, 0x00010058, NULL), SND_BEBOB_DEV_ENTRY(VEN_BRIDGECO, 0x00010046, &maudio_fw410_spec), /* M-Audio, Firewire Audiophile */ SND_BEBOB_DEV_ENTRY(VEN_MAUDIO, MODEL_MAUDIO_AUDIOPHILE_BOTH, &maudio_audiophile_spec), /* M-Audio, Firewire Solo */ SND_BEBOB_DEV_ENTRY(VEN_MAUDIO, 0x00010062, &maudio_solo_spec), /* M-Audio, Ozonic */ SND_BEBOB_DEV_ENTRY(VEN_MAUDIO, 0x0000000a, &maudio_ozonic_spec), /* M-Audio NRV10 */ SND_BEBOB_DEV_ENTRY(VEN_MAUDIO, 0x00010081, &maudio_nrv10_spec), /* M-Audio, ProFireLightbridge */ SND_BEBOB_DEV_ENTRY(VEN_MAUDIO, MODEL_MAUDIO_PROFIRELIGHTBRIDGE, &spec_normal), /* Firewire 1814 */ SND_BEBOB_DEV_ENTRY(VEN_MAUDIO, 0x00010070, NULL), /* bootloader */ SND_BEBOB_DEV_ENTRY(VEN_MAUDIO, MODEL_MAUDIO_FW1814, &maudio_special_spec), /* M-Audio ProjectMix */ SND_BEBOB_DEV_ENTRY(VEN_MAUDIO, MODEL_MAUDIO_PROJECTMIX, &maudio_special_spec), /* Digidesign Mbox 2 Pro */ SND_BEBOB_DEV_ENTRY(VEN_DIGIDESIGN, 0x0000a9, &spec_normal), // Toneweal FW66. SND_BEBOB_DEV_ENTRY(OUI_SHOUYO, 0x020002, &spec_normal), /* IDs are unknown but able to be supported */ /* Apogee, Mini-ME Firewire */ /* Apogee, Mini-DAC Firewire */ /* Cakawalk, Sonar Power Studio 66 */ /* CME, UF400e */ /* ESI, Quotafire XL */ /* Infrasonic, DewX */ /* Infrasonic, Windy6 */ /* Mackie, Digital X Bus x.200 */ /* Mackie, Digital X Bus x.400 */ /* Rolf Spuler, Firewire Guitar */ {} }; MODULE_DEVICE_TABLE(ieee1394, bebob_id_table); static struct fw_driver bebob_driver = { .driver = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .bus = &fw_bus_type, }, .probe = bebob_probe, .update = bebob_update, .remove = bebob_remove, .id_table = bebob_id_table, }; static int __init snd_bebob_init(void) { return driver_register(&bebob_driver.driver); } static void __exit snd_bebob_exit(void) { driver_unregister(&bebob_driver.driver); } module_init(snd_bebob_init); module_exit(snd_bebob_exit);
linux-master
sound/firewire/bebob/bebob.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob_hwdep.c - a part of driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ /* * This codes give three functionality. * * 1.get firewire node infomation * 2.get notification about starting/stopping stream * 3.lock/unlock stream */ #include "bebob.h" static long hwdep_read(struct snd_hwdep *hwdep, char __user *buf, long count, loff_t *offset) { struct snd_bebob *bebob = hwdep->private_data; DEFINE_WAIT(wait); union snd_firewire_event event; spin_lock_irq(&bebob->lock); while (!bebob->dev_lock_changed) { prepare_to_wait(&bebob->hwdep_wait, &wait, TASK_INTERRUPTIBLE); spin_unlock_irq(&bebob->lock); schedule(); finish_wait(&bebob->hwdep_wait, &wait); if (signal_pending(current)) return -ERESTARTSYS; spin_lock_irq(&bebob->lock); } memset(&event, 0, sizeof(event)); count = min_t(long, count, sizeof(event.lock_status)); event.lock_status.type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS; event.lock_status.status = (bebob->dev_lock_count > 0); bebob->dev_lock_changed = false; spin_unlock_irq(&bebob->lock); if (copy_to_user(buf, &event, count)) return -EFAULT; return count; } static __poll_t hwdep_poll(struct snd_hwdep *hwdep, struct file *file, poll_table *wait) { struct snd_bebob *bebob = hwdep->private_data; __poll_t events; poll_wait(file, &bebob->hwdep_wait, wait); spin_lock_irq(&bebob->lock); if (bebob->dev_lock_changed) events = EPOLLIN | EPOLLRDNORM; else events = 0; spin_unlock_irq(&bebob->lock); return events; } static int hwdep_get_info(struct snd_bebob *bebob, void __user *arg) { struct fw_device *dev = fw_parent_device(bebob->unit); struct snd_firewire_get_info info; memset(&info, 0, sizeof(info)); info.type = SNDRV_FIREWIRE_TYPE_BEBOB; info.card = dev->card->index; *(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]); *(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]); strscpy(info.device_name, dev_name(&dev->device), sizeof(info.device_name)); if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int hwdep_lock(struct snd_bebob *bebob) { int err; spin_lock_irq(&bebob->lock); if (bebob->dev_lock_count == 0) { bebob->dev_lock_count = -1; err = 0; } else { err = -EBUSY; } spin_unlock_irq(&bebob->lock); return err; } static int hwdep_unlock(struct snd_bebob *bebob) { int err; spin_lock_irq(&bebob->lock); if (bebob->dev_lock_count == -1) { bebob->dev_lock_count = 0; err = 0; } else { err = -EBADFD; } spin_unlock_irq(&bebob->lock); return err; } static int hwdep_release(struct snd_hwdep *hwdep, struct file *file) { struct snd_bebob *bebob = hwdep->private_data; spin_lock_irq(&bebob->lock); if (bebob->dev_lock_count == -1) bebob->dev_lock_count = 0; spin_unlock_irq(&bebob->lock); return 0; } static int hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { struct snd_bebob *bebob = hwdep->private_data; switch (cmd) { case SNDRV_FIREWIRE_IOCTL_GET_INFO: return hwdep_get_info(bebob, (void __user *)arg); case SNDRV_FIREWIRE_IOCTL_LOCK: return hwdep_lock(bebob); case SNDRV_FIREWIRE_IOCTL_UNLOCK: return hwdep_unlock(bebob); default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static int hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { return hwdep_ioctl(hwdep, file, cmd, (unsigned long)compat_ptr(arg)); } #else #define hwdep_compat_ioctl NULL #endif int snd_bebob_create_hwdep_device(struct snd_bebob *bebob) { static const struct snd_hwdep_ops ops = { .read = hwdep_read, .release = hwdep_release, .poll = hwdep_poll, .ioctl = hwdep_ioctl, .ioctl_compat = hwdep_compat_ioctl, }; struct snd_hwdep *hwdep; int err; err = snd_hwdep_new(bebob->card, "BeBoB", 0, &hwdep); if (err < 0) goto end; strcpy(hwdep->name, "BeBoB"); hwdep->iface = SNDRV_HWDEP_IFACE_FW_BEBOB; hwdep->ops = ops; hwdep->private_data = bebob; hwdep->exclusive = true; end: return err; }
linux-master
sound/firewire/bebob/bebob_hwdep.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob_focusrite.c - a part of driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./bebob.h" #define ANA_IN "Analog In" #define DIG_IN "Digital In" #define ANA_OUT "Analog Out" #define DIG_OUT "Digital Out" #define STM_IN "Stream In" #define SAFFIRE_ADDRESS_BASE 0x000100000000ULL #define SAFFIRE_OFFSET_CLOCK_SOURCE 0x00f8 #define SAFFIREPRO_OFFSET_CLOCK_SOURCE 0x0174 /* whether sync to external device or not */ #define SAFFIRE_OFFSET_CLOCK_SYNC_EXT 0x013c #define SAFFIRE_LE_OFFSET_CLOCK_SYNC_EXT 0x0432 #define SAFFIREPRO_OFFSET_CLOCK_SYNC_EXT 0x0164 #define SAFFIRE_CLOCK_SOURCE_INTERNAL 0 #define SAFFIRE_CLOCK_SOURCE_SPDIF 1 /* clock sources as returned from register of Saffire Pro 10 and 26 */ #define SAFFIREPRO_CLOCK_SOURCE_SELECT_MASK 0x000000ff #define SAFFIREPRO_CLOCK_SOURCE_DETECT_MASK 0x0000ff00 #define SAFFIREPRO_CLOCK_SOURCE_INTERNAL 0 #define SAFFIREPRO_CLOCK_SOURCE_SKIP 1 /* never used on hardware */ #define SAFFIREPRO_CLOCK_SOURCE_SPDIF 2 #define SAFFIREPRO_CLOCK_SOURCE_ADAT1 3 /* not used on s.pro. 10 */ #define SAFFIREPRO_CLOCK_SOURCE_ADAT2 4 /* not used on s.pro. 10 */ #define SAFFIREPRO_CLOCK_SOURCE_WORDCLOCK 5 #define SAFFIREPRO_CLOCK_SOURCE_COUNT 6 /* S/PDIF, ADAT1, ADAT2 is enabled or not. three quadlets */ #define SAFFIREPRO_ENABLE_DIG_IFACES 0x01a4 /* saffirepro has its own parameter for sampling frequency */ #define SAFFIREPRO_RATE_NOREBOOT 0x01cc /* index is the value for this register */ static const unsigned int rates[] = { [0] = 0, [1] = 44100, [2] = 48000, [3] = 88200, [4] = 96000, [5] = 176400, [6] = 192000 }; /* saffire(no label)/saffire LE has metering */ #define SAFFIRE_OFFSET_METER 0x0100 #define SAFFIRE_LE_OFFSET_METER 0x0168 static inline int saffire_read_block(struct snd_bebob *bebob, u64 offset, u32 *buf, unsigned int size) { unsigned int i; int err; __be32 *tmp = (__be32 *)buf; err = snd_fw_transaction(bebob->unit, TCODE_READ_BLOCK_REQUEST, SAFFIRE_ADDRESS_BASE + offset, tmp, size, 0); if (err < 0) goto end; for (i = 0; i < size / sizeof(u32); i++) buf[i] = be32_to_cpu(tmp[i]); end: return err; } static inline int saffire_read_quad(struct snd_bebob *bebob, u64 offset, u32 *value) { int err; __be32 tmp; err = snd_fw_transaction(bebob->unit, TCODE_READ_QUADLET_REQUEST, SAFFIRE_ADDRESS_BASE + offset, &tmp, sizeof(__be32), 0); if (err < 0) goto end; *value = be32_to_cpu(tmp); end: return err; } static inline int saffire_write_quad(struct snd_bebob *bebob, u64 offset, u32 value) { __be32 data = cpu_to_be32(value); return snd_fw_transaction(bebob->unit, TCODE_WRITE_QUADLET_REQUEST, SAFFIRE_ADDRESS_BASE + offset, &data, sizeof(__be32), 0); } static const enum snd_bebob_clock_type saffirepro_10_clk_src_types[] = { SND_BEBOB_CLOCK_TYPE_INTERNAL, SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* S/PDIF */ SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* Word Clock */ }; static const enum snd_bebob_clock_type saffirepro_26_clk_src_types[] = { SND_BEBOB_CLOCK_TYPE_INTERNAL, SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* S/PDIF */ SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* ADAT1 */ SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* ADAT2 */ SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* Word Clock */ }; /* Value maps between registers and labels for SaffirePro 10/26. */ static const signed char saffirepro_clk_maps[][SAFFIREPRO_CLOCK_SOURCE_COUNT] = { /* SaffirePro 10 */ [0] = { [SAFFIREPRO_CLOCK_SOURCE_INTERNAL] = 0, [SAFFIREPRO_CLOCK_SOURCE_SKIP] = -1, /* not supported */ [SAFFIREPRO_CLOCK_SOURCE_SPDIF] = 1, [SAFFIREPRO_CLOCK_SOURCE_ADAT1] = -1, /* not supported */ [SAFFIREPRO_CLOCK_SOURCE_ADAT2] = -1, /* not supported */ [SAFFIREPRO_CLOCK_SOURCE_WORDCLOCK] = 2, }, /* SaffirePro 26 */ [1] = { [SAFFIREPRO_CLOCK_SOURCE_INTERNAL] = 0, [SAFFIREPRO_CLOCK_SOURCE_SKIP] = -1, /* not supported */ [SAFFIREPRO_CLOCK_SOURCE_SPDIF] = 1, [SAFFIREPRO_CLOCK_SOURCE_ADAT1] = 2, [SAFFIREPRO_CLOCK_SOURCE_ADAT2] = 3, [SAFFIREPRO_CLOCK_SOURCE_WORDCLOCK] = 4, } }; static int saffirepro_both_clk_freq_get(struct snd_bebob *bebob, unsigned int *rate) { u32 id; int err; err = saffire_read_quad(bebob, SAFFIREPRO_RATE_NOREBOOT, &id); if (err < 0) goto end; if (id >= ARRAY_SIZE(rates)) err = -EIO; else *rate = rates[id]; end: return err; } static int saffirepro_both_clk_freq_set(struct snd_bebob *bebob, unsigned int rate) { u32 id; for (id = 0; id < ARRAY_SIZE(rates); id++) { if (rates[id] == rate) break; } if (id == ARRAY_SIZE(rates)) return -EINVAL; return saffire_write_quad(bebob, SAFFIREPRO_RATE_NOREBOOT, id); } /* * query hardware for current clock source, return our internally * used clock index in *id, depending on hardware. */ static int saffirepro_both_clk_src_get(struct snd_bebob *bebob, unsigned int *id) { int err; u32 value; /* clock source read from hw register */ const signed char *map; err = saffire_read_quad(bebob, SAFFIREPRO_OFFSET_CLOCK_SOURCE, &value); if (err < 0) goto end; /* depending on hardware, use a different mapping */ if (bebob->spec->clock->types == saffirepro_10_clk_src_types) map = saffirepro_clk_maps[0]; else map = saffirepro_clk_maps[1]; /* In a case that this driver cannot handle the value of register. */ value &= SAFFIREPRO_CLOCK_SOURCE_SELECT_MASK; if (value >= SAFFIREPRO_CLOCK_SOURCE_COUNT || map[value] < 0) { err = -EIO; goto end; } *id = (unsigned int)map[value]; end: return err; } const struct snd_bebob_spec saffire_le_spec; static const enum snd_bebob_clock_type saffire_both_clk_src_types[] = { SND_BEBOB_CLOCK_TYPE_INTERNAL, SND_BEBOB_CLOCK_TYPE_EXTERNAL, }; static int saffire_both_clk_src_get(struct snd_bebob *bebob, unsigned int *id) { int err; u32 value; err = saffire_read_quad(bebob, SAFFIRE_OFFSET_CLOCK_SOURCE, &value); if (err >= 0) *id = 0xff & value; return err; }; static const char *const saffire_le_meter_labels[] = { ANA_IN, ANA_IN, DIG_IN, ANA_OUT, ANA_OUT, ANA_OUT, ANA_OUT, STM_IN, STM_IN }; static const char *const saffire_meter_labels[] = { ANA_IN, ANA_IN, STM_IN, STM_IN, STM_IN, STM_IN, STM_IN, }; static int saffire_meter_get(struct snd_bebob *bebob, u32 *buf, unsigned int size) { const struct snd_bebob_meter_spec *spec = bebob->spec->meter; unsigned int channels; u64 offset; int err; if (spec->labels == saffire_le_meter_labels) offset = SAFFIRE_LE_OFFSET_METER; else offset = SAFFIRE_OFFSET_METER; channels = spec->num * 2; if (size < channels * sizeof(u32)) return -EIO; err = saffire_read_block(bebob, offset, buf, size); if (err >= 0 && spec->labels == saffire_le_meter_labels) { swap(buf[1], buf[3]); swap(buf[2], buf[3]); swap(buf[3], buf[4]); swap(buf[7], buf[10]); swap(buf[8], buf[10]); swap(buf[9], buf[11]); swap(buf[11], buf[12]); swap(buf[15], buf[16]); } return err; } static const struct snd_bebob_rate_spec saffirepro_both_rate_spec = { .get = &saffirepro_both_clk_freq_get, .set = &saffirepro_both_clk_freq_set, }; /* Saffire Pro 26 I/O */ static const struct snd_bebob_clock_spec saffirepro_26_clk_spec = { .num = ARRAY_SIZE(saffirepro_26_clk_src_types), .types = saffirepro_26_clk_src_types, .get = &saffirepro_both_clk_src_get, }; const struct snd_bebob_spec saffirepro_26_spec = { .clock = &saffirepro_26_clk_spec, .rate = &saffirepro_both_rate_spec, .meter = NULL }; /* Saffire Pro 10 I/O */ static const struct snd_bebob_clock_spec saffirepro_10_clk_spec = { .num = ARRAY_SIZE(saffirepro_10_clk_src_types), .types = saffirepro_10_clk_src_types, .get = &saffirepro_both_clk_src_get, }; const struct snd_bebob_spec saffirepro_10_spec = { .clock = &saffirepro_10_clk_spec, .rate = &saffirepro_both_rate_spec, .meter = NULL }; static const struct snd_bebob_rate_spec saffire_both_rate_spec = { .get = &snd_bebob_stream_get_rate, .set = &snd_bebob_stream_set_rate, }; static const struct snd_bebob_clock_spec saffire_both_clk_spec = { .num = ARRAY_SIZE(saffire_both_clk_src_types), .types = saffire_both_clk_src_types, .get = &saffire_both_clk_src_get, }; /* Saffire LE */ static const struct snd_bebob_meter_spec saffire_le_meter_spec = { .num = ARRAY_SIZE(saffire_le_meter_labels), .labels = saffire_le_meter_labels, .get = &saffire_meter_get, }; const struct snd_bebob_spec saffire_le_spec = { .clock = &saffire_both_clk_spec, .rate = &saffire_both_rate_spec, .meter = &saffire_le_meter_spec }; /* Saffire */ static const struct snd_bebob_meter_spec saffire_meter_spec = { .num = ARRAY_SIZE(saffire_meter_labels), .labels = saffire_meter_labels, .get = &saffire_meter_get, }; const struct snd_bebob_spec saffire_spec = { .clock = &saffire_both_clk_spec, .rate = &saffire_both_rate_spec, .meter = &saffire_meter_spec };
linux-master
sound/firewire/bebob/bebob_focusrite.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob_pcm.c - a part of driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./bebob.h" static int hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_bebob_stream_formation *formations = rule->private; struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); const struct snd_interval *c = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i; for (i = 0; i < SND_BEBOB_STRM_FMT_ENTRIES; i++) { /* entry is invalid */ if (formations[i].pcm == 0) continue; if (!snd_interval_test(c, formations[i].pcm)) continue; t.min = min(t.min, snd_bebob_rate_table[i]); t.max = max(t.max, snd_bebob_rate_table[i]); } return snd_interval_refine(r, &t); } static int hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_bebob_stream_formation *formations = rule->private; struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); const struct snd_interval *r = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i; for (i = 0; i < SND_BEBOB_STRM_FMT_ENTRIES; i++) { /* entry is invalid */ if (formations[i].pcm == 0) continue; if (!snd_interval_test(r, snd_bebob_rate_table[i])) continue; t.min = min(t.min, formations[i].pcm); t.max = max(t.max, formations[i].pcm); } return snd_interval_refine(c, &t); } static void limit_channels_and_rates(struct snd_pcm_hardware *hw, struct snd_bebob_stream_formation *formations) { unsigned int i; hw->channels_min = UINT_MAX; hw->channels_max = 0; hw->rate_min = UINT_MAX; hw->rate_max = 0; hw->rates = 0; for (i = 0; i < SND_BEBOB_STRM_FMT_ENTRIES; i++) { /* entry has no PCM channels */ if (formations[i].pcm == 0) continue; hw->channels_min = min(hw->channels_min, formations[i].pcm); hw->channels_max = max(hw->channels_max, formations[i].pcm); hw->rate_min = min(hw->rate_min, snd_bebob_rate_table[i]); hw->rate_max = max(hw->rate_max, snd_bebob_rate_table[i]); hw->rates |= snd_pcm_rate_to_rate_bit(snd_bebob_rate_table[i]); } } static int pcm_init_hw_params(struct snd_bebob *bebob, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct amdtp_stream *s; struct snd_bebob_stream_formation *formations; int err; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS; s = &bebob->tx_stream; formations = bebob->tx_stream_formations; } else { runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS; s = &bebob->rx_stream; formations = bebob->rx_stream_formations; } limit_channels_and_rates(&runtime->hw, formations); err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, hw_rule_channels, formations, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) goto end; err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, hw_rule_rate, formations, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (err < 0) goto end; err = amdtp_am824_add_pcm_hw_constraints(s, runtime); end: return err; } static int pcm_open(struct snd_pcm_substream *substream) { struct snd_bebob *bebob = substream->private_data; const struct snd_bebob_rate_spec *spec = bebob->spec->rate; struct amdtp_domain *d = &bebob->domain; enum snd_bebob_clock_type src; int err; err = snd_bebob_stream_lock_try(bebob); if (err < 0) return err; err = pcm_init_hw_params(bebob, substream); if (err < 0) goto err_locked; err = snd_bebob_stream_get_clock_src(bebob, &src); if (err < 0) goto err_locked; mutex_lock(&bebob->mutex); // When source of clock is not internal or any stream is reserved for // transmission of PCM frames, the available sampling rate is limited // at current one. if (src == SND_BEBOB_CLOCK_TYPE_EXTERNAL || (bebob->substreams_counter > 0 && d->events_per_period > 0)) { unsigned int frames_per_period = d->events_per_period; unsigned int frames_per_buffer = d->events_per_buffer; unsigned int sampling_rate; err = spec->get(bebob, &sampling_rate); if (err < 0) { mutex_unlock(&bebob->mutex); dev_err(&bebob->unit->device, "fail to get sampling rate: %d\n", err); goto err_locked; } substream->runtime->hw.rate_min = sampling_rate; substream->runtime->hw.rate_max = sampling_rate; if (frames_per_period > 0) { err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, frames_per_period, frames_per_period); if (err < 0) { mutex_unlock(&bebob->mutex); goto err_locked; } err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, frames_per_buffer, frames_per_buffer); if (err < 0) { mutex_unlock(&bebob->mutex); goto err_locked; } } } mutex_unlock(&bebob->mutex); snd_pcm_set_sync(substream); return 0; err_locked: snd_bebob_stream_lock_release(bebob); return err; } static int pcm_close(struct snd_pcm_substream *substream) { struct snd_bebob *bebob = substream->private_data; snd_bebob_stream_lock_release(bebob); return 0; } static int pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_bebob *bebob = substream->private_data; int err = 0; if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { unsigned int rate = params_rate(hw_params); unsigned int frames_per_period = params_period_size(hw_params); unsigned int frames_per_buffer = params_buffer_size(hw_params); mutex_lock(&bebob->mutex); err = snd_bebob_stream_reserve_duplex(bebob, rate, frames_per_period, frames_per_buffer); if (err >= 0) ++bebob->substreams_counter; mutex_unlock(&bebob->mutex); } return err; } static int pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_bebob *bebob = substream->private_data; mutex_lock(&bebob->mutex); if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) bebob->substreams_counter--; snd_bebob_stream_stop_duplex(bebob); mutex_unlock(&bebob->mutex); return 0; } static int pcm_capture_prepare(struct snd_pcm_substream *substream) { struct snd_bebob *bebob = substream->private_data; int err; err = snd_bebob_stream_start_duplex(bebob); if (err >= 0) amdtp_stream_pcm_prepare(&bebob->tx_stream); return err; } static int pcm_playback_prepare(struct snd_pcm_substream *substream) { struct snd_bebob *bebob = substream->private_data; int err; err = snd_bebob_stream_start_duplex(bebob); if (err >= 0) amdtp_stream_pcm_prepare(&bebob->rx_stream); return err; } static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_bebob *bebob = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&bebob->tx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&bebob->tx_stream, NULL); break; default: return -EINVAL; } return 0; } static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_bebob *bebob = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&bebob->rx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&bebob->rx_stream, NULL); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm) { struct snd_bebob *bebob = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&bebob->domain, &bebob->tx_stream); } static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm) { struct snd_bebob *bebob = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&bebob->domain, &bebob->rx_stream); } static int pcm_capture_ack(struct snd_pcm_substream *substream) { struct snd_bebob *bebob = substream->private_data; return amdtp_domain_stream_pcm_ack(&bebob->domain, &bebob->tx_stream); } static int pcm_playback_ack(struct snd_pcm_substream *substream) { struct snd_bebob *bebob = substream->private_data; return amdtp_domain_stream_pcm_ack(&bebob->domain, &bebob->rx_stream); } int snd_bebob_create_pcm_devices(struct snd_bebob *bebob) { static const struct snd_pcm_ops capture_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_capture_prepare, .trigger = pcm_capture_trigger, .pointer = pcm_capture_pointer, .ack = pcm_capture_ack, }; static const struct snd_pcm_ops playback_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_playback_prepare, .trigger = pcm_playback_trigger, .pointer = pcm_playback_pointer, .ack = pcm_playback_ack, }; struct snd_pcm *pcm; int err; err = snd_pcm_new(bebob->card, bebob->card->driver, 0, 1, 1, &pcm); if (err < 0) goto end; pcm->private_data = bebob; snprintf(pcm->name, sizeof(pcm->name), "%s PCM", bebob->card->shortname); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0); end: return err; }
linux-master
sound/firewire/bebob/bebob_pcm.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob_terratec.c - a part of driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./bebob.h" static const enum snd_bebob_clock_type phase88_rack_clk_src_types[] = { SND_BEBOB_CLOCK_TYPE_INTERNAL, SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* S/PDIF */ SND_BEBOB_CLOCK_TYPE_EXTERNAL, /* Word Clock */ }; static int phase88_rack_clk_src_get(struct snd_bebob *bebob, unsigned int *id) { unsigned int enable_ext, enable_word; int err; err = avc_audio_get_selector(bebob->unit, 0, 9, &enable_ext); if (err < 0) goto end; err = avc_audio_get_selector(bebob->unit, 0, 8, &enable_word); if (err < 0) goto end; if (enable_ext == 0) *id = 0; else if (enable_word == 0) *id = 1; else *id = 2; end: return err; } static const struct snd_bebob_rate_spec phase_series_rate_spec = { .get = &snd_bebob_stream_get_rate, .set = &snd_bebob_stream_set_rate, }; /* PHASE 88 Rack FW */ static const struct snd_bebob_clock_spec phase88_rack_clk = { .num = ARRAY_SIZE(phase88_rack_clk_src_types), .types = phase88_rack_clk_src_types, .get = &phase88_rack_clk_src_get, }; const struct snd_bebob_spec phase88_rack_spec = { .clock = &phase88_rack_clk, .rate = &phase_series_rate_spec, .meter = NULL };
linux-master
sound/firewire/bebob/bebob_terratec.c
// SPDX-License-Identifier: GPL-2.0-only /* * bebob_stream.c - a part of driver for BeBoB based devices * * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./bebob.h" #define READY_TIMEOUT_MS 4000 /* * NOTE; * For BeBoB streams, Both of input and output CMP connection are important. * * For most devices, each CMP connection starts to transmit/receive a * corresponding stream. But for a few devices, both of CMP connection needs * to start transmitting stream. An example is 'M-Audio Firewire 410'. */ /* 128 is an arbitrary length but it seems to be enough */ #define FORMAT_MAXIMUM_LENGTH 128 const unsigned int snd_bebob_rate_table[SND_BEBOB_STRM_FMT_ENTRIES] = { [0] = 32000, [1] = 44100, [2] = 48000, [3] = 88200, [4] = 96000, [5] = 176400, [6] = 192000, }; /* * See: Table 51: Extended Stream Format Info ‘Sampling Frequency’ * in Additional AVC commands (Nov 2003, BridgeCo) */ static const unsigned int bridgeco_freq_table[] = { [0] = 0x02, [1] = 0x03, [2] = 0x04, [3] = 0x0a, [4] = 0x05, [5] = 0x06, [6] = 0x07, }; static int get_formation_index(unsigned int rate, unsigned int *index) { unsigned int i; for (i = 0; i < ARRAY_SIZE(snd_bebob_rate_table); i++) { if (snd_bebob_rate_table[i] == rate) { *index = i; return 0; } } return -EINVAL; } int snd_bebob_stream_get_rate(struct snd_bebob *bebob, unsigned int *curr_rate) { unsigned int tx_rate, rx_rate, trials; int err; trials = 0; do { err = avc_general_get_sig_fmt(bebob->unit, &tx_rate, AVC_GENERAL_PLUG_DIR_OUT, 0); } while (err == -EAGAIN && ++trials < 3); if (err < 0) goto end; trials = 0; do { err = avc_general_get_sig_fmt(bebob->unit, &rx_rate, AVC_GENERAL_PLUG_DIR_IN, 0); } while (err == -EAGAIN && ++trials < 3); if (err < 0) goto end; *curr_rate = rx_rate; if (rx_rate == tx_rate) goto end; /* synchronize receive stream rate to transmit stream rate */ err = avc_general_set_sig_fmt(bebob->unit, rx_rate, AVC_GENERAL_PLUG_DIR_IN, 0); end: return err; } int snd_bebob_stream_set_rate(struct snd_bebob *bebob, unsigned int rate) { int err; err = avc_general_set_sig_fmt(bebob->unit, rate, AVC_GENERAL_PLUG_DIR_OUT, 0); if (err < 0) goto end; err = avc_general_set_sig_fmt(bebob->unit, rate, AVC_GENERAL_PLUG_DIR_IN, 0); if (err < 0) goto end; /* * Some devices need a bit time for transition. * 300msec is got by some experiments. */ msleep(300); end: return err; } int snd_bebob_stream_get_clock_src(struct snd_bebob *bebob, enum snd_bebob_clock_type *src) { const struct snd_bebob_clock_spec *clk_spec = bebob->spec->clock; u8 addr[AVC_BRIDGECO_ADDR_BYTES], input[7]; unsigned int id; enum avc_bridgeco_plug_type type; int err = 0; /* 1.The device has its own operation to switch source of clock */ if (clk_spec) { err = clk_spec->get(bebob, &id); if (err < 0) { dev_err(&bebob->unit->device, "fail to get clock source: %d\n", err); goto end; } if (id >= clk_spec->num) { dev_err(&bebob->unit->device, "clock source %d out of range 0..%d\n", id, clk_spec->num - 1); err = -EIO; goto end; } *src = clk_spec->types[id]; goto end; } /* * 2.The device don't support to switch source of clock then assumed * to use internal clock always */ if (bebob->sync_input_plug < 0) { *src = SND_BEBOB_CLOCK_TYPE_INTERNAL; goto end; } /* * 3.The device supports to switch source of clock by an usual way. * Let's check input for 'Music Sub Unit Sync Input' plug. */ avc_bridgeco_fill_msu_addr(addr, AVC_BRIDGECO_PLUG_DIR_IN, bebob->sync_input_plug); err = avc_bridgeco_get_plug_input(bebob->unit, addr, input); if (err < 0) { dev_err(&bebob->unit->device, "fail to get an input for MSU in plug %d: %d\n", bebob->sync_input_plug, err); goto end; } /* * If there are no input plugs, all of fields are 0xff. * Here check the first field. This field is used for direction. */ if (input[0] == 0xff) { *src = SND_BEBOB_CLOCK_TYPE_INTERNAL; goto end; } /* The source from any output plugs is for one purpose only. */ if (input[0] == AVC_BRIDGECO_PLUG_DIR_OUT) { /* * In BeBoB architecture, the source from music subunit may * bypass from oPCR[0]. This means that this source gives * synchronization to IEEE 1394 cycle start packet. */ if (input[1] == AVC_BRIDGECO_PLUG_MODE_SUBUNIT && input[2] == 0x0c) { *src = SND_BEBOB_CLOCK_TYPE_INTERNAL; goto end; } /* The source from any input units is for several purposes. */ } else if (input[1] == AVC_BRIDGECO_PLUG_MODE_UNIT) { if (input[2] == AVC_BRIDGECO_PLUG_UNIT_ISOC) { if (input[3] == 0x00) { /* * This source comes from iPCR[0]. This means * that presentation timestamp calculated by * SYT series of the received packets. In * short, this driver is the master of * synchronization. */ *src = SND_BEBOB_CLOCK_TYPE_SYT; goto end; } else { /* * This source comes from iPCR[1-29]. This * means that the synchronization stream is not * the Audio/MIDI compound stream. */ *src = SND_BEBOB_CLOCK_TYPE_EXTERNAL; goto end; } } else if (input[2] == AVC_BRIDGECO_PLUG_UNIT_EXT) { /* Check type of this plug. */ avc_bridgeco_fill_unit_addr(addr, AVC_BRIDGECO_PLUG_DIR_IN, AVC_BRIDGECO_PLUG_UNIT_EXT, input[3]); err = avc_bridgeco_get_plug_type(bebob->unit, addr, &type); if (err < 0) goto end; if (type == AVC_BRIDGECO_PLUG_TYPE_DIG) { /* * SPDIF/ADAT or sometimes (not always) word * clock. */ *src = SND_BEBOB_CLOCK_TYPE_EXTERNAL; goto end; } else if (type == AVC_BRIDGECO_PLUG_TYPE_SYNC) { /* Often word clock. */ *src = SND_BEBOB_CLOCK_TYPE_EXTERNAL; goto end; } else if (type == AVC_BRIDGECO_PLUG_TYPE_ADDITION) { /* * Not standard. * Mostly, additional internal clock. */ *src = SND_BEBOB_CLOCK_TYPE_INTERNAL; goto end; } } } /* Not supported. */ err = -EIO; end: return err; } static int map_data_channels(struct snd_bebob *bebob, struct amdtp_stream *s) { unsigned int sec, sections, ch, channels; unsigned int pcm, midi, location; unsigned int stm_pos, sec_loc, pos; u8 *buf, addr[AVC_BRIDGECO_ADDR_BYTES], type; enum avc_bridgeco_plug_dir dir; int err; /* * The length of return value of this command cannot be expected. Here * use the maximum length of FCP. */ buf = kzalloc(256, GFP_KERNEL); if (buf == NULL) return -ENOMEM; if (s == &bebob->tx_stream) dir = AVC_BRIDGECO_PLUG_DIR_OUT; else dir = AVC_BRIDGECO_PLUG_DIR_IN; avc_bridgeco_fill_unit_addr(addr, dir, AVC_BRIDGECO_PLUG_UNIT_ISOC, 0); err = avc_bridgeco_get_plug_ch_pos(bebob->unit, addr, buf, 256); if (err < 0) { dev_err(&bebob->unit->device, "fail to get channel position for isoc %s plug 0: %d\n", (dir == AVC_BRIDGECO_PLUG_DIR_IN) ? "in" : "out", err); goto end; } pos = 0; /* positions in I/O buffer */ pcm = 0; midi = 0; /* the number of sections in AMDTP packet */ sections = buf[pos++]; for (sec = 0; sec < sections; sec++) { /* type of this section */ avc_bridgeco_fill_unit_addr(addr, dir, AVC_BRIDGECO_PLUG_UNIT_ISOC, 0); err = avc_bridgeco_get_plug_section_type(bebob->unit, addr, sec, &type); if (err < 0) { dev_err(&bebob->unit->device, "fail to get section type for isoc %s plug 0: %d\n", (dir == AVC_BRIDGECO_PLUG_DIR_IN) ? "in" : "out", err); goto end; } /* NoType */ if (type == 0xff) { err = -ENOSYS; goto end; } /* the number of channels in this section */ channels = buf[pos++]; for (ch = 0; ch < channels; ch++) { /* position of this channel in AMDTP packet */ stm_pos = buf[pos++] - 1; /* location of this channel in this section */ sec_loc = buf[pos++] - 1; /* * Basically the number of location is within the * number of channels in this section. But some models * of M-Audio don't follow this. Its location for MIDI * is the position of MIDI channels in AMDTP packet. */ if (sec_loc >= channels) sec_loc = ch; switch (type) { /* for MIDI conformant data channel */ case 0x0a: /* AMDTP_MAX_CHANNELS_FOR_MIDI is 1. */ if ((midi > 0) && (stm_pos != midi)) { err = -ENOSYS; goto end; } amdtp_am824_set_midi_position(s, stm_pos); midi = stm_pos; break; /* for PCM data channel */ case 0x01: /* Headphone */ case 0x02: /* Microphone */ case 0x03: /* Line */ case 0x04: /* SPDIF */ case 0x05: /* ADAT */ case 0x06: /* TDIF */ case 0x07: /* MADI */ /* for undefined/changeable signal */ case 0x08: /* Analog */ case 0x09: /* Digital */ default: location = pcm + sec_loc; if (location >= AM824_MAX_CHANNELS_FOR_PCM) { err = -ENOSYS; goto end; } amdtp_am824_set_pcm_position(s, location, stm_pos); break; } } if (type != 0x0a) pcm += channels; else midi += channels; } end: kfree(buf); return err; } static int check_connection_used_by_others(struct snd_bebob *bebob, struct amdtp_stream *s) { struct cmp_connection *conn; bool used; int err; if (s == &bebob->tx_stream) conn = &bebob->out_conn; else conn = &bebob->in_conn; err = cmp_connection_check_used(conn, &used); if ((err >= 0) && used && !amdtp_stream_running(s)) { dev_err(&bebob->unit->device, "Connection established by others: %cPCR[%d]\n", (conn->direction == CMP_OUTPUT) ? 'o' : 'i', conn->pcr_index); err = -EBUSY; } return err; } static void break_both_connections(struct snd_bebob *bebob) { cmp_connection_break(&bebob->in_conn); cmp_connection_break(&bebob->out_conn); } static int start_stream(struct snd_bebob *bebob, struct amdtp_stream *stream) { struct cmp_connection *conn; int err = 0; if (stream == &bebob->rx_stream) conn = &bebob->in_conn; else conn = &bebob->out_conn; // channel mapping. if (bebob->maudio_special_quirk == NULL) { err = map_data_channels(bebob, stream); if (err < 0) return err; } err = cmp_connection_establish(conn); if (err < 0) return err; return amdtp_domain_add_stream(&bebob->domain, stream, conn->resources.channel, conn->speed); } static int init_stream(struct snd_bebob *bebob, struct amdtp_stream *stream) { unsigned int flags = CIP_BLOCKING; enum amdtp_stream_direction dir_stream; struct cmp_connection *conn; enum cmp_direction dir_conn; int err; if (stream == &bebob->tx_stream) { dir_stream = AMDTP_IN_STREAM; conn = &bebob->out_conn; dir_conn = CMP_OUTPUT; } else { dir_stream = AMDTP_OUT_STREAM; conn = &bebob->in_conn; dir_conn = CMP_INPUT; } if (stream == &bebob->tx_stream) { if (bebob->quirks & SND_BEBOB_QUIRK_WRONG_DBC) flags |= CIP_EMPTY_HAS_WRONG_DBC; } err = cmp_connection_init(conn, bebob->unit, dir_conn, 0); if (err < 0) return err; err = amdtp_am824_init(stream, bebob->unit, dir_stream, flags); if (err < 0) { cmp_connection_destroy(conn); return err; } return 0; } static void destroy_stream(struct snd_bebob *bebob, struct amdtp_stream *stream) { amdtp_stream_destroy(stream); if (stream == &bebob->tx_stream) cmp_connection_destroy(&bebob->out_conn); else cmp_connection_destroy(&bebob->in_conn); } int snd_bebob_stream_init_duplex(struct snd_bebob *bebob) { int err; err = init_stream(bebob, &bebob->tx_stream); if (err < 0) return err; err = init_stream(bebob, &bebob->rx_stream); if (err < 0) { destroy_stream(bebob, &bebob->tx_stream); return err; } err = amdtp_domain_init(&bebob->domain); if (err < 0) { destroy_stream(bebob, &bebob->tx_stream); destroy_stream(bebob, &bebob->rx_stream); } return err; } static int keep_resources(struct snd_bebob *bebob, struct amdtp_stream *stream, unsigned int rate, unsigned int index) { unsigned int pcm_channels; unsigned int midi_ports; struct cmp_connection *conn; int err; if (stream == &bebob->tx_stream) { pcm_channels = bebob->tx_stream_formations[index].pcm; midi_ports = bebob->midi_input_ports; conn = &bebob->out_conn; } else { pcm_channels = bebob->rx_stream_formations[index].pcm; midi_ports = bebob->midi_output_ports; conn = &bebob->in_conn; } err = amdtp_am824_set_parameters(stream, rate, pcm_channels, midi_ports, false); if (err < 0) return err; return cmp_connection_reserve(conn, amdtp_stream_get_max_payload(stream)); } int snd_bebob_stream_reserve_duplex(struct snd_bebob *bebob, unsigned int rate, unsigned int frames_per_period, unsigned int frames_per_buffer) { unsigned int curr_rate; int err; // Considering JACK/FFADO streaming: // TODO: This can be removed hwdep functionality becomes popular. err = check_connection_used_by_others(bebob, &bebob->rx_stream); if (err < 0) return err; err = bebob->spec->rate->get(bebob, &curr_rate); if (err < 0) return err; if (rate == 0) rate = curr_rate; if (curr_rate != rate) { amdtp_domain_stop(&bebob->domain); break_both_connections(bebob); cmp_connection_release(&bebob->out_conn); cmp_connection_release(&bebob->in_conn); } if (bebob->substreams_counter == 0 || curr_rate != rate) { unsigned int index; // NOTE: // If establishing connections at first, Yamaha GO46 // (and maybe Terratec X24) don't generate sound. // // For firmware customized by M-Audio, refer to next NOTE. err = bebob->spec->rate->set(bebob, rate); if (err < 0) { dev_err(&bebob->unit->device, "fail to set sampling rate: %d\n", err); return err; } err = get_formation_index(rate, &index); if (err < 0) return err; err = keep_resources(bebob, &bebob->tx_stream, rate, index); if (err < 0) return err; err = keep_resources(bebob, &bebob->rx_stream, rate, index); if (err < 0) { cmp_connection_release(&bebob->out_conn); return err; } err = amdtp_domain_set_events_per_period(&bebob->domain, frames_per_period, frames_per_buffer); if (err < 0) { cmp_connection_release(&bebob->out_conn); cmp_connection_release(&bebob->in_conn); return err; } } return 0; } int snd_bebob_stream_start_duplex(struct snd_bebob *bebob) { int err; // Need no substreams. if (bebob->substreams_counter == 0) return -EIO; // packet queueing error or detecting discontinuity if (amdtp_streaming_error(&bebob->rx_stream) || amdtp_streaming_error(&bebob->tx_stream)) { amdtp_domain_stop(&bebob->domain); break_both_connections(bebob); } if (!amdtp_stream_running(&bebob->rx_stream)) { enum snd_bebob_clock_type src; unsigned int curr_rate; unsigned int tx_init_skip_cycles; if (bebob->maudio_special_quirk) { err = bebob->spec->rate->get(bebob, &curr_rate); if (err < 0) return err; } err = snd_bebob_stream_get_clock_src(bebob, &src); if (err < 0) return err; err = start_stream(bebob, &bebob->rx_stream); if (err < 0) goto error; err = start_stream(bebob, &bebob->tx_stream); if (err < 0) goto error; if (!(bebob->quirks & SND_BEBOB_QUIRK_INITIAL_DISCONTINUOUS_DBC)) tx_init_skip_cycles = 0; else tx_init_skip_cycles = 16000; // MEMO: Some devices start packet transmission long enough after establishment of // CMP connection. In the early stage of packet streaming, any device transfers // NODATA packets. After several hundred cycles, it begins to multiplex event into // the packet with adequate value of syt field in CIP header. Some devices are // strictly to generate any discontinuity in the sequence of tx packet when they // receives inadequate sequence of value in syt field of CIP header. In the case, // the request to break CMP connection is often corrupted, then any transaction // results in unrecoverable error, sometimes generate bus-reset. err = amdtp_domain_start(&bebob->domain, tx_init_skip_cycles, true, false); if (err < 0) goto error; // NOTE: // The firmware customized by M-Audio uses these commands to // start transmitting stream. This is not usual way. if (bebob->maudio_special_quirk) { err = bebob->spec->rate->set(bebob, curr_rate); if (err < 0) { dev_err(&bebob->unit->device, "fail to ensure sampling rate: %d\n", err); goto error; } } // Some devices postpone start of transmission mostly for 1 sec after receives // packets firstly. if (!amdtp_domain_wait_ready(&bebob->domain, READY_TIMEOUT_MS)) { err = -ETIMEDOUT; goto error; } } return 0; error: amdtp_domain_stop(&bebob->domain); break_both_connections(bebob); return err; } void snd_bebob_stream_stop_duplex(struct snd_bebob *bebob) { if (bebob->substreams_counter == 0) { amdtp_domain_stop(&bebob->domain); break_both_connections(bebob); cmp_connection_release(&bebob->out_conn); cmp_connection_release(&bebob->in_conn); } } /* * This function should be called before starting streams or after stopping * streams. */ void snd_bebob_stream_destroy_duplex(struct snd_bebob *bebob) { amdtp_domain_destroy(&bebob->domain); destroy_stream(bebob, &bebob->tx_stream); destroy_stream(bebob, &bebob->rx_stream); } /* * See: Table 50: Extended Stream Format Info Format Hierarchy Level 2’ * in Additional AVC commands (Nov 2003, BridgeCo) * Also 'Clause 12 AM824 sequence adaption layers' in IEC 61883-6:2005 */ static int parse_stream_formation(u8 *buf, unsigned int len, struct snd_bebob_stream_formation *formation) { unsigned int i, e, channels, format; /* * this module can support a hierarchy combination that: * Root: Audio and Music (0x90) * Level 1: AM824 Compound (0x40) */ if ((buf[0] != 0x90) || (buf[1] != 0x40)) return -ENOSYS; /* check sampling rate */ for (i = 0; i < ARRAY_SIZE(bridgeco_freq_table); i++) { if (buf[2] == bridgeco_freq_table[i]) break; } if (i == ARRAY_SIZE(bridgeco_freq_table)) return -ENOSYS; /* Avoid double count by different entries for the same rate. */ memset(&formation[i], 0, sizeof(struct snd_bebob_stream_formation)); for (e = 0; e < buf[4]; e++) { channels = buf[5 + e * 2]; format = buf[6 + e * 2]; switch (format) { /* IEC 60958 Conformant, currently handled as MBLA */ case 0x00: /* Multi bit linear audio */ case 0x06: /* Raw */ formation[i].pcm += channels; break; /* MIDI Conformant */ case 0x0d: formation[i].midi += channels; break; /* IEC 61937-3 to 7 */ case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: /* Multi bit linear audio */ case 0x07: /* DVD-Audio */ case 0x0c: /* High Precision */ /* One Bit Audio */ case 0x08: /* (Plain) Raw */ case 0x09: /* (Plain) SACD */ case 0x0a: /* (Encoded) Raw */ case 0x0b: /* (Encoded) SACD */ /* Synchronization Stream (Stereo Raw audio) */ case 0x40: /* Don't care */ case 0xff: default: return -ENOSYS; /* not supported */ } } if (formation[i].pcm > AM824_MAX_CHANNELS_FOR_PCM || formation[i].midi > AM824_MAX_CHANNELS_FOR_MIDI) return -ENOSYS; return 0; } static int fill_stream_formations(struct snd_bebob *bebob, u8 addr[AVC_BRIDGECO_ADDR_BYTES], enum avc_bridgeco_plug_dir plug_dir, unsigned int plug_id, struct snd_bebob_stream_formation *formations) { enum avc_bridgeco_plug_type plug_type; u8 *buf; unsigned int len, eid; int err; avc_bridgeco_fill_unit_addr(addr, plug_dir, AVC_BRIDGECO_PLUG_UNIT_ISOC, plug_id); err = avc_bridgeco_get_plug_type(bebob->unit, addr, &plug_type); if (err < 0) { dev_err(&bebob->unit->device, "Fail to get type for isoc %d plug 0: %d\n", plug_dir, err); return err; } else if (plug_type != AVC_BRIDGECO_PLUG_TYPE_ISOC) return -ENXIO; buf = kmalloc(FORMAT_MAXIMUM_LENGTH, GFP_KERNEL); if (buf == NULL) return -ENOMEM; for (eid = 0; eid < SND_BEBOB_STRM_FMT_ENTRIES; ++eid) { avc_bridgeco_fill_unit_addr(addr, plug_dir, AVC_BRIDGECO_PLUG_UNIT_ISOC, plug_id); len = FORMAT_MAXIMUM_LENGTH; err = avc_bridgeco_get_plug_strm_fmt(bebob->unit, addr, buf, &len, eid); // No entries remained. if (err == -EINVAL && eid > 0) { err = 0; break; } else if (err < 0) { dev_err(&bebob->unit->device, "fail to get stream format %d for isoc %d plug %d:%d\n", eid, plug_dir, plug_id, err); break; } err = parse_stream_formation(buf, len, formations); if (err < 0) break; } kfree(buf); return err; } static int detect_midi_ports(struct snd_bebob *bebob, const struct snd_bebob_stream_formation *formats, u8 addr[AVC_BRIDGECO_ADDR_BYTES], enum avc_bridgeco_plug_dir plug_dir, unsigned int plug_count, unsigned int *midi_ports) { int i; int err = 0; *midi_ports = 0; /// Detect the number of available MIDI ports when packet has MIDI conformant data channel. for (i = 0; i < SND_BEBOB_STRM_FMT_ENTRIES; ++i) { if (formats[i].midi > 0) break; } if (i >= SND_BEBOB_STRM_FMT_ENTRIES) return 0; for (i = 0; i < plug_count; ++i) { enum avc_bridgeco_plug_type plug_type; unsigned int ch_count; avc_bridgeco_fill_unit_addr(addr, plug_dir, AVC_BRIDGECO_PLUG_UNIT_EXT, i); err = avc_bridgeco_get_plug_type(bebob->unit, addr, &plug_type); if (err < 0) { dev_err(&bebob->unit->device, "fail to get type for external %d plug %d: %d\n", plug_dir, i, err); break; } else if (plug_type != AVC_BRIDGECO_PLUG_TYPE_MIDI) { continue; } err = avc_bridgeco_get_plug_ch_count(bebob->unit, addr, &ch_count); if (err < 0) break; // Yamaha GO44, GO46, Terratec Phase 24, Phase x24 reports 0 for the number of // channels in external output plug 3 (MIDI type) even if it has a pair of physical // MIDI jacks. As a workaround, assume it as one. if (ch_count == 0) ch_count = 1; *midi_ports += ch_count; } return err; } static int seek_msu_sync_input_plug(struct snd_bebob *bebob) { u8 plugs[AVC_PLUG_INFO_BUF_BYTES], addr[AVC_BRIDGECO_ADDR_BYTES]; unsigned int i; enum avc_bridgeco_plug_type type; int err; /* Get the number of Music Sub Unit for both direction. */ err = avc_general_get_plug_info(bebob->unit, 0x0c, 0x00, 0x00, plugs); if (err < 0) { dev_err(&bebob->unit->device, "fail to get info for MSU in/out plugs: %d\n", err); goto end; } /* seek destination plugs for 'MSU sync input' */ bebob->sync_input_plug = -1; for (i = 0; i < plugs[0]; i++) { avc_bridgeco_fill_msu_addr(addr, AVC_BRIDGECO_PLUG_DIR_IN, i); err = avc_bridgeco_get_plug_type(bebob->unit, addr, &type); if (err < 0) { dev_err(&bebob->unit->device, "fail to get type for MSU in plug %d: %d\n", i, err); goto end; } if (type == AVC_BRIDGECO_PLUG_TYPE_SYNC) { bebob->sync_input_plug = i; break; } } end: return err; } int snd_bebob_stream_discover(struct snd_bebob *bebob) { const struct snd_bebob_clock_spec *clk_spec = bebob->spec->clock; u8 plugs[AVC_PLUG_INFO_BUF_BYTES], addr[AVC_BRIDGECO_ADDR_BYTES]; int err; /* the number of plugs for isoc in/out, ext in/out */ err = avc_general_get_plug_info(bebob->unit, 0x1f, 0x07, 0x00, plugs); if (err < 0) { dev_err(&bebob->unit->device, "fail to get info for isoc/external in/out plugs: %d\n", err); goto end; } /* * This module supports at least one isoc input plug and one isoc * output plug. */ if ((plugs[0] == 0) || (plugs[1] == 0)) { err = -ENOSYS; goto end; } err = fill_stream_formations(bebob, addr, AVC_BRIDGECO_PLUG_DIR_IN, 0, bebob->rx_stream_formations); if (err < 0) goto end; err = fill_stream_formations(bebob, addr, AVC_BRIDGECO_PLUG_DIR_OUT, 0, bebob->tx_stream_formations); if (err < 0) goto end; err = detect_midi_ports(bebob, bebob->tx_stream_formations, addr, AVC_BRIDGECO_PLUG_DIR_IN, plugs[2], &bebob->midi_input_ports); if (err < 0) goto end; err = detect_midi_ports(bebob, bebob->rx_stream_formations, addr, AVC_BRIDGECO_PLUG_DIR_OUT, plugs[3], &bebob->midi_output_ports); if (err < 0) goto end; /* for check source of clock later */ if (!clk_spec) err = seek_msu_sync_input_plug(bebob); end: return err; } void snd_bebob_stream_lock_changed(struct snd_bebob *bebob) { bebob->dev_lock_changed = true; wake_up(&bebob->hwdep_wait); } int snd_bebob_stream_lock_try(struct snd_bebob *bebob) { int err; spin_lock_irq(&bebob->lock); /* user land lock this */ if (bebob->dev_lock_count < 0) { err = -EBUSY; goto end; } /* this is the first time */ if (bebob->dev_lock_count++ == 0) snd_bebob_stream_lock_changed(bebob); err = 0; end: spin_unlock_irq(&bebob->lock); return err; } void snd_bebob_stream_lock_release(struct snd_bebob *bebob) { spin_lock_irq(&bebob->lock); if (WARN_ON(bebob->dev_lock_count <= 0)) goto end; if (--bebob->dev_lock_count == 0) snd_bebob_stream_lock_changed(bebob); end: spin_unlock_irq(&bebob->lock); }
linux-master
sound/firewire/bebob/bebob_stream.c
// SPDX-License-Identifier: GPL-2.0-only /* * oxfw-spkr.c - a part of driver for OXFW970/971 based devices * * Copyright (c) Clemens Ladisch <[email protected]> */ #include "oxfw.h" struct fw_spkr { bool mute; s16 volume[6]; s16 volume_min; s16 volume_max; unsigned int mixer_channels; u8 mute_fb_id; u8 volume_fb_id; }; enum control_action { CTL_READ, CTL_WRITE }; enum control_attribute { CTL_MIN = 0x02, CTL_MAX = 0x03, CTL_CURRENT = 0x10, }; static int avc_audio_feature_mute(struct fw_unit *unit, u8 fb_id, bool *value, enum control_action action) { u8 *buf; u8 response_ok; int err; buf = kmalloc(11, GFP_KERNEL); if (!buf) return -ENOMEM; if (action == CTL_READ) { buf[0] = 0x01; /* AV/C, STATUS */ response_ok = 0x0c; /* STABLE */ } else { buf[0] = 0x00; /* AV/C, CONTROL */ response_ok = 0x09; /* ACCEPTED */ } buf[1] = 0x08; /* audio unit 0 */ buf[2] = 0xb8; /* FUNCTION BLOCK */ buf[3] = 0x81; /* function block type: feature */ buf[4] = fb_id; /* function block ID */ buf[5] = 0x10; /* control attribute: current */ buf[6] = 0x02; /* selector length */ buf[7] = 0x00; /* audio channel number */ buf[8] = 0x01; /* control selector: mute */ buf[9] = 0x01; /* control data length */ if (action == CTL_READ) buf[10] = 0xff; else buf[10] = *value ? 0x70 : 0x60; err = fcp_avc_transaction(unit, buf, 11, buf, 11, 0x3fe); if (err < 0) goto error; if (err < 11) { dev_err(&unit->device, "short FCP response\n"); err = -EIO; goto error; } if (buf[0] != response_ok) { dev_err(&unit->device, "mute command failed\n"); err = -EIO; goto error; } if (action == CTL_READ) *value = buf[10] == 0x70; err = 0; error: kfree(buf); return err; } static int avc_audio_feature_volume(struct fw_unit *unit, u8 fb_id, s16 *value, unsigned int channel, enum control_attribute attribute, enum control_action action) { u8 *buf; u8 response_ok; int err; buf = kmalloc(12, GFP_KERNEL); if (!buf) return -ENOMEM; if (action == CTL_READ) { buf[0] = 0x01; /* AV/C, STATUS */ response_ok = 0x0c; /* STABLE */ } else { buf[0] = 0x00; /* AV/C, CONTROL */ response_ok = 0x09; /* ACCEPTED */ } buf[1] = 0x08; /* audio unit 0 */ buf[2] = 0xb8; /* FUNCTION BLOCK */ buf[3] = 0x81; /* function block type: feature */ buf[4] = fb_id; /* function block ID */ buf[5] = attribute; /* control attribute */ buf[6] = 0x02; /* selector length */ buf[7] = channel; /* audio channel number */ buf[8] = 0x02; /* control selector: volume */ buf[9] = 0x02; /* control data length */ if (action == CTL_READ) { buf[10] = 0xff; buf[11] = 0xff; } else { buf[10] = *value >> 8; buf[11] = *value; } err = fcp_avc_transaction(unit, buf, 12, buf, 12, 0x3fe); if (err < 0) goto error; if (err < 12) { dev_err(&unit->device, "short FCP response\n"); err = -EIO; goto error; } if (buf[0] != response_ok) { dev_err(&unit->device, "volume command failed\n"); err = -EIO; goto error; } if (action == CTL_READ) *value = (buf[10] << 8) | buf[11]; err = 0; error: kfree(buf); return err; } static int spkr_mute_get(struct snd_kcontrol *control, struct snd_ctl_elem_value *value) { struct snd_oxfw *oxfw = control->private_data; struct fw_spkr *spkr = oxfw->spec; value->value.integer.value[0] = !spkr->mute; return 0; } static int spkr_mute_put(struct snd_kcontrol *control, struct snd_ctl_elem_value *value) { struct snd_oxfw *oxfw = control->private_data; struct fw_spkr *spkr = oxfw->spec; bool mute; int err; mute = !value->value.integer.value[0]; if (mute == spkr->mute) return 0; err = avc_audio_feature_mute(oxfw->unit, spkr->mute_fb_id, &mute, CTL_WRITE); if (err < 0) return err; spkr->mute = mute; return 1; } static int spkr_volume_info(struct snd_kcontrol *control, struct snd_ctl_elem_info *info) { struct snd_oxfw *oxfw = control->private_data; struct fw_spkr *spkr = oxfw->spec; info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; info->count = spkr->mixer_channels; info->value.integer.min = spkr->volume_min; info->value.integer.max = spkr->volume_max; return 0; } static const u8 channel_map[6] = { 0, 1, 4, 5, 2, 3 }; static int spkr_volume_get(struct snd_kcontrol *control, struct snd_ctl_elem_value *value) { struct snd_oxfw *oxfw = control->private_data; struct fw_spkr *spkr = oxfw->spec; unsigned int i; for (i = 0; i < spkr->mixer_channels; ++i) value->value.integer.value[channel_map[i]] = spkr->volume[i]; return 0; } static int spkr_volume_put(struct snd_kcontrol *control, struct snd_ctl_elem_value *value) { struct snd_oxfw *oxfw = control->private_data; struct fw_spkr *spkr = oxfw->spec; unsigned int i, changed_channels; bool equal_values = true; s16 volume; int err; for (i = 0; i < spkr->mixer_channels; ++i) { if (value->value.integer.value[i] < spkr->volume_min || value->value.integer.value[i] > spkr->volume_max) return -EINVAL; if (value->value.integer.value[i] != value->value.integer.value[0]) equal_values = false; } changed_channels = 0; for (i = 0; i < spkr->mixer_channels; ++i) if (value->value.integer.value[channel_map[i]] != spkr->volume[i]) changed_channels |= 1 << (i + 1); if (equal_values && changed_channels != 0) changed_channels = 1 << 0; for (i = 0; i <= spkr->mixer_channels; ++i) { volume = value->value.integer.value[channel_map[i ? i - 1 : 0]]; if (changed_channels & (1 << i)) { err = avc_audio_feature_volume(oxfw->unit, spkr->volume_fb_id, &volume, i, CTL_CURRENT, CTL_WRITE); if (err < 0) return err; } if (i > 0) spkr->volume[i - 1] = volume; } return changed_channels != 0; } int snd_oxfw_add_spkr(struct snd_oxfw *oxfw, bool is_lacie) { static const struct snd_kcontrol_new controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "PCM Playback Switch", .info = snd_ctl_boolean_mono_info, .get = spkr_mute_get, .put = spkr_mute_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "PCM Playback Volume", .info = spkr_volume_info, .get = spkr_volume_get, .put = spkr_volume_put, }, }; struct fw_spkr *spkr; unsigned int i, first_ch; int err; spkr = devm_kzalloc(&oxfw->card->card_dev, sizeof(struct fw_spkr), GFP_KERNEL); if (!spkr) return -ENOMEM; oxfw->spec = spkr; if (is_lacie) { spkr->mixer_channels = 1; spkr->mute_fb_id = 0x01; spkr->volume_fb_id = 0x01; } else { spkr->mixer_channels = 6; spkr->mute_fb_id = 0x01; spkr->volume_fb_id = 0x02; } err = avc_audio_feature_volume(oxfw->unit, spkr->volume_fb_id, &spkr->volume_min, 0, CTL_MIN, CTL_READ); if (err < 0) return err; err = avc_audio_feature_volume(oxfw->unit, spkr->volume_fb_id, &spkr->volume_max, 0, CTL_MAX, CTL_READ); if (err < 0) return err; err = avc_audio_feature_mute(oxfw->unit, spkr->mute_fb_id, &spkr->mute, CTL_READ); if (err < 0) return err; first_ch = spkr->mixer_channels == 1 ? 0 : 1; for (i = 0; i < spkr->mixer_channels; ++i) { err = avc_audio_feature_volume(oxfw->unit, spkr->volume_fb_id, &spkr->volume[i], first_ch + i, CTL_CURRENT, CTL_READ); if (err < 0) return err; } for (i = 0; i < ARRAY_SIZE(controls); ++i) { err = snd_ctl_add(oxfw->card, snd_ctl_new1(&controls[i], oxfw)); if (err < 0) return err; } return 0; }
