python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-or-later /* * Cadence SPI controller driver (host and target mode) * * Copyright (C) 2008 - 2014 Xilinx, Inc. * * based on Blackfin On-Chip SPI Driver (spi_bfin5xx.c) */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/spi/spi.h> /* Name of this driver */ #define CDNS_SPI_NAME "cdns-spi" /* Register offset definitions */ #define CDNS_SPI_CR 0x00 /* Configuration Register, RW */ #define CDNS_SPI_ISR 0x04 /* Interrupt Status Register, RO */ #define CDNS_SPI_IER 0x08 /* Interrupt Enable Register, WO */ #define CDNS_SPI_IDR 0x0c /* Interrupt Disable Register, WO */ #define CDNS_SPI_IMR 0x10 /* Interrupt Enabled Mask Register, RO */ #define CDNS_SPI_ER 0x14 /* Enable/Disable Register, RW */ #define CDNS_SPI_DR 0x18 /* Delay Register, RW */ #define CDNS_SPI_TXD 0x1C /* Data Transmit Register, WO */ #define CDNS_SPI_RXD 0x20 /* Data Receive Register, RO */ #define CDNS_SPI_SICR 0x24 /* Slave Idle Count Register, RW */ #define CDNS_SPI_THLD 0x28 /* Transmit FIFO Watermark Register,RW */ #define SPI_AUTOSUSPEND_TIMEOUT 3000 /* * SPI Configuration Register bit Masks * * This register contains various control bits that affect the operation * of the SPI controller */ #define CDNS_SPI_CR_MANSTRT 0x00010000 /* Manual TX Start */ #define CDNS_SPI_CR_CPHA 0x00000004 /* Clock Phase Control */ #define CDNS_SPI_CR_CPOL 0x00000002 /* Clock Polarity Control */ #define CDNS_SPI_CR_SSCTRL 0x00003C00 /* Slave Select Mask */ #define CDNS_SPI_CR_PERI_SEL 0x00000200 /* Peripheral Select Decode */ #define CDNS_SPI_CR_BAUD_DIV 0x00000038 /* Baud Rate Divisor Mask */ #define CDNS_SPI_CR_MSTREN 0x00000001 /* Master Enable Mask */ #define CDNS_SPI_CR_MANSTRTEN 0x00008000 /* Manual TX Enable Mask */ #define CDNS_SPI_CR_SSFORCE 0x00004000 /* Manual SS Enable Mask */ #define CDNS_SPI_CR_BAUD_DIV_4 0x00000008 /* Default Baud Div Mask */ #define CDNS_SPI_CR_DEFAULT (CDNS_SPI_CR_MSTREN | \ CDNS_SPI_CR_SSCTRL | \ CDNS_SPI_CR_SSFORCE | \ CDNS_SPI_CR_BAUD_DIV_4) /* * SPI Configuration Register - Baud rate and target select * * These are the values used in the calculation of baud rate divisor and * setting the target select. */ #define CDNS_SPI_BAUD_DIV_MAX 7 /* Baud rate divisor maximum */ #define CDNS_SPI_BAUD_DIV_MIN 1 /* Baud rate divisor minimum */ #define CDNS_SPI_BAUD_DIV_SHIFT 3 /* Baud rate divisor shift in CR */ #define CDNS_SPI_SS_SHIFT 10 /* Slave Select field shift in CR */ #define CDNS_SPI_SS0 0x1 /* Slave Select zero */ #define CDNS_SPI_NOSS 0xF /* No Slave select */ /* * SPI Interrupt Registers bit Masks * * All the four interrupt registers (Status/Mask/Enable/Disable) have the same * bit definitions. */ #define CDNS_SPI_IXR_TXOW 0x00000004 /* SPI TX FIFO Overwater */ #define CDNS_SPI_IXR_MODF 0x00000002 /* SPI Mode Fault */ #define CDNS_SPI_IXR_RXNEMTY 0x00000010 /* SPI RX FIFO Not Empty */ #define CDNS_SPI_IXR_DEFAULT (CDNS_SPI_IXR_TXOW | \ CDNS_SPI_IXR_MODF) #define CDNS_SPI_IXR_TXFULL 0x00000008 /* SPI TX Full */ #define CDNS_SPI_IXR_ALL 0x0000007F /* SPI all interrupts */ /* * SPI Enable Register bit Masks * * This register is used to enable or disable the SPI controller */ #define CDNS_SPI_ER_ENABLE 0x00000001 /* SPI Enable Bit Mask */ #define CDNS_SPI_ER_DISABLE 0x0 /* SPI Disable Bit Mask */ /* Default number of chip select lines */ #define CDNS_SPI_DEFAULT_NUM_CS 4 /** * struct cdns_spi - This definition defines spi driver instance * @regs: Virtual address of the SPI controller registers * @ref_clk: Pointer to the peripheral clock * @pclk: Pointer to the APB clock * @clk_rate: Reference clock frequency, taken from @ref_clk * @speed_hz: Current SPI bus clock speed in Hz * @txbuf: Pointer to the TX buffer * @rxbuf: Pointer to the RX buffer * @tx_bytes: Number of bytes left to transfer * @rx_bytes: Number of bytes requested * @dev_busy: Device busy flag * @is_decoded_cs: Flag for decoder property set or not * @tx_fifo_depth: Depth of the TX FIFO */ struct cdns_spi { void __iomem *regs; struct clk *ref_clk; struct clk *pclk; unsigned int clk_rate; u32 speed_hz; const u8 *txbuf; u8 *rxbuf; int tx_bytes; int rx_bytes; u8 dev_busy; u32 is_decoded_cs; unsigned int tx_fifo_depth; }; /* Macros for the SPI controller read/write */ static inline u32 cdns_spi_read(struct cdns_spi *xspi, u32 offset) { return readl_relaxed(xspi->regs + offset); } static inline void cdns_spi_write(struct cdns_spi *xspi, u32 offset, u32 val) { writel_relaxed(val, xspi->regs + offset); } /** * cdns_spi_init_hw - Initialize the hardware and configure the SPI controller * @xspi: Pointer to the cdns_spi structure * @is_target: Flag to indicate target or host mode * * On reset the SPI controller is configured to target or host mode. * In host mode baud rate divisor is set to 4, threshold value for TX FIFO * not full interrupt is set to 1 and size of the word to be transferred as 8 bit. * * This function initializes the SPI controller to disable and clear all the * interrupts, enable manual target select and manual start, deselect all the * chip select lines, and enable the SPI controller. */ static void cdns_spi_init_hw(struct cdns_spi *xspi, bool is_target) { u32 ctrl_reg = 0; if (!is_target) ctrl_reg |= CDNS_SPI_CR_DEFAULT; if (xspi->is_decoded_cs) ctrl_reg |= CDNS_SPI_CR_PERI_SEL; cdns_spi_write(xspi, CDNS_SPI_ER, CDNS_SPI_ER_DISABLE); cdns_spi_write(xspi, CDNS_SPI_IDR, CDNS_SPI_IXR_ALL); /* Clear the RX FIFO */ while (cdns_spi_read(xspi, CDNS_SPI_ISR) & CDNS_SPI_IXR_RXNEMTY) cdns_spi_read(xspi, CDNS_SPI_RXD); cdns_spi_write(xspi, CDNS_SPI_ISR, CDNS_SPI_IXR_ALL); cdns_spi_write(xspi, CDNS_SPI_CR, ctrl_reg); cdns_spi_write(xspi, CDNS_SPI_ER, CDNS_SPI_ER_ENABLE); } /** * cdns_spi_chipselect - Select or deselect the chip select line * @spi: Pointer to the spi_device structure * @is_high: Select(0) or deselect (1) the chip select line */ static void cdns_spi_chipselect(struct spi_device *spi, bool is_high) { struct cdns_spi *xspi = spi_controller_get_devdata(spi->controller); u32 ctrl_reg; ctrl_reg = cdns_spi_read(xspi, CDNS_SPI_CR); if (is_high) { /* Deselect the target */ ctrl_reg |= CDNS_SPI_CR_SSCTRL; } else { /* Select the target */ ctrl_reg &= ~CDNS_SPI_CR_SSCTRL; if (!(xspi->is_decoded_cs)) ctrl_reg |= ((~(CDNS_SPI_SS0 << spi_get_chipselect(spi, 0))) << CDNS_SPI_SS_SHIFT) & CDNS_SPI_CR_SSCTRL; else ctrl_reg |= (spi_get_chipselect(spi, 0) << CDNS_SPI_SS_SHIFT) & CDNS_SPI_CR_SSCTRL; } cdns_spi_write(xspi, CDNS_SPI_CR, ctrl_reg); } /** * cdns_spi_config_clock_mode - Sets clock polarity and phase * @spi: Pointer to the spi_device structure * * Sets the requested clock polarity and phase. */ static void cdns_spi_config_clock_mode(struct spi_device *spi) { struct cdns_spi *xspi = spi_controller_get_devdata(spi->controller); u32 ctrl_reg, new_ctrl_reg; new_ctrl_reg = cdns_spi_read(xspi, CDNS_SPI_CR); ctrl_reg = new_ctrl_reg; /* Set the SPI clock phase and clock polarity */ new_ctrl_reg &= ~(CDNS_SPI_CR_CPHA | CDNS_SPI_CR_CPOL); if (spi->mode & SPI_CPHA) new_ctrl_reg |= CDNS_SPI_CR_CPHA; if (spi->mode & SPI_CPOL) new_ctrl_reg |= CDNS_SPI_CR_CPOL; if (new_ctrl_reg != ctrl_reg) { /* * Just writing the CR register does not seem to apply the clock * setting changes. This is problematic when changing the clock * polarity as it will cause the SPI target to see spurious clock * transitions. To workaround the issue toggle the ER register. */ cdns_spi_write(xspi, CDNS_SPI_ER, CDNS_SPI_ER_DISABLE); cdns_spi_write(xspi, CDNS_SPI_CR, new_ctrl_reg); cdns_spi_write(xspi, CDNS_SPI_ER, CDNS_SPI_ER_ENABLE); } } /** * cdns_spi_config_clock_freq - Sets clock frequency * @spi: Pointer to the spi_device structure * @transfer: Pointer to the spi_transfer structure which provides * information about next transfer setup parameters * * Sets the requested clock frequency. * Note: If the requested frequency is not an exact match with what can be * obtained using the prescalar value the driver sets the clock frequency which * is lower than the requested frequency (maximum lower) for the transfer. If * the requested frequency is higher or lower than that is supported by the SPI * controller the driver will set the highest or lowest frequency supported by * controller. */ static void cdns_spi_config_clock_freq(struct spi_device *spi, struct spi_transfer *transfer) { struct cdns_spi *xspi = spi_controller_get_devdata(spi->controller); u32 ctrl_reg, baud_rate_val; unsigned long frequency; frequency = xspi->clk_rate; ctrl_reg = cdns_spi_read(xspi, CDNS_SPI_CR); /* Set the clock frequency */ if (xspi->speed_hz != transfer->speed_hz) { /* first valid value is 1 */ baud_rate_val = CDNS_SPI_BAUD_DIV_MIN; while ((baud_rate_val < CDNS_SPI_BAUD_DIV_MAX) && (frequency / (2 << baud_rate_val)) > transfer->speed_hz) baud_rate_val++; ctrl_reg &= ~CDNS_SPI_CR_BAUD_DIV; ctrl_reg |= baud_rate_val << CDNS_SPI_BAUD_DIV_SHIFT; xspi->speed_hz = frequency / (2 << baud_rate_val); } cdns_spi_write(xspi, CDNS_SPI_CR, ctrl_reg); } /** * cdns_spi_setup_transfer - Configure SPI controller for specified transfer * @spi: Pointer to the spi_device structure * @transfer: Pointer to the spi_transfer structure which provides * information about next transfer setup parameters * * Sets the operational mode of SPI controller for the next SPI transfer and * sets the requested clock frequency. * * Return: Always 0 */ static int cdns_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *transfer) { struct cdns_spi *xspi = spi_controller_get_devdata(spi->controller); cdns_spi_config_clock_freq(spi, transfer); dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u clock speed\n", __func__, spi->mode, spi->bits_per_word, xspi->speed_hz); return 0; } /** * cdns_spi_process_fifo - Fills the TX FIFO, and drain the RX FIFO * @xspi: Pointer to the cdns_spi structure * @ntx: Number of bytes to pack into the TX FIFO * @nrx: Number of bytes to drain from the RX FIFO */ static void cdns_spi_process_fifo(struct cdns_spi *xspi, int ntx, int nrx) { ntx = clamp(ntx, 0, xspi->tx_bytes); nrx = clamp(nrx, 0, xspi->rx_bytes); xspi->tx_bytes -= ntx; xspi->rx_bytes -= nrx; while (ntx || nrx) { if (ntx) { if (xspi->txbuf) cdns_spi_write(xspi, CDNS_SPI_TXD, *xspi->txbuf++); else cdns_spi_write(xspi, CDNS_SPI_TXD, 0); ntx--; } if (nrx) { u8 data = cdns_spi_read(xspi, CDNS_SPI_RXD); if (xspi->rxbuf) *xspi->rxbuf++ = data; nrx--; } } } /** * cdns_spi_irq - Interrupt service routine of the SPI controller * @irq: IRQ number * @dev_id: Pointer to the xspi structure * * This function handles TX empty and Mode Fault interrupts only. * On TX empty interrupt this function reads the received data from RX FIFO and * fills the TX FIFO if there is any data remaining to be transferred. * On Mode Fault interrupt this function indicates that transfer is completed, * the SPI subsystem will identify the error as the remaining bytes to be * transferred is non-zero. * * Return: IRQ_HANDLED when handled; IRQ_NONE otherwise. */ static irqreturn_t cdns_spi_irq(int irq, void *dev_id) { struct spi_controller *ctlr = dev_id; struct cdns_spi *xspi = spi_controller_get_devdata(ctlr); irqreturn_t status; u32 intr_status; status = IRQ_NONE; intr_status = cdns_spi_read(xspi, CDNS_SPI_ISR); cdns_spi_write(xspi, CDNS_SPI_ISR, intr_status); if (intr_status & CDNS_SPI_IXR_MODF) { /* Indicate that transfer is completed, the SPI subsystem will * identify the error as the remaining bytes to be * transferred is non-zero */ cdns_spi_write(xspi, CDNS_SPI_IDR, CDNS_SPI_IXR_DEFAULT); spi_finalize_current_transfer(ctlr); status = IRQ_HANDLED; } else if (intr_status & CDNS_SPI_IXR_TXOW) { int threshold = cdns_spi_read(xspi, CDNS_SPI_THLD); int trans_cnt = xspi->rx_bytes - xspi->tx_bytes; if (threshold > 1) trans_cnt -= threshold; /* Set threshold to one if number of pending are * less than half fifo */ if (xspi->tx_bytes < xspi->tx_fifo_depth >> 1) cdns_spi_write(xspi, CDNS_SPI_THLD, 1); if (xspi->tx_bytes) { cdns_spi_process_fifo(xspi, trans_cnt, trans_cnt); } else { /* Fixed delay due to controller limitation with * RX_NEMPTY incorrect status * Xilinx AR:65885 contains more details */ udelay(10); cdns_spi_process_fifo(xspi, 0, trans_cnt); cdns_spi_write(xspi, CDNS_SPI_IDR, CDNS_SPI_IXR_DEFAULT); spi_finalize_current_transfer(ctlr); } status = IRQ_HANDLED; } return status; } static int cdns_prepare_message(struct spi_controller *ctlr, struct spi_message *msg) { if (!spi_controller_is_target(ctlr)) cdns_spi_config_clock_mode(msg->spi); return 0; } /** * cdns_transfer_one - Initiates the SPI transfer * @ctlr: Pointer to spi_controller structure * @spi: Pointer to the spi_device structure * @transfer: Pointer to the spi_transfer structure which provides * information about next transfer parameters * * This function in host mode fills the TX FIFO, starts the SPI transfer and * returns a positive transfer count so that core will wait for completion. * This function in target mode fills the TX FIFO and wait for transfer trigger. * * Return: Number of bytes transferred in the last transfer */ static int cdns_transfer_one(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *transfer) { struct cdns_spi *xspi = spi_controller_get_devdata(ctlr); xspi->txbuf = transfer->tx_buf; xspi->rxbuf = transfer->rx_buf; xspi->tx_bytes = transfer->len; xspi->rx_bytes = transfer->len; if (!spi_controller_is_target(ctlr)) { cdns_spi_setup_transfer(spi, transfer); } else { /* Set TX empty threshold to half of FIFO depth * only if TX bytes are more than FIFO depth. */ if (xspi->tx_bytes > xspi->tx_fifo_depth) cdns_spi_write(xspi, CDNS_SPI_THLD, xspi->tx_fifo_depth >> 1); } /* When xspi in busy condition, bytes may send failed, * then spi control didn't work thoroughly, add one byte delay */ if (cdns_spi_read(xspi, CDNS_SPI_ISR) & CDNS_SPI_IXR_TXFULL) udelay(10); cdns_spi_process_fifo(xspi, xspi->tx_fifo_depth, 0); spi_transfer_delay_exec(transfer); cdns_spi_write(xspi, CDNS_SPI_IER, CDNS_SPI_IXR_DEFAULT); return transfer->len; } /** * cdns_prepare_transfer_hardware - Prepares hardware for transfer. * @ctlr: Pointer to the spi_controller structure which provides * information about the controller. * * This function enables SPI host controller. * * Return: 0 always */ static int cdns_prepare_transfer_hardware(struct spi_controller *ctlr) { struct cdns_spi *xspi = spi_controller_get_devdata(ctlr); cdns_spi_write(xspi, CDNS_SPI_ER, CDNS_SPI_ER_ENABLE); return 0; } /** * cdns_unprepare_transfer_hardware - Relaxes hardware after transfer * @ctlr: Pointer to the spi_controller structure which provides * information about the controller. * * This function disables the SPI host controller when no target selected. * This function flush out if any pending data in FIFO. * * Return: 0 always */ static int cdns_unprepare_transfer_hardware(struct spi_controller *ctlr) { struct cdns_spi *xspi = spi_controller_get_devdata(ctlr); u32 ctrl_reg; unsigned int cnt = xspi->tx_fifo_depth; if (spi_controller_is_target(ctlr)) { while (cnt--) cdns_spi_read(xspi, CDNS_SPI_RXD); } /* Disable the SPI if target is deselected */ ctrl_reg = cdns_spi_read(xspi, CDNS_SPI_CR); ctrl_reg = (ctrl_reg & CDNS_SPI_CR_SSCTRL) >> CDNS_SPI_SS_SHIFT; if (ctrl_reg == CDNS_SPI_NOSS || spi_controller_is_target(ctlr)) cdns_spi_write(xspi, CDNS_SPI_ER, CDNS_SPI_ER_DISABLE); /* Reset to default */ cdns_spi_write(xspi, CDNS_SPI_THLD, 0x1); return 0; } /** * cdns_spi_detect_fifo_depth - Detect the FIFO depth of the hardware * @xspi: Pointer to the cdns_spi structure * * The depth of the TX FIFO is a synthesis configuration parameter of the SPI * IP. The FIFO threshold register is sized so that its maximum value can be the * FIFO size - 1. This is used to detect the size of the FIFO. */ static void cdns_spi_detect_fifo_depth(struct cdns_spi *xspi) { /* The MSBs will get truncated giving us the size of the FIFO */ cdns_spi_write(xspi, CDNS_SPI_THLD, 0xffff); xspi->tx_fifo_depth = cdns_spi_read(xspi, CDNS_SPI_THLD) + 1; /* Reset to default */ cdns_spi_write(xspi, CDNS_SPI_THLD, 0x1); } /** * cdns_target_abort - Abort target transfer * @ctlr: Pointer to the spi_controller structure * * This function abort target transfer if there any transfer timeout. * * Return: 0 always */ static int cdns_target_abort(struct spi_controller *ctlr) { struct cdns_spi *xspi = spi_controller_get_devdata(ctlr); u32 intr_status; intr_status = cdns_spi_read(xspi, CDNS_SPI_ISR); cdns_spi_write(xspi, CDNS_SPI_ISR, intr_status); cdns_spi_write(xspi, CDNS_SPI_IDR, (CDNS_SPI_IXR_MODF | CDNS_SPI_IXR_RXNEMTY)); spi_finalize_current_transfer(ctlr); return 0; } /** * cdns_spi_probe - Probe method for the SPI driver * @pdev: Pointer to the platform_device structure * * This function initializes the driver data structures and the hardware. * * Return: 0 on success and error value on error */ static int cdns_spi_probe(struct platform_device *pdev) { int ret = 0, irq; struct spi_controller *ctlr; struct cdns_spi *xspi; u32 num_cs; bool target; target = of_property_read_bool(pdev->dev.of_node, "spi-slave"); if (target) ctlr = spi_alloc_target(&pdev->dev, sizeof(*xspi)); else ctlr = spi_alloc_host(&pdev->dev, sizeof(*xspi)); if (!ctlr) return -ENOMEM; xspi = spi_controller_get_devdata(ctlr); ctlr->dev.of_node = pdev->dev.of_node; platform_set_drvdata(pdev, ctlr); xspi->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(xspi->regs)) { ret = PTR_ERR(xspi->regs); goto remove_ctlr; } xspi->pclk = devm_clk_get(&pdev->dev, "pclk"); if (IS_ERR(xspi->pclk)) { dev_err(&pdev->dev, "pclk clock not found.\n"); ret = PTR_ERR(xspi->pclk); goto remove_ctlr; } ret = clk_prepare_enable(xspi->pclk); if (ret) { dev_err(&pdev->dev, "Unable to enable APB clock.\n"); goto remove_ctlr; } if (!spi_controller_is_target(ctlr)) { xspi->ref_clk = devm_clk_get(&pdev->dev, "ref_clk"); if (IS_ERR(xspi->ref_clk)) { dev_err(&pdev->dev, "ref_clk clock not found.\n"); ret = PTR_ERR(xspi->ref_clk); goto clk_dis_apb; } ret = clk_prepare_enable(xspi->ref_clk); if (ret) { dev_err(&pdev->dev, "Unable to enable device clock.\n"); goto clk_dis_apb; } pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); pm_runtime_get_noresume(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs); if (ret < 0) ctlr->num_chipselect = CDNS_SPI_DEFAULT_NUM_CS; else ctlr->num_chipselect = num_cs; ret = of_property_read_u32(pdev->dev.of_node, "is-decoded-cs", &xspi->is_decoded_cs); if (ret < 0) xspi->is_decoded_cs = 0; } cdns_spi_detect_fifo_depth(xspi); /* SPI controller initializations */ cdns_spi_init_hw(xspi, spi_controller_is_target(ctlr)); irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto clk_dis_all; } ret = devm_request_irq(&pdev->dev, irq, cdns_spi_irq, 0, pdev->name, ctlr); if (ret != 0) { ret = -ENXIO; dev_err(&pdev->dev, "request_irq failed\n"); goto clk_dis_all; } ctlr->use_gpio_descriptors = true; ctlr->prepare_transfer_hardware = cdns_prepare_transfer_hardware; ctlr->prepare_message = cdns_prepare_message; ctlr->transfer_one = cdns_transfer_one; ctlr->unprepare_transfer_hardware = cdns_unprepare_transfer_hardware; ctlr->mode_bits = SPI_CPOL | SPI_CPHA; ctlr->bits_per_word_mask = SPI_BPW_MASK(8); if (!spi_controller_is_target(ctlr)) { ctlr->mode_bits |= SPI_CS_HIGH; ctlr->set_cs = cdns_spi_chipselect; ctlr->auto_runtime_pm = true; xspi->clk_rate = clk_get_rate(xspi->ref_clk); /* Set to default valid value */ ctlr->max_speed_hz = xspi->clk_rate / 4; xspi->speed_hz = ctlr->max_speed_hz; pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); } else { ctlr->mode_bits |= SPI_NO_CS; ctlr->target_abort = cdns_target_abort; } ret = spi_register_controller(ctlr); if (ret) { dev_err(&pdev->dev, "spi_register_controller failed\n"); goto clk_dis_all; } return ret; clk_dis_all: if (!spi_controller_is_target(ctlr)) { pm_runtime_set_suspended(&pdev->dev); pm_runtime_disable(&pdev->dev); clk_disable_unprepare(xspi->ref_clk); } clk_dis_apb: clk_disable_unprepare(xspi->pclk); remove_ctlr: spi_controller_put(ctlr); return ret; } /** * cdns_spi_remove - Remove method for the SPI driver * @pdev: Pointer to the platform_device structure * * This function is called if a device is physically removed from the system or * if the driver module is being unloaded. It frees all resources allocated to * the device. */ static void cdns_spi_remove(struct platform_device *pdev) { struct spi_controller *ctlr = platform_get_drvdata(pdev); struct cdns_spi *xspi = spi_controller_get_devdata(ctlr); cdns_spi_write(xspi, CDNS_SPI_ER, CDNS_SPI_ER_DISABLE); clk_disable_unprepare(xspi->ref_clk); clk_disable_unprepare(xspi->pclk); pm_runtime_set_suspended(&pdev->dev); pm_runtime_disable(&pdev->dev); spi_unregister_controller(ctlr); } /** * cdns_spi_suspend - Suspend method for the SPI driver * @dev: Address of the platform_device structure * * This function disables the SPI controller and * changes the driver state to "suspend" * * Return: 0 on success and error value on error */ static int __maybe_unused cdns_spi_suspend(struct device *dev) { struct spi_controller *ctlr = dev_get_drvdata(dev); return spi_controller_suspend(ctlr); } /** * cdns_spi_resume - Resume method for the SPI driver * @dev: Address of the platform_device structure * * This function changes the driver state to "ready" * * Return: 0 on success and error value on error */ static int __maybe_unused cdns_spi_resume(struct device *dev) { struct spi_controller *ctlr = dev_get_drvdata(dev); struct cdns_spi *xspi = spi_controller_get_devdata(ctlr); cdns_spi_init_hw(xspi, spi_controller_is_target(ctlr)); return spi_controller_resume(ctlr); } /** * cdns_spi_runtime_resume - Runtime resume method for the SPI driver * @dev: Address of the platform_device structure * * This function enables the clocks * * Return: 0 on success and error value on error */ static int __maybe_unused cdns_spi_runtime_resume(struct device *dev) { struct spi_controller *ctlr = dev_get_drvdata(dev); struct cdns_spi *xspi = spi_controller_get_devdata(ctlr); int ret; ret = clk_prepare_enable(xspi->pclk); if (ret) { dev_err(dev, "Cannot enable APB clock.\n"); return ret; } ret = clk_prepare_enable(xspi->ref_clk); if (ret) { dev_err(dev, "Cannot enable device clock.\n"); clk_disable_unprepare(xspi->pclk); return ret; } return 0; } /** * cdns_spi_runtime_suspend - Runtime suspend method for the SPI driver * @dev: Address of the platform_device structure * * This function disables the clocks * * Return: Always 0 */ static int __maybe_unused cdns_spi_runtime_suspend(struct device *dev) { struct spi_controller *ctlr = dev_get_drvdata(dev); struct cdns_spi *xspi = spi_controller_get_devdata(ctlr); clk_disable_unprepare(xspi->ref_clk); clk_disable_unprepare(xspi->pclk); return 0; } static const struct dev_pm_ops cdns_spi_dev_pm_ops = { SET_RUNTIME_PM_OPS(cdns_spi_runtime_suspend, cdns_spi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(cdns_spi_suspend, cdns_spi_resume) }; static const struct of_device_id cdns_spi_of_match[] = { { .compatible = "xlnx,zynq-spi-r1p6" }, { .compatible = "cdns,spi-r1p6" }, { /* end of table */ } }; MODULE_DEVICE_TABLE(of, cdns_spi_of_match); /* cdns_spi_driver - This structure defines the SPI subsystem platform driver */ static struct platform_driver cdns_spi_driver = { .probe = cdns_spi_probe, .remove_new = cdns_spi_remove, .driver = { .name = CDNS_SPI_NAME, .of_match_table = cdns_spi_of_match, .pm = &cdns_spi_dev_pm_ops, }, }; module_platform_driver(cdns_spi_driver); MODULE_AUTHOR("Xilinx, Inc."); MODULE_DESCRIPTION("Cadence SPI driver"); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-cadence.c
// SPDX-License-Identifier: GPL-2.0+ // Loongson SPI Support // Copyright (C) 2023 Loongson Technology Corporation Limited #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/spi/spi.h> #include "spi-loongson.h" static inline void loongson_spi_write_reg(struct loongson_spi *spi, unsigned char reg, unsigned char data) { writeb(data, spi->base + reg); } static inline char loongson_spi_read_reg(struct loongson_spi *spi, unsigned char reg) { return readb(spi->base + reg); } static void loongson_spi_set_cs(struct spi_device *spi, bool en) { int cs; unsigned char mask = (BIT(4) | BIT(0)) << spi_get_chipselect(spi, 0); unsigned char val = en ? mask : (BIT(0) << spi_get_chipselect(spi, 0)); struct loongson_spi *loongson_spi = spi_controller_get_devdata(spi->controller); cs = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_SFCS_REG) & ~mask; loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_SFCS_REG, val | cs); } static void loongson_spi_set_clk(struct loongson_spi *loongson_spi, unsigned int hz) { unsigned char val; unsigned int div, div_tmp; static const char rdiv[12] = {0, 1, 4, 2, 3, 5, 6, 7, 8, 9, 10, 11}; div = clamp_val(DIV_ROUND_UP_ULL(loongson_spi->clk_rate, hz), 2, 4096); div_tmp = rdiv[fls(div - 1)]; loongson_spi->spcr = (div_tmp & GENMASK(1, 0)) >> 0; loongson_spi->sper = (div_tmp & GENMASK(3, 2)) >> 2; val = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_SPCR_REG); val &= ~GENMASK(1, 0); loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_SPCR_REG, val | loongson_spi->spcr); val = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_SPER_REG); val &= ~GENMASK(1, 0); loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_SPER_REG, val | loongson_spi->sper); loongson_spi->hz = hz; } static void loongson_spi_set_mode(struct loongson_spi *loongson_spi, struct spi_device *spi) { unsigned char val; val = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_SPCR_REG); val &= ~(LOONGSON_SPI_SPCR_CPOL | LOONGSON_SPI_SPCR_CPHA); if (spi->mode & SPI_CPOL) val |= LOONGSON_SPI_SPCR_CPOL; if (spi->mode & SPI_CPHA) val |= LOONGSON_SPI_SPCR_CPHA; loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_SPCR_REG, val); loongson_spi->mode |= spi->mode; } static int loongson_spi_update_state(struct loongson_spi *loongson_spi, struct spi_device *spi, struct spi_transfer *t) { if (t && loongson_spi->hz != t->speed_hz) loongson_spi_set_clk(loongson_spi, t->speed_hz); if ((spi->mode ^ loongson_spi->mode) & SPI_MODE_X_MASK) loongson_spi_set_mode(loongson_spi, spi); return 0; } static int loongson_spi_setup(struct spi_device *spi) { struct loongson_spi *loongson_spi; loongson_spi = spi_controller_get_devdata(spi->controller); if (spi->bits_per_word % 8) return -EINVAL; if (spi_get_chipselect(spi, 0) >= spi->controller->num_chipselect) return -EINVAL; loongson_spi->hz = 0; loongson_spi_set_cs(spi, true); return 0; } static int loongson_spi_write_read_8bit(struct spi_device *spi, const u8 **tx_buf, u8 **rx_buf, unsigned int num) { int ret; struct loongson_spi *loongson_spi = spi_controller_get_devdata(spi->controller); if (tx_buf && *tx_buf) loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_FIFO_REG, *((*tx_buf)++)); else loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_FIFO_REG, 0); ret = readb_poll_timeout(loongson_spi->base + LOONGSON_SPI_SPSR_REG, loongson_spi->spsr, (loongson_spi->spsr & LOONGSON_SPI_SPSR_RFEMPTY) != LOONGSON_SPI_SPSR_RFEMPTY, 1, USEC_PER_MSEC); if (rx_buf && *rx_buf) *(*rx_buf)++ = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_FIFO_REG); else loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_FIFO_REG); return ret; } static int loongson_spi_write_read(struct spi_device *spi, struct spi_transfer *xfer) { int ret; unsigned int count; const u8 *tx = xfer->tx_buf; u8 *rx = xfer->rx_buf; count = xfer->len; do { ret = loongson_spi_write_read_8bit(spi, &tx, &rx, count); if (ret) break; } while (--count); return ret; } static int loongson_spi_prepare_message(struct spi_controller *ctlr, struct spi_message *m) { struct loongson_spi *loongson_spi = spi_controller_get_devdata(ctlr); loongson_spi->para = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_PARA_REG); loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_PARA_REG, loongson_spi->para & ~LOONGSON_SPI_PARA_MEM_EN); return 0; } static int loongson_spi_transfer_one(struct spi_controller *ctrl, struct spi_device *spi, struct spi_transfer *xfer) { struct loongson_spi *loongson_spi = spi_controller_get_devdata(spi->controller); loongson_spi_update_state(loongson_spi, spi, xfer); if (xfer->len) return loongson_spi_write_read(spi, xfer); return 0; } static int loongson_spi_unprepare_message(struct spi_controller *ctrl, struct spi_message *m) { struct loongson_spi *loongson_spi = spi_controller_get_devdata(ctrl); loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_PARA_REG, loongson_spi->para); return 0; } static void loongson_spi_reginit(struct loongson_spi *loongson_spi_dev) { unsigned char val; val = loongson_spi_read_reg(loongson_spi_dev, LOONGSON_SPI_SPCR_REG); val &= ~LOONGSON_SPI_SPCR_SPE; loongson_spi_write_reg(loongson_spi_dev, LOONGSON_SPI_SPCR_REG, val); loongson_spi_write_reg(loongson_spi_dev, LOONGSON_SPI_SPSR_REG, (LOONGSON_SPI_SPSR_SPIF | LOONGSON_SPI_SPSR_WCOL)); val = loongson_spi_read_reg(loongson_spi_dev, LOONGSON_SPI_SPCR_REG); val |= LOONGSON_SPI_SPCR_SPE; loongson_spi_write_reg(loongson_spi_dev, LOONGSON_SPI_SPCR_REG, val); } int loongson_spi_init_controller(struct device *dev, void __iomem *regs) { struct spi_controller *controller; struct loongson_spi *spi; struct clk *clk; controller = devm_spi_alloc_host(dev, sizeof(struct loongson_spi)); if (controller == NULL) return -ENOMEM; controller->mode_bits = SPI_MODE_X_MASK | SPI_CS_HIGH; controller->setup = loongson_spi_setup; controller->prepare_message = loongson_spi_prepare_message; controller->transfer_one = loongson_spi_transfer_one; controller->unprepare_message = loongson_spi_unprepare_message; controller->set_cs = loongson_spi_set_cs; controller->num_chipselect = 4; device_set_node(&controller->dev, dev_fwnode(dev)); dev_set_drvdata(dev, controller); spi = spi_controller_get_devdata(controller); spi->base = regs; spi->controller = controller; clk = devm_clk_get_optional(dev, NULL); if (IS_ERR(clk)) return dev_err_probe(dev, PTR_ERR(clk), "unable to get clock\n"); spi->clk_rate = clk_get_rate(clk); loongson_spi_reginit(spi); spi->mode = 0; return devm_spi_register_controller(dev, controller); } EXPORT_SYMBOL_NS_GPL(loongson_spi_init_controller, SPI_LOONGSON_CORE); static int __maybe_unused loongson_spi_suspend(struct device *dev) { struct loongson_spi *loongson_spi; struct spi_controller *controller; controller = dev_get_drvdata(dev); spi_controller_suspend(controller); loongson_spi = spi_controller_get_devdata(controller); loongson_spi->spcr = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_SPCR_REG); loongson_spi->sper = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_SPER_REG); loongson_spi->spsr = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_SPSR_REG); loongson_spi->para = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_PARA_REG); loongson_spi->sfcs = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_SFCS_REG); loongson_spi->timi = loongson_spi_read_reg(loongson_spi, LOONGSON_SPI_TIMI_REG); return 0; } static int __maybe_unused loongson_spi_resume(struct device *dev) { struct loongson_spi *loongson_spi; struct spi_controller *controller; controller = dev_get_drvdata(dev); loongson_spi = spi_controller_get_devdata(controller); loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_SPCR_REG, loongson_spi->spcr); loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_SPER_REG, loongson_spi->sper); loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_SPSR_REG, loongson_spi->spsr); loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_PARA_REG, loongson_spi->para); loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_SFCS_REG, loongson_spi->sfcs); loongson_spi_write_reg(loongson_spi, LOONGSON_SPI_TIMI_REG, loongson_spi->timi); spi_controller_resume(controller); return 0; } const struct dev_pm_ops loongson_spi_dev_pm_ops = { .suspend = loongson_spi_suspend, .resume = loongson_spi_resume, }; EXPORT_SYMBOL_NS_GPL(loongson_spi_dev_pm_ops, SPI_LOONGSON_CORE); MODULE_DESCRIPTION("Loongson SPI core driver"); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-loongson-core.c
