python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2006, 07 MIPS Technologies, Inc. * written by Ralf Baechle ([email protected]) * written by Ralf Baechle <[email protected]> * * Copyright (C) 2008 Wind River Systems, Inc. * updated by Tiejun Chen <[email protected]> * * 1. Probe driver for the Malta's UART ports: * * o 2 ports in the SMC SuperIO * o 1 port in the CBUS UART, a discrete 16550 which normally is only used * for bringups. * * We don't use 8250_platform.c on Malta as it would result in the CBUS * UART becoming ttyS0. * * 2. Register RTC-CMOS platform device on Malta. */ #include <linux/init.h> #include <linux/serial_8250.h> #include <linux/irq.h> #include <linux/platform_device.h> #include <asm/mips-boards/maltaint.h> #define SMC_PORT(base, int) \ { \ .iobase = base, \ .irq = int, \ .uartclk = 1843200, \ .iotype = UPIO_PORT, \ .flags = UPF_BOOT_AUTOCONF | UPF_SKIP_TEST | \ UPF_MAGIC_MULTIPLIER, \ .regshift = 0, \ } #define CBUS_UART_FLAGS (UPF_BOOT_AUTOCONF | UPF_SKIP_TEST | UPF_IOREMAP) static struct plat_serial8250_port uart8250_data[] = { SMC_PORT(0x3F8, 4), SMC_PORT(0x2F8, 3), { .mapbase = 0x1f000900, /* The CBUS UART */ .irq = MIPS_CPU_IRQ_BASE + MIPSCPU_INT_MB2, .uartclk = 3686400, /* Twice the usual clk! */ .iotype = IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) ? UPIO_MEM32BE : UPIO_MEM32, .flags = CBUS_UART_FLAGS, .regshift = 3, }, { }, }; static struct platform_device malta_uart8250_device = { .name = "serial8250", .id = PLAT8250_DEV_PLATFORM, .dev = { .platform_data = uart8250_data, }, }; static struct platform_device *malta_devices[] __initdata = { &malta_uart8250_device, }; static int __init malta_add_devices(void) { return platform_add_devices(malta_devices, ARRAY_SIZE(malta_devices)); } device_initcall(malta_add_devices);
linux-master
arch/mips/mti-malta/malta-platform.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2011-2016 Zhang, Keguang <[email protected]> */ #include <linux/leds.h> #include <linux/mtd/partitions.h> #include <linux/sizes.h> #include <loongson1.h> #include <dma.h> #include <nand.h> #include <platform.h> static const struct gpio_led ls1x_gpio_leds[] __initconst = { { .name = "LED9", .default_trigger = "heartbeat", .gpio = 38, .active_low = 1, .default_state = LEDS_GPIO_DEFSTATE_OFF, }, { .name = "LED6", .default_trigger = "nand-disk", .gpio = 39, .active_low = 1, .default_state = LEDS_GPIO_DEFSTATE_OFF, }, }; static const struct gpio_led_platform_data ls1x_led_pdata __initconst = { .num_leds = ARRAY_SIZE(ls1x_gpio_leds), .leds = ls1x_gpio_leds, }; static struct platform_device *ls1b_platform_devices[] __initdata = { &ls1x_uart_pdev, &ls1x_eth0_pdev, &ls1x_eth1_pdev, &ls1x_ehci_pdev, &ls1x_gpio0_pdev, &ls1x_gpio1_pdev, &ls1x_rtc_pdev, &ls1x_wdt_pdev, }; static int __init ls1b_platform_init(void) { ls1x_serial_set_uartclk(&ls1x_uart_pdev); gpio_led_register_device(-1, &ls1x_led_pdata); return platform_add_devices(ls1b_platform_devices, ARRAY_SIZE(ls1b_platform_devices)); } arch_initcall(ls1b_platform_init);
linux-master
arch/mips/loongson32/ls1b/board.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2016 Yang Ling <[email protected]> */ #include <platform.h> static struct platform_device *ls1c_platform_devices[] __initdata = { &ls1x_uart_pdev, &ls1x_eth0_pdev, &ls1x_rtc_pdev, &ls1x_wdt_pdev, }; static int __init ls1c_platform_init(void) { ls1x_serial_set_uartclk(&ls1x_uart_pdev); return platform_add_devices(ls1c_platform_devices, ARRAY_SIZE(ls1c_platform_devices)); } arch_initcall(ls1c_platform_init);
linux-master
arch/mips/loongson32/ls1c/board.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2011 Zhang, Keguang <[email protected]> */ #include <linux/interrupt.h> #include <linux/irq.h> #include <asm/irq_cpu.h> #include <loongson1.h> #include <irq.h> #define LS1X_INTC_REG(n, x) \ ((void __iomem *)KSEG1ADDR(LS1X_INTC_BASE + (n * 0x18) + (x))) #define LS1X_INTC_INTISR(n) LS1X_INTC_REG(n, 0x0) #define LS1X_INTC_INTIEN(n) LS1X_INTC_REG(n, 0x4) #define LS1X_INTC_INTSET(n) LS1X_INTC_REG(n, 0x8) #define LS1X_INTC_INTCLR(n) LS1X_INTC_REG(n, 0xc) #define LS1X_INTC_INTPOL(n) LS1X_INTC_REG(n, 0x10) #define LS1X_INTC_INTEDGE(n) LS1X_INTC_REG(n, 0x14) static void ls1x_irq_ack(struct irq_data *d) { unsigned int bit = (d->irq - LS1X_IRQ_BASE) & 0x1f; unsigned int n = (d->irq - LS1X_IRQ_BASE) >> 5; __raw_writel(__raw_readl(LS1X_INTC_INTCLR(n)) | (1 << bit), LS1X_INTC_INTCLR(n)); } static void ls1x_irq_mask(struct irq_data *d) { unsigned int bit = (d->irq - LS1X_IRQ_BASE) & 0x1f; unsigned int n = (d->irq - LS1X_IRQ_BASE) >> 5; __raw_writel(__raw_readl(LS1X_INTC_INTIEN(n)) & ~(1 << bit), LS1X_INTC_INTIEN(n)); } static void ls1x_irq_mask_ack(struct irq_data *d) { unsigned int bit = (d->irq - LS1X_IRQ_BASE) & 0x1f; unsigned int n = (d->irq - LS1X_IRQ_BASE) >> 5; __raw_writel(__raw_readl(LS1X_INTC_INTIEN(n)) & ~(1 << bit), LS1X_INTC_INTIEN(n)); __raw_writel(__raw_readl(LS1X_INTC_INTCLR(n)) | (1 << bit), LS1X_INTC_INTCLR(n)); } static void ls1x_irq_unmask(struct irq_data *d) { unsigned int bit = (d->irq - LS1X_IRQ_BASE) & 0x1f; unsigned int n = (d->irq - LS1X_IRQ_BASE) >> 5; __raw_writel(__raw_readl(LS1X_INTC_INTIEN(n)) | (1 << bit), LS1X_INTC_INTIEN(n)); } static int ls1x_irq_settype(struct irq_data *d, unsigned int type) { unsigned int bit = (d->irq - LS1X_IRQ_BASE) & 0x1f; unsigned int n = (d->irq - LS1X_IRQ_BASE) >> 5; switch (type) { case IRQ_TYPE_LEVEL_HIGH: __raw_writel(__raw_readl(LS1X_INTC_INTPOL(n)) | (1 << bit), LS1X_INTC_INTPOL(n)); __raw_writel(__raw_readl(LS1X_INTC_INTEDGE(n)) & ~(1 << bit), LS1X_INTC_INTEDGE(n)); break; case IRQ_TYPE_LEVEL_LOW: __raw_writel(__raw_readl(LS1X_INTC_INTPOL(n)) & ~(1 << bit), LS1X_INTC_INTPOL(n)); __raw_writel(__raw_readl(LS1X_INTC_INTEDGE(n)) & ~(1 << bit), LS1X_INTC_INTEDGE(n)); break; case IRQ_TYPE_EDGE_RISING: __raw_writel(__raw_readl(LS1X_INTC_INTPOL(n)) | (1 << bit), LS1X_INTC_INTPOL(n)); __raw_writel(__raw_readl(LS1X_INTC_INTEDGE(n)) | (1 << bit), LS1X_INTC_INTEDGE(n)); break; case IRQ_TYPE_EDGE_FALLING: __raw_writel(__raw_readl(LS1X_INTC_INTPOL(n)) & ~(1 << bit), LS1X_INTC_INTPOL(n)); __raw_writel(__raw_readl(LS1X_INTC_INTEDGE(n)) | (1 << bit), LS1X_INTC_INTEDGE(n)); break; case IRQ_TYPE_EDGE_BOTH: __raw_writel(__raw_readl(LS1X_INTC_INTPOL(n)) & ~(1 << bit), LS1X_INTC_INTPOL(n)); __raw_writel(__raw_readl(LS1X_INTC_INTEDGE(n)) | (1 << bit), LS1X_INTC_INTEDGE(n)); break; case IRQ_TYPE_NONE: break; default: return -EINVAL; } return 0; } static struct irq_chip ls1x_irq_chip = { .name = "LS1X-INTC", .irq_ack = ls1x_irq_ack, .irq_mask = ls1x_irq_mask, .irq_mask_ack = ls1x_irq_mask_ack, .irq_unmask = ls1x_irq_unmask, .irq_set_type = ls1x_irq_settype, }; static void ls1x_irq_dispatch(int n) { u32 int_status, irq; /* Get pending sources, masked by current enables */ int_status = __raw_readl(LS1X_INTC_INTISR(n)) & __raw_readl(LS1X_INTC_INTIEN(n)); if (int_status) { irq = LS1X_IRQ(n, __ffs(int_status)); do_IRQ(irq); } } asmlinkage void plat_irq_dispatch(void) { unsigned int pending; pending = read_c0_cause() & read_c0_status() & ST0_IM; if (pending & CAUSEF_IP7) do_IRQ(TIMER_IRQ); else if (pending & CAUSEF_IP2) ls1x_irq_dispatch(0); /* INT0 */ else if (pending & CAUSEF_IP3) ls1x_irq_dispatch(1); /* INT1 */ else if (pending & CAUSEF_IP4) ls1x_irq_dispatch(2); /* INT2 */ else if (pending & CAUSEF_IP5) ls1x_irq_dispatch(3); /* INT3 */ else if (pending & CAUSEF_IP6) ls1x_irq_dispatch(4); /* INT4 */ else spurious_interrupt(); } static void __init ls1x_irq_init(int base) { int n; /* Disable interrupts and clear pending, * setup all IRQs as high level triggered */ for (n = 0; n < INTN; n++) { __raw_writel(0x0, LS1X_INTC_INTIEN(n)); __raw_writel(0xffffffff, LS1X_INTC_INTCLR(n)); __raw_writel(0xffffffff, LS1X_INTC_INTPOL(n)); /* set DMA0, DMA1 and DMA2 to edge trigger */ __raw_writel(n ? 0x0 : 0xe000, LS1X_INTC_INTEDGE(n)); } for (n = base; n < NR_IRQS; n++) { irq_set_chip_and_handler(n, &ls1x_irq_chip, handle_level_irq); } if (request_irq(INT0_IRQ, no_action, IRQF_NO_THREAD, "cascade", NULL)) pr_err("Failed to request irq %d (cascade)\n", INT0_IRQ); if (request_irq(INT1_IRQ, no_action, IRQF_NO_THREAD, "cascade", NULL)) pr_err("Failed to request irq %d (cascade)\n", INT1_IRQ); if (request_irq(INT2_IRQ, no_action, IRQF_NO_THREAD, "cascade", NULL)) pr_err("Failed to request irq %d (cascade)\n", INT2_IRQ); if (request_irq(INT3_IRQ, no_action, IRQF_NO_THREAD, "cascade", NULL)) pr_err("Failed to request irq %d (cascade)\n", INT3_IRQ); #if defined(CONFIG_LOONGSON1_LS1C) if (request_irq(INT4_IRQ, no_action, IRQF_NO_THREAD, "cascade", NULL)) pr_err("Failed to request irq %d (cascade)\n", INT4_IRQ); #endif } void __init arch_init_irq(void) { mips_cpu_irq_init(); ls1x_irq_init(LS1X_IRQ_BASE); }
linux-master
arch/mips/loongson32/common/irq.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2011-2016 Zhang, Keguang <[email protected]> */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/mtd/partitions.h> #include <linux/sizes.h> #include <linux/phy.h> #include <linux/serial_8250.h> #include <linux/stmmac.h> #include <linux/usb/ehci_pdriver.h> #include <platform.h> #include <loongson1.h> #include <dma.h> #include <nand.h> /* 8250/16550 compatible UART */ #define LS1X_UART(_id) \ { \ .mapbase = LS1X_UART ## _id ## _BASE, \ .irq = LS1X_UART ## _id ## _IRQ, \ .iotype = UPIO_MEM, \ .flags = UPF_IOREMAP | UPF_FIXED_TYPE, \ .type = PORT_16550A, \ } static struct plat_serial8250_port ls1x_serial8250_pdata[] = { LS1X_UART(0), LS1X_UART(1), LS1X_UART(2), LS1X_UART(3), {}, }; struct platform_device ls1x_uart_pdev = { .name = "serial8250", .id = PLAT8250_DEV_PLATFORM, .dev = { .platform_data = ls1x_serial8250_pdata, }, }; void __init ls1x_serial_set_uartclk(struct platform_device *pdev) { struct clk *clk; struct plat_serial8250_port *p; clk = clk_get(&pdev->dev, pdev->name); if (IS_ERR(clk)) { pr_err("unable to get %s clock, err=%ld", pdev->name, PTR_ERR(clk)); return; } clk_prepare_enable(clk); for (p = pdev->dev.platform_data; p->flags != 0; ++p) p->uartclk = clk_get_rate(clk); } /* Synopsys Ethernet GMAC */ static struct stmmac_mdio_bus_data ls1x_mdio_bus_data = { .phy_mask = 0, }; static struct stmmac_dma_cfg ls1x_eth_dma_cfg = { .pbl = 1, }; int ls1x_eth_mux_init(struct platform_device *pdev, void *priv) { struct plat_stmmacenet_data *plat_dat = NULL; u32 val; val = __raw_readl(LS1X_MUX_CTRL1); #if defined(CONFIG_LOONGSON1_LS1B) plat_dat = dev_get_platdata(&pdev->dev); if (plat_dat->bus_id) { __raw_writel(__raw_readl(LS1X_MUX_CTRL0) | GMAC1_USE_UART1 | GMAC1_USE_UART0, LS1X_MUX_CTRL0); switch (plat_dat->phy_interface) { case PHY_INTERFACE_MODE_RGMII: val &= ~(GMAC1_USE_TXCLK | GMAC1_USE_PWM23); break; case PHY_INTERFACE_MODE_MII: val |= (GMAC1_USE_TXCLK | GMAC1_USE_PWM23); break; default: pr_err("unsupported mii mode %d\n", plat_dat->phy_interface); return -ENOTSUPP; } val &= ~GMAC1_SHUT; } else { switch (plat_dat->phy_interface) { case PHY_INTERFACE_MODE_RGMII: val &= ~(GMAC0_USE_TXCLK | GMAC0_USE_PWM01); break; case PHY_INTERFACE_MODE_MII: val |= (GMAC0_USE_TXCLK | GMAC0_USE_PWM01); break; default: pr_err("unsupported mii mode %d\n", plat_dat->phy_interface); return -ENOTSUPP; } val &= ~GMAC0_SHUT; } __raw_writel(val, LS1X_MUX_CTRL1); #elif defined(CONFIG_LOONGSON1_LS1C) plat_dat = dev_get_platdata(&pdev->dev); val &= ~PHY_INTF_SELI; if (plat_dat->phy_interface == PHY_INTERFACE_MODE_RMII) val |= 0x4 << PHY_INTF_SELI_SHIFT; __raw_writel(val, LS1X_MUX_CTRL1); val = __raw_readl(LS1X_MUX_CTRL0); __raw_writel(val & (~GMAC_SHUT), LS1X_MUX_CTRL0); #endif return 0; } static struct plat_stmmacenet_data ls1x_eth0_pdata = { .bus_id = 0, .phy_addr = -1, #if defined(CONFIG_LOONGSON1_LS1B) .phy_interface = PHY_INTERFACE_MODE_MII, #elif defined(CONFIG_LOONGSON1_LS1C) .phy_interface = PHY_INTERFACE_MODE_RMII, #endif .mdio_bus_data = &ls1x_mdio_bus_data, .dma_cfg = &ls1x_eth_dma_cfg, .has_gmac = 1, .tx_coe = 1, .rx_queues_to_use = 1, .tx_queues_to_use = 1, .init = ls1x_eth_mux_init, }; static struct resource ls1x_eth0_resources[] = { [0] = { .start = LS1X_GMAC0_BASE, .end = LS1X_GMAC0_BASE + SZ_64K - 1, .flags = IORESOURCE_MEM, }, [1] = { .name = "macirq", .start = LS1X_GMAC0_IRQ, .flags = IORESOURCE_IRQ, }, }; struct platform_device ls1x_eth0_pdev = { .name = "stmmaceth", .id = 0, .num_resources = ARRAY_SIZE(ls1x_eth0_resources), .resource = ls1x_eth0_resources, .dev = { .platform_data = &ls1x_eth0_pdata, }, }; #ifdef CONFIG_LOONGSON1_LS1B static struct plat_stmmacenet_data ls1x_eth1_pdata = { .bus_id = 1, .phy_addr = -1, .phy_interface = PHY_INTERFACE_MODE_MII, .mdio_bus_data = &ls1x_mdio_bus_data, .dma_cfg = &ls1x_eth_dma_cfg, .has_gmac = 1, .tx_coe = 1, .rx_queues_to_use = 1, .tx_queues_to_use = 1, .init = ls1x_eth_mux_init, }; static struct resource ls1x_eth1_resources[] = { [0] = { .start = LS1X_GMAC1_BASE, .end = LS1X_GMAC1_BASE + SZ_64K - 1, .flags = IORESOURCE_MEM, }, [1] = { .name = "macirq", .start = LS1X_GMAC1_IRQ, .flags = IORESOURCE_IRQ, }, }; struct platform_device ls1x_eth1_pdev = { .name = "stmmaceth", .id = 1, .num_resources = ARRAY_SIZE(ls1x_eth1_resources), .resource = ls1x_eth1_resources, .dev = { .platform_data = &ls1x_eth1_pdata, }, }; #endif /* CONFIG_LOONGSON1_LS1B */ /* GPIO */ static struct resource ls1x_gpio0_resources[] = { [0] = { .start = LS1X_GPIO0_BASE, .end = LS1X_GPIO0_BASE + SZ_4 - 1, .flags = IORESOURCE_MEM, }, }; struct platform_device ls1x_gpio0_pdev = { .name = "ls1x-gpio", .id = 0, .num_resources = ARRAY_SIZE(ls1x_gpio0_resources), .resource = ls1x_gpio0_resources, }; static struct resource ls1x_gpio1_resources[] = { [0] = { .start = LS1X_GPIO1_BASE, .end = LS1X_GPIO1_BASE + SZ_4 - 1, .flags = IORESOURCE_MEM, }, }; struct platform_device ls1x_gpio1_pdev = { .name = "ls1x-gpio", .id = 1, .num_resources = ARRAY_SIZE(ls1x_gpio1_resources), .resource = ls1x_gpio1_resources, }; /* USB EHCI */ static u64 ls1x_ehci_dmamask = DMA_BIT_MASK(32); static struct resource ls1x_ehci_resources[] = { [0] = { .start = LS1X_EHCI_BASE, .end = LS1X_EHCI_BASE + SZ_32K - 1, .flags = IORESOURCE_MEM, }, [1] = { .start = LS1X_EHCI_IRQ, .flags = IORESOURCE_IRQ, }, }; static struct usb_ehci_pdata ls1x_ehci_pdata = { }; struct platform_device ls1x_ehci_pdev = { .name = "ehci-platform", .id = -1, .num_resources = ARRAY_SIZE(ls1x_ehci_resources), .resource = ls1x_ehci_resources, .dev = { .dma_mask = &ls1x_ehci_dmamask, .platform_data = &ls1x_ehci_pdata, }, }; /* Real Time Clock */ struct platform_device ls1x_rtc_pdev = { .name = "ls1x-rtc", .id = -1, }; /* Watchdog */ static struct resource ls1x_wdt_resources[] = { { .start = LS1X_WDT_BASE, .end = LS1X_WDT_BASE + SZ_16 - 1, .flags = IORESOURCE_MEM, }, }; struct platform_device ls1x_wdt_pdev = { .name = "ls1x-wdt", .id = -1, .num_resources = ARRAY_SIZE(ls1x_wdt_resources), .resource = ls1x_wdt_resources, };
linux-master
arch/mips/loongson32/common/platform.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2011 Zhang, Keguang <[email protected]> */ #include <linux/io.h> #include <linux/init.h> #include <linux/smp.h> #include <asm/cpu-info.h> #include <asm/bootinfo.h> const char *get_system_type(void) { unsigned int processor_id = (&current_cpu_data)->processor_id; switch (processor_id & PRID_REV_MASK) { case PRID_REV_LOONGSON1B: #if defined(CONFIG_LOONGSON1_LS1B) return "LOONGSON LS1B"; #elif defined(CONFIG_LOONGSON1_LS1C) return "LOONGSON LS1C"; #endif default: return "LOONGSON (unknown)"; } }
linux-master
arch/mips/loongson32/common/setup.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2014 Zhang, Keguang <[email protected]> */ #include <linux/clk.h> #include <linux/of_clk.h> #include <asm/time.h> void __init plat_time_init(void) { struct clk *clk = NULL; /* initialize LS1X clocks */ of_clk_init(NULL); /* setup mips r4k timer */ clk = clk_get(NULL, "cpu_clk"); if (IS_ERR(clk)) panic("unable to get cpu clock, err=%ld", PTR_ERR(clk)); mips_hpt_frequency = clk_get_rate(clk) / 2; }
linux-master
arch/mips/loongson32/common/time.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2011 Zhang, Keguang <[email protected]> * * Modified from arch/mips/pnx833x/common/prom.c. */ #include <linux/io.h> #include <linux/init.h> #include <linux/memblock.h> #include <linux/serial_reg.h> #include <asm/fw/fw.h> #include <loongson1.h> unsigned long memsize; void __init prom_init(void) { void __iomem *uart_base; fw_init_cmdline(); memsize = fw_getenvl("memsize"); if(!memsize) memsize = DEFAULT_MEMSIZE; if (strstr(arcs_cmdline, "console=ttyS3")) uart_base = ioremap(LS1X_UART3_BASE, 0x0f); else if (strstr(arcs_cmdline, "console=ttyS2")) uart_base = ioremap(LS1X_UART2_BASE, 0x0f); else if (strstr(arcs_cmdline, "console=ttyS1")) uart_base = ioremap(LS1X_UART1_BASE, 0x0f); else uart_base = ioremap(LS1X_UART0_BASE, 0x0f); setup_8250_early_printk_port((unsigned long)uart_base, 0, 0); } void __init plat_mem_setup(void) { memblock_add(0x0, (memsize << 20)); }
linux-master
arch/mips/loongson32/common/prom.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2006 Ralf Baechle <[email protected]> */ #include <linux/dma-direct.h> #include <asm/ip32/crime.h> /* * Few notes. * 1. CPU sees memory as two chunks: 0-256M@0x0, and the rest @0x40000000+256M * 2. PCI sees memory as one big chunk @0x0 (or we could use 0x40000000 for * native-endian) * 3. All other devices see memory as one big chunk at 0x40000000 * 4. Non-PCI devices will pass NULL as struct device* * * Thus we translate differently, depending on device. */ #define RAM_OFFSET_MASK 0x3fffffffUL dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) { dma_addr_t dma_addr = paddr & RAM_OFFSET_MASK; if (!dev) dma_addr += CRIME_HI_MEM_BASE; return dma_addr; } phys_addr_t dma_to_phys(struct device *dev, dma_addr_t dma_addr) { phys_addr_t paddr = dma_addr & RAM_OFFSET_MASK; if (dma_addr >= 256*1024*1024) paddr += CRIME_HI_MEM_BASE; return paddr; }
linux-master
arch/mips/sgi-ip32/ip32-dma.c
/* * IP32 basic setup * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000 Harald Koerfgen * Copyright (C) 2002, 2003, 2005 Ilya A. Volynets * Copyright (C) 2006 Ralf Baechle <[email protected]> */ #include <linux/console.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/param.h> #include <linux/sched.h> #include <asm/bootinfo.h> #include <asm/mipsregs.h> #include <asm/mmu_context.h> #include <asm/sgialib.h> #include <asm/time.h> #include <asm/traps.h> #include <asm/io.h> #include <asm/ip32/crime.h> #include <asm/ip32/mace.h> #include <asm/ip32/ip32_ints.h> extern void ip32_be_init(void); extern void crime_init(void); #ifdef CONFIG_SGI_O2MACE_ETH /* * This is taken care of in here 'cause they say using Arc later on is * problematic */ extern char o2meth_eaddr[8]; static inline unsigned char str2hexnum(unsigned char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'a' && c <= 'f') return c - 'a' + 10; return 0; /* foo */ } static inline void str2eaddr(unsigned char *ea, unsigned char *str) { int i; for (i = 0; i < 6; i++) { unsigned char num; if(*str == ':') str++; num = str2hexnum(*str++) << 4; num |= (str2hexnum(*str++)); ea[i] = num; } } #endif /* An arbitrary time; this can be decreased if reliability looks good */ #define WAIT_MS 10 void __init plat_time_init(void) { printk(KERN_INFO "Calibrating system timer... "); write_c0_count(0); crime->timer = 0; while (crime->timer < CRIME_MASTER_FREQ * WAIT_MS / 1000) ; mips_hpt_frequency = read_c0_count() * 1000 / WAIT_MS; printk("%d MHz CPU detected\n", mips_hpt_frequency * 2 / 1000000); } void __init plat_mem_setup(void) { board_be_init = ip32_be_init; #ifdef CONFIG_SGI_O2MACE_ETH { char *mac = ArcGetEnvironmentVariable("eaddr"); str2eaddr(o2meth_eaddr, mac); } #endif #if defined(CONFIG_SERIAL_CORE_CONSOLE) { char* con = ArcGetEnvironmentVariable("console"); if (con && *con == 'd') { static char options[8] __initdata; char *baud = ArcGetEnvironmentVariable("dbaud"); if (baud) strcpy(options, baud); add_preferred_console("ttyS", *(con + 1) == '2' ? 1 : 0, baud ? options : NULL); } } #endif }
linux-master
arch/mips/sgi-ip32/ip32-setup.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 1995, 1996, 1999, 2000 by Ralf Baechle * Copyright (C) 1999, 2000 by Silicon Graphics * Copyright (C) 2002 Maciej W. Rozycki */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched/debug.h> #include <linux/sched/signal.h> #include <asm/traps.h> #include <linux/uaccess.h> #include <asm/addrspace.h> #include <asm/ptrace.h> #include <asm/tlbdebug.h> static int ip32_be_handler(struct pt_regs *regs, int is_fixup) { int data = regs->cp0_cause & 4; if (is_fixup) return MIPS_BE_FIXUP; printk("Got %cbe at 0x%lx\n", data ? 'd' : 'i', regs->cp0_epc); show_regs(regs); dump_tlb_all(); while(1); force_sig(SIGBUS); } void __init ip32_be_init(void) { mips_set_be_handler(ip32_be_handler); }
linux-master
arch/mips/sgi-ip32/ip32-berr.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2001, 2003 Keith M Wesolowski * Copyright (C) 2005 Ilya A. Volynets <[email protected]> */ #include <linux/types.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/export.h> #include <asm/bootinfo.h> #include <asm/io.h> #include <asm/mipsregs.h> #include <asm/page.h> #include <asm/ip32/crime.h> #include <asm/ip32/mace.h> struct sgi_crime __iomem *crime; struct sgi_mace __iomem *mace; EXPORT_SYMBOL_GPL(mace); void __init crime_init(void) { unsigned int id, rev; const int field = 2 * sizeof(unsigned long); set_io_port_base((unsigned long) ioremap(MACEPCI_LOW_IO, 0x2000000)); crime = ioremap(CRIME_BASE, sizeof(struct sgi_crime)); mace = ioremap(MACE_BASE, sizeof(struct sgi_mace)); id = crime->id; rev = id & CRIME_ID_REV; id = (id & CRIME_ID_IDBITS) >> 4; printk(KERN_INFO "CRIME id %1x rev %d at 0x%0*lx\n", id, rev, field, (unsigned long) CRIME_BASE); } irqreturn_t crime_memerr_intr(unsigned int irq, void *dev_id) { unsigned long stat, addr; int fatal = 0; stat = crime->mem_error_stat & CRIME_MEM_ERROR_STAT_MASK; addr = crime->mem_error_addr & CRIME_MEM_ERROR_ADDR_MASK; printk("CRIME memory error at 0x%08lx ST 0x%08lx<", addr, stat); if (stat & CRIME_MEM_ERROR_INV) printk("INV,"); if (stat & CRIME_MEM_ERROR_ECC) { unsigned long ecc_syn = crime->mem_ecc_syn & CRIME_MEM_ERROR_ECC_SYN_MASK; unsigned long ecc_gen = crime->mem_ecc_chk & CRIME_MEM_ERROR_ECC_CHK_MASK; printk("ECC,SYN=0x%08lx,GEN=0x%08lx,", ecc_syn, ecc_gen); } if (stat & CRIME_MEM_ERROR_MULTIPLE) { fatal = 1; printk("MULTIPLE,"); } if (stat & CRIME_MEM_ERROR_HARD_ERR) { fatal = 1; printk("HARD,"); } if (stat & CRIME_MEM_ERROR_SOFT_ERR) printk("SOFT,"); if (stat & CRIME_MEM_ERROR_CPU_ACCESS) printk("CPU,"); if (stat & CRIME_MEM_ERROR_VICE_ACCESS) printk("VICE,"); if (stat & CRIME_MEM_ERROR_GBE_ACCESS) printk("GBE,"); if (stat & CRIME_MEM_ERROR_RE_ACCESS) printk("RE,REID=0x%02lx,", (stat & CRIME_MEM_ERROR_RE_ID)>>8); if (stat & CRIME_MEM_ERROR_MACE_ACCESS) printk("MACE,MACEID=0x%02lx,", stat & CRIME_MEM_ERROR_MACE_ID); crime->mem_error_stat = 0; if (fatal) { printk("FATAL>\n"); panic("Fatal memory error."); } else printk("NONFATAL>\n"); return IRQ_HANDLED; } irqreturn_t crime_cpuerr_intr(unsigned int irq, void *dev_id) { unsigned long stat = crime->cpu_error_stat & CRIME_CPU_ERROR_MASK; unsigned long addr = crime->cpu_error_addr & CRIME_CPU_ERROR_ADDR_MASK; addr <<= 2; printk("CRIME CPU error at 0x%09lx status 0x%08lx\n", addr, stat); crime->cpu_error_stat = 0; return IRQ_HANDLED; }
linux-master
arch/mips/sgi-ip32/crime.c
/* * Code to handle IP32 IRQs * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000 Harald Koerfgen * Copyright (C) 2001 Keith M Wesolowski */ #include <linux/init.h> #include <linux/kernel_stat.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/sched.h> #include <linux/sched/debug.h> #include <asm/irq_cpu.h> #include <asm/mipsregs.h> #include <asm/signal.h> #include <asm/time.h> #include <asm/ip32/crime.h> #include <asm/ip32/mace.h> #include <asm/ip32/ip32_ints.h> /* issue a PIO read to make sure no PIO writes are pending */ static inline void flush_crime_bus(void) { crime->control; } static inline void flush_mace_bus(void) { mace->perif.ctrl.misc; } /* * O2 irq map * * IP0 -> software (ignored) * IP1 -> software (ignored) * IP2 -> (irq0) C crime 1.1 all interrupts; crime 1.5 ??? * IP3 -> (irq1) X unknown * IP4 -> (irq2) X unknown * IP5 -> (irq3) X unknown * IP6 -> (irq4) X unknown * IP7 -> (irq5) 7 CPU count/compare timer (system timer) * * crime: (C) * * CRIME_INT_STAT 31:0: * * 0 -> 8 Video in 1 * 1 -> 9 Video in 2 * 2 -> 10 Video out * 3 -> 11 Mace ethernet * 4 -> S SuperIO sub-interrupt * 5 -> M Miscellaneous sub-interrupt * 6 -> A Audio sub-interrupt * 7 -> 15 PCI bridge errors * 8 -> 16 PCI SCSI aic7xxx 0 * 9 -> 17 PCI SCSI aic7xxx 1 * 10 -> 18 PCI slot 0 * 11 -> 19 unused (PCI slot 1) * 12 -> 20 unused (PCI slot 2) * 13 -> 21 unused (PCI shared 0) * 14 -> 22 unused (PCI shared 1) * 15 -> 23 unused (PCI shared 2) * 16 -> 24 GBE0 (E) * 17 -> 25 GBE1 (E) * 18 -> 26 GBE2 (E) * 19 -> 27 GBE3 (E) * 20 -> 28 CPU errors * 21 -> 29 Memory errors * 22 -> 30 RE empty edge (E) * 23 -> 31 RE full edge (E) * 24 -> 32 RE idle edge (E) * 25 -> 33 RE empty level * 26 -> 34 RE full level * 27 -> 35 RE idle level * 28 -> 36 unused (software 0) (E) * 29 -> 37 unused (software 1) (E) * 30 -> 38 unused (software 2) - crime 1.5 CPU SysCorError (E) * 31 -> 39 VICE * * S, M, A: Use the MACE ISA interrupt register * MACE_ISA_INT_STAT 31:0 * * 0-7 -> 40-47 Audio * 8 -> 48 RTC * 9 -> 49 Keyboard * 10 -> X Keyboard polled * 11 -> 51 Mouse * 12 -> X Mouse polled * 13-15 -> 53-55 Count/compare timers * 16-19 -> 56-59 Parallel (16 E) * 20-25 -> 60-62 Serial 1 (22 E) * 26-31 -> 66-71 Serial 2 (28 E) * * Note that this means IRQs 12-14, 50, and 52 do not exist. This is a * different IRQ map than IRIX uses, but that's OK as Linux irq handling * is quite different anyway. */ /* Some initial interrupts to set up */ extern irqreturn_t crime_memerr_intr(int irq, void *dev_id); extern irqreturn_t crime_cpuerr_intr(int irq, void *dev_id); /* * This is for pure CRIME interrupts - ie not MACE. The advantage? * We get to split the register in half and do faster lookups. */ static uint64_t crime_mask; static inline void crime_enable_irq(struct irq_data *d) { unsigned int bit = d->irq - CRIME_IRQ_BASE; crime_mask |= 1 << bit; crime->imask = crime_mask; } static inline void crime_disable_irq(struct irq_data *d) { unsigned int bit = d->irq - CRIME_IRQ_BASE; crime_mask &= ~(1 << bit); crime->imask = crime_mask; flush_crime_bus(); } static struct irq_chip crime_level_interrupt = { .name = "IP32 CRIME", .irq_mask = crime_disable_irq, .irq_unmask = crime_enable_irq, }; static void crime_edge_mask_and_ack_irq(struct irq_data *d) { unsigned int bit = d->irq - CRIME_IRQ_BASE; uint64_t crime_int; /* Edge triggered interrupts must be cleared. */ crime_int = crime->hard_int; crime_int &= ~(1 << bit); crime->hard_int = crime_int; crime_disable_irq(d); } static struct irq_chip crime_edge_interrupt = { .name = "IP32 CRIME", .irq_ack = crime_edge_mask_and_ack_irq, .irq_mask = crime_disable_irq, .irq_mask_ack = crime_edge_mask_and_ack_irq, .irq_unmask = crime_enable_irq, }; /* * This is for MACE PCI interrupts. We can decrease bus traffic by masking * as close to the source as possible. This also means we can take the * next chunk of the CRIME register in one piece. */ static unsigned long macepci_mask; static void enable_macepci_irq(struct irq_data *d) { macepci_mask |= MACEPCI_CONTROL_INT(d->irq - MACEPCI_SCSI0_IRQ); mace->pci.control = macepci_mask; crime_mask |= 1 << (d->irq - CRIME_IRQ_BASE); crime->imask = crime_mask; } static void disable_macepci_irq(struct irq_data *d) { crime_mask &= ~(1 << (d->irq - CRIME_IRQ_BASE)); crime->imask = crime_mask; flush_crime_bus(); macepci_mask &= ~MACEPCI_CONTROL_INT(d->irq - MACEPCI_SCSI0_IRQ); mace->pci.control = macepci_mask; flush_mace_bus(); } static struct irq_chip ip32_macepci_interrupt = { .name = "IP32 MACE PCI", .irq_mask = disable_macepci_irq, .irq_unmask = enable_macepci_irq, }; /* This is used for MACE ISA interrupts. That means bits 4-6 in the * CRIME register. */ #define MACEISA_AUDIO_INT (MACEISA_AUDIO_SW_INT | \ MACEISA_AUDIO_SC_INT | \ MACEISA_AUDIO1_DMAT_INT | \ MACEISA_AUDIO1_OF_INT | \ MACEISA_AUDIO2_DMAT_INT | \ MACEISA_AUDIO2_MERR_INT | \ MACEISA_AUDIO3_DMAT_INT | \ MACEISA_AUDIO3_MERR_INT) #define MACEISA_MISC_INT (MACEISA_RTC_INT | \ MACEISA_KEYB_INT | \ MACEISA_KEYB_POLL_INT | \ MACEISA_MOUSE_INT | \ MACEISA_MOUSE_POLL_INT | \ MACEISA_TIMER0_INT | \ MACEISA_TIMER1_INT | \ MACEISA_TIMER2_INT) #define MACEISA_SUPERIO_INT (MACEISA_PARALLEL_INT | \ MACEISA_PAR_CTXA_INT | \ MACEISA_PAR_CTXB_INT | \ MACEISA_PAR_MERR_INT | \ MACEISA_SERIAL1_INT | \ MACEISA_SERIAL1_TDMAT_INT | \ MACEISA_SERIAL1_TDMAPR_INT | \ MACEISA_SERIAL1_TDMAME_INT | \ MACEISA_SERIAL1_RDMAT_INT | \ MACEISA_SERIAL1_RDMAOR_INT | \ MACEISA_SERIAL2_INT | \ MACEISA_SERIAL2_TDMAT_INT | \ MACEISA_SERIAL2_TDMAPR_INT | \ MACEISA_SERIAL2_TDMAME_INT | \ MACEISA_SERIAL2_RDMAT_INT | \ MACEISA_SERIAL2_RDMAOR_INT) static unsigned long maceisa_mask; static void enable_maceisa_irq(struct irq_data *d) { unsigned int crime_int = 0; pr_debug("maceisa enable: %u\n", d->irq); switch (d->irq) { case MACEISA_AUDIO_SW_IRQ ... MACEISA_AUDIO3_MERR_IRQ: crime_int = MACE_AUDIO_INT; break; case MACEISA_RTC_IRQ ... MACEISA_TIMER2_IRQ: crime_int = MACE_MISC_INT; break; case MACEISA_PARALLEL_IRQ ... MACEISA_SERIAL2_RDMAOR_IRQ: crime_int = MACE_SUPERIO_INT; break; } pr_debug("crime_int %08x enabled\n", crime_int); crime_mask |= crime_int; crime->imask = crime_mask; maceisa_mask |= 1 << (d->irq - MACEISA_AUDIO_SW_IRQ); mace->perif.ctrl.imask = maceisa_mask; } static void disable_maceisa_irq(struct irq_data *d) { unsigned int crime_int = 0; maceisa_mask &= ~(1 << (d->irq - MACEISA_AUDIO_SW_IRQ)); if (!(maceisa_mask & MACEISA_AUDIO_INT)) crime_int |= MACE_AUDIO_INT; if (!(maceisa_mask & MACEISA_MISC_INT)) crime_int |= MACE_MISC_INT; if (!(maceisa_mask & MACEISA_SUPERIO_INT)) crime_int |= MACE_SUPERIO_INT; crime_mask &= ~crime_int; crime->imask = crime_mask; flush_crime_bus(); mace->perif.ctrl.imask = maceisa_mask; flush_mace_bus(); } static void mask_and_ack_maceisa_irq(struct irq_data *d) { unsigned long mace_int; /* edge triggered */ mace_int = mace->perif.ctrl.istat; mace_int &= ~(1 << (d->irq - MACEISA_AUDIO_SW_IRQ)); mace->perif.ctrl.istat = mace_int; disable_maceisa_irq(d); } static struct irq_chip ip32_maceisa_level_interrupt = { .name = "IP32 MACE ISA", .irq_mask = disable_maceisa_irq, .irq_unmask = enable_maceisa_irq, }; static struct irq_chip ip32_maceisa_edge_interrupt = { .name = "IP32 MACE ISA", .irq_ack = mask_and_ack_maceisa_irq, .irq_mask = disable_maceisa_irq, .irq_mask_ack = mask_and_ack_maceisa_irq, .irq_unmask = enable_maceisa_irq, }; /* This is used for regular non-ISA, non-PCI MACE interrupts. That means * bits 0-3 and 7 in the CRIME register. */ static void enable_mace_irq(struct irq_data *d) { unsigned int bit = d->irq - CRIME_IRQ_BASE; crime_mask |= (1 << bit); crime->imask = crime_mask; } static void disable_mace_irq(struct irq_data *d) { unsigned int bit = d->irq - CRIME_IRQ_BASE; crime_mask &= ~(1 << bit); crime->imask = crime_mask; flush_crime_bus(); } static struct irq_chip ip32_mace_interrupt = { .name = "IP32 MACE", .irq_mask = disable_mace_irq, .irq_unmask = enable_mace_irq, }; static void ip32_unknown_interrupt(void) { printk("Unknown interrupt occurred!\n"); printk("cp0_status: %08x\n", read_c0_status()); printk("cp0_cause: %08x\n", read_c0_cause()); printk("CRIME intr mask: %016lx\n", crime->imask); printk("CRIME intr status: %016lx\n", crime->istat); printk("CRIME hardware intr register: %016lx\n", crime->hard_int); printk("MACE ISA intr mask: %08lx\n", mace->perif.ctrl.imask); printk("MACE ISA intr status: %08lx\n", mace->perif.ctrl.istat); printk("MACE PCI control register: %08x\n", mace->pci.control); printk("Register dump:\n"); show_regs(get_irq_regs()); printk("Please mail this report to [email protected]\n"); printk("Spinning..."); while(1) ; } /* CRIME 1.1 appears to deliver all interrupts to this one pin. */ /* change this to loop over all edge-triggered irqs, exception masked out ones */ static void ip32_irq0(void) { uint64_t crime_int; int irq = 0; /* * Sanity check interrupt numbering enum. * MACE got 32 interrupts and there are 32 MACE ISA interrupts daisy * chained. */ BUILD_BUG_ON(CRIME_VICE_IRQ - MACE_VID_IN1_IRQ != 31); BUILD_BUG_ON(MACEISA_SERIAL2_RDMAOR_IRQ - MACEISA_AUDIO_SW_IRQ != 31); crime_int = crime->istat & crime_mask; /* crime sometime delivers spurious interrupts, ignore them */ if (unlikely(crime_int == 0)) return; irq = MACE_VID_IN1_IRQ + __ffs(crime_int); if (crime_int & CRIME_MACEISA_INT_MASK) { unsigned long mace_int = mace->perif.ctrl.istat; irq = __ffs(mace_int & maceisa_mask) + MACEISA_AUDIO_SW_IRQ; } pr_debug("*irq %u*\n", irq); do_IRQ(irq); } static void ip32_irq1(void) { ip32_unknown_interrupt(); } static void ip32_irq2(void) { ip32_unknown_interrupt(); } static void ip32_irq3(void) { ip32_unknown_interrupt(); } static void ip32_irq4(void) { ip32_unknown_interrupt(); } static void ip32_irq5(void) { do_IRQ(MIPS_CPU_IRQ_BASE + 7); } asmlinkage void plat_irq_dispatch(void) { unsigned int pending = read_c0_status() & read_c0_cause(); if (likely(pending & IE_IRQ0)) ip32_irq0(); else if (unlikely(pending & IE_IRQ1)) ip32_irq1(); else if (unlikely(pending & IE_IRQ2)) ip32_irq2(); else if (unlikely(pending & IE_IRQ3)) ip32_irq3(); else if (unlikely(pending & IE_IRQ4)) ip32_irq4(); else if (likely(pending & IE_IRQ5)) ip32_irq5(); } void __init arch_init_irq(void) { unsigned int irq; /* Install our interrupt handler, then clear and disable all * CRIME and MACE interrupts. */ crime->imask = 0; crime->hard_int = 0; crime->soft_int = 0; mace->perif.ctrl.istat = 0; mace->perif.ctrl.imask = 0; mips_cpu_irq_init(); for (irq = CRIME_IRQ_BASE; irq <= IP32_IRQ_MAX; irq++) { switch (irq) { case MACE_VID_IN1_IRQ ... MACE_PCI_BRIDGE_IRQ: irq_set_chip_and_handler_name(irq, &ip32_mace_interrupt, handle_level_irq, "level"); break; case MACEPCI_SCSI0_IRQ ... MACEPCI_SHARED2_IRQ: irq_set_chip_and_handler_name(irq, &ip32_macepci_interrupt, handle_level_irq, "level"); break; case CRIME_CPUERR_IRQ: case CRIME_MEMERR_IRQ: irq_set_chip_and_handler_name(irq, &crime_level_interrupt, handle_level_irq, "level"); break; case CRIME_GBE0_IRQ ... CRIME_GBE3_IRQ: case CRIME_RE_EMPTY_E_IRQ ... CRIME_RE_IDLE_E_IRQ: case CRIME_SOFT0_IRQ ... CRIME_SOFT2_IRQ: case CRIME_VICE_IRQ: irq_set_chip_and_handler_name(irq, &crime_edge_interrupt, handle_edge_irq, "edge"); break; case MACEISA_PARALLEL_IRQ: case MACEISA_SERIAL1_TDMAPR_IRQ: case MACEISA_SERIAL2_TDMAPR_IRQ: irq_set_chip_and_handler_name(irq, &ip32_maceisa_edge_interrupt, handle_edge_irq, "edge"); break; default: irq_set_chip_and_handler_name(irq, &ip32_maceisa_level_interrupt, handle_level_irq, "level"); break; } } if (request_irq(CRIME_MEMERR_IRQ, crime_memerr_intr, 0, "CRIME memory error", NULL)) pr_err("Failed to register CRIME memory error interrupt\n"); if (request_irq(CRIME_CPUERR_IRQ, crime_cpuerr_intr, 0, "CRIME CPU error", NULL)) pr_err("Failed to register CRIME CPU error interrupt\n"); #define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4 | IE_IRQ5) change_c0_status(ST0_IM, ALLINTS); }
linux-master
arch/mips/sgi-ip32/ip32-irq.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2007 Ralf Baechle ([email protected]) */ #include <linux/init.h> #include <linux/platform_device.h> #include <linux/serial_8250.h> #include <linux/rtc/ds1685.h> #include <asm/ip32/mace.h> #include <asm/ip32/ip32_ints.h> extern void ip32_prepare_poweroff(void); #define MACEISA_SERIAL1_OFFS offsetof(struct sgi_mace, isa.serial1) #define MACEISA_SERIAL2_OFFS offsetof(struct sgi_mace, isa.serial2) #define MACE_PORT(offset,_irq) \ { \ .mapbase = MACE_BASE + offset, \ .irq = _irq, \ .uartclk = 1843200, \ .iotype = UPIO_MEM, \ .flags = UPF_SKIP_TEST|UPF_IOREMAP, \ .regshift = 8, \ } static struct plat_serial8250_port uart8250_data[] = { MACE_PORT(MACEISA_SERIAL1_OFFS, MACEISA_SERIAL1_IRQ), MACE_PORT(MACEISA_SERIAL2_OFFS, MACEISA_SERIAL2_IRQ), { }, }; static struct platform_device uart8250_device = { .name = "serial8250", .id = PLAT8250_DEV_PLATFORM, .dev = { .platform_data = uart8250_data, }, }; static int __init uart8250_init(void) { return platform_device_register(&uart8250_device); } device_initcall(uart8250_init); static __init int meth_devinit(void) { struct platform_device *pd; int ret; pd = platform_device_alloc("meth", -1); if (!pd) return -ENOMEM; ret = platform_device_add(pd); if (ret) platform_device_put(pd); return ret; } device_initcall(meth_devinit); static __init int sgio2audio_devinit(void) { struct platform_device *pd; int ret; pd = platform_device_alloc("sgio2audio", -1); if (!pd) return -ENOMEM; ret = platform_device_add(pd); if (ret) platform_device_put(pd); return ret; } device_initcall(sgio2audio_devinit); static __init int sgio2btns_devinit(void) { return IS_ERR(platform_device_register_simple("sgibtns", -1, NULL, 0)); } device_initcall(sgio2btns_devinit); #define MACE_RTC_RES_START (MACE_BASE + offsetof(struct sgi_mace, isa.rtc)) #define MACE_RTC_RES_END (MACE_RTC_RES_START + 32767) static struct resource ip32_rtc_resources[] = { { .start = MACEISA_RTC_IRQ, .end = MACEISA_RTC_IRQ, .flags = IORESOURCE_IRQ }, { .start = MACE_RTC_RES_START, .end = MACE_RTC_RES_END, .flags = IORESOURCE_MEM, } }; /* RTC registers on IP32 are each padded by 256 bytes (0x100). */ static struct ds1685_rtc_platform_data ip32_rtc_platform_data[] = { { .regstep = 0x100, .bcd_mode = true, .no_irq = false, .uie_unsupported = false, .access_type = ds1685_reg_direct, .plat_prepare_poweroff = ip32_prepare_poweroff, }, }; struct platform_device ip32_rtc_device = { .name = "rtc-ds1685", .id = -1, .dev = { .platform_data = ip32_rtc_platform_data, }, .num_resources = ARRAY_SIZE(ip32_rtc_resources), .resource = ip32_rtc_resources, }; static __init int sgio2_rtc_devinit(void) { return platform_device_register(&ip32_rtc_device); } device_initcall(sgio2_rtc_devinit);
linux-master
arch/mips/sgi-ip32/ip32-platform.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2001 Keith M Wesolowski * Copyright (C) 2001 Paul Mundt * Copyright (C) 2003 Guido Guenther <[email protected]> */ #include <linux/compiler.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/panic_notifier.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/notifier.h> #include <linux/delay.h> #include <linux/rtc/ds1685.h> #include <linux/interrupt.h> #include <linux/pm.h> #include <asm/addrspace.h> #include <asm/irq.h> #include <asm/reboot.h> #include <asm/wbflush.h> #include <asm/ip32/mace.h> #include <asm/ip32/crime.h> #include <asm/ip32/ip32_ints.h> #define POWERDOWN_TIMEOUT 120 /* * Blink frequency during reboot grace period and when panicked. */ #define POWERDOWN_FREQ (HZ / 4) #define PANIC_FREQ (HZ / 8) extern struct platform_device ip32_rtc_device; static struct timer_list power_timer, blink_timer; static unsigned long blink_timer_timeout; static int has_panicked, shutting_down; static __noreturn void ip32_poweroff(void *data) { void (*poweroff_func)(struct platform_device *) = symbol_get(ds1685_rtc_poweroff); #ifdef CONFIG_MODULES /* If the first __symbol_get failed, our module wasn't loaded. */ if (!poweroff_func) { request_module("rtc-ds1685"); poweroff_func = symbol_get(ds1685_rtc_poweroff); } #endif if (!poweroff_func) pr_emerg("RTC not available for power-off. Spinning forever ...\n"); else { (*poweroff_func)((struct platform_device *)data); symbol_put(ds1685_rtc_poweroff); } unreachable(); } static void ip32_machine_restart(char *cmd) __noreturn; static void ip32_machine_restart(char *cmd) { msleep(20); crime->control = CRIME_CONTROL_HARD_RESET; unreachable(); } static void blink_timeout(struct timer_list *unused) { unsigned long led = mace->perif.ctrl.misc ^ MACEISA_LED_RED; mace->perif.ctrl.misc = led; mod_timer(&blink_timer, jiffies + blink_timer_timeout); } static void ip32_machine_halt(void) { ip32_poweroff(&ip32_rtc_device); } static void power_timeout(struct timer_list *unused) { ip32_poweroff(&ip32_rtc_device); } void ip32_prepare_poweroff(void) { if (has_panicked) return; if (shutting_down || kill_cad_pid(SIGINT, 1)) { /* No init process or button pressed twice. */ ip32_poweroff(&ip32_rtc_device); } shutting_down = 1; blink_timer_timeout = POWERDOWN_FREQ; blink_timeout(&blink_timer); timer_setup(&power_timer, power_timeout, 0); power_timer.expires = jiffies + POWERDOWN_TIMEOUT * HZ; add_timer(&power_timer); } static int panic_event(struct notifier_block *this, unsigned long event, void *ptr) { unsigned long led; if (has_panicked) return NOTIFY_DONE; has_panicked = 1; /* turn off the green LED */ led = mace->perif.ctrl.misc | MACEISA_LED_GREEN; mace->perif.ctrl.misc = led; blink_timer_timeout = PANIC_FREQ; blink_timeout(&blink_timer); return NOTIFY_DONE; } static struct notifier_block panic_block = { .notifier_call = panic_event, }; static __init int ip32_reboot_setup(void) { /* turn on the green led only */ unsigned long led = mace->perif.ctrl.misc; led |= MACEISA_LED_RED; led &= ~MACEISA_LED_GREEN; mace->perif.ctrl.misc = led; _machine_restart = ip32_machine_restart; _machine_halt = ip32_machine_halt; pm_power_off = ip32_machine_halt; timer_setup(&blink_timer, blink_timeout, 0); atomic_notifier_chain_register(&panic_notifier_list, &panic_block); return 0; } subsys_initcall(ip32_reboot_setup);
linux-master
arch/mips/sgi-ip32/ip32-reset.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2003 Keith M Wesolowski * Copyright (C) 2005 Ilya A. Volynets (Total Knowledge) */ #include <linux/types.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/memblock.h> #include <linux/mm.h> #include <asm/ip32/crime.h> #include <asm/bootinfo.h> #include <asm/page.h> extern void crime_init(void); void __init prom_meminit(void) { u64 base, size; int bank; crime_init(); for (bank=0; bank < CRIME_MAXBANKS; bank++) { u64 bankctl = crime->bank_ctrl[bank]; base = (bankctl & CRIME_MEM_BANK_CONTROL_ADDR) << 25; if (bank != 0 && base == 0) continue; size = (bankctl & CRIME_MEM_BANK_CONTROL_SDRAM_SIZE) ? 128 : 32; size <<= 20; if (base + size > (256 << 20)) base += CRIME_HI_MEM_BASE; printk("CRIME MC: bank %u base 0x%016Lx size %LuMiB\n", bank, base, size >> 20); memblock_add(base, size); } }
linux-master
arch/mips/sgi-ip32/ip32-memory.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <bcm63xx_io.h> #include <linux/serial_bcm63xx.h> #include <asm/setup.h> static void wait_xfered(void) { unsigned int val; /* wait for any previous char to be transmitted */ do { val = bcm_uart0_readl(UART_IR_REG); if (val & UART_IR_STAT(UART_IR_TXEMPTY)) break; } while (1); } void prom_putchar(char c) { wait_xfered(); bcm_uart0_writel(c, UART_FIFO_REG); wait_xfered(); }
linux-master
arch/mips/bcm63xx/early_printk.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> * Copyright (C) 2012 Kevin Cernekee <[email protected]> * Copyright (C) 2012 Broadcom Corporation */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <bcm63xx_cpu.h> #include <bcm63xx_dev_usb_usbd.h> #define NUM_MMIO 2 #define NUM_IRQ 7 static struct resource usbd_resources[NUM_MMIO + NUM_IRQ]; static u64 usbd_dmamask = DMA_BIT_MASK(32); static struct platform_device bcm63xx_usbd_device = { .name = "bcm63xx_udc", .id = -1, .num_resources = ARRAY_SIZE(usbd_resources), .resource = usbd_resources, .dev = { .dma_mask = &usbd_dmamask, .coherent_dma_mask = DMA_BIT_MASK(32), }, }; int __init bcm63xx_usbd_register(const struct bcm63xx_usbd_platform_data *pd) { const int irq_list[NUM_IRQ] = { IRQ_USBD, IRQ_USBD_RXDMA0, IRQ_USBD_TXDMA0, IRQ_USBD_RXDMA1, IRQ_USBD_TXDMA1, IRQ_USBD_RXDMA2, IRQ_USBD_TXDMA2 }; int i; if (!BCMCPU_IS_6328() && !BCMCPU_IS_6368()) return 0; usbd_resources[0].start = bcm63xx_regset_address(RSET_USBD); usbd_resources[0].end = usbd_resources[0].start + RSET_USBD_SIZE - 1; usbd_resources[0].flags = IORESOURCE_MEM; usbd_resources[1].start = bcm63xx_regset_address(RSET_USBDMA); usbd_resources[1].end = usbd_resources[1].start + RSET_USBDMA_SIZE - 1; usbd_resources[1].flags = IORESOURCE_MEM; for (i = 0; i < NUM_IRQ; i++) { struct resource *r = &usbd_resources[NUM_MMIO + i]; r->start = r->end = bcm63xx_get_irq_number(irq_list[i]); r->flags = IORESOURCE_IRQ; } platform_device_add_data(&bcm63xx_usbd_device, pd, sizeof(*pd)); return platform_device_register(&bcm63xx_usbd_device); }
linux-master
arch/mips/bcm63xx/dev-usb-usbd.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/kernel.h> #include <linux/err.h> #include <linux/init.h> #include <linux/export.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/clk.h> #include <bcm63xx_cpu.h> #include <bcm63xx_io.h> #include <bcm63xx_timer.h> #include <bcm63xx_regs.h> static DEFINE_RAW_SPINLOCK(timer_reg_lock); static DEFINE_RAW_SPINLOCK(timer_data_lock); static struct clk *periph_clk; static struct timer_data { void (*cb)(void *); void *data; } timer_data[BCM63XX_TIMER_COUNT]; static irqreturn_t timer_interrupt(int irq, void *dev_id) { u32 stat; int i; raw_spin_lock(&timer_reg_lock); stat = bcm_timer_readl(TIMER_IRQSTAT_REG); bcm_timer_writel(stat, TIMER_IRQSTAT_REG); raw_spin_unlock(&timer_reg_lock); for (i = 0; i < BCM63XX_TIMER_COUNT; i++) { if (!(stat & TIMER_IRQSTAT_TIMER_CAUSE(i))) continue; raw_spin_lock(&timer_data_lock); if (!timer_data[i].cb) { raw_spin_unlock(&timer_data_lock); continue; } timer_data[i].cb(timer_data[i].data); raw_spin_unlock(&timer_data_lock); } return IRQ_HANDLED; } int bcm63xx_timer_enable(int id) { u32 reg; unsigned long flags; if (id >= BCM63XX_TIMER_COUNT) return -EINVAL; raw_spin_lock_irqsave(&timer_reg_lock, flags); reg = bcm_timer_readl(TIMER_CTLx_REG(id)); reg |= TIMER_CTL_ENABLE_MASK; bcm_timer_writel(reg, TIMER_CTLx_REG(id)); reg = bcm_timer_readl(TIMER_IRQSTAT_REG); reg |= TIMER_IRQSTAT_TIMER_IR_EN(id); bcm_timer_writel(reg, TIMER_IRQSTAT_REG); raw_spin_unlock_irqrestore(&timer_reg_lock, flags); return 0; } EXPORT_SYMBOL(bcm63xx_timer_enable); int bcm63xx_timer_disable(int id) { u32 reg; unsigned long flags; if (id >= BCM63XX_TIMER_COUNT) return -EINVAL; raw_spin_lock_irqsave(&timer_reg_lock, flags); reg = bcm_timer_readl(TIMER_CTLx_REG(id)); reg &= ~TIMER_CTL_ENABLE_MASK; bcm_timer_writel(reg, TIMER_CTLx_REG(id)); reg = bcm_timer_readl(TIMER_IRQSTAT_REG); reg &= ~TIMER_IRQSTAT_TIMER_IR_EN(id); bcm_timer_writel(reg, TIMER_IRQSTAT_REG); raw_spin_unlock_irqrestore(&timer_reg_lock, flags); return 0; } EXPORT_SYMBOL(bcm63xx_timer_disable); int bcm63xx_timer_register(int id, void (*callback)(void *data), void *data) { unsigned long flags; int ret; if (id >= BCM63XX_TIMER_COUNT || !callback) return -EINVAL; ret = 0; raw_spin_lock_irqsave(&timer_data_lock, flags); if (timer_data[id].cb) { ret = -EBUSY; goto out; } timer_data[id].cb = callback; timer_data[id].data = data; out: raw_spin_unlock_irqrestore(&timer_data_lock, flags); return ret; } EXPORT_SYMBOL(bcm63xx_timer_register); void bcm63xx_timer_unregister(int id) { unsigned long flags; if (id >= BCM63XX_TIMER_COUNT) return; raw_spin_lock_irqsave(&timer_data_lock, flags); timer_data[id].cb = NULL; raw_spin_unlock_irqrestore(&timer_data_lock, flags); } EXPORT_SYMBOL(bcm63xx_timer_unregister); unsigned int bcm63xx_timer_countdown(unsigned int countdown_us) { return (clk_get_rate(periph_clk) / (1000 * 1000)) * countdown_us; } EXPORT_SYMBOL(bcm63xx_timer_countdown); int bcm63xx_timer_set(int id, int monotonic, unsigned int countdown_us) { u32 reg, countdown; unsigned long flags; if (id >= BCM63XX_TIMER_COUNT) return -EINVAL; countdown = bcm63xx_timer_countdown(countdown_us); if (countdown & ~TIMER_CTL_COUNTDOWN_MASK) return -EINVAL; raw_spin_lock_irqsave(&timer_reg_lock, flags); reg = bcm_timer_readl(TIMER_CTLx_REG(id)); if (monotonic) reg &= ~TIMER_CTL_MONOTONIC_MASK; else reg |= TIMER_CTL_MONOTONIC_MASK; reg &= ~TIMER_CTL_COUNTDOWN_MASK; reg |= countdown; bcm_timer_writel(reg, TIMER_CTLx_REG(id)); raw_spin_unlock_irqrestore(&timer_reg_lock, flags); return 0; } EXPORT_SYMBOL(bcm63xx_timer_set); int bcm63xx_timer_init(void) { int ret, irq; u32 reg; reg = bcm_timer_readl(TIMER_IRQSTAT_REG); reg &= ~TIMER_IRQSTAT_TIMER0_IR_EN; reg &= ~TIMER_IRQSTAT_TIMER1_IR_EN; reg &= ~TIMER_IRQSTAT_TIMER2_IR_EN; bcm_timer_writel(reg, TIMER_IRQSTAT_REG); periph_clk = clk_get(NULL, "periph"); if (IS_ERR(periph_clk)) return -ENODEV; irq = bcm63xx_get_irq_number(IRQ_TIMER); ret = request_irq(irq, timer_interrupt, 0, "bcm63xx_timer", NULL); if (ret) { pr_err("%s: failed to register irq\n", __func__); return ret; } return 0; } arch_initcall(bcm63xx_timer_init);
linux-master
arch/mips/bcm63xx/timer.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <asm/bootinfo.h> #include <linux/platform_device.h> #include <bcm63xx_cs.h> #include <bcm63xx_cpu.h> #include <bcm63xx_dev_pcmcia.h> #include <bcm63xx_io.h> #include <bcm63xx_regs.h> static struct resource pcmcia_resources[] = { /* pcmcia registers */ { /* start & end filled at runtime */ .flags = IORESOURCE_MEM, }, /* pcmcia memory zone resources */ { .start = BCM_PCMCIA_COMMON_BASE_PA, .end = BCM_PCMCIA_COMMON_END_PA, .flags = IORESOURCE_MEM, }, { .start = BCM_PCMCIA_ATTR_BASE_PA, .end = BCM_PCMCIA_ATTR_END_PA, .flags = IORESOURCE_MEM, }, { .start = BCM_PCMCIA_IO_BASE_PA, .end = BCM_PCMCIA_IO_END_PA, .flags = IORESOURCE_MEM, }, /* PCMCIA irq */ { /* start filled at runtime */ .flags = IORESOURCE_IRQ, }, /* declare PCMCIA IO resource also */ { .start = BCM_PCMCIA_IO_BASE_PA, .end = BCM_PCMCIA_IO_END_PA, .flags = IORESOURCE_IO, }, }; static struct bcm63xx_pcmcia_platform_data pd; static struct platform_device bcm63xx_pcmcia_device = { .name = "bcm63xx_pcmcia", .id = 0, .num_resources = ARRAY_SIZE(pcmcia_resources), .resource = pcmcia_resources, .dev = { .platform_data = &pd, }, }; static int __init config_pcmcia_cs(unsigned int cs, u32 base, unsigned int size) { int ret; ret = bcm63xx_set_cs_status(cs, 0); if (!ret) ret = bcm63xx_set_cs_base(cs, base, size); if (!ret) ret = bcm63xx_set_cs_status(cs, 1); return ret; } static const struct { unsigned int cs; unsigned int base; unsigned int size; } pcmcia_cs[3] __initconst = { { .cs = MPI_CS_PCMCIA_COMMON, .base = BCM_PCMCIA_COMMON_BASE_PA, .size = BCM_PCMCIA_COMMON_SIZE }, { .cs = MPI_CS_PCMCIA_ATTR, .base = BCM_PCMCIA_ATTR_BASE_PA, .size = BCM_PCMCIA_ATTR_SIZE }, { .cs = MPI_CS_PCMCIA_IO, .base = BCM_PCMCIA_IO_BASE_PA, .size = BCM_PCMCIA_IO_SIZE }, }; int __init bcm63xx_pcmcia_register(void) { int ret, i; if (!BCMCPU_IS_6348() && !BCMCPU_IS_6358()) return 0; /* use correct pcmcia ready gpio depending on processor */ switch (bcm63xx_get_cpu_id()) { case BCM6348_CPU_ID: pd.ready_gpio = 22; break; case BCM6358_CPU_ID: pd.ready_gpio = 18; break; default: return -ENODEV; } pcmcia_resources[0].start = bcm63xx_regset_address(RSET_PCMCIA); pcmcia_resources[0].end = pcmcia_resources[0].start + RSET_PCMCIA_SIZE - 1; pcmcia_resources[4].start = bcm63xx_get_irq_number(IRQ_PCMCIA); /* configure pcmcia chip selects */ for (i = 0; i < 3; i++) { ret = config_pcmcia_cs(pcmcia_cs[i].cs, pcmcia_cs[i].base, pcmcia_cs[i].size); if (ret) goto out_err; } return platform_device_register(&bcm63xx_pcmcia_device); out_err: pr_err("unable to set pcmcia chip select\n"); return ret; }
linux-master
arch/mips/bcm63xx/dev-pcmcia.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> * Copyright (C) 2008 Nicolas Schichan <[email protected]> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/spinlock.h> #include <asm/irq_cpu.h> #include <asm/mipsregs.h> #include <bcm63xx_cpu.h> #include <bcm63xx_regs.h> #include <bcm63xx_io.h> #include <bcm63xx_irq.h> static DEFINE_SPINLOCK(ipic_lock); static DEFINE_SPINLOCK(epic_lock); static u32 irq_stat_addr[2]; static u32 irq_mask_addr[2]; static void (*dispatch_internal)(int cpu); static int is_ext_irq_cascaded; static unsigned int ext_irq_count; static unsigned int ext_irq_start, ext_irq_end; static unsigned int ext_irq_cfg_reg1, ext_irq_cfg_reg2; static void (*internal_irq_mask)(struct irq_data *d); static void (*internal_irq_unmask)(struct irq_data *d, const struct cpumask *m); static inline u32 get_ext_irq_perf_reg(int irq) { if (irq < 4) return ext_irq_cfg_reg1; return ext_irq_cfg_reg2; } static inline void handle_internal(int intbit) { if (is_ext_irq_cascaded && intbit >= ext_irq_start && intbit <= ext_irq_end) do_IRQ(intbit - ext_irq_start + IRQ_EXTERNAL_BASE); else do_IRQ(intbit + IRQ_INTERNAL_BASE); } static inline int enable_irq_for_cpu(int cpu, struct irq_data *d, const struct cpumask *m) { bool enable = cpu_online(cpu); #ifdef CONFIG_SMP if (m) enable &= cpumask_test_cpu(cpu, m); else if (irqd_affinity_was_set(d)) enable &= cpumask_test_cpu(cpu, irq_data_get_affinity_mask(d)); #endif return enable; } /* * dispatch internal devices IRQ (uart, enet, watchdog, ...). do not * prioritize any interrupt relatively to another. the static counter * will resume the loop where it ended the last time we left this * function. */ #define BUILD_IPIC_INTERNAL(width) \ void __dispatch_internal_##width(int cpu) \ { \ u32 pending[width / 32]; \ unsigned int src, tgt; \ bool irqs_pending = false; \ static unsigned int i[2]; \ unsigned int *next = &i[cpu]; \ unsigned long flags; \ \ /* read registers in reverse order */ \ spin_lock_irqsave(&ipic_lock, flags); \ for (src = 0, tgt = (width / 32); src < (width / 32); src++) { \ u32 val; \ \ val = bcm_readl(irq_stat_addr[cpu] + src * sizeof(u32)); \ val &= bcm_readl(irq_mask_addr[cpu] + src * sizeof(u32)); \ pending[--tgt] = val; \ \ if (val) \ irqs_pending = true; \ } \ spin_unlock_irqrestore(&ipic_lock, flags); \ \ if (!irqs_pending) \ return; \ \ while (1) { \ unsigned int to_call = *next; \ \ *next = (*next + 1) & (width - 1); \ if (pending[to_call / 32] & (1 << (to_call & 0x1f))) { \ handle_internal(to_call); \ break; \ } \ } \ } \ \ static void __internal_irq_mask_##width(struct irq_data *d) \ { \ u32 val; \ unsigned irq = d->irq - IRQ_INTERNAL_BASE; \ unsigned reg = (irq / 32) ^ (width/32 - 1); \ unsigned bit = irq & 0x1f; \ unsigned long flags; \ int cpu; \ \ spin_lock_irqsave(&ipic_lock, flags); \ for_each_present_cpu(cpu) { \ if (!irq_mask_addr[cpu]) \ break; \ \ val = bcm_readl(irq_mask_addr[cpu] + reg * sizeof(u32));\ val &= ~(1 << bit); \ bcm_writel(val, irq_mask_addr[cpu] + reg * sizeof(u32));\ } \ spin_unlock_irqrestore(&ipic_lock, flags); \ } \ \ static void __internal_irq_unmask_##width(struct irq_data *d, \ const struct cpumask *m) \ { \ u32 val; \ unsigned irq = d->irq - IRQ_INTERNAL_BASE; \ unsigned reg = (irq / 32) ^ (width/32 - 1); \ unsigned bit = irq & 0x1f; \ unsigned long flags; \ int cpu; \ \ spin_lock_irqsave(&ipic_lock, flags); \ for_each_present_cpu(cpu) { \ if (!irq_mask_addr[cpu]) \ break; \ \ val = bcm_readl(irq_mask_addr[cpu] + reg * sizeof(u32));\ if (enable_irq_for_cpu(cpu, d, m)) \ val |= (1 << bit); \ else \ val &= ~(1 << bit); \ bcm_writel(val, irq_mask_addr[cpu] + reg * sizeof(u32));\ } \ spin_unlock_irqrestore(&ipic_lock, flags); \ } BUILD_IPIC_INTERNAL(32); BUILD_IPIC_INTERNAL(64); asmlinkage void plat_irq_dispatch(void) { u32 cause; do { cause = read_c0_cause() & read_c0_status() & ST0_IM; if (!cause) break; if (cause & CAUSEF_IP7) do_IRQ(7); if (cause & CAUSEF_IP0) do_IRQ(0); if (cause & CAUSEF_IP1) do_IRQ(1); if (cause & CAUSEF_IP2) dispatch_internal(0); if (is_ext_irq_cascaded) { if (cause & CAUSEF_IP3) dispatch_internal(1); } else { if (cause & CAUSEF_IP3) do_IRQ(IRQ_EXT_0); if (cause & CAUSEF_IP4) do_IRQ(IRQ_EXT_1); if (cause & CAUSEF_IP5) do_IRQ(IRQ_EXT_2); if (cause & CAUSEF_IP6) do_IRQ(IRQ_EXT_3); } } while (1); } /* * internal IRQs operations: only mask/unmask on PERF irq mask * register. */ static void bcm63xx_internal_irq_mask(struct irq_data *d) { internal_irq_mask(d); } static void bcm63xx_internal_irq_unmask(struct irq_data *d) { internal_irq_unmask(d, NULL); } /* * external IRQs operations: mask/unmask and clear on PERF external * irq control register. */ static void bcm63xx_external_irq_mask(struct irq_data *d) { unsigned int irq = d->irq - IRQ_EXTERNAL_BASE; u32 reg, regaddr; unsigned long flags; regaddr = get_ext_irq_perf_reg(irq); spin_lock_irqsave(&epic_lock, flags); reg = bcm_perf_readl(regaddr); if (BCMCPU_IS_6348()) reg &= ~EXTIRQ_CFG_MASK_6348(irq % 4); else reg &= ~EXTIRQ_CFG_MASK(irq % 4); bcm_perf_writel(reg, regaddr); spin_unlock_irqrestore(&epic_lock, flags); if (is_ext_irq_cascaded) internal_irq_mask(irq_get_irq_data(irq + ext_irq_start)); } static void bcm63xx_external_irq_unmask(struct irq_data *d) { unsigned int irq = d->irq - IRQ_EXTERNAL_BASE; u32 reg, regaddr; unsigned long flags; regaddr = get_ext_irq_perf_reg(irq); spin_lock_irqsave(&epic_lock, flags); reg = bcm_perf_readl(regaddr); if (BCMCPU_IS_6348()) reg |= EXTIRQ_CFG_MASK_6348(irq % 4); else reg |= EXTIRQ_CFG_MASK(irq % 4); bcm_perf_writel(reg, regaddr); spin_unlock_irqrestore(&epic_lock, flags); if (is_ext_irq_cascaded) internal_irq_unmask(irq_get_irq_data(irq + ext_irq_start), NULL); } static void bcm63xx_external_irq_clear(struct irq_data *d) { unsigned int irq = d->irq - IRQ_EXTERNAL_BASE; u32 reg, regaddr; unsigned long flags; regaddr = get_ext_irq_perf_reg(irq); spin_lock_irqsave(&epic_lock, flags); reg = bcm_perf_readl(regaddr); if (BCMCPU_IS_6348()) reg |= EXTIRQ_CFG_CLEAR_6348(irq % 4); else reg |= EXTIRQ_CFG_CLEAR(irq % 4); bcm_perf_writel(reg, regaddr); spin_unlock_irqrestore(&epic_lock, flags); } static int bcm63xx_external_irq_set_type(struct irq_data *d, unsigned int flow_type) { unsigned int irq = d->irq - IRQ_EXTERNAL_BASE; u32 reg, regaddr; int levelsense, sense, bothedge; unsigned long flags; flow_type &= IRQ_TYPE_SENSE_MASK; if (flow_type == IRQ_TYPE_NONE) flow_type = IRQ_TYPE_LEVEL_LOW; levelsense = sense = bothedge = 0; switch (flow_type) { case IRQ_TYPE_EDGE_BOTH: bothedge = 1; break; case IRQ_TYPE_EDGE_RISING: sense = 1; break; case IRQ_TYPE_EDGE_FALLING: break; case IRQ_TYPE_LEVEL_HIGH: levelsense = 1; sense = 1; break; case IRQ_TYPE_LEVEL_LOW: levelsense = 1; break; default: pr_err("bogus flow type combination given !\n"); return -EINVAL; } regaddr = get_ext_irq_perf_reg(irq); spin_lock_irqsave(&epic_lock, flags); reg = bcm_perf_readl(regaddr); irq %= 4; switch (bcm63xx_get_cpu_id()) { case BCM6348_CPU_ID: if (levelsense) reg |= EXTIRQ_CFG_LEVELSENSE_6348(irq); else reg &= ~EXTIRQ_CFG_LEVELSENSE_6348(irq); if (sense) reg |= EXTIRQ_CFG_SENSE_6348(irq); else reg &= ~EXTIRQ_CFG_SENSE_6348(irq); if (bothedge) reg |= EXTIRQ_CFG_BOTHEDGE_6348(irq); else reg &= ~EXTIRQ_CFG_BOTHEDGE_6348(irq); break; case BCM3368_CPU_ID: case BCM6328_CPU_ID: case BCM6338_CPU_ID: case BCM6345_CPU_ID: case BCM6358_CPU_ID: case BCM6362_CPU_ID: case BCM6368_CPU_ID: if (levelsense) reg |= EXTIRQ_CFG_LEVELSENSE(irq); else reg &= ~EXTIRQ_CFG_LEVELSENSE(irq); if (sense) reg |= EXTIRQ_CFG_SENSE(irq); else reg &= ~EXTIRQ_CFG_SENSE(irq); if (bothedge) reg |= EXTIRQ_CFG_BOTHEDGE(irq); else reg &= ~EXTIRQ_CFG_BOTHEDGE(irq); break; default: BUG(); } bcm_perf_writel(reg, regaddr); spin_unlock_irqrestore(&epic_lock, flags); irqd_set_trigger_type(d, flow_type); if (flow_type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH)) irq_set_handler_locked(d, handle_level_irq); else irq_set_handler_locked(d, handle_edge_irq); return IRQ_SET_MASK_OK_NOCOPY; } #ifdef CONFIG_SMP static int bcm63xx_internal_set_affinity(struct irq_data *data, const struct cpumask *dest, bool force) { if (!irqd_irq_disabled(data)) internal_irq_unmask(data, dest); return 0; } #endif static struct irq_chip bcm63xx_internal_irq_chip = { .name = "bcm63xx_ipic", .irq_mask = bcm63xx_internal_irq_mask, .irq_unmask = bcm63xx_internal_irq_unmask, }; static struct irq_chip bcm63xx_external_irq_chip = { .name = "bcm63xx_epic", .irq_ack = bcm63xx_external_irq_clear, .irq_mask = bcm63xx_external_irq_mask, .irq_unmask = bcm63xx_external_irq_unmask, .irq_set_type = bcm63xx_external_irq_set_type, }; static void bcm63xx_init_irq(void) { int irq_bits; irq_stat_addr[0] = bcm63xx_regset_address(RSET_PERF); irq_mask_addr[0] = bcm63xx_regset_address(RSET_PERF); irq_stat_addr[1] = bcm63xx_regset_address(RSET_PERF); irq_mask_addr[1] = bcm63xx_regset_address(RSET_PERF); switch (bcm63xx_get_cpu_id()) { case BCM3368_CPU_ID: irq_stat_addr[0] += PERF_IRQSTAT_3368_REG; irq_mask_addr[0] += PERF_IRQMASK_3368_REG; irq_stat_addr[1] = 0; irq_mask_addr[1] = 0; irq_bits = 32; ext_irq_count = 4; ext_irq_cfg_reg1 = PERF_EXTIRQ_CFG_REG_3368; break; case BCM6328_CPU_ID: irq_stat_addr[0] += PERF_IRQSTAT_6328_REG(0); irq_mask_addr[0] += PERF_IRQMASK_6328_REG(0); irq_stat_addr[1] += PERF_IRQSTAT_6328_REG(1); irq_mask_addr[1] += PERF_IRQMASK_6328_REG(1); irq_bits = 64; ext_irq_count = 4; is_ext_irq_cascaded = 1; ext_irq_start = BCM_6328_EXT_IRQ0 - IRQ_INTERNAL_BASE; ext_irq_end = BCM_6328_EXT_IRQ3 - IRQ_INTERNAL_BASE; ext_irq_cfg_reg1 = PERF_EXTIRQ_CFG_REG_6328; break; case BCM6338_CPU_ID: irq_stat_addr[0] += PERF_IRQSTAT_6338_REG; irq_mask_addr[0] += PERF_IRQMASK_6338_REG; irq_stat_addr[1] = 0; irq_mask_addr[1] = 0; irq_bits = 32; ext_irq_count = 4; ext_irq_cfg_reg1 = PERF_EXTIRQ_CFG_REG_6338; break; case BCM6345_CPU_ID: irq_stat_addr[0] += PERF_IRQSTAT_6345_REG; irq_mask_addr[0] += PERF_IRQMASK_6345_REG; irq_stat_addr[1] = 0; irq_mask_addr[1] = 0; irq_bits = 32; ext_irq_count = 4; ext_irq_cfg_reg1 = PERF_EXTIRQ_CFG_REG_6345; break; case BCM6348_CPU_ID: irq_stat_addr[0] += PERF_IRQSTAT_6348_REG; irq_mask_addr[0] += PERF_IRQMASK_6348_REG; irq_stat_addr[1] = 0; irq_mask_addr[1] = 0; irq_bits = 32; ext_irq_count = 4; ext_irq_cfg_reg1 = PERF_EXTIRQ_CFG_REG_6348; break; case BCM6358_CPU_ID: irq_stat_addr[0] += PERF_IRQSTAT_6358_REG(0); irq_mask_addr[0] += PERF_IRQMASK_6358_REG(0); irq_stat_addr[1] += PERF_IRQSTAT_6358_REG(1); irq_mask_addr[1] += PERF_IRQMASK_6358_REG(1); irq_bits = 32; ext_irq_count = 4; is_ext_irq_cascaded = 1; ext_irq_start = BCM_6358_EXT_IRQ0 - IRQ_INTERNAL_BASE; ext_irq_end = BCM_6358_EXT_IRQ3 - IRQ_INTERNAL_BASE; ext_irq_cfg_reg1 = PERF_EXTIRQ_CFG_REG_6358; break; case BCM6362_CPU_ID: irq_stat_addr[0] += PERF_IRQSTAT_6362_REG(0); irq_mask_addr[0] += PERF_IRQMASK_6362_REG(0); irq_stat_addr[1] += PERF_IRQSTAT_6362_REG(1); irq_mask_addr[1] += PERF_IRQMASK_6362_REG(1); irq_bits = 64; ext_irq_count = 4; is_ext_irq_cascaded = 1; ext_irq_start = BCM_6362_EXT_IRQ0 - IRQ_INTERNAL_BASE; ext_irq_end = BCM_6362_EXT_IRQ3 - IRQ_INTERNAL_BASE; ext_irq_cfg_reg1 = PERF_EXTIRQ_CFG_REG_6362; break; case BCM6368_CPU_ID: irq_stat_addr[0] += PERF_IRQSTAT_6368_REG(0); irq_mask_addr[0] += PERF_IRQMASK_6368_REG(0); irq_stat_addr[1] += PERF_IRQSTAT_6368_REG(1); irq_mask_addr[1] += PERF_IRQMASK_6368_REG(1); irq_bits = 64; ext_irq_count = 6; is_ext_irq_cascaded = 1; ext_irq_start = BCM_6368_EXT_IRQ0 - IRQ_INTERNAL_BASE; ext_irq_end = BCM_6368_EXT_IRQ5 - IRQ_INTERNAL_BASE; ext_irq_cfg_reg1 = PERF_EXTIRQ_CFG_REG_6368; ext_irq_cfg_reg2 = PERF_EXTIRQ_CFG_REG2_6368; break; default: BUG(); } if (irq_bits == 32) { dispatch_internal = __dispatch_internal_32; internal_irq_mask = __internal_irq_mask_32; internal_irq_unmask = __internal_irq_unmask_32; } else { dispatch_internal = __dispatch_internal_64; internal_irq_mask = __internal_irq_mask_64; internal_irq_unmask = __internal_irq_unmask_64; } } void __init arch_init_irq(void) { int i, irq; bcm63xx_init_irq(); mips_cpu_irq_init(); for (i = IRQ_INTERNAL_BASE; i < NR_IRQS; ++i) irq_set_chip_and_handler(i, &bcm63xx_internal_irq_chip, handle_level_irq); for (i = IRQ_EXTERNAL_BASE; i < IRQ_EXTERNAL_BASE + ext_irq_count; ++i) irq_set_chip_and_handler(i, &bcm63xx_external_irq_chip, handle_edge_irq); if (!is_ext_irq_cascaded) { for (i = 3; i < 3 + ext_irq_count; ++i) { irq = MIPS_CPU_IRQ_BASE + i; if (request_irq(irq, no_action, IRQF_NO_THREAD, "cascade_extirq", NULL)) { pr_err("Failed to request irq %d (cascade_extirq)\n", irq); } } } irq = MIPS_CPU_IRQ_BASE + 2; if (request_irq(irq, no_action, IRQF_NO_THREAD, "cascade_ip2", NULL)) pr_err("Failed to request irq %d (cascade_ip2)\n", irq); #ifdef CONFIG_SMP if (is_ext_irq_cascaded) { irq = MIPS_CPU_IRQ_BASE + 3; if (request_irq(irq, no_action, IRQF_NO_THREAD, "cascade_ip3", NULL)) pr_err("Failed to request irq %d (cascade_ip3)\n", irq); bcm63xx_internal_irq_chip.irq_set_affinity = bcm63xx_internal_set_affinity; cpumask_clear(irq_default_affinity); cpumask_set_cpu(smp_processor_id(), irq_default_affinity); } #endif }
linux-master
arch/mips/bcm63xx/irq.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> * Copyright (C) 2009 Florian Fainelli <[email protected]> */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/cpu.h> #include <asm/cpu.h> #include <asm/cpu-info.h> #include <asm/mipsregs.h> #include <bcm63xx_cpu.h> #include <bcm63xx_regs.h> #include <bcm63xx_io.h> #include <bcm63xx_irq.h> const unsigned long *bcm63xx_regs_base; EXPORT_SYMBOL(bcm63xx_regs_base); const int *bcm63xx_irqs; EXPORT_SYMBOL(bcm63xx_irqs); u16 bcm63xx_cpu_id __read_mostly; EXPORT_SYMBOL(bcm63xx_cpu_id); static u8 bcm63xx_cpu_rev; static unsigned int bcm63xx_cpu_freq; static unsigned int bcm63xx_memory_size; static const unsigned long bcm3368_regs_base[] = { __GEN_CPU_REGS_TABLE(3368) }; static const int bcm3368_irqs[] = { __GEN_CPU_IRQ_TABLE(3368) }; static const unsigned long bcm6328_regs_base[] = { __GEN_CPU_REGS_TABLE(6328) }; static const int bcm6328_irqs[] = { __GEN_CPU_IRQ_TABLE(6328) }; static const unsigned long bcm6338_regs_base[] = { __GEN_CPU_REGS_TABLE(6338) }; static const int bcm6338_irqs[] = { __GEN_CPU_IRQ_TABLE(6338) }; static const unsigned long bcm6345_regs_base[] = { __GEN_CPU_REGS_TABLE(6345) }; static const int bcm6345_irqs[] = { __GEN_CPU_IRQ_TABLE(6345) }; static const unsigned long bcm6348_regs_base[] = { __GEN_CPU_REGS_TABLE(6348) }; static const int bcm6348_irqs[] = { __GEN_CPU_IRQ_TABLE(6348) }; static const unsigned long bcm6358_regs_base[] = { __GEN_CPU_REGS_TABLE(6358) }; static const int bcm6358_irqs[] = { __GEN_CPU_IRQ_TABLE(6358) }; static const unsigned long bcm6362_regs_base[] = { __GEN_CPU_REGS_TABLE(6362) }; static const int bcm6362_irqs[] = { __GEN_CPU_IRQ_TABLE(6362) }; static const unsigned long bcm6368_regs_base[] = { __GEN_CPU_REGS_TABLE(6368) }; static const int bcm6368_irqs[] = { __GEN_CPU_IRQ_TABLE(6368) }; u8 bcm63xx_get_cpu_rev(void) { return bcm63xx_cpu_rev; } EXPORT_SYMBOL(bcm63xx_get_cpu_rev); unsigned int bcm63xx_get_cpu_freq(void) { return bcm63xx_cpu_freq; } unsigned int bcm63xx_get_memory_size(void) { return bcm63xx_memory_size; } static unsigned int detect_cpu_clock(void) { u16 cpu_id = bcm63xx_get_cpu_id(); switch (cpu_id) { case BCM3368_CPU_ID: return 300000000; case BCM6328_CPU_ID: { unsigned int tmp, mips_pll_fcvo; tmp = bcm_misc_readl(MISC_STRAPBUS_6328_REG); mips_pll_fcvo = (tmp & STRAPBUS_6328_FCVO_MASK) >> STRAPBUS_6328_FCVO_SHIFT; switch (mips_pll_fcvo) { case 0x12: case 0x14: case 0x19: return 160000000; case 0x1c: return 192000000; case 0x13: case 0x15: return 200000000; case 0x1a: return 384000000; case 0x16: return 400000000; default: return 320000000; } } case BCM6338_CPU_ID: /* BCM6338 has a fixed 240 Mhz frequency */ return 240000000; case BCM6345_CPU_ID: /* BCM6345 has a fixed 140Mhz frequency */ return 140000000; case BCM6348_CPU_ID: { unsigned int tmp, n1, n2, m1; /* 16MHz * (N1 + 1) * (N2 + 2) / (M1_CPU + 1) */ tmp = bcm_perf_readl(PERF_MIPSPLLCTL_REG); n1 = (tmp & MIPSPLLCTL_N1_MASK) >> MIPSPLLCTL_N1_SHIFT; n2 = (tmp & MIPSPLLCTL_N2_MASK) >> MIPSPLLCTL_N2_SHIFT; m1 = (tmp & MIPSPLLCTL_M1CPU_MASK) >> MIPSPLLCTL_M1CPU_SHIFT; n1 += 1; n2 += 2; m1 += 1; return (16 * 1000000 * n1 * n2) / m1; } case BCM6358_CPU_ID: { unsigned int tmp, n1, n2, m1; /* 16MHz * N1 * N2 / M1_CPU */ tmp = bcm_ddr_readl(DDR_DMIPSPLLCFG_REG); n1 = (tmp & DMIPSPLLCFG_N1_MASK) >> DMIPSPLLCFG_N1_SHIFT; n2 = (tmp & DMIPSPLLCFG_N2_MASK) >> DMIPSPLLCFG_N2_SHIFT; m1 = (tmp & DMIPSPLLCFG_M1_MASK) >> DMIPSPLLCFG_M1_SHIFT; return (16 * 1000000 * n1 * n2) / m1; } case BCM6362_CPU_ID: { unsigned int tmp, mips_pll_fcvo; tmp = bcm_misc_readl(MISC_STRAPBUS_6362_REG); mips_pll_fcvo = (tmp & STRAPBUS_6362_FCVO_MASK) >> STRAPBUS_6362_FCVO_SHIFT; switch (mips_pll_fcvo) { case 0x03: case 0x0b: case 0x13: case 0x1b: return 240000000; case 0x04: case 0x0c: case 0x14: case 0x1c: return 160000000; case 0x05: case 0x0e: case 0x16: case 0x1e: case 0x1f: return 400000000; case 0x06: return 440000000; case 0x07: case 0x17: return 384000000; case 0x15: case 0x1d: return 200000000; default: return 320000000; } } case BCM6368_CPU_ID: { unsigned int tmp, p1, p2, ndiv, m1; /* (64MHz / P1) * P2 * NDIV / M1_CPU */ tmp = bcm_ddr_readl(DDR_DMIPSPLLCFG_6368_REG); p1 = (tmp & DMIPSPLLCFG_6368_P1_MASK) >> DMIPSPLLCFG_6368_P1_SHIFT; p2 = (tmp & DMIPSPLLCFG_6368_P2_MASK) >> DMIPSPLLCFG_6368_P2_SHIFT; ndiv = (tmp & DMIPSPLLCFG_6368_NDIV_MASK) >> DMIPSPLLCFG_6368_NDIV_SHIFT; tmp = bcm_ddr_readl(DDR_DMIPSPLLDIV_6368_REG); m1 = (tmp & DMIPSPLLDIV_6368_MDIV_MASK) >> DMIPSPLLDIV_6368_MDIV_SHIFT; return (((64 * 1000000) / p1) * p2 * ndiv) / m1; } default: panic("Failed to detect clock for CPU with id=%04X\n", cpu_id); } } /* * attempt to detect the amount of memory installed */ static unsigned int detect_memory_size(void) { unsigned int cols = 0, rows = 0, is_32bits = 0, banks = 0; u32 val; if (BCMCPU_IS_6328() || BCMCPU_IS_6362()) return bcm_ddr_readl(DDR_CSEND_REG) << 24; if (BCMCPU_IS_6345()) { val = bcm_sdram_readl(SDRAM_MBASE_REG); return val * 8 * 1024 * 1024; } if (BCMCPU_IS_6338() || BCMCPU_IS_6348()) { val = bcm_sdram_readl(SDRAM_CFG_REG); rows = (val & SDRAM_CFG_ROW_MASK) >> SDRAM_CFG_ROW_SHIFT; cols = (val & SDRAM_CFG_COL_MASK) >> SDRAM_CFG_COL_SHIFT; is_32bits = (val & SDRAM_CFG_32B_MASK) ? 1 : 0; banks = (val & SDRAM_CFG_BANK_MASK) ? 2 : 1; } if (BCMCPU_IS_3368() || BCMCPU_IS_6358() || BCMCPU_IS_6368()) { val = bcm_memc_readl(MEMC_CFG_REG); rows = (val & MEMC_CFG_ROW_MASK) >> MEMC_CFG_ROW_SHIFT; cols = (val & MEMC_CFG_COL_MASK) >> MEMC_CFG_COL_SHIFT; is_32bits = (val & MEMC_CFG_32B_MASK) ? 0 : 1; banks = 2; } /* 0 => 11 address bits ... 2 => 13 address bits */ rows += 11; /* 0 => 8 address bits ... 2 => 10 address bits */ cols += 8; return 1 << (cols + rows + (is_32bits + 1) + banks); } void __init bcm63xx_cpu_init(void) { unsigned int tmp; unsigned int cpu = smp_processor_id(); u32 chipid_reg; /* soc registers location depends on cpu type */ chipid_reg = 0; switch (current_cpu_type()) { case CPU_BMIPS3300: if ((read_c0_prid() & PRID_IMP_MASK) != PRID_IMP_BMIPS3300_ALT) __cpu_name[cpu] = "Broadcom BCM6338"; fallthrough; case CPU_BMIPS32: chipid_reg = BCM_6345_PERF_BASE; break; case CPU_BMIPS4350: switch ((read_c0_prid() & PRID_REV_MASK)) { case 0x04: chipid_reg = BCM_3368_PERF_BASE; break; case 0x10: chipid_reg = BCM_6345_PERF_BASE; break; default: chipid_reg = BCM_6368_PERF_BASE; break; } break; } /* * really early to panic, but delaying panic would not help since we * will never get any working console */ if (!chipid_reg) panic("unsupported Broadcom CPU"); /* read out CPU type */ tmp = bcm_readl(chipid_reg); bcm63xx_cpu_id = (tmp & REV_CHIPID_MASK) >> REV_CHIPID_SHIFT; bcm63xx_cpu_rev = (tmp & REV_REVID_MASK) >> REV_REVID_SHIFT; switch (bcm63xx_cpu_id) { case BCM3368_CPU_ID: bcm63xx_regs_base = bcm3368_regs_base; bcm63xx_irqs = bcm3368_irqs; break; case BCM6328_CPU_ID: bcm63xx_regs_base = bcm6328_regs_base; bcm63xx_irqs = bcm6328_irqs; break; case BCM6338_CPU_ID: bcm63xx_regs_base = bcm6338_regs_base; bcm63xx_irqs = bcm6338_irqs; break; case BCM6345_CPU_ID: bcm63xx_regs_base = bcm6345_regs_base; bcm63xx_irqs = bcm6345_irqs; break; case BCM6348_CPU_ID: bcm63xx_regs_base = bcm6348_regs_base; bcm63xx_irqs = bcm6348_irqs; break; case BCM6358_CPU_ID: bcm63xx_regs_base = bcm6358_regs_base; bcm63xx_irqs = bcm6358_irqs; break; case BCM6362_CPU_ID: bcm63xx_regs_base = bcm6362_regs_base; bcm63xx_irqs = bcm6362_irqs; break; case BCM6368_CPU_ID: bcm63xx_regs_base = bcm6368_regs_base; bcm63xx_irqs = bcm6368_irqs; break; default: panic("unsupported broadcom CPU %x", bcm63xx_cpu_id); break; } bcm63xx_cpu_freq = detect_cpu_clock(); bcm63xx_memory_size = detect_memory_size(); pr_info("Detected Broadcom 0x%04x CPU revision %02x\n", bcm63xx_cpu_id, bcm63xx_cpu_rev); pr_info("CPU frequency is %u MHz\n", bcm63xx_cpu_freq / 1000000); pr_info("%uMB of RAM installed\n", bcm63xx_memory_size >> 20); }
linux-master
arch/mips/bcm63xx/cpu.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2011 Florian Fainelli <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <bcm63xx_cpu.h> static struct resource rng_resources[] = { { .start = -1, /* filled at runtime */ .end = -1, /* filled at runtime */ .flags = IORESOURCE_MEM, }, }; static struct platform_device bcm63xx_rng_device = { .name = "bcm63xx-rng", .id = -1, .num_resources = ARRAY_SIZE(rng_resources), .resource = rng_resources, }; int __init bcm63xx_rng_register(void) { if (!BCMCPU_IS_6368()) return -ENODEV; rng_resources[0].start = bcm63xx_regset_address(RSET_RNG); rng_resources[0].end = rng_resources[0].start; rng_resources[0].end += RSET_RNG_SIZE - 1; return platform_device_register(&bcm63xx_rng_device); } arch_initcall(bcm63xx_rng_register);
linux-master
arch/mips/bcm63xx/dev-rng.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> * Copyright (C) 2008-2011 Florian Fainelli <[email protected]> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/platform_device.h> #include <linux/gpio/driver.h> #include <bcm63xx_cpu.h> #include <bcm63xx_gpio.h> #include <bcm63xx_io.h> #include <bcm63xx_regs.h> static u32 gpio_out_low_reg; static void bcm63xx_gpio_out_low_reg_init(void) { switch (bcm63xx_get_cpu_id()) { case BCM6345_CPU_ID: gpio_out_low_reg = GPIO_DATA_LO_REG_6345; break; default: gpio_out_low_reg = GPIO_DATA_LO_REG; break; } } static DEFINE_SPINLOCK(bcm63xx_gpio_lock); static u32 gpio_out_low, gpio_out_high; static void bcm63xx_gpio_set(struct gpio_chip *chip, unsigned gpio, int val) { u32 reg; u32 mask; u32 *v; unsigned long flags; BUG_ON(gpio >= chip->ngpio); if (gpio < 32) { reg = gpio_out_low_reg; mask = 1 << gpio; v = &gpio_out_low; } else { reg = GPIO_DATA_HI_REG; mask = 1 << (gpio - 32); v = &gpio_out_high; } spin_lock_irqsave(&bcm63xx_gpio_lock, flags); if (val) *v |= mask; else *v &= ~mask; bcm_gpio_writel(*v, reg); spin_unlock_irqrestore(&bcm63xx_gpio_lock, flags); } static int bcm63xx_gpio_get(struct gpio_chip *chip, unsigned gpio) { u32 reg; u32 mask; BUG_ON(gpio >= chip->ngpio); if (gpio < 32) { reg = gpio_out_low_reg; mask = 1 << gpio; } else { reg = GPIO_DATA_HI_REG; mask = 1 << (gpio - 32); } return !!(bcm_gpio_readl(reg) & mask); } static int bcm63xx_gpio_set_direction(struct gpio_chip *chip, unsigned gpio, int dir) { u32 reg; u32 mask; u32 tmp; unsigned long flags; BUG_ON(gpio >= chip->ngpio); if (gpio < 32) { reg = GPIO_CTL_LO_REG; mask = 1 << gpio; } else { reg = GPIO_CTL_HI_REG; mask = 1 << (gpio - 32); } spin_lock_irqsave(&bcm63xx_gpio_lock, flags); tmp = bcm_gpio_readl(reg); if (dir == BCM63XX_GPIO_DIR_IN) tmp &= ~mask; else tmp |= mask; bcm_gpio_writel(tmp, reg); spin_unlock_irqrestore(&bcm63xx_gpio_lock, flags); return 0; } static int bcm63xx_gpio_direction_input(struct gpio_chip *chip, unsigned gpio) { return bcm63xx_gpio_set_direction(chip, gpio, BCM63XX_GPIO_DIR_IN); } static int bcm63xx_gpio_direction_output(struct gpio_chip *chip, unsigned gpio, int value) { bcm63xx_gpio_set(chip, gpio, value); return bcm63xx_gpio_set_direction(chip, gpio, BCM63XX_GPIO_DIR_OUT); } static struct gpio_chip bcm63xx_gpio_chip = { .label = "bcm63xx-gpio", .direction_input = bcm63xx_gpio_direction_input, .direction_output = bcm63xx_gpio_direction_output, .get = bcm63xx_gpio_get, .set = bcm63xx_gpio_set, .base = 0, }; int __init bcm63xx_gpio_init(void) { bcm63xx_gpio_out_low_reg_init(); gpio_out_low = bcm_gpio_readl(gpio_out_low_reg); if (!BCMCPU_IS_6345()) gpio_out_high = bcm_gpio_readl(GPIO_DATA_HI_REG); bcm63xx_gpio_chip.ngpio = bcm63xx_gpio_count(); pr_info("registering %d GPIOs\n", bcm63xx_gpio_chip.ngpio); return gpiochip_add_data(&bcm63xx_gpio_chip, NULL); }
linux-master
arch/mips/bcm63xx/gpio.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/spinlock.h> #include <linux/log2.h> #include <bcm63xx_cpu.h> #include <bcm63xx_io.h> #include <bcm63xx_regs.h> #include <bcm63xx_cs.h> static DEFINE_SPINLOCK(bcm63xx_cs_lock); /* * check if given chip select exists */ static int is_valid_cs(unsigned int cs) { if (cs > 6) return 0; return 1; } /* * Configure chipselect base address and size (bytes). * Size must be a power of two between 8k and 256M. */ int bcm63xx_set_cs_base(unsigned int cs, u32 base, unsigned int size) { unsigned long flags; u32 val; if (!is_valid_cs(cs)) return -EINVAL; /* sanity check on size */ if (size != roundup_pow_of_two(size)) return -EINVAL; if (size < 8 * 1024 || size > 256 * 1024 * 1024) return -EINVAL; val = (base & MPI_CSBASE_BASE_MASK); /* 8k => 0 - 256M => 15 */ val |= (ilog2(size) - ilog2(8 * 1024)) << MPI_CSBASE_SIZE_SHIFT; spin_lock_irqsave(&bcm63xx_cs_lock, flags); bcm_mpi_writel(val, MPI_CSBASE_REG(cs)); spin_unlock_irqrestore(&bcm63xx_cs_lock, flags); return 0; } EXPORT_SYMBOL(bcm63xx_set_cs_base); /* * configure chipselect timing (ns) */ int bcm63xx_set_cs_timing(unsigned int cs, unsigned int wait, unsigned int setup, unsigned int hold) { unsigned long flags; u32 val; if (!is_valid_cs(cs)) return -EINVAL; spin_lock_irqsave(&bcm63xx_cs_lock, flags); val = bcm_mpi_readl(MPI_CSCTL_REG(cs)); val &= ~(MPI_CSCTL_WAIT_MASK); val &= ~(MPI_CSCTL_SETUP_MASK); val &= ~(MPI_CSCTL_HOLD_MASK); val |= wait << MPI_CSCTL_WAIT_SHIFT; val |= setup << MPI_CSCTL_SETUP_SHIFT; val |= hold << MPI_CSCTL_HOLD_SHIFT; bcm_mpi_writel(val, MPI_CSCTL_REG(cs)); spin_unlock_irqrestore(&bcm63xx_cs_lock, flags); return 0; } EXPORT_SYMBOL(bcm63xx_set_cs_timing); /* * configure other chipselect parameter (data bus size, ...) */ int bcm63xx_set_cs_param(unsigned int cs, u32 params) { unsigned long flags; u32 val; if (!is_valid_cs(cs)) return -EINVAL; /* none of this fields apply to pcmcia */ if (cs == MPI_CS_PCMCIA_COMMON || cs == MPI_CS_PCMCIA_ATTR || cs == MPI_CS_PCMCIA_IO) return -EINVAL; spin_lock_irqsave(&bcm63xx_cs_lock, flags); val = bcm_mpi_readl(MPI_CSCTL_REG(cs)); val &= ~(MPI_CSCTL_DATA16_MASK); val &= ~(MPI_CSCTL_SYNCMODE_MASK); val &= ~(MPI_CSCTL_TSIZE_MASK); val &= ~(MPI_CSCTL_ENDIANSWAP_MASK); val |= params; bcm_mpi_writel(val, MPI_CSCTL_REG(cs)); spin_unlock_irqrestore(&bcm63xx_cs_lock, flags); return 0; } EXPORT_SYMBOL(bcm63xx_set_cs_param); /* * set cs status (enable/disable) */ int bcm63xx_set_cs_status(unsigned int cs, int enable) { unsigned long flags; u32 val; if (!is_valid_cs(cs)) return -EINVAL; spin_lock_irqsave(&bcm63xx_cs_lock, flags); val = bcm_mpi_readl(MPI_CSCTL_REG(cs)); if (enable) val |= MPI_CSCTL_ENABLE_MASK; else val &= ~MPI_CSCTL_ENABLE_MASK; bcm_mpi_writel(val, MPI_CSCTL_REG(cs)); spin_unlock_irqrestore(&bcm63xx_cs_lock, flags); return 0; } EXPORT_SYMBOL(bcm63xx_set_cs_status);
linux-master
arch/mips/bcm63xx/cs.c
/* * Broadcom BCM63xx flash registration * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> * Copyright (C) 2008 Florian Fainelli <[email protected]> * Copyright (C) 2012 Jonas Gorski <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/physmap.h> #include <bcm63xx_cpu.h> #include <bcm63xx_dev_flash.h> #include <bcm63xx_regs.h> #include <bcm63xx_io.h> static struct mtd_partition mtd_partitions[] = { { .name = "cfe", .offset = 0x0, .size = 0x40000, } }; static const char *bcm63xx_part_types[] = { "bcm63xxpart", NULL }; static struct physmap_flash_data flash_data = { .width = 2, .parts = mtd_partitions, .part_probe_types = bcm63xx_part_types, }; static struct resource mtd_resources[] = { { .start = 0, /* filled at runtime */ .end = 0, /* filled at runtime */ .flags = IORESOURCE_MEM, } }; static struct platform_device mtd_dev = { .name = "physmap-flash", .resource = mtd_resources, .num_resources = ARRAY_SIZE(mtd_resources), .dev = { .platform_data = &flash_data, }, }; static int __init bcm63xx_detect_flash_type(void) { u32 val; switch (bcm63xx_get_cpu_id()) { case BCM6328_CPU_ID: val = bcm_misc_readl(MISC_STRAPBUS_6328_REG); if (val & STRAPBUS_6328_BOOT_SEL_SERIAL) return BCM63XX_FLASH_TYPE_SERIAL; else return BCM63XX_FLASH_TYPE_NAND; case BCM6338_CPU_ID: case BCM6345_CPU_ID: case BCM6348_CPU_ID: /* no way to auto detect so assume parallel */ return BCM63XX_FLASH_TYPE_PARALLEL; case BCM3368_CPU_ID: case BCM6358_CPU_ID: val = bcm_gpio_readl(GPIO_STRAPBUS_REG); if (val & STRAPBUS_6358_BOOT_SEL_PARALLEL) return BCM63XX_FLASH_TYPE_PARALLEL; else return BCM63XX_FLASH_TYPE_SERIAL; case BCM6362_CPU_ID: val = bcm_misc_readl(MISC_STRAPBUS_6362_REG); if (val & STRAPBUS_6362_BOOT_SEL_SERIAL) return BCM63XX_FLASH_TYPE_SERIAL; else return BCM63XX_FLASH_TYPE_NAND; case BCM6368_CPU_ID: val = bcm_gpio_readl(GPIO_STRAPBUS_REG); switch (val & STRAPBUS_6368_BOOT_SEL_MASK) { case STRAPBUS_6368_BOOT_SEL_NAND: return BCM63XX_FLASH_TYPE_NAND; case STRAPBUS_6368_BOOT_SEL_SERIAL: return BCM63XX_FLASH_TYPE_SERIAL; case STRAPBUS_6368_BOOT_SEL_PARALLEL: return BCM63XX_FLASH_TYPE_PARALLEL; } fallthrough; default: return -EINVAL; } } int __init bcm63xx_flash_register(void) { int flash_type; u32 val; flash_type = bcm63xx_detect_flash_type(); switch (flash_type) { case BCM63XX_FLASH_TYPE_PARALLEL: /* read base address of boot chip select (0) */ val = bcm_mpi_readl(MPI_CSBASE_REG(0)); val &= MPI_CSBASE_BASE_MASK; mtd_resources[0].start = val; mtd_resources[0].end = 0x1FFFFFFF; return platform_device_register(&mtd_dev); case BCM63XX_FLASH_TYPE_SERIAL: pr_warn("unsupported serial flash detected\n"); return -ENODEV; case BCM63XX_FLASH_TYPE_NAND: pr_warn("unsupported NAND flash detected\n"); return -ENODEV; default: pr_err("flash detection failed for BCM%x: %d\n", bcm63xx_get_cpu_id(), flash_type); return -ENODEV; } }
linux-master
arch/mips/bcm63xx/dev-flash.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2012 Jonas Gorski <[email protected]> */ #include <linux/init.h> #include <linux/export.h> #include <linux/mutex.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/delay.h> #include <bcm63xx_cpu.h> #include <bcm63xx_io.h> #include <bcm63xx_regs.h> #include <bcm63xx_reset.h> #define __GEN_RESET_BITS_TABLE(__cpu) \ [BCM63XX_RESET_SPI] = BCM## __cpu ##_RESET_SPI, \ [BCM63XX_RESET_ENET] = BCM## __cpu ##_RESET_ENET, \ [BCM63XX_RESET_USBH] = BCM## __cpu ##_RESET_USBH, \ [BCM63XX_RESET_USBD] = BCM## __cpu ##_RESET_USBD, \ [BCM63XX_RESET_DSL] = BCM## __cpu ##_RESET_DSL, \ [BCM63XX_RESET_SAR] = BCM## __cpu ##_RESET_SAR, \ [BCM63XX_RESET_EPHY] = BCM## __cpu ##_RESET_EPHY, \ [BCM63XX_RESET_ENETSW] = BCM## __cpu ##_RESET_ENETSW, \ [BCM63XX_RESET_PCM] = BCM## __cpu ##_RESET_PCM, \ [BCM63XX_RESET_MPI] = BCM## __cpu ##_RESET_MPI, \ [BCM63XX_RESET_PCIE] = BCM## __cpu ##_RESET_PCIE, \ [BCM63XX_RESET_PCIE_EXT] = BCM## __cpu ##_RESET_PCIE_EXT, #define BCM3368_RESET_SPI SOFTRESET_3368_SPI_MASK #define BCM3368_RESET_ENET SOFTRESET_3368_ENET_MASK #define BCM3368_RESET_USBH 0 #define BCM3368_RESET_USBD SOFTRESET_3368_USBS_MASK #define BCM3368_RESET_DSL 0 #define BCM3368_RESET_SAR 0 #define BCM3368_RESET_EPHY SOFTRESET_3368_EPHY_MASK #define BCM3368_RESET_ENETSW 0 #define BCM3368_RESET_PCM SOFTRESET_3368_PCM_MASK #define BCM3368_RESET_MPI SOFTRESET_3368_MPI_MASK #define BCM3368_RESET_PCIE 0 #define BCM3368_RESET_PCIE_EXT 0 #define BCM6328_RESET_SPI SOFTRESET_6328_SPI_MASK #define BCM6328_RESET_ENET 0 #define BCM6328_RESET_USBH SOFTRESET_6328_USBH_MASK #define BCM6328_RESET_USBD SOFTRESET_6328_USBS_MASK #define BCM6328_RESET_DSL 0 #define BCM6328_RESET_SAR SOFTRESET_6328_SAR_MASK #define BCM6328_RESET_EPHY SOFTRESET_6328_EPHY_MASK #define BCM6328_RESET_ENETSW SOFTRESET_6328_ENETSW_MASK #define BCM6328_RESET_PCM SOFTRESET_6328_PCM_MASK #define BCM6328_RESET_MPI 0 #define BCM6328_RESET_PCIE \ (SOFTRESET_6328_PCIE_MASK | \ SOFTRESET_6328_PCIE_CORE_MASK | \ SOFTRESET_6328_PCIE_HARD_MASK) #define BCM6328_RESET_PCIE_EXT SOFTRESET_6328_PCIE_EXT_MASK #define BCM6338_RESET_SPI SOFTRESET_6338_SPI_MASK #define BCM6338_RESET_ENET SOFTRESET_6338_ENET_MASK #define BCM6338_RESET_USBH SOFTRESET_6338_USBH_MASK #define BCM6338_RESET_USBD SOFTRESET_6338_USBS_MASK #define BCM6338_RESET_DSL SOFTRESET_6338_ADSL_MASK #define BCM6338_RESET_SAR SOFTRESET_6338_SAR_MASK #define BCM6338_RESET_EPHY 0 #define BCM6338_RESET_ENETSW 0 #define BCM6338_RESET_PCM 0 #define BCM6338_RESET_MPI 0 #define BCM6338_RESET_PCIE 0 #define BCM6338_RESET_PCIE_EXT 0 #define BCM6348_RESET_SPI SOFTRESET_6348_SPI_MASK #define BCM6348_RESET_ENET SOFTRESET_6348_ENET_MASK #define BCM6348_RESET_USBH SOFTRESET_6348_USBH_MASK #define BCM6348_RESET_USBD SOFTRESET_6348_USBS_MASK #define BCM6348_RESET_DSL SOFTRESET_6348_ADSL_MASK #define BCM6348_RESET_SAR SOFTRESET_6348_SAR_MASK #define BCM6348_RESET_EPHY 0 #define BCM6348_RESET_ENETSW 0 #define BCM6348_RESET_PCM 0 #define BCM6348_RESET_MPI 0 #define BCM6348_RESET_PCIE 0 #define BCM6348_RESET_PCIE_EXT 0 #define BCM6358_RESET_SPI SOFTRESET_6358_SPI_MASK #define BCM6358_RESET_ENET SOFTRESET_6358_ENET_MASK #define BCM6358_RESET_USBH SOFTRESET_6358_USBH_MASK #define BCM6358_RESET_USBD 0 #define BCM6358_RESET_DSL SOFTRESET_6358_ADSL_MASK #define BCM6358_RESET_SAR SOFTRESET_6358_SAR_MASK #define BCM6358_RESET_EPHY SOFTRESET_6358_EPHY_MASK #define BCM6358_RESET_ENETSW 0 #define BCM6358_RESET_PCM SOFTRESET_6358_PCM_MASK #define BCM6358_RESET_MPI SOFTRESET_6358_MPI_MASK #define BCM6358_RESET_PCIE 0 #define BCM6358_RESET_PCIE_EXT 0 #define BCM6362_RESET_SPI SOFTRESET_6362_SPI_MASK #define BCM6362_RESET_ENET 0 #define BCM6362_RESET_USBH SOFTRESET_6362_USBH_MASK #define BCM6362_RESET_USBD SOFTRESET_6362_USBS_MASK #define BCM6362_RESET_DSL 0 #define BCM6362_RESET_SAR SOFTRESET_6362_SAR_MASK #define BCM6362_RESET_EPHY SOFTRESET_6362_EPHY_MASK #define BCM6362_RESET_ENETSW SOFTRESET_6362_ENETSW_MASK #define BCM6362_RESET_PCM SOFTRESET_6362_PCM_MASK #define BCM6362_RESET_MPI 0 #define BCM6362_RESET_PCIE (SOFTRESET_6362_PCIE_MASK | \ SOFTRESET_6362_PCIE_CORE_MASK) #define BCM6362_RESET_PCIE_EXT SOFTRESET_6362_PCIE_EXT_MASK #define BCM6368_RESET_SPI SOFTRESET_6368_SPI_MASK #define BCM6368_RESET_ENET 0 #define BCM6368_RESET_USBH SOFTRESET_6368_USBH_MASK #define BCM6368_RESET_USBD SOFTRESET_6368_USBS_MASK #define BCM6368_RESET_DSL 0 #define BCM6368_RESET_SAR SOFTRESET_6368_SAR_MASK #define BCM6368_RESET_EPHY SOFTRESET_6368_EPHY_MASK #define BCM6368_RESET_ENETSW SOFTRESET_6368_ENETSW_MASK #define BCM6368_RESET_PCM SOFTRESET_6368_PCM_MASK #define BCM6368_RESET_MPI SOFTRESET_6368_MPI_MASK #define BCM6368_RESET_PCIE 0 #define BCM6368_RESET_PCIE_EXT 0 /* * core reset bits */ static const u32 bcm3368_reset_bits[] = { __GEN_RESET_BITS_TABLE(3368) }; static const u32 bcm6328_reset_bits[] = { __GEN_RESET_BITS_TABLE(6328) }; static const u32 bcm6338_reset_bits[] = { __GEN_RESET_BITS_TABLE(6338) }; static const u32 bcm6348_reset_bits[] = { __GEN_RESET_BITS_TABLE(6348) }; static const u32 bcm6358_reset_bits[] = { __GEN_RESET_BITS_TABLE(6358) }; static const u32 bcm6362_reset_bits[] = { __GEN_RESET_BITS_TABLE(6362) }; static const u32 bcm6368_reset_bits[] = { __GEN_RESET_BITS_TABLE(6368) }; const u32 *bcm63xx_reset_bits; static int reset_reg; static int __init bcm63xx_reset_bits_init(void) { if (BCMCPU_IS_3368()) { reset_reg = PERF_SOFTRESET_6358_REG; bcm63xx_reset_bits = bcm3368_reset_bits; } else if (BCMCPU_IS_6328()) { reset_reg = PERF_SOFTRESET_6328_REG; bcm63xx_reset_bits = bcm6328_reset_bits; } else if (BCMCPU_IS_6338()) { reset_reg = PERF_SOFTRESET_REG; bcm63xx_reset_bits = bcm6338_reset_bits; } else if (BCMCPU_IS_6348()) { reset_reg = PERF_SOFTRESET_REG; bcm63xx_reset_bits = bcm6348_reset_bits; } else if (BCMCPU_IS_6358()) { reset_reg = PERF_SOFTRESET_6358_REG; bcm63xx_reset_bits = bcm6358_reset_bits; } else if (BCMCPU_IS_6362()) { reset_reg = PERF_SOFTRESET_6362_REG; bcm63xx_reset_bits = bcm6362_reset_bits; } else if (BCMCPU_IS_6368()) { reset_reg = PERF_SOFTRESET_6368_REG; bcm63xx_reset_bits = bcm6368_reset_bits; } return 0; } static DEFINE_SPINLOCK(reset_mutex); static void __bcm63xx_core_set_reset(u32 mask, int enable) { unsigned long flags; u32 val; if (!mask) return; spin_lock_irqsave(&reset_mutex, flags); val = bcm_perf_readl(reset_reg); if (enable) val &= ~mask; else val |= mask; bcm_perf_writel(val, reset_reg); spin_unlock_irqrestore(&reset_mutex, flags); } void bcm63xx_core_set_reset(enum bcm63xx_core_reset core, int reset) { __bcm63xx_core_set_reset(bcm63xx_reset_bits[core], reset); } EXPORT_SYMBOL(bcm63xx_core_set_reset); postcore_initcall(bcm63xx_reset_bits_init);
linux-master