linux-master
sound/firewire/oxfw/oxfw-spkr.c
// SPDX-License-Identifier: GPL-2.0-only /* * oxfw_stream.c - a part of driver for OXFW970/971 based devices * * Copyright (c) 2014 Takashi Sakamoto */ #include "oxfw.h" #include <linux/delay.h> #define AVC_GENERIC_FRAME_MAXIMUM_BYTES 512 #define READY_TIMEOUT_MS 600 /* * According to datasheet of Oxford Semiconductor: * OXFW970: 32.0/44.1/48.0/96.0 Khz, 8 audio channels I/O * OXFW971: 32.0/44.1/48.0/88.2/96.0/192.0 kHz, 16 audio channels I/O, MIDI I/O */ static const unsigned int oxfw_rate_table[] = { [0] = 32000, [1] = 44100, [2] = 48000, [3] = 88200, [4] = 96000, [5] = 192000, }; /* * See Table 5.7 – Sampling frequency for Multi-bit Audio * in AV/C Stream Format Information Specification 1.1 (Apr 2005, 1394TA) */ static const unsigned int avc_stream_rate_table[] = { [0] = 0x02, [1] = 0x03, [2] = 0x04, [3] = 0x0a, [4] = 0x05, [5] = 0x07, }; static int set_rate(struct snd_oxfw *oxfw, unsigned int rate) { int err; err = avc_general_set_sig_fmt(oxfw->unit, rate, AVC_GENERAL_PLUG_DIR_IN, 0); if (err < 0) goto end; if (oxfw->has_output) err = avc_general_set_sig_fmt(oxfw->unit, rate, AVC_GENERAL_PLUG_DIR_OUT, 0); end: return err; } static int set_stream_format(struct snd_oxfw *oxfw, struct amdtp_stream *s, unsigned int rate, unsigned int pcm_channels) { u8 **formats; struct snd_oxfw_stream_formation formation; enum avc_general_plug_dir dir; unsigned int len; int i, err; if (s == &oxfw->tx_stream) { formats = oxfw->tx_stream_formats; dir = AVC_GENERAL_PLUG_DIR_OUT; } else { formats = oxfw->rx_stream_formats; dir = AVC_GENERAL_PLUG_DIR_IN; } /* Seek stream format for requirements. */ for (i = 0; i < SND_OXFW_STREAM_FORMAT_ENTRIES; i++) { err = snd_oxfw_stream_parse_format(formats[i], &formation); if (err < 0) return err; if ((formation.rate == rate) && (formation.pcm == pcm_channels)) break; } if (i == SND_OXFW_STREAM_FORMAT_ENTRIES) return -EINVAL; /* If assumed, just change rate. */ if (oxfw->assumed) return set_rate(oxfw, rate); /* Calculate format length. */ len = 5 + formats[i][4] * 2; err = avc_stream_set_format(oxfw->unit, dir, 0, formats[i], len); if (err < 0) return err; /* Some requests just after changing format causes freezing. */ msleep(100); return 0; } static int start_stream(struct snd_oxfw *oxfw, struct amdtp_stream *stream) { struct cmp_connection *conn; int err; if (stream == &oxfw->rx_stream) conn = &oxfw->in_conn; else conn = &oxfw->out_conn; err = cmp_connection_establish(conn); if (err < 0) return err; err = amdtp_domain_add_stream(&oxfw->domain, stream, conn->resources.channel, conn->speed); if (err < 0) { cmp_connection_break(conn); return err; } return 0; } static int check_connection_used_by_others(struct snd_oxfw *oxfw, struct amdtp_stream *stream) { struct cmp_connection *conn; bool used; int err; if (stream == &oxfw->tx_stream) conn = &oxfw->out_conn; else conn = &oxfw->in_conn; err = cmp_connection_check_used(conn, &used); if ((err >= 0) && used && !amdtp_stream_running(stream)) { dev_err(&oxfw->unit->device, "Connection established by others: %cPCR[%d]\n", (conn->direction == CMP_OUTPUT) ? 'o' : 'i', conn->pcr_index); err = -EBUSY; } return err; } static int init_stream(struct snd_oxfw *oxfw, struct amdtp_stream *stream) { struct cmp_connection *conn; enum cmp_direction c_dir; enum amdtp_stream_direction s_dir; unsigned int flags = 0; int err; if (!(oxfw->quirks & SND_OXFW_QUIRK_BLOCKING_TRANSMISSION)) flags |= CIP_NONBLOCKING; else flags |= CIP_BLOCKING; // OXFW 970/971 has no function to generate playback timing according to the sequence // of value in syt field, thus the packet should include NO_INFO value in the field. // However, some models just ignore data blocks in packet with NO_INFO for audio data // processing. if (!(oxfw->quirks & SND_OXFW_QUIRK_IGNORE_NO_INFO_PACKET)) flags |= CIP_UNAWARE_SYT; if (stream == &oxfw->tx_stream) { conn = &oxfw->out_conn; c_dir = CMP_OUTPUT; s_dir = AMDTP_IN_STREAM; if (oxfw->quirks & SND_OXFW_QUIRK_JUMBO_PAYLOAD) flags |= CIP_JUMBO_PAYLOAD; if (oxfw->quirks & SND_OXFW_QUIRK_WRONG_DBS) flags |= CIP_WRONG_DBS; } else { conn = &oxfw->in_conn; c_dir = CMP_INPUT; s_dir = AMDTP_OUT_STREAM; } err = cmp_connection_init(conn, oxfw->unit, c_dir, 0); if (err < 0) return err; err = amdtp_am824_init(stream, oxfw->unit, s_dir, flags); if (err < 0) { cmp_connection_destroy(conn); return err; } return 0; } static int keep_resources(struct snd_oxfw *oxfw, struct amdtp_stream *stream) { enum avc_general_plug_dir dir; u8 **formats; struct snd_oxfw_stream_formation formation; struct cmp_connection *conn; int i; int err; if (stream == &oxfw->rx_stream) { dir = AVC_GENERAL_PLUG_DIR_IN; formats = oxfw->rx_stream_formats; conn = &oxfw->in_conn; } else { dir = AVC_GENERAL_PLUG_DIR_OUT; formats = oxfw->tx_stream_formats; conn = &oxfw->out_conn; } err = snd_oxfw_stream_get_current_formation(oxfw, dir, &formation); if (err < 0) return err; for (i = 0; i < SND_OXFW_STREAM_FORMAT_ENTRIES; i++) { struct snd_oxfw_stream_formation fmt; if (formats[i] == NULL) break; err = snd_oxfw_stream_parse_format(formats[i], &fmt); if (err < 0) return err; if (fmt.rate == formation.rate && fmt.pcm == formation.pcm && fmt.midi == formation.midi) break; } if (i == SND_OXFW_STREAM_FORMAT_ENTRIES) return -EINVAL; // The stream should have one pcm channels at least. if (formation.pcm == 0) return -EINVAL; err = amdtp_am824_set_parameters(stream, formation.rate, formation.pcm, formation.midi * 8, false); if (err < 0) return err; return cmp_connection_reserve(conn, amdtp_stream_get_max_payload(stream)); } int snd_oxfw_stream_reserve_duplex(struct snd_oxfw *oxfw, struct amdtp_stream *stream, unsigned int rate, unsigned int pcm_channels, unsigned int frames_per_period, unsigned int frames_per_buffer) { struct snd_oxfw_stream_formation formation; enum avc_general_plug_dir dir; int err; // Considering JACK/FFADO streaming: // TODO: This can be removed hwdep functionality becomes popular. err = check_connection_used_by_others(oxfw, &oxfw->rx_stream); if (err < 0) return err; if (oxfw->has_output) { err = check_connection_used_by_others(oxfw, &oxfw->tx_stream); if (err < 0) return err; } if (stream == &oxfw->tx_stream) dir = AVC_GENERAL_PLUG_DIR_OUT; else dir = AVC_GENERAL_PLUG_DIR_IN; err = snd_oxfw_stream_get_current_formation(oxfw, dir, &formation); if (err < 0) return err; if (rate == 0) { rate = formation.rate; pcm_channels = formation.pcm; } if (formation.rate != rate || formation.pcm != pcm_channels) { amdtp_domain_stop(&oxfw->domain); cmp_connection_break(&oxfw->in_conn); cmp_connection_release(&oxfw->in_conn); if (oxfw->has_output) { cmp_connection_break(&oxfw->out_conn); cmp_connection_release(&oxfw->out_conn); } } if (oxfw->substreams_count == 0 || formation.rate != rate || formation.pcm != pcm_channels) { err = set_stream_format(oxfw, stream, rate, pcm_channels); if (err < 0) { dev_err(&oxfw->unit->device, "fail to set stream format: %d\n", err); return err; } err = keep_resources(oxfw, &oxfw->rx_stream); if (err < 0) return err; if (oxfw->has_output) { err = keep_resources(oxfw, &oxfw->tx_stream); if (err < 0) { cmp_connection_release(&oxfw->in_conn); return err; } } err = amdtp_domain_set_events_per_period(&oxfw->domain, frames_per_period, frames_per_buffer); if (err < 0) { cmp_connection_release(&oxfw->in_conn); if (oxfw->has_output) cmp_connection_release(&oxfw->out_conn); return err; } } return 0; } int snd_oxfw_stream_start_duplex(struct snd_oxfw *oxfw) { int err; if (oxfw->substreams_count == 0) return -EIO; if (amdtp_streaming_error(&oxfw->rx_stream) || amdtp_streaming_error(&oxfw->tx_stream)) { amdtp_domain_stop(&oxfw->domain); cmp_connection_break(&oxfw->in_conn); if (oxfw->has_output) cmp_connection_break(&oxfw->out_conn); } if (!amdtp_stream_running(&oxfw->rx_stream)) { unsigned int tx_init_skip_cycles = 0; bool replay_seq = false; err = start_stream(oxfw, &oxfw->rx_stream); if (err < 0) { dev_err(&oxfw->unit->device, "fail to prepare rx stream: %d\n", err); goto error; } if (oxfw->has_output && !amdtp_stream_running(&oxfw->tx_stream)) { err = start_stream(oxfw, &oxfw->tx_stream); if (err < 0) { dev_err(&oxfw->unit->device, "fail to prepare tx stream: %d\n", err); goto error; } if (oxfw->quirks & SND_OXFW_QUIRK_JUMBO_PAYLOAD) { // Just after changing sampling transfer frequency, many cycles are // skipped for packet transmission. tx_init_skip_cycles = 400; } else if (oxfw->quirks & SND_OXFW_QUIRK_VOLUNTARY_RECOVERY) { // It takes a bit time for target device to adjust event frequency // according to nominal event frequency in isochronous packets from // ALSA oxfw driver. tx_init_skip_cycles = 4000; } else { replay_seq = true; } } // NOTE: The device ignores presentation time expressed by the value of syt field // of CIP header in received packets. The sequence of the number of data blocks per // packet is important for media clock recovery. err = amdtp_domain_start(&oxfw->domain, tx_init_skip_cycles, replay_seq, false); if (err < 0) goto error; if (!amdtp_domain_wait_ready(&oxfw->domain, READY_TIMEOUT_MS)) { err = -ETIMEDOUT; goto error; } } return 0; error: amdtp_domain_stop(&oxfw->domain); cmp_connection_break(&oxfw->in_conn); if (oxfw->has_output) cmp_connection_break(&oxfw->out_conn); return err; } void snd_oxfw_stream_stop_duplex(struct snd_oxfw *oxfw) { if (oxfw->substreams_count == 0) { amdtp_domain_stop(&oxfw->domain); cmp_connection_break(&oxfw->in_conn); cmp_connection_release(&oxfw->in_conn); if (oxfw->has_output) { cmp_connection_break(&oxfw->out_conn); cmp_connection_release(&oxfw->out_conn); } } } static void destroy_stream(struct snd_oxfw *oxfw, struct amdtp_stream *stream) { struct cmp_connection *conn; if (stream == &oxfw->tx_stream) conn = &oxfw->out_conn; else conn = &oxfw->in_conn; amdtp_stream_destroy(stream); cmp_connection_destroy(conn); } int snd_oxfw_stream_init_duplex(struct snd_oxfw *oxfw) { int err; err = init_stream(oxfw, &oxfw->rx_stream); if (err < 0) return err; if (oxfw->has_output) { err = init_stream(oxfw, &oxfw->tx_stream); if (err < 0) { destroy_stream(oxfw, &oxfw->rx_stream); return err; } } err = amdtp_domain_init(&oxfw->domain); if (err < 0) { destroy_stream(oxfw, &oxfw->rx_stream); if (oxfw->has_output) destroy_stream(oxfw, &oxfw->tx_stream); } return err; } // This function should be called before starting the stream or after stopping // the streams. void snd_oxfw_stream_destroy_duplex(struct snd_oxfw *oxfw) { amdtp_domain_destroy(&oxfw->domain); destroy_stream(oxfw, &oxfw->rx_stream); if (oxfw->has_output) destroy_stream(oxfw, &oxfw->tx_stream); } void snd_oxfw_stream_update_duplex(struct snd_oxfw *oxfw) { amdtp_domain_stop(&oxfw->domain); cmp_connection_break(&oxfw->in_conn); amdtp_stream_pcm_abort(&oxfw->rx_stream); if (oxfw->has_output) { cmp_connection_break(&oxfw->out_conn); amdtp_stream_pcm_abort(&oxfw->tx_stream); } } int snd_oxfw_stream_get_current_formation(struct snd_oxfw *oxfw, enum avc_general_plug_dir dir, struct snd_oxfw_stream_formation *formation) { u8 *format; unsigned int len; int err; len = AVC_GENERIC_FRAME_MAXIMUM_BYTES; format = kmalloc(len, GFP_KERNEL); if (format == NULL) return -ENOMEM; err = avc_stream_get_format_single(oxfw->unit, dir, 0, format, &len); if (err < 0) goto end; if (len < 3) { err = -EIO; goto end; } err = snd_oxfw_stream_parse_format(format, formation); end: kfree(format); return err; } /* * See Table 6.16 - AM824 Stream Format * Figure 6.19 - format_information field for AM824 Compound * in AV/C Stream Format Information Specification 1.1 (Apr 2005, 1394TA) * Also 'Clause 12 AM824 sequence adaption layers' in IEC 61883-6:2005 */ int snd_oxfw_stream_parse_format(u8 *format, struct snd_oxfw_stream_formation *formation) { unsigned int i, e, channels, type; memset(formation, 0, sizeof(struct snd_oxfw_stream_formation)); /* * this module can support a hierarchy combination that: * Root: Audio and Music (0x90) * Level 1: AM824 Compound (0x40) */ if ((format[0] != 0x90) || (format[1] != 0x40)) return -ENXIO; /* check the sampling rate */ for (i = 0; i < ARRAY_SIZE(avc_stream_rate_table); i++) { if (format[2] == avc_stream_rate_table[i]) break; } if (i == ARRAY_SIZE(avc_stream_rate_table)) return -ENXIO; formation->rate = oxfw_rate_table[i]; for (e = 0; e < format[4]; e++) { channels = format[5 + e * 2]; type = format[6 + e * 2]; switch (type) { /* IEC 60958 Conformant, currently handled as MBLA */ case 0x00: /* Multi Bit Linear Audio (Raw) */ case 0x06: formation->pcm += channels; break; /* MIDI Conformant */ case 0x0d: formation->midi = channels; break; /* IEC 61937-3 to 7 */ case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: /* Multi Bit Linear Audio */ case 0x07: /* DVD-Audio */ case 0x0c: /* High Precision */ /* One Bit Audio */ case 0x08: /* (Plain) Raw */ case 0x09: /* (Plain) SACD */ case 0x0a: /* (Encoded) Raw */ case 0x0b: /* (Encoded) SACD */ /* SMPTE Time-Code conformant */ case 0x0e: /* Sample Count */ case 0x0f: /* Anciliary Data */ case 0x10: /* Synchronization Stream (Stereo Raw audio) */ case 0x40: /* Don't care */ case 0xff: default: return -ENXIO; /* not supported */ } } if (formation->pcm > AM824_MAX_CHANNELS_FOR_PCM || formation->midi > AM824_MAX_CHANNELS_FOR_MIDI) return -ENXIO; return 0; } static int assume_stream_formats(struct snd_oxfw *oxfw, enum avc_general_plug_dir dir, unsigned int pid, u8 *buf, unsigned int *len, u8 **formats) { struct snd_oxfw_stream_formation formation; unsigned int i, eid; int err; /* get format at current sampling rate */ err = avc_stream_get_format_single(oxfw->unit, dir, pid, buf, len); if (err < 0) { dev_err(&oxfw->unit->device, "fail to get current stream format for isoc %s plug %d:%d\n", (dir == AVC_GENERAL_PLUG_DIR_IN) ? "in" : "out", pid, err); goto end; } /* parse and set stream format */ eid = 0; err = snd_oxfw_stream_parse_format(buf, &formation); if (err < 0) goto end; formats[eid] = devm_kmemdup(&oxfw->card->card_dev, buf, *len, GFP_KERNEL); if (!formats[eid]) { err = -ENOMEM; goto end; } /* apply the format for each available sampling rate */ for (i = 0; i < ARRAY_SIZE(oxfw_rate_table); i++) { if (formation.rate == oxfw_rate_table[i]) continue; err = avc_general_inquiry_sig_fmt(oxfw->unit, oxfw_rate_table[i], dir, pid); if (err < 0) continue; eid++; formats[eid] = devm_kmemdup(&oxfw->card->card_dev, buf, *len, GFP_KERNEL); if (formats[eid] == NULL) { err = -ENOMEM; goto end; } formats[eid][2] = avc_stream_rate_table[i]; } err = 0; oxfw->assumed = true; end: return err; } static int fill_stream_formats(struct snd_oxfw *oxfw, enum avc_general_plug_dir dir, unsigned short pid) { u8 *buf, **formats; unsigned int len, eid = 0; struct snd_oxfw_stream_formation dummy; int err; buf = kmalloc(AVC_GENERIC_FRAME_MAXIMUM_BYTES, GFP_KERNEL); if (buf == NULL) return -ENOMEM; if (dir == AVC_GENERAL_PLUG_DIR_OUT) formats = oxfw->tx_stream_formats; else formats = oxfw->rx_stream_formats; /* get first entry */ len = AVC_GENERIC_FRAME_MAXIMUM_BYTES; err = avc_stream_get_format_list(oxfw->unit, dir, 0, buf, &len, 0); if (err == -ENXIO) { /* LIST subfunction is not implemented */ len = AVC_GENERIC_FRAME_MAXIMUM_BYTES; err = assume_stream_formats(oxfw, dir, pid, buf, &len, formats); goto end; } else if (err < 0) { dev_err(&oxfw->unit->device, "fail to get stream format %d for isoc %s plug %d:%d\n", eid, (dir == AVC_GENERAL_PLUG_DIR_IN) ? "in" : "out", pid, err); goto end; } /* LIST subfunction is implemented */ while (eid < SND_OXFW_STREAM_FORMAT_ENTRIES) { /* The format is too short. */ if (len < 3) { err = -EIO; break; } /* parse and set stream format */ err = snd_oxfw_stream_parse_format(buf, &dummy); if (err < 0) break; formats[eid] = devm_kmemdup(&oxfw->card->card_dev, buf, len, GFP_KERNEL); if (!formats[eid]) { err = -ENOMEM; break; } /* get next entry */ len = AVC_GENERIC_FRAME_MAXIMUM_BYTES; err = avc_stream_get_format_list(oxfw->unit, dir, 0, buf, &len, ++eid); /* No entries remained. */ if (err == -EINVAL) { err = 0; break; } else if (err < 0) { dev_err(&oxfw->unit->device, "fail to get stream format %d for isoc %s plug %d:%d\n", eid, (dir == AVC_GENERAL_PLUG_DIR_IN) ? "in" : "out", pid, err); break; } } end: kfree(buf); return err; } int snd_oxfw_stream_discover(struct snd_oxfw *oxfw) { u8 plugs[AVC_PLUG_INFO_BUF_BYTES]; struct snd_oxfw_stream_formation formation; u8 *format; unsigned int i; int err; /* the number of plugs for isoc in/out, ext in/out */ err = avc_general_get_plug_info(oxfw->unit, 0x1f, 0x07, 0x00, plugs); if (err < 0) { dev_err(&oxfw->unit->device, "fail to get info for isoc/external in/out plugs: %d\n", err); goto end; } else if ((plugs[0] == 0) && (plugs[1] == 0)) { err = -ENXIO; goto end; } /* use oPCR[0] if exists */ if (plugs[1] > 0) { err = fill_stream_formats(oxfw, AVC_GENERAL_PLUG_DIR_OUT, 0); if (err < 0) { if (err != -ENXIO) return err; // The oPCR is not available for isoc communication. err = 0; } else { for (i = 0; i < SND_OXFW_STREAM_FORMAT_ENTRIES; i++) { format = oxfw->tx_stream_formats[i]; if (format == NULL) continue; err = snd_oxfw_stream_parse_format(format, &formation); if (err < 0) continue; /* Add one MIDI port. */ if (formation.midi > 0) oxfw->midi_input_ports = 1; } oxfw->has_output = true; } } /* use iPCR[0] if exists */ if (plugs[0] > 0) { err = fill_stream_formats(oxfw, AVC_GENERAL_PLUG_DIR_IN, 0); if (err < 0) { if (err != -ENXIO) return err; // The iPCR is not available for isoc communication. err = 0; } else { for (i = 0; i < SND_OXFW_STREAM_FORMAT_ENTRIES; i++) { format = oxfw->rx_stream_formats[i]; if (format == NULL) continue; err = snd_oxfw_stream_parse_format(format, &formation); if (err < 0) continue; /* Add one MIDI port. */ if (formation.midi > 0) oxfw->midi_output_ports = 1; } oxfw->has_input = true; } } end: return err; } void snd_oxfw_stream_lock_changed(struct snd_oxfw *oxfw) { oxfw->dev_lock_changed = true; wake_up(&oxfw->hwdep_wait); } int snd_oxfw_stream_lock_try(struct snd_oxfw *oxfw) { int err; spin_lock_irq(&oxfw->lock); /* user land lock this */ if (oxfw->dev_lock_count < 0) { err = -EBUSY; goto end; } /* this is the first time */ if (oxfw->dev_lock_count++ == 0) snd_oxfw_stream_lock_changed(oxfw); err = 0; end: spin_unlock_irq(&oxfw->lock); return err; } void snd_oxfw_stream_lock_release(struct snd_oxfw *oxfw) { spin_lock_irq(&oxfw->lock); if (WARN_ON(oxfw->dev_lock_count <= 0)) goto end; if (--oxfw->dev_lock_count == 0) snd_oxfw_stream_lock_changed(oxfw); end: spin_unlock_irq(&oxfw->lock); }
linux-master
sound/firewire/oxfw/oxfw-stream.c
// SPDX-License-Identifier: GPL-2.0-only /* * oxfw.c - a part of driver for OXFW970/971 based devices * * Copyright (c) Clemens Ladisch <[email protected]> */ #include "oxfw.h" #define OXFORD_FIRMWARE_ID_ADDRESS (CSR_REGISTER_BASE + 0x50000) /* 0x970?vvvv or 0x971?vvvv, where vvvv = firmware version */ #define OXFORD_HARDWARE_ID_ADDRESS (CSR_REGISTER_BASE + 0x90020) #define OXFORD_HARDWARE_ID_OXFW970 0x39443841 #define OXFORD_HARDWARE_ID_OXFW971 0x39373100 #define VENDOR_LOUD 0x000ff2 #define VENDOR_GRIFFIN 0x001292 #define VENDOR_BEHRINGER 0x001564 #define VENDOR_LACIE 0x00d04b #define VENDOR_TASCAM 0x00022e #define OUI_STANTON 0x001260 #define OUI_APOGEE 0x0003db #define MODEL_SATELLITE 0x00200f #define MODEL_SCS1M 0x001000 #define MODEL_DUET_FW 0x01dddd #define MODEL_ONYX_1640I 0x001640 #define SPECIFIER_1394TA 0x00a02d #define VERSION_AVC 0x010001 MODULE_DESCRIPTION("Oxford Semiconductor FW970/971 driver"); MODULE_AUTHOR("Clemens Ladisch <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("snd-firewire-speakers"); MODULE_ALIAS("snd-scs1x"); struct compat_info { const char *driver_name; const char *vendor_name; const char *model_name; }; static bool detect_loud_models(struct fw_unit *unit) { static const char *const models[] = { "Onyxi", "Onyx-i", "Onyx 1640i", "d.Pro", "U.420"}; char model[32]; int err; err = fw_csr_string(unit->directory, CSR_MODEL, model, sizeof(model)); if (err < 0) return false; return match_string(models, ARRAY_SIZE(models), model) >= 0; } static int name_card(struct snd_oxfw *oxfw, const struct ieee1394_device_id *entry) { struct fw_device *fw_dev = fw_parent_device(oxfw->unit); const struct compat_info *info; char vendor[24]; char model[32]; const char *d, *v, *m; u32 firmware; int err; /* get vendor name from root directory */ err = fw_csr_string(fw_dev->config_rom + 5, CSR_VENDOR, vendor, sizeof(vendor)); if (err < 0) goto end; /* get model name from unit directory */ err = fw_csr_string(oxfw->unit->directory, CSR_MODEL, model, sizeof(model)); if (err < 0) goto end; err = snd_fw_transaction(oxfw->unit, TCODE_READ_QUADLET_REQUEST, OXFORD_FIRMWARE_ID_ADDRESS, &firmware, 4, 0); if (err < 0) goto end; be32_to_cpus(&firmware); if (firmware >> 20 == 0x970) oxfw->quirks |= SND_OXFW_QUIRK_JUMBO_PAYLOAD; /* to apply card definitions */ if (entry->vendor_id == VENDOR_GRIFFIN || entry->vendor_id == VENDOR_LACIE) { info = (const struct compat_info *)entry->driver_data; d = info->driver_name; v = info->vendor_name; m = info->model_name; } else { d = "OXFW"; v = vendor; m = model; } strcpy(oxfw->card->driver, d); strcpy(oxfw->card->mixername, m); strcpy(oxfw->card->shortname, m); scnprintf(oxfw->card->longname, sizeof(oxfw->card->longname), "%s %s (OXFW%x %04x), GUID %08x%08x at %s, S%d", v, m, firmware >> 20, firmware & 0xffff, fw_dev->config_rom[3], fw_dev->config_rom[4], dev_name(&oxfw->unit->device), 100 << fw_dev->max_speed); end: return err; } static void oxfw_card_free(struct snd_card *card) { struct snd_oxfw *oxfw = card->private_data; if (oxfw->has_output || oxfw->has_input) snd_oxfw_stream_destroy_duplex(oxfw); mutex_destroy(&oxfw->mutex); fw_unit_put(oxfw->unit); } static int detect_quirks(struct snd_oxfw *oxfw, const struct ieee1394_device_id *entry) { struct fw_device *fw_dev = fw_parent_device(oxfw->unit); struct fw_csr_iterator it; int key, val; int vendor, model; /* * Add ALSA control elements for two models to keep compatibility to * old firewire-speaker module. */ if (entry->vendor_id == VENDOR_GRIFFIN) return snd_oxfw_add_spkr(oxfw, false); if (entry->vendor_id == VENDOR_LACIE) return snd_oxfw_add_spkr(oxfw, true); /* * Stanton models supports asynchronous transactions for unique MIDI * messages. */ if (entry->vendor_id == OUI_STANTON) { oxfw->quirks |= SND_OXFW_QUIRK_SCS_TRANSACTION; if (entry->model_id == MODEL_SCS1M) oxfw->quirks |= SND_OXFW_QUIRK_BLOCKING_TRANSMISSION; // No physical MIDI ports. oxfw->midi_input_ports = 0; oxfw->midi_output_ports = 0; return snd_oxfw_scs1x_add(oxfw); } if (entry->vendor_id == OUI_APOGEE && entry->model_id == MODEL_DUET_FW) { oxfw->quirks |= SND_OXFW_QUIRK_BLOCKING_TRANSMISSION | SND_OXFW_QUIRK_IGNORE_NO_INFO_PACKET; } /* * TASCAM FireOne has physical control and requires a pair of additional * MIDI ports. */ if (entry->vendor_id == VENDOR_TASCAM) { oxfw->midi_input_ports++; oxfw->midi_output_ports++; return 0; } /* Seek from Root Directory of Config ROM. */ vendor = model = 0; fw_csr_iterator_init(&it, fw_dev->config_rom + 5); while (fw_csr_iterator_next(&it, &key, &val)) { if (key == CSR_VENDOR) vendor = val; else if (key == CSR_MODEL) model = val; } if (vendor == VENDOR_LOUD) { // Mackie Onyx Satellite with base station has a quirk to report a wrong // value in 'dbs' field of CIP header against its format information. oxfw->quirks |= SND_OXFW_QUIRK_WRONG_DBS; // OXFW971-based models may transfer events by blocking method. if (!(oxfw->quirks & SND_OXFW_QUIRK_JUMBO_PAYLOAD)) oxfw->quirks |= SND_OXFW_QUIRK_BLOCKING_TRANSMISSION; if (model == MODEL_ONYX_1640I) { //Unless receiving packets without NOINFO packet, the device transfers //mostly half of events in packets than expected. oxfw->quirks |= SND_OXFW_QUIRK_IGNORE_NO_INFO_PACKET | SND_OXFW_QUIRK_VOLUNTARY_RECOVERY; } } return 0; } static int oxfw_probe(struct fw_unit *unit, const struct ieee1394_device_id *entry) { struct snd_card *card; struct snd_oxfw *oxfw; int err; if (entry->vendor_id == VENDOR_LOUD && entry->model_id == 0 && !detect_loud_models(unit)) return -ENODEV; err = snd_card_new(&unit->device, -1, NULL, THIS_MODULE, sizeof(*oxfw), &card); if (err < 0) return err; card->private_free = oxfw_card_free; oxfw = card->private_data; oxfw->unit = fw_unit_get(unit); dev_set_drvdata(&unit->device, oxfw); oxfw->card = card; mutex_init(&oxfw->mutex); spin_lock_init(&oxfw->lock); init_waitqueue_head(&oxfw->hwdep_wait); err = name_card(oxfw, entry); if (err < 0) goto error; err = snd_oxfw_stream_discover(oxfw); if (err < 0) goto error; err = detect_quirks(oxfw, entry); if (err < 0) goto error; if (oxfw->has_output || oxfw->has_input) { err = snd_oxfw_stream_init_duplex(oxfw); if (err < 0) goto error; err = snd_oxfw_create_pcm(oxfw); if (err < 0) goto error; snd_oxfw_proc_init(oxfw); err = snd_oxfw_create_midi(oxfw); if (err < 0) goto error; err = snd_oxfw_create_hwdep(oxfw); if (err < 0) goto error; } err = snd_card_register(card); if (err < 0) goto error; return 0; error: snd_card_free(card); return err; } static void oxfw_bus_reset(struct fw_unit *unit) { struct snd_oxfw *oxfw = dev_get_drvdata(&unit->device); fcp_bus_reset(oxfw->unit); if (oxfw->has_output || oxfw->has_input) { mutex_lock(&oxfw->mutex); snd_oxfw_stream_update_duplex(oxfw); mutex_unlock(&oxfw->mutex); } if (oxfw->quirks & SND_OXFW_QUIRK_SCS_TRANSACTION) snd_oxfw_scs1x_update(oxfw); } static void oxfw_remove(struct fw_unit *unit) { struct snd_oxfw *oxfw = dev_get_drvdata(&unit->device); // Block till all of ALSA character devices are released. snd_card_free(oxfw->card); } static const struct compat_info griffin_firewave = { .driver_name = "FireWave", .vendor_name = "Griffin", .model_name = "FireWave", }; static const struct compat_info lacie_speakers = { .driver_name = "FWSpeakers", .vendor_name = "LaCie", .model_name = "FireWire Speakers", }; #define OXFW_DEV_ENTRY(vendor, model, data) \ { \ .match_flags = IEEE1394_MATCH_VENDOR_ID | \ IEEE1394_MATCH_MODEL_ID | \ IEEE1394_MATCH_SPECIFIER_ID | \ IEEE1394_MATCH_VERSION, \ .vendor_id = vendor, \ .model_id = model, \ .specifier_id = SPECIFIER_1394TA, \ .version = VERSION_AVC, \ .driver_data = (kernel_ulong_t)data, \ } static const struct ieee1394_device_id oxfw_id_table[] = { // // OXFW970 devices: // Initial firmware has a quirk to postpone isoc packet transmission during finishing async // transaction. As a result, several isochronous cycles are skipped to transfer the packets // and the audio data frames which should have been transferred during the cycles are put // into packet at the first isoc cycle after the postpone. Furthermore, the value of SYT // field in CIP header is not reliable as synchronization timing, // OXFW_DEV_ENTRY(VENDOR_GRIFFIN, 0x00f970, &griffin_firewave), OXFW_DEV_ENTRY(VENDOR_LACIE, 0x00f970, &lacie_speakers), // Behringer,F-Control Audio 202. The value of SYT field is not reliable at all. OXFW_DEV_ENTRY(VENDOR_BEHRINGER, 0x00fc22, NULL), // Loud Technologies, Tapco Link.FireWire 4x6. The value of SYT field is always 0xffff. OXFW_DEV_ENTRY(VENDOR_LOUD, 0x000460, NULL), // Loud Technologies, Mackie Onyx Satellite. Although revised version of firmware is // installed to avoid the postpone, the value of SYT field is always 0xffff. OXFW_DEV_ENTRY(VENDOR_LOUD, MODEL_SATELLITE, NULL), // Miglia HarmonyAudio. Not yet identified. // // OXFW971 devices: // The value of SYT field in CIP header is enough reliable. Both of blocking and non-blocking // transmission methods are available. // // Any Mackie(Loud) models (name string/model id): // Onyx-i series (former models): 0x081216 // Onyx 1640i: 0x001640 // d.2 pro/d.4 pro (built-in card): Unknown // U.420: Unknown // U.420d: Unknown { .match_flags = IEEE1394_MATCH_VENDOR_ID | IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, .vendor_id = VENDOR_LOUD, .model_id = 0, .specifier_id = SPECIFIER_1394TA, .version = VERSION_AVC, }, // TASCAM, FireOne. OXFW_DEV_ENTRY(VENDOR_TASCAM, 0x800007, NULL), // Stanton, Stanton Controllers & Systems 1 Mixer (SCS.1m). OXFW_DEV_ENTRY(OUI_STANTON, MODEL_SCS1M, NULL), // Stanton, Stanton Controllers & Systems 1 Deck (SCS.1d). OXFW_DEV_ENTRY(OUI_STANTON, 0x002000, NULL), // APOGEE, duet FireWire. OXFW_DEV_ENTRY(OUI_APOGEE, MODEL_DUET_FW, NULL), { } }; MODULE_DEVICE_TABLE(ieee1394, oxfw_id_table); static struct fw_driver oxfw_driver = { .driver = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .bus = &fw_bus_type, }, .probe = oxfw_probe, .update = oxfw_bus_reset, .remove = oxfw_remove, .id_table = oxfw_id_table, }; static int __init snd_oxfw_init(void) { return driver_register(&oxfw_driver.driver); } static void __exit snd_oxfw_exit(void) { driver_unregister(&oxfw_driver.driver); } module_init(snd_oxfw_init); module_exit(snd_oxfw_exit);
linux-master
sound/firewire/oxfw/oxfw.c
// SPDX-License-Identifier: GPL-2.0-only /* * oxfw_pcm.c - a part of driver for OXFW970/971 based devices * * Copyright (c) Clemens Ladisch <[email protected]> */ #include "oxfw.h" static int hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { u8 **formats = rule->private; struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); const struct snd_interval *c = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1 }; struct snd_oxfw_stream_formation formation; int i, err; for (i = 0; i < SND_OXFW_STREAM_FORMAT_ENTRIES; i++) { if (formats[i] == NULL) continue; err = snd_oxfw_stream_parse_format(formats[i], &formation); if (err < 0) continue; if (!snd_interval_test(c, formation.pcm)) continue; t.min = min(t.min, formation.rate); t.max = max(t.max, formation.rate); } return snd_interval_refine(r, &t); } static int hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { u8 **formats = rule->private; struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); const struct snd_interval *r = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_oxfw_stream_formation formation; int i, j, err; unsigned int count, list[SND_OXFW_STREAM_FORMAT_ENTRIES] = {0}; count = 0; for (i = 0; i < SND_OXFW_STREAM_FORMAT_ENTRIES; i++) { if (formats[i] == NULL) break; err = snd_oxfw_stream_parse_format(formats[i], &formation); if (err < 0) continue; if (!snd_interval_test(r, formation.rate)) continue; if (list[count] == formation.pcm) continue; for (j = 0; j < ARRAY_SIZE(list); j++) { if (list[j] == formation.pcm) break; } if (j == ARRAY_SIZE(list)) { list[count] = formation.pcm; if (++count == ARRAY_SIZE(list)) break; } } return snd_interval_list(c, count, list, 0); } static void limit_channels_and_rates(struct snd_pcm_hardware *hw, u8 **formats) { struct snd_oxfw_stream_formation formation; int i, err; hw->channels_min = UINT_MAX; hw->channels_max = 0; hw->rate_min = UINT_MAX; hw->rate_max = 0; hw->rates = 0; for (i = 0; i < SND_OXFW_STREAM_FORMAT_ENTRIES; i++) { if (formats[i] == NULL) break; err = snd_oxfw_stream_parse_format(formats[i], &formation); if (err < 0) continue; hw->channels_min = min(hw->channels_min, formation.pcm); hw->channels_max = max(hw->channels_max, formation.pcm); hw->rate_min = min(hw->rate_min, formation.rate); hw->rate_max = max(hw->rate_max, formation.rate); hw->rates |= snd_pcm_rate_to_rate_bit(formation.rate); } } static int init_hw_params(struct snd_oxfw *oxfw, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; u8 **formats; struct amdtp_stream *stream; int err; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS; stream = &oxfw->tx_stream; formats = oxfw->tx_stream_formats; } else { runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS; stream = &oxfw->rx_stream; formats = oxfw->rx_stream_formats; } limit_channels_and_rates(&runtime->hw, formats); err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, hw_rule_channels, formats, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) goto end; err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, hw_rule_rate, formats, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (err < 0) goto end; err = amdtp_am824_add_pcm_hw_constraints(stream, runtime); end: return err; } static int limit_to_current_params(struct snd_pcm_substream *substream) { struct snd_oxfw *oxfw = substream->private_data; struct snd_oxfw_stream_formation formation; enum avc_general_plug_dir dir; int err; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) dir = AVC_GENERAL_PLUG_DIR_OUT; else dir = AVC_GENERAL_PLUG_DIR_IN; err = snd_oxfw_stream_get_current_formation(oxfw, dir, &formation); if (err < 0) goto end; substream->runtime->hw.channels_min = formation.pcm; substream->runtime->hw.channels_max = formation.pcm; substream->runtime->hw.rate_min = formation.rate; substream->runtime->hw.rate_max = formation.rate; end: return err; } static int pcm_open(struct snd_pcm_substream *substream) { struct snd_oxfw *oxfw = substream->private_data; struct amdtp_domain *d = &oxfw->domain; int err; err = snd_oxfw_stream_lock_try(oxfw); if (err < 0) return err; err = init_hw_params(oxfw, substream); if (err < 0) goto err_locked; mutex_lock(&oxfw->mutex); // When source of clock is not internal or any stream is reserved for // transmission of PCM frames, the available sampling rate is limited // at current one. if (oxfw->substreams_count > 0 && d->events_per_period > 0) { unsigned int frames_per_period = d->events_per_period; unsigned int frames_per_buffer = d->events_per_buffer; err = limit_to_current_params(substream); if (err < 0) { mutex_unlock(&oxfw->mutex); goto err_locked; } if (frames_per_period > 0) { err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, frames_per_period, frames_per_period); if (err < 0) { mutex_unlock(&oxfw->mutex); goto err_locked; } err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, frames_per_buffer, frames_per_buffer); if (err < 0) { mutex_unlock(&oxfw->mutex); goto err_locked; } } } mutex_unlock(&oxfw->mutex); snd_pcm_set_sync(substream); return 0; err_locked: snd_oxfw_stream_lock_release(oxfw); return err; } static int pcm_close(struct snd_pcm_substream *substream) { struct snd_oxfw *oxfw = substream->private_data; snd_oxfw_stream_lock_release(oxfw); return 0; } static int pcm_capture_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_oxfw *oxfw = substream->private_data; int err = 0; if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { unsigned int rate = params_rate(hw_params); unsigned int channels = params_channels(hw_params); unsigned int frames_per_period = params_period_size(hw_params); unsigned int frames_per_buffer = params_buffer_size(hw_params); mutex_lock(&oxfw->mutex); err = snd_oxfw_stream_reserve_duplex(oxfw, &oxfw->tx_stream, rate, channels, frames_per_period, frames_per_buffer); if (err >= 0) ++oxfw->substreams_count; mutex_unlock(&oxfw->mutex); } return err; } static int pcm_playback_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_oxfw *oxfw = substream->private_data; int err = 0; if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { unsigned int rate = params_rate(hw_params); unsigned int channels = params_channels(hw_params); unsigned int frames_per_period = params_period_size(hw_params); unsigned int frames_per_buffer = params_buffer_size(hw_params); mutex_lock(&oxfw->mutex); err = snd_oxfw_stream_reserve_duplex(oxfw, &oxfw->rx_stream, rate, channels, frames_per_period, frames_per_buffer); if (err >= 0) ++oxfw->substreams_count; mutex_unlock(&oxfw->mutex); } return err; } static int pcm_capture_hw_free(struct snd_pcm_substream *substream) { struct snd_oxfw *oxfw = substream->private_data; mutex_lock(&oxfw->mutex); if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) --oxfw->substreams_count; snd_oxfw_stream_stop_duplex(oxfw); mutex_unlock(&oxfw->mutex); return 0; } static int pcm_playback_hw_free(struct snd_pcm_substream *substream) { struct snd_oxfw *oxfw = substream->private_data; mutex_lock(&oxfw->mutex); if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) --oxfw->substreams_count; snd_oxfw_stream_stop_duplex(oxfw); mutex_unlock(&oxfw->mutex); return 0; } static int pcm_capture_prepare(struct snd_pcm_substream *substream) { struct snd_oxfw *oxfw = substream->private_data; int err; mutex_lock(&oxfw->mutex); err = snd_oxfw_stream_start_duplex(oxfw); mutex_unlock(&oxfw->mutex); if (err < 0) goto end; amdtp_stream_pcm_prepare(&oxfw->tx_stream); end: return err; } static int pcm_playback_prepare(struct snd_pcm_substream *substream) { struct snd_oxfw *oxfw = substream->private_data; int err; mutex_lock(&oxfw->mutex); err = snd_oxfw_stream_start_duplex(oxfw); mutex_unlock(&oxfw->mutex); if (err < 0) goto end; amdtp_stream_pcm_prepare(&oxfw->rx_stream); end: return err; } static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_oxfw *oxfw = substream->private_data; struct snd_pcm_substream *pcm; switch (cmd) { case SNDRV_PCM_TRIGGER_START: pcm = substream; break; case SNDRV_PCM_TRIGGER_STOP: pcm = NULL; break; default: return -EINVAL; } amdtp_stream_pcm_trigger(&oxfw->tx_stream, pcm); return 0; } static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_oxfw *oxfw = substream->private_data; struct snd_pcm_substream *pcm; switch (cmd) { case SNDRV_PCM_TRIGGER_START: pcm = substream; break; case SNDRV_PCM_TRIGGER_STOP: pcm = NULL; break; default: return -EINVAL; } amdtp_stream_pcm_trigger(&oxfw->rx_stream, pcm); return 0; } static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstm) { struct snd_oxfw *oxfw = sbstm->private_data; return amdtp_domain_stream_pcm_pointer(&oxfw->domain, &oxfw->tx_stream); } static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstm) { struct snd_oxfw *oxfw = sbstm->private_data; return amdtp_domain_stream_pcm_pointer(&oxfw->domain, &oxfw->rx_stream); } static int pcm_capture_ack(struct snd_pcm_substream *substream) { struct snd_oxfw *oxfw = substream->private_data; return amdtp_domain_stream_pcm_ack(&oxfw->domain, &oxfw->tx_stream); } static int pcm_playback_ack(struct snd_pcm_substream *substream) { struct snd_oxfw *oxfw = substream->private_data; return amdtp_domain_stream_pcm_ack(&oxfw->domain, &oxfw->rx_stream); } int snd_oxfw_create_pcm(struct snd_oxfw *oxfw) { static const struct snd_pcm_ops capture_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_capture_hw_params, .hw_free = pcm_capture_hw_free, .prepare = pcm_capture_prepare, .trigger = pcm_capture_trigger, .pointer = pcm_capture_pointer, .ack = pcm_capture_ack, }; static const struct snd_pcm_ops playback_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_playback_hw_params, .hw_free = pcm_playback_hw_free, .prepare = pcm_playback_prepare, .trigger = pcm_playback_trigger, .pointer = pcm_playback_pointer, .ack = pcm_playback_ack, }; struct snd_pcm *pcm; unsigned int cap = 0; int err; if (oxfw->has_output) cap = 1; err = snd_pcm_new(oxfw->card, oxfw->card->driver, 0, 1, cap, &pcm); if (err < 0) return err; pcm->private_data = oxfw; strcpy(pcm->name, oxfw->card->shortname); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops); if (cap > 0) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0); return 0; }
linux-master
sound/firewire/oxfw/oxfw-pcm.c
// SPDX-License-Identifier: GPL-2.0-only /* * oxfw_midi.c - a part of driver for OXFW970/971 based devices * * Copyright (c) 2014 Takashi Sakamoto */ #include "oxfw.h" static int midi_capture_open(struct snd_rawmidi_substream *substream) { struct snd_oxfw *oxfw = substream->rmidi->private_data; int err; err = snd_oxfw_stream_lock_try(oxfw); if (err < 0) return err; mutex_lock(&oxfw->mutex); err = snd_oxfw_stream_reserve_duplex(oxfw, &oxfw->tx_stream, 0, 0, 0, 0); if (err >= 0) { ++oxfw->substreams_count; err = snd_oxfw_stream_start_duplex(oxfw); if (err < 0) --oxfw->substreams_count; } mutex_unlock(&oxfw->mutex); if (err < 0) snd_oxfw_stream_lock_release(oxfw); return err; } static int midi_playback_open(struct snd_rawmidi_substream *substream) { struct snd_oxfw *oxfw = substream->rmidi->private_data; int err; err = snd_oxfw_stream_lock_try(oxfw); if (err < 0) return err; mutex_lock(&oxfw->mutex); err = snd_oxfw_stream_reserve_duplex(oxfw, &oxfw->rx_stream, 0, 0, 0, 0); if (err >= 0) { ++oxfw->substreams_count; err = snd_oxfw_stream_start_duplex(oxfw); } mutex_unlock(&oxfw->mutex); if (err < 0) snd_oxfw_stream_lock_release(oxfw); return err; } static int midi_capture_close(struct snd_rawmidi_substream *substream) { struct snd_oxfw *oxfw = substream->rmidi->private_data; mutex_lock(&oxfw->mutex); --oxfw->substreams_count; snd_oxfw_stream_stop_duplex(oxfw); mutex_unlock(&oxfw->mutex); snd_oxfw_stream_lock_release(oxfw); return 0; } static int midi_playback_close(struct snd_rawmidi_substream *substream) { struct snd_oxfw *oxfw = substream->rmidi->private_data; mutex_lock(&oxfw->mutex); --oxfw->substreams_count; snd_oxfw_stream_stop_duplex(oxfw); mutex_unlock(&oxfw->mutex); snd_oxfw_stream_lock_release(oxfw); return 0; } static void midi_capture_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_oxfw *oxfw = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&oxfw->lock, flags); if (up) amdtp_am824_midi_trigger(&oxfw->tx_stream, substrm->number, substrm); else amdtp_am824_midi_trigger(&oxfw->tx_stream, substrm->number, NULL); spin_unlock_irqrestore(&oxfw->lock, flags); } static void midi_playback_trigger(struct snd_rawmidi_substream *substrm, int up) { struct snd_oxfw *oxfw = substrm->rmidi->private_data; unsigned long flags; spin_lock_irqsave(&oxfw->lock, flags); if (up) amdtp_am824_midi_trigger(&oxfw->rx_stream, substrm->number, substrm); else amdtp_am824_midi_trigger(&oxfw->rx_stream, substrm->number, NULL); spin_unlock_irqrestore(&oxfw->lock, flags); } static void set_midi_substream_names(struct snd_oxfw *oxfw, struct snd_rawmidi_str *str) { struct snd_rawmidi_substream *subs; list_for_each_entry(subs, &str->substreams, list) { scnprintf(subs->name, sizeof(subs->name), "%s MIDI %d", oxfw->card->shortname, subs->number + 1); } } int snd_oxfw_create_midi(struct snd_oxfw *oxfw) { static const struct snd_rawmidi_ops capture_ops = { .open = midi_capture_open, .close = midi_capture_close, .trigger = midi_capture_trigger, }; static const struct snd_rawmidi_ops playback_ops = { .open = midi_playback_open, .close = midi_playback_close, .trigger = midi_playback_trigger, }; struct snd_rawmidi *rmidi; struct snd_rawmidi_str *str; int err; if (oxfw->midi_input_ports == 0 && oxfw->midi_output_ports == 0) return 0; /* create midi ports */ err = snd_rawmidi_new(oxfw->card, oxfw->card->driver, 0, oxfw->midi_output_ports, oxfw->midi_input_ports, &rmidi); if (err < 0) return err; snprintf(rmidi->name, sizeof(rmidi->name), "%s MIDI", oxfw->card->shortname); rmidi->private_data = oxfw; if (oxfw->midi_input_ports > 0) { rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &capture_ops); str = &rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT]; set_midi_substream_names(oxfw, str); } if (oxfw->midi_output_ports > 0) { rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &playback_ops); str = &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT]; set_midi_substream_names(oxfw, str); } if ((oxfw->midi_output_ports > 0) && (oxfw->midi_input_ports > 0)) rmidi->info_flags |= SNDRV_RAWMIDI_INFO_DUPLEX; return 0; }
linux-master
sound/firewire/oxfw/oxfw-midi.c
// SPDX-License-Identifier: GPL-2.0-only /* * oxfw_proc.c - a part of driver for OXFW970/971 based devices * * Copyright (c) 2014 Takashi Sakamoto */ #include "./oxfw.h" static void proc_read_formation(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_oxfw *oxfw = entry->private_data; struct snd_oxfw_stream_formation formation, curr; u8 *format; char flag; int i, err; /* Show input. */ err = snd_oxfw_stream_get_current_formation(oxfw, AVC_GENERAL_PLUG_DIR_IN, &curr); if (err < 0) return; snd_iprintf(buffer, "Input Stream to device:\n"); snd_iprintf(buffer, "\tRate\tPCM\tMIDI\n"); for (i = 0; i < SND_OXFW_STREAM_FORMAT_ENTRIES; i++) { format = oxfw->rx_stream_formats[i]; if (format == NULL) continue; err = snd_oxfw_stream_parse_format(format, &formation); if (err < 0) continue; if (memcmp(&formation, &curr, sizeof(curr)) == 0) flag = '*'; else flag = ' '; snd_iprintf(buffer, "%c\t%d\t%d\t%d\n", flag, formation.rate, formation.pcm, formation.midi); } if (!oxfw->has_output) return; /* Show output. */ err = snd_oxfw_stream_get_current_formation(oxfw, AVC_GENERAL_PLUG_DIR_OUT, &curr); if (err < 0) return; snd_iprintf(buffer, "Output Stream from device:\n"); snd_iprintf(buffer, "\tRate\tPCM\tMIDI\n"); for (i = 0; i < SND_OXFW_STREAM_FORMAT_ENTRIES; i++) { format = oxfw->tx_stream_formats[i]; if (format == NULL) continue; err = snd_oxfw_stream_parse_format(format, &formation); if (err < 0) continue; if (memcmp(&formation, &curr, sizeof(curr)) == 0) flag = '*'; else flag = ' '; snd_iprintf(buffer, "%c\t%d\t%d\t%d\n", flag, formation.rate, formation.pcm, formation.midi); } } static void add_node(struct snd_oxfw *oxfw, struct snd_info_entry *root, const char *name, void (*op)(struct snd_info_entry *e, struct snd_info_buffer *b)) { struct snd_info_entry *entry; entry = snd_info_create_card_entry(oxfw->card, name, root); if (entry) snd_info_set_text_ops(entry, oxfw, op); } void snd_oxfw_proc_init(struct snd_oxfw *oxfw) { struct snd_info_entry *root; /* * All nodes are automatically removed at snd_card_disconnect(), * by following to link list. */ root = snd_info_create_card_entry(oxfw->card, "firewire", oxfw->card->proc_root); if (root == NULL) return; root->mode = S_IFDIR | 0555; add_node(oxfw, root, "formation", proc_read_formation); }
linux-master
sound/firewire/oxfw/oxfw-proc.c
// SPDX-License-Identifier: GPL-2.0-only /* * oxfw_hwdep.c - a part of driver for OXFW970/971 based devices * * Copyright (c) 2014 Takashi Sakamoto */ /* * This codes give three functionality. * * 1.get firewire node information * 2.get notification about starting/stopping stream * 3.lock/unlock stream */ #include "oxfw.h" static long hwdep_read(struct snd_hwdep *hwdep, char __user *buf, long count, loff_t *offset) { struct snd_oxfw *oxfw = hwdep->private_data; DEFINE_WAIT(wait); union snd_firewire_event event; spin_lock_irq(&oxfw->lock); while (!oxfw->dev_lock_changed) { prepare_to_wait(&oxfw->hwdep_wait, &wait, TASK_INTERRUPTIBLE); spin_unlock_irq(&oxfw->lock); schedule(); finish_wait(&oxfw->hwdep_wait, &wait); if (signal_pending(current)) return -ERESTARTSYS; spin_lock_irq(&oxfw->lock); } memset(&event, 0, sizeof(event)); event.lock_status.type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS; event.lock_status.status = (oxfw->dev_lock_count > 0); oxfw->dev_lock_changed = false; count = min_t(long, count, sizeof(event.lock_status)); spin_unlock_irq(&oxfw->lock); if (copy_to_user(buf, &event, count)) return -EFAULT; return count; } static __poll_t hwdep_poll(struct snd_hwdep *hwdep, struct file *file, poll_table *wait) { struct snd_oxfw *oxfw = hwdep->private_data; __poll_t events; poll_wait(file, &oxfw->hwdep_wait, wait); spin_lock_irq(&oxfw->lock); if (oxfw->dev_lock_changed) events = EPOLLIN | EPOLLRDNORM; else events = 0; spin_unlock_irq(&oxfw->lock); return events; } static int hwdep_get_info(struct snd_oxfw *oxfw, void __user *arg) { struct fw_device *dev = fw_parent_device(oxfw->unit); struct snd_firewire_get_info info; memset(&info, 0, sizeof(info)); info.type = SNDRV_FIREWIRE_TYPE_OXFW; info.card = dev->card->index; *(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]); *(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]); strscpy(info.device_name, dev_name(&dev->device), sizeof(info.device_name)); if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int hwdep_lock(struct snd_oxfw *oxfw) { int err; spin_lock_irq(&oxfw->lock); if (oxfw->dev_lock_count == 0) { oxfw->dev_lock_count = -1; err = 0; } else { err = -EBUSY; } spin_unlock_irq(&oxfw->lock); return err; } static int hwdep_unlock(struct snd_oxfw *oxfw) { int err; spin_lock_irq(&oxfw->lock); if (oxfw->dev_lock_count == -1) { oxfw->dev_lock_count = 0; err = 0; } else { err = -EBADFD; } spin_unlock_irq(&oxfw->lock); return err; } static int hwdep_release(struct snd_hwdep *hwdep, struct file *file) { struct snd_oxfw *oxfw = hwdep->private_data; spin_lock_irq(&oxfw->lock); if (oxfw->dev_lock_count == -1) oxfw->dev_lock_count = 0; spin_unlock_irq(&oxfw->lock); return 0; } static int hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { struct snd_oxfw *oxfw = hwdep->private_data; switch (cmd) { case SNDRV_FIREWIRE_IOCTL_GET_INFO: return hwdep_get_info(oxfw, (void __user *)arg); case SNDRV_FIREWIRE_IOCTL_LOCK: return hwdep_lock(oxfw); case SNDRV_FIREWIRE_IOCTL_UNLOCK: return hwdep_unlock(oxfw); default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static int hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { return hwdep_ioctl(hwdep, file, cmd, (unsigned long)compat_ptr(arg)); } #else #define hwdep_compat_ioctl NULL #endif int snd_oxfw_create_hwdep(struct snd_oxfw *oxfw) { static const struct snd_hwdep_ops hwdep_ops = { .read = hwdep_read, .release = hwdep_release, .poll = hwdep_poll, .ioctl = hwdep_ioctl, .ioctl_compat = hwdep_compat_ioctl, }; struct snd_hwdep *hwdep; int err; err = snd_hwdep_new(oxfw->card, oxfw->card->driver, 0, &hwdep); if (err < 0) goto end; strcpy(hwdep->name, oxfw->card->driver); hwdep->iface = SNDRV_HWDEP_IFACE_FW_OXFW; hwdep->ops = hwdep_ops; hwdep->private_data = oxfw; hwdep->exclusive = true; end: return err; }
linux-master
sound/firewire/oxfw/oxfw-hwdep.c
// SPDX-License-Identifier: GPL-2.0-only /* * oxfw_command.c - a part of driver for OXFW970/971 based devices * * Copyright (c) 2014 Takashi Sakamoto */ #include "oxfw.h" int avc_stream_set_format(struct fw_unit *unit, enum avc_general_plug_dir dir, unsigned int pid, u8 *format, unsigned int len) { u8 *buf; int err; buf = kmalloc(len + 10, GFP_KERNEL); if (buf == NULL) return -ENOMEM; buf[0] = 0x00; /* CONTROL */ buf[1] = 0xff; /* UNIT */ buf[2] = 0xbf; /* EXTENDED STREAM FORMAT INFORMATION */ buf[3] = 0xc0; /* SINGLE subfunction */ buf[4] = dir; /* Plug Direction */ buf[5] = 0x00; /* UNIT */ buf[6] = 0x00; /* PCR (Isochronous Plug) */ buf[7] = 0xff & pid; /* Plug ID */ buf[8] = 0xff; /* Padding */ buf[9] = 0xff; /* Support status in response */ memcpy(buf + 10, format, len); /* do transaction and check buf[1-8] are the same against command */ err = fcp_avc_transaction(unit, buf, len + 10, buf, len + 10, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(8)); if (err < 0) ; else if (err < len + 10) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENXIO; else if (buf[0] == 0x0a) /* REJECTED */ err = -EINVAL; else err = 0; kfree(buf); return err; } int avc_stream_get_format(struct fw_unit *unit, enum avc_general_plug_dir dir, unsigned int pid, u8 *buf, unsigned int *len, unsigned int eid) { unsigned int subfunc; int err; if (eid == 0xff) subfunc = 0xc0; /* SINGLE */ else subfunc = 0xc1; /* LIST */ buf[0] = 0x01; /* STATUS */ buf[1] = 0xff; /* UNIT */ buf[2] = 0xbf; /* EXTENDED STREAM FORMAT INFORMATION */ buf[3] = subfunc; /* SINGLE or LIST */ buf[4] = dir; /* Plug Direction */ buf[5] = 0x00; /* Unit */ buf[6] = 0x00; /* PCR (Isochronous Plug) */ buf[7] = 0xff & pid; /* Plug ID */ buf[8] = 0xff; /* Padding */ buf[9] = 0xff; /* support status in response */ buf[10] = 0xff & eid; /* entry ID for LIST subfunction */ buf[11] = 0xff; /* padding */ /* do transaction and check buf[1-7] are the same against command */ err = fcp_avc_transaction(unit, buf, 12, buf, *len, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7)); if (err < 0) ; else if (err < 12) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENXIO; else if (buf[0] == 0x0a) /* REJECTED */ err = -EINVAL; else if (buf[0] == 0x0b) /* IN TRANSITION */ err = -EAGAIN; /* LIST subfunction has entry ID */ else if ((subfunc == 0xc1) && (buf[10] != eid)) err = -EIO; if (err < 0) goto end; /* keep just stream format information */ if (subfunc == 0xc0) { memmove(buf, buf + 10, err - 10); *len = err - 10; } else { memmove(buf, buf + 11, err - 11); *len = err - 11; } err = 0; end: return err; } int avc_general_inquiry_sig_fmt(struct fw_unit *unit, unsigned int rate, enum avc_general_plug_dir dir, unsigned short pid) { unsigned int sfc; u8 *buf; int err; for (sfc = 0; sfc < CIP_SFC_COUNT; sfc++) { if (amdtp_rate_table[sfc] == rate) break; } if (sfc == CIP_SFC_COUNT) return -EINVAL; buf = kzalloc(8, GFP_KERNEL); if (buf == NULL) return -ENOMEM; buf[0] = 0x02; /* SPECIFIC INQUIRY */ buf[1] = 0xff; /* UNIT */ if (dir == AVC_GENERAL_PLUG_DIR_IN) buf[2] = 0x19; /* INPUT PLUG SIGNAL FORMAT */ else buf[2] = 0x18; /* OUTPUT PLUG SIGNAL FORMAT */ buf[3] = 0xff & pid; /* plug id */ buf[4] = 0x90; /* EOH_1, Form_1, FMT. AM824 */ buf[5] = 0x07 & sfc; /* FDF-hi. AM824, frequency */ buf[6] = 0xff; /* FDF-mid. AM824, SYT hi (not used) */ buf[7] = 0xff; /* FDF-low. AM824, SYT lo (not used) */ /* do transaction and check buf[1-5] are the same against command */ err = fcp_avc_transaction(unit, buf, 8, buf, 8, BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5)); if (err < 0) ; else if (err < 8) err = -EIO; else if (buf[0] == 0x08) /* NOT IMPLEMENTED */ err = -ENXIO; if (err < 0) goto end; err = 0; end: kfree(buf); return err; }