// SPDX-License-Identifier: GPL-2.0+ // // Freescale MXS SPI master driver // // Copyright 2012 DENX Software Engineering, GmbH. // Copyright 2012 Freescale Semiconductor, Inc. // Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved. // // Rework and transition to new API by: // Marek Vasut <[email protected]> // // Based on previous attempt by: // Fabio Estevam <[email protected]> // // Based on code from U-Boot bootloader by: // Marek Vasut <[email protected]> // // Based on spi-stmp.c, which is: // Author: Dmitry Pervushin <[email protected]> #include <linux/kernel.h> #include <linux/ioport.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/highmem.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/completion.h> #include <linux/pinctrl/consumer.h> #include <linux/regulator/consumer.h> #include <linux/pm_runtime.h> #include <linux/module.h> #include <linux/stmp_device.h> #include <linux/spi/spi.h> #include <linux/spi/mxs-spi.h> #include <trace/events/spi.h> #define DRIVER_NAME "mxs-spi" /* Use 10S timeout for very long transfers, it should suffice. */ #define SSP_TIMEOUT 10000 #define SG_MAXLEN 0xff00 /* * Flags for txrx functions. More efficient that using an argument register for * each one. */ #define TXRX_WRITE (1<<0) /* This is a write */ #define TXRX_DEASSERT_CS (1<<1) /* De-assert CS at end of txrx */ struct mxs_spi { struct mxs_ssp ssp; struct completion c; unsigned int sck; /* Rate requested (vs actual) */ }; static int mxs_spi_setup_transfer(struct spi_device *dev, const struct spi_transfer *t) { struct mxs_spi *spi = spi_master_get_devdata(dev->master); struct mxs_ssp *ssp = &spi->ssp; const unsigned int hz = min(dev->max_speed_hz, t->speed_hz); if (hz == 0) { dev_err(&dev->dev, "SPI clock rate of zero not allowed\n"); return -EINVAL; } if (hz != spi->sck) { mxs_ssp_set_clk_rate(ssp, hz); /* * Save requested rate, hz, rather than the actual rate, * ssp->clk_rate. Otherwise we would set the rate every transfer * when the actual rate is not quite the same as requested rate. */ spi->sck = hz; /* * Perhaps we should return an error if the actual clock is * nowhere close to what was requested? */ } writel(BM_SSP_CTRL0_LOCK_CS, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) | BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) | ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) | ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0), ssp->base + HW_SSP_CTRL1(ssp)); writel(0x0, ssp->base + HW_SSP_CMD0); writel(0x0, ssp->base + HW_SSP_CMD1); return 0; } static u32 mxs_spi_cs_to_reg(unsigned cs) { u32 select = 0; /* * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0 * * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ * in HW_SSP_CTRL0 register do have multiple usage, please refer to * the datasheet for further details. In SPI mode, they are used to * toggle the chip-select lines (nCS pins). */ if (cs & 1) select |= BM_SSP_CTRL0_WAIT_FOR_CMD; if (cs & 2) select |= BM_SSP_CTRL0_WAIT_FOR_IRQ; return select; } static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set) { const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT); struct mxs_ssp *ssp = &spi->ssp; u32 reg; do { reg = readl_relaxed(ssp->base + offset); if (!set) reg = ~reg; reg &= mask; if (reg == mask) return 0; } while (time_before(jiffies, timeout)); return -ETIMEDOUT; } static void mxs_ssp_dma_irq_callback(void *param) { struct mxs_spi *spi = param; complete(&spi->c); } static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id) { struct mxs_ssp *ssp = dev_id; dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n", __func__, __LINE__, readl(ssp->base + HW_SSP_CTRL1(ssp)), readl(ssp->base + HW_SSP_STATUS(ssp))); return IRQ_HANDLED; } static int mxs_spi_txrx_dma(struct mxs_spi *spi, unsigned char *buf, int len, unsigned int flags) { struct mxs_ssp *ssp = &spi->ssp; struct dma_async_tx_descriptor *desc = NULL; const bool vmalloced_buf = is_vmalloc_addr(buf); const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN; const int sgs = DIV_ROUND_UP(len, desc_len); int sg_count; int min, ret; u32 ctrl0; struct page *vm_page; struct { u32 pio[4]; struct scatterlist sg; } *dma_xfer; if (!len) return -EINVAL; dma_xfer = kcalloc(sgs, sizeof(*dma_xfer), GFP_KERNEL); if (!dma_xfer) return -ENOMEM; reinit_completion(&spi->c); /* Chip select was already programmed into CTRL0 */ ctrl0 = readl(ssp->base + HW_SSP_CTRL0); ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC | BM_SSP_CTRL0_READ); ctrl0 |= BM_SSP_CTRL0_DATA_XFER; if (!(flags & TXRX_WRITE)) ctrl0 |= BM_SSP_CTRL0_READ; /* Queue the DMA data transfer. */ for (sg_count = 0; sg_count < sgs; sg_count++) { /* Prepare the transfer descriptor. */ min = min(len, desc_len); /* * De-assert CS on last segment if flag is set (i.e., no more * transfers will follow) */ if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS)) ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC; if (ssp->devid == IMX23_SSP) { ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT; ctrl0 |= min; } dma_xfer[sg_count].pio[0] = ctrl0; dma_xfer[sg_count].pio[3] = min; if (vmalloced_buf) { vm_page = vmalloc_to_page(buf); if (!vm_page) { ret = -ENOMEM; goto err_vmalloc; } sg_init_table(&dma_xfer[sg_count].sg, 1); sg_set_page(&dma_xfer[sg_count].sg, vm_page, min, offset_in_page(buf)); } else { sg_init_one(&dma_xfer[sg_count].sg, buf, min); } ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1, (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); len -= min; buf += min; /* Queue the PIO register write transfer. */ desc = dmaengine_prep_slave_sg(ssp->dmach, (struct scatterlist *)dma_xfer[sg_count].pio, (ssp->devid == IMX23_SSP) ? 1 : 4, DMA_TRANS_NONE, sg_count ? DMA_PREP_INTERRUPT : 0); if (!desc) { dev_err(ssp->dev, "Failed to get PIO reg. write descriptor.\n"); ret = -EINVAL; goto err_mapped; } desc = dmaengine_prep_slave_sg(ssp->dmach, &dma_xfer[sg_count].sg, 1, (flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(ssp->dev, "Failed to get DMA data write descriptor.\n"); ret = -EINVAL; goto err_mapped; } } /* * The last descriptor must have this callback, * to finish the DMA transaction. */ desc->callback = mxs_ssp_dma_irq_callback; desc->callback_param = spi; /* Start the transfer. */ dmaengine_submit(desc); dma_async_issue_pending(ssp->dmach); if (!wait_for_completion_timeout(&spi->c, msecs_to_jiffies(SSP_TIMEOUT))) { dev_err(ssp->dev, "DMA transfer timeout\n"); ret = -ETIMEDOUT; dmaengine_terminate_all(ssp->dmach); goto err_vmalloc; } ret = 0; err_vmalloc: while (--sg_count >= 0) { err_mapped: dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1, (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); } kfree(dma_xfer); return ret; } static int mxs_spi_txrx_pio(struct mxs_spi *spi, unsigned char *buf, int len, unsigned int flags) { struct mxs_ssp *ssp = &spi->ssp; writel(BM_SSP_CTRL0_IGNORE_CRC, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); while (len--) { if (len == 0 && (flags & TXRX_DEASSERT_CS)) writel(BM_SSP_CTRL0_IGNORE_CRC, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); if (ssp->devid == IMX23_SSP) { writel(BM_SSP_CTRL0_XFER_COUNT, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); writel(1, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); } else { writel(1, ssp->base + HW_SSP_XFER_SIZE); } if (flags & TXRX_WRITE) writel(BM_SSP_CTRL0_READ, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); else writel(BM_SSP_CTRL0_READ, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); writel(BM_SSP_CTRL0_RUN, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1)) return -ETIMEDOUT; if (flags & TXRX_WRITE) writel(*buf, ssp->base + HW_SSP_DATA(ssp)); writel(BM_SSP_CTRL0_DATA_XFER, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); if (!(flags & TXRX_WRITE)) { if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp), BM_SSP_STATUS_FIFO_EMPTY, 0)) return -ETIMEDOUT; *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff); } if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0)) return -ETIMEDOUT; buf++; } if (len <= 0) return 0; return -ETIMEDOUT; } static int mxs_spi_transfer_one(struct spi_master *master, struct spi_message *m) { struct mxs_spi *spi = spi_master_get_devdata(master); struct mxs_ssp *ssp = &spi->ssp; struct spi_transfer *t; unsigned int flag; int status = 0; /* Program CS register bits here, it will be used for all transfers. */ writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); writel(mxs_spi_cs_to_reg(spi_get_chipselect(m->spi, 0)), ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); list_for_each_entry(t, &m->transfers, transfer_list) { trace_spi_transfer_start(m, t); status = mxs_spi_setup_transfer(m->spi, t); if (status) break; /* De-assert on last transfer, inverted by cs_change flag */ flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ? TXRX_DEASSERT_CS : 0; /* * Small blocks can be transfered via PIO. * Measured by empiric means: * * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1 * * DMA only: 2.164808 seconds, 473.0KB/s * Combined: 1.676276 seconds, 610.9KB/s */ if (t->len < 32) { writel(BM_SSP_CTRL1_DMA_ENABLE, ssp->base + HW_SSP_CTRL1(ssp) + STMP_OFFSET_REG_CLR); if (t->tx_buf) status = mxs_spi_txrx_pio(spi, (void *)t->tx_buf, t->len, flag | TXRX_WRITE); if (t->rx_buf) status = mxs_spi_txrx_pio(spi, t->rx_buf, t->len, flag); } else { writel(BM_SSP_CTRL1_DMA_ENABLE, ssp->base + HW_SSP_CTRL1(ssp) + STMP_OFFSET_REG_SET); if (t->tx_buf) status = mxs_spi_txrx_dma(spi, (void *)t->tx_buf, t->len, flag | TXRX_WRITE); if (t->rx_buf) status = mxs_spi_txrx_dma(spi, t->rx_buf, t->len, flag); } trace_spi_transfer_stop(m, t); if (status) { stmp_reset_block(ssp->base); break; } m->actual_length += t->len; } m->status = status; spi_finalize_current_message(master); return status; } static int mxs_spi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mxs_spi *spi = spi_master_get_devdata(master); struct mxs_ssp *ssp = &spi->ssp; int ret; clk_disable_unprepare(ssp->clk); ret = pinctrl_pm_select_idle_state(dev); if (ret) { int ret2 = clk_prepare_enable(ssp->clk); if (ret2) dev_warn(dev, "Failed to reenable clock after failing pinctrl request (pinctrl: %d, clk: %d)\n", ret, ret2); } return ret; } static int mxs_spi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mxs_spi *spi = spi_master_get_devdata(master); struct mxs_ssp *ssp = &spi->ssp; int ret; ret = pinctrl_pm_select_default_state(dev); if (ret) return ret; ret = clk_prepare_enable(ssp->clk); if (ret) pinctrl_pm_select_idle_state(dev); return ret; } static int __maybe_unused mxs_spi_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); int ret; ret = spi_master_suspend(master); if (ret) return ret; if (!pm_runtime_suspended(dev)) return mxs_spi_runtime_suspend(dev); else return 0; } static int __maybe_unused mxs_spi_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); int ret; if (!pm_runtime_suspended(dev)) ret = mxs_spi_runtime_resume(dev); else ret = 0; if (ret) return ret; ret = spi_master_resume(master); if (ret < 0 && !pm_runtime_suspended(dev)) mxs_spi_runtime_suspend(dev); return ret; } static const struct dev_pm_ops mxs_spi_pm = { SET_RUNTIME_PM_OPS(mxs_spi_runtime_suspend, mxs_spi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(mxs_spi_suspend, mxs_spi_resume) }; static const struct of_device_id mxs_spi_dt_ids[] = { { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, }, { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids); static int mxs_spi_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(mxs_spi_dt_ids, &pdev->dev); struct device_node *np = pdev->dev.of_node; struct spi_master *master; struct mxs_spi *spi; struct mxs_ssp *ssp; struct clk *clk; void __iomem *base; int devid, clk_freq; int ret = 0, irq_err; /* * Default clock speed for the SPI core. 160MHz seems to * work reasonably well with most SPI flashes, so use this * as a default. Override with "clock-frequency" DT prop. */ const int clk_freq_default = 160000000; irq_err = platform_get_irq(pdev, 0); if (irq_err < 0) return irq_err; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) return PTR_ERR(clk); devid = (enum mxs_ssp_id) of_id->data; ret = of_property_read_u32(np, "clock-frequency", &clk_freq); if (ret) clk_freq = clk_freq_default; master = spi_alloc_master(&pdev->dev, sizeof(*spi)); if (!master) return -ENOMEM; platform_set_drvdata(pdev, master); master->transfer_one_message = mxs_spi_transfer_one; master->bits_per_word_mask = SPI_BPW_MASK(8); master->mode_bits = SPI_CPOL | SPI_CPHA; master->num_chipselect = 3; master->dev.of_node = np; master->flags = SPI_CONTROLLER_HALF_DUPLEX; master->auto_runtime_pm = true; spi = spi_master_get_devdata(master); ssp = &spi->ssp; ssp->dev = &pdev->dev; ssp->clk = clk; ssp->base = base; ssp->devid = devid; init_completion(&spi->c); ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0, dev_name(&pdev->dev), ssp); if (ret) goto out_master_free; ssp->dmach = dma_request_chan(&pdev->dev, "rx-tx"); if (IS_ERR(ssp->dmach)) { dev_err(ssp->dev, "Failed to request DMA\n"); ret = PTR_ERR(ssp->dmach); goto out_master_free; } pm_runtime_enable(ssp->dev); if (!pm_runtime_enabled(ssp->dev)) { ret = mxs_spi_runtime_resume(ssp->dev); if (ret < 0) { dev_err(ssp->dev, "runtime resume failed\n"); goto out_dma_release; } } ret = pm_runtime_resume_and_get(ssp->dev); if (ret < 0) { dev_err(ssp->dev, "runtime_get_sync failed\n"); goto out_pm_runtime_disable; } clk_set_rate(ssp->clk, clk_freq); ret = stmp_reset_block(ssp->base); if (ret) goto out_pm_runtime_put; ret = devm_spi_register_master(&pdev->dev, master); if (ret) { dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret); goto out_pm_runtime_put; } pm_runtime_put(ssp->dev); return 0; out_pm_runtime_put: pm_runtime_put(ssp->dev); out_pm_runtime_disable: pm_runtime_disable(ssp->dev); out_dma_release: dma_release_channel(ssp->dmach); out_master_free: spi_master_put(master); return ret; } static void mxs_spi_remove(struct platform_device *pdev) { struct spi_master *master; struct mxs_spi *spi; struct mxs_ssp *ssp; master = platform_get_drvdata(pdev); spi = spi_master_get_devdata(master); ssp = &spi->ssp; pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) mxs_spi_runtime_suspend(&pdev->dev); dma_release_channel(ssp->dmach); } static struct platform_driver mxs_spi_driver = { .probe = mxs_spi_probe, .remove_new = mxs_spi_remove, .driver = { .name = DRIVER_NAME, .of_match_table = mxs_spi_dt_ids, .pm = &mxs_spi_pm, }, }; module_platform_driver(mxs_spi_driver); MODULE_AUTHOR("Marek Vasut <[email protected]>"); MODULE_DESCRIPTION("MXS SPI master driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:mxs-spi");
linux-master
drivers/spi/spi-mxs.c
// SPDX-License-Identifier: GPL-2.0-only /* * Xtensa xtfpga SPI controller driver * * Copyright (c) 2014 Cadence Design Systems Inc. */ #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #define XTFPGA_SPI_NAME "xtfpga_spi" #define XTFPGA_SPI_START 0x0 #define XTFPGA_SPI_BUSY 0x4 #define XTFPGA_SPI_DATA 0x8 #define BUSY_WAIT_US 100 struct xtfpga_spi { struct spi_bitbang bitbang; void __iomem *regs; u32 data; unsigned data_sz; }; static inline void xtfpga_spi_write32(const struct xtfpga_spi *spi, unsigned addr, u32 val) { __raw_writel(val, spi->regs + addr); } static inline unsigned int xtfpga_spi_read32(const struct xtfpga_spi *spi, unsigned addr) { return __raw_readl(spi->regs + addr); } static inline void xtfpga_spi_wait_busy(struct xtfpga_spi *xspi) { unsigned i; for (i = 0; xtfpga_spi_read32(xspi, XTFPGA_SPI_BUSY) && i < BUSY_WAIT_US; ++i) udelay(1); WARN_ON_ONCE(i == BUSY_WAIT_US); } static u32 xtfpga_spi_txrx_word(struct spi_device *spi, unsigned nsecs, u32 v, u8 bits, unsigned flags) { struct xtfpga_spi *xspi = spi_master_get_devdata(spi->master); xspi->data = (xspi->data << bits) | (v & GENMASK(bits - 1, 0)); xspi->data_sz += bits; if (xspi->data_sz >= 16) { xtfpga_spi_write32(xspi, XTFPGA_SPI_DATA, xspi->data >> (xspi->data_sz - 16)); xspi->data_sz -= 16; xtfpga_spi_write32(xspi, XTFPGA_SPI_START, 1); xtfpga_spi_wait_busy(xspi); xtfpga_spi_write32(xspi, XTFPGA_SPI_START, 0); } return 0; } static void xtfpga_spi_chipselect(struct spi_device *spi, int is_on) { struct xtfpga_spi *xspi = spi_master_get_devdata(spi->master); WARN_ON(xspi->data_sz != 0); xspi->data_sz = 0; } static int xtfpga_spi_probe(struct platform_device *pdev) { struct xtfpga_spi *xspi; int ret; struct spi_master *master; master = devm_spi_alloc_master(&pdev->dev, sizeof(struct xtfpga_spi)); if (!master) return -ENOMEM; master->flags = SPI_CONTROLLER_NO_RX; master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 16); master->bus_num = pdev->dev.id; master->dev.of_node = pdev->dev.of_node; xspi = spi_master_get_devdata(master); xspi->bitbang.master = master; xspi->bitbang.chipselect = xtfpga_spi_chipselect; xspi->bitbang.txrx_word[SPI_MODE_0] = xtfpga_spi_txrx_word; xspi->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(xspi->regs)) return PTR_ERR(xspi->regs); xtfpga_spi_write32(xspi, XTFPGA_SPI_START, 0); usleep_range(1000, 2000); if (xtfpga_spi_read32(xspi, XTFPGA_SPI_BUSY)) { dev_err(&pdev->dev, "Device stuck in busy state\n"); return -EBUSY; } ret = spi_bitbang_start(&xspi->bitbang); if (ret < 0) { dev_err(&pdev->dev, "spi_bitbang_start failed\n"); return ret; } platform_set_drvdata(pdev, master); return 0; } static void xtfpga_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct xtfpga_spi *xspi = spi_master_get_devdata(master); spi_bitbang_stop(&xspi->bitbang); spi_master_put(master); } MODULE_ALIAS("platform:" XTFPGA_SPI_NAME); #ifdef CONFIG_OF static const struct of_device_id xtfpga_spi_of_match[] = { { .compatible = "cdns,xtfpga-spi", }, {} }; MODULE_DEVICE_TABLE(of, xtfpga_spi_of_match); #endif static struct platform_driver xtfpga_spi_driver = { .probe = xtfpga_spi_probe, .remove_new = xtfpga_spi_remove, .driver = { .name = XTFPGA_SPI_NAME, .of_match_table = of_match_ptr(xtfpga_spi_of_match), }, }; module_platform_driver(xtfpga_spi_driver); MODULE_AUTHOR("Max Filippov <[email protected]>"); MODULE_DESCRIPTION("xtensa xtfpga SPI driver"); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-xtensa-xtfpga.c
// SPDX-License-Identifier: GPL-2.0 // PCI1xxxx SPI driver // Copyright (C) 2022 Microchip Technology Inc. // Authors: Tharun Kumar P <[email protected]> // Kumaravel Thiagarajan <[email protected]> #include <linux/module.h> #include <linux/pci.h> #include <linux/spi/spi.h> #include <linux/delay.h> #define DRV_NAME "spi-pci1xxxx" #define SYS_FREQ_DEFAULT (62500000) #define PCI1XXXX_SPI_MAX_CLOCK_HZ (30000000) #define PCI1XXXX_SPI_CLK_20MHZ (20000000) #define PCI1XXXX_SPI_CLK_15MHZ (15000000) #define PCI1XXXX_SPI_CLK_12MHZ (12000000) #define PCI1XXXX_SPI_CLK_10MHZ (10000000) #define PCI1XXXX_SPI_MIN_CLOCK_HZ (2000000) #define PCI1XXXX_SPI_BUFFER_SIZE (320) #define SPI_MST_CTL_DEVSEL_MASK (GENMASK(27, 25)) #define SPI_MST_CTL_CMD_LEN_MASK (GENMASK(16, 8)) #define SPI_MST_CTL_SPEED_MASK (GENMASK(7, 5)) #define SPI_MSI_VECTOR_SEL_MASK (GENMASK(4, 4)) #define SPI_MST_CTL_FORCE_CE (BIT(4)) #define SPI_MST_CTL_MODE_SEL (BIT(2)) #define SPI_MST_CTL_GO (BIT(0)) #define SPI_MST1_ADDR_BASE (0x800) /* x refers to SPI Host Controller HW instance id in the below macros - 0 or 1 */ #define SPI_MST_CMD_BUF_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x00) #define SPI_MST_RSP_BUF_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x200) #define SPI_MST_CTL_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x400) #define SPI_MST_EVENT_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x420) #define SPI_MST_EVENT_MASK_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x424) #define SPI_MST_PAD_CTL_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x460) #define SPIALERT_MST_DB_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x464) #define SPIALERT_MST_VAL_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x468) #define SPI_PCI_CTRL_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x480) #define PCI1XXXX_IRQ_FLAGS (IRQF_NO_SUSPEND | IRQF_TRIGGER_NONE) #define SPI_MAX_DATA_LEN 320 #define PCI1XXXX_SPI_TIMEOUT (msecs_to_jiffies(100)) #define SPI_INTR BIT(8) #define SPI_FORCE_CE BIT(4) #define SPI_CHIP_SEL_COUNT 7 #define VENDOR_ID_MCHP 0x1055 #define SPI_SUSPEND_CONFIG 0x101 #define SPI_RESUME_CONFIG 0x203 struct pci1xxxx_spi_internal { u8 hw_inst; bool spi_xfer_in_progress; int irq; struct completion spi_xfer_done; struct spi_controller *spi_host; struct pci1xxxx_spi *parent; struct { unsigned int dev_sel : 3; unsigned int msi_vector_sel : 1; } prev_val; }; struct pci1xxxx_spi { struct pci_dev *dev; u8 total_hw_instances; void __iomem *reg_base; struct pci1xxxx_spi_internal *spi_int[]; }; static const struct pci_device_id pci1xxxx_spi_pci_id_table[] = { { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa004, PCI_ANY_ID, 0x0001), 0, 0, 0x02}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa004, PCI_ANY_ID, 0x0002), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa004, PCI_ANY_ID, 0x0003), 0, 0, 0x11}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa004, PCI_ANY_ID, PCI_ANY_ID), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa014, PCI_ANY_ID, 0x0001), 0, 0, 0x02}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa014, PCI_ANY_ID, 0x0002), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa014, PCI_ANY_ID, 0x0003), 0, 0, 0x11}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa014, PCI_ANY_ID, PCI_ANY_ID), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa024, PCI_ANY_ID, 0x0001), 0, 0, 0x02}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa024, PCI_ANY_ID, 0x0002), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa024, PCI_ANY_ID, 0x0003), 0, 0, 0x11}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa024, PCI_ANY_ID, PCI_ANY_ID), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa034, PCI_ANY_ID, 0x0001), 0, 0, 0x02}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa034, PCI_ANY_ID, 0x0002), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa034, PCI_ANY_ID, 0x0003), 0, 0, 0x11}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa034, PCI_ANY_ID, PCI_ANY_ID), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa044, PCI_ANY_ID, 0x0001), 0, 0, 0x02}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa044, PCI_ANY_ID, 0x0002), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa044, PCI_ANY_ID, 0x0003), 0, 0, 0x11}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa044, PCI_ANY_ID, PCI_ANY_ID), 0, 0, 0x01}, { 0, } }; MODULE_DEVICE_TABLE(pci, pci1xxxx_spi_pci_id_table); static void pci1xxxx_spi_set_cs(struct spi_device *spi, bool enable) { struct pci1xxxx_spi_internal *p = spi_controller_get_devdata(spi->controller); struct pci1xxxx_spi *par = p->parent; u32 regval; /* Set the DEV_SEL bits of the SPI_MST_CTL_REG */ regval = readl(par->reg_base + SPI_MST_CTL_REG_OFFSET(p->hw_inst)); if (!enable) { regval |= SPI_FORCE_CE; regval &= ~SPI_MST_CTL_DEVSEL_MASK; regval |= (spi_get_chipselect(spi, 0) << 25); } else { regval &= ~SPI_FORCE_CE; } writel(regval, par->reg_base + SPI_MST_CTL_REG_OFFSET(p->hw_inst)); } static u8 pci1xxxx_get_clock_div(u32 hz) { u8 val = 0; if (hz >= PCI1XXXX_SPI_MAX_CLOCK_HZ) val = 2; else if ((hz < PCI1XXXX_SPI_MAX_CLOCK_HZ) && (hz >= PCI1XXXX_SPI_CLK_20MHZ)) val = 3; else if ((hz < PCI1XXXX_SPI_CLK_20MHZ) && (hz >= PCI1XXXX_SPI_CLK_15MHZ)) val = 4; else if ((hz < PCI1XXXX_SPI_CLK_15MHZ) && (hz >= PCI1XXXX_SPI_CLK_12MHZ)) val = 5; else if ((hz < PCI1XXXX_SPI_CLK_12MHZ) && (hz >= PCI1XXXX_SPI_CLK_10MHZ)) val = 6; else if ((hz < PCI1XXXX_SPI_CLK_10MHZ) && (hz >= PCI1XXXX_SPI_MIN_CLOCK_HZ)) val = 7; else val = 2; return val; } static int pci1xxxx_spi_transfer_one(struct spi_controller *spi_ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct pci1xxxx_spi_internal *p = spi_controller_get_devdata(spi_ctlr); int mode, len, loop_iter, transfer_len; struct pci1xxxx_spi *par = p->parent; unsigned long bytes_transfered; unsigned long bytes_recvd; unsigned long loop_count; u8 *rx_buf, result; const u8 *tx_buf; u32 regval; u8 clkdiv; p->spi_xfer_in_progress = true; mode = spi->mode; clkdiv = pci1xxxx_get_clock_div(xfer->speed_hz); tx_buf = xfer->tx_buf; rx_buf = xfer->rx_buf; transfer_len = xfer->len; regval = readl(par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); writel(regval, par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); if (tx_buf) { bytes_transfered = 0; bytes_recvd = 0; loop_count = transfer_len / SPI_MAX_DATA_LEN; if (transfer_len % SPI_MAX_DATA_LEN != 0) loop_count += 1; for (loop_iter = 0; loop_iter < loop_count; loop_iter++) { len = SPI_MAX_DATA_LEN; if ((transfer_len % SPI_MAX_DATA_LEN != 0) && (loop_iter == loop_count - 1)) len = transfer_len % SPI_MAX_DATA_LEN; reinit_completion(&p->spi_xfer_done); memcpy_toio(par->reg_base + SPI_MST_CMD_BUF_OFFSET(p->hw_inst), &tx_buf[bytes_transfered], len); bytes_transfered += len; regval = readl(par->reg_base + SPI_MST_CTL_REG_OFFSET(p->hw_inst)); regval &= ~(SPI_MST_CTL_MODE_SEL | SPI_MST_CTL_CMD_LEN_MASK | SPI_MST_CTL_SPEED_MASK); if (mode == SPI_MODE_3) regval |= SPI_MST_CTL_MODE_SEL; else regval &= ~SPI_MST_CTL_MODE_SEL; regval |= (clkdiv << 5); regval &= ~SPI_MST_CTL_CMD_LEN_MASK; regval |= (len << 8); writel(regval, par->reg_base + SPI_MST_CTL_REG_OFFSET(p->hw_inst)); regval = readl(par->reg_base + SPI_MST_CTL_REG_OFFSET(p->hw_inst)); regval |= SPI_MST_CTL_GO; writel(regval, par->reg_base + SPI_MST_CTL_REG_OFFSET(p->hw_inst)); /* Wait for DMA_TERM interrupt */ result = wait_for_completion_timeout(&p->spi_xfer_done, PCI1XXXX_SPI_TIMEOUT); if (!result) return -ETIMEDOUT; if (rx_buf) { memcpy_fromio(&rx_buf[bytes_recvd], par->reg_base + SPI_MST_RSP_BUF_OFFSET(p->hw_inst), len); bytes_recvd += len; } } } p->spi_xfer_in_progress = false; return 0; } static irqreturn_t pci1xxxx_spi_isr(int irq, void *dev) { struct pci1xxxx_spi_internal *p = dev; irqreturn_t spi_int_fired = IRQ_NONE; u32 regval; /* Clear the SPI GO_BIT Interrupt */ regval = readl(p->parent->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); if (regval & SPI_INTR) { /* Clear xfer_done */ complete(&p->spi_xfer_done); spi_int_fired = IRQ_HANDLED; } writel(regval, p->parent->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); return spi_int_fired; } static int pci1xxxx_spi_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { u8 hw_inst_cnt, iter, start, only_sec_inst; struct pci1xxxx_spi_internal *spi_sub_ptr; struct device *dev = &pdev->dev; struct pci1xxxx_spi *spi_bus; struct spi_controller *spi_host; u32 regval; int ret; hw_inst_cnt = ent->driver_data & 0x0f; start = (ent->driver_data & 0xf0) >> 4; if (start == 1) only_sec_inst = 1; else only_sec_inst = 0; spi_bus = devm_kzalloc(&pdev->dev, struct_size(spi_bus, spi_int, hw_inst_cnt), GFP_KERNEL); if (!spi_bus) return -ENOMEM; spi_bus->dev = pdev; spi_bus->total_hw_instances = hw_inst_cnt; pci_set_master(pdev); for (iter = 0; iter < hw_inst_cnt; iter++) { spi_bus->spi_int[iter] = devm_kzalloc(&pdev->dev, sizeof(struct pci1xxxx_spi_internal), GFP_KERNEL); spi_sub_ptr = spi_bus->spi_int[iter]; spi_sub_ptr->spi_host = devm_spi_alloc_host(dev, sizeof(struct spi_controller)); if (!spi_sub_ptr->spi_host) return -ENOMEM; spi_sub_ptr->parent = spi_bus; spi_sub_ptr->spi_xfer_in_progress = false; if (!iter) { ret = pcim_enable_device(pdev); if (ret) return -ENOMEM; ret = pci_request_regions(pdev, DRV_NAME); if (ret) return -ENOMEM; spi_bus->reg_base = pcim_iomap(pdev, 0, pci_resource_len(pdev, 0)); if (!spi_bus->reg_base) { ret = -EINVAL; goto error; } ret = pci_alloc_irq_vectors(pdev, hw_inst_cnt, hw_inst_cnt, PCI_IRQ_ALL_TYPES); if (ret < 0) { dev_err(&pdev->dev, "Error allocating MSI vectors\n"); goto error; } init_completion(&spi_sub_ptr->spi_xfer_done); /* Initialize Interrupts - SPI_INT */ regval = readl(spi_bus->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(spi_sub_ptr->hw_inst)); regval &= ~SPI_INTR; writel(regval, spi_bus->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(spi_sub_ptr->hw_inst)); spi_sub_ptr->irq = pci_irq_vector(pdev, 0); ret = devm_request_irq(&pdev->dev, spi_sub_ptr->irq, pci1xxxx_spi_isr, PCI1XXXX_IRQ_FLAGS, pci_name(pdev), spi_sub_ptr); if (ret < 0) { dev_err(&pdev->dev, "Unable to request irq : %d", spi_sub_ptr->irq); ret = -ENODEV; goto error; } /* This register is only applicable for 1st instance */ regval = readl(spi_bus->reg_base + SPI_PCI_CTRL_REG_OFFSET(0)); if (!only_sec_inst) regval |= (BIT(4)); else regval &= ~(BIT(4)); writel(regval, spi_bus->reg_base + SPI_PCI_CTRL_REG_OFFSET(0)); } spi_sub_ptr->hw_inst = start++; if (iter == 1) { init_completion(&spi_sub_ptr->spi_xfer_done); /* Initialize Interrupts - SPI_INT */ regval = readl(spi_bus->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(spi_sub_ptr->hw_inst)); regval &= ~SPI_INTR; writel(regval, spi_bus->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(spi_sub_ptr->hw_inst)); spi_sub_ptr->irq = pci_irq_vector(pdev, iter); ret = devm_request_irq(&pdev->dev, spi_sub_ptr->irq, pci1xxxx_spi_isr, PCI1XXXX_IRQ_FLAGS, pci_name(pdev), spi_sub_ptr); if (ret < 0) { dev_err(&pdev->dev, "Unable to request irq : %d", spi_sub_ptr->irq); ret = -ENODEV; goto error; } } spi_host = spi_sub_ptr->spi_host; spi_host->num_chipselect = SPI_CHIP_SEL_COUNT; spi_host->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_RX_DUAL | SPI_TX_DUAL | SPI_LOOP; spi_host->transfer_one = pci1xxxx_spi_transfer_one; spi_host->set_cs = pci1xxxx_spi_set_cs; spi_host->bits_per_word_mask = SPI_BPW_MASK(8); spi_host->max_speed_hz = PCI1XXXX_SPI_MAX_CLOCK_HZ; spi_host->min_speed_hz = PCI1XXXX_SPI_MIN_CLOCK_HZ; spi_host->flags = SPI_CONTROLLER_MUST_TX; spi_controller_set_devdata(spi_host, spi_sub_ptr); ret = devm_spi_register_controller(dev, spi_host); if (ret) goto error; } pci_set_drvdata(pdev, spi_bus); return 0; error: pci_release_regions(pdev); return ret; } static void store_restore_config(struct pci1xxxx_spi *spi_ptr, struct pci1xxxx_spi_internal *spi_sub_ptr, u8 inst, bool store) { u32 regval; if (store) { regval = readl(spi_ptr->reg_base + SPI_MST_CTL_REG_OFFSET(spi_sub_ptr->hw_inst)); regval &= SPI_MST_CTL_DEVSEL_MASK; spi_sub_ptr->prev_val.dev_sel = (regval >> 25) & 7; regval = readl(spi_ptr->reg_base + SPI_PCI_CTRL_REG_OFFSET(spi_sub_ptr->hw_inst)); regval &= SPI_MSI_VECTOR_SEL_MASK; spi_sub_ptr->prev_val.msi_vector_sel = (regval >> 4) & 1; } else { regval = readl(spi_ptr->reg_base + SPI_MST_CTL_REG_OFFSET(inst)); regval &= ~SPI_MST_CTL_DEVSEL_MASK; regval |= (spi_sub_ptr->prev_val.dev_sel << 25); writel(regval, spi_ptr->reg_base + SPI_MST_CTL_REG_OFFSET(inst)); writel((spi_sub_ptr->prev_val.msi_vector_sel << 4), spi_ptr->reg_base + SPI_PCI_CTRL_REG_OFFSET(inst)); } } static int pci1xxxx_spi_resume(struct device *dev) { struct pci1xxxx_spi *spi_ptr = dev_get_drvdata(dev); struct pci1xxxx_spi_internal *spi_sub_ptr; u32 regval = SPI_RESUME_CONFIG; u8 iter; for (iter = 0; iter < spi_ptr->total_hw_instances; iter++) { spi_sub_ptr = spi_ptr->spi_int[iter]; spi_controller_resume(spi_sub_ptr->spi_host); writel(regval, spi_ptr->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(iter)); /* Restore config at resume */ store_restore_config(spi_ptr, spi_sub_ptr, iter, 0); } return 0; } static int pci1xxxx_spi_suspend(struct device *dev) { struct pci1xxxx_spi *spi_ptr = dev_get_drvdata(dev); struct pci1xxxx_spi_internal *spi_sub_ptr; u32 reg1 = SPI_SUSPEND_CONFIG; u8 iter; for (iter = 0; iter < spi_ptr->total_hw_instances; iter++) { spi_sub_ptr = spi_ptr->spi_int[iter]; while (spi_sub_ptr->spi_xfer_in_progress) msleep(20); /* Store existing config before suspend */ store_restore_config(spi_ptr, spi_sub_ptr, iter, 1); spi_controller_suspend(spi_sub_ptr->spi_host); writel(reg1, spi_ptr->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(iter)); } return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(spi_pm_ops, pci1xxxx_spi_suspend, pci1xxxx_spi_resume); static struct pci_driver pci1xxxx_spi_driver = { .name = DRV_NAME, .id_table = pci1xxxx_spi_pci_id_table, .probe = pci1xxxx_spi_probe, .driver = { .pm = pm_sleep_ptr(&spi_pm_ops), }, }; module_pci_driver(pci1xxxx_spi_driver); MODULE_DESCRIPTION("Microchip Technology Inc. pci1xxxx SPI bus driver"); MODULE_AUTHOR("Tharun Kumar P<[email protected]>"); MODULE_AUTHOR("Kumaravel Thiagarajan<[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/spi/spi-pci1xxxx.c