arch/mips/bcm63xx/reset.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/memblock.h> #include <linux/ioport.h> #include <linux/pm.h> #include <asm/bootinfo.h> #include <asm/time.h> #include <asm/reboot.h> #include <asm/cacheflush.h> #include <bcm63xx_board.h> #include <bcm63xx_cpu.h> #include <bcm63xx_regs.h> #include <bcm63xx_io.h> #include <bcm63xx_gpio.h> void bcm63xx_machine_halt(void) { pr_info("System halted\n"); while (1) ; } static void bcm6348_a1_reboot(void) { u32 reg; /* soft reset all blocks */ pr_info("soft-resetting all blocks ...\n"); reg = bcm_perf_readl(PERF_SOFTRESET_REG); reg &= ~SOFTRESET_6348_ALL; bcm_perf_writel(reg, PERF_SOFTRESET_REG); mdelay(10); reg = bcm_perf_readl(PERF_SOFTRESET_REG); reg |= SOFTRESET_6348_ALL; bcm_perf_writel(reg, PERF_SOFTRESET_REG); mdelay(10); /* Jump to the power on address. */ pr_info("jumping to reset vector.\n"); /* set high vectors (base at 0xbfc00000 */ set_c0_status(ST0_BEV | ST0_ERL); /* run uncached in kseg0 */ change_c0_config(CONF_CM_CMASK, CONF_CM_UNCACHED); __flush_cache_all(); /* remove all wired TLB entries */ write_c0_wired(0); __asm__ __volatile__( "jr\t%0" : : "r" (0xbfc00000)); while (1) ; } void bcm63xx_machine_reboot(void) { u32 reg, perf_regs[2] = { 0, 0 }; unsigned int i; /* mask and clear all external irq */ switch (bcm63xx_get_cpu_id()) { case BCM3368_CPU_ID: perf_regs[0] = PERF_EXTIRQ_CFG_REG_3368; break; case BCM6328_CPU_ID: perf_regs[0] = PERF_EXTIRQ_CFG_REG_6328; break; case BCM6338_CPU_ID: perf_regs[0] = PERF_EXTIRQ_CFG_REG_6338; break; case BCM6345_CPU_ID: perf_regs[0] = PERF_EXTIRQ_CFG_REG_6345; break; case BCM6348_CPU_ID: perf_regs[0] = PERF_EXTIRQ_CFG_REG_6348; break; case BCM6358_CPU_ID: perf_regs[0] = PERF_EXTIRQ_CFG_REG_6358; break; case BCM6362_CPU_ID: perf_regs[0] = PERF_EXTIRQ_CFG_REG_6362; break; } for (i = 0; i < 2; i++) { if (!perf_regs[i]) break; reg = bcm_perf_readl(perf_regs[i]); if (BCMCPU_IS_6348()) { reg &= ~EXTIRQ_CFG_MASK_ALL_6348; reg |= EXTIRQ_CFG_CLEAR_ALL_6348; } else { reg &= ~EXTIRQ_CFG_MASK_ALL; reg |= EXTIRQ_CFG_CLEAR_ALL; } bcm_perf_writel(reg, perf_regs[i]); } if (BCMCPU_IS_6348() && (bcm63xx_get_cpu_rev() == 0xa1)) bcm6348_a1_reboot(); pr_info("triggering watchdog soft-reset...\n"); if (BCMCPU_IS_6328()) { bcm_wdt_writel(1, WDT_SOFTRESET_REG); } else { reg = bcm_perf_readl(PERF_SYS_PLL_CTL_REG); reg |= SYS_PLL_SOFT_RESET; bcm_perf_writel(reg, PERF_SYS_PLL_CTL_REG); } while (1) ; } static void __bcm63xx_machine_reboot(char *p) { bcm63xx_machine_reboot(); } /* * return system type in /proc/cpuinfo */ const char *get_system_type(void) { static char buf[128]; snprintf(buf, sizeof(buf), "bcm63xx/%s (0x%04x/0x%02X)", board_get_name(), bcm63xx_get_cpu_id(), bcm63xx_get_cpu_rev()); return buf; } void __init plat_time_init(void) { mips_hpt_frequency = bcm63xx_get_cpu_freq() / 2; } void __init plat_mem_setup(void) { memblock_add(0, bcm63xx_get_memory_size()); _machine_halt = bcm63xx_machine_halt; _machine_restart = __bcm63xx_machine_reboot; pm_power_off = bcm63xx_machine_halt; set_io_port_base(0); ioport_resource.start = 0; ioport_resource.end = ~0; board_setup(); } int __init bcm63xx_register_devices(void) { /* register gpiochip */ bcm63xx_gpio_init(); return board_register_devices(); } arch_initcall(bcm63xx_register_devices);
linux-master
arch/mips/bcm63xx/setup.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/init.h> #include <linux/export.h> #include <linux/mutex.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/delay.h> #include <bcm63xx_cpu.h> #include <bcm63xx_io.h> #include <bcm63xx_regs.h> #include <bcm63xx_reset.h> struct clk { void (*set)(struct clk *, int); unsigned int rate; unsigned int usage; int id; }; static DEFINE_MUTEX(clocks_mutex); static void clk_enable_unlocked(struct clk *clk) { if (clk->set && (clk->usage++) == 0) clk->set(clk, 1); } static void clk_disable_unlocked(struct clk *clk) { if (clk->set && (--clk->usage) == 0) clk->set(clk, 0); } static void bcm_hwclock_set(u32 mask, int enable) { u32 reg; reg = bcm_perf_readl(PERF_CKCTL_REG); if (enable) reg |= mask; else reg &= ~mask; bcm_perf_writel(reg, PERF_CKCTL_REG); } /* * Ethernet MAC "misc" clock: dma clocks and main clock on 6348 */ static void enet_misc_set(struct clk *clk, int enable) { u32 mask; if (BCMCPU_IS_6338()) mask = CKCTL_6338_ENET_EN; else if (BCMCPU_IS_6345()) mask = CKCTL_6345_ENET_EN; else if (BCMCPU_IS_6348()) mask = CKCTL_6348_ENET_EN; else /* BCMCPU_IS_6358 */ mask = CKCTL_6358_EMUSB_EN; bcm_hwclock_set(mask, enable); } static struct clk clk_enet_misc = { .set = enet_misc_set, }; /* * Ethernet MAC clocks: only relevant on 6358, silently enable misc * clocks */ static void enetx_set(struct clk *clk, int enable) { if (enable) clk_enable_unlocked(&clk_enet_misc); else clk_disable_unlocked(&clk_enet_misc); if (BCMCPU_IS_3368() || BCMCPU_IS_6358()) { u32 mask; if (clk->id == 0) mask = CKCTL_6358_ENET0_EN; else mask = CKCTL_6358_ENET1_EN; bcm_hwclock_set(mask, enable); } } static struct clk clk_enet0 = { .id = 0, .set = enetx_set, }; static struct clk clk_enet1 = { .id = 1, .set = enetx_set, }; /* * Ethernet PHY clock */ static void ephy_set(struct clk *clk, int enable) { if (BCMCPU_IS_3368() || BCMCPU_IS_6358()) bcm_hwclock_set(CKCTL_6358_EPHY_EN, enable); } static struct clk clk_ephy = { .set = ephy_set, }; /* * Ethernet switch SAR clock */ static void swpkt_sar_set(struct clk *clk, int enable) { if (BCMCPU_IS_6368()) bcm_hwclock_set(CKCTL_6368_SWPKT_SAR_EN, enable); else return; } static struct clk clk_swpkt_sar = { .set = swpkt_sar_set, }; /* * Ethernet switch USB clock */ static void swpkt_usb_set(struct clk *clk, int enable) { if (BCMCPU_IS_6368()) bcm_hwclock_set(CKCTL_6368_SWPKT_USB_EN, enable); else return; } static struct clk clk_swpkt_usb = { .set = swpkt_usb_set, }; /* * Ethernet switch clock */ static void enetsw_set(struct clk *clk, int enable) { if (BCMCPU_IS_6328()) { bcm_hwclock_set(CKCTL_6328_ROBOSW_EN, enable); } else if (BCMCPU_IS_6362()) { bcm_hwclock_set(CKCTL_6362_ROBOSW_EN, enable); } else if (BCMCPU_IS_6368()) { if (enable) { clk_enable_unlocked(&clk_swpkt_sar); clk_enable_unlocked(&clk_swpkt_usb); } else { clk_disable_unlocked(&clk_swpkt_usb); clk_disable_unlocked(&clk_swpkt_sar); } bcm_hwclock_set(CKCTL_6368_ROBOSW_EN, enable); } else { return; } if (enable) { /* reset switch core afer clock change */ bcm63xx_core_set_reset(BCM63XX_RESET_ENETSW, 1); msleep(10); bcm63xx_core_set_reset(BCM63XX_RESET_ENETSW, 0); msleep(10); } } static struct clk clk_enetsw = { .set = enetsw_set, }; /* * PCM clock */ static void pcm_set(struct clk *clk, int enable) { if (BCMCPU_IS_3368()) bcm_hwclock_set(CKCTL_3368_PCM_EN, enable); if (BCMCPU_IS_6358()) bcm_hwclock_set(CKCTL_6358_PCM_EN, enable); } static struct clk clk_pcm = { .set = pcm_set, }; /* * USB host clock */ static void usbh_set(struct clk *clk, int enable) { if (BCMCPU_IS_6328()) bcm_hwclock_set(CKCTL_6328_USBH_EN, enable); else if (BCMCPU_IS_6348()) bcm_hwclock_set(CKCTL_6348_USBH_EN, enable); else if (BCMCPU_IS_6362()) bcm_hwclock_set(CKCTL_6362_USBH_EN, enable); else if (BCMCPU_IS_6368()) bcm_hwclock_set(CKCTL_6368_USBH_EN, enable); } static struct clk clk_usbh = { .set = usbh_set, }; /* * USB device clock */ static void usbd_set(struct clk *clk, int enable) { if (BCMCPU_IS_6328()) bcm_hwclock_set(CKCTL_6328_USBD_EN, enable); else if (BCMCPU_IS_6362()) bcm_hwclock_set(CKCTL_6362_USBD_EN, enable); else if (BCMCPU_IS_6368()) bcm_hwclock_set(CKCTL_6368_USBD_EN, enable); } static struct clk clk_usbd = { .set = usbd_set, }; /* * SPI clock */ static void spi_set(struct clk *clk, int enable) { u32 mask; if (BCMCPU_IS_6338()) mask = CKCTL_6338_SPI_EN; else if (BCMCPU_IS_6348()) mask = CKCTL_6348_SPI_EN; else if (BCMCPU_IS_3368() || BCMCPU_IS_6358()) mask = CKCTL_6358_SPI_EN; else if (BCMCPU_IS_6362()) mask = CKCTL_6362_SPI_EN; else /* BCMCPU_IS_6368 */ mask = CKCTL_6368_SPI_EN; bcm_hwclock_set(mask, enable); } static struct clk clk_spi = { .set = spi_set, }; /* * HSSPI clock */ static void hsspi_set(struct clk *clk, int enable) { u32 mask; if (BCMCPU_IS_6328()) mask = CKCTL_6328_HSSPI_EN; else if (BCMCPU_IS_6362()) mask = CKCTL_6362_HSSPI_EN; else return; bcm_hwclock_set(mask, enable); } static struct clk clk_hsspi = { .set = hsspi_set, }; /* * HSSPI PLL */ static struct clk clk_hsspi_pll; /* * XTM clock */ static void xtm_set(struct clk *clk, int enable) { if (!BCMCPU_IS_6368()) return; if (enable) clk_enable_unlocked(&clk_swpkt_sar); else clk_disable_unlocked(&clk_swpkt_sar); bcm_hwclock_set(CKCTL_6368_SAR_EN, enable); if (enable) { /* reset sar core afer clock change */ bcm63xx_core_set_reset(BCM63XX_RESET_SAR, 1); mdelay(1); bcm63xx_core_set_reset(BCM63XX_RESET_SAR, 0); mdelay(1); } } static struct clk clk_xtm = { .set = xtm_set, }; /* * IPsec clock */ static void ipsec_set(struct clk *clk, int enable) { if (BCMCPU_IS_6362()) bcm_hwclock_set(CKCTL_6362_IPSEC_EN, enable); else if (BCMCPU_IS_6368()) bcm_hwclock_set(CKCTL_6368_IPSEC_EN, enable); } static struct clk clk_ipsec = { .set = ipsec_set, }; /* * PCIe clock */ static void pcie_set(struct clk *clk, int enable) { if (BCMCPU_IS_6328()) bcm_hwclock_set(CKCTL_6328_PCIE_EN, enable); else if (BCMCPU_IS_6362()) bcm_hwclock_set(CKCTL_6362_PCIE_EN, enable); } static struct clk clk_pcie = { .set = pcie_set, }; /* * Internal peripheral clock */ static struct clk clk_periph = { .rate = (50 * 1000 * 1000), }; /* * Linux clock API implementation */ int clk_enable(struct clk *clk) { if (!clk) return 0; mutex_lock(&clocks_mutex); clk_enable_unlocked(clk); mutex_unlock(&clocks_mutex); return 0; } EXPORT_SYMBOL(clk_enable); void clk_disable(struct clk *clk) { if (!clk) return; mutex_lock(&clocks_mutex); clk_disable_unlocked(clk); mutex_unlock(&clocks_mutex); } EXPORT_SYMBOL(clk_disable); struct clk *clk_get_parent(struct clk *clk) { return NULL; } EXPORT_SYMBOL(clk_get_parent); int clk_set_parent(struct clk *clk, struct clk *parent) { return 0; } EXPORT_SYMBOL(clk_set_parent); unsigned long clk_get_rate(struct clk *clk) { if (!clk) return 0; return clk->rate; } EXPORT_SYMBOL(clk_get_rate); int clk_set_rate(struct clk *clk, unsigned long rate) { return 0; } EXPORT_SYMBOL_GPL(clk_set_rate); long clk_round_rate(struct clk *clk, unsigned long rate) { return 0; } EXPORT_SYMBOL_GPL(clk_round_rate); static struct clk_lookup bcm3368_clks[] = { /* fixed rate clocks */ CLKDEV_INIT(NULL, "periph", &clk_periph), CLKDEV_INIT("bcm63xx_uart.0", "refclk", &clk_periph), CLKDEV_INIT("bcm63xx_uart.1", "refclk", &clk_periph), /* gated clocks */ CLKDEV_INIT(NULL, "enet0", &clk_enet0), CLKDEV_INIT(NULL, "enet1", &clk_enet1), CLKDEV_INIT(NULL, "ephy", &clk_ephy), CLKDEV_INIT(NULL, "usbh", &clk_usbh), CLKDEV_INIT(NULL, "usbd", &clk_usbd), CLKDEV_INIT(NULL, "spi", &clk_spi), CLKDEV_INIT(NULL, "pcm", &clk_pcm), CLKDEV_INIT("bcm63xx_enet.0", "enet", &clk_enet0), CLKDEV_INIT("bcm63xx_enet.1", "enet", &clk_enet1), }; static struct clk_lookup bcm6328_clks[] = { /* fixed rate clocks */ CLKDEV_INIT(NULL, "periph", &clk_periph), CLKDEV_INIT("bcm63xx_uart.0", "refclk", &clk_periph), CLKDEV_INIT("bcm63xx_uart.1", "refclk", &clk_periph), CLKDEV_INIT("bcm63xx-hsspi.0", "pll", &clk_hsspi_pll), /* gated clocks */ CLKDEV_INIT(NULL, "enetsw", &clk_enetsw), CLKDEV_INIT(NULL, "usbh", &clk_usbh), CLKDEV_INIT(NULL, "usbd", &clk_usbd), CLKDEV_INIT(NULL, "hsspi", &clk_hsspi), CLKDEV_INIT(NULL, "pcie", &clk_pcie), }; static struct clk_lookup bcm6338_clks[] = { /* fixed rate clocks */ CLKDEV_INIT(NULL, "periph", &clk_periph), CLKDEV_INIT("bcm63xx_uart.0", "refclk", &clk_periph), /* gated clocks */ CLKDEV_INIT(NULL, "enet0", &clk_enet0), CLKDEV_INIT(NULL, "enet1", &clk_enet1), CLKDEV_INIT(NULL, "ephy", &clk_ephy), CLKDEV_INIT(NULL, "usbh", &clk_usbh), CLKDEV_INIT(NULL, "usbd", &clk_usbd), CLKDEV_INIT(NULL, "spi", &clk_spi), CLKDEV_INIT("bcm63xx_enet.0", "enet", &clk_enet_misc), }; static struct clk_lookup bcm6345_clks[] = { /* fixed rate clocks */ CLKDEV_INIT(NULL, "periph", &clk_periph), CLKDEV_INIT("bcm63xx_uart.0", "refclk", &clk_periph), /* gated clocks */ CLKDEV_INIT(NULL, "enet0", &clk_enet0), CLKDEV_INIT(NULL, "enet1", &clk_enet1), CLKDEV_INIT(NULL, "ephy", &clk_ephy), CLKDEV_INIT(NULL, "usbh", &clk_usbh), CLKDEV_INIT(NULL, "usbd", &clk_usbd), CLKDEV_INIT(NULL, "spi", &clk_spi), CLKDEV_INIT("bcm63xx_enet.0", "enet", &clk_enet_misc), }; static struct clk_lookup bcm6348_clks[] = { /* fixed rate clocks */ CLKDEV_INIT(NULL, "periph", &clk_periph), CLKDEV_INIT("bcm63xx_uart.0", "refclk", &clk_periph), /* gated clocks */ CLKDEV_INIT(NULL, "enet0", &clk_enet0), CLKDEV_INIT(NULL, "enet1", &clk_enet1), CLKDEV_INIT(NULL, "ephy", &clk_ephy), CLKDEV_INIT(NULL, "usbh", &clk_usbh), CLKDEV_INIT(NULL, "usbd", &clk_usbd), CLKDEV_INIT(NULL, "spi", &clk_spi), CLKDEV_INIT("bcm63xx_enet.0", "enet", &clk_enet_misc), CLKDEV_INIT("bcm63xx_enet.1", "enet", &clk_enet_misc), }; static struct clk_lookup bcm6358_clks[] = { /* fixed rate clocks */ CLKDEV_INIT(NULL, "periph", &clk_periph), CLKDEV_INIT("bcm63xx_uart.0", "refclk", &clk_periph), CLKDEV_INIT("bcm63xx_uart.1", "refclk", &clk_periph), /* gated clocks */ CLKDEV_INIT(NULL, "enet0", &clk_enet0), CLKDEV_INIT(NULL, "enet1", &clk_enet1), CLKDEV_INIT(NULL, "ephy", &clk_ephy), CLKDEV_INIT(NULL, "usbh", &clk_usbh), CLKDEV_INIT(NULL, "usbd", &clk_usbd), CLKDEV_INIT(NULL, "spi", &clk_spi), CLKDEV_INIT(NULL, "pcm", &clk_pcm), CLKDEV_INIT(NULL, "swpkt_sar", &clk_swpkt_sar), CLKDEV_INIT(NULL, "swpkt_usb", &clk_swpkt_usb), CLKDEV_INIT("bcm63xx_enet.0", "enet", &clk_enet0), CLKDEV_INIT("bcm63xx_enet.1", "enet", &clk_enet1), }; static struct clk_lookup bcm6362_clks[] = { /* fixed rate clocks */ CLKDEV_INIT(NULL, "periph", &clk_periph), CLKDEV_INIT("bcm63xx_uart.0", "refclk", &clk_periph), CLKDEV_INIT("bcm63xx_uart.1", "refclk", &clk_periph), CLKDEV_INIT("bcm63xx-hsspi.0", "pll", &clk_hsspi_pll), /* gated clocks */ CLKDEV_INIT(NULL, "enetsw", &clk_enetsw), CLKDEV_INIT(NULL, "usbh", &clk_usbh), CLKDEV_INIT(NULL, "usbd", &clk_usbd), CLKDEV_INIT(NULL, "spi", &clk_spi), CLKDEV_INIT(NULL, "hsspi", &clk_hsspi), CLKDEV_INIT(NULL, "pcie", &clk_pcie), CLKDEV_INIT(NULL, "ipsec", &clk_ipsec), }; static struct clk_lookup bcm6368_clks[] = { /* fixed rate clocks */ CLKDEV_INIT(NULL, "periph", &clk_periph), CLKDEV_INIT("bcm63xx_uart.0", "refclk", &clk_periph), CLKDEV_INIT("bcm63xx_uart.1", "refclk", &clk_periph), /* gated clocks */ CLKDEV_INIT(NULL, "enetsw", &clk_enetsw), CLKDEV_INIT(NULL, "usbh", &clk_usbh), CLKDEV_INIT(NULL, "usbd", &clk_usbd), CLKDEV_INIT(NULL, "spi", &clk_spi), CLKDEV_INIT(NULL, "xtm", &clk_xtm), CLKDEV_INIT(NULL, "ipsec", &clk_ipsec), }; #define HSSPI_PLL_HZ_6328 133333333 #define HSSPI_PLL_HZ_6362 400000000 static int __init bcm63xx_clk_init(void) { switch (bcm63xx_get_cpu_id()) { case BCM3368_CPU_ID: clkdev_add_table(bcm3368_clks, ARRAY_SIZE(bcm3368_clks)); break; case BCM6328_CPU_ID: clk_hsspi_pll.rate = HSSPI_PLL_HZ_6328; clkdev_add_table(bcm6328_clks, ARRAY_SIZE(bcm6328_clks)); break; case BCM6338_CPU_ID: clkdev_add_table(bcm6338_clks, ARRAY_SIZE(bcm6338_clks)); break; case BCM6345_CPU_ID: clkdev_add_table(bcm6345_clks, ARRAY_SIZE(bcm6345_clks)); break; case BCM6348_CPU_ID: clkdev_add_table(bcm6348_clks, ARRAY_SIZE(bcm6348_clks)); break; case BCM6358_CPU_ID: clkdev_add_table(bcm6358_clks, ARRAY_SIZE(bcm6358_clks)); break; case BCM6362_CPU_ID: clk_hsspi_pll.rate = HSSPI_PLL_HZ_6362; clkdev_add_table(bcm6362_clks, ARRAY_SIZE(bcm6362_clks)); break; case BCM6368_CPU_ID: clkdev_add_table(bcm6368_clks, ARRAY_SIZE(bcm6368_clks)); break; } return 0; } arch_initcall(bcm63xx_clk_init);
linux-master
arch/mips/bcm63xx/clk.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <bcm63xx_cpu.h> static struct resource uart0_resources[] = { { /* start & end filled at runtime */ .flags = IORESOURCE_MEM, }, { /* start filled at runtime */ .flags = IORESOURCE_IRQ, }, }; static struct resource uart1_resources[] = { { /* start & end filled at runtime */ .flags = IORESOURCE_MEM, }, { /* start filled at runtime */ .flags = IORESOURCE_IRQ, }, }; static struct platform_device bcm63xx_uart_devices[] = { { .name = "bcm63xx_uart", .id = 0, .num_resources = ARRAY_SIZE(uart0_resources), .resource = uart0_resources, }, { .name = "bcm63xx_uart", .id = 1, .num_resources = ARRAY_SIZE(uart1_resources), .resource = uart1_resources, } }; int __init bcm63xx_uart_register(unsigned int id) { if (id >= ARRAY_SIZE(bcm63xx_uart_devices)) return -ENODEV; if (id == 1 && (!BCMCPU_IS_3368() && !BCMCPU_IS_6358() && !BCMCPU_IS_6368())) return -ENODEV; if (id == 0) { uart0_resources[0].start = bcm63xx_regset_address(RSET_UART0); uart0_resources[0].end = uart0_resources[0].start + RSET_UART_SIZE - 1; uart0_resources[1].start = bcm63xx_get_irq_number(IRQ_UART0); } if (id == 1) { uart1_resources[0].start = bcm63xx_regset_address(RSET_UART1); uart1_resources[0].end = uart1_resources[0].start + RSET_UART_SIZE - 1; uart1_resources[1].start = bcm63xx_get_irq_number(IRQ_UART1); } return platform_device_register(&bcm63xx_uart_devices[id]); }
linux-master
arch/mips/bcm63xx/dev-uart.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> * Copyright (C) 2008 Florian Fainelli <[email protected]> * Copyright (C) 2012 Jonas Gorski <[email protected]> */ #define pr_fmt(fmt) "bcm63xx_nvram: " fmt #include <linux/bcm963xx_nvram.h> #include <linux/init.h> #include <linux/crc32.h> #include <linux/export.h> #include <linux/kernel.h> #include <linux/if_ether.h> #include <bcm63xx_nvram.h> #define BCM63XX_DEFAULT_PSI_SIZE 64 static struct bcm963xx_nvram nvram; static int mac_addr_used; void __init bcm63xx_nvram_init(void *addr) { u32 crc, expected_crc; u8 hcs_mac_addr[ETH_ALEN] = { 0x00, 0x10, 0x18, 0xff, 0xff, 0xff }; /* extract nvram data */ memcpy(&nvram, addr, BCM963XX_NVRAM_V5_SIZE); /* check checksum before using data */ if (bcm963xx_nvram_checksum(&nvram, &expected_crc, &crc)) pr_warn("nvram checksum failed, contents may be invalid (expected %08x, got %08x)\n", expected_crc, crc); /* Cable modems have a different NVRAM which is embedded in the eCos * firmware and not easily extractible, give at least a MAC address * pool. */ if (BCMCPU_IS_3368()) { memcpy(nvram.mac_addr_base, hcs_mac_addr, ETH_ALEN); nvram.mac_addr_count = 2; } } u8 *bcm63xx_nvram_get_name(void) { return nvram.name; } EXPORT_SYMBOL(bcm63xx_nvram_get_name); int bcm63xx_nvram_get_mac_address(u8 *mac) { u8 *oui; int count; if (mac_addr_used >= nvram.mac_addr_count) { pr_err("not enough mac addresses\n"); return -ENODEV; } memcpy(mac, nvram.mac_addr_base, ETH_ALEN); oui = mac + ETH_ALEN/2 - 1; count = mac_addr_used; while (count--) { u8 *p = mac + ETH_ALEN - 1; do { (*p)++; if (*p != 0) break; p--; } while (p != oui); if (p == oui) { pr_err("unable to fetch mac address\n"); return -ENODEV; } } mac_addr_used++; return 0; } EXPORT_SYMBOL(bcm63xx_nvram_get_mac_address); int bcm63xx_nvram_get_psi_size(void) { if (nvram.psi_size > 0) return nvram.psi_size; return BCM63XX_DEFAULT_PSI_SIZE; } EXPORT_SYMBOL(bcm63xx_nvram_get_psi_size);
linux-master
arch/mips/bcm63xx/nvram.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/init.h> #include <linux/memblock.h> #include <linux/smp.h> #include <asm/bootinfo.h> #include <asm/bmips.h> #include <asm/smp-ops.h> #include <asm/mipsregs.h> #include <bcm63xx_board.h> #include <bcm63xx_cpu.h> #include <bcm63xx_io.h> #include <bcm63xx_regs.h> void __init prom_init(void) { u32 reg, mask; bcm63xx_cpu_init(); /* stop any running watchdog */ bcm_wdt_writel(WDT_STOP_1, WDT_CTL_REG); bcm_wdt_writel(WDT_STOP_2, WDT_CTL_REG); /* disable all hardware blocks clock for now */ if (BCMCPU_IS_3368()) mask = CKCTL_3368_ALL_SAFE_EN; else if (BCMCPU_IS_6328()) mask = CKCTL_6328_ALL_SAFE_EN; else if (BCMCPU_IS_6338()) mask = CKCTL_6338_ALL_SAFE_EN; else if (BCMCPU_IS_6345()) mask = CKCTL_6345_ALL_SAFE_EN; else if (BCMCPU_IS_6348()) mask = CKCTL_6348_ALL_SAFE_EN; else if (BCMCPU_IS_6358()) mask = CKCTL_6358_ALL_SAFE_EN; else if (BCMCPU_IS_6362()) mask = CKCTL_6362_ALL_SAFE_EN; else if (BCMCPU_IS_6368()) mask = CKCTL_6368_ALL_SAFE_EN; else mask = 0; reg = bcm_perf_readl(PERF_CKCTL_REG); reg &= ~mask; bcm_perf_writel(reg, PERF_CKCTL_REG); /* do low level board init */ board_prom_init(); /* set up SMP */ if (!register_bmips_smp_ops()) { /* * BCM6328 might not have its second CPU enabled, while BCM3368 * and BCM6358 need special handling for their shared TLB, so * disable SMP for now. */ if (BCMCPU_IS_6328()) { reg = bcm_readl(BCM_6328_OTP_BASE + OTP_USER_BITS_6328_REG(3)); if (reg & OTP_6328_REG3_TP1_DISABLED) bmips_smp_enabled = 0; } else if (BCMCPU_IS_3368() || BCMCPU_IS_6358()) { bmips_smp_enabled = 0; } if (!bmips_smp_enabled) return; /* * The bootloader has set up the CPU1 reset vector at * 0xa000_0200. * This conflicts with the special interrupt vector (IV). * The bootloader has also set up CPU1 to respond to the wrong * IPI interrupt. * Here we will start up CPU1 in the background and ask it to * reconfigure itself then go back to sleep. */ memcpy((void *)0xa0000200, bmips_smp_movevec, 0x20); __sync(); set_c0_cause(C_SW0); cpumask_set_cpu(1, &bmips_booted_mask); /* * FIXME: we really should have some sort of hazard barrier here */ } }
linux-master
arch/mips/bcm63xx/prom.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Florian Fainelli <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/platform_data/bcm7038_wdt.h> #include <bcm63xx_cpu.h> static struct resource wdt_resources[] = { { .start = -1, /* filled at runtime */ .end = -1, /* filled at runtime */ .flags = IORESOURCE_MEM, }, }; static struct bcm7038_wdt_platform_data bcm63xx_wdt_pdata = { .clk_name = "periph", }; static struct platform_device bcm63xx_wdt_device = { .name = "bcm63xx-wdt", .id = -1, .num_resources = ARRAY_SIZE(wdt_resources), .resource = wdt_resources, .dev = { .platform_data = &bcm63xx_wdt_pdata, }, }; int __init bcm63xx_wdt_register(void) { wdt_resources[0].start = bcm63xx_regset_address(RSET_WDT); wdt_resources[0].end = wdt_resources[0].start; wdt_resources[0].end += RSET_WDT_SIZE - 1; return platform_device_register(&bcm63xx_wdt_device); } arch_initcall(bcm63xx_wdt_register);
linux-master
arch/mips/bcm63xx/dev-wdt.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/export.h> #include <bcm63xx_dev_enet.h> #include <bcm63xx_io.h> #include <bcm63xx_regs.h> static const unsigned long bcm6348_regs_enetdmac[] = { [ENETDMAC_CHANCFG] = ENETDMAC_CHANCFG_REG, [ENETDMAC_IR] = ENETDMAC_IR_REG, [ENETDMAC_IRMASK] = ENETDMAC_IRMASK_REG, [ENETDMAC_MAXBURST] = ENETDMAC_MAXBURST_REG, }; static const unsigned long bcm6345_regs_enetdmac[] = { [ENETDMAC_CHANCFG] = ENETDMA_6345_CHANCFG_REG, [ENETDMAC_IR] = ENETDMA_6345_IR_REG, [ENETDMAC_IRMASK] = ENETDMA_6345_IRMASK_REG, [ENETDMAC_MAXBURST] = ENETDMA_6345_MAXBURST_REG, [ENETDMAC_BUFALLOC] = ENETDMA_6345_BUFALLOC_REG, [ENETDMAC_RSTART] = ENETDMA_6345_RSTART_REG, [ENETDMAC_FC] = ENETDMA_6345_FC_REG, [ENETDMAC_LEN] = ENETDMA_6345_LEN_REG, }; const unsigned long *bcm63xx_regs_enetdmac; EXPORT_SYMBOL(bcm63xx_regs_enetdmac); static __init void bcm63xx_enetdmac_regs_init(void) { if (BCMCPU_IS_6345()) bcm63xx_regs_enetdmac = bcm6345_regs_enetdmac; else bcm63xx_regs_enetdmac = bcm6348_regs_enetdmac; } static struct resource shared_res[] = { { .start = -1, /* filled at runtime */ .end = -1, /* filled at runtime */ .flags = IORESOURCE_MEM, }, { .start = -1, /* filled at runtime */ .end = -1, /* filled at runtime */ .flags = IORESOURCE_MEM, }, { .start = -1, /* filled at runtime */ .end = -1, /* filled at runtime */ .flags = IORESOURCE_MEM, }, }; static struct platform_device bcm63xx_enet_shared_device = { .name = "bcm63xx_enet_shared", .id = 0, .num_resources = ARRAY_SIZE(shared_res), .resource = shared_res, }; static int shared_device_registered; static u64 enet_dmamask = DMA_BIT_MASK(32); static struct resource enet0_res[] = { { .start = -1, /* filled at runtime */ .end = -1, /* filled at runtime */ .flags = IORESOURCE_MEM, }, { .start = -1, /* filled at runtime */ .flags = IORESOURCE_IRQ, }, { .start = -1, /* filled at runtime */ .flags = IORESOURCE_IRQ, }, { .start = -1, /* filled at runtime */ .flags = IORESOURCE_IRQ, }, }; static struct bcm63xx_enet_platform_data enet0_pd; static struct platform_device bcm63xx_enet0_device = { .name = "bcm63xx_enet", .id = 0, .num_resources = ARRAY_SIZE(enet0_res), .resource = enet0_res, .dev = { .platform_data = &enet0_pd, .dma_mask = &enet_dmamask, .coherent_dma_mask = DMA_BIT_MASK(32), }, }; static struct resource enet1_res[] = { { .start = -1, /* filled at runtime */ .end = -1, /* filled at runtime */ .flags = IORESOURCE_MEM, }, { .start = -1, /* filled at runtime */ .flags = IORESOURCE_IRQ, }, { .start = -1, /* filled at runtime */ .flags = IORESOURCE_IRQ, }, { .start = -1, /* filled at runtime */ .flags = IORESOURCE_IRQ, }, }; static struct bcm63xx_enet_platform_data enet1_pd; static struct platform_device bcm63xx_enet1_device = { .name = "bcm63xx_enet", .id = 1, .num_resources = ARRAY_SIZE(enet1_res), .resource = enet1_res, .dev = { .platform_data = &enet1_pd, .dma_mask = &enet_dmamask, .coherent_dma_mask = DMA_BIT_MASK(32), }, }; static struct resource enetsw_res[] = { { /* start & end filled at runtime */ .flags = IORESOURCE_MEM, }, { /* start filled at runtime */ .flags = IORESOURCE_IRQ, }, { /* start filled at runtime */ .flags = IORESOURCE_IRQ, }, }; static struct bcm63xx_enetsw_platform_data enetsw_pd; static struct platform_device bcm63xx_enetsw_device = { .name = "bcm63xx_enetsw", .num_resources = ARRAY_SIZE(enetsw_res), .resource = enetsw_res, .dev = { .platform_data = &enetsw_pd, .dma_mask = &enet_dmamask, .coherent_dma_mask = DMA_BIT_MASK(32), }, }; static int __init register_shared(void) { int ret, chan_count; if (shared_device_registered) return 0; bcm63xx_enetdmac_regs_init(); shared_res[0].start = bcm63xx_regset_address(RSET_ENETDMA); shared_res[0].end = shared_res[0].start; if (BCMCPU_IS_6345()) shared_res[0].end += (RSET_6345_ENETDMA_SIZE) - 1; else shared_res[0].end += (RSET_ENETDMA_SIZE) - 1; if (BCMCPU_IS_6328() || BCMCPU_IS_6362() || BCMCPU_IS_6368()) chan_count = 32; else if (BCMCPU_IS_6345()) chan_count = 8; else chan_count = 16; shared_res[1].start = bcm63xx_regset_address(RSET_ENETDMAC); shared_res[1].end = shared_res[1].start; shared_res[1].end += RSET_ENETDMAC_SIZE(chan_count) - 1; shared_res[2].start = bcm63xx_regset_address(RSET_ENETDMAS); shared_res[2].end = shared_res[2].start; shared_res[2].end += RSET_ENETDMAS_SIZE(chan_count) - 1; ret = platform_device_register(&bcm63xx_enet_shared_device); if (ret) return ret; shared_device_registered = 1; return 0; } int __init bcm63xx_enet_register(int unit, const struct bcm63xx_enet_platform_data *pd) { struct platform_device *pdev; struct bcm63xx_enet_platform_data *dpd; int ret; if (unit > 1) return -ENODEV; if (unit == 1 && (BCMCPU_IS_6338() || BCMCPU_IS_6345())) return -ENODEV; ret = register_shared(); if (ret) return ret; if (unit == 0) { enet0_res[0].start = bcm63xx_regset_address(RSET_ENET0); enet0_res[0].end = enet0_res[0].start; enet0_res[0].end += RSET_ENET_SIZE - 1; enet0_res[1].start = bcm63xx_get_irq_number(IRQ_ENET0); enet0_res[2].start = bcm63xx_get_irq_number(IRQ_ENET0_RXDMA); enet0_res[3].start = bcm63xx_get_irq_number(IRQ_ENET0_TXDMA); pdev = &bcm63xx_enet0_device; } else { enet1_res[0].start = bcm63xx_regset_address(RSET_ENET1); enet1_res[0].end = enet1_res[0].start; enet1_res[0].end += RSET_ENET_SIZE - 1; enet1_res[1].start = bcm63xx_get_irq_number(IRQ_ENET1); enet1_res[2].start = bcm63xx_get_irq_number(IRQ_ENET1_RXDMA); enet1_res[3].start = bcm63xx_get_irq_number(IRQ_ENET1_TXDMA); pdev = &bcm63xx_enet1_device; } /* copy given platform data */ dpd = pdev->dev.platform_data; memcpy(dpd, pd, sizeof(*pd)); /* adjust them in case internal phy is used */ if (dpd->use_internal_phy) { /* internal phy only exists for enet0 */ if (unit == 1) return -ENODEV; dpd->phy_id = 1; dpd->has_phy_interrupt = 1; dpd->phy_interrupt = bcm63xx_get_irq_number(IRQ_ENET_PHY); } dpd->dma_chan_en_mask = ENETDMAC_CHANCFG_EN_MASK; dpd->dma_chan_int_mask = ENETDMAC_IR_PKTDONE_MASK; if (BCMCPU_IS_6345()) { dpd->dma_chan_en_mask |= ENETDMAC_CHANCFG_CHAINING_MASK; dpd->dma_chan_en_mask |= ENETDMAC_CHANCFG_WRAP_EN_MASK; dpd->dma_chan_en_mask |= ENETDMAC_CHANCFG_FLOWC_EN_MASK; dpd->dma_chan_int_mask |= ENETDMA_IR_BUFDONE_MASK; dpd->dma_chan_int_mask |= ENETDMA_IR_NOTOWNER_MASK; dpd->dma_chan_width = ENETDMA_6345_CHAN_WIDTH; dpd->dma_desc_shift = ENETDMA_6345_DESC_SHIFT; } else { dpd->dma_has_sram = true; dpd->dma_chan_width = ENETDMA_CHAN_WIDTH; } if (unit == 0) { dpd->rx_chan = 0; dpd->tx_chan = 1; } else { dpd->rx_chan = 2; dpd->tx_chan = 3; } ret = platform_device_register(pdev); if (ret) return ret; return 0; } int __init bcm63xx_enetsw_register(const struct bcm63xx_enetsw_platform_data *pd) { int ret; if (!BCMCPU_IS_6328() && !BCMCPU_IS_6362() && !BCMCPU_IS_6368()) return -ENODEV; ret = register_shared(); if (ret) return ret; enetsw_res[0].start = bcm63xx_regset_address(RSET_ENETSW); enetsw_res[0].end = enetsw_res[0].start; enetsw_res[0].end += RSET_ENETSW_SIZE - 1; enetsw_res[1].start = bcm63xx_get_irq_number(IRQ_ENETSW_RXDMA0); enetsw_res[2].start = bcm63xx_get_irq_number(IRQ_ENETSW_TXDMA0); if (!enetsw_res[2].start) enetsw_res[2].start = -1; memcpy(bcm63xx_enetsw_device.dev.platform_data, pd, sizeof(*pd)); if (BCMCPU_IS_6328()) enetsw_pd.num_ports = ENETSW_PORTS_6328; else if (BCMCPU_IS_6362() || BCMCPU_IS_6368()) enetsw_pd.num_ports = ENETSW_PORTS_6368; enetsw_pd.dma_has_sram = true; enetsw_pd.dma_chan_width = ENETDMA_CHAN_WIDTH; enetsw_pd.dma_chan_en_mask = ENETDMAC_CHANCFG_EN_MASK; enetsw_pd.dma_chan_int_mask = ENETDMAC_IR_PKTDONE_MASK; ret = platform_device_register(&bcm63xx_enetsw_device); if (ret) return ret; return 0; }
linux-master
arch/mips/bcm63xx/dev-enet.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2012 Jonas Gorski <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <bcm63xx_cpu.h> #include <bcm63xx_dev_hsspi.h> #include <bcm63xx_regs.h> static struct resource spi_resources[] = { { .start = -1, /* filled at runtime */ .end = -1, /* filled at runtime */ .flags = IORESOURCE_MEM, }, { .start = -1, /* filled at runtime */ .flags = IORESOURCE_IRQ, }, }; static struct platform_device bcm63xx_hsspi_device = { .name = "bcm63xx-hsspi", .id = 0, .num_resources = ARRAY_SIZE(spi_resources), .resource = spi_resources, }; int __init bcm63xx_hsspi_register(void) { if (!BCMCPU_IS_6328() && !BCMCPU_IS_6362()) return -ENODEV; spi_resources[0].start = bcm63xx_regset_address(RSET_HSSPI); spi_resources[0].end = spi_resources[0].start; spi_resources[0].end += RSET_HSSPI_SIZE - 1; spi_resources[1].start = bcm63xx_get_irq_number(IRQ_HSSPI); return platform_device_register(&bcm63xx_hsspi_device); }
linux-master
arch/mips/bcm63xx/dev-hsspi.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2009-2011 Florian Fainelli <[email protected]> * Copyright (C) 2010 Tanguy Bouzeloc <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/clk.h> #include <bcm63xx_cpu.h> #include <bcm63xx_dev_spi.h> #include <bcm63xx_regs.h> static struct resource spi_resources[] = { { .start = -1, /* filled at runtime */ .end = -1, /* filled at runtime */ .flags = IORESOURCE_MEM, }, { .start = -1, /* filled at runtime */ .flags = IORESOURCE_IRQ, }, }; static struct platform_device bcm63xx_spi_device = { .id = -1, .num_resources = ARRAY_SIZE(spi_resources), .resource = spi_resources, }; int __init bcm63xx_spi_register(void) { if (BCMCPU_IS_6328() || BCMCPU_IS_6345()) return -ENODEV; spi_resources[0].start = bcm63xx_regset_address(RSET_SPI); spi_resources[0].end = spi_resources[0].start; spi_resources[1].start = bcm63xx_get_irq_number(IRQ_SPI); if (BCMCPU_IS_6338() || BCMCPU_IS_6348()) { bcm63xx_spi_device.name = "bcm6348-spi", spi_resources[0].end += BCM_6348_RSET_SPI_SIZE - 1; } if (BCMCPU_IS_3368() || BCMCPU_IS_6358() || BCMCPU_IS_6362() || BCMCPU_IS_6368()) { bcm63xx_spi_device.name = "bcm6358-spi", spi_resources[0].end += BCM_6358_RSET_SPI_SIZE - 1; } return platform_device_register(&bcm63xx_spi_device); }
linux-master
arch/mips/bcm63xx/dev-spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2008 Maxime Bizon <[email protected]> * Copyright (C) 2008 Florian Fainelli <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/platform_device.h> #include <linux/ssb/ssb.h> #include <asm/addrspace.h> #include <bcm63xx_board.h> #include <bcm63xx_cpu.h> #include <bcm63xx_dev_uart.h> #include <bcm63xx_regs.h> #include <bcm63xx_io.h> #include <bcm63xx_nvram.h> #include <bcm63xx_dev_pci.h> #include <bcm63xx_dev_enet.h> #include <bcm63xx_dev_flash.h> #include <bcm63xx_dev_hsspi.h> #include <bcm63xx_dev_pcmcia.h> #include <bcm63xx_dev_spi.h> #include <bcm63xx_dev_usb_usbd.h> #include <board_bcm963xx.h> #include <uapi/linux/bcm933xx_hcs.h> #define HCS_OFFSET_128K 0x20000 static struct board_info board; /* * known 3368 boards */ #ifdef CONFIG_BCM63XX_CPU_3368 static struct board_info __initdata board_cvg834g = { .name = "CVG834G_E15R3921", .expected_cpu_id = 0x3368, .ephy_reset_gpio = 36, .ephy_reset_gpio_flags = GPIOF_INIT_HIGH, .has_pci = 1, .has_uart0 = 1, .has_uart1 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .leds = { { .name = "CVG834G:green:power", .gpio = 37, .default_trigger= "default-on", }, }, }; #endif /* CONFIG_BCM63XX_CPU_3368 */ /* * known 6328 boards */ #ifdef CONFIG_BCM63XX_CPU_6328 static struct board_info __initdata board_96328avng = { .name = "96328avng", .expected_cpu_id = 0x6328, .has_pci = 1, .has_uart0 = 1, .has_usbd = 0, .usbd = { .use_fullspeed = 0, .port_no = 0, }, .leds = { { .name = "96328avng::ppp-fail", .gpio = 2, .active_low = 1, }, { .name = "96328avng::power", .gpio = 4, .active_low = 1, .default_trigger = "default-on", }, { .name = "96328avng::power-fail", .gpio = 8, .active_low = 1, }, { .name = "96328avng::wps", .gpio = 9, .active_low = 1, }, { .name = "96328avng::ppp", .gpio = 11, .active_low = 1, }, }, }; #endif /* CONFIG_BCM63XX_CPU_6328 */ /* * known 6338 boards */ #ifdef CONFIG_BCM63XX_CPU_6338 static struct board_info __initdata board_96338gw = { .name = "96338GW", .expected_cpu_id = 0x6338, .has_ohci0 = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .force_speed_100 = 1, .force_duplex_full = 1, }, .leds = { { .name = "adsl", .gpio = 3, .active_low = 1, }, { .name = "ses", .gpio = 5, .active_low = 1, }, { .name = "ppp-fail", .gpio = 4, .active_low = 1, }, { .name = "power", .gpio = 0, .active_low = 1, .default_trigger = "default-on", }, { .name = "stop", .gpio = 1, .active_low = 1, } }, }; static struct board_info __initdata board_96338w = { .name = "96338W", .expected_cpu_id = 0x6338, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .force_speed_100 = 1, .force_duplex_full = 1, }, .leds = { { .name = "adsl", .gpio = 3, .active_low = 1, }, { .name = "ses", .gpio = 5, .active_low = 1, }, { .name = "ppp-fail", .gpio = 4, .active_low = 1, }, { .name = "power", .gpio = 0, .active_low = 1, .default_trigger = "default-on", }, { .name = "stop", .gpio = 1, .active_low = 1, }, }, }; #endif /* CONFIG_BCM63XX_CPU_6338 */ /* * known 6345 boards */ #ifdef CONFIG_BCM63XX_CPU_6345 static struct board_info __initdata board_96345gw2 = { .name = "96345GW2", .expected_cpu_id = 0x6345, .has_uart0 = 1, }; #endif /* CONFIG_BCM63XX_CPU_6345 */ /* * known 6348 boards */ #ifdef CONFIG_BCM63XX_CPU_6348 static struct board_info __initdata board_96348r = { .name = "96348R", .expected_cpu_id = 0x6348, .has_pci = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .leds = { { .name = "adsl-fail", .gpio = 2, .active_low = 1, }, { .name = "ppp", .gpio = 3, .active_low = 1, }, { .name = "ppp-fail", .gpio = 4, .active_low = 1, }, { .name = "power", .gpio = 0, .active_low = 1, .default_trigger = "default-on", }, { .name = "stop", .gpio = 1, .active_low = 1, }, }, }; static struct board_info __initdata board_96348gw_10 = { .name = "96348GW-10", .expected_cpu_id = 0x6348, .has_ohci0 = 1, .has_pccard = 1, .has_pci = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, .leds = { { .name = "adsl-fail", .gpio = 2, .active_low = 1, }, { .name = "ppp", .gpio = 3, .active_low = 1, }, { .name = "ppp-fail", .gpio = 4, .active_low = 1, }, { .name = "power", .gpio = 0, .active_low = 1, .default_trigger = "default-on", }, { .name = "stop", .gpio = 1, .active_low = 1, }, }, }; static struct board_info __initdata board_96348gw_11 = { .name = "96348GW-11", .expected_cpu_id = 0x6348, .has_ohci0 = 1, .has_pccard = 1, .has_pci = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, .leds = { { .name = "adsl-fail", .gpio = 2, .active_low = 1, }, { .name = "ppp", .gpio = 3, .active_low = 1, }, { .name = "ppp-fail", .gpio = 4, .active_low = 1, }, { .name = "power", .gpio = 0, .active_low = 1, .default_trigger = "default-on", }, { .name = "stop", .gpio = 1, .active_low = 1, }, }, }; static struct board_info __initdata board_96348gw = { .name = "96348GW", .expected_cpu_id = 0x6348, .has_ohci0 = 1, .has_pci = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, .leds = { { .name = "adsl-fail", .gpio = 2, .active_low = 1, }, { .name = "ppp", .gpio = 3, .active_low = 1, }, { .name = "ppp-fail", .gpio = 4, .active_low = 1, }, { .name = "power", .gpio = 0, .active_low = 1, .default_trigger = "default-on", }, { .name = "stop", .gpio = 1, .active_low = 1, }, }, }; static struct board_info __initdata board_FAST2404 = { .name = "F@ST2404", .expected_cpu_id = 0x6348, .has_ohci0 = 1, .has_pccard = 1, .has_pci = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, }; static struct board_info __initdata board_rta1025w_16 = { .name = "RTA1025W_16", .expected_cpu_id = 0x6348, .has_pci = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, }; static struct board_info __initdata board_DV201AMR = { .name = "DV201AMR", .expected_cpu_id = 0x6348, .has_ohci0 = 1, .has_pci = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, }; static struct board_info __initdata board_96348gw_a = { .name = "96348GW-A", .expected_cpu_id = 0x6348, .has_ohci0 = 1, .has_pci = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, }; #endif /* CONFIG_BCM63XX_CPU_6348 */ /* * known 6358 boards */ #ifdef CONFIG_BCM63XX_CPU_6358 static struct board_info __initdata board_96358vw = { .name = "96358VW", .expected_cpu_id = 0x6358, .has_ehci0 = 1, .has_ohci0 = 1, .has_pccard = 1, .has_pci = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, .leds = { { .name = "adsl-fail", .gpio = 15, .active_low = 1, }, { .name = "ppp", .gpio = 22, .active_low = 1, }, { .name = "ppp-fail", .gpio = 23, .active_low = 1, }, { .name = "power", .gpio = 4, .default_trigger = "default-on", }, { .name = "stop", .gpio = 5, }, }, }; static struct board_info __initdata board_96358vw2 = { .name = "96358VW2", .expected_cpu_id = 0x6358, .has_ehci0 = 1, .has_ohci0 = 1, .has_pccard = 1, .has_pci = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, .leds = { { .name = "adsl", .gpio = 22, .active_low = 1, }, { .name = "ppp-fail", .gpio = 23, }, { .name = "power", .gpio = 5, .active_low = 1, .default_trigger = "default-on", }, { .name = "stop", .gpio = 4, .active_low = 1, }, }, }; static struct board_info __initdata board_AGPFS0 = { .name = "AGPF-S0", .expected_cpu_id = 0x6358, .has_ehci0 = 1, .has_ohci0 = 1, .has_pci = 1, .has_uart0 = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, }; static struct board_info __initdata board_DWVS0 = { .name = "DWV-S0", .expected_cpu_id = 0x6358, .has_ehci0 = 1, .has_ohci0 = 1, .has_pci = 1, .has_enet0 = 1, .enet0 = { .has_phy = 1, .use_internal_phy = 1, }, .has_enet1 = 1, .enet1 = { .force_speed_100 = 1, .force_duplex_full = 1, }, }; #endif /* CONFIG_BCM63XX_CPU_6358 */ /* * all boards */ static const struct board_info __initconst *bcm963xx_boards[] = { #ifdef CONFIG_BCM63XX_CPU_3368 &board_cvg834g, #endif /* CONFIG_BCM63XX_CPU_3368 */ #ifdef CONFIG_BCM63XX_CPU_6328 &board_96328avng, #endif /* CONFIG_BCM63XX_CPU_6328 */ #ifdef CONFIG_BCM63XX_CPU_6338 &board_96338gw, &board_96338w, #endif /* CONFIG_BCM63XX_CPU_6338 */ #ifdef CONFIG_BCM63XX_CPU_6345 &board_96345gw2, #endif /* CONFIG_BCM63XX_CPU_6345 */ #ifdef CONFIG_BCM63XX_CPU_6348 &board_96348r, &board_96348gw, &board_96348gw_10, &board_96348gw_11, &board_FAST2404, &board_DV201AMR, &board_96348gw_a, &board_rta1025w_16, #endif /* CONFIG_BCM63XX_CPU_6348 */ #ifdef CONFIG_BCM63XX_CPU_6358 &board_96358vw, &board_96358vw2, &board_AGPFS0, &board_DWVS0, #endif /* CONFIG_BCM63XX_CPU_6358 */ }; /* * Register a sane SPROMv2 to make the on-board * bcm4318 WLAN work */ #ifdef CONFIG_SSB_PCIHOST static struct ssb_sprom bcm63xx_sprom = { .revision = 0x02, .board_rev = 0x17, .country_code = 0x0, .ant_available_bg = 0x3, .pa0b0 = 0x15ae, .pa0b1 = 0xfa85, .pa0b2 = 0xfe8d, .pa1b0 = 0xffff, .pa1b1 = 0xffff, .pa1b2 = 0xffff, .gpio0 = 0xff, .gpio1 = 0xff, .gpio2 = 0xff, .gpio3 = 0xff, .maxpwr_bg = 0x004c, .itssi_bg = 0x00, .boardflags_lo = 0x2848, .boardflags_hi = 0x0000, }; int bcm63xx_get_fallback_sprom(struct ssb_bus *bus, struct ssb_sprom *out) { if (bus->bustype == SSB_BUSTYPE_PCI) { memcpy(out, &bcm63xx_sprom, sizeof(struct ssb_sprom)); return 0; } else { pr_err("unable to fill SPROM for given bustype\n"); return -EINVAL; } } #endif /* CONFIG_SSB_PCIHOST */ /* * return board name for /proc/cpuinfo */ const char *board_get_name(void) { return board.name; } /* * early init callback, read nvram data from flash and checksum it */ void __init board_prom_init(void) { unsigned int i; u8 *boot_addr, *cfe; char cfe_version[32]; char *board_name = NULL; u32 val; struct bcm_hcs *hcs; /* read base address of boot chip select (0) * 6328/6362 do not have MPI but boot from a fixed address */ if (BCMCPU_IS_6328() || BCMCPU_IS_6362()) { val = 0x18000000; } else { val = bcm_mpi_readl(MPI_CSBASE_REG(0)); val &= MPI_CSBASE_BASE_MASK; } boot_addr = (u8 *)KSEG1ADDR(val); /* dump cfe version */ cfe = boot_addr + BCM963XX_CFE_VERSION_OFFSET; if (strstarts(cfe, "cfe-")) { if(cfe[4] == 'v') { if(cfe[5] == 'd') snprintf(cfe_version, 11, "%s", (char *) &cfe[5]); else if (cfe[10] > 0) snprintf(cfe_version, sizeof(cfe_version), "%u.%u.%u-%u.%u-%u", cfe[5], cfe[6], cfe[7], cfe[8], cfe[9], cfe[10]); else snprintf(cfe_version, sizeof(cfe_version), "%u.%u.%u-%u.%u", cfe[5], cfe[6], cfe[7], cfe[8], cfe[9]); } else { snprintf(cfe_version, 12, "%s", (char *) &cfe[4]); } } else { strcpy(cfe_version, "unknown"); } pr_info("CFE version: %s\n", cfe_version); bcm63xx_nvram_init(boot_addr + BCM963XX_NVRAM_OFFSET); if (BCMCPU_IS_3368()) { hcs = (struct bcm_hcs *)boot_addr; board_name = hcs->filename; } else { board_name = bcm63xx_nvram_get_name(); } /* find board by name */ for (i = 0; i < ARRAY_SIZE(bcm963xx_boards); i++) { if (strncmp(board_name, bcm963xx_boards[i]->name, 16)) continue; /* copy, board desc array is marked initdata */ memcpy(&board, bcm963xx_boards[i], sizeof(board)); break; } /* bail out if board is not found, will complain later */ if (!board.name[0]) { char name[17]; memcpy(name, board_name, 16); name[16] = 0; pr_err("unknown bcm963xx board: %s\n", name); return; } /* setup pin multiplexing depending on board enabled device, * this has to be done this early since PCI init is done * inside arch_initcall */ val = 0; #ifdef CONFIG_PCI if (board.has_pci) { bcm63xx_pci_enabled = 1; if (BCMCPU_IS_6348()) val |= GPIO_MODE_6348_G2_PCI; } #endif /* CONFIG_PCI */ if (board.has_pccard) { if (BCMCPU_IS_6348()) val |= GPIO_MODE_6348_G1_MII_PCCARD; } if (board.has_enet0 && !board.enet0.use_internal_phy) { if (BCMCPU_IS_6348()) val |= GPIO_MODE_6348_G3_EXT_MII | GPIO_MODE_6348_G0_EXT_MII; } if (board.has_enet1 && !board.enet1.use_internal_phy) { if (BCMCPU_IS_6348()) val |= GPIO_MODE_6348_G3_EXT_MII | GPIO_MODE_6348_G0_EXT_MII; } bcm_gpio_writel(val, GPIO_MODE_REG); } /* * second stage init callback, good time to panic if we couldn't * identify on which board we're running since early printk is working */ void __init board_setup(void) { if (!board.name[0]) panic("unable to detect bcm963xx board"); pr_info("board name: %s\n", board.name); /* make sure we're running on expected cpu */ if (bcm63xx_get_cpu_id() != board.expected_cpu_id) panic("unexpected CPU for bcm963xx board"); } static struct gpio_led_platform_data bcm63xx_led_data; static struct platform_device bcm63xx_gpio_leds = { .name = "leds-gpio", .id = 0, .dev.platform_data = &bcm63xx_led_data, }; /* * third stage init callback, register all board devices. */ int __init board_register_devices(void) { if (board.has_uart0) bcm63xx_uart_register(0); if (board.has_uart1) bcm63xx_uart_register(1); if (board.has_pccard) bcm63xx_pcmcia_register(); if (board.has_enet0 && !bcm63xx_nvram_get_mac_address(board.enet0.mac_addr)) bcm63xx_enet_register(0, &board.enet0); if (board.has_enet1 && !bcm63xx_nvram_get_mac_address(board.enet1.mac_addr)) bcm63xx_enet_register(1, &board.enet1); if (board.has_enetsw && !bcm63xx_nvram_get_mac_address(board.enetsw.mac_addr)) bcm63xx_enetsw_register(&board.enetsw); if (board.has_usbd) bcm63xx_usbd_register(&board.usbd); /* Generate MAC address for WLAN and register our SPROM, * do this after registering enet devices */ #ifdef CONFIG_SSB_PCIHOST if (!bcm63xx_nvram_get_mac_address(bcm63xx_sprom.il0mac)) { memcpy(bcm63xx_sprom.et0mac, bcm63xx_sprom.il0mac, ETH_ALEN); memcpy(bcm63xx_sprom.et1mac, bcm63xx_sprom.il0mac, ETH_ALEN); if (ssb_arch_register_fallback_sprom( &bcm63xx_get_fallback_sprom) < 0) pr_err("failed to register fallback SPROM\n"); } #endif /* CONFIG_SSB_PCIHOST */ bcm63xx_spi_register(); bcm63xx_hsspi_register(); bcm63xx_flash_register(); bcm63xx_led_data.num_leds = ARRAY_SIZE(board.leds); bcm63xx_led_data.leds = board.leds; platform_device_register(&bcm63xx_gpio_leds); if (board.ephy_reset_gpio && board.ephy_reset_gpio_flags) gpio_request_one(board.ephy_reset_gpio, board.ephy_reset_gpio_flags, "ephy-reset"); return 0; }
linux-master
arch/mips/bcm63xx/boards/board_bcm963xx.c
// SPDX-License-Identifier: GPL-2.0 /* * Code for replacing ftrace calls with jumps. * * Copyright (C) 2007-2008 Steven Rostedt <[email protected]> * Copyright (C) 2009, 2010 DSLab, Lanzhou University, China * Author: Wu Zhangjin <[email protected]> * * Thanks goes to Steven Rostedt for writing the original x86 version. */ #include <linux/uaccess.h> #include <linux/init.h> #include <linux/ftrace.h> #include <linux/syscalls.h> #include <asm/asm.h> #include <asm/asm-offsets.h> #include <asm/cacheflush.h> #include <asm/syscall.h> #include <asm/uasm.h> #include <asm/unistd.h> #include <asm-generic/sections.h> #if defined(KBUILD_MCOUNT_RA_ADDRESS) && defined(CONFIG_32BIT) #define MCOUNT_OFFSET_INSNS 5 #else #define MCOUNT_OFFSET_INSNS 4 #endif #ifdef CONFIG_DYNAMIC_FTRACE /* Arch override because MIPS doesn't need to run this from stop_machine() */ void arch_ftrace_update_code(int command) { ftrace_modify_all_code(command); } #define JAL 0x0c000000 /* jump & link: ip --> ra, jump to target */ #define ADDR_MASK 0x03ffffff /* op_code|addr : 31...26|25 ....0 */ #define JUMP_RANGE_MASK ((1UL << 28) - 1) #define INSN_NOP 0x00000000 /* nop */ #define INSN_JAL(addr) \ ((unsigned int)(JAL | (((addr) >> 2) & ADDR_MASK))) static unsigned int insn_jal_ftrace_caller __read_mostly; static unsigned int insn_la_mcount[2] __read_mostly; static unsigned int insn_j_ftrace_graph_caller __maybe_unused __read_mostly; static inline void ftrace_dyn_arch_init_insns(void) { u32 *buf; unsigned int v1; /* la v1, _mcount */ v1 = 3; buf = (u32 *)&insn_la_mcount[0]; UASM_i_LA(&buf, v1, MCOUNT_ADDR); /* jal (ftrace_caller + 8), jump over the first two instruction */ buf = (u32 *)&insn_jal_ftrace_caller; uasm_i_jal(&buf, (FTRACE_ADDR + 8) & JUMP_RANGE_MASK); #ifdef CONFIG_FUNCTION_GRAPH_TRACER /* j ftrace_graph_caller */ buf = (u32 *)&insn_j_ftrace_graph_caller; uasm_i_j(&buf, (unsigned long)ftrace_graph_caller & JUMP_RANGE_MASK); #endif } static int ftrace_modify_code(unsigned long ip, unsigned int new_code) { int faulted; /* *(unsigned int *)ip = new_code; */ safe_store_code(new_code, ip, faulted); if (unlikely(faulted)) return -EFAULT; flush_icache_range(ip, ip + 8); return 0; } #ifndef CONFIG_64BIT static int ftrace_modify_code_2(unsigned long ip, unsigned int new_code1, unsigned int new_code2) { int faulted; safe_store_code(new_code1, ip, faulted); if (unlikely(faulted)) return -EFAULT; ip += 4; safe_store_code(new_code2, ip, faulted); if (unlikely(faulted)) return -EFAULT; ip -= 4; flush_icache_range(ip, ip + 8); return 0; } static int ftrace_modify_code_2r(unsigned long ip, unsigned int new_code1, unsigned int new_code2) { int faulted; ip += 4; safe_store_code(new_code2, ip, faulted); if (unlikely(faulted)) return -EFAULT; ip -= 4; safe_store_code(new_code1, ip, faulted); if (unlikely(faulted)) return -EFAULT; flush_icache_range(ip, ip + 8); return 0; } #endif /* * The details about the calling site of mcount on MIPS * * 1. For kernel: * * move at, ra * jal _mcount --> nop * sub sp, sp, 8 --> nop (CONFIG_32BIT) * * 2. For modules: * * 2.1 For KBUILD_MCOUNT_RA_ADDRESS and CONFIG_32BIT * * lui v1, hi_16bit_of_mcount --> b 1f (0x10000005) * addiu v1, v1, low_16bit_of_mcount --> nop (CONFIG_32BIT) * move at, ra * move $12, ra_address * jalr v1 * sub sp, sp, 8 * 1: offset = 5 instructions * 2.2 For the Other situations * * lui v1, hi_16bit_of_mcount --> b 1f (0x10000004) * addiu v1, v1, low_16bit_of_mcount --> nop (CONFIG_32BIT) * move at, ra * jalr v1 * nop | move $12, ra_address | sub sp, sp, 8 * 1: offset = 4 instructions */ #define INSN_B_1F (0x10000000 | MCOUNT_OFFSET_INSNS) int ftrace_make_nop(struct module *mod, struct dyn_ftrace *rec, unsigned long addr) { unsigned int new; unsigned long ip = rec->ip; /* * If ip is in kernel space, no long call, otherwise, long call is * needed. */ new = core_kernel_text(ip) ? INSN_NOP : INSN_B_1F; #ifdef CONFIG_64BIT return ftrace_modify_code(ip, new); #else /* * On 32 bit MIPS platforms, gcc adds a stack adjust * instruction in the delay slot after the branch to * mcount and expects mcount to restore the sp on return. * This is based on a legacy API and does nothing but * waste instructions so it's being removed at runtime. */ return ftrace_modify_code_2(ip, new, INSN_NOP); #endif } int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr) { unsigned int new; unsigned long ip = rec->ip; new = core_kernel_text(ip) ? insn_jal_ftrace_caller : insn_la_mcount[0]; #ifdef CONFIG_64BIT return ftrace_modify_code(ip, new); #else return ftrace_modify_code_2r(ip, new, core_kernel_text(ip) ? INSN_NOP : insn_la_mcount[1]); #endif } #define FTRACE_CALL_IP ((unsigned long)(&ftrace_call)) int ftrace_update_ftrace_func(ftrace_func_t func) { unsigned int new; new = INSN_JAL((unsigned long)func); return ftrace_modify_code(FTRACE_CALL_IP, new); } int __init ftrace_dyn_arch_init(void) { /* Encode the instructions when booting */ ftrace_dyn_arch_init_insns(); /* Remove "b ftrace_stub" to ensure ftrace_caller() is executed */ ftrace_modify_code(MCOUNT_ADDR, INSN_NOP); return 0; } #endif /* CONFIG_DYNAMIC_FTRACE */ #ifdef CONFIG_FUNCTION_GRAPH_TRACER #ifdef CONFIG_DYNAMIC_FTRACE extern void ftrace_graph_call(void); #define FTRACE_GRAPH_CALL_IP ((unsigned long)(&ftrace_graph_call)) int ftrace_enable_ftrace_graph_caller(void) { return ftrace_modify_code(FTRACE_GRAPH_CALL_IP, insn_j_ftrace_graph_caller); } int ftrace_disable_ftrace_graph_caller(void) { return ftrace_modify_code(FTRACE_GRAPH_CALL_IP, INSN_NOP); } #endif /* CONFIG_DYNAMIC_FTRACE */ #ifndef KBUILD_MCOUNT_RA_ADDRESS #define S_RA_SP (0xafbf << 16) /* s{d,w} ra, offset(sp) */ #define S_R_SP (0xafb0 << 16) /* s{d,w} R, offset(sp) */ #define OFFSET_MASK 0xffff /* stack offset range: 0 ~ PT_SIZE */ unsigned long ftrace_get_parent_ra_addr(unsigned long self_ra, unsigned long old_parent_ra, unsigned long parent_ra_addr, unsigned long fp) { unsigned long sp, ip, tmp; unsigned int code; int faulted; /* * For module, move the ip from the return address after the * instruction "lui v1, hi_16bit_of_mcount"(offset is 24), but for * kernel, move after the instruction "move ra, at"(offset is 16) */ ip = self_ra - (core_kernel_text(self_ra) ? 16 : 24); /* * search the text until finding the non-store instruction or "s{d,w} * ra, offset(sp)" instruction */ do { /* get the code at "ip": code = *(unsigned int *)ip; */ safe_load_code(code, ip, faulted); if (unlikely(faulted)) return 0; /* * If we hit the non-store instruction before finding where the * ra is stored, then this is a leaf function and it does not * store the ra on the stack */ if ((code & S_R_SP) != S_R_SP) return parent_ra_addr; /* Move to the next instruction */ ip -= 4; } while ((code & S_RA_SP) != S_RA_SP); sp = fp + (code & OFFSET_MASK); /* tmp = *(unsigned long *)sp; */ safe_load_stack(tmp, sp, faulted); if (unlikely(faulted)) return 0; if (tmp == old_parent_ra) return sp; return 0; } #endif /* !KBUILD_MCOUNT_RA_ADDRESS */ /* * Hook the return address and push it in the stack of return addrs * in current thread info. */ void prepare_ftrace_return(unsigned long *parent_ra_addr, unsigned long self_ra, unsigned long fp) { unsigned long old_parent_ra; unsigned long return_hooker = (unsigned long) &return_to_handler; int faulted, insns; if (unlikely(ftrace_graph_is_dead())) return; if (unlikely(atomic_read(&current->tracing_graph_pause))) return; /* * "parent_ra_addr" is the stack address where the return address of * the caller of _mcount is saved. * * If gcc < 4.5, a leaf function does not save the return address * in the stack address, so we "emulate" one in _mcount's stack space, * and hijack it directly. * For a non-leaf function, it does save the return address to its own * stack space, so we can not hijack it directly, but need to find the * real stack address, which is done by ftrace_get_parent_addr(). * * If gcc >= 4.5, with the new -mmcount-ra-address option, for a * non-leaf function, the location of the return address will be saved * to $12 for us. * For a leaf function, it just puts a zero into $12, so we handle * it in ftrace_graph_caller() of mcount.S. */ /* old_parent_ra = *parent_ra_addr; */ safe_load_stack(old_parent_ra, parent_ra_addr, faulted); if (unlikely(faulted)) goto out; #ifndef KBUILD_MCOUNT_RA_ADDRESS parent_ra_addr = (unsigned long *)ftrace_get_parent_ra_addr(self_ra, old_parent_ra, (unsigned long)parent_ra_addr, fp); /* * If fails when getting the stack address of the non-leaf function's * ra, stop function graph tracer and return */ if (parent_ra_addr == NULL) goto out; #endif /* *parent_ra_addr = return_hooker; */ safe_store_stack(return_hooker, parent_ra_addr, faulted); if (unlikely(faulted)) goto out; /* * Get the recorded ip of the current mcount calling site in the * __mcount_loc section, which will be used to filter the function * entries configured through the tracing/set_graph_function interface. */ insns = core_kernel_text(self_ra) ? 2 : MCOUNT_OFFSET_INSNS + 1; self_ra -= (MCOUNT_INSN_SIZE * insns); if (function_graph_enter(old_parent_ra, self_ra, fp, NULL)) *parent_ra_addr = old_parent_ra; return; out: ftrace_graph_stop(); WARN_ON(1); } #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ #ifdef CONFIG_FTRACE_SYSCALLS #ifdef CONFIG_32BIT unsigned long __init arch_syscall_addr(int nr) { return (unsigned long)sys_call_table[nr - __NR_O32_Linux]; } #endif #ifdef CONFIG_64BIT unsigned long __init arch_syscall_addr(int nr) { #ifdef CONFIG_MIPS32_N32 if (nr >= __NR_N32_Linux && nr < __NR_N32_Linux + __NR_N32_Linux_syscalls) return (unsigned long)sysn32_call_table[nr - __NR_N32_Linux]; #endif if (nr >= __NR_64_Linux && nr < __NR_64_Linux + __NR_64_Linux_syscalls) return (unsigned long)sys_call_table[nr - __NR_64_Linux]; #ifdef CONFIG_MIPS32_O32 if (nr >= __NR_O32_Linux && nr < __NR_O32_Linux + __NR_O32_Linux_syscalls) return (unsigned long)sys32_call_table[nr - __NR_O32_Linux]; #endif return (unsigned long) &sys_ni_syscall; } #endif #endif /* CONFIG_FTRACE_SYSCALLS */
linux-master
arch/mips/kernel/ftrace.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2007 by Ralf Baechle */ #include <linux/clocksource.h> #include <linux/cpufreq.h> #include <linux/init.h> #include <linux/sched_clock.h> #include <asm/time.h> static u64 c0_hpt_read(struct clocksource *cs) { return read_c0_count(); } static struct clocksource clocksource_mips = { .name = "MIPS", .read = c0_hpt_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u64 __maybe_unused notrace r4k_read_sched_clock(void) { return read_c0_count(); } static inline unsigned int rdhwr_count(void) { unsigned int count; __asm__ __volatile__( " .set push\n" " .set mips32r2\n" " rdhwr %0, $2\n" " .set pop\n" : "=r" (count)); return count; } static bool rdhwr_count_usable(void) { unsigned int prev, curr, i; /* * Older QEMUs have a broken implementation of RDHWR for the CP0 count * which always returns a constant value. Try to identify this and don't * use it in the VDSO if it is broken. This workaround can be removed * once the fix has been in QEMU stable for a reasonable amount of time. */ for (i = 0, prev = rdhwr_count(); i < 100; i++) { curr = rdhwr_count(); if (curr != prev) return true; prev = curr; } pr_warn("Not using R4K clocksource in VDSO due to broken RDHWR\n"); return false; } #ifdef CONFIG_CPU_FREQ static bool __read_mostly r4k_clock_unstable; static void r4k_clocksource_unstable(char *reason) { if (r4k_clock_unstable) return; r4k_clock_unstable = true; pr_info("R4K timer is unstable due to %s\n", reason); clocksource_mark_unstable(&clocksource_mips); } static int r4k_cpufreq_callback(struct notifier_block *nb, unsigned long val, void *data) { if (val == CPUFREQ_POSTCHANGE) r4k_clocksource_unstable("CPU frequency change"); return 0; } static struct notifier_block r4k_cpufreq_notifier = { .notifier_call = r4k_cpufreq_callback, }; static int __init r4k_register_cpufreq_notifier(void) { return cpufreq_register_notifier(&r4k_cpufreq_notifier, CPUFREQ_TRANSITION_NOTIFIER); } core_initcall(r4k_register_cpufreq_notifier); #endif /* !CONFIG_CPU_FREQ */ int __init init_r4k_clocksource(void) { if (!cpu_has_counter || !mips_hpt_frequency) return -ENXIO; /* Calculate a somewhat reasonable rating value */ clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000; /* * R2 onwards makes the count accessible to user mode so it can be used * by the VDSO (HWREna is configured by configure_hwrena()). */ if (cpu_has_mips_r2_r6 && rdhwr_count_usable()) clocksource_mips.vdso_clock_mode = VDSO_CLOCKMODE_R4K; clocksource_register_hz(&clocksource_mips, mips_hpt_frequency); #ifndef CONFIG_CPU_FREQ sched_clock_register(r4k_read_sched_clock, 32, mips_hpt_frequency); #endif return 0; }
linux-master
arch/mips/kernel/csrc-r4k.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2002, 2003, 06, 07 Ralf Baechle ([email protected]) * Copyright (C) 2007 MIPS Technologies, Inc. * written by Ralf Baechle ([email protected]) */ #include <linux/kernel.h> #include <linux/console.h> #include <linux/printk.h> #include <linux/init.h> #include <asm/setup.h> static void early_console_write(struct console *con, const char *s, unsigned n) { while (n-- && *s) { if (*s == '\n') prom_putchar('\r'); prom_putchar(*s); s++; } } static struct console early_console_prom = { .name = "early", .write = early_console_write, .flags = CON_PRINTBUFFER | CON_BOOT, .index = -1 }; void __init setup_early_printk(void) { if (early_console) return; early_console = &early_console_prom; register_console(&early_console_prom); }
linux-master
arch/mips/kernel/early_printk.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2000,2001,2004 Broadcom Corporation */ #include <linux/clocksource.h> #include <linux/sched_clock.h> #include <asm/addrspace.h> #include <asm/io.h> #include <asm/time.h> #include <asm/sibyte/bcm1480_regs.h> #include <asm/sibyte/sb1250_regs.h> #include <asm/sibyte/bcm1480_int.h> #include <asm/sibyte/bcm1480_scd.h> #include <asm/sibyte/sb1250.h> static u64 bcm1480_hpt_read(struct clocksource *cs) { return (u64) __raw_readq(IOADDR(A_SCD_ZBBUS_CYCLE_COUNT)); } struct clocksource bcm1480_clocksource = { .name = "zbbus-cycles", .rating = 200, .read = bcm1480_hpt_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u64 notrace sb1480_read_sched_clock(void) { return __raw_readq(IOADDR(A_SCD_ZBBUS_CYCLE_COUNT)); } void __init sb1480_clocksource_init(void) { struct clocksource *cs = &bcm1480_clocksource; unsigned int plldiv; unsigned long zbbus; plldiv = G_BCM1480_SYS_PLL_DIV(__raw_readq(IOADDR(A_SCD_SYSTEM_CFG))); zbbus = ((plldiv >> 1) * 50000000) + ((plldiv & 1) * 25000000); clocksource_register_hz(cs, zbbus); sched_clock_register(sb1480_read_sched_clock, 64, zbbus); }
linux-master
arch/mips/kernel/csrc-bcm1480.c
// SPDX-License-Identifier: GPL-2.0 /* * i8253.c 8253/PIT functions * */ #include <linux/clockchips.h> #include <linux/i8253.h> #include <linux/export.h> #include <linux/smp.h> #include <linux/irq.h> #include <asm/time.h> static irqreturn_t timer_interrupt(int irq, void *dev_id) { i8253_clockevent.event_handler(&i8253_clockevent); return IRQ_HANDLED; } void __init setup_pit_timer(void) { unsigned long flags = IRQF_NOBALANCING | IRQF_TIMER; clockevent_i8253_init(true); if (request_irq(0, timer_interrupt, flags, "timer", NULL)) pr_err("Failed to request irq 0 (timer)\n"); } static int __init init_pit_clocksource(void) { if (num_possible_cpus() > 1 || /* PIT does not scale! */ !clockevent_state_periodic(&i8253_clockevent)) return 0; return clocksource_i8253_init(); } arch_initcall(init_pit_clocksource);
linux-master
arch/mips/kernel/i8253.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2013 Imagination Technologies * Author: Paul Burton <[email protected]> */ #include <linux/bitfield.h> #include <linux/errno.h> #include <linux/percpu.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/spinlock.h> #include <asm/mips-cps.h> void __iomem *mips_cpc_base; static DEFINE_PER_CPU_ALIGNED(spinlock_t, cpc_core_lock); static DEFINE_PER_CPU_ALIGNED(unsigned long, cpc_core_lock_flags); phys_addr_t __weak mips_cpc_default_phys_base(void) { struct device_node *cpc_node; struct resource res; int err; cpc_node = of_find_compatible_node(of_root, NULL, "mti,mips-cpc"); if (cpc_node) { err = of_address_to_resource(cpc_node, 0, &res); of_node_put(cpc_node); if (!err) return res.start; } return 0; } /** * mips_cpc_phys_base - retrieve the physical base address of the CPC * * This function returns the physical base address of the Cluster Power * Controller memory mapped registers, or 0 if no Cluster Power Controller * is present. */ static phys_addr_t mips_cpc_phys_base(void) { unsigned long cpc_base; if (!mips_cm_present()) return 0; if (!(read_gcr_cpc_status() & CM_GCR_CPC_STATUS_EX)) return 0; /* If the CPC is already enabled, leave it so */ cpc_base = read_gcr_cpc_base(); if (cpc_base & CM_GCR_CPC_BASE_CPCEN) return cpc_base & CM_GCR_CPC_BASE_CPCBASE; /* Otherwise, use the default address */ cpc_base = mips_cpc_default_phys_base(); if (!cpc_base) return cpc_base; /* Enable the CPC, mapped at the default address */ write_gcr_cpc_base(cpc_base | CM_GCR_CPC_BASE_CPCEN); return cpc_base; } int mips_cpc_probe(void) { phys_addr_t addr; unsigned int cpu; for_each_possible_cpu(cpu) spin_lock_init(&per_cpu(cpc_core_lock, cpu)); addr = mips_cpc_phys_base(); if (!addr) return -ENODEV; mips_cpc_base = ioremap(addr, 0x8000); if (!mips_cpc_base) return -ENXIO; return 0; } void mips_cpc_lock_other(unsigned int core) { unsigned int curr_core; if (mips_cm_revision() >= CM_REV_CM3) /* Systems with CM >= 3 lock the CPC via mips_cm_lock_other */ return; preempt_disable(); curr_core = cpu_core(&current_cpu_data); spin_lock_irqsave(&per_cpu(cpc_core_lock, curr_core), per_cpu(cpc_core_lock_flags, curr_core)); write_cpc_cl_other(FIELD_PREP(CPC_Cx_OTHER_CORENUM, core)); /* * Ensure the core-other region reflects the appropriate core & * VP before any accesses to it occur. */ mb(); } void mips_cpc_unlock_other(void) { unsigned int curr_core; if (mips_cm_revision() >= CM_REV_CM3) /* Systems with CM >= 3 lock the CPC via mips_cm_lock_other */ return; curr_core = cpu_core(&current_cpu_data); spin_unlock_irqrestore(&per_cpu(cpc_core_lock, curr_core), per_cpu(cpc_core_lock_flags, curr_core)); preempt_enable(); }
linux-master
arch/mips/kernel/mips-cpc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2000,2001,2004 Broadcom Corporation */ #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/smp.h> #include <linux/irq.h> #include <asm/addrspace.h> #include <asm/io.h> #include <asm/time.h> #include <asm/sibyte/bcm1480_regs.h> #include <asm/sibyte/sb1250_regs.h> #include <asm/sibyte/bcm1480_int.h> #include <asm/sibyte/bcm1480_scd.h> #include <asm/sibyte/sb1250.h> #define IMR_IP2_VAL K_BCM1480_INT_MAP_I0 #define IMR_IP3_VAL K_BCM1480_INT_MAP_I1 #define IMR_IP4_VAL K_BCM1480_INT_MAP_I2 /* * The general purpose timer ticks at 1MHz independent if * the rest of the system */ static int sibyte_set_periodic(struct clock_event_device *evt) { unsigned int cpu = smp_processor_id(); void __iomem *cfg, *init; cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)); init = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_INIT)); __raw_writeq(0, cfg); __raw_writeq((V_SCD_TIMER_FREQ / HZ) - 1, init); __raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS, cfg); return 0; } static int sibyte_shutdown(struct clock_event_device *evt) { unsigned int cpu = smp_processor_id(); void __iomem *cfg; cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)); /* Stop the timer until we actually program a shot */ __raw_writeq(0, cfg); return 0; } static int sibyte_next_event(unsigned long delta, struct clock_event_device *cd) { unsigned int cpu = smp_processor_id(); void __iomem *cfg, *init; cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)); init = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_INIT)); __raw_writeq(0, cfg); __raw_writeq(delta - 1, init); __raw_writeq(M_SCD_TIMER_ENABLE, cfg); return 0; } static irqreturn_t sibyte_counter_handler(int irq, void *dev_id) { unsigned int cpu = smp_processor_id(); struct clock_event_device *cd = dev_id; void __iomem *cfg; unsigned long tmode; if (clockevent_state_periodic(cd)) tmode = M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS; else tmode = 0; /* ACK interrupt */ cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)); ____raw_writeq(tmode, cfg); cd->event_handler(cd); return IRQ_HANDLED; } static DEFINE_PER_CPU(struct clock_event_device, sibyte_hpt_clockevent); static DEFINE_PER_CPU(char [18], sibyte_hpt_name); void sb1480_clockevent_init(void) { unsigned int cpu = smp_processor_id(); unsigned int irq = K_BCM1480_INT_TIMER_0 + cpu; struct clock_event_device *cd = &per_cpu(sibyte_hpt_clockevent, cpu); unsigned char *name = per_cpu(sibyte_hpt_name, cpu); unsigned long flags = IRQF_PERCPU | IRQF_TIMER; BUG_ON(cpu > 3); /* Only have 4 general purpose timers */ sprintf(name, "bcm1480-counter-%d", cpu); cd->name = name; cd->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; clockevent_set_clock(cd, V_SCD_TIMER_FREQ); cd->max_delta_ns = clockevent_delta2ns(0x7fffff, cd); cd->max_delta_ticks = 0x7fffff; cd->min_delta_ns = clockevent_delta2ns(2, cd); cd->min_delta_ticks = 2; cd->rating = 200; cd->irq = irq; cd->cpumask = cpumask_of(cpu); cd->set_next_event = sibyte_next_event; cd->set_state_shutdown = sibyte_shutdown; cd->set_state_periodic = sibyte_set_periodic; cd->set_state_oneshot = sibyte_shutdown; clockevents_register_device(cd); bcm1480_mask_irq(cpu, irq); /* * Map the timer interrupt to IP[4] of this cpu */ __raw_writeq(IMR_IP4_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (irq << 3))); bcm1480_unmask_irq(cpu, irq); irq_set_affinity(irq, cpumask_of(cpu)); if (request_irq(irq, sibyte_counter_handler, flags, name, cd)) pr_err("Failed to request irq %d (%s)\n", irq, name); }
linux-master
arch/mips/kernel/cevt-bcm1480.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Based on linux/arch/mips/kernel/cevt-r4k.c, * linux/arch/mips/jmr3927/rbhma3100/setup.c * * Copyright 2001 MontaVista Software Inc. * Copyright (C) 2000-2001 Toshiba Corporation * Copyright (C) 2007 MIPS Technologies, Inc. * Copyright (C) 2007 Ralf Baechle <[email protected]> */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/sched_clock.h> #include <asm/time.h> #include <asm/txx9tmr.h> #define TCR_BASE (TXx9_TMTCR_CCDE | TXx9_TMTCR_CRE | TXx9_TMTCR_TMODE_ITVL) #define TIMER_CCD 0 /* 1/2 */ #define TIMER_CLK(imclk) ((imclk) / (2 << TIMER_CCD)) struct txx9_clocksource { struct clocksource cs; struct txx9_tmr_reg __iomem *tmrptr; }; static u64 txx9_cs_read(struct clocksource *cs) { struct txx9_clocksource *txx9_cs = container_of(cs, struct txx9_clocksource, cs); return __raw_readl(&txx9_cs->tmrptr->trr); } /* Use 1 bit smaller width to use full bits in that width */ #define TXX9_CLOCKSOURCE_BITS (TXX9_TIMER_BITS - 1) static struct txx9_clocksource txx9_clocksource = { .cs = { .name = "TXx9", .rating = 200, .read = txx9_cs_read, .mask = CLOCKSOURCE_MASK(TXX9_CLOCKSOURCE_BITS), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }, }; static u64 notrace txx9_read_sched_clock(void) { return __raw_readl(&txx9_clocksource.tmrptr->trr); } void __init txx9_clocksource_init(unsigned long baseaddr, unsigned int imbusclk) { struct txx9_tmr_reg __iomem *tmrptr; clocksource_register_hz(&txx9_clocksource.cs, TIMER_CLK(imbusclk)); tmrptr = ioremap(baseaddr, sizeof(struct txx9_tmr_reg)); __raw_writel(TCR_BASE, &tmrptr->tcr); __raw_writel(0, &tmrptr->tisr); __raw_writel(TIMER_CCD, &tmrptr->ccdr); __raw_writel(TXx9_TMITMR_TZCE, &tmrptr->itmr); __raw_writel(1 << TXX9_CLOCKSOURCE_BITS, &tmrptr->cpra); __raw_writel(TCR_BASE | TXx9_TMTCR_TCE, &tmrptr->tcr); txx9_clocksource.tmrptr = tmrptr; sched_clock_register(txx9_read_sched_clock, TXX9_CLOCKSOURCE_BITS, TIMER_CLK(imbusclk)); } struct txx9_clock_event_device { struct clock_event_device cd; struct txx9_tmr_reg __iomem *tmrptr; }; static void txx9tmr_stop_and_clear(struct txx9_tmr_reg __iomem *tmrptr) { /* stop and reset counter */ __raw_writel(TCR_BASE, &tmrptr->tcr); /* clear pending interrupt */ __raw_writel(0, &tmrptr->tisr); } static int txx9tmr_set_state_periodic(struct clock_event_device *evt) { struct txx9_clock_event_device *txx9_cd = container_of(evt, struct txx9_clock_event_device, cd); struct txx9_tmr_reg __iomem *tmrptr = txx9_cd->tmrptr; txx9tmr_stop_and_clear(tmrptr); __raw_writel(TXx9_TMITMR_TIIE | TXx9_TMITMR_TZCE, &tmrptr->itmr); /* start timer */ __raw_writel(((u64)(NSEC_PER_SEC / HZ) * evt->mult) >> evt->shift, &tmrptr->cpra); __raw_writel(TCR_BASE | TXx9_TMTCR_TCE, &tmrptr->tcr); return 0; } static int txx9tmr_set_state_oneshot(struct clock_event_device *evt) { struct txx9_clock_event_device *txx9_cd = container_of(evt, struct txx9_clock_event_device, cd); struct txx9_tmr_reg __iomem *tmrptr = txx9_cd->tmrptr; txx9tmr_stop_and_clear(tmrptr); __raw_writel(TXx9_TMITMR_TIIE, &tmrptr->itmr); return 0; } static int txx9tmr_set_state_shutdown(struct clock_event_device *evt) { struct txx9_clock_event_device *txx9_cd = container_of(evt, struct txx9_clock_event_device, cd); struct txx9_tmr_reg __iomem *tmrptr = txx9_cd->tmrptr; txx9tmr_stop_and_clear(tmrptr); __raw_writel(0, &tmrptr->itmr); return 0; } static int txx9tmr_tick_resume(struct clock_event_device *evt) { struct txx9_clock_event_device *txx9_cd = container_of(evt, struct txx9_clock_event_device, cd); struct txx9_tmr_reg __iomem *tmrptr = txx9_cd->tmrptr; txx9tmr_stop_and_clear(tmrptr); __raw_writel(TIMER_CCD, &tmrptr->ccdr); __raw_writel(0, &tmrptr->itmr); return 0; } static int txx9tmr_set_next_event(unsigned long delta, struct clock_event_device *evt) { struct txx9_clock_event_device *txx9_cd = container_of(evt, struct txx9_clock_event_device, cd); struct txx9_tmr_reg __iomem *tmrptr = txx9_cd->tmrptr; txx9tmr_stop_and_clear(tmrptr); /* start timer */ __raw_writel(delta, &tmrptr->cpra); __raw_writel(TCR_BASE | TXx9_TMTCR_TCE, &tmrptr->tcr); return 0; } static struct txx9_clock_event_device txx9_clock_event_device = { .cd = { .name = "TXx9", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 200, .set_state_shutdown = txx9tmr_set_state_shutdown, .set_state_periodic = txx9tmr_set_state_periodic, .set_state_oneshot = txx9tmr_set_state_oneshot, .tick_resume = txx9tmr_tick_resume, .set_next_event = txx9tmr_set_next_event, }, }; static irqreturn_t txx9tmr_interrupt(int irq, void *dev_id) { struct txx9_clock_event_device *txx9_cd = dev_id; struct clock_event_device *cd = &txx9_cd->cd; struct txx9_tmr_reg __iomem *tmrptr = txx9_cd->tmrptr; __raw_writel(0, &tmrptr->tisr); /* ack interrupt */ cd->event_handler(cd); return IRQ_HANDLED; } void __init txx9_clockevent_init(unsigned long baseaddr, int irq, unsigned int imbusclk) { struct clock_event_device *cd = &txx9_clock_event_device.cd; struct txx9_tmr_reg __iomem *tmrptr; tmrptr = ioremap(baseaddr, sizeof(struct txx9_tmr_reg)); txx9tmr_stop_and_clear(tmrptr); __raw_writel(TIMER_CCD, &tmrptr->ccdr); __raw_writel(0, &tmrptr->itmr); txx9_clock_event_device.tmrptr = tmrptr; clockevent_set_clock(cd, TIMER_CLK(imbusclk)); cd->max_delta_ns = clockevent_delta2ns(0xffffffff >> (32 - TXX9_TIMER_BITS), cd); cd->max_delta_ticks = 0xffffffff >> (32 - TXX9_TIMER_BITS); cd->min_delta_ns = clockevent_delta2ns(0xf, cd); cd->min_delta_ticks = 0xf; cd->irq = irq; cd->cpumask = cpumask_of(0); clockevents_register_device(cd); if (request_irq(irq, txx9tmr_interrupt, IRQF_PERCPU | IRQF_TIMER, "txx9tmr", &txx9_clock_event_device)) pr_err("Failed to request irq %d (txx9tmr)\n", irq); printk(KERN_INFO "TXx9: clockevent device at 0x%lx, irq %d\n", baseaddr, irq); } void __init txx9_tmr_init(unsigned long baseaddr) { struct txx9_tmr_reg __iomem *tmrptr; tmrptr = ioremap(baseaddr, sizeof(struct txx9_tmr_reg)); /* Start once to make CounterResetEnable effective */ __raw_writel(TXx9_TMTCR_CRE | TXx9_TMTCR_TCE, &tmrptr->tcr); /* Stop and reset the counter */ __raw_writel(TXx9_TMTCR_CRE, &tmrptr->tcr); __raw_writel(0, &tmrptr->tisr); __raw_writel(0xffffffff, &tmrptr->cpra); __raw_writel(0, &tmrptr->itmr); __raw_writel(0, &tmrptr->ccdr); __raw_writel(0, &tmrptr->pgmr); iounmap(tmrptr); }
linux-master
arch/mips/kernel/cevt-txx9.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others. * Copyright (C) 2005, 2006 by Ralf Baechle ([email protected]) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2004 Thiemo Seufer * Copyright (C) 2013 Imagination Technologies Ltd. */ #include <linux/cpu.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/kallsyms.h> #include <linux/kernel.h> #include <linux/nmi.h> #include <linux/personality.h> #include <linux/prctl.h> #include <linux/random.h> #include <linux/sched.h> #include <linux/sched/debug.h> #include <linux/sched/task_stack.h> #include <asm/abi.h> #include <asm/asm.h> #include <asm/dsemul.h> #include <asm/dsp.h> #include <asm/exec.h> #include <asm/fpu.h> #include <asm/inst.h> #include <asm/irq.h> #include <asm/irq_regs.h> #include <asm/isadep.h> #include <asm/msa.h> #include <asm/mips-cps.h> #include <asm/mipsregs.h> #include <asm/processor.h> #include <asm/reg.h> #include <asm/stacktrace.h> #ifdef CONFIG_HOTPLUG_CPU void __noreturn arch_cpu_idle_dead(void) { play_dead(); } #endif asmlinkage void ret_from_fork(void); asmlinkage void ret_from_kernel_thread(void); void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp) { unsigned long status; /* New thread loses kernel privileges. */ status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_CU2|ST0_FR|KU_MASK); status |= KU_USER; regs->cp0_status = status; lose_fpu(0); clear_thread_flag(TIF_MSA_CTX_LIVE); clear_used_math(); #ifdef CONFIG_MIPS_FP_SUPPORT atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE); #endif init_dsp(); regs->cp0_epc = pc; regs->regs[29] = sp; } void exit_thread(struct task_struct *tsk) { /* * User threads may have allocated a delay slot emulation frame. * If so, clean up that allocation. */ if (!(current->flags & PF_KTHREAD)) dsemul_thread_cleanup(tsk); } int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { /* * Save any process state which is live in hardware registers to the * parent context prior to duplication. This prevents the new child * state becoming stale if the parent is preempted before copy_thread() * gets a chance to save the parent's live hardware registers to the * child context. */ preempt_disable(); if (is_msa_enabled()) save_msa(current); else if (is_fpu_owner()) _save_fp(current); save_dsp(current); preempt_enable(); *dst = *src; return 0; } /* * Copy architecture-specific thread state */ int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) { unsigned long clone_flags = args->flags; unsigned long usp = args->stack; unsigned long tls = args->tls; struct thread_info *ti = task_thread_info(p); struct pt_regs *childregs, *regs = current_pt_regs(); unsigned long childksp; childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32; /* set up new TSS. */ childregs = (struct pt_regs *) childksp - 1; /* Put the stack after the struct pt_regs. */ childksp = (unsigned long) childregs; p->thread.cp0_status = (read_c0_status() & ~(ST0_CU2|ST0_CU1)) | ST0_KERNEL_CUMASK; if (unlikely(args->fn)) { /* kernel thread */ unsigned long status = p->thread.cp0_status; memset(childregs, 0, sizeof(struct pt_regs)); p->thread.reg16 = (unsigned long)args->fn; p->thread.reg17 = (unsigned long)args->fn_arg; p->thread.reg29 = childksp; p->thread.reg31 = (unsigned long) ret_from_kernel_thread; #if defined(CONFIG_CPU_R3000) status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) | ((status & (ST0_KUC | ST0_IEC)) << 2); #else status |= ST0_EXL; #endif childregs->cp0_status = status; return 0; } /* user thread */ *childregs = *regs; childregs->regs[7] = 0; /* Clear error flag */ childregs->regs[2] = 0; /* Child gets zero as return value */ if (usp) childregs->regs[29] = usp; p->thread.reg29 = (unsigned long) childregs; p->thread.reg31 = (unsigned long) ret_from_fork; /* * New tasks lose permission to use the fpu. This accelerates context * switching for most programs since they don't use the fpu. */ childregs->cp0_status &= ~(ST0_CU2|ST0_CU1); clear_tsk_thread_flag(p, TIF_USEDFPU); clear_tsk_thread_flag(p, TIF_USEDMSA); clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE); #ifdef CONFIG_MIPS_MT_FPAFF clear_tsk_thread_flag(p, TIF_FPUBOUND); #endif /* CONFIG_MIPS_MT_FPAFF */ #ifdef CONFIG_MIPS_FP_SUPPORT atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE); #endif if (clone_flags & CLONE_SETTLS) ti->tp_value = tls; return 0; } #ifdef CONFIG_STACKPROTECTOR #include <linux/stackprotector.h> unsigned long __stack_chk_guard __read_mostly; EXPORT_SYMBOL(__stack_chk_guard); #endif struct mips_frame_info { void *func; unsigned long func_size; int frame_size; int pc_offset; }; #define J_TARGET(pc,target) \ (((unsigned long)(pc) & 0xf0000000) | ((target) << 2)) static inline int is_jr_ra_ins(union mips_instruction *ip) { #ifdef CONFIG_CPU_MICROMIPS /* * jr16 ra * jr ra */ if (mm_insn_16bit(ip->word >> 16)) { if (ip->mm16_r5_format.opcode == mm_pool16c_op && ip->mm16_r5_format.rt == mm_jr16_op && ip->mm16_r5_format.imm == 31) return 1; return 0; } if (ip->r_format.opcode == mm_pool32a_op && ip->r_format.func == mm_pool32axf_op && ((ip->u_format.uimmediate >> 6) & GENMASK(9, 0)) == mm_jalr_op && ip->r_format.rt == 31) return 1; return 0; #else if (ip->r_format.opcode == spec_op && ip->r_format.func == jr_op && ip->r_format.rs == 31) return 1; return 0; #endif } static inline int is_ra_save_ins(union mips_instruction *ip, int *poff) { #ifdef CONFIG_CPU_MICROMIPS /* * swsp ra,offset * swm16 reglist,offset(sp) * swm32 reglist,offset(sp) * sw32 ra,offset(sp) * jradiussp - NOT SUPPORTED * * microMIPS is way more fun... */ if (mm_insn_16bit(ip->word >> 16)) { switch (ip->mm16_r5_format.opcode) { case mm_swsp16_op: if (ip->mm16_r5_format.rt != 31) return 0; *poff = ip->mm16_r5_format.imm; *poff = (*poff << 2) / sizeof(ulong); return 1; case mm_pool16c_op: switch (ip->mm16_m_format.func) { case mm_swm16_op: *poff = ip->mm16_m_format.imm; *poff += 1 + ip->mm16_m_format.rlist; *poff = (*poff << 2) / sizeof(ulong); return 1; default: return 0; } default: return 0; } } switch (ip->i_format.opcode) { case mm_sw32_op: if (ip->i_format.rs != 29) return 0; if (ip->i_format.rt != 31) return 0; *poff = ip->i_format.simmediate / sizeof(ulong); return 1; case mm_pool32b_op: switch (ip->mm_m_format.func) { case mm_swm32_func: if (ip->mm_m_format.rd < 0x10) return 0; if (ip->mm_m_format.base != 29) return 0; *poff = ip->mm_m_format.simmediate; *poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32); *poff /= sizeof(ulong); return 1; default: return 0; } default: return 0; } #else /* sw / sd $ra, offset($sp) */ if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) && ip->i_format.rs == 29 && ip->i_format.rt == 31) { *poff = ip->i_format.simmediate / sizeof(ulong); return 1; } #ifdef CONFIG_CPU_LOONGSON64 if ((ip->loongson3_lswc2_format.opcode == swc2_op) && (ip->loongson3_lswc2_format.ls == 1) && (ip->loongson3_lswc2_format.fr == 0) && (ip->loongson3_lswc2_format.base == 29)) { if (ip->loongson3_lswc2_format.rt == 31) { *poff = ip->loongson3_lswc2_format.offset << 1; return 1; } if (ip->loongson3_lswc2_format.rq == 31) { *poff = (ip->loongson3_lswc2_format.offset << 1) + 1; return 1; } } #endif return 0; #endif } static inline int is_jump_ins(union mips_instruction *ip) { #ifdef CONFIG_CPU_MICROMIPS /* * jr16,jrc,jalr16,jalr16 * jal * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb * jraddiusp - NOT SUPPORTED * * microMIPS is kind of more fun... */ if (mm_insn_16bit(ip->word >> 16)) { if ((ip->mm16_r5_format.opcode == mm_pool16c_op && (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op)) return 1; return 0; } if (ip->j_format.opcode == mm_j32_op) return 1; if (ip->j_format.opcode == mm_jal32_op) return 1; if (ip->r_format.opcode != mm_pool32a_op || ip->r_format.func != mm_pool32axf_op) return 0; return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op; #else if (ip->j_format.opcode == j_op) return 1; if (ip->j_format.opcode == jal_op) return 1; if (ip->r_format.opcode != spec_op) return 0; return ip->r_format.func == jalr_op || ip->r_format.func == jr_op; #endif } static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size) { #ifdef CONFIG_CPU_MICROMIPS unsigned short tmp; /* * addiusp -imm * addius5 sp,-imm * addiu32 sp,sp,-imm * jradiussp - NOT SUPPORTED * * microMIPS is not more fun... */ if (mm_insn_16bit(ip->word >> 16)) { if (ip->mm16_r3_format.opcode == mm_pool16d_op && ip->mm16_r3_format.simmediate & mm_addiusp_func) { tmp = ip->mm_b0_format.simmediate >> 1; tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100; if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */ tmp ^= 0x100; *frame_size = -(signed short)(tmp << 2); return 1; } if (ip->mm16_r5_format.opcode == mm_pool16d_op && ip->mm16_r5_format.rt == 29) { tmp = ip->mm16_r5_format.imm >> 1; *frame_size = -(signed short)(tmp & 0xf); return 1; } return 0; } if (ip->mm_i_format.opcode == mm_addiu32_op && ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) { *frame_size = -ip->i_format.simmediate; return 1; } #else /* addiu/daddiu sp,sp,-imm */ if (ip->i_format.rs != 29 || ip->i_format.rt != 29) return 0; if (ip->i_format.opcode == addiu_op || ip->i_format.opcode == daddiu_op) { *frame_size = -ip->i_format.simmediate; return 1; } #endif return 0; } static int get_frame_info(struct mips_frame_info *info) { bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS); union mips_instruction insn, *ip, *ip_end; unsigned int last_insn_size = 0; bool saw_jump = false; info->pc_offset = -1; info->frame_size = 0; ip = (void *)msk_isa16_mode((ulong)info->func); if (!ip) goto err; ip_end = (void *)ip + (info->func_size ? info->func_size : 512); while (ip < ip_end) { ip = (void *)ip + last_insn_size; if (is_mmips && mm_insn_16bit(ip->halfword[0])) { insn.word = ip->halfword[0] << 16; last_insn_size = 2; } else if (is_mmips) { insn.word = ip->halfword[0] << 16 | ip->halfword[1]; last_insn_size = 4; } else { insn.word = ip->word; last_insn_size = 4; } if (is_jr_ra_ins(ip)) { break; } else if (!info->frame_size) { is_sp_move_ins(&insn, &info->frame_size); continue; } else if (!saw_jump && is_jump_ins(ip)) { /* * If we see a jump instruction, we are finished * with the frame save. * * Some functions can have a shortcut return at * the beginning of the function, so don't start * looking for jump instruction until we see the * frame setup. * * The RA save instruction can get put into the * delay slot of the jump instruction, so look * at the next instruction, too. */ saw_jump = true; continue; } if (info->pc_offset == -1 && is_ra_save_ins(&insn, &info->pc_offset)) break; if (saw_jump) break; } if (info->frame_size && info->pc_offset >= 0) /* nested */ return 0; if (info->pc_offset < 0) /* leaf */ return 1; /* prologue seems bogus... */ err: return -1; } static struct mips_frame_info schedule_mfi __read_mostly; #ifdef CONFIG_KALLSYMS static unsigned long get___schedule_addr(void) { return kallsyms_lookup_name("__schedule"); } #else static unsigned long get___schedule_addr(void) { union mips_instruction *ip = (void *)schedule; int max_insns = 8; int i; for (i = 0; i < max_insns; i++, ip++) { if (ip->j_format.opcode == j_op) return J_TARGET(ip, ip->j_format.target); } return 0; } #endif static int __init frame_info_init(void) { unsigned long size = 0; #ifdef CONFIG_KALLSYMS unsigned long ofs; #endif unsigned long addr; addr = get___schedule_addr(); if (!addr) addr = (unsigned long)schedule; #ifdef CONFIG_KALLSYMS kallsyms_lookup_size_offset(addr, &size, &ofs); #endif schedule_mfi.func = (void *)addr; schedule_mfi.func_size = size; get_frame_info(&schedule_mfi); /* * Without schedule() frame info, result given by * thread_saved_pc() and __get_wchan() are not reliable. */ if (schedule_mfi.pc_offset < 0) printk("Can't analyze schedule() prologue at %p\n", schedule); return 0; } arch_initcall(frame_info_init); /* * Return saved PC of a blocked thread. */ static unsigned long thread_saved_pc(struct task_struct *tsk) { struct thread_struct *t = &tsk->thread; /* New born processes are a special case */ if (t->reg31 == (unsigned long) ret_from_fork) return t->reg31; if (schedule_mfi.pc_offset < 0) return 0; return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset]; } #ifdef CONFIG_KALLSYMS /* generic stack unwinding function */ unsigned long notrace unwind_stack_by_address(unsigned long stack_page, unsigned long *sp, unsigned long pc, unsigned long *ra) { unsigned long low, high, irq_stack_high; struct mips_frame_info info; unsigned long size, ofs; struct pt_regs *regs; int leaf; if (!stack_page) return 0; /* * IRQ stacks start at IRQ_STACK_START * task stacks at THREAD_SIZE - 32 */ low = stack_page; if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) { high = stack_page + IRQ_STACK_START; irq_stack_high = high; } else { high = stack_page + THREAD_SIZE - 32; irq_stack_high = 0; } /* * If we reached the top of the interrupt stack, start unwinding * the interrupted task stack. */ if (unlikely(*sp == irq_stack_high)) { unsigned long task_sp = *(unsigned long *)*sp; /* * Check that the pointer saved in the IRQ stack head points to * something within the stack of the current task */ if (!object_is_on_stack((void *)task_sp)) return 0; /* * Follow pointer to tasks kernel stack frame where interrupted * state was saved. */ regs = (struct pt_regs *)task_sp; pc = regs->cp0_epc; if (!user_mode(regs) && __kernel_text_address(pc)) { *sp = regs->regs[29]; *ra = regs->regs[31]; return pc; } return 0; } if (!kallsyms_lookup_size_offset(pc, &size, &ofs)) return 0; /* * Return ra if an exception occurred at the first instruction */ if (unlikely(ofs == 0)) { pc = *ra; *ra = 0; return pc; } info.func = (void *)(pc - ofs); info.func_size = ofs; /* analyze from start to ofs */ leaf = get_frame_info(&info); if (leaf < 0) return 0; if (*sp < low || *sp + info.frame_size > high) return 0; if (leaf) /* * For some extreme cases, get_frame_info() can * consider wrongly a nested function as a leaf * one. In that cases avoid to return always the * same value. */ pc = pc != *ra ? *ra : 0; else pc = ((unsigned long *)(*sp))[info.pc_offset]; *sp += info.frame_size; *ra = 0; return __kernel_text_address(pc) ? pc : 0; } EXPORT_SYMBOL(unwind_stack_by_address); /* used by show_backtrace() */ unsigned long unwind_stack(struct task_struct *task, unsigned long *sp, unsigned long pc, unsigned long *ra) { unsigned long stack_page = 0; int cpu; for_each_possible_cpu(cpu) { if (on_irq_stack(cpu, *sp)) { stack_page = (unsigned long)irq_stack[cpu]; break; } } if (!stack_page) stack_page = (unsigned long)task_stack_page(task); return unwind_stack_by_address(stack_page, sp, pc, ra); } #endif /* * __get_wchan - a maintenance nightmare^W^Wpain in the ass ... */ unsigned long __get_wchan(struct task_struct *task) { unsigned long pc = 0; #ifdef CONFIG_KALLSYMS unsigned long sp; unsigned long ra = 0; #endif if (!task_stack_page(task)) goto out; pc = thread_saved_pc(task); #ifdef CONFIG_KALLSYMS sp = task->thread.reg29 + schedule_mfi.frame_size; while (in_sched_functions(pc)) pc = unwind_stack(task, &sp, pc, &ra); #endif out: return pc; } unsigned long mips_stack_top(void) { unsigned long top = TASK_SIZE & PAGE_MASK; if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) { /* One page for branch delay slot "emulation" */ top -= PAGE_SIZE; } /* Space for the VDSO, data page & GIC user page */ top -= PAGE_ALIGN(current->thread.abi->vdso->size); top -= PAGE_SIZE; top -= mips_gic_present() ? PAGE_SIZE : 0; /* Space for cache colour alignment */ if (cpu_has_dc_aliases) top -= shm_align_mask + 1; /* Space to randomize the VDSO base */ if (current->flags & PF_RANDOMIZE) top -= VDSO_RANDOMIZE_SIZE; return top; } /* * Don't forget that the stack pointer must be aligned on a 8 bytes * boundary for 32-bits ABI and 16 bytes for 64-bits ABI. */ unsigned long arch_align_stack(unsigned long sp) { if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) sp -= get_random_u32_below(PAGE_SIZE); return sp & ALMASK; } static struct cpumask backtrace_csd_busy; static void handle_backtrace(void *info) { nmi_cpu_backtrace(get_irq_regs()); cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy); } static DEFINE_PER_CPU(call_single_data_t, backtrace_csd) = CSD_INIT(handle_backtrace, NULL); static void raise_backtrace(cpumask_t *mask) { call_single_data_t *csd; int cpu; for_each_cpu(cpu, mask) { /* * If we previously sent an IPI to the target CPU & it hasn't * cleared its bit in the busy cpumask then it didn't handle * our previous IPI & it's not safe for us to reuse the * call_single_data_t. */ if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) { pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n", cpu); continue; } csd = &per_cpu(backtrace_csd, cpu); smp_call_function_single_async(cpu, csd); } } void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu) { nmi_trigger_cpumask_backtrace(mask, exclude_cpu, raise_backtrace); } int mips_get_process_fp_mode(struct task_struct *task) { int value = 0; if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS)) value |= PR_FP_MODE_FR; if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS)) value |= PR_FP_MODE_FRE; return value; } static long prepare_for_fp_mode_switch(void *unused) { /* * This is icky, but we use this to simply ensure that all CPUs have * context switched, regardless of whether they were previously running * kernel or user code. This ensures that no CPU that a mode-switching * program may execute on keeps its FPU enabled (& in the old mode) * throughout the mode switch. */ return 0; } int mips_set_process_fp_mode(struct task_struct *task, unsigned int value) { const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE; struct task_struct *t; struct cpumask process_cpus; int cpu; /* If nothing to change, return right away, successfully. */ if (value == mips_get_process_fp_mode(task)) return 0; /* Only accept a mode change if 64-bit FP enabled for o32. */ if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) return -EOPNOTSUPP; /* And only for o32 tasks. */ if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS)) return -EOPNOTSUPP; /* Check the value is valid */ if (value & ~known_bits) return -EOPNOTSUPP; /* Setting FRE without FR is not supported. */ if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE) return -EOPNOTSUPP; /* Avoid inadvertently triggering emulation */ if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu && !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64)) return -EOPNOTSUPP; if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre) return -EOPNOTSUPP; /* FR = 0 not supported in MIPS R6 */ if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6) return -EOPNOTSUPP; /* Indicate the new FP mode in each thread */ for_each_thread(task, t) { /* Update desired FP register width */ if (value & PR_FP_MODE_FR) { clear_tsk_thread_flag(t, TIF_32BIT_FPREGS); } else { set_tsk_thread_flag(t, TIF_32BIT_FPREGS); clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE); } /* Update desired FP single layout */ if (value & PR_FP_MODE_FRE) set_tsk_thread_flag(t, TIF_HYBRID_FPREGS); else clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS); } /* * We need to ensure that all threads in the process have switched mode * before returning, in order to allow userland to not worry about * races. We can do this by forcing all CPUs that any thread in the * process may be running on to schedule something else - in this case * prepare_for_fp_mode_switch(). * * We begin by generating a mask of all CPUs that any thread in the * process may be running on. */ cpumask_clear(&process_cpus); for_each_thread(task, t) cpumask_set_cpu(task_cpu(t), &process_cpus); /* * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs. * * The CPUs may have rescheduled already since we switched mode or * generated the cpumask, but that doesn't matter. If the task in this * process is scheduled out then our scheduling * prepare_for_fp_mode_switch() will simply be redundant. If it's * scheduled in then it will already have picked up the new FP mode * whilst doing so. */ cpus_read_lock(); for_each_cpu_and(cpu, &process_cpus, cpu_online_mask) work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL); cpus_read_unlock(); return 0; } #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32) void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs) { unsigned int i; for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) { /* k0/k1 are copied as zero. */ if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27) uregs[i] = 0; else uregs[i] = regs->regs[i - MIPS32_EF_R0]; } uregs[MIPS32_EF_LO] = regs->lo; uregs[MIPS32_EF_HI] = regs->hi; uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc; uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr; uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status; uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause; } #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */ #ifdef CONFIG_64BIT void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs) { unsigned int i; for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) { /* k0/k1 are copied as zero. */ if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27) uregs[i] = 0; else uregs[i] = regs->regs[i - MIPS64_EF_R0]; } uregs[MIPS64_EF_LO] = regs->lo; uregs[MIPS64_EF_HI] = regs->hi; uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc; uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr; uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status; uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause; } #endif /* CONFIG_64BIT */