linux-master
sound/firewire/oxfw/oxfw-command.c
// SPDX-License-Identifier: GPL-2.0-only /* * oxfw-scs1x.c - a part of driver for OXFW970/971 based devices * * Copyright (c) Clemens Ladisch <[email protected]> * Copyright (c) 2015 Takashi Sakamoto <[email protected]> */ #include "oxfw.h" #define HSS1394_ADDRESS 0xc007dedadadaULL #define HSS1394_MAX_PACKET_SIZE 64 #define HSS1394_TAG_USER_DATA 0x00 #define HSS1394_TAG_CHANGE_ADDRESS 0xf1 struct fw_scs1x { struct fw_address_handler hss_handler; u8 input_escape_count; struct snd_rawmidi_substream *input; /* For MIDI playback. */ struct snd_rawmidi_substream *output; bool output_idle; u8 output_status; u8 output_bytes; bool output_escaped; bool output_escape_high_nibble; struct work_struct work; wait_queue_head_t idle_wait; u8 buffer[HSS1394_MAX_PACKET_SIZE]; bool transaction_running; struct fw_transaction transaction; unsigned int transaction_bytes; bool error; struct fw_device *fw_dev; }; static const u8 sysex_escape_prefix[] = { 0xf0, /* SysEx begin */ 0x00, 0x01, 0x60, /* Stanton DJ */ 0x48, 0x53, 0x53, /* "HSS" */ }; static void midi_input_escaped_byte(struct snd_rawmidi_substream *stream, u8 byte) { u8 nibbles[2]; nibbles[0] = byte >> 4; nibbles[1] = byte & 0x0f; snd_rawmidi_receive(stream, nibbles, 2); } static void midi_input_byte(struct fw_scs1x *scs, struct snd_rawmidi_substream *stream, u8 byte) { const u8 eox = 0xf7; if (scs->input_escape_count > 0) { midi_input_escaped_byte(stream, byte); scs->input_escape_count--; if (scs->input_escape_count == 0) snd_rawmidi_receive(stream, &eox, sizeof(eox)); } else if (byte == 0xf9) { snd_rawmidi_receive(stream, sysex_escape_prefix, ARRAY_SIZE(sysex_escape_prefix)); midi_input_escaped_byte(stream, 0x00); midi_input_escaped_byte(stream, 0xf9); scs->input_escape_count = 3; } else { snd_rawmidi_receive(stream, &byte, 1); } } static void midi_input_packet(struct fw_scs1x *scs, struct snd_rawmidi_substream *stream, const u8 *data, unsigned int bytes) { unsigned int i; const u8 eox = 0xf7; if (data[0] == HSS1394_TAG_USER_DATA) { for (i = 1; i < bytes; ++i) midi_input_byte(scs, stream, data[i]); } else { snd_rawmidi_receive(stream, sysex_escape_prefix, ARRAY_SIZE(sysex_escape_prefix)); for (i = 0; i < bytes; ++i) midi_input_escaped_byte(stream, data[i]); snd_rawmidi_receive(stream, &eox, sizeof(eox)); } } static void handle_hss(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *data, size_t length, void *callback_data) { struct fw_scs1x *scs = callback_data; struct snd_rawmidi_substream *stream; int rcode; if (offset != scs->hss_handler.offset) { rcode = RCODE_ADDRESS_ERROR; goto end; } if (tcode != TCODE_WRITE_QUADLET_REQUEST && tcode != TCODE_WRITE_BLOCK_REQUEST) { rcode = RCODE_TYPE_ERROR; goto end; } if (length >= 1) { stream = READ_ONCE(scs->input); if (stream) midi_input_packet(scs, stream, data, length); } rcode = RCODE_COMPLETE; end: fw_send_response(card, request, rcode); } static void scs_write_callback(struct fw_card *card, int rcode, void *data, size_t length, void *callback_data) { struct fw_scs1x *scs = callback_data; if (!rcode_is_permanent_error(rcode)) { /* Don't retry for this data. */ if (rcode == RCODE_COMPLETE) scs->transaction_bytes = 0; } else { scs->error = true; } scs->transaction_running = false; schedule_work(&scs->work); } static bool is_valid_running_status(u8 status) { return status >= 0x80 && status <= 0xef; } static bool is_one_byte_cmd(u8 status) { return status == 0xf6 || status >= 0xf8; } static bool is_two_bytes_cmd(u8 status) { return (status >= 0xc0 && status <= 0xdf) || status == 0xf1 || status == 0xf3; } static bool is_three_bytes_cmd(u8 status) { return (status >= 0x80 && status <= 0xbf) || (status >= 0xe0 && status <= 0xef) || status == 0xf2; } static bool is_invalid_cmd(u8 status) { return status == 0xf4 || status == 0xf5 || status == 0xf9 || status == 0xfd; } static void scs_output_work(struct work_struct *work) { struct fw_scs1x *scs = container_of(work, struct fw_scs1x, work); struct snd_rawmidi_substream *stream; unsigned int i; u8 byte; int generation; if (scs->transaction_running) return; stream = READ_ONCE(scs->output); if (!stream || scs->error) { scs->output_idle = true; wake_up(&scs->idle_wait); return; } if (scs->transaction_bytes > 0) goto retry; i = scs->output_bytes; for (;;) { if (snd_rawmidi_transmit(stream, &byte, 1) != 1) { scs->output_bytes = i; scs->output_idle = true; wake_up(&scs->idle_wait); return; } /* * Convert from real MIDI to what I think the device expects (no * running status, one command per packet, unescaped SysExs). */ if (scs->output_escaped && byte < 0x80) { if (scs->output_escape_high_nibble) { if (i < HSS1394_MAX_PACKET_SIZE) { scs->buffer[i] = byte << 4; scs->output_escape_high_nibble = false; } } else { scs->buffer[i++] |= byte & 0x0f; scs->output_escape_high_nibble = true; } } else if (byte < 0x80) { if (i == 1) { if (!is_valid_running_status( scs->output_status)) continue; scs->buffer[0] = HSS1394_TAG_USER_DATA; scs->buffer[i++] = scs->output_status; } scs->buffer[i++] = byte; if ((i == 3 && is_two_bytes_cmd(scs->output_status)) || (i == 4 && is_three_bytes_cmd(scs->output_status))) break; if (i == 1 + ARRAY_SIZE(sysex_escape_prefix) && !memcmp(scs->buffer + 1, sysex_escape_prefix, ARRAY_SIZE(sysex_escape_prefix))) { scs->output_escaped = true; scs->output_escape_high_nibble = true; i = 0; } if (i >= HSS1394_MAX_PACKET_SIZE) i = 1; } else if (byte == 0xf7) { if (scs->output_escaped) { if (i >= 1 && scs->output_escape_high_nibble && scs->buffer[0] != HSS1394_TAG_CHANGE_ADDRESS) break; } else { if (i > 1 && scs->output_status == 0xf0) { scs->buffer[i++] = 0xf7; break; } } i = 1; scs->output_escaped = false; } else if (!is_invalid_cmd(byte) && byte < 0xf8) { i = 1; scs->buffer[0] = HSS1394_TAG_USER_DATA; scs->buffer[i++] = byte; scs->output_status = byte; scs->output_escaped = false; if (is_one_byte_cmd(byte)) break; } } scs->output_bytes = 1; scs->output_escaped = false; scs->transaction_bytes = i; retry: scs->transaction_running = true; generation = scs->fw_dev->generation; smp_rmb(); /* node_id vs. generation */ fw_send_request(scs->fw_dev->card, &scs->transaction, TCODE_WRITE_BLOCK_REQUEST, scs->fw_dev->node_id, generation, scs->fw_dev->max_speed, HSS1394_ADDRESS, scs->buffer, scs->transaction_bytes, scs_write_callback, scs); } static int midi_capture_open(struct snd_rawmidi_substream *stream) { return 0; } static int midi_capture_close(struct snd_rawmidi_substream *stream) { return 0; } static void midi_capture_trigger(struct snd_rawmidi_substream *stream, int up) { struct fw_scs1x *scs = stream->rmidi->private_data; if (up) { scs->input_escape_count = 0; WRITE_ONCE(scs->input, stream); } else { WRITE_ONCE(scs->input, NULL); } } static int midi_playback_open(struct snd_rawmidi_substream *stream) { return 0; } static int midi_playback_close(struct snd_rawmidi_substream *stream) { return 0; } static void midi_playback_trigger(struct snd_rawmidi_substream *stream, int up) { struct fw_scs1x *scs = stream->rmidi->private_data; if (up) { scs->output_status = 0; scs->output_bytes = 1; scs->output_escaped = false; scs->output_idle = false; scs->transaction_bytes = 0; scs->error = false; WRITE_ONCE(scs->output, stream); schedule_work(&scs->work); } else { WRITE_ONCE(scs->output, NULL); } } static void midi_playback_drain(struct snd_rawmidi_substream *stream) { struct fw_scs1x *scs = stream->rmidi->private_data; wait_event(scs->idle_wait, scs->output_idle); } static int register_address(struct snd_oxfw *oxfw) { struct fw_scs1x *scs = oxfw->spec; __be64 data; data = cpu_to_be64(((u64)HSS1394_TAG_CHANGE_ADDRESS << 56) | scs->hss_handler.offset); return snd_fw_transaction(oxfw->unit, TCODE_WRITE_BLOCK_REQUEST, HSS1394_ADDRESS, &data, sizeof(data), 0); } static void remove_scs1x(struct snd_rawmidi *rmidi) { struct fw_scs1x *scs = rmidi->private_data; fw_core_remove_address_handler(&scs->hss_handler); } void snd_oxfw_scs1x_update(struct snd_oxfw *oxfw) { register_address(oxfw); } int snd_oxfw_scs1x_add(struct snd_oxfw *oxfw) { static const struct snd_rawmidi_ops midi_capture_ops = { .open = midi_capture_open, .close = midi_capture_close, .trigger = midi_capture_trigger, }; static const struct snd_rawmidi_ops midi_playback_ops = { .open = midi_playback_open, .close = midi_playback_close, .trigger = midi_playback_trigger, .drain = midi_playback_drain, }; struct snd_rawmidi *rmidi; struct fw_scs1x *scs; int err; scs = devm_kzalloc(&oxfw->card->card_dev, sizeof(struct fw_scs1x), GFP_KERNEL); if (!scs) return -ENOMEM; scs->fw_dev = fw_parent_device(oxfw->unit); oxfw->spec = scs; /* Allocate own handler for imcoming asynchronous transaction. */ scs->hss_handler.length = HSS1394_MAX_PACKET_SIZE; scs->hss_handler.address_callback = handle_hss; scs->hss_handler.callback_data = scs; err = fw_core_add_address_handler(&scs->hss_handler, &fw_high_memory_region); if (err < 0) return err; err = register_address(oxfw); if (err < 0) goto err_allocated; /* Use unique name for backward compatibility to scs1x module. */ err = snd_rawmidi_new(oxfw->card, "SCS.1x", 0, 1, 1, &rmidi); if (err < 0) goto err_allocated; rmidi->private_data = scs; rmidi->private_free = remove_scs1x; snprintf(rmidi->name, sizeof(rmidi->name), "%s MIDI", oxfw->card->shortname); rmidi->info_flags = SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_DUPLEX; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &midi_capture_ops); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &midi_playback_ops); INIT_WORK(&scs->work, scs_output_work); init_waitqueue_head(&scs->idle_wait); scs->output_idle = true; return 0; err_allocated: fw_core_remove_address_handler(&scs->hss_handler); return err; }
linux-master
sound/firewire/oxfw/oxfw-scs1x.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PMac DBDMA lowlevel functions * * Copyright (c) by Takashi Iwai <[email protected]> * code based on dmasound.c. */ #include <linux/io.h> #include <asm/irq.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <sound/core.h> #include "pmac.h" #include <sound/pcm_params.h> #include <asm/pmac_feature.h> /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */ static const int awacs_freqs[8] = { 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350 }; /* fixed frequency table for tumbler */ static const int tumbler_freqs[1] = { 44100 }; /* * we will allocate a single 'emergency' dbdma cmd block to use if the * tx status comes up "DEAD". This happens on some PowerComputing Pmac * clones, either owing to a bug in dbdma or some interaction between * IDE and sound. However, this measure would deal with DEAD status if * it appeared elsewhere. */ static struct pmac_dbdma emergency_dbdma; static int emergency_in_use; /* * allocate DBDMA command arrays */ static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size) { unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1); rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize, &rec->dma_base, GFP_KERNEL); if (rec->space == NULL) return -ENOMEM; rec->size = size; memset(rec->space, 0, rsize); rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space); rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space); return 0; } static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec) { if (rec->space) { unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1); dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base); } } /* * pcm stuff */ /* * look up frequency table */ unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate) { int i, ok, found; ok = rec->cur_freqs; if (rate > chip->freq_table[0]) return 0; found = 0; for (i = 0; i < chip->num_freqs; i++, ok >>= 1) { if (! (ok & 1)) continue; found = i; if (rate >= chip->freq_table[i]) break; } return found; } /* * check whether another stream is active */ static inline int another_stream(int stream) { return (stream == SNDRV_PCM_STREAM_PLAYBACK) ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; } /* * get a stream of the opposite direction */ static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream) { switch (stream) { case SNDRV_PCM_STREAM_PLAYBACK: return &chip->playback; case SNDRV_PCM_STREAM_CAPTURE: return &chip->capture; default: snd_BUG(); return NULL; } } /* * wait while run status is on */ static inline void snd_pmac_wait_ack(struct pmac_stream *rec) { int timeout = 50000; while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0) udelay(1); } /* * set the format and rate to the chip. * call the lowlevel function if defined (e.g. for AWACS). */ static void snd_pmac_pcm_set_format(struct snd_pmac *chip) { /* set up frequency and format */ out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8)); out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0); if (chip->set_format) chip->set_format(chip); } /* * stop the DMA transfer */ static inline void snd_pmac_dma_stop(struct pmac_stream *rec) { out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16); snd_pmac_wait_ack(rec); } /* * set the command pointer address */ static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd) { out_le32(&rec->dma->cmdptr, cmd->addr); } /* * start the DMA */ static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status) { out_le32(&rec->dma->control, status | (status << 16)); } /* * prepare playback/capture stream */ static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) { int i; volatile struct dbdma_cmd __iomem *cp; struct snd_pcm_runtime *runtime = subs->runtime; int rate_index; long offset; struct pmac_stream *astr; rec->dma_size = snd_pcm_lib_buffer_bytes(subs); rec->period_size = snd_pcm_lib_period_bytes(subs); rec->nperiods = rec->dma_size / rec->period_size; rec->cur_period = 0; rate_index = snd_pmac_rate_index(chip, rec, runtime->rate); /* set up constraints */ astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); if (! astr) return -EINVAL; astr->cur_freqs = 1 << rate_index; astr->cur_formats = 1 << runtime->format; chip->rate_index = rate_index; chip->format = runtime->format; /* We really want to execute a DMA stop command, after the AWACS * is initialized. * For reasons I don't understand, it stops the hissing noise * common to many PowerBook G3 systems and random noise otherwise * captured on iBook2's about every third time. -ReneR */ spin_lock_irq(&chip->reg_lock); snd_pmac_dma_stop(rec); chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); snd_pmac_dma_set_command(rec, &chip->extra_dma); snd_pmac_dma_run(rec, RUN); spin_unlock_irq(&chip->reg_lock); mdelay(5); spin_lock_irq(&chip->reg_lock); /* continuous DMA memory type doesn't provide the physical address, * so we need to resolve the address here... */ offset = runtime->dma_addr; for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) { cp->phy_addr = cpu_to_le32(offset); cp->req_count = cpu_to_le16(rec->period_size); /*cp->res_count = cpu_to_le16(0);*/ cp->xfer_status = cpu_to_le16(0); offset += rec->period_size; } /* make loop */ cp->command = cpu_to_le16(DBDMA_NOP | BR_ALWAYS); cp->cmd_dep = cpu_to_le32(rec->cmd.addr); snd_pmac_dma_stop(rec); snd_pmac_dma_set_command(rec, &rec->cmd); spin_unlock_irq(&chip->reg_lock); return 0; } /* * PCM trigger/stop */ static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs, int cmd) { volatile struct dbdma_cmd __iomem *cp; int i, command; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: if (rec->running) return -EBUSY; command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ? OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS; spin_lock(&chip->reg_lock); snd_pmac_beep_stop(chip); snd_pmac_pcm_set_format(chip); for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) out_le16(&cp->command, command); snd_pmac_dma_set_command(rec, &rec->cmd); (void)in_le32(&rec->dma->status); snd_pmac_dma_run(rec, RUN|WAKE); rec->running = 1; spin_unlock(&chip->reg_lock); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: spin_lock(&chip->reg_lock); rec->running = 0; /*printk(KERN_DEBUG "stopped!!\n");*/ snd_pmac_dma_stop(rec); for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) out_le16(&cp->command, DBDMA_STOP); spin_unlock(&chip->reg_lock); break; default: return -EINVAL; } return 0; } /* * return the current pointer */ inline static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) { int count = 0; #if 1 /* hmm.. how can we get the current dma pointer?? */ int stat; volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period]; stat = le16_to_cpu(cp->xfer_status); if (stat & (ACTIVE|DEAD)) { count = in_le16(&cp->res_count); if (count) count = rec->period_size - count; } #endif count += rec->cur_period * rec->period_size; /*printk(KERN_DEBUG "pointer=%d\n", count);*/ return bytes_to_frames(subs->runtime, count); } /* * playback */ static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_prepare(chip, &chip->playback, subs); } static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs, int cmd) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd); } static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_pointer(chip, &chip->playback, subs); } /* * capture */ static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_prepare(chip, &chip->capture, subs); } static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs, int cmd) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd); } static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_pointer(chip, &chip->capture, subs); } /* * Handle DEAD DMA transfers: * if the TX status comes up "DEAD" - reported on some Power Computing machines * we need to re-start the dbdma - but from a different physical start address * and with a different transfer length. It would get very messy to do this * with the normal dbdma_cmd blocks - we would have to re-write the buffer start * addresses each time. So, we will keep a single dbdma_cmd block which can be * fiddled with. * When DEAD status is first reported the content of the faulted dbdma block is * copied into the emergency buffer and we note that the buffer is in use. * we then bump the start physical address by the amount that was successfully * output before it died. * On any subsequent DEAD result we just do the bump-ups (we know that we are * already using the emergency dbdma_cmd). * CHECK: this just tries to "do it". It is possible that we should abandon * xfers when the number of residual bytes gets below a certain value - I can * see that this might cause a loop-forever if a too small transfer causes * DEAD status. However this is a TODO for now - we'll see what gets reported. * When we get a successful transfer result with the emergency buffer we just * pretend that it completed using the original dmdma_cmd and carry on. The * 'next_cmd' field will already point back to the original loop of blocks. */ static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec, volatile struct dbdma_cmd __iomem *cp) { unsigned short req, res ; unsigned int phy ; /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */ /* to clear DEAD status we must first clear RUN set it to quiescent to be on the safe side */ (void)in_le32(&rec->dma->status); out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16); if (!emergency_in_use) { /* new problem */ memcpy((void *)emergency_dbdma.cmds, (void *)cp, sizeof(struct dbdma_cmd)); emergency_in_use = 1; cp->xfer_status = cpu_to_le16(0); cp->req_count = cpu_to_le16(rec->period_size); cp = emergency_dbdma.cmds; } /* now bump the values to reflect the amount we haven't yet shifted */ req = le16_to_cpu(cp->req_count); res = le16_to_cpu(cp->res_count); phy = le32_to_cpu(cp->phy_addr); phy += (req - res); cp->req_count = cpu_to_le16(res); cp->res_count = cpu_to_le16(0); cp->xfer_status = cpu_to_le16(0); cp->phy_addr = cpu_to_le32(phy); cp->cmd_dep = cpu_to_le32(rec->cmd.addr + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods)); cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS); /* point at our patched up command block */ out_le32(&rec->dma->cmdptr, emergency_dbdma.addr); /* we must re-start the controller */ (void)in_le32(&rec->dma->status); /* should complete clearing the DEAD status */ out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); } /* * update playback/capture pointer from interrupts */ static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec) { volatile struct dbdma_cmd __iomem *cp; int c; int stat; spin_lock(&chip->reg_lock); if (rec->running) { for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */ if (emergency_in_use) /* already using DEAD xfer? */ cp = emergency_dbdma.cmds; else cp = &rec->cmd.cmds[rec->cur_period]; stat = le16_to_cpu(cp->xfer_status); if (stat & DEAD) { snd_pmac_pcm_dead_xfer(rec, cp); break; /* this block is still going */ } if (emergency_in_use) emergency_in_use = 0 ; /* done that */ if (! (stat & ACTIVE)) break; /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/ cp->xfer_status = cpu_to_le16(0); cp->req_count = cpu_to_le16(rec->period_size); /*cp->res_count = cpu_to_le16(0);*/ rec->cur_period++; if (rec->cur_period >= rec->nperiods) { rec->cur_period = 0; } spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(rec->substream); spin_lock(&chip->reg_lock); } } spin_unlock(&chip->reg_lock); } /* * hw info */ static const struct snd_pcm_hardware snd_pmac_playback = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_RESUME), .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_8000_44100, .rate_min = 7350, .rate_max = 44100, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 131072, .period_bytes_min = 256, .period_bytes_max = 16384, .periods_min = 3, .periods_max = PMAC_MAX_FRAGS, }; static const struct snd_pcm_hardware snd_pmac_capture = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_RESUME), .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_8000_44100, .rate_min = 7350, .rate_max = 44100, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 131072, .period_bytes_min = 256, .period_bytes_max = 16384, .periods_min = 3, .periods_max = PMAC_MAX_FRAGS, }; #if 0 // NYI static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_pmac *chip = rule->private; struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); int i, freq_table[8], num_freqs; if (! rec) return -EINVAL; num_freqs = 0; for (i = chip->num_freqs - 1; i >= 0; i--) { if (rec->cur_freqs & (1 << i)) freq_table[num_freqs++] = chip->freq_table[i]; } return snd_interval_list(hw_param_interval(params, rule->var), num_freqs, freq_table, 0); } static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_pmac *chip = rule->private; struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); if (! rec) return -EINVAL; return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT), rec->cur_formats); } #endif // NYI static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) { struct snd_pcm_runtime *runtime = subs->runtime; int i; /* look up frequency table and fill bit mask */ runtime->hw.rates = 0; for (i = 0; i < chip->num_freqs; i++) if (chip->freqs_ok & (1 << i)) runtime->hw.rates |= snd_pcm_rate_to_rate_bit(chip->freq_table[i]); /* check for minimum and maximum rates */ for (i = 0; i < chip->num_freqs; i++) { if (chip->freqs_ok & (1 << i)) { runtime->hw.rate_max = chip->freq_table[i]; break; } } for (i = chip->num_freqs - 1; i >= 0; i--) { if (chip->freqs_ok & (1 << i)) { runtime->hw.rate_min = chip->freq_table[i]; break; } } runtime->hw.formats = chip->formats_ok; if (chip->can_capture) { if (! chip->can_duplex) runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX; runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX; } runtime->private_data = rec; rec->substream = subs; #if 0 /* FIXME: still under development.. */ snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, snd_pmac_hw_rule_rate, chip, rec->stream, -1); snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, snd_pmac_hw_rule_format, chip, rec->stream, -1); #endif runtime->hw.periods_max = rec->cmd.size - 1; /* constraints to fix choppy sound */ snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); return 0; } static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) { struct pmac_stream *astr; snd_pmac_dma_stop(rec); astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); if (! astr) return -EINVAL; /* reset constraints */ astr->cur_freqs = chip->freqs_ok; astr->cur_formats = chip->formats_ok; return 0; } static int snd_pmac_playback_open(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); subs->runtime->hw = snd_pmac_playback; return snd_pmac_pcm_open(chip, &chip->playback, subs); } static int snd_pmac_capture_open(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); subs->runtime->hw = snd_pmac_capture; return snd_pmac_pcm_open(chip, &chip->capture, subs); } static int snd_pmac_playback_close(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_close(chip, &chip->playback, subs); } static int snd_pmac_capture_close(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_close(chip, &chip->capture, subs); } /* */ static const struct snd_pcm_ops snd_pmac_playback_ops = { .open = snd_pmac_playback_open, .close = snd_pmac_playback_close, .prepare = snd_pmac_playback_prepare, .trigger = snd_pmac_playback_trigger, .pointer = snd_pmac_playback_pointer, }; static const struct snd_pcm_ops snd_pmac_capture_ops = { .open = snd_pmac_capture_open, .close = snd_pmac_capture_close, .prepare = snd_pmac_capture_prepare, .trigger = snd_pmac_capture_trigger, .pointer = snd_pmac_capture_pointer, }; int snd_pmac_pcm_new(struct snd_pmac *chip) { struct snd_pcm *pcm; int err; int num_captures = 1; if (! chip->can_capture) num_captures = 0; err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops); if (chip->can_capture) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops); pcm->private_data = chip; pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; strcpy(pcm->name, chip->card->shortname); chip->pcm = pcm; chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE; if (chip->can_byte_swap) chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE; chip->playback.cur_formats = chip->formats_ok; chip->capture.cur_formats = chip->formats_ok; chip->playback.cur_freqs = chip->freqs_ok; chip->capture.cur_freqs = chip->freqs_ok; /* preallocate 64k buffer */ snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &chip->pdev->dev, 64 * 1024, 64 * 1024); return 0; } static void snd_pmac_dbdma_reset(struct snd_pmac *chip) { out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); snd_pmac_wait_ack(&chip->playback); out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); snd_pmac_wait_ack(&chip->capture); } /* * handling beep */ void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed) { struct pmac_stream *rec = &chip->playback; snd_pmac_dma_stop(rec); chip->extra_dma.cmds->req_count = cpu_to_le16(bytes); chip->extra_dma.cmds->xfer_status = cpu_to_le16(0); chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr); chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr); chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS); out_le32(&chip->awacs->control, (in_le32(&chip->awacs->control) & ~0x1f00) | (speed << 8)); out_le32(&chip->awacs->byteswap, 0); snd_pmac_dma_set_command(rec, &chip->extra_dma); snd_pmac_dma_run(rec, RUN); } void snd_pmac_beep_dma_stop(struct snd_pmac *chip) { snd_pmac_dma_stop(&chip->playback); chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); snd_pmac_pcm_set_format(chip); /* reset format */ } /* * interrupt handlers */ static irqreturn_t snd_pmac_tx_intr(int irq, void *devid) { struct snd_pmac *chip = devid; snd_pmac_pcm_update(chip, &chip->playback); return IRQ_HANDLED; } static irqreturn_t snd_pmac_rx_intr(int irq, void *devid) { struct snd_pmac *chip = devid; snd_pmac_pcm_update(chip, &chip->capture); return IRQ_HANDLED; } static irqreturn_t snd_pmac_ctrl_intr(int irq, void *devid) { struct snd_pmac *chip = devid; int ctrl = in_le32(&chip->awacs->control); /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/ if (ctrl & MASK_PORTCHG) { /* do something when headphone is plugged/unplugged? */ if (chip->update_automute) chip->update_automute(chip, 1); } if (ctrl & MASK_CNTLERR) { int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16; if (err && chip->model <= PMAC_SCREAMER) snd_printk(KERN_DEBUG "error %x\n", err); } /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */ out_le32(&chip->awacs->control, ctrl); return IRQ_HANDLED; } /* * a wrapper to feature call for compatibility */ static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable) { if (ppc_md.feature_call) ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable); } /* * release resources */ static int snd_pmac_free(struct snd_pmac *chip) { /* stop sounds */ if (chip->initialized) { snd_pmac_dbdma_reset(chip); /* disable interrupts from awacs interface */ out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff); } if (chip->node) snd_pmac_sound_feature(chip, 0); /* clean up mixer if any */ if (chip->mixer_free) chip->mixer_free(chip); snd_pmac_detach_beep(chip); /* release resources */ if (chip->irq >= 0) free_irq(chip->irq, (void*)chip); if (chip->tx_irq >= 0) free_irq(chip->tx_irq, (void*)chip); if (chip->rx_irq >= 0) free_irq(chip->rx_irq, (void*)chip); snd_pmac_dbdma_free(chip, &chip->playback.cmd); snd_pmac_dbdma_free(chip, &chip->capture.cmd); snd_pmac_dbdma_free(chip, &chip->extra_dma); snd_pmac_dbdma_free(chip, &emergency_dbdma); iounmap(chip->macio_base); iounmap(chip->latch_base); iounmap(chip->awacs); iounmap(chip->playback.dma); iounmap(chip->capture.dma); if (chip->node) { int i; for (i = 0; i < 3; i++) { if (chip->requested & (1 << i)) release_mem_region(chip->rsrc[i].start, resource_size(&chip->rsrc[i])); } } pci_dev_put(chip->pdev); of_node_put(chip->node); kfree(chip); return 0; } /* * free the device */ static int snd_pmac_dev_free(struct snd_device *device) { struct snd_pmac *chip = device->device_data; return snd_pmac_free(chip); } /* * check the machine support byteswap (little-endian) */ static void detect_byte_swap(struct snd_pmac *chip) { struct device_node *mio; /* if seems that Keylargo can't byte-swap */ for (mio = chip->node->parent; mio; mio = mio->parent) { if (of_node_name_eq(mio, "mac-io")) { if (of_device_is_compatible(mio, "Keylargo")) chip->can_byte_swap = 0; break; } } /* it seems the Pismo & iBook can't byte-swap in hardware. */ if (of_machine_is_compatible("PowerBook3,1") || of_machine_is_compatible("PowerBook2,1")) chip->can_byte_swap = 0 ; if (of_machine_is_compatible("PowerBook2,1")) chip->can_duplex = 0; } /* * detect a sound chip */ static int snd_pmac_detect(struct snd_pmac *chip) { struct device_node *sound; struct device_node *dn; const unsigned int *prop; unsigned int l; struct macio_chip* macio; if (!machine_is(powermac)) return -ENODEV; chip->subframe = 0; chip->revision = 0; chip->freqs_ok = 0xff; /* all ok */ chip->model = PMAC_AWACS; chip->can_byte_swap = 1; chip->can_duplex = 1; chip->can_capture = 1; chip->num_freqs = ARRAY_SIZE(awacs_freqs); chip->freq_table = awacs_freqs; chip->pdev = NULL; chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */ /* check machine type */ if (of_machine_is_compatible("AAPL,3400/2400") || of_machine_is_compatible("AAPL,3500")) chip->is_pbook_3400 = 1; else if (of_machine_is_compatible("PowerBook1,1") || of_machine_is_compatible("AAPL,PowerBook1998")) chip->is_pbook_G3 = 1; chip->node = of_find_node_by_name(NULL, "awacs"); sound = of_node_get(chip->node); /* * powermac G3 models have a node called "davbus" * with a child called "sound". */ if (!chip->node) chip->node = of_find_node_by_name(NULL, "davbus"); /* * if we didn't find a davbus device, try 'i2s-a' since * this seems to be what iBooks have */ if (! chip->node) { chip->node = of_find_node_by_name(NULL, "i2s-a"); if (chip->node && chip->node->parent && chip->node->parent->parent) { if (of_device_is_compatible(chip->node->parent->parent, "K2-Keylargo")) chip->is_k2 = 1; } } if (! chip->node) return -ENODEV; if (!sound) { for_each_node_by_name(sound, "sound") if (sound->parent == chip->node) break; } if (! sound) { of_node_put(chip->node); chip->node = NULL; return -ENODEV; } prop = of_get_property(sound, "sub-frame", NULL); if (prop && *prop < 16) chip->subframe = *prop; prop = of_get_property(sound, "layout-id", NULL); if (prop) { /* partly deprecate snd-powermac, for those machines * that have a layout-id property for now */ printk(KERN_INFO "snd-powermac no longer handles any " "machines with a layout-id property " "in the device-tree, use snd-aoa.\n"); of_node_put(sound); of_node_put(chip->node); chip->node = NULL; return -ENODEV; } /* This should be verified on older screamers */ if (of_device_is_compatible(sound, "screamer")) { chip->model = PMAC_SCREAMER; // chip->can_byte_swap = 0; /* FIXME: check this */ } if (of_device_is_compatible(sound, "burgundy")) { chip->model = PMAC_BURGUNDY; chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } if (of_device_is_compatible(sound, "daca")) { chip->model = PMAC_DACA; chip->can_capture = 0; /* no capture */ chip->can_duplex = 0; // chip->can_byte_swap = 0; /* FIXME: check this */ chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } if (of_device_is_compatible(sound, "tumbler")) { chip->model = PMAC_TUMBLER; chip->can_capture = of_machine_is_compatible("PowerMac4,2") || of_machine_is_compatible("PowerBook3,2") || of_machine_is_compatible("PowerBook3,3") || of_machine_is_compatible("PowerBook4,1") || of_machine_is_compatible("PowerBook4,2") || of_machine_is_compatible("PowerBook4,3"); chip->can_duplex = 0; // chip->can_byte_swap = 0; /* FIXME: check this */ chip->num_freqs = ARRAY_SIZE(tumbler_freqs); chip->freq_table = tumbler_freqs; chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } if (of_device_is_compatible(sound, "snapper")) { chip->model = PMAC_SNAPPER; // chip->can_byte_swap = 0; /* FIXME: check this */ chip->num_freqs = ARRAY_SIZE(tumbler_freqs); chip->freq_table = tumbler_freqs; chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } prop = of_get_property(sound, "device-id", NULL); if (prop) chip->device_id = *prop; dn = of_find_node_by_name(NULL, "perch"); chip->has_iic = (dn != NULL); of_node_put(dn); /* We need the PCI device for DMA allocations, let's use a crude method * for now ... */ macio = macio_find(chip->node, macio_unknown); if (macio == NULL) printk(KERN_WARNING "snd-powermac: can't locate macio !\n"); else { struct pci_dev *pdev = NULL; for_each_pci_dev(pdev) { struct device_node *np = pci_device_to_OF_node(pdev); if (np && np == macio->of_node) { chip->pdev = pdev; break; } } } if (chip->pdev == NULL) printk(KERN_WARNING "snd-powermac: can't locate macio PCI" " device !\n"); detect_byte_swap(chip); /* look for a property saying what sample rates are available */ prop = of_get_property(sound, "sample-rates", &l); if (! prop) prop = of_get_property(sound, "output-frame-rates", &l); if (prop) { int i; chip->freqs_ok = 0; for (l /= sizeof(int); l > 0; --l) { unsigned int r = *prop++; /* Apple 'Fixed' format */ if (r >= 0x10000) r >>= 16; for (i = 0; i < chip->num_freqs; ++i) { if (r == chip->freq_table[i]) { chip->freqs_ok |= (1 << i); break; } } } } else { /* assume only 44.1khz */ chip->freqs_ok = 1; } of_node_put(sound); return 0; } #ifdef PMAC_SUPPORT_AUTOMUTE /* * auto-mute */ static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = chip->auto_mute; return 0; } static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); if (ucontrol->value.integer.value[0] != chip->auto_mute) { chip->auto_mute = !!ucontrol->value.integer.value[0]; if (chip->update_automute) chip->update_automute(chip, 1); return 1; } return 0; } static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); if (chip->detect_headphone) ucontrol->value.integer.value[0] = chip->detect_headphone(chip); else ucontrol->value.integer.value[0] = 0; return 0; } static const struct snd_kcontrol_new auto_mute_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Auto Mute Switch", .info = snd_pmac_boolean_mono_info, .get = pmac_auto_mute_get, .put = pmac_auto_mute_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Headphone Detection", .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = snd_pmac_boolean_mono_info, .get = pmac_hp_detect_get, }, }; int snd_pmac_add_automute(struct snd_pmac *chip) { int err; chip->auto_mute = 1; err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip)); if (err < 0) { printk(KERN_ERR "snd-powermac: Failed to add automute control\n"); return err; } chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip); return snd_ctl_add(chip->card, chip->hp_detect_ctl); } #endif /* PMAC_SUPPORT_AUTOMUTE */ /* * create and detect a pmac chip record */ int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return) { struct snd_pmac *chip; struct device_node *np; int i, err; unsigned int irq; unsigned long ctrl_addr, txdma_addr, rxdma_addr; static const struct snd_device_ops ops = { .dev_free = snd_pmac_dev_free, }; *chip_return = NULL; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) return -ENOMEM; chip->card = card; spin_lock_init(&chip->reg_lock); chip->irq = chip->tx_irq = chip->rx_irq = -1; chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK; chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE; err = snd_pmac_detect(chip); if (err < 0) goto __error; if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 || snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 || snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 || snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) { err = -ENOMEM; goto __error; } np = chip->node; chip->requested = 0; if (chip->is_k2) { static const char * const rnames[] = { "Sound Control", "Sound DMA" }; for (i = 0; i < 2; i ++) { if (of_address_to_resource(np->parent, i, &chip->rsrc[i])) { printk(KERN_ERR "snd: can't translate rsrc " " %d (%s)\n", i, rnames[i]); err = -ENODEV; goto __error; } if (request_mem_region(chip->rsrc[i].start, resource_size(&chip->rsrc[i]), rnames[i]) == NULL) { printk(KERN_ERR "snd: can't request rsrc " " %d (%s: %pR)\n", i, rnames[i], &chip->rsrc[i]); err = -ENODEV; goto __error; } chip->requested |= (1 << i); } ctrl_addr = chip->rsrc[0].start; txdma_addr = chip->rsrc[1].start; rxdma_addr = txdma_addr + 0x100; } else { static const char * const rnames[] = { "Sound Control", "Sound Tx DMA", "Sound Rx DMA" }; for (i = 0; i < 3; i ++) { if (of_address_to_resource(np, i, &chip->rsrc[i])) { printk(KERN_ERR "snd: can't translate rsrc " " %d (%s)\n", i, rnames[i]); err = -ENODEV; goto __error; } if (request_mem_region(chip->rsrc[i].start, resource_size(&chip->rsrc[i]), rnames[i]) == NULL) { printk(KERN_ERR "snd: can't request rsrc " " %d (%s: %pR)\n", i, rnames[i], &chip->rsrc[i]); err = -ENODEV; goto __error; } chip->requested |= (1 << i); } ctrl_addr = chip->rsrc[0].start; txdma_addr = chip->rsrc[1].start; rxdma_addr = chip->rsrc[2].start; } chip->awacs = ioremap(ctrl_addr, 0x1000); chip->playback.dma = ioremap(txdma_addr, 0x100); chip->capture.dma = ioremap(rxdma_addr, 0x100); if (chip->model <= PMAC_BURGUNDY) { irq = irq_of_parse_and_map(np, 0); if (request_irq(irq, snd_pmac_ctrl_intr, 0, "PMac", (void*)chip)) { snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); err = -EBUSY; goto __error; } chip->irq = irq; } irq = irq_of_parse_and_map(np, 1); if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){ snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); err = -EBUSY; goto __error; } chip->tx_irq = irq; irq = irq_of_parse_and_map(np, 2); if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) { snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); err = -EBUSY; goto __error; } chip->rx_irq = irq; snd_pmac_sound_feature(chip, 1); /* reset & enable interrupts */ if (chip->model <= PMAC_BURGUNDY) out_le32(&chip->awacs->control, chip->control_mask); /* Powerbooks have odd ways of enabling inputs such as an expansion-bay CD or sound from an internal modem or a PC-card modem. */ if (chip->is_pbook_3400) { /* Enable CD and PC-card sound inputs. */ /* This is done by reading from address * f301a000, + 0x10 to enable the expansion-bay * CD sound input, + 0x80 to enable the PC-card * sound input. The 0x100 enables the SCSI bus * terminator power. */ chip->latch_base = ioremap (0xf301a000, 0x1000); in_8(chip->latch_base + 0x190); } else if (chip->is_pbook_G3) { struct device_node* mio; for (mio = chip->node->parent; mio; mio = mio->parent) { if (of_node_name_eq(mio, "mac-io")) { struct resource r; if (of_address_to_resource(mio, 0, &r) == 0) chip->macio_base = ioremap(r.start, 0x40); break; } } /* Enable CD sound input. */ /* The relevant bits for writing to this byte are 0x8f. * I haven't found out what the 0x80 bit does. * For the 0xf bits, writing 3 or 7 enables the CD * input, any other value disables it. Values * 1, 3, 5, 7 enable the microphone. Values 0, 2, * 4, 6, 8 - f enable the input from the modem. */ if (chip->macio_base) out_8(chip->macio_base + 0x37, 3); } /* Reset dbdma channels */ snd_pmac_dbdma_reset(chip); err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); if (err < 0) goto __error; *chip_return = chip; return 0; __error: snd_pmac_free(chip); return err; } /* * sleep notify for powerbook */ #ifdef CONFIG_PM /* * Save state when going to sleep, restore it afterwards. */ void snd_pmac_suspend(struct snd_pmac *chip) { unsigned long flags; snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot); if (chip->suspend) chip->suspend(chip); spin_lock_irqsave(&chip->reg_lock, flags); snd_pmac_beep_stop(chip); spin_unlock_irqrestore(&chip->reg_lock, flags); if (chip->irq >= 0) disable_irq(chip->irq); if (chip->tx_irq >= 0) disable_irq(chip->tx_irq); if (chip->rx_irq >= 0) disable_irq(chip->rx_irq); snd_pmac_sound_feature(chip, 0); } void snd_pmac_resume(struct snd_pmac *chip) { snd_pmac_sound_feature(chip, 1); if (chip->resume) chip->resume(chip); /* enable CD sound input */ if (chip->macio_base && chip->is_pbook_G3) out_8(chip->macio_base + 0x37, 3); else if (chip->is_pbook_3400) in_8(chip->latch_base + 0x190); snd_pmac_pcm_set_format(chip); if (chip->irq >= 0) enable_irq(chip->irq); if (chip->tx_irq >= 0) enable_irq(chip->tx_irq); if (chip->rx_irq >= 0) enable_irq(chip->rx_irq); snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0); } #endif /* CONFIG_PM */
linux-master
sound/ppc/pmac.c
// SPDX-License-Identifier: GPL-2.0-only /* * Audio support for PS3 * Copyright (C) 2007 Sony Computer Entertainment Inc. * All rights reserved. * Copyright 2006, 2007 Sony Corporation */ #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/gfp.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <sound/asound.h> #include <sound/control.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/memalloc.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <asm/dma.h> #include <asm/firmware.h> #include <asm/lv1call.h> #include <asm/ps3.h> #include <asm/ps3av.h> #include "snd_ps3.h" #include "snd_ps3_reg.h" /* * global */ static struct snd_ps3_card_info the_card; static int snd_ps3_start_delay = CONFIG_SND_PS3_DEFAULT_START_DELAY; module_param_named(start_delay, snd_ps3_start_delay, uint, 0644); MODULE_PARM_DESC(start_delay, "time to insert silent data in ms"); static int index = SNDRV_DEFAULT_IDX1; static char *id = SNDRV_DEFAULT_STR1; module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for PS3 soundchip."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for PS3 soundchip."); /* * PS3 audio register access */ static inline u32 read_reg(unsigned int reg) { return in_be32(the_card.mapped_mmio_vaddr + reg); } static inline void write_reg(unsigned int reg, u32 val) { out_be32(the_card.mapped_mmio_vaddr + reg, val); } static inline void update_reg(unsigned int reg, u32 or_val) { u32 newval = read_reg(reg) | or_val; write_reg(reg, newval); } static inline void update_mask_reg(unsigned int reg, u32 mask, u32 or_val) { u32 newval = (read_reg(reg) & mask) | or_val; write_reg(reg, newval); } /* * ALSA defs */ static const struct snd_pcm_hardware snd_ps3_pcm_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_NONINTERLEAVED | SNDRV_PCM_INFO_MMAP_VALID), .