// SPDX-License-Identifier: GPL-2.0-only /* * SPI driver for Nvidia's Tegra20/Tegra30 SLINK Controller. * * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved. */ #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/pm_runtime.h> #include <linux/of.h> #include <linux/reset.h> #include <linux/spi/spi.h> #include <soc/tegra/common.h> #define SLINK_COMMAND 0x000 #define SLINK_BIT_LENGTH(x) (((x) & 0x1f) << 0) #define SLINK_WORD_SIZE(x) (((x) & 0x1f) << 5) #define SLINK_BOTH_EN (1 << 10) #define SLINK_CS_SW (1 << 11) #define SLINK_CS_VALUE (1 << 12) #define SLINK_CS_POLARITY (1 << 13) #define SLINK_IDLE_SDA_DRIVE_LOW (0 << 16) #define SLINK_IDLE_SDA_DRIVE_HIGH (1 << 16) #define SLINK_IDLE_SDA_PULL_LOW (2 << 16) #define SLINK_IDLE_SDA_PULL_HIGH (3 << 16) #define SLINK_IDLE_SDA_MASK (3 << 16) #define SLINK_CS_POLARITY1 (1 << 20) #define SLINK_CK_SDA (1 << 21) #define SLINK_CS_POLARITY2 (1 << 22) #define SLINK_CS_POLARITY3 (1 << 23) #define SLINK_IDLE_SCLK_DRIVE_LOW (0 << 24) #define SLINK_IDLE_SCLK_DRIVE_HIGH (1 << 24) #define SLINK_IDLE_SCLK_PULL_LOW (2 << 24) #define SLINK_IDLE_SCLK_PULL_HIGH (3 << 24) #define SLINK_IDLE_SCLK_MASK (3 << 24) #define SLINK_M_S (1 << 28) #define SLINK_WAIT (1 << 29) #define SLINK_GO (1 << 30) #define SLINK_ENB (1 << 31) #define SLINK_MODES (SLINK_IDLE_SCLK_MASK | SLINK_CK_SDA) #define SLINK_COMMAND2 0x004 #define SLINK_LSBFE (1 << 0) #define SLINK_SSOE (1 << 1) #define SLINK_SPIE (1 << 4) #define SLINK_BIDIROE (1 << 6) #define SLINK_MODFEN (1 << 7) #define SLINK_INT_SIZE(x) (((x) & 0x1f) << 8) #define SLINK_CS_ACTIVE_BETWEEN (1 << 17) #define SLINK_SS_EN_CS(x) (((x) & 0x3) << 18) #define SLINK_SS_SETUP(x) (((x) & 0x3) << 20) #define SLINK_FIFO_REFILLS_0 (0 << 22) #define SLINK_FIFO_REFILLS_1 (1 << 22) #define SLINK_FIFO_REFILLS_2 (2 << 22) #define SLINK_FIFO_REFILLS_3 (3 << 22) #define SLINK_FIFO_REFILLS_MASK (3 << 22) #define SLINK_WAIT_PACK_INT(x) (((x) & 0x7) << 26) #define SLINK_SPC0 (1 << 29) #define SLINK_TXEN (1 << 30) #define SLINK_RXEN (1 << 31) #define SLINK_STATUS 0x008 #define SLINK_COUNT(val) (((val) >> 0) & 0x1f) #define SLINK_WORD(val) (((val) >> 5) & 0x1f) #define SLINK_BLK_CNT(val) (((val) >> 0) & 0xffff) #define SLINK_MODF (1 << 16) #define SLINK_RX_UNF (1 << 18) #define SLINK_TX_OVF (1 << 19) #define SLINK_TX_FULL (1 << 20) #define SLINK_TX_EMPTY (1 << 21) #define SLINK_RX_FULL (1 << 22) #define SLINK_RX_EMPTY (1 << 23) #define SLINK_TX_UNF (1 << 24) #define SLINK_RX_OVF (1 << 25) #define SLINK_TX_FLUSH (1 << 26) #define SLINK_RX_FLUSH (1 << 27) #define SLINK_SCLK (1 << 28) #define SLINK_ERR (1 << 29) #define SLINK_RDY (1 << 30) #define SLINK_BSY (1 << 31) #define SLINK_FIFO_ERROR (SLINK_TX_OVF | SLINK_RX_UNF | \ SLINK_TX_UNF | SLINK_RX_OVF) #define SLINK_FIFO_EMPTY (SLINK_TX_EMPTY | SLINK_RX_EMPTY) #define SLINK_MAS_DATA 0x010 #define SLINK_SLAVE_DATA 0x014 #define SLINK_DMA_CTL 0x018 #define SLINK_DMA_BLOCK_SIZE(x) (((x) & 0xffff) << 0) #define SLINK_TX_TRIG_1 (0 << 16) #define SLINK_TX_TRIG_4 (1 << 16) #define SLINK_TX_TRIG_8 (2 << 16) #define SLINK_TX_TRIG_16 (3 << 16) #define SLINK_TX_TRIG_MASK (3 << 16) #define SLINK_RX_TRIG_1 (0 << 18) #define SLINK_RX_TRIG_4 (1 << 18) #define SLINK_RX_TRIG_8 (2 << 18) #define SLINK_RX_TRIG_16 (3 << 18) #define SLINK_RX_TRIG_MASK (3 << 18) #define SLINK_PACKED (1 << 20) #define SLINK_PACK_SIZE_4 (0 << 21) #define SLINK_PACK_SIZE_8 (1 << 21) #define SLINK_PACK_SIZE_16 (2 << 21) #define SLINK_PACK_SIZE_32 (3 << 21) #define SLINK_PACK_SIZE_MASK (3 << 21) #define SLINK_IE_TXC (1 << 26) #define SLINK_IE_RXC (1 << 27) #define SLINK_DMA_EN (1 << 31) #define SLINK_STATUS2 0x01c #define SLINK_TX_FIFO_EMPTY_COUNT(val) (((val) & 0x3f) >> 0) #define SLINK_RX_FIFO_FULL_COUNT(val) (((val) & 0x3f0000) >> 16) #define SLINK_SS_HOLD_TIME(val) (((val) & 0xF) << 6) #define SLINK_TX_FIFO 0x100 #define SLINK_RX_FIFO 0x180 #define DATA_DIR_TX (1 << 0) #define DATA_DIR_RX (1 << 1) #define SLINK_DMA_TIMEOUT (msecs_to_jiffies(1000)) #define DEFAULT_SPI_DMA_BUF_LEN (16*1024) #define TX_FIFO_EMPTY_COUNT_MAX SLINK_TX_FIFO_EMPTY_COUNT(0x20) #define RX_FIFO_FULL_COUNT_ZERO SLINK_RX_FIFO_FULL_COUNT(0) #define SLINK_STATUS2_RESET \ (TX_FIFO_EMPTY_COUNT_MAX | RX_FIFO_FULL_COUNT_ZERO << 16) #define MAX_CHIP_SELECT 4 #define SLINK_FIFO_DEPTH 32 struct tegra_slink_chip_data { bool cs_hold_time; }; struct tegra_slink_data { struct device *dev; struct spi_master *master; const struct tegra_slink_chip_data *chip_data; spinlock_t lock; struct clk *clk; struct reset_control *rst; void __iomem *base; phys_addr_t phys; unsigned irq; u32 cur_speed; struct spi_device *cur_spi; unsigned cur_pos; unsigned cur_len; unsigned words_per_32bit; unsigned bytes_per_word; unsigned curr_dma_words; unsigned cur_direction; unsigned cur_rx_pos; unsigned cur_tx_pos; unsigned dma_buf_size; unsigned max_buf_size; bool is_curr_dma_xfer; struct completion rx_dma_complete; struct completion tx_dma_complete; u32 tx_status; u32 rx_status; u32 status_reg; bool is_packed; u32 packed_size; u32 command_reg; u32 command2_reg; u32 dma_control_reg; u32 def_command_reg; u32 def_command2_reg; struct completion xfer_completion; struct spi_transfer *curr_xfer; struct dma_chan *rx_dma_chan; u32 *rx_dma_buf; dma_addr_t rx_dma_phys; struct dma_async_tx_descriptor *rx_dma_desc; struct dma_chan *tx_dma_chan; u32 *tx_dma_buf; dma_addr_t tx_dma_phys; struct dma_async_tx_descriptor *tx_dma_desc; }; static inline u32 tegra_slink_readl(struct tegra_slink_data *tspi, unsigned long reg) { return readl(tspi->base + reg); } static inline void tegra_slink_writel(struct tegra_slink_data *tspi, u32 val, unsigned long reg) { writel(val, tspi->base + reg); /* Read back register to make sure that register writes completed */ if (reg != SLINK_TX_FIFO) readl(tspi->base + SLINK_MAS_DATA); } static void tegra_slink_clear_status(struct tegra_slink_data *tspi) { u32 val_write; tegra_slink_readl(tspi, SLINK_STATUS); /* Write 1 to clear status register */ val_write = SLINK_RDY | SLINK_FIFO_ERROR; tegra_slink_writel(tspi, val_write, SLINK_STATUS); } static u32 tegra_slink_get_packed_size(struct tegra_slink_data *tspi, struct spi_transfer *t) { switch (tspi->bytes_per_word) { case 0: return SLINK_PACK_SIZE_4; case 1: return SLINK_PACK_SIZE_8; case 2: return SLINK_PACK_SIZE_16; case 4: return SLINK_PACK_SIZE_32; default: return 0; } } static unsigned tegra_slink_calculate_curr_xfer_param( struct spi_device *spi, struct tegra_slink_data *tspi, struct spi_transfer *t) { unsigned remain_len = t->len - tspi->cur_pos; unsigned max_word; unsigned bits_per_word; unsigned max_len; unsigned total_fifo_words; bits_per_word = t->bits_per_word; tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8); if (bits_per_word == 8 || bits_per_word == 16) { tspi->is_packed = true; tspi->words_per_32bit = 32/bits_per_word; } else { tspi->is_packed = false; tspi->words_per_32bit = 1; } tspi->packed_size = tegra_slink_get_packed_size(tspi, t); if (tspi->is_packed) { max_len = min(remain_len, tspi->max_buf_size); tspi->curr_dma_words = max_len/tspi->bytes_per_word; total_fifo_words = max_len/4; } else { max_word = (remain_len - 1) / tspi->bytes_per_word + 1; max_word = min(max_word, tspi->max_buf_size/4); tspi->curr_dma_words = max_word; total_fifo_words = max_word; } return total_fifo_words; } static unsigned tegra_slink_fill_tx_fifo_from_client_txbuf( struct tegra_slink_data *tspi, struct spi_transfer *t) { unsigned nbytes; unsigned tx_empty_count; u32 fifo_status; unsigned max_n_32bit; unsigned i, count; unsigned int written_words; unsigned fifo_words_left; u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; fifo_status = tegra_slink_readl(tspi, SLINK_STATUS2); tx_empty_count = SLINK_TX_FIFO_EMPTY_COUNT(fifo_status); if (tspi->is_packed) { fifo_words_left = tx_empty_count * tspi->words_per_32bit; written_words = min(fifo_words_left, tspi->curr_dma_words); nbytes = written_words * tspi->bytes_per_word; max_n_32bit = DIV_ROUND_UP(nbytes, 4); for (count = 0; count < max_n_32bit; count++) { u32 x = 0; for (i = 0; (i < 4) && nbytes; i++, nbytes--) x |= (u32)(*tx_buf++) << (i * 8); tegra_slink_writel(tspi, x, SLINK_TX_FIFO); } } else { max_n_32bit = min(tspi->curr_dma_words, tx_empty_count); written_words = max_n_32bit; nbytes = written_words * tspi->bytes_per_word; for (count = 0; count < max_n_32bit; count++) { u32 x = 0; for (i = 0; nbytes && (i < tspi->bytes_per_word); i++, nbytes--) x |= (u32)(*tx_buf++) << (i * 8); tegra_slink_writel(tspi, x, SLINK_TX_FIFO); } } tspi->cur_tx_pos += written_words * tspi->bytes_per_word; return written_words; } static unsigned int tegra_slink_read_rx_fifo_to_client_rxbuf( struct tegra_slink_data *tspi, struct spi_transfer *t) { unsigned rx_full_count; u32 fifo_status; unsigned i, count; unsigned int read_words = 0; unsigned len; u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos; fifo_status = tegra_slink_readl(tspi, SLINK_STATUS2); rx_full_count = SLINK_RX_FIFO_FULL_COUNT(fifo_status); if (tspi->is_packed) { len = tspi->curr_dma_words * tspi->bytes_per_word; for (count = 0; count < rx_full_count; count++) { u32 x = tegra_slink_readl(tspi, SLINK_RX_FIFO); for (i = 0; len && (i < 4); i++, len--) *rx_buf++ = (x >> i*8) & 0xFF; } tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; read_words += tspi->curr_dma_words; } else { for (count = 0; count < rx_full_count; count++) { u32 x = tegra_slink_readl(tspi, SLINK_RX_FIFO); for (i = 0; (i < tspi->bytes_per_word); i++) *rx_buf++ = (x >> (i*8)) & 0xFF; } tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word; read_words += rx_full_count; } return read_words; } static void tegra_slink_copy_client_txbuf_to_spi_txbuf( struct tegra_slink_data *tspi, struct spi_transfer *t) { /* Make the dma buffer to read by cpu */ dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys, tspi->dma_buf_size, DMA_TO_DEVICE); if (tspi->is_packed) { unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len); } else { unsigned int i; unsigned int count; u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; for (count = 0; count < tspi->curr_dma_words; count++) { u32 x = 0; for (i = 0; consume && (i < tspi->bytes_per_word); i++, consume--) x |= (u32)(*tx_buf++) << (i * 8); tspi->tx_dma_buf[count] = x; } } tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word; /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys, tspi->dma_buf_size, DMA_TO_DEVICE); } static void tegra_slink_copy_spi_rxbuf_to_client_rxbuf( struct tegra_slink_data *tspi, struct spi_transfer *t) { unsigned len; /* Make the dma buffer to read by cpu */ dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); if (tspi->is_packed) { len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len); } else { unsigned int i; unsigned int count; unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos; u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; for (count = 0; count < tspi->curr_dma_words; count++) { u32 x = tspi->rx_dma_buf[count] & rx_mask; for (i = 0; (i < tspi->bytes_per_word); i++) *rx_buf++ = (x >> (i*8)) & 0xFF; } } tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); } static void tegra_slink_dma_complete(void *args) { struct completion *dma_complete = args; complete(dma_complete); } static int tegra_slink_start_tx_dma(struct tegra_slink_data *tspi, int len) { reinit_completion(&tspi->tx_dma_complete); tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan, tspi->tx_dma_phys, len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tspi->tx_dma_desc) { dev_err(tspi->dev, "Not able to get desc for Tx\n"); return -EIO; } tspi->tx_dma_desc->callback = tegra_slink_dma_complete; tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete; dmaengine_submit(tspi->tx_dma_desc); dma_async_issue_pending(tspi->tx_dma_chan); return 0; } static int tegra_slink_start_rx_dma(struct tegra_slink_data *tspi, int len) { reinit_completion(&tspi->rx_dma_complete); tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan, tspi->rx_dma_phys, len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tspi->rx_dma_desc) { dev_err(tspi->dev, "Not able to get desc for Rx\n"); return -EIO; } tspi->rx_dma_desc->callback = tegra_slink_dma_complete; tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete; dmaengine_submit(tspi->rx_dma_desc); dma_async_issue_pending(tspi->rx_dma_chan); return 0; } static int tegra_slink_start_dma_based_transfer( struct tegra_slink_data *tspi, struct spi_transfer *t) { u32 val; unsigned int len; int ret = 0; u32 status; /* Make sure that Rx and Tx fifo are empty */ status = tegra_slink_readl(tspi, SLINK_STATUS); if ((status & SLINK_FIFO_EMPTY) != SLINK_FIFO_EMPTY) { dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n", (unsigned)status); return -EIO; } val = SLINK_DMA_BLOCK_SIZE(tspi->curr_dma_words - 1); val |= tspi->packed_size; if (tspi->is_packed) len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word, 4) * 4; else len = tspi->curr_dma_words * 4; /* Set attention level based on length of transfer */ if (len & 0xF) val |= SLINK_TX_TRIG_1 | SLINK_RX_TRIG_1; else if (((len) >> 4) & 0x1) val |= SLINK_TX_TRIG_4 | SLINK_RX_TRIG_4; else val |= SLINK_TX_TRIG_8 | SLINK_RX_TRIG_8; if (tspi->cur_direction & DATA_DIR_TX) val |= SLINK_IE_TXC; if (tspi->cur_direction & DATA_DIR_RX) val |= SLINK_IE_RXC; tegra_slink_writel(tspi, val, SLINK_DMA_CTL); tspi->dma_control_reg = val; if (tspi->cur_direction & DATA_DIR_TX) { tegra_slink_copy_client_txbuf_to_spi_txbuf(tspi, t); wmb(); ret = tegra_slink_start_tx_dma(tspi, len); if (ret < 0) { dev_err(tspi->dev, "Starting tx dma failed, err %d\n", ret); return ret; } /* Wait for tx fifo to be fill before starting slink */ status = tegra_slink_readl(tspi, SLINK_STATUS); while (!(status & SLINK_TX_FULL)) status = tegra_slink_readl(tspi, SLINK_STATUS); } if (tspi->cur_direction & DATA_DIR_RX) { /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); ret = tegra_slink_start_rx_dma(tspi, len); if (ret < 0) { dev_err(tspi->dev, "Starting rx dma failed, err %d\n", ret); if (tspi->cur_direction & DATA_DIR_TX) dmaengine_terminate_all(tspi->tx_dma_chan); return ret; } } tspi->is_curr_dma_xfer = true; if (tspi->is_packed) { val |= SLINK_PACKED; tegra_slink_writel(tspi, val, SLINK_DMA_CTL); /* HW need small delay after settign Packed mode */ udelay(1); } tspi->dma_control_reg = val; val |= SLINK_DMA_EN; tegra_slink_writel(tspi, val, SLINK_DMA_CTL); return ret; } static int tegra_slink_start_cpu_based_transfer( struct tegra_slink_data *tspi, struct spi_transfer *t) { u32 val; unsigned cur_words; val = tspi->packed_size; if (tspi->cur_direction & DATA_DIR_TX) val |= SLINK_IE_TXC; if (tspi->cur_direction & DATA_DIR_RX) val |= SLINK_IE_RXC; tegra_slink_writel(tspi, val, SLINK_DMA_CTL); tspi->dma_control_reg = val; if (tspi->cur_direction & DATA_DIR_TX) cur_words = tegra_slink_fill_tx_fifo_from_client_txbuf(tspi, t); else cur_words = tspi->curr_dma_words; val |= SLINK_DMA_BLOCK_SIZE(cur_words - 1); tegra_slink_writel(tspi, val, SLINK_DMA_CTL); tspi->dma_control_reg = val; tspi->is_curr_dma_xfer = false; if (tspi->is_packed) { val |= SLINK_PACKED; tegra_slink_writel(tspi, val, SLINK_DMA_CTL); udelay(1); wmb(); } tspi->dma_control_reg = val; val |= SLINK_DMA_EN; tegra_slink_writel(tspi, val, SLINK_DMA_CTL); return 0; } static int tegra_slink_init_dma_param(struct tegra_slink_data *tspi, bool dma_to_memory) { struct dma_chan *dma_chan; u32 *dma_buf; dma_addr_t dma_phys; int ret; struct dma_slave_config dma_sconfig; dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx"); if (IS_ERR(dma_chan)) return dev_err_probe(tspi->dev, PTR_ERR(dma_chan), "Dma channel is not available\n"); dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size, &dma_phys, GFP_KERNEL); if (!dma_buf) { dev_err(tspi->dev, " Not able to allocate the dma buffer\n"); dma_release_channel(dma_chan); return -ENOMEM; } if (dma_to_memory) { dma_sconfig.src_addr = tspi->phys + SLINK_RX_FIFO; dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.src_maxburst = 0; } else { dma_sconfig.dst_addr = tspi->phys + SLINK_TX_FIFO; dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.dst_maxburst = 0; } ret = dmaengine_slave_config(dma_chan, &dma_sconfig); if (ret) goto scrub; if (dma_to_memory) { tspi->rx_dma_chan = dma_chan; tspi->rx_dma_buf = dma_buf; tspi->rx_dma_phys = dma_phys; } else { tspi->tx_dma_chan = dma_chan; tspi->tx_dma_buf = dma_buf; tspi->tx_dma_phys = dma_phys; } return 0; scrub: dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); dma_release_channel(dma_chan); return ret; } static void tegra_slink_deinit_dma_param(struct tegra_slink_data *tspi, bool dma_to_memory) { u32 *dma_buf; dma_addr_t dma_phys; struct dma_chan *dma_chan; if (dma_to_memory) { dma_buf = tspi->rx_dma_buf; dma_chan = tspi->rx_dma_chan; dma_phys = tspi->rx_dma_phys; tspi->rx_dma_chan = NULL; tspi->rx_dma_buf = NULL; } else { dma_buf = tspi->tx_dma_buf; dma_chan = tspi->tx_dma_chan; dma_phys = tspi->tx_dma_phys; tspi->tx_dma_buf = NULL; tspi->tx_dma_chan = NULL; } if (!dma_chan) return; dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); dma_release_channel(dma_chan); } static int tegra_slink_start_transfer_one(struct spi_device *spi, struct spi_transfer *t) { struct tegra_slink_data *tspi = spi_master_get_devdata(spi->master); u32 speed; u8 bits_per_word; unsigned total_fifo_words; int ret; u32 command; u32 command2; bits_per_word = t->bits_per_word; speed = t->speed_hz; if (speed != tspi->cur_speed) { dev_pm_opp_set_rate(tspi->dev, speed * 4); tspi->cur_speed = speed; } tspi->cur_spi = spi; tspi->cur_pos = 0; tspi->cur_rx_pos = 0; tspi->cur_tx_pos = 0; tspi->curr_xfer = t; total_fifo_words = tegra_slink_calculate_curr_xfer_param(spi, tspi, t); command = tspi->command_reg; command &= ~SLINK_BIT_LENGTH(~0); command |= SLINK_BIT_LENGTH(bits_per_word - 1); command2 = tspi->command2_reg; command2 &= ~(SLINK_RXEN | SLINK_TXEN); tspi->cur_direction = 0; if (t->rx_buf) { command2 |= SLINK_RXEN; tspi->cur_direction |= DATA_DIR_RX; } if (t->tx_buf) { command2 |= SLINK_TXEN; tspi->cur_direction |= DATA_DIR_TX; } /* * Writing to the command2 register bevore the command register prevents * a spike in chip_select line 0. This selects the chip_select line * before changing the chip_select value. */ tegra_slink_writel(tspi, command2, SLINK_COMMAND2); tspi->command2_reg = command2; tegra_slink_writel(tspi, command, SLINK_COMMAND); tspi->command_reg = command; if (total_fifo_words > SLINK_FIFO_DEPTH) ret = tegra_slink_start_dma_based_transfer(tspi, t); else ret = tegra_slink_start_cpu_based_transfer(tspi, t); return ret; } static int tegra_slink_setup(struct spi_device *spi) { static const u32 cs_pol_bit[MAX_CHIP_SELECT] = { SLINK_CS_POLARITY, SLINK_CS_POLARITY1, SLINK_CS_POLARITY2, SLINK_CS_POLARITY3, }; struct tegra_slink_data *tspi = spi_master_get_devdata(spi->master); u32 val; unsigned long flags; int ret; dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n", spi->bits_per_word, spi->mode & SPI_CPOL ? "" : "~", spi->mode & SPI_CPHA ? "" : "~", spi->max_speed_hz); ret = pm_runtime_resume_and_get(tspi->dev); if (ret < 0) { dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret); return ret; } spin_lock_irqsave(&tspi->lock, flags); val = tspi->def_command_reg; if (spi->mode & SPI_CS_HIGH) val |= cs_pol_bit[spi_get_chipselect(spi, 0)]; else val &= ~cs_pol_bit[spi_get_chipselect(spi, 0)]; tspi->def_command_reg = val; tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND); spin_unlock_irqrestore(&tspi->lock, flags); pm_runtime_put(tspi->dev); return 0; } static int tegra_slink_prepare_message(struct spi_master *master, struct spi_message *msg) { struct tegra_slink_data *tspi = spi_master_get_devdata(master); struct spi_device *spi = msg->spi; tegra_slink_clear_status(tspi); tspi->command_reg = tspi->def_command_reg; tspi->command_reg |= SLINK_CS_SW | SLINK_CS_VALUE; tspi->command2_reg = tspi->def_command2_reg; tspi->command2_reg |= SLINK_SS_EN_CS(spi_get_chipselect(spi, 0)); tspi->command_reg &= ~SLINK_MODES; if (spi->mode & SPI_CPHA) tspi->command_reg |= SLINK_CK_SDA; if (spi->mode & SPI_CPOL) tspi->command_reg |= SLINK_IDLE_SCLK_DRIVE_HIGH; else tspi->command_reg |= SLINK_IDLE_SCLK_DRIVE_LOW; return 0; } static int tegra_slink_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct tegra_slink_data *tspi = spi_master_get_devdata(master); int ret; reinit_completion(&tspi->xfer_completion); ret = tegra_slink_start_transfer_one(spi, xfer); if (ret < 0) { dev_err(tspi->dev, "spi can not start transfer, err %d\n", ret); return ret; } ret = wait_for_completion_timeout(&tspi->xfer_completion, SLINK_DMA_TIMEOUT); if (WARN_ON(ret == 0)) { dev_err(tspi->dev, "spi transfer timeout, err %d\n", ret); return -EIO; } if (tspi->tx_status) return tspi->tx_status; if (tspi->rx_status) return tspi->rx_status; return 0; } static int tegra_slink_unprepare_message(struct spi_master *master, struct spi_message *msg) { struct tegra_slink_data *tspi = spi_master_get_devdata(master); tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND); tegra_slink_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2); return 0; } static irqreturn_t handle_cpu_based_xfer(struct tegra_slink_data *tspi) { struct spi_transfer *t = tspi->curr_xfer; unsigned long flags; spin_lock_irqsave(&tspi->lock, flags); if (tspi->tx_status || tspi->rx_status || (tspi->status_reg & SLINK_BSY)) { dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n", tspi->status_reg); dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x:0x%08x\n", tspi->command_reg, tspi->command2_reg, tspi->dma_control_reg); reset_control_assert(tspi->rst); udelay(2); reset_control_deassert(tspi->rst); complete(&tspi->xfer_completion); goto exit; } if (tspi->cur_direction & DATA_DIR_RX) tegra_slink_read_rx_fifo_to_client_rxbuf(tspi, t); if (tspi->cur_direction & DATA_DIR_TX) tspi->cur_pos = tspi->cur_tx_pos; else tspi->cur_pos = tspi->cur_rx_pos; if (tspi->cur_pos == t->len) { complete(&tspi->xfer_completion); goto exit; } tegra_slink_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); tegra_slink_start_cpu_based_transfer(tspi, t); exit: spin_unlock_irqrestore(&tspi->lock, flags); return IRQ_HANDLED; } static irqreturn_t handle_dma_based_xfer(struct tegra_slink_data *tspi) { struct spi_transfer *t = tspi->curr_xfer; long wait_status; int err = 0; unsigned total_fifo_words; unsigned long flags; /* Abort dmas if any error */ if (tspi->cur_direction & DATA_DIR_TX) { if (tspi->tx_status) { dmaengine_terminate_all(tspi->tx_dma_chan); err += 1; } else { wait_status = wait_for_completion_interruptible_timeout( &tspi->tx_dma_complete, SLINK_DMA_TIMEOUT); if (wait_status <= 0) { dmaengine_terminate_all(tspi->tx_dma_chan); dev_err(tspi->dev, "TxDma Xfer failed\n"); err += 1; } } } if (tspi->cur_direction & DATA_DIR_RX) { if (tspi->rx_status) { dmaengine_terminate_all(tspi->rx_dma_chan); err += 2; } else { wait_status = wait_for_completion_interruptible_timeout( &tspi->rx_dma_complete, SLINK_DMA_TIMEOUT); if (wait_status <= 0) { dmaengine_terminate_all(tspi->rx_dma_chan); dev_err(tspi->dev, "RxDma Xfer failed\n"); err += 2; } } } spin_lock_irqsave(&tspi->lock, flags); if (err) { dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n", tspi->status_reg); dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x:0x%08x\n", tspi->command_reg, tspi->command2_reg, tspi->dma_control_reg); reset_control_assert(tspi->rst); udelay(2); reset_control_assert(tspi->rst); complete(&tspi->xfer_completion); spin_unlock_irqrestore(&tspi->lock, flags); return IRQ_HANDLED; } if (tspi->cur_direction & DATA_DIR_RX) tegra_slink_copy_spi_rxbuf_to_client_rxbuf(tspi, t); if (tspi->cur_direction & DATA_DIR_TX) tspi->cur_pos = tspi->cur_tx_pos; else tspi->cur_pos = tspi->cur_rx_pos; if (tspi->cur_pos == t->len) { complete(&tspi->xfer_completion); goto exit; } /* Continue transfer in current message */ total_fifo_words = tegra_slink_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); if (total_fifo_words > SLINK_FIFO_DEPTH) err = tegra_slink_start_dma_based_transfer(tspi, t); else err = tegra_slink_start_cpu_based_transfer(tspi, t); exit: spin_unlock_irqrestore(&tspi->lock, flags); return IRQ_HANDLED; } static irqreturn_t tegra_slink_isr_thread(int irq, void *context_data) { struct tegra_slink_data *tspi = context_data; if (!tspi->is_curr_dma_xfer) return handle_cpu_based_xfer(tspi); return handle_dma_based_xfer(tspi); } static irqreturn_t tegra_slink_isr(int irq, void *context_data) { struct tegra_slink_data *tspi = context_data; tspi->status_reg = tegra_slink_readl(tspi, SLINK_STATUS); if (tspi->cur_direction & DATA_DIR_TX) tspi->tx_status = tspi->status_reg & (SLINK_TX_OVF | SLINK_TX_UNF); if (tspi->cur_direction & DATA_DIR_RX) tspi->rx_status = tspi->status_reg & (SLINK_RX_OVF | SLINK_RX_UNF); tegra_slink_clear_status(tspi); return IRQ_WAKE_THREAD; } static const struct tegra_slink_chip_data tegra30_spi_cdata = { .cs_hold_time = true, }; static const struct tegra_slink_chip_data tegra20_spi_cdata = { .cs_hold_time = false, }; static const struct of_device_id tegra_slink_of_match[] = { { .compatible = "nvidia,tegra30-slink", .data = &tegra30_spi_cdata, }, { .compatible = "nvidia,tegra20-slink", .data = &tegra20_spi_cdata, }, {} }; MODULE_DEVICE_TABLE(of, tegra_slink_of_match); static int tegra_slink_probe(struct platform_device *pdev) { struct spi_master *master; struct tegra_slink_data *tspi; struct resource *r; int ret, spi_irq; const struct tegra_slink_chip_data *cdata = NULL; cdata = of_device_get_match_data(&pdev->dev); master = spi_alloc_master(&pdev->dev, sizeof(*tspi)); if (!master) { dev_err(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } /* the spi->mode bits understood by this driver: */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; master->setup = tegra_slink_setup; master->prepare_message = tegra_slink_prepare_message; master->transfer_one = tegra_slink_transfer_one; master->unprepare_message = tegra_slink_unprepare_message; master->auto_runtime_pm = true; master->num_chipselect = MAX_CHIP_SELECT; platform_set_drvdata(pdev, master); tspi = spi_master_get_devdata(master); tspi->master = master; tspi->dev = &pdev->dev; tspi->chip_data = cdata; spin_lock_init(&tspi->lock); if (of_property_read_u32(tspi->dev->of_node, "spi-max-frequency", &master->max_speed_hz)) master->max_speed_hz = 25000000; /* 25MHz */ tspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r); if (IS_ERR(tspi->base)) { ret = PTR_ERR(tspi->base); goto exit_free_master; } tspi->phys = r->start; /* disabled clock may cause interrupt storm upon request */ tspi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(tspi->clk)) { ret = PTR_ERR(tspi->clk); dev_err(&pdev->dev, "Can not get clock %d\n", ret); goto exit_free_master; } tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi"); if (IS_ERR(tspi->rst)) { dev_err(&pdev->dev, "can not get reset\n"); ret = PTR_ERR(tspi->rst); goto exit_free_master; } ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev); if (ret) goto exit_free_master; tspi->max_buf_size = SLINK_FIFO_DEPTH << 2; tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN; ret = tegra_slink_init_dma_param(tspi, true); if (ret < 0) goto exit_free_master; ret = tegra_slink_init_dma_param(tspi, false); if (ret < 0) goto exit_rx_dma_free; tspi->max_buf_size = tspi->dma_buf_size; init_completion(&tspi->tx_dma_complete); init_completion(&tspi->rx_dma_complete); init_completion(&tspi->xfer_completion); pm_runtime_enable(&pdev->dev); ret = pm_runtime_resume_and_get(&pdev->dev); if (ret) { dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); goto exit_pm_disable; } reset_control_assert(tspi->rst); udelay(2); reset_control_deassert(tspi->rst); spi_irq = platform_get_irq(pdev, 0); tspi->irq = spi_irq; ret = request_threaded_irq(tspi->irq, tegra_slink_isr, tegra_slink_isr_thread, IRQF_ONESHOT, dev_name(&pdev->dev), tspi); if (ret < 0) { dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n", tspi->irq); goto exit_pm_put; } tspi->def_command_reg = SLINK_M_S; tspi->def_command2_reg = SLINK_CS_ACTIVE_BETWEEN; tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND); tegra_slink_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2); master->dev.of_node = pdev->dev.of_node; ret = spi_register_master(master); if (ret < 0) { dev_err(&pdev->dev, "can not register to master err %d\n", ret); goto exit_free_irq; } pm_runtime_put(&pdev->dev); return ret; exit_free_irq: free_irq(spi_irq, tspi); exit_pm_put: pm_runtime_put(&pdev->dev); exit_pm_disable: pm_runtime_force_suspend(&pdev->dev); tegra_slink_deinit_dma_param(tspi, false); exit_rx_dma_free: tegra_slink_deinit_dma_param(tspi, true); exit_free_master: spi_master_put(master); return ret; } static void tegra_slink_remove(struct platform_device *pdev) { struct spi_master *master = spi_master_get(platform_get_drvdata(pdev)); struct tegra_slink_data *tspi = spi_master_get_devdata(master); spi_unregister_master(master); free_irq(tspi->irq, tspi); pm_runtime_force_suspend(&pdev->dev); if (tspi->tx_dma_chan) tegra_slink_deinit_dma_param(tspi, false); if (tspi->rx_dma_chan) tegra_slink_deinit_dma_param(tspi, true); spi_master_put(master); } #ifdef CONFIG_PM_SLEEP static int tegra_slink_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); return spi_master_suspend(master); } static int tegra_slink_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_slink_data *tspi = spi_master_get_devdata(master); int ret; ret = pm_runtime_resume_and_get(dev); if (ret < 0) { dev_err(dev, "pm runtime failed, e = %d\n", ret); return ret; } tegra_slink_writel(tspi, tspi->command_reg, SLINK_COMMAND); tegra_slink_writel(tspi, tspi->command2_reg, SLINK_COMMAND2); pm_runtime_put(dev); return spi_master_resume(master); } #endif static int __maybe_unused tegra_slink_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_slink_data *tspi = spi_master_get_devdata(master); /* Flush all write which are in PPSB queue by reading back */ tegra_slink_readl(tspi, SLINK_MAS_DATA); clk_disable_unprepare(tspi->clk); return 0; } static int __maybe_unused tegra_slink_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_slink_data *tspi = spi_master_get_devdata(master); int ret; ret = clk_prepare_enable(tspi->clk); if (ret < 0) { dev_err(tspi->dev, "clk_prepare failed: %d\n", ret); return ret; } return 0; } static const struct dev_pm_ops slink_pm_ops = { SET_RUNTIME_PM_OPS(tegra_slink_runtime_suspend, tegra_slink_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(tegra_slink_suspend, tegra_slink_resume) }; static struct platform_driver tegra_slink_driver = { .driver = { .name = "spi-tegra-slink", .pm = &slink_pm_ops, .of_match_table = tegra_slink_of_match, }, .probe = tegra_slink_probe, .remove_new = tegra_slink_remove, }; module_platform_driver(tegra_slink_driver); MODULE_ALIAS("platform:spi-tegra-slink"); MODULE_DESCRIPTION("NVIDIA Tegra20/Tegra30 SLINK Controller Driver"); MODULE_AUTHOR("Laxman Dewangan <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/spi/spi-tegra20-slink.c