linux-master
arch/mips/kernel/process.c
// SPDX-License-Identifier: GPL-2.0 /* * MIPS specific sysrq operations. * * Copyright (C) 2015 Imagination Technologies Ltd. */ #include <linux/init.h> #include <linux/smp.h> #include <linux/spinlock.h> #include <linux/sysrq.h> #include <linux/workqueue.h> #include <asm/cpu-features.h> #include <asm/mipsregs.h> #include <asm/tlbdebug.h> /* * Dump TLB entries on all CPUs. */ static DEFINE_SPINLOCK(show_lock); static void sysrq_tlbdump_single(void *dummy) { unsigned long flags; spin_lock_irqsave(&show_lock, flags); pr_info("CPU%d:\n", smp_processor_id()); dump_tlb_regs(); pr_info("\n"); dump_tlb_all(); pr_info("\n"); spin_unlock_irqrestore(&show_lock, flags); } #ifdef CONFIG_SMP static void sysrq_tlbdump_othercpus(struct work_struct *dummy) { smp_call_function(sysrq_tlbdump_single, NULL, 0); } static DECLARE_WORK(sysrq_tlbdump, sysrq_tlbdump_othercpus); #endif static void sysrq_handle_tlbdump(u8 key) { sysrq_tlbdump_single(NULL); #ifdef CONFIG_SMP schedule_work(&sysrq_tlbdump); #endif } static const struct sysrq_key_op sysrq_tlbdump_op = { .handler = sysrq_handle_tlbdump, .help_msg = "show-tlbs(x)", .action_msg = "Show TLB entries", .enable_mask = SYSRQ_ENABLE_DUMP, }; static int __init mips_sysrq_init(void) { return register_sysrq_key('x', &sysrq_tlbdump_op); } arch_initcall(mips_sysrq_init);
linux-master
arch/mips/kernel/sysrq.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 2014 Imagination Technologies Ltd. * Author: Leonid Yegoshin <[email protected]> * Author: Markos Chandras <[email protected]> * * MIPS R2 user space instruction emulator for MIPS R6 * */ #include <linux/bug.h> #include <linux/compiler.h> #include <linux/debugfs.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/ptrace.h> #include <linux/seq_file.h> #include <asm/asm.h> #include <asm/branch.h> #include <asm/break.h> #include <asm/debug.h> #include <asm/fpu.h> #include <asm/fpu_emulator.h> #include <asm/inst.h> #include <asm/mips-r2-to-r6-emul.h> #include <asm/local.h> #include <asm/mipsregs.h> #include <asm/ptrace.h> #include <linux/uaccess.h> #ifdef CONFIG_64BIT #define ADDIU "daddiu " #define INS "dins " #define EXT "dext " #else #define ADDIU "addiu " #define INS "ins " #define EXT "ext " #endif /* CONFIG_64BIT */ #define SB "sb " #define LB "lb " #define LL "ll " #define SC "sc " #ifdef CONFIG_DEBUG_FS static DEFINE_PER_CPU(struct mips_r2_emulator_stats, mipsr2emustats); static DEFINE_PER_CPU(struct mips_r2_emulator_stats, mipsr2bdemustats); static DEFINE_PER_CPU(struct mips_r2br_emulator_stats, mipsr2bremustats); #endif extern const unsigned int fpucondbit[8]; #define MIPS_R2_EMUL_TOTAL_PASS 10 int mipsr2_emulation = 0; static int __init mipsr2emu_enable(char *s) { mipsr2_emulation = 1; pr_info("MIPS R2-to-R6 Emulator Enabled!"); return 1; } __setup("mipsr2emu", mipsr2emu_enable); /** * mipsr6_emul - Emulate some frequent R2/R5/R6 instructions in delay slot * for performance instead of the traditional way of using a stack trampoline * which is rather slow. * @regs: Process register set * @ir: Instruction */ static inline int mipsr6_emul(struct pt_regs *regs, u32 ir) { switch (MIPSInst_OPCODE(ir)) { case addiu_op: if (MIPSInst_RT(ir)) regs->regs[MIPSInst_RT(ir)] = (s32)regs->regs[MIPSInst_RS(ir)] + (s32)MIPSInst_SIMM(ir); return 0; case daddiu_op: if (IS_ENABLED(CONFIG_32BIT)) break; if (MIPSInst_RT(ir)) regs->regs[MIPSInst_RT(ir)] = (s64)regs->regs[MIPSInst_RS(ir)] + (s64)MIPSInst_SIMM(ir); return 0; case lwc1_op: case swc1_op: case cop1_op: case cop1x_op: /* FPU instructions in delay slot */ return -SIGFPE; case spec_op: switch (MIPSInst_FUNC(ir)) { case or_op: if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = regs->regs[MIPSInst_RS(ir)] | regs->regs[MIPSInst_RT(ir)]; return 0; case sll_op: if (MIPSInst_RS(ir)) break; if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = (s32)(((u32)regs->regs[MIPSInst_RT(ir)]) << MIPSInst_FD(ir)); return 0; case srl_op: if (MIPSInst_RS(ir)) break; if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = (s32)(((u32)regs->regs[MIPSInst_RT(ir)]) >> MIPSInst_FD(ir)); return 0; case addu_op: if (MIPSInst_FD(ir)) break; if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = (s32)((u32)regs->regs[MIPSInst_RS(ir)] + (u32)regs->regs[MIPSInst_RT(ir)]); return 0; case subu_op: if (MIPSInst_FD(ir)) break; if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = (s32)((u32)regs->regs[MIPSInst_RS(ir)] - (u32)regs->regs[MIPSInst_RT(ir)]); return 0; case dsll_op: if (IS_ENABLED(CONFIG_32BIT) || MIPSInst_RS(ir)) break; if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = (s64)(((u64)regs->regs[MIPSInst_RT(ir)]) << MIPSInst_FD(ir)); return 0; case dsrl_op: if (IS_ENABLED(CONFIG_32BIT) || MIPSInst_RS(ir)) break; if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = (s64)(((u64)regs->regs[MIPSInst_RT(ir)]) >> MIPSInst_FD(ir)); return 0; case daddu_op: if (IS_ENABLED(CONFIG_32BIT) || MIPSInst_FD(ir)) break; if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = (u64)regs->regs[MIPSInst_RS(ir)] + (u64)regs->regs[MIPSInst_RT(ir)]; return 0; case dsubu_op: if (IS_ENABLED(CONFIG_32BIT) || MIPSInst_FD(ir)) break; if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = (s64)((u64)regs->regs[MIPSInst_RS(ir)] - (u64)regs->regs[MIPSInst_RT(ir)]); return 0; } break; default: pr_debug("No fastpath BD emulation for instruction 0x%08x (op: %02x)\n", ir, MIPSInst_OPCODE(ir)); } return SIGILL; } /** * movf_func - Emulate a MOVF instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int movf_func(struct pt_regs *regs, u32 ir) { u32 csr; u32 cond; csr = current->thread.fpu.fcr31; cond = fpucondbit[MIPSInst_RT(ir) >> 2]; if (((csr & cond) == 0) && MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = regs->regs[MIPSInst_RS(ir)]; MIPS_R2_STATS(movs); return 0; } /** * movt_func - Emulate a MOVT instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int movt_func(struct pt_regs *regs, u32 ir) { u32 csr; u32 cond; csr = current->thread.fpu.fcr31; cond = fpucondbit[MIPSInst_RT(ir) >> 2]; if (((csr & cond) != 0) && MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = regs->regs[MIPSInst_RS(ir)]; MIPS_R2_STATS(movs); return 0; } /** * jr_func - Emulate a JR instruction. * @pt_regs: Process register set * @ir: Instruction * * Returns SIGILL if JR was in delay slot, SIGEMT if we * can't compute the EPC, SIGSEGV if we can't access the * userland instruction or 0 on success. */ static int jr_func(struct pt_regs *regs, u32 ir) { int err; unsigned long cepc, epc, nepc; u32 nir; if (delay_slot(regs)) return SIGILL; /* EPC after the RI/JR instruction */ nepc = regs->cp0_epc; /* Roll back to the reserved R2 JR instruction */ regs->cp0_epc -= 4; epc = regs->cp0_epc; err = __compute_return_epc(regs); if (err < 0) return SIGEMT; /* Computed EPC */ cepc = regs->cp0_epc; /* Get DS instruction */ err = __get_user(nir, (u32 __user *)nepc); if (err) return SIGSEGV; MIPS_R2BR_STATS(jrs); /* If nir == 0(NOP), then nothing else to do */ if (nir) { /* * Negative err means FPU instruction in BD-slot, * Zero err means 'BD-slot emulation done' * For anything else we go back to trampoline emulation. */ err = mipsr6_emul(regs, nir); if (err > 0) { regs->cp0_epc = nepc; err = mips_dsemul(regs, nir, epc, cepc); if (err == SIGILL) err = SIGEMT; MIPS_R2_STATS(dsemul); } } return err; } /** * movz_func - Emulate a MOVZ instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int movz_func(struct pt_regs *regs, u32 ir) { if (((regs->regs[MIPSInst_RT(ir)]) == 0) && MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = regs->regs[MIPSInst_RS(ir)]; MIPS_R2_STATS(movs); return 0; } /** * movn_func - Emulate a MOVZ instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int movn_func(struct pt_regs *regs, u32 ir) { if (((regs->regs[MIPSInst_RT(ir)]) != 0) && MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = regs->regs[MIPSInst_RS(ir)]; MIPS_R2_STATS(movs); return 0; } /** * mfhi_func - Emulate a MFHI instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int mfhi_func(struct pt_regs *regs, u32 ir) { if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = regs->hi; MIPS_R2_STATS(hilo); return 0; } /** * mthi_func - Emulate a MTHI instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int mthi_func(struct pt_regs *regs, u32 ir) { regs->hi = regs->regs[MIPSInst_RS(ir)]; MIPS_R2_STATS(hilo); return 0; } /** * mflo_func - Emulate a MFLO instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int mflo_func(struct pt_regs *regs, u32 ir) { if (MIPSInst_RD(ir)) regs->regs[MIPSInst_RD(ir)] = regs->lo; MIPS_R2_STATS(hilo); return 0; } /** * mtlo_func - Emulate a MTLO instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int mtlo_func(struct pt_regs *regs, u32 ir) { regs->lo = regs->regs[MIPSInst_RS(ir)]; MIPS_R2_STATS(hilo); return 0; } /** * mult_func - Emulate a MULT instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int mult_func(struct pt_regs *regs, u32 ir) { s64 res; s32 rt, rs; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; res = (s64)rt * (s64)rs; rs = res; regs->lo = (s64)rs; rt = res >> 32; res = (s64)rt; regs->hi = res; MIPS_R2_STATS(muls); return 0; } /** * multu_func - Emulate a MULTU instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int multu_func(struct pt_regs *regs, u32 ir) { u64 res; u32 rt, rs; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; res = (u64)rt * (u64)rs; rt = res; regs->lo = (s64)(s32)rt; regs->hi = (s64)(s32)(res >> 32); MIPS_R2_STATS(muls); return 0; } /** * div_func - Emulate a DIV instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int div_func(struct pt_regs *regs, u32 ir) { s32 rt, rs; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; regs->lo = (s64)(rs / rt); regs->hi = (s64)(rs % rt); MIPS_R2_STATS(divs); return 0; } /** * divu_func - Emulate a DIVU instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int divu_func(struct pt_regs *regs, u32 ir) { u32 rt, rs; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; regs->lo = (s64)(rs / rt); regs->hi = (s64)(rs % rt); MIPS_R2_STATS(divs); return 0; } /** * dmult_func - Emulate a DMULT instruction * @regs: Process register set * @ir: Instruction * * Returns 0 on success or SIGILL for 32-bit kernels. */ static int dmult_func(struct pt_regs *regs, u32 ir) { s64 res; s64 rt, rs; if (IS_ENABLED(CONFIG_32BIT)) return SIGILL; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; res = rt * rs; regs->lo = res; __asm__ __volatile__( "dmuh %0, %1, %2\t\n" : "=r"(res) : "r"(rt), "r"(rs)); regs->hi = res; MIPS_R2_STATS(muls); return 0; } /** * dmultu_func - Emulate a DMULTU instruction * @regs: Process register set * @ir: Instruction * * Returns 0 on success or SIGILL for 32-bit kernels. */ static int dmultu_func(struct pt_regs *regs, u32 ir) { u64 res; u64 rt, rs; if (IS_ENABLED(CONFIG_32BIT)) return SIGILL; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; res = rt * rs; regs->lo = res; __asm__ __volatile__( "dmuhu %0, %1, %2\t\n" : "=r"(res) : "r"(rt), "r"(rs)); regs->hi = res; MIPS_R2_STATS(muls); return 0; } /** * ddiv_func - Emulate a DDIV instruction * @regs: Process register set * @ir: Instruction * * Returns 0 on success or SIGILL for 32-bit kernels. */ static int ddiv_func(struct pt_regs *regs, u32 ir) { s64 rt, rs; if (IS_ENABLED(CONFIG_32BIT)) return SIGILL; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; regs->lo = rs / rt; regs->hi = rs % rt; MIPS_R2_STATS(divs); return 0; } /** * ddivu_func - Emulate a DDIVU instruction * @regs: Process register set * @ir: Instruction * * Returns 0 on success or SIGILL for 32-bit kernels. */ static int ddivu_func(struct pt_regs *regs, u32 ir) { u64 rt, rs; if (IS_ENABLED(CONFIG_32BIT)) return SIGILL; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; regs->lo = rs / rt; regs->hi = rs % rt; MIPS_R2_STATS(divs); return 0; } /* R6 removed instructions for the SPECIAL opcode */ static const struct r2_decoder_table spec_op_table[] = { { 0xfc1ff83f, 0x00000008, jr_func }, { 0xfc00ffff, 0x00000018, mult_func }, { 0xfc00ffff, 0x00000019, multu_func }, { 0xfc00ffff, 0x0000001c, dmult_func }, { 0xfc00ffff, 0x0000001d, dmultu_func }, { 0xffff07ff, 0x00000010, mfhi_func }, { 0xfc1fffff, 0x00000011, mthi_func }, { 0xffff07ff, 0x00000012, mflo_func }, { 0xfc1fffff, 0x00000013, mtlo_func }, { 0xfc0307ff, 0x00000001, movf_func }, { 0xfc0307ff, 0x00010001, movt_func }, { 0xfc0007ff, 0x0000000a, movz_func }, { 0xfc0007ff, 0x0000000b, movn_func }, { 0xfc00ffff, 0x0000001a, div_func }, { 0xfc00ffff, 0x0000001b, divu_func }, { 0xfc00ffff, 0x0000001e, ddiv_func }, { 0xfc00ffff, 0x0000001f, ddivu_func }, {} }; /** * madd_func - Emulate a MADD instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int madd_func(struct pt_regs *regs, u32 ir) { s64 res; s32 rt, rs; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; res = (s64)rt * (s64)rs; rt = regs->hi; rs = regs->lo; res += ((((s64)rt) << 32) | (u32)rs); rt = res; regs->lo = (s64)rt; rs = res >> 32; regs->hi = (s64)rs; MIPS_R2_STATS(dsps); return 0; } /** * maddu_func - Emulate a MADDU instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int maddu_func(struct pt_regs *regs, u32 ir) { u64 res; u32 rt, rs; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; res = (u64)rt * (u64)rs; rt = regs->hi; rs = regs->lo; res += ((((s64)rt) << 32) | (u32)rs); rt = res; regs->lo = (s64)(s32)rt; rs = res >> 32; regs->hi = (s64)(s32)rs; MIPS_R2_STATS(dsps); return 0; } /** * msub_func - Emulate a MSUB instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int msub_func(struct pt_regs *regs, u32 ir) { s64 res; s32 rt, rs; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; res = (s64)rt * (s64)rs; rt = regs->hi; rs = regs->lo; res = ((((s64)rt) << 32) | (u32)rs) - res; rt = res; regs->lo = (s64)rt; rs = res >> 32; regs->hi = (s64)rs; MIPS_R2_STATS(dsps); return 0; } /** * msubu_func - Emulate a MSUBU instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int msubu_func(struct pt_regs *regs, u32 ir) { u64 res; u32 rt, rs; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; res = (u64)rt * (u64)rs; rt = regs->hi; rs = regs->lo; res = ((((s64)rt) << 32) | (u32)rs) - res; rt = res; regs->lo = (s64)(s32)rt; rs = res >> 32; regs->hi = (s64)(s32)rs; MIPS_R2_STATS(dsps); return 0; } /** * mul_func - Emulate a MUL instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int mul_func(struct pt_regs *regs, u32 ir) { s64 res; s32 rt, rs; if (!MIPSInst_RD(ir)) return 0; rt = regs->regs[MIPSInst_RT(ir)]; rs = regs->regs[MIPSInst_RS(ir)]; res = (s64)rt * (s64)rs; rs = res; regs->regs[MIPSInst_RD(ir)] = (s64)rs; MIPS_R2_STATS(muls); return 0; } /** * clz_func - Emulate a CLZ instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int clz_func(struct pt_regs *regs, u32 ir) { u32 res; u32 rs; if (!MIPSInst_RD(ir)) return 0; rs = regs->regs[MIPSInst_RS(ir)]; __asm__ __volatile__("clz %0, %1" : "=r"(res) : "r"(rs)); regs->regs[MIPSInst_RD(ir)] = res; MIPS_R2_STATS(bops); return 0; } /** * clo_func - Emulate a CLO instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int clo_func(struct pt_regs *regs, u32 ir) { u32 res; u32 rs; if (!MIPSInst_RD(ir)) return 0; rs = regs->regs[MIPSInst_RS(ir)]; __asm__ __volatile__("clo %0, %1" : "=r"(res) : "r"(rs)); regs->regs[MIPSInst_RD(ir)] = res; MIPS_R2_STATS(bops); return 0; } /** * dclz_func - Emulate a DCLZ instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int dclz_func(struct pt_regs *regs, u32 ir) { u64 res; u64 rs; if (IS_ENABLED(CONFIG_32BIT)) return SIGILL; if (!MIPSInst_RD(ir)) return 0; rs = regs->regs[MIPSInst_RS(ir)]; __asm__ __volatile__("dclz %0, %1" : "=r"(res) : "r"(rs)); regs->regs[MIPSInst_RD(ir)] = res; MIPS_R2_STATS(bops); return 0; } /** * dclo_func - Emulate a DCLO instruction * @regs: Process register set * @ir: Instruction * * Returns 0 since it always succeeds. */ static int dclo_func(struct pt_regs *regs, u32 ir) { u64 res; u64 rs; if (IS_ENABLED(CONFIG_32BIT)) return SIGILL; if (!MIPSInst_RD(ir)) return 0; rs = regs->regs[MIPSInst_RS(ir)]; __asm__ __volatile__("dclo %0, %1" : "=r"(res) : "r"(rs)); regs->regs[MIPSInst_RD(ir)] = res; MIPS_R2_STATS(bops); return 0; } /* R6 removed instructions for the SPECIAL2 opcode */ static const struct r2_decoder_table spec2_op_table[] = { { 0xfc00ffff, 0x70000000, madd_func }, { 0xfc00ffff, 0x70000001, maddu_func }, { 0xfc0007ff, 0x70000002, mul_func }, { 0xfc00ffff, 0x70000004, msub_func }, { 0xfc00ffff, 0x70000005, msubu_func }, { 0xfc0007ff, 0x70000020, clz_func }, { 0xfc0007ff, 0x70000021, clo_func }, { 0xfc0007ff, 0x70000024, dclz_func }, { 0xfc0007ff, 0x70000025, dclo_func }, { } }; static inline int mipsr2_find_op_func(struct pt_regs *regs, u32 inst, const struct r2_decoder_table *table) { const struct r2_decoder_table *p; int err; for (p = table; p->func; p++) { if ((inst & p->mask) == p->code) { err = (p->func)(regs, inst); return err; } } return SIGILL; } /** * mipsr2_decoder: Decode and emulate a MIPS R2 instruction * @regs: Process register set * @inst: Instruction to decode and emulate * @fcr31: Floating Point Control and Status Register Cause bits returned */ int mipsr2_decoder(struct pt_regs *regs, u32 inst, unsigned long *fcr31) { int err = 0; unsigned long vaddr; u32 nir; unsigned long cpc, epc, nepc, r31, res, rs, rt; void __user *fault_addr = NULL; int pass = 0; repeat: r31 = regs->regs[31]; epc = regs->cp0_epc; err = compute_return_epc(regs); if (err < 0) { BUG(); return SIGEMT; } pr_debug("Emulating the 0x%08x R2 instruction @ 0x%08lx (pass=%d))\n", inst, epc, pass); switch (MIPSInst_OPCODE(inst)) { case spec_op: err = mipsr2_find_op_func(regs, inst, spec_op_table); if (err < 0) { /* FPU instruction under JR */ regs->cp0_cause |= CAUSEF_BD; goto fpu_emul; } break; case spec2_op: err = mipsr2_find_op_func(regs, inst, spec2_op_table); break; case bcond_op: rt = MIPSInst_RT(inst); rs = MIPSInst_RS(inst); switch (rt) { case tgei_op: if ((long)regs->regs[rs] >= MIPSInst_SIMM(inst)) do_trap_or_bp(regs, 0, 0, "TGEI"); MIPS_R2_STATS(traps); break; case tgeiu_op: if (regs->regs[rs] >= MIPSInst_UIMM(inst)) do_trap_or_bp(regs, 0, 0, "TGEIU"); MIPS_R2_STATS(traps); break; case tlti_op: if ((long)regs->regs[rs] < MIPSInst_SIMM(inst)) do_trap_or_bp(regs, 0, 0, "TLTI"); MIPS_R2_STATS(traps); break; case tltiu_op: if (regs->regs[rs] < MIPSInst_UIMM(inst)) do_trap_or_bp(regs, 0, 0, "TLTIU"); MIPS_R2_STATS(traps); break; case teqi_op: if (regs->regs[rs] == MIPSInst_SIMM(inst)) do_trap_or_bp(regs, 0, 0, "TEQI"); MIPS_R2_STATS(traps); break; case tnei_op: if (regs->regs[rs] != MIPSInst_SIMM(inst)) do_trap_or_bp(regs, 0, 0, "TNEI"); MIPS_R2_STATS(traps); break; case bltzl_op: case bgezl_op: case bltzall_op: case bgezall_op: if (delay_slot(regs)) { err = SIGILL; break; } regs->regs[31] = r31; regs->cp0_epc = epc; err = __compute_return_epc(regs); if (err < 0) return SIGEMT; if (err != BRANCH_LIKELY_TAKEN) break; cpc = regs->cp0_epc; nepc = epc + 4; err = __get_user(nir, (u32 __user *)nepc); if (err) { err = SIGSEGV; break; } /* * This will probably be optimized away when * CONFIG_DEBUG_FS is not enabled */ switch (rt) { case bltzl_op: MIPS_R2BR_STATS(bltzl); break; case bgezl_op: MIPS_R2BR_STATS(bgezl); break; case bltzall_op: MIPS_R2BR_STATS(bltzall); break; case bgezall_op: MIPS_R2BR_STATS(bgezall); break; } switch (MIPSInst_OPCODE(nir)) { case cop1_op: case cop1x_op: case lwc1_op: case swc1_op: regs->cp0_cause |= CAUSEF_BD; goto fpu_emul; } if (nir) { err = mipsr6_emul(regs, nir); if (err > 0) { err = mips_dsemul(regs, nir, epc, cpc); if (err == SIGILL) err = SIGEMT; MIPS_R2_STATS(dsemul); } } break; case bltzal_op: case bgezal_op: if (delay_slot(regs)) { err = SIGILL; break; } regs->regs[31] = r31; regs->cp0_epc = epc; err = __compute_return_epc(regs); if (err < 0) return SIGEMT; cpc = regs->cp0_epc; nepc = epc + 4; err = __get_user(nir, (u32 __user *)nepc); if (err) { err = SIGSEGV; break; } /* * This will probably be optimized away when * CONFIG_DEBUG_FS is not enabled */ switch (rt) { case bltzal_op: MIPS_R2BR_STATS(bltzal); break; case bgezal_op: MIPS_R2BR_STATS(bgezal); break; } switch (MIPSInst_OPCODE(nir)) { case cop1_op: case cop1x_op: case lwc1_op: case swc1_op: regs->cp0_cause |= CAUSEF_BD; goto fpu_emul; } if (nir) { err = mipsr6_emul(regs, nir); if (err > 0) { err = mips_dsemul(regs, nir, epc, cpc); if (err == SIGILL) err = SIGEMT; MIPS_R2_STATS(dsemul); } } break; default: regs->regs[31] = r31; regs->cp0_epc = epc; err = SIGILL; break; } break; case blezl_op: case bgtzl_op: /* * For BLEZL and BGTZL, rt field must be set to 0. If this * is not the case, this may be an encoding of a MIPS R6 * instruction, so return to CPU execution if this occurs */ if (MIPSInst_RT(inst)) { err = SIGILL; break; } fallthrough; case beql_op: case bnel_op: if (delay_slot(regs)) { err = SIGILL; break; } regs->regs[31] = r31; regs->cp0_epc = epc; err = __compute_return_epc(regs); if (err < 0) return SIGEMT; if (err != BRANCH_LIKELY_TAKEN) break; cpc = regs->cp0_epc; nepc = epc + 4; err = __get_user(nir, (u32 __user *)nepc); if (err) { err = SIGSEGV; break; } /* * This will probably be optimized away when * CONFIG_DEBUG_FS is not enabled */ switch (MIPSInst_OPCODE(inst)) { case beql_op: MIPS_R2BR_STATS(beql); break; case bnel_op: MIPS_R2BR_STATS(bnel); break; case blezl_op: MIPS_R2BR_STATS(blezl); break; case bgtzl_op: MIPS_R2BR_STATS(bgtzl); break; } switch (MIPSInst_OPCODE(nir)) { case cop1_op: case cop1x_op: case lwc1_op: case swc1_op: regs->cp0_cause |= CAUSEF_BD; goto fpu_emul; } if (nir) { err = mipsr6_emul(regs, nir); if (err > 0) { err = mips_dsemul(regs, nir, epc, cpc); if (err == SIGILL) err = SIGEMT; MIPS_R2_STATS(dsemul); } } break; case lwc1_op: case swc1_op: case cop1_op: case cop1x_op: fpu_emul: regs->regs[31] = r31; regs->cp0_epc = epc; err = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0, &fault_addr); /* * We can't allow the emulated instruction to leave any * enabled Cause bits set in $fcr31. */ *fcr31 = res = mask_fcr31_x(current->thread.fpu.fcr31); current->thread.fpu.fcr31 &= ~res; /* * this is a tricky issue - lose_fpu() uses LL/SC atomics * if FPU is owned and effectively cancels user level LL/SC. * So, it could be logical to don't restore FPU ownership here. * But the sequence of multiple FPU instructions is much much * more often than LL-FPU-SC and I prefer loop here until * next scheduler cycle cancels FPU ownership */ own_fpu(1); /* Restore FPU state. */ if (err) current->thread.cp0_baduaddr = (unsigned long)fault_addr; MIPS_R2_STATS(fpus); break; case lwl_op: rt = regs->regs[MIPSInst_RT(inst)]; vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (!access_ok((void __user *)vaddr, 4)) { current->thread.cp0_baduaddr = vaddr; err = SIGSEGV; break; } __asm__ __volatile__( " .set push\n" " .set reorder\n" #ifdef CONFIG_CPU_LITTLE_ENDIAN "1:" LB "%1, 0(%2)\n" INS "%0, %1, 24, 8\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" "2:" LB "%1, 0(%2)\n" INS "%0, %1, 16, 8\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" "3:" LB "%1, 0(%2)\n" INS "%0, %1, 8, 8\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" "4:" LB "%1, 0(%2)\n" INS "%0, %1, 0, 8\n" #else /* !CONFIG_CPU_LITTLE_ENDIAN */ "1:" LB "%1, 0(%2)\n" INS "%0, %1, 24, 8\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" "2:" LB "%1, 0(%2)\n" INS "%0, %1, 16, 8\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" "3:" LB "%1, 0(%2)\n" INS "%0, %1, 8, 8\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" "4:" LB "%1, 0(%2)\n" INS "%0, %1, 0, 8\n" #endif /* CONFIG_CPU_LITTLE_ENDIAN */ "9: sll %0, %0, 0\n" "10:\n" " .insn\n" " .section .fixup,\"ax\"\n" "8: li %3,%4\n" " j 10b\n" " .previous\n" " .section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,8b\n" STR(PTR_WD) " 2b,8b\n" STR(PTR_WD) " 3b,8b\n" STR(PTR_WD) " 4b,8b\n" " .previous\n" " .set pop\n" : "+&r"(rt), "=&r"(rs), "+&r"(vaddr), "+&r"(err) : "i"(SIGSEGV)); if (MIPSInst_RT(inst) && !err) regs->regs[MIPSInst_RT(inst)] = rt; MIPS_R2_STATS(loads); break; case lwr_op: rt = regs->regs[MIPSInst_RT(inst)]; vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (!access_ok((void __user *)vaddr, 4)) { current->thread.cp0_baduaddr = vaddr; err = SIGSEGV; break; } __asm__ __volatile__( " .set push\n" " .set reorder\n" #ifdef CONFIG_CPU_LITTLE_ENDIAN "1:" LB "%1, 0(%2)\n" INS "%0, %1, 0, 8\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" "2:" LB "%1, 0(%2)\n" INS "%0, %1, 8, 8\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" "3:" LB "%1, 0(%2)\n" INS "%0, %1, 16, 8\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" "4:" LB "%1, 0(%2)\n" INS "%0, %1, 24, 8\n" " sll %0, %0, 0\n" #else /* !CONFIG_CPU_LITTLE_ENDIAN */ "1:" LB "%1, 0(%2)\n" INS "%0, %1, 0, 8\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" "2:" LB "%1, 0(%2)\n" INS "%0, %1, 8, 8\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" "3:" LB "%1, 0(%2)\n" INS "%0, %1, 16, 8\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" "4:" LB "%1, 0(%2)\n" INS "%0, %1, 24, 8\n" " sll %0, %0, 0\n" #endif /* CONFIG_CPU_LITTLE_ENDIAN */ "9:\n" "10:\n" " .insn\n" " .section .fixup,\"ax\"\n" "8: li %3,%4\n" " j 10b\n" " .previous\n" " .section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,8b\n" STR(PTR_WD) " 2b,8b\n" STR(PTR_WD) " 3b,8b\n" STR(PTR_WD) " 4b,8b\n" " .previous\n" " .set pop\n" : "+&r"(rt), "=&r"(rs), "+&r"(vaddr), "+&r"(err) : "i"(SIGSEGV)); if (MIPSInst_RT(inst) && !err) regs->regs[MIPSInst_RT(inst)] = rt; MIPS_R2_STATS(loads); break; case swl_op: rt = regs->regs[MIPSInst_RT(inst)]; vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (!access_ok((void __user *)vaddr, 4)) { current->thread.cp0_baduaddr = vaddr; err = SIGSEGV; break; } __asm__ __volatile__( " .set push\n" " .set reorder\n" #ifdef CONFIG_CPU_LITTLE_ENDIAN EXT "%1, %0, 24, 8\n" "1:" SB "%1, 0(%2)\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" EXT "%1, %0, 16, 8\n" "2:" SB "%1, 0(%2)\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" EXT "%1, %0, 8, 8\n" "3:" SB "%1, 0(%2)\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" EXT "%1, %0, 0, 8\n" "4:" SB "%1, 0(%2)\n" #else /* !CONFIG_CPU_LITTLE_ENDIAN */ EXT "%1, %0, 24, 8\n" "1:" SB "%1, 0(%2)\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" EXT "%1, %0, 16, 8\n" "2:" SB "%1, 0(%2)\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" EXT "%1, %0, 8, 8\n" "3:" SB "%1, 0(%2)\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" EXT "%1, %0, 0, 8\n" "4:" SB "%1, 0(%2)\n" #endif /* CONFIG_CPU_LITTLE_ENDIAN */ "9:\n" " .insn\n" " .section .fixup,\"ax\"\n" "8: li %3,%4\n" " j 9b\n" " .previous\n" " .section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,8b\n" STR(PTR_WD) " 2b,8b\n" STR(PTR_WD) " 3b,8b\n" STR(PTR_WD) " 4b,8b\n" " .previous\n" " .set pop\n" : "+&r"(rt), "=&r"(rs), "+&r"(vaddr), "+&r"(err) : "i"(SIGSEGV) : "memory"); MIPS_R2_STATS(stores); break; case swr_op: rt = regs->regs[MIPSInst_RT(inst)]; vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (!access_ok((void __user *)vaddr, 4)) { current->thread.cp0_baduaddr = vaddr; err = SIGSEGV; break; } __asm__ __volatile__( " .set push\n" " .set reorder\n" #ifdef CONFIG_CPU_LITTLE_ENDIAN EXT "%1, %0, 0, 8\n" "1:" SB "%1, 0(%2)\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" EXT "%1, %0, 8, 8\n" "2:" SB "%1, 0(%2)\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" EXT "%1, %0, 16, 8\n" "3:" SB "%1, 0(%2)\n" ADDIU "%2, %2, 1\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" EXT "%1, %0, 24, 8\n" "4:" SB "%1, 0(%2)\n" #else /* !CONFIG_CPU_LITTLE_ENDIAN */ EXT "%1, %0, 0, 8\n" "1:" SB "%1, 0(%2)\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" EXT "%1, %0, 8, 8\n" "2:" SB "%1, 0(%2)\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" EXT "%1, %0, 16, 8\n" "3:" SB "%1, 0(%2)\n" " andi %1, %2, 0x3\n" " beq $0, %1, 9f\n" ADDIU "%2, %2, -1\n" EXT "%1, %0, 24, 8\n" "4:" SB "%1, 0(%2)\n" #endif /* CONFIG_CPU_LITTLE_ENDIAN */ "9:\n" " .insn\n" " .section .fixup,\"ax\"\n" "8: li %3,%4\n" " j 9b\n" " .previous\n" " .section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,8b\n" STR(PTR_WD) " 2b,8b\n" STR(PTR_WD) " 3b,8b\n" STR(PTR_WD) " 4b,8b\n" " .previous\n" " .set pop\n" : "+&r"(rt), "=&r"(rs), "+&r"(vaddr), "+&r"(err) : "i"(SIGSEGV) : "memory"); MIPS_R2_STATS(stores); break; case ldl_op: if (IS_ENABLED(CONFIG_32BIT)) { err = SIGILL; break; } rt = regs->regs[MIPSInst_RT(inst)]; vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (!access_ok((void __user *)vaddr, 8)) { current->thread.cp0_baduaddr = vaddr; err = SIGSEGV; break; } __asm__ __volatile__( " .set push\n" " .set reorder\n" #ifdef CONFIG_CPU_LITTLE_ENDIAN "1: lb %1, 0(%2)\n" " dinsu %0, %1, 56, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "2: lb %1, 0(%2)\n" " dinsu %0, %1, 48, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "3: lb %1, 0(%2)\n" " dinsu %0, %1, 40, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "4: lb %1, 0(%2)\n" " dinsu %0, %1, 32, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "5: lb %1, 0(%2)\n" " dins %0, %1, 24, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "6: lb %1, 0(%2)\n" " dins %0, %1, 16, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "7: lb %1, 0(%2)\n" " dins %0, %1, 8, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "0: lb %1, 0(%2)\n" " dins %0, %1, 0, 8\n" #else /* !CONFIG_CPU_LITTLE_ENDIAN */ "1: lb %1, 0(%2)\n" " dinsu %0, %1, 56, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "2: lb %1, 0(%2)\n" " dinsu %0, %1, 48, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "3: lb %1, 0(%2)\n" " dinsu %0, %1, 40, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "4: lb %1, 0(%2)\n" " dinsu %0, %1, 32, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "5: lb %1, 0(%2)\n" " dins %0, %1, 24, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "6: lb %1, 0(%2)\n" " dins %0, %1, 16, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "7: lb %1, 0(%2)\n" " dins %0, %1, 8, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "0: lb %1, 0(%2)\n" " dins %0, %1, 0, 8\n" #endif /* CONFIG_CPU_LITTLE_ENDIAN */ "9:\n" " .insn\n" " .section .fixup,\"ax\"\n" "8: li %3,%4\n" " j 9b\n" " .previous\n" " .section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,8b\n" STR(PTR_WD) " 2b,8b\n" STR(PTR_WD) " 3b,8b\n" STR(PTR_WD) " 4b,8b\n" STR(PTR_WD) " 5b,8b\n" STR(PTR_WD) " 6b,8b\n" STR(PTR_WD) " 7b,8b\n" STR(PTR_WD) " 0b,8b\n" " .previous\n" " .set pop\n" : "+&r"(rt), "=&r"(rs), "+&r"(vaddr), "+&r"(err) : "i"(SIGSEGV)); if (MIPSInst_RT(inst) && !err) regs->regs[MIPSInst_RT(inst)] = rt; MIPS_R2_STATS(loads); break; case ldr_op: if (IS_ENABLED(CONFIG_32BIT)) { err = SIGILL; break; } rt = regs->regs[MIPSInst_RT(inst)]; vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (!access_ok((void __user *)vaddr, 8)) { current->thread.cp0_baduaddr = vaddr; err = SIGSEGV; break; } __asm__ __volatile__( " .set push\n" " .set reorder\n" #ifdef CONFIG_CPU_LITTLE_ENDIAN "1: lb %1, 0(%2)\n" " dins %0, %1, 0, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "2: lb %1, 0(%2)\n" " dins %0, %1, 8, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "3: lb %1, 0(%2)\n" " dins %0, %1, 16, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "4: lb %1, 0(%2)\n" " dins %0, %1, 24, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "5: lb %1, 0(%2)\n" " dinsu %0, %1, 32, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "6: lb %1, 0(%2)\n" " dinsu %0, %1, 40, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "7: lb %1, 0(%2)\n" " dinsu %0, %1, 48, 8\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" "0: lb %1, 0(%2)\n" " dinsu %0, %1, 56, 8\n" #else /* !CONFIG_CPU_LITTLE_ENDIAN */ "1: lb %1, 0(%2)\n" " dins %0, %1, 0, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "2: lb %1, 0(%2)\n" " dins %0, %1, 8, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "3: lb %1, 0(%2)\n" " dins %0, %1, 16, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "4: lb %1, 0(%2)\n" " dins %0, %1, 24, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "5: lb %1, 0(%2)\n" " dinsu %0, %1, 32, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "6: lb %1, 0(%2)\n" " dinsu %0, %1, 40, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "7: lb %1, 0(%2)\n" " dinsu %0, %1, 48, 8\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" "0: lb %1, 0(%2)\n" " dinsu %0, %1, 56, 8\n" #endif /* CONFIG_CPU_LITTLE_ENDIAN */ "9:\n" " .insn\n" " .section .fixup,\"ax\"\n" "8: li %3,%4\n" " j 9b\n" " .previous\n" " .section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,8b\n" STR(PTR_WD) " 2b,8b\n" STR(PTR_WD) " 3b,8b\n" STR(PTR_WD) " 4b,8b\n" STR(PTR_WD) " 5b,8b\n" STR(PTR_WD) " 6b,8b\n" STR(PTR_WD) " 7b,8b\n" STR(PTR_WD) " 0b,8b\n" " .previous\n" " .set pop\n" : "+&r"(rt), "=&r"(rs), "+&r"(vaddr), "+&r"(err) : "i"(SIGSEGV)); if (MIPSInst_RT(inst) && !err) regs->regs[MIPSInst_RT(inst)] = rt; MIPS_R2_STATS(loads); break; case sdl_op: if (IS_ENABLED(CONFIG_32BIT)) { err = SIGILL; break; } rt = regs->regs[MIPSInst_RT(inst)]; vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (!access_ok((void __user *)vaddr, 8)) { current->thread.cp0_baduaddr = vaddr; err = SIGSEGV; break; } __asm__ __volatile__( " .set push\n" " .set reorder\n" #ifdef CONFIG_CPU_LITTLE_ENDIAN " dextu %1, %0, 56, 8\n" "1: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dextu %1, %0, 48, 8\n" "2: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dextu %1, %0, 40, 8\n" "3: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dextu %1, %0, 32, 8\n" "4: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dext %1, %0, 24, 8\n" "5: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dext %1, %0, 16, 8\n" "6: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dext %1, %0, 8, 8\n" "7: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dext %1, %0, 0, 8\n" "0: sb %1, 0(%2)\n" #else /* !CONFIG_CPU_LITTLE_ENDIAN */ " dextu %1, %0, 56, 8\n" "1: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dextu %1, %0, 48, 8\n" "2: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dextu %1, %0, 40, 8\n" "3: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dextu %1, %0, 32, 8\n" "4: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dext %1, %0, 24, 8\n" "5: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dext %1, %0, 16, 8\n" "6: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dext %1, %0, 8, 8\n" "7: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dext %1, %0, 0, 8\n" "0: sb %1, 0(%2)\n" #endif /* CONFIG_CPU_LITTLE_ENDIAN */ "9:\n" " .insn\n" " .section .fixup,\"ax\"\n" "8: li %3,%4\n" " j 9b\n" " .previous\n" " .section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,8b\n" STR(PTR_WD) " 2b,8b\n" STR(PTR_WD) " 3b,8b\n" STR(PTR_WD) " 4b,8b\n" STR(PTR_WD) " 5b,8b\n" STR(PTR_WD) " 6b,8b\n" STR(PTR_WD) " 7b,8b\n" STR(PTR_WD) " 0b,8b\n" " .previous\n" " .set pop\n" : "+&r"(rt), "=&r"(rs), "+&r"(vaddr), "+&r"(err) : "i"(SIGSEGV) : "memory"); MIPS_R2_STATS(stores); break; case sdr_op: if (IS_ENABLED(CONFIG_32BIT)) { err = SIGILL; break; } rt = regs->regs[MIPSInst_RT(inst)]; vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (!access_ok((void __user *)vaddr, 8)) { current->thread.cp0_baduaddr = vaddr; err = SIGSEGV; break; } __asm__ __volatile__( " .set push\n" " .set reorder\n" #ifdef CONFIG_CPU_LITTLE_ENDIAN " dext %1, %0, 0, 8\n" "1: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dext %1, %0, 8, 8\n" "2: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dext %1, %0, 16, 8\n" "3: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dext %1, %0, 24, 8\n" "4: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dextu %1, %0, 32, 8\n" "5: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dextu %1, %0, 40, 8\n" "6: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dextu %1, %0, 48, 8\n" "7: sb %1, 0(%2)\n" " daddiu %2, %2, 1\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " dextu %1, %0, 56, 8\n" "0: sb %1, 0(%2)\n" #else /* !CONFIG_CPU_LITTLE_ENDIAN */ " dext %1, %0, 0, 8\n" "1: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dext %1, %0, 8, 8\n" "2: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dext %1, %0, 16, 8\n" "3: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dext %1, %0, 24, 8\n" "4: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dextu %1, %0, 32, 8\n" "5: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dextu %1, %0, 40, 8\n" "6: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dextu %1, %0, 48, 8\n" "7: sb %1, 0(%2)\n" " andi %1, %2, 0x7\n" " beq $0, %1, 9f\n" " daddiu %2, %2, -1\n" " dextu %1, %0, 56, 8\n" "0: sb %1, 0(%2)\n" #endif /* CONFIG_CPU_LITTLE_ENDIAN */ "9:\n" " .insn\n" " .section .fixup,\"ax\"\n" "8: li %3,%4\n" " j 9b\n" " .previous\n" " .section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,8b\n" STR(PTR_WD) " 2b,8b\n" STR(PTR_WD) " 3b,8b\n" STR(PTR_WD) " 4b,8b\n" STR(PTR_WD) " 5b,8b\n" STR(PTR_WD) " 6b,8b\n" STR(PTR_WD) " 7b,8b\n" STR(PTR_WD) " 0b,8b\n" " .previous\n" " .set pop\n" : "+&r"(rt), "=&r"(rs), "+&r"(vaddr), "+&r"(err) : "i"(SIGSEGV) : "memory"); MIPS_R2_STATS(stores); break; case ll_op: vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (vaddr & 0x3) { current->thread.cp0_baduaddr = vaddr; err = SIGBUS; break; } if (!access_ok((void __user *)vaddr, 4)) { current->thread.cp0_baduaddr = vaddr; err = SIGBUS; break; } if (!cpu_has_rw_llb) { /* * An LL/SC block can't be safely emulated without * a Config5/LLB availability. So it's probably time to * kill our process before things get any worse. This is * because Config5/LLB allows us to use ERETNC so that * the LLAddr/LLB bit is not cleared when we return from * an exception. MIPS R2 LL/SC instructions trap with an * RI exception so once we emulate them here, we return * back to userland with ERETNC. That preserves the * LLAddr/LLB so the subsequent SC instruction will * succeed preserving the atomic semantics of the LL/SC * block. Without that, there is no safe way to emulate * an LL/SC block in MIPSR2 userland. */ pr_err("Can't emulate MIPSR2 LL/SC without Config5/LLB\n"); err = SIGKILL; break; } __asm__ __volatile__( "1:\n" "ll %0, 0(%2)\n" "2:\n" ".insn\n" ".section .fixup,\"ax\"\n" "3:\n" "li %1, %3\n" "j 2b\n" ".previous\n" ".section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,3b\n" ".previous\n" : "=&r"(res), "+&r"(err) : "r"(vaddr), "i"(SIGSEGV) : "memory"); if (MIPSInst_RT(inst) && !err) regs->regs[MIPSInst_RT(inst)] = res; MIPS_R2_STATS(llsc); break; case sc_op: vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (vaddr & 0x3) { current->thread.cp0_baduaddr = vaddr; err = SIGBUS; break; } if (!access_ok((void __user *)vaddr, 4)) { current->thread.cp0_baduaddr = vaddr; err = SIGBUS; break; } if (!cpu_has_rw_llb) { /* * An LL/SC block can't be safely emulated without * a Config5/LLB availability. So it's probably time to * kill our process before things get any worse. This is * because Config5/LLB allows us to use ERETNC so that * the LLAddr/LLB bit is not cleared when we return from * an exception. MIPS R2 LL/SC instructions trap with an * RI exception so once we emulate them here, we return * back to userland with ERETNC. That preserves the * LLAddr/LLB so the subsequent SC instruction will * succeed preserving the atomic semantics of the LL/SC * block. Without that, there is no safe way to emulate * an LL/SC block in MIPSR2 userland. */ pr_err("Can't emulate MIPSR2 LL/SC without Config5/LLB\n"); err = SIGKILL; break; } res = regs->regs[MIPSInst_RT(inst)]; __asm__ __volatile__( "1:\n" "sc %0, 0(%2)\n" "2:\n" ".insn\n" ".section .fixup,\"ax\"\n" "3:\n" "li %1, %3\n" "j 2b\n" ".previous\n" ".section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,3b\n" ".previous\n" : "+&r"(res), "+&r"(err) : "r"(vaddr), "i"(SIGSEGV)); if (MIPSInst_RT(inst) && !err) regs->regs[MIPSInst_RT(inst)] = res; MIPS_R2_STATS(llsc); break; case lld_op: if (IS_ENABLED(CONFIG_32BIT)) { err = SIGILL; break; } vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (vaddr & 0x7) { current->thread.cp0_baduaddr = vaddr; err = SIGBUS; break; } if (!access_ok((void __user *)vaddr, 8)) { current->thread.cp0_baduaddr = vaddr; err = SIGBUS; break; } if (!cpu_has_rw_llb) { /* * An LL/SC block can't be safely emulated without * a Config5/LLB availability. So it's probably time to * kill our process before things get any worse. This is * because Config5/LLB allows us to use ERETNC so that * the LLAddr/LLB bit is not cleared when we return from * an exception. MIPS R2 LL/SC instructions trap with an * RI exception so once we emulate them here, we return * back to userland with ERETNC. That preserves the * LLAddr/LLB so the subsequent SC instruction will * succeed preserving the atomic semantics of the LL/SC * block. Without that, there is no safe way to emulate * an LL/SC block in MIPSR2 userland. */ pr_err("Can't emulate MIPSR2 LL/SC without Config5/LLB\n"); err = SIGKILL; break; } __asm__ __volatile__( "1:\n" "lld %0, 0(%2)\n" "2:\n" ".insn\n" ".section .fixup,\"ax\"\n" "3:\n" "li %1, %3\n" "j 2b\n" ".previous\n" ".section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,3b\n" ".previous\n" : "=&r"(res), "+&r"(err) : "r"(vaddr), "i"(SIGSEGV) : "memory"); if (MIPSInst_RT(inst) && !err) regs->regs[MIPSInst_RT(inst)] = res; MIPS_R2_STATS(llsc); break; case scd_op: if (IS_ENABLED(CONFIG_32BIT)) { err = SIGILL; break; } vaddr = regs->regs[MIPSInst_RS(inst)] + MIPSInst_SIMM(inst); if (vaddr & 0x7) { current->thread.cp0_baduaddr = vaddr; err = SIGBUS; break; } if (!access_ok((void __user *)vaddr, 8)) { current->thread.cp0_baduaddr = vaddr; err = SIGBUS; break; } if (!cpu_has_rw_llb) { /* * An LL/SC block can't be safely emulated without * a Config5/LLB availability. So it's probably time to * kill our process before things get any worse. This is * because Config5/LLB allows us to use ERETNC so that * the LLAddr/LLB bit is not cleared when we return from * an exception. MIPS R2 LL/SC instructions trap with an * RI exception so once we emulate them here, we return * back to userland with ERETNC. That preserves the * LLAddr/LLB so the subsequent SC instruction will * succeed preserving the atomic semantics of the LL/SC * block. Without that, there is no safe way to emulate * an LL/SC block in MIPSR2 userland. */ pr_err("Can't emulate MIPSR2 LL/SC without Config5/LLB\n"); err = SIGKILL; break; } res = regs->regs[MIPSInst_RT(inst)]; __asm__ __volatile__( "1:\n" "scd %0, 0(%2)\n" "2:\n" ".insn\n" ".section .fixup,\"ax\"\n" "3:\n" "li %1, %3\n" "j 2b\n" ".previous\n" ".section __ex_table,\"a\"\n" STR(PTR_WD) " 1b,3b\n" ".previous\n" : "+&r"(res), "+&r"(err) : "r"(vaddr), "i"(SIGSEGV)); if (MIPSInst_RT(inst) && !err) regs->regs[MIPSInst_RT(inst)] = res; MIPS_R2_STATS(llsc); break; case pref_op: /* skip it */ break; default: err = SIGILL; } /* * Let's not return to userland just yet. It's costly and * it's likely we have more R2 instructions to emulate */ if (!err && (pass++ < MIPS_R2_EMUL_TOTAL_PASS)) { regs->cp0_cause &= ~CAUSEF_BD; err = get_user(inst, (u32 __user *)regs->cp0_epc); if (!err) goto repeat; if (err < 0) err = SIGSEGV; } if (err && (err != SIGEMT)) { regs->regs[31] = r31; regs->cp0_epc = epc; } /* Likely a MIPS R6 compatible instruction */ if (pass && (err == SIGILL)) err = 0; return err; } #ifdef CONFIG_DEBUG_FS static int mipsr2_emul_show(struct seq_file *s, void *unused) { seq_printf(s, "Instruction\tTotal\tBDslot\n------------------------------\n"); seq_printf(s, "movs\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.movs), (unsigned long)__this_cpu_read(mipsr2bdemustats.movs)); seq_printf(s, "hilo\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.hilo), (unsigned long)__this_cpu_read(mipsr2bdemustats.hilo)); seq_printf(s, "muls\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.muls), (unsigned long)__this_cpu_read(mipsr2bdemustats.muls)); seq_printf(s, "divs\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.divs), (unsigned long)__this_cpu_read(mipsr2bdemustats.divs)); seq_printf(s, "dsps\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.dsps), (unsigned long)__this_cpu_read(mipsr2bdemustats.dsps)); seq_printf(s, "bops\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.bops), (unsigned long)__this_cpu_read(mipsr2bdemustats.bops)); seq_printf(s, "traps\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.traps), (unsigned long)__this_cpu_read(mipsr2bdemustats.traps)); seq_printf(s, "fpus\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.fpus), (unsigned long)__this_cpu_read(mipsr2bdemustats.fpus)); seq_printf(s, "loads\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.loads), (unsigned long)__this_cpu_read(mipsr2bdemustats.loads)); seq_printf(s, "stores\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.stores), (unsigned long)__this_cpu_read(mipsr2bdemustats.stores)); seq_printf(s, "llsc\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.llsc), (unsigned long)__this_cpu_read(mipsr2bdemustats.llsc)); seq_printf(s, "dsemul\t\t%ld\t%ld\n", (unsigned long)__this_cpu_read(mipsr2emustats.dsemul), (unsigned long)__this_cpu_read(mipsr2bdemustats.dsemul)); seq_printf(s, "jr\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.jrs)); seq_printf(s, "bltzl\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.bltzl)); seq_printf(s, "bgezl\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.bgezl)); seq_printf(s, "bltzll\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.bltzll)); seq_printf(s, "bgezll\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.bgezll)); seq_printf(s, "bltzal\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.bltzal)); seq_printf(s, "bgezal\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.bgezal)); seq_printf(s, "beql\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.beql)); seq_printf(s, "bnel\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.bnel)); seq_printf(s, "blezl\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.blezl)); seq_printf(s, "bgtzl\t\t%ld\n", (unsigned long)__this_cpu_read(mipsr2bremustats.bgtzl)); return 0; } static int mipsr2_clear_show(struct seq_file *s, void *unused) { mipsr2_emul_show(s, unused); __this_cpu_write((mipsr2emustats).movs, 0); __this_cpu_write((mipsr2bdemustats).movs, 0); __this_cpu_write((mipsr2emustats).hilo, 0); __this_cpu_write((mipsr2bdemustats).hilo, 0); __this_cpu_write((mipsr2emustats).muls, 0); __this_cpu_write((mipsr2bdemustats).muls, 0); __this_cpu_write((mipsr2emustats).divs, 0); __this_cpu_write((mipsr2bdemustats).divs, 0); __this_cpu_write((mipsr2emustats).dsps, 0); __this_cpu_write((mipsr2bdemustats).dsps, 0); __this_cpu_write((mipsr2emustats).bops, 0); __this_cpu_write((mipsr2bdemustats).bops, 0); __this_cpu_write((mipsr2emustats).traps, 0); __this_cpu_write((mipsr2bdemustats).traps, 0); __this_cpu_write((mipsr2emustats).fpus, 0); __this_cpu_write((mipsr2bdemustats).fpus, 0); __this_cpu_write((mipsr2emustats).loads, 0); __this_cpu_write((mipsr2bdemustats).loads, 0); __this_cpu_write((mipsr2emustats).stores, 0); __this_cpu_write((mipsr2bdemustats).stores, 0); __this_cpu_write((mipsr2emustats).llsc, 0); __this_cpu_write((mipsr2bdemustats).llsc, 0); __this_cpu_write((mipsr2emustats).dsemul, 0); __this_cpu_write((mipsr2bdemustats).dsemul, 0); __this_cpu_write((mipsr2bremustats).jrs, 0); __this_cpu_write((mipsr2bremustats).bltzl, 0); __this_cpu_write((mipsr2bremustats).bgezl, 0); __this_cpu_write((mipsr2bremustats).bltzll, 0); __this_cpu_write((mipsr2bremustats).bgezll, 0); __this_cpu_write((mipsr2bremustats).bltzall, 0); __this_cpu_write((mipsr2bremustats).bgezall, 0); __this_cpu_write((mipsr2bremustats).bltzal, 0); __this_cpu_write((mipsr2bremustats).bgezal, 0); __this_cpu_write((mipsr2bremustats).beql, 0); __this_cpu_write((mipsr2bremustats).bnel, 0); __this_cpu_write((mipsr2bremustats).blezl, 0); __this_cpu_write((mipsr2bremustats).bgtzl, 0); return 0; } DEFINE_SHOW_ATTRIBUTE(mipsr2_emul); DEFINE_SHOW_ATTRIBUTE(mipsr2_clear); static int __init mipsr2_init_debugfs(void) { debugfs_create_file("r2_emul_stats", S_IRUGO, mips_debugfs_dir, NULL, &mipsr2_emul_fops); debugfs_create_file("r2_emul_stats_clear", S_IRUGO, mips_debugfs_dir, NULL, &mipsr2_clear_fops); return 0; } device_initcall(mipsr2_init_debugfs); #endif /* CONFIG_DEBUG_FS */
linux-master
arch/mips/kernel/mips-r2-to-r6-emul.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Code to handle x86 style IRQs plus some generic interrupt stuff. * * Copyright (C) 1992 Linus Torvalds * Copyright (C) 1994 - 2000 Ralf Baechle */ #include <linux/kernel.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/proc_fs.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/kallsyms.h> #include <linux/kgdb.h> #include <linux/ftrace.h> #include <linux/irqdomain.h> #include <linux/atomic.h> #include <linux/uaccess.h> void *irq_stack[NR_CPUS]; /* * 'what should we do if we get a hw irq event on an illegal vector'. * each architecture has to answer this themselves. */ void ack_bad_irq(unsigned int irq) { printk("unexpected IRQ # %d\n", irq); } atomic_t irq_err_count; int arch_show_interrupts(struct seq_file *p, int prec) { seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); return 0; } asmlinkage void spurious_interrupt(void) { atomic_inc(&irq_err_count); } void __init init_IRQ(void) { int i; unsigned int order = get_order(IRQ_STACK_SIZE); for (i = 0; i < NR_IRQS; i++) irq_set_noprobe(i); if (cpu_has_veic) clear_c0_status(ST0_IM); arch_init_irq(); for_each_possible_cpu(i) { void *s = (void *)__get_free_pages(GFP_KERNEL, order); irq_stack[i] = s; pr_debug("CPU%d IRQ stack at 0x%p - 0x%p\n", i, irq_stack[i], irq_stack[i] + IRQ_STACK_SIZE); } } #ifdef CONFIG_DEBUG_STACKOVERFLOW static inline void check_stack_overflow(void) { unsigned long sp; __asm__ __volatile__("move %0, $sp" : "=r" (sp)); sp &= THREAD_MASK; /* * Check for stack overflow: is there less than STACK_WARN free? * STACK_WARN is defined as 1/8 of THREAD_SIZE by default. */ if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) { printk("do_IRQ: stack overflow: %ld\n", sp - sizeof(struct thread_info)); dump_stack(); } } #else static inline void check_stack_overflow(void) {} #endif /* * do_IRQ handles all normal device IRQ's (the special * SMP cross-CPU interrupts have their own specific * handlers). */ void __irq_entry do_IRQ(unsigned int irq) { irq_enter(); check_stack_overflow(); generic_handle_irq(irq); irq_exit(); } #ifdef CONFIG_IRQ_DOMAIN void __irq_entry do_domain_IRQ(struct irq_domain *domain, unsigned int hwirq) { irq_enter(); check_stack_overflow(); generic_handle_domain_irq(domain, hwirq); irq_exit(); } #endif
linux-master
arch/mips/kernel/irq.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * DS1287 clockevent driver * * Copyright (C) 2008 Yoichi Yuasa <[email protected]> */ #include <linux/clockchips.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/mc146818rtc.h> #include <linux/irq.h> #include <asm/time.h> int ds1287_timer_state(void) { return (CMOS_READ(RTC_REG_C) & RTC_PF) != 0; } int ds1287_set_base_clock(unsigned int hz) { u8 rate; switch (hz) { case 128: rate = 0x9; break; case 256: rate = 0x8; break; case 1024: rate = 0x6; break; default: return -EINVAL; } CMOS_WRITE(RTC_REF_CLCK_32KHZ | rate, RTC_REG_A); return 0; } static int ds1287_set_next_event(unsigned long delta, struct clock_event_device *evt) { return -EINVAL; } static int ds1287_shutdown(struct clock_event_device *evt) { u8 val; spin_lock(&rtc_lock); val = CMOS_READ(RTC_REG_B); val &= ~RTC_PIE; CMOS_WRITE(val, RTC_REG_B); spin_unlock(&rtc_lock); return 0; } static int ds1287_set_periodic(struct clock_event_device *evt) { u8 val; spin_lock(&rtc_lock); val = CMOS_READ(RTC_REG_B); val |= RTC_PIE; CMOS_WRITE(val, RTC_REG_B); spin_unlock(&rtc_lock); return 0; } static void ds1287_event_handler(struct clock_event_device *dev) { } static struct clock_event_device ds1287_clockevent = { .name = "ds1287", .features = CLOCK_EVT_FEAT_PERIODIC, .set_next_event = ds1287_set_next_event, .set_state_shutdown = ds1287_shutdown, .set_state_periodic = ds1287_set_periodic, .tick_resume = ds1287_shutdown, .event_handler = ds1287_event_handler, }; static irqreturn_t ds1287_interrupt(int irq, void *dev_id) { struct clock_event_device *cd = &ds1287_clockevent; /* Ack the RTC interrupt. */ CMOS_READ(RTC_REG_C); cd->event_handler(cd); return IRQ_HANDLED; } int __init ds1287_clockevent_init(int irq) { unsigned long flags = IRQF_PERCPU | IRQF_TIMER; struct clock_event_device *cd; cd = &ds1287_clockevent; cd->rating = 100; cd->irq = irq; clockevent_set_clock(cd, 32768); cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd); cd->max_delta_ticks = 0x7fffffff; cd->min_delta_ns = clockevent_delta2ns(0x300, cd); cd->min_delta_ticks = 0x300; cd->cpumask = cpumask_of(0); clockevents_register_device(&ds1287_clockevent); return request_irq(irq, ds1287_interrupt, flags, "ds1287", NULL); }
linux-master
arch/mips/kernel/cevt-ds1287.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/smp.h> #include <linux/reboot.h> #include <linux/kexec.h> #include <linux/memblock.h> #include <linux/crash_dump.h> #include <linux/delay.h> #include <linux/irq.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> /* This keeps a track of which one is crashing cpu. */ static int crashing_cpu = -1; static cpumask_t cpus_in_crash = CPU_MASK_NONE; #ifdef CONFIG_SMP static void crash_shutdown_secondary(void *passed_regs) { struct pt_regs *regs = passed_regs; int cpu = smp_processor_id(); /* * If we are passed registers, use those. Otherwise get the * regs from the last interrupt, which should be correct, as * we are in an interrupt. But if the regs are not there, * pull them from the top of the stack. They are probably * wrong, but we need something to keep from crashing again. */ if (!regs) regs = get_irq_regs(); if (!regs) regs = task_pt_regs(current); if (!cpu_online(cpu)) return; /* We won't be sent IPIs any more. */ set_cpu_online(cpu, false); local_irq_disable(); if (!cpumask_test_cpu(cpu, &cpus_in_crash)) crash_save_cpu(regs, cpu); cpumask_set_cpu(cpu, &cpus_in_crash); while (!atomic_read(&kexec_ready_to_reboot)) cpu_relax(); kexec_reboot(); /* NOTREACHED */ } static void crash_kexec_prepare_cpus(void) { static int cpus_stopped; unsigned int msecs; unsigned int ncpus; if (cpus_stopped) return; ncpus = num_online_cpus() - 1;/* Excluding the panic cpu */ smp_call_function(crash_shutdown_secondary, NULL, 0); smp_wmb(); /* * The crash CPU sends an IPI and wait for other CPUs to * respond. Delay of at least 10 seconds. */ pr_emerg("Sending IPI to other cpus...\n"); msecs = 10000; while ((cpumask_weight(&cpus_in_crash) < ncpus) && (--msecs > 0)) { cpu_relax(); mdelay(1); } cpus_stopped = 1; } /* Override the weak function in kernel/panic.c */ void crash_smp_send_stop(void) { if (_crash_smp_send_stop) _crash_smp_send_stop(); crash_kexec_prepare_cpus(); } #else /* !defined(CONFIG_SMP) */ static void crash_kexec_prepare_cpus(void) {} #endif /* !defined(CONFIG_SMP) */ void default_machine_crash_shutdown(struct pt_regs *regs) { local_irq_disable(); crashing_cpu = smp_processor_id(); crash_save_cpu(regs, crashing_cpu); crash_kexec_prepare_cpus(); cpumask_set_cpu(crashing_cpu, &cpus_in_crash); }
linux-master
arch/mips/kernel/crash.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1992 Ross Biro * Copyright (C) Linus Torvalds * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle * Copyright (C) 1996 David S. Miller * Kevin D. Kissell, [email protected] and Carsten Langgaard, [email protected] * Copyright (C) 1999 MIPS Technologies, Inc. * Copyright (C) 2000 Ulf Carlsson * * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit * binaries. */ #include <linux/compiler.h> #include <linux/context_tracking.h> #include <linux/elf.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/mm.h> #include <linux/errno.h> #include <linux/ptrace.h> #include <linux/regset.h> #include <linux/smp.h> #include <linux/security.h> #include <linux/stddef.h> #include <linux/audit.h> #include <linux/seccomp.h> #include <linux/ftrace.h> #include <asm/byteorder.h> #include <asm/cpu.h> #include <asm/cpu-info.h> #include <asm/dsp.h> #include <asm/fpu.h> #include <asm/mipsregs.h> #include <asm/mipsmtregs.h> #include <asm/page.h> #include <asm/processor.h> #include <asm/syscall.h> #include <linux/uaccess.h> #include <asm/bootinfo.h> #include <asm/reg.h> #define CREATE_TRACE_POINTS #include <trace/events/syscalls.h> /* * Called by kernel/ptrace.c when detaching.. * * Make sure single step bits etc are not set. */ void ptrace_disable(struct task_struct *child) { /* Don't load the watchpoint registers for the ex-child. */ clear_tsk_thread_flag(child, TIF_LOAD_WATCH); } /* * Read a general register set. We always use the 64-bit format, even * for 32-bit kernels and for 32-bit processes on a 64-bit kernel. * Registers are sign extended to fill the available space. */ int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data) { struct pt_regs *regs; int i; if (!access_ok(data, 38 * 8)) return -EIO; regs = task_pt_regs(child); for (i = 0; i < 32; i++) __put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]); __put_user((long)regs->lo, (__s64 __user *)&data->lo); __put_user((long)regs->hi, (__s64 __user *)&data->hi); __put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc); __put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr); __put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status); __put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause); return 0; } /* * Write a general register set. As for PTRACE_GETREGS, we always use * the 64-bit format. On a 32-bit kernel only the lower order half * (according to endianness) will be used. */ int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data) { struct pt_regs *regs; int i; if (!access_ok(data, 38 * 8)) return -EIO; regs = task_pt_regs(child); for (i = 0; i < 32; i++) __get_user(regs->regs[i], (__s64 __user *)&data->regs[i]); __get_user(regs->lo, (__s64 __user *)&data->lo); __get_user(regs->hi, (__s64 __user *)&data->hi); __get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc); /* badvaddr, status, and cause may not be written. */ /* System call number may have been changed */ mips_syscall_update_nr(child, regs); return 0; } int ptrace_get_watch_regs(struct task_struct *child, struct pt_watch_regs __user *addr) { enum pt_watch_style style; int i; if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0) return -EIO; if (!access_ok(addr, sizeof(struct pt_watch_regs))) return -EIO; #ifdef CONFIG_32BIT style = pt_watch_style_mips32; #define WATCH_STYLE mips32 #else style = pt_watch_style_mips64; #define WATCH_STYLE mips64 #endif __put_user(style, &addr->style); __put_user(boot_cpu_data.watch_reg_use_cnt, &addr->WATCH_STYLE.num_valid); for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) { __put_user(child->thread.watch.mips3264.watchlo[i], &addr->WATCH_STYLE.watchlo[i]); __put_user(child->thread.watch.mips3264.watchhi[i] & (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW), &addr->WATCH_STYLE.watchhi[i]); __put_user(boot_cpu_data.watch_reg_masks[i], &addr->WATCH_STYLE.watch_masks[i]); } for (; i < 8; i++) { __put_user(0, &addr->WATCH_STYLE.watchlo[i]); __put_user(0, &addr->WATCH_STYLE.watchhi[i]); __put_user(0, &addr->WATCH_STYLE.watch_masks[i]); } return 0; } int ptrace_set_watch_regs(struct task_struct *child, struct pt_watch_regs __user *addr) { int i; int watch_active = 0; unsigned long lt[NUM_WATCH_REGS]; u16 ht[NUM_WATCH_REGS]; if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0) return -EIO; if (!access_ok(addr, sizeof(struct pt_watch_regs))) return -EIO; /* Check the values. */ for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) { __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]); #ifdef CONFIG_32BIT if (lt[i] & __UA_LIMIT) return -EINVAL; #else if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) { if (lt[i] & 0xffffffff80000000UL) return -EINVAL; } else { if (lt[i] & __UA_LIMIT) return -EINVAL; } #endif __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]); if (ht[i] & ~MIPS_WATCHHI_MASK) return -EINVAL; } /* Install them. */ for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) { if (lt[i] & MIPS_WATCHLO_IRW) watch_active = 1; child->thread.watch.mips3264.watchlo[i] = lt[i]; /* Set the G bit. */ child->thread.watch.mips3264.watchhi[i] = ht[i]; } if (watch_active) set_tsk_thread_flag(child, TIF_LOAD_WATCH); else clear_tsk_thread_flag(child, TIF_LOAD_WATCH); return 0; } /* regset get/set implementations */ #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32) static int gpr32_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct pt_regs *regs = task_pt_regs(target); u32 uregs[ELF_NGREG] = {}; mips_dump_regs32(uregs, regs); return membuf_write(&to, uregs, sizeof(uregs)); } static int gpr32_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct pt_regs *regs = task_pt_regs(target); u32 uregs[ELF_NGREG]; unsigned start, num_regs, i; int err; start = pos / sizeof(u32); num_regs = count / sizeof(u32); if (start + num_regs > ELF_NGREG) return -EIO; err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0, sizeof(uregs)); if (err) return err; for (i = start; i < num_regs; i++) { /* * Cast all values to signed here so that if this is a 64-bit * kernel, the supplied 32-bit values will be sign extended. */ switch (i) { case MIPS32_EF_R1 ... MIPS32_EF_R25: /* k0/k1 are ignored. */ case MIPS32_EF_R28 ... MIPS32_EF_R31: regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i]; break; case MIPS32_EF_LO: regs->lo = (s32)uregs[i]; break; case MIPS32_EF_HI: regs->hi = (s32)uregs[i]; break; case MIPS32_EF_CP0_EPC: regs->cp0_epc = (s32)uregs[i]; break; } } /* System call number may have been changed */ mips_syscall_update_nr(target, regs); return 0; } #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */ #ifdef CONFIG_64BIT static int gpr64_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct pt_regs *regs = task_pt_regs(target); u64 uregs[ELF_NGREG] = {}; mips_dump_regs64(uregs, regs); return membuf_write(&to, uregs, sizeof(uregs)); } static int gpr64_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct pt_regs *regs = task_pt_regs(target); u64 uregs[ELF_NGREG]; unsigned start, num_regs, i; int err; start = pos / sizeof(u64); num_regs = count / sizeof(u64); if (start + num_regs > ELF_NGREG) return -EIO; err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0, sizeof(uregs)); if (err) return err; for (i = start; i < num_regs; i++) { switch (i) { case MIPS64_EF_R1 ... MIPS64_EF_R25: /* k0/k1 are ignored. */ case MIPS64_EF_R28 ... MIPS64_EF_R31: regs->regs[i - MIPS64_EF_R0] = uregs[i]; break; case MIPS64_EF_LO: regs->lo = uregs[i]; break; case MIPS64_EF_HI: regs->hi = uregs[i]; break; case MIPS64_EF_CP0_EPC: regs->cp0_epc = uregs[i]; break; } } /* System call number may have been changed */ mips_syscall_update_nr(target, regs); return 0; } #endif /* CONFIG_64BIT */ #ifdef CONFIG_MIPS_FP_SUPPORT /* * Poke at FCSR according to its mask. Set the Cause bits even * if a corresponding Enable bit is set. This will be noticed at * the time the thread is switched to and SIGFPE thrown accordingly. */ static void ptrace_setfcr31(struct task_struct *child, u32 value) { u32 fcr31; u32 mask; fcr31 = child->thread.fpu.fcr31; mask = boot_cpu_data.fpu_msk31; child->thread.fpu.fcr31 = (value & ~mask) | (fcr31 & mask); } int ptrace_getfpregs(struct task_struct *child, __u32 __user *data) { int i; if (!access_ok(data, 33 * 8)) return -EIO; if (tsk_used_math(child)) { union fpureg *fregs = get_fpu_regs(child); for (i = 0; i < 32; i++) __put_user(get_fpr64(&fregs[i], 0), i + (__u64 __user *)data); } else { for (i = 0; i < 32; i++) __put_user((__u64) -1, i + (__u64 __user *) data); } __put_user(child->thread.fpu.fcr31, data + 64); __put_user(boot_cpu_data.fpu_id, data + 65); return 0; } int ptrace_setfpregs(struct task_struct *child, __u32 __user *data) { union fpureg *fregs; u64 fpr_val; u32 value; int i; if (!access_ok(data, 33 * 8)) return -EIO; init_fp_ctx(child); fregs = get_fpu_regs(child); for (i = 0; i < 32; i++) { __get_user(fpr_val, i + (__u64 __user *)data); set_fpr64(&fregs[i], 0, fpr_val); } __get_user(value, data + 64); ptrace_setfcr31(child, value); /* FIR may not be written. */ return 0; } /* * Copy the floating-point context to the supplied NT_PRFPREG buffer, * !CONFIG_CPU_HAS_MSA variant. FP context's general register slots * correspond 1:1 to buffer slots. Only general registers are copied. */ static void fpr_get_fpa(struct task_struct *target, struct membuf *to) { membuf_write(to, &target->thread.fpu, NUM_FPU_REGS * sizeof(elf_fpreg_t)); } /* * Copy the floating-point context to the supplied NT_PRFPREG buffer, * CONFIG_CPU_HAS_MSA variant. Only lower 64 bits of FP context's * general register slots are copied to buffer slots. Only general * registers are copied. */ static void fpr_get_msa(struct task_struct *target, struct membuf *to) { unsigned int i; BUILD_BUG_ON(sizeof(u64) != sizeof(elf_fpreg_t)); for (i = 0; i < NUM_FPU_REGS; i++) membuf_store(to, get_fpr64(&target->thread.fpu.fpr[i], 0)); } /* * Copy the floating-point context to the supplied NT_PRFPREG buffer. * Choose the appropriate helper for general registers, and then copy * the FCSR and FIR registers separately. */ static int fpr_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t)) fpr_get_fpa(target, &to); else fpr_get_msa(target, &to); membuf_write(&to, &target->thread.fpu.fcr31, sizeof(u32)); membuf_write(&to, &boot_cpu_data.fpu_id, sizeof(u32)); return 0; } /* * Copy the supplied NT_PRFPREG buffer to the floating-point context, * !CONFIG_CPU_HAS_MSA variant. Buffer slots correspond 1:1 to FP * context's general register slots. Only general registers are copied. */ static int fpr_set_fpa(struct task_struct *target, unsigned int *pos, unsigned int *count, const void **kbuf, const void __user **ubuf) { return user_regset_copyin(pos, count, kbuf, ubuf, &target->thread.fpu, 0, NUM_FPU_REGS * sizeof(elf_fpreg_t)); } /* * Copy the supplied NT_PRFPREG buffer to the floating-point context, * CONFIG_CPU_HAS_MSA variant. Buffer slots are copied to lower 64 * bits only of FP context's general register slots. Only general * registers are copied. */ static int fpr_set_msa(struct task_struct *target, unsigned int *pos, unsigned int *count, const void **kbuf, const void __user **ubuf) { unsigned int i; u64 fpr_val; int err; BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t)); for (i = 0; i < NUM_FPU_REGS && *count > 0; i++) { err = user_regset_copyin(pos, count, kbuf, ubuf, &fpr_val, i * sizeof(elf_fpreg_t), (i + 1) * sizeof(elf_fpreg_t)); if (err) return err; set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val); } return 0; } /* * Copy the supplied NT_PRFPREG buffer to the floating-point context. * Choose the appropriate helper for general registers, and then copy * the FCSR register separately. Ignore the incoming FIR register * contents though, as the register is read-only. * * We optimize for the case where `count % sizeof(elf_fpreg_t) == 0', * which is supposed to have been guaranteed by the kernel before * calling us, e.g. in `ptrace_regset'. We enforce that requirement, * so that we can safely avoid preinitializing temporaries for * partial register writes. */ static int fpr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t); const int fir_pos = fcr31_pos + sizeof(u32); u32 fcr31; int err; BUG_ON(count % sizeof(elf_fpreg_t)); if (pos + count > sizeof(elf_fpregset_t)) return -EIO; init_fp_ctx(target); if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t)) err = fpr_set_fpa(target, &pos, &count, &kbuf, &ubuf); else err = fpr_set_msa(target, &pos, &count, &kbuf, &ubuf); if (err) return err; if (count > 0) { err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fcr31, fcr31_pos, fcr31_pos + sizeof(u32)); if (err) return err; ptrace_setfcr31(target, fcr31); } if (count > 0) { user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, fir_pos, fir_pos + sizeof(u32)); return 0; } return err; } /* Copy the FP mode setting to the supplied NT_MIPS_FP_MODE buffer. */ static int fp_mode_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { return membuf_store(&to, (int)mips_get_process_fp_mode(target)); } /* * Copy the supplied NT_MIPS_FP_MODE buffer to the FP mode setting. * * We optimize for the case where `count % sizeof(int) == 0', which * is supposed to have been guaranteed by the kernel before calling * us, e.g. in `ptrace_regset'. We enforce that requirement, so * that we can safely avoid preinitializing temporaries for partial * mode writes. */ static int fp_mode_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int fp_mode; int err; BUG_ON(count % sizeof(int)); if (pos + count > sizeof(fp_mode)) return -EIO; err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fp_mode, 0, sizeof(fp_mode)); if (err) return err; if (count > 0) err = mips_set_process_fp_mode(target, fp_mode); return err; } #endif /* CONFIG_MIPS_FP_SUPPORT */ #ifdef CONFIG_CPU_HAS_MSA struct msa_control_regs { unsigned int fir; unsigned int fcsr; unsigned int msair; unsigned int msacsr; }; static void copy_pad_fprs(struct task_struct *target, const struct user_regset *regset, struct membuf *to, unsigned int live_sz) { int i, j; unsigned long long fill = ~0ull; unsigned int cp_sz, pad_sz; cp_sz = min(regset->size, live_sz); pad_sz = regset->size - cp_sz; WARN_ON(pad_sz % sizeof(fill)); for (i = 0; i < NUM_FPU_REGS; i++) { membuf_write(to, &target->thread.fpu.fpr[i], cp_sz); for (j = 0; j < (pad_sz / sizeof(fill)); j++) membuf_store(to, fill); } } static int msa_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { const unsigned int wr_size = NUM_FPU_REGS * regset->size; const struct msa_control_regs ctrl_regs = { .fir = boot_cpu_data.fpu_id, .fcsr = target->thread.fpu.fcr31, .msair = boot_cpu_data.msa_id, .msacsr = target->thread.fpu.msacsr, }; if (!tsk_used_math(target)) { /* The task hasn't used FP or MSA, fill with 0xff */ copy_pad_fprs(target, regset, &to, 0); } else if (!test_tsk_thread_flag(target, TIF_MSA_CTX_LIVE)) { /* Copy scalar FP context, fill the rest with 0xff */ copy_pad_fprs(target, regset, &to, 8); } else if (sizeof(target->thread.fpu.fpr[0]) == regset->size) { /* Trivially copy the vector registers */ membuf_write(&to, &target->thread.fpu.fpr, wr_size); } else { /* Copy as much context as possible, fill the rest with 0xff */ copy_pad_fprs(target, regset, &to, sizeof(target->thread.fpu.fpr[0])); } return membuf_write(&to, &ctrl_regs, sizeof(ctrl_regs)); } static int msa_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { const unsigned int wr_size = NUM_FPU_REGS * regset->size; struct msa_control_regs ctrl_regs; unsigned int cp_sz; int i, err, start; init_fp_ctx(target); if (sizeof(target->thread.fpu.fpr[0]) == regset->size) { /* Trivially copy the vector registers */ err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &target->thread.fpu.fpr, 0, wr_size); } else { /* Copy as much context as possible */ cp_sz = min_t(unsigned int, regset->size, sizeof(target->thread.fpu.fpr[0])); i = start = err = 0; for (; i < NUM_FPU_REGS; i++, start += regset->size) { err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf, &target->thread.fpu.fpr[i], start, start + cp_sz); } } if (!err) err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl_regs, wr_size, wr_size + sizeof(ctrl_regs)); if (!err) { target->thread.fpu.fcr31 = ctrl_regs.fcsr & ~FPU_CSR_ALL_X; target->thread.fpu.msacsr = ctrl_regs.msacsr & ~MSA_CSR_CAUSEF; } return err; } #endif /* CONFIG_CPU_HAS_MSA */ #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32) /* * Copy the DSP context to the supplied 32-bit NT_MIPS_DSP buffer. */ static int dsp32_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { u32 dspregs[NUM_DSP_REGS + 1]; unsigned int i; BUG_ON(to.left % sizeof(u32)); if (!cpu_has_dsp) return -EIO; for (i = 0; i < NUM_DSP_REGS; i++) dspregs[i] = target->thread.dsp.dspr[i]; dspregs[NUM_DSP_REGS] = target->thread.dsp.dspcontrol; return membuf_write(&to, dspregs, sizeof(dspregs)); } /* * Copy the supplied 32-bit NT_MIPS_DSP buffer to the DSP context. */ static int dsp32_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { unsigned int start, num_regs, i; u32 dspregs[NUM_DSP_REGS + 1]; int err; BUG_ON(count % sizeof(u32)); if (!cpu_has_dsp) return -EIO; start = pos / sizeof(u32); num_regs = count / sizeof(u32); if (start + num_regs > NUM_DSP_REGS + 1) return -EIO; err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, dspregs, 0, sizeof(dspregs)); if (err) return err; for (i = start; i < num_regs; i++) switch (i) { case 0 ... NUM_DSP_REGS - 1: target->thread.dsp.dspr[i] = (s32)dspregs[i]; break; case NUM_DSP_REGS: target->thread.dsp.dspcontrol = (s32)dspregs[i]; break; } return 0; } #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */ #ifdef CONFIG_64BIT /* * Copy the DSP context to the supplied 64-bit NT_MIPS_DSP buffer. */ static int dsp64_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { u64 dspregs[NUM_DSP_REGS + 1]; unsigned int i; BUG_ON(to.left % sizeof(u64)); if (!cpu_has_dsp) return -EIO; for (i = 0; i < NUM_DSP_REGS; i++) dspregs[i] = target->thread.dsp.dspr[i]; dspregs[NUM_DSP_REGS] = target->thread.dsp.dspcontrol; return membuf_write(&to, dspregs, sizeof(dspregs)); } /* * Copy the supplied 64-bit NT_MIPS_DSP buffer to the DSP context. */ static int dsp64_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { unsigned int start, num_regs, i; u64 dspregs[NUM_DSP_REGS + 1]; int err; BUG_ON(count % sizeof(u64)); if (!cpu_has_dsp) return -EIO; start = pos / sizeof(u64); num_regs = count / sizeof(u64); if (start + num_regs > NUM_DSP_REGS + 1) return -EIO; err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, dspregs, 0, sizeof(dspregs)); if (err) return err; for (i = start; i < num_regs; i++) switch (i) { case 0 ... NUM_DSP_REGS - 1: target->thread.dsp.dspr[i] = dspregs[i]; break; case NUM_DSP_REGS: target->thread.dsp.dspcontrol = dspregs[i]; break; } return 0; } #endif /* CONFIG_64BIT */ /* * Determine whether the DSP context is present. */ static int dsp_active(struct task_struct *target, const struct user_regset *regset) { return cpu_has_dsp ? NUM_DSP_REGS + 1 : -ENODEV; } enum mips_regset { REGSET_GPR, REGSET_DSP, #ifdef CONFIG_MIPS_FP_SUPPORT REGSET_FPR, REGSET_FP_MODE, #endif #ifdef CONFIG_CPU_HAS_MSA REGSET_MSA, #endif }; struct pt_regs_offset { const char *name; int offset; }; #define REG_OFFSET_NAME(reg, r) { \ .name = #reg, \ .offset = offsetof(struct pt_regs, r) \ } #define REG_OFFSET_END { \ .name = NULL, \ .offset = 0 \ } static const struct pt_regs_offset regoffset_table[] = { REG_OFFSET_NAME(r0, regs[0]), REG_OFFSET_NAME(r1, regs[1]), REG_OFFSET_NAME(r2, regs[2]), REG_OFFSET_NAME(r3, regs[3]), REG_OFFSET_NAME(r4, regs[4]), REG_OFFSET_NAME(r5, regs[5]), REG_OFFSET_NAME(r6, regs[6]), REG_OFFSET_NAME(r7, regs[7]), REG_OFFSET_NAME(r8, regs[8]), REG_OFFSET_NAME(r9, regs[9]), REG_OFFSET_NAME(r10, regs[10]), REG_OFFSET_NAME(r11, regs[11]), REG_OFFSET_NAME(r12, regs[12]), REG_OFFSET_NAME(r13, regs[13]), REG_OFFSET_NAME(r14, regs[14]), REG_OFFSET_NAME(r15, regs[15]), REG_OFFSET_NAME(r16, regs[16]), REG_OFFSET_NAME(r17, regs[17]), REG_OFFSET_NAME(r18, regs[18]), REG_OFFSET_NAME(r19, regs[19]), REG_OFFSET_NAME(r20, regs[20]), REG_OFFSET_NAME(r21, regs[21]), REG_OFFSET_NAME(r22, regs[22]), REG_OFFSET_NAME(r23, regs[23]), REG_OFFSET_NAME(r24, regs[24]), REG_OFFSET_NAME(r25, regs[25]), REG_OFFSET_NAME(r26, regs[26]), REG_OFFSET_NAME(r27, regs[27]), REG_OFFSET_NAME(r28, regs[28]), REG_OFFSET_NAME(r29, regs[29]), REG_OFFSET_NAME(r30, regs[30]), REG_OFFSET_NAME(r31, regs[31]), REG_OFFSET_NAME(c0_status, cp0_status), REG_OFFSET_NAME(hi, hi), REG_OFFSET_NAME(lo, lo), #ifdef CONFIG_CPU_HAS_SMARTMIPS REG_OFFSET_NAME(acx, acx), #endif REG_OFFSET_NAME(c0_badvaddr, cp0_badvaddr), REG_OFFSET_NAME(c0_cause, cp0_cause), REG_OFFSET_NAME(c0_epc, cp0_epc), #ifdef CONFIG_CPU_CAVIUM_OCTEON REG_OFFSET_NAME(mpl0, mpl[0]), REG_OFFSET_NAME(mpl1, mpl[1]), REG_OFFSET_NAME(mpl2, mpl[2]), REG_OFFSET_NAME(mtp0, mtp[0]), REG_OFFSET_NAME(mtp1, mtp[1]), REG_OFFSET_NAME(mtp2, mtp[2]), #endif REG_OFFSET_END, }; /** * regs_query_register_offset() - query register offset from its name * @name: the name of a register * * regs_query_register_offset() returns the offset of a register in struct * pt_regs from its name. If the name is invalid, this returns -EINVAL; */ int regs_query_register_offset(const char *name) { const struct pt_regs_offset *roff; for (roff = regoffset_table; roff->name != NULL; roff++) if (!strcmp(roff->name, name)) return roff->offset; return -EINVAL; } #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32) static const struct user_regset mips_regsets[] = { [REGSET_GPR] = { .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, .size = sizeof(unsigned int), .align = sizeof(unsigned int), .regset_get = gpr32_get, .set = gpr32_set, }, [REGSET_DSP] = { .core_note_type = NT_MIPS_DSP, .n = NUM_DSP_REGS + 1, .size = sizeof(u32), .align = sizeof(u32), .regset_get = dsp32_get, .set = dsp32_set, .active = dsp_active, }, #ifdef CONFIG_MIPS_FP_SUPPORT [REGSET_FPR] = { .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t), .regset_get = fpr_get, .set = fpr_set, }, [REGSET_FP_MODE] = { .core_note_type = NT_MIPS_FP_MODE, .n = 1, .size = sizeof(int), .align = sizeof(int), .regset_get = fp_mode_get, .set = fp_mode_set, }, #endif #ifdef CONFIG_CPU_HAS_MSA [REGSET_MSA] = { .core_note_type = NT_MIPS_MSA, .n = NUM_FPU_REGS + 1, .size = 16, .align = 16, .regset_get = msa_get, .set = msa_set, }, #endif }; static const struct user_regset_view user_mips_view = { .name = "mips", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, .regsets = mips_regsets, .n = ARRAY_SIZE(mips_regsets), }; #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */ #ifdef CONFIG_64BIT static const struct user_regset mips64_regsets[] = { [REGSET_GPR] = { .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, .size = sizeof(unsigned long), .align = sizeof(unsigned long), .regset_get = gpr64_get, .set = gpr64_set, }, [REGSET_DSP] = { .core_note_type = NT_MIPS_DSP, .n = NUM_DSP_REGS + 1, .size = sizeof(u64), .align = sizeof(u64), .regset_get = dsp64_get, .set = dsp64_set, .active = dsp_active, }, #ifdef CONFIG_MIPS_FP_SUPPORT [REGSET_FP_MODE] = { .core_note_type = NT_MIPS_FP_MODE, .n = 1, .size = sizeof(int), .align = sizeof(int), .regset_get = fp_mode_get, .set = fp_mode_set, }, [REGSET_FPR] = { .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t), .regset_get = fpr_get, .set = fpr_set, }, #endif #ifdef CONFIG_CPU_HAS_MSA [REGSET_MSA] = { .core_note_type = NT_MIPS_MSA, .n = NUM_FPU_REGS + 1, .size = 16, .align = 16, .regset_get = msa_get, .set = msa_set, }, #endif }; static const struct user_regset_view user_mips64_view = { .name = "mips64", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, .regsets = mips64_regsets, .n = ARRAY_SIZE(mips64_regsets), }; #ifdef CONFIG_MIPS32_N32 static const struct user_regset_view user_mipsn32_view = { .name = "mipsn32", .e_flags = EF_MIPS_ABI2, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, .regsets = mips64_regsets, .n = ARRAY_SIZE(mips64_regsets), }; #endif /* CONFIG_MIPS32_N32 */ #endif /* CONFIG_64BIT */ const struct user_regset_view *task_user_regset_view(struct task_struct *task) { #ifdef CONFIG_32BIT return &user_mips_view; #else #ifdef CONFIG_MIPS32_O32 if (test_tsk_thread_flag(task, TIF_32BIT_REGS)) return &user_mips_view; #endif #ifdef CONFIG_MIPS32_N32 if (test_tsk_thread_flag(task, TIF_32BIT_ADDR)) return &user_mipsn32_view; #endif return &user_mips64_view; #endif } long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data) { int ret; void __user *addrp = (void __user *) addr; void __user *datavp = (void __user *) data; unsigned long __user *datalp = (void __user *) data; switch (request) { /* when I and D space are separate, these will need to be fixed. */ case PTRACE_PEEKTEXT: /* read word at location addr. */ case PTRACE_PEEKDATA: ret = generic_ptrace_peekdata(child, addr, data); break; /* Read the word at location addr in the USER area. */ case PTRACE_PEEKUSR: { struct pt_regs *regs; unsigned long tmp = 0; regs = task_pt_regs(child); ret = 0; /* Default return value. */ switch (addr) { case 0 ... 31: tmp = regs->regs[addr]; break; #ifdef CONFIG_MIPS_FP_SUPPORT case FPR_BASE ... FPR_BASE + 31: { union fpureg *fregs; if (!tsk_used_math(child)) { /* FP not yet used */ tmp = -1; break; } fregs = get_fpu_regs(child); #ifdef CONFIG_32BIT if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) { /* * The odd registers are actually the high * order bits of the values stored in the even * registers. */ tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE], addr & 1); break; } #endif tmp = get_fpr64(&fregs[addr - FPR_BASE], 0); break; } case FPC_CSR: tmp = child->thread.fpu.fcr31; break; case FPC_EIR: /* implementation / version register */ tmp = boot_cpu_data.fpu_id; break; #endif case PC: tmp = regs->cp0_epc; break; case CAUSE: tmp = regs->cp0_cause; break; case BADVADDR: tmp = regs->cp0_badvaddr; break; case MMHI: tmp = regs->hi; break; case MMLO: tmp = regs->lo; break; #ifdef CONFIG_CPU_HAS_SMARTMIPS case ACX: tmp = regs->acx; break; #endif case DSP_BASE ... DSP_BASE + 5: { dspreg_t *dregs; if (!cpu_has_dsp) { tmp = 0; ret = -EIO; goto out; } dregs = __get_dsp_regs(child); tmp = dregs[addr - DSP_BASE]; break; } case DSP_CONTROL: if (!cpu_has_dsp) { tmp = 0; ret = -EIO; goto out; } tmp = child->thread.dsp.dspcontrol; break; default: tmp = 0; ret = -EIO; goto out; } ret = put_user(tmp, datalp); break; } /* when I and D space are separate, this will have to be fixed. */ case PTRACE_POKETEXT: /* write the word at location addr. */ case PTRACE_POKEDATA: ret = generic_ptrace_pokedata(child, addr, data); break; case PTRACE_POKEUSR: { struct pt_regs *regs; ret = 0; regs = task_pt_regs(child); switch (addr) { case 0 ... 31: regs->regs[addr] = data; /* System call number may have been changed */ if (addr == 2) mips_syscall_update_nr(child, regs); else if (addr == 4 && mips_syscall_is_indirect(child, regs)) mips_syscall_update_nr(child, regs); break; #ifdef CONFIG_MIPS_FP_SUPPORT case FPR_BASE ... FPR_BASE + 31: { union fpureg *fregs = get_fpu_regs(child); init_fp_ctx(child); #ifdef CONFIG_32BIT if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) { /* * The odd registers are actually the high * order bits of the values stored in the even * registers. */ set_fpr32(&fregs[(addr & ~1) - FPR_BASE], addr & 1, data); break; } #endif set_fpr64(&fregs[addr - FPR_BASE], 0, data); break; } case FPC_CSR: init_fp_ctx(child); ptrace_setfcr31(child, data); break; #endif case PC: regs->cp0_epc = data; break; case MMHI: regs->hi = data; break; case MMLO: regs->lo = data; break; #ifdef CONFIG_CPU_HAS_SMARTMIPS case ACX: regs->acx = data; break; #endif case DSP_BASE ... DSP_BASE + 5: { dspreg_t *dregs; if (!cpu_has_dsp) { ret = -EIO; break; } dregs = __get_dsp_regs(child); dregs[addr - DSP_BASE] = data; break; } case DSP_CONTROL: if (!cpu_has_dsp) { ret = -EIO; break; } child->thread.dsp.dspcontrol = data; break; default: /* The rest are not allowed. */ ret = -EIO; break; } break; } case PTRACE_GETREGS: ret = ptrace_getregs(child, datavp); break; case PTRACE_SETREGS: ret = ptrace_setregs(child, datavp); break; #ifdef CONFIG_MIPS_FP_SUPPORT case PTRACE_GETFPREGS: ret = ptrace_getfpregs(child, datavp); break; case PTRACE_SETFPREGS: ret = ptrace_setfpregs(child, datavp); break; #endif case PTRACE_GET_THREAD_AREA: ret = put_user(task_thread_info(child)->tp_value, datalp); break; case PTRACE_GET_WATCH_REGS: ret = ptrace_get_watch_regs(child, addrp); break; case PTRACE_SET_WATCH_REGS: ret = ptrace_set_watch_regs(child, addrp); break; default: ret = ptrace_request(child, request, addr, data); break; } out: return ret; } /* * Notification of system call entry/exit * - triggered by current->work.syscall_trace */ asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall) { user_exit(); current_thread_info()->syscall = syscall; if (test_thread_flag(TIF_SYSCALL_TRACE)) { if (ptrace_report_syscall_entry(regs)) return -1; syscall = current_thread_info()->syscall; } #ifdef CONFIG_SECCOMP if (unlikely(test_thread_flag(TIF_SECCOMP))) { int ret, i; struct seccomp_data sd; unsigned long args[6]; sd.nr = syscall; sd.arch = syscall_get_arch(current); syscall_get_arguments(current, regs, args); for (i = 0; i < 6; i++) sd.args[i] = args[i]; sd.instruction_pointer = KSTK_EIP(current); ret = __secure_computing(&sd); if (ret == -1) return ret; syscall = current_thread_info()->syscall; } #endif if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_enter(regs, regs->regs[2]); audit_syscall_entry(syscall, regs->regs[4], regs->regs[5], regs->regs[6], regs->regs[7]); /* * Negative syscall numbers are mistaken for rejected syscalls, but * won't have had the return value set appropriately, so we do so now. */ if (syscall < 0) syscall_set_return_value(current, regs, -ENOSYS, 0); return syscall; } /* * Notification of system call entry/exit * - triggered by current->work.syscall_trace */ asmlinkage void syscall_trace_leave(struct pt_regs *regs) { /* * We may come here right after calling schedule_user() * or do_notify_resume(), in which case we can be in RCU * user mode. */ user_exit(); audit_syscall_exit(regs); if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_exit(regs, regs_return_value(regs)); if (test_thread_flag(TIF_SYSCALL_TRACE)) ptrace_report_syscall_exit(regs, 0); user_enter(); }