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE), .rates = (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000), .rate_min = 44100, .rate_max = 96000, .channels_min = 2, /* stereo only */ .channels_max = 2, .buffer_bytes_max = PS3_AUDIO_FIFO_SIZE * 64, /* interrupt by four stages */ .period_bytes_min = PS3_AUDIO_FIFO_STAGE_SIZE * 4, .period_bytes_max = PS3_AUDIO_FIFO_STAGE_SIZE * 4, .periods_min = 16, .periods_max = 32, /* buffer_size_max/ period_bytes_max */ .fifo_size = PS3_AUDIO_FIFO_SIZE }; static int snd_ps3_verify_dma_stop(struct snd_ps3_card_info *card, int count, int force_stop) { int dma_ch, done, retries, stop_forced = 0; uint32_t status; for (dma_ch = 0; dma_ch < 8; dma_ch++) { retries = count; do { status = read_reg(PS3_AUDIO_KICK(dma_ch)) & PS3_AUDIO_KICK_STATUS_MASK; switch (status) { case PS3_AUDIO_KICK_STATUS_DONE: case PS3_AUDIO_KICK_STATUS_NOTIFY: case PS3_AUDIO_KICK_STATUS_CLEAR: case PS3_AUDIO_KICK_STATUS_ERROR: done = 1; break; default: done = 0; udelay(10); } } while (!done && --retries); if (!retries && force_stop) { pr_info("%s: DMA ch %d is not stopped.", __func__, dma_ch); /* last resort. force to stop dma. * NOTE: this cause DMA done interrupts */ update_reg(PS3_AUDIO_CONFIG, PS3_AUDIO_CONFIG_CLEAR); stop_forced = 1; } } return stop_forced; } /* * wait for all dma is done. * NOTE: caller should reset card->running before call. * If not, the interrupt handler will re-start DMA, * then DMA is never stopped. */ static void snd_ps3_wait_for_dma_stop(struct snd_ps3_card_info *card) { int stop_forced; /* * wait for the last dma is done */ /* * expected maximum DMA done time is 5.7ms + something (DMA itself). * 5.7ms is from 16bit/sample 2ch 44.1Khz; the time next * DMA kick event would occur. */ stop_forced = snd_ps3_verify_dma_stop(card, 700, 1); /* * clear outstanding interrupts. */ update_reg(PS3_AUDIO_INTR_0, 0); update_reg(PS3_AUDIO_AX_IS, 0); /* *revert CLEAR bit since it will not reset automatically after DMA stop */ if (stop_forced) update_mask_reg(PS3_AUDIO_CONFIG, ~PS3_AUDIO_CONFIG_CLEAR, 0); /* ensure the hardware sees changes */ wmb(); } static void snd_ps3_kick_dma(struct snd_ps3_card_info *card) { update_reg(PS3_AUDIO_KICK(0), PS3_AUDIO_KICK_REQUEST); /* ensure the hardware sees the change */ wmb(); } /* * convert virtual addr to ioif bus addr. */ static dma_addr_t v_to_bus(struct snd_ps3_card_info *card, void *paddr, int ch) { return card->dma_start_bus_addr[ch] + (paddr - card->dma_start_vaddr[ch]); }; /* * increment ring buffer pointer. * NOTE: caller must hold write spinlock */ static void snd_ps3_bump_buffer(struct snd_ps3_card_info *card, enum snd_ps3_ch ch, size_t byte_count, int stage) { if (!stage) card->dma_last_transfer_vaddr[ch] = card->dma_next_transfer_vaddr[ch]; card->dma_next_transfer_vaddr[ch] += byte_count; if ((card->dma_start_vaddr[ch] + (card->dma_buffer_size / 2)) <= card->dma_next_transfer_vaddr[ch]) { card->dma_next_transfer_vaddr[ch] = card->dma_start_vaddr[ch]; } } /* * setup dmac to send data to audio and attenuate samples on the ring buffer */ static int snd_ps3_program_dma(struct snd_ps3_card_info *card, enum snd_ps3_dma_filltype filltype) { /* this dmac does not support over 4G */ uint32_t dma_addr; int fill_stages, dma_ch, stage; enum snd_ps3_ch ch; uint32_t ch0_kick_event = 0; /* initialize to mute gcc */ unsigned long irqsave; int silent = 0; switch (filltype) { case SND_PS3_DMA_FILLTYPE_SILENT_FIRSTFILL: silent = 1; fallthrough; case SND_PS3_DMA_FILLTYPE_FIRSTFILL: ch0_kick_event = PS3_AUDIO_KICK_EVENT_ALWAYS; break; case SND_PS3_DMA_FILLTYPE_SILENT_RUNNING: silent = 1; fallthrough; case SND_PS3_DMA_FILLTYPE_RUNNING: ch0_kick_event = PS3_AUDIO_KICK_EVENT_SERIALOUT0_EMPTY; break; } snd_ps3_verify_dma_stop(card, 700, 0); fill_stages = 4; spin_lock_irqsave(&card->dma_lock, irqsave); for (ch = 0; ch < 2; ch++) { for (stage = 0; stage < fill_stages; stage++) { dma_ch = stage * 2 + ch; if (silent) dma_addr = card->null_buffer_start_dma_addr; else dma_addr = v_to_bus(card, card->dma_next_transfer_vaddr[ch], ch); write_reg(PS3_AUDIO_SOURCE(dma_ch), (PS3_AUDIO_SOURCE_TARGET_SYSTEM_MEMORY | dma_addr)); /* dst: fixed to 3wire#0 */ if (ch == 0) write_reg(PS3_AUDIO_DEST(dma_ch), (PS3_AUDIO_DEST_TARGET_AUDIOFIFO | PS3_AUDIO_AO_3W_LDATA(0))); else write_reg(PS3_AUDIO_DEST(dma_ch), (PS3_AUDIO_DEST_TARGET_AUDIOFIFO | PS3_AUDIO_AO_3W_RDATA(0))); /* count always 1 DMA block (1/2 stage = 128 bytes) */ write_reg(PS3_AUDIO_DMASIZE(dma_ch), 0); /* bump pointer if needed */ if (!silent) snd_ps3_bump_buffer(card, ch, PS3_AUDIO_DMAC_BLOCK_SIZE, stage); /* kick event */ if (dma_ch == 0) write_reg(PS3_AUDIO_KICK(dma_ch), ch0_kick_event); else write_reg(PS3_AUDIO_KICK(dma_ch), PS3_AUDIO_KICK_EVENT_AUDIO_DMA(dma_ch - 1) | PS3_AUDIO_KICK_REQUEST); } } /* ensure the hardware sees the change */ wmb(); spin_unlock_irqrestore(&card->dma_lock, irqsave); return 0; } /* * Interrupt handler */ static irqreturn_t snd_ps3_interrupt(int irq, void *dev_id) { uint32_t port_intr; int underflow_occured = 0; struct snd_ps3_card_info *card = dev_id; if (!card->running) { update_reg(PS3_AUDIO_AX_IS, 0); update_reg(PS3_AUDIO_INTR_0, 0); return IRQ_HANDLED; } port_intr = read_reg(PS3_AUDIO_AX_IS); /* *serial buffer empty detected (every 4 times), *program next dma and kick it */ if (port_intr & PS3_AUDIO_AX_IE_ASOBEIE(0)) { write_reg(PS3_AUDIO_AX_IS, PS3_AUDIO_AX_IE_ASOBEIE(0)); if (port_intr & PS3_AUDIO_AX_IE_ASOBUIE(0)) { write_reg(PS3_AUDIO_AX_IS, port_intr); underflow_occured = 1; } if (card->silent) { /* we are still in silent time */ snd_ps3_program_dma(card, (underflow_occured) ? SND_PS3_DMA_FILLTYPE_SILENT_FIRSTFILL : SND_PS3_DMA_FILLTYPE_SILENT_RUNNING); snd_ps3_kick_dma(card); card->silent--; } else { snd_ps3_program_dma(card, (underflow_occured) ? SND_PS3_DMA_FILLTYPE_FIRSTFILL : SND_PS3_DMA_FILLTYPE_RUNNING); snd_ps3_kick_dma(card); snd_pcm_period_elapsed(card->substream); } } else if (port_intr & PS3_AUDIO_AX_IE_ASOBUIE(0)) { write_reg(PS3_AUDIO_AX_IS, PS3_AUDIO_AX_IE_ASOBUIE(0)); /* * serial out underflow, but buffer empty not detected. * in this case, fill fifo with 0 to recover. After * filling dummy data, serial automatically start to * consume them and then will generate normal buffer * empty interrupts. * If both buffer underflow and buffer empty are occurred, * it is better to do nomal data transfer than empty one */ snd_ps3_program_dma(card, SND_PS3_DMA_FILLTYPE_SILENT_FIRSTFILL); snd_ps3_kick_dma(card); snd_ps3_program_dma(card, SND_PS3_DMA_FILLTYPE_SILENT_FIRSTFILL); snd_ps3_kick_dma(card); } /* clear interrupt cause */ return IRQ_HANDLED; }; /* * audio mute on/off * mute_on : 0 output enabled * 1 mute */ static int snd_ps3_mute(int mute_on) { return ps3av_audio_mute(mute_on); } /* * av setting * NOTE: calling this function may generate audio interrupt. */ static int snd_ps3_change_avsetting(struct snd_ps3_card_info *card) { int ret, retries, i; pr_debug("%s: start\n", __func__); ret = ps3av_set_audio_mode(card->avs.avs_audio_ch, card->avs.avs_audio_rate, card->avs.avs_audio_width, card->avs.avs_audio_format, card->avs.avs_audio_source); /* * Reset the following unwanted settings: */ /* disable all 3wire buffers */ update_mask_reg(PS3_AUDIO_AO_3WMCTRL, ~(PS3_AUDIO_AO_3WMCTRL_ASOEN(0) | PS3_AUDIO_AO_3WMCTRL_ASOEN(1) | PS3_AUDIO_AO_3WMCTRL_ASOEN(2) | PS3_AUDIO_AO_3WMCTRL_ASOEN(3)), 0); wmb(); /* ensure the hardware sees the change */ /* wait for actually stopped */ retries = 1000; while ((read_reg(PS3_AUDIO_AO_3WMCTRL) & (PS3_AUDIO_AO_3WMCTRL_ASORUN(0) | PS3_AUDIO_AO_3WMCTRL_ASORUN(1) | PS3_AUDIO_AO_3WMCTRL_ASORUN(2) | PS3_AUDIO_AO_3WMCTRL_ASORUN(3))) && --retries) { udelay(1); } /* reset buffer pointer */ for (i = 0; i < 4; i++) { update_reg(PS3_AUDIO_AO_3WCTRL(i), PS3_AUDIO_AO_3WCTRL_ASOBRST_RESET); udelay(10); } wmb(); /* ensure the hardware actually start resetting */ /* enable 3wire#0 buffer */ update_reg(PS3_AUDIO_AO_3WMCTRL, PS3_AUDIO_AO_3WMCTRL_ASOEN(0)); /* In 24bit mode,ALSA inserts a zero byte at first byte of per sample */ update_mask_reg(PS3_AUDIO_AO_3WCTRL(0), ~PS3_AUDIO_AO_3WCTRL_ASODF, PS3_AUDIO_AO_3WCTRL_ASODF_LSB); update_mask_reg(PS3_AUDIO_AO_SPDCTRL(0), ~PS3_AUDIO_AO_SPDCTRL_SPODF, PS3_AUDIO_AO_SPDCTRL_SPODF_LSB); /* ensure all the setting above is written back to register */ wmb(); /* avsetting driver altered AX_IE, caller must reset it if you want */ pr_debug("%s: end\n", __func__); return ret; } /* * set sampling rate according to the substream */ static int snd_ps3_set_avsetting(struct snd_pcm_substream *substream) { struct snd_ps3_card_info *card = snd_pcm_substream_chip(substream); struct snd_ps3_avsetting_info avs; int ret; avs = card->avs; pr_debug("%s: called freq=%d width=%d\n", __func__, substream->runtime->rate, snd_pcm_format_width(substream->runtime->format)); pr_debug("%s: before freq=%d width=%d\n", __func__, card->avs.avs_audio_rate, card->avs.avs_audio_width); /* sample rate */ switch (substream->runtime->rate) { case 44100: avs.avs_audio_rate = PS3AV_CMD_AUDIO_FS_44K; break; case 48000: avs.avs_audio_rate = PS3AV_CMD_AUDIO_FS_48K; break; case 88200: avs.avs_audio_rate = PS3AV_CMD_AUDIO_FS_88K; break; case 96000: avs.avs_audio_rate = PS3AV_CMD_AUDIO_FS_96K; break; default: pr_info("%s: invalid rate %d\n", __func__, substream->runtime->rate); return 1; } /* width */ switch (snd_pcm_format_width(substream->runtime->format)) { case 16: avs.avs_audio_width = PS3AV_CMD_AUDIO_WORD_BITS_16; break; case 24: avs.avs_audio_width = PS3AV_CMD_AUDIO_WORD_BITS_24; break; default: pr_info("%s: invalid width %d\n", __func__, snd_pcm_format_width(substream->runtime->format)); return 1; } memcpy(avs.avs_cs_info, ps3av_mode_cs_info, 8); if (memcmp(&card->avs, &avs, sizeof(avs))) { pr_debug("%s: after freq=%d width=%d\n", __func__, card->avs.avs_audio_rate, card->avs.avs_audio_width); card->avs = avs; snd_ps3_change_avsetting(card); ret = 0; } else ret = 1; /* check CS non-audio bit and mute accordingly */ if (avs.avs_cs_info[0] & 0x02) ps3av_audio_mute_analog(1); /* mute if non-audio */ else ps3av_audio_mute_analog(0); return ret; } /* * PCM operators */ static int snd_ps3_pcm_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ps3_card_info *card = snd_pcm_substream_chip(substream); /* to retrieve substream/runtime in interrupt handler */ card->substream = substream; runtime->hw = snd_ps3_pcm_hw; card->start_delay = snd_ps3_start_delay; /* mute off */ snd_ps3_mute(0); /* this function sleep */ snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, PS3_AUDIO_FIFO_STAGE_SIZE * 4 * 2); return 0; }; static int snd_ps3_pcm_close(struct snd_pcm_substream *substream) { /* mute on */ snd_ps3_mute(1); return 0; }; static int snd_ps3_delay_to_bytes(struct snd_pcm_substream *substream, unsigned int delay_ms) { int ret; int rate ; rate = substream->runtime->rate; ret = snd_pcm_format_size(substream->runtime->format, rate * delay_ms / 1000) * substream->runtime->channels; pr_debug("%s: time=%d rate=%d bytes=%ld, frames=%d, ret=%d\n", __func__, delay_ms, rate, snd_pcm_format_size(substream->runtime->format, rate), rate * delay_ms / 1000, ret); return ret; }; static int snd_ps3_pcm_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ps3_card_info *card = snd_pcm_substream_chip(substream); unsigned long irqsave; if (!snd_ps3_set_avsetting(substream)) { /* some parameter changed */ write_reg(PS3_AUDIO_AX_IE, PS3_AUDIO_AX_IE_ASOBEIE(0) | PS3_AUDIO_AX_IE_ASOBUIE(0)); /* * let SPDIF device re-lock with SPDIF signal, * start with some silence */ card->silent = snd_ps3_delay_to_bytes(substream, card->start_delay) / (PS3_AUDIO_FIFO_STAGE_SIZE * 4); /* every 4 times */ } /* restart ring buffer pointer */ spin_lock_irqsave(&card->dma_lock, irqsave); { card->dma_buffer_size = runtime->dma_bytes; card->dma_last_transfer_vaddr[SND_PS3_CH_L] = card->dma_next_transfer_vaddr[SND_PS3_CH_L] = card->dma_start_vaddr[SND_PS3_CH_L] = runtime->dma_area; card->dma_start_bus_addr[SND_PS3_CH_L] = runtime->dma_addr; card->dma_last_transfer_vaddr[SND_PS3_CH_R] = card->dma_next_transfer_vaddr[SND_PS3_CH_R] = card->dma_start_vaddr[SND_PS3_CH_R] = runtime->dma_area + (runtime->dma_bytes / 2); card->dma_start_bus_addr[SND_PS3_CH_R] = runtime->dma_addr + (runtime->dma_bytes / 2); pr_debug("%s: vaddr=%p bus=%#llx\n", __func__, card->dma_start_vaddr[SND_PS3_CH_L], card->dma_start_bus_addr[SND_PS3_CH_L]); } spin_unlock_irqrestore(&card->dma_lock, irqsave); /* ensure the hardware sees the change */ mb(); return 0; }; static int snd_ps3_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_ps3_card_info *card = snd_pcm_substream_chip(substream); switch (cmd) { case SNDRV_PCM_TRIGGER_START: /* clear outstanding interrupts */ update_reg(PS3_AUDIO_AX_IS, 0); spin_lock(&card->dma_lock); { card->running = 1; } spin_unlock(&card->dma_lock); snd_ps3_program_dma(card, SND_PS3_DMA_FILLTYPE_SILENT_FIRSTFILL); snd_ps3_kick_dma(card); while (read_reg(PS3_AUDIO_KICK(7)) & PS3_AUDIO_KICK_STATUS_MASK) { udelay(1); } snd_ps3_program_dma(card, SND_PS3_DMA_FILLTYPE_SILENT_RUNNING); snd_ps3_kick_dma(card); break; case SNDRV_PCM_TRIGGER_STOP: spin_lock(&card->dma_lock); { card->running = 0; } spin_unlock(&card->dma_lock); snd_ps3_wait_for_dma_stop(card); break; default: break; } return 0; }; /* * report current pointer */ static snd_pcm_uframes_t snd_ps3_pcm_pointer( struct snd_pcm_substream *substream) { struct snd_ps3_card_info *card = snd_pcm_substream_chip(substream); size_t bytes; snd_pcm_uframes_t ret; spin_lock(&card->dma_lock); { bytes = (size_t)(card->dma_last_transfer_vaddr[SND_PS3_CH_L] - card->dma_start_vaddr[SND_PS3_CH_L]); } spin_unlock(&card->dma_lock); ret = bytes_to_frames(substream->runtime, bytes * 2); return ret; }; /* * SPDIF status bits controls */ static int snd_ps3_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } /* FIXME: ps3av_set_audio_mode() assumes only consumer mode */ static int snd_ps3_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { memset(ucontrol->value.iec958.status, 0xff, 8); return 0; } static int snd_ps3_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { return 0; } static int snd_ps3_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { memcpy(ucontrol->value.iec958.status, ps3av_mode_cs_info, 8); return 0; } static int snd_ps3_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { if (memcmp(ps3av_mode_cs_info, ucontrol->value.iec958.status, 8)) { memcpy(ps3av_mode_cs_info, ucontrol->value.iec958.status, 8); return 1; } return 0; } static const struct snd_kcontrol_new spdif_ctls[] = { { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK), .info = snd_ps3_spdif_mask_info, .get = snd_ps3_spdif_cmask_get, }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK), .info = snd_ps3_spdif_mask_info, .get = snd_ps3_spdif_pmask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .info = snd_ps3_spdif_mask_info, .get = snd_ps3_spdif_default_get, .put = snd_ps3_spdif_default_put, }, }; static const struct snd_pcm_ops snd_ps3_pcm_spdif_ops = { .open = snd_ps3_pcm_open, .close = snd_ps3_pcm_close, .prepare = snd_ps3_pcm_prepare, .trigger = snd_ps3_pcm_trigger, .pointer = snd_ps3_pcm_pointer, }; static int snd_ps3_map_mmio(void) { the_card.mapped_mmio_vaddr = ioremap(the_card.ps3_dev->m_region->bus_addr, the_card.ps3_dev->m_region->len); if (!the_card.mapped_mmio_vaddr) { pr_info("%s: ioremap 0 failed p=%#lx l=%#lx \n", __func__, the_card.ps3_dev->m_region->lpar_addr, the_card.ps3_dev->m_region->len); return -ENXIO; } return 0; }; static void snd_ps3_unmap_mmio(void) { iounmap(the_card.mapped_mmio_vaddr); the_card.mapped_mmio_vaddr = NULL; } static int snd_ps3_allocate_irq(void) { int ret; u64 lpar_addr, lpar_size; u64 __iomem *mapped; /* FIXME: move this to device_init (H/W probe) */ /* get irq outlet */ ret = lv1_gpu_device_map(1, &lpar_addr, &lpar_size); if (ret) { pr_info("%s: device map 1 failed %d\n", __func__, ret); return -ENXIO; } mapped = ioremap(lpar_addr, lpar_size); if (!mapped) { pr_info("%s: ioremap 1 failed \n", __func__); return -ENXIO; } the_card.audio_irq_outlet = in_be64(mapped); iounmap(mapped); ret = lv1_gpu_device_unmap(1); if (ret) pr_info("%s: unmap 1 failed\n", __func__); /* irq */ ret = ps3_irq_plug_setup(PS3_BINDING_CPU_ANY, the_card.audio_irq_outlet, &the_card.irq_no); if (ret) { pr_info("%s:ps3_alloc_irq failed (%d)\n", __func__, ret); return ret; } ret = request_irq(the_card.irq_no, snd_ps3_interrupt, 0, SND_PS3_DRIVER_NAME, &the_card); if (ret) { pr_info("%s: request_irq failed (%d)\n", __func__, ret); goto cleanup_irq; } return 0; cleanup_irq: ps3_irq_plug_destroy(the_card.irq_no); return ret; }; static void snd_ps3_free_irq(void) { free_irq(the_card.irq_no, &the_card); ps3_irq_plug_destroy(the_card.irq_no); } static void snd_ps3_audio_set_base_addr(uint64_t ioaddr_start) { uint64_t val; int ret; val = (ioaddr_start & (0x0fUL << 32)) >> (32 - 20) | (0x03UL << 24) | (0x0fUL << 12) | (PS3_AUDIO_IOID); ret = lv1_gpu_attribute(0x100, 0x007, val); if (ret) pr_info("%s: gpu_attribute failed %d\n", __func__, ret); } static void snd_ps3_audio_fixup(struct snd_ps3_card_info *card) { /* * avsetting driver seems to never change the following * so, init them here once */ /* no dma interrupt needed */ write_reg(PS3_AUDIO_INTR_EN_0, 0); /* use every 4 buffer empty interrupt */ update_mask_reg(PS3_AUDIO_AX_IC, PS3_AUDIO_AX_IC_AASOIMD_MASK, PS3_AUDIO_AX_IC_AASOIMD_EVERY4); /* enable 3wire clocks */ update_mask_reg(PS3_AUDIO_AO_3WMCTRL, ~(PS3_AUDIO_AO_3WMCTRL_ASOBCLKD_DISABLED | PS3_AUDIO_AO_3WMCTRL_ASOLRCKD_DISABLED), 0); update_reg(PS3_AUDIO_AO_3WMCTRL, PS3_AUDIO_AO_3WMCTRL_ASOPLRCK_DEFAULT); } static int snd_ps3_init_avsetting(struct snd_ps3_card_info *card) { int ret; pr_debug("%s: start\n", __func__); card->avs.avs_audio_ch = PS3AV_CMD_AUDIO_NUM_OF_CH_2; card->avs.avs_audio_rate = PS3AV_CMD_AUDIO_FS_48K; card->avs.avs_audio_width = PS3AV_CMD_AUDIO_WORD_BITS_16; card->avs.avs_audio_format = PS3AV_CMD_AUDIO_FORMAT_PCM; card->avs.avs_audio_source = PS3AV_CMD_AUDIO_SOURCE_SERIAL; memcpy(card->avs.avs_cs_info, ps3av_mode_cs_info, 8); ret = snd_ps3_change_avsetting(card); snd_ps3_audio_fixup(card); /* to start to generate SPDIF signal, fill data */ snd_ps3_program_dma(card, SND_PS3_DMA_FILLTYPE_SILENT_FIRSTFILL); snd_ps3_kick_dma(card); pr_debug("%s: end\n", __func__); return ret; } static int snd_ps3_driver_probe(struct ps3_system_bus_device *dev) { int i, ret; u64 lpar_addr, lpar_size; static u64 dummy_mask; the_card.ps3_dev = dev; ret = ps3_open_hv_device(dev); if (ret) return -ENXIO; /* setup MMIO */ ret = lv1_gpu_device_map(2, &lpar_addr, &lpar_size); if (ret) { pr_info("%s: device map 2 failed %d\n", __func__, ret); goto clean_open; } ps3_mmio_region_init(dev, dev->m_region, lpar_addr, lpar_size, PAGE_SHIFT); ret = snd_ps3_map_mmio(); if (ret) goto clean_dev_map; /* setup DMA area */ ps3_dma_region_init(dev, dev->d_region, PAGE_SHIFT, /* use system page size */ 0, /* dma type; not used */ NULL, ALIGN(SND_PS3_DMA_REGION_SIZE, PAGE_SIZE)); dev->d_region->ioid = PS3_AUDIO_IOID; ret = ps3_dma_region_create(dev->d_region); if (ret) { pr_info("%s: region_create\n", __func__); goto clean_mmio; } dummy_mask = DMA_BIT_MASK(32); dev->core.dma_mask = &dummy_mask; dma_set_coherent_mask(&dev->core, dummy_mask); snd_ps3_audio_set_base_addr(dev->d_region->bus_addr); /* CONFIG_SND_PS3_DEFAULT_START_DELAY */ the_card.start_delay = snd_ps3_start_delay; /* irq */ if (snd_ps3_allocate_irq()) { ret = -ENXIO; goto clean_dma_region; } /* create card instance */ ret = snd_card_new(&dev->core, index, id, THIS_MODULE, 0, &the_card.card); if (ret < 0) goto clean_irq; strcpy(the_card.card->driver, "PS3"); strcpy(the_card.card->shortname, "PS3"); strcpy(the_card.card->longname, "PS3 sound"); /* create control elements */ for (i = 0; i < ARRAY_SIZE(spdif_ctls); i++) { ret = snd_ctl_add(the_card.card, snd_ctl_new1(&spdif_ctls[i], &the_card)); if (ret < 0) goto clean_card; } /* create PCM devices instance */ /* NOTE:this driver works assuming pcm:substream = 1:1 */ ret = snd_pcm_new(the_card.card, "SPDIF", 0, /* instance index, will be stored pcm.device*/ 1, /* output substream */ 0, /* input substream */ &(the_card.pcm)); if (ret) goto clean_card; the_card.pcm->private_data = &the_card; strcpy(the_card.pcm->name, "SPDIF"); /* set pcm ops */ snd_pcm_set_ops(the_card.pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ps3_pcm_spdif_ops); the_card.pcm->info_flags = SNDRV_PCM_INFO_NONINTERLEAVED; /* pre-alloc PCM DMA buffer*/ snd_pcm_set_managed_buffer_all(the_card.pcm, SNDRV_DMA_TYPE_DEV, &dev->core, SND_PS3_PCM_PREALLOC_SIZE, SND_PS3_PCM_PREALLOC_SIZE); /* * allocate null buffer * its size should be lager than PS3_AUDIO_FIFO_STAGE_SIZE * 2 * PAGE_SIZE is enogh */ the_card.null_buffer_start_vaddr = dma_alloc_coherent(&the_card.ps3_dev->core, PAGE_SIZE, &the_card.null_buffer_start_dma_addr, GFP_KERNEL); if (!the_card.null_buffer_start_vaddr) { pr_info("%s: nullbuffer alloc failed\n", __func__); ret = -ENOMEM; goto clean_card; } pr_debug("%s: null vaddr=%p dma=%#llx\n", __func__, the_card.null_buffer_start_vaddr, the_card.null_buffer_start_dma_addr); /* set default sample rate/word width */ snd_ps3_init_avsetting(&the_card); /* register the card */ ret = snd_card_register(the_card.card); if (ret < 0) goto clean_dma_map; pr_info("%s started. start_delay=%dms\n", the_card.card->longname, the_card.start_delay); return 0; clean_dma_map: dma_free_coherent(&the_card.ps3_dev->core, PAGE_SIZE, the_card.null_buffer_start_vaddr, the_card.null_buffer_start_dma_addr); clean_card: snd_card_free(the_card.card); clean_irq: snd_ps3_free_irq(); clean_dma_region: ps3_dma_region_free(dev->d_region); clean_mmio: snd_ps3_unmap_mmio(); clean_dev_map: lv1_gpu_device_unmap(2); clean_open: ps3_close_hv_device(dev); /* * there is no destructor function to pcm. * midlayer automatically releases if the card removed */ return ret; }; /* snd_ps3_probe */ /* called when module removal */ static void snd_ps3_driver_remove(struct ps3_system_bus_device *dev) { pr_info("%s:start id=%d\n", __func__, dev->match_id); /* * ctl and preallocate buffer will be freed in * snd_card_free */ snd_card_free(the_card.card); dma_free_coherent(&dev->core, PAGE_SIZE, the_card.null_buffer_start_vaddr, the_card.null_buffer_start_dma_addr); ps3_dma_region_free(dev->d_region); snd_ps3_free_irq(); snd_ps3_unmap_mmio(); lv1_gpu_device_unmap(2); ps3_close_hv_device(dev); pr_info("%s:end id=%d\n", __func__, dev->match_id); } /* snd_ps3_remove */ static struct ps3_system_bus_driver snd_ps3_bus_driver_info = { .match_id = PS3_MATCH_ID_SOUND, .probe = snd_ps3_driver_probe, .remove = snd_ps3_driver_remove, .shutdown = snd_ps3_driver_remove, .core = { .name = SND_PS3_DRIVER_NAME, .owner = THIS_MODULE, }, }; /* * module/subsystem initialize/terminate */ static int __init snd_ps3_init(void) { int ret; if (!firmware_has_feature(FW_FEATURE_PS3_LV1)) return -ENXIO; memset(&the_card, 0, sizeof(the_card)); spin_lock_init(&the_card.dma_lock); /* register systembus DRIVER, this calls our probe() func */ ret = ps3_system_bus_driver_register(&snd_ps3_bus_driver_info); return ret; } module_init(snd_ps3_init); static void __exit snd_ps3_exit(void) { ps3_system_bus_driver_unregister(&snd_ps3_bus_driver_info); } module_exit(snd_ps3_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("PS3 sound driver"); MODULE_AUTHOR("Sony Computer Entertainment Inc."); MODULE_ALIAS(PS3_MODULE_ALIAS_SOUND);
linux-master
sound/ppc/snd_ps3.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PMac Tumbler/Snapper lowlevel functions * * Copyright (c) by Takashi Iwai <[email protected]> * * Rene Rebe <[email protected]>: * * update from shadow registers on wakeup and headphone plug * * automatically toggle DRC on headphone plug */ #include <linux/init.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/kmod.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/string.h> #include <linux/of_irq.h> #include <linux/io.h> #include <sound/core.h> #include <asm/irq.h> #include <asm/machdep.h> #include <asm/pmac_feature.h> #include "pmac.h" #include "tumbler_volume.h" #undef DEBUG #ifdef DEBUG #define DBG(fmt...) printk(KERN_DEBUG fmt) #else #define DBG(fmt...) #endif #define IS_G4DA (of_machine_is_compatible("PowerMac3,4")) /* i2c address for tumbler */ #define TAS_I2C_ADDR 0x34 /* registers */ #define TAS_REG_MCS 0x01 /* main control */ #define TAS_REG_DRC 0x02 #define TAS_REG_VOL 0x04 #define TAS_REG_TREBLE 0x05 #define TAS_REG_BASS 0x06 #define TAS_REG_INPUT1 0x07 #define TAS_REG_INPUT2 0x08 /* tas3001c */ #define TAS_REG_PCM TAS_REG_INPUT1 /* tas3004 */ #define TAS_REG_LMIX TAS_REG_INPUT1 #define TAS_REG_RMIX TAS_REG_INPUT2 #define TAS_REG_MCS2 0x43 /* main control 2 */ #define TAS_REG_ACS 0x40 /* analog control */ /* mono volumes for tas3001c/tas3004 */ enum { VOL_IDX_PCM_MONO, /* tas3001c only */ VOL_IDX_BASS, VOL_IDX_TREBLE, VOL_IDX_LAST_MONO }; /* stereo volumes for tas3004 */ enum { VOL_IDX_PCM, VOL_IDX_PCM2, VOL_IDX_ADC, VOL_IDX_LAST_MIX }; struct pmac_gpio { unsigned int addr; u8 active_val; u8 inactive_val; u8 active_state; }; struct pmac_tumbler { struct pmac_keywest i2c; struct pmac_gpio audio_reset; struct pmac_gpio amp_mute; struct pmac_gpio line_mute; struct pmac_gpio line_detect; struct pmac_gpio hp_mute; struct pmac_gpio hp_detect; int headphone_irq; int lineout_irq; unsigned int save_master_vol[2]; unsigned int master_vol[2]; unsigned int save_master_switch[2]; unsigned int master_switch[2]; unsigned int mono_vol[VOL_IDX_LAST_MONO]; unsigned int mix_vol[VOL_IDX_LAST_MIX][2]; /* stereo volumes for tas3004 */ int drc_range; int drc_enable; int capture_source; int anded_reset; int auto_mute_notify; int reset_on_sleep; u8 acs; }; /* */ static int send_init_client(struct pmac_keywest *i2c, const unsigned int *regs) { while (*regs > 0) { int err, count = 10; do { err = i2c_smbus_write_byte_data(i2c->client, regs[0], regs[1]); if (err >= 0) break; DBG("(W) i2c error %d\n", err); mdelay(10); } while (count--); if (err < 0) return -ENXIO; regs += 2; } return 0; } static int tumbler_init_client(struct pmac_keywest *i2c) { static const unsigned int regs[] = { /* normal operation, SCLK=64fps, i2s output, i2s input, 16bit width */ TAS_REG_MCS, (1<<6)|(2<<4)|(2<<2)|0, 0, /* terminator */ }; DBG("(I) tumbler init client\n"); return send_init_client(i2c, regs); } static int snapper_init_client(struct pmac_keywest *i2c) { static const unsigned int regs[] = { /* normal operation, SCLK=64fps, i2s output, 16bit width */ TAS_REG_MCS, (1<<6)|(2<<4)|0, /* normal operation, all-pass mode */ TAS_REG_MCS2, (1<<1), /* normal output, no deemphasis, A input, power-up, line-in */ TAS_REG_ACS, 0, 0, /* terminator */ }; DBG("(I) snapper init client\n"); return send_init_client(i2c, regs); } /* * gpio access */ #define do_gpio_write(gp, val) \ pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, (gp)->addr, val) #define do_gpio_read(gp) \ pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, (gp)->addr, 0) #define tumbler_gpio_free(gp) /* NOP */ static void write_audio_gpio(struct pmac_gpio *gp, int active) { if (! gp->addr) return; active = active ? gp->active_val : gp->inactive_val; do_gpio_write(gp, active); DBG("(I) gpio %x write %d\n", gp->addr, active); } static int check_audio_gpio(struct pmac_gpio *gp) { int ret; if (! gp->addr) return 0; ret = do_gpio_read(gp); return (ret & 0x1) == (gp->active_val & 0x1); } static int read_audio_gpio(struct pmac_gpio *gp) { int ret; if (! gp->addr) return 0; ret = do_gpio_read(gp); ret = (ret & 0x02) !=0; return ret == gp->active_state; } /* * update master volume */ static int tumbler_set_master_volume(struct pmac_tumbler *mix) { unsigned char block[6]; unsigned int left_vol, right_vol; if (! mix->i2c.client) return -ENODEV; if (! mix->master_switch[0]) left_vol = 0; else { left_vol = mix->master_vol[0]; if (left_vol >= ARRAY_SIZE(master_volume_table)) left_vol = ARRAY_SIZE(master_volume_table) - 1; left_vol = master_volume_table[left_vol]; } if (! mix->master_switch[1]) right_vol = 0; else { right_vol = mix->master_vol[1]; if (right_vol >= ARRAY_SIZE(master_volume_table)) right_vol = ARRAY_SIZE(master_volume_table) - 1; right_vol = master_volume_table[right_vol]; } block[0] = (left_vol >> 16) & 0xff; block[1] = (left_vol >> 8) & 0xff; block[2] = (left_vol >> 0) & 0xff; block[3] = (right_vol >> 16) & 0xff; block[4] = (right_vol >> 8) & 0xff; block[5] = (right_vol >> 0) & 0xff; if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_VOL, 6, block) < 0) { snd_printk(KERN_ERR "failed to set volume \n"); return -EINVAL; } DBG("(I) succeeded to set volume (%u, %u)\n", left_vol, right_vol); return 0; } /* output volume */ static int tumbler_info_master_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = ARRAY_SIZE(master_volume_table) - 1; return 0; } static int tumbler_get_master_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; ucontrol->value.integer.value[0] = mix->master_vol[0]; ucontrol->value.integer.value[1] = mix->master_vol[1]; return 0; } static int tumbler_put_master_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; unsigned int vol[2]; int change; vol[0] = ucontrol->value.integer.value[0]; vol[1] = ucontrol->value.integer.value[1]; if (vol[0] >= ARRAY_SIZE(master_volume_table) || vol[1] >= ARRAY_SIZE(master_volume_table)) return -EINVAL; change = mix->master_vol[0] != vol[0] || mix->master_vol[1] != vol[1]; if (change) { mix->master_vol[0] = vol[0]; mix->master_vol[1] = vol[1]; tumbler_set_master_volume(mix); } return change; } /* output switch */ static int tumbler_get_master_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; ucontrol->value.integer.value[0] = mix->master_switch[0]; ucontrol->value.integer.value[1] = mix->master_switch[1]; return 0; } static int tumbler_put_master_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; int change; change = mix->master_switch[0] != ucontrol->value.integer.value[0] || mix->master_switch[1] != ucontrol->value.integer.value[1]; if (change) { mix->master_switch[0] = !!ucontrol->value.integer.value[0]; mix->master_switch[1] = !!ucontrol->value.integer.value[1]; tumbler_set_master_volume(mix); } return change; } /* * TAS3001c dynamic range compression */ #define TAS3001_DRC_MAX 0x5f static int tumbler_set_drc(struct pmac_tumbler *mix) { unsigned char val[2]; if (! mix->i2c.client) return -ENODEV; if (mix->drc_enable) { val[0] = 0xc1; /* enable, 3:1 compression */ if (mix->drc_range > TAS3001_DRC_MAX) val[1] = 0xf0; else if (mix->drc_range < 0) val[1] = 0x91; else val[1] = mix->drc_range + 0x91; } else { val[0] = 0; val[1] = 0; } if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC, 2, val) < 0) { snd_printk(KERN_ERR "failed to set DRC\n"); return -EINVAL; } DBG("(I) succeeded to set DRC (%u, %u)\n", val[0], val[1]); return 0; } /* * TAS3004 */ #define TAS3004_DRC_MAX 0xef static int snapper_set_drc(struct pmac_tumbler *mix) { unsigned char val[6]; if (! mix->i2c.client) return -ENODEV; if (mix->drc_enable) val[0] = 0x50; /* 3:1 above threshold */ else val[0] = 0x51; /* disabled */ val[1] = 0x02; /* 1:1 below threshold */ if (mix->drc_range > 0xef) val[2] = 0xef; else if (mix->drc_range < 0) val[2] = 0x00; else val[2] = mix->drc_range; val[3] = 0xb0; val[4] = 0x60; val[5] = 0xa0; if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC, 6, val) < 0) { snd_printk(KERN_ERR "failed to set DRC\n"); return -EINVAL; } DBG("(I) succeeded to set DRC (%u, %u)\n", val[0], val[1]); return 0; } static int tumbler_info_drc_value(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = chip->model == PMAC_TUMBLER ? TAS3001_DRC_MAX : TAS3004_DRC_MAX; return 0; } static int tumbler_get_drc_value(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; mix = chip->mixer_data; if (!mix) return -ENODEV; ucontrol->value.integer.value[0] = mix->drc_range; return 0; } static int tumbler_put_drc_value(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; unsigned int val; int change; mix = chip->mixer_data; if (!mix) return -ENODEV; val = ucontrol->value.integer.value[0]; if (chip->model == PMAC_TUMBLER) { if (val > TAS3001_DRC_MAX) return -EINVAL; } else { if (val > TAS3004_DRC_MAX) return -EINVAL; } change = mix->drc_range != val; if (change) { mix->drc_range = val; if (chip->model == PMAC_TUMBLER) tumbler_set_drc(mix); else snapper_set_drc(mix); } return change; } static int tumbler_get_drc_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; mix = chip->mixer_data; if (!mix) return -ENODEV; ucontrol->value.integer.value[0] = mix->drc_enable; return 0; } static int tumbler_put_drc_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; int change; mix = chip->mixer_data; if (!mix) return -ENODEV; change = mix->drc_enable != ucontrol->value.integer.value[0]; if (change) { mix->drc_enable = !!ucontrol->value.integer.value[0]; if (chip->model == PMAC_TUMBLER) tumbler_set_drc(mix); else snapper_set_drc(mix); } return change; } /* * mono volumes */ struct tumbler_mono_vol { int index; int reg; int bytes; unsigned int max; const unsigned int *table; }; static int tumbler_set_mono_volume(struct pmac_tumbler *mix, const struct tumbler_mono_vol *info) { unsigned char block[4]; unsigned int vol; int i; if (! mix->i2c.client) return -ENODEV; vol = mix->mono_vol[info->index]; if (vol >= info->max) vol = info->max - 1; vol = info->table[vol]; for (i = 0; i < info->bytes; i++) block[i] = (vol >> ((info->bytes - i - 1) * 8)) & 0xff; if (i2c_smbus_write_i2c_block_data(mix->i2c.client, info->reg, info->bytes, block) < 0) { snd_printk(KERN_ERR "failed to set mono volume %d\n", info->index); return -EINVAL; } return 0; } static int tumbler_info_mono(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = info->max - 1; return 0; } static int tumbler_get_mono(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value; struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; mix = chip->mixer_data; if (!mix) return -ENODEV; ucontrol->value.integer.value[0] = mix->mono_vol[info->index]; return 0; } static int tumbler_put_mono(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value; struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; unsigned int vol; int change; mix = chip->mixer_data; if (!mix) return -ENODEV; vol = ucontrol->value.integer.value[0]; if (vol >= info->max) return -EINVAL; change = mix->mono_vol[info->index] != vol; if (change) { mix->mono_vol[info->index] = vol; tumbler_set_mono_volume(mix, info); } return change; } /* TAS3001c mono volumes */ static const struct tumbler_mono_vol tumbler_pcm_vol_info = { .index = VOL_IDX_PCM_MONO, .reg = TAS_REG_PCM, .bytes = 3, .max = ARRAY_SIZE(mixer_volume_table), .table = mixer_volume_table, }; static const struct tumbler_mono_vol tumbler_bass_vol_info = { .index = VOL_IDX_BASS, .reg = TAS_REG_BASS, .bytes = 1, .max = ARRAY_SIZE(bass_volume_table), .table = bass_volume_table, }; static const struct tumbler_mono_vol tumbler_treble_vol_info = { .index = VOL_IDX_TREBLE, .reg = TAS_REG_TREBLE, .bytes = 1, .max = ARRAY_SIZE(treble_volume_table), .table = treble_volume_table, }; /* TAS3004 mono volumes */ static const struct tumbler_mono_vol snapper_bass_vol_info = { .index = VOL_IDX_BASS, .reg = TAS_REG_BASS, .bytes = 1, .max = ARRAY_SIZE(snapper_bass_volume_table), .table = snapper_bass_volume_table, }; static const struct tumbler_mono_vol snapper_treble_vol_info = { .index = VOL_IDX_TREBLE, .reg = TAS_REG_TREBLE, .bytes = 1, .max = ARRAY_SIZE(snapper_treble_volume_table), .table = snapper_treble_volume_table, }; #define DEFINE_MONO(xname,type) { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\ .name = xname, \ .info = tumbler_info_mono, \ .get = tumbler_get_mono, \ .put = tumbler_put_mono, \ .private_value = (unsigned long)(&tumbler_##type##_vol_info), \ } #define DEFINE_SNAPPER_MONO(xname,type) { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\ .name = xname, \ .info = tumbler_info_mono, \ .get = tumbler_get_mono, \ .put = tumbler_put_mono, \ .private_value = (unsigned long)(&snapper_##type##_vol_info), \ } /* * snapper mixer volumes */ static int snapper_set_mix_vol1(struct pmac_tumbler *mix, int idx, int ch, int reg) { int i, j, vol; unsigned char block[9]; vol = mix->mix_vol[idx][ch]; if (vol >= ARRAY_SIZE(mixer_volume_table)) { vol = ARRAY_SIZE(mixer_volume_table) - 1; mix->mix_vol[idx][ch] = vol; } for (i = 0; i < 3; i++) { vol = mix->mix_vol[i][ch]; vol = mixer_volume_table[vol]; for (j = 0; j < 3; j++) block[i * 3 + j] = (vol >> ((2 - j) * 8)) & 0xff; } if (i2c_smbus_write_i2c_block_data(mix->i2c.client, reg, 9, block) < 0) { snd_printk(KERN_ERR "failed to set mono volume %d\n", reg); return -EINVAL; } return 0; } static int snapper_set_mix_vol(struct pmac_tumbler *mix, int idx) { if (! mix->i2c.client) return -ENODEV; if (snapper_set_mix_vol1(mix, idx, 0, TAS_REG_LMIX) < 0 || snapper_set_mix_vol1(mix, idx, 1, TAS_REG_RMIX) < 0) return -EINVAL; return 0; } static int snapper_info_mix(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = ARRAY_SIZE(mixer_volume_table) - 1; return 0; } static int snapper_get_mix(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = (int)kcontrol->private_value; struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; mix = chip->mixer_data; if (!mix) return -ENODEV; ucontrol->value.integer.value[0] = mix->mix_vol[idx][0]; ucontrol->value.integer.value[1] = mix->mix_vol[idx][1]; return 0; } static int snapper_put_mix(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = (int)kcontrol->private_value; struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; unsigned int vol[2]; int change; mix = chip->mixer_data; if (!mix) return -ENODEV; vol[0] = ucontrol->value.integer.value[0]; vol[1] = ucontrol->value.integer.value[1]; if (vol[0] >= ARRAY_SIZE(mixer_volume_table) || vol[1] >= ARRAY_SIZE(mixer_volume_table)) return -EINVAL; change = mix->mix_vol[idx][0] != vol[0] || mix->mix_vol[idx][1] != vol[1]; if (change) { mix->mix_vol[idx][0] = vol[0]; mix->mix_vol[idx][1] = vol[1]; snapper_set_mix_vol(mix, idx); } return change; } /* * mute switches. FIXME: Turn that into software mute when both outputs are muted * to avoid codec reset on ibook M7 */ enum { TUMBLER_MUTE_HP, TUMBLER_MUTE_AMP, TUMBLER_MUTE_LINE }; static int tumbler_get_mute_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; struct pmac_gpio *gp; mix = chip->mixer_data; if (!mix) return -ENODEV; switch(kcontrol->private_value) { case TUMBLER_MUTE_HP: gp = &mix->hp_mute; break; case TUMBLER_MUTE_AMP: gp = &mix->amp_mute; break; case TUMBLER_MUTE_LINE: gp = &mix->line_mute; break; default: gp = NULL; } if (gp == NULL) return -EINVAL; ucontrol->value.integer.value[0] = !check_audio_gpio(gp); return 0; } static int tumbler_put_mute_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; struct pmac_gpio *gp; int val; #ifdef PMAC_SUPPORT_AUTOMUTE if (chip->update_automute && chip->auto_mute) return 0; /* don't touch in the auto-mute mode */ #endif mix = chip->mixer_data; if (!mix) return -ENODEV; switch(kcontrol->private_value) { case TUMBLER_MUTE_HP: gp = &mix->hp_mute; break; case TUMBLER_MUTE_AMP: gp = &mix->amp_mute; break; case TUMBLER_MUTE_LINE: gp = &mix->line_mute; break; default: gp = NULL; } if (gp == NULL) return -EINVAL; val = ! check_audio_gpio(gp); if (val != ucontrol->value.integer.value[0]) { write_audio_gpio(gp, ! ucontrol->value.integer.value[0]); return 1; } return 0; } static int snapper_set_capture_source(struct pmac_tumbler *mix) { if (! mix->i2c.client) return -ENODEV; if (mix->capture_source) mix->acs |= 2; else mix->acs &= ~2; return i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs); } static int snapper_info_capture_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[2] = { "Line", "Mic" }; return snd_ctl_enum_info(uinfo, 1, 2, texts); } static int snapper_get_capture_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; ucontrol->value.enumerated.item[0] = mix->capture_source; return 0; } static int snapper_put_capture_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; int change; change = ucontrol->value.enumerated.item[0] != mix->capture_source; if (change) { mix->capture_source = !!ucontrol->value.enumerated.item[0]; snapper_set_capture_source(mix); } return change; } #define DEFINE_SNAPPER_MIX(xname,idx,ofs) { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\ .name = xname, \ .info = snapper_info_mix, \ .get = snapper_get_mix, \ .put = snapper_put_mix, \ .index = idx,\ .private_value = ofs, \ } /* */ static const struct snd_kcontrol_new tumbler_mixers[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Volume", .info = tumbler_info_master_volume, .get = tumbler_get_master_volume, .put = tumbler_put_master_volume }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Switch", .info = snd_pmac_boolean_stereo_info, .get = tumbler_get_master_switch, .put = tumbler_put_master_switch }, DEFINE_MONO("Tone Control - Bass", bass), DEFINE_MONO("Tone Control - Treble", treble), DEFINE_MONO("PCM Playback Volume", pcm), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "DRC Range", .info = tumbler_info_drc_value, .get = tumbler_get_drc_value, .put = tumbler_put_drc_value }, }; static const struct snd_kcontrol_new snapper_mixers[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Volume", .info = tumbler_info_master_volume, .get = tumbler_get_master_volume, .put = tumbler_put_master_volume }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Switch", .info = snd_pmac_boolean_stereo_info, .get = tumbler_get_master_switch, .put = tumbler_put_master_switch }, DEFINE_SNAPPER_MIX("PCM Playback Volume", 0, VOL_IDX_PCM), /* Alternative PCM is assigned to Mic analog loopback on iBook G4 */ DEFINE_SNAPPER_MIX("Mic Playback Volume", 0, VOL_IDX_PCM2), DEFINE_SNAPPER_MIX("Monitor Mix Volume", 0, VOL_IDX_ADC), DEFINE_SNAPPER_MONO("Tone Control - Bass", bass), DEFINE_SNAPPER_MONO("Tone Control - Treble", treble), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "DRC Range", .info = tumbler_info_drc_value, .get = tumbler_get_drc_value, .put = tumbler_put_drc_value }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input Source", /* FIXME: "Capture Source" doesn't work properly */ .info = snapper_info_capture_source, .get = snapper_get_capture_source, .put = snapper_put_capture_source }, }; static const struct snd_kcontrol_new tumbler_hp_sw = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Headphone Playback Switch", .info = snd_pmac_boolean_mono_info, .get = tumbler_get_mute_switch, .put = tumbler_put_mute_switch, .private_value = TUMBLER_MUTE_HP, }; static const struct snd_kcontrol_new tumbler_speaker_sw = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Speaker Playback Switch", .info = snd_pmac_boolean_mono_info, .get = tumbler_get_mute_switch, .put = tumbler_put_mute_switch, .private_value = TUMBLER_MUTE_AMP, }; static const struct snd_kcontrol_new tumbler_lineout_sw = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Line Out Playback Switch", .info = snd_pmac_boolean_mono_info, .get = tumbler_get_mute_switch, .put = tumbler_put_mute_switch, .private_value = TUMBLER_MUTE_LINE, }; static const struct snd_kcontrol_new tumbler_drc_sw = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "DRC Switch", .info = snd_pmac_boolean_mono_info, .get = tumbler_get_drc_switch, .put = tumbler_put_drc_switch }; #ifdef PMAC_SUPPORT_AUTOMUTE /* * auto-mute stuffs */ static int tumbler_detect_headphone(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; int detect = 0; if (mix->hp_detect.addr) detect |= read_audio_gpio(&mix->hp_detect); return detect; } static int tumbler_detect_lineout(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; int detect = 0; if (mix->line_detect.addr) detect |= read_audio_gpio(&mix->line_detect); return detect; } static void check_mute(struct snd_pmac *chip, struct pmac_gpio *gp, int val, int do_notify, struct snd_kcontrol *sw) { if (check_audio_gpio(gp) != val) { write_audio_gpio(gp, val); if (do_notify) snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &sw->id); } } static struct work_struct device_change; static struct snd_pmac *device_change_chip; static void device_change_handler(struct work_struct *work) { struct snd_pmac *chip = device_change_chip; struct pmac_tumbler *mix; int headphone, lineout; if (!chip) return; mix = chip->mixer_data; if (snd_BUG_ON(!mix)) return; headphone = tumbler_detect_headphone(chip); lineout = tumbler_detect_lineout(chip); DBG("headphone: %d, lineout: %d\n", headphone, lineout); if (headphone || lineout) { /* unmute headphone/lineout & mute speaker */ if (headphone) check_mute(chip, &mix->hp_mute, 0, mix->auto_mute_notify, chip->master_sw_ctl); if (lineout && mix->line_mute.addr != 0) check_mute(chip, &mix->line_mute, 0, mix->auto_mute_notify, chip->lineout_sw_ctl); if (mix->anded_reset) msleep(10); check_mute(chip, &mix->amp_mute, !IS_G4DA, mix->auto_mute_notify, chip->speaker_sw_ctl); } else { /* unmute speaker, mute others */ check_mute(chip, &mix->amp_mute, 0, mix->auto_mute_notify, chip->speaker_sw_ctl); if (mix->anded_reset) msleep(10); check_mute(chip, &mix->hp_mute, 1, mix->auto_mute_notify, chip->master_sw_ctl); if (mix->line_mute.addr != 0) check_mute(chip, &mix->line_mute, 1, mix->auto_mute_notify, chip->lineout_sw_ctl); } if (mix->auto_mute_notify) snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->hp_detect_ctl->id); #ifdef CONFIG_SND_POWERMAC_AUTO_DRC mix->drc_enable = ! (headphone || lineout); if (mix->auto_mute_notify) snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->drc_sw_ctl->id); if (chip->model == PMAC_TUMBLER) tumbler_set_drc(mix); else snapper_set_drc(mix); #endif /* reset the master volume so the correct amplification is applied */ tumbler_set_master_volume(mix); } static void tumbler_update_automute(struct snd_pmac *chip, int do_notify) { if (chip->auto_mute) { struct pmac_tumbler *mix; mix = chip->mixer_data; if (snd_BUG_ON(!mix)) return; mix->auto_mute_notify = do_notify; schedule_work(&device_change); } } #endif /* PMAC_SUPPORT_AUTOMUTE */ /* interrupt - headphone plug changed */ static irqreturn_t headphone_intr(int irq, void *devid) { struct snd_pmac *chip = devid; if (chip->update_automute && chip->initialized) { chip->update_automute(chip, 1); return IRQ_HANDLED; } return IRQ_NONE; } /* look for audio-gpio device */ static struct device_node *find_audio_device(const char *name) { struct device_node *gpiop; struct device_node *np; gpiop = of_find_node_by_name(NULL, "gpio"); if (! gpiop) return NULL; for_each_child_of_node(gpiop, np) { const char *property = of_get_property(np, "audio-gpio", NULL); if (property && strcmp(property, name) == 0) break; } of_node_put(gpiop); return np; } /* look for audio-gpio device */ static struct device_node *find_compatible_audio_device(const char *name) { struct device_node *gpiop; struct device_node *np; gpiop = of_find_node_by_name(NULL, "gpio"); if (!gpiop) return NULL; for_each_child_of_node(gpiop, np) { if (of_device_is_compatible(np, name)) break; } of_node_put(gpiop); return np; } /* find an audio device and get its address */ static long tumbler_find_device(const char *device, const char *platform, struct pmac_gpio *gp, int is_compatible) { struct device_node *node; const u32 *base; u32 addr; long ret; if (is_compatible) node = find_compatible_audio_device(device); else node = find_audio_device(device); if (! node) { DBG("(W) cannot find audio device %s !\n", device); snd_printdd("cannot find device %s\n", device); return -ENODEV; } base = of_get_property(node, "AAPL,address", NULL); if (! base) { base = of_get_property(node, "reg", NULL); if (!base) { DBG("(E) cannot find address for device %s !\n", device); snd_printd("cannot find address for device %s\n", device); of_node_put(node); return -ENODEV; } addr = *base; if (addr < 0x50) addr += 0x50; } else addr = *base; gp->addr = addr & 0x0000ffff; /* Try to find the active state, default to 0 ! */ base = of_get_property(node, "audio-gpio-active-state", NULL); if (base) { gp->active_state = *base; gp->active_val = (*base) ? 0x5 : 0x4; gp->inactive_val = (*base) ? 0x4 : 0x5; } else { const u32 *prop = NULL; gp->active_state = IS_G4DA && !strncmp(device, "keywest-gpio1", 13); gp->active_val = 0x4; gp->inactive_val = 0x5; /* Here are some crude hacks to extract the GPIO polarity and * open collector informations out of the do-platform script * as we don't yet have an interpreter for these things */ if (platform) prop = of_get_property(node, platform, NULL); if (prop) { if (prop[3] == 0x9 && prop[4] == 0x9) { gp->active_val = 0xd; gp->inactive_val = 0xc; } if (prop[3] == 0x1 && prop[4] == 0x1) { gp->active_val = 0x5; gp->inactive_val = 0x4; } } } DBG("(I) GPIO device %s found, offset: %x, active state: %d !\n", device, gp->addr, gp->active_state); ret = irq_of_parse_and_map(node, 0); of_node_put(node); return ret; } /* reset audio */ static void tumbler_reset_audio(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; if (mix->anded_reset) { DBG("(I) codec anded reset !\n"); write_audio_gpio(&mix->hp_mute, 0); write_audio_gpio(&mix->amp_mute, 0); msleep(200); write_audio_gpio(&mix->hp_mute, 1); write_audio_gpio(&mix->amp_mute, 1); msleep(100); write_audio_gpio(&mix->hp_mute, 0); write_audio_gpio(&mix->amp_mute, 0); msleep(100); } else { DBG("(I) codec normal reset !\n"); write_audio_gpio(&mix->audio_reset, 0); msleep(200); write_audio_gpio(&mix->audio_reset, 1); msleep(100); write_audio_gpio(&mix->audio_reset, 0); msleep(100); } } #ifdef CONFIG_PM /* suspend mixer */ static void tumbler_suspend(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; if (mix->headphone_irq >= 0) disable_irq(mix->headphone_irq); if (mix->lineout_irq >= 0) disable_irq(mix->lineout_irq); mix->save_master_switch[0] = mix->master_switch[0]; mix->save_master_switch[1] = mix->master_switch[1]; mix->save_master_vol[0] = mix->master_vol[0]; mix->save_master_vol[1] = mix->master_vol[1]; mix->master_switch[0] = mix->master_switch[1] = 0; tumbler_set_master_volume(mix); if (!mix->anded_reset) { write_audio_gpio(&mix->amp_mute, 1); write_audio_gpio(&mix->hp_mute, 1); } if (chip->model == PMAC_SNAPPER) { mix->acs |= 1; i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs); } if (mix->anded_reset) { write_audio_gpio(&mix->amp_mute, 1); write_audio_gpio(&mix->hp_mute, 1); } else write_audio_gpio(&mix->audio_reset, 1); } /* resume mixer */ static void tumbler_resume(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; mix->acs &= ~1; mix->master_switch[0] = mix->save_master_switch[0]; mix->master_switch[1] = mix->save_master_switch[1]; mix->master_vol[0] = mix->save_master_vol[0]; mix->master_vol[1] = mix->save_master_vol[1]; tumbler_reset_audio(chip); if (mix->i2c.client && mix->i2c.init_client) { if (mix->i2c.init_client(&mix->i2c) < 0) printk(KERN_ERR "tumbler_init_client error\n"); } else printk(KERN_ERR "tumbler: i2c is not initialized\n"); if (chip->model == PMAC_TUMBLER) { tumbler_set_mono_volume(mix, &tumbler_pcm_vol_info); tumbler_set_mono_volume(mix, &tumbler_bass_vol_info); tumbler_set_mono_volume(mix, &tumbler_treble_vol_info); tumbler_set_drc(mix); } else { snapper_set_mix_vol(mix, VOL_IDX_PCM); snapper_set_mix_vol(mix, VOL_IDX_PCM2); snapper_set_mix_vol(mix, VOL_IDX_ADC); tumbler_set_mono_volume(mix, &snapper_bass_vol_info); tumbler_set_mono_volume(mix, &snapper_treble_vol_info); snapper_set_drc(mix); snapper_set_capture_source(mix); } tumbler_set_master_volume(mix); if (chip->update_automute) chip->update_automute(chip, 0); if (mix->headphone_irq >= 0) { unsigned char val; enable_irq(mix->headphone_irq); /* activate headphone status interrupts */ val = do_gpio_read(&mix->hp_detect); do_gpio_write(&mix->hp_detect, val | 0x80); } if (mix->lineout_irq >= 0) enable_irq(mix->lineout_irq); } #endif /* initialize tumbler */ static int tumbler_init(struct snd_pmac *chip) { int irq; struct pmac_tumbler *mix = chip->mixer_data; if (tumbler_find_device("audio-hw-reset", "platform-do-hw-reset", &mix->audio_reset, 0) < 0) tumbler_find_device("hw-reset", "platform-do-hw-reset", &mix->audio_reset, 1); if (tumbler_find_device("amp-mute", "platform-do-amp-mute", &mix->amp_mute, 0) < 0) tumbler_find_device("amp-mute", "platform-do-amp-mute", &mix->amp_mute, 1); if (tumbler_find_device("headphone-mute", "platform-do-headphone-mute", &mix->hp_mute, 0) < 0) tumbler_find_device("headphone-mute", "platform-do-headphone-mute", &mix->hp_mute, 1); if (tumbler_find_device("line-output-mute", "platform-do-lineout-mute", &mix->line_mute, 0) < 0) tumbler_find_device("line-output-mute", "platform-do-lineout-mute", &mix->line_mute, 1); irq = tumbler_find_device("headphone-detect", NULL, &mix->hp_detect, 0); if (irq <= 0) irq = tumbler_find_device("headphone-detect", NULL, &mix->hp_detect, 1); if (irq <= 0) irq = tumbler_find_device("keywest-gpio15", NULL, &mix->hp_detect, 1); mix->headphone_irq = irq; irq = tumbler_find_device("line-output-detect", NULL, &mix->line_detect, 0); if (irq <= 0) irq = tumbler_find_device("line-output-detect", NULL, &mix->line_detect, 1); if (IS_G4DA && irq <= 0) irq = tumbler_find_device("keywest-gpio16", NULL, &mix->line_detect, 1); mix->lineout_irq = irq; tumbler_reset_audio(chip); return 0; } static void tumbler_cleanup(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; if (! mix) return; if (mix->headphone_irq >= 0) free_irq(mix->headphone_irq, chip); if (mix->lineout_irq >= 0) free_irq(mix->lineout_irq, chip); tumbler_gpio_free(&mix->audio_reset); tumbler_gpio_free(&mix->amp_mute); tumbler_gpio_free(&mix->hp_mute); tumbler_gpio_free(&mix->hp_detect); snd_pmac_keywest_cleanup(&mix->i2c); kfree(mix); chip->mixer_data = NULL; } /* exported */ int snd_pmac_tumbler_init(struct snd_pmac *chip) { int i, err; struct pmac_tumbler *mix; const u32 *paddr; struct device_node *tas_node, *np; char *chipname; request_module("i2c-powermac"); mix = kzalloc(sizeof(*mix), GFP_KERNEL); if (! mix) return -ENOMEM; mix->headphone_irq = -1; chip->mixer_data = mix; chip->mixer_free = tumbler_cleanup; mix->anded_reset = 0; mix->reset_on_sleep = 1; for_each_child_of_node(chip->node, np) { if (of_node_name_eq(np, "sound")) { if (of_property_read_bool(np, "has-anded-reset")) mix->anded_reset = 1; if (of_property_present(np, "layout-id")) mix->reset_on_sleep = 0; of_node_put(np); break; } } err = tumbler_init(chip); if (err < 0) return err; /* set up TAS */ tas_node = of_find_node_by_name(NULL, "deq"); if (tas_node == NULL) tas_node = of_find_node_by_name(NULL, "codec"); if (tas_node == NULL) return -ENODEV; paddr = of_get_property(tas_node, "i2c-address", NULL); if (paddr == NULL) paddr = of_get_property(tas_node, "reg", NULL); if (paddr) mix->i2c.addr = (*paddr) >> 1; else mix->i2c.addr = TAS_I2C_ADDR; of_node_put(tas_node); DBG("(I) TAS i2c address is: %x\n", mix->i2c.addr); if (chip->model == PMAC_TUMBLER) { mix->i2c.init_client = tumbler_init_client; mix->i2c.name = "TAS3001c"; chipname = "Tumbler"; } else { mix->i2c.init_client = snapper_init_client; mix->i2c.name = "TAS3004"; chipname = "Snapper"; } err = snd_pmac_keywest_init(&mix->i2c); if (err < 0) return err; /* * build mixers */ sprintf(chip->card->mixername, "PowerMac %s", chipname); if (chip->model == PMAC_TUMBLER) { for (i = 0; i < ARRAY_SIZE(tumbler_mixers); i++) { err = snd_ctl_add(chip->card, snd_ctl_new1(&tumbler_mixers[i], chip)); if (err < 0) return err; } } else { for (i = 0; i < ARRAY_SIZE(snapper_mixers); i++) { err = snd_ctl_add(chip->card, snd_ctl_new1(&snapper_mixers[i], chip)); if (err < 0) return err; } } chip->master_sw_ctl = snd_ctl_new1(&tumbler_hp_sw, chip); err = snd_ctl_add(chip->card, chip->master_sw_ctl); if (err < 0) return err; chip->speaker_sw_ctl = snd_ctl_new1(&tumbler_speaker_sw, chip); err = snd_ctl_add(chip->card, chip->speaker_sw_ctl); if (err < 0) return err; if (mix->line_mute.addr != 0) { chip->lineout_sw_ctl = snd_ctl_new1(&tumbler_lineout_sw, chip); err = snd_ctl_add(chip->card, chip->lineout_sw_ctl); if (err < 0) return err; } chip->drc_sw_ctl = snd_ctl_new1(&tumbler_drc_sw, chip); err = snd_ctl_add(chip->card, chip->drc_sw_ctl); if (err < 0) return err; /* set initial DRC range to 60% */ if (chip->model == PMAC_TUMBLER) mix->drc_range = (TAS3001_DRC_MAX * 6) / 10; else mix->drc_range = (TAS3004_DRC_MAX * 6) / 10; mix->drc_enable = 1; /* will be changed later if AUTO_DRC is set */ if (chip->model == PMAC_TUMBLER) tumbler_set_drc(mix); else snapper_set_drc(mix); #ifdef CONFIG_PM chip->suspend = tumbler_suspend; chip->resume = tumbler_resume; #endif INIT_WORK(&device_change, device_change_handler); device_change_chip = chip; #ifdef PMAC_SUPPORT_AUTOMUTE if (mix->headphone_irq >= 0 || mix->lineout_irq >= 0) { err = snd_pmac_add_automute(chip); if (err < 0) return err; } chip->detect_headphone = tumbler_detect_headphone; chip->update_automute = tumbler_update_automute; tumbler_update_automute(chip, 0); /* update the status only */ /* activate headphone status interrupts */ if (mix->headphone_irq >= 0) { unsigned char val; err = request_irq(mix->headphone_irq, headphone_intr, 0, "Sound Headphone Detection", chip); if (err < 0) return 0; /* activate headphone status interrupts */ val = do_gpio_read(&mix->hp_detect); do_gpio_write(&mix->hp_detect, val | 0x80); } if (mix->lineout_irq >= 0) { unsigned char val; err = request_irq(mix->lineout_irq, headphone_intr, 0, "Sound Lineout Detection", chip); if (err < 0) return 0; /* activate headphone status interrupts */ val = do_gpio_read(&mix->line_detect); do_gpio_write(&mix->line_detect, val | 0x80); } #endif return 0; }
linux-master