// SPDX-License-Identifier: GPL-2.0-only // // HiSilicon SPI NOR V3XX Flash Controller Driver for hi16xx chipsets // // Copyright (c) 2019 HiSilicon Technologies Co., Ltd. // Author: John Garry <[email protected]> #include <linux/bitops.h> #include <linux/completion.h> #include <linux/dmi.h> #include <linux/interrupt.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> #define HISI_SFC_V3XX_VERSION (0x1f8) #define HISI_SFC_V3XX_GLB_CFG (0x100) #define HISI_SFC_V3XX_GLB_CFG_CS0_ADDR_MODE BIT(2) #define HISI_SFC_V3XX_RAW_INT_STAT (0x120) #define HISI_SFC_V3XX_INT_STAT (0x124) #define HISI_SFC_V3XX_INT_MASK (0x128) #define HISI_SFC_V3XX_INT_CLR (0x12c) #define HISI_SFC_V3XX_CMD_CFG (0x300) #define HISI_SFC_V3XX_CMD_CFG_DATA_CNT_OFF 9 #define HISI_SFC_V3XX_CMD_CFG_RW_MSK BIT(8) #define HISI_SFC_V3XX_CMD_CFG_DATA_EN_MSK BIT(7) #define HISI_SFC_V3XX_CMD_CFG_DUMMY_CNT_OFF 4 #define HISI_SFC_V3XX_CMD_CFG_ADDR_EN_MSK BIT(3) #define HISI_SFC_V3XX_CMD_CFG_CS_SEL_OFF 1 #define HISI_SFC_V3XX_CMD_CFG_START_MSK BIT(0) #define HISI_SFC_V3XX_CMD_INS (0x308) #define HISI_SFC_V3XX_CMD_ADDR (0x30c) #define HISI_SFC_V3XX_CMD_DATABUF0 (0x400) /* Common definition of interrupt bit masks */ #define HISI_SFC_V3XX_INT_MASK_ALL (0x1ff) /* all the masks */ #define HISI_SFC_V3XX_INT_MASK_CPLT BIT(0) /* command execution complete */ #define HISI_SFC_V3XX_INT_MASK_PP_ERR BIT(2) /* page progrom error */ #define HISI_SFC_V3XX_INT_MASK_IACCES BIT(5) /* error visiting inaccessible/ * protected address */ /* IO Mode definition in HISI_SFC_V3XX_CMD_CFG */ #define HISI_SFC_V3XX_STD (0 << 17) #define HISI_SFC_V3XX_DIDO (1 << 17) #define HISI_SFC_V3XX_DIO (2 << 17) #define HISI_SFC_V3XX_FULL_DIO (3 << 17) #define HISI_SFC_V3XX_QIQO (5 << 17) #define HISI_SFC_V3XX_QIO (6 << 17) #define HISI_SFC_V3XX_FULL_QIO (7 << 17) /* * The IO modes lookup table. hisi_sfc_v3xx_io_modes[(z - 1) / 2][y / 2][x / 2] * stands for x-y-z mode, as described in SFDP terminology. -EIO indicates * an invalid mode. */ static const int hisi_sfc_v3xx_io_modes[2][3][3] = { { { HISI_SFC_V3XX_DIDO, HISI_SFC_V3XX_DIDO, HISI_SFC_V3XX_DIDO }, { HISI_SFC_V3XX_DIO, HISI_SFC_V3XX_FULL_DIO, -EIO }, { -EIO, -EIO, -EIO }, }, { { HISI_SFC_V3XX_QIQO, HISI_SFC_V3XX_QIQO, HISI_SFC_V3XX_QIQO }, { -EIO, -EIO, -EIO }, { HISI_SFC_V3XX_QIO, -EIO, HISI_SFC_V3XX_FULL_QIO }, }, }; struct hisi_sfc_v3xx_host { struct device *dev; void __iomem *regbase; int max_cmd_dword; struct completion *completion; u8 address_mode; int irq; }; static void hisi_sfc_v3xx_disable_int(struct hisi_sfc_v3xx_host *host) { writel(0, host->regbase + HISI_SFC_V3XX_INT_MASK); } static void hisi_sfc_v3xx_enable_int(struct hisi_sfc_v3xx_host *host) { writel(HISI_SFC_V3XX_INT_MASK_ALL, host->regbase + HISI_SFC_V3XX_INT_MASK); } static void hisi_sfc_v3xx_clear_int(struct hisi_sfc_v3xx_host *host) { writel(HISI_SFC_V3XX_INT_MASK_ALL, host->regbase + HISI_SFC_V3XX_INT_CLR); } /* * The interrupt status register indicates whether an error occurs * after per operation. Check it, and clear the interrupts for * next time judgement. */ static int hisi_sfc_v3xx_handle_completion(struct hisi_sfc_v3xx_host *host) { u32 reg; reg = readl(host->regbase + HISI_SFC_V3XX_RAW_INT_STAT); hisi_sfc_v3xx_clear_int(host); if (reg & HISI_SFC_V3XX_INT_MASK_IACCES) { dev_err(host->dev, "fail to access protected address\n"); return -EIO; } if (reg & HISI_SFC_V3XX_INT_MASK_PP_ERR) { dev_err(host->dev, "page program operation failed\n"); return -EIO; } /* * The other bits of the interrupt registers is not currently * used and probably not be triggered in this driver. When it * happens, we regard it as an unsupported error here. */ if (!(reg & HISI_SFC_V3XX_INT_MASK_CPLT)) { dev_err(host->dev, "unsupported error occurred, status=0x%x\n", reg); return -EIO; } return 0; } #define HISI_SFC_V3XX_WAIT_TIMEOUT_US 1000000 #define HISI_SFC_V3XX_WAIT_POLL_INTERVAL_US 10 static int hisi_sfc_v3xx_wait_cmd_idle(struct hisi_sfc_v3xx_host *host) { u32 reg; return readl_poll_timeout(host->regbase + HISI_SFC_V3XX_CMD_CFG, reg, !(reg & HISI_SFC_V3XX_CMD_CFG_START_MSK), HISI_SFC_V3XX_WAIT_POLL_INTERVAL_US, HISI_SFC_V3XX_WAIT_TIMEOUT_US); } static int hisi_sfc_v3xx_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct spi_device *spi = mem->spi; struct hisi_sfc_v3xx_host *host; uintptr_t addr = (uintptr_t)op->data.buf.in; int max_byte_count; host = spi_controller_get_devdata(spi->controller); max_byte_count = host->max_cmd_dword * 4; if (!IS_ALIGNED(addr, 4) && op->data.nbytes >= 4) op->data.nbytes = 4 - (addr % 4); else if (op->data.nbytes > max_byte_count) op->data.nbytes = max_byte_count; return 0; } /* * The controller only supports Standard SPI mode, Dual mode and * Quad mode. Double sanitize the ops here to avoid OOB access. */ static bool hisi_sfc_v3xx_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct spi_device *spi = mem->spi; struct hisi_sfc_v3xx_host *host; host = spi_controller_get_devdata(spi->controller); if (op->data.buswidth > 4 || op->dummy.buswidth > 4 || op->addr.buswidth > 4 || op->cmd.buswidth > 4) return false; if (op->addr.nbytes != host->address_mode && op->addr.nbytes) return false; return spi_mem_default_supports_op(mem, op); } /* * memcpy_{to,from}io doesn't gurantee 32b accesses - which we require for the * DATABUF registers -so use __io{read,write}32_copy when possible. For * trailing bytes, copy them byte-by-byte from the DATABUF register, as we * can't clobber outside the source/dest buffer. * * For efficient data read/write, we try to put any start 32b unaligned data * into a separate transaction in hisi_sfc_v3xx_adjust_op_size(). */ static void hisi_sfc_v3xx_read_databuf(struct hisi_sfc_v3xx_host *host, u8 *to, unsigned int len) { void __iomem *from; int i; from = host->regbase + HISI_SFC_V3XX_CMD_DATABUF0; if (IS_ALIGNED((uintptr_t)to, 4)) { int words = len / 4; __ioread32_copy(to, from, words); len -= words * 4; if (len) { u32 val; to += words * 4; from += words * 4; val = __raw_readl(from); for (i = 0; i < len; i++, val >>= 8, to++) *to = (u8)val; } } else { for (i = 0; i < DIV_ROUND_UP(len, 4); i++, from += 4) { u32 val = __raw_readl(from); int j; for (j = 0; j < 4 && (j + (i * 4) < len); to++, val >>= 8, j++) *to = (u8)val; } } } static void hisi_sfc_v3xx_write_databuf(struct hisi_sfc_v3xx_host *host, const u8 *from, unsigned int len) { void __iomem *to; int i; to = host->regbase + HISI_SFC_V3XX_CMD_DATABUF0; if (IS_ALIGNED((uintptr_t)from, 4)) { int words = len / 4; __iowrite32_copy(to, from, words); len -= words * 4; if (len) { u32 val = 0; to += words * 4; from += words * 4; for (i = 0; i < len; i++, from++) val |= *from << i * 8; __raw_writel(val, to); } } else { for (i = 0; i < DIV_ROUND_UP(len, 4); i++, to += 4) { u32 val = 0; int j; for (j = 0; j < 4 && (j + (i * 4) < len); from++, j++) val |= *from << j * 8; __raw_writel(val, to); } } } static int hisi_sfc_v3xx_start_bus(struct hisi_sfc_v3xx_host *host, const struct spi_mem_op *op, u8 chip_select) { int len = op->data.nbytes, buswidth_mode; u32 config = 0; if (op->addr.nbytes) config |= HISI_SFC_V3XX_CMD_CFG_ADDR_EN_MSK; if (op->data.buswidth == 0 || op->data.buswidth == 1) { buswidth_mode = HISI_SFC_V3XX_STD; } else { int data_idx, addr_idx, cmd_idx; data_idx = (op->data.buswidth - 1) / 2; addr_idx = op->addr.buswidth / 2; cmd_idx = op->cmd.buswidth / 2; buswidth_mode = hisi_sfc_v3xx_io_modes[data_idx][addr_idx][cmd_idx]; } if (buswidth_mode < 0) return buswidth_mode; config |= buswidth_mode; if (op->data.dir != SPI_MEM_NO_DATA) { config |= (len - 1) << HISI_SFC_V3XX_CMD_CFG_DATA_CNT_OFF; config |= HISI_SFC_V3XX_CMD_CFG_DATA_EN_MSK; } if (op->data.dir == SPI_MEM_DATA_IN) config |= HISI_SFC_V3XX_CMD_CFG_RW_MSK; config |= op->dummy.nbytes << HISI_SFC_V3XX_CMD_CFG_DUMMY_CNT_OFF | chip_select << HISI_SFC_V3XX_CMD_CFG_CS_SEL_OFF | HISI_SFC_V3XX_CMD_CFG_START_MSK; writel(op->addr.val, host->regbase + HISI_SFC_V3XX_CMD_ADDR); writel(op->cmd.opcode, host->regbase + HISI_SFC_V3XX_CMD_INS); writel(config, host->regbase + HISI_SFC_V3XX_CMD_CFG); return 0; } static int hisi_sfc_v3xx_generic_exec_op(struct hisi_sfc_v3xx_host *host, const struct spi_mem_op *op, u8 chip_select) { DECLARE_COMPLETION_ONSTACK(done); int ret; if (host->irq) { host->completion = &done; hisi_sfc_v3xx_enable_int(host); } if (op->data.dir == SPI_MEM_DATA_OUT) hisi_sfc_v3xx_write_databuf(host, op->data.buf.out, op->data.nbytes); ret = hisi_sfc_v3xx_start_bus(host, op, chip_select); if (ret) return ret; if (host->irq) { ret = wait_for_completion_timeout(host->completion, usecs_to_jiffies(HISI_SFC_V3XX_WAIT_TIMEOUT_US)); if (!ret) ret = -ETIMEDOUT; else ret = 0; hisi_sfc_v3xx_disable_int(host); synchronize_irq(host->irq); host->completion = NULL; } else { ret = hisi_sfc_v3xx_wait_cmd_idle(host); } if (hisi_sfc_v3xx_handle_completion(host) || ret) return -EIO; if (op->data.dir == SPI_MEM_DATA_IN) hisi_sfc_v3xx_read_databuf(host, op->data.buf.in, op->data.nbytes); return 0; } static int hisi_sfc_v3xx_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct hisi_sfc_v3xx_host *host; struct spi_device *spi = mem->spi; u8 chip_select = spi_get_chipselect(spi, 0); host = spi_controller_get_devdata(spi->controller); return hisi_sfc_v3xx_generic_exec_op(host, op, chip_select); } static const struct spi_controller_mem_ops hisi_sfc_v3xx_mem_ops = { .adjust_op_size = hisi_sfc_v3xx_adjust_op_size, .supports_op = hisi_sfc_v3xx_supports_op, .exec_op = hisi_sfc_v3xx_exec_op, }; static irqreturn_t hisi_sfc_v3xx_isr(int irq, void *data) { struct hisi_sfc_v3xx_host *host = data; hisi_sfc_v3xx_disable_int(host); complete(host->completion); return IRQ_HANDLED; } static int hisi_sfc_v3xx_buswidth_override_bits; /* * ACPI FW does not allow us to currently set the device buswidth, so quirk it * depending on the board. */ static int __init hisi_sfc_v3xx_dmi_quirk(const struct dmi_system_id *d) { hisi_sfc_v3xx_buswidth_override_bits = SPI_RX_QUAD | SPI_TX_QUAD; return 0; } static const struct dmi_system_id hisi_sfc_v3xx_dmi_quirk_table[] = { { .callback = hisi_sfc_v3xx_dmi_quirk, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Huawei"), DMI_MATCH(DMI_PRODUCT_NAME, "D06"), }, }, { .callback = hisi_sfc_v3xx_dmi_quirk, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Huawei"), DMI_MATCH(DMI_PRODUCT_NAME, "TaiShan 2280 V2"), }, }, { .callback = hisi_sfc_v3xx_dmi_quirk, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Huawei"), DMI_MATCH(DMI_PRODUCT_NAME, "TaiShan 200 (Model 2280)"), }, }, {} }; static int hisi_sfc_v3xx_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct hisi_sfc_v3xx_host *host; struct spi_controller *ctlr; u32 version, glb_config; int ret; ctlr = spi_alloc_host(&pdev->dev, sizeof(*host)); if (!ctlr) return -ENOMEM; ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; ctlr->buswidth_override_bits = hisi_sfc_v3xx_buswidth_override_bits; host = spi_controller_get_devdata(ctlr); host->dev = dev; platform_set_drvdata(pdev, host); host->regbase = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(host->regbase)) { ret = PTR_ERR(host->regbase); goto err_put_host; } host->irq = platform_get_irq_optional(pdev, 0); if (host->irq == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_put_host; } hisi_sfc_v3xx_disable_int(host); if (host->irq > 0) { ret = devm_request_irq(dev, host->irq, hisi_sfc_v3xx_isr, 0, "hisi-sfc-v3xx", host); if (ret) { dev_err(dev, "failed to request irq%d, ret = %d\n", host->irq, ret); host->irq = 0; } } else { host->irq = 0; } ctlr->bus_num = -1; ctlr->num_chipselect = 1; ctlr->mem_ops = &hisi_sfc_v3xx_mem_ops; /* * The address mode of the controller is either 3 or 4, * which is indicated by the address mode bit in * the global config register. The register is read only * for the OS driver. */ glb_config = readl(host->regbase + HISI_SFC_V3XX_GLB_CFG); if (glb_config & HISI_SFC_V3XX_GLB_CFG_CS0_ADDR_MODE) host->address_mode = 4; else host->address_mode = 3; version = readl(host->regbase + HISI_SFC_V3XX_VERSION); if (version >= 0x351) host->max_cmd_dword = 64; else host->max_cmd_dword = 16; ret = devm_spi_register_controller(dev, ctlr); if (ret) goto err_put_host; dev_info(&pdev->dev, "hw version 0x%x, %s mode.\n", version, host->irq ? "irq" : "polling"); return 0; err_put_host: spi_controller_put(ctlr); return ret; } static const struct acpi_device_id hisi_sfc_v3xx_acpi_ids[] = { {"HISI0341", 0}, {} }; MODULE_DEVICE_TABLE(acpi, hisi_sfc_v3xx_acpi_ids); static struct platform_driver hisi_sfc_v3xx_spi_driver = { .driver = { .name = "hisi-sfc-v3xx", .acpi_match_table = hisi_sfc_v3xx_acpi_ids, }, .probe = hisi_sfc_v3xx_probe, }; static int __init hisi_sfc_v3xx_spi_init(void) { dmi_check_system(hisi_sfc_v3xx_dmi_quirk_table); return platform_driver_register(&hisi_sfc_v3xx_spi_driver); } static void __exit hisi_sfc_v3xx_spi_exit(void) { platform_driver_unregister(&hisi_sfc_v3xx_spi_driver); } module_init(hisi_sfc_v3xx_spi_init); module_exit(hisi_sfc_v3xx_spi_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("John Garry <[email protected]>"); MODULE_DESCRIPTION("HiSilicon SPI NOR V3XX Flash Controller Driver for hi16xx chipsets");
linux-master
drivers/spi/spi-hisi-sfc-v3xx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Xilinx SPI controller driver (master mode only) * * Author: MontaVista Software, Inc. * [email protected] * * Copyright (c) 2010 Secret Lab Technologies, Ltd. * Copyright (c) 2009 Intel Corporation * 2002-2007 (c) MontaVista Software, Inc. */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #include <linux/spi/xilinx_spi.h> #include <linux/io.h> #define XILINX_SPI_MAX_CS 32 #define XILINX_SPI_NAME "xilinx_spi" /* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e) * Product Specification", DS464 */ #define XSPI_CR_OFFSET 0x60 /* Control Register */ #define XSPI_CR_LOOP 0x01 #define XSPI_CR_ENABLE 0x02 #define XSPI_CR_MASTER_MODE 0x04 #define XSPI_CR_CPOL 0x08 #define XSPI_CR_CPHA 0x10 #define XSPI_CR_MODE_MASK (XSPI_CR_CPHA | XSPI_CR_CPOL | \ XSPI_CR_LSB_FIRST | XSPI_CR_LOOP) #define XSPI_CR_TXFIFO_RESET 0x20 #define XSPI_CR_RXFIFO_RESET 0x40 #define XSPI_CR_MANUAL_SSELECT 0x80 #define XSPI_CR_TRANS_INHIBIT 0x100 #define XSPI_CR_LSB_FIRST 0x200 #define XSPI_SR_OFFSET 0x64 /* Status Register */ #define XSPI_SR_RX_EMPTY_MASK 0x01 /* Receive FIFO is empty */ #define XSPI_SR_RX_FULL_MASK 0x02 /* Receive FIFO is full */ #define XSPI_SR_TX_EMPTY_MASK 0x04 /* Transmit FIFO is empty */ #define XSPI_SR_TX_FULL_MASK 0x08 /* Transmit FIFO is full */ #define XSPI_SR_MODE_FAULT_MASK 0x10 /* Mode fault error */ #define XSPI_TXD_OFFSET 0x68 /* Data Transmit Register */ #define XSPI_RXD_OFFSET 0x6c /* Data Receive Register */ #define XSPI_SSR_OFFSET 0x70 /* 32-bit Slave Select Register */ /* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414 * IPIF registers are 32 bit */ #define XIPIF_V123B_DGIER_OFFSET 0x1c /* IPIF global int enable reg */ #define XIPIF_V123B_GINTR_ENABLE 0x80000000 #define XIPIF_V123B_IISR_OFFSET 0x20 /* IPIF interrupt status reg */ #define XIPIF_V123B_IIER_OFFSET 0x28 /* IPIF interrupt enable reg */ #define XSPI_INTR_MODE_FAULT 0x01 /* Mode fault error */ #define XSPI_INTR_SLAVE_MODE_FAULT 0x02 /* Selected as slave while * disabled */ #define XSPI_INTR_TX_EMPTY 0x04 /* TxFIFO is empty */ #define XSPI_INTR_TX_UNDERRUN 0x08 /* TxFIFO was underrun */ #define XSPI_INTR_RX_FULL 0x10 /* RxFIFO is full */ #define XSPI_INTR_RX_OVERRUN 0x20 /* RxFIFO was overrun */ #define XSPI_INTR_TX_HALF_EMPTY 0x40 /* TxFIFO is half empty */ #define XIPIF_V123B_RESETR_OFFSET 0x40 /* IPIF reset register */ #define XIPIF_V123B_RESET_MASK 0x0a /* the value to write */ struct xilinx_spi { /* bitbang has to be first */ struct spi_bitbang bitbang; struct completion done; void __iomem *regs; /* virt. address of the control registers */ int irq; bool force_irq; /* force irq to setup master inhibit */ u8 *rx_ptr; /* pointer in the Tx buffer */ const u8 *tx_ptr; /* pointer in the Rx buffer */ u8 bytes_per_word; int buffer_size; /* buffer size in words */ u32 cs_inactive; /* Level of the CS pins when inactive*/ unsigned int (*read_fn)(void __iomem *); void (*write_fn)(u32, void __iomem *); }; static void xspi_write32(u32 val, void __iomem *addr) { iowrite32(val, addr); } static unsigned int xspi_read32(void __iomem *addr) { return ioread32(addr); } static void xspi_write32_be(u32 val, void __iomem *addr) { iowrite32be(val, addr); } static unsigned int xspi_read32_be(void __iomem *addr) { return ioread32be(addr); } static void xilinx_spi_tx(struct xilinx_spi *xspi) { u32 data = 0; if (!xspi->tx_ptr) { xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET); return; } switch (xspi->bytes_per_word) { case 1: data = *(u8 *)(xspi->tx_ptr); break; case 2: data = *(u16 *)(xspi->tx_ptr); break; case 4: data = *(u32 *)(xspi->tx_ptr); break; } xspi->write_fn(data, xspi->regs + XSPI_TXD_OFFSET); xspi->tx_ptr += xspi->bytes_per_word; } static void xilinx_spi_rx(struct xilinx_spi *xspi) { u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET); if (!xspi->rx_ptr) return; switch (xspi->bytes_per_word) { case 1: *(u8 *)(xspi->rx_ptr) = data; break; case 2: *(u16 *)(xspi->rx_ptr) = data; break; case 4: *(u32 *)(xspi->rx_ptr) = data; break; } xspi->rx_ptr += xspi->bytes_per_word; } static void xspi_init_hw(struct xilinx_spi *xspi) { void __iomem *regs_base = xspi->regs; /* Reset the SPI device */ xspi->write_fn(XIPIF_V123B_RESET_MASK, regs_base + XIPIF_V123B_RESETR_OFFSET); /* Enable the transmit empty interrupt, which we use to determine * progress on the transmission. */ xspi->write_fn(XSPI_INTR_TX_EMPTY, regs_base + XIPIF_V123B_IIER_OFFSET); /* Disable the global IPIF interrupt */ xspi->write_fn(0, regs_base + XIPIF_V123B_DGIER_OFFSET); /* Deselect the slave on the SPI bus */ xspi->write_fn(0xffff, regs_base + XSPI_SSR_OFFSET); /* Disable the transmitter, enable Manual Slave Select Assertion, * put SPI controller into master mode, and enable it */ xspi->write_fn(XSPI_CR_MANUAL_SSELECT | XSPI_CR_MASTER_MODE | XSPI_CR_ENABLE | XSPI_CR_TXFIFO_RESET | XSPI_CR_RXFIFO_RESET, regs_base + XSPI_CR_OFFSET); } static void xilinx_spi_chipselect(struct spi_device *spi, int is_on) { struct xilinx_spi *xspi = spi_master_get_devdata(spi->master); u16 cr; u32 cs; if (is_on == BITBANG_CS_INACTIVE) { /* Deselect the slave on the SPI bus */ xspi->write_fn(xspi->cs_inactive, xspi->regs + XSPI_SSR_OFFSET); return; } /* Set the SPI clock phase and polarity */ cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET) & ~XSPI_CR_MODE_MASK; if (spi->mode & SPI_CPHA) cr |= XSPI_CR_CPHA; if (spi->mode & SPI_CPOL) cr |= XSPI_CR_CPOL; if (spi->mode & SPI_LSB_FIRST) cr |= XSPI_CR_LSB_FIRST; if (spi->mode & SPI_LOOP) cr |= XSPI_CR_LOOP; xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET); /* We do not check spi->max_speed_hz here as the SPI clock * frequency is not software programmable (the IP block design * parameter) */ cs = xspi->cs_inactive; cs ^= BIT(spi_get_chipselect(spi, 0)); /* Activate the chip select */ xspi->write_fn(cs, xspi->regs + XSPI_SSR_OFFSET); } /* spi_bitbang requires custom setup_transfer() to be defined if there is a * custom txrx_bufs(). */ static int xilinx_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct xilinx_spi *xspi = spi_master_get_devdata(spi->master); if (spi->mode & SPI_CS_HIGH) xspi->cs_inactive &= ~BIT(spi_get_chipselect(spi, 0)); else xspi->cs_inactive |= BIT(spi_get_chipselect(spi, 0)); return 0; } static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t) { struct xilinx_spi *xspi = spi_master_get_devdata(spi->master); int remaining_words; /* the number of words left to transfer */ bool use_irq = false; u16 cr = 0; /* We get here with transmitter inhibited */ xspi->tx_ptr = t->tx_buf; xspi->rx_ptr = t->rx_buf; remaining_words = t->len / xspi->bytes_per_word; if (xspi->irq >= 0 && (xspi->force_irq || remaining_words > xspi->buffer_size)) { u32 isr; use_irq = true; /* Inhibit irq to avoid spurious irqs on tx_empty*/ cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET); xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT, xspi->regs + XSPI_CR_OFFSET); /* ACK old irqs (if any) */ isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET); if (isr) xspi->write_fn(isr, xspi->regs + XIPIF_V123B_IISR_OFFSET); /* Enable the global IPIF interrupt */ xspi->write_fn(XIPIF_V123B_GINTR_ENABLE, xspi->regs + XIPIF_V123B_DGIER_OFFSET); reinit_completion(&xspi->done); } while (remaining_words) { int n_words, tx_words, rx_words; u32 sr; int stalled; n_words = min(remaining_words, xspi->buffer_size); tx_words = n_words; while (tx_words--) xilinx_spi_tx(xspi); /* Start the transfer by not inhibiting the transmitter any * longer */ if (use_irq) { xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET); wait_for_completion(&xspi->done); /* A transmit has just completed. Process received data * and check for more data to transmit. Always inhibit * the transmitter while the Isr refills the transmit * register/FIFO, or make sure it is stopped if we're * done. */ xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT, xspi->regs + XSPI_CR_OFFSET); sr = XSPI_SR_TX_EMPTY_MASK; } else sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET); /* Read out all the data from the Rx FIFO */ rx_words = n_words; stalled = 10; while (rx_words) { if (rx_words == n_words && !(stalled--) && !(sr & XSPI_SR_TX_EMPTY_MASK) && (sr & XSPI_SR_RX_EMPTY_MASK)) { dev_err(&spi->dev, "Detected stall. Check C_SPI_MODE and C_SPI_MEMORY\n"); xspi_init_hw(xspi); return -EIO; } if ((sr & XSPI_SR_TX_EMPTY_MASK) && (rx_words > 1)) { xilinx_spi_rx(xspi); rx_words--; continue; } sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET); if (!(sr & XSPI_SR_RX_EMPTY_MASK)) { xilinx_spi_rx(xspi); rx_words--; } } remaining_words -= n_words; } if (use_irq) { xspi->write_fn(0, xspi->regs + XIPIF_V123B_DGIER_OFFSET); xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET); } return t->len; } /* This driver supports single master mode only. Hence Tx FIFO Empty * is the only interrupt we care about. * Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Slave Mode * Fault are not to happen. */ static irqreturn_t xilinx_spi_irq(int irq, void *dev_id) { struct xilinx_spi *xspi = dev_id; u32 ipif_isr; /* Get the IPIF interrupts, and clear them immediately */ ipif_isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET); xspi->write_fn(ipif_isr, xspi->regs + XIPIF_V123B_IISR_OFFSET); if (ipif_isr & XSPI_INTR_TX_EMPTY) { /* Transmission completed */ complete(&xspi->done); return IRQ_HANDLED; } return IRQ_NONE; } static int xilinx_spi_find_buffer_size(struct xilinx_spi *xspi) { u8 sr; int n_words = 0; /* * Before the buffer_size detection we reset the core * to make sure we start with a clean state. */ xspi->write_fn(XIPIF_V123B_RESET_MASK, xspi->regs + XIPIF_V123B_RESETR_OFFSET); /* Fill the Tx FIFO with as many words as possible */ do { xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET); sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET); n_words++; } while (!(sr & XSPI_SR_TX_FULL_MASK)); return n_words; } static const struct of_device_id xilinx_spi_of_match[] = { { .compatible = "xlnx,axi-quad-spi-1.00.a", }, { .compatible = "xlnx,xps-spi-2.00.a", }, { .compatible = "xlnx,xps-spi-2.00.b", }, {} }; MODULE_DEVICE_TABLE(of, xilinx_spi_of_match); static int xilinx_spi_probe(struct platform_device *pdev) { struct xilinx_spi *xspi; struct xspi_platform_data *pdata; struct resource *res; int ret, num_cs = 0, bits_per_word; struct spi_master *master; bool force_irq = false; u32 tmp; u8 i; pdata = dev_get_platdata(&pdev->dev); if (pdata) { num_cs = pdata->num_chipselect; bits_per_word = pdata->bits_per_word; force_irq = pdata->force_irq; } else { of_property_read_u32(pdev->dev.of_node, "xlnx,num-ss-bits", &num_cs); ret = of_property_read_u32(pdev->dev.of_node, "xlnx,num-transfer-bits", &bits_per_word); if (ret) bits_per_word = 8; } if (!num_cs) { dev_err(&pdev->dev, "Missing slave select configuration data\n"); return -EINVAL; } if (num_cs > XILINX_SPI_MAX_CS) { dev_err(&pdev->dev, "Invalid number of spi slaves\n"); return -EINVAL; } master = devm_spi_alloc_master(&pdev->dev, sizeof(struct xilinx_spi)); if (!master) return -ENODEV; /* the spi->mode bits understood by this driver: */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_LOOP | SPI_CS_HIGH; xspi = spi_master_get_devdata(master); xspi->cs_inactive = 0xffffffff; xspi->bitbang.master = master; xspi->bitbang.chipselect = xilinx_spi_chipselect; xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer; xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs; init_completion(&xspi->done); xspi->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(xspi->regs)) return PTR_ERR(xspi->regs); master->bus_num = pdev->id; master->num_chipselect = num_cs; master->dev.of_node = pdev->dev.of_node; /* * Detect endianess on the IP via loop bit in CR. Detection * must be done before reset is sent because incorrect reset * value generates error interrupt. * Setup little endian helper functions first and try to use them * and check if bit was correctly setup or not. */ xspi->read_fn = xspi_read32; xspi->write_fn = xspi_write32; xspi->write_fn(XSPI_CR_LOOP, xspi->regs + XSPI_CR_OFFSET); tmp = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET); tmp &= XSPI_CR_LOOP; if (tmp != XSPI_CR_LOOP) { xspi->read_fn = xspi_read32_be; xspi->write_fn = xspi_write32_be; } master->bits_per_word_mask = SPI_BPW_MASK(bits_per_word); xspi->bytes_per_word = bits_per_word / 8; xspi->buffer_size = xilinx_spi_find_buffer_size(xspi); xspi->irq = platform_get_irq(pdev, 0); if (xspi->irq < 0 && xspi->irq != -ENXIO) { return xspi->irq; } else if (xspi->irq >= 0) { /* Register for SPI Interrupt */ ret = devm_request_irq(&pdev->dev, xspi->irq, xilinx_spi_irq, 0, dev_name(&pdev->dev), xspi); if (ret) return ret; xspi->force_irq = force_irq; } /* SPI controller initializations */ xspi_init_hw(xspi); ret = spi_bitbang_start(&xspi->bitbang); if (ret) { dev_err(&pdev->dev, "spi_bitbang_start FAILED\n"); return ret; } dev_info(&pdev->dev, "at %pR, irq=%d\n", res, xspi->irq); if (pdata) { for (i = 0; i < pdata->num_devices; i++) spi_new_device(master, pdata->devices + i); } platform_set_drvdata(pdev, master); return 0; } static void xilinx_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct xilinx_spi *xspi = spi_master_get_devdata(master); void __iomem *regs_base = xspi->regs; spi_bitbang_stop(&xspi->bitbang); /* Disable all the interrupts just in case */ xspi->write_fn(0, regs_base + XIPIF_V123B_IIER_OFFSET); /* Disable the global IPIF interrupt */ xspi->write_fn(0, regs_base + XIPIF_V123B_DGIER_OFFSET); spi_master_put(xspi->bitbang.master); } /* work with hotplug and coldplug */ MODULE_ALIAS("platform:" XILINX_SPI_NAME); static struct platform_driver xilinx_spi_driver = { .probe = xilinx_spi_probe, .remove_new = xilinx_spi_remove, .driver = { .name = XILINX_SPI_NAME, .of_match_table = xilinx_spi_of_match, }, }; module_platform_driver(xilinx_spi_driver); MODULE_AUTHOR("MontaVista Software, Inc. <[email protected]>"); MODULE_DESCRIPTION("Xilinx SPI driver"); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-xilinx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015 MediaTek Inc. * Author: Leilk Liu <[email protected]> */ #include <linux/clk.h> #include <linux/device.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/module.h> #include <linux/of.h> #include <linux/gpio/consumer.h> #include <linux/platform_device.h> #include <linux/platform_data/spi-mt65xx.h> #include <linux/pm_runtime.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> #include <linux/dma-mapping.h> #define SPI_CFG0_REG 0x0000 #define SPI_CFG1_REG 0x0004 #define SPI_TX_SRC_REG 0x0008 #define SPI_RX_DST_REG 0x000c #define SPI_TX_DATA_REG 0x0010 #define SPI_RX_DATA_REG 0x0014 #define SPI_CMD_REG 0x0018 #define SPI_STATUS0_REG 0x001c #define SPI_PAD_SEL_REG 0x0024 #define SPI_CFG2_REG 0x0028 #define SPI_TX_SRC_REG_64 0x002c #define SPI_RX_DST_REG_64 0x0030 #define SPI_CFG3_IPM_REG 0x0040 #define SPI_CFG0_SCK_HIGH_OFFSET 0 #define SPI_CFG0_SCK_LOW_OFFSET 8 #define SPI_CFG0_CS_HOLD_OFFSET 16 #define SPI_CFG0_CS_SETUP_OFFSET 24 #define SPI_ADJUST_CFG0_CS_HOLD_OFFSET 0 #define SPI_ADJUST_CFG0_CS_SETUP_OFFSET 16 #define SPI_CFG1_CS_IDLE_OFFSET 0 #define SPI_CFG1_PACKET_LOOP_OFFSET 8 #define SPI_CFG1_PACKET_LENGTH_OFFSET 16 #define SPI_CFG1_GET_TICK_DLY_OFFSET 29 #define SPI_CFG1_GET_TICK_DLY_OFFSET_V1 30 #define SPI_CFG1_GET_TICK_DLY_MASK 0xe0000000 #define SPI_CFG1_GET_TICK_DLY_MASK_V1 0xc0000000 #define SPI_CFG1_CS_IDLE_MASK 0xff #define SPI_CFG1_PACKET_LOOP_MASK 0xff00 #define SPI_CFG1_PACKET_LENGTH_MASK 0x3ff0000 #define SPI_CFG1_IPM_PACKET_LENGTH_MASK GENMASK(31, 16) #define SPI_CFG2_SCK_HIGH_OFFSET 0 #define SPI_CFG2_SCK_LOW_OFFSET 16 #define SPI_CMD_ACT BIT(0) #define SPI_CMD_RESUME BIT(1) #define SPI_CMD_RST BIT(2) #define SPI_CMD_PAUSE_EN BIT(4) #define SPI_CMD_DEASSERT BIT(5) #define SPI_CMD_SAMPLE_SEL BIT(6) #define SPI_CMD_CS_POL BIT(7) #define SPI_CMD_CPHA BIT(8) #define SPI_CMD_CPOL BIT(9) #define SPI_CMD_RX_DMA BIT(10) #define SPI_CMD_TX_DMA BIT(11) #define SPI_CMD_TXMSBF BIT(12) #define SPI_CMD_RXMSBF BIT(13) #define SPI_CMD_RX_ENDIAN BIT(14) #define SPI_CMD_TX_ENDIAN BIT(15) #define SPI_CMD_FINISH_IE BIT(16) #define SPI_CMD_PAUSE_IE BIT(17) #define SPI_CMD_IPM_NONIDLE_MODE BIT(19) #define SPI_CMD_IPM_SPIM_LOOP BIT(21) #define SPI_CMD_IPM_GET_TICKDLY_OFFSET 22 #define SPI_CMD_IPM_GET_TICKDLY_MASK GENMASK(24, 22) #define PIN_MODE_CFG(x) ((x) / 2) #define SPI_CFG3_IPM_HALF_DUPLEX_DIR BIT(2) #define SPI_CFG3_IPM_HALF_DUPLEX_EN BIT(3) #define SPI_CFG3_IPM_XMODE_EN BIT(4) #define SPI_CFG3_IPM_NODATA_FLAG BIT(5) #define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET 8 #define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12 #define SPI_CFG3_IPM_CMD_PIN_MODE_MASK GENMASK(1, 0) #define SPI_CFG3_IPM_CMD_BYTELEN_MASK GENMASK(11, 8) #define SPI_CFG3_IPM_ADDR_BYTELEN_MASK GENMASK(15, 12) #define MT8173_SPI_MAX_PAD_SEL 3 #define MTK_SPI_PAUSE_INT_STATUS 0x2 #define MTK_SPI_MAX_FIFO_SIZE 32U #define MTK_SPI_PACKET_SIZE 1024 #define MTK_SPI_IPM_PACKET_SIZE SZ_64K #define MTK_SPI_IPM_PACKET_LOOP SZ_256 #define MTK_SPI_IDLE 0 #define MTK_SPI_PAUSED 1 #define MTK_SPI_32BITS_MASK (0xffffffff) #define DMA_ADDR_EXT_BITS (36) #define DMA_ADDR_DEF_BITS (32) /** * struct mtk_spi_compatible - device data structure * @need_pad_sel: Enable pad (pins) selection in SPI controller * @must_tx: Must explicitly send dummy TX bytes to do RX only transfer * @enhance_timing: Enable adjusting cfg register to enhance time accuracy * @dma_ext: DMA address extension supported * @no_need_unprepare: Don't unprepare the SPI clk during runtime * @ipm_design: Adjust/extend registers to support IPM design IP features */ struct mtk_spi_compatible { bool need_pad_sel; bool must_tx; bool enhance_timing; bool dma_ext; bool no_need_unprepare; bool ipm_design; }; /** * struct mtk_spi - SPI driver instance * @base: Start address of the SPI controller registers * @state: SPI controller state * @pad_num: Number of pad_sel entries * @pad_sel: Groups of pins to select * @parent_clk: Parent of sel_clk * @sel_clk: SPI master mux clock * @spi_clk: Peripheral clock * @spi_hclk: AHB bus clock * @cur_transfer: Currently processed SPI transfer * @xfer_len: Number of bytes to transfer * @num_xfered: Number of transferred bytes * @tx_sgl: TX transfer scatterlist * @rx_sgl: RX transfer scatterlist * @tx_sgl_len: Size of TX DMA transfer * @rx_sgl_len: Size of RX DMA transfer * @dev_comp: Device data structure * @spi_clk_hz: Current SPI clock in Hz * @spimem_done: SPI-MEM operation completion * @use_spimem: Enables SPI-MEM * @dev: Device pointer * @tx_dma: DMA start for SPI-MEM TX * @rx_dma: DMA start for SPI-MEM RX */ struct mtk_spi { void __iomem *base; u32 state; int pad_num; u32 *pad_sel; struct clk *parent_clk, *sel_clk, *spi_clk, *spi_hclk; struct spi_transfer *cur_transfer; u32 xfer_len; u32 num_xfered; struct scatterlist *tx_sgl, *rx_sgl; u32 tx_sgl_len, rx_sgl_len; const struct mtk_spi_compatible *dev_comp; u32 spi_clk_hz; struct completion spimem_done; bool use_spimem; struct device *dev; dma_addr_t tx_dma; dma_addr_t rx_dma; }; static const struct mtk_spi_compatible mtk_common_compat; static const struct mtk_spi_compatible mt2712_compat = { .must_tx = true, }; static const struct mtk_spi_compatible mtk_ipm_compat = { .enhance_timing = true, .dma_ext = true, .ipm_design = true, }; static const struct mtk_spi_compatible mt6765_compat = { .need_pad_sel = true, .must_tx = true, .enhance_timing = true, .dma_ext = true, }; static const struct mtk_spi_compatible mt7622_compat = { .must_tx = true, .enhance_timing = true, }; static const struct mtk_spi_compatible mt8173_compat = { .need_pad_sel = true, .must_tx = true, }; static const struct mtk_spi_compatible mt8183_compat = { .need_pad_sel = true, .must_tx = true, .enhance_timing = true, }; static const struct mtk_spi_compatible mt6893_compat = { .need_pad_sel = true, .must_tx = true, .enhance_timing = true, .dma_ext = true, .no_need_unprepare = true, }; /* * A piece of default chip info unless the platform * supplies it. */ static const struct mtk_chip_config mtk_default_chip_info = { .sample_sel = 0, .tick_delay = 0, }; static const struct of_device_id mtk_spi_of_match[] = { { .compatible = "mediatek,spi-ipm", .data = (void *)&mtk_ipm_compat, }, { .compatible = "mediatek,mt2701-spi", .data = (void *)&mtk_common_compat, }, { .compatible = "mediatek,mt2712-spi", .data = (void *)&mt2712_compat, }, { .compatible = "mediatek,mt6589-spi", .data = (void *)&mtk_common_compat, }, { .compatible = "mediatek,mt6765-spi", .data = (void *)&mt6765_compat, }, { .compatible = "mediatek,mt7622-spi", .data = (void *)&mt7622_compat, }, { .compatible = "mediatek,mt7629-spi", .data = (void *)&mt7622_compat, }, { .compatible = "mediatek,mt8135-spi", .data = (void *)&mtk_common_compat, }, { .compatible = "mediatek,mt8173-spi", .data = (void *)&mt8173_compat, }, { .compatible = "mediatek,mt8183-spi", .data = (void *)&mt8183_compat, }, { .compatible = "mediatek,mt8192-spi", .data = (void *)&mt6765_compat, }, { .compatible = "mediatek,mt6893-spi", .data = (void *)&mt6893_compat, }, {} }; MODULE_DEVICE_TABLE(of, mtk_spi_of_match); static void mtk_spi_reset(struct mtk_spi *mdata) { u32 reg_val; /* set the software reset bit in SPI_CMD_REG. */ reg_val = readl(mdata->base + SPI_CMD_REG); reg_val |= SPI_CMD_RST; writel(reg_val, mdata->base + SPI_CMD_REG); reg_val = readl(mdata->base + SPI_CMD_REG); reg_val &= ~SPI_CMD_RST; writel(reg_val, mdata->base + SPI_CMD_REG); } static int mtk_spi_set_hw_cs_timing(struct spi_device *spi) { struct mtk_spi *mdata = spi_master_get_devdata(spi->master); struct spi_delay *cs_setup = &spi->cs_setup; struct spi_delay *cs_hold = &spi->cs_hold; struct spi_delay *cs_inactive = &spi->cs_inactive; u32 setup, hold, inactive; u32 reg_val; int delay; delay = spi_delay_to_ns(cs_setup, NULL); if (delay < 0) return delay; setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; delay = spi_delay_to_ns(cs_hold, NULL); if (delay < 0) return delay; hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; delay = spi_delay_to_ns(cs_inactive, NULL); if (delay < 0) return delay; inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; if (hold || setup) { reg_val = readl(mdata->base + SPI_CFG0_REG); if (mdata->dev_comp->enhance_timing) { if (hold) { hold = min_t(u32, hold, 0x10000); reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET); reg_val |= (((hold - 1) & 0xffff) << SPI_ADJUST_CFG0_CS_HOLD_OFFSET); } if (setup) { setup = min_t(u32, setup, 0x10000); reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET); reg_val |= (((setup - 1) & 0xffff) << SPI_ADJUST_CFG0_CS_SETUP_OFFSET); } } else { if (hold) { hold = min_t(u32, hold, 0x100); reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET); reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET); } if (setup) { setup = min_t(u32, setup, 0x100); reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET); reg_val |= (((setup - 1) & 0xff) << SPI_CFG0_CS_SETUP_OFFSET); } } writel(reg_val, mdata->base + SPI_CFG0_REG); } if (inactive) { inactive = min_t(u32, inactive, 0x100); reg_val = readl(mdata->base + SPI_CFG1_REG); reg_val &= ~SPI_CFG1_CS_IDLE_MASK; reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET); writel(reg_val, mdata->base + SPI_CFG1_REG); } return 0; } static int mtk_spi_hw_init(struct spi_master *master, struct spi_device *spi) { u16 cpha, cpol; u32 reg_val; struct mtk_chip_config *chip_config = spi->controller_data; struct mtk_spi *mdata = spi_master_get_devdata(master); cpha = spi->mode & SPI_CPHA ? 1 : 0; cpol = spi->mode & SPI_CPOL ? 