linux-master
arch/mips/kernel/ptrace.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle * Copyright (C) 1995, 1996 Paul M. Antoine * Copyright (C) 1998 Ulf Carlsson * Copyright (C) 1999 Silicon Graphics, Inc. * Kevin D. Kissell, [email protected] and Carsten Langgaard, [email protected] * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. * Copyright (C) 2014, Imagination Technologies Ltd. */ #include <linux/bitops.h> #include <linux/bug.h> #include <linux/compiler.h> #include <linux/context_tracking.h> #include <linux/cpu_pm.h> #include <linux/kexec.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/extable.h> #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/sched/debug.h> #include <linux/smp.h> #include <linux/spinlock.h> #include <linux/kallsyms.h> #include <linux/memblock.h> #include <linux/interrupt.h> #include <linux/ptrace.h> #include <linux/kgdb.h> #include <linux/kdebug.h> #include <linux/kprobes.h> #include <linux/notifier.h> #include <linux/kdb.h> #include <linux/irq.h> #include <linux/perf_event.h> #include <asm/addrspace.h> #include <asm/bootinfo.h> #include <asm/branch.h> #include <asm/break.h> #include <asm/cop2.h> #include <asm/cpu.h> #include <asm/cpu-type.h> #include <asm/dsp.h> #include <asm/fpu.h> #include <asm/fpu_emulator.h> #include <asm/idle.h> #include <asm/isa-rev.h> #include <asm/mips-cps.h> #include <asm/mips-r2-to-r6-emul.h> #include <asm/mipsregs.h> #include <asm/mipsmtregs.h> #include <asm/module.h> #include <asm/msa.h> #include <asm/ptrace.h> #include <asm/sections.h> #include <asm/siginfo.h> #include <asm/tlbdebug.h> #include <asm/traps.h> #include <linux/uaccess.h> #include <asm/watch.h> #include <asm/mmu_context.h> #include <asm/types.h> #include <asm/stacktrace.h> #include <asm/tlbex.h> #include <asm/uasm.h> #include <asm/mach-loongson64/cpucfg-emul.h> #include "access-helper.h" extern void check_wait(void); extern asmlinkage void rollback_handle_int(void); extern asmlinkage void handle_int(void); extern asmlinkage void handle_adel(void); extern asmlinkage void handle_ades(void); extern asmlinkage void handle_ibe(void); extern asmlinkage void handle_dbe(void); extern asmlinkage void handle_sys(void); extern asmlinkage void handle_bp(void); extern asmlinkage void handle_ri(void); extern asmlinkage void handle_ri_rdhwr_tlbp(void); extern asmlinkage void handle_ri_rdhwr(void); extern asmlinkage void handle_cpu(void); extern asmlinkage void handle_ov(void); extern asmlinkage void handle_tr(void); extern asmlinkage void handle_msa_fpe(void); extern asmlinkage void handle_fpe(void); extern asmlinkage void handle_ftlb(void); extern asmlinkage void handle_gsexc(void); extern asmlinkage void handle_msa(void); extern asmlinkage void handle_mdmx(void); extern asmlinkage void handle_watch(void); extern asmlinkage void handle_mt(void); extern asmlinkage void handle_dsp(void); extern asmlinkage void handle_mcheck(void); extern asmlinkage void handle_reserved(void); extern void tlb_do_page_fault_0(void); void (*board_be_init)(void); static int (*board_be_handler)(struct pt_regs *regs, int is_fixup); void (*board_nmi_handler_setup)(void); void (*board_ejtag_handler_setup)(void); void (*board_bind_eic_interrupt)(int irq, int regset); void (*board_ebase_setup)(void); void(*board_cache_error_setup)(void); void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup)) { board_be_handler = handler; } EXPORT_SYMBOL_GPL(mips_set_be_handler); static void show_raw_backtrace(unsigned long reg29, const char *loglvl, bool user) { unsigned long *sp = (unsigned long *)(reg29 & ~3); unsigned long addr; printk("%sCall Trace:", loglvl); #ifdef CONFIG_KALLSYMS printk("%s\n", loglvl); #endif while (!kstack_end(sp)) { if (__get_addr(&addr, sp++, user)) { printk("%s (Bad stack address)", loglvl); break; } if (__kernel_text_address(addr)) print_ip_sym(loglvl, addr); } printk("%s\n", loglvl); } #ifdef CONFIG_KALLSYMS int raw_show_trace; static int __init set_raw_show_trace(char *str) { raw_show_trace = 1; return 1; } __setup("raw_show_trace", set_raw_show_trace); #endif static void show_backtrace(struct task_struct *task, const struct pt_regs *regs, const char *loglvl, bool user) { unsigned long sp = regs->regs[29]; unsigned long ra = regs->regs[31]; unsigned long pc = regs->cp0_epc; if (!task) task = current; if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { show_raw_backtrace(sp, loglvl, user); return; } printk("%sCall Trace:\n", loglvl); do { print_ip_sym(loglvl, pc); pc = unwind_stack(task, &sp, pc, &ra); } while (pc); pr_cont("\n"); } /* * This routine abuses get_user()/put_user() to reference pointers * with at least a bit of error checking ... */ static void show_stacktrace(struct task_struct *task, const struct pt_regs *regs, const char *loglvl, bool user) { const int field = 2 * sizeof(unsigned long); unsigned long stackdata; int i; unsigned long *sp = (unsigned long *)regs->regs[29]; printk("%sStack :", loglvl); i = 0; while ((unsigned long) sp & (PAGE_SIZE - 1)) { if (i && ((i % (64 / field)) == 0)) { pr_cont("\n"); printk("%s ", loglvl); } if (i > 39) { pr_cont(" ..."); break; } if (__get_addr(&stackdata, sp++, user)) { pr_cont(" (Bad stack address)"); break; } pr_cont(" %0*lx", field, stackdata); i++; } pr_cont("\n"); show_backtrace(task, regs, loglvl, user); } void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl) { struct pt_regs regs; regs.cp0_status = KSU_KERNEL; if (sp) { regs.regs[29] = (unsigned long)sp; regs.regs[31] = 0; regs.cp0_epc = 0; } else { if (task && task != current) { regs.regs[29] = task->thread.reg29; regs.regs[31] = 0; regs.cp0_epc = task->thread.reg31; } else { prepare_frametrace(&regs); } } show_stacktrace(task, &regs, loglvl, false); } static void show_code(void *pc, bool user) { long i; unsigned short *pc16 = NULL; printk("Code:"); if ((unsigned long)pc & 1) pc16 = (u16 *)((unsigned long)pc & ~1); for(i = -3 ; i < 6 ; i++) { if (pc16) { u16 insn16; if (__get_inst16(&insn16, pc16 + i, user)) goto bad_address; pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>')); } else { u32 insn32; if (__get_inst32(&insn32, (u32 *)pc + i, user)) goto bad_address; pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>')); } } pr_cont("\n"); return; bad_address: pr_cont(" (Bad address in epc)\n\n"); } static void __show_regs(const struct pt_regs *regs) { const int field = 2 * sizeof(unsigned long); unsigned int cause = regs->cp0_cause; unsigned int exccode; int i; show_regs_print_info(KERN_DEFAULT); /* * Saved main processor registers */ for (i = 0; i < 32; ) { if ((i % 4) == 0) printk("$%2d :", i); if (i == 0) pr_cont(" %0*lx", field, 0UL); else if (i == 26 || i == 27) pr_cont(" %*s", field, ""); else pr_cont(" %0*lx", field, regs->regs[i]); i++; if ((i % 4) == 0) pr_cont("\n"); } #ifdef CONFIG_CPU_HAS_SMARTMIPS printk("Acx : %0*lx\n", field, regs->acx); #endif if (MIPS_ISA_REV < 6) { printk("Hi : %0*lx\n", field, regs->hi); printk("Lo : %0*lx\n", field, regs->lo); } /* * Saved cp0 registers */ printk("epc : %0*lx %pS\n", field, regs->cp0_epc, (void *) regs->cp0_epc); printk("ra : %0*lx %pS\n", field, regs->regs[31], (void *) regs->regs[31]); printk("Status: %08x ", (uint32_t) regs->cp0_status); if (cpu_has_3kex) { if (regs->cp0_status & ST0_KUO) pr_cont("KUo "); if (regs->cp0_status & ST0_IEO) pr_cont("IEo "); if (regs->cp0_status & ST0_KUP) pr_cont("KUp "); if (regs->cp0_status & ST0_IEP) pr_cont("IEp "); if (regs->cp0_status & ST0_KUC) pr_cont("KUc "); if (regs->cp0_status & ST0_IEC) pr_cont("IEc "); } else if (cpu_has_4kex) { if (regs->cp0_status & ST0_KX) pr_cont("KX "); if (regs->cp0_status & ST0_SX) pr_cont("SX "); if (regs->cp0_status & ST0_UX) pr_cont("UX "); switch (regs->cp0_status & ST0_KSU) { case KSU_USER: pr_cont("USER "); break; case KSU_SUPERVISOR: pr_cont("SUPERVISOR "); break; case KSU_KERNEL: pr_cont("KERNEL "); break; default: pr_cont("BAD_MODE "); break; } if (regs->cp0_status & ST0_ERL) pr_cont("ERL "); if (regs->cp0_status & ST0_EXL) pr_cont("EXL "); if (regs->cp0_status & ST0_IE) pr_cont("IE "); } pr_cont("\n"); exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); if (1 <= exccode && exccode <= 5) printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); printk("PrId : %08x (%s)\n", read_c0_prid(), cpu_name_string()); } /* * FIXME: really the generic show_regs should take a const pointer argument. */ void show_regs(struct pt_regs *regs) { __show_regs(regs); dump_stack(); } void show_registers(struct pt_regs *regs) { const int field = 2 * sizeof(unsigned long); __show_regs(regs); print_modules(); printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", current->comm, current->pid, current_thread_info(), current, field, current_thread_info()->tp_value); if (cpu_has_userlocal) { unsigned long tls; tls = read_c0_userlocal(); if (tls != current_thread_info()->tp_value) printk("*HwTLS: %0*lx\n", field, tls); } show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs)); show_code((void *)regs->cp0_epc, user_mode(regs)); printk("\n"); } static DEFINE_RAW_SPINLOCK(die_lock); void __noreturn die(const char *str, struct pt_regs *regs) { static int die_counter; int sig = SIGSEGV; oops_enter(); if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) sig = 0; console_verbose(); raw_spin_lock_irq(&die_lock); bust_spinlocks(1); printk("%s[#%d]:\n", str, ++die_counter); show_registers(regs); add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); raw_spin_unlock_irq(&die_lock); oops_exit(); if (in_interrupt()) panic("Fatal exception in interrupt"); if (panic_on_oops) panic("Fatal exception"); if (regs && kexec_should_crash(current)) crash_kexec(regs); make_task_dead(sig); } extern struct exception_table_entry __start___dbe_table[]; extern struct exception_table_entry __stop___dbe_table[]; __asm__( " .section __dbe_table, \"a\"\n" " .previous \n"); /* Given an address, look for it in the exception tables. */ static const struct exception_table_entry *search_dbe_tables(unsigned long addr) { const struct exception_table_entry *e; e = search_extable(__start___dbe_table, __stop___dbe_table - __start___dbe_table, addr); if (!e) e = search_module_dbetables(addr); return e; } asmlinkage void do_be(struct pt_regs *regs) { const int field = 2 * sizeof(unsigned long); const struct exception_table_entry *fixup = NULL; int data = regs->cp0_cause & 4; int action = MIPS_BE_FATAL; enum ctx_state prev_state; prev_state = exception_enter(); /* XXX For now. Fixme, this searches the wrong table ... */ if (data && !user_mode(regs)) fixup = search_dbe_tables(exception_epc(regs)); if (fixup) action = MIPS_BE_FIXUP; if (board_be_handler) action = board_be_handler(regs, fixup != NULL); else mips_cm_error_report(); switch (action) { case MIPS_BE_DISCARD: goto out; case MIPS_BE_FIXUP: if (fixup) { regs->cp0_epc = fixup->nextinsn; goto out; } break; default: break; } /* * Assume it would be too dangerous to continue ... */ printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", data ? "Data" : "Instruction", field, regs->cp0_epc, field, regs->regs[31]); if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, SIGBUS) == NOTIFY_STOP) goto out; die_if_kernel("Oops", regs); force_sig(SIGBUS); out: exception_exit(prev_state); } /* * ll/sc, rdhwr, sync emulation */ #define OPCODE 0xfc000000 #define BASE 0x03e00000 #define RT 0x001f0000 #define OFFSET 0x0000ffff #define LL 0xc0000000 #define SC 0xe0000000 #define SPEC0 0x00000000 #define SPEC3 0x7c000000 #define RD 0x0000f800 #define FUNC 0x0000003f #define SYNC 0x0000000f #define RDHWR 0x0000003b /* microMIPS definitions */ #define MM_POOL32A_FUNC 0xfc00ffff #define MM_RDHWR 0x00006b3c #define MM_RS 0x001f0000 #define MM_RT 0x03e00000 /* * The ll_bit is cleared by r*_switch.S */ unsigned int ll_bit; struct task_struct *ll_task; static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) { unsigned long value, __user *vaddr; long offset; /* * analyse the ll instruction that just caused a ri exception * and put the referenced address to addr. */ /* sign extend offset */ offset = opcode & OFFSET; offset <<= 16; offset >>= 16; vaddr = (unsigned long __user *) ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); if ((unsigned long)vaddr & 3) return SIGBUS; if (get_user(value, vaddr)) return SIGSEGV; preempt_disable(); if (ll_task == NULL || ll_task == current) { ll_bit = 1; } else { ll_bit = 0; } ll_task = current; preempt_enable(); regs->regs[(opcode & RT) >> 16] = value; return 0; } static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) { unsigned long __user *vaddr; unsigned long reg; long offset; /* * analyse the sc instruction that just caused a ri exception * and put the referenced address to addr. */ /* sign extend offset */ offset = opcode & OFFSET; offset <<= 16; offset >>= 16; vaddr = (unsigned long __user *) ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); reg = (opcode & RT) >> 16; if ((unsigned long)vaddr & 3) return SIGBUS; preempt_disable(); if (ll_bit == 0 || ll_task != current) { regs->regs[reg] = 0; preempt_enable(); return 0; } preempt_enable(); if (put_user(regs->regs[reg], vaddr)) return SIGSEGV; regs->regs[reg] = 1; return 0; } /* * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both * opcodes are supposed to result in coprocessor unusable exceptions if * executed on ll/sc-less processors. That's the theory. In practice a * few processors such as NEC's VR4100 throw reserved instruction exceptions * instead, so we're doing the emulation thing in both exception handlers. */ static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) { if ((opcode & OPCODE) == LL) { perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); return simulate_ll(regs, opcode); } if ((opcode & OPCODE) == SC) { perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); return simulate_sc(regs, opcode); } return -1; /* Must be something else ... */ } /* * Simulate trapping 'rdhwr' instructions to provide user accessible * registers not implemented in hardware. */ static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) { struct thread_info *ti = task_thread_info(current); perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); switch (rd) { case MIPS_HWR_CPUNUM: /* CPU number */ regs->regs[rt] = smp_processor_id(); return 0; case MIPS_HWR_SYNCISTEP: /* SYNCI length */ regs->regs[rt] = min(current_cpu_data.dcache.linesz, current_cpu_data.icache.linesz); return 0; case MIPS_HWR_CC: /* Read count register */ regs->regs[rt] = read_c0_count(); return 0; case MIPS_HWR_CCRES: /* Count register resolution */ switch (current_cpu_type()) { case CPU_20KC: case CPU_25KF: regs->regs[rt] = 1; break; default: regs->regs[rt] = 2; } return 0; case MIPS_HWR_ULR: /* Read UserLocal register */ regs->regs[rt] = ti->tp_value; return 0; default: return -1; } } static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) { if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { int rd = (opcode & RD) >> 11; int rt = (opcode & RT) >> 16; simulate_rdhwr(regs, rd, rt); return 0; } /* Not ours. */ return -1; } static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) { if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { int rd = (opcode & MM_RS) >> 16; int rt = (opcode & MM_RT) >> 21; simulate_rdhwr(regs, rd, rt); return 0; } /* Not ours. */ return -1; } static int simulate_sync(struct pt_regs *regs, unsigned int opcode) { if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); return 0; } return -1; /* Must be something else ... */ } /* * Loongson-3 CSR instructions emulation */ #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION #define LWC2 0xc8000000 #define RS BASE #define CSR_OPCODE2 0x00000118 #define CSR_OPCODE2_MASK 0x000007ff #define CSR_FUNC_MASK RT #define CSR_FUNC_CPUCFG 0x8 static int simulate_loongson3_cpucfg(struct pt_regs *regs, unsigned int opcode) { int op = opcode & OPCODE; int op2 = opcode & CSR_OPCODE2_MASK; int csr_func = (opcode & CSR_FUNC_MASK) >> 16; if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) { int rd = (opcode & RD) >> 11; int rs = (opcode & RS) >> 21; __u64 sel = regs->regs[rs]; perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); /* Do not emulate on unsupported core models. */ preempt_disable(); if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) { preempt_enable(); return -1; } regs->regs[rd] = loongson3_cpucfg_read_synthesized( &current_cpu_data, sel); preempt_enable(); return 0; } /* Not ours. */ return -1; } #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */ asmlinkage void do_ov(struct pt_regs *regs) { enum ctx_state prev_state; prev_state = exception_enter(); die_if_kernel("Integer overflow", regs); force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc); exception_exit(prev_state); } #ifdef CONFIG_MIPS_FP_SUPPORT /* * Send SIGFPE according to FCSR Cause bits, which must have already * been masked against Enable bits. This is impotant as Inexact can * happen together with Overflow or Underflow, and `ptrace' can set * any bits. */ void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, struct task_struct *tsk) { int si_code = FPE_FLTUNK; if (fcr31 & FPU_CSR_INV_X) si_code = FPE_FLTINV; else if (fcr31 & FPU_CSR_DIV_X) si_code = FPE_FLTDIV; else if (fcr31 & FPU_CSR_OVF_X) si_code = FPE_FLTOVF; else if (fcr31 & FPU_CSR_UDF_X) si_code = FPE_FLTUND; else if (fcr31 & FPU_CSR_INE_X) si_code = FPE_FLTRES; force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk); } int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) { int si_code; switch (sig) { case 0: return 0; case SIGFPE: force_fcr31_sig(fcr31, fault_addr, current); return 1; case SIGBUS: force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr); return 1; case SIGSEGV: mmap_read_lock(current->mm); if (vma_lookup(current->mm, (unsigned long)fault_addr)) si_code = SEGV_ACCERR; else si_code = SEGV_MAPERR; mmap_read_unlock(current->mm); force_sig_fault(SIGSEGV, si_code, fault_addr); return 1; default: force_sig(sig); return 1; } } static int simulate_fp(struct pt_regs *regs, unsigned int opcode, unsigned long old_epc, unsigned long old_ra) { union mips_instruction inst = { .word = opcode }; void __user *fault_addr; unsigned long fcr31; int sig; /* If it's obviously not an FP instruction, skip it */ switch (inst.i_format.opcode) { case cop1_op: case cop1x_op: case lwc1_op: case ldc1_op: case swc1_op: case sdc1_op: break; default: return -1; } /* * do_ri skipped over the instruction via compute_return_epc, undo * that for the FPU emulator. */ regs->cp0_epc = old_epc; regs->regs[31] = old_ra; /* Run the emulator */ sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1, &fault_addr); /* * We can't allow the emulated instruction to leave any * enabled Cause bits set in $fcr31. */ fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); current->thread.fpu.fcr31 &= ~fcr31; /* Restore the hardware register state */ own_fpu(1); /* Send a signal if required. */ process_fpemu_return(sig, fault_addr, fcr31); return 0; } /* * XXX Delayed fp exceptions when doing a lazy ctx switch XXX */ asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) { enum ctx_state prev_state; void __user *fault_addr; int sig; prev_state = exception_enter(); if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) goto out; /* Clear FCSR.Cause before enabling interrupts */ write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); local_irq_enable(); die_if_kernel("FP exception in kernel code", regs); if (fcr31 & FPU_CSR_UNI_X) { /* * Unimplemented operation exception. If we've got the full * software emulator on-board, let's use it... * * Force FPU to dump state into task/thread context. We're * moving a lot of data here for what is probably a single * instruction, but the alternative is to pre-decode the FP * register operands before invoking the emulator, which seems * a bit extreme for what should be an infrequent event. */ /* Run the emulator */ sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1, &fault_addr); /* * We can't allow the emulated instruction to leave any * enabled Cause bits set in $fcr31. */ fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); current->thread.fpu.fcr31 &= ~fcr31; /* Restore the hardware register state */ own_fpu(1); /* Using the FPU again. */ } else { sig = SIGFPE; fault_addr = (void __user *) regs->cp0_epc; } /* Send a signal if required. */ process_fpemu_return(sig, fault_addr, fcr31); out: exception_exit(prev_state); } /* * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've * emulated more than some threshold number of instructions, force migration to * a "CPU" that has FP support. */ static void mt_ase_fp_affinity(void) { #ifdef CONFIG_MIPS_MT_FPAFF if (mt_fpemul_threshold > 0 && ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { /* * If there's no FPU present, or if the application has already * restricted the allowed set to exclude any CPUs with FPUs, * we'll skip the procedure. */ if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) { cpumask_t tmask; current->thread.user_cpus_allowed = current->cpus_mask; cpumask_and(&tmask, &current->cpus_mask, &mt_fpu_cpumask); set_cpus_allowed_ptr(current, &tmask); set_thread_flag(TIF_FPUBOUND); } } #endif /* CONFIG_MIPS_MT_FPAFF */ } #else /* !CONFIG_MIPS_FP_SUPPORT */ static int simulate_fp(struct pt_regs *regs, unsigned int opcode, unsigned long old_epc, unsigned long old_ra) { return -1; } #endif /* !CONFIG_MIPS_FP_SUPPORT */ void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, const char *str) { char b[40]; #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) return; #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) return; /* * A short test says that IRIX 5.3 sends SIGTRAP for all trap * insns, even for trap and break codes that indicate arithmetic * failures. Weird ... * But should we continue the brokenness??? --macro */ switch (code) { case BRK_OVERFLOW: case BRK_DIVZERO: scnprintf(b, sizeof(b), "%s instruction in kernel code", str); die_if_kernel(b, regs); force_sig_fault(SIGFPE, code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF, (void __user *) regs->cp0_epc); break; case BRK_BUG: die_if_kernel("Kernel bug detected", regs); force_sig(SIGTRAP); break; case BRK_MEMU: /* * This breakpoint code is used by the FPU emulator to retake * control of the CPU after executing the instruction from the * delay slot of an emulated branch. * * Terminate if exception was recognized as a delay slot return * otherwise handle as normal. */ if (do_dsemulret(regs)) return; die_if_kernel("Math emu break/trap", regs); force_sig(SIGTRAP); break; default: scnprintf(b, sizeof(b), "%s instruction in kernel code", str); die_if_kernel(b, regs); if (si_code) { force_sig_fault(SIGTRAP, si_code, NULL); } else { force_sig(SIGTRAP); } } } asmlinkage void do_bp(struct pt_regs *regs) { unsigned long epc = msk_isa16_mode(exception_epc(regs)); unsigned int opcode, bcode; enum ctx_state prev_state; bool user = user_mode(regs); prev_state = exception_enter(); current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; if (get_isa16_mode(regs->cp0_epc)) { u16 instr[2]; if (__get_inst16(&instr[0], (u16 *)epc, user)) goto out_sigsegv; if (!cpu_has_mmips) { /* MIPS16e mode */ bcode = (instr[0] >> 5) & 0x3f; } else if (mm_insn_16bit(instr[0])) { /* 16-bit microMIPS BREAK */ bcode = instr[0] & 0xf; } else { /* 32-bit microMIPS BREAK */ if (__get_inst16(&instr[1], (u16 *)(epc + 2), user)) goto out_sigsegv; opcode = (instr[0] << 16) | instr[1]; bcode = (opcode >> 6) & ((1 << 20) - 1); } } else { if (__get_inst32(&opcode, (u32 *)epc, user)) goto out_sigsegv; bcode = (opcode >> 6) & ((1 << 20) - 1); } /* * There is the ancient bug in the MIPS assemblers that the break * code starts left to bit 16 instead to bit 6 in the opcode. * Gas is bug-compatible, but not always, grrr... * We handle both cases with a simple heuristics. --macro */ if (bcode >= (1 << 10)) bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); /* * notify the kprobe handlers, if instruction is likely to * pertain to them. */ switch (bcode) { case BRK_UPROBE: if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) goto out; else break; case BRK_UPROBE_XOL: if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) goto out; else break; case BRK_KPROBE_BP: if (notify_die(DIE_BREAK, "debug", regs, bcode, current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) goto out; else break; case BRK_KPROBE_SSTEPBP: if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) goto out; else break; default: break; } do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); out: exception_exit(prev_state); return; out_sigsegv: force_sig(SIGSEGV); goto out; } asmlinkage void do_tr(struct pt_regs *regs) { u32 opcode, tcode = 0; enum ctx_state prev_state; u16 instr[2]; bool user = user_mode(regs); unsigned long epc = msk_isa16_mode(exception_epc(regs)); prev_state = exception_enter(); current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; if (get_isa16_mode(regs->cp0_epc)) { if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) || __get_inst16(&instr[1], (u16 *)(epc + 2), user)) goto out_sigsegv; opcode = (instr[0] << 16) | instr[1]; /* Immediate versions don't provide a code. */ if (!(opcode & OPCODE)) tcode = (opcode >> 12) & ((1 << 4) - 1); } else { if (__get_inst32(&opcode, (u32 *)epc, user)) goto out_sigsegv; /* Immediate versions don't provide a code. */ if (!(opcode & OPCODE)) tcode = (opcode >> 6) & ((1 << 10) - 1); } do_trap_or_bp(regs, tcode, 0, "Trap"); out: exception_exit(prev_state); return; out_sigsegv: force_sig(SIGSEGV); goto out; } asmlinkage void do_ri(struct pt_regs *regs) { unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); unsigned long old_epc = regs->cp0_epc; unsigned long old31 = regs->regs[31]; enum ctx_state prev_state; unsigned int opcode = 0; int status = -1; /* * Avoid any kernel code. Just emulate the R2 instruction * as quickly as possible. */ if (mipsr2_emulation && cpu_has_mips_r6 && likely(user_mode(regs)) && likely(get_user(opcode, epc) >= 0)) { unsigned long fcr31 = 0; status = mipsr2_decoder(regs, opcode, &fcr31); switch (status) { case 0: case SIGEMT: return; case SIGILL: goto no_r2_instr; default: process_fpemu_return(status, &current->thread.cp0_baduaddr, fcr31); return; } } no_r2_instr: prev_state = exception_enter(); current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, SIGILL) == NOTIFY_STOP) goto out; die_if_kernel("Reserved instruction in kernel code", regs); if (unlikely(compute_return_epc(regs) < 0)) goto out; if (!get_isa16_mode(regs->cp0_epc)) { if (unlikely(get_user(opcode, epc) < 0)) status = SIGSEGV; if (!cpu_has_llsc && status < 0) status = simulate_llsc(regs, opcode); if (status < 0) status = simulate_rdhwr_normal(regs, opcode); if (status < 0) status = simulate_sync(regs, opcode); if (status < 0) status = simulate_fp(regs, opcode, old_epc, old31); #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION if (status < 0) status = simulate_loongson3_cpucfg(regs, opcode); #endif } else if (cpu_has_mmips) { unsigned short mmop[2] = { 0 }; if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) status = SIGSEGV; if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) status = SIGSEGV; opcode = mmop[0]; opcode = (opcode << 16) | mmop[1]; if (status < 0) status = simulate_rdhwr_mm(regs, opcode); } if (status < 0) status = SIGILL; if (unlikely(status > 0)) { regs->cp0_epc = old_epc; /* Undo skip-over. */ regs->regs[31] = old31; force_sig(status); } out: exception_exit(prev_state); } /* * No lock; only written during early bootup by CPU 0. */ static RAW_NOTIFIER_HEAD(cu2_chain); int __ref register_cu2_notifier(struct notifier_block *nb) { return raw_notifier_chain_register(&cu2_chain, nb); } int cu2_notifier_call_chain(unsigned long val, void *v) { return raw_notifier_call_chain(&cu2_chain, val, v); } static int default_cu2_call(struct notifier_block *nfb, unsigned long action, void *data) { struct pt_regs *regs = data; die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " "instruction", regs); force_sig(SIGILL); return NOTIFY_OK; } #ifdef CONFIG_MIPS_FP_SUPPORT static int enable_restore_fp_context(int msa) { int err, was_fpu_owner, prior_msa; bool first_fp; /* Initialize context if it hasn't been used already */ first_fp = init_fp_ctx(current); if (first_fp) { preempt_disable(); err = own_fpu_inatomic(1); if (msa && !err) { enable_msa(); /* * with MSA enabled, userspace can see MSACSR * and MSA regs, but the values in them are from * other task before current task, restore them * from saved fp/msa context */ write_msa_csr(current->thread.fpu.msacsr); /* * own_fpu_inatomic(1) just restore low 64bit, * fix the high 64bit */ init_msa_upper(); set_thread_flag(TIF_USEDMSA); set_thread_flag(TIF_MSA_CTX_LIVE); } preempt_enable(); return err; } /* * This task has formerly used the FP context. * * If this thread has no live MSA vector context then we can simply * restore the scalar FP context. If it has live MSA vector context * (that is, it has or may have used MSA since last performing a * function call) then we'll need to restore the vector context. This * applies even if we're currently only executing a scalar FP * instruction. This is because if we were to later execute an MSA * instruction then we'd either have to: * * - Restore the vector context & clobber any registers modified by * scalar FP instructions between now & then. * * or * * - Not restore the vector context & lose the most significant bits * of all vector registers. * * Neither of those options is acceptable. We cannot restore the least * significant bits of the registers now & only restore the most * significant bits later because the most significant bits of any * vector registers whose aliased FP register is modified now will have * been zeroed. We'd have no way to know that when restoring the vector * context & thus may load an outdated value for the most significant * bits of a vector register. */ if (!msa && !thread_msa_context_live()) return own_fpu(1); /* * This task is using or has previously used MSA. Thus we require * that Status.FR == 1. */ preempt_disable(); was_fpu_owner = is_fpu_owner(); err = own_fpu_inatomic(0); if (err) goto out; enable_msa(); write_msa_csr(current->thread.fpu.msacsr); set_thread_flag(TIF_USEDMSA); /* * If this is the first time that the task is using MSA and it has * previously used scalar FP in this time slice then we already nave * FP context which we shouldn't clobber. We do however need to clear * the upper 64b of each vector register so that this task has no * opportunity to see data left behind by another. */ prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); if (!prior_msa && was_fpu_owner) { init_msa_upper(); goto out; } if (!prior_msa) { /* * Restore the least significant 64b of each vector register * from the existing scalar FP context. */ _restore_fp(current); /* * The task has not formerly used MSA, so clear the upper 64b * of each vector register such that it cannot see data left * behind by another task. */ init_msa_upper(); } else { /* We need to restore the vector context. */ restore_msa(current); /* Restore the scalar FP control & status register */ if (!was_fpu_owner) write_32bit_cp1_register(CP1_STATUS, current->thread.fpu.fcr31); } out: preempt_enable(); return 0; } #else /* !CONFIG_MIPS_FP_SUPPORT */ static int enable_restore_fp_context(int msa) { return SIGILL; } #endif /* CONFIG_MIPS_FP_SUPPORT */ asmlinkage void do_cpu(struct pt_regs *regs) { enum ctx_state prev_state; unsigned int __user *epc; unsigned long old_epc, old31; unsigned int opcode; unsigned int cpid; int status; prev_state = exception_enter(); cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; if (cpid != 2) die_if_kernel("do_cpu invoked from kernel context!", regs); switch (cpid) { case 0: epc = (unsigned int __user *)exception_epc(regs); old_epc = regs->cp0_epc; old31 = regs->regs[31]; opcode = 0; status = -1; if (unlikely(compute_return_epc(regs) < 0)) break; if (!get_isa16_mode(regs->cp0_epc)) { if (unlikely(get_user(opcode, epc) < 0)) status = SIGSEGV; if (!cpu_has_llsc && status < 0) status = simulate_llsc(regs, opcode); } if (status < 0) status = SIGILL; if (unlikely(status > 0)) { regs->cp0_epc = old_epc; /* Undo skip-over. */ regs->regs[31] = old31; force_sig(status); } break; #ifdef CONFIG_MIPS_FP_SUPPORT case 3: /* * The COP3 opcode space and consequently the CP0.Status.CU3 * bit and the CP0.Cause.CE=3 encoding have been removed as * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs * up the space has been reused for COP1X instructions, that * are enabled by the CP0.Status.CU1 bit and consequently * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable * exceptions. Some FPU-less processors that implement one * of these ISAs however use this code erroneously for COP1X * instructions. Therefore we redirect this trap to the FP * emulator too. */ if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { force_sig(SIGILL); break; } fallthrough; case 1: { void __user *fault_addr; unsigned long fcr31; int err, sig; err = enable_restore_fp_context(0); if (raw_cpu_has_fpu && !err) break; sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0, &fault_addr); /* * We can't allow the emulated instruction to leave * any enabled Cause bits set in $fcr31. */ fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); current->thread.fpu.fcr31 &= ~fcr31; /* Send a signal if required. */ if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) mt_ase_fp_affinity(); break; } #else /* CONFIG_MIPS_FP_SUPPORT */ case 1: case 3: force_sig(SIGILL); break; #endif /* CONFIG_MIPS_FP_SUPPORT */ case 2: raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); break; } exception_exit(prev_state); } asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) { enum ctx_state prev_state; prev_state = exception_enter(); current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) goto out; /* Clear MSACSR.Cause before enabling interrupts */ write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); local_irq_enable(); die_if_kernel("do_msa_fpe invoked from kernel context!", regs); force_sig(SIGFPE); out: exception_exit(prev_state); } asmlinkage void do_msa(struct pt_regs *regs) { enum ctx_state prev_state; int err; prev_state = exception_enter(); if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { force_sig(SIGILL); goto out; } die_if_kernel("do_msa invoked from kernel context!", regs); err = enable_restore_fp_context(1); if (err) force_sig(SIGILL); out: exception_exit(prev_state); } asmlinkage void do_mdmx(struct pt_regs *regs) { enum ctx_state prev_state; prev_state = exception_enter(); force_sig(SIGILL); exception_exit(prev_state); } /* * Called with interrupts disabled. */ asmlinkage void do_watch(struct pt_regs *regs) { enum ctx_state prev_state; prev_state = exception_enter(); /* * Clear WP (bit 22) bit of cause register so we don't loop * forever. */ clear_c0_cause(CAUSEF_WP); /* * If the current thread has the watch registers loaded, save * their values and send SIGTRAP. Otherwise another thread * left the registers set, clear them and continue. */ if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { mips_read_watch_registers(); local_irq_enable(); force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL); } else { mips_clear_watch_registers(); local_irq_enable(); } exception_exit(prev_state); } asmlinkage void do_mcheck(struct pt_regs *regs) { int multi_match = regs->cp0_status & ST0_TS; enum ctx_state prev_state; prev_state = exception_enter(); show_regs(regs); if (multi_match) { dump_tlb_regs(); pr_info("\n"); dump_tlb_all(); } show_code((void *)regs->cp0_epc, user_mode(regs)); /* * Some chips may have other causes of machine check (e.g. SB1 * graduation timer) */ panic("Caught Machine Check exception - %scaused by multiple " "matching entries in the TLB.", (multi_match) ? "" : "not "); } asmlinkage void do_mt(struct pt_regs *regs) { int subcode; subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) >> VPECONTROL_EXCPT_SHIFT; switch (subcode) { case 0: printk(KERN_DEBUG "Thread Underflow\n"); break; case 1: printk(KERN_DEBUG "Thread Overflow\n"); break; case 2: printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); break; case 3: printk(KERN_DEBUG "Gating Storage Exception\n"); break; case 4: printk(KERN_DEBUG "YIELD Scheduler Exception\n"); break; case 5: printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); break; default: printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", subcode); break; } die_if_kernel("MIPS MT Thread exception in kernel", regs); force_sig(SIGILL); } asmlinkage void do_dsp(struct pt_regs *regs) { if (cpu_has_dsp) panic("Unexpected DSP exception"); force_sig(SIGILL); } asmlinkage void do_reserved(struct pt_regs *regs) { /* * Game over - no way to handle this if it ever occurs. Most probably * caused by a new unknown cpu type or after another deadly * hard/software error. */ show_regs(regs); panic("Caught reserved exception %ld - should not happen.", (regs->cp0_cause & 0x7f) >> 2); } static int __initdata l1parity = 1; static int __init nol1parity(char *s) { l1parity = 0; return 1; } __setup("nol1par", nol1parity); static int __initdata l2parity = 1; static int __init nol2parity(char *s) { l2parity = 0; return 1; } __setup("nol2par", nol2parity); /* * Some MIPS CPUs can enable/disable for cache parity detection, but do * it different ways. */ static inline __init void parity_protection_init(void) { #define ERRCTL_PE 0x80000000 #define ERRCTL_L2P 0x00800000 if (mips_cm_revision() >= CM_REV_CM3) { ulong gcr_ectl, cp0_ectl; /* * With CM3 systems we need to ensure that the L1 & L2 * parity enables are set to the same value, since this * is presumed by the hardware engineers. * * If the user disabled either of L1 or L2 ECC checking, * disable both. */ l1parity &= l2parity; l2parity &= l1parity; /* Probe L1 ECC support */ cp0_ectl = read_c0_ecc(); write_c0_ecc(cp0_ectl | ERRCTL_PE); back_to_back_c0_hazard(); cp0_ectl = read_c0_ecc(); /* Probe L2 ECC support */ gcr_ectl = read_gcr_err_control(); if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) || !(cp0_ectl & ERRCTL_PE)) { /* * One of L1 or L2 ECC checking isn't supported, * so we cannot enable either. */ l1parity = l2parity = 0; } /* Configure L1 ECC checking */ if (l1parity) cp0_ectl |= ERRCTL_PE; else cp0_ectl &= ~ERRCTL_PE; write_c0_ecc(cp0_ectl); back_to_back_c0_hazard(); WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); /* Configure L2 ECC checking */ if (l2parity) gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN; else gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN; write_gcr_err_control(gcr_ectl); gcr_ectl = read_gcr_err_control(); gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN; WARN_ON(!!gcr_ectl != l2parity); pr_info("Cache parity protection %sabled\n", l1parity ? "en" : "dis"); return; } switch (current_cpu_type()) { case CPU_24K: case CPU_34K: case CPU_74K: case CPU_1004K: case CPU_1074K: case CPU_INTERAPTIV: case CPU_PROAPTIV: case CPU_P5600: case CPU_QEMU_GENERIC: case CPU_P6600: { unsigned long errctl; unsigned int l1parity_present, l2parity_present; errctl = read_c0_ecc(); errctl &= ~(ERRCTL_PE|ERRCTL_L2P); /* probe L1 parity support */ write_c0_ecc(errctl | ERRCTL_PE); back_to_back_c0_hazard(); l1parity_present = (read_c0_ecc() & ERRCTL_PE); /* probe L2 parity support */ write_c0_ecc(errctl|ERRCTL_L2P); back_to_back_c0_hazard(); l2parity_present = (read_c0_ecc() & ERRCTL_L2P); if (l1parity_present && l2parity_present) { if (l1parity) errctl |= ERRCTL_PE; if (l1parity ^ l2parity) errctl |= ERRCTL_L2P; } else if (l1parity_present) { if (l1parity) errctl |= ERRCTL_PE; } else if (l2parity_present) { if (l2parity) errctl |= ERRCTL_L2P; } else { /* No parity available */ } printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); write_c0_ecc(errctl); back_to_back_c0_hazard(); errctl = read_c0_ecc(); printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); if (l1parity_present) printk(KERN_INFO "Cache parity protection %sabled\n", (errctl & ERRCTL_PE) ? "en" : "dis"); if (l2parity_present) { if (l1parity_present && l1parity) errctl ^= ERRCTL_L2P; printk(KERN_INFO "L2 cache parity protection %sabled\n", (errctl & ERRCTL_L2P) ? "en" : "dis"); } } break; case CPU_5KC: case CPU_5KE: case CPU_LOONGSON32: write_c0_ecc(0x80000000); back_to_back_c0_hazard(); /* Set the PE bit (bit 31) in the c0_errctl register. */ printk(KERN_INFO "Cache parity protection %sabled\n", (read_c0_ecc() & 0x80000000) ? "en" : "dis"); break; case CPU_20KC: case CPU_25KF: /* Clear the DE bit (bit 16) in the c0_status register. */ printk(KERN_INFO "Enable cache parity protection for " "MIPS 20KC/25KF CPUs.\n"); clear_c0_status(ST0_DE); break; default: break; } } asmlinkage void cache_parity_error(void) { const int field = 2 * sizeof(unsigned long); unsigned int reg_val; /* For the moment, report the problem and hang. */ printk("Cache error exception:\n"); printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); reg_val = read_c0_cacheerr(); printk("c0_cacheerr == %08x\n", reg_val); printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", reg_val & (1<<30) ? "secondary" : "primary", reg_val & (1<<31) ? "data" : "insn"); if ((cpu_has_mips_r2_r6) && ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { pr_err("Error bits: %s%s%s%s%s%s%s%s\n", reg_val & (1<<29) ? "ED " : "", reg_val & (1<<28) ? "ET " : "", reg_val & (1<<27) ? "ES " : "", reg_val & (1<<26) ? "EE " : "", reg_val & (1<<25) ? "EB " : "", reg_val & (1<<24) ? "EI " : "", reg_val & (1<<23) ? "E1 " : "", reg_val & (1<<22) ? "E0 " : ""); } else { pr_err("Error bits: %s%s%s%s%s%s%s\n", reg_val & (1<<29) ? "ED " : "", reg_val & (1<<28) ? "ET " : "", reg_val & (1<<26) ? "EE " : "", reg_val & (1<<25) ? "EB " : "", reg_val & (1<<24) ? "EI " : "", reg_val & (1<<23) ? "E1 " : "", reg_val & (1<<22) ? "E0 " : ""); } printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) if (reg_val & (1<<22)) printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); if (reg_val & (1<<23)) printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); #endif panic("Can't handle the cache error!"); } asmlinkage void do_ftlb(void) { const int field = 2 * sizeof(unsigned long); unsigned int reg_val; /* For the moment, report the problem and hang. */ if ((cpu_has_mips_r2_r6) && (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", read_c0_ecc()); pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); reg_val = read_c0_cacheerr(); pr_err("c0_cacheerr == %08x\n", reg_val); if ((reg_val & 0xc0000000) == 0xc0000000) { pr_err("Decoded c0_cacheerr: FTLB parity error\n"); } else { pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", reg_val & (1<<30) ? "secondary" : "primary", reg_val & (1<<31) ? "data" : "insn"); } } else { pr_err("FTLB error exception\n"); } /* Just print the cacheerr bits for now */ cache_parity_error(); } asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1) { u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >> LOONGSON_DIAG1_EXCCODE_SHIFT; enum ctx_state prev_state; prev_state = exception_enter(); switch (exccode) { case 0x08: /* Undocumented exception, will trigger on certain * also-undocumented instructions accessible from userspace. * Processor state is not otherwise corrupted, but currently * we don't know how to proceed. Maybe there is some * undocumented control flag to enable the instructions? */ force_sig(SIGILL); break; default: /* None of the other exceptions, documented or not, have * further details given; none are encountered in the wild * either. Panic in case some of them turn out to be fatal. */ show_regs(regs); panic("Unhandled Loongson exception - GSCause = %08x", diag1); } exception_exit(prev_state); } /* * SDBBP EJTAG debug exception handler. * We skip the instruction and return to the next instruction. */ void ejtag_exception_handler(struct pt_regs *regs) { const int field = 2 * sizeof(unsigned long); unsigned long depc, old_epc, old_ra; unsigned int debug; printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); depc = read_c0_depc(); debug = read_c0_debug(); printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); if (debug & 0x80000000) { /* * In branch delay slot. * We cheat a little bit here and use EPC to calculate the * debug return address (DEPC). EPC is restored after the * calculation. */ old_epc = regs->cp0_epc; old_ra = regs->regs[31]; regs->cp0_epc = depc; compute_return_epc(regs); depc = regs->cp0_epc; regs->cp0_epc = old_epc; regs->regs[31] = old_ra; } else depc += 4; write_c0_depc(depc); #if 0 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); write_c0_debug(debug | 0x100); #endif } /* * NMI exception handler. * No lock; only written during early bootup by CPU 0. */ static RAW_NOTIFIER_HEAD(nmi_chain); int register_nmi_notifier(struct notifier_block *nb) { return raw_notifier_chain_register(&nmi_chain, nb); } void __noreturn nmi_exception_handler(struct pt_regs *regs) { char str[100]; nmi_enter(); raw_notifier_call_chain(&nmi_chain, 0, regs); bust_spinlocks(1); snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", smp_processor_id(), regs->cp0_epc); regs->cp0_epc = read_c0_errorepc(); die(str, regs); nmi_exit(); } unsigned long ebase; EXPORT_SYMBOL_GPL(ebase); unsigned long exception_handlers[32]; unsigned long vi_handlers[64]; void reserve_exception_space(phys_addr_t addr, unsigned long size) { memblock_reserve(addr, size); } void __init *set_except_vector(int n, void *addr) { unsigned long handler = (unsigned long) addr; unsigned long old_handler; #ifdef CONFIG_CPU_MICROMIPS /* * Only the TLB handlers are cache aligned with an even * address. All other handlers are on an odd address and * require no modification. Otherwise, MIPS32 mode will * be entered when handling any TLB exceptions. That * would be bad...since we must stay in microMIPS mode. */ if (!(handler & 0x1)) handler |= 1; #endif old_handler = xchg(&exception_handlers[n], handler); if (n == 0 && cpu_has_divec) { #ifdef CONFIG_CPU_MICROMIPS unsigned long jump_mask = ~((1 << 27) - 1); #else unsigned long jump_mask = ~((1 << 28) - 1); #endif u32 *buf = (u32 *)(ebase + 0x200); unsigned int k0 = 26; if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { uasm_i_j(&buf, handler & ~jump_mask); uasm_i_nop(&buf); } else { UASM_i_LA(&buf, k0, handler); uasm_i_jr(&buf, k0); uasm_i_nop(&buf); } local_flush_icache_range(ebase + 0x200, (unsigned long)buf); } return (void *)old_handler; } static void do_default_vi(void) { show_regs(get_irq_regs()); panic("Caught unexpected vectored interrupt."); } static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) { unsigned long handler; unsigned long old_handler = vi_handlers[n]; int srssets = current_cpu_data.srsets; u16 *h; unsigned char *b; BUG_ON(!cpu_has_veic && !cpu_has_vint); if (addr == NULL) { handler = (unsigned long) do_default_vi; srs = 0; } else handler = (unsigned long) addr; vi_handlers[n] = handler; b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); if (srs >= srssets) panic("Shadow register set %d not supported", srs); if (cpu_has_veic) { if (board_bind_eic_interrupt) board_bind_eic_interrupt(n, srs); } else if (cpu_has_vint) { /* SRSMap is only defined if shadow sets are implemented */ if (srssets > 1) change_c0_srsmap(0xf << n*4, srs << n*4); } if (srs == 0) { /* * If no shadow set is selected then use the default handler * that does normal register saving and standard interrupt exit */ extern const u8 except_vec_vi[], except_vec_vi_lui[]; extern const u8 except_vec_vi_ori[], except_vec_vi_end[]; extern const u8 rollback_except_vec_vi[]; const u8 *vec_start = using_rollback_handler() ? rollback_except_vec_vi : except_vec_vi; #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) const int lui_offset = except_vec_vi_lui - vec_start + 2; const int ori_offset = except_vec_vi_ori - vec_start + 2; #else const int lui_offset = except_vec_vi_lui - vec_start; const int ori_offset = except_vec_vi_ori - vec_start; #endif const int handler_len = except_vec_vi_end - vec_start; if (handler_len > VECTORSPACING) { /* * Sigh... panicing won't help as the console * is probably not configured :( */ panic("VECTORSPACING too small"); } set_handler(((unsigned long)b - ebase), vec_start, #ifdef CONFIG_CPU_MICROMIPS (handler_len - 1)); #else handler_len); #endif h = (u16 *)(b + lui_offset); *h = (handler >> 16) & 0xffff; h = (u16 *)(b + ori_offset); *h = (handler & 0xffff); local_flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len)); } else { /* * In other cases jump directly to the interrupt handler. It * is the handler's responsibility to save registers if required * (eg hi/lo) and return from the exception using "eret". */ u32 insn; h = (u16 *)b; /* j handler */ #ifdef CONFIG_CPU_MICROMIPS insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); #else insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); #endif h[0] = (insn >> 16) & 0xffff; h[1] = insn & 0xffff; h[2] = 0; h[3] = 0; local_flush_icache_range((unsigned long)b, (unsigned long)(b+8)); } return (void *)old_handler; } void *set_vi_handler(int n, vi_handler_t addr) { return set_vi_srs_handler(n, addr, 0); } extern void tlb_init(void); /* * Timer interrupt */ int cp0_compare_irq; EXPORT_SYMBOL_GPL(cp0_compare_irq); int cp0_compare_irq_shift; /* * Performance counter IRQ or -1 if shared with timer */ int cp0_perfcount_irq; EXPORT_SYMBOL_GPL(cp0_perfcount_irq); /* * Fast debug channel IRQ or -1 if not present */ int cp0_fdc_irq; EXPORT_SYMBOL_GPL(cp0_fdc_irq); static int noulri; static int __init ulri_disable(char *s) { pr_info("Disabling ulri\n"); noulri = 1; return 1; } __setup("noulri", ulri_disable); /* configure STATUS register */ static void configure_status(void) { /* * Disable coprocessors and select 32-bit or 64-bit addressing * and the 16/32 or 32/32 FPR register model. Reset the BEV * flag that some firmware may have left set and the TS bit (for * IP27). Set XX for ISA IV code to work. */ unsigned int status_set = ST0_KERNEL_CUMASK; #ifdef CONFIG_64BIT status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; #endif if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) status_set |= ST0_XX; if (cpu_has_dsp) status_set |= ST0_MX; change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, status_set); back_to_back_c0_hazard(); } unsigned int hwrena; EXPORT_SYMBOL_GPL(hwrena); /* configure HWRENA register */ static void configure_hwrena(void) { hwrena = cpu_hwrena_impl_bits; if (cpu_has_mips_r2_r6) hwrena |= MIPS_HWRENA_CPUNUM | MIPS_HWRENA_SYNCISTEP | MIPS_HWRENA_CC | MIPS_HWRENA_CCRES; if (!noulri && cpu_has_userlocal) hwrena |= MIPS_HWRENA_ULR; if (hwrena) write_c0_hwrena(hwrena); } static void configure_exception_vector(void) { if (cpu_has_mips_r2_r6) { unsigned long sr = set_c0_status(ST0_BEV); /* If available, use WG to set top bits of EBASE */ if (cpu_has_ebase_wg) { #ifdef CONFIG_64BIT write_c0_ebase_64(ebase | MIPS_EBASE_WG); #else write_c0_ebase(ebase | MIPS_EBASE_WG); #endif } write_c0_ebase(ebase); write_c0_status(sr); } if (cpu_has_veic || cpu_has_vint) { /* Setting vector spacing enables EI/VI mode */ change_c0_intctl(0x3e0, VECTORSPACING); } if (cpu_has_divec) { if (cpu_has_mipsmt) { unsigned int vpflags = dvpe(); set_c0_cause(CAUSEF_IV); evpe(vpflags); } else set_c0_cause(CAUSEF_IV); } } void per_cpu_trap_init(bool is_boot_cpu) { unsigned int cpu = smp_processor_id(); configure_status(); configure_hwrena(); configure_exception_vector(); /* * Before R2 both interrupt numbers were fixed to 7, so on R2 only: * * o read IntCtl.IPTI to determine the timer interrupt * o read IntCtl.IPPCI to determine the performance counter interrupt * o read IntCtl.IPFDC to determine the fast debug channel interrupt */ if (cpu_has_mips_r2_r6) { cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; if (!cp0_fdc_irq) cp0_fdc_irq = -1; } else { cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; cp0_perfcount_irq = -1; cp0_fdc_irq = -1; } if (cpu_has_mmid) cpu_data[cpu].asid_cache = 0; else if (!cpu_data[cpu].asid_cache) cpu_data[cpu].asid_cache = asid_first_version(cpu); mmgrab(&init_mm); current->active_mm = &init_mm; BUG_ON(current->mm); enter_lazy_tlb(&init_mm, current); /* Boot CPU's cache setup in setup_arch(). */ if (!is_boot_cpu) cpu_cache_init(); tlb_init(); TLBMISS_HANDLER_SETUP(); } /* Install CPU exception handler */ void set_handler(unsigned long offset, const void *addr, unsigned long size) { #ifdef CONFIG_CPU_MICROMIPS memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); #else memcpy((void *)(ebase + offset), addr, size); #endif local_flush_icache_range(ebase + offset, ebase + offset + size); } static const char panic_null_cerr[] = "Trying to set NULL cache error exception handler\n"; /* * Install uncached CPU exception handler. * This is suitable only for the cache error exception which is the only * exception handler that is being run uncached. */ void set_uncached_handler(unsigned long offset, void *addr, unsigned long size) { unsigned long uncached_ebase = CKSEG1ADDR(ebase); if (!addr) panic(panic_null_cerr); memcpy((void *)(uncached_ebase + offset), addr, size); } static int __initdata rdhwr_noopt; static int __init set_rdhwr_noopt(char *str) { rdhwr_noopt = 1; return 1; } __setup("rdhwr_noopt", set_rdhwr_noopt); void __init trap_init(void) { extern char except_vec3_generic; extern char except_vec4; extern char except_vec3_r4000; unsigned long i, vec_size; phys_addr_t ebase_pa; check_wait(); if (!cpu_has_mips_r2_r6) { ebase = CAC_BASE; vec_size = 0x400; } else { if (cpu_has_veic || cpu_has_vint) vec_size = 0x200 + VECTORSPACING*64; else vec_size = PAGE_SIZE; ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size)); if (!ebase_pa) panic("%s: Failed to allocate %lu bytes align=0x%x\n", __func__, vec_size, 1 << fls(vec_size)); /* * Try to ensure ebase resides in KSeg0 if possible. * * It shouldn't generally be in XKPhys on MIPS64 to avoid * hitting a poorly defined exception base for Cache Errors. * The allocation is likely to be in the low 512MB of physical, * in which case we should be able to convert to KSeg0. * * EVA is special though as it allows segments to be rearranged * and to become uncached during cache error handling. */ if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) ebase = CKSEG0ADDR(ebase_pa); else ebase = (unsigned long)phys_to_virt(ebase_pa); } if (cpu_has_mmips) { unsigned int config3 = read_c0_config3(); if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) write_c0_config3(config3 | MIPS_CONF3_ISA_OE); else write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); } if (board_ebase_setup) board_ebase_setup(); per_cpu_trap_init(true); memblock_set_bottom_up(false); /* * Copy the generic exception handlers to their final destination. * This will be overridden later as suitable for a particular * configuration. */ set_handler(0x180, &except_vec3_generic, 0x80); /* * Setup default vectors */ for (i = 0; i <= 31; i++) set_except_vector(i, handle_reserved); /* * Copy the EJTAG debug exception vector handler code to it's final * destination. */ if (cpu_has_ejtag && board_ejtag_handler_setup) board_ejtag_handler_setup(); /* * Only some CPUs have the watch exceptions. */ if (cpu_has_watch) set_except_vector(EXCCODE_WATCH, handle_watch); /* * Initialise interrupt handlers */ if (cpu_has_veic || cpu_has_vint) { int nvec = cpu_has_veic ? 64 : 8; for (i = 0; i < nvec; i++) set_vi_handler(i, NULL); } else if (cpu_has_divec) set_handler(0x200, &except_vec4, 0x8); /* * Some CPUs can enable/disable for cache parity detection, but does * it different ways. */ parity_protection_init(); /* * The Data Bus Errors / Instruction Bus Errors are signaled * by external hardware. Therefore these two exceptions * may have board specific handlers. */ if (board_be_init) board_be_init(); set_except_vector(EXCCODE_INT, using_rollback_handler() ? rollback_handle_int : handle_int); set_except_vector(EXCCODE_MOD, handle_tlbm); set_except_vector(EXCCODE_TLBL, handle_tlbl); set_except_vector(EXCCODE_TLBS, handle_tlbs); set_except_vector(EXCCODE_ADEL, handle_adel); set_except_vector(EXCCODE_ADES, handle_ades); set_except_vector(EXCCODE_IBE, handle_ibe); set_except_vector(EXCCODE_DBE, handle_dbe); set_except_vector(EXCCODE_SYS, handle_sys); set_except_vector(EXCCODE_BP, handle_bp); if (rdhwr_noopt) set_except_vector(EXCCODE_RI, handle_ri); else { if (cpu_has_vtag_icache) set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); else if (current_cpu_type() == CPU_LOONGSON64) set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); else set_except_vector(EXCCODE_RI, handle_ri_rdhwr); } set_except_vector(EXCCODE_CPU, handle_cpu); set_except_vector(EXCCODE_OV, handle_ov); set_except_vector(EXCCODE_TR, handle_tr); set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); if (board_nmi_handler_setup) board_nmi_handler_setup(); if (cpu_has_fpu && !cpu_has_nofpuex) set_except_vector(EXCCODE_FPE, handle_fpe); if (cpu_has_ftlbparex) set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); if (cpu_has_gsexcex) set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc); if (cpu_has_rixiex) { set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); } set_except_vector(EXCCODE_MSADIS, handle_msa); set_except_vector(EXCCODE_MDMX, handle_mdmx); if (cpu_has_mcheck) set_except_vector(EXCCODE_MCHECK, handle_mcheck); if (cpu_has_mipsmt) set_except_vector(EXCCODE_THREAD, handle_mt); set_except_vector(EXCCODE_DSPDIS, handle_dsp); if (board_cache_error_setup) board_cache_error_setup(); if (cpu_has_vce) /* Special exception: R4[04]00 uses also the divec space. */ set_handler(0x180, &except_vec3_r4000, 0x100); else if (cpu_has_4kex) set_handler(0x180, &except_vec3_generic, 0x80); else set_handler(0x080, &except_vec3_generic, 0x80); local_flush_icache_range(ebase, ebase + vec_size); sort_extable(__start___dbe_table, __stop___dbe_table); cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ } static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, void *v) { switch (cmd) { case CPU_PM_ENTER_FAILED: case CPU_PM_EXIT: configure_status(); configure_hwrena(); configure_exception_vector(); /* Restore register with CPU number for TLB handlers */ TLBMISS_HANDLER_RESTORE(); break; } return NOTIFY_OK; } static struct notifier_block trap_pm_notifier_block = { .notifier_call = trap_pm_notifier, }; static int __init trap_pm_init(void) { return cpu_pm_register_notifier(&trap_pm_notifier_block); } arch_initcall(trap_pm_init);
linux-master
arch/mips/kernel/traps.c
// SPDX-License-Identifier: GPL-2.0 /* * asm-offsets.c: Calculate pt_regs and task_struct offsets. * * Copyright (C) 1996 David S. Miller * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003 Ralf Baechle * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * * Kevin Kissell, [email protected] and Carsten Langgaard, [email protected] * Copyright (C) 2000 MIPS Technologies, Inc. */ #include <linux/compat.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/kbuild.h> #include <linux/suspend.h> #include <asm/cpu-info.h> #include <asm/pm.h> #include <asm/ptrace.h> #include <asm/processor.h> #include <asm/smp-cps.h> #include <linux/kvm_host.h> void output_ptreg_defines(void); void output_ptreg_defines(void) { COMMENT("MIPS pt_regs offsets."); OFFSET(PT_R0, pt_regs, regs[0]); OFFSET(PT_R1, pt_regs, regs[1]); OFFSET(PT_R2, pt_regs, regs[2]); OFFSET(PT_R3, pt_regs, regs[3]); OFFSET(PT_R4, pt_regs, regs[4]); OFFSET(PT_R5, pt_regs, regs[5]); OFFSET(PT_R6, pt_regs, regs[6]); OFFSET(PT_R7, pt_regs, regs[7]); OFFSET(PT_R8, pt_regs, regs[8]); OFFSET(PT_R9, pt_regs, regs[9]); OFFSET(PT_R10, pt_regs, regs[10]); OFFSET(PT_R11, pt_regs, regs[11]); OFFSET(PT_R12, pt_regs, regs[12]); OFFSET(PT_R13, pt_regs, regs[13]); OFFSET(PT_R14, pt_regs, regs[14]); OFFSET(PT_R15, pt_regs, regs[15]); OFFSET(PT_R16, pt_regs, regs[16]); OFFSET(PT_R17, pt_regs, regs[17]); OFFSET(PT_R18, pt_regs, regs[18]); OFFSET(PT_R19, pt_regs, regs[19]); OFFSET(PT_R20, pt_regs, regs[20]); OFFSET(PT_R21, pt_regs, regs[21]); OFFSET(PT_R22, pt_regs, regs[22]); OFFSET(PT_R23, pt_regs, regs[23]); OFFSET(PT_R24, pt_regs, regs[24]); OFFSET(PT_R25, pt_regs, regs[25]); OFFSET(PT_R26, pt_regs, regs[26]); OFFSET(PT_R27, pt_regs, regs[27]); OFFSET(PT_R28, pt_regs, regs[28]); OFFSET(PT_R29, pt_regs, regs[29]); OFFSET(PT_R30, pt_regs, regs[30]); OFFSET(PT_R31, pt_regs, regs[31]); OFFSET(PT_LO, pt_regs, lo); OFFSET(PT_HI, pt_regs, hi); #ifdef CONFIG_CPU_HAS_SMARTMIPS OFFSET(PT_ACX, pt_regs, acx); #endif OFFSET(PT_EPC, pt_regs, cp0_epc); OFFSET(PT_BVADDR, pt_regs, cp0_badvaddr); OFFSET(PT_STATUS, pt_regs, cp0_status); OFFSET(PT_CAUSE, pt_regs, cp0_cause); #ifdef CONFIG_CPU_CAVIUM_OCTEON OFFSET(PT_MPL, pt_regs, mpl); OFFSET(PT_MTP, pt_regs, mtp); #endif /* CONFIG_CPU_CAVIUM_OCTEON */ DEFINE(PT_SIZE, sizeof(struct pt_regs)); BLANK(); } void output_task_defines(void); void output_task_defines(void) { COMMENT("MIPS task_struct offsets."); OFFSET(TASK_THREAD_INFO, task_struct, stack); OFFSET(TASK_FLAGS, task_struct, flags); OFFSET(TASK_MM, task_struct, mm); OFFSET(TASK_PID, task_struct, pid); #if defined(CONFIG_STACKPROTECTOR) OFFSET(TASK_STACK_CANARY, task_struct, stack_canary); #endif DEFINE(TASK_STRUCT_SIZE, sizeof(struct task_struct)); BLANK(); } void output_thread_info_defines(void); void output_thread_info_defines(void) { COMMENT("MIPS thread_info offsets."); OFFSET(TI_TASK, thread_info, task); OFFSET(TI_FLAGS, thread_info, flags); OFFSET(TI_TP_VALUE, thread_info, tp_value); OFFSET(TI_CPU, thread_info, cpu); OFFSET(TI_PRE_COUNT, thread_info, preempt_count); OFFSET(TI_REGS, thread_info, regs); DEFINE(_THREAD_SIZE, THREAD_SIZE); DEFINE(_THREAD_MASK, THREAD_MASK); DEFINE(_IRQ_STACK_SIZE, IRQ_STACK_SIZE); DEFINE(_IRQ_STACK_START, IRQ_STACK_START); BLANK(); } void output_thread_defines(void); void output_thread_defines(void) { COMMENT("MIPS specific thread_struct offsets."); OFFSET(THREAD_REG16, task_struct, thread.reg16); OFFSET(THREAD_REG17, task_struct, thread.reg17); OFFSET(THREAD_REG18, task_struct, thread.reg18); OFFSET(THREAD_REG19, task_struct, thread.reg19); OFFSET(THREAD_REG20, task_struct, thread.reg20); OFFSET(THREAD_REG21, task_struct, thread.reg21); OFFSET(THREAD_REG22, task_struct, thread.reg22); OFFSET(THREAD_REG23, task_struct, thread.reg23); OFFSET(THREAD_REG29, task_struct, thread.reg29); OFFSET(THREAD_REG30, task_struct, thread.reg30); OFFSET(THREAD_REG31, task_struct, thread.reg31); OFFSET(THREAD_STATUS, task_struct, thread.cp0_status); OFFSET(THREAD_BVADDR, task_struct, \ thread.cp0_badvaddr); OFFSET(THREAD_BUADDR, task_struct, \ thread.cp0_baduaddr); OFFSET(THREAD_ECODE, task_struct, \ thread.error_code); OFFSET(THREAD_TRAPNO, task_struct, thread.trap_nr); BLANK(); } #ifdef CONFIG_MIPS_FP_SUPPORT void output_thread_fpu_defines(void); void output_thread_fpu_defines(void) { OFFSET(THREAD_FPU, task_struct, thread.fpu); OFFSET(THREAD_FPR0, task_struct, thread.fpu.fpr[0]); OFFSET(THREAD_FPR1, task_struct, thread.fpu.fpr[1]); OFFSET(THREAD_FPR2, task_struct, thread.fpu.fpr[2]); OFFSET(THREAD_FPR3, task_struct, thread.fpu.fpr[3]); OFFSET(THREAD_FPR4, task_struct, thread.fpu.fpr[4]); OFFSET(THREAD_FPR5, task_struct, thread.fpu.fpr[5]); OFFSET(THREAD_FPR6, task_struct, thread.fpu.fpr[6]); OFFSET(THREAD_FPR7, task_struct, thread.fpu.fpr[7]); OFFSET(THREAD_FPR8, task_struct, thread.fpu.fpr[8]); OFFSET(THREAD_FPR9, task_struct, thread.fpu.fpr[9]); OFFSET(THREAD_FPR10, task_struct, thread.fpu.fpr[10]); OFFSET(THREAD_FPR11, task_struct, thread.fpu.fpr[11]); OFFSET(THREAD_FPR12, task_struct, thread.fpu.fpr[12]); OFFSET(THREAD_FPR13, task_struct, thread.fpu.fpr[13]); OFFSET(THREAD_FPR14, task_struct, thread.fpu.fpr[14]); OFFSET(THREAD_FPR15, task_struct, thread.fpu.fpr[15]); OFFSET(THREAD_FPR16, task_struct, thread.fpu.fpr[16]); OFFSET(THREAD_FPR17, task_struct, thread.fpu.fpr[17]); OFFSET(THREAD_FPR18, task_struct, thread.fpu.fpr[18]); OFFSET(THREAD_FPR19, task_struct, thread.fpu.fpr[19]); OFFSET(THREAD_FPR20, task_struct, thread.fpu.fpr[20]); OFFSET(THREAD_FPR21, task_struct, thread.fpu.fpr[21]); OFFSET(THREAD_FPR22, task_struct, thread.fpu.fpr[22]); OFFSET(THREAD_FPR23, task_struct, thread.fpu.fpr[23]); OFFSET(THREAD_FPR24, task_struct, thread.fpu.fpr[24]); OFFSET(THREAD_FPR25, task_struct, thread.fpu.fpr[25]); OFFSET(THREAD_FPR26, task_struct, thread.fpu.fpr[26]); OFFSET(THREAD_FPR27, task_struct, thread.fpu.fpr[27]); OFFSET(THREAD_FPR28, task_struct, thread.fpu.fpr[28]); OFFSET(THREAD_FPR29, task_struct, thread.fpu.fpr[29]); OFFSET(THREAD_FPR30, task_struct, thread.fpu.fpr[30]); OFFSET(THREAD_FPR31, task_struct, thread.fpu.fpr[31]); OFFSET(THREAD_FCR31, task_struct, thread.fpu.fcr31); OFFSET(THREAD_MSA_CSR, task_struct, thread.fpu.msacsr); BLANK(); } #endif void output_mm_defines(void); void output_mm_defines(void) { COMMENT("Size of struct page"); DEFINE(STRUCT_PAGE_SIZE, sizeof(struct page)); BLANK(); COMMENT("Linux mm_struct offsets."); OFFSET(MM_USERS, mm_struct, mm_users); OFFSET(MM_PGD, mm_struct, pgd); OFFSET(MM_CONTEXT, mm_struct, context); BLANK(); DEFINE(_PGD_T_SIZE, sizeof(pgd_t)); DEFINE(_PMD_T_SIZE, sizeof(pmd_t)); DEFINE(_PTE_T_SIZE, sizeof(pte_t)); BLANK(); DEFINE(_PGD_T_LOG2, PGD_T_LOG2); #ifndef __PAGETABLE_PMD_FOLDED DEFINE(_PMD_T_LOG2, PMD_T_LOG2); #endif DEFINE(_PTE_T_LOG2, PTE_T_LOG2); BLANK(); BLANK(); DEFINE(_PMD_SHIFT, PMD_SHIFT); DEFINE(_PGDIR_SHIFT, PGDIR_SHIFT); BLANK(); DEFINE(_PTRS_PER_PGD, PTRS_PER_PGD); DEFINE(_PTRS_PER_PMD, PTRS_PER_PMD); DEFINE(_PTRS_PER_PTE, PTRS_PER_PTE); BLANK(); DEFINE(_PAGE_SHIFT, PAGE_SHIFT); DEFINE(_PAGE_SIZE, PAGE_SIZE); BLANK(); } #ifdef CONFIG_32BIT void output_sc_defines(void); void output_sc_defines(void) { COMMENT("Linux sigcontext offsets."); OFFSET(SC_REGS, sigcontext, sc_regs); OFFSET(SC_FPREGS, sigcontext, sc_fpregs); OFFSET(SC_ACX, sigcontext, sc_acx); OFFSET(SC_MDHI, sigcontext, sc_mdhi); OFFSET(SC_MDLO, sigcontext, sc_mdlo); OFFSET(SC_PC, sigcontext, sc_pc); OFFSET(SC_FPC_CSR, sigcontext, sc_fpc_csr); OFFSET(SC_FPC_EIR, sigcontext, sc_fpc_eir); OFFSET(SC_HI1, sigcontext, sc_hi1); OFFSET(SC_LO1, sigcontext, sc_lo1); OFFSET(SC_HI2, sigcontext, sc_hi2); OFFSET(SC_LO2, sigcontext, sc_lo2); OFFSET(SC_HI3, sigcontext, sc_hi3); OFFSET(SC_LO3, sigcontext, sc_lo3); BLANK(); } #endif #ifdef CONFIG_64BIT void output_sc_defines(void); void output_sc_defines(void) { COMMENT("Linux sigcontext offsets."); OFFSET(SC_REGS, sigcontext, sc_regs); OFFSET(SC_FPREGS, sigcontext, sc_fpregs); OFFSET(SC_MDHI, sigcontext, sc_mdhi); OFFSET(SC_MDLO, sigcontext, sc_mdlo); OFFSET(SC_PC, sigcontext, sc_pc); OFFSET(SC_FPC_CSR, sigcontext, sc_fpc_csr); BLANK(); } #endif void output_signal_defined(void); void output_signal_defined(void) { COMMENT("Linux signal numbers."); DEFINE(_SIGHUP, SIGHUP); DEFINE(_SIGINT, SIGINT); DEFINE(_SIGQUIT, SIGQUIT); DEFINE(_SIGILL, SIGILL); DEFINE(_SIGTRAP, SIGTRAP); DEFINE(_SIGIOT, SIGIOT); DEFINE(_SIGABRT, SIGABRT); DEFINE(_SIGEMT, SIGEMT); DEFINE(_SIGFPE, SIGFPE); DEFINE(_SIGKILL, SIGKILL); DEFINE(_SIGBUS, SIGBUS); DEFINE(_SIGSEGV, SIGSEGV); DEFINE(_SIGSYS, SIGSYS); DEFINE(_SIGPIPE, SIGPIPE); DEFINE(_SIGALRM, SIGALRM); DEFINE(_SIGTERM, SIGTERM); DEFINE(_SIGUSR1, SIGUSR1); DEFINE(_SIGUSR2, SIGUSR2); DEFINE(_SIGCHLD, SIGCHLD); DEFINE(_SIGPWR, SIGPWR); DEFINE(_SIGWINCH, SIGWINCH); DEFINE(_SIGURG, SIGURG); DEFINE(_SIGIO, SIGIO); DEFINE(_SIGSTOP, SIGSTOP); DEFINE(_SIGTSTP, SIGTSTP); DEFINE(_SIGCONT, SIGCONT); DEFINE(_SIGTTIN, SIGTTIN); DEFINE(_SIGTTOU, SIGTTOU); DEFINE(_SIGVTALRM, SIGVTALRM); DEFINE(_SIGPROF, SIGPROF); DEFINE(_SIGXCPU, SIGXCPU); DEFINE(_SIGXFSZ, SIGXFSZ); BLANK(); } #ifdef CONFIG_CPU_CAVIUM_OCTEON void output_octeon_cop2_state_defines(void); void output_octeon_cop2_state_defines(void) { COMMENT("Octeon specific octeon_cop2_state offsets."); OFFSET(OCTEON_CP2_CRC_IV, octeon_cop2_state, cop2_crc_iv); OFFSET(OCTEON_CP2_CRC_LENGTH, octeon_cop2_state, cop2_crc_length); OFFSET(OCTEON_CP2_CRC_POLY, octeon_cop2_state, cop2_crc_poly); OFFSET(OCTEON_CP2_LLM_DAT, octeon_cop2_state, cop2_llm_dat); OFFSET(OCTEON_CP2_3DES_IV, octeon_cop2_state, cop2_3des_iv); OFFSET(OCTEON_CP2_3DES_KEY, octeon_cop2_state, cop2_3des_key); OFFSET(OCTEON_CP2_3DES_RESULT, octeon_cop2_state, cop2_3des_result); OFFSET(OCTEON_CP2_AES_INP0, octeon_cop2_state, cop2_aes_inp0); OFFSET(OCTEON_CP2_AES_IV, octeon_cop2_state, cop2_aes_iv); OFFSET(OCTEON_CP2_AES_KEY, octeon_cop2_state, cop2_aes_key); OFFSET(OCTEON_CP2_AES_KEYLEN, octeon_cop2_state, cop2_aes_keylen); OFFSET(OCTEON_CP2_AES_RESULT, octeon_cop2_state, cop2_aes_result); OFFSET(OCTEON_CP2_GFM_MULT, octeon_cop2_state, cop2_gfm_mult); OFFSET(OCTEON_CP2_GFM_POLY, octeon_cop2_state, cop2_gfm_poly); OFFSET(OCTEON_CP2_GFM_RESULT, octeon_cop2_state, cop2_gfm_result); OFFSET(OCTEON_CP2_HSH_DATW, octeon_cop2_state, cop2_hsh_datw); OFFSET(OCTEON_CP2_HSH_IVW, octeon_cop2_state, cop2_hsh_ivw); OFFSET(OCTEON_CP2_SHA3, octeon_cop2_state, cop2_sha3); OFFSET(THREAD_CP2, task_struct, thread.cp2); #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \ CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 OFFSET(THREAD_CVMSEG, task_struct, thread.cvmseg.cvmseg); #endif BLANK(); } #endif #ifdef CONFIG_HIBERNATION void output_pbe_defines(void); void output_pbe_defines(void) { COMMENT(" Linux struct pbe offsets. "); OFFSET(PBE_ADDRESS, pbe, address); OFFSET(PBE_ORIG_ADDRESS, pbe, orig_address); OFFSET(PBE_NEXT, pbe, next); DEFINE(PBE_SIZE, sizeof(struct pbe)); BLANK(); } #endif #ifdef CONFIG_CPU_PM void output_pm_defines(void); void output_pm_defines(void) { COMMENT(" PM offsets. "); #ifdef CONFIG_EVA OFFSET(SSS_SEGCTL0, mips_static_suspend_state, segctl[0]); OFFSET(SSS_SEGCTL1, mips_static_suspend_state, segctl[1]); OFFSET(SSS_SEGCTL2, mips_static_suspend_state, segctl[2]); #endif OFFSET(SSS_SP, mips_static_suspend_state, sp); BLANK(); } #endif #ifdef CONFIG_MIPS_FP_SUPPORT void output_kvm_defines(void); void output_kvm_defines(void) { COMMENT(" KVM/MIPS Specific offsets. "); OFFSET(VCPU_FPR0, kvm_vcpu_arch, fpu.fpr[0]); OFFSET(VCPU_FPR1, kvm_vcpu_arch, fpu.fpr[1]); OFFSET(VCPU_FPR2, kvm_vcpu_arch, fpu.fpr[2]); OFFSET(VCPU_FPR3, kvm_vcpu_arch, fpu.fpr[3]); OFFSET(VCPU_FPR4, kvm_vcpu_arch, fpu.fpr[4]); OFFSET(VCPU_FPR5, kvm_vcpu_arch, fpu.fpr[5]); OFFSET(VCPU_FPR6, kvm_vcpu_arch, fpu.fpr[6]); OFFSET(VCPU_FPR7, kvm_vcpu_arch, fpu.fpr[7]); OFFSET(VCPU_FPR8, kvm_vcpu_arch, fpu.fpr[8]); OFFSET(VCPU_FPR9, kvm_vcpu_arch, fpu.fpr[9]); OFFSET(VCPU_FPR10, kvm_vcpu_arch, fpu.fpr[10]); OFFSET(VCPU_FPR11, kvm_vcpu_arch, fpu.fpr[11]); OFFSET(VCPU_FPR12, kvm_vcpu_arch, fpu.fpr[12]); OFFSET(VCPU_FPR13, kvm_vcpu_arch, fpu.fpr[13]); OFFSET(VCPU_FPR14, kvm_vcpu_arch, fpu.fpr[14]); OFFSET(VCPU_FPR15, kvm_vcpu_arch, fpu.fpr[15]); OFFSET(VCPU_FPR16, kvm_vcpu_arch, fpu.fpr[16]); OFFSET(VCPU_FPR17, kvm_vcpu_arch, fpu.fpr[17]); OFFSET(VCPU_FPR18, kvm_vcpu_arch, fpu.fpr[18]); OFFSET(VCPU_FPR19, kvm_vcpu_arch, fpu.fpr[19]); OFFSET(VCPU_FPR20, kvm_vcpu_arch, fpu.fpr[20]); OFFSET(VCPU_FPR21, kvm_vcpu_arch, fpu.fpr[21]); OFFSET(VCPU_FPR22, kvm_vcpu_arch, fpu.fpr[22]); OFFSET(VCPU_FPR23, kvm_vcpu_arch, fpu.fpr[23]); OFFSET(VCPU_FPR24, kvm_vcpu_arch, fpu.fpr[24]); OFFSET(VCPU_FPR25, kvm_vcpu_arch, fpu.fpr[25]); OFFSET(VCPU_FPR26, kvm_vcpu_arch, fpu.fpr[26]); OFFSET(VCPU_FPR27, kvm_vcpu_arch, fpu.fpr[27]); OFFSET(VCPU_FPR28, kvm_vcpu_arch, fpu.fpr[28]); OFFSET(VCPU_FPR29, kvm_vcpu_arch, fpu.fpr[29]); OFFSET(VCPU_FPR30, kvm_vcpu_arch, fpu.fpr[30]); OFFSET(VCPU_FPR31, kvm_vcpu_arch, fpu.fpr[31]); OFFSET(VCPU_FCR31, kvm_vcpu_arch, fpu.fcr31); OFFSET(VCPU_MSA_CSR, kvm_vcpu_arch, fpu.msacsr); BLANK(); } #endif #ifdef CONFIG_MIPS_CPS void output_cps_defines(void); void output_cps_defines(void) { COMMENT(" MIPS CPS offsets. "); OFFSET(COREBOOTCFG_VPEMASK, core_boot_config, vpe_mask); OFFSET(COREBOOTCFG_VPECONFIG, core_boot_config, vpe_config); DEFINE(COREBOOTCFG_SIZE, sizeof(struct core_boot_config)); OFFSET(VPEBOOTCFG_PC, vpe_boot_config, pc); OFFSET(VPEBOOTCFG_SP, vpe_boot_config, sp); OFFSET(VPEBOOTCFG_GP, vpe_boot_config, gp); DEFINE(VPEBOOTCFG_SIZE, sizeof(struct vpe_boot_config)); } #endif
linux-master
arch/mips/kernel/asm-offsets.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1992 Ross Biro * Copyright (C) Linus Torvalds * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle * Copyright (C) 1996 David S. Miller * Kevin D. Kissell, [email protected] and Carsten Langgaard, [email protected] * Copyright (C) 1999 MIPS Technologies, Inc. * Copyright (C) 2000 Ulf Carlsson * * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit * binaries. */ #include <linux/compiler.h> #include <linux/compat.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/mm.h> #include <linux/errno.h> #include <linux/ptrace.h> #include <linux/smp.h> #include <linux/security.h> #include <asm/cpu.h> #include <asm/dsp.h> #include <asm/fpu.h> #include <asm/mipsregs.h> #include <asm/mipsmtregs.h> #include <asm/page.h> #include <asm/reg.h> #include <asm/syscall.h> #include <linux/uaccess.h> #include <asm/bootinfo.h> /* * Tracing a 32-bit process with a 64-bit strace and vice versa will not * work. I don't know how to fix this. */ long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t caddr, compat_ulong_t cdata) { int addr = caddr; int data = cdata; int ret; switch (request) { /* * Read 4 bytes of the other process' storage * data is a pointer specifying where the user wants the * 4 bytes copied into * addr is a pointer in the user's storage that contains an 8 byte * address in the other process of the 4 bytes that is to be read * (this is run in a 32-bit process looking at a 64-bit process) * when I and D space are separate, these will need to be fixed. */ case PTRACE_PEEKTEXT_3264: case PTRACE_PEEKDATA_3264: { u32 tmp; int copied; u32 __user * addrOthers; ret = -EIO; /* Get the addr in the other process that we want to read */ if (get_user(addrOthers, (u32 __user * __user *) (unsigned long) addr) != 0) break; copied = ptrace_access_vm(child, (u64)addrOthers, &tmp, sizeof(tmp), FOLL_FORCE); if (copied != sizeof(tmp)) break; ret = put_user(tmp, (u32 __user *) (unsigned long) data); break; } /* Read the word at location addr in the USER area. */ case PTRACE_PEEKUSR: { struct pt_regs *regs; unsigned int tmp; regs = task_pt_regs(child); ret = 0; /* Default return value. */ switch (addr) { case 0 ... 31: tmp = regs->regs[addr]; break; #ifdef CONFIG_MIPS_FP_SUPPORT case FPR_BASE ... FPR_BASE + 31: { union fpureg *fregs; if (!tsk_used_math(child)) { /* FP not yet used */ tmp = -1; break; } fregs = get_fpu_regs(child); if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) { /* * The odd registers are actually the high * order bits of the values stored in the even * registers. */ tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE], addr & 1); break; } tmp = get_fpr64(&fregs[addr - FPR_BASE], 0); break; } case FPC_CSR: tmp = child->thread.fpu.fcr31; break; case FPC_EIR: /* implementation / version register */ tmp = boot_cpu_data.fpu_id; break; #endif /* CONFIG_MIPS_FP_SUPPORT */ case PC: tmp = regs->cp0_epc; break; case CAUSE: tmp = regs->cp0_cause; break; case BADVADDR: tmp = regs->cp0_badvaddr; break; case MMHI: tmp = regs->hi; break; case MMLO: tmp = regs->lo; break; case DSP_BASE ... DSP_BASE + 5: { dspreg_t *dregs; if (!cpu_has_dsp) { tmp = 0; ret = -EIO; goto out; } dregs = __get_dsp_regs(child); tmp = dregs[addr - DSP_BASE]; break; } case DSP_CONTROL: if (!cpu_has_dsp) { tmp = 0; ret = -EIO; goto out; } tmp = child->thread.dsp.dspcontrol; break; default: tmp = 0; ret = -EIO; goto out; } ret = put_user(tmp, (unsigned __user *) (unsigned long) data); break; } /* * Write 4 bytes into the other process' storage * data is the 4 bytes that the user wants written * addr is a pointer in the user's storage that contains an * 8 byte address in the other process where the 4 bytes * that is to be written * (this is run in a 32-bit process looking at a 64-bit process) * when I and D space are separate, these will need to be fixed. */ case PTRACE_POKETEXT_3264: case PTRACE_POKEDATA_3264: { u32 __user * addrOthers; /* Get the addr in the other process that we want to write into */ ret = -EIO; if (get_user(addrOthers, (u32 __user * __user *) (unsigned long) addr) != 0) break; ret = 0; if (ptrace_access_vm(child, (u64)addrOthers, &data, sizeof(data), FOLL_FORCE | FOLL_WRITE) == sizeof(data)) break; ret = -EIO; break; } case PTRACE_POKEUSR: { struct pt_regs *regs; ret = 0; regs = task_pt_regs(child); switch (addr) { case 0 ... 31: regs->regs[addr] = data; /* System call number may have been changed */ if (addr == 2) mips_syscall_update_nr(child, regs); else if (addr == 4 && mips_syscall_is_indirect(child, regs)) mips_syscall_update_nr(child, regs); break; #ifdef CONFIG_MIPS_FP_SUPPORT case FPR_BASE ... FPR_BASE + 31: { union fpureg *fregs = get_fpu_regs(child); if (!tsk_used_math(child)) { /* FP not yet used */ memset(&child->thread.fpu, ~0, sizeof(child->thread.fpu)); child->thread.fpu.fcr31 = 0; } if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) { /* * The odd registers are actually the high * order bits of the values stored in the even * registers. */ set_fpr32(&fregs[(addr & ~1) - FPR_BASE], addr & 1, data); break; } set_fpr64(&fregs[addr - FPR_BASE], 0, data); break; } case FPC_CSR: child->thread.fpu.fcr31 = data; break; #endif /* CONFIG_MIPS_FP_SUPPORT */ case PC: regs->cp0_epc = data; break; case MMHI: regs->hi = data; break; case MMLO: regs->lo = data; break; case DSP_BASE ... DSP_BASE + 5: { dspreg_t *dregs; if (!cpu_has_dsp) { ret = -EIO; break; } dregs = __get_dsp_regs(child); dregs[addr - DSP_BASE] = data; break; } case DSP_CONTROL: if (!cpu_has_dsp) { ret = -EIO; break; } child->thread.dsp.dspcontrol = data; break; default: /* The rest are not allowed. */ ret = -EIO; break; } break; } case PTRACE_GETREGS: ret = ptrace_getregs(child, (struct user_pt_regs __user *) (__u64) data); break; case PTRACE_SETREGS: ret = ptrace_setregs(child, (struct user_pt_regs __user *) (__u64) data); break; #ifdef CONFIG_MIPS_FP_SUPPORT case PTRACE_GETFPREGS: ret = ptrace_getfpregs(child, (__u32 __user *) (__u64) data); break; case PTRACE_SETFPREGS: ret = ptrace_setfpregs(child, (__u32 __user *) (__u64) data); break; #endif case PTRACE_GET_THREAD_AREA: ret = put_user(task_thread_info(child)->tp_value, (unsigned int __user *) (unsigned long) data); break; case PTRACE_GET_THREAD_AREA_3264: ret = put_user(task_thread_info(child)->tp_value, (unsigned long __user *) (unsigned long) data); break; case PTRACE_GET_WATCH_REGS: ret = ptrace_get_watch_regs(child, (struct pt_watch_regs __user *) (unsigned long) addr); break; case PTRACE_SET_WATCH_REGS: ret = ptrace_set_watch_regs(child, (struct pt_watch_regs __user *) (unsigned long) addr); break; default: ret = compat_ptrace_request(child, request, addr, data); break; } out: return ret; }
linux-master
arch/mips/kernel/ptrace32.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/init.h> #include <linux/node.h> #include <linux/nodemask.h> #include <linux/percpu.h> static DEFINE_PER_CPU(struct cpu, cpu_devices); static int __init topology_init(void) { int i, ret; for_each_present_cpu(i) { struct cpu *c = &per_cpu(cpu_devices, i); c->hotpluggable = !!i; ret = register_cpu(c, i); if (ret) printk(KERN_WARNING "topology_init: register_cpu %d " "failed (%d)\n", i, ret); } return 0; } subsys_initcall(topology_init);
linux-master
arch/mips/kernel/topology.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2013 Imagination Technologies * Author: Paul Burton <[email protected]> */ #include <linux/cpu.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/sched/task_stack.h> #include <linux/sched/hotplug.h> #include <linux/slab.h> #include <linux/smp.h> #include <linux/types.h> #include <linux/irq.h> #include <asm/bcache.h> #include <asm/mips-cps.h> #include <asm/mips_mt.h> #include <asm/mipsregs.h> #include <asm/pm-cps.h> #include <asm/r4kcache.h> #include <asm/smp.h> #include <asm/smp-cps.h> #include <asm/time.h> #include <asm/uasm.h> static DECLARE_BITMAP(core_power, NR_CPUS); struct core_boot_config *mips_cps_core_bootcfg; static unsigned __init core_vpe_count(unsigned int cluster, unsigned core) { return min(smp_max_threads, mips_cps_numvps(cluster, core)); } static void __init cps_smp_setup(void) { unsigned int nclusters, ncores, nvpes, core_vpes; unsigned long core_entry; int cl, c, v; /* Detect & record VPE topology */ nvpes = 0; nclusters = mips_cps_numclusters(); pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE"); for (cl = 0; cl < nclusters; cl++) { if (cl > 0) pr_cont(","); pr_cont("{"); ncores = mips_cps_numcores(cl); for (c = 0; c < ncores; c++) { core_vpes = core_vpe_count(cl, c); if (c > 0) pr_cont(","); pr_cont("%u", core_vpes); /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */ if (!cl && !c) smp_num_siblings = core_vpes; for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) { cpu_set_cluster(&cpu_data[nvpes + v], cl); cpu_set_core(&cpu_data[nvpes + v], c); cpu_set_vpe_id(&cpu_data[nvpes + v], v); } nvpes += core_vpes; } pr_cont("}"); } pr_cont(" total %u\n", nvpes); /* Indicate present CPUs (CPU being synonymous with VPE) */ for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) { set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0); set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0); __cpu_number_map[v] = v; __cpu_logical_map[v] = v; } /* Set a coherent default CCA (CWB) */ change_c0_config(CONF_CM_CMASK, 0x5); /* Core 0 is powered up (we're running on it) */ bitmap_set(core_power, 0, 1); /* Initialise core 0 */ mips_cps_core_init(); /* Make core 0 coherent with everything */ write_gcr_cl_coherence(0xff); if (mips_cm_revision() >= CM_REV_CM3) { core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry); write_gcr_bev_base(core_entry); } #ifdef CONFIG_MIPS_MT_FPAFF /* If we have an FPU, enroll ourselves in the FPU-full mask */ if (cpu_has_fpu) cpumask_set_cpu(0, &mt_fpu_cpumask); #endif /* CONFIG_MIPS_MT_FPAFF */ } static void __init cps_prepare_cpus(unsigned int max_cpus) { unsigned ncores, core_vpes, c, cca; bool cca_unsuitable, cores_limited; u32 *entry_code; mips_mt_set_cpuoptions(); /* Detect whether the CCA is unsuited to multi-core SMP */ cca = read_c0_config() & CONF_CM_CMASK; switch (cca) { case 0x4: /* CWBE */ case 0x5: /* CWB */ /* The CCA is coherent, multi-core is fine */ cca_unsuitable = false; break; default: /* CCA is not coherent, multi-core is not usable */ cca_unsuitable = true; } /* Warn the user if the CCA prevents multi-core */ cores_limited = false; if (cca_unsuitable || cpu_has_dc_aliases) { for_each_present_cpu(c) { if (cpus_are_siblings(smp_processor_id(), c)) continue; set_cpu_present(c, false); cores_limited = true; } } if (cores_limited) pr_warn("Using only one core due to %s%s%s\n", cca_unsuitable ? "unsuitable CCA" : "", (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "", cpu_has_dc_aliases ? "dcache aliasing" : ""); /* * Patch the start of mips_cps_core_entry to provide: * * s0 = kseg0 CCA */ entry_code = (u32 *)&mips_cps_core_entry; uasm_i_addiu(&entry_code, 16, 0, cca); UASM_i_LA(&entry_code, 17, (long)mips_gcr_base); BUG_ON((void *)entry_code > (void *)&mips_cps_core_entry_patch_end); blast_dcache_range((unsigned long)&mips_cps_core_entry, (unsigned long)entry_code); bc_wback_inv((unsigned long)&mips_cps_core_entry, (void *)entry_code - (void *)&mips_cps_core_entry); __sync(); /* Allocate core boot configuration structs */ ncores = mips_cps_numcores(0); mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg), GFP_KERNEL); if (!mips_cps_core_bootcfg) { pr_err("Failed to allocate boot config for %u cores\n", ncores); goto err_out; } /* Allocate VPE boot configuration structs */ for (c = 0; c < ncores; c++) { core_vpes = core_vpe_count(0, c); mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes, sizeof(*mips_cps_core_bootcfg[c].vpe_config), GFP_KERNEL); if (!mips_cps_core_bootcfg[c].vpe_config) { pr_err("Failed to allocate %u VPE boot configs\n", core_vpes); goto err_out; } } /* Mark this CPU as booted */ atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask, 1 << cpu_vpe_id(&current_cpu_data)); return; err_out: /* Clean up allocations */ if (mips_cps_core_bootcfg) { for (c = 0; c < ncores; c++) kfree(mips_cps_core_bootcfg[c].vpe_config); kfree(mips_cps_core_bootcfg); mips_cps_core_bootcfg = NULL; } /* Effectively disable SMP by declaring CPUs not present */ for_each_possible_cpu(c) { if (c == 0) continue; set_cpu_present(c, false); } } static void boot_core(unsigned int core, unsigned int vpe_id) { u32 stat, seq_state; unsigned timeout; /* Select the appropriate core */ mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL); /* Set its reset vector */ write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry)); /* Ensure its coherency is disabled */ write_gcr_co_coherence(0); /* Start it with the legacy memory map and exception base */ write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB); /* Ensure the core can access the GCRs */ set_gcr_access(1 << core); if (mips_cpc_present()) { /* Reset the core */ mips_cpc_lock_other(core); if (mips_cm_revision() >= CM_REV_CM3) { /* Run only the requested VP following the reset */ write_cpc_co_vp_stop(0xf); write_cpc_co_vp_run(1 << vpe_id); /* * Ensure that the VP_RUN register is written before the * core leaves reset. */ wmb(); } write_cpc_co_cmd(CPC_Cx_CMD_RESET); timeout = 100; while (true) { stat = read_cpc_co_stat_conf(); seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE; seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE); /* U6 == coherent execution, ie. the core is up */ if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6) break; /* Delay a little while before we start warning */ if (timeout) { timeout--; mdelay(10); continue; } pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n", core, stat); mdelay(1000); } mips_cpc_unlock_other(); } else { /* Take the core out of reset */ write_gcr_co_reset_release(0); } mips_cm_unlock_other(); /* The core is now powered up */ bitmap_set(core_power, core, 1); } static void remote_vpe_boot(void *dummy) { unsigned core = cpu_core(&current_cpu_data); struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core]; mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data)); } static int cps_boot_secondary(int cpu, struct task_struct *idle) { unsigned core = cpu_core(&cpu_data[cpu]); unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core]; struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id]; unsigned long core_entry; unsigned int remote; int err; /* We don't yet support booting CPUs in other clusters */ if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data)) return -ENOSYS; vpe_cfg->pc = (unsigned long)&smp_bootstrap; vpe_cfg->sp = __KSTK_TOS(idle); vpe_cfg->gp = (unsigned long)task_thread_info(idle); atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask); preempt_disable(); if (!test_bit(core, core_power)) { /* Boot a VPE on a powered down core */ boot_core(core, vpe_id); goto out; } if (cpu_has_vp) { mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL); core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry); write_gcr_co_reset_base(core_entry); mips_cm_unlock_other(); } if (!cpus_are_siblings(cpu, smp_processor_id())) { /* Boot a VPE on another powered up core */ for (remote = 0; remote < NR_CPUS; remote++) { if (!cpus_are_siblings(cpu, remote)) continue; if (cpu_online(remote)) break; } if (remote >= NR_CPUS) { pr_crit("No online CPU in core %u to start CPU%d\n", core, cpu); goto out; } err = smp_call_function_single(remote, remote_vpe_boot, NULL, 1); if (err) panic("Failed to call remote CPU\n"); goto out; } BUG_ON(!cpu_has_mipsmt && !cpu_has_vp); /* Boot a VPE on this core */ mips_cps_boot_vpes(core_cfg, vpe_id); out: preempt_enable(); return 0; } static void cps_init_secondary(void) { int core = cpu_core(&current_cpu_data); /* Disable MT - we only want to run 1 TC per VPE */ if (cpu_has_mipsmt) dmt(); if (mips_cm_revision() >= CM_REV_CM3) { unsigned int ident = read_gic_vl_ident(); /* * Ensure that our calculation of the VP ID matches up with * what the GIC reports, otherwise we'll have configured * interrupts incorrectly. */ BUG_ON(ident != mips_cm_vp_id(smp_processor_id())); } if (core > 0 && !read_gcr_cl_coherence()) pr_warn("Core %u is not in coherent domain\n", core); if (cpu_has_veic) clear_c0_status(ST0_IM); else change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 | STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7); } static void cps_smp_finish(void) { write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ)); #ifdef CONFIG_MIPS_MT_FPAFF /* If we have an FPU, enroll ourselves in the FPU-full mask */ if (cpu_has_fpu) cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask); #endif /* CONFIG_MIPS_MT_FPAFF */ local_irq_enable(); } #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC) enum cpu_death { CPU_DEATH_HALT, CPU_DEATH_POWER, }; static void cps_shutdown_this_cpu(enum cpu_death death) { unsigned int cpu, core, vpe_id; cpu = smp_processor_id(); core = cpu_core(&cpu_data[cpu]); if (death == CPU_DEATH_HALT) { vpe_id = cpu_vpe_id(&cpu_data[cpu]); pr_debug("Halting core %d VP%d\n", core, vpe_id); if (cpu_has_mipsmt) { /* Halt this TC */ write_c0_tchalt(TCHALT_H); instruction_hazard(); } else if (cpu_has_vp) { write_cpc_cl_vp_stop(1 << vpe_id); /* Ensure that the VP_STOP register is written */ wmb(); } } else { if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { pr_debug("Gating power to core %d\n", core); /* Power down the core */ cps_pm_enter_state(CPS_PM_POWER_GATED); } } } #ifdef CONFIG_KEXEC static void cps_kexec_nonboot_cpu(void) { if (cpu_has_mipsmt || cpu_has_vp) cps_shutdown_this_cpu(CPU_DEATH_HALT); else cps_shutdown_this_cpu(CPU_DEATH_POWER); } #endif /* CONFIG_KEXEC */ #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */ #ifdef CONFIG_HOTPLUG_CPU static int cps_cpu_disable(void) { unsigned cpu = smp_processor_id(); struct core_boot_config *core_cfg; if (!cps_pm_support_state(CPS_PM_POWER_GATED)) return -EINVAL; core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)]; atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask); smp_mb__after_atomic(); set_cpu_online(cpu, false); calculate_cpu_foreign_map(); irq_migrate_all_off_this_cpu(); return 0; } static unsigned cpu_death_sibling; static enum cpu_death cpu_death; void play_dead(void) { unsigned int cpu; local_irq_disable(); idle_task_exit(); cpu = smp_processor_id(); cpu_death = CPU_DEATH_POWER; pr_debug("CPU%d going offline\n", cpu); if (cpu_has_mipsmt || cpu_has_vp) { /* Look for another online VPE within the core */ for_each_online_cpu(cpu_death_sibling) { if (!cpus_are_siblings(cpu, cpu_death_sibling)) continue; /* * There is an online VPE within the core. Just halt * this TC and leave the core alone. */ cpu_death = CPU_DEATH_HALT; break; } } cpuhp_ap_report_dead(); cps_shutdown_this_cpu(cpu_death); /* This should never be reached */ panic("Failed to offline CPU %u", cpu); } static void wait_for_sibling_halt(void *ptr_cpu) { unsigned cpu = (unsigned long)ptr_cpu; unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); unsigned halted; unsigned long flags; do { local_irq_save(flags); settc(vpe_id); halted = read_tc_c0_tchalt(); local_irq_restore(flags); } while (!(halted & TCHALT_H)); } static void cps_cpu_die(unsigned int cpu) { } static void cps_cleanup_dead_cpu(unsigned cpu) { unsigned core = cpu_core(&cpu_data[cpu]); unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]); ktime_t fail_time; unsigned stat; int err; /* * Now wait for the CPU to actually offline. Without doing this that * offlining may race with one or more of: * * - Onlining the CPU again. * - Powering down the core if another VPE within it is offlined. * - A sibling VPE entering a non-coherent state. * * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing * with which we could race, so do nothing. */ if (cpu_death == CPU_DEATH_POWER) { /* * Wait for the core to enter a powered down or clock gated * state, the latter happening when a JTAG probe is connected * in which case the CPC will refuse to power down the core. */ fail_time = ktime_add_ms(ktime_get(), 2000); do { mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL); mips_cpc_lock_other(core); stat = read_cpc_co_stat_conf(); stat &= CPC_Cx_STAT_CONF_SEQSTATE; stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE); mips_cpc_unlock_other(); mips_cm_unlock_other(); if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 || stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 || stat == CPC_Cx_STAT_CONF_SEQSTATE_U2) break; /* * The core ought to have powered down, but didn't & * now we don't really know what state it's in. It's * likely that its _pwr_up pin has been wired to logic * 1 & it powered back up as soon as we powered it * down... * * The best we can do is warn the user & continue in * the hope that the core is doing nothing harmful & * might behave properly if we online it later. */ if (WARN(ktime_after(ktime_get(), fail_time), "CPU%u hasn't powered down, seq. state %u\n", cpu, stat)) break; } while (1); /* Indicate the core is powered off */ bitmap_clear(core_power, core, 1); } else if (cpu_has_mipsmt) { /* * Have a CPU with access to the offlined CPUs registers wait * for its TC to halt. */ err = smp_call_function_single(cpu_death_sibling, wait_for_sibling_halt, (void *)(unsigned long)cpu, 1); if (err) panic("Failed to call remote sibling CPU\n"); } else if (cpu_has_vp) { do { mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL); stat = read_cpc_co_vp_running(); mips_cm_unlock_other(); } while (stat & (1 << vpe_id)); } } #endif /* CONFIG_HOTPLUG_CPU */ static const struct plat_smp_ops cps_smp_ops = { .smp_setup = cps_smp_setup, .prepare_cpus = cps_prepare_cpus, .boot_secondary = cps_boot_secondary, .init_secondary = cps_init_secondary, .smp_finish = cps_smp_finish, .send_ipi_single = mips_smp_send_ipi_single, .send_ipi_mask = mips_smp_send_ipi_mask, #ifdef CONFIG_HOTPLUG_CPU .cpu_disable = cps_cpu_disable, .cpu_die = cps_cpu_die, .cleanup_dead_cpu = cps_cleanup_dead_cpu, #endif #ifdef CONFIG_KEXEC .kexec_nonboot_cpu = cps_kexec_nonboot_cpu, #endif }; bool mips_cps_smp_in_use(void) { extern const struct plat_smp_ops *mp_ops; return mp_ops == &cps_smp_ops; } int register_cps_smp_ops(void) { if (!mips_cm_present()) { pr_warn("MIPS CPS SMP unable to proceed without a CM\n"); return -ENODEV; } /* check we have a GIC - we need one for IPIs */ if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) { pr_warn("MIPS CPS SMP unable to proceed without a GIC\n"); return -ENODEV; } register_smp_ops(&cps_smp_ops); return 0; }