sound/ppc/tumbler.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PMac Burgundy lowlevel functions * * Copyright (c) by Takashi Iwai <[email protected]> * code based on dmasound.c. */ #include <linux/io.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/of.h> #include <sound/core.h> #include "pmac.h" #include "burgundy.h" /* Waits for busy flag to clear */ static inline void snd_pmac_burgundy_busy_wait(struct snd_pmac *chip) { int timeout = 50; while ((in_le32(&chip->awacs->codec_ctrl) & MASK_NEWECMD) && timeout--) udelay(1); if (timeout < 0) printk(KERN_DEBUG "burgundy_busy_wait: timeout\n"); } static inline void snd_pmac_burgundy_extend_wait(struct snd_pmac *chip) { int timeout; timeout = 50; while (!(in_le32(&chip->awacs->codec_stat) & MASK_EXTEND) && timeout--) udelay(1); if (timeout < 0) printk(KERN_DEBUG "burgundy_extend_wait: timeout #1\n"); timeout = 50; while ((in_le32(&chip->awacs->codec_stat) & MASK_EXTEND) && timeout--) udelay(1); if (timeout < 0) printk(KERN_DEBUG "burgundy_extend_wait: timeout #2\n"); } static void snd_pmac_burgundy_wcw(struct snd_pmac *chip, unsigned addr, unsigned val) { out_le32(&chip->awacs->codec_ctrl, addr + 0x200c00 + (val & 0xff)); snd_pmac_burgundy_busy_wait(chip); out_le32(&chip->awacs->codec_ctrl, addr + 0x200d00 +((val>>8) & 0xff)); snd_pmac_burgundy_busy_wait(chip); out_le32(&chip->awacs->codec_ctrl, addr + 0x200e00 +((val>>16) & 0xff)); snd_pmac_burgundy_busy_wait(chip); out_le32(&chip->awacs->codec_ctrl, addr + 0x200f00 +((val>>24) & 0xff)); snd_pmac_burgundy_busy_wait(chip); } static unsigned snd_pmac_burgundy_rcw(struct snd_pmac *chip, unsigned addr) { unsigned val = 0; unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); out_le32(&chip->awacs->codec_ctrl, addr + 0x100000); snd_pmac_burgundy_busy_wait(chip); snd_pmac_burgundy_extend_wait(chip); val += (in_le32(&chip->awacs->codec_stat) >> 4) & 0xff; out_le32(&chip->awacs->codec_ctrl, addr + 0x100100); snd_pmac_burgundy_busy_wait(chip); snd_pmac_burgundy_extend_wait(chip); val += ((in_le32(&chip->awacs->codec_stat)>>4) & 0xff) <<8; out_le32(&chip->awacs->codec_ctrl, addr + 0x100200); snd_pmac_burgundy_busy_wait(chip); snd_pmac_burgundy_extend_wait(chip); val += ((in_le32(&chip->awacs->codec_stat)>>4) & 0xff) <<16; out_le32(&chip->awacs->codec_ctrl, addr + 0x100300); snd_pmac_burgundy_busy_wait(chip); snd_pmac_burgundy_extend_wait(chip); val += ((in_le32(&chip->awacs->codec_stat)>>4) & 0xff) <<24; spin_unlock_irqrestore(&chip->reg_lock, flags); return val; } static void snd_pmac_burgundy_wcb(struct snd_pmac *chip, unsigned int addr, unsigned int val) { out_le32(&chip->awacs->codec_ctrl, addr + 0x300000 + (val & 0xff)); snd_pmac_burgundy_busy_wait(chip); } static unsigned snd_pmac_burgundy_rcb(struct snd_pmac *chip, unsigned int addr) { unsigned val = 0; unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); out_le32(&chip->awacs->codec_ctrl, addr + 0x100000); snd_pmac_burgundy_busy_wait(chip); snd_pmac_burgundy_extend_wait(chip); val += (in_le32(&chip->awacs->codec_stat) >> 4) & 0xff; spin_unlock_irqrestore(&chip->reg_lock, flags); return val; } #define BASE2ADDR(base) ((base) << 12) #define ADDR2BASE(addr) ((addr) >> 12) /* * Burgundy volume: 0 - 100, stereo, word reg */ static void snd_pmac_burgundy_write_volume(struct snd_pmac *chip, unsigned int address, long *volume, int shift) { int hardvolume, lvolume, rvolume; if (volume[0] < 0 || volume[0] > 100 || volume[1] < 0 || volume[1] > 100) return; /* -EINVAL */ lvolume = volume[0] ? volume[0] + BURGUNDY_VOLUME_OFFSET : 0; rvolume = volume[1] ? volume[1] + BURGUNDY_VOLUME_OFFSET : 0; hardvolume = lvolume + (rvolume << shift); if (shift == 8) hardvolume |= hardvolume << 16; snd_pmac_burgundy_wcw(chip, address, hardvolume); } static void snd_pmac_burgundy_read_volume(struct snd_pmac *chip, unsigned int address, long *volume, int shift) { int wvolume; wvolume = snd_pmac_burgundy_rcw(chip, address); volume[0] = wvolume & 0xff; if (volume[0] >= BURGUNDY_VOLUME_OFFSET) volume[0] -= BURGUNDY_VOLUME_OFFSET; else volume[0] = 0; volume[1] = (wvolume >> shift) & 0xff; if (volume[1] >= BURGUNDY_VOLUME_OFFSET) volume[1] -= BURGUNDY_VOLUME_OFFSET; else volume[1] = 0; } static int snd_pmac_burgundy_info_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 100; return 0; } static int snd_pmac_burgundy_get_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff); int shift = (kcontrol->private_value >> 8) & 0xff; snd_pmac_burgundy_read_volume(chip, addr, ucontrol->value.integer.value, shift); return 0; } static int snd_pmac_burgundy_put_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff); int shift = (kcontrol->private_value >> 8) & 0xff; long nvoices[2]; snd_pmac_burgundy_write_volume(chip, addr, ucontrol->value.integer.value, shift); snd_pmac_burgundy_read_volume(chip, addr, nvoices, shift); return (nvoices[0] != ucontrol->value.integer.value[0] || nvoices[1] != ucontrol->value.integer.value[1]); } #define BURGUNDY_VOLUME_W(xname, xindex, addr, shift) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex,\ .info = snd_pmac_burgundy_info_volume,\ .get = snd_pmac_burgundy_get_volume,\ .put = snd_pmac_burgundy_put_volume,\ .private_value = ((ADDR2BASE(addr) & 0xff) | ((shift) << 8)) } /* * Burgundy volume: 0 - 100, stereo, 2-byte reg */ static void snd_pmac_burgundy_write_volume_2b(struct snd_pmac *chip, unsigned int address, long *volume, int off) { int lvolume, rvolume; off |= off << 2; lvolume = volume[0] ? volume[0] + BURGUNDY_VOLUME_OFFSET : 0; rvolume = volume[1] ? volume[1] + BURGUNDY_VOLUME_OFFSET : 0; snd_pmac_burgundy_wcb(chip, address + off, lvolume); snd_pmac_burgundy_wcb(chip, address + off + 0x500, rvolume); } static void snd_pmac_burgundy_read_volume_2b(struct snd_pmac *chip, unsigned int address, long *volume, int off) { volume[0] = snd_pmac_burgundy_rcb(chip, address + off); if (volume[0] >= BURGUNDY_VOLUME_OFFSET) volume[0] -= BURGUNDY_VOLUME_OFFSET; else volume[0] = 0; volume[1] = snd_pmac_burgundy_rcb(chip, address + off + 0x100); if (volume[1] >= BURGUNDY_VOLUME_OFFSET) volume[1] -= BURGUNDY_VOLUME_OFFSET; else volume[1] = 0; } static int snd_pmac_burgundy_info_volume_2b(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 100; return 0; } static int snd_pmac_burgundy_get_volume_2b(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff); int off = kcontrol->private_value & 0x300; snd_pmac_burgundy_read_volume_2b(chip, addr, ucontrol->value.integer.value, off); return 0; } static int snd_pmac_burgundy_put_volume_2b(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff); int off = kcontrol->private_value & 0x300; long nvoices[2]; snd_pmac_burgundy_write_volume_2b(chip, addr, ucontrol->value.integer.value, off); snd_pmac_burgundy_read_volume_2b(chip, addr, nvoices, off); return (nvoices[0] != ucontrol->value.integer.value[0] || nvoices[1] != ucontrol->value.integer.value[1]); } #define BURGUNDY_VOLUME_2B(xname, xindex, addr, off) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex,\ .info = snd_pmac_burgundy_info_volume_2b,\ .get = snd_pmac_burgundy_get_volume_2b,\ .put = snd_pmac_burgundy_put_volume_2b,\ .private_value = ((ADDR2BASE(addr) & 0xff) | ((off) << 8)) } /* * Burgundy gain/attenuation: 0 - 15, mono/stereo, byte reg */ static int snd_pmac_burgundy_info_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int stereo = (kcontrol->private_value >> 24) & 1; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = stereo + 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 15; return 0; } static int snd_pmac_burgundy_get_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff); int stereo = (kcontrol->private_value >> 24) & 1; int atten = (kcontrol->private_value >> 25) & 1; int oval; oval = snd_pmac_burgundy_rcb(chip, addr); if (atten) oval = ~oval & 0xff; ucontrol->value.integer.value[0] = oval & 0xf; if (stereo) ucontrol->value.integer.value[1] = (oval >> 4) & 0xf; return 0; } static int snd_pmac_burgundy_put_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff); int stereo = (kcontrol->private_value >> 24) & 1; int atten = (kcontrol->private_value >> 25) & 1; int oval, val; oval = snd_pmac_burgundy_rcb(chip, addr); if (atten) oval = ~oval & 0xff; val = ucontrol->value.integer.value[0]; if (stereo) val |= ucontrol->value.integer.value[1] << 4; else val |= ucontrol->value.integer.value[0] << 4; if (atten) val = ~val & 0xff; snd_pmac_burgundy_wcb(chip, addr, val); return val != oval; } #define BURGUNDY_VOLUME_B(xname, xindex, addr, stereo, atten) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex,\ .info = snd_pmac_burgundy_info_gain,\ .get = snd_pmac_burgundy_get_gain,\ .put = snd_pmac_burgundy_put_gain,\ .private_value = (ADDR2BASE(addr) | ((stereo) << 24) | ((atten) << 25)) } /* * Burgundy switch: 0/1, mono/stereo, word reg */ static int snd_pmac_burgundy_info_switch_w(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int stereo = (kcontrol->private_value >> 24) & 1; uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = stereo + 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } static int snd_pmac_burgundy_get_switch_w(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int addr = BASE2ADDR((kcontrol->private_value >> 16) & 0xff); int lmask = 1 << (kcontrol->private_value & 0xff); int rmask = 1 << ((kcontrol->private_value >> 8) & 0xff); int stereo = (kcontrol->private_value >> 24) & 1; int val = snd_pmac_burgundy_rcw(chip, addr); ucontrol->value.integer.value[0] = (val & lmask) ? 1 : 0; if (stereo) ucontrol->value.integer.value[1] = (val & rmask) ? 1 : 0; return 0; } static int snd_pmac_burgundy_put_switch_w(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int addr = BASE2ADDR((kcontrol->private_value >> 16) & 0xff); int lmask = 1 << (kcontrol->private_value & 0xff); int rmask = 1 << ((kcontrol->private_value >> 8) & 0xff); int stereo = (kcontrol->private_value >> 24) & 1; int val, oval; oval = snd_pmac_burgundy_rcw(chip, addr); val = oval & ~(lmask | (stereo ? rmask : 0)); if (ucontrol->value.integer.value[0]) val |= lmask; if (stereo && ucontrol->value.integer.value[1]) val |= rmask; snd_pmac_burgundy_wcw(chip, addr, val); return val != oval; } #define BURGUNDY_SWITCH_W(xname, xindex, addr, lbit, rbit, stereo) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex,\ .info = snd_pmac_burgundy_info_switch_w,\ .get = snd_pmac_burgundy_get_switch_w,\ .put = snd_pmac_burgundy_put_switch_w,\ .private_value = ((lbit) | ((rbit) << 8)\ | (ADDR2BASE(addr) << 16) | ((stereo) << 24)) } /* * Burgundy switch: 0/1, mono/stereo, byte reg, bit mask */ static int snd_pmac_burgundy_info_switch_b(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int stereo = (kcontrol->private_value >> 24) & 1; uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = stereo + 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } static int snd_pmac_burgundy_get_switch_b(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int addr = BASE2ADDR((kcontrol->private_value >> 16) & 0xff); int lmask = kcontrol->private_value & 0xff; int rmask = (kcontrol->private_value >> 8) & 0xff; int stereo = (kcontrol->private_value >> 24) & 1; int val = snd_pmac_burgundy_rcb(chip, addr); ucontrol->value.integer.value[0] = (val & lmask) ? 1 : 0; if (stereo) ucontrol->value.integer.value[1] = (val & rmask) ? 1 : 0; return 0; } static int snd_pmac_burgundy_put_switch_b(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int addr = BASE2ADDR((kcontrol->private_value >> 16) & 0xff); int lmask = kcontrol->private_value & 0xff; int rmask = (kcontrol->private_value >> 8) & 0xff; int stereo = (kcontrol->private_value >> 24) & 1; int val, oval; oval = snd_pmac_burgundy_rcb(chip, addr); val = oval & ~(lmask | rmask); if (ucontrol->value.integer.value[0]) val |= lmask; if (stereo && ucontrol->value.integer.value[1]) val |= rmask; snd_pmac_burgundy_wcb(chip, addr, val); return val != oval; } #define BURGUNDY_SWITCH_B(xname, xindex, addr, lmask, rmask, stereo) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex,\ .info = snd_pmac_burgundy_info_switch_b,\ .get = snd_pmac_burgundy_get_switch_b,\ .put = snd_pmac_burgundy_put_switch_b,\ .private_value = ((lmask) | ((rmask) << 8)\ | (ADDR2BASE(addr) << 16) | ((stereo) << 24)) } /* * Burgundy mixers */ static const struct snd_kcontrol_new snd_pmac_burgundy_mixers[] = { BURGUNDY_VOLUME_W("Master Playback Volume", 0, MASK_ADDR_BURGUNDY_MASTER_VOLUME, 8), BURGUNDY_VOLUME_W("CD Capture Volume", 0, MASK_ADDR_BURGUNDY_VOLCD, 16), BURGUNDY_VOLUME_2B("Input Capture Volume", 0, MASK_ADDR_BURGUNDY_VOLMIX01, 2), BURGUNDY_VOLUME_2B("Mixer Playback Volume", 0, MASK_ADDR_BURGUNDY_VOLMIX23, 0), BURGUNDY_VOLUME_B("CD Gain Capture Volume", 0, MASK_ADDR_BURGUNDY_GAINCD, 1, 0), BURGUNDY_SWITCH_W("Master Capture Switch", 0, MASK_ADDR_BURGUNDY_OUTPUTENABLES, 24, 0, 0), BURGUNDY_SWITCH_W("CD Capture Switch", 0, MASK_ADDR_BURGUNDY_CAPTURESELECTS, 0, 16, 1), BURGUNDY_SWITCH_W("CD Playback Switch", 0, MASK_ADDR_BURGUNDY_OUTPUTSELECTS, 0, 16, 1), /* BURGUNDY_SWITCH_W("Loop Capture Switch", 0, * MASK_ADDR_BURGUNDY_CAPTURESELECTS, 8, 24, 1), * BURGUNDY_SWITCH_B("Mixer out Capture Switch", 0, * MASK_ADDR_BURGUNDY_HOSTIFAD, 0x02, 0, 0), * BURGUNDY_SWITCH_B("Mixer Capture Switch", 0, * MASK_ADDR_BURGUNDY_HOSTIFAD, 0x01, 0, 0), * BURGUNDY_SWITCH_B("PCM out Capture Switch", 0, * MASK_ADDR_BURGUNDY_HOSTIFEH, 0x02, 0, 0), */ BURGUNDY_SWITCH_B("PCM Capture Switch", 0, MASK_ADDR_BURGUNDY_HOSTIFEH, 0x01, 0, 0) }; static const struct snd_kcontrol_new snd_pmac_burgundy_mixers_imac[] = { BURGUNDY_VOLUME_W("Line in Capture Volume", 0, MASK_ADDR_BURGUNDY_VOLLINE, 16), BURGUNDY_VOLUME_W("Mic Capture Volume", 0, MASK_ADDR_BURGUNDY_VOLMIC, 16), BURGUNDY_VOLUME_B("Line in Gain Capture Volume", 0, MASK_ADDR_BURGUNDY_GAINLINE, 1, 0), BURGUNDY_VOLUME_B("Mic Gain Capture Volume", 0, MASK_ADDR_BURGUNDY_GAINMIC, 1, 0), BURGUNDY_VOLUME_B("Speaker Playback Volume", 0, MASK_ADDR_BURGUNDY_ATTENSPEAKER, 1, 1), BURGUNDY_VOLUME_B("Line out Playback Volume", 0, MASK_ADDR_BURGUNDY_ATTENLINEOUT, 1, 1), BURGUNDY_VOLUME_B("Headphone Playback Volume", 0, MASK_ADDR_BURGUNDY_ATTENHP, 1, 1), BURGUNDY_SWITCH_W("Line in Capture Switch", 0, MASK_ADDR_BURGUNDY_CAPTURESELECTS, 1, 17, 1), BURGUNDY_SWITCH_W("Mic Capture Switch", 0, MASK_ADDR_BURGUNDY_CAPTURESELECTS, 2, 18, 1), BURGUNDY_SWITCH_W("Line in Playback Switch", 0, MASK_ADDR_BURGUNDY_OUTPUTSELECTS, 1, 17, 1), BURGUNDY_SWITCH_W("Mic Playback Switch", 0, MASK_ADDR_BURGUNDY_OUTPUTSELECTS, 2, 18, 1), BURGUNDY_SWITCH_B("Mic Boost Capture Switch", 0, MASK_ADDR_BURGUNDY_INPBOOST, 0x40, 0x80, 1) }; static const struct snd_kcontrol_new snd_pmac_burgundy_mixers_pmac[] = { BURGUNDY_VOLUME_W("Line in Capture Volume", 0, MASK_ADDR_BURGUNDY_VOLMIC, 16), BURGUNDY_VOLUME_B("Line in Gain Capture Volume", 0, MASK_ADDR_BURGUNDY_GAINMIC, 1, 0), BURGUNDY_VOLUME_B("Speaker Playback Volume", 0, MASK_ADDR_BURGUNDY_ATTENMONO, 0, 1), BURGUNDY_VOLUME_B("Line out Playback Volume", 0, MASK_ADDR_BURGUNDY_ATTENSPEAKER, 1, 1), BURGUNDY_SWITCH_W("Line in Capture Switch", 0, MASK_ADDR_BURGUNDY_CAPTURESELECTS, 2, 18, 1), BURGUNDY_SWITCH_W("Line in Playback Switch", 0, MASK_ADDR_BURGUNDY_OUTPUTSELECTS, 2, 18, 1), /* BURGUNDY_SWITCH_B("Line in Boost Capture Switch", 0, * MASK_ADDR_BURGUNDY_INPBOOST, 0x40, 0x80, 1) */ }; static const struct snd_kcontrol_new snd_pmac_burgundy_master_sw_imac = BURGUNDY_SWITCH_B("Master Playback Switch", 0, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES, BURGUNDY_OUTPUT_LEFT | BURGUNDY_LINEOUT_LEFT | BURGUNDY_HP_LEFT, BURGUNDY_OUTPUT_RIGHT | BURGUNDY_LINEOUT_RIGHT | BURGUNDY_HP_RIGHT, 1); static const struct snd_kcontrol_new snd_pmac_burgundy_master_sw_pmac = BURGUNDY_SWITCH_B("Master Playback Switch", 0, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES, BURGUNDY_OUTPUT_INTERN | BURGUNDY_OUTPUT_LEFT, BURGUNDY_OUTPUT_RIGHT, 1); static const struct snd_kcontrol_new snd_pmac_burgundy_speaker_sw_imac = BURGUNDY_SWITCH_B("Speaker Playback Switch", 0, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES, BURGUNDY_OUTPUT_LEFT, BURGUNDY_OUTPUT_RIGHT, 1); static const struct snd_kcontrol_new snd_pmac_burgundy_speaker_sw_pmac = BURGUNDY_SWITCH_B("Speaker Playback Switch", 0, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES, BURGUNDY_OUTPUT_INTERN, 0, 0); static const struct snd_kcontrol_new snd_pmac_burgundy_line_sw_imac = BURGUNDY_SWITCH_B("Line out Playback Switch", 0, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES, BURGUNDY_LINEOUT_LEFT, BURGUNDY_LINEOUT_RIGHT, 1); static const struct snd_kcontrol_new snd_pmac_burgundy_line_sw_pmac = BURGUNDY_SWITCH_B("Line out Playback Switch", 0, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES, BURGUNDY_OUTPUT_LEFT, BURGUNDY_OUTPUT_RIGHT, 1); static const struct snd_kcontrol_new snd_pmac_burgundy_hp_sw_imac = BURGUNDY_SWITCH_B("Headphone Playback Switch", 0, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES, BURGUNDY_HP_LEFT, BURGUNDY_HP_RIGHT, 1); #ifdef PMAC_SUPPORT_AUTOMUTE /* * auto-mute stuffs */ static int snd_pmac_burgundy_detect_headphone(struct snd_pmac *chip) { return (in_le32(&chip->awacs->codec_stat) & chip->hp_stat_mask) ? 1 : 0; } static void snd_pmac_burgundy_update_automute(struct snd_pmac *chip, int do_notify) { if (chip->auto_mute) { int imac = of_machine_is_compatible("iMac"); int reg, oreg; reg = oreg = snd_pmac_burgundy_rcb(chip, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES); reg &= imac ? ~(BURGUNDY_OUTPUT_LEFT | BURGUNDY_OUTPUT_RIGHT | BURGUNDY_HP_LEFT | BURGUNDY_HP_RIGHT) : ~(BURGUNDY_OUTPUT_LEFT | BURGUNDY_OUTPUT_RIGHT | BURGUNDY_OUTPUT_INTERN); if (snd_pmac_burgundy_detect_headphone(chip)) reg |= imac ? (BURGUNDY_HP_LEFT | BURGUNDY_HP_RIGHT) : (BURGUNDY_OUTPUT_LEFT | BURGUNDY_OUTPUT_RIGHT); else reg |= imac ? (BURGUNDY_OUTPUT_LEFT | BURGUNDY_OUTPUT_RIGHT) : (BURGUNDY_OUTPUT_INTERN); if (do_notify && reg == oreg) return; snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES, reg); if (do_notify) { snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->master_sw_ctl->id); snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->speaker_sw_ctl->id); snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->hp_detect_ctl->id); } } } #endif /* PMAC_SUPPORT_AUTOMUTE */ /* * initialize burgundy */ int snd_pmac_burgundy_init(struct snd_pmac *chip) { int imac = of_machine_is_compatible("iMac"); int i, err; /* Checks to see the chip is alive and kicking */ if ((in_le32(&chip->awacs->codec_ctrl) & MASK_ERRCODE) == 0xf0000) { printk(KERN_WARNING "pmac burgundy: disabled by MacOS :-(\n"); return 1; } snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_OUTPUTENABLES, DEF_BURGUNDY_OUTPUTENABLES); snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES, DEF_BURGUNDY_MORE_OUTPUTENABLES); snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_OUTPUTSELECTS, DEF_BURGUNDY_OUTPUTSELECTS); snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_INPSEL21, DEF_BURGUNDY_INPSEL21); snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_INPSEL3, imac ? DEF_BURGUNDY_INPSEL3_IMAC : DEF_BURGUNDY_INPSEL3_PMAC); snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_GAINCD, DEF_BURGUNDY_GAINCD); snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_GAINLINE, DEF_BURGUNDY_GAINLINE); snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_GAINMIC, DEF_BURGUNDY_GAINMIC); snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_GAINMODEM, DEF_BURGUNDY_GAINMODEM); snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_ATTENSPEAKER, DEF_BURGUNDY_ATTENSPEAKER); snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_ATTENLINEOUT, DEF_BURGUNDY_ATTENLINEOUT); snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_ATTENHP, DEF_BURGUNDY_ATTENHP); snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_MASTER_VOLUME, DEF_BURGUNDY_MASTER_VOLUME); snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_VOLCD, DEF_BURGUNDY_VOLCD); snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_VOLLINE, DEF_BURGUNDY_VOLLINE); snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_VOLMIC, DEF_BURGUNDY_VOLMIC); if (chip->hp_stat_mask == 0) { /* set headphone-jack detection bit */ if (imac) chip->hp_stat_mask = BURGUNDY_HPDETECT_IMAC_UPPER | BURGUNDY_HPDETECT_IMAC_LOWER | BURGUNDY_HPDETECT_IMAC_SIDE; else chip->hp_stat_mask = BURGUNDY_HPDETECT_PMAC_BACK; } /* * build burgundy mixers */ strcpy(chip->card->mixername, "PowerMac Burgundy"); for (i = 0; i < ARRAY_SIZE(snd_pmac_burgundy_mixers); i++) { err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_pmac_burgundy_mixers[i], chip)); if (err < 0) return err; } for (i = 0; i < (imac ? ARRAY_SIZE(snd_pmac_burgundy_mixers_imac) : ARRAY_SIZE(snd_pmac_burgundy_mixers_pmac)); i++) { err = snd_ctl_add(chip->card, snd_ctl_new1(imac ? &snd_pmac_burgundy_mixers_imac[i] : &snd_pmac_burgundy_mixers_pmac[i], chip)); if (err < 0) return err; } chip->master_sw_ctl = snd_ctl_new1(imac ? &snd_pmac_burgundy_master_sw_imac : &snd_pmac_burgundy_master_sw_pmac, chip); err = snd_ctl_add(chip->card, chip->master_sw_ctl); if (err < 0) return err; chip->master_sw_ctl = snd_ctl_new1(imac ? &snd_pmac_burgundy_line_sw_imac : &snd_pmac_burgundy_line_sw_pmac, chip); err = snd_ctl_add(chip->card, chip->master_sw_ctl); if (err < 0) return err; if (imac) { chip->master_sw_ctl = snd_ctl_new1( &snd_pmac_burgundy_hp_sw_imac, chip); err = snd_ctl_add(chip->card, chip->master_sw_ctl); if (err < 0) return err; } chip->speaker_sw_ctl = snd_ctl_new1(imac ? &snd_pmac_burgundy_speaker_sw_imac : &snd_pmac_burgundy_speaker_sw_pmac, chip); err = snd_ctl_add(chip->card, chip->speaker_sw_ctl); if (err < 0) return err; #ifdef PMAC_SUPPORT_AUTOMUTE err = snd_pmac_add_automute(chip); if (err < 0) return err; chip->detect_headphone = snd_pmac_burgundy_detect_headphone; chip->update_automute = snd_pmac_burgundy_update_automute; snd_pmac_burgundy_update_automute(chip, 0); /* update the status only */ #endif return 0; }
linux-master
sound/ppc/burgundy.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PMac AWACS lowlevel functions * * Copyright (c) by Takashi Iwai <[email protected]> * code based on dmasound.c. */ #include <linux/io.h> #include <asm/nvram.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/slab.h> #include <sound/core.h> #include "pmac.h" #ifdef CONFIG_ADB_CUDA #define PMAC_AMP_AVAIL #endif #ifdef PMAC_AMP_AVAIL struct awacs_amp { unsigned char amp_master; unsigned char amp_vol[2][2]; unsigned char amp_tone[2]; }; #define CHECK_CUDA_AMP() (sys_ctrler == SYS_CTRLER_CUDA) #endif /* PMAC_AMP_AVAIL */ static void snd_pmac_screamer_wait(struct snd_pmac *chip) { long timeout = 2000; while (!(in_le32(&chip->awacs->codec_stat) & MASK_VALID)) { mdelay(1); if (! --timeout) { snd_printd("snd_pmac_screamer_wait timeout\n"); break; } } } /* * write AWACS register */ static void snd_pmac_awacs_write(struct snd_pmac *chip, int val) { long timeout = 5000000; if (chip->model == PMAC_SCREAMER) snd_pmac_screamer_wait(chip); out_le32(&chip->awacs->codec_ctrl, val | (chip->subframe << 22)); while (in_le32(&chip->awacs->codec_ctrl) & MASK_NEWECMD) { if (! --timeout) { snd_printd("snd_pmac_awacs_write timeout\n"); break; } } } static void snd_pmac_awacs_write_reg(struct snd_pmac *chip, int reg, int val) { snd_pmac_awacs_write(chip, val | (reg << 12)); chip->awacs_reg[reg] = val; } static void snd_pmac_awacs_write_noreg(struct snd_pmac *chip, int reg, int val) { snd_pmac_awacs_write(chip, val | (reg << 12)); } #ifdef CONFIG_PM /* Recalibrate chip */ static void screamer_recalibrate(struct snd_pmac *chip) { if (chip->model != PMAC_SCREAMER) return; /* Sorry for the horrible delays... I hope to get that improved * by making the whole PM process asynchronous in a future version */ snd_pmac_awacs_write_noreg(chip, 1, chip->awacs_reg[1]); if (chip->manufacturer == 0x1) /* delay for broken crystal part */ msleep(750); snd_pmac_awacs_write_noreg(chip, 1, chip->awacs_reg[1] | MASK_RECALIBRATE | MASK_CMUTE | MASK_AMUTE); snd_pmac_awacs_write_noreg(chip, 1, chip->awacs_reg[1]); snd_pmac_awacs_write_noreg(chip, 6, chip->awacs_reg[6]); } #else #define screamer_recalibrate(chip) /* NOP */ #endif /* * additional callback to set the pcm format */ static void snd_pmac_awacs_set_format(struct snd_pmac *chip) { chip->awacs_reg[1] &= ~MASK_SAMPLERATE; chip->awacs_reg[1] |= chip->rate_index << 3; snd_pmac_awacs_write_reg(chip, 1, chip->awacs_reg[1]); } /* * AWACS volume callbacks */ /* * volumes: 0-15 stereo */ static int snd_pmac_awacs_info_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 15; return 0; } static int snd_pmac_awacs_get_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int lshift = (kcontrol->private_value >> 8) & 0xff; int inverted = (kcontrol->private_value >> 16) & 1; unsigned long flags; int vol[2]; spin_lock_irqsave(&chip->reg_lock, flags); vol[0] = (chip->awacs_reg[reg] >> lshift) & 0xf; vol[1] = chip->awacs_reg[reg] & 0xf; spin_unlock_irqrestore(&chip->reg_lock, flags); if (inverted) { vol[0] = 0x0f - vol[0]; vol[1] = 0x0f - vol[1]; } ucontrol->value.integer.value[0] = vol[0]; ucontrol->value.integer.value[1] = vol[1]; return 0; } static int snd_pmac_awacs_put_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int lshift = (kcontrol->private_value >> 8) & 0xff; int inverted = (kcontrol->private_value >> 16) & 1; int val, oldval; unsigned long flags; unsigned int vol[2]; vol[0] = ucontrol->value.integer.value[0]; vol[1] = ucontrol->value.integer.value[1]; if (vol[0] > 0x0f || vol[1] > 0x0f) return -EINVAL; if (inverted) { vol[0] = 0x0f - vol[0]; vol[1] = 0x0f - vol[1]; } vol[0] &= 0x0f; vol[1] &= 0x0f; spin_lock_irqsave(&chip->reg_lock, flags); oldval = chip->awacs_reg[reg]; val = oldval & ~(0xf | (0xf << lshift)); val |= vol[0] << lshift; val |= vol[1]; if (oldval != val) snd_pmac_awacs_write_reg(chip, reg, val); spin_unlock_irqrestore(&chip->reg_lock, flags); return oldval != reg; } #define AWACS_VOLUME(xname, xreg, xshift, xinverted) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = 0, \ .info = snd_pmac_awacs_info_volume, \ .get = snd_pmac_awacs_get_volume, \ .put = snd_pmac_awacs_put_volume, \ .private_value = (xreg) | ((xshift) << 8) | ((xinverted) << 16) } /* * mute master/ogain for AWACS: mono */ static int snd_pmac_awacs_get_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int invert = (kcontrol->private_value >> 16) & 1; int val; unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); val = (chip->awacs_reg[reg] >> shift) & 1; spin_unlock_irqrestore(&chip->reg_lock, flags); if (invert) val = 1 - val; ucontrol->value.integer.value[0] = val; return 0; } static int snd_pmac_awacs_put_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int invert = (kcontrol->private_value >> 16) & 1; int mask = 1 << shift; int val, changed; unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); val = chip->awacs_reg[reg] & ~mask; if (ucontrol->value.integer.value[0] != invert) val |= mask; changed = chip->awacs_reg[reg] != val; if (changed) snd_pmac_awacs_write_reg(chip, reg, val); spin_unlock_irqrestore(&chip->reg_lock, flags); return changed; } #define AWACS_SWITCH(xname, xreg, xshift, xinvert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = 0, \ .info = snd_pmac_boolean_mono_info, \ .get = snd_pmac_awacs_get_switch, \ .put = snd_pmac_awacs_put_switch, \ .private_value = (xreg) | ((xshift) << 8) | ((xinvert) << 16) } #ifdef PMAC_AMP_AVAIL /* * controls for perch/whisper extension cards, e.g. G3 desktop * * TDA7433 connected via i2c address 0x45 (= 0x8a), * accessed through cuda */ static void awacs_set_cuda(int reg, int val) { struct adb_request req; cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_GET_SET_IIC, 0x8a, reg, val); while (! req.complete) cuda_poll(); } /* * level = 0 - 14, 7 = 0 dB */ static void awacs_amp_set_tone(struct awacs_amp *amp, int bass, int treble) { amp->amp_tone[0] = bass; amp->amp_tone[1] = treble; if (bass > 7) bass = (14 - bass) + 8; if (treble > 7) treble = (14 - treble) + 8; awacs_set_cuda(2, (bass << 4) | treble); } /* * vol = 0 - 31 (attenuation), 32 = mute bit, stereo */ static int awacs_amp_set_vol(struct awacs_amp *amp, int index, int lvol, int rvol, int do_check) { if (do_check && amp->amp_vol[index][0] == lvol && amp->amp_vol[index][1] == rvol) return 0; awacs_set_cuda(3 + index, lvol); awacs_set_cuda(5 + index, rvol); amp->amp_vol[index][0] = lvol; amp->amp_vol[index][1] = rvol; return 1; } /* * 0 = -79 dB, 79 = 0 dB, 99 = +20 dB */ static void awacs_amp_set_master(struct awacs_amp *amp, int vol) { amp->amp_master = vol; if (vol <= 79) vol = 32 + (79 - vol); else vol = 32 - (vol - 79); awacs_set_cuda(1, vol); } static void awacs_amp_free(struct snd_pmac *chip) { struct awacs_amp *amp = chip->mixer_data; if (!amp) return; kfree(amp); chip->mixer_data = NULL; chip->mixer_free = NULL; } /* * mixer controls */ static int snd_pmac_awacs_info_volume_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 31; return 0; } static int snd_pmac_awacs_get_volume_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int index = kcontrol->private_value; struct awacs_amp *amp = chip->mixer_data; ucontrol->value.integer.value[0] = 31 - (amp->amp_vol[index][0] & 31); ucontrol->value.integer.value[1] = 31 - (amp->amp_vol[index][1] & 31); return 0; } static int snd_pmac_awacs_put_volume_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int index = kcontrol->private_value; int vol[2]; struct awacs_amp *amp = chip->mixer_data; vol[0] = (31 - (ucontrol->value.integer.value[0] & 31)) | (amp->amp_vol[index][0] & 32); vol[1] = (31 - (ucontrol->value.integer.value[1] & 31)) | (amp->amp_vol[index][1] & 32); return awacs_amp_set_vol(amp, index, vol[0], vol[1], 1); } static int snd_pmac_awacs_get_switch_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int index = kcontrol->private_value; struct awacs_amp *amp = chip->mixer_data; ucontrol->value.integer.value[0] = (amp->amp_vol[index][0] & 32) ? 0 : 1; ucontrol->value.integer.value[1] = (amp->amp_vol[index][1] & 32) ? 0 : 1; return 0; } static int snd_pmac_awacs_put_switch_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int index = kcontrol->private_value; int vol[2]; struct awacs_amp *amp = chip->mixer_data; vol[0] = (ucontrol->value.integer.value[0] ? 0 : 32) | (amp->amp_vol[index][0] & 31); vol[1] = (ucontrol->value.integer.value[1] ? 0 : 32) | (amp->amp_vol[index][1] & 31); return awacs_amp_set_vol(amp, index, vol[0], vol[1], 1); } static int snd_pmac_awacs_info_tone_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 14; return 0; } static int snd_pmac_awacs_get_tone_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int index = kcontrol->private_value; struct awacs_amp *amp = chip->mixer_data; ucontrol->value.integer.value[0] = amp->amp_tone[index]; return 0; } static int snd_pmac_awacs_put_tone_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int index = kcontrol->private_value; struct awacs_amp *amp = chip->mixer_data; unsigned int val; val = ucontrol->value.integer.value[0]; if (val > 14) return -EINVAL; if (val != amp->amp_tone[index]) { amp->amp_tone[index] = val; awacs_amp_set_tone(amp, amp->amp_tone[0], amp->amp_tone[1]); return 1; } return 0; } static int snd_pmac_awacs_info_master_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 99; return 0; } static int snd_pmac_awacs_get_master_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct awacs_amp *amp = chip->mixer_data; ucontrol->value.integer.value[0] = amp->amp_master; return 0; } static int snd_pmac_awacs_put_master_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct awacs_amp *amp = chip->mixer_data; unsigned int val; val = ucontrol->value.integer.value[0]; if (val > 99) return -EINVAL; if (val != amp->amp_master) { amp->amp_master = val; awacs_amp_set_master(amp, amp->amp_master); return 1; } return 0; } #define AMP_CH_SPK 0 #define AMP_CH_HD 1 static const struct snd_kcontrol_new snd_pmac_awacs_amp_vol[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Speaker Playback Volume", .info = snd_pmac_awacs_info_volume_amp, .get = snd_pmac_awacs_get_volume_amp, .put = snd_pmac_awacs_put_volume_amp, .private_value = AMP_CH_SPK, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Headphone Playback Volume", .info = snd_pmac_awacs_info_volume_amp, .get = snd_pmac_awacs_get_volume_amp, .put = snd_pmac_awacs_put_volume_amp, .private_value = AMP_CH_HD, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Tone Control - Bass", .info = snd_pmac_awacs_info_tone_amp, .get = snd_pmac_awacs_get_tone_amp, .put = snd_pmac_awacs_put_tone_amp, .private_value = 0, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Tone Control - Treble", .info = snd_pmac_awacs_info_tone_amp, .get = snd_pmac_awacs_get_tone_amp, .put = snd_pmac_awacs_put_tone_amp, .private_value = 1, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Amp Master Playback Volume", .info = snd_pmac_awacs_info_master_amp, .get = snd_pmac_awacs_get_master_amp, .put = snd_pmac_awacs_put_master_amp, }, }; static const struct snd_kcontrol_new snd_pmac_awacs_amp_hp_sw = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Headphone Playback Switch", .info = snd_pmac_boolean_stereo_info, .get = snd_pmac_awacs_get_switch_amp, .put = snd_pmac_awacs_put_switch_amp, .private_value = AMP_CH_HD, }; static const struct snd_kcontrol_new snd_pmac_awacs_amp_spk_sw = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Speaker Playback Switch", .info = snd_pmac_boolean_stereo_info, .get = snd_pmac_awacs_get_switch_amp, .put = snd_pmac_awacs_put_switch_amp, .private_value = AMP_CH_SPK, }; #endif /* PMAC_AMP_AVAIL */ /* * mic boost for screamer */ static int snd_pmac_screamer_mic_boost_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 3; return 0; } static int snd_pmac_screamer_mic_boost_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int val = 0; unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); if (chip->awacs_reg[6] & MASK_MIC_BOOST) val |= 2; if (chip->awacs_reg[0] & MASK_GAINLINE) val |= 1; spin_unlock_irqrestore(&chip->reg_lock, flags); ucontrol->value.integer.value[0] = val; return 0; } static int snd_pmac_screamer_mic_boost_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); int changed = 0; int val0, val6; unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); val0 = chip->awacs_reg[0] & ~MASK_GAINLINE; val6 = chip->awacs_reg[6] & ~MASK_MIC_BOOST; if (ucontrol->value.integer.value[0] & 1) val0 |= MASK_GAINLINE; if (ucontrol->value.integer.value[0] & 2) val6 |= MASK_MIC_BOOST; if (val0 != chip->awacs_reg[0]) { snd_pmac_awacs_write_reg(chip, 0, val0); changed = 1; } if (val6 != chip->awacs_reg[6]) { snd_pmac_awacs_write_reg(chip, 6, val6); changed = 1; } spin_unlock_irqrestore(&chip->reg_lock, flags); return changed; } /* * lists of mixer elements */ static const struct snd_kcontrol_new snd_pmac_awacs_mixers[] = { AWACS_SWITCH("Master Capture Switch", 1, SHIFT_LOOPTHRU, 0), AWACS_VOLUME("Master Capture Volume", 0, 4, 0), /* AWACS_SWITCH("Unknown Playback Switch", 6, SHIFT_PAROUT0, 0), */ }; static const struct snd_kcontrol_new snd_pmac_screamer_mixers_beige[] = { AWACS_VOLUME("Master Playback Volume", 2, 6, 1), AWACS_VOLUME("Play-through Playback Volume", 5, 6, 1), AWACS_SWITCH("Line Capture Switch", 0, SHIFT_MUX_MIC, 0), AWACS_SWITCH("CD Capture Switch", 0, SHIFT_MUX_LINE, 0), }; static const struct snd_kcontrol_new snd_pmac_screamer_mixers_lo[] = { AWACS_VOLUME("Line out Playback Volume", 2, 6, 1), }; static const struct snd_kcontrol_new snd_pmac_screamer_mixers_imac[] = { AWACS_VOLUME("Play-through Playback Volume", 5, 6, 1), AWACS_SWITCH("CD Capture Switch", 0, SHIFT_MUX_CD, 0), }; static const struct snd_kcontrol_new snd_pmac_screamer_mixers_g4agp[] = { AWACS_VOLUME("Line out Playback Volume", 2, 6, 1), AWACS_VOLUME("Master Playback Volume", 5, 6, 1), AWACS_SWITCH("CD Capture Switch", 0, SHIFT_MUX_CD, 0), AWACS_SWITCH("Line Capture Switch", 0, SHIFT_MUX_MIC, 0), }; static const struct snd_kcontrol_new snd_pmac_awacs_mixers_pmac7500[] = { AWACS_VOLUME("Line out Playback Volume", 2, 6, 1), AWACS_SWITCH("CD Capture Switch", 0, SHIFT_MUX_CD, 0), AWACS_SWITCH("Line Capture Switch", 0, SHIFT_MUX_MIC, 0), }; static const struct snd_kcontrol_new snd_pmac_awacs_mixers_pmac5500[] = { AWACS_VOLUME("Headphone Playback Volume", 2, 6, 1), }; static const struct snd_kcontrol_new snd_pmac_awacs_mixers_pmac[] = { AWACS_VOLUME("Master Playback Volume", 2, 6, 1), AWACS_SWITCH("CD Capture Switch", 0, SHIFT_MUX_CD, 0), }; /* FIXME: is this correct order? * screamer (powerbook G3 pismo) seems to have different bits... */ static const struct snd_kcontrol_new snd_pmac_awacs_mixers2[] = { AWACS_SWITCH("Line Capture Switch", 0, SHIFT_MUX_LINE, 0), AWACS_SWITCH("Mic Capture Switch", 0, SHIFT_MUX_MIC, 0), }; static const struct snd_kcontrol_new snd_pmac_screamer_mixers2[] = { AWACS_SWITCH("Line Capture Switch", 0, SHIFT_MUX_MIC, 0), AWACS_SWITCH("Mic Capture Switch", 0, SHIFT_MUX_LINE, 0), }; static const struct snd_kcontrol_new snd_pmac_awacs_mixers2_pmac5500[] = { AWACS_SWITCH("CD Capture Switch", 0, SHIFT_MUX_CD, 0), }; static const struct snd_kcontrol_new snd_pmac_awacs_master_sw = AWACS_SWITCH("Master Playback Switch", 1, SHIFT_HDMUTE, 1); static const struct snd_kcontrol_new snd_pmac_awacs_master_sw_imac = AWACS_SWITCH("Line out Playback Switch", 1, SHIFT_HDMUTE, 1); static const struct snd_kcontrol_new snd_pmac_awacs_master_sw_pmac5500 = AWACS_SWITCH("Headphone Playback Switch", 1, SHIFT_HDMUTE, 1); static const struct snd_kcontrol_new snd_pmac_awacs_mic_boost[] = { AWACS_SWITCH("Mic Boost Capture Switch", 0, SHIFT_GAINLINE, 0), }; static const struct snd_kcontrol_new snd_pmac_screamer_mic_boost[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Mic Boost Capture Volume", .info = snd_pmac_screamer_mic_boost_info, .get = snd_pmac_screamer_mic_boost_get, .put = snd_pmac_screamer_mic_boost_put, }, }; static const struct snd_kcontrol_new snd_pmac_awacs_mic_boost_pmac7500[] = { AWACS_SWITCH("Line Boost Capture Switch", 0, SHIFT_GAINLINE, 0), }; static const struct snd_kcontrol_new snd_pmac_screamer_mic_boost_beige[] = { AWACS_SWITCH("Line Boost Capture Switch", 0, SHIFT_GAINLINE, 0), AWACS_SWITCH("CD Boost Capture Switch", 6, SHIFT_MIC_BOOST, 0), }; static const struct snd_kcontrol_new snd_pmac_screamer_mic_boost_imac[] = { AWACS_SWITCH("Line Boost Capture Switch", 0, SHIFT_GAINLINE, 0), AWACS_SWITCH("Mic Boost Capture Switch", 6, SHIFT_MIC_BOOST, 0), }; static const struct snd_kcontrol_new snd_pmac_awacs_speaker_vol[] = { AWACS_VOLUME("Speaker Playback Volume", 4, 6, 1), }; static const struct snd_kcontrol_new snd_pmac_awacs_speaker_sw = AWACS_SWITCH("Speaker Playback Switch", 1, SHIFT_SPKMUTE, 1); static const struct snd_kcontrol_new snd_pmac_awacs_speaker_sw_imac1 = AWACS_SWITCH("Speaker Playback Switch", 1, SHIFT_PAROUT1, 1); static const struct snd_kcontrol_new snd_pmac_awacs_speaker_sw_imac2 = AWACS_SWITCH("Speaker Playback Switch", 1, SHIFT_PAROUT1, 0); /* * add new mixer elements to the card */ static int build_mixers(struct snd_pmac *chip, int nums, const struct snd_kcontrol_new *mixers) { int i, err; for (i = 0; i < nums; i++) { err = snd_ctl_add(chip->card, snd_ctl_new1(&mixers[i], chip)); if (err < 0) return err; } return 0; } /* * restore all registers */ static void awacs_restore_all_regs(struct snd_pmac *chip) { snd_pmac_awacs_write_noreg(chip, 0, chip->awacs_reg[0]); snd_pmac_awacs_write_noreg(chip, 1, chip->awacs_reg[1]); snd_pmac_awacs_write_noreg(chip, 2, chip->awacs_reg[2]); snd_pmac_awacs_write_noreg(chip, 4, chip->awacs_reg[4]); if (chip->model == PMAC_SCREAMER) { snd_pmac_awacs_write_noreg(chip, 5, chip->awacs_reg[5]); snd_pmac_awacs_write_noreg(chip, 6, chip->awacs_reg[6]); snd_pmac_awacs_write_noreg(chip, 7, chip->awacs_reg[7]); } } #ifdef CONFIG_PM static void snd_pmac_awacs_suspend(struct snd_pmac *chip) { snd_pmac_awacs_write_noreg(chip, 1, (chip->awacs_reg[1] | MASK_AMUTE | MASK_CMUTE)); } static void snd_pmac_awacs_resume(struct snd_pmac *chip) { if (of_machine_is_compatible("PowerBook3,1") || of_machine_is_compatible("PowerBook3,2")) { msleep(100); snd_pmac_awacs_write_reg(chip, 1, chip->awacs_reg[1] & ~MASK_PAROUT); msleep(300); } awacs_restore_all_regs(chip); if (chip->model == PMAC_SCREAMER) { /* reset power bits in reg 6 */ mdelay(5); snd_pmac_awacs_write_noreg(chip, 6, chip->awacs_reg[6]); } screamer_recalibrate(chip); #ifdef PMAC_AMP_AVAIL if (chip->mixer_data) { struct awacs_amp *amp = chip->mixer_data; awacs_amp_set_vol(amp, 0, amp->amp_vol[0][0], amp->amp_vol[0][1], 0); awacs_amp_set_vol(amp, 1, amp->amp_vol[1][0], amp->amp_vol[1][1], 0); awacs_amp_set_tone(amp, amp->amp_tone[0], amp->amp_tone[1]); awacs_amp_set_master(amp, amp->amp_master); } #endif } #endif /* CONFIG_PM */ #define IS_PM7500 (of_machine_is_compatible("AAPL,7500") \ || of_machine_is_compatible("AAPL,8500") \ || of_machine_is_compatible("AAPL,9500")) #define IS_PM5500 (of_machine_is_compatible("AAPL,e411")) #define IS_BEIGE (of_machine_is_compatible("AAPL,Gossamer")) #define IS_IMAC1 (of_machine_is_compatible("PowerMac2,1")) #define IS_IMAC2 (of_machine_is_compatible("PowerMac2,2") \ || of_machine_is_compatible("PowerMac4,1")) #define IS_G4AGP (of_machine_is_compatible("PowerMac3,1")) #define IS_LOMBARD (of_machine_is_compatible("PowerBook1,1")) static int imac1, imac2; #ifdef PMAC_SUPPORT_AUTOMUTE /* * auto-mute stuffs */ static int snd_pmac_awacs_detect_headphone(struct snd_pmac *chip) { return (in_le32(&chip->awacs->codec_stat) & chip->hp_stat_mask) ? 1 : 0; } #ifdef PMAC_AMP_AVAIL static int toggle_amp_mute(struct awacs_amp *amp, int index, int mute) { int vol[2]; vol[0] = amp->amp_vol[index][0] & 31; vol[1] = amp->amp_vol[index][1] & 31; if (mute) { vol[0] |= 32; vol[1] |= 32; } return awacs_amp_set_vol(amp, index, vol[0], vol[1], 1); } #endif static void snd_pmac_awacs_update_automute(struct snd_pmac *chip, int do_notify) { if (chip->auto_mute) { #ifdef PMAC_AMP_AVAIL if (chip->mixer_data) { struct awacs_amp *amp = chip->mixer_data; int changed; if (snd_pmac_awacs_detect_headphone(chip)) { changed = toggle_amp_mute(amp, AMP_CH_HD, 0); changed |= toggle_amp_mute(amp, AMP_CH_SPK, 1); } else { changed = toggle_amp_mute(amp, AMP_CH_HD, 1); changed |= toggle_amp_mute(amp, AMP_CH_SPK, 0); } if (do_notify && ! changed) return; } else #endif { int reg = chip->awacs_reg[1] | (MASK_HDMUTE | MASK_SPKMUTE); if (imac1) { reg &= ~MASK_SPKMUTE; reg |= MASK_PAROUT1; } else if (imac2) { reg &= ~MASK_SPKMUTE; reg &= ~MASK_PAROUT1; } if (snd_pmac_awacs_detect_headphone(chip)) reg &= ~MASK_HDMUTE; else if (imac1) reg &= ~MASK_PAROUT1; else if (imac2) reg |= MASK_PAROUT1; else reg &= ~MASK_SPKMUTE; if (do_notify && reg == chip->awacs_reg[1]) return; snd_pmac_awacs_write_reg(chip, 1, reg); } if (do_notify) { snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->master_sw_ctl->id); snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->speaker_sw_ctl->id); snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->hp_detect_ctl->id); } } } #endif /* PMAC_SUPPORT_AUTOMUTE */ /* * initialize chip */ int snd_pmac_awacs_init(struct snd_pmac *chip) { int pm7500 = IS_PM7500; int pm5500 = IS_PM5500; int beige = IS_BEIGE; int g4agp = IS_G4AGP; int lombard = IS_LOMBARD; int imac; int err, vol; struct snd_kcontrol *vmaster_sw, *vmaster_vol; struct snd_kcontrol *master_vol, *speaker_vol; imac1 = IS_IMAC1; imac2 = IS_IMAC2; imac = imac1 || imac2; /* looks like MASK_GAINLINE triggers something, so we set here * as start-up */ chip->awacs_reg[0] = MASK_MUX_CD | 0xff | MASK_GAINLINE; chip->awacs_reg[1] = MASK_CMUTE | MASK_AMUTE; /* FIXME: Only machines with external SRS module need MASK_PAROUT */ if (chip->has_iic || chip->device_id == 0x5 || /* chip->_device_id == 0x8 || */ chip->device_id == 0xb) chip->awacs_reg[1] |= MASK_PAROUT; /* get default volume from nvram */ // vol = (~nvram_read_byte(0x1308) & 7) << 1; // vol = ((pmac_xpram_read( 8 ) & 7 ) << 1 ); vol = 0x0f; /* no, on alsa, muted as default */ vol = vol + (vol << 6); chip->awacs_reg[2] = vol; chip->awacs_reg[4] = vol; if (chip->model == PMAC_SCREAMER) { /* FIXME: screamer has loopthru vol control */ chip->awacs_reg[5] = vol; /* FIXME: maybe should be vol << 3 for PCMCIA speaker */ chip->awacs_reg[6] = MASK_MIC_BOOST; chip->awacs_reg[7] = 0; } awacs_restore_all_regs(chip); chip->manufacturer = (in_le32(&chip->awacs->codec_stat) >> 8) & 0xf; screamer_recalibrate(chip); chip->revision = (in_le32(&chip->awacs->codec_stat) >> 12) & 0xf; #ifdef PMAC_AMP_AVAIL if (chip->revision == 3 && chip->has_iic && CHECK_CUDA_AMP()) { struct awacs_amp *amp = kzalloc(sizeof(*amp), GFP_KERNEL); if (! amp) return -ENOMEM; chip->mixer_data = amp; chip->mixer_free = awacs_amp_free; /* mute and zero vol */ awacs_amp_set_vol(amp, 0, 63, 63, 0); awacs_amp_set_vol(amp, 1, 63, 63, 0); awacs_amp_set_tone(amp, 7, 7); /* 0 dB */ awacs_amp_set_master(amp, 79); /* 0 dB */ } #endif /* PMAC_AMP_AVAIL */ if (chip->hp_stat_mask == 0) { /* set headphone-jack detection bit */ switch (chip->model) { case PMAC_AWACS: chip->hp_stat_mask = pm7500 || pm5500 ? MASK_HDPCONN : MASK_LOCONN; break; case PMAC_SCREAMER: switch (chip->device_id) { case 0x08: case 0x0B: chip->hp_stat_mask = imac ? MASK_LOCONN_IMAC | MASK_HDPLCONN_IMAC | MASK_HDPRCONN_IMAC : MASK_HDPCONN; break; case 0x00: case 0x05: chip->hp_stat_mask = MASK_LOCONN; break; default: chip->hp_stat_mask = MASK_HDPCONN; break; } break; default: snd_BUG(); break; } } /* * build mixers */ strcpy(chip->card->mixername, "PowerMac AWACS"); err = build_mixers(chip, ARRAY_SIZE(snd_pmac_awacs_mixers), snd_pmac_awacs_mixers); if (err < 0) return err; if (beige || g4agp) ; else if (chip->model == PMAC_SCREAMER || pm5500) err = build_mixers(chip, ARRAY_SIZE(snd_pmac_screamer_mixers2), snd_pmac_screamer_mixers2); else if (!pm7500) err = build_mixers(chip, ARRAY_SIZE(snd_pmac_awacs_mixers2), snd_pmac_awacs_mixers2); if (err < 0) return err; if (pm5500) { err = build_mixers(chip, ARRAY_SIZE(snd_pmac_awacs_mixers2_pmac5500), snd_pmac_awacs_mixers2_pmac5500); if (err < 0) return err; } master_vol = NULL; if (pm7500) err = build_mixers(chip, ARRAY_SIZE(snd_pmac_awacs_mixers_pmac7500), snd_pmac_awacs_mixers_pmac7500); else if (pm5500) err = snd_ctl_add(chip->card, (master_vol = snd_ctl_new1(snd_pmac_awacs_mixers_pmac5500, chip))); else if (beige) err = build_mixers(chip, ARRAY_SIZE(snd_pmac_screamer_mixers_beige), snd_pmac_screamer_mixers_beige); else if (imac || lombard) { err = snd_ctl_add(chip->card, (master_vol = snd_ctl_new1(snd_pmac_screamer_mixers_lo, chip))); if (err < 0) return err; err = build_mixers(chip, ARRAY_SIZE(snd_pmac_screamer_mixers_imac), snd_pmac_screamer_mixers_imac); } else if (g4agp) err = build_mixers(chip, ARRAY_SIZE(snd_pmac_screamer_mixers_g4agp), snd_pmac_screamer_mixers_g4agp); else err = build_mixers(chip, ARRAY_SIZE(snd_pmac_awacs_mixers_pmac), snd_pmac_awacs_mixers_pmac); if (err < 0) return err; chip->master_sw_ctl = snd_ctl_new1((pm7500 || imac || g4agp || lombard) ? &snd_pmac_awacs_master_sw_imac : pm5500 ? &snd_pmac_awacs_master_sw_pmac5500 : &snd_pmac_awacs_master_sw, chip); err = snd_ctl_add(chip->card, chip->master_sw_ctl); if (err < 0) return err; #ifdef PMAC_AMP_AVAIL if (chip->mixer_data) { /* use amplifier. the signal is connected from route A * to the amp. the amp has its headphone and speaker * volumes and mute switches, so we use them instead of * screamer registers. * in this case, it seems the route C is not used. */ err = build_mixers(chip, ARRAY_SIZE(snd_pmac_awacs_amp_vol), snd_pmac_awacs_amp_vol); if (err < 0) return err; /* overwrite */ chip->master_sw_ctl = snd_ctl_new1(&snd_pmac_awacs_amp_hp_sw, chip); err = snd_ctl_add(chip->card, chip->master_sw_ctl); if (err < 0) return err; chip->speaker_sw_ctl = snd_ctl_new1(&snd_pmac_awacs_amp_spk_sw, chip); err = snd_ctl_add(chip->card, chip->speaker_sw_ctl); if (err < 0) return err; } else #endif /* PMAC_AMP_AVAIL */ { /* route A = headphone, route C = speaker */ err = snd_ctl_add(chip->card, (speaker_vol = snd_ctl_new1(snd_pmac_awacs_speaker_vol, chip))); if (err < 0) return err; chip->speaker_sw_ctl = snd_ctl_new1(imac1 ? &snd_pmac_awacs_speaker_sw_imac1 : imac2 ? &snd_pmac_awacs_speaker_sw_imac2 : &snd_pmac_awacs_speaker_sw, chip); err = snd_ctl_add(chip->card, chip->speaker_sw_ctl); if (err < 0) return err; } if (pm5500 || imac || lombard) { vmaster_sw = snd_ctl_make_virtual_master( "Master Playback Switch", (unsigned int *) NULL); err = snd_ctl_add_follower_uncached(vmaster_sw, chip->master_sw_ctl); if (err < 0) return err; err = snd_ctl_add_follower_uncached(vmaster_sw, chip->speaker_sw_ctl); if (err < 0) return err; err = snd_ctl_add(chip->card, vmaster_sw); if (err < 0) return err; vmaster_vol = snd_ctl_make_virtual_master( "Master Playback Volume", (unsigned int *) NULL); err = snd_ctl_add_follower(vmaster_vol, master_vol); if (err < 0) return err; err = snd_ctl_add_follower(vmaster_vol, speaker_vol); if (err < 0) return err; err = snd_ctl_add(chip->card, vmaster_vol); if (err < 0) return err; } if (beige || g4agp) err = build_mixers(chip, ARRAY_SIZE(snd_pmac_screamer_mic_boost_beige), snd_pmac_screamer_mic_boost_beige); else if (imac) err = build_mixers(chip, ARRAY_SIZE(snd_pmac_screamer_mic_boost_imac), snd_pmac_screamer_mic_boost_imac); else if (chip->model == PMAC_SCREAMER) err = build_mixers(chip, ARRAY_SIZE(snd_pmac_screamer_mic_boost), snd_pmac_screamer_mic_boost); else if (pm7500) err = build_mixers(chip, ARRAY_SIZE(snd_pmac_awacs_mic_boost_pmac7500), snd_pmac_awacs_mic_boost_pmac7500); else err = build_mixers(chip, ARRAY_SIZE(snd_pmac_awacs_mic_boost), snd_pmac_awacs_mic_boost); if (err < 0) return err; /* * set lowlevel callbacks */ chip->set_format = snd_pmac_awacs_set_format; #ifdef CONFIG_PM chip->suspend = snd_pmac_awacs_suspend; chip->resume = snd_pmac_awacs_resume; #endif #ifdef PMAC_SUPPORT_AUTOMUTE err = snd_pmac_add_automute(chip); if (err < 0) return err; chip->detect_headphone = snd_pmac_awacs_detect_headphone; chip->update_automute = snd_pmac_awacs_update_automute; snd_pmac_awacs_update_automute(chip, 0); /* update the status only */ #endif if (chip->model == PMAC_SCREAMER) { snd_pmac_awacs_write_noreg(chip, 6, chip->awacs_reg[6]); snd_pmac_awacs_write_noreg(chip, 0, chip->awacs_reg[0]); } return 0; }
linux-master
sound/ppc/awacs.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Beep using pcm * * Copyright (c) by Takashi Iwai <[email protected]> */ #include <linux/io.h> #include <asm/irq.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/input.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <sound/core.h> #include <sound/control.h> #include "pmac.h" struct pmac_beep { int running; /* boolean */ int volume; /* mixer volume: 0-100 */ int volume_play; /* currently playing volume */ int hz; int nsamples; short *buf; /* allocated wave buffer */ dma_addr_t addr; /* physical address of buffer */ struct input_dev *dev; }; /* * stop beep if running */ void snd_pmac_beep_stop(struct snd_pmac *chip) { struct pmac_beep *beep = chip->beep; if (beep && beep->running) { beep->running = 0; snd_pmac_beep_dma_stop(chip); } } /* * Stuff for outputting a beep. The values range from -327 to +327 * so we can multiply by an amplitude in the range 0..100 to get a * signed short value to put in the output buffer. */ static const short beep_wform[256] = { 0, 40, 79, 117, 153, 187, 218, 245, 269, 288, 304, 316, 323, 327, 327, 324, 318, 310, 299, 288, 275, 262, 249, 236, 224, 213, 204, 196, 190, 186, 183, 182, 182, 183, 186, 189, 192, 196, 200, 203, 206, 208, 209, 209, 209, 207, 204, 201, 197, 193, 188, 183, 179, 174, 170, 166, 163, 161, 160, 159, 159, 160, 161, 162, 164, 166, 168, 169, 171, 171, 171, 170, 169, 167, 163, 159, 155, 150, 144, 139, 133, 128, 122, 117, 113, 110, 107, 105, 103, 103, 103, 103, 104, 104, 105, 105, 105, 103, 101, 97, 92, 86, 78, 68, 58, 45, 32, 18, 3, -11, -26, -41, -55, -68, -79, -88, -95, -100, -102, -102, -99, -93, -85, -75, -62, -48, -33, -16, 0, 16, 33, 48, 62, 75, 85, 93, 99, 102, 102, 100, 95, 88, 79, 68, 55, 41, 26, 11, -3, -18, -32, -45, -58, -68, -78, -86, -92, -97, -101, -103, -105, -105, -105, -104, -104, -103, -103, -103, -103, -105, -107, -110, -113, -117, -122, -128, -133, -139, -144, -150, -155, -159, -163, -167, -169, -170, -171, -171, -171, -169, -168, -166, -164, -162, -161, -160, -159, -159, -160, -161, -163, -166, -170, -174, -179, -183, -188, -193, -197, -201, -204, -207, -209, -209, -209, -208, -206, -203, -200, -196, -192, -189, -186, -183, -182, -182, -183, -186, -190, -196, -204, -213, -224, -236, -249, -262, -275, -288, -299, -310, -318, -324, -327, -327, -323, -316, -304, -288, -269, -245, -218, -187, -153, -117, -79, -40, }; #define BEEP_SRATE 22050 /* 22050 Hz sample rate */ #define BEEP_BUFLEN 512 #define BEEP_VOLUME 15 /* 0 - 100 */ static int snd_pmac_beep_event(struct input_dev *dev, unsigned int type, unsigned int code, int hz) { struct snd_pmac *chip; struct pmac_beep *beep; unsigned long flags; int beep_speed = 0; int srate; int period, ncycles, nsamples; int i, j, f; short *p; if (type != EV_SND) return -1; switch (code) { case SND_BELL: if (hz) hz = 1000; break; case SND_TONE: break; default: return -1; } chip = input_get_drvdata(dev); if (!chip) return -1; beep = chip->beep; if (!beep) return -1; if (! hz) { spin_lock_irqsave(&chip->reg_lock, flags); if (beep->running) snd_pmac_beep_stop(chip); spin_unlock_irqrestore(&chip->reg_lock, flags); return 0; } beep_speed = snd_pmac_rate_index(chip, &chip->playback, BEEP_SRATE); srate = chip->freq_table[beep_speed]; if (hz <= srate / BEEP_BUFLEN || hz > srate / 2) hz = 1000; spin_lock_irqsave(&chip->reg_lock, flags); if (chip->playback.running || chip->capture.running || beep->running) { spin_unlock_irqrestore(&chip->reg_lock, flags); return 0; } beep->running = 1; spin_unlock_irqrestore(&chip->reg_lock, flags); if (hz == beep->hz && beep->volume == beep->volume_play) { nsamples = beep->nsamples; } else { period = srate * 256 / hz; /* fixed point */ ncycles = BEEP_BUFLEN * 256 / period; nsamples = (period * ncycles) >> 8; f = ncycles * 65536 / nsamples; j = 0; p = beep->buf; for (i = 0; i < nsamples; ++i, p += 2) { p[0] = p[1] = beep_wform[j >> 8] * beep->volume; j = (j + f) & 0xffff; } beep->hz = hz; beep->volume_play = beep->volume; beep->nsamples = nsamples; } spin_lock_irqsave(&chip->reg_lock, flags); snd_pmac_beep_dma_start(chip, beep->nsamples * 4, beep->addr, beep_speed); spin_unlock_irqrestore(&chip->reg_lock, flags); return 0; } /* * beep volume mixer */ static int snd_pmac_info_beep(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 100; return 0; } static int snd_pmac_get_beep(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); if (snd_BUG_ON(!chip->beep)) return -ENXIO; ucontrol->value.integer.value[0] = chip->beep->volume; return 0; } static int snd_pmac_put_beep(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); unsigned int oval, nval; if (snd_BUG_ON(!chip->beep)) return -ENXIO; oval = chip->beep->volume; nval = ucontrol->value.integer.value[0]; if (nval > 100) return -EINVAL; chip->beep->volume = nval; return oval != chip->beep->volume; } static const struct snd_kcontrol_new snd_pmac_beep_mixer = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Beep Playback Volume", .info = snd_pmac_info_beep, .get = snd_pmac_get_beep, .put = snd_pmac_put_beep, }; /* Initialize beep stuff */ int snd_pmac_attach_beep(struct snd_pmac *chip) { struct pmac_beep *beep; struct input_dev *input_dev; struct snd_kcontrol *beep_ctl; void *dmabuf; int err = -ENOMEM; beep = kzalloc(sizeof(*beep), GFP_KERNEL); if (! beep) return -ENOMEM; dmabuf = dma_alloc_coherent(&chip->pdev->dev, BEEP_BUFLEN * 4, &beep->addr, GFP_KERNEL); input_dev = input_allocate_device(); if (! dmabuf || ! input_dev) goto fail1; /* FIXME: set more better values */ input_dev->name = "PowerMac Beep"; input_dev->phys = "powermac/beep"; input_dev->id.bustype = BUS_ADB; input_dev->id.vendor = 0x001f; input_dev->id.product = 0x0001; input_dev->id.version = 0x0100; input_dev->evbit[0] = BIT_MASK(EV_SND); input_dev->sndbit[0] = BIT_MASK(SND_BELL) | BIT_MASK(SND_TONE); input_dev->event = snd_pmac_beep_event; input_dev->dev.parent = &chip->pdev->dev; input_set_drvdata(input_dev, chip); beep->dev = input_dev; beep->buf = dmabuf; beep->volume = BEEP_VOLUME; beep->running = 0; beep_ctl = snd_ctl_new1(&snd_pmac_beep_mixer, chip); err = snd_ctl_add(chip->card, beep_ctl); if (err < 0) goto fail1; chip->beep = beep; err = input_register_device(beep->dev); if (err) goto fail2; return 0; fail2: snd_ctl_remove(chip->card, beep_ctl); fail1: input_free_device(input_dev); if (dmabuf) dma_free_coherent(&chip->pdev->dev, BEEP_BUFLEN * 4, dmabuf, beep->addr); kfree(beep); return err; } void snd_pmac_detach_beep(struct snd_pmac *chip) { if (chip->beep) { input_unregister_device(chip->beep->dev); dma_free_coherent(&chip->pdev->dev, BEEP_BUFLEN * 4, chip->beep->buf, chip->beep->addr); kfree(chip->beep); chip->beep = NULL; } }