1 : 0; reg_val = readl(mdata->base + SPI_CMD_REG); if (mdata->dev_comp->ipm_design) { /* SPI transfer without idle time until packet length done */ reg_val |= SPI_CMD_IPM_NONIDLE_MODE; if (spi->mode & SPI_LOOP) reg_val |= SPI_CMD_IPM_SPIM_LOOP; else reg_val &= ~SPI_CMD_IPM_SPIM_LOOP; } if (cpha) reg_val |= SPI_CMD_CPHA; else reg_val &= ~SPI_CMD_CPHA; if (cpol) reg_val |= SPI_CMD_CPOL; else reg_val &= ~SPI_CMD_CPOL; /* set the mlsbx and mlsbtx */ if (spi->mode & SPI_LSB_FIRST) { reg_val &= ~SPI_CMD_TXMSBF; reg_val &= ~SPI_CMD_RXMSBF; } else { reg_val |= SPI_CMD_TXMSBF; reg_val |= SPI_CMD_RXMSBF; } /* set the tx/rx endian */ #ifdef __LITTLE_ENDIAN reg_val &= ~SPI_CMD_TX_ENDIAN; reg_val &= ~SPI_CMD_RX_ENDIAN; #else reg_val |= SPI_CMD_TX_ENDIAN; reg_val |= SPI_CMD_RX_ENDIAN; #endif if (mdata->dev_comp->enhance_timing) { /* set CS polarity */ if (spi->mode & SPI_CS_HIGH) reg_val |= SPI_CMD_CS_POL; else reg_val &= ~SPI_CMD_CS_POL; if (chip_config->sample_sel) reg_val |= SPI_CMD_SAMPLE_SEL; else reg_val &= ~SPI_CMD_SAMPLE_SEL; } /* set finish and pause interrupt always enable */ reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE; /* disable dma mode */ reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA); /* disable deassert mode */ reg_val &= ~SPI_CMD_DEASSERT; writel(reg_val, mdata->base + SPI_CMD_REG); /* pad select */ if (mdata->dev_comp->need_pad_sel) writel(mdata->pad_sel[spi_get_chipselect(spi, 0)], mdata->base + SPI_PAD_SEL_REG); /* tick delay */ if (mdata->dev_comp->enhance_timing) { if (mdata->dev_comp->ipm_design) { reg_val = readl(mdata->base + SPI_CMD_REG); reg_val &= ~SPI_CMD_IPM_GET_TICKDLY_MASK; reg_val |= ((chip_config->tick_delay & 0x7) << SPI_CMD_IPM_GET_TICKDLY_OFFSET); writel(reg_val, mdata->base + SPI_CMD_REG); } else { reg_val = readl(mdata->base + SPI_CFG1_REG); reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK; reg_val |= ((chip_config->tick_delay & 0x7) << SPI_CFG1_GET_TICK_DLY_OFFSET); writel(reg_val, mdata->base + SPI_CFG1_REG); } } else { reg_val = readl(mdata->base + SPI_CFG1_REG); reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK_V1; reg_val |= ((chip_config->tick_delay & 0x3) << SPI_CFG1_GET_TICK_DLY_OFFSET_V1); writel(reg_val, mdata->base + SPI_CFG1_REG); } /* set hw cs timing */ mtk_spi_set_hw_cs_timing(spi); return 0; } static int mtk_spi_prepare_message(struct spi_master *master, struct spi_message *msg) { return mtk_spi_hw_init(master, msg->spi); } static void mtk_spi_set_cs(struct spi_device *spi, bool enable) { u32 reg_val; struct mtk_spi *mdata = spi_master_get_devdata(spi->master); if (spi->mode & SPI_CS_HIGH) enable = !enable; reg_val = readl(mdata->base + SPI_CMD_REG); if (!enable) { reg_val |= SPI_CMD_PAUSE_EN; writel(reg_val, mdata->base + SPI_CMD_REG); } else { reg_val &= ~SPI_CMD_PAUSE_EN; writel(reg_val, mdata->base + SPI_CMD_REG); mdata->state = MTK_SPI_IDLE; mtk_spi_reset(mdata); } } static void mtk_spi_prepare_transfer(struct spi_master *master, u32 speed_hz) { u32 div, sck_time, reg_val; struct mtk_spi *mdata = spi_master_get_devdata(master); if (speed_hz < mdata->spi_clk_hz / 2) div = DIV_ROUND_UP(mdata->spi_clk_hz, speed_hz); else div = 1; sck_time = (div + 1) / 2; if (mdata->dev_comp->enhance_timing) { reg_val = readl(mdata->base + SPI_CFG2_REG); reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET); reg_val |= (((sck_time - 1) & 0xffff) << SPI_CFG2_SCK_HIGH_OFFSET); reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET); reg_val |= (((sck_time - 1) & 0xffff) << SPI_CFG2_SCK_LOW_OFFSET); writel(reg_val, mdata->base + SPI_CFG2_REG); } else { reg_val = readl(mdata->base + SPI_CFG0_REG); reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET); reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_HIGH_OFFSET); reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET); reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET); writel(reg_val, mdata->base + SPI_CFG0_REG); } } static void mtk_spi_setup_packet(struct spi_master *master) { u32 packet_size, packet_loop, reg_val; struct mtk_spi *mdata = spi_master_get_devdata(master); if (mdata->dev_comp->ipm_design) packet_size = min_t(u32, mdata->xfer_len, MTK_SPI_IPM_PACKET_SIZE); else packet_size = min_t(u32, mdata->xfer_len, MTK_SPI_PACKET_SIZE); packet_loop = mdata->xfer_len / packet_size; reg_val = readl(mdata->base + SPI_CFG1_REG); if (mdata->dev_comp->ipm_design) reg_val &= ~SPI_CFG1_IPM_PACKET_LENGTH_MASK; else reg_val &= ~SPI_CFG1_PACKET_LENGTH_MASK; reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET; reg_val &= ~SPI_CFG1_PACKET_LOOP_MASK; reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET; writel(reg_val, mdata->base + SPI_CFG1_REG); } static void mtk_spi_enable_transfer(struct spi_master *master) { u32 cmd; struct mtk_spi *mdata = spi_master_get_devdata(master); cmd = readl(mdata->base + SPI_CMD_REG); if (mdata->state == MTK_SPI_IDLE) cmd |= SPI_CMD_ACT; else cmd |= SPI_CMD_RESUME; writel(cmd, mdata->base + SPI_CMD_REG); } static int mtk_spi_get_mult_delta(struct mtk_spi *mdata, u32 xfer_len) { u32 mult_delta = 0; if (mdata->dev_comp->ipm_design) { if (xfer_len > MTK_SPI_IPM_PACKET_SIZE) mult_delta = xfer_len % MTK_SPI_IPM_PACKET_SIZE; } else { if (xfer_len > MTK_SPI_PACKET_SIZE) mult_delta = xfer_len % MTK_SPI_PACKET_SIZE; } return mult_delta; } static void mtk_spi_update_mdata_len(struct spi_master *master) { int mult_delta; struct mtk_spi *mdata = spi_master_get_devdata(master); if (mdata->tx_sgl_len && mdata->rx_sgl_len) { if (mdata->tx_sgl_len > mdata->rx_sgl_len) { mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len); mdata->xfer_len = mdata->rx_sgl_len - mult_delta; mdata->rx_sgl_len = mult_delta; mdata->tx_sgl_len -= mdata->xfer_len; } else { mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len); mdata->xfer_len = mdata->tx_sgl_len - mult_delta; mdata->tx_sgl_len = mult_delta; mdata->rx_sgl_len -= mdata->xfer_len; } } else if (mdata->tx_sgl_len) { mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len); mdata->xfer_len = mdata->tx_sgl_len - mult_delta; mdata->tx_sgl_len = mult_delta; } else if (mdata->rx_sgl_len) { mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len); mdata->xfer_len = mdata->rx_sgl_len - mult_delta; mdata->rx_sgl_len = mult_delta; } } static void mtk_spi_setup_dma_addr(struct spi_master *master, struct spi_transfer *xfer) { struct mtk_spi *mdata = spi_master_get_devdata(master); if (mdata->tx_sgl) { writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK), mdata->base + SPI_TX_SRC_REG); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT if (mdata->dev_comp->dma_ext) writel((u32)(xfer->tx_dma >> 32), mdata->base + SPI_TX_SRC_REG_64); #endif } if (mdata->rx_sgl) { writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK), mdata->base + SPI_RX_DST_REG); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT if (mdata->dev_comp->dma_ext) writel((u32)(xfer->rx_dma >> 32), mdata->base + SPI_RX_DST_REG_64); #endif } } static int mtk_spi_fifo_transfer(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { int cnt, remainder; u32 reg_val; struct mtk_spi *mdata = spi_master_get_devdata(master); mdata->cur_transfer = xfer; mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len); mdata->num_xfered = 0; mtk_spi_prepare_transfer(master, xfer->speed_hz); mtk_spi_setup_packet(master); if (xfer->tx_buf) { cnt = xfer->len / 4; iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt); remainder = xfer->len % 4; if (remainder > 0) { reg_val = 0; memcpy(&reg_val, xfer->tx_buf + (cnt * 4), remainder); writel(reg_val, mdata->base + SPI_TX_DATA_REG); } } mtk_spi_enable_transfer(master); return 1; } static int mtk_spi_dma_transfer(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { int cmd; struct mtk_spi *mdata = spi_master_get_devdata(master); mdata->tx_sgl = NULL; mdata->rx_sgl = NULL; mdata->tx_sgl_len = 0; mdata->rx_sgl_len = 0; mdata->cur_transfer = xfer; mdata->num_xfered = 0; mtk_spi_prepare_transfer(master, xfer->speed_hz); cmd = readl(mdata->base + SPI_CMD_REG); if (xfer->tx_buf) cmd |= SPI_CMD_TX_DMA; if (xfer->rx_buf) cmd |= SPI_CMD_RX_DMA; writel(cmd, mdata->base + SPI_CMD_REG); if (xfer->tx_buf) mdata->tx_sgl = xfer->tx_sg.sgl; if (xfer->rx_buf) mdata->rx_sgl = xfer->rx_sg.sgl; if (mdata->tx_sgl) { xfer->tx_dma = sg_dma_address(mdata->tx_sgl); mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl); } if (mdata->rx_sgl) { xfer->rx_dma = sg_dma_address(mdata->rx_sgl); mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl); } mtk_spi_update_mdata_len(master); mtk_spi_setup_packet(master); mtk_spi_setup_dma_addr(master, xfer); mtk_spi_enable_transfer(master); return 1; } static int mtk_spi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct mtk_spi *mdata = spi_master_get_devdata(spi->master); u32 reg_val = 0; /* prepare xfer direction and duplex mode */ if (mdata->dev_comp->ipm_design) { if (!xfer->tx_buf || !xfer->rx_buf) { reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN; if (xfer->rx_buf) reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR; } writel(reg_val, mdata->base + SPI_CFG3_IPM_REG); } if (master->can_dma(master, spi, xfer)) return mtk_spi_dma_transfer(master, spi, xfer); else return mtk_spi_fifo_transfer(master, spi, xfer); } static bool mtk_spi_can_dma(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { /* Buffers for DMA transactions must be 4-byte aligned */ return (xfer->len > MTK_SPI_MAX_FIFO_SIZE && (unsigned long)xfer->tx_buf % 4 == 0 && (unsigned long)xfer->rx_buf % 4 == 0); } static int mtk_spi_setup(struct spi_device *spi) { struct mtk_spi *mdata = spi_master_get_devdata(spi->master); if (!spi->controller_data) spi->controller_data = (void *)&mtk_default_chip_info; if (mdata->dev_comp->need_pad_sel && spi_get_csgpiod(spi, 0)) /* CS de-asserted, gpiolib will handle inversion */ gpiod_direction_output(spi_get_csgpiod(spi, 0), 0); return 0; } static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id) { u32 cmd, reg_val, cnt, remainder, len; struct spi_master *master = dev_id; struct mtk_spi *mdata = spi_master_get_devdata(master); struct spi_transfer *trans = mdata->cur_transfer; reg_val = readl(mdata->base + SPI_STATUS0_REG); if (reg_val & MTK_SPI_PAUSE_INT_STATUS) mdata->state = MTK_SPI_PAUSED; else mdata->state = MTK_SPI_IDLE; /* SPI-MEM ops */ if (mdata->use_spimem) { complete(&mdata->spimem_done); return IRQ_HANDLED; } if (!master->can_dma(master, NULL, trans)) { if (trans->rx_buf) { cnt = mdata->xfer_len / 4; ioread32_rep(mdata->base + SPI_RX_DATA_REG, trans->rx_buf + mdata->num_xfered, cnt); remainder = mdata->xfer_len % 4; if (remainder > 0) { reg_val = readl(mdata->base + SPI_RX_DATA_REG); memcpy(trans->rx_buf + mdata->num_xfered + (cnt * 4), &reg_val, remainder); } } mdata->num_xfered += mdata->xfer_len; if (mdata->num_xfered == trans->len) { spi_finalize_current_transfer(master); return IRQ_HANDLED; } len = trans->len - mdata->num_xfered; mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len); mtk_spi_setup_packet(master); cnt = mdata->xfer_len / 4; iowrite32_rep(mdata->base + SPI_TX_DATA_REG, trans->tx_buf + mdata->num_xfered, cnt); remainder = mdata->xfer_len % 4; if (remainder > 0) { reg_val = 0; memcpy(&reg_val, trans->tx_buf + (cnt * 4) + mdata->num_xfered, remainder); writel(reg_val, mdata->base + SPI_TX_DATA_REG); } mtk_spi_enable_transfer(master); return IRQ_HANDLED; } if (mdata->tx_sgl) trans->tx_dma += mdata->xfer_len; if (mdata->rx_sgl) trans->rx_dma += mdata->xfer_len; if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) { mdata->tx_sgl = sg_next(mdata->tx_sgl); if (mdata->tx_sgl) { trans->tx_dma = sg_dma_address(mdata->tx_sgl); mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl); } } if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) { mdata->rx_sgl = sg_next(mdata->rx_sgl); if (mdata->rx_sgl) { trans->rx_dma = sg_dma_address(mdata->rx_sgl); mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl); } } if (!mdata->tx_sgl && !mdata->rx_sgl) { /* spi disable dma */ cmd = readl(mdata->base + SPI_CMD_REG); cmd &= ~SPI_CMD_TX_DMA; cmd &= ~SPI_CMD_RX_DMA; writel(cmd, mdata->base + SPI_CMD_REG); spi_finalize_current_transfer(master); return IRQ_HANDLED; } mtk_spi_update_mdata_len(master); mtk_spi_setup_packet(master); mtk_spi_setup_dma_addr(master, trans); mtk_spi_enable_transfer(master); return IRQ_HANDLED; } static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { int opcode_len; if (op->data.dir != SPI_MEM_NO_DATA) { opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes; if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) { op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len; /* force data buffer dma-aligned. */ op->data.nbytes -= op->data.nbytes % 4; } } return 0; } static bool mtk_spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (!spi_mem_default_supports_op(mem, op)) return false; if (op->addr.nbytes && op->dummy.nbytes && op->addr.buswidth != op->dummy.buswidth) return false; if (op->addr.nbytes + op->dummy.nbytes > 16) return false; if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) { if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE > MTK_SPI_IPM_PACKET_LOOP || op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0) return false; } return true; } static void mtk_spi_mem_setup_dma_xfer(struct spi_master *master, const struct spi_mem_op *op) { struct mtk_spi *mdata = spi_master_get_devdata(master); writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK), mdata->base + SPI_TX_SRC_REG); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT if (mdata->dev_comp->dma_ext) writel((u32)(mdata->tx_dma >> 32), mdata->base + SPI_TX_SRC_REG_64); #endif if (op->data.dir == SPI_MEM_DATA_IN) { writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK), mdata->base + SPI_RX_DST_REG); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT if (mdata->dev_comp->dma_ext) writel((u32)(mdata->rx_dma >> 32), mdata->base + SPI_RX_DST_REG_64); #endif } } static int mtk_spi_transfer_wait(struct spi_mem *mem, const struct spi_mem_op *op) { struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master); /* * For each byte we wait for 8 cycles of the SPI clock. * Since speed is defined in Hz and we want milliseconds, * so it should be 8 * 1000. */ u64 ms = 8000LL; if (op->data.dir == SPI_MEM_NO_DATA) ms *= 32; /* prevent we may get 0 for short transfers. */ else ms *= op->data.nbytes; ms = div_u64(ms, mem->spi->max_speed_hz); ms += ms + 1000; /* 1s tolerance */ if (ms > UINT_MAX) ms = UINT_MAX; if (!wait_for_completion_timeout(&mdata->spimem_done, msecs_to_jiffies(ms))) { dev_err(mdata->dev, "spi-mem transfer timeout\n"); return -ETIMEDOUT; } return 0; } static int mtk_spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master); u32 reg_val, nio, tx_size; char *tx_tmp_buf, *rx_tmp_buf; int ret = 0; mdata->use_spimem = true; reinit_completion(&mdata->spimem_done); mtk_spi_reset(mdata); mtk_spi_hw_init(mem->spi->master, mem->spi); mtk_spi_prepare_transfer(mem->spi->master, mem->spi->max_speed_hz); reg_val = readl(mdata->base + SPI_CFG3_IPM_REG); /* opcode byte len */ reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK; reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET; /* addr & dummy byte len */ reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK; if (op->addr.nbytes || op->dummy.nbytes) reg_val |= (op->addr.nbytes + op->dummy.nbytes) << SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET; /* data byte len */ if (op->data.dir == SPI_MEM_NO_DATA) { reg_val |= SPI_CFG3_IPM_NODATA_FLAG; writel(0, mdata->base + SPI_CFG1_REG); } else { reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG; mdata->xfer_len = op->data.nbytes; mtk_spi_setup_packet(mem->spi->master); } if (op->addr.nbytes || op->dummy.nbytes) { if (op->addr.buswidth == 1 || op->dummy.buswidth == 1) reg_val |= SPI_CFG3_IPM_XMODE_EN; else reg_val &= ~SPI_CFG3_IPM_XMODE_EN; } if (op->addr.buswidth == 2 || op->dummy.buswidth == 2 || op->data.buswidth == 2) nio = 2; else if (op->addr.buswidth == 4 || op->dummy.buswidth == 4 || op->data.buswidth == 4) nio = 4; else nio = 1; reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK; reg_val |= PIN_MODE_CFG(nio); reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN; if (op->data.dir == SPI_MEM_DATA_IN) reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR; else reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR; writel(reg_val, mdata->base + SPI_CFG3_IPM_REG); tx_size = 1 + op->addr.nbytes + op->dummy.nbytes; if (op->data.dir == SPI_MEM_DATA_OUT) tx_size += op->data.nbytes; tx_size = max_t(u32, tx_size, 32); tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA); if (!tx_tmp_buf) { mdata->use_spimem = false; return -ENOMEM; } tx_tmp_buf[0] = op->cmd.opcode; if (op->addr.nbytes) { int i; for (i = 0; i < op->addr.nbytes; i++) tx_tmp_buf[i + 1] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); } if (op->dummy.nbytes) memset(tx_tmp_buf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1, op->data.buf.out, op->data.nbytes); mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf, tx_size, DMA_TO_DEVICE); if (dma_mapping_error(mdata->dev, mdata->tx_dma)) { ret = -ENOMEM; goto err_exit; } if (op->data.dir == SPI_MEM_DATA_IN) { if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) { rx_tmp_buf = kzalloc(op->data.nbytes, GFP_KERNEL | GFP_DMA); if (!rx_tmp_buf) { ret = -ENOMEM; goto unmap_tx_dma; } } else { rx_tmp_buf = op->data.buf.in; } mdata->rx_dma = dma_map_single(mdata->dev, rx_tmp_buf, op->data.nbytes, DMA_FROM_DEVICE); if (dma_mapping_error(mdata->dev, mdata->rx_dma)) { ret = -ENOMEM; goto kfree_rx_tmp_buf; } } reg_val = readl(mdata->base + SPI_CMD_REG); reg_val |= SPI_CMD_TX_DMA; if (op->data.dir == SPI_MEM_DATA_IN) reg_val |= SPI_CMD_RX_DMA; writel(reg_val, mdata->base + SPI_CMD_REG); mtk_spi_mem_setup_dma_xfer(mem->spi->master, op); mtk_spi_enable_transfer(mem->spi->master); /* Wait for the interrupt. */ ret = mtk_spi_transfer_wait(mem, op); if (ret) goto unmap_rx_dma; /* spi disable dma */ reg_val = readl(mdata->base + SPI_CMD_REG); reg_val &= ~SPI_CMD_TX_DMA; if (op->data.dir == SPI_MEM_DATA_IN) reg_val &= ~SPI_CMD_RX_DMA; writel(reg_val, mdata->base + SPI_CMD_REG); unmap_rx_dma: if (op->data.dir == SPI_MEM_DATA_IN) { dma_unmap_single(mdata->dev, mdata->rx_dma, op->data.nbytes, DMA_FROM_DEVICE); if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes); } kfree_rx_tmp_buf: if (op->data.dir == SPI_MEM_DATA_IN && !IS_ALIGNED((size_t)op->data.buf.in, 4)) kfree(rx_tmp_buf); unmap_tx_dma: dma_unmap_single(mdata->dev, mdata->tx_dma, tx_size, DMA_TO_DEVICE); err_exit: kfree(tx_tmp_buf); mdata->use_spimem = false; return ret; } static const struct spi_controller_mem_ops mtk_spi_mem_ops = { .adjust_op_size = mtk_spi_mem_adjust_op_size, .supports_op = mtk_spi_mem_supports_op, .exec_op = mtk_spi_mem_exec_op, }; static int mtk_spi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spi_master *master; struct mtk_spi *mdata; int i, irq, ret, addr_bits; master = devm_spi_alloc_master(dev, sizeof(*mdata)); if (!master) return dev_err_probe(dev, -ENOMEM, "failed to alloc spi master\n"); master->auto_runtime_pm = true; master->dev.of_node = dev->of_node; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; master->set_cs = mtk_spi_set_cs; master->prepare_message = mtk_spi_prepare_message; master->transfer_one = mtk_spi_transfer_one; master->can_dma = mtk_spi_can_dma; master->setup = mtk_spi_setup; master->set_cs_timing = mtk_spi_set_hw_cs_timing; master->use_gpio_descriptors = true; mdata = spi_master_get_devdata(master); mdata->dev_comp = device_get_match_data(dev); if (mdata->dev_comp->enhance_timing) master->mode_bits |= SPI_CS_HIGH; if (mdata->dev_comp->must_tx) master->flags = SPI_CONTROLLER_MUST_TX; if (mdata->dev_comp->ipm_design) master->mode_bits |= SPI_LOOP | SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD; if (mdata->dev_comp->ipm_design) { mdata->dev = dev; master->mem_ops = &mtk_spi_mem_ops; init_completion(&mdata->spimem_done); } if (mdata->dev_comp->need_pad_sel) { mdata->pad_num = of_property_count_u32_elems(dev->of_node, "mediatek,pad-select"); if (mdata->pad_num < 0) return dev_err_probe(dev, -EINVAL, "No 'mediatek,pad-select' property\n"); mdata->pad_sel = devm_kmalloc_array(dev, mdata->pad_num, sizeof(u32), GFP_KERNEL); if (!mdata->pad_sel) return -ENOMEM; for (i = 0; i < mdata->pad_num; i++) { of_property_read_u32_index(dev->of_node, "mediatek,pad-select", i, &mdata->pad_sel[i]); if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL) return dev_err_probe(dev, -EINVAL, "wrong pad-sel[%d]: %u\n", i, mdata->pad_sel[i]); } } platform_set_drvdata(pdev, master); mdata->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mdata->base)) return PTR_ERR(mdata->base); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; if (!dev->dma_mask) dev->dma_mask = &dev->coherent_dma_mask; if (mdata->dev_comp->ipm_design) dma_set_max_seg_size(dev, SZ_16M); else dma_set_max_seg_size(dev, SZ_256K); mdata->parent_clk = devm_clk_get(dev, "parent-clk"); if (IS_ERR(mdata->parent_clk)) return dev_err_probe(dev, PTR_ERR(mdata->parent_clk), "failed to get parent-clk\n"); mdata->sel_clk = devm_clk_get(dev, "sel-clk"); if (IS_ERR(mdata->sel_clk)) return dev_err_probe(dev, PTR_ERR(mdata->sel_clk), "failed to get sel-clk\n"); mdata->spi_clk = devm_clk_get(dev, "spi-clk"); if (IS_ERR(mdata->spi_clk)) return dev_err_probe(dev, PTR_ERR(mdata->spi_clk), "failed to get spi-clk\n"); mdata->spi_hclk = devm_clk_get_optional(dev, "hclk"); if (IS_ERR(mdata->spi_hclk)) return dev_err_probe(dev, PTR_ERR(mdata->spi_hclk), "failed to get hclk\n"); ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk); if (ret < 0) return dev_err_probe(dev, ret, "failed to clk_set_parent\n"); ret = clk_prepare_enable(mdata->spi_hclk); if (ret < 0) return dev_err_probe(dev, ret, "failed to enable hclk\n"); ret = clk_prepare_enable(mdata->spi_clk); if (ret < 0) { clk_disable_unprepare(mdata->spi_hclk); return dev_err_probe(dev, ret, "failed to enable spi_clk\n"); } mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk); if (mdata->dev_comp->no_need_unprepare) { clk_disable(mdata->spi_clk); clk_disable(mdata->spi_hclk); } else { clk_disable_unprepare(mdata->spi_clk); clk_disable_unprepare(mdata->spi_hclk); } if (mdata->dev_comp->need_pad_sel) { if (mdata->pad_num != master->num_chipselect) return dev_err_probe(dev, -EINVAL, "pad_num does not match num_chipselect(%d != %d)\n", mdata->pad_num, master->num_chipselect); if (!master->cs_gpiods && master->num_chipselect > 1) return dev_err_probe(dev, -EINVAL, "cs_gpios not specified and num_chipselect > 1\n"); } if (mdata->dev_comp->dma_ext) addr_bits = DMA_ADDR_EXT_BITS; else addr_bits = DMA_ADDR_DEF_BITS; ret = dma_set_mask(dev, DMA_BIT_MASK(addr_bits)); if (ret) dev_notice(dev, "SPI dma_set_mask(%d) failed, ret:%d\n", addr_bits, ret); ret = devm_request_irq(dev, irq, mtk_spi_interrupt, IRQF_TRIGGER_NONE, dev_name(dev), master); if (ret) return dev_err_probe(dev, ret, "failed to register irq\n"); pm_runtime_enable(dev); ret = devm_spi_register_master(dev, master); if (ret) { pm_runtime_disable(dev); return dev_err_probe(dev, ret, "failed to register master\n"); } return 0; } static void mtk_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct mtk_spi *mdata = spi_master_get_devdata(master); int ret; if (mdata->use_spimem && !completion_done(&mdata->spimem_done)) complete(&mdata->spimem_done); ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { dev_warn(&pdev->dev, "Failed to resume hardware (%pe)\n", ERR_PTR(ret)); } else { /* * If pm runtime resume failed, clks are disabled and * unprepared. So don't access the hardware and skip clk * unpreparing. */ mtk_spi_reset(mdata); if (mdata->dev_comp->no_need_unprepare) { clk_unprepare(mdata->spi_clk); clk_unprepare(mdata->spi_hclk); } } pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); } #ifdef CONFIG_PM_SLEEP static int mtk_spi_suspend(struct device *dev) { int ret; struct spi_master *master = dev_get_drvdata(dev); struct mtk_spi *mdata = spi_master_get_devdata(master); ret = spi_master_suspend(master); if (ret) return ret; if (!pm_runtime_suspended(dev)) { clk_disable_unprepare(mdata->spi_clk); clk_disable_unprepare(mdata->spi_hclk); } return 0; } static int mtk_spi_resume(struct device *dev) { int ret; struct spi_master *master = dev_get_drvdata(dev); struct mtk_spi *mdata = spi_master_get_devdata(master); if (!pm_runtime_suspended(dev)) { ret = clk_prepare_enable(mdata->spi_clk); if (ret < 0) { dev_err(dev, "failed to enable spi_clk (%d)\n", ret); return ret; } ret = clk_prepare_enable(mdata->spi_hclk); if (ret < 0) { dev_err(dev, "failed to enable spi_hclk (%d)\n", ret); clk_disable_unprepare(mdata->spi_clk); return ret; } } ret = spi_master_resume(master); if (ret < 0) { clk_disable_unprepare(mdata->spi_clk); clk_disable_unprepare(mdata->spi_hclk); } return ret; } #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_PM static int mtk_spi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mtk_spi *mdata = spi_master_get_devdata(master); if (mdata->dev_comp->no_need_unprepare) { clk_disable(mdata->spi_clk); clk_disable(mdata->spi_hclk); } else { clk_disable_unprepare(mdata->spi_clk); clk_disable_unprepare(mdata->spi_hclk); } return 0; } static int mtk_spi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mtk_spi *mdata = spi_master_get_devdata(master); int ret; if (mdata->dev_comp->no_need_unprepare) { ret = clk_enable(mdata->spi_clk); if (ret < 0) { dev_err(dev, "failed to enable spi_clk (%d)\n", ret); return ret; } ret = clk_enable(mdata->spi_hclk); if (ret < 0) { dev_err(dev, "failed to enable spi_hclk (%d)\n", ret); clk_disable(mdata->spi_clk); return ret; } } else { ret = clk_prepare_enable(mdata->spi_clk); if (ret < 0) { dev_err(dev, "failed to prepare_enable spi_clk (%d)\n", ret); return ret; } ret = clk_prepare_enable(mdata->spi_hclk); if (ret < 0) { dev_err(dev, "failed to prepare_enable spi_hclk (%d)\n", ret); clk_disable_unprepare(mdata->spi_clk); return ret; } } return 0; } #endif /* CONFIG_PM */ static const struct dev_pm_ops mtk_spi_pm = { SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume) SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend, mtk_spi_runtime_resume, NULL) }; static struct platform_driver mtk_spi_driver = { .driver = { .name = "mtk-spi", .pm = &mtk_spi_pm, .of_match_table = mtk_spi_of_match, }, .probe = mtk_spi_probe, .remove_new = mtk_spi_remove, }; module_platform_driver(mtk_spi_driver); MODULE_DESCRIPTION("MTK SPI Controller driver"); MODULE_AUTHOR("Leilk Liu <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:mtk-spi");
linux-master
drivers/spi/spi-mt65xx.c
// SPDX-License-Identifier: GPL-2.0-only /* * PXA2xx SPI DMA engine support. * * Copyright (C) 2013, 2021 Intel Corporation * Author: Mika Westerberg <[email protected]> */ #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/scatterlist.h> #include <linux/sizes.h> #include <linux/spi/pxa2xx_spi.h> #include <linux/spi/spi.h> #include "spi-pxa2xx.h" static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, bool error) { struct spi_message *msg = drv_data->controller->cur_msg; /* * It is possible that one CPU is handling ROR interrupt and other * just gets DMA completion. Calling pump_transfers() twice for the * same transfer leads to problems thus we prevent concurrent calls * by using dma_running. */ if (atomic_dec_and_test(&drv_data->dma_running)) { /* * If the other CPU is still handling the ROR interrupt we * might not know about the error yet. So we re-check the * ROR bit here before we clear the status register. */ if (!error) error = read_SSSR_bits(drv_data, drv_data->mask_sr) & SSSR_ROR; /* Clear status & disable interrupts */ clear_SSCR1_bits(drv_data, drv_data->dma_cr1); write_SSSR_CS(drv_data, drv_data->clear_sr); if (!pxa25x_ssp_comp(drv_data)) pxa2xx_spi_write(drv_data, SSTO, 0); if (error) { /* In case we got an error we disable the SSP now */ pxa_ssp_disable(drv_data->ssp); msg->status = -EIO; } spi_finalize_current_transfer(drv_data->controller); } } static void pxa2xx_spi_dma_callback(void *data) { pxa2xx_spi_dma_transfer_complete(data, false); } static struct dma_async_tx_descriptor * pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, enum dma_transfer_direction dir, struct spi_transfer *xfer) { struct chip_data *chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); enum dma_slave_buswidth width; struct dma_slave_config cfg; struct dma_chan *chan; struct sg_table *sgt; int ret; switch (drv_data->n_bytes) { case 1: width = DMA_SLAVE_BUSWIDTH_1_BYTE; break; case 2: width = DMA_SLAVE_BUSWIDTH_2_BYTES; break; default: width = DMA_SLAVE_BUSWIDTH_4_BYTES; break; } memset(&cfg, 0, sizeof(cfg)); cfg.direction = dir; if (dir == DMA_MEM_TO_DEV) { cfg.dst_addr = drv_data->ssp->phys_base + SSDR; cfg.dst_addr_width = width; cfg.dst_maxburst = chip->dma_burst_size; sgt = &xfer->tx_sg; chan = drv_data->controller->dma_tx; } else { cfg.src_addr = drv_data->ssp->phys_base + SSDR; cfg.src_addr_width = width; cfg.src_maxburst = chip->dma_burst_size; sgt = &xfer->rx_sg; chan = drv_data->controller->dma_rx; } ret = dmaengine_slave_config(chan, &cfg); if (ret) { dev_warn(drv_data->ssp->dev, "DMA slave config failed\n"); return NULL; } return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) { u32 status; status = read_SSSR_bits(drv_data, drv_data->mask_sr); if (status & SSSR_ROR) { dev_err(drv_data->ssp->dev, "FIFO overrun\n"); dmaengine_terminate_async(drv_data->controller->dma_rx); dmaengine_terminate_async(drv_data->controller->dma_tx); pxa2xx_spi_dma_transfer_complete(drv_data, true); return IRQ_HANDLED; } return IRQ_NONE; } int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, struct spi_transfer *xfer) { struct dma_async_tx_descriptor *tx_desc, *rx_desc; int err; tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer); if (!tx_desc) { dev_err(drv_data->ssp->dev, "failed to get DMA TX descriptor\n"); err = -EBUSY; goto err_tx; } rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer); if (!rx_desc) { dev_err(drv_data->ssp->dev, "failed to get DMA RX descriptor\n"); err = -EBUSY; goto err_rx; } /* We are ready when RX completes */ rx_desc->callback = pxa2xx_spi_dma_callback; rx_desc->callback_param = drv_data; dmaengine_submit(rx_desc); dmaengine_submit(tx_desc); return 0; err_rx: dmaengine_terminate_async(drv_data->controller->dma_tx); err_tx: return err; } void pxa2xx_spi_dma_start(struct driver_data *drv_data) { dma_async_issue_pending(drv_data->controller->dma_rx); dma_async_issue_pending(drv_data->controller->dma_tx); atomic_set(&drv_data->dma_running, 1); } void pxa2xx_spi_dma_stop(struct driver_data *drv_data) { atomic_set(&drv_data->dma_running, 0); dmaengine_terminate_sync(drv_data->controller->dma_rx); dmaengine_terminate_sync(drv_data->controller->dma_tx); } int pxa2xx_spi_dma_setup(struct driver_data *drv_data) { struct pxa2xx_spi_controller *pdata = drv_data->controller_info; struct spi_controller *controller = drv_data->controller; struct device *dev = drv_data->ssp->dev; dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); controller->dma_tx = dma_request_slave_channel_compat(mask, pdata->dma_filter, pdata->tx_param, dev, "tx"); if (!controller->dma_tx) return -ENODEV; controller->dma_rx = dma_request_slave_channel_compat(mask, pdata->dma_filter, pdata->rx_param, dev, "rx"); if (!controller->dma_rx) { dma_release_channel(controller->dma_tx); controller->dma_tx = NULL; return -ENODEV; } return 0; } void pxa2xx_spi_dma_release(struct driver_data *drv_data) { struct spi_controller *controller = drv_data->controller; if (controller->dma_rx) { dmaengine_terminate_sync(controller->dma_rx); dma_release_channel(controller->dma_rx); controller->dma_rx = NULL; } if (controller->dma_tx) { dmaengine_terminate_sync(controller->dma_tx); dma_release_channel(controller->dma_tx); controller->dma_tx = NULL; } } int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi, u8 bits_per_word, u32 *burst_code, u32 *threshold) { struct pxa2xx_spi_chip *chip_info = spi->controller_data; struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); u32 dma_burst_size = drv_data->controller_info->dma_burst_size; /* * If the DMA burst size is given in chip_info we use that, * otherwise we use the default. Also we use the default FIFO * thresholds for now. */ *burst_code = chip_info ? chip_info->dma_burst_size : dma_burst_size; *threshold = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT); return 0; }
linux-master