linux-master
arch/mips/kernel/smp-cps.c
// SPDX-License-Identifier: GPL-2.0-only /* * Linux performance counter support for MIPS. * * Copyright (C) 2010 MIPS Technologies, Inc. * Copyright (C) 2011 Cavium Networks, Inc. * Author: Deng-Cheng Zhu * * This code is based on the implementation for ARM, which is in turn * based on the sparc64 perf event code and the x86 code. Performance * counter access is based on the MIPS Oprofile code. And the callchain * support references the code of MIPS stacktrace.c. */ #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/smp.h> #include <linux/kernel.h> #include <linux/perf_event.h> #include <linux/uaccess.h> #include <asm/irq.h> #include <asm/irq_regs.h> #include <asm/stacktrace.h> #include <asm/time.h> /* For perf_irq */ #define MIPS_MAX_HWEVENTS 4 #define MIPS_TCS_PER_COUNTER 2 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1) struct cpu_hw_events { /* Array of events on this cpu. */ struct perf_event *events[MIPS_MAX_HWEVENTS]; /* * Set the bit (indexed by the counter number) when the counter * is used for an event. */ unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; /* * Software copy of the control register for each performance counter. * MIPS CPUs vary in performance counters. They use this differently, * and even may not use it. */ unsigned int saved_ctrl[MIPS_MAX_HWEVENTS]; }; DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .saved_ctrl = {0}, }; /* The description of MIPS performance events. */ struct mips_perf_event { unsigned int event_id; /* * MIPS performance counters are indexed starting from 0. * CNTR_EVEN indicates the indexes of the counters to be used are * even numbers. */ unsigned int cntr_mask; #define CNTR_EVEN 0x55555555 #define CNTR_ODD 0xaaaaaaaa #define CNTR_ALL 0xffffffff enum { T = 0, V = 1, P = 2, } range; }; static struct mips_perf_event raw_event; static DEFINE_MUTEX(raw_event_mutex); #define C(x) PERF_COUNT_HW_CACHE_##x struct mips_pmu { u64 max_period; u64 valid_count; u64 overflow; const char *name; int irq; u64 (*read_counter)(unsigned int idx); void (*write_counter)(unsigned int idx, u64 val); const struct mips_perf_event *(*map_raw_event)(u64 config); const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX]; const struct mips_perf_event (*cache_event_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]; unsigned int num_counters; }; static int counter_bits; static struct mips_pmu mipspmu; #define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \ MIPS_PERFCTRL_EVENT) #define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S) #ifdef CONFIG_CPU_BMIPS5000 #define M_PERFCTL_MT_EN(filter) 0 #else /* !CONFIG_CPU_BMIPS5000 */ #define M_PERFCTL_MT_EN(filter) (filter) #endif /* CONFIG_CPU_BMIPS5000 */ #define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL) #define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE) #define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC) #define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \ MIPS_PERFCTRL_K | \ MIPS_PERFCTRL_U | \ MIPS_PERFCTRL_S | \ MIPS_PERFCTRL_IE) #ifdef CONFIG_MIPS_MT_SMP #define M_PERFCTL_CONFIG_MASK 0x3fff801f #else #define M_PERFCTL_CONFIG_MASK 0x1f #endif #define CNTR_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS static DEFINE_RWLOCK(pmuint_rwlock); #if defined(CONFIG_CPU_BMIPS5000) #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK)) #else #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ 0 : cpu_vpe_id(&current_cpu_data)) #endif /* Copied from op_model_mipsxx.c */ static unsigned int vpe_shift(void) { if (num_possible_cpus() > 1) return 1; return 0; } static unsigned int counters_total_to_per_cpu(unsigned int counters) { return counters >> vpe_shift(); } #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */ #define vpe_id() 0 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */ static void resume_local_counters(void); static void pause_local_counters(void); static irqreturn_t mipsxx_pmu_handle_irq(int, void *); static int mipsxx_pmu_handle_shared_irq(void); /* 0: Not Loongson-3 * 1: Loongson-3A1000/3B1000/3B1500 * 2: Loongson-3A2000/3A3000 * 3: Loongson-3A4000+ */ #define LOONGSON_PMU_TYPE0 0 #define LOONGSON_PMU_TYPE1 1 #define LOONGSON_PMU_TYPE2 2 #define LOONGSON_PMU_TYPE3 3 static inline int get_loongson3_pmu_type(void) { if (boot_cpu_type() != CPU_LOONGSON64) return LOONGSON_PMU_TYPE0; if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY) return LOONGSON_PMU_TYPE1; if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C) return LOONGSON_PMU_TYPE2; if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G) return LOONGSON_PMU_TYPE3; return LOONGSON_PMU_TYPE0; } static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx) { if (vpe_id() == 1) idx = (idx + 2) & 3; return idx; } static u64 mipsxx_pmu_read_counter(unsigned int idx) { idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: /* * The counters are unsigned, we must cast to truncate * off the high bits. */ return (u32)read_c0_perfcntr0(); case 1: return (u32)read_c0_perfcntr1(); case 2: return (u32)read_c0_perfcntr2(); case 3: return (u32)read_c0_perfcntr3(); default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return 0; } } static u64 mipsxx_pmu_read_counter_64(unsigned int idx) { u64 mask = CNTR_BIT_MASK(counter_bits); idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: return read_c0_perfcntr0_64() & mask; case 1: return read_c0_perfcntr1_64() & mask; case 2: return read_c0_perfcntr2_64() & mask; case 3: return read_c0_perfcntr3_64() & mask; default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return 0; } } static void mipsxx_pmu_write_counter(unsigned int idx, u64 val) { idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: write_c0_perfcntr0(val); return; case 1: write_c0_perfcntr1(val); return; case 2: write_c0_perfcntr2(val); return; case 3: write_c0_perfcntr3(val); return; } } static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val) { val &= CNTR_BIT_MASK(counter_bits); idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: write_c0_perfcntr0_64(val); return; case 1: write_c0_perfcntr1_64(val); return; case 2: write_c0_perfcntr2_64(val); return; case 3: write_c0_perfcntr3_64(val); return; } } static unsigned int mipsxx_pmu_read_control(unsigned int idx) { idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: return read_c0_perfctrl0(); case 1: return read_c0_perfctrl1(); case 2: return read_c0_perfctrl2(); case 3: return read_c0_perfctrl3(); default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return 0; } } static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val) { idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: write_c0_perfctrl0(val); return; case 1: write_c0_perfctrl1(val); return; case 2: write_c0_perfctrl2(val); return; case 3: write_c0_perfctrl3(val); return; } } static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc) { int i; unsigned long cntr_mask; /* * We only need to care the counter mask. The range has been * checked definitely. */ if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) cntr_mask = (hwc->event_base >> 10) & 0xffff; else cntr_mask = (hwc->event_base >> 8) & 0xffff; for (i = mipspmu.num_counters - 1; i >= 0; i--) { /* * Note that some MIPS perf events can be counted by both * even and odd counters, whereas many other are only by * even _or_ odd counters. This introduces an issue that * when the former kind of event takes the counter the * latter kind of event wants to use, then the "counter * allocation" for the latter event will fail. In fact if * they can be dynamically swapped, they both feel happy. * But here we leave this issue alone for now. */ if (test_bit(i, &cntr_mask) && !test_and_set_bit(i, cpuc->used_mask)) return i; } return -EAGAIN; } static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx) { struct perf_event *event = container_of(evt, struct perf_event, hw); struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); unsigned int range = evt->event_base >> 24; WARN_ON(idx < 0 || idx >= mipspmu.num_counters); if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) | (evt->config_base & M_PERFCTL_CONFIG_MASK) | /* Make sure interrupt enabled. */ MIPS_PERFCTRL_IE; else cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) | (evt->config_base & M_PERFCTL_CONFIG_MASK) | /* Make sure interrupt enabled. */ MIPS_PERFCTRL_IE; if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) { /* enable the counter for the calling thread */ cpuc->saved_ctrl[idx] |= (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC; } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) { /* The counter is processor wide. Set it up to count all TCs. */ pr_debug("Enabling perf counter for all TCs\n"); cpuc->saved_ctrl[idx] |= M_TC_EN_ALL; } else { unsigned int cpu, ctrl; /* * Set up the counter for a particular CPU when event->cpu is * a valid CPU number. Otherwise set up the counter for the CPU * scheduling this thread. */ cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id(); ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu])); ctrl |= M_TC_EN_VPE; cpuc->saved_ctrl[idx] |= ctrl; pr_debug("Enabling perf counter for CPU%d\n", cpu); } /* * We do not actually let the counter run. Leave it until start(). */ } static void mipsxx_pmu_disable_event(int idx) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); unsigned long flags; WARN_ON(idx < 0 || idx >= mipspmu.num_counters); local_irq_save(flags); cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) & ~M_PERFCTL_COUNT_EVENT_WHENEVER; mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]); local_irq_restore(flags); } static int mipspmu_event_set_period(struct perf_event *event, struct hw_perf_event *hwc, int idx) { u64 left = local64_read(&hwc->period_left); u64 period = hwc->sample_period; int ret = 0; if (unlikely((left + period) & (1ULL << 63))) { /* left underflowed by more than period. */ left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } else if (unlikely((left + period) <= period)) { /* left underflowed by less than period. */ left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (left > mipspmu.max_period) { left = mipspmu.max_period; local64_set(&hwc->period_left, left); } local64_set(&hwc->prev_count, mipspmu.overflow - left); if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) mipsxx_pmu_write_control(idx, M_PERFCTL_EVENT(hwc->event_base & 0x3ff)); mipspmu.write_counter(idx, mipspmu.overflow - left); perf_event_update_userpage(event); return ret; } static void mipspmu_event_update(struct perf_event *event, struct hw_perf_event *hwc, int idx) { u64 prev_raw_count, new_raw_count; u64 delta; again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = mipspmu.read_counter(idx); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; delta = new_raw_count - prev_raw_count; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); } static void mipspmu_start(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; /* Set the period for the event. */ mipspmu_event_set_period(event, hwc, hwc->idx); /* Enable the event. */ mipsxx_pmu_enable_event(hwc, hwc->idx); } static void mipspmu_stop(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; if (!(hwc->state & PERF_HES_STOPPED)) { /* We are working on a local event. */ mipsxx_pmu_disable_event(hwc->idx); barrier(); mipspmu_event_update(event, hwc, hwc->idx); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } } static int mipspmu_add(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx; int err = 0; perf_pmu_disable(event->pmu); /* To look for a free counter for this event. */ idx = mipsxx_pmu_alloc_counter(cpuc, hwc); if (idx < 0) { err = idx; goto out; } /* * If there is an event in the counter we are going to use then * make sure it is disabled. */ event->hw.idx = idx; mipsxx_pmu_disable_event(idx); cpuc->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) mipspmu_start(event, PERF_EF_RELOAD); /* Propagate our changes to the userspace mapping. */ perf_event_update_userpage(event); out: perf_pmu_enable(event->pmu); return err; } static void mipspmu_del(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; WARN_ON(idx < 0 || idx >= mipspmu.num_counters); mipspmu_stop(event, PERF_EF_UPDATE); cpuc->events[idx] = NULL; clear_bit(idx, cpuc->used_mask); perf_event_update_userpage(event); } static void mipspmu_read(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; /* Don't read disabled counters! */ if (hwc->idx < 0) return; mipspmu_event_update(event, hwc, hwc->idx); } static void mipspmu_enable(struct pmu *pmu) { #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS write_unlock(&pmuint_rwlock); #endif resume_local_counters(); } /* * MIPS performance counters can be per-TC. The control registers can * not be directly accessed across CPUs. Hence if we want to do global * control, we need cross CPU calls. on_each_cpu() can help us, but we * can not make sure this function is called with interrupts enabled. So * here we pause local counters and then grab a rwlock and leave the * counters on other CPUs alone. If any counter interrupt raises while * we own the write lock, simply pause local counters on that CPU and * spin in the handler. Also we know we won't be switched to another * CPU after pausing local counters and before grabbing the lock. */ static void mipspmu_disable(struct pmu *pmu) { pause_local_counters(); #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS write_lock(&pmuint_rwlock); #endif } static atomic_t active_events = ATOMIC_INIT(0); static DEFINE_MUTEX(pmu_reserve_mutex); static int (*save_perf_irq)(void); static int mipspmu_get_irq(void) { int err; if (mipspmu.irq >= 0) { /* Request my own irq handler. */ err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq, IRQF_PERCPU | IRQF_NOBALANCING | IRQF_NO_THREAD | IRQF_NO_SUSPEND | IRQF_SHARED, "mips_perf_pmu", &mipspmu); if (err) { pr_warn("Unable to request IRQ%d for MIPS performance counters!\n", mipspmu.irq); } } else if (cp0_perfcount_irq < 0) { /* * We are sharing the irq number with the timer interrupt. */ save_perf_irq = perf_irq; perf_irq = mipsxx_pmu_handle_shared_irq; err = 0; } else { pr_warn("The platform hasn't properly defined its interrupt controller\n"); err = -ENOENT; } return err; } static void mipspmu_free_irq(void) { if (mipspmu.irq >= 0) free_irq(mipspmu.irq, &mipspmu); else if (cp0_perfcount_irq < 0) perf_irq = save_perf_irq; } /* * mipsxx/rm9000/loongson2 have different performance counters, they have * specific low-level init routines. */ static void reset_counters(void *arg); static int __hw_perf_event_init(struct perf_event *event); static void hw_perf_event_destroy(struct perf_event *event) { if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) { /* * We must not call the destroy function with interrupts * disabled. */ on_each_cpu(reset_counters, (void *)(long)mipspmu.num_counters, 1); mipspmu_free_irq(); mutex_unlock(&pmu_reserve_mutex); } } static int mipspmu_event_init(struct perf_event *event) { int err = 0; /* does not support taken branch sampling */ if (has_branch_stack(event)) return -EOPNOTSUPP; switch (event->attr.type) { case PERF_TYPE_RAW: case PERF_TYPE_HARDWARE: case PERF_TYPE_HW_CACHE: break; default: return -ENOENT; } if (event->cpu >= 0 && !cpu_online(event->cpu)) return -ENODEV; if (!atomic_inc_not_zero(&active_events)) { mutex_lock(&pmu_reserve_mutex); if (atomic_read(&active_events) == 0) err = mipspmu_get_irq(); if (!err) atomic_inc(&active_events); mutex_unlock(&pmu_reserve_mutex); } if (err) return err; return __hw_perf_event_init(event); } static struct pmu pmu = { .pmu_enable = mipspmu_enable, .pmu_disable = mipspmu_disable, .event_init = mipspmu_event_init, .add = mipspmu_add, .del = mipspmu_del, .start = mipspmu_start, .stop = mipspmu_stop, .read = mipspmu_read, }; static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev) { /* * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for * event_id. */ #ifdef CONFIG_MIPS_MT_SMP if (num_possible_cpus() > 1) return ((unsigned int)pev->range << 24) | (pev->cntr_mask & 0xffff00) | (pev->event_id & 0xff); else #endif /* CONFIG_MIPS_MT_SMP */ { if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) return (pev->cntr_mask & 0xfffc00) | (pev->event_id & 0x3ff); else return (pev->cntr_mask & 0xffff00) | (pev->event_id & 0xff); } } static const struct mips_perf_event *mipspmu_map_general_event(int idx) { if ((*mipspmu.general_event_map)[idx].cntr_mask == 0) return ERR_PTR(-EOPNOTSUPP); return &(*mipspmu.general_event_map)[idx]; } static const struct mips_perf_event *mipspmu_map_cache_event(u64 config) { unsigned int cache_type, cache_op, cache_result; const struct mips_perf_event *pev; cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return ERR_PTR(-EINVAL); cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return ERR_PTR(-EINVAL); cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return ERR_PTR(-EINVAL); pev = &((*mipspmu.cache_event_map) [cache_type] [cache_op] [cache_result]); if (pev->cntr_mask == 0) return ERR_PTR(-EOPNOTSUPP); return pev; } static int validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct cpu_hw_events fake_cpuc; memset(&fake_cpuc, 0, sizeof(fake_cpuc)); if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0) return -EINVAL; for_each_sibling_event(sibling, leader) { if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0) return -EINVAL; } if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0) return -EINVAL; return 0; } /* This is needed by specific irq handlers in perf_event_*.c */ static void handle_associated_event(struct cpu_hw_events *cpuc, int idx, struct perf_sample_data *data, struct pt_regs *regs) { struct perf_event *event = cpuc->events[idx]; struct hw_perf_event *hwc = &event->hw; mipspmu_event_update(event, hwc, idx); data->period = event->hw.last_period; if (!mipspmu_event_set_period(event, hwc, idx)) return; if (perf_event_overflow(event, data, regs)) mipsxx_pmu_disable_event(idx); } static int __n_counters(void) { if (!cpu_has_perf) return 0; if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M)) return 1; if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M)) return 2; if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M)) return 3; return 4; } static int n_counters(void) { int counters; switch (current_cpu_type()) { case CPU_R10000: counters = 2; break; case CPU_R12000: case CPU_R14000: case CPU_R16000: counters = 4; break; default: counters = __n_counters(); } return counters; } static void loongson3_reset_counters(void *arg) { int counters = (int)(long)arg; switch (counters) { case 4: mipsxx_pmu_write_control(3, 0); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 127<<5); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 191<<5); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 255<<5); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 319<<5); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 383<<5); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 575<<5); mipspmu.write_counter(3, 0); fallthrough; case 3: mipsxx_pmu_write_control(2, 0); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 127<<5); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 191<<5); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 255<<5); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 319<<5); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 383<<5); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 575<<5); mipspmu.write_counter(2, 0); fallthrough; case 2: mipsxx_pmu_write_control(1, 0); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 127<<5); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 191<<5); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 255<<5); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 319<<5); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 383<<5); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 575<<5); mipspmu.write_counter(1, 0); fallthrough; case 1: mipsxx_pmu_write_control(0, 0); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 127<<5); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 191<<5); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 255<<5); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 319<<5); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 383<<5); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 575<<5); mipspmu.write_counter(0, 0); break; } } static void reset_counters(void *arg) { int counters = (int)(long)arg; if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) { loongson3_reset_counters(arg); return; } switch (counters) { case 4: mipsxx_pmu_write_control(3, 0); mipspmu.write_counter(3, 0); fallthrough; case 3: mipsxx_pmu_write_control(2, 0); mipspmu.write_counter(2, 0); fallthrough; case 2: mipsxx_pmu_write_control(1, 0); mipspmu.write_counter(1, 0); fallthrough; case 1: mipsxx_pmu_write_control(0, 0); mipspmu.write_counter(0, 0); break; } } /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */ static const struct mips_perf_event mipsxxcore_event_map [PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, }; /* 74K/proAptiv core has different branch event code. */ static const struct mips_perf_event mipsxxcore_event_map2 [PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T }, }; static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD }, /* These only count dcache, not icache */ [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD }, }; static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD }, }; static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL }, }; static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL }, [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL }, }; static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL }, [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL }, [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL }, }; static const struct mips_perf_event bmips5000_event_map [PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, }; /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */ static const struct mips_perf_event mipsxxcore_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T }, /* * Note that MIPS has only "hit" events countable for * the prefetch operation. */ }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, }, }, }; /* 74K/proAptiv core has completely different cache event map. */ static const struct mips_perf_event mipsxxcore_cache_map2 [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T }, /* * Note that MIPS has only "hit" events countable for * the prefetch operation. */ }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P }, }, }, /* * 74K core does not have specific DTLB events. proAptiv core has * "speculative" DTLB events which are numbered 0x63 (even/odd) and * not included here. One can use raw events if really needed. */ [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, }, }, }; static const struct mips_perf_event i6x00_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD }, }, }, [C(DTLB)] = { /* Can't distinguish read & write */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD }, }, }, [C(BPU)] = { /* Conditional branches / mispredicted */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD }, }, }, }; static const struct mips_perf_event loongson3_cache_map1 [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x04, CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x04, CNTR_ODD }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x04, CNTR_EVEN }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x04, CNTR_EVEN }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x09, CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x09, CNTR_ODD }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x0c, CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x0c, CNTR_ODD }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN }, [C(RESULT_MISS)] = { 0x01, CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN }, [C(RESULT_MISS)] = { 0x01, CNTR_ODD }, }, }, }; static const struct mips_perf_event loongson3_cache_map2 [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x156, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x155, CNTR_ALL }, [C(RESULT_MISS)] = { 0x153, CNTR_ALL }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x18, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x18, CNTR_ALL }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x1b6, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x1b7, CNTR_ALL }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0x1bf, CNTR_ALL }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x92, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x92, CNTR_ALL }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x1a, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x1a, CNTR_ALL }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x94, CNTR_ALL }, [C(RESULT_MISS)] = { 0x9c, CNTR_ALL }, }, }, }; static const struct mips_perf_event loongson3_cache_map3 [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x1e, CNTR_ALL }, [C(RESULT_MISS)] = { 0x1f, CNTR_ALL }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0xaa, CNTR_ALL }, [C(RESULT_MISS)] = { 0xa9, CNTR_ALL }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x1c, CNTR_ALL }, [C(RESULT_MISS)] = { 0x1d, CNTR_ALL }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x2e, CNTR_ALL }, [C(RESULT_MISS)] = { 0x2f, CNTR_ALL }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x14, CNTR_ALL }, [C(RESULT_MISS)] = { 0x1b, CNTR_ALL }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x1a, CNTR_ALL }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x02, CNTR_ALL }, [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, }, }, }; /* BMIPS5000 */ static const struct mips_perf_event bmips5000_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 12, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 12, CNTR_ODD, T }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 10, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 10, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T }, /* * Note that MIPS has only "hit" events countable for * the prefetch operation. */ }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P }, [C(RESULT_MISS)] = { 28, CNTR_ODD, P }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P }, [C(RESULT_MISS)] = { 28, CNTR_ODD, P }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, }, }, }; static const struct mips_perf_event octeon_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL }, [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL }, }, }, [C(DTLB)] = { /* * Only general DTLB misses are counted use the same event for * read and write. */ [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x35, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x35, CNTR_ALL }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, }, }, }; static int __hw_perf_event_init(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; struct hw_perf_event *hwc = &event->hw; const struct mips_perf_event *pev; int err; /* Returning MIPS event descriptor for generic perf event. */ if (PERF_TYPE_HARDWARE == event->attr.type) { if (event->attr.config >= PERF_COUNT_HW_MAX) return -EINVAL; pev = mipspmu_map_general_event(event->attr.config); } else if (PERF_TYPE_HW_CACHE == event->attr.type) { pev = mipspmu_map_cache_event(event->attr.config); } else if (PERF_TYPE_RAW == event->attr.type) { /* We are working on the global raw event. */ mutex_lock(&raw_event_mutex); pev = mipspmu.map_raw_event(event->attr.config); } else { /* The event type is not (yet) supported. */ return -EOPNOTSUPP; } if (IS_ERR(pev)) { if (PERF_TYPE_RAW == event->attr.type) mutex_unlock(&raw_event_mutex); return PTR_ERR(pev); } /* * We allow max flexibility on how each individual counter shared * by the single CPU operates (the mode exclusion and the range). */ hwc->config_base = MIPS_PERFCTRL_IE; hwc->event_base = mipspmu_perf_event_encode(pev); if (PERF_TYPE_RAW == event->attr.type) mutex_unlock(&raw_event_mutex); if (!attr->exclude_user) hwc->config_base |= MIPS_PERFCTRL_U; if (!attr->exclude_kernel) { hwc->config_base |= MIPS_PERFCTRL_K; /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */ hwc->config_base |= MIPS_PERFCTRL_EXL; } if (!attr->exclude_hv) hwc->config_base |= MIPS_PERFCTRL_S; hwc->config_base &= M_PERFCTL_CONFIG_MASK; /* * The event can belong to another cpu. We do not assign a local * counter for it for now. */ hwc->idx = -1; hwc->config = 0; if (!hwc->sample_period) { hwc->sample_period = mipspmu.max_period; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } err = 0; if (event->group_leader != event) err = validate_group(event); event->destroy = hw_perf_event_destroy; if (err) event->destroy(event); return err; } static void pause_local_counters(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int ctr = mipspmu.num_counters; unsigned long flags; local_irq_save(flags); do { ctr--; cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr); mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] & ~M_PERFCTL_COUNT_EVENT_WHENEVER); } while (ctr > 0); local_irq_restore(flags); } static void resume_local_counters(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int ctr = mipspmu.num_counters; do { ctr--; mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]); } while (ctr > 0); } static int mipsxx_pmu_handle_shared_irq(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct perf_sample_data data; unsigned int counters = mipspmu.num_counters; u64 counter; int n, handled = IRQ_NONE; struct pt_regs *regs; if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI)) return handled; /* * First we pause the local counters, so that when we are locked * here, the counters are all paused. When it gets locked due to * perf_disable(), the timer interrupt handler will be delayed. * * See also mipsxx_pmu_start(). */ pause_local_counters(); #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS read_lock(&pmuint_rwlock); #endif regs = get_irq_regs(); perf_sample_data_init(&data, 0, 0); for (n = counters - 1; n >= 0; n--) { if (!test_bit(n, cpuc->used_mask)) continue; counter = mipspmu.read_counter(n); if (!(counter & mipspmu.overflow)) continue; handle_associated_event(cpuc, n, &data, regs); handled = IRQ_HANDLED; } #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS read_unlock(&pmuint_rwlock); #endif resume_local_counters(); /* * Do all the work for the pending perf events. We can do this * in here because the performance counter interrupt is a regular * interrupt, not NMI. */ if (handled == IRQ_HANDLED) irq_work_run(); return handled; } static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev) { return mipsxx_pmu_handle_shared_irq(); } /* 24K */ #define IS_BOTH_COUNTERS_24K_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) /* 34K */ #define IS_BOTH_COUNTERS_34K_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) #ifdef CONFIG_MIPS_MT_SMP #define IS_RANGE_P_34K_EVENT(r, b) \ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \ (r) == 176 || ((b) >= 50 && (b) <= 55) || \ ((b) >= 64 && (b) <= 67)) #define IS_RANGE_V_34K_EVENT(r) ((r) == 47) #endif /* 74K */ #define IS_BOTH_COUNTERS_74K_EVENT(b) \ ((b) == 0 || (b) == 1) /* proAptiv */ #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \ ((b) == 0 || (b) == 1) /* P5600 */ #define IS_BOTH_COUNTERS_P5600_EVENT(b) \ ((b) == 0 || (b) == 1) /* 1004K */ #define IS_BOTH_COUNTERS_1004K_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) #ifdef CONFIG_MIPS_MT_SMP #define IS_RANGE_P_1004K_EVENT(r, b) \ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \ (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \ (r) == 188 || (b) == 61 || (b) == 62 || \ ((b) >= 64 && (b) <= 67)) #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47) #endif /* interAptiv */ #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) #ifdef CONFIG_MIPS_MT_SMP /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */ #define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \ (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \ (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \ ((b) >= 64 && (b) <= 67)) #define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175) #endif /* BMIPS5000 */ #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \ ((b) == 0 || (b) == 1) /* * For most cores the user can use 0-255 raw events, where 0-127 for the events * of even counters, and 128-255 for odd counters. Note that bit 7 is used to * indicate the even/odd bank selector. So, for example, when user wants to take * the Event Num of 15 for odd counters (by referring to the user manual), then * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F) * to be used. * * Some newer cores have even more events, in which case the user can use raw * events 0-511, where 0-255 are for the events of even counters, and 256-511 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector. */ static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config) { /* currently most cores have 7-bit event numbers */ int pmu_type; unsigned int raw_id = config & 0xff; unsigned int base_id = raw_id & 0x7f; switch (current_cpu_type()) { case CPU_24K: if (IS_BOTH_COUNTERS_24K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP /* * This is actually doing nothing. Non-multithreading * CPUs will not check and calculate the range. */ raw_event.range = P; #endif break; case CPU_34K: if (IS_BOTH_COUNTERS_34K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP if (IS_RANGE_P_34K_EVENT(raw_id, base_id)) raw_event.range = P; else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id))) raw_event.range = V; else raw_event.range = T; #endif break; case CPU_74K: case CPU_1074K: if (IS_BOTH_COUNTERS_74K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP raw_event.range = P; #endif break; case CPU_PROAPTIV: if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP raw_event.range = P; #endif break; case CPU_P5600: case CPU_P6600: /* 8-bit event numbers */ raw_id = config & 0x1ff; base_id = raw_id & 0xff; if (IS_BOTH_COUNTERS_P5600_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 255 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP raw_event.range = P; #endif break; case CPU_I6400: case CPU_I6500: /* 8-bit event numbers */ base_id = config & 0xff; raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; break; case CPU_1004K: if (IS_BOTH_COUNTERS_1004K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP if (IS_RANGE_P_1004K_EVENT(raw_id, base_id)) raw_event.range = P; else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id))) raw_event.range = V; else raw_event.range = T; #endif break; case CPU_INTERAPTIV: if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id)) raw_event.range = P; else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id))) raw_event.range = V; else raw_event.range = T; #endif break; case CPU_BMIPS5000: if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; break; case CPU_LOONGSON64: pmu_type = get_loongson3_pmu_type(); switch (pmu_type) { case LOONGSON_PMU_TYPE1: raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; break; case LOONGSON_PMU_TYPE2: base_id = config & 0x3ff; raw_event.cntr_mask = CNTR_ALL; if ((base_id >= 1 && base_id < 28) || (base_id >= 64 && base_id < 90) || (base_id >= 128 && base_id < 164) || (base_id >= 192 && base_id < 200) || (base_id >= 256 && base_id < 275) || (base_id >= 320 && base_id < 361) || (base_id >= 384 && base_id < 574)) break; return ERR_PTR(-EOPNOTSUPP); case LOONGSON_PMU_TYPE3: base_id = raw_id; raw_event.cntr_mask = CNTR_ALL; break; } break; } raw_event.event_id = base_id; return &raw_event; } static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config) { unsigned int base_id = config & 0x7f; unsigned int event_max; raw_event.cntr_mask = CNTR_ALL; raw_event.event_id = base_id; if (current_cpu_type() == CPU_CAVIUM_OCTEON3) event_max = 0x5f; else if (current_cpu_type() == CPU_CAVIUM_OCTEON2) event_max = 0x42; else event_max = 0x3a; if (base_id > event_max) { return ERR_PTR(-EOPNOTSUPP); } switch (base_id) { case 0x00: case 0x0f: case 0x1e: case 0x1f: case 0x2f: case 0x34: case 0x3e ... 0x3f: return ERR_PTR(-EOPNOTSUPP); default: break; } return &raw_event; } static int __init init_hw_perf_events(void) { int counters, irq, pmu_type; pr_info("Performance counters: "); counters = n_counters(); if (counters == 0) { pr_cont("No available PMU.\n"); return -ENODEV; } #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS if (!cpu_has_mipsmt_pertccounters) counters = counters_total_to_per_cpu(counters); #endif if (get_c0_perfcount_int) irq = get_c0_perfcount_int(); else if (cp0_perfcount_irq >= 0) irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq; else irq = -1; mipspmu.map_raw_event = mipsxx_pmu_map_raw_event; switch (current_cpu_type()) { case CPU_24K: mipspmu.name = "mips/24K"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_34K: mipspmu.name = "mips/34K"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_74K: mipspmu.name = "mips/74K"; mipspmu.general_event_map = &mipsxxcore_event_map2; mipspmu.cache_event_map = &mipsxxcore_cache_map2; break; case CPU_PROAPTIV: mipspmu.name = "mips/proAptiv"; mipspmu.general_event_map = &mipsxxcore_event_map2; mipspmu.cache_event_map = &mipsxxcore_cache_map2; break; case CPU_P5600: mipspmu.name = "mips/P5600"; mipspmu.general_event_map = &mipsxxcore_event_map2; mipspmu.cache_event_map = &mipsxxcore_cache_map2; break; case CPU_P6600: mipspmu.name = "mips/P6600"; mipspmu.general_event_map = &mipsxxcore_event_map2; mipspmu.cache_event_map = &mipsxxcore_cache_map2; break; case CPU_I6400: mipspmu.name = "mips/I6400"; mipspmu.general_event_map = &i6x00_event_map; mipspmu.cache_event_map = &i6x00_cache_map; break; case CPU_I6500: mipspmu.name = "mips/I6500"; mipspmu.general_event_map = &i6x00_event_map; mipspmu.cache_event_map = &i6x00_cache_map; break; case CPU_1004K: mipspmu.name = "mips/1004K"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_1074K: mipspmu.name = "mips/1074K"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_INTERAPTIV: mipspmu.name = "mips/interAptiv"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_LOONGSON32: mipspmu.name = "mips/loongson1"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_LOONGSON64: mipspmu.name = "mips/loongson3"; pmu_type = get_loongson3_pmu_type(); switch (pmu_type) { case LOONGSON_PMU_TYPE1: counters = 2; mipspmu.general_event_map = &loongson3_event_map1; mipspmu.cache_event_map = &loongson3_cache_map1; break; case LOONGSON_PMU_TYPE2: counters = 4; mipspmu.general_event_map = &loongson3_event_map2; mipspmu.cache_event_map = &loongson3_cache_map2; break; case LOONGSON_PMU_TYPE3: counters = 4; mipspmu.general_event_map = &loongson3_event_map3; mipspmu.cache_event_map = &loongson3_cache_map3; break; } break; case CPU_CAVIUM_OCTEON: case CPU_CAVIUM_OCTEON_PLUS: case CPU_CAVIUM_OCTEON2: case CPU_CAVIUM_OCTEON3: mipspmu.name = "octeon"; mipspmu.general_event_map = &octeon_event_map; mipspmu.cache_event_map = &octeon_cache_map; mipspmu.map_raw_event = octeon_pmu_map_raw_event; break; case CPU_BMIPS5000: mipspmu.name = "BMIPS5000"; mipspmu.general_event_map = &bmips5000_event_map; mipspmu.cache_event_map = &bmips5000_cache_map; break; default: pr_cont("Either hardware does not support performance " "counters, or not yet implemented.\n"); return -ENODEV; } mipspmu.num_counters = counters; mipspmu.irq = irq; if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) { if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) { counter_bits = 48; mipspmu.max_period = (1ULL << 47) - 1; mipspmu.valid_count = (1ULL << 47) - 1; mipspmu.overflow = 1ULL << 47; } else { counter_bits = 64; mipspmu.max_period = (1ULL << 63) - 1; mipspmu.valid_count = (1ULL << 63) - 1; mipspmu.overflow = 1ULL << 63; } mipspmu.read_counter = mipsxx_pmu_read_counter_64; mipspmu.write_counter = mipsxx_pmu_write_counter_64; } else { counter_bits = 32; mipspmu.max_period = (1ULL << 31) - 1; mipspmu.valid_count = (1ULL << 31) - 1; mipspmu.overflow = 1ULL << 31; mipspmu.read_counter = mipsxx_pmu_read_counter; mipspmu.write_counter = mipsxx_pmu_write_counter; } on_each_cpu(reset_counters, (void *)(long)counters, 1); pr_cont("%s PMU enabled, %d %d-bit counters available to each " "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq, irq < 0 ? " (share with timer interrupt)" : ""); perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); return 0; } early_initcall(init_hw_perf_events);
linux-master
arch/mips/kernel/perf_event_mipsxx.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Support for Kernel relocation at boot time * * Copyright (C) 2015, Imagination Technologies Ltd. * Authors: Matt Redfearn ([email protected]) */ #include <asm/bootinfo.h> #include <asm/cacheflush.h> #include <asm/fw/fw.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/timex.h> #include <linux/elf.h> #include <linux/kernel.h> #include <linux/libfdt.h> #include <linux/of_fdt.h> #include <linux/panic_notifier.h> #include <linux/sched/task.h> #include <linux/start_kernel.h> #include <linux/string.h> #include <linux/printk.h> #define RELOCATED(x) ((void *)((long)x + offset)) extern u32 _relocation_start[]; /* End kernel image / start relocation table */ extern u32 _relocation_end[]; /* End relocation table */ extern long __start___ex_table; /* Start exception table */ extern long __stop___ex_table; /* End exception table */ extern void __weak plat_fdt_relocated(void *new_location); /* * This function may be defined for a platform to perform any post-relocation * fixup necessary. * Return non-zero to abort relocation */ int __weak plat_post_relocation(long offset) { return 0; } static inline u32 __init get_synci_step(void) { u32 res; __asm__("rdhwr %0, $1" : "=r" (res)); return res; } static void __init sync_icache(void *kbase, unsigned long kernel_length) { void *kend = kbase + kernel_length; u32 step = get_synci_step(); do { __asm__ __volatile__( "synci 0(%0)" : /* no output */ : "r" (kbase)); kbase += step; } while (step && kbase < kend); /* Completion barrier */ __sync(); } static void __init apply_r_mips_64_rel(u32 *loc_new, long offset) { *(u64 *)loc_new += offset; } static void __init apply_r_mips_32_rel(u32 *loc_new, long offset) { *loc_new += offset; } static int __init apply_r_mips_26_rel(u32 *loc_orig, u32 *loc_new, long offset) { unsigned long target_addr = (*loc_orig) & 0x03ffffff; if (offset % 4) { pr_err("Dangerous R_MIPS_26 REL relocation\n"); return -ENOEXEC; } /* Original target address */ target_addr <<= 2; target_addr += (unsigned long)loc_orig & 0xf0000000; /* Get the new target address */ target_addr += offset; if ((target_addr & 0xf0000000) != ((unsigned long)loc_new & 0xf0000000)) { pr_err("R_MIPS_26 REL relocation overflow\n"); return -ENOEXEC; } target_addr -= (unsigned long)loc_new & 0xf0000000; target_addr >>= 2; *loc_new = (*loc_new & ~0x03ffffff) | (target_addr & 0x03ffffff); return 0; } static void __init apply_r_mips_hi16_rel(u32 *loc_orig, u32 *loc_new, long offset) { unsigned long insn = *loc_orig; unsigned long target = (insn & 0xffff) << 16; /* high 16bits of target */ target += offset; *loc_new = (insn & ~0xffff) | ((target >> 16) & 0xffff); } static int __init reloc_handler(u32 type, u32 *loc_orig, u32 *loc_new, long offset) { switch (type) { case R_MIPS_64: apply_r_mips_64_rel(loc_new, offset); break; case R_MIPS_32: apply_r_mips_32_rel(loc_new, offset); break; case R_MIPS_26: return apply_r_mips_26_rel(loc_orig, loc_new, offset); case R_MIPS_HI16: apply_r_mips_hi16_rel(loc_orig, loc_new, offset); break; default: pr_err("Unhandled relocation type %d at 0x%pK\n", type, loc_orig); return -ENOEXEC; } return 0; } static int __init do_relocations(void *kbase_old, void *kbase_new, long offset) { u32 *r; u32 *loc_orig; u32 *loc_new; int type; int res; for (r = _relocation_start; r < _relocation_end; r++) { /* Sentinel for last relocation */ if (*r == 0) break; type = (*r >> 24) & 0xff; loc_orig = kbase_old + ((*r & 0x00ffffff) << 2); loc_new = RELOCATED(loc_orig); res = reloc_handler(type, loc_orig, loc_new, offset); if (res) return res; } return 0; } /* * The exception table is filled in by the relocs tool after vmlinux is linked. * It must be relocated separately since there will not be any relocation * information for it filled in by the linker. */ static int __init relocate_exception_table(long offset) { unsigned long *etable_start, *etable_end, *e; etable_start = RELOCATED(&__start___ex_table); etable_end = RELOCATED(&__stop___ex_table); for (e = etable_start; e < etable_end; e++) *e += offset; return 0; } #ifdef CONFIG_RANDOMIZE_BASE static inline __init unsigned long rotate_xor(unsigned long hash, const void *area, size_t size) { const typeof(hash) *ptr = PTR_ALIGN(area, sizeof(hash)); size_t diff, i; diff = (void *)ptr - area; if (unlikely(size < diff + sizeof(hash))) return hash; size = ALIGN_DOWN(size - diff, sizeof(hash)); for (i = 0; i < size / sizeof(hash); i++) { /* Rotate by odd number of bits and XOR. */ hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); hash ^= ptr[i]; } return hash; } static inline __init unsigned long get_random_boot(void) { unsigned long entropy = random_get_entropy(); unsigned long hash = 0; /* Attempt to create a simple but unpredictable starting entropy. */ hash = rotate_xor(hash, linux_banner, strlen(linux_banner)); /* Add in any runtime entropy we can get */ hash = rotate_xor(hash, &entropy, sizeof(entropy)); #if defined(CONFIG_USE_OF) /* Get any additional entropy passed in device tree */ if (initial_boot_params) { int node, len; u64 *prop; node = fdt_path_offset(initial_boot_params, "/chosen"); if (node >= 0) { prop = fdt_getprop_w(initial_boot_params, node, "kaslr-seed", &len); if (prop && (len == sizeof(u64))) hash = rotate_xor(hash, prop, sizeof(*prop)); } } #endif /* CONFIG_USE_OF */ return hash; } static inline __init bool kaslr_disabled(void) { char *str; #if defined(CONFIG_CMDLINE_BOOL) const char *builtin_cmdline = CONFIG_CMDLINE; str = strstr(builtin_cmdline, "nokaslr"); if (str == builtin_cmdline || (str > builtin_cmdline && *(str - 1) == ' ')) return true; #endif str = strstr(arcs_cmdline, "nokaslr"); if (str == arcs_cmdline || (str > arcs_cmdline && *(str - 1) == ' ')) return true; return false; } static inline void __init *determine_relocation_address(void) { /* Choose a new address for the kernel */ unsigned long kernel_length; void *dest = &_text; unsigned long offset; if (kaslr_disabled()) return dest; kernel_length = (long)_end - (long)(&_text); offset = get_random_boot() << 16; offset &= (CONFIG_RANDOMIZE_BASE_MAX_OFFSET - 1); if (offset < kernel_length) offset += ALIGN(kernel_length, 0xffff); return RELOCATED(dest); } #else static inline void __init *determine_relocation_address(void) { /* * Choose a new address for the kernel * For now we'll hard code the destination */ return (void *)0xffffffff81000000; } #endif static inline int __init relocation_addr_valid(void *loc_new) { if ((unsigned long)loc_new & 0x0000ffff) { /* Inappropriately aligned new location */ return 0; } if ((unsigned long)loc_new < (unsigned long)&_end) { /* New location overlaps original kernel */ return 0; } return 1; } static inline void __init update_kaslr_offset(unsigned long *addr, long offset) { unsigned long *new_addr = (unsigned long *)RELOCATED(addr); *new_addr = (unsigned long)offset; } #if defined(CONFIG_USE_OF) void __weak *plat_get_fdt(void) { return NULL; } #endif void *__init relocate_kernel(void) { void *loc_new; unsigned long kernel_length; unsigned long bss_length; long offset = 0; int res = 1; /* Default to original kernel entry point */ void *kernel_entry = start_kernel; void *fdt = NULL; /* Get the command line */ fw_init_cmdline(); #if defined(CONFIG_USE_OF) /* Deal with the device tree */ fdt = plat_get_fdt(); early_init_dt_scan(fdt); if (boot_command_line[0]) { /* Boot command line was passed in device tree */ strscpy(arcs_cmdline, boot_command_line, COMMAND_LINE_SIZE); } #endif /* CONFIG_USE_OF */ kernel_length = (long)(&_relocation_start) - (long)(&_text); bss_length = (long)&__bss_stop - (long)&__bss_start; loc_new = determine_relocation_address(); /* Sanity check relocation address */ if (relocation_addr_valid(loc_new)) offset = (unsigned long)loc_new - (unsigned long)(&_text); /* Reset the command line now so we don't end up with a duplicate */ arcs_cmdline[0] = '\0'; if (offset) { void (*fdt_relocated_)(void *) = NULL; #if defined(CONFIG_USE_OF) unsigned long fdt_phys = virt_to_phys(fdt); /* * If built-in dtb is used then it will have been relocated * during kernel _text relocation. If appended DTB is used * then it will not be relocated, but it should remain * intact in the original location. If dtb is loaded by * the bootloader then it may need to be moved if it crosses * the target memory area */ if (fdt_phys >= virt_to_phys(RELOCATED(&_text)) && fdt_phys <= virt_to_phys(RELOCATED(&_end))) { void *fdt_relocated = RELOCATED(ALIGN((long)&_end, PAGE_SIZE)); memcpy(fdt_relocated, fdt, fdt_totalsize(fdt)); fdt = fdt_relocated; fdt_relocated_ = RELOCATED(&plat_fdt_relocated); } #endif /* CONFIG_USE_OF */ /* Copy the kernel to it's new location */ memcpy(loc_new, &_text, kernel_length); /* Perform relocations on the new kernel */ res = do_relocations(&_text, loc_new, offset); if (res < 0) goto out; /* Sync the caches ready for execution of new kernel */ sync_icache(loc_new, kernel_length); res = relocate_exception_table(offset); if (res < 0) goto out; /* * The original .bss has already been cleared, and * some variables such as command line parameters * stored to it so make a copy in the new location. */ memcpy(RELOCATED(&__bss_start), &__bss_start, bss_length); /* * If fdt was stored outside of the kernel image and * had to be moved then update platform's state data * with the new fdt location */ if (fdt_relocated_) fdt_relocated_(fdt); /* * Last chance for the platform to abort relocation. * This may also be used by the platform to perform any * initialisation required now that the new kernel is * resident in memory and ready to be executed. */ if (plat_post_relocation(offset)) goto out; /* The current thread is now within the relocated image */ __current_thread_info = RELOCATED(&init_thread_union); /* Return the new kernel's entry point */ kernel_entry = RELOCATED(start_kernel); /* Error may occur before, so keep it at last */ update_kaslr_offset(&__kaslr_offset, offset); } out: return kernel_entry; } /* * Show relocation information on panic. */ static void show_kernel_relocation(const char *level) { if (__kaslr_offset > 0) { printk(level); pr_cont("Kernel relocated by 0x%pK\n", (void *)__kaslr_offset); pr_cont(" .text @ 0x%pK\n", _text); pr_cont(" .data @ 0x%pK\n", _sdata); pr_cont(" .bss @ 0x%pK\n", __bss_start); } } static int kernel_location_notifier_fn(struct notifier_block *self, unsigned long v, void *p) { show_kernel_relocation(KERN_EMERG); return NOTIFY_DONE; } static struct notifier_block kernel_location_notifier = { .notifier_call = kernel_location_notifier_fn }; static int __init register_kernel_offset_dumper(void) { atomic_notifier_chain_register(&panic_notifier_list, &kernel_location_notifier); return 0; } __initcall(register_kernel_offset_dumper);
linux-master
arch/mips/kernel/relocate.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2001 Rusty Russell. * Copyright (C) 2003, 2004 Ralf Baechle ([email protected]) * Copyright (C) 2005 Thiemo Seufer */ #undef DEBUG #include <linux/extable.h> #include <linux/moduleloader.h> #include <linux/elf.h> #include <linux/mm.h> #include <linux/numa.h> #include <linux/vmalloc.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/spinlock.h> #include <linux/jump_label.h> extern void jump_label_apply_nops(struct module *mod); struct mips_hi16 { struct mips_hi16 *next; Elf_Addr *addr; Elf_Addr value; }; static LIST_HEAD(dbe_list); static DEFINE_SPINLOCK(dbe_lock); #ifdef MODULE_START void *module_alloc(unsigned long size) { return __vmalloc_node_range(size, 1, MODULE_START, MODULE_END, GFP_KERNEL, PAGE_KERNEL, 0, NUMA_NO_NODE, __builtin_return_address(0)); } #endif static void apply_r_mips_32(u32 *location, u32 base, Elf_Addr v) { *location = base + v; } static int apply_r_mips_26(struct module *me, u32 *location, u32 base, Elf_Addr v) { if (v % 4) { pr_err("module %s: dangerous R_MIPS_26 relocation\n", me->name); return -ENOEXEC; } if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) { pr_err("module %s: relocation overflow\n", me->name); return -ENOEXEC; } *location = (*location & ~0x03ffffff) | ((base + (v >> 2)) & 0x03ffffff); return 0; } static int apply_r_mips_hi16(struct module *me, u32 *location, Elf_Addr v, bool rela) { struct mips_hi16 *n; if (rela) { *location = (*location & 0xffff0000) | ((((long long) v + 0x8000LL) >> 16) & 0xffff); return 0; } /* * We cannot relocate this one now because we don't know the value of * the carry we need to add. Save the information, and let LO16 do the * actual relocation. */ n = kmalloc(sizeof *n, GFP_KERNEL); if (!n) return -ENOMEM; n->addr = (Elf_Addr *)location; n->value = v; n->next = me->arch.r_mips_hi16_list; me->arch.r_mips_hi16_list = n; return 0; } static void free_relocation_chain(struct mips_hi16 *l) { struct mips_hi16 *next; while (l) { next = l->next; kfree(l); l = next; } } static int apply_r_mips_lo16(struct module *me, u32 *location, u32 base, Elf_Addr v, bool rela) { unsigned long insnlo = base; struct mips_hi16 *l; Elf_Addr val, vallo; if (rela) { *location = (*location & 0xffff0000) | (v & 0xffff); return 0; } /* Sign extend the addend we extract from the lo insn. */ vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000; if (me->arch.r_mips_hi16_list != NULL) { l = me->arch.r_mips_hi16_list; while (l != NULL) { struct mips_hi16 *next; unsigned long insn; /* * The value for the HI16 had best be the same. */ if (v != l->value) goto out_danger; /* * Do the HI16 relocation. Note that we actually don't * need to know anything about the LO16 itself, except * where to find the low 16 bits of the addend needed * by the LO16. */ insn = *l->addr; val = ((insn & 0xffff) << 16) + vallo; val += v; /* * Account for the sign extension that will happen in * the low bits. */ val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff; insn = (insn & ~0xffff) | val; *l->addr = insn; next = l->next; kfree(l); l = next; } me->arch.r_mips_hi16_list = NULL; } /* * Ok, we're done with the HI16 relocs. Now deal with the LO16. */ val = v + vallo; insnlo = (insnlo & ~0xffff) | (val & 0xffff); *location = insnlo; return 0; out_danger: free_relocation_chain(l); me->arch.r_mips_hi16_list = NULL; pr_err("module %s: dangerous R_MIPS_LO16 relocation\n", me->name); return -ENOEXEC; } static int apply_r_mips_pc(struct module *me, u32 *location, u32 base, Elf_Addr v, unsigned int bits) { unsigned long mask = GENMASK(bits - 1, 0); unsigned long se_bits; long offset; if (v % 4) { pr_err("module %s: dangerous R_MIPS_PC%u relocation\n", me->name, bits); return -ENOEXEC; } /* retrieve & sign extend implicit addend if any */ offset = base & mask; offset |= (offset & BIT(bits - 1)) ? ~mask : 0; offset += ((long)v - (long)location) >> 2; /* check the sign bit onwards are identical - ie. we didn't overflow */ se_bits = (offset & BIT(bits - 1)) ? ~0ul : 0; if ((offset & ~mask) != (se_bits & ~mask)) { pr_err("module %s: relocation overflow\n", me->name); return -ENOEXEC; } *location = (*location & ~mask) | (offset & mask); return 0; } static int apply_r_mips_pc16(struct module *me, u32 *location, u32 base, Elf_Addr v) { return apply_r_mips_pc(me, location, base, v, 16); } static int apply_r_mips_pc21(struct module *me, u32 *location, u32 base, Elf_Addr v) { return apply_r_mips_pc(me, location, base, v, 21); } static int apply_r_mips_pc26(struct module *me, u32 *location, u32 base, Elf_Addr v) { return apply_r_mips_pc(me, location, base, v, 26); } static int apply_r_mips_64(u32 *location, Elf_Addr v, bool rela) { if (WARN_ON(!rela)) return -EINVAL; *(Elf_Addr *)location = v; return 0; } static int apply_r_mips_higher(u32 *location, Elf_Addr v, bool rela) { if (WARN_ON(!rela)) return -EINVAL; *location = (*location & 0xffff0000) | ((((long long)v + 0x80008000LL) >> 32) & 0xffff); return 0; } static int apply_r_mips_highest(u32 *location, Elf_Addr v, bool rela) { if (WARN_ON(!rela)) return -EINVAL; *location = (*location & 0xffff0000) | ((((long long)v + 0x800080008000LL) >> 48) & 0xffff); return 0; } /** * reloc_handler() - Apply a particular relocation to a module * @type: type of the relocation to apply * @me: the module to apply the reloc to * @location: the address at which the reloc is to be applied * @base: the existing value at location for REL-style; 0 for RELA-style * @v: the value of the reloc, with addend for RELA-style * @rela: indication of is this a RELA (true) or REL (false) relocation * * Each implemented relocation function applies a particular type of * relocation to the module @me. Relocs that may be found in either REL or RELA * variants can be handled by making use of the @base & @v parameters which are * set to values which abstract the difference away from the particular reloc * implementations. * * Return: 0 upon success, else -ERRNO */ static int reloc_handler(u32 type, struct module *me, u32 *location, u32 base, Elf_Addr v, bool rela) { switch (type) { case R_MIPS_NONE: break; case R_MIPS_32: apply_r_mips_32(location, base, v); break; case R_MIPS_26: return apply_r_mips_26(me, location, base, v); case R_MIPS_HI16: return apply_r_mips_hi16(me, location, v, rela); case R_MIPS_LO16: return apply_r_mips_lo16(me, location, base, v, rela); case R_MIPS_PC16: return apply_r_mips_pc16(me, location, base, v); case R_MIPS_PC21_S2: return apply_r_mips_pc21(me, location, base, v); case R_MIPS_PC26_S2: return apply_r_mips_pc26(me, location, base, v); case R_MIPS_64: return apply_r_mips_64(location, v, rela); case R_MIPS_HIGHER: return apply_r_mips_higher(location, v, rela); case R_MIPS_HIGHEST: return apply_r_mips_highest(location, v, rela); default: pr_err("%s: Unknown relocation type %u\n", me->name, type); return -EINVAL; } return 0; } static int __apply_relocate(Elf_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me, bool rela) { union { Elf_Mips_Rel *rel; Elf_Mips_Rela *rela; } r; Elf_Sym *sym; u32 *location, base; unsigned int i, type; Elf_Addr v; int err = 0; size_t reloc_sz; pr_debug("Applying relocate section %u to %u\n", relsec, sechdrs[relsec].sh_info); r.rel = (void *)sechdrs[relsec].sh_addr; reloc_sz = rela ? sizeof(*r.rela) : sizeof(*r.rel); me->arch.r_mips_hi16_list = NULL; for (i = 0; i < sechdrs[relsec].sh_size / reloc_sz; i++) { /* This is where to make the change */ location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr + r.rel->r_offset; /* This is the symbol it is referring to */ sym = (Elf_Sym *)sechdrs[symindex].sh_addr + ELF_MIPS_R_SYM(*r.rel); if (sym->st_value >= -MAX_ERRNO) { /* Ignore unresolved weak symbol */ if (ELF_ST_BIND(sym->st_info) == STB_WEAK) continue; pr_warn("%s: Unknown symbol %s\n", me->name, strtab + sym->st_name); err = -ENOENT; goto out; } type = ELF_MIPS_R_TYPE(*r.rel); if (rela) { v = sym->st_value + r.rela->r_addend; base = 0; r.rela = &r.rela[1]; } else { v = sym->st_value; base = *location; r.rel = &r.rel[1]; } err = reloc_handler(type, me, location, base, v, rela); if (err) goto out; } out: /* * Normally the hi16 list should be deallocated at this point. A * malformed binary however could contain a series of R_MIPS_HI16 * relocations not followed by a R_MIPS_LO16 relocation, or if we hit * an error processing a reloc we might have gotten here before * reaching the R_MIPS_LO16. In either case, free up the list and * return an error. */ if (me->arch.r_mips_hi16_list) { free_relocation_chain(me->arch.r_mips_hi16_list); me->arch.r_mips_hi16_list = NULL; err = err ?: -ENOEXEC; } return err; } int apply_relocate(Elf_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { return __apply_relocate(sechdrs, strtab, symindex, relsec, me, false); } #ifdef CONFIG_MODULES_USE_ELF_RELA int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { return __apply_relocate(sechdrs, strtab, symindex, relsec, me, true); } #endif /* CONFIG_MODULES_USE_ELF_RELA */ /* Given an address, look for it in the module exception tables. */ const struct exception_table_entry *search_module_dbetables(unsigned long addr) { unsigned long flags; const struct exception_table_entry *e = NULL; struct mod_arch_specific *dbe; spin_lock_irqsave(&dbe_lock, flags); list_for_each_entry(dbe, &dbe_list, dbe_list) { e = search_extable(dbe->dbe_start, dbe->dbe_end - dbe->dbe_start, addr); if (e) break; } spin_unlock_irqrestore(&dbe_lock, flags); /* Now, if we found one, we are running inside it now, hence we cannot unload the module, hence no refcnt needed. */ return e; } /* Put in dbe list if necessary. */ int module_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *me) { const Elf_Shdr *s; char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; if (IS_ENABLED(CONFIG_JUMP_LABEL)) jump_label_apply_nops(me); INIT_LIST_HEAD(&me->arch.dbe_list); for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) { if (strcmp("__dbe_table", secstrings + s->sh_name) != 0) continue; me->arch.dbe_start = (void *)s->sh_addr; me->arch.dbe_end = (void *)s->sh_addr + s->sh_size; spin_lock_irq(&dbe_lock); list_add(&me->arch.dbe_list, &dbe_list); spin_unlock_irq(&dbe_lock); } return 0; } void module_arch_cleanup(struct module *mod) { spin_lock_irq(&dbe_lock); list_del(&mod->arch.dbe_list); spin_unlock_irq(&dbe_lock); }
linux-master
arch/mips/kernel/module.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2003 Broadcom Corporation */ #include <linux/cache.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/kernel.h> #include <linux/signal.h> #include <linux/errno.h> #include <linux/wait.h> #include <linux/ptrace.h> #include <linux/unistd.h> #include <linux/compat.h> #include <linux/bitops.h> #include <asm/abi.h> #include <asm/asm.h> #include <asm/cacheflush.h> #include <asm/compat-signal.h> #include <asm/sim.h> #include <linux/uaccess.h> #include <asm/ucontext.h> #include <asm/fpu.h> #include <asm/cpu-features.h> #include "signal-common.h" /* * Including <asm/unistd.h> would give use the 64-bit syscall numbers ... */ #define __NR_N32_restart_syscall 6214 extern int setup_sigcontext(struct pt_regs *, struct sigcontext __user *); extern int restore_sigcontext(struct pt_regs *, struct sigcontext __user *); struct ucontextn32 { u32 uc_flags; s32 uc_link; compat_stack_t uc_stack; struct sigcontext uc_mcontext; compat_sigset_t uc_sigmask; /* mask last for extensibility */ }; struct rt_sigframe_n32 { u32 rs_ass[4]; /* argument save space for o32 */ u32 rs_pad[2]; /* Was: signal trampoline */ struct compat_siginfo rs_info; struct ucontextn32 rs_uc; }; asmlinkage void sysn32_rt_sigreturn(void) { struct rt_sigframe_n32 __user *frame; struct pt_regs *regs; sigset_t set; int sig; regs = current_pt_regs(); frame = (struct rt_sigframe_n32 __user *)regs->regs[29]; if (!access_ok(frame, sizeof(*frame))) goto badframe; if (__copy_conv_sigset_from_user(&set, &frame->rs_uc.uc_sigmask)) goto badframe; set_current_blocked(&set); sig = restore_sigcontext(regs, &frame->rs_uc.uc_mcontext); if (sig < 0) goto badframe; else if (sig) force_sig(sig); if (compat_restore_altstack(&frame->rs_uc.uc_stack)) goto badframe; /* * Don't let your children do this ... */ __asm__ __volatile__( "move\t$29, %0\n\t" "j\tsyscall_exit" : /* no outputs */ : "r" (regs)); /* Unreached */ badframe: force_sig(SIGSEGV); } static int setup_rt_frame_n32(void *sig_return, struct ksignal *ksig, struct pt_regs *regs, sigset_t *set) { struct rt_sigframe_n32 __user *frame; int err = 0; frame = get_sigframe(ksig, regs, sizeof(*frame)); if (!access_ok(frame, sizeof (*frame))) return -EFAULT; /* Create siginfo. */ err |= copy_siginfo_to_user32(&frame->rs_info, &ksig->info); /* Create the ucontext. */ err |= __put_user(0, &frame->rs_uc.uc_flags); err |= __put_user(0, &frame->rs_uc.uc_link); err |= __compat_save_altstack(&frame->rs_uc.uc_stack, regs->regs[29]); err |= setup_sigcontext(regs, &frame->rs_uc.uc_mcontext); err |= __copy_conv_sigset_to_user(&frame->rs_uc.uc_sigmask, set); if (err) return -EFAULT; /* * Arguments to signal handler: * * a0 = signal number * a1 = 0 (should be cause) * a2 = pointer to ucontext * * $25 and c0_epc point to the signal handler, $29 points to * the struct rt_sigframe. */ regs->regs[ 4] = ksig->sig; regs->regs[ 5] = (unsigned long) &frame->rs_info; regs->regs[ 6] = (unsigned long) &frame->rs_uc; regs->regs[29] = (unsigned long) frame; regs->regs[31] = (unsigned long) sig_return; regs->cp0_epc = regs->regs[25] = (unsigned long) ksig->ka.sa.sa_handler; DEBUGP("SIG deliver (%s:%d): sp=0x%p pc=0x%lx ra=0x%lx\n", current->comm, current->pid, frame, regs->cp0_epc, regs->regs[31]); return 0; } struct mips_abi mips_abi_n32 = { .setup_rt_frame = setup_rt_frame_n32, .restart = __NR_N32_restart_syscall, .off_sc_fpregs = offsetof(struct sigcontext, sc_fpregs), .off_sc_fpc_csr = offsetof(struct sigcontext, sc_fpc_csr), .off_sc_used_math = offsetof(struct sigcontext, sc_used_math), .vdso = &vdso_image_n32, };
linux-master
arch/mips/kernel/signal_n32.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 David Daney */ #include <linux/sched.h> #include <asm/processor.h> #include <asm/watch.h> /* * Install the watch registers for the current thread. A maximum of * four registers are installed although the machine may have more. */ void mips_install_watch_registers(struct task_struct *t) { struct mips3264_watch_reg_state *watches = &t->thread.watch.mips3264; unsigned int watchhi = MIPS_WATCHHI_G | /* Trap all ASIDs */ MIPS_WATCHHI_IRW; /* Clear result bits */ switch (current_cpu_data.watch_reg_use_cnt) { default: BUG(); case 4: write_c0_watchlo3(watches->watchlo[3]); write_c0_watchhi3(watchhi | watches->watchhi[3]); fallthrough; case 3: write_c0_watchlo2(watches->watchlo[2]); write_c0_watchhi2(watchhi | watches->watchhi[2]); fallthrough; case 2: write_c0_watchlo1(watches->watchlo[1]); write_c0_watchhi1(watchhi | watches->watchhi[1]); fallthrough; case 1: write_c0_watchlo0(watches->watchlo[0]); write_c0_watchhi0(watchhi | watches->watchhi[0]); } } /* * Read back the watchhi registers so the user space debugger has * access to the I, R, and W bits. A maximum of four registers are * read although the machine may have more. */ void mips_read_watch_registers(void) { struct mips3264_watch_reg_state *watches = &current->thread.watch.mips3264; unsigned int watchhi_mask = MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW; switch (current_cpu_data.watch_reg_use_cnt) { default: BUG(); case 4: watches->watchhi[3] = (read_c0_watchhi3() & watchhi_mask); fallthrough; case 3: watches->watchhi[2] = (read_c0_watchhi2() & watchhi_mask); fallthrough; case 2: watches->watchhi[1] = (read_c0_watchhi1() & watchhi_mask); fallthrough; case 1: watches->watchhi[0] = (read_c0_watchhi0() & watchhi_mask); } if (current_cpu_data.watch_reg_use_cnt == 1 && (watches->watchhi[0] & MIPS_WATCHHI_IRW) == 0) { /* Pathological case of release 1 architecture that * doesn't set the condition bits. We assume that * since we got here, the watch condition was met and * signal that the conditions requested in watchlo * were met. */ watches->watchhi[0] |= (watches->watchlo[0] & MIPS_WATCHHI_IRW); } } /* * Disable all watch registers. Although only four registers are * installed, all are cleared to eliminate the possibility of endless * looping in the watch handler. */ void mips_clear_watch_registers(void) { switch (current_cpu_data.watch_reg_count) { default: BUG(); case 8: write_c0_watchlo7(0); fallthrough; case 7: write_c0_watchlo6(0); fallthrough; case 6: write_c0_watchlo5(0); fallthrough; case 5: write_c0_watchlo4(0); fallthrough; case 4: write_c0_watchlo3(0); fallthrough; case 3: write_c0_watchlo2(0); fallthrough; case 2: write_c0_watchlo1(0); fallthrough; case 1: write_c0_watchlo0(0); } } void mips_probe_watch_registers(struct cpuinfo_mips *c) { unsigned int t; if ((c->options & MIPS_CPU_WATCH) == 0) return; /* * Check which of the I,R and W bits are supported, then * disable the register. */ write_c0_watchlo0(MIPS_WATCHLO_IRW); back_to_back_c0_hazard(); t = read_c0_watchlo0(); write_c0_watchlo0(0); c->watch_reg_masks[0] = t & MIPS_WATCHLO_IRW; /* Write the mask bits and read them back to determine which * can be used. */ c->watch_reg_count = 1; c->watch_reg_use_cnt = 1; t = read_c0_watchhi0(); write_c0_watchhi0(t | MIPS_WATCHHI_MASK); back_to_back_c0_hazard(); t = read_c0_watchhi0(); c->watch_reg_masks[0] |= (t & MIPS_WATCHHI_MASK); if ((t & MIPS_WATCHHI_M) == 0) return; write_c0_watchlo1(MIPS_WATCHLO_IRW); back_to_back_c0_hazard(); t = read_c0_watchlo1(); write_c0_watchlo1(0); c->watch_reg_masks[1] = t & MIPS_WATCHLO_IRW; c->watch_reg_count = 2; c->watch_reg_use_cnt = 2; t = read_c0_watchhi1(); write_c0_watchhi1(t | MIPS_WATCHHI_MASK); back_to_back_c0_hazard(); t = read_c0_watchhi1(); c->watch_reg_masks[1] |= (t & MIPS_WATCHHI_MASK); if ((t & MIPS_WATCHHI_M) == 0) return; write_c0_watchlo2(MIPS_WATCHLO_IRW); back_to_back_c0_hazard(); t = read_c0_watchlo2(); write_c0_watchlo2(0); c->watch_reg_masks[2] = t & MIPS_WATCHLO_IRW; c->watch_reg_count = 3; c->watch_reg_use_cnt = 3; t = read_c0_watchhi2(); write_c0_watchhi2(t | MIPS_WATCHHI_MASK); back_to_back_c0_hazard(); t = read_c0_watchhi2(); c->watch_reg_masks[2] |= (t & MIPS_WATCHHI_MASK); if ((t & MIPS_WATCHHI_M) == 0) return; write_c0_watchlo3(MIPS_WATCHLO_IRW); back_to_back_c0_hazard(); t = read_c0_watchlo3(); write_c0_watchlo3(0); c->watch_reg_masks[3] = t & MIPS_WATCHLO_IRW; c->watch_reg_count = 4; c->watch_reg_use_cnt = 4; t = read_c0_watchhi3(); write_c0_watchhi3(t | MIPS_WATCHHI_MASK); back_to_back_c0_hazard(); t = read_c0_watchhi3(); c->watch_reg_masks[3] |= (t & MIPS_WATCHHI_MASK); if ((t & MIPS_WATCHHI_M) == 0) return; /* We use at most 4, but probe and report up to 8. */ c->watch_reg_count = 5; t = read_c0_watchhi4(); if ((t & MIPS_WATCHHI_M) == 0) return; c->watch_reg_count = 6; t = read_c0_watchhi5(); if ((t & MIPS_WATCHHI_M) == 0) return; c->watch_reg_count = 7; t = read_c0_watchhi6(); if ((t & MIPS_WATCHHI_M) == 0) return; c->watch_reg_count = 8; }
linux-master
arch/mips/kernel/watch.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. * Copyright (C) 2013 Imagination Technologies Ltd. */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/export.h> #include <asm/mipsregs.h> #include <asm/mipsmtregs.h> #include <asm/mips_mt.h> #include <asm/vpe.h> static int major; /* The number of TCs and VPEs physically available on the core */ static int hw_tcs, hw_vpes; /* We are prepared so configure and start the VPE... */ int vpe_run(struct vpe *v) { unsigned long flags, val, dmt_flag; struct vpe_notifications *notifier; unsigned int vpeflags; struct tc *t; /* check we are the Master VPE */ local_irq_save(flags); val = read_c0_vpeconf0(); if (!(val & VPECONF0_MVP)) { pr_warn("VPE loader: only Master VPE's are able to config MT\n"); local_irq_restore(flags); return -1; } dmt_flag = dmt(); vpeflags = dvpe(); if (list_empty(&v->tc)) { evpe(vpeflags); emt(dmt_flag); local_irq_restore(flags); pr_warn("VPE loader: No TC's associated with VPE %d\n", v->minor); return -ENOEXEC; } t = list_first_entry(&v->tc, struct tc, tc); /* Put MVPE's into 'configuration state' */ set_c0_mvpcontrol(MVPCONTROL_VPC); settc(t->index); /* should check it is halted, and not activated */ if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) { evpe(vpeflags); emt(dmt_flag); local_irq_restore(flags); pr_warn("VPE loader: TC %d is already active!\n", t->index); return -ENOEXEC; } /* * Write the address we want it to start running from in the TCPC * register. */ write_tc_c0_tcrestart((unsigned long)v->__start); write_tc_c0_tccontext((unsigned long)0); /* * Mark the TC as activated, not interrupt exempt and not dynamically * allocatable */ val = read_tc_c0_tcstatus(); val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A; write_tc_c0_tcstatus(val); write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H); /* * We don't pass the memsize here, so VPE programs need to be * compiled with DFLT_STACK_SIZE and DFLT_HEAP_SIZE defined. */ mttgpr(7, 0); mttgpr(6, v->ntcs); /* set up VPE1 */ /* * bind the TC to VPE 1 as late as possible so we only have the final * VPE registers to set up, and so an EJTAG probe can trigger on it */ write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1); write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA)); back_to_back_c0_hazard(); /* Set up the XTC bit in vpeconf0 to point at our tc */ write_vpe_c0_vpeconf0((read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC)) | (t->index << VPECONF0_XTC_SHIFT)); back_to_back_c0_hazard(); /* enable this VPE */ write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA); /* clear out any left overs from a previous program */ write_vpe_c0_status(0); write_vpe_c0_cause(0); /* take system out of configuration state */ clear_c0_mvpcontrol(MVPCONTROL_VPC); /* * SMVP kernels manage VPE enable independently, but uniprocessor * kernels need to turn it on, even if that wasn't the pre-dvpe() state. */ #ifdef CONFIG_SMP evpe(vpeflags); #else evpe(EVPE_ENABLE); #endif emt(dmt_flag); local_irq_restore(flags); list_for_each_entry(notifier, &v->notify, list) notifier->start(VPE_MODULE_MINOR); return 0; } void cleanup_tc(struct tc *tc) { unsigned long flags; unsigned int mtflags, vpflags; int tmp; local_irq_save(flags); mtflags = dmt(); vpflags = dvpe(); /* Put MVPE's into 'configuration state' */ set_c0_mvpcontrol(MVPCONTROL_VPC); settc(tc->index); tmp = read_tc_c0_tcstatus(); /* mark not allocated and not dynamically allocatable */ tmp &= ~(TCSTATUS_A | TCSTATUS_DA); tmp |= TCSTATUS_IXMT; /* interrupt exempt */ write_tc_c0_tcstatus(tmp); write_tc_c0_tchalt(TCHALT_H); mips_ihb(); clear_c0_mvpcontrol(MVPCONTROL_VPC); evpe(vpflags); emt(mtflags); local_irq_restore(flags); } /* module wrapper entry points */ /* give me a vpe */ void *vpe_alloc(void) { int i; struct vpe *v; /* find a vpe */ for (i = 1; i < MAX_VPES; i++) { v = get_vpe(i); if (v != NULL) { v->state = VPE_STATE_INUSE; return v; } } return NULL; } EXPORT_SYMBOL(vpe_alloc); /* start running from here */ int vpe_start(void *vpe, unsigned long start) { struct vpe *v = vpe; v->__start = start; return vpe_run(v); } EXPORT_SYMBOL(vpe_start); /* halt it for now */ int vpe_stop(void *vpe) { struct vpe *v = vpe; struct tc *t; unsigned int evpe_flags; evpe_flags = dvpe(); t = list_entry(v->tc.next, struct tc, tc); if (t != NULL) { settc(t->index); write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA); } evpe(evpe_flags); return 0; } EXPORT_SYMBOL(vpe_stop); /* I've done with it thank you */ int vpe_free(void *vpe) { struct vpe *v = vpe; struct tc *t; unsigned int evpe_flags; t = list_entry(v->tc.next, struct tc, tc); if (t == NULL) return -ENOEXEC; evpe_flags = dvpe(); /* Put MVPE's into 'configuration state' */ set_c0_mvpcontrol(MVPCONTROL_VPC); settc(t->index); write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA); /* halt the TC */ write_tc_c0_tchalt(TCHALT_H); mips_ihb(); /* mark the TC unallocated */ write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A); v->state = VPE_STATE_UNUSED; clear_c0_mvpcontrol(MVPCONTROL_VPC); evpe(evpe_flags); return 0; } EXPORT_SYMBOL(vpe_free); static ssize_t store_kill(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct vpe *vpe = get_vpe(aprp_cpu_index()); struct vpe_notifications *notifier; list_for_each_entry(notifier, &vpe->notify, list) notifier->stop(aprp_cpu_index()); release_progmem(vpe->load_addr); cleanup_tc(get_tc(aprp_cpu_index())); vpe_stop(vpe); vpe_free(vpe); return len; } static DEVICE_ATTR(kill, S_IWUSR, NULL, store_kill); static ssize_t ntcs_show(struct device *cd, struct device_attribute *attr, char *buf) { struct vpe *vpe = get_vpe(aprp_cpu_index()); return sprintf(buf, "%d\n", vpe->ntcs); } static ssize_t ntcs_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct vpe *vpe = get_vpe(aprp_cpu_index()); unsigned long new; int ret; ret = kstrtoul(buf, 0, &new); if (ret < 0) return ret; if (new == 0 || new > (hw_tcs - aprp_cpu_index())) return -EINVAL; vpe->ntcs = new; return len; } static DEVICE_ATTR_RW(ntcs); static struct attribute *vpe_attrs[] = { &dev_attr_kill.attr, &dev_attr_ntcs.attr, NULL, }; ATTRIBUTE_GROUPS(vpe); static void vpe_device_release(struct device *cd) { } static struct class vpe_class = { .name = "vpe", .dev_release = vpe_device_release, .dev_groups = vpe_groups, }; static struct device vpe_device; int __init vpe_module_init(void) { unsigned int mtflags, vpflags; unsigned long flags, val; struct vpe *v = NULL; struct tc *t; int tc, err; if (!cpu_has_mipsmt) { pr_warn("VPE loader: not a MIPS MT capable processor\n"); return -ENODEV; } if (vpelimit == 0) { pr_warn("No VPEs reserved for AP/SP, not initialize VPE loader\n" "Pass maxvpes=<n> argument as kernel argument\n"); return -ENODEV; } if (aprp_cpu_index() == 0) { pr_warn("No TCs reserved for AP/SP, not initialize VPE loader\n" "Pass maxtcs=<n> argument as kernel argument\n"); return -ENODEV; } major = register_chrdev(0, VPE_MODULE_NAME, &vpe_fops); if (major < 0) { pr_warn("VPE loader: unable to register character device\n"); return major; } err = class_register(&vpe_class); if (err) { pr_err("vpe_class registration failed\n"); goto out_chrdev; } device_initialize(&vpe_device); vpe_device.class = &vpe_class; vpe_device.parent = NULL; dev_set_name(&vpe_device, "vpe1"); vpe_device.devt = MKDEV(major, VPE_MODULE_MINOR); err = device_add(&vpe_device); if (err) { pr_err("Adding vpe_device failed\n"); goto out_class; } local_irq_save(flags); mtflags = dmt(); vpflags = dvpe(); /* Put MVPE's into 'configuration state' */ set_c0_mvpcontrol(MVPCONTROL_VPC); val = read_c0_mvpconf0(); hw_tcs = (val & MVPCONF0_PTC) + 1; hw_vpes = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1; for (tc = aprp_cpu_index(); tc < hw_tcs; tc++) { /* * Must re-enable multithreading temporarily or in case we * reschedule send IPIs or similar we might hang. */ clear_c0_mvpcontrol(MVPCONTROL_VPC); evpe(vpflags); emt(mtflags); local_irq_restore(flags); t = alloc_tc(tc); if (!t) { err = -ENOMEM; goto out_dev; } local_irq_save(flags); mtflags = dmt(); vpflags = dvpe(); set_c0_mvpcontrol(MVPCONTROL_VPC); /* VPE's */ if (tc < hw_tcs) { settc(tc); v = alloc_vpe(tc); if (v == NULL) { pr_warn("VPE: unable to allocate VPE\n"); goto out_reenable; } v->ntcs = hw_tcs - aprp_cpu_index(); /* add the tc to the list of this vpe's tc's. */ list_add(&t->tc, &v->tc); /* deactivate all but vpe0 */ if (tc >= aprp_cpu_index()) { unsigned long tmp = read_vpe_c0_vpeconf0(); tmp &= ~VPECONF0_VPA; /* master VPE */ tmp |= VPECONF0_MVP; write_vpe_c0_vpeconf0(tmp); } /* disable multi-threading with TC's */ write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE); if (tc >= vpelimit) { /* * Set config to be the same as vpe0, * particularly kseg0 coherency alg */ write_vpe_c0_config(read_c0_config()); } } /* TC's */ t->pvpe = v; /* set the parent vpe */ if (tc >= aprp_cpu_index()) { unsigned long tmp; settc(tc); /* * A TC that is bound to any other VPE gets bound to * VPE0, ideally I'd like to make it homeless but it * doesn't appear to let me bind a TC to a non-existent * VPE. Which is perfectly reasonable. * * The (un)bound state is visible to an EJTAG probe so * may notify GDB... */ tmp = read_tc_c0_tcbind(); if (tmp & TCBIND_CURVPE) { /* tc is bound >vpe0 */ write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE); t->pvpe = get_vpe(0); /* set the parent vpe */ } /* halt the TC */ write_tc_c0_tchalt(TCHALT_H); mips_ihb(); tmp = read_tc_c0_tcstatus(); /* mark not activated and not dynamically allocatable */ tmp &= ~(TCSTATUS_A | TCSTATUS_DA); tmp |= TCSTATUS_IXMT; /* interrupt exempt */ write_tc_c0_tcstatus(tmp); } } out_reenable: /* release config state */ clear_c0_mvpcontrol(MVPCONTROL_VPC); evpe(vpflags); emt(mtflags); local_irq_restore(flags); return 0; out_dev: device_del(&vpe_device); out_class: put_device(&vpe_device); class_unregister(&vpe_class); out_chrdev: unregister_chrdev(major, VPE_MODULE_NAME); return err; } void __exit vpe_module_exit(void) { struct vpe *v, *n; device_unregister(&vpe_device); class_unregister(&vpe_class); unregister_chrdev(major, VPE_MODULE_NAME); /* No locking needed here */ list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) { if (v->state != VPE_STATE_UNUSED) release_vpe(v); } }
linux-master