linux-master
sound/ppc/beep.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for PowerMac AWACS * Copyright (c) 2001 by Takashi Iwai <[email protected]> * based on dmasound.c. */ #include <linux/init.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/module.h> #include <sound/core.h> #include <sound/initval.h> #include "pmac.h" #include "awacs.h" #include "burgundy.h" #define CHIP_NAME "PMac" MODULE_DESCRIPTION("PowerMac"); MODULE_LICENSE("GPL"); static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ static bool enable_beep = 1; module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for " CHIP_NAME " soundchip."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for " CHIP_NAME " soundchip."); module_param(enable_beep, bool, 0444); MODULE_PARM_DESC(enable_beep, "Enable beep using PCM."); static struct platform_device *device; /* */ static int snd_pmac_probe(struct platform_device *devptr) { struct snd_card *card; struct snd_pmac *chip; char *name_ext; int err; err = snd_card_new(&devptr->dev, index, id, THIS_MODULE, 0, &card); if (err < 0) return err; err = snd_pmac_new(card, &chip); if (err < 0) goto __error; card->private_data = chip; switch (chip->model) { case PMAC_BURGUNDY: strcpy(card->driver, "PMac Burgundy"); strcpy(card->shortname, "PowerMac Burgundy"); sprintf(card->longname, "%s (Dev %d) Sub-frame %d", card->shortname, chip->device_id, chip->subframe); err = snd_pmac_burgundy_init(chip); if (err < 0) goto __error; break; case PMAC_DACA: strcpy(card->driver, "PMac DACA"); strcpy(card->shortname, "PowerMac DACA"); sprintf(card->longname, "%s (Dev %d) Sub-frame %d", card->shortname, chip->device_id, chip->subframe); err = snd_pmac_daca_init(chip); if (err < 0) goto __error; break; case PMAC_TUMBLER: case PMAC_SNAPPER: name_ext = chip->model == PMAC_TUMBLER ? "Tumbler" : "Snapper"; sprintf(card->driver, "PMac %s", name_ext); sprintf(card->shortname, "PowerMac %s", name_ext); sprintf(card->longname, "%s (Dev %d) Sub-frame %d", card->shortname, chip->device_id, chip->subframe); err = snd_pmac_tumbler_init(chip); if (err < 0) goto __error; err = snd_pmac_tumbler_post_init(); if (err < 0) goto __error; break; case PMAC_AWACS: case PMAC_SCREAMER: name_ext = chip->model == PMAC_SCREAMER ? "Screamer" : "AWACS"; sprintf(card->driver, "PMac %s", name_ext); sprintf(card->shortname, "PowerMac %s", name_ext); if (chip->is_pbook_3400) name_ext = " [PB3400]"; else if (chip->is_pbook_G3) name_ext = " [PBG3]"; else name_ext = ""; sprintf(card->longname, "%s%s Rev %d", card->shortname, name_ext, chip->revision); err = snd_pmac_awacs_init(chip); if (err < 0) goto __error; break; default: snd_printk(KERN_ERR "unsupported hardware %d\n", chip->model); err = -EINVAL; goto __error; } err = snd_pmac_pcm_new(chip); if (err < 0) goto __error; chip->initialized = 1; if (enable_beep) snd_pmac_attach_beep(chip); err = snd_card_register(card); if (err < 0) goto __error; platform_set_drvdata(devptr, card); return 0; __error: snd_card_free(card); return err; } static void snd_pmac_remove(struct platform_device *devptr) { snd_card_free(platform_get_drvdata(devptr)); } #ifdef CONFIG_PM_SLEEP static int snd_pmac_driver_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); snd_pmac_suspend(card->private_data); return 0; } static int snd_pmac_driver_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); snd_pmac_resume(card->private_data); return 0; } static SIMPLE_DEV_PM_OPS(snd_pmac_pm, snd_pmac_driver_suspend, snd_pmac_driver_resume); #define SND_PMAC_PM_OPS &snd_pmac_pm #else #define SND_PMAC_PM_OPS NULL #endif #define SND_PMAC_DRIVER "snd_powermac" static struct platform_driver snd_pmac_driver = { .probe = snd_pmac_probe, .remove_new = snd_pmac_remove, .driver = { .name = SND_PMAC_DRIVER, .pm = SND_PMAC_PM_OPS, }, }; static int __init alsa_card_pmac_init(void) { int err; err = platform_driver_register(&snd_pmac_driver); if (err < 0) return err; device = platform_device_register_simple(SND_PMAC_DRIVER, -1, NULL, 0); return 0; } static void __exit alsa_card_pmac_exit(void) { if (!IS_ERR(device)) platform_device_unregister(device); platform_driver_unregister(&snd_pmac_driver); } module_init(alsa_card_pmac_init) module_exit(alsa_card_pmac_exit)
linux-master
sound/ppc/powermac.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PMac DACA lowlevel functions * * Copyright (c) by Takashi Iwai <[email protected]> */ #include <linux/init.h> #include <linux/i2c.h> #include <linux/kmod.h> #include <linux/slab.h> #include <sound/core.h> #include "pmac.h" /* i2c address */ #define DACA_I2C_ADDR 0x4d /* registers */ #define DACA_REG_SR 0x01 #define DACA_REG_AVOL 0x02 #define DACA_REG_GCFG 0x03 /* maximum volume value */ #define DACA_VOL_MAX 0x38 struct pmac_daca { struct pmac_keywest i2c; int left_vol, right_vol; unsigned int deemphasis : 1; unsigned int amp_on : 1; }; /* * initialize / detect DACA */ static int daca_init_client(struct pmac_keywest *i2c) { unsigned short wdata = 0x00; /* SR: no swap, 1bit delay, 32-48kHz */ /* GCFG: power amp inverted, DAC on */ if (i2c_smbus_write_byte_data(i2c->client, DACA_REG_SR, 0x08) < 0 || i2c_smbus_write_byte_data(i2c->client, DACA_REG_GCFG, 0x05) < 0) return -EINVAL; return i2c_smbus_write_block_data(i2c->client, DACA_REG_AVOL, 2, (unsigned char*)&wdata); } /* * update volume */ static int daca_set_volume(struct pmac_daca *mix) { unsigned char data[2]; if (! mix->i2c.client) return -ENODEV; if (mix->left_vol > DACA_VOL_MAX) data[0] = DACA_VOL_MAX; else data[0] = mix->left_vol; if (mix->right_vol > DACA_VOL_MAX) data[1] = DACA_VOL_MAX; else data[1] = mix->right_vol; data[1] |= mix->deemphasis ? 0x40 : 0; if (i2c_smbus_write_block_data(mix->i2c.client, DACA_REG_AVOL, 2, data) < 0) { snd_printk(KERN_ERR "failed to set volume \n"); return -EINVAL; } return 0; } /* deemphasis switch */ #define daca_info_deemphasis snd_ctl_boolean_mono_info static int daca_get_deemphasis(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_daca *mix; mix = chip->mixer_data; if (!mix) return -ENODEV; ucontrol->value.integer.value[0] = mix->deemphasis ? 1 : 0; return 0; } static int daca_put_deemphasis(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_daca *mix; int change; mix = chip->mixer_data; if (!mix) return -ENODEV; change = mix->deemphasis != ucontrol->value.integer.value[0]; if (change) { mix->deemphasis = !!ucontrol->value.integer.value[0]; daca_set_volume(mix); } return change; } /* output volume */ static int daca_info_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = DACA_VOL_MAX; return 0; } static int daca_get_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_daca *mix; mix = chip->mixer_data; if (!mix) return -ENODEV; ucontrol->value.integer.value[0] = mix->left_vol; ucontrol->value.integer.value[1] = mix->right_vol; return 0; } static int daca_put_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_daca *mix; unsigned int vol[2]; int change; mix = chip->mixer_data; if (!mix) return -ENODEV; vol[0] = ucontrol->value.integer.value[0]; vol[1] = ucontrol->value.integer.value[1]; if (vol[0] > DACA_VOL_MAX || vol[1] > DACA_VOL_MAX) return -EINVAL; change = mix->left_vol != vol[0] || mix->right_vol != vol[1]; if (change) { mix->left_vol = vol[0]; mix->right_vol = vol[1]; daca_set_volume(mix); } return change; } /* amplifier switch */ #define daca_info_amp daca_info_deemphasis static int daca_get_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_daca *mix; mix = chip->mixer_data; if (!mix) return -ENODEV; ucontrol->value.integer.value[0] = mix->amp_on ? 1 : 0; return 0; } static int daca_put_amp(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_daca *mix; int change; mix = chip->mixer_data; if (!mix) return -ENODEV; change = mix->amp_on != ucontrol->value.integer.value[0]; if (change) { mix->amp_on = !!ucontrol->value.integer.value[0]; i2c_smbus_write_byte_data(mix->i2c.client, DACA_REG_GCFG, mix->amp_on ? 0x05 : 0x04); } return change; } static const struct snd_kcontrol_new daca_mixers[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Deemphasis Switch", .info = daca_info_deemphasis, .get = daca_get_deemphasis, .put = daca_put_deemphasis }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Volume", .info = daca_info_volume, .get = daca_get_volume, .put = daca_put_volume }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Power Amplifier Switch", .info = daca_info_amp, .get = daca_get_amp, .put = daca_put_amp }, }; #ifdef CONFIG_PM static void daca_resume(struct snd_pmac *chip) { struct pmac_daca *mix = chip->mixer_data; i2c_smbus_write_byte_data(mix->i2c.client, DACA_REG_SR, 0x08); i2c_smbus_write_byte_data(mix->i2c.client, DACA_REG_GCFG, mix->amp_on ? 0x05 : 0x04); daca_set_volume(mix); } #endif /* CONFIG_PM */ static void daca_cleanup(struct snd_pmac *chip) { struct pmac_daca *mix = chip->mixer_data; if (! mix) return; snd_pmac_keywest_cleanup(&mix->i2c); kfree(mix); chip->mixer_data = NULL; } /* exported */ int snd_pmac_daca_init(struct snd_pmac *chip) { int i, err; struct pmac_daca *mix; request_module("i2c-powermac"); mix = kzalloc(sizeof(*mix), GFP_KERNEL); if (! mix) return -ENOMEM; chip->mixer_data = mix; chip->mixer_free = daca_cleanup; mix->amp_on = 1; /* default on */ mix->i2c.addr = DACA_I2C_ADDR; mix->i2c.init_client = daca_init_client; mix->i2c.name = "DACA"; err = snd_pmac_keywest_init(&mix->i2c); if (err < 0) return err; /* * build mixers */ strcpy(chip->card->mixername, "PowerMac DACA"); for (i = 0; i < ARRAY_SIZE(daca_mixers); i++) { err = snd_ctl_add(chip->card, snd_ctl_new1(&daca_mixers[i], chip)); if (err < 0) return err; } #ifdef CONFIG_PM chip->resume = daca_resume; #endif return 0; }
linux-master
sound/ppc/daca.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * common keywest i2c layer * * Copyright (c) by Takashi Iwai <[email protected]> */ #include <linux/init.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/module.h> #include <sound/core.h> #include "pmac.h" static struct pmac_keywest *keywest_ctx; static bool keywest_probed; static int keywest_probe(struct i2c_client *client) { keywest_probed = true; /* If instantiated via i2c-powermac, we still need to set the client */ if (!keywest_ctx->client) keywest_ctx->client = client; i2c_set_clientdata(client, keywest_ctx); return 0; } /* * This is kind of a hack, best would be to turn powermac to fixed i2c * bus numbers and declare the sound device as part of platform * initialization */ static int keywest_attach_adapter(struct i2c_adapter *adapter) { struct i2c_board_info info; struct i2c_client *client; if (! keywest_ctx) return -EINVAL; if (strncmp(adapter->name, "mac-io", 6)) return -EINVAL; /* ignored */ memset(&info, 0, sizeof(struct i2c_board_info)); strscpy(info.type, "keywest", I2C_NAME_SIZE); info.addr = keywest_ctx->addr; client = i2c_new_client_device(adapter, &info); if (IS_ERR(client)) return PTR_ERR(client); keywest_ctx->client = client; /* * We know the driver is already loaded, so the device should be * already bound. If not it means binding failed, and then there * is no point in keeping the device instantiated. */ if (!keywest_ctx->client->dev.driver) { i2c_unregister_device(keywest_ctx->client); keywest_ctx->client = NULL; return -ENODEV; } /* * Let i2c-core delete that device on driver removal. * This is safe because i2c-core holds the core_lock mutex for us. */ list_add_tail(&keywest_ctx->client->detected, &to_i2c_driver(keywest_ctx->client->dev.driver)->clients); return 0; } static void keywest_remove(struct i2c_client *client) { if (! keywest_ctx) return; if (client == keywest_ctx->client) keywest_ctx->client = NULL; } static const struct i2c_device_id keywest_i2c_id[] = { { "MAC,tas3004", 0 }, /* instantiated by i2c-powermac */ { "keywest", 0 }, /* instantiated by us if needed */ { } }; MODULE_DEVICE_TABLE(i2c, keywest_i2c_id); static struct i2c_driver keywest_driver = { .driver = { .name = "PMac Keywest Audio", }, .probe = keywest_probe, .remove = keywest_remove, .id_table = keywest_i2c_id, }; /* exported */ void snd_pmac_keywest_cleanup(struct pmac_keywest *i2c) { if (keywest_ctx && keywest_ctx == i2c) { i2c_del_driver(&keywest_driver); keywest_ctx = NULL; } } int snd_pmac_tumbler_post_init(void) { int err; if (!keywest_ctx || !keywest_ctx->client) return -ENXIO; err = keywest_ctx->init_client(keywest_ctx); if (err < 0) { snd_printk(KERN_ERR "tumbler: %i :cannot initialize the MCS\n", err); return err; } return 0; } /* exported */ int snd_pmac_keywest_init(struct pmac_keywest *i2c) { struct i2c_adapter *adap; int err, i = 0; if (keywest_ctx) return -EBUSY; adap = i2c_get_adapter(0); if (!adap) return -EPROBE_DEFER; keywest_ctx = i2c; err = i2c_add_driver(&keywest_driver); if (err) { snd_printk(KERN_ERR "cannot register keywest i2c driver\n"); i2c_put_adapter(adap); return err; } /* There was already a device from i2c-powermac. Great, let's return */ if (keywest_probed) return 0; /* We assume Macs have consecutive I2C bus numbers starting at 0 */ while (adap) { /* Scan for devices to be bound to */ err = keywest_attach_adapter(adap); if (!err) return 0; i2c_put_adapter(adap); adap = i2c_get_adapter(++i); } return -ENODEV; }
linux-master
sound/ppc/keywest.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Generic i2c interface for ALSA * * (c) 1998 Gerd Knorr <[email protected]> * Modified for the ALSA driver by Jaroslav Kysela <[email protected]> */ #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/string.h> #include <linux/errno.h> #include <sound/core.h> #include <sound/i2c.h> MODULE_AUTHOR("Jaroslav Kysela <[email protected]>"); MODULE_DESCRIPTION("Generic i2c interface for ALSA"); MODULE_LICENSE("GPL"); static int snd_i2c_bit_sendbytes(struct snd_i2c_device *device, unsigned char *bytes, int count); static int snd_i2c_bit_readbytes(struct snd_i2c_device *device, unsigned char *bytes, int count); static int snd_i2c_bit_probeaddr(struct snd_i2c_bus *bus, unsigned short addr); static const struct snd_i2c_ops snd_i2c_bit_ops = { .sendbytes = snd_i2c_bit_sendbytes, .readbytes = snd_i2c_bit_readbytes, .probeaddr = snd_i2c_bit_probeaddr, }; static int snd_i2c_bus_free(struct snd_i2c_bus *bus) { struct snd_i2c_bus *slave; struct snd_i2c_device *device; if (snd_BUG_ON(!bus)) return -EINVAL; while (!list_empty(&bus->devices)) { device = snd_i2c_device(bus->devices.next); snd_i2c_device_free(device); } if (bus->master) list_del(&bus->buses); else { while (!list_empty(&bus->buses)) { slave = snd_i2c_slave_bus(bus->buses.next); snd_device_free(bus->card, slave); } } if (bus->private_free) bus->private_free(bus); kfree(bus); return 0; } static int snd_i2c_bus_dev_free(struct snd_device *device) { struct snd_i2c_bus *bus = device->device_data; return snd_i2c_bus_free(bus); } int snd_i2c_bus_create(struct snd_card *card, const char *name, struct snd_i2c_bus *master, struct snd_i2c_bus **ri2c) { struct snd_i2c_bus *bus; int err; static const struct snd_device_ops ops = { .dev_free = snd_i2c_bus_dev_free, }; *ri2c = NULL; bus = kzalloc(sizeof(*bus), GFP_KERNEL); if (bus == NULL) return -ENOMEM; mutex_init(&bus->lock_mutex); INIT_LIST_HEAD(&bus->devices); INIT_LIST_HEAD(&bus->buses); bus->card = card; bus->ops = &snd_i2c_bit_ops; if (master) { list_add_tail(&bus->buses, &master->buses); bus->master = master; } strscpy(bus->name, name, sizeof(bus->name)); err = snd_device_new(card, SNDRV_DEV_BUS, bus, &ops); if (err < 0) { snd_i2c_bus_free(bus); return err; } *ri2c = bus; return 0; } EXPORT_SYMBOL(snd_i2c_bus_create); int snd_i2c_device_create(struct snd_i2c_bus *bus, const char *name, unsigned char addr, struct snd_i2c_device **rdevice) { struct snd_i2c_device *device; *rdevice = NULL; if (snd_BUG_ON(!bus)) return -EINVAL; device = kzalloc(sizeof(*device), GFP_KERNEL); if (device == NULL) return -ENOMEM; device->addr = addr; strscpy(device->name, name, sizeof(device->name)); list_add_tail(&device->list, &bus->devices); device->bus = bus; *rdevice = device; return 0; } EXPORT_SYMBOL(snd_i2c_device_create); int snd_i2c_device_free(struct snd_i2c_device *device) { if (device->bus) list_del(&device->list); if (device->private_free) device->private_free(device); kfree(device); return 0; } EXPORT_SYMBOL(snd_i2c_device_free); int snd_i2c_sendbytes(struct snd_i2c_device *device, unsigned char *bytes, int count) { return device->bus->ops->sendbytes(device, bytes, count); } EXPORT_SYMBOL(snd_i2c_sendbytes); int snd_i2c_readbytes(struct snd_i2c_device *device, unsigned char *bytes, int count) { return device->bus->ops->readbytes(device, bytes, count); } EXPORT_SYMBOL(snd_i2c_readbytes); int snd_i2c_probeaddr(struct snd_i2c_bus *bus, unsigned short addr) { return bus->ops->probeaddr(bus, addr); } EXPORT_SYMBOL(snd_i2c_probeaddr); /* * bit-operations */ static inline void snd_i2c_bit_hw_start(struct snd_i2c_bus *bus) { if (bus->hw_ops.bit->start) bus->hw_ops.bit->start(bus); } static inline void snd_i2c_bit_hw_stop(struct snd_i2c_bus *bus) { if (bus->hw_ops.bit->stop) bus->hw_ops.bit->stop(bus); } static void snd_i2c_bit_direction(struct snd_i2c_bus *bus, int clock, int data) { if (bus->hw_ops.bit->direction) bus->hw_ops.bit->direction(bus, clock, data); } static void snd_i2c_bit_set(struct snd_i2c_bus *bus, int clock, int data) { bus->hw_ops.bit->setlines(bus, clock, data); } #if 0 static int snd_i2c_bit_clock(struct snd_i2c_bus *bus) { if (bus->hw_ops.bit->getclock) return bus->hw_ops.bit->getclock(bus); return -ENXIO; } #endif static int snd_i2c_bit_data(struct snd_i2c_bus *bus, int ack) { return bus->hw_ops.bit->getdata(bus, ack); } static void snd_i2c_bit_start(struct snd_i2c_bus *bus) { snd_i2c_bit_hw_start(bus); snd_i2c_bit_direction(bus, 1, 1); /* SCL - wr, SDA - wr */ snd_i2c_bit_set(bus, 1, 1); snd_i2c_bit_set(bus, 1, 0); snd_i2c_bit_set(bus, 0, 0); } static void snd_i2c_bit_stop(struct snd_i2c_bus *bus) { snd_i2c_bit_set(bus, 0, 0); snd_i2c_bit_set(bus, 1, 0); snd_i2c_bit_set(bus, 1, 1); snd_i2c_bit_hw_stop(bus); } static void snd_i2c_bit_send(struct snd_i2c_bus *bus, int data) { snd_i2c_bit_set(bus, 0, data); snd_i2c_bit_set(bus, 1, data); snd_i2c_bit_set(bus, 0, data); } static int snd_i2c_bit_ack(struct snd_i2c_bus *bus) { int ack; snd_i2c_bit_set(bus, 0, 1); snd_i2c_bit_set(bus, 1, 1); snd_i2c_bit_direction(bus, 1, 0); /* SCL - wr, SDA - rd */ ack = snd_i2c_bit_data(bus, 1); snd_i2c_bit_direction(bus, 1, 1); /* SCL - wr, SDA - wr */ snd_i2c_bit_set(bus, 0, 1); return ack ? -EIO : 0; } static int snd_i2c_bit_sendbyte(struct snd_i2c_bus *bus, unsigned char data) { int i, err; for (i = 7; i >= 0; i--) snd_i2c_bit_send(bus, !!(data & (1 << i))); err = snd_i2c_bit_ack(bus); if (err < 0) return err; return 0; } static int snd_i2c_bit_readbyte(struct snd_i2c_bus *bus, int last) { int i; unsigned char data = 0; snd_i2c_bit_set(bus, 0, 1); snd_i2c_bit_direction(bus, 1, 0); /* SCL - wr, SDA - rd */ for (i = 7; i >= 0; i--) { snd_i2c_bit_set(bus, 1, 1); if (snd_i2c_bit_data(bus, 0)) data |= (1 << i); snd_i2c_bit_set(bus, 0, 1); } snd_i2c_bit_direction(bus, 1, 1); /* SCL - wr, SDA - wr */ snd_i2c_bit_send(bus, !!last); return data; } static int snd_i2c_bit_sendbytes(struct snd_i2c_device *device, unsigned char *bytes, int count) { struct snd_i2c_bus *bus = device->bus; int err, res = 0; if (device->flags & SND_I2C_DEVICE_ADDRTEN) return -EIO; /* not yet implemented */ snd_i2c_bit_start(bus); err = snd_i2c_bit_sendbyte(bus, device->addr << 1); if (err < 0) { snd_i2c_bit_hw_stop(bus); return err; } while (count-- > 0) { err = snd_i2c_bit_sendbyte(bus, *bytes++); if (err < 0) { snd_i2c_bit_hw_stop(bus); return err; } res++; } snd_i2c_bit_stop(bus); return res; } static int snd_i2c_bit_readbytes(struct snd_i2c_device *device, unsigned char *bytes, int count) { struct snd_i2c_bus *bus = device->bus; int err, res = 0; if (device->flags & SND_I2C_DEVICE_ADDRTEN) return -EIO; /* not yet implemented */ snd_i2c_bit_start(bus); err = snd_i2c_bit_sendbyte(bus, (device->addr << 1) | 1); if (err < 0) { snd_i2c_bit_hw_stop(bus); return err; } while (count-- > 0) { err = snd_i2c_bit_readbyte(bus, count == 0); if (err < 0) { snd_i2c_bit_hw_stop(bus); return err; } *bytes++ = (unsigned char)err; res++; } snd_i2c_bit_stop(bus); return res; } static int snd_i2c_bit_probeaddr(struct snd_i2c_bus *bus, unsigned short addr) { int err; if (addr & 0x8000) /* 10-bit address */ return -EIO; /* not yet implemented */ if (addr & 0x7f80) /* invalid address */ return -EINVAL; snd_i2c_bit_start(bus); err = snd_i2c_bit_sendbyte(bus, addr << 1); snd_i2c_bit_stop(bus); return err; }
linux-master
sound/i2c/i2c.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Routines for control of the CS8427 via i2c bus * IEC958 (S/PDIF) receiver & transmitter by Cirrus Logic * Copyright (c) by Jaroslav Kysela <[email protected]> */ #include <linux/slab.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/bitrev.h> #include <linux/module.h> #include <asm/unaligned.h> #include <sound/core.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/cs8427.h> #include <sound/asoundef.h> static void snd_cs8427_reset(struct snd_i2c_device *cs8427); MODULE_AUTHOR("Jaroslav Kysela <[email protected]>"); MODULE_DESCRIPTION("IEC958 (S/PDIF) receiver & transmitter by Cirrus Logic"); MODULE_LICENSE("GPL"); #define CS8427_ADDR (0x20>>1) /* fixed address */ struct cs8427_stream { struct snd_pcm_substream *substream; char hw_status[24]; /* hardware status */ char def_status[24]; /* default status */ char pcm_status[24]; /* PCM private status */ char hw_udata[32]; struct snd_kcontrol *pcm_ctl; }; struct cs8427 { unsigned char regmap[0x14]; /* map of first 1 + 13 registers */ unsigned int rate; unsigned int reset_timeout; struct cs8427_stream playback; struct cs8427_stream capture; }; int snd_cs8427_reg_write(struct snd_i2c_device *device, unsigned char reg, unsigned char val) { int err; unsigned char buf[2]; buf[0] = reg & 0x7f; buf[1] = val; err = snd_i2c_sendbytes(device, buf, 2); if (err != 2) { snd_printk(KERN_ERR "unable to send bytes 0x%02x:0x%02x " "to CS8427 (%i)\n", buf[0], buf[1], err); return err < 0 ? err : -EIO; } return 0; } EXPORT_SYMBOL(snd_cs8427_reg_write); static int snd_cs8427_reg_read(struct snd_i2c_device *device, unsigned char reg) { int err; unsigned char buf; err = snd_i2c_sendbytes(device, &reg, 1); if (err != 1) { snd_printk(KERN_ERR "unable to send register 0x%x byte " "to CS8427\n", reg); return err < 0 ? err : -EIO; } err = snd_i2c_readbytes(device, &buf, 1); if (err != 1) { snd_printk(KERN_ERR "unable to read register 0x%x byte " "from CS8427\n", reg); return err < 0 ? err : -EIO; } return buf; } static int snd_cs8427_select_corudata(struct snd_i2c_device *device, int udata) { struct cs8427 *chip = device->private_data; int err; udata = udata ? CS8427_BSEL : 0; if (udata != (chip->regmap[CS8427_REG_CSDATABUF] & udata)) { chip->regmap[CS8427_REG_CSDATABUF] &= ~CS8427_BSEL; chip->regmap[CS8427_REG_CSDATABUF] |= udata; err = snd_cs8427_reg_write(device, CS8427_REG_CSDATABUF, chip->regmap[CS8427_REG_CSDATABUF]); if (err < 0) return err; } return 0; } static int snd_cs8427_send_corudata(struct snd_i2c_device *device, int udata, unsigned char *ndata, int count) { struct cs8427 *chip = device->private_data; char *hw_data = udata ? chip->playback.hw_udata : chip->playback.hw_status; unsigned char data[32]; int err, idx; if (!memcmp(hw_data, ndata, count)) return 0; err = snd_cs8427_select_corudata(device, udata); if (err < 0) return err; memcpy(hw_data, ndata, count); if (udata) { memset(data, 0, sizeof(data)); if (memcmp(hw_data, data, count) == 0) { chip->regmap[CS8427_REG_UDATABUF] &= ~CS8427_UBMMASK; chip->regmap[CS8427_REG_UDATABUF] |= CS8427_UBMZEROS | CS8427_EFTUI; err = snd_cs8427_reg_write(device, CS8427_REG_UDATABUF, chip->regmap[CS8427_REG_UDATABUF]); return err < 0 ? err : 0; } } data[0] = CS8427_REG_AUTOINC | CS8427_REG_CORU_DATABUF; for (idx = 0; idx < count; idx++) data[idx + 1] = bitrev8(ndata[idx]); if (snd_i2c_sendbytes(device, data, count + 1) != count + 1) return -EIO; return 1; } static void snd_cs8427_free(struct snd_i2c_device *device) { kfree(device->private_data); } int snd_cs8427_init(struct snd_i2c_bus *bus, struct snd_i2c_device *device) { static unsigned char initvals1[] = { CS8427_REG_CONTROL1 | CS8427_REG_AUTOINC, /* CS8427_REG_CONTROL1: RMCK to OMCK, valid PCM audio, disable mutes, TCBL=output */ CS8427_SWCLK | CS8427_TCBLDIR, /* CS8427_REG_CONTROL2: hold last valid audio sample, RMCK=256*Fs, normal stereo operation */ 0x00, /* CS8427_REG_DATAFLOW: output drivers normal operation, Tx<=serial, Rx=>serial */ CS8427_TXDSERIAL | CS8427_SPDAES3RECEIVER, /* CS8427_REG_CLOCKSOURCE: Run off, CMCK=256*Fs, output time base = OMCK, input time base = recovered input clock, recovered input clock source is ILRCK changed to AES3INPUT (workaround, see snd_cs8427_reset) */ CS8427_RXDILRCK, /* CS8427_REG_SERIALINPUT: Serial audio input port data format = I2S, 24-bit, 64*Fsi */ CS8427_SIDEL | CS8427_SILRPOL, /* CS8427_REG_SERIALOUTPUT: Serial audio output port data format = I2S, 24-bit, 64*Fsi */ CS8427_SODEL | CS8427_SOLRPOL, }; static unsigned char initvals2[] = { CS8427_REG_RECVERRMASK | CS8427_REG_AUTOINC, /* CS8427_REG_RECVERRMASK: unmask the input PLL clock, V, confidence, biphase, parity status bits */ /* CS8427_UNLOCK | CS8427_V | CS8427_CONF | CS8427_BIP | CS8427_PAR,*/ 0xff, /* set everything */ /* CS8427_REG_CSDATABUF: Registers 32-55 window to CS buffer Inhibit D->E transfers from overwriting first 5 bytes of CS data. Inhibit D->E transfers (all) of CS data. Allow E->F transfer of CS data. One byte mode; both A/B channels get same written CB data. A channel info is output to chip's EMPH* pin. */ CS8427_CBMR | CS8427_DETCI, /* CS8427_REG_UDATABUF: Use internal buffer to transmit User (U) data. Chip's U pin is an output. Transmit all O's for user data. Inhibit D->E transfers. Inhibit E->F transfers. */ CS8427_UD | CS8427_EFTUI | CS8427_DETUI, }; struct cs8427 *chip = device->private_data; int err; unsigned char buf[24]; snd_i2c_lock(bus); err = snd_cs8427_reg_read(device, CS8427_REG_ID_AND_VER); if (err != CS8427_VER8427A) { /* give second chance */ snd_printk(KERN_WARNING "invalid CS8427 signature 0x%x: " "let me try again...\n", err); err = snd_cs8427_reg_read(device, CS8427_REG_ID_AND_VER); } if (err != CS8427_VER8427A) { snd_i2c_unlock(bus); snd_printk(KERN_ERR "unable to find CS8427 signature " "(expected 0x%x, read 0x%x),\n", CS8427_VER8427A, err); snd_printk(KERN_ERR " initialization is not completed\n"); return -EFAULT; } /* turn off run bit while making changes to configuration */ err = snd_cs8427_reg_write(device, CS8427_REG_CLOCKSOURCE, 0x00); if (err < 0) goto __fail; /* send initial values */ memcpy(chip->regmap + (initvals1[0] & 0x7f), initvals1 + 1, 6); err = snd_i2c_sendbytes(device, initvals1, 7); if (err != 7) { err = err < 0 ? err : -EIO; goto __fail; } /* Turn off CS8427 interrupt stuff that is not used in hardware */ memset(buf, 0, 7); /* from address 9 to 15 */ buf[0] = 9; /* register */ err = snd_i2c_sendbytes(device, buf, 7); if (err != 7) goto __fail; /* send transfer initialization sequence */ memcpy(chip->regmap + (initvals2[0] & 0x7f), initvals2 + 1, 3); err = snd_i2c_sendbytes(device, initvals2, 4); if (err != 4) { err = err < 0 ? err : -EIO; goto __fail; } /* write default channel status bytes */ put_unaligned_le32(SNDRV_PCM_DEFAULT_CON_SPDIF, buf); memset(buf + 4, 0, 24 - 4); if (snd_cs8427_send_corudata(device, 0, buf, 24) < 0) goto __fail; memcpy(chip->playback.def_status, buf, 24); memcpy(chip->playback.pcm_status, buf, 24); snd_i2c_unlock(bus); /* turn on run bit and rock'n'roll */ snd_cs8427_reset(device); return 0; __fail: snd_i2c_unlock(bus); return err; } EXPORT_SYMBOL(snd_cs8427_init); int snd_cs8427_create(struct snd_i2c_bus *bus, unsigned char addr, unsigned int reset_timeout, struct snd_i2c_device **r_cs8427) { int err; struct cs8427 *chip; struct snd_i2c_device *device; err = snd_i2c_device_create(bus, "CS8427", CS8427_ADDR | (addr & 7), &device); if (err < 0) return err; chip = device->private_data = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) { snd_i2c_device_free(device); return -ENOMEM; } device->private_free = snd_cs8427_free; if (reset_timeout < 1) reset_timeout = 1; chip->reset_timeout = reset_timeout; err = snd_cs8427_init(bus, device); if (err) goto __fail; #if 0 // it's nice for read tests { char buf[128]; int xx; buf[0] = 0x81; snd_i2c_sendbytes(device, buf, 1); snd_i2c_readbytes(device, buf, 127); for (xx = 0; xx < 127; xx++) printk(KERN_DEBUG "reg[0x%x] = 0x%x\n", xx+1, buf[xx]); } #endif if (r_cs8427) *r_cs8427 = device; return 0; __fail: snd_i2c_device_free(device); return err < 0 ? err : -EIO; } EXPORT_SYMBOL(snd_cs8427_create); /* * Reset the chip using run bit, also lock PLL using ILRCK and * put back AES3INPUT. This workaround is described in latest * CS8427 datasheet, otherwise TXDSERIAL will not work. */ static void snd_cs8427_reset(struct snd_i2c_device *cs8427) { struct cs8427 *chip; unsigned long end_time; int data, aes3input = 0; if (snd_BUG_ON(!cs8427)) return; chip = cs8427->private_data; snd_i2c_lock(cs8427->bus); if ((chip->regmap[CS8427_REG_CLOCKSOURCE] & CS8427_RXDAES3INPUT) == CS8427_RXDAES3INPUT) /* AES3 bit is set */ aes3input = 1; chip->regmap[CS8427_REG_CLOCKSOURCE] &= ~(CS8427_RUN | CS8427_RXDMASK); snd_cs8427_reg_write(cs8427, CS8427_REG_CLOCKSOURCE, chip->regmap[CS8427_REG_CLOCKSOURCE]); udelay(200); chip->regmap[CS8427_REG_CLOCKSOURCE] |= CS8427_RUN | CS8427_RXDILRCK; snd_cs8427_reg_write(cs8427, CS8427_REG_CLOCKSOURCE, chip->regmap[CS8427_REG_CLOCKSOURCE]); udelay(200); snd_i2c_unlock(cs8427->bus); end_time = jiffies + chip->reset_timeout; while (time_after_eq(end_time, jiffies)) { snd_i2c_lock(cs8427->bus); data = snd_cs8427_reg_read(cs8427, CS8427_REG_RECVERRORS); snd_i2c_unlock(cs8427->bus); if (!(data & CS8427_UNLOCK)) break; schedule_timeout_uninterruptible(1); } snd_i2c_lock(cs8427->bus); chip->regmap[CS8427_REG_CLOCKSOURCE] &= ~CS8427_RXDMASK; if (aes3input) chip->regmap[CS8427_REG_CLOCKSOURCE] |= CS8427_RXDAES3INPUT; snd_cs8427_reg_write(cs8427, CS8427_REG_CLOCKSOURCE, chip->regmap[CS8427_REG_CLOCKSOURCE]); snd_i2c_unlock(cs8427->bus); } static int snd_cs8427_in_status_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 255; return 0; } static int snd_cs8427_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_i2c_device *device = snd_kcontrol_chip(kcontrol); int data; snd_i2c_lock(device->bus); data = snd_cs8427_reg_read(device, kcontrol->private_value); snd_i2c_unlock(device->bus); if (data < 0) return data; ucontrol->value.integer.value[0] = data; return 0; } static int snd_cs8427_qsubcode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = 10; return 0; } static int snd_cs8427_qsubcode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_i2c_device *device = snd_kcontrol_chip(kcontrol); unsigned char reg = CS8427_REG_QSUBCODE; int err; snd_i2c_lock(device->bus); err = snd_i2c_sendbytes(device, &reg, 1); if (err != 1) { snd_printk(KERN_ERR "unable to send register 0x%x byte " "to CS8427\n", reg); snd_i2c_unlock(device->bus); return err < 0 ? err : -EIO; } err = snd_i2c_readbytes(device, ucontrol->value.bytes.data, 10); if (err != 10) { snd_printk(KERN_ERR "unable to read Q-subcode bytes " "from CS8427\n"); snd_i2c_unlock(device->bus); return err < 0 ? err : -EIO; } snd_i2c_unlock(device->bus); return 0; } static int snd_cs8427_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_cs8427_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_i2c_device *device = snd_kcontrol_chip(kcontrol); struct cs8427 *chip = device->private_data; snd_i2c_lock(device->bus); memcpy(ucontrol->value.iec958.status, chip->playback.def_status, 24); snd_i2c_unlock(device->bus); return 0; } static int snd_cs8427_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_i2c_device *device = snd_kcontrol_chip(kcontrol); struct cs8427 *chip = device->private_data; unsigned char *status = kcontrol->private_value ? chip->playback.pcm_status : chip->playback.def_status; struct snd_pcm_runtime *runtime = chip->playback.substream ? chip->playback.substream->runtime : NULL; int err, change; snd_i2c_lock(device->bus); change = memcmp(ucontrol->value.iec958.status, status, 24) != 0; memcpy(status, ucontrol->value.iec958.status, 24); if (change && (kcontrol->private_value ? runtime != NULL : runtime == NULL)) { err = snd_cs8427_send_corudata(device, 0, status, 24); if (err < 0) change = err; } snd_i2c_unlock(device->bus); return change; } static int snd_cs8427_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_cs8427_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { memset(ucontrol->value.iec958.status, 0xff, 24); return 0; } static const struct snd_kcontrol_new snd_cs8427_iec958_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .info = snd_cs8427_in_status_info, .name = "IEC958 CS8427 Input Status", .access = (SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE), .get = snd_cs8427_in_status_get, .private_value = 15, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .info = snd_cs8427_in_status_info, .name = "IEC958 CS8427 Error Status", .access = (SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE), .get = snd_cs8427_in_status_get, .private_value = 16, }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK), .info = snd_cs8427_spdif_mask_info, .get = snd_cs8427_spdif_mask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .info = snd_cs8427_spdif_info, .get = snd_cs8427_spdif_get, .put = snd_cs8427_spdif_put, .private_value = 0 }, { .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE), .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), .info = snd_cs8427_spdif_info, .get = snd_cs8427_spdif_get, .put = snd_cs8427_spdif_put, .private_value = 1 }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .info = snd_cs8427_qsubcode_info, .name = "IEC958 Q-subcode Capture Default", .access = (SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE), .get = snd_cs8427_qsubcode_get }}; int snd_cs8427_iec958_build(struct snd_i2c_device *cs8427, struct snd_pcm_substream *play_substream, struct snd_pcm_substream *cap_substream) { struct cs8427 *chip = cs8427->private_data; struct snd_kcontrol *kctl; unsigned int idx; int err; if (snd_BUG_ON(!play_substream || !cap_substream)) return -EINVAL; for (idx = 0; idx < ARRAY_SIZE(snd_cs8427_iec958_controls); idx++) { kctl = snd_ctl_new1(&snd_cs8427_iec958_controls[idx], cs8427); if (kctl == NULL) return -ENOMEM; kctl->id.device = play_substream->pcm->device; kctl->id.subdevice = play_substream->number; err = snd_ctl_add(cs8427->bus->card, kctl); if (err < 0) return err; if (! strcmp(kctl->id.name, SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM))) chip->playback.pcm_ctl = kctl; } chip->playback.substream = play_substream; chip->capture.substream = cap_substream; if (snd_BUG_ON(!chip->playback.pcm_ctl)) return -EIO; return 0; } EXPORT_SYMBOL(snd_cs8427_iec958_build); int snd_cs8427_iec958_active(struct snd_i2c_device *cs8427, int active) { struct cs8427 *chip; if (snd_BUG_ON(!cs8427)) return -ENXIO; chip = cs8427->private_data; if (active) { memcpy(chip->playback.pcm_status, chip->playback.def_status, 24); chip->playback.pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; } else { chip->playback.pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; } snd_ctl_notify(cs8427->bus->card, SNDRV_CTL_EVENT_MASK_VALUE | SNDRV_CTL_EVENT_MASK_INFO, &chip->playback.pcm_ctl->id); return 0; } EXPORT_SYMBOL(snd_cs8427_iec958_active); int snd_cs8427_iec958_pcm(struct snd_i2c_device *cs8427, unsigned int rate) { struct cs8427 *chip; char *status; int err, reset; if (snd_BUG_ON(!cs8427)) return -ENXIO; chip = cs8427->private_data; status = chip->playback.pcm_status; snd_i2c_lock(cs8427->bus); if (status[0] & IEC958_AES0_PROFESSIONAL) { status[0] &= ~IEC958_AES0_PRO_FS; switch (rate) { case 32000: status[0] |= IEC958_AES0_PRO_FS_32000; break; case 44100: status[0] |= IEC958_AES0_PRO_FS_44100; break; case 48000: status[0] |= IEC958_AES0_PRO_FS_48000; break; default: status[0] |= IEC958_AES0_PRO_FS_NOTID; break; } } else { status[3] &= ~IEC958_AES3_CON_FS; switch (rate) { case 32000: status[3] |= IEC958_AES3_CON_FS_32000; break; case 44100: status[3] |= IEC958_AES3_CON_FS_44100; break; case 48000: status[3] |= IEC958_AES3_CON_FS_48000; break; } } err = snd_cs8427_send_corudata(cs8427, 0, status, 24); if (err > 0) snd_ctl_notify(cs8427->bus->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->playback.pcm_ctl->id); reset = chip->rate != rate; chip->rate = rate; snd_i2c_unlock(cs8427->bus); if (reset) snd_cs8427_reset(cs8427); return err < 0 ? err : 0; } EXPORT_SYMBOL(snd_cs8427_iec958_pcm);
linux-master
sound/i2c/cs8427.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Routines for control of the TEA6330T circuit via i2c bus * Sound fader control circuit for car radios by Philips Semiconductors * Copyright (c) by Jaroslav Kysela <[email protected]> */ #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <sound/core.h> #include <sound/control.h> #include <sound/tea6330t.h> MODULE_AUTHOR("Jaroslav Kysela <[email protected]>"); MODULE_DESCRIPTION("Routines for control of the TEA6330T circuit via i2c bus"); MODULE_LICENSE("GPL"); #define TEA6330T_ADDR (0x80>>1) /* fixed address */ #define TEA6330T_SADDR_VOLUME_LEFT 0x00 /* volume left */ #define TEA6330T_SADDR_VOLUME_RIGHT 0x01 /* volume right */ #define TEA6330T_SADDR_BASS 0x02 /* bass control */ #define TEA6330T_SADDR_TREBLE 0x03 /* treble control */ #define TEA6330T_SADDR_FADER 0x04 /* fader control */ #define TEA6330T_MFN 0x20 /* mute control for selected channels */ #define TEA6330T_FCH 0x10 /* select fader channels - front or rear */ #define TEA6330T_SADDR_AUDIO_SWITCH 0x05 /* audio switch */ #define TEA6330T_GMU 0x80 /* mute control, general mute */ #define TEA6330T_EQN 0x40 /* equalizer switchover (0=equalizer-on) */ struct tea6330t { struct snd_i2c_device *device; struct snd_i2c_bus *bus; int equalizer; int fader; unsigned char regs[8]; unsigned char mleft, mright; unsigned char bass, treble; unsigned char max_bass, max_treble; }; int snd_tea6330t_detect(struct snd_i2c_bus *bus, int equalizer) { int res; snd_i2c_lock(bus); res = snd_i2c_probeaddr(bus, TEA6330T_ADDR); snd_i2c_unlock(bus); return res; } #if 0 static void snd_tea6330t_set(struct tea6330t *tea, unsigned char addr, unsigned char value) { #if 0 printk(KERN_DEBUG "set - 0x%x/0x%x\n", addr, value); #endif snd_i2c_write(tea->bus, TEA6330T_ADDR, addr, value, 1); } #endif #define TEA6330T_MASTER_VOLUME(xname, xindex) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ .info = snd_tea6330t_info_master_volume, \ .get = snd_tea6330t_get_master_volume, .put = snd_tea6330t_put_master_volume } static int snd_tea6330t_info_master_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 43; return 0; } static int snd_tea6330t_get_master_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tea6330t *tea = snd_kcontrol_chip(kcontrol); snd_i2c_lock(tea->bus); ucontrol->value.integer.value[0] = tea->mleft - 0x14; ucontrol->value.integer.value[1] = tea->mright - 0x14; snd_i2c_unlock(tea->bus); return 0; } static int snd_tea6330t_put_master_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tea6330t *tea = snd_kcontrol_chip(kcontrol); int change, count, err; unsigned char bytes[3]; unsigned char val1, val2; val1 = (ucontrol->value.integer.value[0] % 44) + 0x14; val2 = (ucontrol->value.integer.value[1] % 44) + 0x14; snd_i2c_lock(tea->bus); change = val1 != tea->mleft || val2 != tea->mright; tea->mleft = val1; tea->mright = val2; count = 0; if (tea->regs[TEA6330T_SADDR_VOLUME_LEFT] != 0) { bytes[count++] = TEA6330T_SADDR_VOLUME_LEFT; bytes[count++] = tea->regs[TEA6330T_SADDR_VOLUME_LEFT] = tea->mleft; } if (tea->regs[TEA6330T_SADDR_VOLUME_RIGHT] != 0) { if (count == 0) bytes[count++] = TEA6330T_SADDR_VOLUME_RIGHT; bytes[count++] = tea->regs[TEA6330T_SADDR_VOLUME_RIGHT] = tea->mright; } if (count > 0) { err = snd_i2c_sendbytes(tea->device, bytes, count); if (err < 0) change = err; } snd_i2c_unlock(tea->bus); return change; } #define TEA6330T_MASTER_SWITCH(xname, xindex) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ .info = snd_tea6330t_info_master_switch, \ .get = snd_tea6330t_get_master_switch, .put = snd_tea6330t_put_master_switch } #define snd_tea6330t_info_master_switch snd_ctl_boolean_stereo_info static int snd_tea6330t_get_master_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tea6330t *tea = snd_kcontrol_chip(kcontrol); snd_i2c_lock(tea->bus); ucontrol->value.integer.value[0] = tea->regs[TEA6330T_SADDR_VOLUME_LEFT] == 0 ? 0 : 1; ucontrol->value.integer.value[1] = tea->regs[TEA6330T_SADDR_VOLUME_RIGHT] == 0 ? 0 : 1; snd_i2c_unlock(tea->bus); return 0; } static int snd_tea6330t_put_master_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tea6330t *tea = snd_kcontrol_chip(kcontrol); int change, err; unsigned char bytes[3]; unsigned char oval1, oval2, val1, val2; val1 = ucontrol->value.integer.value[0] & 1; val2 = ucontrol->value.integer.value[1] & 1; snd_i2c_lock(tea->bus); oval1 = tea->regs[TEA6330T_SADDR_VOLUME_LEFT] == 0 ? 0 : 1; oval2 = tea->regs[TEA6330T_SADDR_VOLUME_RIGHT] == 0 ? 0 : 1; change = val1 != oval1 || val2 != oval2; tea->regs[TEA6330T_SADDR_VOLUME_LEFT] = val1 ? tea->mleft : 0; tea->regs[TEA6330T_SADDR_VOLUME_RIGHT] = val2 ? tea->mright : 0; bytes[0] = TEA6330T_SADDR_VOLUME_LEFT; bytes[1] = tea->regs[TEA6330T_SADDR_VOLUME_LEFT]; bytes[2] = tea->regs[TEA6330T_SADDR_VOLUME_RIGHT]; err = snd_i2c_sendbytes(tea->device, bytes, 3); if (err < 0) change = err; snd_i2c_unlock(tea->bus); return change; } #define TEA6330T_BASS(xname, xindex) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ .info = snd_tea6330t_info_bass, \ .get = snd_tea6330t_get_bass, .put = snd_tea6330t_put_bass } static int snd_tea6330t_info_bass(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct tea6330t *tea = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = tea->max_bass; return 0; } static int snd_tea6330t_get_bass(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tea6330t *tea = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = tea->bass; return 0; } static int snd_tea6330t_put_bass(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tea6330t *tea = snd_kcontrol_chip(kcontrol); int change, err; unsigned char bytes[2]; unsigned char val1; val1 = ucontrol->value.integer.value[0] % (tea->max_bass + 1); snd_i2c_lock(tea->bus); tea->bass = val1; val1 += tea->equalizer ? 7 : 3; change = tea->regs[TEA6330T_SADDR_BASS] != val1; bytes[0] = TEA6330T_SADDR_BASS; bytes[1] = tea->regs[TEA6330T_SADDR_BASS] = val1; err = snd_i2c_sendbytes(tea->device, bytes, 2); if (err < 0) change = err; snd_i2c_unlock(tea->bus); return change; } #define TEA6330T_TREBLE(xname, xindex) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ .info = snd_tea6330t_info_treble, \ .get = snd_tea6330t_get_treble, .put = snd_tea6330t_put_treble } static int snd_tea6330t_info_treble(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct tea6330t *tea = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = tea->max_treble; return 0; } static int snd_tea6330t_get_treble(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tea6330t *tea = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = tea->treble; return 0; } static int snd_tea6330t_put_treble(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tea6330t *tea = snd_kcontrol_chip(kcontrol); int change, err; unsigned char bytes[2]; unsigned char val1; val1 = ucontrol->value.integer.value[0] % (tea->max_treble + 1); snd_i2c_lock(tea->bus); tea->treble = val1; val1 += 3; change = tea->regs[TEA6330T_SADDR_TREBLE] != val1; bytes[0] = TEA6330T_SADDR_TREBLE; bytes[1] = tea->regs[TEA6330T_SADDR_TREBLE] = val1; err = snd_i2c_sendbytes(tea->device, bytes, 2); if (err < 0) change = err; snd_i2c_unlock(tea->bus); return change; } static const struct snd_kcontrol_new snd_tea6330t_controls[] = { TEA6330T_MASTER_SWITCH("Master Playback Switch", 0), TEA6330T_MASTER_VOLUME("Master Playback Volume", 0), TEA6330T_BASS("Tone Control - Bass", 0), TEA6330T_TREBLE("Tone Control - Treble", 0) }; static void snd_tea6330_free(struct snd_i2c_device *device) { kfree(device->private_data); } int snd_tea6330t_update_mixer(struct snd_card *card, struct snd_i2c_bus *bus, int equalizer, int fader) { struct snd_i2c_device *device; struct tea6330t *tea; const struct snd_kcontrol_new *knew; unsigned int idx; int err; u8 default_treble, default_bass; unsigned char bytes[7]; tea = kzalloc(sizeof(*tea), GFP_KERNEL); if (tea == NULL) return -ENOMEM; err = snd_i2c_device_create(bus, "TEA6330T", TEA6330T_ADDR, &device); if (err < 0) { kfree(tea); return err; } tea->device = device; tea->bus = bus; tea->equalizer = equalizer; tea->fader = fader; device->private_data = tea; device->private_free = snd_tea6330_free; snd_i2c_lock(bus); /* turn fader off and handle equalizer */ tea->regs[TEA6330T_SADDR_FADER] = 0x3f; tea->regs[TEA6330T_SADDR_AUDIO_SWITCH] = equalizer ? 0 : TEA6330T_EQN; /* initialize mixer */ if (!tea->equalizer) { tea->max_bass = 9; tea->max_treble = 8; default_bass = 3 + 4; tea->bass = 4; default_treble = 3 + 4; tea->treble = 4; } else { tea->max_bass = 5; tea->max_treble = 0; default_bass = 7 + 4; tea->bass = 4; default_treble = 3; tea->treble = 0; } tea->mleft = tea->mright = 0x14; tea->regs[TEA6330T_SADDR_BASS] = default_bass; tea->regs[TEA6330T_SADDR_TREBLE] = default_treble; /* compose I2C message and put the hardware to initial state */ bytes[0] = TEA6330T_SADDR_VOLUME_LEFT; for (idx = 0; idx < 6; idx++) bytes[idx+1] = tea->regs[idx]; err = snd_i2c_sendbytes(device, bytes, 7); if (err < 0) goto __error; strcat(card->mixername, ",TEA6330T"); err = snd_component_add(card, "TEA6330T"); if (err < 0) goto __error; for (idx = 0; idx < ARRAY_SIZE(snd_tea6330t_controls); idx++) { knew = &snd_tea6330t_controls[idx]; if (tea->treble == 0 && !strcmp(knew->name, "Tone Control - Treble")) continue; err = snd_ctl_add(card, snd_ctl_new1(knew, tea)); if (err < 0) goto __error; } snd_i2c_unlock(bus); return 0; __error: snd_i2c_unlock(bus); snd_i2c_device_free(device); return err; } EXPORT_SYMBOL(snd_tea6330t_detect); EXPORT_SYMBOL(snd_tea6330t_update_mixer);
linux-master