drivers/spi/spi-pxa2xx-dma.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ASPEED FMC/SPI Memory Controller Driver * * Copyright (c) 2015-2022, IBM Corporation. * Copyright (c) 2020, ASPEED Corporation. */ #include <linux/clk.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> #define DEVICE_NAME "spi-aspeed-smc" /* Type setting Register */ #define CONFIG_REG 0x0 #define CONFIG_TYPE_SPI 0x2 /* CE Control Register */ #define CE_CTRL_REG 0x4 /* CEx Control Register */ #define CE0_CTRL_REG 0x10 #define CTRL_IO_MODE_MASK GENMASK(30, 28) #define CTRL_IO_SINGLE_DATA 0x0 #define CTRL_IO_DUAL_DATA BIT(29) #define CTRL_IO_QUAD_DATA BIT(30) #define CTRL_COMMAND_SHIFT 16 #define CTRL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI only */ #define CTRL_IO_DUMMY_SET(dummy) \ (((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6)) #define CTRL_FREQ_SEL_SHIFT 8 #define CTRL_FREQ_SEL_MASK GENMASK(11, CTRL_FREQ_SEL_SHIFT) #define CTRL_CE_STOP_ACTIVE BIT(2) #define CTRL_IO_MODE_CMD_MASK GENMASK(1, 0) #define CTRL_IO_MODE_NORMAL 0x0 #define CTRL_IO_MODE_READ 0x1 #define CTRL_IO_MODE_WRITE 0x2 #define CTRL_IO_MODE_USER 0x3 #define CTRL_IO_CMD_MASK 0xf0ff40c3 /* CEx Address Decoding Range Register */ #define CE0_SEGMENT_ADDR_REG 0x30 /* CEx Read timing compensation register */ #define CE0_TIMING_COMPENSATION_REG 0x94 enum aspeed_spi_ctl_reg_value { ASPEED_SPI_BASE, ASPEED_SPI_READ, ASPEED_SPI_WRITE, ASPEED_SPI_MAX, }; struct aspeed_spi; struct aspeed_spi_chip { struct aspeed_spi *aspi; u32 cs; void __iomem *ctl; void __iomem *ahb_base; u32 ahb_window_size; u32 ctl_val[ASPEED_SPI_MAX]; u32 clk_freq; }; struct aspeed_spi_data { u32 ctl0; u32 max_cs; bool hastype; u32 mode_bits; u32 we0; u32 timing; u32 hclk_mask; u32 hdiv_max; u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg); u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg); u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end); int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv, const u8 *golden_buf, u8 *test_buf); }; #define ASPEED_SPI_MAX_NUM_CS 5 struct aspeed_spi { const struct aspeed_spi_data *data; void __iomem *regs; void __iomem *ahb_base; u32 ahb_base_phy; u32 ahb_window_size; struct device *dev; struct clk *clk; u32 clk_freq; struct aspeed_spi_chip chips[ASPEED_SPI_MAX_NUM_CS]; }; static u32 aspeed_spi_get_io_mode(const struct spi_mem_op *op) { switch (op->data.buswidth) { case 1: return CTRL_IO_SINGLE_DATA; case 2: return CTRL_IO_DUAL_DATA; case 4: return CTRL_IO_QUAD_DATA; default: return CTRL_IO_SINGLE_DATA; } } static void aspeed_spi_set_io_mode(struct aspeed_spi_chip *chip, u32 io_mode) { u32 ctl; if (io_mode > 0) { ctl = readl(chip->ctl) & ~CTRL_IO_MODE_MASK; ctl |= io_mode; writel(ctl, chip->ctl); } } static void aspeed_spi_start_user(struct aspeed_spi_chip *chip) { u32 ctl = chip->ctl_val[ASPEED_SPI_BASE]; ctl |= CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE; writel(ctl, chip->ctl); ctl &= ~CTRL_CE_STOP_ACTIVE; writel(ctl, chip->ctl); } static void aspeed_spi_stop_user(struct aspeed_spi_chip *chip) { u32 ctl = chip->ctl_val[ASPEED_SPI_READ] | CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE; writel(ctl, chip->ctl); /* Restore defaults */ writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); } static int aspeed_spi_read_from_ahb(void *buf, void __iomem *src, size_t len) { size_t offset = 0; if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) && IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) { ioread32_rep(src, buf, len >> 2); offset = len & ~0x3; len -= offset; } ioread8_rep(src, (u8 *)buf + offset, len); return 0; } static int aspeed_spi_write_to_ahb(void __iomem *dst, const void *buf, size_t len) { size_t offset = 0; if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) && IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) { iowrite32_rep(dst, buf, len >> 2); offset = len & ~0x3; len -= offset; } iowrite8_rep(dst, (const u8 *)buf + offset, len); return 0; } static int aspeed_spi_send_cmd_addr(struct aspeed_spi_chip *chip, u8 addr_nbytes, u64 offset, u32 opcode) { __be32 temp; u32 cmdaddr; switch (addr_nbytes) { case 3: cmdaddr = offset & 0xFFFFFF; cmdaddr |= opcode << 24; temp = cpu_to_be32(cmdaddr); aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4); break; case 4: temp = cpu_to_be32(offset); aspeed_spi_write_to_ahb(chip->ahb_base, &opcode, 1); aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4); break; default: WARN_ONCE(1, "Unexpected address width %u", addr_nbytes); return -EOPNOTSUPP; } return 0; } static int aspeed_spi_read_reg(struct aspeed_spi_chip *chip, const struct spi_mem_op *op) { aspeed_spi_start_user(chip); aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1); aspeed_spi_read_from_ahb(op->data.buf.in, chip->ahb_base, op->data.nbytes); aspeed_spi_stop_user(chip); return 0; } static int aspeed_spi_write_reg(struct aspeed_spi_chip *chip, const struct spi_mem_op *op) { aspeed_spi_start_user(chip); aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1); aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out, op->data.nbytes); aspeed_spi_stop_user(chip); return 0; } static ssize_t aspeed_spi_read_user(struct aspeed_spi_chip *chip, const struct spi_mem_op *op, u64 offset, size_t len, void *buf) { int io_mode = aspeed_spi_get_io_mode(op); u8 dummy = 0xFF; int i; int ret; aspeed_spi_start_user(chip); ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, offset, op->cmd.opcode); if (ret < 0) return ret; if (op->dummy.buswidth && op->dummy.nbytes) { for (i = 0; i < op->dummy.nbytes / op->dummy.buswidth; i++) aspeed_spi_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy)); } aspeed_spi_set_io_mode(chip, io_mode); aspeed_spi_read_from_ahb(buf, chip->ahb_base, len); aspeed_spi_stop_user(chip); return 0; } static ssize_t aspeed_spi_write_user(struct aspeed_spi_chip *chip, const struct spi_mem_op *op) { int ret; aspeed_spi_start_user(chip); ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, op->addr.val, op->cmd.opcode); if (ret < 0) return ret; aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out, op->data.nbytes); aspeed_spi_stop_user(chip); return 0; } /* support for 1-1-1, 1-1-2 or 1-1-4 */ static bool aspeed_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (op->cmd.buswidth > 1) return false; if (op->addr.nbytes != 0) { if (op->addr.buswidth > 1) return false; if (op->addr.nbytes < 3 || op->addr.nbytes > 4) return false; } if (op->dummy.nbytes != 0) { if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7) return false; } if (op->data.nbytes != 0 && op->data.buswidth > 4) return false; return spi_mem_default_supports_op(mem, op); } static const struct aspeed_spi_data ast2400_spi_data; static int do_aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->controller); struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(mem->spi, 0)]; u32 addr_mode, addr_mode_backup; u32 ctl_val; int ret = 0; dev_dbg(aspi->dev, "CE%d %s OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x len:%#x", chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write", op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, op->dummy.buswidth, op->data.buswidth, op->addr.nbytes, op->dummy.nbytes, op->data.nbytes); addr_mode = readl(aspi->regs + CE_CTRL_REG); addr_mode_backup = addr_mode; ctl_val = chip->ctl_val[ASPEED_SPI_BASE]; ctl_val &= ~CTRL_IO_CMD_MASK; ctl_val |= op->cmd.opcode << CTRL_COMMAND_SHIFT; /* 4BYTE address mode */ if (op->addr.nbytes) { if (op->addr.nbytes == 4) addr_mode |= (0x11 << chip->cs); else addr_mode &= ~(0x11 << chip->cs); if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data) ctl_val |= CTRL_IO_ADDRESS_4B; } if (op->dummy.nbytes) ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth); if (op->data.nbytes) ctl_val |= aspeed_spi_get_io_mode(op); if (op->data.dir == SPI_MEM_DATA_OUT) ctl_val |= CTRL_IO_MODE_WRITE; else ctl_val |= CTRL_IO_MODE_READ; if (addr_mode != addr_mode_backup) writel(addr_mode, aspi->regs + CE_CTRL_REG); writel(ctl_val, chip->ctl); if (op->data.dir == SPI_MEM_DATA_IN) { if (!op->addr.nbytes) ret = aspeed_spi_read_reg(chip, op); else ret = aspeed_spi_read_user(chip, op, op->addr.val, op->data.nbytes, op->data.buf.in); } else { if (!op->addr.nbytes) ret = aspeed_spi_write_reg(chip, op); else ret = aspeed_spi_write_user(chip, op); } /* Restore defaults */ if (addr_mode != addr_mode_backup) writel(addr_mode_backup, aspi->regs + CE_CTRL_REG); writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); return ret; } static int aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { int ret; ret = do_aspeed_spi_exec_op(mem, op); if (ret) dev_err(&mem->spi->dev, "operation failed: %d\n", ret); return ret; } static const char *aspeed_spi_get_name(struct spi_mem *mem) { struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->controller); struct device *dev = aspi->dev; return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), spi_get_chipselect(mem->spi, 0)); } struct aspeed_spi_window { u32 cs; u32 offset; u32 size; }; static void aspeed_spi_get_windows(struct aspeed_spi *aspi, struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS]) { const struct aspeed_spi_data *data = aspi->data; u32 reg_val; u32 cs; for (cs = 0; cs < aspi->data->max_cs; cs++) { reg_val = readl(aspi->regs + CE0_SEGMENT_ADDR_REG + cs * 4); windows[cs].cs = cs; windows[cs].size = data->segment_end(aspi, reg_val) - data->segment_start(aspi, reg_val); windows[cs].offset = data->segment_start(aspi, reg_val) - aspi->ahb_base_phy; dev_vdbg(aspi->dev, "CE%d offset=0x%.8x size=0x%x\n", cs, windows[cs].offset, windows[cs].size); } } /* * On the AST2600, some CE windows are closed by default at reset but * U-Boot should open all. */ static int aspeed_spi_chip_set_default_window(struct aspeed_spi_chip *chip) { struct aspeed_spi *aspi = chip->aspi; struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 }; struct aspeed_spi_window *win = &windows[chip->cs]; /* No segment registers for the AST2400 SPI controller */ if (aspi->data == &ast2400_spi_data) { win->offset = 0; win->size = aspi->ahb_window_size; } else { aspeed_spi_get_windows(aspi, windows); } chip->ahb_base = aspi->ahb_base + win->offset; chip->ahb_window_size = win->size; dev_dbg(aspi->dev, "CE%d default window [ 0x%.8x - 0x%.8x ] %dMB", chip->cs, aspi->ahb_base_phy + win->offset, aspi->ahb_base_phy + win->offset + win->size - 1, win->size >> 20); return chip->ahb_window_size ? 0 : -1; } static int aspeed_spi_set_window(struct aspeed_spi *aspi, const struct aspeed_spi_window *win) { u32 start = aspi->ahb_base_phy + win->offset; u32 end = start + win->size; void __iomem *seg_reg = aspi->regs + CE0_SEGMENT_ADDR_REG + win->cs * 4; u32 seg_val_backup = readl(seg_reg); u32 seg_val = aspi->data->segment_reg(aspi, start, end); if (seg_val == seg_val_backup) return 0; writel(seg_val, seg_reg); /* * Restore initial value if something goes wrong else we could * loose access to the chip. */ if (seg_val != readl(seg_reg)) { dev_err(aspi->dev, "CE%d invalid window [ 0x%.8x - 0x%.8x ] %dMB", win->cs, start, end - 1, win->size >> 20); writel(seg_val_backup, seg_reg); return -EIO; } if (win->size) dev_dbg(aspi->dev, "CE%d new window [ 0x%.8x - 0x%.8x ] %dMB", win->cs, start, end - 1, win->size >> 20); else dev_dbg(aspi->dev, "CE%d window closed", win->cs); return 0; } /* * Yet to be done when possible : * - Align mappings on flash size (we don't have the info) * - ioremap each window, not strictly necessary since the overall window * is correct. */ static const struct aspeed_spi_data ast2500_spi_data; static const struct aspeed_spi_data ast2600_spi_data; static const struct aspeed_spi_data ast2600_fmc_data; static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip, u32 local_offset, u32 size) { struct aspeed_spi *aspi = chip->aspi; struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 }; struct aspeed_spi_window *win = &windows[chip->cs]; int ret; /* No segment registers for the AST2400 SPI controller */ if (aspi->data == &ast2400_spi_data) return 0; /* * Due to an HW issue on the AST2500 SPI controller, the CE0 * window size should be smaller than the maximum 128MB. */ if (aspi->data == &ast2500_spi_data && chip->cs == 0 && size == SZ_128M) { size = 120 << 20; dev_info(aspi->dev, "CE%d window resized to %dMB (AST2500 HW quirk)", chip->cs, size >> 20); } /* * The decoding size of AST2600 SPI controller should set at * least 2MB. */ if ((aspi->data == &ast2600_spi_data || aspi->data == &ast2600_fmc_data) && size < SZ_2M) { size = SZ_2M; dev_info(aspi->dev, "CE%d window resized to %dMB (AST2600 Decoding)", chip->cs, size >> 20); } aspeed_spi_get_windows(aspi, windows); /* Adjust this chip window */ win->offset += local_offset; win->size = size; if (win->offset + win->size > aspi->ahb_window_size) { win->size = aspi->ahb_window_size - win->offset; dev_warn(aspi->dev, "CE%d window resized to %dMB", chip->cs, win->size >> 20); } ret = aspeed_spi_set_window(aspi, win); if (ret) return ret; /* Update chip mapping info */ chip->ahb_base = aspi->ahb_base + win->offset; chip->ahb_window_size = win->size; /* * Also adjust next chip window to make sure that it does not * overlap with the current window. */ if (chip->cs < aspi->data->max_cs - 1) { struct aspeed_spi_window *next = &windows[chip->cs + 1]; /* Change offset and size to keep the same end address */ if ((next->offset + next->size) > (win->offset + win->size)) next->size = (next->offset + next->size) - (win->offset + win->size); else next->size = 0; next->offset = win->offset + win->size; aspeed_spi_set_window(aspi, next); } return 0; } static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip); static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) { struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->controller); struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(desc->mem->spi, 0)]; struct spi_mem_op *op = &desc->info.op_tmpl; u32 ctl_val; int ret = 0; dev_dbg(aspi->dev, "CE%d %s dirmap [ 0x%.8llx - 0x%.8llx ] OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x\n", chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write", desc->info.offset, desc->info.offset + desc->info.length, op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, op->dummy.buswidth, op->data.buswidth, op->addr.nbytes, op->dummy.nbytes); chip->clk_freq = desc->mem->spi->max_speed_hz; /* Only for reads */ if (op->data.dir != SPI_MEM_DATA_IN) return -EOPNOTSUPP; aspeed_spi_chip_adjust_window(chip, desc->info.offset, desc->info.length); if (desc->info.length > chip->ahb_window_size) dev_warn(aspi->dev, "CE%d window (%dMB) too small for mapping", chip->cs, chip->ahb_window_size >> 20); /* Define the default IO read settings */ ctl_val = readl(chip->ctl) & ~CTRL_IO_CMD_MASK; ctl_val |= aspeed_spi_get_io_mode(op) | op->cmd.opcode << CTRL_COMMAND_SHIFT | CTRL_IO_MODE_READ; if (op->dummy.nbytes) ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth); /* Tune 4BYTE address mode */ if (op->addr.nbytes) { u32 addr_mode = readl(aspi->regs + CE_CTRL_REG); if (op->addr.nbytes == 4) addr_mode |= (0x11 << chip->cs); else addr_mode &= ~(0x11 << chip->cs); writel(addr_mode, aspi->regs + CE_CTRL_REG); /* AST2400 SPI controller sets 4BYTE address mode in * CE0 Control Register */ if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data) ctl_val |= CTRL_IO_ADDRESS_4B; } /* READ mode is the controller default setting */ chip->ctl_val[ASPEED_SPI_READ] = ctl_val; writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); ret = aspeed_spi_do_calibration(chip); dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n", chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]); return ret; } static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offset, size_t len, void *buf) { struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->controller); struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(desc->mem->spi, 0)]; /* Switch to USER command mode if mapping window is too small */ if (chip->ahb_window_size < offset + len) { int ret; ret = aspeed_spi_read_user(chip, &desc->info.op_tmpl, offset, len, buf); if (ret < 0) return ret; } else { memcpy_fromio(buf, chip->ahb_base + offset, len); } return len; } static const struct spi_controller_mem_ops aspeed_spi_mem_ops = { .supports_op = aspeed_spi_supports_op, .exec_op = aspeed_spi_exec_op, .get_name = aspeed_spi_get_name, .dirmap_create = aspeed_spi_dirmap_create, .dirmap_read = aspeed_spi_dirmap_read, }; static void aspeed_spi_chip_set_type(struct aspeed_spi *aspi, unsigned int cs, int type) { u32 reg; reg = readl(aspi->regs + CONFIG_REG); reg &= ~(0x3 << (cs * 2)); reg |= type << (cs * 2); writel(reg, aspi->regs + CONFIG_REG); } static void aspeed_spi_chip_enable(struct aspeed_spi *aspi, unsigned int cs, bool enable) { u32 we_bit = BIT(aspi->data->we0 + cs); u32 reg = readl(aspi->regs + CONFIG_REG); if (enable) reg |= we_bit; else reg &= ~we_bit; writel(reg, aspi->regs + CONFIG_REG); } static int aspeed_spi_setup(struct spi_device *spi) { struct aspeed_spi *aspi = spi_controller_get_devdata(spi->controller); const struct aspeed_spi_data *data = aspi->data; unsigned int cs = spi_get_chipselect(spi, 0); struct aspeed_spi_chip *chip = &aspi->chips[cs]; chip->aspi = aspi; chip->cs = cs; chip->ctl = aspi->regs + data->ctl0 + cs * 4; /* The driver only supports SPI type flash */ if (data->hastype) aspeed_spi_chip_set_type(aspi, cs, CONFIG_TYPE_SPI); if (aspeed_spi_chip_set_default_window(chip) < 0) { dev_warn(aspi->dev, "CE%d window invalid", cs); return -EINVAL; } aspeed_spi_chip_enable(aspi, cs, true); chip->ctl_val[ASPEED_SPI_BASE] = CTRL_CE_STOP_ACTIVE | CTRL_IO_MODE_USER; dev_dbg(aspi->dev, "CE%d setup done\n", cs); return 0; } static void aspeed_spi_cleanup(struct spi_device *spi) { struct aspeed_spi *aspi = spi_controller_get_devdata(spi->controller); unsigned int cs = spi_get_chipselect(spi, 0); aspeed_spi_chip_enable(aspi, cs, false); dev_dbg(aspi->dev, "CE%d cleanup done\n", cs); } static void aspeed_spi_enable(struct aspeed_spi *aspi, bool enable) { int cs; for (cs = 0; cs < aspi->data->max_cs; cs++) aspeed_spi_chip_enable(aspi, cs, enable); } static int aspeed_spi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct aspeed_spi_data *data; struct spi_controller *ctlr; struct aspeed_spi *aspi; struct resource *res; int ret; data = of_device_get_match_data(&pdev->dev); if (!data) return -ENODEV; ctlr = devm_spi_alloc_host(dev, sizeof(*aspi)); if (!ctlr) return -ENOMEM; aspi = spi_controller_get_devdata(ctlr); platform_set_drvdata(pdev, aspi); aspi->data = data; aspi->dev = dev; aspi->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(aspi->regs)) return PTR_ERR(aspi->regs); aspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res); if (IS_ERR(aspi->ahb_base)) { dev_err(dev, "missing AHB mapping window\n"); return PTR_ERR(aspi->ahb_base); } aspi->ahb_window_size = resource_size(res); aspi->ahb_base_phy = res->start; aspi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(aspi->clk)) { dev_err(dev, "missing clock\n"); return PTR_ERR(aspi->clk); } aspi->clk_freq = clk_get_rate(aspi->clk); if (!aspi->clk_freq) { dev_err(dev, "invalid clock\n"); return -EINVAL; } ret = clk_prepare_enable(aspi->clk); if (ret) { dev_err(dev, "can not enable the clock\n"); return ret; } /* IRQ is for DMA, which the driver doesn't support yet */ ctlr->mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | data->mode_bits; ctlr->bus_num = pdev->id; ctlr->mem_ops = &aspeed_spi_mem_ops; ctlr->setup = aspeed_spi_setup; ctlr->cleanup = aspeed_spi_cleanup; ctlr->num_chipselect = data->max_cs; ctlr->dev.of_node = dev->of_node; ret = devm_spi_register_controller(dev, ctlr); if (ret) { dev_err(&pdev->dev, "spi_register_controller failed\n"); goto disable_clk; } return 0; disable_clk: clk_disable_unprepare(aspi->clk); return ret; } static void aspeed_spi_remove(struct platform_device *pdev) { struct aspeed_spi *aspi = platform_get_drvdata(pdev); aspeed_spi_enable(aspi, false); clk_disable_unprepare(aspi->clk); } /* * AHB mappings */ /* * The Segment Registers of the AST2400 and AST2500 use a 8MB unit. * The address range is encoded with absolute addresses in the overall * mapping window. */ static u32 aspeed_spi_segment_start(struct aspeed_spi *aspi, u32 reg) { return ((reg >> 16) & 0xFF) << 23; } static u32 aspeed_spi_segment_end(struct aspeed_spi *aspi, u32 reg) { return ((reg >> 24) & 0xFF) << 23; } static u32 aspeed_spi_segment_reg(struct aspeed_spi *aspi, u32 start, u32 end) { return (((start >> 23) & 0xFF) << 16) | (((end >> 23) & 0xFF) << 24); } /* * The Segment Registers of the AST2600 use a 1MB unit. The address * range is encoded with offsets in the overall mapping window. */ #define AST2600_SEG_ADDR_MASK 0x0ff00000 static u32 aspeed_spi_segment_ast2600_start(struct aspeed_spi *aspi, u32 reg) { u32 start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK; return aspi->ahb_base_phy + start_offset; } static u32 aspeed_spi_segment_ast2600_end(struct aspeed_spi *aspi, u32 reg) { u32 end_offset = reg & AST2600_SEG_ADDR_MASK; /* segment is disabled */ if (!end_offset) return aspi->ahb_base_phy; return aspi->ahb_base_phy + end_offset + 0x100000; } static u32 aspeed_spi_segment_ast2600_reg(struct aspeed_spi *aspi, u32 start, u32 end) { /* disable zero size segments */ if (start == end) return 0; return ((start & AST2600_SEG_ADDR_MASK) >> 16) | ((end - 1) & AST2600_SEG_ADDR_MASK); } /* * Read timing compensation sequences */ #define CALIBRATE_BUF_SIZE SZ_16K static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip, const u8 *golden_buf, u8 *test_buf) { int i; for (i = 0; i < 10; i++) { memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE); if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) { #if defined(VERBOSE_DEBUG) print_hex_dump_bytes(DEVICE_NAME " fail: ", DUMP_PREFIX_NONE, test_buf, 0x100); #endif return false; } } return true; } #define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8)) /* * The timing register is shared by all devices. Only update for CE0. */ static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv, const u8 *golden_buf, u8 *test_buf) { struct aspeed_spi *aspi = chip->aspi; const struct aspeed_spi_data *data = aspi->data; int i; int good_pass = -1, pass_count = 0; u32 shift = (hdiv - 1) << 2; u32 mask = ~(0xfu << shift); u32 fread_timing_val = 0; /* Try HCLK delay 0..5, each one with/without delay and look for a * good pair. */ for (i = 0; i < 12; i++) { bool pass; if (chip->cs == 0) { fread_timing_val &= mask; fread_timing_val |= FREAD_TPASS(i) << shift; writel(fread_timing_val, aspi->regs + data->timing); } pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); dev_dbg(aspi->dev, " * [%08x] %d HCLK delay, %dns DI delay : %s", fread_timing_val, i / 2, (i & 1) ? 0 : 4, pass ? "PASS" : "FAIL"); if (pass) { pass_count++; if (pass_count == 3) { good_pass = i - 1; break; } } else { pass_count = 0; } } /* No good setting for this frequency */ if (good_pass < 0) return -1; /* We have at least one pass of margin, let's use first pass */ if (chip->cs == 0) { fread_timing_val &= mask; fread_timing_val |= FREAD_TPASS(good_pass) << shift; writel(fread_timing_val, aspi->regs + data->timing); } dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]", good_pass, fread_timing_val); return 0; } static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size) { const u32 *tb32 = (const u32 *)test_buf; u32 i, cnt = 0; /* We check if we have enough words that are neither all 0 * nor all 1's so the calibration can be considered valid. * * I use an arbitrary threshold for now of 64 */ size >>= 2; for (i = 0; i < size; i++) { if (tb32[i] != 0 && tb32[i] != 0xffffffff) cnt++; } return cnt >= 64; } static const u32 aspeed_spi_hclk_divs[] = { 0xf, /* HCLK */ 0x7, /* HCLK/2 */ 0xe, /* HCLK/3 */ 0x6, /* HCLK/4 */ 0xd, /* HCLK/5 */ }; #define ASPEED_SPI_HCLK_DIV(i) \ (aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT) static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip) { struct aspeed_spi *aspi = chip->aspi; const struct aspeed_spi_data *data = aspi->data; u32 ahb_freq = aspi->clk_freq; u32 max_freq = chip->clk_freq; u32 ctl_val; u8 *golden_buf = NULL; u8 *test_buf = NULL; int i, rc, best_div = -1; dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz", ahb_freq / 1000000); /* * use the related low frequency to get check calibration data * and get golden data. */ ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask; writel(ctl_val, chip->ctl); test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL); if (!test_buf) return -ENOMEM; golden_buf = test_buf + CALIBRATE_BUF_SIZE; memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE); if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) { dev_info(aspi->dev, "Calibration area too uniform, using low speed"); goto no_calib; } #if defined(VERBOSE_DEBUG) print_hex_dump_bytes(DEVICE_NAME " good: ", DUMP_PREFIX_NONE, golden_buf, 0x100); #endif /* Now we iterate the HCLK dividers until we find our breaking point */ for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) { u32 tv, freq; freq = ahb_freq / i; if (freq > max_freq) continue; /* Set the timing */ tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i); writel(tv, chip->ctl); dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv); rc = data->calibrate(chip, i, golden_buf, test_buf); if (rc == 0) best_div = i; } /* Nothing found ? */ if (best_div < 0) { dev_warn(aspi->dev, "No good frequency, using dumb slow"); } else { dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", best_div); /* Record the freq */ for (i = 0; i < ASPEED_SPI_MAX; i++) chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) | ASPEED_SPI_HCLK_DIV(best_div); } no_calib: writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); kfree(test_buf); return 0; } #define TIMING_DELAY_DI BIT(3) #define TIMING_DELAY_HCYCLE_MAX 5 #define TIMING_REG_AST2600(chip) \ ((chip)->aspi->regs + (chip)->aspi->data->timing + \ (chip)->cs * 4) static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 hdiv, const u8 *golden_buf, u8 *test_buf) { struct aspeed_spi *aspi = chip->aspi; int hcycle; u32 shift = (hdiv - 2) << 3; u32 mask = ~(0xfu << shift); u32 fread_timing_val = 0; for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) { int delay_ns; bool pass = false; fread_timing_val &= mask; fread_timing_val |= hcycle << shift; /* no DI input delay first */ writel(fread_timing_val, TIMING_REG_AST2600(chip)); pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); dev_dbg(aspi->dev, " * [%08x] %d HCLK delay, DI delay none : %s", fread_timing_val, hcycle, pass ? "PASS" : "FAIL"); if (pass) return 0; /* Add DI input delays */ fread_timing_val &= mask; fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift; for (delay_ns = 0; delay_ns < 0x10; delay_ns++) { fread_timing_val &= ~(0xf << (4 + shift)); fread_timing_val |= delay_ns << (4 + shift); writel(fread_timing_val, TIMING_REG_AST2600(chip)); pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); dev_dbg(aspi->dev, " * [%08x] %d HCLK delay, DI delay %d.%dns : %s", fread_timing_val, hcycle, (delay_ns + 1) / 2, (delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL"); /* * TODO: This is optimistic. We should look * for a working interval and save the middle * value in the read timing register. */ if (pass) return 0; } } /* No good setting for this frequency */ return -1; } /* * Platform definitions */ static const struct aspeed_spi_data ast2400_fmc_data = { .max_cs = 5, .hastype = true, .we0 = 16, .ctl0 = CE0_CTRL_REG, .timing = CE0_TIMING_COMPENSATION_REG, .hclk_mask = 0xfffff0ff, .hdiv_max = 1, .calibrate = aspeed_spi_calibrate, .segment_start = aspeed_spi_segment_start, .segment_end = aspeed_spi_segment_end, .segment_reg = aspeed_spi_segment_reg, }; static const struct aspeed_spi_data ast2400_spi_data = { .max_cs = 1, .hastype = false, .we0 = 0, .ctl0 = 0x04, .timing = 0x14, .hclk_mask = 0xfffff0ff, .hdiv_max = 1, .calibrate = aspeed_spi_calibrate, /* No segment registers */ }; static const struct aspeed_spi_data ast2500_fmc_data = { .max_cs = 3, .hastype = true, .we0 = 16, .ctl0 = CE0_CTRL_REG, .timing = CE0_TIMING_COMPENSATION_REG, .hclk_mask = 0xffffd0ff, .hdiv_max = 1, .calibrate = aspeed_spi_calibrate, .segment_start = aspeed_spi_segment_start, .segment_end = aspeed_spi_segment_end, .segment_reg = aspeed_spi_segment_reg, }; static const struct aspeed_spi_data ast2500_spi_data = { .max_cs = 2, .hastype = false, .we0 = 16, .ctl0 = CE0_CTRL_REG, .timing = CE0_TIMING_COMPENSATION_REG, .hclk_mask = 0xffffd0ff, .hdiv_max = 1, .calibrate = aspeed_spi_calibrate, .segment_start = aspeed_spi_segment_start, .segment_end = aspeed_spi_segment_end, .segment_reg = aspeed_spi_segment_reg, }; static const struct aspeed_spi_data ast2600_fmc_data = { .max_cs = 3, .hastype = false, .mode_bits = SPI_RX_QUAD | SPI_TX_QUAD, .we0 = 16, .ctl0 = CE0_CTRL_REG, .timing = CE0_TIMING_COMPENSATION_REG, .hclk_mask = 0xf0fff0ff, .hdiv_max = 2, .calibrate = aspeed_spi_ast2600_calibrate, .segment_start = aspeed_spi_segment_ast2600_start, .segment_end = aspeed_spi_segment_ast2600_end, .segment_reg = aspeed_spi_segment_ast2600_reg, }; static const struct aspeed_spi_data ast2600_spi_data = { .max_cs = 2, .hastype = false, .mode_bits = SPI_RX_QUAD | SPI_TX_QUAD, .we0 = 16, .ctl0 = CE0_CTRL_REG, .timing = CE0_TIMING_COMPENSATION_REG, .hclk_mask = 0xf0fff0ff, .hdiv_max = 2, .calibrate = aspeed_spi_ast2600_calibrate, .segment_start = aspeed_spi_segment_ast2600_start, .segment_end = aspeed_spi_segment_ast2600_end, .segment_reg = aspeed_spi_segment_ast2600_reg, }; static const struct of_device_id aspeed_spi_matches[] = { { .compatible = "aspeed,ast2400-fmc", .data = &ast2400_fmc_data }, { .compatible = "aspeed,ast2400-spi", .data = &ast2400_spi_data }, { .compatible = "aspeed,ast2500-fmc", .data = &ast2500_fmc_data }, { .compatible = "aspeed,ast2500-spi", .data = &ast2500_spi_data }, { .compatible = "aspeed,ast2600-fmc", .data = &ast2600_fmc_data }, { .compatible = "aspeed,ast2600-spi", .data = &ast2600_spi_data }, { } }; MODULE_DEVICE_TABLE(of, aspeed_spi_matches); static struct platform_driver aspeed_spi_driver = { .probe = aspeed_spi_probe, .remove_new = aspeed_spi_remove, .driver = { .name = DEVICE_NAME, .of_match_table = aspeed_spi_matches, } }; module_platform_driver(aspeed_spi_driver); MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver"); MODULE_AUTHOR("Chin-Ting Kuo <[email protected]>"); MODULE_AUTHOR("Cedric Le Goater <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/spi/spi-aspeed-smc.c