arch/mips/kernel/vpe-mt.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Processor capabilities determination functions. * * Copyright (C) xxxx the Anonymous * Copyright (C) 1994 - 2006 Ralf Baechle * Copyright (C) 2003, 2004 Maciej W. Rozycki * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/ptrace.h> #include <linux/smp.h> #include <linux/stddef.h> #include <linux/export.h> #include <asm/bugs.h> #include <asm/cpu.h> #include <asm/cpu-features.h> #include <asm/cpu-type.h> #include <asm/fpu.h> #include <asm/mipsregs.h> #include <asm/elf.h> #include <asm/traps.h> #include "fpu-probe.h" /* Hardware capabilities */ unsigned int elf_hwcap __read_mostly; EXPORT_SYMBOL_GPL(elf_hwcap); void __init check_bugs32(void) { } /* * Probe whether cpu has config register by trying to play with * alternate cache bit and see whether it matters. * It's used by cpu_probe to distinguish between R3000A and R3081. */ static inline int cpu_has_confreg(void) { #ifdef CONFIG_CPU_R3000 extern unsigned long r3k_cache_size(unsigned long); unsigned long size1, size2; unsigned long cfg = read_c0_conf(); size1 = r3k_cache_size(ST0_ISC); write_c0_conf(cfg ^ R30XX_CONF_AC); size2 = r3k_cache_size(ST0_ISC); write_c0_conf(cfg); return size1 != size2; #else return 0; #endif } static inline void set_elf_platform(int cpu, const char *plat) { if (cpu == 0) __elf_platform = plat; } const char *__cpu_name[NR_CPUS]; const char *__elf_platform; const char *__elf_base_platform; void cpu_probe(void) { struct cpuinfo_mips *c = &current_cpu_data; unsigned int cpu = smp_processor_id(); /* * Set a default elf platform, cpu probe may later * overwrite it with a more precise value */ set_elf_platform(cpu, "mips"); c->processor_id = PRID_IMP_UNKNOWN; c->fpu_id = FPIR_IMP_NONE; c->cputype = CPU_UNKNOWN; c->writecombine = _CACHE_UNCACHED; c->fpu_csr31 = FPU_CSR_RN; c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008 | FPU_CSR_CONDX | FPU_CSR_FS; c->srsets = 1; c->processor_id = read_c0_prid(); switch (c->processor_id & (PRID_COMP_MASK | PRID_IMP_MASK)) { case PRID_COMP_LEGACY | PRID_IMP_R2000: c->cputype = CPU_R2000; __cpu_name[cpu] = "R2000"; c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE | MIPS_CPU_NOFPUEX; if (__cpu_has_fpu()) c->options |= MIPS_CPU_FPU; c->tlbsize = 64; break; case PRID_COMP_LEGACY | PRID_IMP_R3000: if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) { if (cpu_has_confreg()) { c->cputype = CPU_R3081E; __cpu_name[cpu] = "R3081"; } else { c->cputype = CPU_R3000A; __cpu_name[cpu] = "R3000A"; } } else { c->cputype = CPU_R3000; __cpu_name[cpu] = "R3000"; } c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE | MIPS_CPU_NOFPUEX; if (__cpu_has_fpu()) c->options |= MIPS_CPU_FPU; c->tlbsize = 64; break; } BUG_ON(!__cpu_name[cpu]); BUG_ON(c->cputype == CPU_UNKNOWN); /* * Platform code can force the cpu type to optimize code * generation. In that case be sure the cpu type is correctly * manually setup otherwise it could trigger some nasty bugs. */ BUG_ON(current_cpu_type() != c->cputype); if (mips_fpu_disabled) c->options &= ~MIPS_CPU_FPU; if (c->options & MIPS_CPU_FPU) cpu_set_fpu_opts(c); else cpu_set_nofpu_opts(c); reserve_exception_space(0, 0x400); } void cpu_report(void) { struct cpuinfo_mips *c = &current_cpu_data; pr_info("CPU%d revision is: %08x (%s)\n", smp_processor_id(), c->processor_id, cpu_name_string()); if (c->options & MIPS_CPU_FPU) pr_info("FPU revision is: %08x\n", c->fpu_id); }
linux-master
arch/mips/kernel/cpu-r3k-probe.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Processor capabilities determination functions. * * Copyright (C) xxxx the Anonymous * Copyright (C) 1994 - 2006 Ralf Baechle * Copyright (C) 2003, 2004 Maciej W. Rozycki * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc. */ #include <linux/init.h> #include <linux/kernel.h> #include <asm/bugs.h> #include <asm/cpu.h> #include <asm/cpu-features.h> #include <asm/cpu-type.h> #include <asm/elf.h> #include <asm/fpu.h> #include <asm/mipsregs.h> #include "fpu-probe.h" /* * Get the FPU Implementation/Revision. */ static inline unsigned long cpu_get_fpu_id(void) { unsigned long tmp, fpu_id; tmp = read_c0_status(); __enable_fpu(FPU_AS_IS); fpu_id = read_32bit_cp1_register(CP1_REVISION); write_c0_status(tmp); return fpu_id; } /* * Check if the CPU has an external FPU. */ int __cpu_has_fpu(void) { return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE; } /* * Determine the FCSR mask for FPU hardware. */ static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c) { unsigned long sr, mask, fcsr, fcsr0, fcsr1; fcsr = c->fpu_csr31; mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM; sr = read_c0_status(); __enable_fpu(FPU_AS_IS); fcsr0 = fcsr & mask; write_32bit_cp1_register(CP1_STATUS, fcsr0); fcsr0 = read_32bit_cp1_register(CP1_STATUS); fcsr1 = fcsr | ~mask; write_32bit_cp1_register(CP1_STATUS, fcsr1); fcsr1 = read_32bit_cp1_register(CP1_STATUS); write_32bit_cp1_register(CP1_STATUS, fcsr); write_c0_status(sr); c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask; } /* * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes * supported by FPU hardware. */ static void cpu_set_fpu_2008(struct cpuinfo_mips *c) { if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { unsigned long sr, fir, fcsr, fcsr0, fcsr1; sr = read_c0_status(); __enable_fpu(FPU_AS_IS); fir = read_32bit_cp1_register(CP1_REVISION); if (fir & MIPS_FPIR_HAS2008) { fcsr = read_32bit_cp1_register(CP1_STATUS); /* * MAC2008 toolchain never landed in real world, so * we're only testing whether it can be disabled and * don't try to enabled it. */ fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008 | FPU_CSR_MAC2008); write_32bit_cp1_register(CP1_STATUS, fcsr0); fcsr0 = read_32bit_cp1_register(CP1_STATUS); fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008; write_32bit_cp1_register(CP1_STATUS, fcsr1); fcsr1 = read_32bit_cp1_register(CP1_STATUS); write_32bit_cp1_register(CP1_STATUS, fcsr); if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2)) { /* * The bit for MAC2008 might be reused by R6 * in future, so we only test for R2-R5. */ if (fcsr0 & FPU_CSR_MAC2008) c->options |= MIPS_CPU_MAC_2008_ONLY; } if (!(fcsr0 & FPU_CSR_NAN2008)) c->options |= MIPS_CPU_NAN_LEGACY; if (fcsr1 & FPU_CSR_NAN2008) c->options |= MIPS_CPU_NAN_2008; if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008) c->fpu_msk31 &= ~FPU_CSR_ABS2008; else c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008; if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008) c->fpu_msk31 &= ~FPU_CSR_NAN2008; else c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008; } else { c->options |= MIPS_CPU_NAN_LEGACY; } write_c0_status(sr); } else { c->options |= MIPS_CPU_NAN_LEGACY; } } /* * IEEE 754 conformance mode to use. Affects the NaN encoding and the * ABS.fmt/NEG.fmt execution mode. */ static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT; /* * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes * to support by the FPU emulator according to the IEEE 754 conformance * mode selected. Note that "relaxed" straps the emulator so that it * allows 2008-NaN binaries even for legacy processors. */ static void cpu_set_nofpu_2008(struct cpuinfo_mips *c) { c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY); c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008); c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008); switch (ieee754) { case STRICT: if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY; } else { c->options |= MIPS_CPU_NAN_LEGACY; c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; } break; case LEGACY: c->options |= MIPS_CPU_NAN_LEGACY; c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; break; case STD2008: c->options |= MIPS_CPU_NAN_2008; c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; break; case RELAXED: c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY; break; } } /* * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode * according to the "ieee754=" parameter. */ static void cpu_set_nan_2008(struct cpuinfo_mips *c) { switch (ieee754) { case STRICT: mips_use_nan_legacy = !!cpu_has_nan_legacy; mips_use_nan_2008 = !!cpu_has_nan_2008; break; case LEGACY: mips_use_nan_legacy = !!cpu_has_nan_legacy; mips_use_nan_2008 = !cpu_has_nan_legacy; break; case STD2008: mips_use_nan_legacy = !cpu_has_nan_2008; mips_use_nan_2008 = !!cpu_has_nan_2008; break; case RELAXED: mips_use_nan_legacy = true; mips_use_nan_2008 = true; break; } } /* * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override * settings: * * strict: accept binaries that request a NaN encoding supported by the FPU * legacy: only accept legacy-NaN binaries * 2008: only accept 2008-NaN binaries * relaxed: accept any binaries regardless of whether supported by the FPU */ static int __init ieee754_setup(char *s) { if (!s) return -1; else if (!strcmp(s, "strict")) ieee754 = STRICT; else if (!strcmp(s, "legacy")) ieee754 = LEGACY; else if (!strcmp(s, "2008")) ieee754 = STD2008; else if (!strcmp(s, "relaxed")) ieee754 = RELAXED; else return -1; if (!(boot_cpu_data.options & MIPS_CPU_FPU)) cpu_set_nofpu_2008(&boot_cpu_data); cpu_set_nan_2008(&boot_cpu_data); return 0; } early_param("ieee754", ieee754_setup); /* * Set the FIR feature flags for the FPU emulator. */ static void cpu_set_nofpu_id(struct cpuinfo_mips *c) { u32 value; value = 0; if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) value |= MIPS_FPIR_D | MIPS_FPIR_S; if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W; if (c->options & MIPS_CPU_NAN_2008) value |= MIPS_FPIR_HAS2008; c->fpu_id = value; } /* Determined FPU emulator mask to use for the boot CPU with "nofpu". */ static unsigned int mips_nofpu_msk31; /* * Set options for FPU hardware. */ void cpu_set_fpu_opts(struct cpuinfo_mips *c) { c->fpu_id = cpu_get_fpu_id(); mips_nofpu_msk31 = c->fpu_msk31; if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { if (c->fpu_id & MIPS_FPIR_3D) c->ases |= MIPS_ASE_MIPS3D; if (c->fpu_id & MIPS_FPIR_UFRP) c->options |= MIPS_CPU_UFR; if (c->fpu_id & MIPS_FPIR_FREP) c->options |= MIPS_CPU_FRE; } cpu_set_fpu_fcsr_mask(c); cpu_set_fpu_2008(c); cpu_set_nan_2008(c); } /* * Set options for the FPU emulator. */ void cpu_set_nofpu_opts(struct cpuinfo_mips *c) { c->options &= ~MIPS_CPU_FPU; c->fpu_msk31 = mips_nofpu_msk31; cpu_set_nofpu_2008(c); cpu_set_nan_2008(c); cpu_set_nofpu_id(c); } int mips_fpu_disabled; static int __init fpu_disable(char *s) { cpu_set_nofpu_opts(&boot_cpu_data); mips_fpu_disabled = 1; return 1; } __setup("nofpu", fpu_disable);
linux-master
arch/mips/kernel/fpu-probe.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (c) 2004 MIPS Inc * Author: [email protected] * * Copyright (C) 2004, 06 Ralf Baechle <[email protected]> */ #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/kernel_stat.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/msc01_ic.h> #include <asm/traps.h> static unsigned long _icctrl_msc; #define MSC01_IC_REG_BASE _icctrl_msc #define MSCIC_WRITE(reg, data) do { *(volatile u32 *)(reg) = data; } while (0) #define MSCIC_READ(reg, data) do { data = *(volatile u32 *)(reg); } while (0) static unsigned int irq_base; /* mask off an interrupt */ static inline void mask_msc_irq(struct irq_data *d) { unsigned int irq = d->irq; if (irq < (irq_base + 32)) MSCIC_WRITE(MSC01_IC_DISL, 1<<(irq - irq_base)); else MSCIC_WRITE(MSC01_IC_DISH, 1<<(irq - irq_base - 32)); } /* unmask an interrupt */ static inline void unmask_msc_irq(struct irq_data *d) { unsigned int irq = d->irq; if (irq < (irq_base + 32)) MSCIC_WRITE(MSC01_IC_ENAL, 1<<(irq - irq_base)); else MSCIC_WRITE(MSC01_IC_ENAH, 1<<(irq - irq_base - 32)); } /* * Masks and ACKs an IRQ */ static void level_mask_and_ack_msc_irq(struct irq_data *d) { mask_msc_irq(d); if (!cpu_has_veic) MSCIC_WRITE(MSC01_IC_EOI, 0); } /* * Masks and ACKs an IRQ */ static void edge_mask_and_ack_msc_irq(struct irq_data *d) { unsigned int irq = d->irq; mask_msc_irq(d); if (!cpu_has_veic) MSCIC_WRITE(MSC01_IC_EOI, 0); else { u32 r; MSCIC_READ(MSC01_IC_SUP+irq*8, r); MSCIC_WRITE(MSC01_IC_SUP+irq*8, r | ~MSC01_IC_SUP_EDGE_BIT); MSCIC_WRITE(MSC01_IC_SUP+irq*8, r); } } /* * Interrupt handler for interrupts coming from SOC-it. */ void ll_msc_irq(void) { unsigned int irq; /* read the interrupt vector register */ MSCIC_READ(MSC01_IC_VEC, irq); if (irq < 64) do_IRQ(irq + irq_base); else { /* Ignore spurious interrupt */ } } static void msc_bind_eic_interrupt(int irq, int set) { MSCIC_WRITE(MSC01_IC_RAMW, (irq<<MSC01_IC_RAMW_ADDR_SHF) | (set<<MSC01_IC_RAMW_DATA_SHF)); } static struct irq_chip msc_levelirq_type = { .name = "SOC-it-Level", .irq_ack = level_mask_and_ack_msc_irq, .irq_mask = mask_msc_irq, .irq_mask_ack = level_mask_and_ack_msc_irq, .irq_unmask = unmask_msc_irq, .irq_eoi = unmask_msc_irq, }; static struct irq_chip msc_edgeirq_type = { .name = "SOC-it-Edge", .irq_ack = edge_mask_and_ack_msc_irq, .irq_mask = mask_msc_irq, .irq_mask_ack = edge_mask_and_ack_msc_irq, .irq_unmask = unmask_msc_irq, .irq_eoi = unmask_msc_irq, }; void __init init_msc_irqs(unsigned long icubase, unsigned int irqbase, msc_irqmap_t *imp, int nirq) { _icctrl_msc = (unsigned long) ioremap(icubase, 0x40000); /* Reset interrupt controller - initialises all registers to 0 */ MSCIC_WRITE(MSC01_IC_RST, MSC01_IC_RST_RST_BIT); board_bind_eic_interrupt = &msc_bind_eic_interrupt; for (; nirq > 0; nirq--, imp++) { int n = imp->im_irq; switch (imp->im_type) { case MSC01_IRQ_EDGE: irq_set_chip_and_handler_name(irqbase + n, &msc_edgeirq_type, handle_edge_irq, "edge"); if (cpu_has_veic) MSCIC_WRITE(MSC01_IC_SUP+n*8, MSC01_IC_SUP_EDGE_BIT); else MSCIC_WRITE(MSC01_IC_SUP+n*8, MSC01_IC_SUP_EDGE_BIT | imp->im_lvl); break; case MSC01_IRQ_LEVEL: irq_set_chip_and_handler_name(irqbase + n, &msc_levelirq_type, handle_level_irq, "level"); if (cpu_has_veic) MSCIC_WRITE(MSC01_IC_SUP+n*8, 0); else MSCIC_WRITE(MSC01_IC_SUP+n*8, imp->im_lvl); } } irq_base = irqbase; MSCIC_WRITE(MSC01_IC_GENA, MSC01_IC_GENA_GENA_BIT); /* Enable interrupt generation */ }
linux-master
arch/mips/kernel/irq-msc01.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * DEC I/O ASIC's counter clocksource * * Copyright (C) 2008 Yoichi Yuasa <[email protected]> */ #include <linux/clocksource.h> #include <linux/sched_clock.h> #include <linux/init.h> #include <asm/ds1287.h> #include <asm/time.h> #include <asm/dec/ioasic.h> #include <asm/dec/ioasic_addrs.h> static u64 dec_ioasic_hpt_read(struct clocksource *cs) { return ioasic_read(IO_REG_FCTR); } static struct clocksource clocksource_dec = { .name = "dec-ioasic", .read = dec_ioasic_hpt_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u64 notrace dec_ioasic_read_sched_clock(void) { return ioasic_read(IO_REG_FCTR); } int __init dec_ioasic_clocksource_init(void) { unsigned int freq; u32 start, end; int i = HZ / 8; ds1287_timer_state(); while (!ds1287_timer_state()) ; start = dec_ioasic_hpt_read(&clocksource_dec); while (i--) while (!ds1287_timer_state()) ; end = dec_ioasic_hpt_read(&clocksource_dec); freq = (end - start) * 8; /* An early revision of the I/O ASIC didn't have the counter. */ if (!freq) return -ENXIO; printk(KERN_INFO "I/O ASIC clock frequency %dHz\n", freq); clocksource_dec.rating = 200 + freq / 10000000; clocksource_register_hz(&clocksource_dec, freq); sched_clock_register(dec_ioasic_read_sched_clock, 32, freq); return 0; }
linux-master
arch/mips/kernel/csrc-ioasic.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 1994 - 2000, 2006 Ralf Baechle * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2016, Imagination Technologies Ltd. */ #include <linux/compiler.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched/signal.h> #include <linux/uaccess.h> #include <asm/abi.h> #include <asm/compat-signal.h> #include <asm/dsp.h> #include <asm/sim.h> #include <asm/unistd.h> #include "signal-common.h" /* * Including <asm/unistd.h> would give use the 64-bit syscall numbers ... */ #define __NR_O32_restart_syscall 4253 struct sigframe32 { u32 sf_ass[4]; /* argument save space for o32 */ u32 sf_pad[2]; /* Was: signal trampoline */ struct sigcontext32 sf_sc; compat_sigset_t sf_mask; }; struct ucontext32 { u32 uc_flags; s32 uc_link; compat_stack_t uc_stack; struct sigcontext32 uc_mcontext; compat_sigset_t uc_sigmask; /* mask last for extensibility */ }; struct rt_sigframe32 { u32 rs_ass[4]; /* argument save space for o32 */ u32 rs_pad[2]; /* Was: signal trampoline */ compat_siginfo_t rs_info; struct ucontext32 rs_uc; }; static int setup_sigcontext32(struct pt_regs *regs, struct sigcontext32 __user *sc) { int err = 0; int i; err |= __put_user(regs->cp0_epc, &sc->sc_pc); err |= __put_user(0, &sc->sc_regs[0]); for (i = 1; i < 32; i++) err |= __put_user(regs->regs[i], &sc->sc_regs[i]); err |= __put_user(regs->hi, &sc->sc_mdhi); err |= __put_user(regs->lo, &sc->sc_mdlo); if (cpu_has_dsp) { err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp); err |= __put_user(mfhi1(), &sc->sc_hi1); err |= __put_user(mflo1(), &sc->sc_lo1); err |= __put_user(mfhi2(), &sc->sc_hi2); err |= __put_user(mflo2(), &sc->sc_lo2); err |= __put_user(mfhi3(), &sc->sc_hi3); err |= __put_user(mflo3(), &sc->sc_lo3); } /* * Save FPU state to signal context. Signal handler * will "inherit" current FPU state. */ err |= protected_save_fp_context(sc); return err; } static int restore_sigcontext32(struct pt_regs *regs, struct sigcontext32 __user *sc) { int err = 0; s32 treg; int i; /* Always make any pending restarted system calls return -EINTR */ current->restart_block.fn = do_no_restart_syscall; err |= __get_user(regs->cp0_epc, &sc->sc_pc); err |= __get_user(regs->hi, &sc->sc_mdhi); err |= __get_user(regs->lo, &sc->sc_mdlo); if (cpu_has_dsp) { err |= __get_user(treg, &sc->sc_hi1); mthi1(treg); err |= __get_user(treg, &sc->sc_lo1); mtlo1(treg); err |= __get_user(treg, &sc->sc_hi2); mthi2(treg); err |= __get_user(treg, &sc->sc_lo2); mtlo2(treg); err |= __get_user(treg, &sc->sc_hi3); mthi3(treg); err |= __get_user(treg, &sc->sc_lo3); mtlo3(treg); err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK); } for (i = 1; i < 32; i++) err |= __get_user(regs->regs[i], &sc->sc_regs[i]); return err ?: protected_restore_fp_context(sc); } static int setup_frame_32(void *sig_return, struct ksignal *ksig, struct pt_regs *regs, sigset_t *set) { struct sigframe32 __user *frame; int err = 0; frame = get_sigframe(ksig, regs, sizeof(*frame)); if (!access_ok(frame, sizeof (*frame))) return -EFAULT; err |= setup_sigcontext32(regs, &frame->sf_sc); err |= __copy_conv_sigset_to_user(&frame->sf_mask, set); if (err) return -EFAULT; /* * Arguments to signal handler: * * a0 = signal number * a1 = 0 (should be cause) * a2 = pointer to struct sigcontext * * $25 and c0_epc point to the signal handler, $29 points to the * struct sigframe. */ regs->regs[ 4] = ksig->sig; regs->regs[ 5] = 0; regs->regs[ 6] = (unsigned long) &frame->sf_sc; regs->regs[29] = (unsigned long) frame; regs->regs[31] = (unsigned long) sig_return; regs->cp0_epc = regs->regs[25] = (unsigned long) ksig->ka.sa.sa_handler; DEBUGP("SIG deliver (%s:%d): sp=0x%p pc=0x%lx ra=0x%lx\n", current->comm, current->pid, frame, regs->cp0_epc, regs->regs[31]); return 0; } asmlinkage void sys32_rt_sigreturn(void) { struct rt_sigframe32 __user *frame; struct pt_regs *regs; sigset_t set; int sig; regs = current_pt_regs(); frame = (struct rt_sigframe32 __user *)regs->regs[29]; if (!access_ok(frame, sizeof(*frame))) goto badframe; if (__copy_conv_sigset_from_user(&set, &frame->rs_uc.uc_sigmask)) goto badframe; set_current_blocked(&set); sig = restore_sigcontext32(regs, &frame->rs_uc.uc_mcontext); if (sig < 0) goto badframe; else if (sig) force_sig(sig); if (compat_restore_altstack(&frame->rs_uc.uc_stack)) goto badframe; /* * Don't let your children do this ... */ __asm__ __volatile__( "move\t$29, %0\n\t" "j\tsyscall_exit" : /* no outputs */ : "r" (regs)); /* Unreached */ badframe: force_sig(SIGSEGV); } static int setup_rt_frame_32(void *sig_return, struct ksignal *ksig, struct pt_regs *regs, sigset_t *set) { struct rt_sigframe32 __user *frame; int err = 0; frame = get_sigframe(ksig, regs, sizeof(*frame)); if (!access_ok(frame, sizeof (*frame))) return -EFAULT; /* Convert (siginfo_t -> compat_siginfo_t) and copy to user. */ err |= copy_siginfo_to_user32(&frame->rs_info, &ksig->info); /* Create the ucontext. */ err |= __put_user(0, &frame->rs_uc.uc_flags); err |= __put_user(0, &frame->rs_uc.uc_link); err |= __compat_save_altstack(&frame->rs_uc.uc_stack, regs->regs[29]); err |= setup_sigcontext32(regs, &frame->rs_uc.uc_mcontext); err |= __copy_conv_sigset_to_user(&frame->rs_uc.uc_sigmask, set); if (err) return -EFAULT; /* * Arguments to signal handler: * * a0 = signal number * a1 = 0 (should be cause) * a2 = pointer to ucontext * * $25 and c0_epc point to the signal handler, $29 points to * the struct rt_sigframe32. */ regs->regs[ 4] = ksig->sig; regs->regs[ 5] = (unsigned long) &frame->rs_info; regs->regs[ 6] = (unsigned long) &frame->rs_uc; regs->regs[29] = (unsigned long) frame; regs->regs[31] = (unsigned long) sig_return; regs->cp0_epc = regs->regs[25] = (unsigned long) ksig->ka.sa.sa_handler; DEBUGP("SIG deliver (%s:%d): sp=0x%p pc=0x%lx ra=0x%lx\n", current->comm, current->pid, frame, regs->cp0_epc, regs->regs[31]); return 0; } /* * o32 compatibility on 64-bit kernels, without DSP ASE */ struct mips_abi mips_abi_32 = { .setup_frame = setup_frame_32, .setup_rt_frame = setup_rt_frame_32, .restart = __NR_O32_restart_syscall, .off_sc_fpregs = offsetof(struct sigcontext32, sc_fpregs), .off_sc_fpc_csr = offsetof(struct sigcontext32, sc_fpc_csr), .off_sc_used_math = offsetof(struct sigcontext32, sc_used_math), .vdso = &vdso_image_o32, }; asmlinkage void sys32_sigreturn(void) { struct sigframe32 __user *frame; struct pt_regs *regs; sigset_t blocked; int sig; regs = current_pt_regs(); frame = (struct sigframe32 __user *)regs->regs[29]; if (!access_ok(frame, sizeof(*frame))) goto badframe; if (__copy_conv_sigset_from_user(&blocked, &frame->sf_mask)) goto badframe; set_current_blocked(&blocked); sig = restore_sigcontext32(regs, &frame->sf_sc); if (sig < 0) goto badframe; else if (sig) force_sig(sig); /* * Don't let your children do this ... */ __asm__ __volatile__( "move\t$29, %0\n\t" "j\tsyscall_exit" : /* no outputs */ : "r" (regs)); /* Unreached */ badframe: force_sig(SIGSEGV); }
linux-master
arch/mips/kernel/signal_o32.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2015 Imagination Technologies * Author: Alex Smith <[email protected]> */ #include <linux/binfmts.h> #include <linux/elf.h> #include <linux/err.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/timekeeper_internal.h> #include <asm/abi.h> #include <asm/mips-cps.h> #include <asm/page.h> #include <asm/vdso.h> #include <vdso/helpers.h> #include <vdso/vsyscall.h> /* Kernel-provided data used by the VDSO. */ static union mips_vdso_data mips_vdso_data __page_aligned_data; struct vdso_data *vdso_data = mips_vdso_data.data; /* * Mapping for the VDSO data/GIC pages. The real pages are mapped manually, as * what we map and where within the area they are mapped is determined at * runtime. */ static struct page *no_pages[] = { NULL }; static struct vm_special_mapping vdso_vvar_mapping = { .name = "[vvar]", .pages = no_pages, }; static void __init init_vdso_image(struct mips_vdso_image *image) { unsigned long num_pages, i; unsigned long data_pfn; BUG_ON(!PAGE_ALIGNED(image->data)); BUG_ON(!PAGE_ALIGNED(image->size)); num_pages = image->size / PAGE_SIZE; data_pfn = __phys_to_pfn(__pa_symbol(image->data)); for (i = 0; i < num_pages; i++) image->mapping.pages[i] = pfn_to_page(data_pfn + i); } static int __init init_vdso(void) { init_vdso_image(&vdso_image); #ifdef CONFIG_MIPS32_O32 init_vdso_image(&vdso_image_o32); #endif #ifdef CONFIG_MIPS32_N32 init_vdso_image(&vdso_image_n32); #endif return 0; } subsys_initcall(init_vdso); static unsigned long vdso_base(void) { unsigned long base = STACK_TOP; if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) { /* Skip the delay slot emulation page */ base += PAGE_SIZE; } if (current->flags & PF_RANDOMIZE) { base += get_random_u32_below(VDSO_RANDOMIZE_SIZE); base = PAGE_ALIGN(base); } return base; } int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) { struct mips_vdso_image *image = current->thread.abi->vdso; struct mm_struct *mm = current->mm; unsigned long gic_size, vvar_size, size, base, data_addr, vdso_addr, gic_pfn, gic_base; struct vm_area_struct *vma; int ret; if (mmap_write_lock_killable(mm)) return -EINTR; if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) { /* Map delay slot emulation page */ base = mmap_region(NULL, STACK_TOP, PAGE_SIZE, VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC, 0, NULL); if (IS_ERR_VALUE(base)) { ret = base; goto out; } } /* * Determine total area size. This includes the VDSO data itself, the * data page, and the GIC user page if present. Always create a mapping * for the GIC user area if the GIC is present regardless of whether it * is the current clocksource, in case it comes into use later on. We * only map a page even though the total area is 64K, as we only need * the counter registers at the start. */ gic_size = mips_gic_present() ? PAGE_SIZE : 0; vvar_size = gic_size + PAGE_SIZE; size = vvar_size + image->size; /* * Find a region that's large enough for us to perform the * colour-matching alignment below. */ if (cpu_has_dc_aliases) size += shm_align_mask + 1; base = get_unmapped_area(NULL, vdso_base(), size, 0, 0); if (IS_ERR_VALUE(base)) { ret = base; goto out; } /* * If we suffer from dcache aliasing, ensure that the VDSO data page * mapping is coloured the same as the kernel's mapping of that memory. * This ensures that when the kernel updates the VDSO data userland * will observe it without requiring cache invalidations. */ if (cpu_has_dc_aliases) { base = __ALIGN_MASK(base, shm_align_mask); base += ((unsigned long)vdso_data - gic_size) & shm_align_mask; } data_addr = base + gic_size; vdso_addr = data_addr + PAGE_SIZE; vma = _install_special_mapping(mm, base, vvar_size, VM_READ | VM_MAYREAD, &vdso_vvar_mapping); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto out; } /* Map GIC user page. */ if (gic_size) { gic_base = (unsigned long)mips_gic_base + MIPS_GIC_USER_OFS; gic_pfn = PFN_DOWN(__pa(gic_base)); ret = io_remap_pfn_range(vma, base, gic_pfn, gic_size, pgprot_noncached(vma->vm_page_prot)); if (ret) goto out; } /* Map data page. */ ret = remap_pfn_range(vma, data_addr, virt_to_phys(vdso_data) >> PAGE_SHIFT, PAGE_SIZE, vma->vm_page_prot); if (ret) goto out; /* Map VDSO image. */ vma = _install_special_mapping(mm, vdso_addr, image->size, VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC, &image->mapping); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto out; } mm->context.vdso = (void *)vdso_addr; ret = 0; out: mmap_write_unlock(mm); return ret; }
linux-master
arch/mips/kernel/vdso.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/highmem.h> #include <linux/crash_dump.h> #include <linux/uio.h> ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize, unsigned long offset) { void *vaddr; if (!csize) return 0; vaddr = kmap_local_pfn(pfn); csize = copy_to_iter(vaddr + offset, csize, iter); kunmap_local(vaddr); return csize; }
linux-master
arch/mips/kernel/crash_dump.c
// SPDX-License-Identifier: GPL-2.0 /* * General MIPS MT support routines, usable in AP/SP and SMVP. * Copyright (C) 2005 Mips Technologies, Inc */ #include <linux/cpu.h> #include <linux/cpuset.h> #include <linux/cpumask.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/cred.h> #include <linux/security.h> #include <linux/types.h> #include <linux/uaccess.h> /* * CPU mask used to set process affinity for MT VPEs/TCs with FPUs */ cpumask_t mt_fpu_cpumask; static int fpaff_threshold = -1; unsigned long mt_fpemul_threshold; /* * Replacement functions for the sys_sched_setaffinity() and * sys_sched_getaffinity() system calls, so that we can integrate * FPU affinity with the user's requested processor affinity. * This code is 98% identical with the sys_sched_setaffinity() * and sys_sched_getaffinity() system calls, and should be * updated when kernel/sched/core.c changes. */ /* * find_process_by_pid - find a process with a matching PID value. * used in sys_sched_set/getaffinity() in kernel/sched/core.c, so * cloned here. */ static inline struct task_struct *find_process_by_pid(pid_t pid) { return pid ? find_task_by_vpid(pid) : current; } /* * check the target process has a UID that matches the current process's */ static bool check_same_owner(struct task_struct *p) { const struct cred *cred = current_cred(), *pcred; bool match; rcu_read_lock(); pcred = __task_cred(p); match = (uid_eq(cred->euid, pcred->euid) || uid_eq(cred->euid, pcred->uid)); rcu_read_unlock(); return match; } /* * mipsmt_sys_sched_setaffinity - set the cpu affinity of a process */ asmlinkage long mipsmt_sys_sched_setaffinity(pid_t pid, unsigned int len, unsigned long __user *user_mask_ptr) { cpumask_var_t cpus_allowed, new_mask, effective_mask; struct thread_info *ti; struct task_struct *p; int retval; if (len < sizeof(new_mask)) return -EINVAL; if (copy_from_user(&new_mask, user_mask_ptr, sizeof(new_mask))) return -EFAULT; cpus_read_lock(); rcu_read_lock(); p = find_process_by_pid(pid); if (!p) { rcu_read_unlock(); cpus_read_unlock(); return -ESRCH; } /* Prevent p going away */ get_task_struct(p); rcu_read_unlock(); if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { retval = -ENOMEM; goto out_put_task; } if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { retval = -ENOMEM; goto out_free_cpus_allowed; } if (!alloc_cpumask_var(&effective_mask, GFP_KERNEL)) { retval = -ENOMEM; goto out_free_new_mask; } if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) { retval = -EPERM; goto out_unlock; } retval = security_task_setscheduler(p); if (retval) goto out_unlock; /* Record new user-specified CPU set for future reference */ cpumask_copy(&p->thread.user_cpus_allowed, new_mask); again: /* Compute new global allowed CPU set if necessary */ ti = task_thread_info(p); if (test_ti_thread_flag(ti, TIF_FPUBOUND) && cpumask_intersects(new_mask, &mt_fpu_cpumask)) { cpumask_and(effective_mask, new_mask, &mt_fpu_cpumask); retval = set_cpus_allowed_ptr(p, effective_mask); } else { cpumask_copy(effective_mask, new_mask); clear_ti_thread_flag(ti, TIF_FPUBOUND); retval = set_cpus_allowed_ptr(p, new_mask); } if (!retval) { cpuset_cpus_allowed(p, cpus_allowed); if (!cpumask_subset(effective_mask, cpus_allowed)) { /* * We must have raced with a concurrent cpuset * update. Just reset the cpus_allowed to the * cpuset's cpus_allowed */ cpumask_copy(new_mask, cpus_allowed); goto again; } } out_unlock: free_cpumask_var(effective_mask); out_free_new_mask: free_cpumask_var(new_mask); out_free_cpus_allowed: free_cpumask_var(cpus_allowed); out_put_task: put_task_struct(p); cpus_read_unlock(); return retval; } /* * mipsmt_sys_sched_getaffinity - get the cpu affinity of a process */ asmlinkage long mipsmt_sys_sched_getaffinity(pid_t pid, unsigned int len, unsigned long __user *user_mask_ptr) { unsigned int real_len; cpumask_t allowed, mask; int retval; struct task_struct *p; real_len = sizeof(mask); if (len < real_len) return -EINVAL; cpus_read_lock(); rcu_read_lock(); retval = -ESRCH; p = find_process_by_pid(pid); if (!p) goto out_unlock; retval = security_task_getscheduler(p); if (retval) goto out_unlock; cpumask_or(&allowed, &p->thread.user_cpus_allowed, p->cpus_ptr); cpumask_and(&mask, &allowed, cpu_active_mask); out_unlock: rcu_read_unlock(); cpus_read_unlock(); if (retval) return retval; if (copy_to_user(user_mask_ptr, &mask, real_len)) return -EFAULT; return real_len; } static int __init fpaff_thresh(char *str) { get_option(&str, &fpaff_threshold); return 1; } __setup("fpaff=", fpaff_thresh); /* * FPU Use Factor empirically derived from experiments on 34K */ #define FPUSEFACTOR 2000 static __init int mt_fp_affinity_init(void) { if (fpaff_threshold >= 0) { mt_fpemul_threshold = fpaff_threshold; } else { mt_fpemul_threshold = (FPUSEFACTOR * (loops_per_jiffy/(500000/HZ))) / HZ; } printk(KERN_DEBUG "FPU Affinity set after %ld emulations\n", mt_fpemul_threshold); return 0; } arch_initcall(mt_fp_affinity_init);
linux-master
arch/mips/kernel/mips-mt-fpaff.c
// SPDX-License-Identifier: GPL-2.0 /* * General MIPS MT support routines, usable in AP/SP and SMVP. * Copyright (C) 2005 Mips Technologies, Inc */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/export.h> #include <linux/interrupt.h> #include <linux/security.h> #include <asm/cpu.h> #include <asm/processor.h> #include <linux/atomic.h> #include <asm/hardirq.h> #include <asm/mmu_context.h> #include <asm/mipsmtregs.h> #include <asm/r4kcache.h> #include <asm/cacheflush.h> int vpelimit; static int __init maxvpes(char *str) { get_option(&str, &vpelimit); return 1; } __setup("maxvpes=", maxvpes); int tclimit; static int __init maxtcs(char *str) { get_option(&str, &tclimit); return 1; } __setup("maxtcs=", maxtcs); /* * Dump new MIPS MT state for the core. Does not leave TCs halted. * Takes an argument which taken to be a pre-call MVPControl value. */ void mips_mt_regdump(unsigned long mvpctl) { unsigned long flags; unsigned long vpflags; unsigned long mvpconf0; int nvpe; int ntc; int i; int tc; unsigned long haltval; unsigned long tcstatval; local_irq_save(flags); vpflags = dvpe(); printk("=== MIPS MT State Dump ===\n"); printk("-- Global State --\n"); printk(" MVPControl Passed: %08lx\n", mvpctl); printk(" MVPControl Read: %08lx\n", vpflags); printk(" MVPConf0 : %08lx\n", (mvpconf0 = read_c0_mvpconf0())); nvpe = ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1; ntc = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1; printk("-- per-VPE State --\n"); for (i = 0; i < nvpe; i++) { for (tc = 0; tc < ntc; tc++) { settc(tc); if ((read_tc_c0_tcbind() & TCBIND_CURVPE) == i) { printk(" VPE %d\n", i); printk(" VPEControl : %08lx\n", read_vpe_c0_vpecontrol()); printk(" VPEConf0 : %08lx\n", read_vpe_c0_vpeconf0()); printk(" VPE%d.Status : %08lx\n", i, read_vpe_c0_status()); printk(" VPE%d.EPC : %08lx %pS\n", i, read_vpe_c0_epc(), (void *) read_vpe_c0_epc()); printk(" VPE%d.Cause : %08lx\n", i, read_vpe_c0_cause()); printk(" VPE%d.Config7 : %08lx\n", i, read_vpe_c0_config7()); break; /* Next VPE */ } } } printk("-- per-TC State --\n"); for (tc = 0; tc < ntc; tc++) { settc(tc); if (read_tc_c0_tcbind() == read_c0_tcbind()) { /* Are we dumping ourself? */ haltval = 0; /* Then we're not halted, and mustn't be */ tcstatval = flags; /* And pre-dump TCStatus is flags */ printk(" TC %d (current TC with VPE EPC above)\n", tc); } else { haltval = read_tc_c0_tchalt(); write_tc_c0_tchalt(1); tcstatval = read_tc_c0_tcstatus(); printk(" TC %d\n", tc); } printk(" TCStatus : %08lx\n", tcstatval); printk(" TCBind : %08lx\n", read_tc_c0_tcbind()); printk(" TCRestart : %08lx %pS\n", read_tc_c0_tcrestart(), (void *) read_tc_c0_tcrestart()); printk(" TCHalt : %08lx\n", haltval); printk(" TCContext : %08lx\n", read_tc_c0_tccontext()); if (!haltval) write_tc_c0_tchalt(0); } printk("===========================\n"); evpe(vpflags); local_irq_restore(flags); } static int mt_opt_rpsctl = -1; static int mt_opt_nblsu = -1; static int mt_opt_forceconfig7; static int mt_opt_config7 = -1; static int __init rpsctl_set(char *str) { get_option(&str, &mt_opt_rpsctl); return 1; } __setup("rpsctl=", rpsctl_set); static int __init nblsu_set(char *str) { get_option(&str, &mt_opt_nblsu); return 1; } __setup("nblsu=", nblsu_set); static int __init config7_set(char *str) { get_option(&str, &mt_opt_config7); mt_opt_forceconfig7 = 1; return 1; } __setup("config7=", config7_set); static unsigned int itc_base; static int __init set_itc_base(char *str) { get_option(&str, &itc_base); return 1; } __setup("itcbase=", set_itc_base); void mips_mt_set_cpuoptions(void) { unsigned int oconfig7 = read_c0_config7(); unsigned int nconfig7 = oconfig7; if (mt_opt_rpsctl >= 0) { printk("34K return prediction stack override set to %d.\n", mt_opt_rpsctl); if (mt_opt_rpsctl) nconfig7 |= (1 << 2); else nconfig7 &= ~(1 << 2); } if (mt_opt_nblsu >= 0) { printk("34K ALU/LSU sync override set to %d.\n", mt_opt_nblsu); if (mt_opt_nblsu) nconfig7 |= (1 << 5); else nconfig7 &= ~(1 << 5); } if (mt_opt_forceconfig7) { printk("CP0.Config7 forced to 0x%08x.\n", mt_opt_config7); nconfig7 = mt_opt_config7; } if (oconfig7 != nconfig7) { __asm__ __volatile("sync"); write_c0_config7(nconfig7); ehb(); printk("Config7: 0x%08x\n", read_c0_config7()); } if (itc_base != 0) { /* * Configure ITC mapping. This code is very * specific to the 34K core family, which uses * a special mode bit ("ITC") in the ErrCtl * register to enable access to ITC control * registers via cache "tag" operations. */ unsigned long ectlval; unsigned long itcblkgrn; /* ErrCtl register is known as "ecc" to Linux */ ectlval = read_c0_ecc(); write_c0_ecc(ectlval | (0x1 << 26)); ehb(); #define INDEX_0 (0x80000000) #define INDEX_8 (0x80000008) /* Read "cache tag" for Dcache pseudo-index 8 */ cache_op(Index_Load_Tag_D, INDEX_8); ehb(); itcblkgrn = read_c0_dtaglo(); itcblkgrn &= 0xfffe0000; /* Set for 128 byte pitch of ITC cells */ itcblkgrn |= 0x00000c00; /* Stage in Tag register */ write_c0_dtaglo(itcblkgrn); ehb(); /* Write out to ITU with CACHE op */ cache_op(Index_Store_Tag_D, INDEX_8); /* Now set base address, and turn ITC on with 0x1 bit */ write_c0_dtaglo((itc_base & 0xfffffc00) | 0x1 ); ehb(); /* Write out to ITU with CACHE op */ cache_op(Index_Store_Tag_D, INDEX_0); write_c0_ecc(ectlval); ehb(); printk("Mapped %ld ITC cells starting at 0x%08x\n", ((itcblkgrn & 0x7fe00000) >> 20), itc_base); } } struct class *mt_class; static int __init mips_mt_init(void) { struct class *mtc; mtc = class_create("mt"); if (IS_ERR(mtc)) return PTR_ERR(mtc); mt_class = mtc; return 0; } subsys_initcall(mips_mt_init);
linux-master
arch/mips/kernel/mips-mt.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2003, 2004, 2007 Maciej W. Rozycki */ #include <linux/context_tracking.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/ptrace.h> #include <linux/stddef.h> #include <asm/bugs.h> #include <asm/compiler.h> #include <asm/cpu.h> #include <asm/fpu.h> #include <asm/mipsregs.h> #include <asm/setup.h> static char bug64hit[] __initdata = "reliable operation impossible!\n%s"; static char nowar[] __initdata = "Please report to <[email protected]>."; static char r4kwar[] __initdata = "Enable CPU_R4000_WORKAROUNDS to rectify."; static char daddiwar[] __initdata = "Enable CPU_DADDI_WORKAROUNDS to rectify."; static __always_inline __init void align_mod(const int align, const int mod) { asm volatile( ".set push\n\t" ".set noreorder\n\t" ".balign %0\n\t" ".rept %1\n\t" "nop\n\t" ".endr\n\t" ".set pop" : : "n"(align), "n"(mod)); } static __always_inline __init void mult_sh_align_mod(long *v1, long *v2, long *w, const int align, const int mod) { unsigned long flags; int m1, m2; long p, s, lv1, lv2, lw; /* * We want the multiply and the shift to be isolated from the * rest of the code to disable gcc optimizations. Hence the * asm statements that execute nothing, but make gcc not know * what the values of m1, m2 and s are and what lv2 and p are * used for. */ local_irq_save(flags); /* * The following code leads to a wrong result of the first * dsll32 when executed on R4000 rev. 2.2 or 3.0 (PRId * 00000422 or 00000430, respectively). * * See "MIPS R4000PC/SC Errata, Processor Revision 2.2 and * 3.0" by MIPS Technologies, Inc., errata #16 and #28 for * details. I got no permission to duplicate them here, * sigh... --macro */ asm volatile( "" : "=r" (m1), "=r" (m2), "=r" (s) : "0" (5), "1" (8), "2" (5)); align_mod(align, mod); /* * The trailing nop is needed to fulfill the two-instruction * requirement between reading hi/lo and staring a mult/div. * Leaving it out may cause gas insert a nop itself breaking * the desired alignment of the next chunk. */ asm volatile( ".set push\n\t" ".set noat\n\t" ".set noreorder\n\t" ".set nomacro\n\t" "mult %2, %3\n\t" "dsll32 %0, %4, %5\n\t" "mflo $0\n\t" "dsll32 %1, %4, %5\n\t" "nop\n\t" ".set pop" : "=&r" (lv1), "=r" (lw) : "r" (m1), "r" (m2), "r" (s), "I" (0) : "hi", "lo", "$0"); /* We have to use single integers for m1 and m2 and a double * one for p to be sure the mulsidi3 gcc's RTL multiplication * instruction has the workaround applied. Older versions of * gcc have correct umulsi3 and mulsi3, but other * multiplication variants lack the workaround. */ asm volatile( "" : "=r" (m1), "=r" (m2), "=r" (s) : "0" (m1), "1" (m2), "2" (s)); align_mod(align, mod); p = m1 * m2; lv2 = s << 32; asm volatile( "" : "=r" (lv2) : "0" (lv2), "r" (p)); local_irq_restore(flags); *v1 = lv1; *v2 = lv2; *w = lw; } static __always_inline __init void check_mult_sh(void) { long v1[8], v2[8], w[8]; int bug, fix, i; printk("Checking for the multiply/shift bug... "); /* * Testing discovered false negatives for certain code offsets * into cache lines. Hence we test all possible offsets for * the worst assumption of an R4000 I-cache line width of 32 * bytes. * * We can't use a loop as alignment directives need to be * immediates. */ mult_sh_align_mod(&v1[0], &v2[0], &w[0], 32, 0); mult_sh_align_mod(&v1[1], &v2[1], &w[1], 32, 1); mult_sh_align_mod(&v1[2], &v2[2], &w[2], 32, 2); mult_sh_align_mod(&v1[3], &v2[3], &w[3], 32, 3); mult_sh_align_mod(&v1[4], &v2[4], &w[4], 32, 4); mult_sh_align_mod(&v1[5], &v2[5], &w[5], 32, 5); mult_sh_align_mod(&v1[6], &v2[6], &w[6], 32, 6); mult_sh_align_mod(&v1[7], &v2[7], &w[7], 32, 7); bug = 0; for (i = 0; i < 8; i++) if (v1[i] != w[i]) bug = 1; if (bug == 0) { pr_cont("no.\n"); return; } pr_cont("yes, workaround... "); fix = 1; for (i = 0; i < 8; i++) if (v2[i] != w[i]) fix = 0; if (fix == 1) { pr_cont("yes.\n"); return; } pr_cont("no.\n"); panic(bug64hit, IS_ENABLED(CONFIG_CPU_R4000_WORKAROUNDS) ? nowar : r4kwar); } static volatile int daddi_ov; asmlinkage void __init do_daddi_ov(struct pt_regs *regs) { enum ctx_state prev_state; prev_state = exception_enter(); daddi_ov = 1; regs->cp0_epc += 4; exception_exit(prev_state); } static __init void check_daddi(void) { extern asmlinkage void handle_daddi_ov(void); unsigned long flags; void *handler; long v, tmp; printk("Checking for the daddi bug... "); local_irq_save(flags); handler = set_except_vector(EXCCODE_OV, handle_daddi_ov); /* * The following code fails to trigger an overflow exception * when executed on R4000 rev. 2.2 or 3.0 (PRId 00000422 or * 00000430, respectively). * * See "MIPS R4000PC/SC Errata, Processor Revision 2.2 and * 3.0" by MIPS Technologies, Inc., erratum #23 for details. * I got no permission to duplicate it here, sigh... --macro */ asm volatile( ".set push\n\t" ".set noat\n\t" ".set noreorder\n\t" ".set nomacro\n\t" "addiu %1, $0, %2\n\t" "dsrl %1, %1, 1\n\t" #ifdef HAVE_AS_SET_DADDI ".set daddi\n\t" #endif "daddi %0, %1, %3\n\t" ".set pop" : "=r" (v), "=&r" (tmp) : "I" (0xffffffffffffdb9aUL), "I" (0x1234)); set_except_vector(EXCCODE_OV, handler); local_irq_restore(flags); if (daddi_ov) { pr_cont("no.\n"); return; } pr_cont("yes, workaround... "); local_irq_save(flags); handler = set_except_vector(EXCCODE_OV, handle_daddi_ov); asm volatile( "addiu %1, $0, %2\n\t" "dsrl %1, %1, 1\n\t" "daddi %0, %1, %3" : "=r" (v), "=&r" (tmp) : "I" (0xffffffffffffdb9aUL), "I" (0x1234)); set_except_vector(EXCCODE_OV, handler); local_irq_restore(flags); if (daddi_ov) { pr_cont("yes.\n"); return; } pr_cont("no.\n"); panic(bug64hit, IS_ENABLED(CONFIG_CPU_DADDI_WORKAROUNDS) ? nowar : daddiwar); } int daddiu_bug = -1; static __init void check_daddiu(void) { long v, w, tmp; printk("Checking for the daddiu bug... "); /* * The following code leads to a wrong result of daddiu when * executed on R4400 rev. 1.0 (PRId 00000440). * * See "MIPS R4400PC/SC Errata, Processor Revision 1.0" by * MIPS Technologies, Inc., erratum #7 for details. * * According to "MIPS R4000PC/SC Errata, Processor Revision * 2.2 and 3.0" by MIPS Technologies, Inc., erratum #41 this * problem affects R4000 rev. 2.2 and 3.0 (PRId 00000422 and * 00000430, respectively), too. Testing failed to trigger it * so far. * * I got no permission to duplicate the errata here, sigh... * --macro */ asm volatile( ".set push\n\t" ".set noat\n\t" ".set noreorder\n\t" ".set nomacro\n\t" "addiu %2, $0, %3\n\t" "dsrl %2, %2, 1\n\t" #ifdef HAVE_AS_SET_DADDI ".set daddi\n\t" #endif "daddiu %0, %2, %4\n\t" "addiu %1, $0, %4\n\t" "daddu %1, %2\n\t" ".set pop" : "=&r" (v), "=&r" (w), "=&r" (tmp) : "I" (0xffffffffffffdb9aUL), "I" (0x1234)); daddiu_bug = v != w; if (!daddiu_bug) { pr_cont("no.\n"); return; } pr_cont("yes, workaround... "); asm volatile( "addiu %2, $0, %3\n\t" "dsrl %2, %2, 1\n\t" "daddiu %0, %2, %4\n\t" "addiu %1, $0, %4\n\t" "daddu %1, %2" : "=&r" (v), "=&r" (w), "=&r" (tmp) : "I" (0xffffffffffffdb9aUL), "I" (0x1234)); if (v == w) { pr_cont("yes.\n"); return; } pr_cont("no.\n"); panic(bug64hit, IS_ENABLED(CONFIG_CPU_DADDI_WORKAROUNDS) ? nowar : daddiwar); } void __init check_bugs64_early(void) { check_mult_sh(); check_daddiu(); } void __init check_bugs64(void) { check_daddi(); }
linux-master
arch/mips/kernel/r4k-bugs64.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * 8250/16550-type serial ports prom_putchar() * * Copyright (C) 2010 Yoichi Yuasa <[email protected]> */ #include <linux/io.h> #include <linux/serial_core.h> #include <linux/serial_reg.h> #include <asm/setup.h> static void __iomem *serial8250_base; static unsigned int serial8250_reg_shift; static unsigned int serial8250_tx_timeout; void setup_8250_early_printk_port(unsigned long base, unsigned int reg_shift, unsigned int timeout) { serial8250_base = (void __iomem *)base; serial8250_reg_shift = reg_shift; serial8250_tx_timeout = timeout; } static inline u8 serial_in(int offset) { return readb(serial8250_base + (offset << serial8250_reg_shift)); } static inline void serial_out(int offset, char value) { writeb(value, serial8250_base + (offset << serial8250_reg_shift)); } void prom_putchar(char c) { unsigned int timeout; int status, bits; if (!serial8250_base) return; timeout = serial8250_tx_timeout; bits = UART_LSR_TEMT | UART_LSR_THRE; do { status = serial_in(UART_LSR); if (--timeout == 0) break; } while ((status & bits) != bits); if (timeout) serial_out(UART_TX, c); }
linux-master
arch/mips/kernel/early_printk_8250.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1995, 1996, 1997, 2000, 2001, 05 by Ralf Baechle * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2001 MIPS Technologies, Inc. */ #include <linux/capability.h> #include <linux/errno.h> #include <linux/linkage.h> #include <linux/fs.h> #include <linux/smp.h> #include <linux/ptrace.h> #include <linux/string.h> #include <linux/syscalls.h> #include <linux/file.h> #include <linux/utsname.h> #include <linux/unistd.h> #include <linux/sem.h> #include <linux/msg.h> #include <linux/shm.h> #include <linux/compiler.h> #include <linux/ipc.h> #include <linux/uaccess.h> #include <linux/slab.h> #include <linux/elf.h> #include <linux/sched/task_stack.h> #include <asm/asm.h> #include <asm/asm-eva.h> #include <asm/branch.h> #include <asm/cachectl.h> #include <asm/cacheflush.h> #include <asm/asm-offsets.h> #include <asm/signal.h> #include <asm/sim.h> #include <asm/shmparam.h> #include <asm/sync.h> #include <asm/sysmips.h> #include <asm/switch_to.h> /* * For historic reasons the pipe(2) syscall on MIPS has an unusual calling * convention. It returns results in registers $v0 / $v1 which means there * is no need for it to do verify the validity of a userspace pointer * argument. Historically that used to be expensive in Linux. These days * the performance advantage is negligible. */ asmlinkage int sysm_pipe(void) { int fd[2]; int error = do_pipe_flags(fd, 0); if (error) return error; current_pt_regs()->regs[3] = fd[1]; return fd[0]; } SYSCALL_DEFINE6(mips_mmap, unsigned long, addr, unsigned long, len, unsigned long, prot, unsigned long, flags, unsigned long, fd, off_t, offset) { if (offset & ~PAGE_MASK) return -EINVAL; return ksys_mmap_pgoff(addr, len, prot, flags, fd, offset >> PAGE_SHIFT); } SYSCALL_DEFINE6(mips_mmap2, unsigned long, addr, unsigned long, len, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, pgoff) { if (pgoff & (~PAGE_MASK >> 12)) return -EINVAL; return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff >> (PAGE_SHIFT - 12)); } save_static_function(sys_fork); save_static_function(sys_clone); save_static_function(sys_clone3); SYSCALL_DEFINE1(set_thread_area, unsigned long, addr) { struct thread_info *ti = task_thread_info(current); ti->tp_value = addr; if (cpu_has_userlocal) write_c0_userlocal(addr); return 0; } static inline int mips_atomic_set(unsigned long addr, unsigned long new) { unsigned long old, tmp; struct pt_regs *regs; unsigned int err; if (unlikely(addr & 3)) return -EINVAL; if (unlikely(!access_ok((const void __user *)addr, 4))) return -EINVAL; if (cpu_has_llsc && IS_ENABLED(CONFIG_WAR_R10000_LLSC)) { __asm__ __volatile__ ( " .set push \n" " .set arch=r4000 \n" " li %[err], 0 \n" "1: ll %[old], (%[addr]) \n" " move %[tmp], %[new] \n" "2: sc %[tmp], (%[addr]) \n" " beqzl %[tmp], 1b \n" "3: \n" " .insn \n" " .section .fixup,\"ax\" \n" "4: li %[err], %[efault] \n" " j 3b \n" " .previous \n" " .section __ex_table,\"a\" \n" " "STR(PTR_WD)" 1b, 4b \n" " "STR(PTR_WD)" 2b, 4b \n" " .previous \n" " .set pop \n" : [old] "=&r" (old), [err] "=&r" (err), [tmp] "=&r" (tmp) : [addr] "r" (addr), [new] "r" (new), [efault] "i" (-EFAULT) : "memory"); } else if (cpu_has_llsc) { __asm__ __volatile__ ( " .set push \n" " .set "MIPS_ISA_ARCH_LEVEL" \n" " li %[err], 0 \n" "1: \n" " " __SYNC(full, loongson3_war) " \n" user_ll("%[old]", "(%[addr])") " move %[tmp], %[new] \n" "2: \n" user_sc("%[tmp]", "(%[addr])") " beqz %[tmp], 1b \n" "3: \n" " .insn \n" " .section .fixup,\"ax\" \n" "5: li %[err], %[efault] \n" " j 3b \n" " .previous \n" " .section __ex_table,\"a\" \n" " "STR(PTR_WD)" 1b, 5b \n" " "STR(PTR_WD)" 2b, 5b \n" " .previous \n" " .set pop \n" : [old] "=&r" (old), [err] "=&r" (err), [tmp] "=&r" (tmp) : [addr] "r" (addr), [new] "r" (new), [efault] "i" (-EFAULT) : "memory"); } else { do { preempt_disable(); ll_bit = 1; ll_task = current; preempt_enable(); err = __get_user(old, (unsigned int *) addr); err |= __put_user(new, (unsigned int *) addr); if (err) break; rmb(); } while (!ll_bit); } if (unlikely(err)) return err; regs = current_pt_regs(); regs->regs[2] = old; regs->regs[7] = 0; /* No error */ /* * Don't let your children do this ... */ __asm__ __volatile__( " move $29, %0 \n" " j syscall_exit \n" : /* no outputs */ : "r" (regs)); /* unreached. Honestly. */ unreachable(); } /* * mips_atomic_set() normally returns directly via syscall_exit potentially * clobbering static registers, so be sure to preserve them. */ save_static_function(sys_sysmips); SYSCALL_DEFINE3(sysmips, long, cmd, long, arg1, long, arg2) { switch (cmd) { case MIPS_ATOMIC_SET: return mips_atomic_set(arg1, arg2); case MIPS_FIXADE: if (arg1 & ~3) return -EINVAL; if (arg1 & 1) set_thread_flag(TIF_FIXADE); else clear_thread_flag(TIF_FIXADE); if (arg1 & 2) set_thread_flag(TIF_LOGADE); else clear_thread_flag(TIF_LOGADE); return 0; case FLUSH_CACHE: __flush_cache_all(); return 0; } return -EINVAL; } /* * No implemented yet ... */ SYSCALL_DEFINE3(cachectl, char *, addr, int, nbytes, int, op) { return -ENOSYS; }
linux-master
arch/mips/kernel/syscall.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2001, 06 by Ralf Baechle ([email protected]) * Copyright (C) 2001 MIPS Technologies, Inc. */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/pm.h> #include <linux/types.h> #include <linux/reboot.h> #include <linux/delay.h> #include <asm/compiler.h> #include <asm/idle.h> #include <asm/mipsregs.h> #include <asm/reboot.h> /* * Urgs ... Too many MIPS machines to handle this in a generic way. * So handle all using function pointers to machine specific * functions. */ void (*_machine_restart)(char *command); void (*_machine_halt)(void); void (*pm_power_off)(void); EXPORT_SYMBOL(pm_power_off); static void machine_hang(void) { /* * We're hanging the system so we don't want to be interrupted anymore. * Any interrupt handlers that ran would at best be useless & at worst * go awry because the system isn't in a functional state. */ local_irq_disable(); /* * Mask all interrupts, giving us a better chance of remaining in the * low power wait state. */ clear_c0_status(ST0_IM); while (true) { if (cpu_has_mips_r) { /* * We know that the wait instruction is supported so * make use of it directly, leaving interrupts * disabled. */ asm volatile( ".set push\n\t" ".set " MIPS_ISA_ARCH_LEVEL "\n\t" "wait\n\t" ".set pop"); } else if (cpu_wait) { /* * Try the cpu_wait() callback. This isn't ideal since * it'll re-enable interrupts, but that ought to be * harmless given that they're all masked. */ cpu_wait(); local_irq_disable(); } else { /* * We're going to burn some power running round the * loop, but we don't really have a choice. This isn't * a path we should expect to run for long during * typical use anyway. */ } /* * In most modern MIPS CPUs interrupts will cause the wait * instruction to graduate even when disabled, and in some * cases even when masked. In order to prevent a timer * interrupt from continuously taking us out of the low power * wait state, we clear any pending timer interrupt here. */ if (cpu_has_counter) write_c0_compare(0); } } void machine_restart(char *command) { if (_machine_restart) _machine_restart(command); #ifdef CONFIG_SMP preempt_disable(); smp_send_stop(); #endif do_kernel_restart(command); mdelay(1000); pr_emerg("Reboot failed -- System halted\n"); machine_hang(); } void machine_halt(void) { if (_machine_halt) _machine_halt(); #ifdef CONFIG_SMP preempt_disable(); smp_send_stop(); #endif machine_hang(); } void machine_power_off(void) { do_kernel_power_off(); #ifdef CONFIG_SMP preempt_disable(); smp_send_stop(); #endif machine_hang(); }
linux-master
arch/mips/kernel/reset.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/init.h> #include <linux/kthread.h> #include <linux/hrtimer.h> #include <linux/fs.h> #include <linux/debugfs.h> #include <linux/export.h> #include <linux/spinlock.h> #include <asm/debug.h> static int ss_get(void *data, u64 *val) { ktime_t start, finish; int loops; int cont; DEFINE_RAW_SPINLOCK(ss_spin); loops = 1000000; cont = 1; start = ktime_get(); while (cont) { raw_spin_lock(&ss_spin); loops--; if (loops == 0) cont = 0; raw_spin_unlock(&ss_spin); } finish = ktime_get(); *val = ktime_us_delta(finish, start); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_ss, ss_get, NULL, "%llu\n"); struct spin_multi_state { raw_spinlock_t lock; atomic_t start_wait; atomic_t enter_wait; atomic_t exit_wait; int loops; }; struct spin_multi_per_thread { struct spin_multi_state *state; ktime_t start; }; static int multi_other(void *data) { int loops; int cont; struct spin_multi_per_thread *pt = data; struct spin_multi_state *s = pt->state; loops = s->loops; cont = 1; atomic_dec(&s->enter_wait); while (atomic_read(&s->enter_wait)) ; /* spin */ pt->start = ktime_get(); atomic_dec(&s->start_wait); while (atomic_read(&s->start_wait)) ; /* spin */ while (cont) { raw_spin_lock(&s->lock); loops--; if (loops == 0) cont = 0; raw_spin_unlock(&s->lock); } atomic_dec(&s->exit_wait); while (atomic_read(&s->exit_wait)) ; /* spin */ return 0; } static int multi_get(void *data, u64 *val) { ktime_t finish; struct spin_multi_state ms; struct spin_multi_per_thread t1, t2; ms.lock = __RAW_SPIN_LOCK_UNLOCKED("multi_get"); ms.loops = 1000000; atomic_set(&ms.start_wait, 2); atomic_set(&ms.enter_wait, 2); atomic_set(&ms.exit_wait, 2); t1.state = &ms; t2.state = &ms; kthread_run(multi_other, &t2, "multi_get"); multi_other(&t1); finish = ktime_get(); *val = ktime_us_delta(finish, t1.start); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_multi, multi_get, NULL, "%llu\n"); static int __init spinlock_test(void) { debugfs_create_file_unsafe("spin_single", S_IRUGO, mips_debugfs_dir, NULL, &fops_ss); debugfs_create_file_unsafe("spin_multi", S_IRUGO, mips_debugfs_dir, NULL, &fops_multi); return 0; } device_initcall(spinlock_test);
linux-master
arch/mips/kernel/spinlock_test.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1995 Linus Torvalds * Copyright (C) 1995 Waldorf Electronics * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle * Copyright (C) 1996 Stoned Elipot * Copyright (C) 1999 Silicon Graphics, Inc. * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki */ #include <linux/init.h> #include <linux/cpu.h> #include <linux/delay.h> #include <linux/ioport.h> #include <linux/export.h> #include <linux/screen_info.h> #include <linux/memblock.h> #include <linux/initrd.h> #include <linux/root_dev.h> #include <linux/highmem.h> #include <linux/console.h> #include <linux/pfn.h> #include <linux/debugfs.h> #include <linux/kexec.h> #include <linux/sizes.h> #include <linux/device.h> #include <linux/dma-map-ops.h> #include <linux/decompress/generic.h> #include <linux/of_fdt.h> #include <linux/dmi.h> #include <linux/crash_dump.h> #include <asm/addrspace.h> #include <asm/bootinfo.h> #include <asm/bugs.h> #include <asm/cache.h> #include <asm/cdmm.h> #include <asm/cpu.h> #include <asm/debug.h> #include <asm/mmzone.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/smp-ops.h> #include <asm/prom.h> #include <asm/fw/fw.h> #ifdef CONFIG_MIPS_ELF_APPENDED_DTB char __section(".appended_dtb") __appended_dtb[0x100000]; #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_data); #ifdef CONFIG_VT struct screen_info screen_info; #endif /* * Setup information * * These are initialized so they are in the .data section */ unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; EXPORT_SYMBOL(mips_machtype); static char __initdata command_line[COMMAND_LINE_SIZE]; char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; #ifdef CONFIG_CMDLINE_BOOL static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE; #else static const char builtin_cmdline[] __initconst = ""; #endif /* * mips_io_port_base is the begin of the address space to which x86 style * I/O ports are mapped. */ unsigned long mips_io_port_base = -1; EXPORT_SYMBOL(mips_io_port_base); static struct resource code_resource = { .name = "Kernel code", }; static struct resource data_resource = { .name = "Kernel data", }; static struct resource bss_resource = { .name = "Kernel bss", }; unsigned long __kaslr_offset __ro_after_init; EXPORT_SYMBOL(__kaslr_offset); static void *detect_magic __initdata = detect_memory_region; #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET unsigned long ARCH_PFN_OFFSET; EXPORT_SYMBOL(ARCH_PFN_OFFSET); #endif void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) { void *dm = &detect_magic; phys_addr_t size; for (size = sz_min; size < sz_max; size <<= 1) { if (!memcmp(dm, dm + size, sizeof(detect_magic))) break; } pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", ((unsigned long long) size) / SZ_1M, (unsigned long long) start, ((unsigned long long) sz_min) / SZ_1M, ((unsigned long long) sz_max) / SZ_1M); memblock_add(start, size); } /* * Manage initrd */ #ifdef CONFIG_BLK_DEV_INITRD static int __init rd_start_early(char *p) { unsigned long start = memparse(p, &p); #ifdef CONFIG_64BIT /* Guess if the sign extension was forgotten by bootloader */ if (start < XKPHYS) start = (int)start; #endif initrd_start = start; initrd_end += start; return 0; } early_param("rd_start", rd_start_early); static int __init rd_size_early(char *p) { initrd_end += memparse(p, &p); return 0; } early_param("rd_size", rd_size_early); /* it returns the next free pfn after initrd */ static unsigned long __init init_initrd(void) { unsigned long end; /* * Board specific code or command line parser should have * already set up initrd_start and initrd_end. In these cases * perfom sanity checks and use them if all looks good. */ if (!initrd_start || initrd_end <= initrd_start) goto disable; if (initrd_start & ~PAGE_MASK) { pr_err("initrd start must be page aligned\n"); goto disable; } /* * Sanitize initrd addresses. For example firmware * can't guess if they need to pass them through * 64-bits values if the kernel has been built in pure * 32-bit. We need also to switch from KSEG0 to XKPHYS * addresses now, so the code can now safely use __pa(). */ end = __pa(initrd_end); initrd_end = (unsigned long)__va(end); initrd_start = (unsigned long)__va(__pa(initrd_start)); if (initrd_start < PAGE_OFFSET) { pr_err("initrd start < PAGE_OFFSET\n"); goto disable; } ROOT_DEV = Root_RAM0; return PFN_UP(end); disable: initrd_start = 0; initrd_end = 0; return 0; } /* In some conditions (e.g. big endian bootloader with a little endian kernel), the initrd might appear byte swapped. Try to detect this and byte swap it if needed. */ static void __init maybe_bswap_initrd(void) { #if defined(CONFIG_CPU_CAVIUM_OCTEON) u64 buf; /* Check for CPIO signature */ if (!memcmp((void *)initrd_start, "070701", 6)) return; /* Check for compressed initrd */ if (decompress_method((unsigned char *)initrd_start, 8, NULL)) return; /* Try again with a byte swapped header */ buf = swab64p((u64 *)initrd_start); if (!memcmp(&buf, "070701", 6) || decompress_method((unsigned char *)(&buf), 8, NULL)) { unsigned long i; pr_info("Byteswapped initrd detected\n"); for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) swab64s((u64 *)i); } #endif } static void __init finalize_initrd(void) { unsigned long size = initrd_end - initrd_start; if (size == 0) { printk(KERN_INFO "Initrd not found or empty"); goto disable; } if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { printk(KERN_ERR "Initrd extends beyond end of memory"); goto disable; } maybe_bswap_initrd(); memblock_reserve(__pa(initrd_start), size); initrd_below_start_ok = 1; pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", initrd_start, size); return; disable: printk(KERN_CONT " - disabling initrd\n"); initrd_start = 0; initrd_end = 0; } #else /* !CONFIG_BLK_DEV_INITRD */ static unsigned long __init init_initrd(void) { return 0; } #define finalize_initrd() do {} while (0) #endif /* * Initialize the bootmem allocator. It also setup initrd related data * if needed. */ #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA)) static void __init bootmem_init(void) { init_initrd(); finalize_initrd(); } #else /* !CONFIG_SGI_IP27 */ static void __init bootmem_init(void) { phys_addr_t ramstart, ramend; unsigned long start, end; int i; ramstart = memblock_start_of_DRAM(); ramend = memblock_end_of_DRAM(); /* * Sanity check any INITRD first. We don't take it into account * for bootmem setup initially, rely on the end-of-kernel-code * as our memory range starting point. Once bootmem is inited we * will reserve the area used for the initrd. */ init_initrd(); /* Reserve memory occupied by kernel. */ memblock_reserve(__pa_symbol(&_text), __pa_symbol(&_end) - __pa_symbol(&_text)); /* max_low_pfn is not a number of pages but the end pfn of low mem */ #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET ARCH_PFN_OFFSET = PFN_UP(ramstart); #else /* * Reserve any memory between the start of RAM and PHYS_OFFSET */ if (ramstart > PHYS_OFFSET) memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET); if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) { pr_info("Wasting %lu bytes for tracking %lu unused pages\n", (unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)), (unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET)); } #endif min_low_pfn = ARCH_PFN_OFFSET; max_pfn = PFN_DOWN(ramend); for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { /* * Skip highmem here so we get an accurate max_low_pfn if low * memory stops short of high memory. * If the region overlaps HIGHMEM_START, end is clipped so * max_pfn excludes the highmem portion. */ if (start >= PFN_DOWN(HIGHMEM_START)) continue; if (end > PFN_DOWN(HIGHMEM_START)) end = PFN_DOWN(HIGHMEM_START); if (end > max_low_pfn) max_low_pfn = end; } if (min_low_pfn >= max_low_pfn) panic("Incorrect memory mapping !!!"); if (max_pfn > PFN_DOWN(HIGHMEM_START)) { #ifdef CONFIG_HIGHMEM highstart_pfn = PFN_DOWN(HIGHMEM_START); highend_pfn = max_pfn; #else max_low_pfn = PFN_DOWN(HIGHMEM_START); max_pfn = max_low_pfn; #endif } /* * Reserve initrd memory if needed. */ finalize_initrd(); } #endif /* CONFIG_SGI_IP27 */ static int usermem __initdata; static int __init early_parse_mem(char *p) { phys_addr_t start, size; if (!p) { pr_err("mem parameter is empty, do nothing\n"); return -EINVAL; } /* * If a user specifies memory size, we * blow away any automatically generated * size. */ if (usermem == 0) { usermem = 1; memblock_remove(memblock_start_of_DRAM(), memblock_end_of_DRAM() - memblock_start_of_DRAM()); } start = 0; size = memparse(p, &p); if (*p == '@') start = memparse(p + 1, &p); if (IS_ENABLED(CONFIG_NUMA)) memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE); else memblock_add(start, size); return 0; } early_param("mem", early_parse_mem); static int __init early_parse_memmap(char *p) { char *oldp; u64 start_at, mem_size; if (!p) return -EINVAL; if (!strncmp(p, "exactmap", 8)) { pr_err("\"memmap=exactmap\" invalid on MIPS\n"); return 0; } oldp = p; mem_size = memparse(p, &p); if (p == oldp) return -EINVAL; if (*p == '@') { start_at = memparse(p+1, &p); memblock_add(start_at, mem_size); } else if (*p == '#') { pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n"); return -EINVAL; } else if (*p == '$') { start_at = memparse(p+1, &p); memblock_add(start_at, mem_size); memblock_reserve(start_at, mem_size); } else { pr_err("\"memmap\" invalid format!\n"); return -EINVAL; } if (*p == '\0') { usermem = 1; return 0; } else return -EINVAL; } early_param("memmap", early_parse_memmap); static void __init mips_reserve_vmcore(void) { #ifdef CONFIG_PROC_VMCORE phys_addr_t start, end; u64 i; if (!elfcorehdr_size) { for_each_mem_range(i, &start, &end) { if (elfcorehdr_addr >= start && elfcorehdr_addr < end) { /* * Reserve from the elf core header to the end of * the memory segment, that should all be kdump * reserved memory. */ elfcorehdr_size = end - elfcorehdr_addr; break; } } } pr_info("Reserving %ldKB of memory at %ldKB for kdump\n", (unsigned long)elfcorehdr_size >> 10, (unsigned long)elfcorehdr_addr >> 10); memblock_reserve(elfcorehdr_addr, elfcorehdr_size); #endif } #ifdef CONFIG_KEXEC /* 64M alignment for crash kernel regions */ #define CRASH_ALIGN SZ_64M #define CRASH_ADDR_MAX SZ_512M static void __init mips_parse_crashkernel(void) { unsigned long long total_mem; unsigned long long crash_size, crash_base; int ret; total_mem = memblock_phys_mem_size(); ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); if (ret != 0 || crash_size <= 0) return; if (crash_base <= 0) { crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, CRASH_ALIGN, CRASH_ADDR_MAX); if (!crash_base) { pr_warn("crashkernel reservation failed - No suitable area found.\n"); return; } } else { unsigned long long start; start = memblock_phys_alloc_range(crash_size, 1, crash_base, crash_base + crash_size); if (start != crash_base) { pr_warn("Invalid memory region reserved for crash kernel\n"); return; } } crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; } static void __init request_crashkernel(struct resource *res) { int ret; if (crashk_res.start == crashk_res.end) return; ret = request_resource(res, &crashk_res); if (!ret) pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", (unsigned long)(resource_size(&crashk_res) >> 20), (unsigned long)(crashk_res.start >> 20)); } #else /* !defined(CONFIG_KEXEC) */ static void __init mips_parse_crashkernel(void) { } static void __init request_crashkernel(struct resource *res) { } #endif /* !defined(CONFIG_KEXEC) */ static void __init check_kernel_sections_mem(void) { phys_addr_t start = __pa_symbol(&_text); phys_addr_t size = __pa_symbol(&_end) - start; if (!memblock_is_region_memory(start, size)) { pr_info("Kernel sections are not in the memory maps\n"); memblock_add(start, size); } } static void __init bootcmdline_append(const char *s, size_t max) { if (!s[0] || !max) return; if (boot_command_line[0]) strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); strlcat(boot_command_line, s, max); } #ifdef CONFIG_OF_EARLY_FLATTREE static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname, int depth, void *data) { bool *dt_bootargs = data; const char *p; int l; if (depth != 1 || !data || (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) return 0; p = of_get_flat_dt_prop(node, "bootargs", &l); if (p != NULL && l > 0) { bootcmdline_append(p, min(l, COMMAND_LINE_SIZE)); *dt_bootargs = true; } return 1; } #endif /* CONFIG_OF_EARLY_FLATTREE */ static void __init bootcmdline_init(void) { bool dt_bootargs = false; /* * If CMDLINE_OVERRIDE is enabled then initializing the command line is * trivial - we simply use the built-in command line unconditionally & * unmodified. */ if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) { strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); return; } /* * If the user specified a built-in command line & * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is * prepended to arguments from the bootloader or DT so we'll copy them * to the start of boot_command_line here. Otherwise, empty * boot_command_line to undo anything early_init_dt_scan_chosen() did. */ if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)) strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); else boot_command_line[0] = 0; #ifdef CONFIG_OF_EARLY_FLATTREE /* * If we're configured to take boot arguments from DT, look for those * now. */ if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) || IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)) of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs); #endif /* * If we didn't get any arguments from DT (regardless of whether that's * because we weren't configured to look for them, or because we looked * & found none) then we'll take arguments from the bootloader. * plat_mem_setup() should have filled arcs_cmdline with arguments from * the bootloader. */ if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs) bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE); /* * If the user specified a built-in command line & we didn't already * prepend it, we append it to boot_command_line here. */ if (IS_ENABLED(CONFIG_CMDLINE_BOOL) && !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)) bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE); } /* * arch_mem_init - initialize memory management subsystem * * o plat_mem_setup() detects the memory configuration and will record detected * memory areas using memblock_add. * * At this stage the memory configuration of the system is known to the * kernel but generic memory management system is still entirely uninitialized. * * o bootmem_init() * o sparse_init() * o paging_init() * o dma_contiguous_reserve() * * At this stage the bootmem allocator is ready to use. * * NOTE: historically plat_mem_setup did the entire platform initialization. * This was rather impractical because it meant plat_mem_setup had to * get away without any kind of memory allocator. To keep old code from * breaking plat_setup was just renamed to plat_mem_setup and a second platform * initialization hook for anything else was introduced. */ static void __init arch_mem_init(char **cmdline_p) { /* call board setup routine */ plat_mem_setup(); memblock_set_bottom_up(true); bootcmdline_init(); strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; parse_early_param(); if (usermem) pr_info("User-defined physical RAM map overwrite\n"); check_kernel_sections_mem(); early_init_fdt_reserve_self(); early_init_fdt_scan_reserved_mem(); #ifndef CONFIG_NUMA memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); #endif bootmem_init(); /* * Prevent memblock from allocating high memory. * This cannot be done before max_low_pfn is detected, so up * to this point is possible to only reserve physical memory * with memblock_reserve; memblock_alloc* can be used * only after this point */ memblock_set_current_limit(PFN_PHYS(max_low_pfn)); mips_reserve_vmcore(); mips_parse_crashkernel(); device_tree_init(); /* * In order to reduce the possibility of kernel panic when failed to * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate * low memory as small as possible before plat_swiotlb_setup(), so * make sparse_init() using top-down allocation. */ memblock_set_bottom_up(false); sparse_init(); memblock_set_bottom_up(true); plat_swiotlb_setup(); dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); /* Reserve for hibernation. */ memblock_reserve(__pa_symbol(&__nosave_begin), __pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin)); early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn)); } static void __init resource_init(void) { phys_addr_t start, end; u64 i; if (UNCAC_BASE != IO_BASE) return; code_resource.start = __pa_symbol(&_text); code_resource.end = __pa_symbol(&_etext) - 1; data_resource.start = __pa_symbol(&_etext); data_resource.end = __pa_symbol(&_edata) - 1; bss_resource.start = __pa_symbol(&__bss_start); bss_resource.end = __pa_symbol(&__bss_stop) - 1; for_each_mem_range(i, &start, &end) { struct resource *res; res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES); if (!res) panic("%s: Failed to allocate %zu bytes\n", __func__, sizeof(struct resource)); res->start = start; /* * In memblock, end points to the first byte after the * range while in resourses, end points to the last byte in * the range. */ res->end = end - 1; res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; res->name = "System RAM"; request_resource(&iomem_resource, res); /* * We don't know which RAM region contains kernel data, * so we try it repeatedly and let the resource manager * test it. */ request_resource(res, &code_resource); request_resource(res, &data_resource); request_resource(res, &bss_resource); request_crashkernel(res); } } #ifdef CONFIG_SMP static void __init prefill_possible_map(void) { int i, possible = num_possible_cpus(); if (possible > nr_cpu_ids) possible = nr_cpu_ids; for (i = 0; i < possible; i++) set_cpu_possible(i, true); for (; i < NR_CPUS; i++) set_cpu_possible(i, false); set_nr_cpu_ids(possible); } #else static inline void prefill_possible_map(void) {} #endif static void __init setup_rng_seed(void) { char *rng_seed_hex = fw_getenv("rngseed"); u8 rng_seed[512]; size_t len; if (!rng_seed_hex) return; len = min(sizeof(rng_seed), strlen(rng_seed_hex) / 2); if (hex2bin(rng_seed, rng_seed_hex, len)) return; add_bootloader_randomness(rng_seed, len); memzero_explicit(rng_seed, len); memzero_explicit(rng_seed_hex, len * 2); } void __init setup_arch(char **cmdline_p) { cpu_probe(); mips_cm_probe(); prom_init(); setup_early_fdc_console(); #ifdef CONFIG_EARLY_PRINTK setup_early_printk(); #endif cpu_report(); if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64)) check_bugs64_early(); #if defined(CONFIG_VT) #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #endif #endif arch_mem_init(cmdline_p); dmi_setup(); resource_init(); plat_smp_setup(); prefill_possible_map(); cpu_cache_init(); paging_init(); memblock_dump_all(); setup_rng_seed(); } unsigned long kernelsp[NR_CPUS]; unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; #ifdef CONFIG_DEBUG_FS struct dentry *mips_debugfs_dir; static int __init debugfs_mips(void) { mips_debugfs_dir = debugfs_create_dir("mips", NULL); return 0; } arch_initcall(debugfs_mips); #endif #ifdef CONFIG_DMA_NONCOHERENT static int __init setcoherentio(char *str) { dma_default_coherent = true; pr_info("Hardware DMA cache coherency (command line)\n"); return 0; } early_param("coherentio", setcoherentio); static int __init setnocoherentio(char *str) { dma_default_coherent = false; pr_info("Software DMA cache coherency (command line)\n"); return 0; } early_param("nocoherentio", setnocoherentio); #endif void __init arch_cpu_finalize_init(void) { unsigned int cpu = smp_processor_id(); cpu_data[cpu].udelay_val = loops_per_jiffy; check_bugs32(); if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64)) check_bugs64(); }
linux-master
arch/mips/kernel/setup.c
// SPDX-License-Identifier: GPL-2.0-only /* * MIPS cacheinfo support */ #include <linux/cacheinfo.h> /* Populates leaf and increments to next leaf */ #define populate_cache(cache, leaf, c_level, c_type) \ do { \ leaf->type = c_type; \ leaf->level = c_level; \ leaf->coherency_line_size = c->cache.linesz; \ leaf->number_of_sets = c->cache.sets; \ leaf->ways_of_associativity = c->cache.ways; \ leaf->size = c->cache.linesz * c->cache.sets * \ c->cache.ways; \ leaf++; \ } while (0) int init_cache_level(unsigned int cpu) { struct cpuinfo_mips *c = &current_cpu_data; struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); int levels = 0, leaves = 0; /* * If Dcache is not set, we assume the cache structures * are not properly initialized. */ if (c->dcache.waysize) levels += 1; else return -ENOENT; leaves += (c->icache.waysize) ? 2 : 1; if (c->vcache.waysize) { levels++; leaves++; } if (c->scache.waysize) { levels++; leaves++; } if (c->tcache.waysize) { levels++; leaves++; } this_cpu_ci->num_levels = levels; this_cpu_ci->num_leaves = leaves; return 0; } static void fill_cpumask_siblings(int cpu, cpumask_t *cpu_map) { int cpu1; for_each_possible_cpu(cpu1) if (cpus_are_siblings(cpu, cpu1)) cpumask_set_cpu(cpu1, cpu_map); } static void fill_cpumask_cluster(int cpu, cpumask_t *cpu_map) { int cpu1; int cluster = cpu_cluster(&cpu_data[cpu]); for_each_possible_cpu(cpu1) if (cpu_cluster(&cpu_data[cpu1]) == cluster) cpumask_set_cpu(cpu1, cpu_map); } int populate_cache_leaves(unsigned int cpu) { struct cpuinfo_mips *c = &current_cpu_data; struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct cacheinfo *this_leaf = this_cpu_ci->info_list; int level = 1; if (c->icache.waysize) { /* I/D caches are per core */ fill_cpumask_siblings(cpu, &this_leaf->shared_cpu_map); populate_cache(dcache, this_leaf, level, CACHE_TYPE_DATA); fill_cpumask_siblings(cpu, &this_leaf->shared_cpu_map); populate_cache(icache, this_leaf, level, CACHE_TYPE_INST); level++; } else { populate_cache(dcache, this_leaf, level, CACHE_TYPE_UNIFIED); level++; } if (c->vcache.waysize) { /* Vcache is per core as well */ fill_cpumask_siblings(cpu, &this_leaf->shared_cpu_map); populate_cache(vcache, this_leaf, level, CACHE_TYPE_UNIFIED); level++; } if (c->scache.waysize) { /* Scache is per cluster */ fill_cpumask_cluster(cpu, &this_leaf->shared_cpu_map); populate_cache(scache, this_leaf, level, CACHE_TYPE_UNIFIED); level++; } if (c->tcache.waysize) populate_cache(tcache, this_leaf, level, CACHE_TYPE_UNIFIED); this_cpu_ci->cpu_map_populated = true; return 0; }
linux-master
arch/mips/kernel/cacheinfo.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. * Copyright (C) 2013 Imagination Technologies Ltd. * * VPE spport module for loading a MIPS SP program into VPE1. The SP * environment is rather simple since there are no TLBs. It needs * to be relocatable (or partiall linked). Initialize your stack in * the startup-code. The loader looks for the symbol __start and sets * up the execution to resume from there. To load and run, simply do * a cat SP 'binary' to the /dev/vpe1 device. */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/vmalloc.h> #include <linux/elf.h> #include <linux/seq_file.h> #include <linux/syscalls.h> #include <linux/moduleloader.h> #include <linux/interrupt.h> #include <linux/poll.h> #include <linux/memblock.h> #include <asm/mipsregs.h> #include <asm/mipsmtregs.h> #include <asm/cacheflush.h> #include <linux/atomic.h> #include <asm/mips_mt.h> #include <asm/processor.h> #include <asm/vpe.h> #ifndef ARCH_SHF_SMALL #define ARCH_SHF_SMALL 0 #endif /* If this is set, the section belongs in the init part of the module */ #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1)) struct vpe_control vpecontrol = { .vpe_list_lock = __SPIN_LOCK_UNLOCKED(vpe_list_lock), .vpe_list = LIST_HEAD_INIT(vpecontrol.vpe_list), .tc_list_lock = __SPIN_LOCK_UNLOCKED(tc_list_lock), .tc_list = LIST_HEAD_INIT(vpecontrol.tc_list) }; /* get the vpe associated with this minor */ struct vpe *get_vpe(int minor) { struct vpe *res, *v; if (!cpu_has_mipsmt) return NULL; res = NULL; spin_lock(&vpecontrol.vpe_list_lock); list_for_each_entry(v, &vpecontrol.vpe_list, list) { if (v->minor == VPE_MODULE_MINOR) { res = v; break; } } spin_unlock(&vpecontrol.vpe_list_lock); return res; } /* get the vpe associated with this minor */ struct tc *get_tc(int index) { struct tc *res, *t; res = NULL; spin_lock(&vpecontrol.tc_list_lock); list_for_each_entry(t, &vpecontrol.tc_list, list) { if (t->index == index) { res = t; break; } } spin_unlock(&vpecontrol.tc_list_lock); return res; } /* allocate a vpe and associate it with this minor (or index) */ struct vpe *alloc_vpe(int minor) { struct vpe *v; v = kzalloc(sizeof(struct vpe), GFP_KERNEL); if (v == NULL) goto out; INIT_LIST_HEAD(&v->tc); spin_lock(&vpecontrol.vpe_list_lock); list_add_tail(&v->list, &vpecontrol.vpe_list); spin_unlock(&vpecontrol.vpe_list_lock); INIT_LIST_HEAD(&v->notify); v->minor = VPE_MODULE_MINOR; out: return v; } /* allocate a tc. At startup only tc0 is running, all other can be halted. */ struct tc *alloc_tc(int index) { struct tc *tc; tc = kzalloc(sizeof(struct tc), GFP_KERNEL); if (tc == NULL) goto out; INIT_LIST_HEAD(&tc->tc); tc->index = index; spin_lock(&vpecontrol.tc_list_lock); list_add_tail(&tc->list, &vpecontrol.tc_list); spin_unlock(&vpecontrol.tc_list_lock); out: return tc; } /* clean up and free everything */ void release_vpe(struct vpe *v) { list_del(&v->list); if (v->load_addr) release_progmem(v->load_addr); kfree(v); } /* Find some VPE program space */ void *alloc_progmem(unsigned long len) { void *addr; #ifdef CONFIG_MIPS_VPE_LOADER_TOM /* * This means you must tell Linux to use less memory than you * physically have, for example by passing a mem= boot argument. */ addr = pfn_to_kaddr(max_low_pfn); memset(addr, 0, len); #else /* simple grab some mem for now */ addr = kzalloc(len, GFP_KERNEL); #endif return addr; } void release_progmem(void *ptr) { #ifndef CONFIG_MIPS_VPE_LOADER_TOM kfree(ptr); #endif } /* Update size with this section: return offset. */ static long get_offset(unsigned long *size, Elf_Shdr *sechdr) { long ret; ret = ALIGN(*size, sechdr->sh_addralign ? : 1); *size = ret + sechdr->sh_size; return ret; } /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld might -- code, read-only data, read-write data, small data. Tally sizes, and place the offsets into sh_entsize fields: high bit means it belongs in init. */ static void layout_sections(struct module *mod, const Elf_Ehdr *hdr, Elf_Shdr *sechdrs, const char *secstrings) { static unsigned long const masks[][2] = { /* NOTE: all executable code must be the first section * in this array; otherwise modify the text_size * finder in the two loops below */ {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL}, {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL}, {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL}, {ARCH_SHF_SMALL | SHF_ALLOC, 0} }; unsigned int m, i; for (i = 0; i < hdr->e_shnum; i++) sechdrs[i].sh_entsize = ~0UL; for (m = 0; m < ARRAY_SIZE(masks); ++m) { for (i = 0; i < hdr->e_shnum; ++i) { Elf_Shdr *s = &sechdrs[i]; struct module_memory *mod_mem; mod_mem = &mod->mem[MOD_TEXT]; if ((s->sh_flags & masks[m][0]) != masks[m][0] || (s->sh_flags & masks[m][1]) || s->sh_entsize != ~0UL) continue; s->sh_entsize = get_offset((unsigned long *)&mod_mem->size, s); } } } /* from module-elf32.c, but subverted a little */ struct mips_hi16 { struct mips_hi16 *next; Elf32_Addr *addr; Elf32_Addr value; }; static struct mips_hi16 *mips_hi16_list; static unsigned int gp_offs, gp_addr; static int apply_r_mips_none(struct module *me, uint32_t *location, Elf32_Addr v) { return 0; } static int apply_r_mips_gprel16(struct module *me, uint32_t *location, Elf32_Addr v) { int rel; if (!(*location & 0xffff)) { rel = (int)v - gp_addr; } else { /* .sbss + gp(relative) + offset */ /* kludge! */ rel = (int)(short)((int)v + gp_offs + (int)(short)(*location & 0xffff) - gp_addr); } if ((rel > 32768) || (rel < -32768)) { pr_debug("VPE loader: apply_r_mips_gprel16: relative address 0x%x out of range of gp register\n", rel); return -ENOEXEC; } *location = (*location & 0xffff0000) | (rel & 0xffff); return 0; } static int apply_r_mips_pc16(struct module *me, uint32_t *location, Elf32_Addr v) { int rel; rel = (((unsigned int)v - (unsigned int)location)); rel >>= 2; /* because the offset is in _instructions_ not bytes. */ rel -= 1; /* and one instruction less due to the branch delay slot. */ if ((rel > 32768) || (rel < -32768)) { pr_debug("VPE loader: apply_r_mips_pc16: relative address out of range 0x%x\n", rel); return -ENOEXEC; } *location = (*location & 0xffff0000) | (rel & 0xffff); return 0; } static int apply_r_mips_32(struct module *me, uint32_t *location, Elf32_Addr v) { *location += v; return 0; } static int apply_r_mips_26(struct module *me, uint32_t *location, Elf32_Addr v) { if (v % 4) { pr_debug("VPE loader: apply_r_mips_26: unaligned relocation\n"); return -ENOEXEC; } /* * Not desperately convinced this is a good check of an overflow condition * anyway. But it gets in the way of handling undefined weak symbols which * we want to set to zero. * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) { * printk(KERN_ERR * "module %s: relocation overflow\n", * me->name); * return -ENOEXEC; * } */ *location = (*location & ~0x03ffffff) | ((*location + (v >> 2)) & 0x03ffffff); return 0; } static int apply_r_mips_hi16(struct module *me, uint32_t *location, Elf32_Addr v) { struct mips_hi16 *n; /* * We cannot relocate this one now because we don't know the value of * the carry we need to add. Save the information, and let LO16 do the * actual relocation. */ n = kmalloc(sizeof(*n), GFP_KERNEL); if (!n) return -ENOMEM; n->addr = location; n->value = v; n->next = mips_hi16_list; mips_hi16_list = n; return 0; } static int apply_r_mips_lo16(struct module *me, uint32_t *location, Elf32_Addr v) { unsigned long insnlo = *location; Elf32_Addr val, vallo; struct mips_hi16 *l, *next; /* Sign extend the addend we extract from the lo insn. */ vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000; if (mips_hi16_list != NULL) { l = mips_hi16_list; while (l != NULL) { unsigned long insn; /* * The value for the HI16 had best be the same. */ if (v != l->value) { pr_debug("VPE loader: apply_r_mips_lo16/hi16: inconsistent value information\n"); goto out_free; } /* * Do the HI16 relocation. Note that we actually don't * need to know anything about the LO16 itself, except * where to find the low 16 bits of the addend needed * by the LO16. */ insn = *l->addr; val = ((insn & 0xffff) << 16) + vallo; val += v; /* * Account for the sign extension that will happen in * the low bits. */ val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff; insn = (insn & ~0xffff) | val; *l->addr = insn; next = l->next; kfree(l); l = next; } mips_hi16_list = NULL; } /* * Ok, we're done with the HI16 relocs. Now deal with the LO16. */ val = v + vallo; insnlo = (insnlo & ~0xffff) | (val & 0xffff); *location = insnlo; return 0; out_free: while (l != NULL) { next = l->next; kfree(l); l = next; } mips_hi16_list = NULL; return -ENOEXEC; } static int (*reloc_handlers[]) (struct module *me, uint32_t *location, Elf32_Addr v) = { [R_MIPS_NONE] = apply_r_mips_none, [R_MIPS_32] = apply_r_mips_32, [R_MIPS_26] = apply_r_mips_26, [R_MIPS_HI16] = apply_r_mips_hi16, [R_MIPS_LO16] = apply_r_mips_lo16, [R_MIPS_GPREL16] = apply_r_mips_gprel16, [R_MIPS_PC16] = apply_r_mips_pc16 }; static char *rstrs[] = { [R_MIPS_NONE] = "MIPS_NONE", [R_MIPS_32] = "MIPS_32", [R_MIPS_26] = "MIPS_26", [R_MIPS_HI16] = "MIPS_HI16", [R_MIPS_LO16] = "MIPS_LO16", [R_MIPS_GPREL16] = "MIPS_GPREL16", [R_MIPS_PC16] = "MIPS_PC16" }; static int apply_relocations(Elf32_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr; Elf32_Sym *sym; uint32_t *location; unsigned int i; Elf32_Addr v; int res; for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { Elf32_Word r_info = rel[i].r_info; /* This is where to make the change */ location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr + rel[i].r_offset; /* This is the symbol it is referring to */ sym = (Elf32_Sym *)sechdrs[symindex].sh_addr + ELF32_R_SYM(r_info); if (!sym->st_value) { pr_debug("%s: undefined weak symbol %s\n", me->name, strtab + sym->st_name); /* just print the warning, dont barf */ } v = sym->st_value; res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v); if (res) { char *r = rstrs[ELF32_R_TYPE(r_info)]; pr_warn("VPE loader: .text+0x%x relocation type %s for symbol \"%s\" failed\n", rel[i].r_offset, r ? r : "UNKNOWN", strtab + sym->st_name); return res; } } return 0; } static inline void save_gp_address(unsigned int secbase, unsigned int rel) { gp_addr = secbase + rel; gp_offs = gp_addr - (secbase & 0xffff0000); } /* end module-elf32.c */ /* Change all symbols so that sh_value encodes the pointer directly. */ static void simplify_symbols(Elf_Shdr *sechdrs, unsigned int symindex, const char *strtab, const char *secstrings, unsigned int nsecs, struct module *mod) { Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; unsigned long secbase, bssbase = 0; unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); int size; /* find the .bss section for COMMON symbols */ for (i = 0; i < nsecs; i++) { if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) { bssbase = sechdrs[i].sh_addr; break; } } for (i = 1; i < n; i++) { switch (sym[i].st_shndx) { case SHN_COMMON: /* Allocate space for the symbol in the .bss section. st_value is currently size. We want it to have the address of the symbol. */ size = sym[i].st_value; sym[i].st_value = bssbase; bssbase += size; break; case SHN_ABS: /* Don't need to do anything */ break; case SHN_UNDEF: /* ret = -ENOENT; */ break; case SHN_MIPS_SCOMMON: pr_debug("simplify_symbols: ignoring SHN_MIPS_SCOMMON symbol <%s> st_shndx %d\n", strtab + sym[i].st_name, sym[i].st_shndx); /* .sbss section */ break; default: secbase = sechdrs[sym[i].st_shndx].sh_addr; if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) save_gp_address(secbase, sym[i].st_value); sym[i].st_value += secbase; break; } } } #ifdef DEBUG_ELFLOADER static void dump_elfsymbols(Elf_Shdr *sechdrs, unsigned int symindex, const char *strtab, struct module *mod) { Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); pr_debug("dump_elfsymbols: n %d\n", n); for (i = 1; i < n; i++) { pr_debug(" i %d name <%s> 0x%x\n", i, strtab + sym[i].st_name, sym[i].st_value); } } #endif static int find_vpe_symbols(struct vpe *v, Elf_Shdr *sechdrs, unsigned int symindex, const char *strtab, struct module *mod) { Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); for (i = 1; i < n; i++) { if (strcmp(strtab + sym[i].st_name, "__start") == 0) v->__start = sym[i].st_value; if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) v->shared_ptr = (void *)sym[i].st_value; } if ((v->__start == 0) || (v->shared_ptr == NULL)) return -1; return 0; } /* * Allocates a VPE with some program code space(the load address), copies the * contents of the program (p)buffer performing relocatations/etc, free's it * when finished. */ static int vpe_elfload(struct vpe *v) { Elf_Ehdr *hdr; Elf_Shdr *sechdrs; long err = 0; char *secstrings, *strtab = NULL; unsigned int len, i, symindex = 0, strindex = 0, relocate = 0; struct module mod; /* so we can re-use the relocations code */ memset(&mod, 0, sizeof(struct module)); strcpy(mod.name, "VPE loader"); hdr = (Elf_Ehdr *) v->pbuffer; len = v->plen; /* Sanity checks against insmoding binaries or wrong arch, weird elf version */ if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0 || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC) || !elf_check_arch(hdr) || hdr->e_shentsize != sizeof(*sechdrs)) { pr_warn("VPE loader: program wrong arch or weird elf version\n"); return -ENOEXEC; } if (hdr->e_type == ET_REL) relocate = 1; if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) { pr_err("VPE loader: program length %u truncated\n", len); return -ENOEXEC; } /* Convenience variables */ sechdrs = (void *)hdr + hdr->e_shoff; secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; sechdrs[0].sh_addr = 0; /* And these should exist, but gcc whinges if we don't init them */ symindex = strindex = 0; if (relocate) { for (i = 1; i < hdr->e_shnum; i++) { if ((sechdrs[i].sh_type != SHT_NOBITS) && (len < sechdrs[i].sh_offset + sechdrs[i].sh_size)) { pr_err("VPE program length %u truncated\n", len); return -ENOEXEC; } /* Mark all sections sh_addr with their address in the temporary image. */ sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset; /* Internal symbols and strings. */ if (sechdrs[i].sh_type == SHT_SYMTAB) { symindex = i; strindex = sechdrs[i].sh_link; strtab = (char *)hdr + sechdrs[strindex].sh_offset; } } layout_sections(&mod, hdr, sechdrs, secstrings); } v->load_addr = alloc_progmem(mod.mem[MOD_TEXT].size); if (!v->load_addr) return -ENOMEM; pr_info("VPE loader: loading to %p\n", v->load_addr); if (relocate) { for (i = 0; i < hdr->e_shnum; i++) { void *dest; if (!(sechdrs[i].sh_flags & SHF_ALLOC)) continue; dest = v->load_addr + sechdrs[i].sh_entsize; if (sechdrs[i].sh_type != SHT_NOBITS) memcpy(dest, (void *)sechdrs[i].sh_addr, sechdrs[i].sh_size); /* Update sh_addr to point to copy in image. */ sechdrs[i].sh_addr = (unsigned long)dest; pr_debug(" section sh_name %s sh_addr 0x%x\n", secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr); } /* Fix up syms, so that st_value is a pointer to location. */ simplify_symbols(sechdrs, symindex, strtab, secstrings, hdr->e_shnum, &mod); /* Now do relocations. */ for (i = 1; i < hdr->e_shnum; i++) { const char *strtab = (char *)sechdrs[strindex].sh_addr; unsigned int info = sechdrs[i].sh_info; /* Not a valid relocation section? */ if (info >= hdr->e_shnum) continue; /* Don't bother with non-allocated sections */ if (!(sechdrs[info].sh_flags & SHF_ALLOC)) continue; if (sechdrs[i].sh_type == SHT_REL) err = apply_relocations(sechdrs, strtab, symindex, i, &mod); else if (sechdrs[i].sh_type == SHT_RELA) err = apply_relocate_add(sechdrs, strtab, symindex, i, &mod); if (err < 0) return err; } } else { struct elf_phdr *phdr = (struct elf_phdr *) ((char *)hdr + hdr->e_phoff); for (i = 0; i < hdr->e_phnum; i++) { if (phdr->p_type == PT_LOAD) { memcpy((void *)phdr->p_paddr, (char *)hdr + phdr->p_offset, phdr->p_filesz); memset((void *)phdr->p_paddr + phdr->p_filesz, 0, phdr->p_memsz - phdr->p_filesz); } phdr++; } for (i = 0; i < hdr->e_shnum; i++) { /* Internal symbols and strings. */ if (sechdrs[i].sh_type == SHT_SYMTAB) { symindex = i; strindex = sechdrs[i].sh_link; strtab = (char *)hdr + sechdrs[strindex].sh_offset; /* * mark symtab's address for when we try * to find the magic symbols */ sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset; } } } /* make sure it's physically written out */ flush_icache_range((unsigned long)v->load_addr, (unsigned long)v->load_addr + v->len); if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) { if (v->__start == 0) { pr_warn("VPE loader: program does not contain a __start symbol\n"); return -ENOEXEC; } if (v->shared_ptr == NULL) pr_warn("VPE loader: program does not contain vpe_shared symbol.\n" " Unable to use AMVP (AP/SP) facilities.\n"); } pr_info(" elf loaded\n"); return 0; } /* checks VPE is unused and gets ready to load program */ static int vpe_open(struct inode *inode, struct file *filp) { enum vpe_state state; struct vpe_notifications *notifier; struct vpe *v; if (VPE_MODULE_MINOR != iminor(inode)) { /* assume only 1 device at the moment. */ pr_warn("VPE loader: only vpe1 is supported\n"); return -ENODEV; } v = get_vpe(aprp_cpu_index()); if (v == NULL) { pr_warn("VPE loader: unable to get vpe\n"); return -ENODEV; } state = xchg(&v->state, VPE_STATE_INUSE); if (state != VPE_STATE_UNUSED) { pr_debug("VPE loader: tc in use dumping regs\n"); list_for_each_entry(notifier, &v->notify, list) notifier->stop(aprp_cpu_index()); release_progmem(v->load_addr); cleanup_tc(get_tc(aprp_cpu_index())); } /* this of-course trashes what was there before... */ v->pbuffer = vmalloc(P_SIZE); if (!v->pbuffer) { pr_warn("VPE loader: unable to allocate memory\n"); return -ENOMEM; } v->plen = P_SIZE; v->load_addr = NULL; v->len = 0; v->shared_ptr = NULL; v->__start = 0; return 0; } static int vpe_release(struct inode *inode, struct file *filp) { #ifdef CONFIG_MIPS_VPE_LOADER_MT struct vpe *v; Elf_Ehdr *hdr; int ret = 0; v = get_vpe(aprp_cpu_index()); if (v == NULL) return -ENODEV; hdr = (Elf_Ehdr *) v->pbuffer; if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) == 0) { if (vpe_elfload(v) >= 0) { vpe_run(v); } else { pr_warn("VPE loader: ELF load failed.\n"); ret = -ENOEXEC; } } else { pr_warn("VPE loader: only elf files are supported\n"); ret = -ENOEXEC; } /* It's good to be able to run the SP and if it chokes have a look at the /dev/rt?. But if we reset the pointer to the shared struct we lose what has happened. So perhaps if garbage is sent to the vpe device, use it as a trigger for the reset. Hopefully a nice executable will be along shortly. */ if (ret < 0) v->shared_ptr = NULL; vfree(v->pbuffer); v->plen = 0; return ret; #else pr_warn("VPE loader: ELF load failed.\n"); return -ENOEXEC; #endif } static ssize_t vpe_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { size_t ret = count; struct vpe *v; if (iminor(file_inode(file)) != VPE_MODULE_MINOR) return -ENODEV; v = get_vpe(aprp_cpu_index()); if (v == NULL) return -ENODEV; if ((count + v->len) > v->plen) { pr_warn("VPE loader: elf size too big. Perhaps strip unneeded symbols\n"); return -ENOMEM; } count -= copy_from_user(v->pbuffer + v->len, buffer, count); if (!count) return -EFAULT; v->len += count; return ret; } const struct file_operations vpe_fops = { .owner = THIS_MODULE, .open = vpe_open, .release = vpe_release, .write = vpe_write, .llseek = noop_llseek, }; void *vpe_get_shared(int index) { struct vpe *v = get_vpe(index); if (v == NULL) return NULL; return v->shared_ptr; } EXPORT_SYMBOL(vpe_get_shared); int vpe_notify(int index, struct vpe_notifications *notify) { struct vpe *v = get_vpe(index); if (v == NULL) return -1; list_add(&notify->list, &v->notify); return 0; } EXPORT_SYMBOL(vpe_notify); module_init(vpe_module_init); module_exit(vpe_module_exit); MODULE_DESCRIPTION("MIPS VPE Loader"); MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc."); MODULE_LICENSE("GPL");