sound/i2c/tea6330t.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4358 / AK4381 * AD and DA converters * * Copyright (c) 2000-2004 Jaroslav Kysela <[email protected]>, * Takashi Iwai <[email protected]> */ #include <linux/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/module.h> #include <sound/core.h> #include <sound/control.h> #include <sound/tlv.h> #include <sound/ak4xxx-adda.h> #include <sound/info.h> MODULE_AUTHOR("Jaroslav Kysela <[email protected]>, Takashi Iwai <[email protected]>"); MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx AD/DA converters"); MODULE_LICENSE("GPL"); /* write the given register and save the data to the cache */ void snd_akm4xxx_write(struct snd_akm4xxx *ak, int chip, unsigned char reg, unsigned char val) { ak->ops.lock(ak, chip); ak->ops.write(ak, chip, reg, val); /* save the data */ snd_akm4xxx_set(ak, chip, reg, val); ak->ops.unlock(ak, chip); } EXPORT_SYMBOL(snd_akm4xxx_write); /* reset procedure for AK4524 and AK4528 */ static void ak4524_reset(struct snd_akm4xxx *ak, int state) { unsigned int chip; unsigned char reg; for (chip = 0; chip < ak->num_dacs/2; chip++) { snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03); if (state) continue; /* DAC volumes */ for (reg = 0x04; reg < ak->total_regs; reg++) snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg)); } } /* reset procedure for AK4355 and AK4358 */ static void ak435X_reset(struct snd_akm4xxx *ak, int state) { unsigned char reg; if (state) { snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */ return; } for (reg = 0x00; reg < ak->total_regs; reg++) if (reg != 0x01) snd_akm4xxx_write(ak, 0, reg, snd_akm4xxx_get(ak, 0, reg)); snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */ } /* reset procedure for AK4381 */ static void ak4381_reset(struct snd_akm4xxx *ak, int state) { unsigned int chip; unsigned char reg; for (chip = 0; chip < ak->num_dacs/2; chip++) { snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f); if (state) continue; for (reg = 0x01; reg < ak->total_regs; reg++) snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg)); } } /* * reset the AKM codecs * @state: 1 = reset codec, 0 = restore the registers * * assert the reset operation and restores the register values to the chips. */ void snd_akm4xxx_reset(struct snd_akm4xxx *ak, int state) { switch (ak->type) { case SND_AK4524: case SND_AK4528: case SND_AK4620: ak4524_reset(ak, state); break; case SND_AK4529: /* FIXME: needed for ak4529? */ break; case SND_AK4355: ak435X_reset(ak, state); break; case SND_AK4358: ak435X_reset(ak, state); break; case SND_AK4381: ak4381_reset(ak, state); break; default: break; } } EXPORT_SYMBOL(snd_akm4xxx_reset); /* * Volume conversion table for non-linear volumes * from -63.5dB (mute) to 0dB step 0.5dB * * Used for AK4524/AK4620 input/ouput attenuation, AK4528, and * AK5365 input attenuation */ static const unsigned char vol_cvt_datt[128] = { 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x07, 0x07, 0x08, 0x08, 0x08, 0x09, 0x0a, 0x0a, 0x0b, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x0f, 0x10, 0x10, 0x11, 0x12, 0x12, 0x13, 0x13, 0x14, 0x15, 0x16, 0x17, 0x17, 0x18, 0x19, 0x1a, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x23, 0x24, 0x25, 0x26, 0x28, 0x29, 0x2a, 0x2b, 0x2d, 0x2e, 0x30, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x37, 0x38, 0x39, 0x3b, 0x3c, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x46, 0x47, 0x48, 0x4a, 0x4b, 0x4d, 0x4e, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x58, 0x59, 0x5b, 0x5c, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x64, 0x65, 0x66, 0x67, 0x69, 0x6a, 0x6c, 0x6d, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x75, 0x76, 0x77, 0x79, 0x7a, 0x7c, 0x7d, 0x7f, }; /* * dB tables */ static const DECLARE_TLV_DB_SCALE(db_scale_vol_datt, -6350, 50, 1); static const DECLARE_TLV_DB_SCALE(db_scale_8bit, -12750, 50, 1); static const DECLARE_TLV_DB_SCALE(db_scale_7bit, -6350, 50, 1); static const DECLARE_TLV_DB_LINEAR(db_scale_linear, TLV_DB_GAIN_MUTE, 0); /* * initialize all the ak4xxx chips */ void snd_akm4xxx_init(struct snd_akm4xxx *ak) { static const unsigned char inits_ak4524[] = { 0x00, 0x07, /* 0: all power up */ 0x01, 0x00, /* 1: ADC/DAC reset */ 0x02, 0x60, /* 2: 24bit I2S */ 0x03, 0x19, /* 3: deemphasis off */ 0x01, 0x03, /* 1: ADC/DAC enable */ 0x04, 0x00, /* 4: ADC left muted */ 0x05, 0x00, /* 5: ADC right muted */ 0x06, 0x00, /* 6: DAC left muted */ 0x07, 0x00, /* 7: DAC right muted */ 0xff, 0xff }; static const unsigned char inits_ak4528[] = { 0x00, 0x07, /* 0: all power up */ 0x01, 0x00, /* 1: ADC/DAC reset */ 0x02, 0x60, /* 2: 24bit I2S */ 0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */ 0x01, 0x03, /* 1: ADC/DAC enable */ 0x04, 0x00, /* 4: ADC left muted */ 0x05, 0x00, /* 5: ADC right muted */ 0xff, 0xff }; static const unsigned char inits_ak4529[] = { 0x09, 0x01, /* 9: ATS=0, RSTN=1 */ 0x0a, 0x3f, /* A: all power up, no zero/overflow detection */ 0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */ 0x01, 0x00, /* 1: ACKS=0, ADC, loop off */ 0x02, 0xff, /* 2: LOUT1 muted */ 0x03, 0xff, /* 3: ROUT1 muted */ 0x04, 0xff, /* 4: LOUT2 muted */ 0x05, 0xff, /* 5: ROUT2 muted */ 0x06, 0xff, /* 6: LOUT3 muted */ 0x07, 0xff, /* 7: ROUT3 muted */ 0x0b, 0xff, /* B: LOUT4 muted */ 0x0c, 0xff, /* C: ROUT4 muted */ 0x08, 0x55, /* 8: deemphasis all off */ 0xff, 0xff }; static const unsigned char inits_ak4355[] = { 0x01, 0x02, /* 1: reset and soft-mute */ 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, * disable DZF, sharp roll-off, RSTN#=0 */ 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */ // 0x02, 0x2e, /* quad speed */ 0x03, 0x01, /* 3: de-emphasis off */ 0x04, 0x00, /* 4: LOUT1 volume muted */ 0x05, 0x00, /* 5: ROUT1 volume muted */ 0x06, 0x00, /* 6: LOUT2 volume muted */ 0x07, 0x00, /* 7: ROUT2 volume muted */ 0x08, 0x00, /* 8: LOUT3 volume muted */ 0x09, 0x00, /* 9: ROUT3 volume muted */ 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */ 0x01, 0x01, /* 1: un-reset, unmute */ 0xff, 0xff }; static const unsigned char inits_ak4358[] = { 0x01, 0x02, /* 1: reset and soft-mute */ 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, * disable DZF, sharp roll-off, RSTN#=0 */ 0x02, 0x4e, /* 2: DA's power up, normal speed, RSTN#=0 */ /* 0x02, 0x6e,*/ /* quad speed */ 0x03, 0x01, /* 3: de-emphasis off */ 0x04, 0x00, /* 4: LOUT1 volume muted */ 0x05, 0x00, /* 5: ROUT1 volume muted */ 0x06, 0x00, /* 6: LOUT2 volume muted */ 0x07, 0x00, /* 7: ROUT2 volume muted */ 0x08, 0x00, /* 8: LOUT3 volume muted */ 0x09, 0x00, /* 9: ROUT3 volume muted */ 0x0b, 0x00, /* b: LOUT4 volume muted */ 0x0c, 0x00, /* c: ROUT4 volume muted */ 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */ 0x01, 0x01, /* 1: un-reset, unmute */ 0xff, 0xff }; static const unsigned char inits_ak4381[] = { 0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */ 0x01, 0x02, /* 1: de-emphasis off, normal speed, * sharp roll-off, DZF off */ // 0x01, 0x12, /* quad speed */ 0x02, 0x00, /* 2: DZF disabled */ 0x03, 0x00, /* 3: LATT 0 */ 0x04, 0x00, /* 4: RATT 0 */ 0x00, 0x0f, /* 0: power-up, un-reset */ 0xff, 0xff }; static const unsigned char inits_ak4620[] = { 0x00, 0x07, /* 0: normal */ 0x01, 0x00, /* 0: reset */ 0x01, 0x02, /* 1: RSTAD */ 0x01, 0x03, /* 1: RSTDA */ 0x01, 0x0f, /* 1: normal */ 0x02, 0x60, /* 2: 24bit I2S */ 0x03, 0x01, /* 3: deemphasis off */ 0x04, 0x00, /* 4: LIN muted */ 0x05, 0x00, /* 5: RIN muted */ 0x06, 0x00, /* 6: LOUT muted */ 0x07, 0x00, /* 7: ROUT muted */ 0xff, 0xff }; int chip; const unsigned char *ptr, *inits; unsigned char reg, data; memset(ak->images, 0, sizeof(ak->images)); memset(ak->volumes, 0, sizeof(ak->volumes)); switch (ak->type) { case SND_AK4524: inits = inits_ak4524; ak->num_chips = ak->num_dacs / 2; ak->name = "ak4524"; ak->total_regs = 0x08; break; case SND_AK4528: inits = inits_ak4528; ak->num_chips = ak->num_dacs / 2; ak->name = "ak4528"; ak->total_regs = 0x06; break; case SND_AK4529: inits = inits_ak4529; ak->num_chips = 1; ak->name = "ak4529"; ak->total_regs = 0x0d; break; case SND_AK4355: inits = inits_ak4355; ak->num_chips = 1; ak->name = "ak4355"; ak->total_regs = 0x0b; break; case SND_AK4358: inits = inits_ak4358; ak->num_chips = 1; ak->name = "ak4358"; ak->total_regs = 0x10; break; case SND_AK4381: inits = inits_ak4381; ak->num_chips = ak->num_dacs / 2; ak->name = "ak4381"; ak->total_regs = 0x05; break; case SND_AK5365: /* FIXME: any init sequence? */ ak->num_chips = 1; ak->name = "ak5365"; ak->total_regs = 0x08; return; case SND_AK4620: inits = inits_ak4620; ak->num_chips = ak->num_dacs / 2; ak->name = "ak4620"; ak->total_regs = 0x08; break; default: snd_BUG(); return; } for (chip = 0; chip < ak->num_chips; chip++) { ptr = inits; while (*ptr != 0xff) { reg = *ptr++; data = *ptr++; snd_akm4xxx_write(ak, chip, reg, data); udelay(10); } } } EXPORT_SYMBOL(snd_akm4xxx_init); /* * Mixer callbacks */ #define AK_IPGA (1<<20) /* including IPGA */ #define AK_VOL_CVT (1<<21) /* need dB conversion */ #define AK_NEEDSMSB (1<<22) /* need MSB update bit */ #define AK_INVERT (1<<23) /* data is inverted */ #define AK_GET_CHIP(val) (((val) >> 8) & 0xff) #define AK_GET_ADDR(val) ((val) & 0xff) #define AK_GET_SHIFT(val) (((val) >> 16) & 0x0f) #define AK_GET_VOL_CVT(val) (((val) >> 21) & 1) #define AK_GET_IPGA(val) (((val) >> 20) & 1) #define AK_GET_NEEDSMSB(val) (((val) >> 22) & 1) #define AK_GET_INVERT(val) (((val) >> 23) & 1) #define AK_GET_MASK(val) (((val) >> 24) & 0xff) #define AK_COMPOSE(chip,addr,shift,mask) \ (((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24)) static int snd_akm4xxx_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { unsigned int mask = AK_GET_MASK(kcontrol->private_value); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_akm4xxx_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); ucontrol->value.integer.value[0] = snd_akm4xxx_get_vol(ak, chip, addr); return 0; } static int put_ak_reg(struct snd_kcontrol *kcontrol, int addr, unsigned char nval) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); unsigned int mask = AK_GET_MASK(kcontrol->private_value); int chip = AK_GET_CHIP(kcontrol->private_value); if (snd_akm4xxx_get_vol(ak, chip, addr) == nval) return 0; snd_akm4xxx_set_vol(ak, chip, addr, nval); if (AK_GET_VOL_CVT(kcontrol->private_value) && nval < 128) nval = vol_cvt_datt[nval]; if (AK_GET_IPGA(kcontrol->private_value) && nval >= 128) nval++; /* need to correct + 1 since both 127 and 128 are 0dB */ if (AK_GET_INVERT(kcontrol->private_value)) nval = mask - nval; if (AK_GET_NEEDSMSB(kcontrol->private_value)) nval |= 0x80; /* printk(KERN_DEBUG "DEBUG - AK writing reg: chip %x addr %x, nval %x\n", chip, addr, nval); */ snd_akm4xxx_write(ak, chip, addr, nval); return 1; } static int snd_akm4xxx_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { unsigned int mask = AK_GET_MASK(kcontrol->private_value); unsigned int val = ucontrol->value.integer.value[0]; if (val > mask) return -EINVAL; return put_ak_reg(kcontrol, AK_GET_ADDR(kcontrol->private_value), val); } static int snd_akm4xxx_stereo_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { unsigned int mask = AK_GET_MASK(kcontrol->private_value); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_akm4xxx_stereo_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); ucontrol->value.integer.value[0] = snd_akm4xxx_get_vol(ak, chip, addr); ucontrol->value.integer.value[1] = snd_akm4xxx_get_vol(ak, chip, addr+1); return 0; } static int snd_akm4xxx_stereo_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int addr = AK_GET_ADDR(kcontrol->private_value); unsigned int mask = AK_GET_MASK(kcontrol->private_value); unsigned int val[2]; int change; val[0] = ucontrol->value.integer.value[0]; val[1] = ucontrol->value.integer.value[1]; if (val[0] > mask || val[1] > mask) return -EINVAL; change = put_ak_reg(kcontrol, addr, val[0]); change |= put_ak_reg(kcontrol, addr + 1, val[1]); return change; } static int snd_akm4xxx_deemphasis_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[4] = { "44.1kHz", "Off", "48kHz", "32kHz", }; return snd_ctl_enum_info(uinfo, 1, 4, texts); } static int snd_akm4xxx_deemphasis_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); ucontrol->value.enumerated.item[0] = (snd_akm4xxx_get(ak, chip, addr) >> shift) & 3; return 0; } static int snd_akm4xxx_deemphasis_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); unsigned char nval = ucontrol->value.enumerated.item[0] & 3; int change; nval = (nval << shift) | (snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift)); change = snd_akm4xxx_get(ak, chip, addr) != nval; if (change) snd_akm4xxx_write(ak, chip, addr, nval); return change; } #define ak4xxx_switch_info snd_ctl_boolean_mono_info static int ak4xxx_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); int invert = AK_GET_INVERT(kcontrol->private_value); /* we observe the (1<<shift) bit only */ unsigned char val = snd_akm4xxx_get(ak, chip, addr) & (1<<shift); if (invert) val = ! val; ucontrol->value.integer.value[0] = (val & (1<<shift)) != 0; return 0; } static int ak4xxx_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); int invert = AK_GET_INVERT(kcontrol->private_value); long flag = ucontrol->value.integer.value[0]; unsigned char val, oval; int change; if (invert) flag = ! flag; oval = snd_akm4xxx_get(ak, chip, addr); if (flag) val = oval | (1<<shift); else val = oval & ~(1<<shift); change = (oval != val); if (change) snd_akm4xxx_write(ak, chip, addr, val); return change; } #define AK5365_NUM_INPUTS 5 static int ak4xxx_capture_num_inputs(struct snd_akm4xxx *ak, int mixer_ch) { int num_names; const char **input_names; input_names = ak->adc_info[mixer_ch].input_names; num_names = 0; while (num_names < AK5365_NUM_INPUTS && input_names[num_names]) ++num_names; return num_names; } static int ak4xxx_capture_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int mixer_ch = AK_GET_SHIFT(kcontrol->private_value); unsigned int num_names; num_names = ak4xxx_capture_num_inputs(ak, mixer_ch); if (!num_names) return -EINVAL; return snd_ctl_enum_info(uinfo, 1, num_names, ak->adc_info[mixer_ch].input_names); } static int ak4xxx_capture_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int mask = AK_GET_MASK(kcontrol->private_value); unsigned char val; val = snd_akm4xxx_get(ak, chip, addr) & mask; ucontrol->value.enumerated.item[0] = val; return 0; } static int ak4xxx_capture_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int mixer_ch = AK_GET_SHIFT(kcontrol->private_value); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int mask = AK_GET_MASK(kcontrol->private_value); unsigned char oval, val; int num_names = ak4xxx_capture_num_inputs(ak, mixer_ch); if (ucontrol->value.enumerated.item[0] >= num_names) return -EINVAL; oval = snd_akm4xxx_get(ak, chip, addr); val = oval & ~mask; val |= ucontrol->value.enumerated.item[0] & mask; if (val != oval) { snd_akm4xxx_write(ak, chip, addr, val); return 1; } return 0; } /* * build AK4xxx controls */ static int build_dac_controls(struct snd_akm4xxx *ak) { int idx, err, mixer_ch, num_stereo; struct snd_kcontrol_new knew; mixer_ch = 0; for (idx = 0; idx < ak->num_dacs; ) { /* mute control for Revolution 7.1 - AK4381 */ if (ak->type == SND_AK4381 && ak->dac_info[mixer_ch].switch_name) { memset(&knew, 0, sizeof(knew)); knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.count = 1; knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE; knew.name = ak->dac_info[mixer_ch].switch_name; knew.info = ak4xxx_switch_info; knew.get = ak4xxx_switch_get; knew.put = ak4xxx_switch_put; knew.access = 0; /* register 1, bit 0 (SMUTE): 0 = normal operation, 1 = mute */ knew.private_value = AK_COMPOSE(idx/2, 1, 0, 0) | AK_INVERT; err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; } memset(&knew, 0, sizeof(knew)); if (! ak->dac_info || ! ak->dac_info[mixer_ch].name) { knew.name = "DAC Volume"; knew.index = mixer_ch + ak->idx_offset * 2; num_stereo = 1; } else { knew.name = ak->dac_info[mixer_ch].name; num_stereo = ak->dac_info[mixer_ch].num_channels; } knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.count = 1; knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ; if (num_stereo == 2) { knew.info = snd_akm4xxx_stereo_volume_info; knew.get = snd_akm4xxx_stereo_volume_get; knew.put = snd_akm4xxx_stereo_volume_put; } else { knew.info = snd_akm4xxx_volume_info; knew.get = snd_akm4xxx_volume_get; knew.put = snd_akm4xxx_volume_put; } switch (ak->type) { case SND_AK4524: /* register 6 & 7 */ knew.private_value = AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127) | AK_VOL_CVT; knew.tlv.p = db_scale_vol_datt; break; case SND_AK4528: /* register 4 & 5 */ knew.private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127) | AK_VOL_CVT; knew.tlv.p = db_scale_vol_datt; break; case SND_AK4529: { /* registers 2-7 and b,c */ int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb; knew.private_value = AK_COMPOSE(0, val, 0, 255) | AK_INVERT; knew.tlv.p = db_scale_8bit; break; } case SND_AK4355: /* register 4-9, chip #0 only */ knew.private_value = AK_COMPOSE(0, idx + 4, 0, 255); knew.tlv.p = db_scale_8bit; break; case SND_AK4358: { /* register 4-9 and 11-12, chip #0 only */ int addr = idx < 6 ? idx + 4 : idx + 5; knew.private_value = AK_COMPOSE(0, addr, 0, 127) | AK_NEEDSMSB; knew.tlv.p = db_scale_7bit; break; } case SND_AK4381: /* register 3 & 4 */ knew.private_value = AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255); knew.tlv.p = db_scale_linear; break; case SND_AK4620: /* register 6 & 7 */ knew.private_value = AK_COMPOSE(idx/2, (idx%2) + 6, 0, 255); knew.tlv.p = db_scale_linear; break; default: return -EINVAL; } err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; idx += num_stereo; mixer_ch++; } return 0; } static int build_adc_controls(struct snd_akm4xxx *ak) { int idx, err, mixer_ch, num_stereo, max_steps; struct snd_kcontrol_new knew; mixer_ch = 0; if (ak->type == SND_AK4528) return 0; /* no controls */ for (idx = 0; idx < ak->num_adcs;) { memset(&knew, 0, sizeof(knew)); if (! ak->adc_info || ! ak->adc_info[mixer_ch].name) { knew.name = "ADC Volume"; knew.index = mixer_ch + ak->idx_offset * 2; num_stereo = 1; } else { knew.name = ak->adc_info[mixer_ch].name; num_stereo = ak->adc_info[mixer_ch].num_channels; } knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.count = 1; knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ; if (num_stereo == 2) { knew.info = snd_akm4xxx_stereo_volume_info; knew.get = snd_akm4xxx_stereo_volume_get; knew.put = snd_akm4xxx_stereo_volume_put; } else { knew.info = snd_akm4xxx_volume_info; knew.get = snd_akm4xxx_volume_get; knew.put = snd_akm4xxx_volume_put; } /* register 4 & 5 */ if (ak->type == SND_AK5365) max_steps = 152; else max_steps = 164; knew.private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, max_steps) | AK_VOL_CVT | AK_IPGA; knew.tlv.p = db_scale_vol_datt; err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; if (ak->type == SND_AK5365 && (idx % 2) == 0) { if (! ak->adc_info || ! ak->adc_info[mixer_ch].switch_name) { knew.name = "Capture Switch"; knew.index = mixer_ch + ak->idx_offset * 2; } else knew.name = ak->adc_info[mixer_ch].switch_name; knew.info = ak4xxx_switch_info; knew.get = ak4xxx_switch_get; knew.put = ak4xxx_switch_put; knew.access = 0; /* register 2, bit 0 (SMUTE): 0 = normal operation, 1 = mute */ knew.private_value = AK_COMPOSE(idx/2, 2, 0, 0) | AK_INVERT; err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; memset(&knew, 0, sizeof(knew)); if (!ak->adc_info || !ak->adc_info[mixer_ch].selector_name) { knew.name = "Capture Channel"; knew.index = mixer_ch + ak->idx_offset * 2; } else knew.name = ak->adc_info[mixer_ch].selector_name; knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.info = ak4xxx_capture_source_info; knew.get = ak4xxx_capture_source_get; knew.put = ak4xxx_capture_source_put; knew.access = 0; /* input selector control: reg. 1, bits 0-2. * mis-use 'shift' to pass mixer_ch */ knew.private_value = AK_COMPOSE(idx/2, 1, mixer_ch, 0x07); err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; } idx += num_stereo; mixer_ch++; } return 0; } static int build_deemphasis(struct snd_akm4xxx *ak, int num_emphs) { int idx, err; struct snd_kcontrol_new knew; for (idx = 0; idx < num_emphs; idx++) { memset(&knew, 0, sizeof(knew)); knew.name = "Deemphasis"; knew.index = idx + ak->idx_offset; knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.count = 1; knew.info = snd_akm4xxx_deemphasis_info; knew.get = snd_akm4xxx_deemphasis_get; knew.put = snd_akm4xxx_deemphasis_put; switch (ak->type) { case SND_AK4524: case SND_AK4528: case SND_AK4620: /* register 3 */ knew.private_value = AK_COMPOSE(idx, 3, 0, 0); break; case SND_AK4529: { int shift = idx == 3 ? 6 : (2 - idx) * 2; /* register 8 with shift */ knew.private_value = AK_COMPOSE(0, 8, shift, 0); break; } case SND_AK4355: case SND_AK4358: knew.private_value = AK_COMPOSE(idx, 3, 0, 0); break; case SND_AK4381: knew.private_value = AK_COMPOSE(idx, 1, 1, 0); break; default: return -EINVAL; } err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; } return 0; } static void proc_regs_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_akm4xxx *ak = entry->private_data; int reg, val, chip; for (chip = 0; chip < ak->num_chips; chip++) { for (reg = 0; reg < ak->total_regs; reg++) { val = snd_akm4xxx_get(ak, chip, reg); snd_iprintf(buffer, "chip %d: 0x%02x = 0x%02x\n", chip, reg, val); } } } static int proc_init(struct snd_akm4xxx *ak) { return snd_card_ro_proc_new(ak->card, ak->name, ak, proc_regs_read); } int snd_akm4xxx_build_controls(struct snd_akm4xxx *ak) { int err, num_emphs; err = build_dac_controls(ak); if (err < 0) return err; err = build_adc_controls(ak); if (err < 0) return err; if (ak->type == SND_AK4355 || ak->type == SND_AK4358) num_emphs = 1; else if (ak->type == SND_AK4620) num_emphs = 0; else num_emphs = ak->num_dacs / 2; err = build_deemphasis(ak, num_emphs); if (err < 0) return err; err = proc_init(ak); if (err < 0) return err; return 0; } EXPORT_SYMBOL(snd_akm4xxx_build_controls);
linux-master
sound/i2c/other/ak4xxx-adda.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Routines for control of the AK4114 via I2C and 4-wire serial interface * IEC958 (S/PDIF) receiver by Asahi Kasei * Copyright (c) by Jaroslav Kysela <[email protected]> */ #include <linux/slab.h> #include <linux/delay.h> #include <linux/module.h> #include <sound/core.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/ak4114.h> #include <sound/asoundef.h> #include <sound/info.h> MODULE_AUTHOR("Jaroslav Kysela <[email protected]>"); MODULE_DESCRIPTION("AK4114 IEC958 (S/PDIF) receiver by Asahi Kasei"); MODULE_LICENSE("GPL"); #define AK4114_ADDR 0x00 /* fixed address */ static void ak4114_stats(struct work_struct *work); static void ak4114_init_regs(struct ak4114 *chip); static void reg_write(struct ak4114 *ak4114, unsigned char reg, unsigned char val) { ak4114->write(ak4114->private_data, reg, val); if (reg <= AK4114_REG_INT1_MASK) ak4114->regmap[reg] = val; else if (reg >= AK4114_REG_TXCSB0 && reg <= AK4114_REG_TXCSB4) ak4114->txcsb[reg-AK4114_REG_TXCSB0] = val; } static inline unsigned char reg_read(struct ak4114 *ak4114, unsigned char reg) { return ak4114->read(ak4114->private_data, reg); } #if 0 static void reg_dump(struct ak4114 *ak4114) { int i; printk(KERN_DEBUG "AK4114 REG DUMP:\n"); for (i = 0; i < 0x20; i++) printk(KERN_DEBUG "reg[%02x] = %02x (%02x)\n", i, reg_read(ak4114, i), i < ARRAY_SIZE(ak4114->regmap) ? ak4114->regmap[i] : 0); } #endif static void snd_ak4114_free(struct ak4114 *chip) { atomic_inc(&chip->wq_processing); /* don't schedule new work */ cancel_delayed_work_sync(&chip->work); kfree(chip); } static int snd_ak4114_dev_free(struct snd_device *device) { struct ak4114 *chip = device->device_data; snd_ak4114_free(chip); return 0; } int snd_ak4114_create(struct snd_card *card, ak4114_read_t *read, ak4114_write_t *write, const unsigned char pgm[6], const unsigned char txcsb[5], void *private_data, struct ak4114 **r_ak4114) { struct ak4114 *chip; int err = 0; unsigned char reg; static const struct snd_device_ops ops = { .dev_free = snd_ak4114_dev_free, }; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) return -ENOMEM; spin_lock_init(&chip->lock); chip->card = card; chip->read = read; chip->write = write; chip->private_data = private_data; INIT_DELAYED_WORK(&chip->work, ak4114_stats); atomic_set(&chip->wq_processing, 0); mutex_init(&chip->reinit_mutex); for (reg = 0; reg < 6; reg++) chip->regmap[reg] = pgm[reg]; for (reg = 0; reg < 5; reg++) chip->txcsb[reg] = txcsb[reg]; ak4114_init_regs(chip); chip->rcs0 = reg_read(chip, AK4114_REG_RCS0) & ~(AK4114_QINT | AK4114_CINT); chip->rcs1 = reg_read(chip, AK4114_REG_RCS1); err = snd_device_new(card, SNDRV_DEV_CODEC, chip, &ops); if (err < 0) goto __fail; if (r_ak4114) *r_ak4114 = chip; return 0; __fail: snd_ak4114_free(chip); return err; } EXPORT_SYMBOL(snd_ak4114_create); void snd_ak4114_reg_write(struct ak4114 *chip, unsigned char reg, unsigned char mask, unsigned char val) { if (reg <= AK4114_REG_INT1_MASK) reg_write(chip, reg, (chip->regmap[reg] & ~mask) | val); else if (reg >= AK4114_REG_TXCSB0 && reg <= AK4114_REG_TXCSB4) reg_write(chip, reg, (chip->txcsb[reg-AK4114_REG_TXCSB0] & ~mask) | val); } EXPORT_SYMBOL(snd_ak4114_reg_write); static void ak4114_init_regs(struct ak4114 *chip) { unsigned char old = chip->regmap[AK4114_REG_PWRDN], reg; /* bring the chip to reset state and powerdown state */ reg_write(chip, AK4114_REG_PWRDN, old & ~(AK4114_RST|AK4114_PWN)); udelay(200); /* release reset, but leave powerdown */ reg_write(chip, AK4114_REG_PWRDN, (old | AK4114_RST) & ~AK4114_PWN); udelay(200); for (reg = 1; reg < 6; reg++) reg_write(chip, reg, chip->regmap[reg]); for (reg = 0; reg < 5; reg++) reg_write(chip, reg + AK4114_REG_TXCSB0, chip->txcsb[reg]); /* release powerdown, everything is initialized now */ reg_write(chip, AK4114_REG_PWRDN, old | AK4114_RST | AK4114_PWN); } void snd_ak4114_reinit(struct ak4114 *chip) { if (atomic_inc_return(&chip->wq_processing) == 1) cancel_delayed_work_sync(&chip->work); mutex_lock(&chip->reinit_mutex); ak4114_init_regs(chip); mutex_unlock(&chip->reinit_mutex); /* bring up statistics / event queing */ if (atomic_dec_and_test(&chip->wq_processing)) schedule_delayed_work(&chip->work, HZ / 10); } EXPORT_SYMBOL(snd_ak4114_reinit); static unsigned int external_rate(unsigned char rcs1) { switch (rcs1 & (AK4114_FS0|AK4114_FS1|AK4114_FS2|AK4114_FS3)) { case AK4114_FS_32000HZ: return 32000; case AK4114_FS_44100HZ: return 44100; case AK4114_FS_48000HZ: return 48000; case AK4114_FS_88200HZ: return 88200; case AK4114_FS_96000HZ: return 96000; case AK4114_FS_176400HZ: return 176400; case AK4114_FS_192000HZ: return 192000; default: return 0; } } static int snd_ak4114_in_error_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = LONG_MAX; return 0; } static int snd_ak4114_in_error_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4114 *chip = snd_kcontrol_chip(kcontrol); spin_lock_irq(&chip->lock); ucontrol->value.integer.value[0] = chip->errors[kcontrol->private_value]; chip->errors[kcontrol->private_value] = 0; spin_unlock_irq(&chip->lock); return 0; } #define snd_ak4114_in_bit_info snd_ctl_boolean_mono_info static int snd_ak4114_in_bit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4114 *chip = snd_kcontrol_chip(kcontrol); unsigned char reg = kcontrol->private_value & 0xff; unsigned char bit = (kcontrol->private_value >> 8) & 0xff; unsigned char inv = (kcontrol->private_value >> 31) & 1; ucontrol->value.integer.value[0] = ((reg_read(chip, reg) & (1 << bit)) ? 1 : 0) ^ inv; return 0; } static int snd_ak4114_rate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 192000; return 0; } static int snd_ak4114_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4114 *chip = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = external_rate(reg_read(chip, AK4114_REG_RCS1)); return 0; } static int snd_ak4114_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ak4114_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4114 *chip = snd_kcontrol_chip(kcontrol); unsigned i; for (i = 0; i < AK4114_REG_RXCSB_SIZE; i++) ucontrol->value.iec958.status[i] = reg_read(chip, AK4114_REG_RXCSB0 + i); return 0; } static int snd_ak4114_spdif_playback_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4114 *chip = snd_kcontrol_chip(kcontrol); unsigned i; for (i = 0; i < AK4114_REG_TXCSB_SIZE; i++) ucontrol->value.iec958.status[i] = chip->txcsb[i]; return 0; } static int snd_ak4114_spdif_playback_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4114 *chip = snd_kcontrol_chip(kcontrol); unsigned i; for (i = 0; i < AK4114_REG_TXCSB_SIZE; i++) reg_write(chip, AK4114_REG_TXCSB0 + i, ucontrol->value.iec958.status[i]); return 0; } static int snd_ak4114_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ak4114_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { memset(ucontrol->value.iec958.status, 0xff, AK4114_REG_RXCSB_SIZE); return 0; } static int snd_ak4114_spdif_pinfo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->value.integer.min = 0; uinfo->value.integer.max = 0xffff; uinfo->count = 4; return 0; } static int snd_ak4114_spdif_pget(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4114 *chip = snd_kcontrol_chip(kcontrol); unsigned short tmp; ucontrol->value.integer.value[0] = 0xf8f2; ucontrol->value.integer.value[1] = 0x4e1f; tmp = reg_read(chip, AK4114_REG_Pc0) | (reg_read(chip, AK4114_REG_Pc1) << 8); ucontrol->value.integer.value[2] = tmp; tmp = reg_read(chip, AK4114_REG_Pd0) | (reg_read(chip, AK4114_REG_Pd1) << 8); ucontrol->value.integer.value[3] = tmp; return 0; } static int snd_ak4114_spdif_qinfo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = AK4114_REG_QSUB_SIZE; return 0; } static int snd_ak4114_spdif_qget(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4114 *chip = snd_kcontrol_chip(kcontrol); unsigned i; for (i = 0; i < AK4114_REG_QSUB_SIZE; i++) ucontrol->value.bytes.data[i] = reg_read(chip, AK4114_REG_QSUB_ADDR + i); return 0; } /* Don't forget to change AK4114_CONTROLS define!!! */ static const struct snd_kcontrol_new snd_ak4114_iec958_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Parity Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_in_error_info, .get = snd_ak4114_in_error_get, .private_value = AK4114_PARITY_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 V-Bit Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_in_error_info, .get = snd_ak4114_in_error_get, .private_value = AK4114_V_BIT_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 C-CRC Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_in_error_info, .get = snd_ak4114_in_error_get, .private_value = AK4114_CCRC_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Q-CRC Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_in_error_info, .get = snd_ak4114_in_error_get, .private_value = AK4114_QCRC_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 External Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_rate_info, .get = snd_ak4114_rate_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK), .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = snd_ak4114_spdif_mask_info, .get = snd_ak4114_spdif_mask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_spdif_info, .get = snd_ak4114_spdif_playback_get, .put = snd_ak4114_spdif_playback_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,MASK), .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = snd_ak4114_spdif_mask_info, .get = snd_ak4114_spdif_mask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT), .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_spdif_info, .get = snd_ak4114_spdif_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Preamble Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_spdif_pinfo, .get = snd_ak4114_spdif_pget, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Q-subcode Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_spdif_qinfo, .get = snd_ak4114_spdif_qget, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Audio", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_in_bit_info, .get = snd_ak4114_in_bit_get, .private_value = (1<<31) | (1<<8) | AK4114_REG_RCS0, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Non-PCM Bitstream", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_in_bit_info, .get = snd_ak4114_in_bit_get, .private_value = (6<<8) | AK4114_REG_RCS0, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 DTS Bitstream", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_in_bit_info, .get = snd_ak4114_in_bit_get, .private_value = (3<<8) | AK4114_REG_RCS0, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 PPL Lock Status", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4114_in_bit_info, .get = snd_ak4114_in_bit_get, .private_value = (1<<31) | (4<<8) | AK4114_REG_RCS0, } }; static void snd_ak4114_proc_regs_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct ak4114 *ak4114 = entry->private_data; int reg, val; /* all ak4114 registers 0x00 - 0x1f */ for (reg = 0; reg < 0x20; reg++) { val = reg_read(ak4114, reg); snd_iprintf(buffer, "0x%02x = 0x%02x\n", reg, val); } } static void snd_ak4114_proc_init(struct ak4114 *ak4114) { snd_card_ro_proc_new(ak4114->card, "ak4114", ak4114, snd_ak4114_proc_regs_read); } int snd_ak4114_build(struct ak4114 *ak4114, struct snd_pcm_substream *ply_substream, struct snd_pcm_substream *cap_substream) { struct snd_kcontrol *kctl; unsigned int idx; int err; if (snd_BUG_ON(!cap_substream)) return -EINVAL; ak4114->playback_substream = ply_substream; ak4114->capture_substream = cap_substream; for (idx = 0; idx < AK4114_CONTROLS; idx++) { kctl = snd_ctl_new1(&snd_ak4114_iec958_controls[idx], ak4114); if (kctl == NULL) return -ENOMEM; if (strstr(kctl->id.name, "Playback")) { if (ply_substream == NULL) { snd_ctl_free_one(kctl); ak4114->kctls[idx] = NULL; continue; } kctl->id.device = ply_substream->pcm->device; kctl->id.subdevice = ply_substream->number; } else { kctl->id.device = cap_substream->pcm->device; kctl->id.subdevice = cap_substream->number; } err = snd_ctl_add(ak4114->card, kctl); if (err < 0) return err; ak4114->kctls[idx] = kctl; } snd_ak4114_proc_init(ak4114); /* trigger workq */ schedule_delayed_work(&ak4114->work, HZ / 10); return 0; } EXPORT_SYMBOL(snd_ak4114_build); /* notify kcontrols if any parameters are changed */ static void ak4114_notify(struct ak4114 *ak4114, unsigned char rcs0, unsigned char rcs1, unsigned char c0, unsigned char c1) { if (!ak4114->kctls[0]) return; if (rcs0 & AK4114_PAR) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[0]->id); if (rcs0 & AK4114_V) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[1]->id); if (rcs1 & AK4114_CCRC) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[2]->id); if (rcs1 & AK4114_QCRC) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[3]->id); /* rate change */ if (c1 & 0xf0) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[4]->id); if ((c0 & AK4114_PEM) | (c0 & AK4114_CINT)) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[9]->id); if (c0 & AK4114_QINT) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[10]->id); if (c0 & AK4114_AUDION) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[11]->id); if (c0 & AK4114_AUTO) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[12]->id); if (c0 & AK4114_DTSCD) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[13]->id); if (c0 & AK4114_UNLCK) snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[14]->id); } int snd_ak4114_external_rate(struct ak4114 *ak4114) { unsigned char rcs1; rcs1 = reg_read(ak4114, AK4114_REG_RCS1); return external_rate(rcs1); } EXPORT_SYMBOL(snd_ak4114_external_rate); int snd_ak4114_check_rate_and_errors(struct ak4114 *ak4114, unsigned int flags) { struct snd_pcm_runtime *runtime = ak4114->capture_substream ? ak4114->capture_substream->runtime : NULL; unsigned long _flags; int res = 0; unsigned char rcs0, rcs1; unsigned char c0, c1; rcs1 = reg_read(ak4114, AK4114_REG_RCS1); if (flags & AK4114_CHECK_NO_STAT) goto __rate; rcs0 = reg_read(ak4114, AK4114_REG_RCS0); spin_lock_irqsave(&ak4114->lock, _flags); if (rcs0 & AK4114_PAR) ak4114->errors[AK4114_PARITY_ERRORS]++; if (rcs1 & AK4114_V) ak4114->errors[AK4114_V_BIT_ERRORS]++; if (rcs1 & AK4114_CCRC) ak4114->errors[AK4114_CCRC_ERRORS]++; if (rcs1 & AK4114_QCRC) ak4114->errors[AK4114_QCRC_ERRORS]++; c0 = (ak4114->rcs0 & (AK4114_QINT | AK4114_CINT | AK4114_PEM | AK4114_AUDION | AK4114_AUTO | AK4114_UNLCK)) ^ (rcs0 & (AK4114_QINT | AK4114_CINT | AK4114_PEM | AK4114_AUDION | AK4114_AUTO | AK4114_UNLCK)); c1 = (ak4114->rcs1 & 0xf0) ^ (rcs1 & 0xf0); ak4114->rcs0 = rcs0 & ~(AK4114_QINT | AK4114_CINT); ak4114->rcs1 = rcs1; spin_unlock_irqrestore(&ak4114->lock, _flags); ak4114_notify(ak4114, rcs0, rcs1, c0, c1); if (ak4114->change_callback && (c0 | c1) != 0) ak4114->change_callback(ak4114, c0, c1); __rate: /* compare rate */ res = external_rate(rcs1); if (!(flags & AK4114_CHECK_NO_RATE) && runtime && runtime->rate != res) { snd_pcm_stream_lock_irqsave(ak4114->capture_substream, _flags); if (snd_pcm_running(ak4114->capture_substream)) { // printk(KERN_DEBUG "rate changed (%i <- %i)\n", runtime->rate, res); snd_pcm_stop(ak4114->capture_substream, SNDRV_PCM_STATE_DRAINING); res = 1; } snd_pcm_stream_unlock_irqrestore(ak4114->capture_substream, _flags); } return res; } EXPORT_SYMBOL(snd_ak4114_check_rate_and_errors); static void ak4114_stats(struct work_struct *work) { struct ak4114 *chip = container_of(work, struct ak4114, work.work); if (atomic_inc_return(&chip->wq_processing) == 1) snd_ak4114_check_rate_and_errors(chip, chip->check_flags); if (atomic_dec_and_test(&chip->wq_processing)) schedule_delayed_work(&chip->work, HZ / 10); } #ifdef CONFIG_PM void snd_ak4114_suspend(struct ak4114 *chip) { atomic_inc(&chip->wq_processing); /* don't schedule new work */ cancel_delayed_work_sync(&chip->work); } EXPORT_SYMBOL(snd_ak4114_suspend); void snd_ak4114_resume(struct ak4114 *chip) { atomic_dec(&chip->wq_processing); snd_ak4114_reinit(chip); } EXPORT_SYMBOL(snd_ak4114_resume); #endif
linux-master
sound/i2c/other/ak4114.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ALSA Driver for the PT2258 volume controller. * * Copyright (c) 2006 Jochen Voss <[email protected]> */ #include <sound/core.h> #include <sound/control.h> #include <sound/tlv.h> #include <sound/i2c.h> #include <sound/pt2258.h> #include <linux/module.h> MODULE_AUTHOR("Jochen Voss <[email protected]>"); MODULE_DESCRIPTION("PT2258 volume controller (Princeton Technology Corp.)"); MODULE_LICENSE("GPL"); #define PT2258_CMD_RESET 0xc0 #define PT2258_CMD_UNMUTE 0xf8 #define PT2258_CMD_MUTE 0xf9 static const unsigned char pt2258_channel_code[12] = { 0x80, 0x90, /* channel 1: -10dB, -1dB */ 0x40, 0x50, /* channel 2: -10dB, -1dB */ 0x00, 0x10, /* channel 3: -10dB, -1dB */ 0x20, 0x30, /* channel 4: -10dB, -1dB */ 0x60, 0x70, /* channel 5: -10dB, -1dB */ 0xa0, 0xb0 /* channel 6: -10dB, -1dB */ }; int snd_pt2258_reset(struct snd_pt2258 *pt) { unsigned char bytes[2]; int i; /* reset chip */ bytes[0] = PT2258_CMD_RESET; snd_i2c_lock(pt->i2c_bus); if (snd_i2c_sendbytes(pt->i2c_dev, bytes, 1) != 1) goto __error; snd_i2c_unlock(pt->i2c_bus); /* mute all channels */ pt->mute = 1; bytes[0] = PT2258_CMD_MUTE; snd_i2c_lock(pt->i2c_bus); if (snd_i2c_sendbytes(pt->i2c_dev, bytes, 1) != 1) goto __error; snd_i2c_unlock(pt->i2c_bus); /* set all channels to 0dB */ for (i = 0; i < 6; ++i) pt->volume[i] = 0; bytes[0] = 0xd0; bytes[1] = 0xe0; snd_i2c_lock(pt->i2c_bus); if (snd_i2c_sendbytes(pt->i2c_dev, bytes, 2) != 2) goto __error; snd_i2c_unlock(pt->i2c_bus); return 0; __error: snd_i2c_unlock(pt->i2c_bus); snd_printk(KERN_ERR "PT2258 reset failed\n"); return -EIO; } static int pt2258_stereo_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 79; return 0; } static int pt2258_stereo_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pt2258 *pt = kcontrol->private_data; int base = kcontrol->private_value; /* chip does not support register reads */ ucontrol->value.integer.value[0] = 79 - pt->volume[base]; ucontrol->value.integer.value[1] = 79 - pt->volume[base + 1]; return 0; } static int pt2258_stereo_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pt2258 *pt = kcontrol->private_data; int base = kcontrol->private_value; unsigned char bytes[2]; int val0, val1; val0 = 79 - ucontrol->value.integer.value[0]; val1 = 79 - ucontrol->value.integer.value[1]; if (val0 < 0 || val0 > 79 || val1 < 0 || val1 > 79) return -EINVAL; if (val0 == pt->volume[base] && val1 == pt->volume[base + 1]) return 0; pt->volume[base] = val0; bytes[0] = pt2258_channel_code[2 * base] | (val0 / 10); bytes[1] = pt2258_channel_code[2 * base + 1] | (val0 % 10); snd_i2c_lock(pt->i2c_bus); if (snd_i2c_sendbytes(pt->i2c_dev, bytes, 2) != 2) goto __error; snd_i2c_unlock(pt->i2c_bus); pt->volume[base + 1] = val1; bytes[0] = pt2258_channel_code[2 * base + 2] | (val1 / 10); bytes[1] = pt2258_channel_code[2 * base + 3] | (val1 % 10); snd_i2c_lock(pt->i2c_bus); if (snd_i2c_sendbytes(pt->i2c_dev, bytes, 2) != 2) goto __error; snd_i2c_unlock(pt->i2c_bus); return 1; __error: snd_i2c_unlock(pt->i2c_bus); snd_printk(KERN_ERR "PT2258 access failed\n"); return -EIO; } #define pt2258_switch_info snd_ctl_boolean_mono_info static int pt2258_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pt2258 *pt = kcontrol->private_data; ucontrol->value.integer.value[0] = !pt->mute; return 0; } static int pt2258_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pt2258 *pt = kcontrol->private_data; unsigned char bytes[2]; int val; val = !ucontrol->value.integer.value[0]; if (pt->mute == val) return 0; pt->mute = val; bytes[0] = val ? PT2258_CMD_MUTE : PT2258_CMD_UNMUTE; snd_i2c_lock(pt->i2c_bus); if (snd_i2c_sendbytes(pt->i2c_dev, bytes, 1) != 1) goto __error; snd_i2c_unlock(pt->i2c_bus); return 1; __error: snd_i2c_unlock(pt->i2c_bus); snd_printk(KERN_ERR "PT2258 access failed 2\n"); return -EIO; } static const DECLARE_TLV_DB_SCALE(pt2258_db_scale, -7900, 100, 0); int snd_pt2258_build_controls(struct snd_pt2258 *pt) { struct snd_kcontrol_new knew; char *names[3] = { "Mic Loopback Playback Volume", "Line Loopback Playback Volume", "CD Loopback Playback Volume" }; int i, err; for (i = 0; i < 3; ++i) { memset(&knew, 0, sizeof(knew)); knew.name = names[i]; knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.count = 1; knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ; knew.private_value = 2 * i; knew.info = pt2258_stereo_volume_info; knew.get = pt2258_stereo_volume_get; knew.put = pt2258_stereo_volume_put; knew.tlv.p = pt2258_db_scale; err = snd_ctl_add(pt->card, snd_ctl_new1(&knew, pt)); if (err < 0) return err; } memset(&knew, 0, sizeof(knew)); knew.name = "Loopback Switch"; knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.info = pt2258_switch_info; knew.get = pt2258_switch_get; knew.put = pt2258_switch_put; knew.access = 0; err = snd_ctl_add(pt->card, snd_ctl_new1(&knew, pt)); if (err < 0) return err; return 0; } EXPORT_SYMBOL(snd_pt2258_reset); EXPORT_SYMBOL(snd_pt2258_build_controls);
linux-master
sound/i2c/other/pt2258.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Routines for control of the AK4117 via 4-wire serial interface * IEC958 (S/PDIF) receiver by Asahi Kasei * Copyright (c) by Jaroslav Kysela <[email protected]> */ #include <linux/slab.h> #include <linux/delay.h> #include <linux/module.h> #include <sound/core.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/ak4117.h> #include <sound/asoundef.h> MODULE_AUTHOR("Jaroslav Kysela <[email protected]>"); MODULE_DESCRIPTION("AK4117 IEC958 (S/PDIF) receiver by Asahi Kasei"); MODULE_LICENSE("GPL"); #define AK4117_ADDR 0x00 /* fixed address */ static void snd_ak4117_timer(struct timer_list *t); static void reg_write(struct ak4117 *ak4117, unsigned char reg, unsigned char val) { ak4117->write(ak4117->private_data, reg, val); if (reg < sizeof(ak4117->regmap)) ak4117->regmap[reg] = val; } static inline unsigned char reg_read(struct ak4117 *ak4117, unsigned char reg) { return ak4117->read(ak4117->private_data, reg); } #if 0 static void reg_dump(struct ak4117 *ak4117) { int i; printk(KERN_DEBUG "AK4117 REG DUMP:\n"); for (i = 0; i < 0x1b; i++) printk(KERN_DEBUG "reg[%02x] = %02x (%02x)\n", i, reg_read(ak4117, i), i < sizeof(ak4117->regmap) ? ak4117->regmap[i] : 0); } #endif static void snd_ak4117_free(struct ak4117 *chip) { timer_shutdown_sync(&chip->timer); kfree(chip); } static int snd_ak4117_dev_free(struct snd_device *device) { struct ak4117 *chip = device->device_data; snd_ak4117_free(chip); return 0; } int snd_ak4117_create(struct snd_card *card, ak4117_read_t *read, ak4117_write_t *write, const unsigned char pgm[5], void *private_data, struct ak4117 **r_ak4117) { struct ak4117 *chip; int err = 0; unsigned char reg; static const struct snd_device_ops ops = { .dev_free = snd_ak4117_dev_free, }; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) return -ENOMEM; spin_lock_init(&chip->lock); chip->card = card; chip->read = read; chip->write = write; chip->private_data = private_data; timer_setup(&chip->timer, snd_ak4117_timer, 0); for (reg = 0; reg < 5; reg++) chip->regmap[reg] = pgm[reg]; snd_ak4117_reinit(chip); chip->rcs0 = reg_read(chip, AK4117_REG_RCS0) & ~(AK4117_QINT | AK4117_CINT | AK4117_STC); chip->rcs1 = reg_read(chip, AK4117_REG_RCS1); chip->rcs2 = reg_read(chip, AK4117_REG_RCS2); err = snd_device_new(card, SNDRV_DEV_CODEC, chip, &ops); if (err < 0) goto __fail; if (r_ak4117) *r_ak4117 = chip; return 0; __fail: snd_ak4117_free(chip); return err; } void snd_ak4117_reg_write(struct ak4117 *chip, unsigned char reg, unsigned char mask, unsigned char val) { if (reg >= 5) return; reg_write(chip, reg, (chip->regmap[reg] & ~mask) | val); } void snd_ak4117_reinit(struct ak4117 *chip) { unsigned char old = chip->regmap[AK4117_REG_PWRDN], reg; del_timer(&chip->timer); chip->init = 1; /* bring the chip to reset state and powerdown state */ reg_write(chip, AK4117_REG_PWRDN, 0); udelay(200); /* release reset, but leave powerdown */ reg_write(chip, AK4117_REG_PWRDN, (old | AK4117_RST) & ~AK4117_PWN); udelay(200); for (reg = 1; reg < 5; reg++) reg_write(chip, reg, chip->regmap[reg]); /* release powerdown, everything is initialized now */ reg_write(chip, AK4117_REG_PWRDN, old | AK4117_RST | AK4117_PWN); chip->init = 0; mod_timer(&chip->timer, 1 + jiffies); } static unsigned int external_rate(unsigned char rcs1) { switch (rcs1 & (AK4117_FS0|AK4117_FS1|AK4117_FS2|AK4117_FS3)) { case AK4117_FS_32000HZ: return 32000; case AK4117_FS_44100HZ: return 44100; case AK4117_FS_48000HZ: return 48000; case AK4117_FS_88200HZ: return 88200; case AK4117_FS_96000HZ: return 96000; case AK4117_FS_176400HZ: return 176400; case AK4117_FS_192000HZ: return 192000; default: return 0; } } static int snd_ak4117_in_error_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = LONG_MAX; return 0; } static int snd_ak4117_in_error_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4117 *chip = snd_kcontrol_chip(kcontrol); spin_lock_irq(&chip->lock); ucontrol->value.integer.value[0] = chip->errors[kcontrol->private_value]; chip->errors[kcontrol->private_value] = 0; spin_unlock_irq(&chip->lock); return 0; } #define snd_ak4117_in_bit_info snd_ctl_boolean_mono_info static int snd_ak4117_in_bit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4117 *chip = snd_kcontrol_chip(kcontrol); unsigned char reg = kcontrol->private_value & 0xff; unsigned char bit = (kcontrol->private_value >> 8) & 0xff; unsigned char inv = (kcontrol->private_value >> 31) & 1; ucontrol->value.integer.value[0] = ((reg_read(chip, reg) & (1 << bit)) ? 1 : 0) ^ inv; return 0; } static int snd_ak4117_rx_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } static int snd_ak4117_rx_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4117 *chip = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = (chip->regmap[AK4117_REG_IO] & AK4117_IPS) ? 1 : 0; return 0; } static int snd_ak4117_rx_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4117 *chip = snd_kcontrol_chip(kcontrol); int change; u8 old_val; spin_lock_irq(&chip->lock); old_val = chip->regmap[AK4117_REG_IO]; change = !!ucontrol->value.integer.value[0] != ((old_val & AK4117_IPS) ? 1 : 0); if (change) reg_write(chip, AK4117_REG_IO, (old_val & ~AK4117_IPS) | (ucontrol->value.integer.value[0] ? AK4117_IPS : 0)); spin_unlock_irq(&chip->lock); return change; } static int snd_ak4117_rate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 192000; return 0; } static int snd_ak4117_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4117 *chip = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = external_rate(reg_read(chip, AK4117_REG_RCS1)); return 0; } static int snd_ak4117_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ak4117_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4117 *chip = snd_kcontrol_chip(kcontrol); unsigned i; for (i = 0; i < AK4117_REG_RXCSB_SIZE; i++) ucontrol->value.iec958.status[i] = reg_read(chip, AK4117_REG_RXCSB0 + i); return 0; } static int snd_ak4117_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ak4117_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { memset(ucontrol->value.iec958.status, 0xff, AK4117_REG_RXCSB_SIZE); return 0; } static int snd_ak4117_spdif_pinfo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->value.integer.min = 0; uinfo->value.integer.max = 0xffff; uinfo->count = 4; return 0; } static int snd_ak4117_spdif_pget(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4117 *chip = snd_kcontrol_chip(kcontrol); unsigned short tmp; ucontrol->value.integer.value[0] = 0xf8f2; ucontrol->value.integer.value[1] = 0x4e1f; tmp = reg_read(chip, AK4117_REG_Pc0) | (reg_read(chip, AK4117_REG_Pc1) << 8); ucontrol->value.integer.value[2] = tmp; tmp = reg_read(chip, AK4117_REG_Pd0) | (reg_read(chip, AK4117_REG_Pd1) << 8); ucontrol->value.integer.value[3] = tmp; return 0; } static int snd_ak4117_spdif_qinfo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = AK4117_REG_QSUB_SIZE; return 0; } static int snd_ak4117_spdif_qget(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4117 *chip = snd_kcontrol_chip(kcontrol); unsigned i; for (i = 0; i < AK4117_REG_QSUB_SIZE; i++) ucontrol->value.bytes.data[i] = reg_read(chip, AK4117_REG_QSUB_ADDR + i); return 0; } /* Don't forget to change AK4117_CONTROLS define!!! */ static const struct snd_kcontrol_new snd_ak4117_iec958_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Parity Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_in_error_info, .get = snd_ak4117_in_error_get, .private_value = AK4117_PARITY_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 V-Bit Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_in_error_info, .get = snd_ak4117_in_error_get, .private_value = AK4117_V_BIT_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 C-CRC Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_in_error_info, .get = snd_ak4117_in_error_get, .private_value = AK4117_CCRC_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Q-CRC Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_in_error_info, .get = snd_ak4117_in_error_get, .private_value = AK4117_QCRC_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 External Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_rate_info, .get = snd_ak4117_rate_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,MASK), .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = snd_ak4117_spdif_mask_info, .get = snd_ak4117_spdif_mask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT), .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_spdif_info, .get = snd_ak4117_spdif_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Preamble Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_spdif_pinfo, .get = snd_ak4117_spdif_pget, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Q-subcode Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_spdif_qinfo, .get = snd_ak4117_spdif_qget, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Audio", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_in_bit_info, .get = snd_ak4117_in_bit_get, .private_value = (1<<31) | (3<<8) | AK4117_REG_RCS0, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Non-PCM Bitstream", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_in_bit_info, .get = snd_ak4117_in_bit_get, .private_value = (5<<8) | AK4117_REG_RCS1, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 DTS Bitstream", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4117_in_bit_info, .get = snd_ak4117_in_bit_get, .private_value = (6<<8) | AK4117_REG_RCS1, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "AK4117 Input Select", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE, .info = snd_ak4117_rx_info, .get = snd_ak4117_rx_get, .put = snd_ak4117_rx_put, } }; int snd_ak4117_build(struct ak4117 *ak4117, struct snd_pcm_substream *cap_substream) { struct snd_kcontrol *kctl; unsigned int idx; int err; if (snd_BUG_ON(!cap_substream)) return -EINVAL; ak4117->substream = cap_substream; for (idx = 0; idx < AK4117_CONTROLS; idx++) { kctl = snd_ctl_new1(&snd_ak4117_iec958_controls[idx], ak4117); if (kctl == NULL) return -ENOMEM; kctl->id.device = cap_substream->pcm->device; kctl->id.subdevice = cap_substream->number; err = snd_ctl_add(ak4117->card, kctl); if (err < 0) return err; ak4117->kctls[idx] = kctl; } return 0; } int snd_ak4117_external_rate(struct ak4117 *ak4117) { unsigned char rcs1; rcs1 = reg_read(ak4117, AK4117_REG_RCS1); return external_rate(rcs1); } int snd_ak4117_check_rate_and_errors(struct ak4117 *ak4117, unsigned int flags) { struct snd_pcm_runtime *runtime = ak4117->substream ? ak4117->substream->runtime : NULL; unsigned long _flags; int res = 0; unsigned char rcs0, rcs1, rcs2; unsigned char c0, c1; rcs1 = reg_read(ak4117, AK4117_REG_RCS1); if (flags & AK4117_CHECK_NO_STAT) goto __rate; rcs0 = reg_read(ak4117, AK4117_REG_RCS0); rcs2 = reg_read(ak4117, AK4117_REG_RCS2); // printk(KERN_DEBUG "AK IRQ: rcs0 = 0x%x, rcs1 = 0x%x, rcs2 = 0x%x\n", rcs0, rcs1, rcs2); spin_lock_irqsave(&ak4117->lock, _flags); if (rcs0 & AK4117_PAR) ak4117->errors[AK4117_PARITY_ERRORS]++; if (rcs0 & AK4117_V) ak4117->errors[AK4117_V_BIT_ERRORS]++; if (rcs2 & AK4117_CCRC) ak4117->errors[AK4117_CCRC_ERRORS]++; if (rcs2 & AK4117_QCRC) ak4117->errors[AK4117_QCRC_ERRORS]++; c0 = (ak4117->rcs0 & (AK4117_QINT | AK4117_CINT | AK4117_STC | AK4117_AUDION | AK4117_AUTO | AK4117_UNLCK)) ^ (rcs0 & (AK4117_QINT | AK4117_CINT | AK4117_STC | AK4117_AUDION | AK4117_AUTO | AK4117_UNLCK)); c1 = (ak4117->rcs1 & (AK4117_DTSCD | AK4117_NPCM | AK4117_PEM | 0x0f)) ^ (rcs1 & (AK4117_DTSCD | AK4117_NPCM | AK4117_PEM | 0x0f)); ak4117->rcs0 = rcs0 & ~(AK4117_QINT | AK4117_CINT | AK4117_STC); ak4117->rcs1 = rcs1; ak4117->rcs2 = rcs2; spin_unlock_irqrestore(&ak4117->lock, _flags); if (rcs0 & AK4117_PAR) snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[0]->id); if (rcs0 & AK4117_V) snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[1]->id); if (rcs2 & AK4117_CCRC) snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[2]->id); if (rcs2 & AK4117_QCRC) snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[3]->id); /* rate change */ if (c1 & 0x0f) snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[4]->id); if ((c1 & AK4117_PEM) | (c0 & AK4117_CINT)) snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[6]->id); if (c0 & AK4117_QINT) snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[8]->id); if (c0 & AK4117_AUDION) snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[9]->id); if (c1 & AK4117_NPCM) snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[10]->id); if (c1 & AK4117_DTSCD) snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[11]->id); if (ak4117->change_callback && (c0 | c1) != 0) ak4117->change_callback(ak4117, c0, c1); __rate: /* compare rate */ res = external_rate(rcs1); if (!(flags & AK4117_CHECK_NO_RATE) && runtime && runtime->rate != res) { snd_pcm_stream_lock_irqsave(ak4117->substream, _flags); if (snd_pcm_running(ak4117->substream)) { // printk(KERN_DEBUG "rate changed (%i <- %i)\n", runtime->rate, res); snd_pcm_stop(ak4117->substream, SNDRV_PCM_STATE_DRAINING); wake_up(&runtime->sleep); res = 1; } snd_pcm_stream_unlock_irqrestore(ak4117->substream, _flags); } return res; } static void snd_ak4117_timer(struct timer_list *t) { struct ak4117 *chip = from_timer(chip, t, timer); if (chip->init) return; snd_ak4117_check_rate_and_errors(chip, 0); mod_timer(&chip->timer, 1 + jiffies); } EXPORT_SYMBOL(snd_ak4117_create); EXPORT_SYMBOL(snd_ak4117_reg_write); EXPORT_SYMBOL(snd_ak4117_reinit); EXPORT_SYMBOL(snd_ak4117_build); EXPORT_SYMBOL(snd_ak4117_external_rate); EXPORT_SYMBOL(snd_ak4117_check_rate_and_errors);