// SPDX-License-Identifier: GPL-2.0-or-later // Copyright (C) IBM Corporation 2020 #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/fsi.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/spi/spi.h> #define FSI_ENGID_SPI 0x23 #define FSI_MBOX_ROOT_CTRL_8 0x2860 #define FSI_MBOX_ROOT_CTRL_8_SPI_MUX 0xf0000000 #define FSI2SPI_DATA0 0x00 #define FSI2SPI_DATA1 0x04 #define FSI2SPI_CMD 0x08 #define FSI2SPI_CMD_WRITE BIT(31) #define FSI2SPI_RESET 0x18 #define FSI2SPI_STATUS 0x1c #define FSI2SPI_STATUS_ANY_ERROR BIT(31) #define FSI2SPI_IRQ 0x20 #define SPI_FSI_BASE 0x70000 #define SPI_FSI_TIMEOUT_MS 1000 #define SPI_FSI_MAX_RX_SIZE 8 #define SPI_FSI_MAX_TX_SIZE 40 #define SPI_FSI_ERROR 0x0 #define SPI_FSI_COUNTER_CFG 0x1 #define SPI_FSI_CFG1 0x2 #define SPI_FSI_CLOCK_CFG 0x3 #define SPI_FSI_CLOCK_CFG_MM_ENABLE BIT_ULL(32) #define SPI_FSI_CLOCK_CFG_ECC_DISABLE (BIT_ULL(35) | BIT_ULL(33)) #define SPI_FSI_CLOCK_CFG_RESET1 (BIT_ULL(36) | BIT_ULL(38)) #define SPI_FSI_CLOCK_CFG_RESET2 (BIT_ULL(37) | BIT_ULL(39)) #define SPI_FSI_CLOCK_CFG_MODE (BIT_ULL(41) | BIT_ULL(42)) #define SPI_FSI_CLOCK_CFG_SCK_RECV_DEL GENMASK_ULL(51, 44) #define SPI_FSI_CLOCK_CFG_SCK_NO_DEL BIT_ULL(51) #define SPI_FSI_CLOCK_CFG_SCK_DIV GENMASK_ULL(63, 52) #define SPI_FSI_MMAP 0x4 #define SPI_FSI_DATA_TX 0x5 #define SPI_FSI_DATA_RX 0x6 #define SPI_FSI_SEQUENCE 0x7 #define SPI_FSI_SEQUENCE_STOP 0x00 #define SPI_FSI_SEQUENCE_SEL_SLAVE(x) (0x10 | ((x) & 0xf)) #define SPI_FSI_SEQUENCE_SHIFT_OUT(x) (0x30 | ((x) & 0xf)) #define SPI_FSI_SEQUENCE_SHIFT_IN(x) (0x40 | ((x) & 0xf)) #define SPI_FSI_SEQUENCE_COPY_DATA_TX 0xc0 #define SPI_FSI_SEQUENCE_BRANCH(x) (0xe0 | ((x) & 0xf)) #define SPI_FSI_STATUS 0x8 #define SPI_FSI_STATUS_ERROR \ (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12)) #define SPI_FSI_STATUS_SEQ_STATE GENMASK_ULL(55, 48) #define SPI_FSI_STATUS_SEQ_STATE_IDLE BIT_ULL(48) #define SPI_FSI_STATUS_TDR_UNDERRUN BIT_ULL(57) #define SPI_FSI_STATUS_TDR_OVERRUN BIT_ULL(58) #define SPI_FSI_STATUS_TDR_FULL BIT_ULL(59) #define SPI_FSI_STATUS_RDR_UNDERRUN BIT_ULL(61) #define SPI_FSI_STATUS_RDR_OVERRUN BIT_ULL(62) #define SPI_FSI_STATUS_RDR_FULL BIT_ULL(63) #define SPI_FSI_STATUS_ANY_ERROR \ (SPI_FSI_STATUS_ERROR | \ SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \ SPI_FSI_STATUS_RDR_OVERRUN) #define SPI_FSI_PORT_CTRL 0x9 struct fsi2spi { struct fsi_device *fsi; /* FSI2SPI CFAM engine device */ struct mutex lock; /* lock access to the device */ }; struct fsi_spi { struct device *dev; /* SPI controller device */ struct fsi2spi *bridge; /* FSI2SPI device */ u32 base; }; struct fsi_spi_sequence { int bit; u64 data; }; static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev) { int rc; u32 root_ctrl_8; __be32 root_ctrl_8_be; rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be, sizeof(root_ctrl_8_be)); if (rc) return rc; root_ctrl_8 = be32_to_cpu(root_ctrl_8_be); dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8); if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) == FSI_MBOX_ROOT_CTRL_8_SPI_MUX) return 0; return -ENOLINK; } static int fsi_spi_check_status(struct fsi_spi *ctx) { int rc; u32 sts; __be32 sts_be; rc = fsi_device_read(ctx->bridge->fsi, FSI2SPI_STATUS, &sts_be, sizeof(sts_be)); if (rc) return rc; sts = be32_to_cpu(sts_be); if (sts & FSI2SPI_STATUS_ANY_ERROR) { dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts); return -EIO; } return 0; } static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value) { int rc = 0; __be32 cmd_be; __be32 data_be; u32 cmd = offset + ctx->base; struct fsi2spi *bridge = ctx->bridge; *value = 0ULL; if (cmd & FSI2SPI_CMD_WRITE) return -EINVAL; rc = mutex_lock_interruptible(&bridge->lock); if (rc) return rc; cmd_be = cpu_to_be32(cmd); rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be)); if (rc) goto unlock; rc = fsi_spi_check_status(ctx); if (rc) goto unlock; rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA0, &data_be, sizeof(data_be)); if (rc) goto unlock; *value |= (u64)be32_to_cpu(data_be) << 32; rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA1, &data_be, sizeof(data_be)); if (rc) goto unlock; *value |= (u64)be32_to_cpu(data_be); dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value); unlock: mutex_unlock(&bridge->lock); return rc; } static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value) { int rc = 0; __be32 cmd_be; __be32 data_be; u32 cmd = offset + ctx->base; struct fsi2spi *bridge = ctx->bridge; if (cmd & FSI2SPI_CMD_WRITE) return -EINVAL; rc = mutex_lock_interruptible(&bridge->lock); if (rc) return rc; dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value); data_be = cpu_to_be32(upper_32_bits(value)); rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA0, &data_be, sizeof(data_be)); if (rc) goto unlock; data_be = cpu_to_be32(lower_32_bits(value)); rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA1, &data_be, sizeof(data_be)); if (rc) goto unlock; cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE); rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be)); if (rc) goto unlock; rc = fsi_spi_check_status(ctx); unlock: mutex_unlock(&bridge->lock); return rc; } static int fsi_spi_data_in(u64 in, u8 *rx, int len) { int i; int num_bytes = min(len, 8); for (i = 0; i < num_bytes; ++i) rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i))); return num_bytes; } static int fsi_spi_data_out(u64 *out, const u8 *tx, int len) { int i; int num_bytes = min(len, 8); u8 *out_bytes = (u8 *)out; /* Unused bytes of the tx data should be 0. */ *out = 0ULL; for (i = 0; i < num_bytes; ++i) out_bytes[8 - (i + 1)] = tx[i]; return num_bytes; } static int fsi_spi_reset(struct fsi_spi *ctx) { int rc; dev_dbg(ctx->dev, "Resetting SPI controller.\n"); rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, SPI_FSI_CLOCK_CFG_RESET1); if (rc) return rc; rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, SPI_FSI_CLOCK_CFG_RESET2); if (rc) return rc; return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL); } static int fsi_spi_status(struct fsi_spi *ctx, u64 *status, const char *dir) { int rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, status); if (rc) return rc; if (*status & SPI_FSI_STATUS_ANY_ERROR) { dev_err(ctx->dev, "%s error: %016llx\n", dir, *status); rc = fsi_spi_reset(ctx); if (rc) return rc; return -EREMOTEIO; } return 0; } static void fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val) { /* * Add the next byte of instruction to the 8-byte sequence register. * Then decrement the counter so that the next instruction will go in * the right place. Return the index of the slot we just filled in the * sequence register. */ seq->data |= (u64)val << seq->bit; seq->bit -= 8; } static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq) { seq->bit = 56; seq->data = 0ULL; } static int fsi_spi_transfer_data(struct fsi_spi *ctx, struct spi_transfer *transfer) { int loops; int rc = 0; unsigned long end; u64 status = 0ULL; if (transfer->tx_buf) { int nb; int sent = 0; u64 out = 0ULL; const u8 *tx = transfer->tx_buf; while (transfer->len > sent) { nb = fsi_spi_data_out(&out, &tx[sent], (int)transfer->len - sent); rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out); if (rc) return rc; loops = 0; end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS); do { if (loops++ && time_after(jiffies, end)) return -ETIMEDOUT; rc = fsi_spi_status(ctx, &status, "TX"); if (rc) return rc; } while (status & SPI_FSI_STATUS_TDR_FULL); sent += nb; } } else if (transfer->rx_buf) { int recv = 0; u64 in = 0ULL; u8 *rx = transfer->rx_buf; while (transfer->len > recv) { loops = 0; end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS); do { if (loops++ && time_after(jiffies, end)) return -ETIMEDOUT; rc = fsi_spi_status(ctx, &status, "RX"); if (rc) return rc; } while (!(status & SPI_FSI_STATUS_RDR_FULL)); rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in); if (rc) return rc; recv += fsi_spi_data_in(in, &rx[recv], (int)transfer->len - recv); } } return 0; } static int fsi_spi_transfer_init(struct fsi_spi *ctx) { int loops = 0; int rc; bool reset = false; unsigned long end; u64 seq_state; u64 clock_cfg = 0ULL; u64 status = 0ULL; u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE | SPI_FSI_CLOCK_CFG_SCK_NO_DEL | FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19); end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS); do { if (loops++ && time_after(jiffies, end)) return -ETIMEDOUT; rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status); if (rc) return rc; seq_state = status & SPI_FSI_STATUS_SEQ_STATE; if (status & (SPI_FSI_STATUS_ANY_ERROR | SPI_FSI_STATUS_TDR_FULL | SPI_FSI_STATUS_RDR_FULL)) { if (reset) { dev_err(ctx->dev, "Initialization error: %08llx\n", status); return -EIO; } rc = fsi_spi_reset(ctx); if (rc) return rc; reset = true; continue; } } while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE)); rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL); if (rc) return rc; rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg); if (rc) return rc; if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE | SPI_FSI_CLOCK_CFG_ECC_DISABLE | SPI_FSI_CLOCK_CFG_MODE | SPI_FSI_CLOCK_CFG_SCK_RECV_DEL | SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg) rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, wanted_clock_cfg); return rc; } static int fsi_spi_transfer_one_message(struct spi_controller *ctlr, struct spi_message *mesg) { int rc; u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(spi_get_chipselect(mesg->spi, 0) + 1); unsigned int len; struct spi_transfer *transfer; struct fsi_spi *ctx = spi_controller_get_devdata(ctlr); rc = fsi_spi_check_mux(ctx->bridge->fsi, ctx->dev); if (rc) goto error; list_for_each_entry(transfer, &mesg->transfers, transfer_list) { struct fsi_spi_sequence seq; struct spi_transfer *next = NULL; /* Sequencer must do shift out (tx) first. */ if (!transfer->tx_buf || transfer->len > SPI_FSI_MAX_TX_SIZE) { rc = -EINVAL; goto error; } dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len); rc = fsi_spi_transfer_init(ctx); if (rc < 0) goto error; fsi_spi_sequence_init(&seq); fsi_spi_sequence_add(&seq, seq_slave); len = transfer->len; while (len > 8) { fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SHIFT_OUT(8)); len -= 8; } fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SHIFT_OUT(len)); if (!list_is_last(&transfer->transfer_list, &mesg->transfers)) { next = list_next_entry(transfer, transfer_list); /* Sequencer can only do shift in (rx) after tx. */ if (next->rx_buf) { u8 shift; if (next->len > SPI_FSI_MAX_RX_SIZE) { rc = -EINVAL; goto error; } dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n", next->len); shift = SPI_FSI_SEQUENCE_SHIFT_IN(next->len); fsi_spi_sequence_add(&seq, shift); } else { next = NULL; } } fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0)); rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data); if (rc) goto error; rc = fsi_spi_transfer_data(ctx, transfer); if (rc) goto error; if (next) { rc = fsi_spi_transfer_data(ctx, next); if (rc) goto error; transfer = next; } } error: mesg->status = rc; spi_finalize_current_message(ctlr); return rc; } static size_t fsi_spi_max_transfer_size(struct spi_device *spi) { return SPI_FSI_MAX_RX_SIZE; } static int fsi_spi_probe(struct device *dev) { int rc; struct device_node *np; int num_controllers_registered = 0; struct fsi2spi *bridge; struct fsi_device *fsi = to_fsi_dev(dev); rc = fsi_spi_check_mux(fsi, dev); if (rc) return -ENODEV; bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL); if (!bridge) return -ENOMEM; bridge->fsi = fsi; mutex_init(&bridge->lock); for_each_available_child_of_node(dev->of_node, np) { u32 base; struct fsi_spi *ctx; struct spi_controller *ctlr; if (of_property_read_u32(np, "reg", &base)) continue; ctlr = spi_alloc_host(dev, sizeof(*ctx)); if (!ctlr) { of_node_put(np); break; } ctlr->dev.of_node = np; ctlr->num_chipselect = of_get_available_child_count(np) ?: 1; ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX; ctlr->max_transfer_size = fsi_spi_max_transfer_size; ctlr->transfer_one_message = fsi_spi_transfer_one_message; ctx = spi_controller_get_devdata(ctlr); ctx->dev = &ctlr->dev; ctx->bridge = bridge; ctx->base = base + SPI_FSI_BASE; rc = devm_spi_register_controller(dev, ctlr); if (rc) spi_controller_put(ctlr); else num_controllers_registered++; } if (!num_controllers_registered) return -ENODEV; return 0; } static const struct fsi_device_id fsi_spi_ids[] = { { FSI_ENGID_SPI, FSI_VERSION_ANY }, { } }; MODULE_DEVICE_TABLE(fsi, fsi_spi_ids); static struct fsi_driver fsi_spi_driver = { .id_table = fsi_spi_ids, .drv = { .name = "spi-fsi", .bus = &fsi_bus_type, .probe = fsi_spi_probe, }, }; module_fsi_driver(fsi_spi_driver); MODULE_AUTHOR("Eddie James <[email protected]>"); MODULE_DESCRIPTION("FSI attached SPI controller"); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-fsi.c
// SPDX-License-Identifier: GPL-2.0 // // SPI controller driver for Qualcomm Atheros AR934x/QCA95xx SoCs // // Copyright (C) 2020 Chuanhong Guo <[email protected]> // // Based on spi-mt7621.c: // Copyright (C) 2011 Sergiy <[email protected]> // Copyright (C) 2011-2013 Gabor Juhos <[email protected]> // Copyright (C) 2014-2015 Felix Fietkau <[email protected]> #include <linux/clk.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #define DRIVER_NAME "spi-ar934x" #define AR934X_SPI_REG_FS 0x00 #define AR934X_SPI_ENABLE BIT(0) #define AR934X_SPI_REG_IOC 0x08 #define AR934X_SPI_IOC_INITVAL 0x70000 #define AR934X_SPI_REG_CTRL 0x04 #define AR934X_SPI_CLK_MASK GENMASK(5, 0) #define AR934X_SPI_DATAOUT 0x10 #define AR934X_SPI_REG_SHIFT_CTRL 0x14 #define AR934X_SPI_SHIFT_EN BIT(31) #define AR934X_SPI_SHIFT_CS(n) BIT(28 + (n)) #define AR934X_SPI_SHIFT_TERM 26 #define AR934X_SPI_SHIFT_VAL(cs, term, count) \ (AR934X_SPI_SHIFT_EN | AR934X_SPI_SHIFT_CS(cs) | \ (term) << AR934X_SPI_SHIFT_TERM | (count)) #define AR934X_SPI_DATAIN 0x18 struct ar934x_spi { struct spi_controller *ctlr; void __iomem *base; struct clk *clk; unsigned int clk_freq; }; static inline int ar934x_spi_clk_div(struct ar934x_spi *sp, unsigned int freq) { int div = DIV_ROUND_UP(sp->clk_freq, freq * 2) - 1; if (div < 0) return 0; else if (div > AR934X_SPI_CLK_MASK) return -EINVAL; else return div; } static int ar934x_spi_setup(struct spi_device *spi) { struct ar934x_spi *sp = spi_controller_get_devdata(spi->controller); if ((spi->max_speed_hz == 0) || (spi->max_speed_hz > (sp->clk_freq / 2))) { spi->max_speed_hz = sp->clk_freq / 2; } else if (spi->max_speed_hz < (sp->clk_freq / 128)) { dev_err(&spi->dev, "spi clock is too low\n"); return -EINVAL; } return 0; } static int ar934x_spi_transfer_one_message(struct spi_controller *ctlr, struct spi_message *m) { struct ar934x_spi *sp = spi_controller_get_devdata(ctlr); struct spi_transfer *t = NULL; struct spi_device *spi = m->spi; unsigned long trx_done, trx_cur; int stat = 0; u8 bpw, term = 0; int div, i; u32 reg; const u8 *tx_buf; u8 *buf; m->actual_length = 0; list_for_each_entry(t, &m->transfers, transfer_list) { if (t->bits_per_word >= 8 && t->bits_per_word < 32) bpw = t->bits_per_word >> 3; else bpw = 4; if (t->speed_hz) div = ar934x_spi_clk_div(sp, t->speed_hz); else div = ar934x_spi_clk_div(sp, spi->max_speed_hz); if (div < 0) { stat = -EIO; goto msg_done; } reg = ioread32(sp->base + AR934X_SPI_REG_CTRL); reg &= ~AR934X_SPI_CLK_MASK; reg |= div; iowrite32(reg, sp->base + AR934X_SPI_REG_CTRL); iowrite32(0, sp->base + AR934X_SPI_DATAOUT); for (trx_done = 0; trx_done < t->len; trx_done += bpw) { trx_cur = t->len - trx_done; if (trx_cur > bpw) trx_cur = bpw; else if (list_is_last(&t->transfer_list, &m->transfers)) term = 1; if (t->tx_buf) { tx_buf = t->tx_buf + trx_done; reg = tx_buf[0]; for (i = 1; i < trx_cur; i++) reg = reg << 8 | tx_buf[i]; iowrite32(reg, sp->base + AR934X_SPI_DATAOUT); } reg = AR934X_SPI_SHIFT_VAL(spi_get_chipselect(spi, 0), term, trx_cur * 8); iowrite32(reg, sp->base + AR934X_SPI_REG_SHIFT_CTRL); stat = readl_poll_timeout( sp->base + AR934X_SPI_REG_SHIFT_CTRL, reg, !(reg & AR934X_SPI_SHIFT_EN), 0, 5); if (stat < 0) goto msg_done; if (t->rx_buf) { reg = ioread32(sp->base + AR934X_SPI_DATAIN); buf = t->rx_buf + trx_done; for (i = 0; i < trx_cur; i++) { buf[trx_cur - i - 1] = reg & 0xff; reg >>= 8; } } spi_delay_exec(&t->word_delay, t); } m->actual_length += t->len; spi_transfer_delay_exec(t); } msg_done: m->status = stat; spi_finalize_current_message(ctlr); return 0; } static const struct of_device_id ar934x_spi_match[] = { { .compatible = "qca,ar934x-spi" }, {}, }; MODULE_DEVICE_TABLE(of, ar934x_spi_match); static int ar934x_spi_probe(struct platform_device *pdev) { struct spi_controller *ctlr; struct ar934x_spi *sp; void __iomem *base; struct clk *clk; int ret; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { dev_err(&pdev->dev, "failed to get clock\n"); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) return ret; ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*sp)); if (!ctlr) { dev_info(&pdev->dev, "failed to allocate spi controller\n"); ret = -ENOMEM; goto err_clk_disable; } /* disable flash mapping and expose spi controller registers */ iowrite32(AR934X_SPI_ENABLE, base + AR934X_SPI_REG_FS); /* restore pins to default state: CSn=1 DO=CLK=0 */ iowrite32(AR934X_SPI_IOC_INITVAL, base + AR934X_SPI_REG_IOC); ctlr->mode_bits = SPI_LSB_FIRST; ctlr->setup = ar934x_spi_setup; ctlr->transfer_one_message = ar934x_spi_transfer_one_message; ctlr->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(24) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8); ctlr->dev.of_node = pdev->dev.of_node; ctlr->num_chipselect = 3; dev_set_drvdata(&pdev->dev, ctlr); sp = spi_controller_get_devdata(ctlr); sp->base = base; sp->clk = clk; sp->clk_freq = clk_get_rate(clk); sp->ctlr = ctlr; ret = spi_register_controller(ctlr); if (!ret) return 0; err_clk_disable: clk_disable_unprepare(clk); return ret; } static void ar934x_spi_remove(struct platform_device *pdev) { struct spi_controller *ctlr; struct ar934x_spi *sp; ctlr = dev_get_drvdata(&pdev->dev); sp = spi_controller_get_devdata(ctlr); spi_unregister_controller(ctlr); clk_disable_unprepare(sp->clk); } static struct platform_driver ar934x_spi_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = ar934x_spi_match, }, .probe = ar934x_spi_probe, .remove_new = ar934x_spi_remove, }; module_platform_driver(ar934x_spi_driver); MODULE_DESCRIPTION("SPI controller driver for Qualcomm Atheros AR934x/QCA95xx"); MODULE_AUTHOR("Chuanhong Guo <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" DRIVER_NAME);
linux-master
drivers/spi/spi-ar934x.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale SPI controller driver. * * Maintainer: Kumar Gala * * Copyright (C) 2006 Polycom, Inc. * Copyright 2010 Freescale Semiconductor, Inc. * * CPM SPI and QE buffer descriptors mode support: * Copyright (c) 2009 MontaVista Software, Inc. * Author: Anton Vorontsov <[email protected]> * * GRLIB support: * Copyright (c) 2012 Aeroflex Gaisler AB. * Author: Andreas Larsson <[email protected]> */ #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/fsl_devices.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #include <linux/types.h> #ifdef CONFIG_FSL_SOC #include <sysdev/fsl_soc.h> #endif /* Specific to the MPC8306/MPC8309 */ #define IMMR_SPI_CS_OFFSET 0x14c #define SPI_BOOT_SEL_BIT 0x80000000 #include "spi-fsl-lib.h" #include "spi-fsl-cpm.h" #include "spi-fsl-spi.h" #define TYPE_FSL 0 #define TYPE_GRLIB 1 struct fsl_spi_match_data { int type; }; static struct fsl_spi_match_data of_fsl_spi_fsl_config = { .type = TYPE_FSL, }; static struct fsl_spi_match_data of_fsl_spi_grlib_config = { .type = TYPE_GRLIB, }; static const struct of_device_id of_fsl_spi_match[] = { { .compatible = "fsl,spi", .data = &of_fsl_spi_fsl_config, }, { .compatible = "aeroflexgaisler,spictrl", .data = &of_fsl_spi_grlib_config, }, {} }; MODULE_DEVICE_TABLE(of, of_fsl_spi_match); static int fsl_spi_get_type(struct device *dev) { const struct of_device_id *match; if (dev->of_node) { match = of_match_node(of_fsl_spi_match, dev->of_node); if (match && match->data) return ((struct fsl_spi_match_data *)match->data)->type; } return TYPE_FSL; } static void fsl_spi_change_mode(struct spi_device *spi) { struct mpc8xxx_spi *mspi = spi_controller_get_devdata(spi->controller); struct spi_mpc8xxx_cs *cs = spi->controller_state; struct fsl_spi_reg __iomem *reg_base = mspi->reg_base; __be32 __iomem *mode = &reg_base->mode; unsigned long flags; if (cs->hw_mode == mpc8xxx_spi_read_reg(mode)) return; /* Turn off IRQs locally to minimize time that SPI is disabled. */ local_irq_save(flags); /* Turn off SPI unit prior changing mode */ mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE); /* When in CPM mode, we need to reinit tx and rx. */ if (mspi->flags & SPI_CPM_MODE) { fsl_spi_cpm_reinit_txrx(mspi); } mpc8xxx_spi_write_reg(mode, cs->hw_mode); local_irq_restore(flags); } static void fsl_spi_qe_cpu_set_shifts(u32 *rx_shift, u32 *tx_shift, int bits_per_word, int msb_first) { *rx_shift = 0; *tx_shift = 0; if (msb_first) { if (bits_per_word <= 8) { *rx_shift = 16; *tx_shift = 24; } else if (bits_per_word <= 16) { *rx_shift = 16; *tx_shift = 16; } } else { if (bits_per_word <= 8) *rx_shift = 8; } } static void fsl_spi_grlib_set_shifts(u32 *rx_shift, u32 *tx_shift, int bits_per_word, int msb_first) { *rx_shift = 0; *tx_shift = 0; if (bits_per_word <= 16) { if (msb_first) { *rx_shift = 16; /* LSB in bit 16 */ *tx_shift = 32 - bits_per_word; /* MSB in bit 31 */ } else { *rx_shift = 16 - bits_per_word; /* MSB in bit 15 */ } } } static void mspi_apply_cpu_mode_quirks(struct spi_mpc8xxx_cs *cs, struct spi_device *spi, struct mpc8xxx_spi *mpc8xxx_spi, int bits_per_word) { cs->rx_shift = 0; cs->tx_shift = 0; if (bits_per_word <= 8) { cs->get_rx = mpc8xxx_spi_rx_buf_u8; cs->get_tx = mpc8xxx_spi_tx_buf_u8; } else if (bits_per_word <= 16) { cs->get_rx = mpc8xxx_spi_rx_buf_u16; cs->get_tx = mpc8xxx_spi_tx_buf_u16; } else if (bits_per_word <= 32) { cs->get_rx = mpc8xxx_spi_rx_buf_u32; cs->get_tx = mpc8xxx_spi_tx_buf_u32; } if (mpc8xxx_spi->set_shifts) mpc8xxx_spi->set_shifts(&cs->rx_shift, &cs->tx_shift, bits_per_word, !(spi->mode & SPI_LSB_FIRST)); mpc8xxx_spi->rx_shift = cs->rx_shift; mpc8xxx_spi->tx_shift = cs->tx_shift; mpc8xxx_spi->get_rx = cs->get_rx; mpc8xxx_spi->get_tx = cs->get_tx; } static int fsl_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct mpc8xxx_spi *mpc8xxx_spi; int bits_per_word = 0; u8 pm; u32 hz = 0; struct spi_mpc8xxx_cs *cs = spi->controller_state; mpc8xxx_spi = spi_controller_get_devdata(spi->controller); if (t) { bits_per_word = t->bits_per_word; hz = t->speed_hz; } /* spi_transfer level calls that work per-word */ if (!bits_per_word) bits_per_word = spi->bits_per_word; if (!hz) hz = spi->max_speed_hz; if (!(mpc8xxx_spi->flags & SPI_CPM_MODE)) mspi_apply_cpu_mode_quirks(cs, spi, mpc8xxx_spi, bits_per_word); if (bits_per_word == 32) bits_per_word = 0; else bits_per_word = bits_per_word - 1; /* mask out bits we are going to set */ cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16 | SPMODE_PM(0xF)); cs->hw_mode |= SPMODE_LEN(bits_per_word); if ((mpc8xxx_spi->spibrg / hz) > 64) { cs->hw_mode |= SPMODE_DIV16; pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1; WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. Will use %d Hz instead.\n", dev_name(&spi->dev), hz, mpc8xxx_spi->spibrg / 1024); if (pm > 16) pm = 16; } else { pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1; } if (pm) pm--; cs->hw_mode |= SPMODE_PM(pm); fsl_spi_change_mode(spi); return 0; } static int fsl_spi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t, unsigned int len) { u32 word; struct fsl_spi_reg __iomem *reg_base = mspi->reg_base; mspi->count = len; /* enable rx ints */ mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE); /* transmit word */ word = mspi->get_tx(mspi); mpc8xxx_spi_write_reg(&reg_base->transmit, word); return 0; } static int fsl_spi_bufs(struct spi_device *spi, struct spi_transfer *t, bool is_dma_mapped) { struct mpc8xxx_spi *mpc8xxx_spi = spi_controller_get_devdata(spi->controller); struct fsl_spi_reg __iomem *reg_base; unsigned int len = t->len; u8 bits_per_word; int ret; reg_base = mpc8xxx_spi->reg_base; bits_per_word = spi->bits_per_word; if (t->bits_per_word) bits_per_word = t->bits_per_word; if (bits_per_word > 8) len /= 2; if (bits_per_word > 16) len /= 2; mpc8xxx_spi->tx = t->tx_buf; mpc8xxx_spi->rx = t->rx_buf; reinit_completion(&mpc8xxx_spi->done); if (mpc8xxx_spi->flags & SPI_CPM_MODE) ret = fsl_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped); else ret = fsl_spi_cpu_bufs(mpc8xxx_spi, t, len); if (ret) return ret; wait_for_completion(&mpc8xxx_spi->done); /* disable rx ints */ mpc8xxx_spi_write_reg(&reg_base->mask, 0); if (mpc8xxx_spi->flags & SPI_CPM_MODE) fsl_spi_cpm_bufs_complete(mpc8xxx_spi); return mpc8xxx_spi->count; } static int fsl_spi_prepare_message(struct spi_controller *ctlr, struct spi_message *m) { struct mpc8xxx_spi *mpc8xxx_spi = spi_controller_get_devdata(ctlr); struct spi_transfer *t; struct spi_transfer *first; first = list_first_entry(&m->transfers, struct spi_transfer, transfer_list); /* * In CPU mode, optimize large byte transfers to use larger * bits_per_word values to reduce number of interrupts taken. * * Some glitches can appear on the SPI clock when the mode changes. * Check that there is no speed change during the transfer and set it up * now to change the mode without having a chip-select asserted. */ list_for_each_entry(t, &m->transfers, transfer_list) { if (t->speed_hz != first->speed_hz) { dev_err(&m->spi->dev, "speed_hz cannot change during message.\n"); return -EINVAL; } if (!(mpc8xxx_spi->flags & SPI_CPM_MODE)) { if (t->len < 256 || t->bits_per_word != 8) continue; if ((t->len & 3) == 0) t->bits_per_word = 32; else if ((t->len & 1) == 0) t->bits_per_word = 16; } else { /* * CPM/QE uses Little Endian for words > 8 * so transform 16 and 32 bits words into 8 bits * Unfortnatly that doesn't work for LSB so * reject these for now * Note: 32 bits word, LSB works iff * tfcr/rfcr is set to CPMFCR_GBL */ if (m->spi->mode & SPI_LSB_FIRST && t->bits_per_word > 8) return -EINVAL; if (t->bits_per_word == 16 || t->bits_per_word == 32) t->bits_per_word = 8; /* pretend its 8 bits */ if (t->bits_per_word == 8 && t->len >= 256 && (mpc8xxx_spi->flags & SPI_CPM1)) t->bits_per_word = 16; } } return fsl_spi_setup_transfer(m->spi, first); } static int fsl_spi_transfer_one(struct spi_controller *controller, struct spi_device *spi, struct spi_transfer *t) { int status; status = fsl_spi_setup_transfer(spi, t); if (status < 0) return status; if (t->len) status = fsl_spi_bufs(spi, t, !!t->tx_dma || !!t->rx_dma); if (status > 0) return -EMSGSIZE; return status; } static int fsl_spi_unprepare_message(struct spi_controller *controller, struct spi_message *msg) { return fsl_spi_setup_transfer(msg->spi, NULL); } static int fsl_spi_setup(struct spi_device *spi) { struct mpc8xxx_spi *mpc8xxx_spi; struct fsl_spi_reg __iomem *reg_base; bool initial_setup = false; int retval; u32 hw_mode; struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi); if (!spi->max_speed_hz) return -EINVAL; if (!cs) { cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return -ENOMEM; spi_set_ctldata(spi, cs); initial_setup = true; } mpc8xxx_spi = spi_controller_get_devdata(spi->controller); reg_base = mpc8xxx_spi->reg_base; hw_mode = cs->hw_mode; /* Save original settings */ cs->hw_mode = mpc8xxx_spi_read_reg(&reg_base->mode); /* mask out bits we are going to set */ cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH | SPMODE_REV | SPMODE_LOOP); if (spi->mode & SPI_CPHA) cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK; if (spi->mode & SPI_CPOL) cs->hw_mode |= SPMODE_CI_INACTIVEHIGH; if (!(spi->mode & SPI_LSB_FIRST)) cs->hw_mode |= SPMODE_REV; if (spi->mode & SPI_LOOP) cs->hw_mode |= SPMODE_LOOP; retval = fsl_spi_setup_transfer(spi, NULL); if (retval < 0) { cs->hw_mode = hw_mode; /* Restore settings */ if (initial_setup) kfree(cs); return retval; } return 0; } static void fsl_spi_cleanup(struct spi_device *spi) { struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi); kfree(cs); spi_set_ctldata(spi, NULL); } static void fsl_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events) { struct fsl_spi_reg __iomem *reg_base = mspi->reg_base; /* We need handle RX first */ if (events & SPIE_NE) { u32 rx_data = mpc8xxx_spi_read_reg(&reg_base->receive); if (mspi->rx) mspi->get_rx(rx_data, mspi); } if ((events & SPIE_NF) == 0) /* spin until TX is done */ while (((events = mpc8xxx_spi_read_reg(&reg_base->event)) & SPIE_NF) == 0) cpu_relax(); /* Clear the events */ mpc8xxx_spi_write_reg(&reg_base->event, events); mspi->count -= 1; if (mspi->count) { u32 word = mspi->get_tx(mspi); mpc8xxx_spi_write_reg(&reg_base->transmit, word); } else { complete(&mspi->done); } } static irqreturn_t fsl_spi_irq(s32 irq, void *context_data) { struct mpc8xxx_spi *mspi = context_data; irqreturn_t ret = IRQ_NONE; u32 events; struct fsl_spi_reg __iomem *reg_base = mspi->reg_base; /* Get interrupt events(tx/rx) */ events = mpc8xxx_spi_read_reg(&reg_base->event); if (events) ret = IRQ_HANDLED; dev_dbg(mspi->dev, "%s: events %x\n", __func__, events); if (mspi->flags & SPI_CPM_MODE) fsl_spi_cpm_irq(mspi, events); else fsl_spi_cpu_irq(mspi, events); return ret; } static void fsl_spi_grlib_cs_control(struct spi_device *spi, bool on) { struct mpc8xxx_spi *mpc8xxx_spi = spi_controller_get_devdata(spi->controller); struct fsl_spi_reg __iomem *reg_base = mpc8xxx_spi->reg_base; u32 slvsel; u16 cs = spi_get_chipselect(spi, 0); if (cs < mpc8xxx_spi->native_chipselects) { slvsel = mpc8xxx_spi_read_reg(&reg_base->slvsel); slvsel = on ? (slvsel | (1 << cs)) : (slvsel & ~(1 << cs)); mpc8xxx_spi_write_reg(&reg_base->slvsel, slvsel); } } static void fsl_spi_grlib_probe(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct mpc8xxx_spi *mpc8xxx_spi = spi_controller_get_devdata(host); struct fsl_spi_reg __iomem *reg_base = mpc8xxx_spi->reg_base; int mbits; u32 capabilities; capabilities = mpc8xxx_spi_read_reg(&reg_base->cap); mpc8xxx_spi->set_shifts = fsl_spi_grlib_set_shifts; mbits = SPCAP_MAXWLEN(capabilities); if (mbits) mpc8xxx_spi->max_bits_per_word = mbits + 1; mpc8xxx_spi->native_chipselects = 0; if (SPCAP_SSEN(capabilities)) { mpc8xxx_spi->native_chipselects = SPCAP_SSSZ(capabilities); mpc8xxx_spi_write_reg(&reg_base->slvsel, 0xffffffff); } host->num_chipselect = mpc8xxx_spi->native_chipselects; host->set_cs = fsl_spi_grlib_cs_control; } static void fsl_spi_cs_control(struct spi_device *spi, bool on) { struct device *dev = spi->dev.parent->parent; struct fsl_spi_platform_data *pdata = dev_get_platdata(dev); struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata); if (WARN_ON_ONCE(!pinfo->immr_spi_cs)) return; iowrite32be(on ? 0 : SPI_BOOT_SEL_BIT, pinfo->immr_spi_cs); } static struct spi_controller *fsl_spi_probe(struct device *dev, struct resource *mem, unsigned int irq) { struct fsl_spi_platform_data *pdata = dev_get_platdata(dev); struct spi_controller *host; struct mpc8xxx_spi *mpc8xxx_spi; struct fsl_spi_reg __iomem *reg_base; u32 regval; int ret = 0; host = spi_alloc_host(dev, sizeof(struct mpc8xxx_spi)); if (host == NULL) { ret = -ENOMEM; goto err; } dev_set_drvdata(dev, host); mpc8xxx_spi_probe(dev, mem, irq); host->setup = fsl_spi_setup; host->cleanup = fsl_spi_cleanup; host->prepare_message = fsl_spi_prepare_message; host->transfer_one = fsl_spi_transfer_one; host->unprepare_message = fsl_spi_unprepare_message; host->use_gpio_descriptors = true; host->set_cs = fsl_spi_cs_control; mpc8xxx_spi = spi_controller_get_devdata(host); mpc8xxx_spi->max_bits_per_word = 32; mpc8xxx_spi->type = fsl_spi_get_type(dev); ret = fsl_spi_cpm_init(mpc8xxx_spi); if (ret) goto err_cpm_init; mpc8xxx_spi->reg_base = devm_ioremap_resource(dev, mem); if (IS_ERR(mpc8xxx_spi->reg_base)) { ret = PTR_ERR(mpc8xxx_spi->reg_base); goto err_probe; } if (mpc8xxx_spi->type == TYPE_GRLIB) fsl_spi_grlib_probe(dev); if (mpc8xxx_spi->flags & SPI_CPM_MODE) host->bits_per_word_mask = (SPI_BPW_RANGE_MASK(4, 8) | SPI_BPW_MASK(16) | SPI_BPW_MASK(32)); else host->bits_per_word_mask = (SPI_BPW_RANGE_MASK(4, 16) | SPI_BPW_MASK(32)); host->bits_per_word_mask &= SPI_BPW_RANGE_MASK(1, mpc8xxx_spi->max_bits_per_word); if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) mpc8xxx_spi->set_shifts = fsl_spi_qe_cpu_set_shifts; if (mpc8xxx_spi->set_shifts) /* 8 bits per word and MSB first */ mpc8xxx_spi->set_shifts(&mpc8xxx_spi->rx_shift, &mpc8xxx_spi->tx_shift, 8, 1); /* Register for SPI Interrupt */ ret = devm_request_irq(dev, mpc8xxx_spi->irq, fsl_spi_irq, 0, "fsl_spi", mpc8xxx_spi); if (ret != 0) goto err_probe; reg_base = mpc8xxx_spi->reg_base; /* SPI controller initializations */ mpc8xxx_spi_write_reg(&reg_base->mode, 0); mpc8xxx_spi_write_reg(&reg_base->mask, 0); mpc8xxx_spi_write_reg(&reg_base->command, 0); mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff); /* Enable SPI interface */ regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE; if (mpc8xxx_spi->max_bits_per_word < 8) { regval &= ~SPMODE_LEN(0xF); regval |= SPMODE_LEN(mpc8xxx_spi->max_bits_per_word - 1); } if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) regval |= SPMODE_OP; mpc8xxx_spi_write_reg(&reg_base->mode, regval); ret = devm_spi_register_controller(dev, host); if (ret < 0) goto err_probe; dev_info(dev, "at 0x%p (irq = %d), %s mode\n", reg_base, mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags)); return host; err_probe: fsl_spi_cpm_free(mpc8xxx_spi); err_cpm_init: spi_controller_put(host); err: return ERR_PTR(ret); } static int of_fsl_spi_probe(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct device_node *np = ofdev->dev.of_node; struct spi_controller *host; struct resource mem; int irq, type; int ret; bool spisel_boot = false; #if IS_ENABLED(CONFIG_FSL_SOC) struct mpc8xxx_spi_probe_info *pinfo = NULL; #endif ret = of_mpc8xxx_spi_probe(ofdev); if (ret) return ret; type = fsl_spi_get_type(&ofdev->dev); if (type == TYPE_FSL) { struct fsl_spi_platform_data *pdata = dev_get_platdata(dev); #if IS_ENABLED(CONFIG_FSL_SOC) pinfo = to_of_pinfo(pdata); spisel_boot = of_property_read_bool(np, "fsl,spisel_boot"); if (spisel_boot) { pinfo->immr_spi_cs = ioremap(get_immrbase() + IMMR_SPI_CS_OFFSET, 4); if (!pinfo->immr_spi_cs) return -ENOMEM; } #endif /* * Handle the case where we have one hardwired (always selected) * device on the first "chipselect". Else we let the core code * handle any GPIOs or native chip selects and assign the * appropriate callback for dealing with the CS lines. This isn't * supported on the GRLIB variant. */ ret = gpiod_count(dev, "cs"); if (ret < 0) ret = 0; if (ret == 0 && !spisel_boot) pdata->max_chipselect = 1; else pdata->max_chipselect = ret + spisel_boot; } ret = of_address_to_resource(np, 0, &mem); if (ret) goto unmap_out; irq = platform_get_irq(ofdev, 0); if (irq < 0) { ret = irq; goto unmap_out; } host = fsl_spi_probe(dev, &mem, irq); return PTR_ERR_OR_ZERO(host); unmap_out: #if IS_ENABLED(CONFIG_FSL_SOC) if (spisel_boot) iounmap(pinfo->immr_spi_cs); #endif return ret; } static void of_fsl_spi_remove(struct platform_device *ofdev) { struct spi_controller *host = platform_get_drvdata(ofdev); struct mpc8xxx_spi *mpc8xxx_spi = spi_controller_get_devdata(host); fsl_spi_cpm_free(mpc8xxx_spi); } static struct platform_driver of_fsl_spi_driver = { .driver = { .name = "fsl_spi", .of_match_table = of_fsl_spi_match, }, .probe = of_fsl_spi_probe, .remove_new = of_fsl_spi_remove, }; #ifdef CONFIG_MPC832x_RDB /* * XXX XXX XXX * This is "legacy" platform driver, was used by the MPC8323E-RDB boards * only. The driver should go away soon, since newer MPC8323E-RDB's device * tree can work with OpenFirmware driver. But for now we support old trees * as well. */ static int plat_mpc8xxx_spi_probe(struct platform_device *pdev) { struct resource *mem; int irq; struct spi_controller *host; if (!dev_get_platdata(&pdev->dev)) return -EINVAL; mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) return -EINVAL; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; host = fsl_spi_probe(&pdev->dev, mem, irq); return PTR_ERR_OR_ZERO(host); } static void plat_mpc8xxx_spi_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); struct mpc8xxx_spi *mpc8xxx_spi = spi_controller_get_devdata(host); fsl_spi_cpm_free(mpc8xxx_spi); } MODULE_ALIAS("platform:mpc8xxx_spi"); static struct platform_driver mpc8xxx_spi_driver = { .probe = plat_mpc8xxx_spi_probe, .remove_new = plat_mpc8xxx_spi_remove, .driver = { .name = "mpc8xxx_spi", }, }; static bool legacy_driver_failed; static void __init legacy_driver_register(void) { legacy_driver_failed = platform_driver_register(&mpc8xxx_spi_driver); } static void __exit legacy_driver_unregister(void) { if (legacy_driver_failed) return; platform_driver_unregister(&mpc8xxx_spi_driver); } #else static void __init legacy_driver_register(void) {} static void __exit legacy_driver_unregister(void) {} #endif /* CONFIG_MPC832x_RDB */ static int __init fsl_spi_init(void) { legacy_driver_register(); return platform_driver_register(&of_fsl_spi_driver); } module_init(fsl_spi_init); static void __exit fsl_spi_exit(void) { platform_driver_unregister(&of_fsl_spi_driver); legacy_driver_unregister(); } module_exit(fsl_spi_exit); MODULE_AUTHOR("Kumar Gala"); MODULE_DESCRIPTION("Simple Freescale SPI Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-fsl-spi.c