linux-master
arch/mips/kernel/vpe.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2004, 05, 06 MIPS Technologies, Inc. * Elizabeth Clarke ([email protected]) * Ralf Baechle ([email protected]) * Copyright (C) 2006 Ralf Baechle ([email protected]) */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/compiler.h> #include <linux/sched/task_stack.h> #include <linux/smp.h> #include <linux/atomic.h> #include <asm/cacheflush.h> #include <asm/cpu.h> #include <asm/processor.h> #include <asm/hardirq.h> #include <asm/mmu_context.h> #include <asm/time.h> #include <asm/mipsregs.h> #include <asm/mipsmtregs.h> #include <asm/mips_mt.h> #include <asm/mips-cps.h> static void __init smvp_copy_vpe_config(void) { write_vpe_c0_status( (read_c0_status() & ~(ST0_IM | ST0_IE | ST0_KSU)) | ST0_CU0); /* set config to be the same as vpe0, particularly kseg0 coherency alg */ write_vpe_c0_config( read_c0_config()); /* make sure there are no software interrupts pending */ write_vpe_c0_cause(0); /* Propagate Config7 */ write_vpe_c0_config7(read_c0_config7()); write_vpe_c0_count(read_c0_count()); } static unsigned int __init smvp_vpe_init(unsigned int tc, unsigned int mvpconf0, unsigned int ncpu) { if (tc >= smp_max_threads || (tc > ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT))) return ncpu; /* Deactivate all but VPE 0 */ if (tc != 0) { unsigned long tmp = read_vpe_c0_vpeconf0(); tmp &= ~VPECONF0_VPA; /* master VPE */ tmp |= VPECONF0_MVP; write_vpe_c0_vpeconf0(tmp); /* Record this as available CPU */ set_cpu_possible(tc, true); set_cpu_present(tc, true); __cpu_number_map[tc] = ++ncpu; __cpu_logical_map[ncpu] = tc; } /* Disable multi-threading with TC's */ write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE); if (tc != 0) smvp_copy_vpe_config(); cpu_set_vpe_id(&cpu_data[ncpu], tc); return ncpu; } static void __init smvp_tc_init(unsigned int tc, unsigned int mvpconf0) { unsigned long tmp; if (!tc) return; /* bind a TC to each VPE, May as well put all excess TC's on the last VPE */ if (tc >= (((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT)+1)) write_tc_c0_tcbind(read_tc_c0_tcbind() | ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT)); else { write_tc_c0_tcbind(read_tc_c0_tcbind() | tc); /* and set XTC */ write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | (tc << VPECONF0_XTC_SHIFT)); } tmp = read_tc_c0_tcstatus(); /* mark not allocated and not dynamically allocatable */ tmp &= ~(TCSTATUS_A | TCSTATUS_DA); tmp |= TCSTATUS_IXMT; /* interrupt exempt */ write_tc_c0_tcstatus(tmp); write_tc_c0_tchalt(TCHALT_H); } static void vsmp_init_secondary(void) { /* This is Malta specific: IPI,performance and timer interrupts */ if (mips_gic_present()) change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 | STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7); else change_c0_status(ST0_IM, STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP6 | STATUSF_IP7); } static void vsmp_smp_finish(void) { /* CDFIXME: remove this? */ write_c0_compare(read_c0_count() + (8* mips_hpt_frequency/HZ)); #ifdef CONFIG_MIPS_MT_FPAFF /* If we have an FPU, enroll ourselves in the FPU-full mask */ if (cpu_has_fpu) cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask); #endif /* CONFIG_MIPS_MT_FPAFF */ local_irq_enable(); } /* * Setup the PC, SP, and GP of a secondary processor and start it * running! * smp_bootstrap is the place to resume from * __KSTK_TOS(idle) is apparently the stack pointer * (unsigned long)idle->thread_info the gp * assumes a 1:1 mapping of TC => VPE */ static int vsmp_boot_secondary(int cpu, struct task_struct *idle) { struct thread_info *gp = task_thread_info(idle); dvpe(); set_c0_mvpcontrol(MVPCONTROL_VPC); settc(cpu); /* restart */ write_tc_c0_tcrestart((unsigned long)&smp_bootstrap); /* enable the tc this vpe/cpu will be running */ write_tc_c0_tcstatus((read_tc_c0_tcstatus() & ~TCSTATUS_IXMT) | TCSTATUS_A); write_tc_c0_tchalt(0); /* enable the VPE */ write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA); /* stack pointer */ write_tc_gpr_sp( __KSTK_TOS(idle)); /* global pointer */ write_tc_gpr_gp((unsigned long)gp); flush_icache_range((unsigned long)gp, (unsigned long)(gp + sizeof(struct thread_info))); /* finally out of configuration and into chaos */ clear_c0_mvpcontrol(MVPCONTROL_VPC); evpe(EVPE_ENABLE); return 0; } /* * Common setup before any secondaries are started * Make sure all CPU's are in a sensible state before we boot any of the * secondaries */ static void __init vsmp_smp_setup(void) { unsigned int mvpconf0, ntc, tc, ncpu = 0; unsigned int nvpe; #ifdef CONFIG_MIPS_MT_FPAFF /* If we have an FPU, enroll ourselves in the FPU-full mask */ if (cpu_has_fpu) cpumask_set_cpu(0, &mt_fpu_cpumask); #endif /* CONFIG_MIPS_MT_FPAFF */ if (!cpu_has_mipsmt) return; /* disable MT so we can configure */ dvpe(); dmt(); /* Put MVPE's into 'configuration state' */ set_c0_mvpcontrol(MVPCONTROL_VPC); mvpconf0 = read_c0_mvpconf0(); ntc = (mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT; nvpe = ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1; smp_num_siblings = nvpe; /* we'll always have more TC's than VPE's, so loop setting everything to a sensible state */ for (tc = 0; tc <= ntc; tc++) { settc(tc); smvp_tc_init(tc, mvpconf0); ncpu = smvp_vpe_init(tc, mvpconf0, ncpu); } /* Release config state */ clear_c0_mvpcontrol(MVPCONTROL_VPC); /* We'll wait until starting the secondaries before starting MVPE */ printk(KERN_INFO "Detected %i available secondary CPU(s)\n", ncpu); } static void __init vsmp_prepare_cpus(unsigned int max_cpus) { mips_mt_set_cpuoptions(); } const struct plat_smp_ops vsmp_smp_ops = { .send_ipi_single = mips_smp_send_ipi_single, .send_ipi_mask = mips_smp_send_ipi_mask, .init_secondary = vsmp_init_secondary, .smp_finish = vsmp_smp_finish, .boot_secondary = vsmp_boot_secondary, .smp_setup = vsmp_smp_setup, .prepare_cpus = vsmp_prepare_cpus, };
linux-master
arch/mips/kernel/smp-mt.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2014 Imagination Technologies Ltd. * * CPU PM notifiers for saving/restoring general CPU state. */ #include <linux/cpu_pm.h> #include <linux/init.h> #include <asm/dsp.h> #include <asm/fpu.h> #include <asm/mmu_context.h> #include <asm/pm.h> #include <asm/watch.h> /* Used by PM helper macros in asm/pm.h */ struct mips_static_suspend_state mips_static_suspend_state; /** * mips_cpu_save() - Save general CPU state. * Ensures that general CPU context is saved, notably FPU and DSP. */ static int mips_cpu_save(void) { /* Save FPU state */ lose_fpu(1); /* Save DSP state */ save_dsp(current); return 0; } /** * mips_cpu_restore() - Restore general CPU state. * Restores important CPU context. */ static void mips_cpu_restore(void) { unsigned int cpu = smp_processor_id(); /* Restore ASID */ if (current->mm) write_c0_entryhi(cpu_asid(cpu, current->mm)); /* Restore DSP state */ restore_dsp(current); /* Restore UserLocal */ if (cpu_has_userlocal) write_c0_userlocal(current_thread_info()->tp_value); /* Restore watch registers */ __restore_watch(current); } /** * mips_pm_notifier() - Notifier for preserving general CPU context. * @self: Notifier block. * @cmd: CPU PM event. * @v: Private data (unused). * * This is called when a CPU power management event occurs, and is used to * ensure that important CPU context is preserved across a CPU power down. */ static int mips_pm_notifier(struct notifier_block *self, unsigned long cmd, void *v) { int ret; switch (cmd) { case CPU_PM_ENTER: ret = mips_cpu_save(); if (ret) return NOTIFY_STOP; break; case CPU_PM_ENTER_FAILED: case CPU_PM_EXIT: mips_cpu_restore(); break; } return NOTIFY_OK; } static struct notifier_block mips_pm_notifier_block = { .notifier_call = mips_pm_notifier, }; static int __init mips_pm_init(void) { return cpu_pm_register_notifier(&mips_pm_notifier_block); } arch_initcall(mips_pm_init);
linux-master
arch/mips/kernel/pm.c
/* * Handle unaligned accesses by emulation. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle * Copyright (C) 1999 Silicon Graphics, Inc. * Copyright (C) 2014 Imagination Technologies Ltd. * * This file contains exception handler for address error exception with the * special capability to execute faulting instructions in software. The * handler does not try to handle the case when the program counter points * to an address not aligned to a word boundary. * * Putting data to unaligned addresses is a bad practice even on Intel where * only the performance is affected. Much worse is that such code is non- * portable. Due to several programs that die on MIPS due to alignment * problems I decided to implement this handler anyway though I originally * didn't intend to do this at all for user code. * * For now I enable fixing of address errors by default to make life easier. * I however intend to disable this somewhen in the future when the alignment * problems with user programs have been fixed. For programmers this is the * right way to go. * * Fixing address errors is a per process option. The option is inherited * across fork(2) and execve(2) calls. If you really want to use the * option in your user programs - I discourage the use of the software * emulation strongly - use the following code in your userland stuff: * * #include <sys/sysmips.h> * * ... * sysmips(MIPS_FIXADE, x); * ... * * The argument x is 0 for disabling software emulation, enabled otherwise. * * Below a little program to play around with this feature. * * #include <stdio.h> * #include <sys/sysmips.h> * * struct foo { * unsigned char bar[8]; * }; * * main(int argc, char *argv[]) * { * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7}; * unsigned int *p = (unsigned int *) (x.bar + 3); * int i; * * if (argc > 1) * sysmips(MIPS_FIXADE, atoi(argv[1])); * * printf("*p = %08lx\n", *p); * * *p = 0xdeadface; * * for(i = 0; i <= 7; i++) * printf("%02x ", x.bar[i]); * printf("\n"); * } * * Coprocessor loads are not supported; I think this case is unimportant * in the practice. * * TODO: Handle ndc (attempted store to doubleword in uncached memory) * exception for the R6000. * A store crossing a page boundary might be executed only partially. * Undo the partial store in this case. */ #include <linux/context_tracking.h> #include <linux/mm.h> #include <linux/signal.h> #include <linux/smp.h> #include <linux/sched.h> #include <linux/debugfs.h> #include <linux/perf_event.h> #include <asm/asm.h> #include <asm/branch.h> #include <asm/byteorder.h> #include <asm/cop2.h> #include <asm/debug.h> #include <asm/fpu.h> #include <asm/fpu_emulator.h> #include <asm/inst.h> #include <asm/unaligned-emul.h> #include <asm/mmu_context.h> #include <linux/uaccess.h> #include "access-helper.h" enum { UNALIGNED_ACTION_QUIET, UNALIGNED_ACTION_SIGNAL, UNALIGNED_ACTION_SHOW, }; #ifdef CONFIG_DEBUG_FS static u32 unaligned_instructions; static u32 unaligned_action; #else #define unaligned_action UNALIGNED_ACTION_QUIET #endif extern void show_registers(struct pt_regs *regs); static void emulate_load_store_insn(struct pt_regs *regs, void __user *addr, unsigned int *pc) { unsigned long origpc, orig31, value; union mips_instruction insn; unsigned int res; bool user = user_mode(regs); origpc = (unsigned long)pc; orig31 = regs->regs[31]; perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); /* * This load never faults. */ __get_inst32(&insn.word, pc, user); switch (insn.i_format.opcode) { /* * These are instructions that a compiler doesn't generate. We * can assume therefore that the code is MIPS-aware and * really buggy. Emulating these instructions would break the * semantics anyway. */ case ll_op: case lld_op: case sc_op: case scd_op: /* * For these instructions the only way to create an address * error is an attempted access to kernel/supervisor address * space. */ case ldl_op: case ldr_op: case lwl_op: case lwr_op: case sdl_op: case sdr_op: case swl_op: case swr_op: case lb_op: case lbu_op: case sb_op: goto sigbus; /* * The remaining opcodes are the ones that are really of * interest. */ #ifdef CONFIG_MACH_INGENIC case spec2_op: if (insn.mxu_lx_format.func != mxu_lx_op) goto sigbus; /* other MXU instructions we don't care */ switch (insn.mxu_lx_format.op) { case mxu_lxw_op: if (user && !access_ok(addr, 4)) goto sigbus; LoadW(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.mxu_lx_format.rd] = value; break; case mxu_lxh_op: if (user && !access_ok(addr, 2)) goto sigbus; LoadHW(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.dsp_format.rd] = value; break; case mxu_lxhu_op: if (user && !access_ok(addr, 2)) goto sigbus; LoadHWU(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.dsp_format.rd] = value; break; case mxu_lxb_op: case mxu_lxbu_op: goto sigbus; default: goto sigill; } break; #endif case spec3_op: if (insn.dsp_format.func == lx_op) { switch (insn.dsp_format.op) { case lwx_op: if (user && !access_ok(addr, 4)) goto sigbus; LoadW(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.dsp_format.rd] = value; break; case lhx_op: if (user && !access_ok(addr, 2)) goto sigbus; LoadHW(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.dsp_format.rd] = value; break; default: goto sigill; } } #ifdef CONFIG_EVA else { /* * we can land here only from kernel accessing user * memory, so we need to "switch" the address limit to * user space, so that address check can work properly. */ switch (insn.spec3_format.func) { case lhe_op: if (!access_ok(addr, 2)) goto sigbus; LoadHWE(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.spec3_format.rt] = value; break; case lwe_op: if (!access_ok(addr, 4)) goto sigbus; LoadWE(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.spec3_format.rt] = value; break; case lhue_op: if (!access_ok(addr, 2)) goto sigbus; LoadHWUE(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.spec3_format.rt] = value; break; case she_op: if (!access_ok(addr, 2)) goto sigbus; compute_return_epc(regs); value = regs->regs[insn.spec3_format.rt]; StoreHWE(addr, value, res); if (res) goto fault; break; case swe_op: if (!access_ok(addr, 4)) goto sigbus; compute_return_epc(regs); value = regs->regs[insn.spec3_format.rt]; StoreWE(addr, value, res); if (res) goto fault; break; default: goto sigill; } } #endif break; case lh_op: if (user && !access_ok(addr, 2)) goto sigbus; if (IS_ENABLED(CONFIG_EVA) && user) LoadHWE(addr, value, res); else LoadHW(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.i_format.rt] = value; break; case lw_op: if (user && !access_ok(addr, 4)) goto sigbus; if (IS_ENABLED(CONFIG_EVA) && user) LoadWE(addr, value, res); else LoadW(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.i_format.rt] = value; break; case lhu_op: if (user && !access_ok(addr, 2)) goto sigbus; if (IS_ENABLED(CONFIG_EVA) && user) LoadHWUE(addr, value, res); else LoadHWU(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.i_format.rt] = value; break; case lwu_op: #ifdef CONFIG_64BIT /* * A 32-bit kernel might be running on a 64-bit processor. But * if we're on a 32-bit processor and an i-cache incoherency * or race makes us see a 64-bit instruction here the sdl/sdr * would blow up, so for now we don't handle unaligned 64-bit * instructions on 32-bit kernels. */ if (user && !access_ok(addr, 4)) goto sigbus; LoadWU(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.i_format.rt] = value; break; #endif /* CONFIG_64BIT */ /* Cannot handle 64-bit instructions in 32-bit kernel */ goto sigill; case ld_op: #ifdef CONFIG_64BIT /* * A 32-bit kernel might be running on a 64-bit processor. But * if we're on a 32-bit processor and an i-cache incoherency * or race makes us see a 64-bit instruction here the sdl/sdr * would blow up, so for now we don't handle unaligned 64-bit * instructions on 32-bit kernels. */ if (user && !access_ok(addr, 8)) goto sigbus; LoadDW(addr, value, res); if (res) goto fault; compute_return_epc(regs); regs->regs[insn.i_format.rt] = value; break; #endif /* CONFIG_64BIT */ /* Cannot handle 64-bit instructions in 32-bit kernel */ goto sigill; case sh_op: if (user && !access_ok(addr, 2)) goto sigbus; compute_return_epc(regs); value = regs->regs[insn.i_format.rt]; if (IS_ENABLED(CONFIG_EVA) && user) StoreHWE(addr, value, res); else StoreHW(addr, value, res); if (res) goto fault; break; case sw_op: if (user && !access_ok(addr, 4)) goto sigbus; compute_return_epc(regs); value = regs->regs[insn.i_format.rt]; if (IS_ENABLED(CONFIG_EVA) && user) StoreWE(addr, value, res); else StoreW(addr, value, res); if (res) goto fault; break; case sd_op: #ifdef CONFIG_64BIT /* * A 32-bit kernel might be running on a 64-bit processor. But * if we're on a 32-bit processor and an i-cache incoherency * or race makes us see a 64-bit instruction here the sdl/sdr * would blow up, so for now we don't handle unaligned 64-bit * instructions on 32-bit kernels. */ if (user && !access_ok(addr, 8)) goto sigbus; compute_return_epc(regs); value = regs->regs[insn.i_format.rt]; StoreDW(addr, value, res); if (res) goto fault; break; #endif /* CONFIG_64BIT */ /* Cannot handle 64-bit instructions in 32-bit kernel */ goto sigill; #ifdef CONFIG_MIPS_FP_SUPPORT case lwc1_op: case ldc1_op: case swc1_op: case sdc1_op: case cop1x_op: { void __user *fault_addr = NULL; die_if_kernel("Unaligned FP access in kernel code", regs); BUG_ON(!used_math()); res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1, &fault_addr); own_fpu(1); /* Restore FPU state. */ /* Signal if something went wrong. */ process_fpemu_return(res, fault_addr, 0); if (res == 0) break; return; } #endif /* CONFIG_MIPS_FP_SUPPORT */ #ifdef CONFIG_CPU_HAS_MSA case msa_op: { unsigned int wd, preempted; enum msa_2b_fmt df; union fpureg *fpr; if (!cpu_has_msa) goto sigill; /* * If we've reached this point then userland should have taken * the MSA disabled exception & initialised vector context at * some point in the past. */ BUG_ON(!thread_msa_context_live()); df = insn.msa_mi10_format.df; wd = insn.msa_mi10_format.wd; fpr = &current->thread.fpu.fpr[wd]; switch (insn.msa_mi10_format.func) { case msa_ld_op: if (!access_ok(addr, sizeof(*fpr))) goto sigbus; do { /* * If we have live MSA context keep track of * whether we get preempted in order to avoid * the register context we load being clobbered * by the live context as it's saved during * preemption. If we don't have live context * then it can't be saved to clobber the value * we load. */ preempted = test_thread_flag(TIF_USEDMSA); res = __copy_from_user_inatomic(fpr, addr, sizeof(*fpr)); if (res) goto fault; /* * Update the hardware register if it is in use * by the task in this quantum, in order to * avoid having to save & restore the whole * vector context. */ preempt_disable(); if (test_thread_flag(TIF_USEDMSA)) { write_msa_wr(wd, fpr, df); preempted = 0; } preempt_enable(); } while (preempted); break; case msa_st_op: if (!access_ok(addr, sizeof(*fpr))) goto sigbus; /* * Update from the hardware register if it is in use by * the task in this quantum, in order to avoid having to * save & restore the whole vector context. */ preempt_disable(); if (test_thread_flag(TIF_USEDMSA)) read_msa_wr(wd, fpr, df); preempt_enable(); res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr)); if (res) goto fault; break; default: goto sigbus; } compute_return_epc(regs); break; } #endif /* CONFIG_CPU_HAS_MSA */ #ifndef CONFIG_CPU_MIPSR6 /* * COP2 is available to implementor for application specific use. * It's up to applications to register a notifier chain and do * whatever they have to do, including possible sending of signals. * * This instruction has been reallocated in Release 6 */ case lwc2_op: cu2_notifier_call_chain(CU2_LWC2_OP, regs); break; case ldc2_op: cu2_notifier_call_chain(CU2_LDC2_OP, regs); break; case swc2_op: cu2_notifier_call_chain(CU2_SWC2_OP, regs); break; case sdc2_op: cu2_notifier_call_chain(CU2_SDC2_OP, regs); break; #endif default: /* * Pheeee... We encountered an yet unknown instruction or * cache coherence problem. Die sucker, die ... */ goto sigill; } #ifdef CONFIG_DEBUG_FS unaligned_instructions++; #endif return; fault: /* roll back jump/branch */ regs->cp0_epc = origpc; regs->regs[31] = orig31; /* Did we have an exception handler installed? */ if (fixup_exception(regs)) return; die_if_kernel("Unhandled kernel unaligned access", regs); force_sig(SIGSEGV); return; sigbus: die_if_kernel("Unhandled kernel unaligned access", regs); force_sig(SIGBUS); return; sigill: die_if_kernel ("Unhandled kernel unaligned access or invalid instruction", regs); force_sig(SIGILL); } /* Recode table from 16-bit register notation to 32-bit GPR. */ const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 }; /* Recode table from 16-bit STORE register notation to 32-bit GPR. */ static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 }; static void emulate_load_store_microMIPS(struct pt_regs *regs, void __user *addr) { unsigned long value; unsigned int res; int i; unsigned int reg = 0, rvar; unsigned long orig31; u16 __user *pc16; u16 halfword; unsigned int word; unsigned long origpc, contpc; union mips_instruction insn; struct mm_decoded_insn mminsn; bool user = user_mode(regs); origpc = regs->cp0_epc; orig31 = regs->regs[31]; mminsn.micro_mips_mode = 1; /* * This load never faults. */ pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc); __get_user(halfword, pc16); pc16++; contpc = regs->cp0_epc + 2; word = ((unsigned int)halfword << 16); mminsn.pc_inc = 2; if (!mm_insn_16bit(halfword)) { __get_user(halfword, pc16); pc16++; contpc = regs->cp0_epc + 4; mminsn.pc_inc = 4; word |= halfword; } mminsn.insn = word; if (get_user(halfword, pc16)) goto fault; mminsn.next_pc_inc = 2; word = ((unsigned int)halfword << 16); if (!mm_insn_16bit(halfword)) { pc16++; if (get_user(halfword, pc16)) goto fault; mminsn.next_pc_inc = 4; word |= halfword; } mminsn.next_insn = word; insn = (union mips_instruction)(mminsn.insn); if (mm_isBranchInstr(regs, mminsn, &contpc)) insn = (union mips_instruction)(mminsn.next_insn); /* Parse instruction to find what to do */ switch (insn.mm_i_format.opcode) { case mm_pool32a_op: switch (insn.mm_x_format.func) { case mm_lwxs_op: reg = insn.mm_x_format.rd; goto loadW; } goto sigbus; case mm_pool32b_op: switch (insn.mm_m_format.func) { case mm_lwp_func: reg = insn.mm_m_format.rd; if (reg == 31) goto sigbus; if (user && !access_ok(addr, 8)) goto sigbus; LoadW(addr, value, res); if (res) goto fault; regs->regs[reg] = value; addr += 4; LoadW(addr, value, res); if (res) goto fault; regs->regs[reg + 1] = value; goto success; case mm_swp_func: reg = insn.mm_m_format.rd; if (reg == 31) goto sigbus; if (user && !access_ok(addr, 8)) goto sigbus; value = regs->regs[reg]; StoreW(addr, value, res); if (res) goto fault; addr += 4; value = regs->regs[reg + 1]; StoreW(addr, value, res); if (res) goto fault; goto success; case mm_ldp_func: #ifdef CONFIG_64BIT reg = insn.mm_m_format.rd; if (reg == 31) goto sigbus; if (user && !access_ok(addr, 16)) goto sigbus; LoadDW(addr, value, res); if (res) goto fault; regs->regs[reg] = value; addr += 8; LoadDW(addr, value, res); if (res) goto fault; regs->regs[reg + 1] = value; goto success; #endif /* CONFIG_64BIT */ goto sigill; case mm_sdp_func: #ifdef CONFIG_64BIT reg = insn.mm_m_format.rd; if (reg == 31) goto sigbus; if (user && !access_ok(addr, 16)) goto sigbus; value = regs->regs[reg]; StoreDW(addr, value, res); if (res) goto fault; addr += 8; value = regs->regs[reg + 1]; StoreDW(addr, value, res); if (res) goto fault; goto success; #endif /* CONFIG_64BIT */ goto sigill; case mm_lwm32_func: reg = insn.mm_m_format.rd; rvar = reg & 0xf; if ((rvar > 9) || !reg) goto sigill; if (reg & 0x10) { if (user && !access_ok(addr, 4 * (rvar + 1))) goto sigbus; } else { if (user && !access_ok(addr, 4 * rvar)) goto sigbus; } if (rvar == 9) rvar = 8; for (i = 16; rvar; rvar--, i++) { LoadW(addr, value, res); if (res) goto fault; addr += 4; regs->regs[i] = value; } if ((reg & 0xf) == 9) { LoadW(addr, value, res); if (res) goto fault; addr += 4; regs->regs[30] = value; } if (reg & 0x10) { LoadW(addr, value, res); if (res) goto fault; regs->regs[31] = value; } goto success; case mm_swm32_func: reg = insn.mm_m_format.rd; rvar = reg & 0xf; if ((rvar > 9) || !reg) goto sigill; if (reg & 0x10) { if (user && !access_ok(addr, 4 * (rvar + 1))) goto sigbus; } else { if (user && !access_ok(addr, 4 * rvar)) goto sigbus; } if (rvar == 9) rvar = 8; for (i = 16; rvar; rvar--, i++) { value = regs->regs[i]; StoreW(addr, value, res); if (res) goto fault; addr += 4; } if ((reg & 0xf) == 9) { value = regs->regs[30]; StoreW(addr, value, res); if (res) goto fault; addr += 4; } if (reg & 0x10) { value = regs->regs[31]; StoreW(addr, value, res); if (res) goto fault; } goto success; case mm_ldm_func: #ifdef CONFIG_64BIT reg = insn.mm_m_format.rd; rvar = reg & 0xf; if ((rvar > 9) || !reg) goto sigill; if (reg & 0x10) { if (user && !access_ok(addr, 8 * (rvar + 1))) goto sigbus; } else { if (user && !access_ok(addr, 8 * rvar)) goto sigbus; } if (rvar == 9) rvar = 8; for (i = 16; rvar; rvar--, i++) { LoadDW(addr, value, res); if (res) goto fault; addr += 4; regs->regs[i] = value; } if ((reg & 0xf) == 9) { LoadDW(addr, value, res); if (res) goto fault; addr += 8; regs->regs[30] = value; } if (reg & 0x10) { LoadDW(addr, value, res); if (res) goto fault; regs->regs[31] = value; } goto success; #endif /* CONFIG_64BIT */ goto sigill; case mm_sdm_func: #ifdef CONFIG_64BIT reg = insn.mm_m_format.rd; rvar = reg & 0xf; if ((rvar > 9) || !reg) goto sigill; if (reg & 0x10) { if (user && !access_ok(addr, 8 * (rvar + 1))) goto sigbus; } else { if (user && !access_ok(addr, 8 * rvar)) goto sigbus; } if (rvar == 9) rvar = 8; for (i = 16; rvar; rvar--, i++) { value = regs->regs[i]; StoreDW(addr, value, res); if (res) goto fault; addr += 8; } if ((reg & 0xf) == 9) { value = regs->regs[30]; StoreDW(addr, value, res); if (res) goto fault; addr += 8; } if (reg & 0x10) { value = regs->regs[31]; StoreDW(addr, value, res); if (res) goto fault; } goto success; #endif /* CONFIG_64BIT */ goto sigill; /* LWC2, SWC2, LDC2, SDC2 are not serviced */ } goto sigbus; case mm_pool32c_op: switch (insn.mm_m_format.func) { case mm_lwu_func: reg = insn.mm_m_format.rd; goto loadWU; } /* LL,SC,LLD,SCD are not serviced */ goto sigbus; #ifdef CONFIG_MIPS_FP_SUPPORT case mm_pool32f_op: switch (insn.mm_x_format.func) { case mm_lwxc1_func: case mm_swxc1_func: case mm_ldxc1_func: case mm_sdxc1_func: goto fpu_emul; } goto sigbus; case mm_ldc132_op: case mm_sdc132_op: case mm_lwc132_op: case mm_swc132_op: { void __user *fault_addr = NULL; fpu_emul: /* roll back jump/branch */ regs->cp0_epc = origpc; regs->regs[31] = orig31; die_if_kernel("Unaligned FP access in kernel code", regs); BUG_ON(!used_math()); BUG_ON(!is_fpu_owner()); res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1, &fault_addr); own_fpu(1); /* restore FPU state */ /* If something went wrong, signal */ process_fpemu_return(res, fault_addr, 0); if (res == 0) goto success; return; } #endif /* CONFIG_MIPS_FP_SUPPORT */ case mm_lh32_op: reg = insn.mm_i_format.rt; goto loadHW; case mm_lhu32_op: reg = insn.mm_i_format.rt; goto loadHWU; case mm_lw32_op: reg = insn.mm_i_format.rt; goto loadW; case mm_sh32_op: reg = insn.mm_i_format.rt; goto storeHW; case mm_sw32_op: reg = insn.mm_i_format.rt; goto storeW; case mm_ld32_op: reg = insn.mm_i_format.rt; goto loadDW; case mm_sd32_op: reg = insn.mm_i_format.rt; goto storeDW; case mm_pool16c_op: switch (insn.mm16_m_format.func) { case mm_lwm16_op: reg = insn.mm16_m_format.rlist; rvar = reg + 1; if (user && !access_ok(addr, 4 * rvar)) goto sigbus; for (i = 16; rvar; rvar--, i++) { LoadW(addr, value, res); if (res) goto fault; addr += 4; regs->regs[i] = value; } LoadW(addr, value, res); if (res) goto fault; regs->regs[31] = value; goto success; case mm_swm16_op: reg = insn.mm16_m_format.rlist; rvar = reg + 1; if (user && !access_ok(addr, 4 * rvar)) goto sigbus; for (i = 16; rvar; rvar--, i++) { value = regs->regs[i]; StoreW(addr, value, res); if (res) goto fault; addr += 4; } value = regs->regs[31]; StoreW(addr, value, res); if (res) goto fault; goto success; } goto sigbus; case mm_lhu16_op: reg = reg16to32[insn.mm16_rb_format.rt]; goto loadHWU; case mm_lw16_op: reg = reg16to32[insn.mm16_rb_format.rt]; goto loadW; case mm_sh16_op: reg = reg16to32st[insn.mm16_rb_format.rt]; goto storeHW; case mm_sw16_op: reg = reg16to32st[insn.mm16_rb_format.rt]; goto storeW; case mm_lwsp16_op: reg = insn.mm16_r5_format.rt; goto loadW; case mm_swsp16_op: reg = insn.mm16_r5_format.rt; goto storeW; case mm_lwgp16_op: reg = reg16to32[insn.mm16_r3_format.rt]; goto loadW; default: goto sigill; } loadHW: if (user && !access_ok(addr, 2)) goto sigbus; LoadHW(addr, value, res); if (res) goto fault; regs->regs[reg] = value; goto success; loadHWU: if (user && !access_ok(addr, 2)) goto sigbus; LoadHWU(addr, value, res); if (res) goto fault; regs->regs[reg] = value; goto success; loadW: if (user && !access_ok(addr, 4)) goto sigbus; LoadW(addr, value, res); if (res) goto fault; regs->regs[reg] = value; goto success; loadWU: #ifdef CONFIG_64BIT /* * A 32-bit kernel might be running on a 64-bit processor. But * if we're on a 32-bit processor and an i-cache incoherency * or race makes us see a 64-bit instruction here the sdl/sdr * would blow up, so for now we don't handle unaligned 64-bit * instructions on 32-bit kernels. */ if (user && !access_ok(addr, 4)) goto sigbus; LoadWU(addr, value, res); if (res) goto fault; regs->regs[reg] = value; goto success; #endif /* CONFIG_64BIT */ /* Cannot handle 64-bit instructions in 32-bit kernel */ goto sigill; loadDW: #ifdef CONFIG_64BIT /* * A 32-bit kernel might be running on a 64-bit processor. But * if we're on a 32-bit processor and an i-cache incoherency * or race makes us see a 64-bit instruction here the sdl/sdr * would blow up, so for now we don't handle unaligned 64-bit * instructions on 32-bit kernels. */ if (user && !access_ok(addr, 8)) goto sigbus; LoadDW(addr, value, res); if (res) goto fault; regs->regs[reg] = value; goto success; #endif /* CONFIG_64BIT */ /* Cannot handle 64-bit instructions in 32-bit kernel */ goto sigill; storeHW: if (user && !access_ok(addr, 2)) goto sigbus; value = regs->regs[reg]; StoreHW(addr, value, res); if (res) goto fault; goto success; storeW: if (user && !access_ok(addr, 4)) goto sigbus; value = regs->regs[reg]; StoreW(addr, value, res); if (res) goto fault; goto success; storeDW: #ifdef CONFIG_64BIT /* * A 32-bit kernel might be running on a 64-bit processor. But * if we're on a 32-bit processor and an i-cache incoherency * or race makes us see a 64-bit instruction here the sdl/sdr * would blow up, so for now we don't handle unaligned 64-bit * instructions on 32-bit kernels. */ if (user && !access_ok(addr, 8)) goto sigbus; value = regs->regs[reg]; StoreDW(addr, value, res); if (res) goto fault; goto success; #endif /* CONFIG_64BIT */ /* Cannot handle 64-bit instructions in 32-bit kernel */ goto sigill; success: regs->cp0_epc = contpc; /* advance or branch */ #ifdef CONFIG_DEBUG_FS unaligned_instructions++; #endif return; fault: /* roll back jump/branch */ regs->cp0_epc = origpc; regs->regs[31] = orig31; /* Did we have an exception handler installed? */ if (fixup_exception(regs)) return; die_if_kernel("Unhandled kernel unaligned access", regs); force_sig(SIGSEGV); return; sigbus: die_if_kernel("Unhandled kernel unaligned access", regs); force_sig(SIGBUS); return; sigill: die_if_kernel ("Unhandled kernel unaligned access or invalid instruction", regs); force_sig(SIGILL); } static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr) { unsigned long value; unsigned int res; int reg; unsigned long orig31; u16 __user *pc16; unsigned long origpc; union mips16e_instruction mips16inst, oldinst; unsigned int opcode; int extended = 0; bool user = user_mode(regs); origpc = regs->cp0_epc; orig31 = regs->regs[31]; pc16 = (unsigned short __user *)msk_isa16_mode(origpc); /* * This load never faults. */ __get_user(mips16inst.full, pc16); oldinst = mips16inst; /* skip EXTEND instruction */ if (mips16inst.ri.opcode == MIPS16e_extend_op) { extended = 1; pc16++; __get_user(mips16inst.full, pc16); } else if (delay_slot(regs)) { /* skip jump instructions */ /* JAL/JALX are 32 bits but have OPCODE in first short int */ if (mips16inst.ri.opcode == MIPS16e_jal_op) pc16++; pc16++; if (get_user(mips16inst.full, pc16)) goto sigbus; } opcode = mips16inst.ri.opcode; switch (opcode) { case MIPS16e_i64_op: /* I64 or RI64 instruction */ switch (mips16inst.i64.func) { /* I64/RI64 func field check */ case MIPS16e_ldpc_func: case MIPS16e_ldsp_func: reg = reg16to32[mips16inst.ri64.ry]; goto loadDW; case MIPS16e_sdsp_func: reg = reg16to32[mips16inst.ri64.ry]; goto writeDW; case MIPS16e_sdrasp_func: reg = 29; /* GPRSP */ goto writeDW; } goto sigbus; case MIPS16e_swsp_op: reg = reg16to32[mips16inst.ri.rx]; if (extended && cpu_has_mips16e2) switch (mips16inst.ri.imm >> 5) { case 0: /* SWSP */ case 1: /* SWGP */ break; case 2: /* SHGP */ opcode = MIPS16e_sh_op; break; default: goto sigbus; } break; case MIPS16e_lwpc_op: reg = reg16to32[mips16inst.ri.rx]; break; case MIPS16e_lwsp_op: reg = reg16to32[mips16inst.ri.rx]; if (extended && cpu_has_mips16e2) switch (mips16inst.ri.imm >> 5) { case 0: /* LWSP */ case 1: /* LWGP */ break; case 2: /* LHGP */ opcode = MIPS16e_lh_op; break; case 4: /* LHUGP */ opcode = MIPS16e_lhu_op; break; default: goto sigbus; } break; case MIPS16e_i8_op: if (mips16inst.i8.func != MIPS16e_swrasp_func) goto sigbus; reg = 29; /* GPRSP */ break; default: reg = reg16to32[mips16inst.rri.ry]; break; } switch (opcode) { case MIPS16e_lb_op: case MIPS16e_lbu_op: case MIPS16e_sb_op: goto sigbus; case MIPS16e_lh_op: if (user && !access_ok(addr, 2)) goto sigbus; LoadHW(addr, value, res); if (res) goto fault; MIPS16e_compute_return_epc(regs, &oldinst); regs->regs[reg] = value; break; case MIPS16e_lhu_op: if (user && !access_ok(addr, 2)) goto sigbus; LoadHWU(addr, value, res); if (res) goto fault; MIPS16e_compute_return_epc(regs, &oldinst); regs->regs[reg] = value; break; case MIPS16e_lw_op: case MIPS16e_lwpc_op: case MIPS16e_lwsp_op: if (user && !access_ok(addr, 4)) goto sigbus; LoadW(addr, value, res); if (res) goto fault; MIPS16e_compute_return_epc(regs, &oldinst); regs->regs[reg] = value; break; case MIPS16e_lwu_op: #ifdef CONFIG_64BIT /* * A 32-bit kernel might be running on a 64-bit processor. But * if we're on a 32-bit processor and an i-cache incoherency * or race makes us see a 64-bit instruction here the sdl/sdr * would blow up, so for now we don't handle unaligned 64-bit * instructions on 32-bit kernels. */ if (user && !access_ok(addr, 4)) goto sigbus; LoadWU(addr, value, res); if (res) goto fault; MIPS16e_compute_return_epc(regs, &oldinst); regs->regs[reg] = value; break; #endif /* CONFIG_64BIT */ /* Cannot handle 64-bit instructions in 32-bit kernel */ goto sigill; case MIPS16e_ld_op: loadDW: #ifdef CONFIG_64BIT /* * A 32-bit kernel might be running on a 64-bit processor. But * if we're on a 32-bit processor and an i-cache incoherency * or race makes us see a 64-bit instruction here the sdl/sdr * would blow up, so for now we don't handle unaligned 64-bit * instructions on 32-bit kernels. */ if (user && !access_ok(addr, 8)) goto sigbus; LoadDW(addr, value, res); if (res) goto fault; MIPS16e_compute_return_epc(regs, &oldinst); regs->regs[reg] = value; break; #endif /* CONFIG_64BIT */ /* Cannot handle 64-bit instructions in 32-bit kernel */ goto sigill; case MIPS16e_sh_op: if (user && !access_ok(addr, 2)) goto sigbus; MIPS16e_compute_return_epc(regs, &oldinst); value = regs->regs[reg]; StoreHW(addr, value, res); if (res) goto fault; break; case MIPS16e_sw_op: case MIPS16e_swsp_op: case MIPS16e_i8_op: /* actually - MIPS16e_swrasp_func */ if (user && !access_ok(addr, 4)) goto sigbus; MIPS16e_compute_return_epc(regs, &oldinst); value = regs->regs[reg]; StoreW(addr, value, res); if (res) goto fault; break; case MIPS16e_sd_op: writeDW: #ifdef CONFIG_64BIT /* * A 32-bit kernel might be running on a 64-bit processor. But * if we're on a 32-bit processor and an i-cache incoherency * or race makes us see a 64-bit instruction here the sdl/sdr * would blow up, so for now we don't handle unaligned 64-bit * instructions on 32-bit kernels. */ if (user && !access_ok(addr, 8)) goto sigbus; MIPS16e_compute_return_epc(regs, &oldinst); value = regs->regs[reg]; StoreDW(addr, value, res); if (res) goto fault; break; #endif /* CONFIG_64BIT */ /* Cannot handle 64-bit instructions in 32-bit kernel */ goto sigill; default: /* * Pheeee... We encountered an yet unknown instruction or * cache coherence problem. Die sucker, die ... */ goto sigill; } #ifdef CONFIG_DEBUG_FS unaligned_instructions++; #endif return; fault: /* roll back jump/branch */ regs->cp0_epc = origpc; regs->regs[31] = orig31; /* Did we have an exception handler installed? */ if (fixup_exception(regs)) return; die_if_kernel("Unhandled kernel unaligned access", regs); force_sig(SIGSEGV); return; sigbus: die_if_kernel("Unhandled kernel unaligned access", regs); force_sig(SIGBUS); return; sigill: die_if_kernel ("Unhandled kernel unaligned access or invalid instruction", regs); force_sig(SIGILL); } asmlinkage void do_ade(struct pt_regs *regs) { enum ctx_state prev_state; unsigned int *pc; prev_state = exception_enter(); perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, regs->cp0_badvaddr); #ifdef CONFIG_64BIT /* * check, if we are hitting space between CPU implemented maximum * virtual user address and 64bit maximum virtual user address * and do exception handling to get EFAULTs for get_user/put_user */ if ((regs->cp0_badvaddr >= (1UL << cpu_vmbits)) && (regs->cp0_badvaddr < XKSSEG)) { if (fixup_exception(regs)) { current->thread.cp0_baduaddr = regs->cp0_badvaddr; return; } goto sigbus; } #endif /* * Did we catch a fault trying to load an instruction? */ if (regs->cp0_badvaddr == regs->cp0_epc) goto sigbus; if (user_mode(regs) && !test_thread_flag(TIF_FIXADE)) goto sigbus; if (unaligned_action == UNALIGNED_ACTION_SIGNAL) goto sigbus; /* * Do branch emulation only if we didn't forward the exception. * This is all so but ugly ... */ /* * Are we running in microMIPS mode? */ if (get_isa16_mode(regs->cp0_epc)) { /* * Did we catch a fault trying to load an instruction in * 16-bit mode? */ if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc)) goto sigbus; if (unaligned_action == UNALIGNED_ACTION_SHOW) show_registers(regs); if (cpu_has_mmips) { emulate_load_store_microMIPS(regs, (void __user *)regs->cp0_badvaddr); return; } if (cpu_has_mips16) { emulate_load_store_MIPS16e(regs, (void __user *)regs->cp0_badvaddr); return; } goto sigbus; } if (unaligned_action == UNALIGNED_ACTION_SHOW) show_registers(regs); pc = (unsigned int *)exception_epc(regs); emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc); return; sigbus: die_if_kernel("Kernel unaligned instruction access", regs); force_sig(SIGBUS); /* * XXX On return from the signal handler we should advance the epc */ exception_exit(prev_state); } #ifdef CONFIG_DEBUG_FS static int __init debugfs_unaligned(void) { debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir, &unaligned_instructions); debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR, mips_debugfs_dir, &unaligned_action); return 0; } arch_initcall(debugfs_unaligned); #endif
linux-master
arch/mips/kernel/unaligned.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * GT641xx clockevent routines. * * Copyright (C) 2007 Yoichi Yuasa <[email protected]> */ #include <linux/clockchips.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/irq.h> #include <asm/gt64120.h> #include <asm/time.h> static DEFINE_RAW_SPINLOCK(gt641xx_timer_lock); static unsigned int gt641xx_base_clock; void gt641xx_set_base_clock(unsigned int clock) { gt641xx_base_clock = clock; } int gt641xx_timer0_state(void) { if (GT_READ(GT_TC0_OFS)) return 0; GT_WRITE(GT_TC0_OFS, gt641xx_base_clock / HZ); GT_WRITE(GT_TC_CONTROL_OFS, GT_TC_CONTROL_ENTC0_MSK); return 1; } static int gt641xx_timer0_set_next_event(unsigned long delta, struct clock_event_device *evt) { u32 ctrl; raw_spin_lock(&gt641xx_timer_lock); ctrl = GT_READ(GT_TC_CONTROL_OFS); ctrl &= ~(GT_TC_CONTROL_ENTC0_MSK | GT_TC_CONTROL_SELTC0_MSK); ctrl |= GT_TC_CONTROL_ENTC0_MSK; GT_WRITE(GT_TC0_OFS, delta); GT_WRITE(GT_TC_CONTROL_OFS, ctrl); raw_spin_unlock(&gt641xx_timer_lock); return 0; } static int gt641xx_timer0_shutdown(struct clock_event_device *evt) { u32 ctrl; raw_spin_lock(&gt641xx_timer_lock); ctrl = GT_READ(GT_TC_CONTROL_OFS); ctrl &= ~(GT_TC_CONTROL_ENTC0_MSK | GT_TC_CONTROL_SELTC0_MSK); GT_WRITE(GT_TC_CONTROL_OFS, ctrl); raw_spin_unlock(&gt641xx_timer_lock); return 0; } static int gt641xx_timer0_set_oneshot(struct clock_event_device *evt) { u32 ctrl; raw_spin_lock(&gt641xx_timer_lock); ctrl = GT_READ(GT_TC_CONTROL_OFS); ctrl &= ~GT_TC_CONTROL_SELTC0_MSK; ctrl |= GT_TC_CONTROL_ENTC0_MSK; GT_WRITE(GT_TC_CONTROL_OFS, ctrl); raw_spin_unlock(&gt641xx_timer_lock); return 0; } static int gt641xx_timer0_set_periodic(struct clock_event_device *evt) { u32 ctrl; raw_spin_lock(&gt641xx_timer_lock); ctrl = GT_READ(GT_TC_CONTROL_OFS); ctrl |= GT_TC_CONTROL_ENTC0_MSK | GT_TC_CONTROL_SELTC0_MSK; GT_WRITE(GT_TC_CONTROL_OFS, ctrl); raw_spin_unlock(&gt641xx_timer_lock); return 0; } static void gt641xx_timer0_event_handler(struct clock_event_device *dev) { } static struct clock_event_device gt641xx_timer0_clockevent = { .name = "gt641xx-timer0", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .irq = GT641XX_TIMER0_IRQ, .set_next_event = gt641xx_timer0_set_next_event, .set_state_shutdown = gt641xx_timer0_shutdown, .set_state_periodic = gt641xx_timer0_set_periodic, .set_state_oneshot = gt641xx_timer0_set_oneshot, .tick_resume = gt641xx_timer0_shutdown, .event_handler = gt641xx_timer0_event_handler, }; static irqreturn_t gt641xx_timer0_interrupt(int irq, void *dev_id) { struct clock_event_device *cd = &gt641xx_timer0_clockevent; cd->event_handler(cd); return IRQ_HANDLED; } static int __init gt641xx_timer0_clockevent_init(void) { struct clock_event_device *cd; if (!gt641xx_base_clock) return 0; GT_WRITE(GT_TC0_OFS, gt641xx_base_clock / HZ); cd = &gt641xx_timer0_clockevent; cd->rating = 200 + gt641xx_base_clock / 10000000; clockevent_set_clock(cd, gt641xx_base_clock); cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd); cd->max_delta_ticks = 0x7fffffff; cd->min_delta_ns = clockevent_delta2ns(0x300, cd); cd->min_delta_ticks = 0x300; cd->cpumask = cpumask_of(0); clockevents_register_device(&gt641xx_timer0_clockevent); return request_irq(GT641XX_TIMER0_IRQ, gt641xx_timer0_interrupt, IRQF_PERCPU | IRQF_TIMER, "gt641xx_timer0", NULL); } arch_initcall(gt641xx_timer0_clockevent_init);
linux-master
arch/mips/kernel/cevt-gt641xx.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2006, 07 by Ralf Baechle ([email protected]) * * Symmetric Uniprocessor (TM) Support */ #include <linux/kernel.h> #include <linux/sched.h> /* * Send inter-processor interrupt */ static void up_send_ipi_single(int cpu, unsigned int action) { panic(KERN_ERR "%s called", __func__); } static inline void up_send_ipi_mask(const struct cpumask *mask, unsigned int action) { panic(KERN_ERR "%s called", __func__); } /* * After we've done initial boot, this function is called to allow the * board code to clean up state, if needed */ static void up_init_secondary(void) { } static void up_smp_finish(void) { } /* * Firmware CPU startup hook */ static int up_boot_secondary(int cpu, struct task_struct *idle) { return 0; } static void __init up_smp_setup(void) { } static void __init up_prepare_cpus(unsigned int max_cpus) { } #ifdef CONFIG_HOTPLUG_CPU static int up_cpu_disable(void) { return -ENOSYS; } static void up_cpu_die(unsigned int cpu) { BUG(); } #endif const struct plat_smp_ops up_smp_ops = { .send_ipi_single = up_send_ipi_single, .send_ipi_mask = up_send_ipi_mask, .init_secondary = up_init_secondary, .smp_finish = up_smp_finish, .boot_secondary = up_boot_secondary, .smp_setup = up_smp_setup, .prepare_cpus = up_prepare_cpus, #ifdef CONFIG_HOTPLUG_CPU .cpu_disable = up_cpu_disable, .cpu_die = up_cpu_die, #endif };
linux-master
arch/mips/kernel/smp-up.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2001 MontaVista Software Inc. * Author: Jun Sun, [email protected] or [email protected] * Copyright (c) 2003, 2004 Maciej W. Rozycki * * Common time service routines for MIPS machines. */ #include <linux/bug.h> #include <linux/clockchips.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/param.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/smp.h> #include <linux/spinlock.h> #include <linux/export.h> #include <linux/cpufreq.h> #include <linux/delay.h> #include <asm/cpu-features.h> #include <asm/cpu-type.h> #include <asm/div64.h> #include <asm/time.h> #ifdef CONFIG_CPU_FREQ static DEFINE_PER_CPU(unsigned long, pcp_lpj_ref); static DEFINE_PER_CPU(unsigned long, pcp_lpj_ref_freq); static unsigned long glb_lpj_ref; static unsigned long glb_lpj_ref_freq; static int cpufreq_callback(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; struct cpumask *cpus = freq->policy->cpus; unsigned long lpj; int cpu; /* * Skip lpj numbers adjustment if the CPU-freq transition is safe for * the loops delay. (Is this possible?) */ if (freq->flags & CPUFREQ_CONST_LOOPS) return NOTIFY_OK; /* Save the initial values of the lpjes for future scaling. */ if (!glb_lpj_ref) { glb_lpj_ref = boot_cpu_data.udelay_val; glb_lpj_ref_freq = freq->old; for_each_online_cpu(cpu) { per_cpu(pcp_lpj_ref, cpu) = cpu_data[cpu].udelay_val; per_cpu(pcp_lpj_ref_freq, cpu) = freq->old; } } /* * Adjust global lpj variable and per-CPU udelay_val number in * accordance with the new CPU frequency. */ if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { loops_per_jiffy = cpufreq_scale(glb_lpj_ref, glb_lpj_ref_freq, freq->new); for_each_cpu(cpu, cpus) { lpj = cpufreq_scale(per_cpu(pcp_lpj_ref, cpu), per_cpu(pcp_lpj_ref_freq, cpu), freq->new); cpu_data[cpu].udelay_val = (unsigned int)lpj; } } return NOTIFY_OK; } static struct notifier_block cpufreq_notifier = { .notifier_call = cpufreq_callback, }; static int __init register_cpufreq_notifier(void) { return cpufreq_register_notifier(&cpufreq_notifier, CPUFREQ_TRANSITION_NOTIFIER); } core_initcall(register_cpufreq_notifier); #endif /* CONFIG_CPU_FREQ */ /* * forward reference */ DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); static int null_perf_irq(void) { return 0; } int (*perf_irq)(void) = null_perf_irq; EXPORT_SYMBOL(perf_irq); /* * time_init() - it does the following things. * * 1) plat_time_init() - * a) (optional) set up RTC routines, * b) (optional) calibrate and set the mips_hpt_frequency * (only needed if you intended to use cpu counter as timer interrupt * source) * 2) calculate a couple of cached variables for later usage */ unsigned int mips_hpt_frequency; EXPORT_SYMBOL_GPL(mips_hpt_frequency); static __init int cpu_has_mfc0_count_bug(void) { switch (current_cpu_type()) { case CPU_R4000PC: case CPU_R4000SC: case CPU_R4000MC: /* * V3.0 is documented as suffering from the mfc0 from count bug. * Afaik this is the last version of the R4000. Later versions * were marketed as R4400. */ return 1; case CPU_R4400PC: case CPU_R4400SC: case CPU_R4400MC: /* * The published errata for the R4400 up to 3.0 say the CPU * has the mfc0 from count bug. This seems the last version * produced. */ return 1; } return 0; } void __init time_init(void) { plat_time_init(); /* * The use of the R4k timer as a clock event takes precedence; * if reading the Count register might interfere with the timer * interrupt, then we don't use the timer as a clock source. * We may still use the timer as a clock source though if the * timer interrupt isn't reliable; the interference doesn't * matter then, because we don't use the interrupt. */ if (mips_clockevent_init() != 0 || !cpu_has_mfc0_count_bug()) init_mips_clocksource(); }
linux-master
arch/mips/kernel/time.c
// SPDX-License-Identifier: GPL-2.0-only /* * machine_kexec.c for kexec * Created by <[email protected]> on Thu Oct 12 15:15:06 2006 */ #include <linux/compiler.h> #include <linux/kexec.h> #include <linux/mm.h> #include <linux/delay.h> #include <linux/libfdt.h> #include <asm/cacheflush.h> #include <asm/page.h> extern const unsigned char relocate_new_kernel[]; extern const size_t relocate_new_kernel_size; extern unsigned long kexec_start_address; extern unsigned long kexec_indirection_page; static unsigned long reboot_code_buffer; #ifdef CONFIG_SMP static void (*relocated_kexec_smp_wait)(void *); atomic_t kexec_ready_to_reboot = ATOMIC_INIT(0); void (*_crash_smp_send_stop)(void) = NULL; #endif void (*_machine_kexec_shutdown)(void) = NULL; void (*_machine_crash_shutdown)(struct pt_regs *regs) = NULL; static void kexec_image_info(const struct kimage *kimage) { unsigned long i; pr_debug("kexec kimage info:\n"); pr_debug(" type: %d\n", kimage->type); pr_debug(" start: %lx\n", kimage->start); pr_debug(" head: %lx\n", kimage->head); pr_debug(" nr_segments: %lu\n", kimage->nr_segments); for (i = 0; i < kimage->nr_segments; i++) { pr_debug(" segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n", i, kimage->segment[i].mem, kimage->segment[i].mem + kimage->segment[i].memsz, (unsigned long)kimage->segment[i].memsz, (unsigned long)kimage->segment[i].memsz / PAGE_SIZE); } } #ifdef CONFIG_UHI_BOOT static int uhi_machine_kexec_prepare(struct kimage *kimage) { int i; /* * In case DTB file is not passed to the new kernel, a flat device * tree will be created by kexec tool. It holds modified command * line for the new kernel. */ for (i = 0; i < kimage->nr_segments; i++) { struct fdt_header fdt; if (kimage->segment[i].memsz <= sizeof(fdt)) continue; if (copy_from_user(&fdt, kimage->segment[i].buf, sizeof(fdt))) continue; if (fdt_check_header(&fdt)) continue; kexec_args[0] = -2; kexec_args[1] = (unsigned long) phys_to_virt((unsigned long)kimage->segment[i].mem); break; } return 0; } int (*_machine_kexec_prepare)(struct kimage *) = uhi_machine_kexec_prepare; #else int (*_machine_kexec_prepare)(struct kimage *) = NULL; #endif /* CONFIG_UHI_BOOT */ int machine_kexec_prepare(struct kimage *kimage) { #ifdef CONFIG_SMP if (!kexec_nonboot_cpu_func()) return -EINVAL; #endif kexec_image_info(kimage); if (_machine_kexec_prepare) return _machine_kexec_prepare(kimage); return 0; } void machine_kexec_cleanup(struct kimage *kimage) { } #ifdef CONFIG_SMP static void kexec_shutdown_secondary(void *param) { int cpu = smp_processor_id(); if (!cpu_online(cpu)) return; /* We won't be sent IPIs any more. */ set_cpu_online(cpu, false); local_irq_disable(); while (!atomic_read(&kexec_ready_to_reboot)) cpu_relax(); kexec_reboot(); /* NOTREACHED */ } #endif void machine_shutdown(void) { if (_machine_kexec_shutdown) _machine_kexec_shutdown(); #ifdef CONFIG_SMP smp_call_function(kexec_shutdown_secondary, NULL, 0); while (num_online_cpus() > 1) { cpu_relax(); mdelay(1); } #endif } void machine_crash_shutdown(struct pt_regs *regs) { if (_machine_crash_shutdown) _machine_crash_shutdown(regs); else default_machine_crash_shutdown(regs); } #ifdef CONFIG_SMP void kexec_nonboot_cpu_jump(void) { local_flush_icache_range((unsigned long)relocated_kexec_smp_wait, reboot_code_buffer + relocate_new_kernel_size); relocated_kexec_smp_wait(NULL); } #endif void kexec_reboot(void) { void (*do_kexec)(void) __noreturn; /* * We know we were online, and there will be no incoming IPIs at * this point. Mark online again before rebooting so that the crash * analysis tool will see us correctly. */ set_cpu_online(smp_processor_id(), true); /* Ensure remote CPUs observe that we're online before rebooting. */ smp_mb__after_atomic(); #ifdef CONFIG_SMP if (smp_processor_id() > 0) { /* * Instead of cpu_relax() or wait, this is needed for kexec * smp reboot. Kdump usually doesn't require an smp new * kernel, but kexec may do. */ kexec_nonboot_cpu(); /* NOTREACHED */ } #endif /* * Make sure we get correct instructions written by the * machine_kexec() CPU. */ local_flush_icache_range(reboot_code_buffer, reboot_code_buffer + relocate_new_kernel_size); do_kexec = (void *)reboot_code_buffer; do_kexec(); } void machine_kexec(struct kimage *image) { unsigned long entry; unsigned long *ptr; reboot_code_buffer = (unsigned long)page_address(image->control_code_page); kexec_start_address = (unsigned long) phys_to_virt(image->start); if (image->type == KEXEC_TYPE_DEFAULT) { kexec_indirection_page = (unsigned long) phys_to_virt(image->head & PAGE_MASK); } else { kexec_indirection_page = (unsigned long)&image->head; } memcpy((void*)reboot_code_buffer, relocate_new_kernel, relocate_new_kernel_size); /* * The generic kexec code builds a page list with physical * addresses. they are directly accessible through KSEG0 (or * CKSEG0 or XPHYS if on 64bit system), hence the * phys_to_virt() call. */ for (ptr = &image->head; (entry = *ptr) && !(entry &IND_DONE); ptr = (entry & IND_INDIRECTION) ? phys_to_virt(entry & PAGE_MASK) : ptr + 1) { if (*ptr & IND_SOURCE || *ptr & IND_INDIRECTION || *ptr & IND_DESTINATION) *ptr = (unsigned long) phys_to_virt(*ptr); } /* Mark offline BEFORE disabling local irq. */ set_cpu_online(smp_processor_id(), false); /* * we do not want to be bothered. */ local_irq_disable(); printk("Will call new kernel at %08lx\n", image->start); printk("Bye ...\n"); /* Make reboot code buffer available to the boot CPU. */ __flush_cache_all(); #ifdef CONFIG_SMP /* All secondary cpus now may jump to kexec_wait cycle */ relocated_kexec_smp_wait = reboot_code_buffer + (void *)(kexec_smp_wait - relocate_new_kernel); smp_wmb(); atomic_set(&kexec_ready_to_reboot, 1); #endif kexec_reboot(); }
linux-master
arch/mips/kernel/machine_kexec.c
// SPDX-License-Identifier: GPL-2.0-only /* * Linux performance counter support for MIPS. * * Copyright (C) 2010 MIPS Technologies, Inc. * Author: Deng-Cheng Zhu * * This code is based on the implementation for ARM, which is in turn * based on the sparc64 perf event code and the x86 code. Performance * counter access is based on the MIPS Oprofile code. And the callchain * support references the code of MIPS stacktrace.c. */ #include <linux/perf_event.h> #include <linux/sched/task_stack.h> #include <asm/stacktrace.h> /* Callchain handling code. */ /* * Leave userspace callchain empty for now. When we find a way to trace * the user stack callchains, we will add it here. */ static void save_raw_perf_callchain(struct perf_callchain_entry_ctx *entry, unsigned long reg29) { unsigned long *sp = (unsigned long *)reg29; unsigned long addr; while (!kstack_end(sp)) { addr = *sp++; if (__kernel_text_address(addr)) { perf_callchain_store(entry, addr); if (entry->nr >= entry->max_stack) break; } } } void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) { unsigned long sp = regs->regs[29]; #ifdef CONFIG_KALLSYMS unsigned long ra = regs->regs[31]; unsigned long pc = regs->cp0_epc; if (raw_show_trace || !__kernel_text_address(pc)) { unsigned long stack_page = (unsigned long)task_stack_page(current); if (stack_page && sp >= stack_page && sp <= stack_page + THREAD_SIZE - 32) save_raw_perf_callchain(entry, sp); return; } do { perf_callchain_store(entry, pc); if (entry->nr >= entry->max_stack) break; pc = unwind_stack(current, &sp, pc, &ra); } while (pc); #else save_raw_perf_callchain(entry, sp); #endif }
linux-master
arch/mips/kernel/perf_event.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2011 by Kevin Cernekee ([email protected]) * * SMP support for BMIPS */ #include <linux/init.h> #include <linux/sched.h> #include <linux/sched/hotplug.h> #include <linux/sched/task_stack.h> #include <linux/mm.h> #include <linux/delay.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/reboot.h> #include <linux/io.h> #include <linux/compiler.h> #include <linux/linkage.h> #include <linux/bug.h> #include <linux/kernel.h> #include <linux/kexec.h> #include <linux/irq.h> #include <asm/time.h> #include <asm/processor.h> #include <asm/bootinfo.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/mipsregs.h> #include <asm/bmips.h> #include <asm/traps.h> #include <asm/barrier.h> #include <asm/cpu-features.h> static int __maybe_unused max_cpus = 1; /* these may be configured by the platform code */ int bmips_smp_enabled = 1; int bmips_cpu_offset; cpumask_t bmips_booted_mask; unsigned long bmips_tp1_irqs = IE_IRQ1; #define RESET_FROM_KSEG0 0x80080800 #define RESET_FROM_KSEG1 0xa0080800 static void bmips_set_reset_vec(int cpu, u32 val); #ifdef CONFIG_SMP #include <asm/smp.h> /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */ unsigned long bmips_smp_boot_sp; unsigned long bmips_smp_boot_gp; static void bmips43xx_send_ipi_single(int cpu, unsigned int action); static void bmips5000_send_ipi_single(int cpu, unsigned int action); static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id); static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id); /* SW interrupts 0,1 are used for interprocessor signaling */ #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0) #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1) #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift)) #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8)) #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8)) #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0)) static void __init bmips_smp_setup(void) { int i, cpu = 1, boot_cpu = 0; int cpu_hw_intr; switch (current_cpu_type()) { case CPU_BMIPS4350: case CPU_BMIPS4380: /* arbitration priority */ clear_c0_brcm_cmt_ctrl(0x30); /* NBK and weak order flags */ set_c0_brcm_config_0(0x30000); /* Find out if we are running on TP0 or TP1 */ boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31)); /* * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other * thread * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output */ if (boot_cpu == 0) cpu_hw_intr = 0x02; else cpu_hw_intr = 0x1d; change_c0_brcm_cmt_intr(0xf8018000, (cpu_hw_intr << 27) | (0x03 << 15)); /* single core, 2 threads (2 pipelines) */ max_cpus = 2; break; case CPU_BMIPS5000: /* enable raceless SW interrupts */ set_c0_brcm_config(0x03 << 22); /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */ change_c0_brcm_mode(0x1f << 27, 0x02 << 27); /* N cores, 2 threads per core */ max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1; /* clear any pending SW interrupts */ for (i = 0; i < max_cpus; i++) { write_c0_brcm_action(ACTION_CLR_IPI(i, 0)); write_c0_brcm_action(ACTION_CLR_IPI(i, 1)); } break; default: max_cpus = 1; } if (!bmips_smp_enabled) max_cpus = 1; /* this can be overridden by the BSP */ if (!board_ebase_setup) board_ebase_setup = &bmips_ebase_setup; if (max_cpus > 1) { __cpu_number_map[boot_cpu] = 0; __cpu_logical_map[0] = boot_cpu; for (i = 0; i < max_cpus; i++) { if (i != boot_cpu) { __cpu_number_map[i] = cpu; __cpu_logical_map[cpu] = i; cpu++; } set_cpu_possible(i, 1); set_cpu_present(i, 1); } } else { __cpu_number_map[0] = boot_cpu; __cpu_logical_map[0] = 0; set_cpu_possible(0, 1); set_cpu_present(0, 1); } } /* * IPI IRQ setup - runs on CPU0 */ static void bmips_prepare_cpus(unsigned int max_cpus) { irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id); switch (current_cpu_type()) { case CPU_BMIPS4350: case CPU_BMIPS4380: bmips_ipi_interrupt = bmips43xx_ipi_interrupt; break; case CPU_BMIPS5000: bmips_ipi_interrupt = bmips5000_ipi_interrupt; break; default: return; } if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL)) panic("Can't request IPI0 interrupt"); if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL)) panic("Can't request IPI1 interrupt"); } /* * Tell the hardware to boot CPUx - runs on CPU0 */ static int bmips_boot_secondary(int cpu, struct task_struct *idle) { bmips_smp_boot_sp = __KSTK_TOS(idle); bmips_smp_boot_gp = (unsigned long)task_thread_info(idle); mb(); /* * Initial boot sequence for secondary CPU: * bmips_reset_nmi_vec @ a000_0000 -> * bmips_smp_entry -> * plat_wired_tlb_setup (cached function call; optional) -> * start_secondary (cached jump) * * Warm restart sequence: * play_dead WAIT loop -> * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC -> * eret to play_dead -> * bmips_secondary_reentry -> * start_secondary */ pr_info("SMP: Booting CPU%d...\n", cpu); if (cpumask_test_cpu(cpu, &bmips_booted_mask)) { /* kseg1 might not exist if this CPU enabled XKS01 */ bmips_set_reset_vec(cpu, RESET_FROM_KSEG0); switch (current_cpu_type()) { case CPU_BMIPS4350: case CPU_BMIPS4380: bmips43xx_send_ipi_single(cpu, 0); break; case CPU_BMIPS5000: bmips5000_send_ipi_single(cpu, 0); break; } } else { bmips_set_reset_vec(cpu, RESET_FROM_KSEG1); switch (current_cpu_type()) { case CPU_BMIPS4350: case CPU_BMIPS4380: /* Reset slave TP1 if booting from TP0 */ if (cpu_logical_map(cpu) == 1) set_c0_brcm_cmt_ctrl(0x01); break; case CPU_BMIPS5000: write_c0_brcm_action(ACTION_BOOT_THREAD(cpu)); break; } cpumask_set_cpu(cpu, &bmips_booted_mask); } return 0; } /* * Early setup - runs on secondary CPU after cache probe */ static void bmips_init_secondary(void) { bmips_cpu_setup(); switch (current_cpu_type()) { case CPU_BMIPS4350: case CPU_BMIPS4380: clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0); break; case CPU_BMIPS5000: write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0)); cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3); break; } } /* * Late setup - runs on secondary CPU before entering the idle loop */ static void bmips_smp_finish(void) { pr_info("SMP: CPU%d is running\n", smp_processor_id()); /* make sure there won't be a timer interrupt for a little while */ write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ); irq_enable_hazard(); set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE); irq_enable_hazard(); } /* * BMIPS5000 raceless IPIs * * Each CPU has two inbound SW IRQs which are independent of all other CPUs. * IPI0 is used for SMP_RESCHEDULE_YOURSELF * IPI1 is used for SMP_CALL_FUNCTION */ static void bmips5000_send_ipi_single(int cpu, unsigned int action) { write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION)); } static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id) { int action = irq - IPI0_IRQ; write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action)); if (action == 0) scheduler_ipi(); else generic_smp_call_function_interrupt(); return IRQ_HANDLED; } static void bmips5000_send_ipi_mask(const struct cpumask *mask, unsigned int action) { unsigned int i; for_each_cpu(i, mask) bmips5000_send_ipi_single(i, action); } /* * BMIPS43xx racey IPIs * * We use one inbound SW IRQ for each CPU. * * A spinlock must be held in order to keep CPUx from accidentally clearing * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The * same spinlock is used to protect the action masks. */ static DEFINE_SPINLOCK(ipi_lock); static DEFINE_PER_CPU(int, ipi_action_mask); static void bmips43xx_send_ipi_single(int cpu, unsigned int action) { unsigned long flags; spin_lock_irqsave(&ipi_lock, flags); set_c0_cause(cpu ? C_SW1 : C_SW0); per_cpu(ipi_action_mask, cpu) |= action; irq_enable_hazard(); spin_unlock_irqrestore(&ipi_lock, flags); } static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id) { unsigned long flags; int action, cpu = irq - IPI0_IRQ; spin_lock_irqsave(&ipi_lock, flags); action = __this_cpu_read(ipi_action_mask); per_cpu(ipi_action_mask, cpu) = 0; clear_c0_cause(cpu ? C_SW1 : C_SW0); spin_unlock_irqrestore(&ipi_lock, flags); if (action & SMP_RESCHEDULE_YOURSELF) scheduler_ipi(); if (action & SMP_CALL_FUNCTION) generic_smp_call_function_interrupt(); return IRQ_HANDLED; } static void bmips43xx_send_ipi_mask(const struct cpumask *mask, unsigned int action) { unsigned int i; for_each_cpu(i, mask) bmips43xx_send_ipi_single(i, action); } #ifdef CONFIG_HOTPLUG_CPU static int bmips_cpu_disable(void) { unsigned int cpu = smp_processor_id(); pr_info("SMP: CPU%d is offline\n", cpu); set_cpu_online(cpu, false); calculate_cpu_foreign_map(); irq_migrate_all_off_this_cpu(); clear_c0_status(IE_IRQ5); local_flush_tlb_all(); local_flush_icache_range(0, ~0); return 0; } static void bmips_cpu_die(unsigned int cpu) { } void __ref play_dead(void) { idle_task_exit(); cpuhp_ap_report_dead(); /* flush data cache */ _dma_cache_wback_inv(0, ~0); /* * Wakeup is on SW0 or SW1; disable everything else * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux * IRQ handlers; this clears ST0_IE and returns immediately. */ clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1); change_c0_status( IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV, IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV); irq_disable_hazard(); /* * wait for SW interrupt from bmips_boot_secondary(), then jump * back to start_secondary() */ __asm__ __volatile__( " wait\n" " j bmips_secondary_reentry\n" : : : "memory"); BUG(); } #endif /* CONFIG_HOTPLUG_CPU */ const struct plat_smp_ops bmips43xx_smp_ops = { .smp_setup = bmips_smp_setup, .prepare_cpus = bmips_prepare_cpus, .boot_secondary = bmips_boot_secondary, .smp_finish = bmips_smp_finish, .init_secondary = bmips_init_secondary, .send_ipi_single = bmips43xx_send_ipi_single, .send_ipi_mask = bmips43xx_send_ipi_mask, #ifdef CONFIG_HOTPLUG_CPU .cpu_disable = bmips_cpu_disable, .cpu_die = bmips_cpu_die, #endif #ifdef CONFIG_KEXEC .kexec_nonboot_cpu = kexec_nonboot_cpu_jump, #endif }; const struct plat_smp_ops bmips5000_smp_ops = { .smp_setup = bmips_smp_setup, .prepare_cpus = bmips_prepare_cpus, .boot_secondary = bmips_boot_secondary, .smp_finish = bmips_smp_finish, .init_secondary = bmips_init_secondary, .send_ipi_single = bmips5000_send_ipi_single, .send_ipi_mask = bmips5000_send_ipi_mask, #ifdef CONFIG_HOTPLUG_CPU .cpu_disable = bmips_cpu_disable, .cpu_die = bmips_cpu_die, #endif #ifdef CONFIG_KEXEC .kexec_nonboot_cpu = kexec_nonboot_cpu_jump, #endif }; #endif /* CONFIG_SMP */ /*********************************************************************** * BMIPS vector relocation * This is primarily used for SMP boot, but it is applicable to some * UP BMIPS systems as well. ***********************************************************************/ static void bmips_wr_vec(unsigned long dst, char *start, char *end) { memcpy((void *)dst, start, end - start); dma_cache_wback(dst, end - start); local_flush_icache_range(dst, dst + (end - start)); instruction_hazard(); } static inline void bmips_nmi_handler_setup(void) { bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec, bmips_reset_nmi_vec_end); bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec, bmips_smp_int_vec_end); } struct reset_vec_info { int cpu; u32 val; }; static void bmips_set_reset_vec_remote(void *vinfo) { struct reset_vec_info *info = vinfo; int shift = info->cpu & 0x01 ? 16 : 0; u32 mask = ~(0xffff << shift), val = info->val >> 16; preempt_disable(); if (smp_processor_id() > 0) { smp_call_function_single(0, &bmips_set_reset_vec_remote, info, 1); } else { if (info->cpu & 0x02) { /* BMIPS5200 "should" use mask/shift, but it's buggy */ bmips_write_zscm_reg(0xa0, (val << 16) | val); bmips_read_zscm_reg(0xa0); } else { write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) | (val << shift)); } } preempt_enable(); } static void bmips_set_reset_vec(int cpu, u32 val) { struct reset_vec_info info; if (current_cpu_type() == CPU_BMIPS5000) { /* this needs to run from CPU0 (which is always online) */ info.cpu = cpu; info.val = val; bmips_set_reset_vec_remote(&info); } else { void __iomem *cbr = BMIPS_GET_CBR(); if (cpu == 0) __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0); else { if (current_cpu_type() != CPU_BMIPS4380) return; __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1); } } __sync(); back_to_back_c0_hazard(); } void bmips_ebase_setup(void) { unsigned long new_ebase = ebase; BUG_ON(ebase != CKSEG0); switch (current_cpu_type()) { case CPU_BMIPS4350: /* * BMIPS4350 cannot relocate the normal vectors, but it * can relocate the BEV=1 vectors. So CPU1 starts up at * the relocated BEV=1, IV=0 general exception vector @ * 0xa000_0380. * * set_uncached_handler() is used here because: * - CPU1 will run this from uncached space * - None of the cacheflush functions are set up yet */ set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0, &bmips_smp_int_vec, 0x80); __sync(); return; case CPU_BMIPS3300: case CPU_BMIPS4380: /* * 0x8000_0000: reset/NMI (initially in kseg1) * 0x8000_0400: normal vectors */ new_ebase = 0x80000400; bmips_set_reset_vec(0, RESET_FROM_KSEG0); break; case CPU_BMIPS5000: /* * 0x8000_0000: reset/NMI (initially in kseg1) * 0x8000_1000: normal vectors */ new_ebase = 0x80001000; bmips_set_reset_vec(0, RESET_FROM_KSEG0); write_c0_ebase(new_ebase); break; default: return; } board_nmi_handler_setup = &bmips_nmi_handler_setup; ebase = new_ebase; } asmlinkage void __weak plat_wired_tlb_setup(void) { /* * Called when starting/restarting a secondary CPU. * Kernel stacks and other important data might only be accessible * once the wired entries are present. */ } void bmips_cpu_setup(void) { void __iomem __maybe_unused *cbr = BMIPS_GET_CBR(); u32 __maybe_unused cfg; switch (current_cpu_type()) { case CPU_BMIPS3300: /* Set BIU to async mode */ set_c0_brcm_bus_pll(BIT(22)); __sync(); /* put the BIU back in sync mode */ clear_c0_brcm_bus_pll(BIT(22)); /* clear BHTD to enable branch history table */ clear_c0_brcm_reset(BIT(16)); /* Flush and enable RAC */ cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG); __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG); __raw_readl(cbr + BMIPS_RAC_CONFIG); cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG); __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG); __raw_readl(cbr + BMIPS_RAC_CONFIG); cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE); __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE); __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE); break; case CPU_BMIPS4380: /* CBG workaround for early BMIPS4380 CPUs */ switch (read_c0_prid()) { case 0x2a040: case 0x2a042: case 0x2a044: case 0x2a060: cfg = __raw_readl(cbr + BMIPS_L2_CONFIG); __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG); __raw_readl(cbr + BMIPS_L2_CONFIG); } /* clear BHTD to enable branch history table */ clear_c0_brcm_config_0(BIT(21)); /* XI/ROTR enable */ set_c0_brcm_config_0(BIT(23)); set_c0_brcm_cmt_ctrl(BIT(15)); break; case CPU_BMIPS5000: /* enable RDHWR, BRDHWR */ set_c0_brcm_config(BIT(17) | BIT(21)); /* Disable JTB */ __asm__ __volatile__( " .set noreorder\n" " li $8, 0x5a455048\n" " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */ " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */ " li $9, 0x00008000\n" " or $8, $8, $9\n" " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */ " sync\n" " li $8, 0x0\n" " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */ " .set reorder\n" : : : "$8", "$9"); /* XI enable */ set_c0_brcm_config(BIT(27)); /* enable MIPS32R2 ROR instruction for XI TLB handlers */ __asm__ __volatile__( " li $8, 0x5a455048\n" " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */ " nop; nop; nop\n" " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */ " lui $9, 0x0100\n" " or $8, $9\n" " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */ : : : "$8", "$9"); break; } }
linux-master
arch/mips/kernel/smp-bmips.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 2010 Cavium Networks, Inc. */ #include <linux/jump_label.h> #include <linux/kernel.h> #include <linux/memory.h> #include <linux/mutex.h> #include <linux/types.h> #include <linux/cpu.h> #include <asm/cacheflush.h> #include <asm/inst.h> /* * Define parameters for the standard MIPS and the microMIPS jump * instruction encoding respectively: * * - the ISA bit of the target, either 0 or 1 respectively, * * - the amount the jump target address is shifted right to fit in the * immediate field of the machine instruction, either 2 or 1, * * - the mask determining the size of the jump region relative to the * delay-slot instruction, either 256MB or 128MB, * * - the jump target alignment, either 4 or 2 bytes. */ #define J_ISA_BIT IS_ENABLED(CONFIG_CPU_MICROMIPS) #define J_RANGE_SHIFT (2 - J_ISA_BIT) #define J_RANGE_MASK ((1ul << (26 + J_RANGE_SHIFT)) - 1) #define J_ALIGN_MASK ((1ul << J_RANGE_SHIFT) - 1) void arch_jump_label_transform(struct jump_entry *e, enum jump_label_type type) { union mips_instruction *insn_p; union mips_instruction insn; long offset; insn_p = (union mips_instruction *)msk_isa16_mode(e->code); /* Target must have the right alignment and ISA must be preserved. */ BUG_ON((e->target & J_ALIGN_MASK) != J_ISA_BIT); if (type == JUMP_LABEL_JMP) { if (!IS_ENABLED(CONFIG_CPU_MICROMIPS) && MIPS_ISA_REV >= 6) { offset = e->target - ((unsigned long)insn_p + 4); offset >>= 2; /* * The branch offset must fit in the instruction's 26 * bit field. */ WARN_ON((offset >= (long)BIT(25)) || (offset < -(long)BIT(25))); insn.j_format.opcode = bc6_op; insn.j_format.target = offset; } else { /* * Jump only works within an aligned region its delay * slot is in. */ WARN_ON((e->target & ~J_RANGE_MASK) != ((e->code + 4) & ~J_RANGE_MASK)); insn.j_format.opcode = J_ISA_BIT ? mm_j32_op : j_op; insn.j_format.target = e->target >> J_RANGE_SHIFT; } } else { insn.word = 0; /* nop */ } mutex_lock(&text_mutex); if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) { insn_p->halfword[0] = insn.word >> 16; insn_p->halfword[1] = insn.word; } else *insn_p = insn; flush_icache_range((unsigned long)insn_p, (unsigned long)insn_p + sizeof(*insn_p)); mutex_unlock(&text_mutex); } #ifdef CONFIG_MODULES void jump_label_apply_nops(struct module *mod) { struct jump_entry *iter_start = mod->jump_entries; struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; struct jump_entry *iter; /* if the module doesn't have jump label entries, just return */ if (iter_start == iter_stop) return; for (iter = iter_start; iter < iter_stop; iter++) { /* Only write NOPs for arch_branch_static(). */ if (jump_label_init_type(iter) == JUMP_LABEL_NOP) arch_jump_label_transform(iter, JUMP_LABEL_NOP); } } #endif
linux-master