linux-master
sound/i2c/other/ak4117.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Routines for control of the AK4113 via I2C/4-wire serial interface * IEC958 (S/PDIF) receiver by Asahi Kasei * Copyright (c) by Jaroslav Kysela <[email protected]> * Copyright (c) by Pavel Hofman <[email protected]> */ #include <linux/slab.h> #include <linux/delay.h> #include <linux/module.h> #include <sound/core.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/ak4113.h> #include <sound/asoundef.h> #include <sound/info.h> MODULE_AUTHOR("Pavel Hofman <[email protected]>"); MODULE_DESCRIPTION("AK4113 IEC958 (S/PDIF) receiver by Asahi Kasei"); MODULE_LICENSE("GPL"); #define AK4113_ADDR 0x00 /* fixed address */ static void ak4113_stats(struct work_struct *work); static void ak4113_init_regs(struct ak4113 *chip); static void reg_write(struct ak4113 *ak4113, unsigned char reg, unsigned char val) { ak4113->write(ak4113->private_data, reg, val); if (reg < sizeof(ak4113->regmap)) ak4113->regmap[reg] = val; } static inline unsigned char reg_read(struct ak4113 *ak4113, unsigned char reg) { return ak4113->read(ak4113->private_data, reg); } static void snd_ak4113_free(struct ak4113 *chip) { atomic_inc(&chip->wq_processing); /* don't schedule new work */ cancel_delayed_work_sync(&chip->work); kfree(chip); } static int snd_ak4113_dev_free(struct snd_device *device) { struct ak4113 *chip = device->device_data; snd_ak4113_free(chip); return 0; } int snd_ak4113_create(struct snd_card *card, ak4113_read_t *read, ak4113_write_t *write, const unsigned char *pgm, void *private_data, struct ak4113 **r_ak4113) { struct ak4113 *chip; int err; unsigned char reg; static const struct snd_device_ops ops = { .dev_free = snd_ak4113_dev_free, }; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) return -ENOMEM; spin_lock_init(&chip->lock); chip->card = card; chip->read = read; chip->write = write; chip->private_data = private_data; INIT_DELAYED_WORK(&chip->work, ak4113_stats); atomic_set(&chip->wq_processing, 0); mutex_init(&chip->reinit_mutex); for (reg = 0; reg < AK4113_WRITABLE_REGS ; reg++) chip->regmap[reg] = pgm[reg]; ak4113_init_regs(chip); chip->rcs0 = reg_read(chip, AK4113_REG_RCS0) & ~(AK4113_QINT | AK4113_CINT | AK4113_STC); chip->rcs1 = reg_read(chip, AK4113_REG_RCS1); chip->rcs2 = reg_read(chip, AK4113_REG_RCS2); err = snd_device_new(card, SNDRV_DEV_CODEC, chip, &ops); if (err < 0) goto __fail; if (r_ak4113) *r_ak4113 = chip; return 0; __fail: snd_ak4113_free(chip); return err; } EXPORT_SYMBOL_GPL(snd_ak4113_create); void snd_ak4113_reg_write(struct ak4113 *chip, unsigned char reg, unsigned char mask, unsigned char val) { if (reg >= AK4113_WRITABLE_REGS) return; reg_write(chip, reg, (chip->regmap[reg] & ~mask) | val); } EXPORT_SYMBOL_GPL(snd_ak4113_reg_write); static void ak4113_init_regs(struct ak4113 *chip) { unsigned char old = chip->regmap[AK4113_REG_PWRDN], reg; /* bring the chip to reset state and powerdown state */ reg_write(chip, AK4113_REG_PWRDN, old & ~(AK4113_RST|AK4113_PWN)); udelay(200); /* release reset, but leave powerdown */ reg_write(chip, AK4113_REG_PWRDN, (old | AK4113_RST) & ~AK4113_PWN); udelay(200); for (reg = 1; reg < AK4113_WRITABLE_REGS; reg++) reg_write(chip, reg, chip->regmap[reg]); /* release powerdown, everything is initialized now */ reg_write(chip, AK4113_REG_PWRDN, old | AK4113_RST | AK4113_PWN); } void snd_ak4113_reinit(struct ak4113 *chip) { if (atomic_inc_return(&chip->wq_processing) == 1) cancel_delayed_work_sync(&chip->work); mutex_lock(&chip->reinit_mutex); ak4113_init_regs(chip); mutex_unlock(&chip->reinit_mutex); /* bring up statistics / event queing */ if (atomic_dec_and_test(&chip->wq_processing)) schedule_delayed_work(&chip->work, HZ / 10); } EXPORT_SYMBOL_GPL(snd_ak4113_reinit); static unsigned int external_rate(unsigned char rcs1) { switch (rcs1 & (AK4113_FS0|AK4113_FS1|AK4113_FS2|AK4113_FS3)) { case AK4113_FS_8000HZ: return 8000; case AK4113_FS_11025HZ: return 11025; case AK4113_FS_16000HZ: return 16000; case AK4113_FS_22050HZ: return 22050; case AK4113_FS_24000HZ: return 24000; case AK4113_FS_32000HZ: return 32000; case AK4113_FS_44100HZ: return 44100; case AK4113_FS_48000HZ: return 48000; case AK4113_FS_64000HZ: return 64000; case AK4113_FS_88200HZ: return 88200; case AK4113_FS_96000HZ: return 96000; case AK4113_FS_176400HZ: return 176400; case AK4113_FS_192000HZ: return 192000; default: return 0; } } static int snd_ak4113_in_error_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = LONG_MAX; return 0; } static int snd_ak4113_in_error_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4113 *chip = snd_kcontrol_chip(kcontrol); spin_lock_irq(&chip->lock); ucontrol->value.integer.value[0] = chip->errors[kcontrol->private_value]; chip->errors[kcontrol->private_value] = 0; spin_unlock_irq(&chip->lock); return 0; } #define snd_ak4113_in_bit_info snd_ctl_boolean_mono_info static int snd_ak4113_in_bit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4113 *chip = snd_kcontrol_chip(kcontrol); unsigned char reg = kcontrol->private_value & 0xff; unsigned char bit = (kcontrol->private_value >> 8) & 0xff; unsigned char inv = (kcontrol->private_value >> 31) & 1; ucontrol->value.integer.value[0] = ((reg_read(chip, reg) & (1 << bit)) ? 1 : 0) ^ inv; return 0; } static int snd_ak4113_rx_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 5; return 0; } static int snd_ak4113_rx_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4113 *chip = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = (AK4113_IPS(chip->regmap[AK4113_REG_IO1])); return 0; } static int snd_ak4113_rx_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4113 *chip = snd_kcontrol_chip(kcontrol); int change; u8 old_val; spin_lock_irq(&chip->lock); old_val = chip->regmap[AK4113_REG_IO1]; change = ucontrol->value.integer.value[0] != AK4113_IPS(old_val); if (change) reg_write(chip, AK4113_REG_IO1, (old_val & (~AK4113_IPS(0xff))) | (AK4113_IPS(ucontrol->value.integer.value[0]))); spin_unlock_irq(&chip->lock); return change; } static int snd_ak4113_rate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 192000; return 0; } static int snd_ak4113_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4113 *chip = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = external_rate(reg_read(chip, AK4113_REG_RCS1)); return 0; } static int snd_ak4113_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ak4113_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4113 *chip = snd_kcontrol_chip(kcontrol); unsigned i; for (i = 0; i < AK4113_REG_RXCSB_SIZE; i++) ucontrol->value.iec958.status[i] = reg_read(chip, AK4113_REG_RXCSB0 + i); return 0; } static int snd_ak4113_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ak4113_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { memset(ucontrol->value.iec958.status, 0xff, AK4113_REG_RXCSB_SIZE); return 0; } static int snd_ak4113_spdif_pinfo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->value.integer.min = 0; uinfo->value.integer.max = 0xffff; uinfo->count = 4; return 0; } static int snd_ak4113_spdif_pget(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4113 *chip = snd_kcontrol_chip(kcontrol); unsigned short tmp; ucontrol->value.integer.value[0] = 0xf8f2; ucontrol->value.integer.value[1] = 0x4e1f; tmp = reg_read(chip, AK4113_REG_Pc0) | (reg_read(chip, AK4113_REG_Pc1) << 8); ucontrol->value.integer.value[2] = tmp; tmp = reg_read(chip, AK4113_REG_Pd0) | (reg_read(chip, AK4113_REG_Pd1) << 8); ucontrol->value.integer.value[3] = tmp; return 0; } static int snd_ak4113_spdif_qinfo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = AK4113_REG_QSUB_SIZE; return 0; } static int snd_ak4113_spdif_qget(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ak4113 *chip = snd_kcontrol_chip(kcontrol); unsigned i; for (i = 0; i < AK4113_REG_QSUB_SIZE; i++) ucontrol->value.bytes.data[i] = reg_read(chip, AK4113_REG_QSUB_ADDR + i); return 0; } /* Don't forget to change AK4113_CONTROLS define!!! */ static const struct snd_kcontrol_new snd_ak4113_iec958_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Parity Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_in_error_info, .get = snd_ak4113_in_error_get, .private_value = AK4113_PARITY_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 V-Bit Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_in_error_info, .get = snd_ak4113_in_error_get, .private_value = AK4113_V_BIT_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 C-CRC Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_in_error_info, .get = snd_ak4113_in_error_get, .private_value = AK4113_CCRC_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Q-CRC Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_in_error_info, .get = snd_ak4113_in_error_get, .private_value = AK4113_QCRC_ERRORS, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 External Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_rate_info, .get = snd_ak4113_rate_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK), .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = snd_ak4113_spdif_mask_info, .get = snd_ak4113_spdif_mask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_spdif_info, .get = snd_ak4113_spdif_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Preamble Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_spdif_pinfo, .get = snd_ak4113_spdif_pget, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Q-subcode Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_spdif_qinfo, .get = snd_ak4113_spdif_qget, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Audio", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_in_bit_info, .get = snd_ak4113_in_bit_get, .private_value = (1<<31) | (1<<8) | AK4113_REG_RCS0, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Non-PCM Bitstream", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_in_bit_info, .get = snd_ak4113_in_bit_get, .private_value = (0<<8) | AK4113_REG_RCS1, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 DTS Bitstream", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ak4113_in_bit_info, .get = snd_ak4113_in_bit_get, .private_value = (1<<8) | AK4113_REG_RCS1, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "AK4113 Input Select", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE, .info = snd_ak4113_rx_info, .get = snd_ak4113_rx_get, .put = snd_ak4113_rx_put, } }; static void snd_ak4113_proc_regs_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct ak4113 *ak4113 = entry->private_data; int reg, val; /* all ak4113 registers 0x00 - 0x1c */ for (reg = 0; reg < 0x1d; reg++) { val = reg_read(ak4113, reg); snd_iprintf(buffer, "0x%02x = 0x%02x\n", reg, val); } } static void snd_ak4113_proc_init(struct ak4113 *ak4113) { snd_card_ro_proc_new(ak4113->card, "ak4113", ak4113, snd_ak4113_proc_regs_read); } int snd_ak4113_build(struct ak4113 *ak4113, struct snd_pcm_substream *cap_substream) { struct snd_kcontrol *kctl; unsigned int idx; int err; if (snd_BUG_ON(!cap_substream)) return -EINVAL; ak4113->substream = cap_substream; for (idx = 0; idx < AK4113_CONTROLS; idx++) { kctl = snd_ctl_new1(&snd_ak4113_iec958_controls[idx], ak4113); if (kctl == NULL) return -ENOMEM; kctl->id.device = cap_substream->pcm->device; kctl->id.subdevice = cap_substream->number; err = snd_ctl_add(ak4113->card, kctl); if (err < 0) return err; ak4113->kctls[idx] = kctl; } snd_ak4113_proc_init(ak4113); /* trigger workq */ schedule_delayed_work(&ak4113->work, HZ / 10); return 0; } EXPORT_SYMBOL_GPL(snd_ak4113_build); int snd_ak4113_external_rate(struct ak4113 *ak4113) { unsigned char rcs1; rcs1 = reg_read(ak4113, AK4113_REG_RCS1); return external_rate(rcs1); } EXPORT_SYMBOL_GPL(snd_ak4113_external_rate); int snd_ak4113_check_rate_and_errors(struct ak4113 *ak4113, unsigned int flags) { struct snd_pcm_runtime *runtime = ak4113->substream ? ak4113->substream->runtime : NULL; unsigned long _flags; int res = 0; unsigned char rcs0, rcs1, rcs2; unsigned char c0, c1; rcs1 = reg_read(ak4113, AK4113_REG_RCS1); if (flags & AK4113_CHECK_NO_STAT) goto __rate; rcs0 = reg_read(ak4113, AK4113_REG_RCS0); rcs2 = reg_read(ak4113, AK4113_REG_RCS2); spin_lock_irqsave(&ak4113->lock, _flags); if (rcs0 & AK4113_PAR) ak4113->errors[AK4113_PARITY_ERRORS]++; if (rcs0 & AK4113_V) ak4113->errors[AK4113_V_BIT_ERRORS]++; if (rcs2 & AK4113_CCRC) ak4113->errors[AK4113_CCRC_ERRORS]++; if (rcs2 & AK4113_QCRC) ak4113->errors[AK4113_QCRC_ERRORS]++; c0 = (ak4113->rcs0 & (AK4113_QINT | AK4113_CINT | AK4113_STC | AK4113_AUDION | AK4113_AUTO | AK4113_UNLCK)) ^ (rcs0 & (AK4113_QINT | AK4113_CINT | AK4113_STC | AK4113_AUDION | AK4113_AUTO | AK4113_UNLCK)); c1 = (ak4113->rcs1 & (AK4113_DTSCD | AK4113_NPCM | AK4113_PEM | AK4113_DAT | 0xf0)) ^ (rcs1 & (AK4113_DTSCD | AK4113_NPCM | AK4113_PEM | AK4113_DAT | 0xf0)); ak4113->rcs0 = rcs0 & ~(AK4113_QINT | AK4113_CINT | AK4113_STC); ak4113->rcs1 = rcs1; ak4113->rcs2 = rcs2; spin_unlock_irqrestore(&ak4113->lock, _flags); if (rcs0 & AK4113_PAR) snd_ctl_notify(ak4113->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4113->kctls[0]->id); if (rcs0 & AK4113_V) snd_ctl_notify(ak4113->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4113->kctls[1]->id); if (rcs2 & AK4113_CCRC) snd_ctl_notify(ak4113->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4113->kctls[2]->id); if (rcs2 & AK4113_QCRC) snd_ctl_notify(ak4113->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4113->kctls[3]->id); /* rate change */ if (c1 & 0xf0) snd_ctl_notify(ak4113->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4113->kctls[4]->id); if ((c1 & AK4113_PEM) | (c0 & AK4113_CINT)) snd_ctl_notify(ak4113->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4113->kctls[6]->id); if (c0 & AK4113_QINT) snd_ctl_notify(ak4113->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4113->kctls[8]->id); if (c0 & AK4113_AUDION) snd_ctl_notify(ak4113->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4113->kctls[9]->id); if (c1 & AK4113_NPCM) snd_ctl_notify(ak4113->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4113->kctls[10]->id); if (c1 & AK4113_DTSCD) snd_ctl_notify(ak4113->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4113->kctls[11]->id); if (ak4113->change_callback && (c0 | c1) != 0) ak4113->change_callback(ak4113, c0, c1); __rate: /* compare rate */ res = external_rate(rcs1); if (!(flags & AK4113_CHECK_NO_RATE) && runtime && (runtime->rate != res)) { snd_pcm_stream_lock_irqsave(ak4113->substream, _flags); if (snd_pcm_running(ak4113->substream)) { /*printk(KERN_DEBUG "rate changed (%i <- %i)\n", * runtime->rate, res); */ snd_pcm_stop(ak4113->substream, SNDRV_PCM_STATE_DRAINING); wake_up(&runtime->sleep); res = 1; } snd_pcm_stream_unlock_irqrestore(ak4113->substream, _flags); } return res; } EXPORT_SYMBOL_GPL(snd_ak4113_check_rate_and_errors); static void ak4113_stats(struct work_struct *work) { struct ak4113 *chip = container_of(work, struct ak4113, work.work); if (atomic_inc_return(&chip->wq_processing) == 1) snd_ak4113_check_rate_and_errors(chip, chip->check_flags); if (atomic_dec_and_test(&chip->wq_processing)) schedule_delayed_work(&chip->work, HZ / 10); } #ifdef CONFIG_PM void snd_ak4113_suspend(struct ak4113 *chip) { atomic_inc(&chip->wq_processing); /* don't schedule new work */ cancel_delayed_work_sync(&chip->work); } EXPORT_SYMBOL(snd_ak4113_suspend); void snd_ak4113_resume(struct ak4113 *chip) { atomic_dec(&chip->wq_processing); snd_ak4113_reinit(chip); } EXPORT_SYMBOL(snd_ak4113_resume); #endif
linux-master
sound/i2c/other/ak4113.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * AD1843 low level driver * * Copyright 2003 Vivien Chappelier <[email protected]> * Copyright 2008 Thomas Bogendoerfer <[email protected]> * * inspired from vwsnd.c (SGI VW audio driver) * Copyright 1999 Silicon Graphics, Inc. All rights reserved. */ #include <linux/init.h> #include <linux/sched.h> #include <linux/errno.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/ad1843.h> /* * AD1843 bitfield definitions. All are named as in the AD1843 data * sheet, with ad1843_ prepended and individual bit numbers removed. * * E.g., bits LSS0 through LSS2 become ad1843_LSS. * * Only the bitfields we need are defined. */ struct ad1843_bitfield { char reg; char lo_bit; char nbits; }; static const struct ad1843_bitfield ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */ ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */ ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */ ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */ ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */ ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */ ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */ ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */ ad1843_RD2M = { 3, 0, 5 }, /* Right DAC 2 Mix Gain/Atten */ ad1843_RD2MM = { 3, 7, 1 }, /* Right DAC 2 Mix Mute */ ad1843_LD2M = { 3, 8, 5 }, /* Left DAC 2 Mix Gain/Atten */ ad1843_LD2MM = { 3, 15, 1 }, /* Left DAC 2 Mix Mute */ ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */ ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */ ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */ ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */ ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */ ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */ ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */ ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */ ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */ ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */ ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */ ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */ ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */ ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */ ad1843_MPOM = { 8, 6, 1 }, /* Mono Output Mute */ ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */ ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */ ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */ ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */ ad1843_RDA2G = { 10, 0, 6 }, /* Right DAC2 Analog/Digital Gain */ ad1843_RDA2GM = { 10, 7, 1 }, /* Right DAC2 Analog Mute */ ad1843_LDA2G = { 10, 8, 6 }, /* Left DAC2 Analog/Digital Gain */ ad1843_LDA2GM = { 10, 15, 1 }, /* Left DAC2 Analog Mute */ ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */ ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */ ad1843_RDA2AM = { 12, 7, 1 }, /* Right DAC2 Digital Mute */ ad1843_LDA2AM = { 12, 15, 1 }, /* Left DAC2 Digital Mute */ ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */ ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */ ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */ ad1843_DA2C = { 15, 10, 2 }, /* DAC2 Sample Rate Source */ ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */ ad1843_C2C = { 20, 0, 16 }, /* Clock 2 Sample Rate Select */ ad1843_C3C = { 23, 0, 16 }, /* Clock 3 Sample Rate Select */ ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */ ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */ ad1843_DAMIX = { 25, 14, 1 }, /* DAC Digital Mix Enable */ ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */ ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */ ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */ ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */ ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */ ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */ ad1843_DA2F = { 26, 10, 2 }, /* DAC2 Data Format Select */ ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */ ad1843_DA2SM = { 26, 15, 1 }, /* DAC2 Stereo/Mono Mode Select */ ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */ ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */ ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */ ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */ ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */ ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */ ad1843_DDMEN = { 27, 12, 1 }, /* DAC2 to DAC1 Mix Enable */ ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */ ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */ ad1843_C3EN = { 28, 13, 1 }, /* Clock Generator 3 Enable */ ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */ /* * The various registers of the AD1843 use three different formats for * specifying gain. The ad1843_gain structure parameterizes the * formats. */ struct ad1843_gain { int negative; /* nonzero if gain is negative. */ const struct ad1843_bitfield *lfield; const struct ad1843_bitfield *rfield; const struct ad1843_bitfield *lmute; const struct ad1843_bitfield *rmute; }; static const struct ad1843_gain ad1843_gain_RECLEV = { .negative = 0, .lfield = &ad1843_LIG, .rfield = &ad1843_RIG }; static const struct ad1843_gain ad1843_gain_LINE = { .negative = 1, .lfield = &ad1843_LX1M, .rfield = &ad1843_RX1M, .lmute = &ad1843_LX1MM, .rmute = &ad1843_RX1MM }; static const struct ad1843_gain ad1843_gain_LINE_2 = { .negative = 1, .lfield = &ad1843_LDA2G, .rfield = &ad1843_RDA2G, .lmute = &ad1843_LDA2GM, .rmute = &ad1843_RDA2GM }; static const struct ad1843_gain ad1843_gain_MIC = { .negative = 1, .lfield = &ad1843_LMCM, .rfield = &ad1843_RMCM, .lmute = &ad1843_LMCMM, .rmute = &ad1843_RMCMM }; static const struct ad1843_gain ad1843_gain_PCM_0 = { .negative = 1, .lfield = &ad1843_LDA1G, .rfield = &ad1843_RDA1G, .lmute = &ad1843_LDA1GM, .rmute = &ad1843_RDA1GM }; static const struct ad1843_gain ad1843_gain_PCM_1 = { .negative = 1, .lfield = &ad1843_LD2M, .rfield = &ad1843_RD2M, .lmute = &ad1843_LD2MM, .rmute = &ad1843_RD2MM }; static const struct ad1843_gain *ad1843_gain[AD1843_GAIN_SIZE] = { &ad1843_gain_RECLEV, &ad1843_gain_LINE, &ad1843_gain_LINE_2, &ad1843_gain_MIC, &ad1843_gain_PCM_0, &ad1843_gain_PCM_1, }; /* read the current value of an AD1843 bitfield. */ static int ad1843_read_bits(struct snd_ad1843 *ad1843, const struct ad1843_bitfield *field) { int w; w = ad1843->read(ad1843->chip, field->reg); return w >> field->lo_bit & ((1 << field->nbits) - 1); } /* * write a new value to an AD1843 bitfield and return the old value. */ static int ad1843_write_bits(struct snd_ad1843 *ad1843, const struct ad1843_bitfield *field, int newval) { int w, mask, oldval, newbits; w = ad1843->read(ad1843->chip, field->reg); mask = ((1 << field->nbits) - 1) << field->lo_bit; oldval = (w & mask) >> field->lo_bit; newbits = (newval << field->lo_bit) & mask; w = (w & ~mask) | newbits; ad1843->write(ad1843->chip, field->reg, w); return oldval; } /* * ad1843_read_multi reads multiple bitfields from the same AD1843 * register. It uses a single read cycle to do it. (Reading the * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20 * microseconds.) * * Called like this. * * ad1843_read_multi(ad1843, nfields, * &ad1843_FIELD1, &val1, * &ad1843_FIELD2, &val2, ...); */ static void ad1843_read_multi(struct snd_ad1843 *ad1843, int argcount, ...) { va_list ap; const struct ad1843_bitfield *fp; int w = 0, mask, *value, reg = -1; va_start(ap, argcount); while (--argcount >= 0) { fp = va_arg(ap, const struct ad1843_bitfield *); value = va_arg(ap, int *); if (reg == -1) { reg = fp->reg; w = ad1843->read(ad1843->chip, reg); } mask = (1 << fp->nbits) - 1; *value = w >> fp->lo_bit & mask; } va_end(ap); } /* * ad1843_write_multi stores multiple bitfields into the same AD1843 * register. It uses one read and one write cycle to do it. * * Called like this. * * ad1843_write_multi(ad1843, nfields, * &ad1843_FIELD1, val1, * &ad1843_FIELF2, val2, ...); */ static void ad1843_write_multi(struct snd_ad1843 *ad1843, int argcount, ...) { va_list ap; int reg; const struct ad1843_bitfield *fp; int value; int w, m, mask, bits; mask = 0; bits = 0; reg = -1; va_start(ap, argcount); while (--argcount >= 0) { fp = va_arg(ap, const struct ad1843_bitfield *); value = va_arg(ap, int); if (reg == -1) reg = fp->reg; else WARN_ON(reg != fp->reg); m = ((1 << fp->nbits) - 1) << fp->lo_bit; mask |= m; bits |= (value << fp->lo_bit) & m; } va_end(ap); if (~mask & 0xFFFF) w = ad1843->read(ad1843->chip, reg); else w = 0; w = (w & ~mask) | bits; ad1843->write(ad1843->chip, reg, w); } int ad1843_get_gain_max(struct snd_ad1843 *ad1843, int id) { const struct ad1843_gain *gp = ad1843_gain[id]; int ret; ret = (1 << gp->lfield->nbits); if (!gp->lmute) ret -= 1; return ret; } /* * ad1843_get_gain reads the specified register and extracts the gain value * using the supplied gain type. */ int ad1843_get_gain(struct snd_ad1843 *ad1843, int id) { int lg, rg, lm, rm; const struct ad1843_gain *gp = ad1843_gain[id]; unsigned short mask = (1 << gp->lfield->nbits) - 1; ad1843_read_multi(ad1843, 2, gp->lfield, &lg, gp->rfield, &rg); if (gp->negative) { lg = mask - lg; rg = mask - rg; } if (gp->lmute) { ad1843_read_multi(ad1843, 2, gp->lmute, &lm, gp->rmute, &rm); if (lm) lg = 0; if (rm) rg = 0; } return lg << 0 | rg << 8; } /* * Set an audio channel's gain. * * Returns the new gain, which may be lower than the old gain. */ int ad1843_set_gain(struct snd_ad1843 *ad1843, int id, int newval) { const struct ad1843_gain *gp = ad1843_gain[id]; unsigned short mask = (1 << gp->lfield->nbits) - 1; int lg = (newval >> 0) & mask; int rg = (newval >> 8) & mask; int lm = (lg == 0) ? 1 : 0; int rm = (rg == 0) ? 1 : 0; if (gp->negative) { lg = mask - lg; rg = mask - rg; } if (gp->lmute) ad1843_write_multi(ad1843, 2, gp->lmute, lm, gp->rmute, rm); ad1843_write_multi(ad1843, 2, gp->lfield, lg, gp->rfield, rg); return ad1843_get_gain(ad1843, id); } /* Returns the current recording source */ int ad1843_get_recsrc(struct snd_ad1843 *ad1843) { int val = ad1843_read_bits(ad1843, &ad1843_LSS); if (val < 0 || val > 2) { val = 2; ad1843_write_multi(ad1843, 2, &ad1843_LSS, val, &ad1843_RSS, val); } return val; } /* * Set recording source. * * Returns newsrc on success, -errno on failure. */ int ad1843_set_recsrc(struct snd_ad1843 *ad1843, int newsrc) { if (newsrc < 0 || newsrc > 2) return -EINVAL; ad1843_write_multi(ad1843, 2, &ad1843_LSS, newsrc, &ad1843_RSS, newsrc); return newsrc; } /* Setup ad1843 for D/A conversion. */ void ad1843_setup_dac(struct snd_ad1843 *ad1843, unsigned int id, unsigned int framerate, snd_pcm_format_t fmt, unsigned int channels) { int ad_fmt = 0, ad_mode = 0; switch (fmt) { case SNDRV_PCM_FORMAT_S8: ad_fmt = 0; break; case SNDRV_PCM_FORMAT_U8: ad_fmt = 0; break; case SNDRV_PCM_FORMAT_S16_LE: ad_fmt = 1; break; case SNDRV_PCM_FORMAT_MU_LAW: ad_fmt = 2; break; case SNDRV_PCM_FORMAT_A_LAW: ad_fmt = 3; break; default: break; } switch (channels) { case 2: ad_mode = 0; break; case 1: ad_mode = 1; break; default: break; } if (id) { ad1843_write_bits(ad1843, &ad1843_C2C, framerate); ad1843_write_multi(ad1843, 2, &ad1843_DA2SM, ad_mode, &ad1843_DA2F, ad_fmt); } else { ad1843_write_bits(ad1843, &ad1843_C1C, framerate); ad1843_write_multi(ad1843, 2, &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt); } } void ad1843_shutdown_dac(struct snd_ad1843 *ad1843, unsigned int id) { if (id) ad1843_write_bits(ad1843, &ad1843_DA2F, 1); else ad1843_write_bits(ad1843, &ad1843_DA1F, 1); } void ad1843_setup_adc(struct snd_ad1843 *ad1843, unsigned int framerate, snd_pcm_format_t fmt, unsigned int channels) { int da_fmt = 0; switch (fmt) { case SNDRV_PCM_FORMAT_S8: da_fmt = 0; break; case SNDRV_PCM_FORMAT_U8: da_fmt = 0; break; case SNDRV_PCM_FORMAT_S16_LE: da_fmt = 1; break; case SNDRV_PCM_FORMAT_MU_LAW: da_fmt = 2; break; case SNDRV_PCM_FORMAT_A_LAW: da_fmt = 3; break; default: break; } ad1843_write_bits(ad1843, &ad1843_C3C, framerate); ad1843_write_multi(ad1843, 2, &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt); } void ad1843_shutdown_adc(struct snd_ad1843 *ad1843) { /* nothing to do */ } /* * Fully initialize the ad1843. As described in the AD1843 data * sheet, section "START-UP SEQUENCE". The numbered comments are * subsection headings from the data sheet. See the data sheet, pages * 52-54, for more info. * * return 0 on success, -errno on failure. */ int ad1843_init(struct snd_ad1843 *ad1843) { unsigned long later; if (ad1843_read_bits(ad1843, &ad1843_INIT) != 0) { printk(KERN_ERR "ad1843: AD1843 won't initialize\n"); return -EIO; } ad1843_write_bits(ad1843, &ad1843_SCF, 1); /* 4. Put the conversion resources into standby. */ ad1843_write_bits(ad1843, &ad1843_PDNI, 0); later = jiffies + msecs_to_jiffies(500); while (ad1843_read_bits(ad1843, &ad1843_PDNO)) { if (time_after(jiffies, later)) { printk(KERN_ERR "ad1843: AD1843 won't power up\n"); return -EIO; } schedule_timeout_interruptible(5); } /* 5. Power up the clock generators and enable clock output pins. */ ad1843_write_multi(ad1843, 3, &ad1843_C1EN, 1, &ad1843_C2EN, 1, &ad1843_C3EN, 1); /* 6. Configure conversion resources while they are in standby. */ /* DAC1/2 use clock 1/2 as source, ADC uses clock 3. Always. */ ad1843_write_multi(ad1843, 4, &ad1843_DA1C, 1, &ad1843_DA2C, 2, &ad1843_ADLC, 3, &ad1843_ADRC, 3); /* 7. Enable conversion resources. */ ad1843_write_bits(ad1843, &ad1843_ADTLK, 1); ad1843_write_multi(ad1843, 7, &ad1843_ANAEN, 1, &ad1843_AAMEN, 1, &ad1843_DA1EN, 1, &ad1843_DA2EN, 1, &ad1843_DDMEN, 1, &ad1843_ADLEN, 1, &ad1843_ADREN, 1); /* 8. Configure conversion resources while they are enabled. */ /* set gain to 0 for all channels */ ad1843_set_gain(ad1843, AD1843_GAIN_RECLEV, 0); ad1843_set_gain(ad1843, AD1843_GAIN_LINE, 0); ad1843_set_gain(ad1843, AD1843_GAIN_LINE_2, 0); ad1843_set_gain(ad1843, AD1843_GAIN_MIC, 0); ad1843_set_gain(ad1843, AD1843_GAIN_PCM_0, 0); ad1843_set_gain(ad1843, AD1843_GAIN_PCM_1, 0); /* Unmute all channels. */ /* DAC1 */ ad1843_write_multi(ad1843, 2, &ad1843_LDA1GM, 0, &ad1843_RDA1GM, 0); /* DAC2 */ ad1843_write_multi(ad1843, 2, &ad1843_LDA2GM, 0, &ad1843_RDA2GM, 0); /* Set default recording source to Line In and set * mic gain to +20 dB. */ ad1843_set_recsrc(ad1843, 2); ad1843_write_multi(ad1843, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1); /* Set Speaker Out level to +/- 4V and unmute it. */ ad1843_write_multi(ad1843, 3, &ad1843_HPOS, 1, &ad1843_HPOM, 0, &ad1843_MPOM, 0); return 0; }
linux-master
sound/mips/ad1843.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for A2 audio system used in SGI machines * Copyright (c) 2008 Thomas Bogendoerfer <[email protected]> * * Based on OSS code from Ladislav Michl <[email protected]>, which * was based on code from Ulf Carlsson */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/module.h> #include <asm/sgi/hpc3.h> #include <asm/sgi/ip22.h> #include <sound/core.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/pcm-indirect.h> #include <sound/initval.h> #include "hal2.h" static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard."); MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio"); MODULE_AUTHOR("Thomas Bogendoerfer"); MODULE_LICENSE("GPL"); #define H2_BLOCK_SIZE 1024 #define H2_BUF_SIZE 16384 struct hal2_pbus { struct hpc3_pbus_dmacregs *pbus; int pbusnr; unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */ }; struct hal2_desc { struct hpc_dma_desc desc; u32 pad; /* padding */ }; struct hal2_codec { struct snd_pcm_indirect pcm_indirect; struct snd_pcm_substream *substream; unsigned char *buffer; dma_addr_t buffer_dma; struct hal2_desc *desc; dma_addr_t desc_dma; int desc_count; struct hal2_pbus pbus; int voices; /* mono/stereo */ unsigned int sample_rate; unsigned int master; /* Master frequency */ unsigned short mod; /* MOD value */ unsigned short inc; /* INC value */ }; #define H2_MIX_OUTPUT_ATT 0 #define H2_MIX_INPUT_GAIN 1 struct snd_hal2 { struct snd_card *card; struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */ struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */ struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */ struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */ struct hal2_codec dac; struct hal2_codec adc; }; #define H2_INDIRECT_WAIT(regs) while (hal2_read(&regs->isr) & H2_ISR_TSTATUS); #define H2_READ_ADDR(addr) (addr | (1<<7)) #define H2_WRITE_ADDR(addr) (addr) static inline u32 hal2_read(u32 *reg) { return __raw_readl(reg); } static inline void hal2_write(u32 val, u32 *reg) { __raw_writel(val, reg); } static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr) { u32 ret; struct hal2_ctl_regs *regs = hal2->ctl_regs; hal2_write(H2_READ_ADDR(addr), &regs->iar); H2_INDIRECT_WAIT(regs); ret = hal2_read(&regs->idr0) & 0xffff; hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar); H2_INDIRECT_WAIT(regs); ret |= (hal2_read(&regs->idr0) & 0xffff) << 16; return ret; } static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val) { struct hal2_ctl_regs *regs = hal2->ctl_regs; hal2_write(val, &regs->idr0); hal2_write(0, &regs->idr1); hal2_write(0, &regs->idr2); hal2_write(0, &regs->idr3); hal2_write(H2_WRITE_ADDR(addr), &regs->iar); H2_INDIRECT_WAIT(regs); } static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val) { struct hal2_ctl_regs *regs = hal2->ctl_regs; hal2_write(val & 0xffff, &regs->idr0); hal2_write(val >> 16, &regs->idr1); hal2_write(0, &regs->idr2); hal2_write(0, &regs->idr3); hal2_write(H2_WRITE_ADDR(addr), &regs->iar); H2_INDIRECT_WAIT(regs); } static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit) { struct hal2_ctl_regs *regs = hal2->ctl_regs; hal2_write(H2_READ_ADDR(addr), &regs->iar); H2_INDIRECT_WAIT(regs); hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0); hal2_write(0, &regs->idr1); hal2_write(0, &regs->idr2); hal2_write(0, &regs->idr3); hal2_write(H2_WRITE_ADDR(addr), &regs->iar); H2_INDIRECT_WAIT(regs); } static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit) { struct hal2_ctl_regs *regs = hal2->ctl_regs; hal2_write(H2_READ_ADDR(addr), &regs->iar); H2_INDIRECT_WAIT(regs); hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0); hal2_write(0, &regs->idr1); hal2_write(0, &regs->idr2); hal2_write(0, &regs->idr3); hal2_write(H2_WRITE_ADDR(addr), &regs->iar); H2_INDIRECT_WAIT(regs); } static int hal2_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; switch ((int)kcontrol->private_value) { case H2_MIX_OUTPUT_ATT: uinfo->value.integer.max = 31; break; case H2_MIX_INPUT_GAIN: uinfo->value.integer.max = 15; break; } return 0; } static int hal2_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol); u32 tmp; int l, r; switch ((int)kcontrol->private_value) { case H2_MIX_OUTPUT_ATT: tmp = hal2_i_read32(hal2, H2I_DAC_C2); if (tmp & H2I_C2_MUTE) { l = 0; r = 0; } else { l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31); r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31); } break; case H2_MIX_INPUT_GAIN: tmp = hal2_i_read32(hal2, H2I_ADC_C2); l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15; r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15; break; default: return -EINVAL; } ucontrol->value.integer.value[0] = l; ucontrol->value.integer.value[1] = r; return 0; } static int hal2_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol); u32 old, new; int l, r; l = ucontrol->value.integer.value[0]; r = ucontrol->value.integer.value[1]; switch ((int)kcontrol->private_value) { case H2_MIX_OUTPUT_ATT: old = hal2_i_read32(hal2, H2I_DAC_C2); new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); if (l | r) { l = 31 - l; r = 31 - r; new |= (l << H2I_C2_L_ATT_SHIFT); new |= (r << H2I_C2_R_ATT_SHIFT); } else new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE; hal2_i_write32(hal2, H2I_DAC_C2, new); break; case H2_MIX_INPUT_GAIN: old = hal2_i_read32(hal2, H2I_ADC_C2); new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M); new |= (l << H2I_C2_L_GAIN_SHIFT); new |= (r << H2I_C2_R_GAIN_SHIFT); hal2_i_write32(hal2, H2I_ADC_C2, new); break; default: return -EINVAL; } return old != new; } static const struct snd_kcontrol_new hal2_ctrl_headphone = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Headphone Playback Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .private_value = H2_MIX_OUTPUT_ATT, .info = hal2_gain_info, .get = hal2_gain_get, .put = hal2_gain_put, }; static const struct snd_kcontrol_new hal2_ctrl_mic = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Mic Capture Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .private_value = H2_MIX_INPUT_GAIN, .info = hal2_gain_info, .get = hal2_gain_get, .put = hal2_gain_put, }; static int hal2_mixer_create(struct snd_hal2 *hal2) { int err; /* mute DAC */ hal2_i_write32(hal2, H2I_DAC_C2, H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); /* mute ADC */ hal2_i_write32(hal2, H2I_ADC_C2, 0); err = snd_ctl_add(hal2->card, snd_ctl_new1(&hal2_ctrl_headphone, hal2)); if (err < 0) return err; err = snd_ctl_add(hal2->card, snd_ctl_new1(&hal2_ctrl_mic, hal2)); if (err < 0) return err; return 0; } static irqreturn_t hal2_interrupt(int irq, void *dev_id) { struct snd_hal2 *hal2 = dev_id; irqreturn_t ret = IRQ_NONE; /* decide what caused this interrupt */ if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { snd_pcm_period_elapsed(hal2->dac.substream); ret = IRQ_HANDLED; } if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { snd_pcm_period_elapsed(hal2->adc.substream); ret = IRQ_HANDLED; } return ret; } static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate) { unsigned short mod; if (44100 % rate < 48000 % rate) { mod = 4 * 44100 / rate; codec->master = 44100; } else { mod = 4 * 48000 / rate; codec->master = 48000; } codec->inc = 4; codec->mod = mod; rate = 4 * codec->master / mod; return rate; } static void hal2_set_dac_rate(struct snd_hal2 *hal2) { unsigned int master = hal2->dac.master; int inc = hal2->dac.inc; int mod = hal2->dac.mod; hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0); hal2_i_write32(hal2, H2I_BRES1_C2, ((0xffff & (inc - mod - 1)) << 16) | inc); } static void hal2_set_adc_rate(struct snd_hal2 *hal2) { unsigned int master = hal2->adc.master; int inc = hal2->adc.inc; int mod = hal2->adc.mod; hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0); hal2_i_write32(hal2, H2I_BRES2_C2, ((0xffff & (inc - mod - 1)) << 16) | inc); } static void hal2_setup_dac(struct snd_hal2 *hal2) { unsigned int fifobeg, fifoend, highwater, sample_size; struct hal2_pbus *pbus = &hal2->dac.pbus; /* Now we set up some PBUS information. The PBUS needs information about * what portion of the fifo it will use. If it's receiving or * transmitting, and finally whether the stream is little endian or big * endian. The information is written later, on the start call. */ sample_size = 2 * hal2->dac.voices; /* Fifo should be set to hold exactly four samples. Highwater mark * should be set to two samples. */ highwater = (sample_size * 2) >> 1; /* halfwords */ fifobeg = 0; /* playback is first */ fifoend = (sample_size * 4) >> 3; /* doublewords */ pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD | (highwater << 8) | (fifobeg << 16) | (fifoend << 24); /* We disable everything before we do anything at all */ pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); /* Setup the HAL2 for playback */ hal2_set_dac_rate(hal2); /* Set endianess */ hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX); /* Set DMA bus */ hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); /* We are using 1st Bresenham clock generator for playback */ hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) | (1 << H2I_C1_CLKID_SHIFT) | (hal2->dac.voices << H2I_C1_DATAT_SHIFT)); } static void hal2_setup_adc(struct snd_hal2 *hal2) { unsigned int fifobeg, fifoend, highwater, sample_size; struct hal2_pbus *pbus = &hal2->adc.pbus; sample_size = 2 * hal2->adc.voices; highwater = (sample_size * 2) >> 1; /* halfwords */ fifobeg = (4 * 4) >> 3; /* record is second */ fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */ pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD | (highwater << 8) | (fifobeg << 16) | (fifoend << 24); pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); /* Setup the HAL2 for record */ hal2_set_adc_rate(hal2); /* Set endianess */ hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR); /* Set DMA bus */ hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); /* We are using 2nd Bresenham clock generator for record */ hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) | (2 << H2I_C1_CLKID_SHIFT) | (hal2->adc.voices << H2I_C1_DATAT_SHIFT)); } static void hal2_start_dac(struct snd_hal2 *hal2) { struct hal2_pbus *pbus = &hal2->dac.pbus; pbus->pbus->pbdma_dptr = hal2->dac.desc_dma; pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; /* enable DAC */ hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); } static void hal2_start_adc(struct snd_hal2 *hal2) { struct hal2_pbus *pbus = &hal2->adc.pbus; pbus->pbus->pbdma_dptr = hal2->adc.desc_dma; pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; /* enable ADC */ hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); } static inline void hal2_stop_dac(struct snd_hal2 *hal2) { hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; /* The HAL2 itself may remain enabled safely */ } static inline void hal2_stop_adc(struct snd_hal2 *hal2) { hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; } static int hal2_alloc_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec, enum dma_data_direction buffer_dir) { struct device *dev = hal2->card->dev; struct hal2_desc *desc; dma_addr_t desc_dma, buffer_dma; int count = H2_BUF_SIZE / H2_BLOCK_SIZE; int i; codec->buffer = dma_alloc_noncoherent(dev, H2_BUF_SIZE, &buffer_dma, buffer_dir, GFP_KERNEL); if (!codec->buffer) return -ENOMEM; desc = dma_alloc_noncoherent(dev, count * sizeof(struct hal2_desc), &desc_dma, DMA_BIDIRECTIONAL, GFP_KERNEL); if (!desc) { dma_free_noncoherent(dev, H2_BUF_SIZE, codec->buffer, buffer_dma, buffer_dir); return -ENOMEM; } codec->buffer_dma = buffer_dma; codec->desc_dma = desc_dma; codec->desc = desc; for (i = 0; i < count; i++) { desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE; desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE; desc->desc.pnext = (i == count - 1) ? desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc); desc++; } dma_sync_single_for_device(dev, codec->desc_dma, count * sizeof(struct hal2_desc), DMA_BIDIRECTIONAL); codec->desc_count = count; return 0; } static void hal2_free_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec, enum dma_data_direction buffer_dir) { struct device *dev = hal2->card->dev; dma_free_noncoherent(dev, codec->desc_count * sizeof(struct hal2_desc), codec->desc, codec->desc_dma, DMA_BIDIRECTIONAL); dma_free_noncoherent(dev, H2_BUF_SIZE, codec->buffer, codec->buffer_dma, buffer_dir); } static const struct snd_pcm_hardware hal2_pcm_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_SYNC_APPLPTR), .formats = SNDRV_PCM_FMTBIT_S16_BE, .rates = SNDRV_PCM_RATE_8000_48000, .rate_min = 8000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 65536, .period_bytes_min = 1024, .period_bytes_max = 65536, .periods_min = 2, .periods_max = 1024, }; static int hal2_playback_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); runtime->hw = hal2_pcm_hw; return hal2_alloc_dmabuf(hal2, &hal2->dac, DMA_TO_DEVICE); } static int hal2_playback_close(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); hal2_free_dmabuf(hal2, &hal2->dac, DMA_TO_DEVICE); return 0; } static int hal2_playback_prepare(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct hal2_codec *dac = &hal2->dac; dac->voices = runtime->channels; dac->sample_rate = hal2_compute_rate(dac, runtime->rate); memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect)); dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE; dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2; dac->pcm_indirect.hw_io = dac->buffer_dma; dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); dac->substream = substream; hal2_setup_dac(hal2); return 0; } static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); switch (cmd) { case SNDRV_PCM_TRIGGER_START: hal2_start_dac(hal2); break; case SNDRV_PCM_TRIGGER_STOP: hal2_stop_dac(hal2); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t hal2_playback_pointer(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct hal2_codec *dac = &hal2->dac; return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect, dac->pbus.pbus->pbdma_bptr); } static void hal2_playback_transfer(struct snd_pcm_substream *substream, struct snd_pcm_indirect *rec, size_t bytes) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); unsigned char *buf = hal2->dac.buffer + rec->hw_data; memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes); dma_sync_single_for_device(hal2->card->dev, hal2->dac.buffer_dma + rec->hw_data, bytes, DMA_TO_DEVICE); } static int hal2_playback_ack(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct hal2_codec *dac = &hal2->dac; return snd_pcm_indirect_playback_transfer(substream, &dac->pcm_indirect, hal2_playback_transfer); } static int hal2_capture_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); runtime->hw = hal2_pcm_hw; return hal2_alloc_dmabuf(hal2, &hal2->adc, DMA_FROM_DEVICE); } static int hal2_capture_close(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); hal2_free_dmabuf(hal2, &hal2->adc, DMA_FROM_DEVICE); return 0; } static int hal2_capture_prepare(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct hal2_codec *adc = &hal2->adc; adc->voices = runtime->channels; adc->sample_rate = hal2_compute_rate(adc, runtime->rate); memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect)); adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE; adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2; adc->pcm_indirect.hw_io = adc->buffer_dma; adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); adc->substream = substream; hal2_setup_adc(hal2); return 0; } static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); switch (cmd) { case SNDRV_PCM_TRIGGER_START: hal2_start_adc(hal2); break; case SNDRV_PCM_TRIGGER_STOP: hal2_stop_adc(hal2); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t hal2_capture_pointer(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct hal2_codec *adc = &hal2->adc; return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect, adc->pbus.pbus->pbdma_bptr); } static void hal2_capture_transfer(struct snd_pcm_substream *substream, struct snd_pcm_indirect *rec, size_t bytes) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); unsigned char *buf = hal2->adc.buffer + rec->hw_data; dma_sync_single_for_cpu(hal2->card->dev, hal2->adc.buffer_dma + rec->hw_data, bytes, DMA_FROM_DEVICE); memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes); } static int hal2_capture_ack(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct hal2_codec *adc = &hal2->adc; return snd_pcm_indirect_capture_transfer(substream, &adc->pcm_indirect, hal2_capture_transfer); } static const struct snd_pcm_ops hal2_playback_ops = { .open = hal2_playback_open, .close = hal2_playback_close, .prepare = hal2_playback_prepare, .trigger = hal2_playback_trigger, .pointer = hal2_playback_pointer, .ack = hal2_playback_ack, }; static const struct snd_pcm_ops hal2_capture_ops = { .open = hal2_capture_open, .close = hal2_capture_close, .prepare = hal2_capture_prepare, .trigger = hal2_capture_trigger, .pointer = hal2_capture_pointer, .ack = hal2_capture_ack, }; static int hal2_pcm_create(struct snd_hal2 *hal2) { struct snd_pcm *pcm; int err; /* create first pcm device with one outputs and one input */ err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm); if (err < 0) return err; pcm->private_data = hal2; strcpy(pcm->name, "SGI HAL2"); /* set operators */ snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &hal2_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &hal2_capture_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, NULL, 0, 1024 * 1024); return 0; } static int hal2_dev_free(struct snd_device *device) { struct snd_hal2 *hal2 = device->device_data; free_irq(SGI_HPCDMA_IRQ, hal2); kfree(hal2); return 0; } static const struct snd_device_ops hal2_ops = { .dev_free = hal2_dev_free, }; static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3, int index) { codec->pbus.pbusnr = index; codec->pbus.pbus = &hpc3->pbdma[index]; } static int hal2_detect(struct snd_hal2 *hal2) { unsigned short board, major, minor; unsigned short rev; /* reset HAL2 */ hal2_write(0, &hal2->ctl_regs->isr); /* release reset */ hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N, &hal2->ctl_regs->isr); hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE); rev = hal2_read(&hal2->ctl_regs->rev); if (rev & H2_REV_AUDIO_PRESENT) return -ENODEV; board = (rev & H2_REV_BOARD_M) >> 12; major = (rev & H2_REV_MAJOR_CHIP_M) >> 4; minor = (rev & H2_REV_MINOR_CHIP_M); printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n", board, major, minor); return 0; } static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip) { struct snd_hal2 *hal2; struct hpc3_regs *hpc3 = hpc3c0; int err; hal2 = kzalloc(sizeof(*hal2), GFP_KERNEL); if (!hal2) return -ENOMEM; hal2->card = card; if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED, "SGI HAL2", hal2)) { printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ); kfree(hal2); return -EAGAIN; } hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0]; hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1]; hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2]; hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3]; if (hal2_detect(hal2) < 0) { kfree(hal2); return -ENODEV; } hal2_init_codec(&hal2->dac, hpc3, 0); hal2_init_codec(&hal2->adc, hpc3, 1); /* * All DMA channel interfaces in HAL2 are designed to operate with * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles * in D5. HAL2 is a 16-bit device which can accept both big and little * endian format. It assumes that even address bytes are on high * portion of PBUS (15:8) and assumes that HPC3 is programmed to * accept a live (unsynchronized) version of P_DREQ_N from HAL2. */ #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \ (2 << HPC3_DMACFG_D4R_SHIFT) | \ (2 << HPC3_DMACFG_D5R_SHIFT) | \ (0 << HPC3_DMACFG_D3W_SHIFT) | \ (2 << HPC3_DMACFG_D4W_SHIFT) | \ (2 << HPC3_DMACFG_D5W_SHIFT) | \ HPC3_DMACFG_DS16 | \ HPC3_DMACFG_EVENHI | \ HPC3_DMACFG_RTIME | \ (8 << HPC3_DMACFG_BURST_SHIFT) | \ HPC3_DMACFG_DRQLIVE) /* * Ignore what's mentioned in the specification and write value which * works in The Real World (TM) */ hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844; hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844; err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops); if (err < 0) { free_irq(SGI_HPCDMA_IRQ, hal2); kfree(hal2); return err; } *rchip = hal2; return 0; } static int hal2_probe(struct platform_device *pdev) { struct snd_card *card; struct snd_hal2 *chip; int err; err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card); if (err < 0) return err; err = hal2_create(card, &chip); if (err < 0) { snd_card_free(card); return err; } err = hal2_pcm_create(chip); if (err < 0) { snd_card_free(card); return err; } err = hal2_mixer_create(chip); if (err < 0) { snd_card_free(card); return err; } strcpy(card->driver, "SGI HAL2 Audio"); strcpy(card->shortname, "SGI HAL2 Audio"); sprintf(card->longname, "%s irq %i", card->shortname, SGI_HPCDMA_IRQ); err = snd_card_register(card); if (err < 0) { snd_card_free(card); return err; } platform_set_drvdata(pdev, card); return 0; } static void hal2_remove(struct platform_device *pdev) { struct snd_card *card = platform_get_drvdata(pdev); snd_card_free(card); } static struct platform_driver hal2_driver = { .probe = hal2_probe, .remove_new = hal2_remove, .driver = { .name = "sgihal2", } }; module_platform_driver(hal2_driver);
linux-master
sound/mips/hal2.c