arch/mips/kernel/jump_label.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1996, 97, 2000, 2001 by Ralf Baechle * Copyright (C) 2001 MIPS Technologies, Inc. */ #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/signal.h> #include <linux/export.h> #include <asm/branch.h> #include <asm/cpu.h> #include <asm/cpu-features.h> #include <asm/fpu.h> #include <asm/fpu_emulator.h> #include <asm/inst.h> #include <asm/mips-r2-to-r6-emul.h> #include <asm/ptrace.h> #include <linux/uaccess.h> #include "probes-common.h" /* * Calculate and return exception PC in case of branch delay slot * for microMIPS and MIPS16e. It does not clear the ISA mode bit. */ int __isa_exception_epc(struct pt_regs *regs) { unsigned short inst; long epc = regs->cp0_epc; /* Calculate exception PC in branch delay slot. */ if (__get_user(inst, (u16 __user *) msk_isa16_mode(epc))) { /* This should never happen because delay slot was checked. */ force_sig(SIGSEGV); return epc; } if (cpu_has_mips16) { union mips16e_instruction inst_mips16e; inst_mips16e.full = inst; if (inst_mips16e.ri.opcode == MIPS16e_jal_op) epc += 4; else epc += 2; } else if (mm_insn_16bit(inst)) epc += 2; else epc += 4; return epc; } /* (microMIPS) Convert 16-bit register encoding to 32-bit register encoding. */ static const unsigned int reg16to32map[8] = {16, 17, 2, 3, 4, 5, 6, 7}; int __mm_isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn, unsigned long *contpc) { union mips_instruction insn = (union mips_instruction)dec_insn.insn; int __maybe_unused bc_false = 0; if (!cpu_has_mmips) return 0; switch (insn.mm_i_format.opcode) { case mm_pool32a_op: if ((insn.mm_i_format.simmediate & MM_POOL32A_MINOR_MASK) == mm_pool32axf_op) { switch (insn.mm_i_format.simmediate >> MM_POOL32A_MINOR_SHIFT) { case mm_jalr_op: case mm_jalrhb_op: case mm_jalrs_op: case mm_jalrshb_op: if (insn.mm_i_format.rt != 0) /* Not mm_jr */ regs->regs[insn.mm_i_format.rt] = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; *contpc = regs->regs[insn.mm_i_format.rs]; return 1; } } break; case mm_pool32i_op: switch (insn.mm_i_format.rt) { case mm_bltzals_op: case mm_bltzal_op: regs->regs[31] = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; fallthrough; case mm_bltz_op: if ((long)regs->regs[insn.mm_i_format.rs] < 0) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.mm_i_format.simmediate << 1); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case mm_bgezals_op: case mm_bgezal_op: regs->regs[31] = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; fallthrough; case mm_bgez_op: if ((long)regs->regs[insn.mm_i_format.rs] >= 0) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.mm_i_format.simmediate << 1); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case mm_blez_op: if ((long)regs->regs[insn.mm_i_format.rs] <= 0) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.mm_i_format.simmediate << 1); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case mm_bgtz_op: if ((long)regs->regs[insn.mm_i_format.rs] <= 0) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.mm_i_format.simmediate << 1); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; #ifdef CONFIG_MIPS_FP_SUPPORT case mm_bc2f_op: case mm_bc1f_op: { unsigned int fcr31; unsigned int bit; bc_false = 1; fallthrough; case mm_bc2t_op: case mm_bc1t_op: preempt_disable(); if (is_fpu_owner()) fcr31 = read_32bit_cp1_register(CP1_STATUS); else fcr31 = current->thread.fpu.fcr31; preempt_enable(); if (bc_false) fcr31 = ~fcr31; bit = (insn.mm_i_format.rs >> 2); bit += (bit != 0); bit += 23; if (fcr31 & (1 << bit)) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.mm_i_format.simmediate << 1); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; } #endif /* CONFIG_MIPS_FP_SUPPORT */ } break; case mm_pool16c_op: switch (insn.mm_i_format.rt) { case mm_jalr16_op: case mm_jalrs16_op: regs->regs[31] = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; fallthrough; case mm_jr16_op: *contpc = regs->regs[insn.mm_i_format.rs]; return 1; } break; case mm_beqz16_op: if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] == 0) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.mm_b1_format.simmediate << 1); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case mm_bnez16_op: if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] != 0) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.mm_b1_format.simmediate << 1); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case mm_b16_op: *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.mm_b0_format.simmediate << 1); return 1; case mm_beq32_op: if (regs->regs[insn.mm_i_format.rs] == regs->regs[insn.mm_i_format.rt]) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.mm_i_format.simmediate << 1); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case mm_bne32_op: if (regs->regs[insn.mm_i_format.rs] != regs->regs[insn.mm_i_format.rt]) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.mm_i_format.simmediate << 1); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case mm_jalx32_op: regs->regs[31] = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; *contpc = regs->cp0_epc + dec_insn.pc_inc; *contpc >>= 28; *contpc <<= 28; *contpc |= (insn.j_format.target << 2); return 1; case mm_jals32_op: case mm_jal32_op: regs->regs[31] = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; fallthrough; case mm_j32_op: *contpc = regs->cp0_epc + dec_insn.pc_inc; *contpc >>= 27; *contpc <<= 27; *contpc |= (insn.j_format.target << 1); set_isa16_mode(*contpc); return 1; } return 0; } /* * Compute return address and emulate branch in microMIPS mode after an * exception only. It does not handle compact branches/jumps and cannot * be used in interrupt context. (Compact branches/jumps do not cause * exceptions.) */ int __microMIPS_compute_return_epc(struct pt_regs *regs) { u16 __user *pc16; u16 halfword; unsigned int word; unsigned long contpc; struct mm_decoded_insn mminsn = { 0 }; mminsn.micro_mips_mode = 1; /* This load never faults. */ pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc); __get_user(halfword, pc16); pc16++; contpc = regs->cp0_epc + 2; word = ((unsigned int)halfword << 16); mminsn.pc_inc = 2; if (!mm_insn_16bit(halfword)) { __get_user(halfword, pc16); pc16++; contpc = regs->cp0_epc + 4; mminsn.pc_inc = 4; word |= halfword; } mminsn.insn = word; if (get_user(halfword, pc16)) goto sigsegv; mminsn.next_pc_inc = 2; word = ((unsigned int)halfword << 16); if (!mm_insn_16bit(halfword)) { pc16++; if (get_user(halfword, pc16)) goto sigsegv; mminsn.next_pc_inc = 4; word |= halfword; } mminsn.next_insn = word; mm_isBranchInstr(regs, mminsn, &contpc); regs->cp0_epc = contpc; return 0; sigsegv: force_sig(SIGSEGV); return -EFAULT; } /* * Compute return address and emulate branch in MIPS16e mode after an * exception only. It does not handle compact branches/jumps and cannot * be used in interrupt context. (Compact branches/jumps do not cause * exceptions.) */ int __MIPS16e_compute_return_epc(struct pt_regs *regs) { u16 __user *addr; union mips16e_instruction inst; u16 inst2; u32 fullinst; long epc; epc = regs->cp0_epc; /* Read the instruction. */ addr = (u16 __user *)msk_isa16_mode(epc); if (__get_user(inst.full, addr)) { force_sig(SIGSEGV); return -EFAULT; } switch (inst.ri.opcode) { case MIPS16e_extend_op: regs->cp0_epc += 4; return 0; /* * JAL and JALX in MIPS16e mode */ case MIPS16e_jal_op: addr += 1; if (__get_user(inst2, addr)) { force_sig(SIGSEGV); return -EFAULT; } fullinst = ((unsigned)inst.full << 16) | inst2; regs->regs[31] = epc + 6; epc += 4; epc >>= 28; epc <<= 28; /* * JAL:5 X:1 TARGET[20-16]:5 TARGET[25:21]:5 TARGET[15:0]:16 * * ......TARGET[15:0].................TARGET[20:16]........... * ......TARGET[25:21] */ epc |= ((fullinst & 0xffff) << 2) | ((fullinst & 0x3e00000) >> 3) | ((fullinst & 0x1f0000) << 7); if (!inst.jal.x) set_isa16_mode(epc); /* Set ISA mode bit. */ regs->cp0_epc = epc; return 0; /* * J(AL)R(C) */ case MIPS16e_rr_op: if (inst.rr.func == MIPS16e_jr_func) { if (inst.rr.ra) regs->cp0_epc = regs->regs[31]; else regs->cp0_epc = regs->regs[reg16to32[inst.rr.rx]]; if (inst.rr.l) { if (inst.rr.nd) regs->regs[31] = epc + 2; else regs->regs[31] = epc + 4; } return 0; } break; } /* * All other cases have no branch delay slot and are 16-bits. * Branches do not cause an exception. */ regs->cp0_epc += 2; return 0; } /** * __compute_return_epc_for_insn - Computes the return address and do emulate * branch simulation, if required. * * @regs: Pointer to pt_regs * @insn: branch instruction to decode * Return: -EFAULT on error and forces SIGILL, and on success * returns 0 or BRANCH_LIKELY_TAKEN as appropriate after * evaluating the branch. * * MIPS R6 Compact branches and forbidden slots: * Compact branches do not throw exceptions because they do * not have delay slots. The forbidden slot instruction ($PC+4) * is only executed if the branch was not taken. Otherwise the * forbidden slot is skipped entirely. This means that the * only possible reason to be here because of a MIPS R6 compact * branch instruction is that the forbidden slot has thrown one. * In that case the branch was not taken, so the EPC can be safely * set to EPC + 8. */ int __compute_return_epc_for_insn(struct pt_regs *regs, union mips_instruction insn) { long epc = regs->cp0_epc; unsigned int dspcontrol; int ret = 0; switch (insn.i_format.opcode) { /* * jr and jalr are in r_format format. */ case spec_op: switch (insn.r_format.func) { case jalr_op: regs->regs[insn.r_format.rd] = epc + 8; fallthrough; case jr_op: if (NO_R6EMU && insn.r_format.func == jr_op) goto sigill_r2r6; regs->cp0_epc = regs->regs[insn.r_format.rs]; break; } break; /* * This group contains: * bltz_op, bgez_op, bltzl_op, bgezl_op, * bltzal_op, bgezal_op, bltzall_op, bgezall_op. */ case bcond_op: switch (insn.i_format.rt) { case bltzl_op: if (NO_R6EMU) goto sigill_r2r6; fallthrough; case bltz_op: if ((long)regs->regs[insn.i_format.rs] < 0) { epc = epc + 4 + (insn.i_format.simmediate << 2); if (insn.i_format.rt == bltzl_op) ret = BRANCH_LIKELY_TAKEN; } else epc += 8; regs->cp0_epc = epc; break; case bgezl_op: if (NO_R6EMU) goto sigill_r2r6; fallthrough; case bgez_op: if ((long)regs->regs[insn.i_format.rs] >= 0) { epc = epc + 4 + (insn.i_format.simmediate << 2); if (insn.i_format.rt == bgezl_op) ret = BRANCH_LIKELY_TAKEN; } else epc += 8; regs->cp0_epc = epc; break; case bltzal_op: case bltzall_op: if (NO_R6EMU && (insn.i_format.rs || insn.i_format.rt == bltzall_op)) goto sigill_r2r6; regs->regs[31] = epc + 8; /* * OK we are here either because we hit a NAL * instruction or because we are emulating an * old bltzal{,l} one. Let's figure out what the * case really is. */ if (!insn.i_format.rs) { /* * NAL or BLTZAL with rs == 0 * Doesn't matter if we are R6 or not. The * result is the same */ regs->cp0_epc += 4 + (insn.i_format.simmediate << 2); break; } /* Now do the real thing for non-R6 BLTZAL{,L} */ if ((long)regs->regs[insn.i_format.rs] < 0) { epc = epc + 4 + (insn.i_format.simmediate << 2); if (insn.i_format.rt == bltzall_op) ret = BRANCH_LIKELY_TAKEN; } else epc += 8; regs->cp0_epc = epc; break; case bgezal_op: case bgezall_op: if (NO_R6EMU && (insn.i_format.rs || insn.i_format.rt == bgezall_op)) goto sigill_r2r6; regs->regs[31] = epc + 8; /* * OK we are here either because we hit a BAL * instruction or because we are emulating an * old bgezal{,l} one. Let's figure out what the * case really is. */ if (!insn.i_format.rs) { /* * BAL or BGEZAL with rs == 0 * Doesn't matter if we are R6 or not. The * result is the same */ regs->cp0_epc += 4 + (insn.i_format.simmediate << 2); break; } /* Now do the real thing for non-R6 BGEZAL{,L} */ if ((long)regs->regs[insn.i_format.rs] >= 0) { epc = epc + 4 + (insn.i_format.simmediate << 2); if (insn.i_format.rt == bgezall_op) ret = BRANCH_LIKELY_TAKEN; } else epc += 8; regs->cp0_epc = epc; break; case bposge32_op: if (!cpu_has_dsp) goto sigill_dsp; dspcontrol = rddsp(0x01); if (dspcontrol >= 32) { epc = epc + 4 + (insn.i_format.simmediate << 2); } else epc += 8; regs->cp0_epc = epc; break; } break; /* * These are unconditional and in j_format. */ case jalx_op: case jal_op: regs->regs[31] = regs->cp0_epc + 8; fallthrough; case j_op: epc += 4; epc >>= 28; epc <<= 28; epc |= (insn.j_format.target << 2); regs->cp0_epc = epc; if (insn.i_format.opcode == jalx_op) set_isa16_mode(regs->cp0_epc); break; /* * These are conditional and in i_format. */ case beql_op: if (NO_R6EMU) goto sigill_r2r6; fallthrough; case beq_op: if (regs->regs[insn.i_format.rs] == regs->regs[insn.i_format.rt]) { epc = epc + 4 + (insn.i_format.simmediate << 2); if (insn.i_format.opcode == beql_op) ret = BRANCH_LIKELY_TAKEN; } else epc += 8; regs->cp0_epc = epc; break; case bnel_op: if (NO_R6EMU) goto sigill_r2r6; fallthrough; case bne_op: if (regs->regs[insn.i_format.rs] != regs->regs[insn.i_format.rt]) { epc = epc + 4 + (insn.i_format.simmediate << 2); if (insn.i_format.opcode == bnel_op) ret = BRANCH_LIKELY_TAKEN; } else epc += 8; regs->cp0_epc = epc; break; case blezl_op: /* not really i_format */ if (!insn.i_format.rt && NO_R6EMU) goto sigill_r2r6; fallthrough; case blez_op: /* * Compact branches for R6 for the * blez and blezl opcodes. * BLEZ | rs = 0 | rt != 0 == BLEZALC * BLEZ | rs = rt != 0 == BGEZALC * BLEZ | rs != 0 | rt != 0 == BGEUC * BLEZL | rs = 0 | rt != 0 == BLEZC * BLEZL | rs = rt != 0 == BGEZC * BLEZL | rs != 0 | rt != 0 == BGEC * * For real BLEZ{,L}, rt is always 0. */ if (cpu_has_mips_r6 && insn.i_format.rt) { if ((insn.i_format.opcode == blez_op) && ((!insn.i_format.rs && insn.i_format.rt) || (insn.i_format.rs == insn.i_format.rt))) regs->regs[31] = epc + 4; regs->cp0_epc += 8; break; } /* rt field assumed to be zero */ if ((long)regs->regs[insn.i_format.rs] <= 0) { epc = epc + 4 + (insn.i_format.simmediate << 2); if (insn.i_format.opcode == blezl_op) ret = BRANCH_LIKELY_TAKEN; } else epc += 8; regs->cp0_epc = epc; break; case bgtzl_op: if (!insn.i_format.rt && NO_R6EMU) goto sigill_r2r6; fallthrough; case bgtz_op: /* * Compact branches for R6 for the * bgtz and bgtzl opcodes. * BGTZ | rs = 0 | rt != 0 == BGTZALC * BGTZ | rs = rt != 0 == BLTZALC * BGTZ | rs != 0 | rt != 0 == BLTUC * BGTZL | rs = 0 | rt != 0 == BGTZC * BGTZL | rs = rt != 0 == BLTZC * BGTZL | rs != 0 | rt != 0 == BLTC * * *ZALC varint for BGTZ &&& rt != 0 * For real GTZ{,L}, rt is always 0. */ if (cpu_has_mips_r6 && insn.i_format.rt) { if ((insn.i_format.opcode == blez_op) && ((!insn.i_format.rs && insn.i_format.rt) || (insn.i_format.rs == insn.i_format.rt))) regs->regs[31] = epc + 4; regs->cp0_epc += 8; break; } /* rt field assumed to be zero */ if ((long)regs->regs[insn.i_format.rs] > 0) { epc = epc + 4 + (insn.i_format.simmediate << 2); if (insn.i_format.opcode == bgtzl_op) ret = BRANCH_LIKELY_TAKEN; } else epc += 8; regs->cp0_epc = epc; break; #ifdef CONFIG_MIPS_FP_SUPPORT /* * And now the FPA/cp1 branch instructions. */ case cop1_op: { unsigned int bit, fcr31, reg; if (cpu_has_mips_r6 && ((insn.i_format.rs == bc1eqz_op) || (insn.i_format.rs == bc1nez_op))) { if (!init_fp_ctx(current)) lose_fpu(1); reg = insn.i_format.rt; bit = get_fpr32(&current->thread.fpu.fpr[reg], 0) & 0x1; if (insn.i_format.rs == bc1eqz_op) bit = !bit; own_fpu(1); if (bit) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; regs->cp0_epc = epc; break; } else { preempt_disable(); if (is_fpu_owner()) fcr31 = read_32bit_cp1_register(CP1_STATUS); else fcr31 = current->thread.fpu.fcr31; preempt_enable(); bit = (insn.i_format.rt >> 2); bit += (bit != 0); bit += 23; switch (insn.i_format.rt & 3) { case 0: /* bc1f */ case 2: /* bc1fl */ if (~fcr31 & (1 << bit)) { epc = epc + 4 + (insn.i_format.simmediate << 2); if (insn.i_format.rt == 2) ret = BRANCH_LIKELY_TAKEN; } else epc += 8; regs->cp0_epc = epc; break; case 1: /* bc1t */ case 3: /* bc1tl */ if (fcr31 & (1 << bit)) { epc = epc + 4 + (insn.i_format.simmediate << 2); if (insn.i_format.rt == 3) ret = BRANCH_LIKELY_TAKEN; } else epc += 8; regs->cp0_epc = epc; break; } break; } } #endif /* CONFIG_MIPS_FP_SUPPORT */ #ifdef CONFIG_CPU_CAVIUM_OCTEON case lwc2_op: /* This is bbit0 on Octeon */ if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; regs->cp0_epc = epc; break; case ldc2_op: /* This is bbit032 on Octeon */ if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt+32))) == 0) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; regs->cp0_epc = epc; break; case swc2_op: /* This is bbit1 on Octeon */ if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; regs->cp0_epc = epc; break; case sdc2_op: /* This is bbit132 on Octeon */ if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt+32))) epc = epc + 4 + (insn.i_format.simmediate << 2); else epc += 8; regs->cp0_epc = epc; break; #else case bc6_op: /* Only valid for MIPS R6 */ if (!cpu_has_mips_r6) goto sigill_r6; regs->cp0_epc += 8; break; case balc6_op: if (!cpu_has_mips_r6) goto sigill_r6; /* Compact branch: BALC */ regs->regs[31] = epc + 4; epc += 4 + (insn.i_format.simmediate << 2); regs->cp0_epc = epc; break; case pop66_op: if (!cpu_has_mips_r6) goto sigill_r6; /* Compact branch: BEQZC || JIC */ regs->cp0_epc += 8; break; case pop76_op: if (!cpu_has_mips_r6) goto sigill_r6; /* Compact branch: BNEZC || JIALC */ if (!insn.i_format.rs) { /* JIALC: set $31/ra */ regs->regs[31] = epc + 4; } regs->cp0_epc += 8; break; #endif case pop10_op: case pop30_op: /* Only valid for MIPS R6 */ if (!cpu_has_mips_r6) goto sigill_r6; /* * Compact branches: * bovc, beqc, beqzalc, bnvc, bnec, bnezlac */ if (insn.i_format.rt && !insn.i_format.rs) regs->regs[31] = epc + 4; regs->cp0_epc += 8; break; } return ret; sigill_dsp: pr_debug("%s: DSP branch but not DSP ASE - sending SIGILL.\n", current->comm); force_sig(SIGILL); return -EFAULT; sigill_r2r6: pr_debug("%s: R2 branch but r2-to-r6 emulator is not present - sending SIGILL.\n", current->comm); force_sig(SIGILL); return -EFAULT; sigill_r6: pr_debug("%s: R6 branch but no MIPSr6 ISA support - sending SIGILL.\n", current->comm); force_sig(SIGILL); return -EFAULT; } EXPORT_SYMBOL_GPL(__compute_return_epc_for_insn); int __compute_return_epc(struct pt_regs *regs) { unsigned int __user *addr; long epc; union mips_instruction insn; epc = regs->cp0_epc; if (epc & 3) goto unaligned; /* * Read the instruction */ addr = (unsigned int __user *) epc; if (__get_user(insn.word, addr)) { force_sig(SIGSEGV); return -EFAULT; } return __compute_return_epc_for_insn(regs, insn); unaligned: printk("%s: unaligned epc - sending SIGBUS.\n", current->comm); force_sig(SIGBUS); return -EFAULT; } #if (defined CONFIG_KPROBES) || (defined CONFIG_UPROBES) int __insn_is_compact_branch(union mips_instruction insn) { if (!cpu_has_mips_r6) return 0; switch (insn.i_format.opcode) { case blezl_op: case bgtzl_op: case blez_op: case bgtz_op: /* * blez[l] and bgtz[l] opcodes with non-zero rt * are MIPS R6 compact branches */ if (insn.i_format.rt) return 1; break; case bc6_op: case balc6_op: case pop10_op: case pop30_op: case pop66_op: case pop76_op: return 1; } return 0; } EXPORT_SYMBOL_GPL(__insn_is_compact_branch); #endif /* CONFIG_KPROBES || CONFIG_UPROBES */
linux-master
arch/mips/kernel/branch.c
/* * Based on linux/arch/mips/jmr3927/rbhma3100/irq.c, * linux/arch/mips/tx4927/common/tx4927_irq.c, * linux/arch/mips/tx4938/common/irq.c * * Copyright 2001, 2003-2005 MontaVista Software Inc. * Author: MontaVista Software, Inc. * [email protected] * [email protected] * Copyright (C) 2000-2001 Toshiba Corporation * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/types.h> #include <linux/irq.h> #include <asm/txx9irq.h> struct txx9_irc_reg { u32 cer; u32 cr[2]; u32 unused0; u32 ilr[8]; u32 unused1[4]; u32 imr; u32 unused2[7]; u32 scr; u32 unused3[7]; u32 ssr; u32 unused4[7]; u32 csr; }; /* IRCER : Int. Control Enable */ #define TXx9_IRCER_ICE 0x00000001 /* IRCR : Int. Control */ #define TXx9_IRCR_LOW 0x00000000 #define TXx9_IRCR_HIGH 0x00000001 #define TXx9_IRCR_DOWN 0x00000002 #define TXx9_IRCR_UP 0x00000003 #define TXx9_IRCR_EDGE(cr) ((cr) & 0x00000002) /* IRSCR : Int. Status Control */ #define TXx9_IRSCR_EIClrE 0x00000100 #define TXx9_IRSCR_EIClr_MASK 0x0000000f /* IRCSR : Int. Current Status */ #define TXx9_IRCSR_IF 0x00010000 #define TXx9_IRCSR_ILV_MASK 0x00000700 #define TXx9_IRCSR_IVL_MASK 0x0000001f #define irc_dlevel 0 #define irc_elevel 1 static struct txx9_irc_reg __iomem *txx9_ircptr __read_mostly; static struct { unsigned char level; unsigned char mode; } txx9irq[TXx9_MAX_IR] __read_mostly; static void txx9_irq_unmask(struct irq_data *d) { unsigned int irq_nr = d->irq - TXX9_IRQ_BASE; u32 __iomem *ilrp = &txx9_ircptr->ilr[(irq_nr % 16 ) / 2]; int ofs = irq_nr / 16 * 16 + (irq_nr & 1) * 8; __raw_writel((__raw_readl(ilrp) & ~(0xff << ofs)) | (txx9irq[irq_nr].level << ofs), ilrp); } static inline void txx9_irq_mask(struct irq_data *d) { unsigned int irq_nr = d->irq - TXX9_IRQ_BASE; u32 __iomem *ilrp = &txx9_ircptr->ilr[(irq_nr % 16) / 2]; int ofs = irq_nr / 16 * 16 + (irq_nr & 1) * 8; __raw_writel((__raw_readl(ilrp) & ~(0xff << ofs)) | (irc_dlevel << ofs), ilrp); mmiowb(); } static void txx9_irq_mask_ack(struct irq_data *d) { unsigned int irq_nr = d->irq - TXX9_IRQ_BASE; txx9_irq_mask(d); /* clear edge detection */ if (unlikely(TXx9_IRCR_EDGE(txx9irq[irq_nr].mode))) __raw_writel(TXx9_IRSCR_EIClrE | irq_nr, &txx9_ircptr->scr); } static int txx9_irq_set_type(struct irq_data *d, unsigned int flow_type) { unsigned int irq_nr = d->irq - TXX9_IRQ_BASE; u32 cr; u32 __iomem *crp; int ofs; int mode; if (flow_type & IRQF_TRIGGER_PROBE) return 0; switch (flow_type & IRQF_TRIGGER_MASK) { case IRQF_TRIGGER_RISING: mode = TXx9_IRCR_UP; break; case IRQF_TRIGGER_FALLING: mode = TXx9_IRCR_DOWN; break; case IRQF_TRIGGER_HIGH: mode = TXx9_IRCR_HIGH; break; case IRQF_TRIGGER_LOW: mode = TXx9_IRCR_LOW; break; default: return -EINVAL; } crp = &txx9_ircptr->cr[(unsigned int)irq_nr / 8]; cr = __raw_readl(crp); ofs = (irq_nr & (8 - 1)) * 2; cr &= ~(0x3 << ofs); cr |= (mode & 0x3) << ofs; __raw_writel(cr, crp); txx9irq[irq_nr].mode = mode; return 0; } static struct irq_chip txx9_irq_chip = { .name = "TXX9", .irq_ack = txx9_irq_mask_ack, .irq_mask = txx9_irq_mask, .irq_mask_ack = txx9_irq_mask_ack, .irq_unmask = txx9_irq_unmask, .irq_set_type = txx9_irq_set_type, }; void __init txx9_irq_init(unsigned long baseaddr) { int i; txx9_ircptr = ioremap(baseaddr, sizeof(struct txx9_irc_reg)); for (i = 0; i < TXx9_MAX_IR; i++) { txx9irq[i].level = 4; /* middle level */ txx9irq[i].mode = TXx9_IRCR_LOW; irq_set_chip_and_handler(TXX9_IRQ_BASE + i, &txx9_irq_chip, handle_level_irq); } /* mask all IRC interrupts */ __raw_writel(0, &txx9_ircptr->imr); for (i = 0; i < 8; i++) __raw_writel(0, &txx9_ircptr->ilr[i]); /* setup IRC interrupt mode (Low Active) */ for (i = 0; i < 2; i++) __raw_writel(0, &txx9_ircptr->cr[i]); /* enable interrupt control */ __raw_writel(TXx9_IRCER_ICE, &txx9_ircptr->cer); __raw_writel(irc_elevel, &txx9_ircptr->imr); } int __init txx9_irq_set_pri(int irc_irq, int new_pri) { int old_pri; if ((unsigned int)irc_irq >= TXx9_MAX_IR) return 0; old_pri = txx9irq[irc_irq].level; txx9irq[irc_irq].level = new_pri; return old_pri; } int txx9_irq(void) { u32 csr = __raw_readl(&txx9_ircptr->csr); if (likely(!(csr & TXx9_IRCSR_IF))) return TXX9_IRQ_BASE + (csr & (TXx9_MAX_IR - 1)); return -1; }
linux-master
arch/mips/kernel/irq_txx9.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/highmem.h> #include <linux/kdebug.h> #include <linux/types.h> #include <linux/notifier.h> #include <linux/sched.h> #include <linux/uprobes.h> #include <asm/branch.h> #include <asm/cpu-features.h> #include <asm/ptrace.h> #include "probes-common.h" static inline int insn_has_delay_slot(const union mips_instruction insn) { return __insn_has_delay_slot(insn); } /** * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. * @mm: the probed address space. * @arch_uprobe: the probepoint information. * @addr: virtual address at which to install the probepoint * Return 0 on success or a -ve number on error. */ int arch_uprobe_analyze_insn(struct arch_uprobe *aup, struct mm_struct *mm, unsigned long addr) { union mips_instruction inst; /* * For the time being this also blocks attempts to use uprobes with * MIPS16 and microMIPS. */ if (addr & 0x03) return -EINVAL; inst.word = aup->insn[0]; if (__insn_is_compact_branch(inst)) { pr_notice("Uprobes for compact branches are not supported\n"); return -EINVAL; } aup->ixol[0] = aup->insn[insn_has_delay_slot(inst)]; aup->ixol[1] = UPROBE_BRK_UPROBE_XOL; /* NOP */ return 0; } /** * is_trap_insn - check if the instruction is a trap variant * @insn: instruction to be checked. * Returns true if @insn is a trap variant. * * This definition overrides the weak definition in kernel/events/uprobes.c. * and is needed for the case where an architecture has multiple trap * instructions (like PowerPC or MIPS). We treat BREAK just like the more * modern conditional trap instructions. */ bool is_trap_insn(uprobe_opcode_t *insn) { union mips_instruction inst; inst.word = *insn; switch (inst.i_format.opcode) { case spec_op: switch (inst.r_format.func) { case break_op: case teq_op: case tge_op: case tgeu_op: case tlt_op: case tltu_op: case tne_op: return true; } break; case bcond_op: /* Yes, really ... */ switch (inst.u_format.rt) { case teqi_op: case tgei_op: case tgeiu_op: case tlti_op: case tltiu_op: case tnei_op: return true; } break; } return false; } #define UPROBE_TRAP_NR ULONG_MAX /* * arch_uprobe_pre_xol - prepare to execute out of line. * @auprobe: the probepoint information. * @regs: reflects the saved user state of current task. */ int arch_uprobe_pre_xol(struct arch_uprobe *aup, struct pt_regs *regs) { struct uprobe_task *utask = current->utask; /* * Now find the EPC where to resume after the breakpoint has been * dealt with. This may require emulation of a branch. */ aup->resume_epc = regs->cp0_epc + 4; if (insn_has_delay_slot((union mips_instruction) aup->insn[0])) { __compute_return_epc_for_insn(regs, (union mips_instruction) aup->insn[0]); aup->resume_epc = regs->cp0_epc; } utask->autask.saved_trap_nr = current->thread.trap_nr; current->thread.trap_nr = UPROBE_TRAP_NR; regs->cp0_epc = current->utask->xol_vaddr; return 0; } int arch_uprobe_post_xol(struct arch_uprobe *aup, struct pt_regs *regs) { struct uprobe_task *utask = current->utask; current->thread.trap_nr = utask->autask.saved_trap_nr; regs->cp0_epc = aup->resume_epc; return 0; } /* * If xol insn itself traps and generates a signal(Say, * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped * instruction jumps back to its own address. It is assumed that anything * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. * * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). */ bool arch_uprobe_xol_was_trapped(struct task_struct *tsk) { if (tsk->thread.trap_nr != UPROBE_TRAP_NR) return true; return false; } int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = data; struct pt_regs *regs = args->regs; /* regs == NULL is a kernel bug */ if (WARN_ON(!regs)) return NOTIFY_DONE; /* We are only interested in userspace traps */ if (!user_mode(regs)) return NOTIFY_DONE; switch (val) { case DIE_UPROBE: if (uprobe_pre_sstep_notifier(regs)) return NOTIFY_STOP; break; case DIE_UPROBE_XOL: if (uprobe_post_sstep_notifier(regs)) return NOTIFY_STOP; break; default: break; } return 0; } /* * This function gets called when XOL instruction either gets trapped or * the thread has a fatal signal. Reset the instruction pointer to its * probed address for the potential restart or for post mortem analysis. */ void arch_uprobe_abort_xol(struct arch_uprobe *aup, struct pt_regs *regs) { struct uprobe_task *utask = current->utask; current->thread.trap_nr = utask->autask.saved_trap_nr; instruction_pointer_set(regs, utask->vaddr); } unsigned long arch_uretprobe_hijack_return_addr( unsigned long trampoline_vaddr, struct pt_regs *regs) { unsigned long ra; ra = regs->regs[31]; /* Replace the return address with the trampoline address */ regs->regs[31] = trampoline_vaddr; return ra; } void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, void *src, unsigned long len) { unsigned long kaddr, kstart; /* Initialize the slot */ kaddr = (unsigned long)kmap_atomic(page); kstart = kaddr + (vaddr & ~PAGE_MASK); memcpy((void *)kstart, src, len); flush_icache_range(kstart, kstart + len); kunmap_atomic((void *)kaddr); } /** * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs * @regs: Reflects the saved state of the task after it has hit a breakpoint * instruction. * Return the address of the breakpoint instruction. * * This overrides the weak version in kernel/events/uprobes.c. */ unsigned long uprobe_get_swbp_addr(struct pt_regs *regs) { return instruction_pointer(regs); } /* * See if the instruction can be emulated. * Returns true if instruction was emulated, false otherwise. * * For now we always emulate so this function just returns false. */ bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) { return false; }
linux-master
arch/mips/kernel/uprobes.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2000, 2001 Broadcom Corporation */ #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/percpu.h> #include <linux/smp.h> #include <asm/addrspace.h> #include <asm/io.h> #include <asm/time.h> #include <asm/sibyte/sb1250.h> #include <asm/sibyte/sb1250_regs.h> #include <asm/sibyte/sb1250_int.h> #include <asm/sibyte/sb1250_scd.h> #define IMR_IP2_VAL K_INT_MAP_I0 #define IMR_IP3_VAL K_INT_MAP_I1 #define IMR_IP4_VAL K_INT_MAP_I2 /* * The general purpose timer ticks at 1MHz independent if * the rest of the system */ static int sibyte_shutdown(struct clock_event_device *evt) { void __iomem *cfg; cfg = IOADDR(A_SCD_TIMER_REGISTER(smp_processor_id(), R_SCD_TIMER_CFG)); /* Stop the timer until we actually program a shot */ __raw_writeq(0, cfg); return 0; } static int sibyte_set_periodic(struct clock_event_device *evt) { unsigned int cpu = smp_processor_id(); void __iomem *cfg, *init; cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)); init = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_INIT)); __raw_writeq(0, cfg); __raw_writeq((V_SCD_TIMER_FREQ / HZ) - 1, init); __raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS, cfg); return 0; } static int sibyte_next_event(unsigned long delta, struct clock_event_device *cd) { unsigned int cpu = smp_processor_id(); void __iomem *cfg, *init; cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)); init = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_INIT)); __raw_writeq(0, cfg); __raw_writeq(delta - 1, init); __raw_writeq(M_SCD_TIMER_ENABLE, cfg); return 0; } static irqreturn_t sibyte_counter_handler(int irq, void *dev_id) { unsigned int cpu = smp_processor_id(); struct clock_event_device *cd = dev_id; void __iomem *cfg; unsigned long tmode; if (clockevent_state_periodic(cd)) tmode = M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS; else tmode = 0; /* ACK interrupt */ cfg = IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)); ____raw_writeq(tmode, cfg); cd->event_handler(cd); return IRQ_HANDLED; } static DEFINE_PER_CPU(struct clock_event_device, sibyte_hpt_clockevent); static DEFINE_PER_CPU(char [18], sibyte_hpt_name); void sb1250_clockevent_init(void) { unsigned int cpu = smp_processor_id(); unsigned int irq = K_INT_TIMER_0 + cpu; struct clock_event_device *cd = &per_cpu(sibyte_hpt_clockevent, cpu); unsigned char *name = per_cpu(sibyte_hpt_name, cpu); unsigned long flags = IRQF_PERCPU | IRQF_TIMER; /* Only have 4 general purpose timers, and we use last one as hpt */ BUG_ON(cpu > 2); sprintf(name, "sb1250-counter-%d", cpu); cd->name = name; cd->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; clockevent_set_clock(cd, V_SCD_TIMER_FREQ); cd->max_delta_ns = clockevent_delta2ns(0x7fffff, cd); cd->max_delta_ticks = 0x7fffff; cd->min_delta_ns = clockevent_delta2ns(2, cd); cd->min_delta_ticks = 2; cd->rating = 200; cd->irq = irq; cd->cpumask = cpumask_of(cpu); cd->set_next_event = sibyte_next_event; cd->set_state_shutdown = sibyte_shutdown; cd->set_state_periodic = sibyte_set_periodic; cd->set_state_oneshot = sibyte_shutdown; clockevents_register_device(cd); sb1250_mask_irq(cpu, irq); /* * Map the timer interrupt to IP[4] of this cpu */ __raw_writeq(IMR_IP4_VAL, IOADDR(A_IMR_REGISTER(cpu, R_IMR_INTERRUPT_MAP_BASE) + (irq << 3))); sb1250_unmask_irq(cpu, irq); irq_set_affinity(irq, cpumask_of(cpu)); if (request_irq(irq, sibyte_counter_handler, flags, name, cd)) pr_err("Failed to request irq %d (%s)\n", irq, name); }
linux-master
arch/mips/kernel/cevt-sb1250.c
// SPDX-License-Identifier: GPL-2.0-only /* * MIPS support for CONFIG_OF device tree support * * Copyright (C) 2010 Cisco Systems Inc. <[email protected]> */ #include <linux/init.h> #include <linux/export.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/memblock.h> #include <linux/debugfs.h> #include <linux/of.h> #include <linux/of_fdt.h> #include <linux/of_platform.h> #include <asm/bootinfo.h> #include <asm/page.h> #include <asm/prom.h> static char mips_machine_name[64] = "Unknown"; __init void mips_set_machine_name(const char *name) { if (name == NULL) return; strscpy(mips_machine_name, name, sizeof(mips_machine_name)); pr_info("MIPS: machine is %s\n", mips_get_machine_name()); } char *mips_get_machine_name(void) { return mips_machine_name; } #ifdef CONFIG_USE_OF void __init __dt_setup_arch(void *bph) { if (!early_init_dt_scan(bph)) return; mips_set_machine_name(of_flat_dt_get_machine_name()); } int __init __dt_register_buses(const char *bus0, const char *bus1) { static struct of_device_id of_ids[3]; if (!of_have_populated_dt()) panic("device tree not present"); strscpy(of_ids[0].compatible, bus0, sizeof(of_ids[0].compatible)); if (bus1) { strscpy(of_ids[1].compatible, bus1, sizeof(of_ids[1].compatible)); } if (of_platform_populate(NULL, of_ids, NULL, NULL)) panic("failed to populate DT"); return 0; } void __weak __init device_tree_init(void) { unflatten_and_copy_device_tree(); } #endif
linux-master
arch/mips/kernel/prom.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2013 Imagination Technologies Ltd. */ #include <linux/kernel.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <asm/cpu.h> #include <asm/debug.h> #include <asm/mipsregs.h> static void build_segment_config(char *str, unsigned int cfg) { unsigned int am; static const char * const am_str[] = { "UK", "MK", "MSK", "MUSK", "MUSUK", "USK", "RSRVD", "UUSK"}; /* Segment access mode. */ am = (cfg & MIPS_SEGCFG_AM) >> MIPS_SEGCFG_AM_SHIFT; str += sprintf(str, "%-5s", am_str[am]); /* * Access modes MK, MSK and MUSK are mapped segments. Therefore * there is no direct physical address mapping unless it becomes * unmapped uncached at error level due to EU. */ if ((am == 0) || (am > 3) || (cfg & MIPS_SEGCFG_EU)) str += sprintf(str, " %03lx", ((cfg & MIPS_SEGCFG_PA) >> MIPS_SEGCFG_PA_SHIFT)); else str += sprintf(str, " UND"); if ((am == 0) || (am > 3)) str += sprintf(str, " %01ld", ((cfg & MIPS_SEGCFG_C) >> MIPS_SEGCFG_C_SHIFT)); else str += sprintf(str, " U"); /* Exception configuration. */ str += sprintf(str, " %01ld\n", ((cfg & MIPS_SEGCFG_EU) >> MIPS_SEGCFG_EU_SHIFT)); } static int segments_show(struct seq_file *m, void *v) { unsigned int segcfg; char str[42]; seq_puts(m, "Segment Virtual Size Access Mode Physical Caching EU\n"); seq_puts(m, "------- ------- ---- ----------- -------- ------- --\n"); segcfg = read_c0_segctl0(); build_segment_config(str, segcfg); seq_printf(m, " 0 e0000000 512M %s", str); segcfg >>= 16; build_segment_config(str, segcfg); seq_printf(m, " 1 c0000000 512M %s", str); segcfg = read_c0_segctl1(); build_segment_config(str, segcfg); seq_printf(m, " 2 a0000000 512M %s", str); segcfg >>= 16; build_segment_config(str, segcfg); seq_printf(m, " 3 80000000 512M %s", str); segcfg = read_c0_segctl2(); build_segment_config(str, segcfg); seq_printf(m, " 4 40000000 1G %s", str); segcfg >>= 16; build_segment_config(str, segcfg); seq_printf(m, " 5 00000000 1G %s\n", str); return 0; } DEFINE_SHOW_ATTRIBUTE(segments); static int __init segments_info(void) { if (cpu_has_segments) debugfs_create_file("segments", S_IRUGO, mips_debugfs_dir, NULL, &segments_fops); return 0; } device_initcall(segments_info);
linux-master
arch/mips/kernel/segment.c
// SPDX-License-Identifier: GPL-2.0-only /* * Stack trace management functions * * Copyright (C) 2006 Atsushi Nemoto <[email protected]> */ #include <linux/sched.h> #include <linux/sched/debug.h> #include <linux/sched/task_stack.h> #include <linux/stacktrace.h> #include <linux/export.h> #include <asm/stacktrace.h> /* * Save stack-backtrace addresses into a stack_trace buffer: */ static void save_raw_context_stack(struct stack_trace *trace, unsigned long reg29, int savesched) { unsigned long *sp = (unsigned long *)reg29; unsigned long addr; while (!kstack_end(sp)) { addr = *sp++; if (__kernel_text_address(addr) && (savesched || !in_sched_functions(addr))) { if (trace->skip > 0) trace->skip--; else trace->entries[trace->nr_entries++] = addr; if (trace->nr_entries >= trace->max_entries) break; } } } static void save_context_stack(struct stack_trace *trace, struct task_struct *tsk, struct pt_regs *regs, int savesched) { unsigned long sp = regs->regs[29]; #ifdef CONFIG_KALLSYMS unsigned long ra = regs->regs[31]; unsigned long pc = regs->cp0_epc; if (raw_show_trace || !__kernel_text_address(pc)) { unsigned long stack_page = (unsigned long)task_stack_page(tsk); if (stack_page && sp >= stack_page && sp <= stack_page + THREAD_SIZE - 32) save_raw_context_stack(trace, sp, savesched); return; } do { if (savesched || !in_sched_functions(pc)) { if (trace->skip > 0) trace->skip--; else trace->entries[trace->nr_entries++] = pc; if (trace->nr_entries >= trace->max_entries) break; } pc = unwind_stack(tsk, &sp, pc, &ra); } while (pc); #else save_raw_context_stack(trace, sp, savesched); #endif } /* * Save stack-backtrace addresses into a stack_trace buffer. */ void save_stack_trace(struct stack_trace *trace) { save_stack_trace_tsk(current, trace); } EXPORT_SYMBOL_GPL(save_stack_trace); void save_stack_trace_tsk(struct task_struct *tsk, struct stack_trace *trace) { struct pt_regs dummyregs; struct pt_regs *regs = &dummyregs; WARN_ON(trace->nr_entries || !trace->max_entries); if (tsk != current) { regs->regs[29] = tsk->thread.reg29; regs->regs[31] = 0; regs->cp0_epc = tsk->thread.reg31; } else prepare_frametrace(regs); save_context_stack(trace, tsk, regs, tsk == current); } EXPORT_SYMBOL_GPL(save_stack_trace_tsk);
linux-master
arch/mips/kernel/stacktrace.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1995, 1996, 2001 Ralf Baechle * Copyright (C) 2001, 2004 MIPS Technologies, Inc. * Copyright (C) 2004 Maciej W. Rozycki */ #include <linux/delay.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <asm/bootinfo.h> #include <asm/cpu.h> #include <asm/cpu-features.h> #include <asm/idle.h> #include <asm/mipsregs.h> #include <asm/processor.h> #include <asm/prom.h> unsigned int vced_count, vcei_count; /* * No lock; only written during early bootup by CPU 0. */ static RAW_NOTIFIER_HEAD(proc_cpuinfo_chain); int __ref register_proc_cpuinfo_notifier(struct notifier_block *nb) { return raw_notifier_chain_register(&proc_cpuinfo_chain, nb); } int proc_cpuinfo_notifier_call_chain(unsigned long val, void *v) { return raw_notifier_call_chain(&proc_cpuinfo_chain, val, v); } static int show_cpuinfo(struct seq_file *m, void *v) { struct proc_cpuinfo_notifier_args proc_cpuinfo_notifier_args; unsigned long n = (unsigned long) v - 1; unsigned int version = cpu_data[n].processor_id; unsigned int fp_vers = cpu_data[n].fpu_id; char fmt[64]; int i; #ifdef CONFIG_SMP if (!cpu_online(n)) return 0; #endif /* * For the first processor also print the system type */ if (n == 0) { seq_printf(m, "system type\t\t: %s\n", get_system_type()); if (mips_get_machine_name()) seq_printf(m, "machine\t\t\t: %s\n", mips_get_machine_name()); } seq_printf(m, "processor\t\t: %ld\n", n); sprintf(fmt, "cpu model\t\t: %%s V%%d.%%d%s\n", cpu_data[n].options & MIPS_CPU_FPU ? " FPU V%d.%d" : ""); seq_printf(m, fmt, __cpu_name[n], (version >> 4) & 0x0f, version & 0x0f, (fp_vers >> 4) & 0x0f, fp_vers & 0x0f); seq_printf(m, "BogoMIPS\t\t: %u.%02u\n", cpu_data[n].udelay_val / (500000/HZ), (cpu_data[n].udelay_val / (5000/HZ)) % 100); seq_printf(m, "wait instruction\t: %s\n", cpu_wait ? "yes" : "no"); seq_printf(m, "microsecond timers\t: %s\n", cpu_has_counter ? "yes" : "no"); seq_printf(m, "tlb_entries\t\t: %d\n", cpu_data[n].tlbsize); seq_printf(m, "extra interrupt vector\t: %s\n", cpu_has_divec ? "yes" : "no"); seq_printf(m, "hardware watchpoint\t: %s", cpu_has_watch ? "yes, " : "no\n"); if (cpu_has_watch) { seq_printf(m, "count: %d, address/irw mask: [", cpu_data[n].watch_reg_count); for (i = 0; i < cpu_data[n].watch_reg_count; i++) seq_printf(m, "%s0x%04x", i ? ", " : "", cpu_data[n].watch_reg_masks[i]); seq_puts(m, "]\n"); } seq_puts(m, "isa\t\t\t:"); if (cpu_has_mips_1) seq_puts(m, " mips1"); if (cpu_has_mips_2) seq_puts(m, " mips2"); if (cpu_has_mips_3) seq_puts(m, " mips3"); if (cpu_has_mips_4) seq_puts(m, " mips4"); if (cpu_has_mips_5) seq_puts(m, " mips5"); if (cpu_has_mips32r1) seq_puts(m, " mips32r1"); if (cpu_has_mips32r2) seq_puts(m, " mips32r2"); if (cpu_has_mips32r5) seq_puts(m, " mips32r5"); if (cpu_has_mips32r6) seq_puts(m, " mips32r6"); if (cpu_has_mips64r1) seq_puts(m, " mips64r1"); if (cpu_has_mips64r2) seq_puts(m, " mips64r2"); if (cpu_has_mips64r5) seq_puts(m, " mips64r5"); if (cpu_has_mips64r6) seq_puts(m, " mips64r6"); seq_puts(m, "\n"); seq_puts(m, "ASEs implemented\t:"); if (cpu_has_mips16) seq_puts(m, " mips16"); if (cpu_has_mips16e2) seq_puts(m, " mips16e2"); if (cpu_has_mdmx) seq_puts(m, " mdmx"); if (cpu_has_mips3d) seq_puts(m, " mips3d"); if (cpu_has_smartmips) seq_puts(m, " smartmips"); if (cpu_has_dsp) seq_puts(m, " dsp"); if (cpu_has_dsp2) seq_puts(m, " dsp2"); if (cpu_has_dsp3) seq_puts(m, " dsp3"); if (cpu_has_mipsmt) seq_puts(m, " mt"); if (cpu_has_mmips) seq_puts(m, " micromips"); if (cpu_has_vz) seq_puts(m, " vz"); if (cpu_has_msa) seq_puts(m, " msa"); if (cpu_has_eva) seq_puts(m, " eva"); if (cpu_has_htw) seq_puts(m, " htw"); if (cpu_has_xpa) seq_puts(m, " xpa"); if (cpu_has_loongson_mmi) seq_puts(m, " loongson-mmi"); if (cpu_has_loongson_cam) seq_puts(m, " loongson-cam"); if (cpu_has_loongson_ext) seq_puts(m, " loongson-ext"); if (cpu_has_loongson_ext2) seq_puts(m, " loongson-ext2"); seq_puts(m, "\n"); if (cpu_has_mmips) { seq_printf(m, "micromips kernel\t: %s\n", (read_c0_config3() & MIPS_CONF3_ISA_OE) ? "yes" : "no"); } seq_puts(m, "Options implemented\t:"); if (cpu_has_tlb) seq_puts(m, " tlb"); if (cpu_has_ftlb) seq_puts(m, " ftlb"); if (cpu_has_tlbinv) seq_puts(m, " tlbinv"); if (cpu_has_segments) seq_puts(m, " segments"); if (cpu_has_rixiex) seq_puts(m, " rixiex"); if (cpu_has_ldpte) seq_puts(m, " ldpte"); if (cpu_has_maar) seq_puts(m, " maar"); if (cpu_has_rw_llb) seq_puts(m, " rw_llb"); if (cpu_has_4kex) seq_puts(m, " 4kex"); if (cpu_has_3k_cache) seq_puts(m, " 3k_cache"); if (cpu_has_4k_cache) seq_puts(m, " 4k_cache"); if (cpu_has_octeon_cache) seq_puts(m, " octeon_cache"); if (raw_cpu_has_fpu) seq_puts(m, " fpu"); if (cpu_has_32fpr) seq_puts(m, " 32fpr"); if (cpu_has_cache_cdex_p) seq_puts(m, " cache_cdex_p"); if (cpu_has_cache_cdex_s) seq_puts(m, " cache_cdex_s"); if (cpu_has_prefetch) seq_puts(m, " prefetch"); if (cpu_has_mcheck) seq_puts(m, " mcheck"); if (cpu_has_ejtag) seq_puts(m, " ejtag"); if (cpu_has_llsc) seq_puts(m, " llsc"); if (cpu_has_guestctl0ext) seq_puts(m, " guestctl0ext"); if (cpu_has_guestctl1) seq_puts(m, " guestctl1"); if (cpu_has_guestctl2) seq_puts(m, " guestctl2"); if (cpu_has_guestid) seq_puts(m, " guestid"); if (cpu_has_drg) seq_puts(m, " drg"); if (cpu_has_rixi) seq_puts(m, " rixi"); if (cpu_has_lpa) seq_puts(m, " lpa"); if (cpu_has_mvh) seq_puts(m, " mvh"); if (cpu_has_vtag_icache) seq_puts(m, " vtag_icache"); if (cpu_has_dc_aliases) seq_puts(m, " dc_aliases"); if (cpu_has_ic_fills_f_dc) seq_puts(m, " ic_fills_f_dc"); if (cpu_has_pindexed_dcache) seq_puts(m, " pindexed_dcache"); if (cpu_has_userlocal) seq_puts(m, " userlocal"); if (cpu_has_nofpuex) seq_puts(m, " nofpuex"); if (cpu_has_vint) seq_puts(m, " vint"); if (cpu_has_veic) seq_puts(m, " veic"); if (cpu_has_inclusive_pcaches) seq_puts(m, " inclusive_pcaches"); if (cpu_has_perf_cntr_intr_bit) seq_puts(m, " perf_cntr_intr_bit"); if (cpu_has_ufr) seq_puts(m, " ufr"); if (cpu_has_fre) seq_puts(m, " fre"); if (cpu_has_cdmm) seq_puts(m, " cdmm"); if (cpu_has_small_pages) seq_puts(m, " small_pages"); if (cpu_has_nan_legacy) seq_puts(m, " nan_legacy"); if (cpu_has_nan_2008) seq_puts(m, " nan_2008"); if (cpu_has_ebase_wg) seq_puts(m, " ebase_wg"); if (cpu_has_badinstr) seq_puts(m, " badinstr"); if (cpu_has_badinstrp) seq_puts(m, " badinstrp"); if (cpu_has_contextconfig) seq_puts(m, " contextconfig"); if (cpu_has_perf) seq_puts(m, " perf"); if (cpu_has_mac2008_only) seq_puts(m, " mac2008_only"); if (cpu_has_ftlbparex) seq_puts(m, " ftlbparex"); if (cpu_has_gsexcex) seq_puts(m, " gsexcex"); if (cpu_has_shared_ftlb_ram) seq_puts(m, " shared_ftlb_ram"); if (cpu_has_shared_ftlb_entries) seq_puts(m, " shared_ftlb_entries"); if (cpu_has_mipsmt_pertccounters) seq_puts(m, " mipsmt_pertccounters"); if (cpu_has_mmid) seq_puts(m, " mmid"); if (cpu_has_mm_sysad) seq_puts(m, " mm_sysad"); if (cpu_has_mm_full) seq_puts(m, " mm_full"); seq_puts(m, "\n"); seq_printf(m, "shadow register sets\t: %d\n", cpu_data[n].srsets); seq_printf(m, "kscratch registers\t: %d\n", hweight8(cpu_data[n].kscratch_mask)); seq_printf(m, "package\t\t\t: %d\n", cpu_data[n].package); seq_printf(m, "core\t\t\t: %d\n", cpu_core(&cpu_data[n])); #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6) if (cpu_has_mipsmt) seq_printf(m, "VPE\t\t\t: %d\n", cpu_vpe_id(&cpu_data[n])); else if (cpu_has_vp) seq_printf(m, "VP\t\t\t: %d\n", cpu_vpe_id(&cpu_data[n])); #endif sprintf(fmt, "VCE%%c exceptions\t\t: %s\n", cpu_has_vce ? "%u" : "not available"); seq_printf(m, fmt, 'D', vced_count); seq_printf(m, fmt, 'I', vcei_count); proc_cpuinfo_notifier_args.m = m; proc_cpuinfo_notifier_args.n = n; raw_notifier_call_chain(&proc_cpuinfo_chain, 0, &proc_cpuinfo_notifier_args); seq_puts(m, "\n"); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { unsigned long i = *pos; return i < nr_cpu_ids ? (void *) (i + 1) : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, };
linux-master
arch/mips/kernel/proc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2000, 2001 Broadcom Corporation */ #include <linux/clocksource.h> #include <linux/sched_clock.h> #include <asm/addrspace.h> #include <asm/io.h> #include <asm/time.h> #include <asm/sibyte/sb1250.h> #include <asm/sibyte/sb1250_regs.h> #include <asm/sibyte/sb1250_int.h> #include <asm/sibyte/sb1250_scd.h> #define SB1250_HPT_NUM 3 #define SB1250_HPT_VALUE M_SCD_TIMER_CNT /* max value */ /* * The HPT is free running from SB1250_HPT_VALUE down to 0 then starts over * again. */ static inline u64 sb1250_hpt_get_cycles(void) { unsigned int count; void __iomem *addr; addr = IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_CNT)); count = G_SCD_TIMER_CNT(__raw_readq(addr)); return SB1250_HPT_VALUE - count; } static u64 sb1250_hpt_read(struct clocksource *cs) { return sb1250_hpt_get_cycles(); } struct clocksource bcm1250_clocksource = { .name = "bcm1250-counter-3", .rating = 200, .read = sb1250_hpt_read, .mask = CLOCKSOURCE_MASK(23), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u64 notrace sb1250_read_sched_clock(void) { return sb1250_hpt_get_cycles(); } void __init sb1250_clocksource_init(void) { struct clocksource *cs = &bcm1250_clocksource; /* Setup hpt using timer #3 but do not enable irq for it */ __raw_writeq(0, IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_CFG))); __raw_writeq(SB1250_HPT_VALUE, IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_INIT))); __raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS, IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_CFG))); clocksource_register_hz(cs, V_SCD_TIMER_FREQ); sched_clock_register(sb1250_read_sched_clock, 23, V_SCD_TIMER_FREQ); }
linux-master
arch/mips/kernel/csrc-sb1250.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Processor capabilities determination functions. * * Copyright (C) xxxx the Anonymous * Copyright (C) 1994 - 2006 Ralf Baechle * Copyright (C) 2003, 2004 Maciej W. Rozycki * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/ptrace.h> #include <linux/smp.h> #include <linux/stddef.h> #include <linux/export.h> #include <asm/bugs.h> #include <asm/cpu.h> #include <asm/cpu-features.h> #include <asm/cpu-type.h> #include <asm/fpu.h> #include <asm/mipsregs.h> #include <asm/mipsmtregs.h> #include <asm/msa.h> #include <asm/watch.h> #include <asm/elf.h> #include <asm/pgtable-bits.h> #include <asm/spram.h> #include <asm/traps.h> #include <linux/uaccess.h> #include "fpu-probe.h" #include <asm/mach-loongson64/cpucfg-emul.h> /* Hardware capabilities */ unsigned int elf_hwcap __read_mostly; EXPORT_SYMBOL_GPL(elf_hwcap); static inline unsigned long cpu_get_msa_id(void) { unsigned long status, msa_id; status = read_c0_status(); __enable_fpu(FPU_64BIT); enable_msa(); msa_id = read_msa_ir(); disable_msa(); write_c0_status(status); return msa_id; } static int mips_dsp_disabled; static int __init dsp_disable(char *s) { cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P); mips_dsp_disabled = 1; return 1; } __setup("nodsp", dsp_disable); static int mips_htw_disabled; static int __init htw_disable(char *s) { mips_htw_disabled = 1; cpu_data[0].options &= ~MIPS_CPU_HTW; write_c0_pwctl(read_c0_pwctl() & ~(1 << MIPS_PWCTL_PWEN_SHIFT)); return 1; } __setup("nohtw", htw_disable); static int mips_ftlb_disabled; static int mips_has_ftlb_configured; enum ftlb_flags { FTLB_EN = 1 << 0, FTLB_SET_PROB = 1 << 1, }; static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags); static int __init ftlb_disable(char *s) { unsigned int config4, mmuextdef; /* * If the core hasn't done any FTLB configuration, there is nothing * for us to do here. */ if (!mips_has_ftlb_configured) return 1; /* Disable it in the boot cpu */ if (set_ftlb_enable(&cpu_data[0], 0)) { pr_warn("Can't turn FTLB off\n"); return 1; } config4 = read_c0_config4(); /* Check that FTLB has been disabled */ mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF; /* MMUSIZEEXT == VTLB ON, FTLB OFF */ if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) { /* This should never happen */ pr_warn("FTLB could not be disabled!\n"); return 1; } mips_ftlb_disabled = 1; mips_has_ftlb_configured = 0; /* * noftlb is mainly used for debug purposes so print * an informative message instead of using pr_debug() */ pr_info("FTLB has been disabled\n"); /* * Some of these bits are duplicated in the decode_config4. * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case * once FTLB has been disabled so undo what decode_config4 did. */ cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways * cpu_data[0].tlbsizeftlbsets; cpu_data[0].tlbsizeftlbsets = 0; cpu_data[0].tlbsizeftlbways = 0; return 1; } __setup("noftlb", ftlb_disable); /* * Check if the CPU has per tc perf counters */ static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c) { if (read_c0_config7() & MTI_CONF7_PTC) c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS; } static inline void check_errata(void) { struct cpuinfo_mips *c = &current_cpu_data; switch (current_cpu_type()) { case CPU_34K: /* * Erratum "RPS May Cause Incorrect Instruction Execution" * This code only handles VPE0, any SMP/RTOS code * making use of VPE1 will be responsible for that VPE. */ if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2) write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS); break; default: break; } } void __init check_bugs32(void) { check_errata(); } /* * Probe whether cpu has config register by trying to play with * alternate cache bit and see whether it matters. * It's used by cpu_probe to distinguish between R3000A and R3081. */ static inline int cpu_has_confreg(void) { #ifdef CONFIG_CPU_R3000 extern unsigned long r3k_cache_size(unsigned long); unsigned long size1, size2; unsigned long cfg = read_c0_conf(); size1 = r3k_cache_size(ST0_ISC); write_c0_conf(cfg ^ R30XX_CONF_AC); size2 = r3k_cache_size(ST0_ISC); write_c0_conf(cfg); return size1 != size2; #else return 0; #endif } static inline void set_elf_platform(int cpu, const char *plat) { if (cpu == 0) __elf_platform = plat; } static inline void set_elf_base_platform(const char *plat) { if (__elf_base_platform == NULL) { __elf_base_platform = plat; } } static inline void cpu_probe_vmbits(struct cpuinfo_mips *c) { #ifdef __NEED_VMBITS_PROBE write_c0_entryhi(0x3fffffffffffe000ULL); back_to_back_c0_hazard(); c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL); #endif } static void set_isa(struct cpuinfo_mips *c, unsigned int isa) { switch (isa) { case MIPS_CPU_ISA_M64R5: c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5; set_elf_base_platform("mips64r5"); fallthrough; case MIPS_CPU_ISA_M64R2: c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2; set_elf_base_platform("mips64r2"); fallthrough; case MIPS_CPU_ISA_M64R1: c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1; set_elf_base_platform("mips64"); fallthrough; case MIPS_CPU_ISA_V: c->isa_level |= MIPS_CPU_ISA_V; set_elf_base_platform("mips5"); fallthrough; case MIPS_CPU_ISA_IV: c->isa_level |= MIPS_CPU_ISA_IV; set_elf_base_platform("mips4"); fallthrough; case MIPS_CPU_ISA_III: c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III; set_elf_base_platform("mips3"); break; /* R6 incompatible with everything else */ case MIPS_CPU_ISA_M64R6: c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6; set_elf_base_platform("mips64r6"); fallthrough; case MIPS_CPU_ISA_M32R6: c->isa_level |= MIPS_CPU_ISA_M32R6; set_elf_base_platform("mips32r6"); /* Break here so we don't add incompatible ISAs */ break; case MIPS_CPU_ISA_M32R5: c->isa_level |= MIPS_CPU_ISA_M32R5; set_elf_base_platform("mips32r5"); fallthrough; case MIPS_CPU_ISA_M32R2: c->isa_level |= MIPS_CPU_ISA_M32R2; set_elf_base_platform("mips32r2"); fallthrough; case MIPS_CPU_ISA_M32R1: c->isa_level |= MIPS_CPU_ISA_M32R1; set_elf_base_platform("mips32"); fallthrough; case MIPS_CPU_ISA_II: c->isa_level |= MIPS_CPU_ISA_II; set_elf_base_platform("mips2"); break; } } static char unknown_isa[] = KERN_ERR \ "Unsupported ISA type, c0.config0: %d."; static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c) { unsigned int probability = c->tlbsize / c->tlbsizevtlb; /* * 0 = All TLBWR instructions go to FTLB * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the * FTLB and 1 goes to the VTLB. * 2 = 7:1: As above with 7:1 ratio. * 3 = 3:1: As above with 3:1 ratio. * * Use the linear midpoint as the probability threshold. */ if (probability >= 12) return 1; else if (probability >= 6) return 2; else /* * So FTLB is less than 4 times bigger than VTLB. * A 3:1 ratio can still be useful though. */ return 3; } static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags) { unsigned int config; /* It's implementation dependent how the FTLB can be enabled */ switch (c->cputype) { case CPU_PROAPTIV: case CPU_P5600: case CPU_P6600: /* proAptiv & related cores use Config6 to enable the FTLB */ config = read_c0_config6(); if (flags & FTLB_EN) config |= MTI_CONF6_FTLBEN; else config &= ~MTI_CONF6_FTLBEN; if (flags & FTLB_SET_PROB) { config &= ~(3 << MTI_CONF6_FTLBP_SHIFT); config |= calculate_ftlb_probability(c) << MTI_CONF6_FTLBP_SHIFT; } write_c0_config6(config); back_to_back_c0_hazard(); break; case CPU_I6400: case CPU_I6500: /* There's no way to disable the FTLB */ if (!(flags & FTLB_EN)) return 1; return 0; case CPU_LOONGSON64: /* Flush ITLB, DTLB, VTLB and FTLB */ write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB | LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB); /* Loongson-3 cores use Config6 to enable the FTLB */ config = read_c0_config6(); if (flags & FTLB_EN) /* Enable FTLB */ write_c0_config6(config & ~LOONGSON_CONF6_FTLBDIS); else /* Disable FTLB */ write_c0_config6(config | LOONGSON_CONF6_FTLBDIS); break; default: return 1; } return 0; } static int mm_config(struct cpuinfo_mips *c) { unsigned int config0, update, mm; config0 = read_c0_config(); mm = config0 & MIPS_CONF_MM; /* * It's implementation dependent what type of write-merge is supported * and whether it can be enabled/disabled. If it is settable lets make * the merging allowed by default. Some platforms might have * write-through caching unsupported. In this case just ignore the * CP0.Config.MM bit field value. */ switch (c->cputype) { case CPU_24K: case CPU_34K: case CPU_74K: case CPU_P5600: case CPU_P6600: c->options |= MIPS_CPU_MM_FULL; update = MIPS_CONF_MM_FULL; break; case CPU_1004K: case CPU_1074K: case CPU_INTERAPTIV: case CPU_PROAPTIV: mm = 0; fallthrough; default: update = 0; break; } if (update) { config0 = (config0 & ~MIPS_CONF_MM) | update; write_c0_config(config0); } else if (mm == MIPS_CONF_MM_SYSAD) { c->options |= MIPS_CPU_MM_SYSAD; } else if (mm == MIPS_CONF_MM_FULL) { c->options |= MIPS_CPU_MM_FULL; } return 0; } static inline unsigned int decode_config0(struct cpuinfo_mips *c) { unsigned int config0; int isa, mt; config0 = read_c0_config(); /* * Look for Standard TLB or Dual VTLB and FTLB */ mt = config0 & MIPS_CONF_MT; if (mt == MIPS_CONF_MT_TLB) c->options |= MIPS_CPU_TLB; else if (mt == MIPS_CONF_MT_FTLB) c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB; isa = (config0 & MIPS_CONF_AT) >> 13; switch (isa) { case 0: switch ((config0 & MIPS_CONF_AR) >> 10) { case 0: set_isa(c, MIPS_CPU_ISA_M32R1); break; case 1: set_isa(c, MIPS_CPU_ISA_M32R2); break; case 2: set_isa(c, MIPS_CPU_ISA_M32R6); break; default: goto unknown; } break; case 2: switch ((config0 & MIPS_CONF_AR) >> 10) { case 0: set_isa(c, MIPS_CPU_ISA_M64R1); break; case 1: set_isa(c, MIPS_CPU_ISA_M64R2); break; case 2: set_isa(c, MIPS_CPU_ISA_M64R6); break; default: goto unknown; } break; default: goto unknown; } return config0 & MIPS_CONF_M; unknown: panic(unknown_isa, config0); } static inline unsigned int decode_config1(struct cpuinfo_mips *c) { unsigned int config1; config1 = read_c0_config1(); if (config1 & MIPS_CONF1_MD) c->ases |= MIPS_ASE_MDMX; if (config1 & MIPS_CONF1_PC) c->options |= MIPS_CPU_PERF; if (config1 & MIPS_CONF1_WR) c->options |= MIPS_CPU_WATCH; if (config1 & MIPS_CONF1_CA) c->ases |= MIPS_ASE_MIPS16; if (config1 & MIPS_CONF1_EP) c->options |= MIPS_CPU_EJTAG; if (config1 & MIPS_CONF1_FP) { c->options |= MIPS_CPU_FPU; c->options |= MIPS_CPU_32FPR; } if (cpu_has_tlb) { c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1; c->tlbsizevtlb = c->tlbsize; c->tlbsizeftlbsets = 0; } return config1 & MIPS_CONF_M; } static inline unsigned int decode_config2(struct cpuinfo_mips *c) { unsigned int config2; config2 = read_c0_config2(); if (config2 & MIPS_CONF2_SL) c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT; return config2 & MIPS_CONF_M; } static inline unsigned int decode_config3(struct cpuinfo_mips *c) { unsigned int config3; config3 = read_c0_config3(); if (config3 & MIPS_CONF3_SM) { c->ases |= MIPS_ASE_SMARTMIPS; c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC; } if (config3 & MIPS_CONF3_RXI) c->options |= MIPS_CPU_RIXI; if (config3 & MIPS_CONF3_CTXTC) c->options |= MIPS_CPU_CTXTC; if (config3 & MIPS_CONF3_DSP) c->ases |= MIPS_ASE_DSP; if (config3 & MIPS_CONF3_DSP2P) { c->ases |= MIPS_ASE_DSP2P; if (cpu_has_mips_r6) c->ases |= MIPS_ASE_DSP3; } if (config3 & MIPS_CONF3_VINT) c->options |= MIPS_CPU_VINT; if (config3 & MIPS_CONF3_VEIC) c->options |= MIPS_CPU_VEIC; if (config3 & MIPS_CONF3_LPA) c->options |= MIPS_CPU_LPA; if (config3 & MIPS_CONF3_MT) c->ases |= MIPS_ASE_MIPSMT; if (config3 & MIPS_CONF3_ULRI) c->options |= MIPS_CPU_ULRI; if (config3 & MIPS_CONF3_ISA) c->options |= MIPS_CPU_MICROMIPS; if (config3 & MIPS_CONF3_VZ) c->ases |= MIPS_ASE_VZ; if (config3 & MIPS_CONF3_SC) c->options |= MIPS_CPU_SEGMENTS; if (config3 & MIPS_CONF3_BI) c->options |= MIPS_CPU_BADINSTR; if (config3 & MIPS_CONF3_BP) c->options |= MIPS_CPU_BADINSTRP; if (config3 & MIPS_CONF3_MSA) c->ases |= MIPS_ASE_MSA; if (config3 & MIPS_CONF3_PW) { c->htw_seq = 0; c->options |= MIPS_CPU_HTW; } if (config3 & MIPS_CONF3_CDMM) c->options |= MIPS_CPU_CDMM; if (config3 & MIPS_CONF3_SP) c->options |= MIPS_CPU_SP; return config3 & MIPS_CONF_M; } static inline unsigned int decode_config4(struct cpuinfo_mips *c) { unsigned int config4; unsigned int newcf4; unsigned int mmuextdef; unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE; unsigned long asid_mask; config4 = read_c0_config4(); if (cpu_has_tlb) { if (((config4 & MIPS_CONF4_IE) >> 29) == 2) c->options |= MIPS_CPU_TLBINV; /* * R6 has dropped the MMUExtDef field from config4. * On R6 the fields always describe the FTLB, and only if it is * present according to Config.MT. */ if (!cpu_has_mips_r6) mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF; else if (cpu_has_ftlb) mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT; else mmuextdef = 0; switch (mmuextdef) { case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT: c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40; c->tlbsizevtlb = c->tlbsize; break; case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT: c->tlbsizevtlb += ((config4 & MIPS_CONF4_VTLBSIZEEXT) >> MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40; c->tlbsize = c->tlbsizevtlb; ftlb_page = MIPS_CONF4_VFTLBPAGESIZE; fallthrough; case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT: if (mips_ftlb_disabled) break; newcf4 = (config4 & ~ftlb_page) | (page_size_ftlb(mmuextdef) << MIPS_CONF4_FTLBPAGESIZE_SHIFT); write_c0_config4(newcf4); back_to_back_c0_hazard(); config4 = read_c0_config4(); if (config4 != newcf4) { pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n", PAGE_SIZE, config4); /* Switch FTLB off */ set_ftlb_enable(c, 0); mips_ftlb_disabled = 1; break; } c->tlbsizeftlbsets = 1 << ((config4 & MIPS_CONF4_FTLBSETS) >> MIPS_CONF4_FTLBSETS_SHIFT); c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >> MIPS_CONF4_FTLBWAYS_SHIFT) + 2; c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets; mips_has_ftlb_configured = 1; break; } } c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST) >> MIPS_CONF4_KSCREXIST_SHIFT; asid_mask = MIPS_ENTRYHI_ASID; if (config4 & MIPS_CONF4_AE) asid_mask |= MIPS_ENTRYHI_ASIDX; set_cpu_asid_mask(c, asid_mask); /* * Warn if the computed ASID mask doesn't match the mask the kernel * is built for. This may indicate either a serious problem or an * easy optimisation opportunity, but either way should be addressed. */ WARN_ON(asid_mask != cpu_asid_mask(c)); return config4 & MIPS_CONF_M; } static inline unsigned int decode_config5(struct cpuinfo_mips *c) { unsigned int config5, max_mmid_width; unsigned long asid_mask; config5 = read_c0_config5(); config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE); if (cpu_has_mips_r6) { if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid) config5 |= MIPS_CONF5_MI; else config5 &= ~MIPS_CONF5_MI; } write_c0_config5(config5); if (config5 & MIPS_CONF5_EVA) c->options |= MIPS_CPU_EVA; if (config5 & MIPS_CONF5_MRP) c->options |= MIPS_CPU_MAAR; if (config5 & MIPS_CONF5_LLB) c->options |= MIPS_CPU_RW_LLB; if (config5 & MIPS_CONF5_MVH) c->options |= MIPS_CPU_MVH; if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP)) c->options |= MIPS_CPU_VP; if (config5 & MIPS_CONF5_CA2) c->ases |= MIPS_ASE_MIPS16E2; if (config5 & MIPS_CONF5_CRCP) elf_hwcap |= HWCAP_MIPS_CRC32; if (cpu_has_mips_r6) { /* Ensure the write to config5 above takes effect */ back_to_back_c0_hazard(); /* Check whether we successfully enabled MMID support */ config5 = read_c0_config5(); if (config5 & MIPS_CONF5_MI) c->options |= MIPS_CPU_MMID; /* * Warn if we've hardcoded cpu_has_mmid to a value unsuitable * for the CPU we're running on, or if CPUs in an SMP system * have inconsistent MMID support. */ WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI)); if (cpu_has_mmid) { write_c0_memorymapid(~0ul); back_to_back_c0_hazard(); asid_mask = read_c0_memorymapid(); /* * We maintain a bitmap to track MMID allocation, and * need a sensible upper bound on the size of that * bitmap. The initial CPU with MMID support (I6500) * supports 16 bit MMIDs, which gives us an 8KiB * bitmap. The architecture recommends that hardware * support 32 bit MMIDs, which would give us a 512MiB * bitmap - that's too big in most cases. * * Cap MMID width at 16 bits for now & we can revisit * this if & when hardware supports anything wider. */ max_mmid_width = 16; if (asid_mask > GENMASK(max_mmid_width - 1, 0)) { pr_info("Capping MMID width at %d bits", max_mmid_width); asid_mask = GENMASK(max_mmid_width - 1, 0); } set_cpu_asid_mask(c, asid_mask); } } return config5 & MIPS_CONF_M; } static void decode_configs(struct cpuinfo_mips *c) { int ok; /* MIPS32 or MIPS64 compliant CPU. */ c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER | MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK; c->scache.flags = MIPS_CACHE_NOT_PRESENT; /* Enable FTLB if present and not disabled */ set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN); ok = decode_config0(c); /* Read Config registers. */ BUG_ON(!ok); /* Arch spec violation! */ if (ok) ok = decode_config1(c); if (ok) ok = decode_config2(c); if (ok) ok = decode_config3(c); if (ok) ok = decode_config4(c); if (ok) ok = decode_config5(c); /* Probe the EBase.WG bit */ if (cpu_has_mips_r2_r6) { u64 ebase; unsigned int status; /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */ ebase = cpu_has_mips64r6 ? read_c0_ebase_64() : (s32)read_c0_ebase(); if (ebase & MIPS_EBASE_WG) { /* WG bit already set, we can avoid the clumsy probe */ c->options |= MIPS_CPU_EBASE_WG; } else { /* Its UNDEFINED to change EBase while BEV=0 */ status = read_c0_status(); write_c0_status(status | ST0_BEV); irq_enable_hazard(); /* * On pre-r6 cores, this may well clobber the upper bits * of EBase. This is hard to avoid without potentially * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit. */ if (cpu_has_mips64r6) write_c0_ebase_64(ebase | MIPS_EBASE_WG); else write_c0_ebase(ebase | MIPS_EBASE_WG); back_to_back_c0_hazard(); /* Restore BEV */ write_c0_status(status); if (read_c0_ebase() & MIPS_EBASE_WG) { c->options |= MIPS_CPU_EBASE_WG; write_c0_ebase(ebase); } } } /* configure the FTLB write probability */ set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB); mips_probe_watch_registers(c); #ifndef CONFIG_MIPS_CPS if (cpu_has_mips_r2_r6) { unsigned int core; core = get_ebase_cpunum(); if (cpu_has_mipsmt) core >>= fls(core_nvpes()) - 1; cpu_set_core(c, core); } #endif } /* * Probe for certain guest capabilities by writing config bits and reading back. * Finally write back the original value. */ #define probe_gc0_config(name, maxconf, bits) \ do { \ unsigned int tmp; \ tmp = read_gc0_##name(); \ write_gc0_##name(tmp | (bits)); \ back_to_back_c0_hazard(); \ maxconf = read_gc0_##name(); \ write_gc0_##name(tmp); \ } while (0) /* * Probe for dynamic guest capabilities by changing certain config bits and * reading back to see if they change. Finally write back the original value. */ #define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \ do { \ maxconf = read_gc0_##name(); \ write_gc0_##name(maxconf ^ (bits)); \ back_to_back_c0_hazard(); \ dynconf = maxconf ^ read_gc0_##name(); \ write_gc0_##name(maxconf); \ maxconf |= dynconf; \ } while (0) static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c) { unsigned int config0; probe_gc0_config(config, config0, MIPS_CONF_M); if (config0 & MIPS_CONF_M) c->guest.conf |= BIT(1); return config0 & MIPS_CONF_M; } static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c) { unsigned int config1, config1_dyn; probe_gc0_config_dyn(config1, config1, config1_dyn, MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR | MIPS_CONF1_FP); if (config1 & MIPS_CONF1_FP) c->guest.options |= MIPS_CPU_FPU; if (config1_dyn & MIPS_CONF1_FP) c->guest.options_dyn |= MIPS_CPU_FPU; if (config1 & MIPS_CONF1_WR) c->guest.options |= MIPS_CPU_WATCH; if (config1_dyn & MIPS_CONF1_WR) c->guest.options_dyn |= MIPS_CPU_WATCH; if (config1 & MIPS_CONF1_PC) c->guest.options |= MIPS_CPU_PERF; if (config1_dyn & MIPS_CONF1_PC) c->guest.options_dyn |= MIPS_CPU_PERF; if (config1 & MIPS_CONF_M) c->guest.conf |= BIT(2); return config1 & MIPS_CONF_M; } static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c) { unsigned int config2; probe_gc0_config(config2, config2, MIPS_CONF_M); if (config2 & MIPS_CONF_M) c->guest.conf |= BIT(3); return config2 & MIPS_CONF_M; } static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c) { unsigned int config3, config3_dyn; probe_gc0_config_dyn(config3, config3, config3_dyn, MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC); if (config3 & MIPS_CONF3_CTXTC) c->guest.options |= MIPS_CPU_CTXTC; if (config3_dyn & MIPS_CONF3_CTXTC) c->guest.options_dyn |= MIPS_CPU_CTXTC; if (config3 & MIPS_CONF3_PW) c->guest.options |= MIPS_CPU_HTW; if (config3 & MIPS_CONF3_ULRI) c->guest.options |= MIPS_CPU_ULRI; if (config3 & MIPS_CONF3_SC) c->guest.options |= MIPS_CPU_SEGMENTS; if (config3 & MIPS_CONF3_BI) c->guest.options |= MIPS_CPU_BADINSTR; if (config3 & MIPS_CONF3_BP) c->guest.options |= MIPS_CPU_BADINSTRP; if (config3 & MIPS_CONF3_MSA) c->guest.ases |= MIPS_ASE_MSA; if (config3_dyn & MIPS_CONF3_MSA) c->guest.ases_dyn |= MIPS_ASE_MSA; if (config3 & MIPS_CONF_M) c->guest.conf |= BIT(4); return config3 & MIPS_CONF_M; } static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c) { unsigned int config4; probe_gc0_config(config4, config4, MIPS_CONF_M | MIPS_CONF4_KSCREXIST); c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST) >> MIPS_CONF4_KSCREXIST_SHIFT; if (config4 & MIPS_CONF_M) c->guest.conf |= BIT(5); return config4 & MIPS_CONF_M; } static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c) { unsigned int config5, config5_dyn; probe_gc0_config_dyn(config5, config5, config5_dyn, MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP); if (config5 & MIPS_CONF5_MRP) c->guest.options |= MIPS_CPU_MAAR; if (config5_dyn & MIPS_CONF5_MRP) c->guest.options_dyn |= MIPS_CPU_MAAR; if (config5 & MIPS_CONF5_LLB) c->guest.options |= MIPS_CPU_RW_LLB; if (config5 & MIPS_CONF5_MVH) c->guest.options |= MIPS_CPU_MVH; if (config5 & MIPS_CONF_M) c->guest.conf |= BIT(6); return config5 & MIPS_CONF_M; } static inline void decode_guest_configs(struct cpuinfo_mips *c) { unsigned int ok; ok = decode_guest_config0(c); if (ok) ok = decode_guest_config1(c); if (ok) ok = decode_guest_config2(c); if (ok) ok = decode_guest_config3(c); if (ok) ok = decode_guest_config4(c); if (ok) decode_guest_config5(c); } static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c) { unsigned int guestctl0, temp; guestctl0 = read_c0_guestctl0(); if (guestctl0 & MIPS_GCTL0_G0E) c->options |= MIPS_CPU_GUESTCTL0EXT; if (guestctl0 & MIPS_GCTL0_G1) c->options |= MIPS_CPU_GUESTCTL1; if (guestctl0 & MIPS_GCTL0_G2) c->options |= MIPS_CPU_GUESTCTL2; if (!(guestctl0 & MIPS_GCTL0_RAD)) { c->options |= MIPS_CPU_GUESTID; /* * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0 * first, otherwise all data accesses will be fully virtualised * as if they were performed by guest mode. */ write_c0_guestctl1(0); tlbw_use_hazard(); write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG); back_to_back_c0_hazard(); temp = read_c0_guestctl0(); if (temp & MIPS_GCTL0_DRG) { write_c0_guestctl0(guestctl0); c->options |= MIPS_CPU_DRG; } } } static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c) { if (cpu_has_guestid) { /* determine the number of bits of GuestID available */ write_c0_guestctl1(MIPS_GCTL1_ID); back_to_back_c0_hazard(); c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID) >> MIPS_GCTL1_ID_SHIFT; write_c0_guestctl1(0); } } static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c) { /* determine the number of bits of GTOffset available */ write_c0_gtoffset(0xffffffff); back_to_back_c0_hazard(); c->gtoffset_mask = read_c0_gtoffset(); write_c0_gtoffset(0); } static inline void cpu_probe_vz(struct cpuinfo_mips *c) { cpu_probe_guestctl0(c); if (cpu_has_guestctl1) cpu_probe_guestctl1(c); cpu_probe_gtoffset(c); decode_guest_configs(c); } #define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \ | MIPS_CPU_COUNTER) static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu) { switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_R2000: c->cputype = CPU_R2000; __cpu_name[cpu] = "R2000"; c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS; c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE | MIPS_CPU_NOFPUEX; if (__cpu_has_fpu()) c->options |= MIPS_CPU_FPU; c->tlbsize = 64; break; case PRID_IMP_R3000: if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) { if (cpu_has_confreg()) { c->cputype = CPU_R3081E; __cpu_name[cpu] = "R3081"; } else { c->cputype = CPU_R3000A; __cpu_name[cpu] = "R3000A"; } } else { c->cputype = CPU_R3000; __cpu_name[cpu] = "R3000"; } c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS; c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE | MIPS_CPU_NOFPUEX; if (__cpu_has_fpu()) c->options |= MIPS_CPU_FPU; c->tlbsize = 64; break; case PRID_IMP_R4000: if (read_c0_config() & CONF_SC) { if ((c->processor_id & PRID_REV_MASK) >= PRID_REV_R4400) { c->cputype = CPU_R4400PC; __cpu_name[cpu] = "R4400PC"; } else { c->cputype = CPU_R4000PC; __cpu_name[cpu] = "R4000PC"; } } else { int cca = read_c0_config() & CONF_CM_CMASK; int mc; /* * SC and MC versions can't be reliably told apart, * but only the latter support coherent caching * modes so assume the firmware has set the KSEG0 * coherency attribute reasonably (if uncached, we * assume SC). */ switch (cca) { case CONF_CM_CACHABLE_CE: case CONF_CM_CACHABLE_COW: case CONF_CM_CACHABLE_CUW: mc = 1; break; default: mc = 0; break; } if ((c->processor_id & PRID_REV_MASK) >= PRID_REV_R4400) { c->cputype = mc ? CPU_R4400MC : CPU_R4400SC; __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC"; } else { c->cputype = mc ? CPU_R4000MC : CPU_R4000SC; __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC"; } } set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_WATCH | MIPS_CPU_VCE | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_R4300: c->cputype = CPU_R4300; __cpu_name[cpu] = "R4300"; set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 32; break; case PRID_IMP_R4600: c->cputype = CPU_R4600; __cpu_name[cpu] = "R4600"; set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 48; break; #if 0 case PRID_IMP_R4650: /* * This processor doesn't have an MMU, so it's not * "real easy" to run Linux on it. It is left purely * for documentation. Commented out because it shares * it's c0_prid id number with the TX3900. */ c->cputype = CPU_R4650; __cpu_name[cpu] = "R4650"; set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC; c->tlbsize = 48; break; #endif case PRID_IMP_R4700: c->cputype = CPU_R4700; __cpu_name[cpu] = "R4700"; set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_TX49: c->cputype = CPU_TX49XX; __cpu_name[cpu] = "R49XX"; set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_LLSC; if (!(c->processor_id & 0x08)) c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR; c->tlbsize = 48; break; case PRID_IMP_R5000: c->cputype = CPU_R5000; __cpu_name[cpu] = "R5000"; set_isa(c, MIPS_CPU_ISA_IV); c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_R5500: c->cputype = CPU_R5500; __cpu_name[cpu] = "R5500"; set_isa(c, MIPS_CPU_ISA_IV); c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_NEVADA: c->cputype = CPU_NEVADA; __cpu_name[cpu] = "Nevada"; set_isa(c, MIPS_CPU_ISA_IV); c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_DIVEC | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_RM7000: c->cputype = CPU_RM7000; __cpu_name[cpu] = "RM7000"; set_isa(c, MIPS_CPU_ISA_IV); c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; /* * Undocumented RM7000: Bit 29 in the info register of * the RM7000 v2.0 indicates if the TLB has 48 or 64 * entries. * * 29 1 => 64 entry JTLB * 0 => 48 entry JTLB */ c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48; break; case PRID_IMP_R10000: c->cputype = CPU_R10000; __cpu_name[cpu] = "R10000"; set_isa(c, MIPS_CPU_ISA_IV); c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_COUNTER | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 64; break; case PRID_IMP_R12000: c->cputype = CPU_R12000; __cpu_name[cpu] = "R12000"; set_isa(c, MIPS_CPU_ISA_IV); c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_COUNTER | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 64; write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST); break; case PRID_IMP_R14000: if (((c->processor_id >> 4) & 0x0f) > 2) { c->cputype = CPU_R16000; __cpu_name[cpu] = "R16000"; } else { c->cputype = CPU_R14000; __cpu_name[cpu] = "R14000"; } set_isa(c, MIPS_CPU_ISA_IV); c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_COUNTER | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 64; write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST); break; case PRID_IMP_LOONGSON_64C: /* Loongson-2/3 */ switch (c->processor_id & PRID_REV_MASK) { case PRID_REV_LOONGSON2E: c->cputype = CPU_LOONGSON2EF; __cpu_name[cpu] = "ICT Loongson-2"; set_elf_platform(cpu, "loongson2e"); set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; break; case PRID_REV_LOONGSON2F: c->cputype = CPU_LOONGSON2EF; __cpu_name[cpu] = "ICT Loongson-2"; set_elf_platform(cpu, "loongson2f"); set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; break; case PRID_REV_LOONGSON3A_R1: c->cputype = CPU_LOONGSON64; __cpu_name[cpu] = "ICT Loongson-3"; set_elf_platform(cpu, "loongson3a"); set_isa(c, MIPS_CPU_ISA_M64R1); c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM | MIPS_ASE_LOONGSON_EXT); break; case PRID_REV_LOONGSON3B_R1: case PRID_REV_LOONGSON3B_R2: c->cputype = CPU_LOONGSON64; __cpu_name[cpu] = "ICT Loongson-3"; set_elf_platform(cpu, "loongson3b"); set_isa(c, MIPS_CPU_ISA_M64R1); c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM | MIPS_ASE_LOONGSON_EXT); break; } c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC | MIPS_CPU_32FPR; c->tlbsize = 64; set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID); c->writecombine = _CACHE_UNCACHED_ACCELERATED; break; case PRID_IMP_LOONGSON_32: /* Loongson-1 */ decode_configs(c); c->cputype = CPU_LOONGSON32; switch (c->processor_id & PRID_REV_MASK) { case PRID_REV_LOONGSON1B: __cpu_name[cpu] = "Loongson 1B"; break; } break; } } static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu) { c->writecombine = _CACHE_UNCACHED_ACCELERATED; switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_QEMU_GENERIC: c->writecombine = _CACHE_UNCACHED; c->cputype = CPU_QEMU_GENERIC; __cpu_name[cpu] = "MIPS GENERIC QEMU"; break; case PRID_IMP_4KC: c->cputype = CPU_4KC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 4Kc"; break; case PRID_IMP_4KEC: case PRID_IMP_4KECR2: c->cputype = CPU_4KEC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 4KEc"; break; case PRID_IMP_4KSC: case PRID_IMP_4KSD: c->cputype = CPU_4KSC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 4KSc"; break; case PRID_IMP_5KC: c->cputype = CPU_5KC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 5Kc"; break; case PRID_IMP_5KE: c->cputype = CPU_5KE; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 5KE"; break; case PRID_IMP_20KC: c->cputype = CPU_20KC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 20Kc"; break; case PRID_IMP_24K: c->cputype = CPU_24K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 24Kc"; break; case PRID_IMP_24KE: c->cputype = CPU_24K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 24KEc"; break; case PRID_IMP_25KF: c->cputype = CPU_25KF; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 25Kc"; break; case PRID_IMP_34K: c->cputype = CPU_34K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 34Kc"; cpu_set_mt_per_tc_perf(c); break; case PRID_IMP_74K: c->cputype = CPU_74K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 74Kc"; break; case PRID_IMP_M14KC: c->cputype = CPU_M14KC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS M14Kc"; break; case PRID_IMP_M14KEC: c->cputype = CPU_M14KEC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS M14KEc"; break; case PRID_IMP_1004K: c->cputype = CPU_1004K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 1004Kc"; cpu_set_mt_per_tc_perf(c); break; case PRID_IMP_1074K: c->cputype = CPU_1074K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 1074Kc"; break; case PRID_IMP_INTERAPTIV_UP: c->cputype = CPU_INTERAPTIV; __cpu_name[cpu] = "MIPS interAptiv"; cpu_set_mt_per_tc_perf(c); break; case PRID_IMP_INTERAPTIV_MP: c->cputype = CPU_INTERAPTIV; __cpu_name[cpu] = "MIPS interAptiv (multi)"; cpu_set_mt_per_tc_perf(c); break; case PRID_IMP_PROAPTIV_UP: c->cputype = CPU_PROAPTIV; __cpu_name[cpu] = "MIPS proAptiv"; break; case PRID_IMP_PROAPTIV_MP: c->cputype = CPU_PROAPTIV; __cpu_name[cpu] = "MIPS proAptiv (multi)"; break; case PRID_IMP_P5600: c->cputype = CPU_P5600; __cpu_name[cpu] = "MIPS P5600"; break; case PRID_IMP_P6600: c->cputype = CPU_P6600; __cpu_name[cpu] = "MIPS P6600"; break; case PRID_IMP_I6400: c->cputype = CPU_I6400; __cpu_name[cpu] = "MIPS I6400"; break; case PRID_IMP_I6500: c->cputype = CPU_I6500; __cpu_name[cpu] = "MIPS I6500"; break; case PRID_IMP_M5150: c->cputype = CPU_M5150; __cpu_name[cpu] = "MIPS M5150"; break; case PRID_IMP_M6250: c->cputype = CPU_M6250; __cpu_name[cpu] = "MIPS M6250"; break; } decode_configs(c); spram_config(); mm_config(c); switch (__get_cpu_type(c->cputype)) { case CPU_M5150: case CPU_P5600: set_isa(c, MIPS_CPU_ISA_M32R5); break; case CPU_I6500: c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES; fallthrough; case CPU_I6400: c->options |= MIPS_CPU_SHARED_FTLB_RAM; fallthrough; default: break; } /* Recent MIPS cores use the implementation-dependent ExcCode 16 for * cache/FTLB parity exceptions. */ switch (__get_cpu_type(c->cputype)) { case CPU_PROAPTIV: case CPU_P5600: case CPU_P6600: case CPU_I6400: case CPU_I6500: c->options |= MIPS_CPU_FTLBPAREX; break; } } static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_AU1_REV1: case PRID_IMP_AU1_REV2: c->cputype = CPU_ALCHEMY; switch ((c->processor_id >> 24) & 0xff) { case 0: __cpu_name[cpu] = "Au1000"; break; case 1: __cpu_name[cpu] = "Au1500"; break; case 2: __cpu_name[cpu] = "Au1100"; break; case 3: __cpu_name[cpu] = "Au1550"; break; case 4: __cpu_name[cpu] = "Au1200"; if ((c->processor_id & PRID_REV_MASK) == 2) __cpu_name[cpu] = "Au1250"; break; case 5: __cpu_name[cpu] = "Au1210"; break; default: __cpu_name[cpu] = "Au1xxx"; break; } break; case PRID_IMP_NETLOGIC_AU13XX: c->cputype = CPU_ALCHEMY; __cpu_name[cpu] = "Au1300"; break; } } static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); c->writecombine = _CACHE_UNCACHED_ACCELERATED; switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_SB1: c->cputype = CPU_SB1; __cpu_name[cpu] = "SiByte SB1"; /* FPU in pass1 is known to have issues. */ if ((c->processor_id & PRID_REV_MASK) < 0x02) c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR); break; case PRID_IMP_SB1A: c->cputype = CPU_SB1A; __cpu_name[cpu] = "SiByte SB1A"; break; } } static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_SR71000: c->cputype = CPU_SR71000; __cpu_name[cpu] = "Sandcraft SR71000"; c->scache.ways = 8; c->tlbsize = 64; break; } } static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_PR4450: c->cputype = CPU_PR4450; __cpu_name[cpu] = "Philips PR4450"; set_isa(c, MIPS_CPU_ISA_M32R1); break; } } static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_BMIPS32_REV4: case PRID_IMP_BMIPS32_REV8: c->cputype = CPU_BMIPS32; __cpu_name[cpu] = "Broadcom BMIPS32"; set_elf_platform(cpu, "bmips32"); break; case PRID_IMP_BMIPS3300: case PRID_IMP_BMIPS3300_ALT: case PRID_IMP_BMIPS3300_BUG: c->cputype = CPU_BMIPS3300; __cpu_name[cpu] = "Broadcom BMIPS3300"; set_elf_platform(cpu, "bmips3300"); reserve_exception_space(0x400, VECTORSPACING * 64); break; case PRID_IMP_BMIPS43XX: { int rev = c->processor_id & PRID_REV_MASK; if (rev >= PRID_REV_BMIPS4380_LO && rev <= PRID_REV_BMIPS4380_HI) { c->cputype = CPU_BMIPS4380; __cpu_name[cpu] = "Broadcom BMIPS4380"; set_elf_platform(cpu, "bmips4380"); c->options |= MIPS_CPU_RIXI; reserve_exception_space(0x400, VECTORSPACING * 64); } else { c->cputype = CPU_BMIPS4350; __cpu_name[cpu] = "Broadcom BMIPS4350"; set_elf_platform(cpu, "bmips4350"); } break; } case PRID_IMP_BMIPS5000: case PRID_IMP_BMIPS5200: c->cputype = CPU_BMIPS5000; if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200) __cpu_name[cpu] = "Broadcom BMIPS5200"; else __cpu_name[cpu] = "Broadcom BMIPS5000"; set_elf_platform(cpu, "bmips5000"); c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI; reserve_exception_space(0x1000, VECTORSPACING * 64); break; } } static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); /* Octeon has different cache interface */ c->options &= ~MIPS_CPU_4K_CACHE; switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_CAVIUM_CN38XX: case PRID_IMP_CAVIUM_CN31XX: case PRID_IMP_CAVIUM_CN30XX: c->cputype = CPU_CAVIUM_OCTEON; __cpu_name[cpu] = "Cavium Octeon"; goto platform; case PRID_IMP_CAVIUM_CN58XX: case PRID_IMP_CAVIUM_CN56XX: case PRID_IMP_CAVIUM_CN50XX: case PRID_IMP_CAVIUM_CN52XX: c->cputype = CPU_CAVIUM_OCTEON_PLUS; __cpu_name[cpu] = "Cavium Octeon+"; platform: set_elf_platform(cpu, "octeon"); break; case PRID_IMP_CAVIUM_CN61XX: case PRID_IMP_CAVIUM_CN63XX: case PRID_IMP_CAVIUM_CN66XX: case PRID_IMP_CAVIUM_CN68XX: case PRID_IMP_CAVIUM_CNF71XX: c->cputype = CPU_CAVIUM_OCTEON2; __cpu_name[cpu] = "Cavium Octeon II"; set_elf_platform(cpu, "octeon2"); break; case PRID_IMP_CAVIUM_CN70XX: case PRID_IMP_CAVIUM_CN73XX: case PRID_IMP_CAVIUM_CNF75XX: case PRID_IMP_CAVIUM_CN78XX: c->cputype = CPU_CAVIUM_OCTEON3; __cpu_name[cpu] = "Cavium Octeon III"; set_elf_platform(cpu, "octeon3"); break; default: printk(KERN_INFO "Unknown Octeon chip!\n"); c->cputype = CPU_UNKNOWN; break; } } #ifdef CONFIG_CPU_LOONGSON64 #include <loongson_regs.h> static inline void decode_cpucfg(struct cpuinfo_mips *c) { u32 cfg1 = read_cpucfg(LOONGSON_CFG1); u32 cfg2 = read_cpucfg(LOONGSON_CFG2); u32 cfg3 = read_cpucfg(LOONGSON_CFG3); if (cfg1 & LOONGSON_CFG1_MMI) c->ases |= MIPS_ASE_LOONGSON_MMI; if (cfg2 & LOONGSON_CFG2_LEXT1) c->ases |= MIPS_ASE_LOONGSON_EXT; if (cfg2 & LOONGSON_CFG2_LEXT2) c->ases |= MIPS_ASE_LOONGSON_EXT2; if (cfg2 & LOONGSON_CFG2_LSPW) { c->options |= MIPS_CPU_LDPTE; c->guest.options |= MIPS_CPU_LDPTE; } if (cfg3 & LOONGSON_CFG3_LCAMP) c->ases |= MIPS_ASE_LOONGSON_CAM; } static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { c->cputype = CPU_LOONGSON64; /* All Loongson processors covered here define ExcCode 16 as GSExc. */ decode_configs(c); c->options |= MIPS_CPU_GSEXCEX; switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */ switch (c->processor_id & PRID_REV_MASK) { case PRID_REV_LOONGSON2K_R1_0: case PRID_REV_LOONGSON2K_R1_1: case PRID_REV_LOONGSON2K_R1_2: case PRID_REV_LOONGSON2K_R1_3: __cpu_name[cpu] = "Loongson-2K"; set_elf_platform(cpu, "gs264e"); set_isa(c, MIPS_CPU_ISA_M64R2); break; } c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2); break; case PRID_IMP_LOONGSON_64C: /* Loongson-3 Classic */ switch (c->processor_id & PRID_REV_MASK) { case PRID_REV_LOONGSON3A_R2_0: case PRID_REV_LOONGSON3A_R2_1: __cpu_name[cpu] = "ICT Loongson-3"; set_elf_platform(cpu, "loongson3a"); set_isa(c, MIPS_CPU_ISA_M64R2); break; case PRID_REV_LOONGSON3A_R3_0: case PRID_REV_LOONGSON3A_R3_1: __cpu_name[cpu] = "ICT Loongson-3"; set_elf_platform(cpu, "loongson3a"); set_isa(c, MIPS_CPU_ISA_M64R2); break; } /* * Loongson-3 Classic did not implement MIPS standard TLBINV * but implemented TLBINVF and EHINV. As currently we're only * using these two features, enable MIPS_CPU_TLBINV as well. * * Also some early Loongson-3A2000 had wrong TLB type in Config * register, we correct it here. */ c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE; c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM | MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2); c->ases &= ~MIPS_ASE_VZ; /* VZ of Loongson-3A2000/3000 is incomplete */ break; case PRID_IMP_LOONGSON_64G: __cpu_name[cpu] = "ICT Loongson-3"; set_elf_platform(cpu, "loongson3a"); set_isa(c, MIPS_CPU_ISA_M64R2); decode_cpucfg(c); break; default: panic("Unknown Loongson Processor ID!"); break; } } #else static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { } #endif static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); /* * XBurst misses a config2 register, so config3 decode was skipped in * decode_configs(). */ decode_config3(c); /* XBurst does not implement the CP0 counter. */ c->options &= ~MIPS_CPU_COUNTER; BUG_ON(__builtin_constant_p(cpu_has_counter) && cpu_has_counter); /* XBurst has virtually tagged icache */ c->icache.flags |= MIPS_CACHE_VTAG; switch (c->processor_id & PRID_IMP_MASK) { /* XBurst®1 with MXU1.0/MXU1.1 SIMD ISA */ case PRID_IMP_XBURST_REV1: /* * The XBurst core by default attempts to avoid branch target * buffer lookups by detecting & special casing loops. This * feature will cause BogoMIPS and lpj calculate in error. * Set cp0 config7 bit 4 to disable this feature. */ set_c0_config7(MIPS_CONF7_BTB_LOOP_EN); switch (c->processor_id & PRID_COMP_MASK) { /* * The config0 register in the XBurst CPUs with a processor ID of * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible, * but they don't actually support this ISA. */ case PRID_COMP_INGENIC_D0: c->isa_level &= ~MIPS_CPU_ISA_M32R2; /* FPU is not properly detected on JZ4760(B). */ if (c->processor_id == 0x2ed0024f) c->options |= MIPS_CPU_FPU; fallthrough; /* * The config0 register in the XBurst CPUs with a processor ID of * PRID_COMP_INGENIC_D0 or PRID_COMP_INGENIC_D1 has an abandoned * huge page tlb mode, this mode is not compatible with the MIPS * standard, it will cause tlbmiss and into an infinite loop * (line 21 in the tlb-funcs.S) when starting the init process. * After chip reset, the default is HPTLB mode, Write 0xa9000000 * to cp0 register 5 sel 4 to switch back to VTLB mode to prevent * getting stuck. */ case PRID_COMP_INGENIC_D1: write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS); break; default: break; } fallthrough; /* XBurst®1 with MXU2.0 SIMD ISA */ case PRID_IMP_XBURST_REV2: /* Ingenic uses the WA bit to achieve write-combine memory writes */ c->writecombine = _CACHE_CACHABLE_WA; c->cputype = CPU_XBURST; __cpu_name[cpu] = "Ingenic XBurst"; break; /* XBurst®2 with MXU2.1 SIMD ISA */ case PRID_IMP_XBURST2: c->cputype = CPU_XBURST; __cpu_name[cpu] = "Ingenic XBurst II"; break; default: panic("Unknown Ingenic Processor ID!"); break; } } #ifdef CONFIG_64BIT /* For use by uaccess.h */ u64 __ua_limit; EXPORT_SYMBOL(__ua_limit); #endif const char *__cpu_name[NR_CPUS]; const char *__elf_platform; const char *__elf_base_platform; void cpu_probe(void) { struct cpuinfo_mips *c = &current_cpu_data; unsigned int cpu = smp_processor_id(); /* * Set a default elf platform, cpu probe may later * overwrite it with a more precise value */ set_elf_platform(cpu, "mips"); c->processor_id = PRID_IMP_UNKNOWN; c->fpu_id = FPIR_IMP_NONE; c->cputype = CPU_UNKNOWN; c->writecombine = _CACHE_UNCACHED; c->fpu_csr31 = FPU_CSR_RN; c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008; c->processor_id = read_c0_prid(); switch (c->processor_id & PRID_COMP_MASK) { case PRID_COMP_LEGACY: cpu_probe_legacy(c, cpu); break; case PRID_COMP_MIPS: cpu_probe_mips(c, cpu); break; case PRID_COMP_ALCHEMY: case PRID_COMP_NETLOGIC: cpu_probe_alchemy(c, cpu); break; case PRID_COMP_SIBYTE: cpu_probe_sibyte(c, cpu); break; case PRID_COMP_BROADCOM: cpu_probe_broadcom(c, cpu); break; case PRID_COMP_SANDCRAFT: cpu_probe_sandcraft(c, cpu); break; case PRID_COMP_NXP: cpu_probe_nxp(c, cpu); break; case PRID_COMP_CAVIUM: cpu_probe_cavium(c, cpu); break; case PRID_COMP_LOONGSON: cpu_probe_loongson(c, cpu); break; case PRID_COMP_INGENIC_13: case PRID_COMP_INGENIC_D0: case PRID_COMP_INGENIC_D1: case PRID_COMP_INGENIC_E1: cpu_probe_ingenic(c, cpu); break; } BUG_ON(!__cpu_name[cpu]); BUG_ON(c->cputype == CPU_UNKNOWN); /* * Platform code can force the cpu type to optimize code * generation. In that case be sure the cpu type is correctly * manually setup otherwise it could trigger some nasty bugs. */ BUG_ON(current_cpu_type() != c->cputype); if (cpu_has_rixi) { /* Enable the RIXI exceptions */ set_c0_pagegrain(PG_IEC); back_to_back_c0_hazard(); /* Verify the IEC bit is set */ if (read_c0_pagegrain() & PG_IEC) c->options |= MIPS_CPU_RIXIEX; } if (mips_fpu_disabled) c->options &= ~MIPS_CPU_FPU; if (mips_dsp_disabled) c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P); if (mips_htw_disabled) { c->options &= ~MIPS_CPU_HTW; write_c0_pwctl(read_c0_pwctl() & ~(1 << MIPS_PWCTL_PWEN_SHIFT)); } if (c->options & MIPS_CPU_FPU) cpu_set_fpu_opts(c); else cpu_set_nofpu_opts(c); if (cpu_has_mips_r2_r6) { c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1; /* R2 has Performance Counter Interrupt indicator */ c->options |= MIPS_CPU_PCI; } else c->srsets = 1; if (cpu_has_mips_r6) elf_hwcap |= HWCAP_MIPS_R6; if (cpu_has_msa) { c->msa_id = cpu_get_msa_id(); WARN(c->msa_id & MSA_IR_WRPF, "Vector register partitioning unimplemented!"); elf_hwcap |= HWCAP_MIPS_MSA; } if (cpu_has_mips16) elf_hwcap |= HWCAP_MIPS_MIPS16; if (cpu_has_mdmx) elf_hwcap |= HWCAP_MIPS_MDMX; if (cpu_has_mips3d) elf_hwcap |= HWCAP_MIPS_MIPS3D; if (cpu_has_smartmips) elf_hwcap |= HWCAP_MIPS_SMARTMIPS; if (cpu_has_dsp) elf_hwcap |= HWCAP_MIPS_DSP; if (cpu_has_dsp2) elf_hwcap |= HWCAP_MIPS_DSP2; if (cpu_has_dsp3) elf_hwcap |= HWCAP_MIPS_DSP3; if (cpu_has_mips16e2) elf_hwcap |= HWCAP_MIPS_MIPS16E2; if (cpu_has_loongson_mmi) elf_hwcap |= HWCAP_LOONGSON_MMI; if (cpu_has_loongson_ext) elf_hwcap |= HWCAP_LOONGSON_EXT; if (cpu_has_loongson_ext2) elf_hwcap |= HWCAP_LOONGSON_EXT2; if (cpu_has_vz) cpu_probe_vz(c); cpu_probe_vmbits(c); /* Synthesize CPUCFG data if running on Loongson processors; * no-op otherwise. * * This looks at previously probed features, so keep this at bottom. */ loongson3_cpucfg_synthesize_data(c); #ifdef CONFIG_64BIT if (cpu == 0) __ua_limit = ~((1ull << cpu_vmbits) - 1); #endif reserve_exception_space(0, 0x1000); } void cpu_report(void) { struct cpuinfo_mips *c = &current_cpu_data; pr_info("CPU%d revision is: %08x (%s)\n", smp_processor_id(), c->processor_id, cpu_name_string()); if (c->options & MIPS_CPU_FPU) printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id); if (cpu_has_msa) pr_info("MSA revision is: %08x\n", c->msa_id); } void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster) { /* Ensure the core number fits in the field */ WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >> MIPS_GLOBALNUMBER_CLUSTER_SHF)); cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER; cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF; } void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core) { /* Ensure the core number fits in the field */ WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF)); cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE; cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF; } void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe) { /* Ensure the VP(E) ID fits in the field */ WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF)); /* Ensure we're not using VP(E)s without support */ WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) && !IS_ENABLED(CONFIG_CPU_MIPSR6)); cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP; cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF; }
linux-master
arch/mips/kernel/cpu-probe.c