// SPDX-License-Identifier: GPL-2.0+ /* * NXP FlexSPI(FSPI) controller driver. * * Copyright 2019-2020 NXP * Copyright 2020 Puresoftware Ltd. * * FlexSPI is a flexsible SPI host controller which supports two SPI * channels and up to 4 external devices. Each channel supports * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional * data lines). * * FlexSPI controller is driven by the LUT(Look-up Table) registers * LUT registers are a look-up-table for sequences of instructions. * A valid sequence consists of four LUT registers. * Maximum 32 LUT sequences can be programmed simultaneously. * * LUTs are being created at run-time based on the commands passed * from the spi-mem framework, thus using single LUT index. * * Software triggered Flash read/write access by IP Bus. * * Memory mapped read access by AHB Bus. * * Based on SPI MEM interface and spi-fsl-qspi.c driver. * * Author: * Yogesh Narayan Gaur <[email protected]> * Boris Brezillon <[email protected]> * Frieder Schrempf <[email protected]> */ #include <linux/acpi.h> #include <linux/bitops.h> #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_qos.h> #include <linux/regmap.h> #include <linux/sizes.h> #include <linux/sys_soc.h> #include <linux/mfd/syscon.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> /* * The driver only uses one single LUT entry, that is updated on * each call of exec_op(). Index 0 is preset at boot with a basic * read operation, so let's use the last entry (31). */ #define SEQID_LUT 31 /* Registers used by the driver */ #define FSPI_MCR0 0x00 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) #define FSPI_MCR0_LEARN_EN BIT(15) #define FSPI_MCR0_SCRFRUN_EN BIT(14) #define FSPI_MCR0_OCTCOMB_EN BIT(13) #define FSPI_MCR0_DOZE_EN BIT(12) #define FSPI_MCR0_HSEN BIT(11) #define FSPI_MCR0_SERCLKDIV BIT(8) #define FSPI_MCR0_ATDF_EN BIT(7) #define FSPI_MCR0_ARDF_EN BIT(6) #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) #define FSPI_MCR0_END_CFG(x) ((x) << 2) #define FSPI_MCR0_MDIS BIT(1) #define FSPI_MCR0_SWRST BIT(0) #define FSPI_MCR1 0x04 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) #define FSPI_MCR1_AHB_TIMEOUT(x) (x) #define FSPI_MCR2 0x08 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) #define FSPI_MCR2_SAMEDEVICEEN BIT(15) #define FSPI_MCR2_CLRLRPHS BIT(14) #define FSPI_MCR2_ABRDATSZ BIT(8) #define FSPI_MCR2_ABRLEARN BIT(7) #define FSPI_MCR2_ABR_READ BIT(6) #define FSPI_MCR2_ABRWRITE BIT(5) #define FSPI_MCR2_ABRDUMMY BIT(4) #define FSPI_MCR2_ABR_MODE BIT(3) #define FSPI_MCR2_ABRCADDR BIT(2) #define FSPI_MCR2_ABRRADDR BIT(1) #define FSPI_MCR2_ABR_CMD BIT(0) #define FSPI_AHBCR 0x0c #define FSPI_AHBCR_RDADDROPT BIT(6) #define FSPI_AHBCR_PREF_EN BIT(5) #define FSPI_AHBCR_BUFF_EN BIT(4) #define FSPI_AHBCR_CACH_EN BIT(3) #define FSPI_AHBCR_CLRTXBUF BIT(2) #define FSPI_AHBCR_CLRRXBUF BIT(1) #define FSPI_AHBCR_PAR_EN BIT(0) #define FSPI_INTEN 0x10 #define FSPI_INTEN_SCLKSBWR BIT(9) #define FSPI_INTEN_SCLKSBRD BIT(8) #define FSPI_INTEN_DATALRNFL BIT(7) #define FSPI_INTEN_IPTXWE BIT(6) #define FSPI_INTEN_IPRXWA BIT(5) #define FSPI_INTEN_AHBCMDERR BIT(4) #define FSPI_INTEN_IPCMDERR BIT(3) #define FSPI_INTEN_AHBCMDGE BIT(2) #define FSPI_INTEN_IPCMDGE BIT(1) #define FSPI_INTEN_IPCMDDONE BIT(0) #define FSPI_INTR 0x14 #define FSPI_INTR_SCLKSBWR BIT(9) #define FSPI_INTR_SCLKSBRD BIT(8) #define FSPI_INTR_DATALRNFL BIT(7) #define FSPI_INTR_IPTXWE BIT(6) #define FSPI_INTR_IPRXWA BIT(5) #define FSPI_INTR_AHBCMDERR BIT(4) #define FSPI_INTR_IPCMDERR BIT(3) #define FSPI_INTR_AHBCMDGE BIT(2) #define FSPI_INTR_IPCMDGE BIT(1) #define FSPI_INTR_IPCMDDONE BIT(0) #define FSPI_LUTKEY 0x18 #define FSPI_LUTKEY_VALUE 0x5AF05AF0 #define FSPI_LCKCR 0x1C #define FSPI_LCKER_LOCK 0x1 #define FSPI_LCKER_UNLOCK 0x2 #define FSPI_BUFXCR_INVALID_MSTRID 0xE #define FSPI_AHBRX_BUF0CR0 0x20 #define FSPI_AHBRX_BUF1CR0 0x24 #define FSPI_AHBRX_BUF2CR0 0x28 #define FSPI_AHBRX_BUF3CR0 0x2C #define FSPI_AHBRX_BUF4CR0 0x30 #define FSPI_AHBRX_BUF5CR0 0x34 #define FSPI_AHBRX_BUF6CR0 0x38 #define FSPI_AHBRX_BUF7CR0 0x3C #define FSPI_AHBRXBUF0CR7_PREF BIT(31) #define FSPI_AHBRX_BUF0CR1 0x40 #define FSPI_AHBRX_BUF1CR1 0x44 #define FSPI_AHBRX_BUF2CR1 0x48 #define FSPI_AHBRX_BUF3CR1 0x4C #define FSPI_AHBRX_BUF4CR1 0x50 #define FSPI_AHBRX_BUF5CR1 0x54 #define FSPI_AHBRX_BUF6CR1 0x58 #define FSPI_AHBRX_BUF7CR1 0x5C #define FSPI_FLSHA1CR0 0x60 #define FSPI_FLSHA2CR0 0x64 #define FSPI_FLSHB1CR0 0x68 #define FSPI_FLSHB2CR0 0x6C #define FSPI_FLSHXCR0_SZ_KB 10 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) #define FSPI_FLSHA1CR1 0x70 #define FSPI_FLSHA2CR1 0x74 #define FSPI_FLSHB1CR1 0x78 #define FSPI_FLSHB2CR1 0x7C #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) #define FSPI_FLSHXCR1_WA BIT(10) #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) #define FSPI_FLSHXCR1_TCSS(x) (x) #define FSPI_FLSHA1CR2 0x80 #define FSPI_FLSHA2CR2 0x84 #define FSPI_FLSHB1CR2 0x88 #define FSPI_FLSHB2CR2 0x8C #define FSPI_FLSHXCR2_CLRINSP BIT(24) #define FSPI_FLSHXCR2_AWRWAIT BIT(16) #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 #define FSPI_IPCR0 0xA0 #define FSPI_IPCR1 0xA4 #define FSPI_IPCR1_IPAREN BIT(31) #define FSPI_IPCR1_SEQNUM_SHIFT 24 #define FSPI_IPCR1_SEQID_SHIFT 16 #define FSPI_IPCR1_IDATSZ(x) (x) #define FSPI_IPCMD 0xB0 #define FSPI_IPCMD_TRG BIT(0) #define FSPI_DLPR 0xB4 #define FSPI_IPRXFCR 0xB8 #define FSPI_IPRXFCR_CLR BIT(0) #define FSPI_IPRXFCR_DMA_EN BIT(1) #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) #define FSPI_IPTXFCR 0xBC #define FSPI_IPTXFCR_CLR BIT(0) #define FSPI_IPTXFCR_DMA_EN BIT(1) #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) #define FSPI_DLLACR 0xC0 #define FSPI_DLLACR_OVRDEN BIT(8) #define FSPI_DLLACR_SLVDLY(x) ((x) << 3) #define FSPI_DLLACR_DLLRESET BIT(1) #define FSPI_DLLACR_DLLEN BIT(0) #define FSPI_DLLBCR 0xC4 #define FSPI_DLLBCR_OVRDEN BIT(8) #define FSPI_DLLBCR_SLVDLY(x) ((x) << 3) #define FSPI_DLLBCR_DLLRESET BIT(1) #define FSPI_DLLBCR_DLLEN BIT(0) #define FSPI_STS0 0xE0 #define FSPI_STS0_DLPHB(x) ((x) << 8) #define FSPI_STS0_DLPHA(x) ((x) << 4) #define FSPI_STS0_CMD_SRC(x) ((x) << 2) #define FSPI_STS0_ARB_IDLE BIT(1) #define FSPI_STS0_SEQ_IDLE BIT(0) #define FSPI_STS1 0xE4 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) #define FSPI_STS1_IP_ERRID(x) ((x) << 16) #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) #define FSPI_STS1_AHB_ERRID(x) (x) #define FSPI_STS2 0xE8 #define FSPI_STS2_BREFLOCK BIT(17) #define FSPI_STS2_BSLVLOCK BIT(16) #define FSPI_STS2_AREFLOCK BIT(1) #define FSPI_STS2_ASLVLOCK BIT(0) #define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \ FSPI_STS2_BSLVLOCK | \ FSPI_STS2_AREFLOCK | \ FSPI_STS2_ASLVLOCK) #define FSPI_AHBSPNST 0xEC #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) #define FSPI_AHBSPNST_ACTIVE BIT(0) #define FSPI_IPRXFSTS 0xF0 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) #define FSPI_IPRXFSTS_FILL(x) (x) #define FSPI_IPTXFSTS 0xF4 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) #define FSPI_IPTXFSTS_FILL(x) (x) #define FSPI_RFDR 0x100 #define FSPI_TFDR 0x180 #define FSPI_LUT_BASE 0x200 #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) #define FSPI_LUT_REG(idx) \ (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) /* register map end */ /* Instruction set for the LUT register. */ #define LUT_STOP 0x00 #define LUT_CMD 0x01 #define LUT_ADDR 0x02 #define LUT_CADDR_SDR 0x03 #define LUT_MODE 0x04 #define LUT_MODE2 0x05 #define LUT_MODE4 0x06 #define LUT_MODE8 0x07 #define LUT_NXP_WRITE 0x08 #define LUT_NXP_READ 0x09 #define LUT_LEARN_SDR 0x0A #define LUT_DATSZ_SDR 0x0B #define LUT_DUMMY 0x0C #define LUT_DUMMY_RWDS_SDR 0x0D #define LUT_JMP_ON_CS 0x1F #define LUT_CMD_DDR 0x21 #define LUT_ADDR_DDR 0x22 #define LUT_CADDR_DDR 0x23 #define LUT_MODE_DDR 0x24 #define LUT_MODE2_DDR 0x25 #define LUT_MODE4_DDR 0x26 #define LUT_MODE8_DDR 0x27 #define LUT_WRITE_DDR 0x28 #define LUT_READ_DDR 0x29 #define LUT_LEARN_DDR 0x2A #define LUT_DATSZ_DDR 0x2B #define LUT_DUMMY_DDR 0x2C #define LUT_DUMMY_RWDS_DDR 0x2D /* * Calculate number of required PAD bits for LUT register. * * The pad stands for the number of IO lines [0:7]. * For example, the octal read needs eight IO lines, * so you should use LUT_PAD(8). This macro * returns 3 i.e. use eight (2^3) IP lines for read. */ #define LUT_PAD(x) (fls(x) - 1) /* * Macro for constructing the LUT entries with the following * register layout: * * --------------------------------------------------- * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | * --------------------------------------------------- */ #define PAD_SHIFT 8 #define INSTR_SHIFT 10 #define OPRND_SHIFT 16 /* Macros for constructing the LUT register. */ #define LUT_DEF(idx, ins, pad, opr) \ ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ (opr)) << (((idx) % 2) * OPRND_SHIFT)) #define POLL_TOUT 5000 #define NXP_FSPI_MAX_CHIPSELECT 4 #define NXP_FSPI_MIN_IOMAP SZ_4M #define DCFG_RCWSR1 0x100 #define SYS_PLL_RAT GENMASK(6, 2) /* Access flash memory using IP bus only */ #define FSPI_QUIRK_USE_IP_ONLY BIT(0) struct nxp_fspi_devtype_data { unsigned int rxfifo; unsigned int txfifo; unsigned int ahb_buf_size; unsigned int quirks; bool little_endian; }; static struct nxp_fspi_devtype_data lx2160a_data = { .rxfifo = SZ_512, /* (64 * 64 bits) */ .txfifo = SZ_1K, /* (128 * 64 bits) */ .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ .quirks = 0, .little_endian = true, /* little-endian */ }; static struct nxp_fspi_devtype_data imx8mm_data = { .rxfifo = SZ_512, /* (64 * 64 bits) */ .txfifo = SZ_1K, /* (128 * 64 bits) */ .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ .quirks = 0, .little_endian = true, /* little-endian */ }; static struct nxp_fspi_devtype_data imx8qxp_data = { .rxfifo = SZ_512, /* (64 * 64 bits) */ .txfifo = SZ_1K, /* (128 * 64 bits) */ .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ .quirks = 0, .little_endian = true, /* little-endian */ }; static struct nxp_fspi_devtype_data imx8dxl_data = { .rxfifo = SZ_512, /* (64 * 64 bits) */ .txfifo = SZ_1K, /* (128 * 64 bits) */ .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ .quirks = FSPI_QUIRK_USE_IP_ONLY, .little_endian = true, /* little-endian */ }; struct nxp_fspi { void __iomem *iobase; void __iomem *ahb_addr; u32 memmap_phy; u32 memmap_phy_size; u32 memmap_start; u32 memmap_len; struct clk *clk, *clk_en; struct device *dev; struct completion c; struct nxp_fspi_devtype_data *devtype_data; struct mutex lock; struct pm_qos_request pm_qos_req; int selected; }; static inline int needs_ip_only(struct nxp_fspi *f) { return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY; } /* * R/W functions for big- or little-endian registers: * The FSPI controller's endianness is independent of * the CPU core's endianness. So far, although the CPU * core is little-endian the FSPI controller can use * big-endian or little-endian. */ static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) { if (f->devtype_data->little_endian) iowrite32(val, addr); else iowrite32be(val, addr); } static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) { if (f->devtype_data->little_endian) return ioread32(addr); else return ioread32be(addr); } static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) { struct nxp_fspi *f = dev_id; u32 reg; /* clear interrupt */ reg = fspi_readl(f, f->iobase + FSPI_INTR); fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); if (reg & FSPI_INTR_IPCMDDONE) complete(&f->c); return IRQ_HANDLED; } static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) { switch (width) { case 1: case 2: case 4: case 8: return 0; } return -ENOTSUPP; } static bool nxp_fspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); int ret; ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); if (op->addr.nbytes) ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); if (op->dummy.nbytes) ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); if (op->data.nbytes) ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); if (ret) return false; /* * The number of address bytes should be equal to or less than 4 bytes. */ if (op->addr.nbytes > 4) return false; /* * If requested address value is greater than controller assigned * memory mapped space, return error as it didn't fit in the range * of assigned address space. */ if (op->addr.val >= f->memmap_phy_size) return false; /* Max 64 dummy clock cycles supported */ if (op->dummy.buswidth && (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) return false; /* Max data length, check controller limits and alignment */ if (op->data.dir == SPI_MEM_DATA_IN && (op->data.nbytes > f->devtype_data->ahb_buf_size || (op->data.nbytes > f->devtype_data->rxfifo - 4 && !IS_ALIGNED(op->data.nbytes, 8)))) return false; if (op->data.dir == SPI_MEM_DATA_OUT && op->data.nbytes > f->devtype_data->txfifo) return false; return spi_mem_default_supports_op(mem, op); } /* Instead of busy looping invoke readl_poll_timeout functionality. */ static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, u32 mask, u32 delay_us, u32 timeout_us, bool c) { u32 reg; if (!f->devtype_data->little_endian) mask = (u32)cpu_to_be32(mask); if (c) return readl_poll_timeout(base, reg, (reg & mask), delay_us, timeout_us); else return readl_poll_timeout(base, reg, !(reg & mask), delay_us, timeout_us); } /* * If the slave device content being changed by Write/Erase, need to * invalidate the AHB buffer. This can be achieved by doing the reset * of controller after setting MCR0[SWRESET] bit. */ static inline void nxp_fspi_invalid(struct nxp_fspi *f) { u32 reg; int ret; reg = fspi_readl(f, f->iobase + FSPI_MCR0); fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); /* w1c register, wait unit clear */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, FSPI_MCR0_SWRST, 0, POLL_TOUT, false); WARN_ON(ret); } static void nxp_fspi_prepare_lut(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; u32 lutval[4] = {}; int lutidx = 1, i; /* cmd */ lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), op->cmd.opcode); /* addr bytes */ if (op->addr.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, LUT_PAD(op->addr.buswidth), op->addr.nbytes * 8); lutidx++; } /* dummy bytes, if needed */ if (op->dummy.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, /* * Due to FlexSPI controller limitation number of PAD for dummy * buswidth needs to be programmed as equal to data buswidth. */ LUT_PAD(op->data.buswidth), op->dummy.nbytes * 8 / op->dummy.buswidth); lutidx++; } /* read/write data bytes */ if (op->data.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, op->data.dir == SPI_MEM_DATA_IN ? LUT_NXP_READ : LUT_NXP_WRITE, LUT_PAD(op->data.buswidth), 0); lutidx++; } /* stop condition. */ lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); /* unlock LUT */ fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); /* fill LUT */ for (i = 0; i < ARRAY_SIZE(lutval); i++) fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n", op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes); /* lock LUT */ fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); } static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) { int ret; if (is_acpi_node(dev_fwnode(f->dev))) return 0; ret = clk_prepare_enable(f->clk_en); if (ret) return ret; ret = clk_prepare_enable(f->clk); if (ret) { clk_disable_unprepare(f->clk_en); return ret; } return 0; } static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) { if (is_acpi_node(dev_fwnode(f->dev))) return 0; clk_disable_unprepare(f->clk); clk_disable_unprepare(f->clk_en); return 0; } static void nxp_fspi_dll_calibration(struct nxp_fspi *f) { int ret; /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */ fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR); fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR); fspi_writel(f, 0, f->iobase + FSPI_DLLACR); fspi_writel(f, 0, f->iobase + FSPI_DLLBCR); /* * Enable the DLL calibration mode. * The delay target for slave delay line is: * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock. * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which * means half of clock cycle of reference clock. */ fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF), f->iobase + FSPI_DLLACR); fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF), f->iobase + FSPI_DLLBCR); /* Wait to get REF/SLV lock */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK, 0, POLL_TOUT, true); if (ret) dev_warn(f->dev, "DLL lock failed, please fix it!\n"); } /* * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 * register and start base address of the slave device. * * (Higher address) * -------- <-- FLSHB2CR0 * | B2 | * | | * B2 start address --> -------- <-- FLSHB1CR0 * | B1 | * | | * B1 start address --> -------- <-- FLSHA2CR0 * | A2 | * | | * A2 start address --> -------- <-- FLSHA1CR0 * | A1 | * | | * A1 start address --> -------- (Lower address) * * * Start base address defines the starting address range for given CS and * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. * * But, different targets are having different combinations of number of CS, * some targets only have single CS or two CS covering controller's full * memory mapped space area. * Thus, implementation is being done as independent of the size and number * of the connected slave device. * Assign controller memory mapped space size as the size to the connected * slave device. * Mark FLSHxxCR0 as zero initially and then assign value only to the selected * chip-select Flash configuration register. * * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the * memory mapped size of the controller. * Value for rest of the CS FLSHxxCR0 register would be zero. * */ static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) { unsigned long rate = spi->max_speed_hz; int ret; uint64_t size_kb; /* * Return, if previously selected slave device is same as current * requested slave device. */ if (f->selected == spi_get_chipselect(spi, 0)) return; /* Reset FLSHxxCR0 registers */ fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); /* Assign controller memory mapped space as size, KBytes, of flash. */ size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + 4 * spi_get_chipselect(spi, 0)); dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi_get_chipselect(spi, 0)); nxp_fspi_clk_disable_unprep(f); ret = clk_set_rate(f->clk, rate); if (ret) return; ret = nxp_fspi_clk_prep_enable(f); if (ret) return; /* * If clock rate > 100MHz, then switch from DLL override mode to * DLL calibration mode. */ if (rate > 100000000) nxp_fspi_dll_calibration(f); f->selected = spi_get_chipselect(spi, 0); } static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) { u32 start = op->addr.val; u32 len = op->data.nbytes; /* if necessary, ioremap before AHB read */ if ((!f->ahb_addr) || start < f->memmap_start || start + len > f->memmap_start + f->memmap_len) { if (f->ahb_addr) iounmap(f->ahb_addr); f->memmap_start = start; f->memmap_len = len > NXP_FSPI_MIN_IOMAP ? len : NXP_FSPI_MIN_IOMAP; f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start, f->memmap_len); if (!f->ahb_addr) { dev_err(f->dev, "failed to alloc memory\n"); return -ENOMEM; } } /* Read out the data directly from the AHB buffer. */ memcpy_fromio(op->data.buf.in, f->ahb_addr + start - f->memmap_start, len); return 0; } static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; int i, ret; u8 *buf = (u8 *) op->data.buf.out; /* clear the TX FIFO. */ fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); /* * Default value of water mark level is 8 bytes, hence in single * write request controller can write max 8 bytes of data. */ for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { /* Wait for TXFIFO empty */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPTXWE, 0, POLL_TOUT, true); WARN_ON(ret); fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); } if (i < op->data.nbytes) { u32 data = 0; int j; /* Wait for TXFIFO empty */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPTXWE, 0, POLL_TOUT, true); WARN_ON(ret); for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { memcpy(&data, buf + i + j, 4); fspi_writel(f, data, base + FSPI_TFDR + j); } fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); } } static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; int i, ret; int len = op->data.nbytes; u8 *buf = (u8 *) op->data.buf.in; /* * Default value of water mark level is 8 bytes, hence in single * read request controller can read max 8 bytes of data. */ for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { /* Wait for RXFIFO available */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPRXWA, 0, POLL_TOUT, true); WARN_ON(ret); *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); /* move the FIFO pointer */ fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); } if (i < len) { u32 tmp; int size, j; buf = op->data.buf.in + i; /* Wait for RXFIFO available */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPRXWA, 0, POLL_TOUT, true); WARN_ON(ret); len = op->data.nbytes - i; for (j = 0; j < op->data.nbytes - i; j += 4) { tmp = fspi_readl(f, base + FSPI_RFDR + j); size = min(len, 4); memcpy(buf + j, &tmp, size); len -= size; } } /* invalid the RXFIFO */ fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); /* move the FIFO pointer */ fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); } static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; int seqnum = 0; int err = 0; u32 reg; reg = fspi_readl(f, base + FSPI_IPRXFCR); /* invalid RXFIFO first */ reg &= ~FSPI_IPRXFCR_DMA_EN; reg = reg | FSPI_IPRXFCR_CLR; fspi_writel(f, reg, base + FSPI_IPRXFCR); init_completion(&f->c); fspi_writel(f, op->addr.val, base + FSPI_IPCR0); /* * Always start the sequence at the same index since we update * the LUT at each exec_op() call. And also specify the DATA * length, since it's has not been specified in the LUT. */ fspi_writel(f, op->data.nbytes | (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), base + FSPI_IPCR1); /* Trigger the LUT now. */ fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); /* Wait for the interrupt. */ if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) err = -ETIMEDOUT; /* Invoke IP data read, if request is of data read. */ if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) nxp_fspi_read_rxfifo(f, op); return err; } static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); int err = 0; mutex_lock(&f->lock); /* Wait for controller being ready. */ err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); WARN_ON(err); nxp_fspi_select_mem(f, mem->spi); nxp_fspi_prepare_lut(f, op); /* * If we have large chunks of data, we read them through the AHB bus by * accessing the mapped memory. In all other cases we use IP commands * to access the flash. Read via AHB bus may be corrupted due to * existence of an errata and therefore discard AHB read in such cases. */ if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && op->data.dir == SPI_MEM_DATA_IN && !needs_ip_only(f)) { err = nxp_fspi_read_ahb(f, op); } else { if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) nxp_fspi_fill_txfifo(f, op); err = nxp_fspi_do_op(f, op); } /* Invalidate the data in the AHB buffer. */ nxp_fspi_invalid(f); mutex_unlock(&f->lock); return err; } static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); if (op->data.dir == SPI_MEM_DATA_OUT) { if (op->data.nbytes > f->devtype_data->txfifo) op->data.nbytes = f->devtype_data->txfifo; } else { if (op->data.nbytes > f->devtype_data->ahb_buf_size) op->data.nbytes = f->devtype_data->ahb_buf_size; else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); } /* Limit data bytes to RX FIFO in case of IP read only */ if (op->data.dir == SPI_MEM_DATA_IN && needs_ip_only(f) && op->data.nbytes > f->devtype_data->rxfifo) op->data.nbytes = f->devtype_data->rxfifo; return 0; } static void erratum_err050568(struct nxp_fspi *f) { static const struct soc_device_attribute ls1028a_soc_attr[] = { { .family = "QorIQ LS1028A" }, { /* sentinel */ } }; struct regmap *map; u32 val, sys_pll_ratio; int ret; /* Check for LS1028A family */ if (!soc_device_match(ls1028a_soc_attr)) { dev_dbg(f->dev, "Errata applicable only for LS1028A\n"); return; } map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg"); if (IS_ERR(map)) { dev_err(f->dev, "No syscon regmap\n"); goto err; } ret = regmap_read(map, DCFG_RCWSR1, &val); if (ret < 0) goto err; sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val); dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio); /* Use IP bus only if platform clock is 300MHz */ if (sys_pll_ratio == 3) f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY; return; err: dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n"); } static int nxp_fspi_default_setup(struct nxp_fspi *f) { void __iomem *base = f->iobase; int ret, i; u32 reg; /* disable and unprepare clock to avoid glitch pass to controller */ nxp_fspi_clk_disable_unprep(f); /* the default frequency, we will change it later if necessary. */ ret = clk_set_rate(f->clk, 20000000); if (ret) return ret; ret = nxp_fspi_clk_prep_enable(f); if (ret) return ret; /* * ERR050568: Flash access by FlexSPI AHB command may not work with * platform frequency equal to 300 MHz on LS1028A. * LS1028A reuses LX2160A compatible entry. Make errata applicable for * Layerscape LS1028A platform. */ if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi")) erratum_err050568(f); /* Reset the module */ /* w1c register, wait unit clear */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, FSPI_MCR0_SWRST, 0, POLL_TOUT, false); WARN_ON(ret); /* Disable the module */ fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); /* * Config the DLL register to default value, enable the slave clock delay * line delay cell override mode, and use 1 fixed delay cell in DLL delay * chain, this is the suggested setting when clock rate < 100MHz. */ fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); /* enable module */ fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, base + FSPI_MCR0); /* * Disable same device enable bit and configure all slave devices * independently. */ reg = fspi_readl(f, f->iobase + FSPI_MCR2); reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); fspi_writel(f, reg, base + FSPI_MCR2); /* AHB configuration for access buffer 0~7. */ for (i = 0; i < 7; i++) fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); /* * Set ADATSZ with the maximum AHB buffer size to improve the read * performance. */ fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); /* prefetch and no start address alignment limitation */ fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, base + FSPI_AHBCR); /* Reset the FLSHxCR1 registers. */ reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3); fspi_writel(f, reg, base + FSPI_FLSHA1CR1); fspi_writel(f, reg, base + FSPI_FLSHA2CR1); fspi_writel(f, reg, base + FSPI_FLSHB1CR1); fspi_writel(f, reg, base + FSPI_FLSHB2CR1); /* AHB Read - Set lut sequence ID for all CS. */ fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); f->selected = -1; /* enable the interrupt */ fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); return 0; } static const char *nxp_fspi_get_name(struct spi_mem *mem) { struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); struct device *dev = &mem->spi->dev; const char *name; // Set custom name derived from the platform_device of the controller. if (of_get_available_child_count(f->dev->of_node) == 1) return dev_name(f->dev); name = devm_kasprintf(dev, GFP_KERNEL, "%s-%d", dev_name(f->dev), spi_get_chipselect(mem->spi, 0)); if (!name) { dev_err(dev, "failed to get memory for custom flash name\n"); return ERR_PTR(-ENOMEM); } return name; } static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { .adjust_op_size = nxp_fspi_adjust_op_size, .supports_op = nxp_fspi_supports_op, .exec_op = nxp_fspi_exec_op, .get_name = nxp_fspi_get_name, }; static int nxp_fspi_probe(struct platform_device *pdev) { struct spi_controller *ctlr; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct resource *res; struct nxp_fspi *f; int ret; u32 reg; ctlr = spi_alloc_master(&pdev->dev, sizeof(*f)); if (!ctlr) return -ENOMEM; ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; f = spi_controller_get_devdata(ctlr); f->dev = dev; f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev); if (!f->devtype_data) { ret = -ENODEV; goto err_put_ctrl; } platform_set_drvdata(pdev, f); /* find the resources - configuration register address space */ if (is_acpi_node(dev_fwnode(f->dev))) f->iobase = devm_platform_ioremap_resource(pdev, 0); else f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base"); if (IS_ERR(f->iobase)) { ret = PTR_ERR(f->iobase); goto err_put_ctrl; } /* find the resources - controller memory mapped space */ if (is_acpi_node(dev_fwnode(f->dev))) res = platform_get_resource(pdev, IORESOURCE_MEM, 1); else res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap"); if (!res) { ret = -ENODEV; goto err_put_ctrl; } /* assign memory mapped starting address and mapped size. */ f->memmap_phy = res->start; f->memmap_phy_size = resource_size(res); /* find the clocks */ if (dev_of_node(&pdev->dev)) { f->clk_en = devm_clk_get(dev, "fspi_en"); if (IS_ERR(f->clk_en)) { ret = PTR_ERR(f->clk_en); goto err_put_ctrl; } f->clk = devm_clk_get(dev, "fspi"); if (IS_ERR(f->clk)) { ret = PTR_ERR(f->clk); goto err_put_ctrl; } ret = nxp_fspi_clk_prep_enable(f); if (ret) { dev_err(dev, "can not enable the clock\n"); goto err_put_ctrl; } } /* Clear potential interrupts */ reg = fspi_readl(f, f->iobase + FSPI_INTR); if (reg) fspi_writel(f, reg, f->iobase + FSPI_INTR); /* find the irq */ ret = platform_get_irq(pdev, 0); if (ret < 0) goto err_disable_clk; ret = devm_request_irq(dev, ret, nxp_fspi_irq_handler, 0, pdev->name, f); if (ret) { dev_err(dev, "failed to request irq: %d\n", ret); goto err_disable_clk; } mutex_init(&f->lock); ctlr->bus_num = -1; ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; ctlr->mem_ops = &nxp_fspi_mem_ops; nxp_fspi_default_setup(f); ctlr->dev.of_node = np; ret = devm_spi_register_controller(&pdev->dev, ctlr); if (ret) goto err_destroy_mutex; return 0; err_destroy_mutex: mutex_destroy(&f->lock); err_disable_clk: nxp_fspi_clk_disable_unprep(f); err_put_ctrl: spi_controller_put(ctlr); dev_err(dev, "NXP FSPI probe failed\n"); return ret; } static void nxp_fspi_remove(struct platform_device *pdev) { struct nxp_fspi *f = platform_get_drvdata(pdev); /* disable the hardware */ fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); nxp_fspi_clk_disable_unprep(f); mutex_destroy(&f->lock); if (f->ahb_addr) iounmap(f->ahb_addr); } static int nxp_fspi_suspend(struct device *dev) { return 0; } static int nxp_fspi_resume(struct device *dev) { struct nxp_fspi *f = dev_get_drvdata(dev); nxp_fspi_default_setup(f); return 0; } static const struct of_device_id nxp_fspi_dt_ids[] = { { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, }, { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, }, { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, }, { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); #ifdef CONFIG_ACPI static const struct acpi_device_id nxp_fspi_acpi_ids[] = { { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, }, {} }; MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids); #endif static const struct dev_pm_ops nxp_fspi_pm_ops = { .suspend = nxp_fspi_suspend, .resume = nxp_fspi_resume, }; static struct platform_driver nxp_fspi_driver = { .driver = { .name = "nxp-fspi", .of_match_table = nxp_fspi_dt_ids, .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids), .pm = &nxp_fspi_pm_ops, }, .probe = nxp_fspi_probe, .remove_new = nxp_fspi_remove, }; module_platform_driver(nxp_fspi_driver); MODULE_DESCRIPTION("NXP FSPI Controller Driver"); MODULE_AUTHOR("NXP Semiconductor"); MODULE_AUTHOR("Yogesh Narayan Gaur <[email protected]>"); MODULE_AUTHOR("Boris Brezillon <[email protected]>"); MODULE_AUTHOR("Frieder Schrempf <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/spi/spi-nxp-fspi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Broadcom BCMBCA High Speed SPI Controller driver * * Copyright 2000-2010 Broadcom Corporation * Copyright 2012-2013 Jonas Gorski <[email protected]> * Copyright 2019-2022 Broadcom Ltd */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/spi/spi.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/spi/spi-mem.h> #include <linux/pm_runtime.h> #define HSSPI_GLOBAL_CTRL_REG 0x0 #define GLOBAL_CTRL_CS_POLARITY_SHIFT 0 #define GLOBAL_CTRL_CS_POLARITY_MASK 0x000000ff #define GLOBAL_CTRL_PLL_CLK_CTRL_SHIFT 8 #define GLOBAL_CTRL_PLL_CLK_CTRL_MASK 0x0000ff00 #define GLOBAL_CTRL_CLK_GATE_SSOFF BIT(16) #define GLOBAL_CTRL_CLK_POLARITY BIT(17) #define GLOBAL_CTRL_MOSI_IDLE BIT(18) #define HSSPI_GLOBAL_EXT_TRIGGER_REG 0x4 #define HSSPI_INT_STATUS_REG 0x8 #define HSSPI_INT_STATUS_MASKED_REG 0xc #define HSSPI_INT_MASK_REG 0x10 #define HSSPI_PINGx_CMD_DONE(i) BIT((i * 8) + 0) #define HSSPI_PINGx_RX_OVER(i) BIT((i * 8) + 1) #define HSSPI_PINGx_TX_UNDER(i) BIT((i * 8) + 2) #define HSSPI_PINGx_POLL_TIMEOUT(i) BIT((i * 8) + 3) #define HSSPI_PINGx_CTRL_INVAL(i) BIT((i * 8) + 4) #define HSSPI_INT_CLEAR_ALL 0xff001f1f #define HSSPI_PINGPONG_COMMAND_REG(x) (0x80 + (x) * 0x40) #define PINGPONG_CMD_COMMAND_MASK 0xf #define PINGPONG_COMMAND_NOOP 0 #define PINGPONG_COMMAND_START_NOW 1 #define PINGPONG_COMMAND_START_TRIGGER 2 #define PINGPONG_COMMAND_HALT 3 #define PINGPONG_COMMAND_FLUSH 4 #define PINGPONG_CMD_PROFILE_SHIFT 8 #define PINGPONG_CMD_SS_SHIFT 12 #define HSSPI_PINGPONG_STATUS_REG(x) (0x84 + (x) * 0x40) #define HSSPI_PINGPONG_STATUS_SRC_BUSY BIT(1) #define HSSPI_PROFILE_CLK_CTRL_REG(x) (0x100 + (x) * 0x20) #define CLK_CTRL_FREQ_CTRL_MASK 0x0000ffff #define CLK_CTRL_SPI_CLK_2X_SEL BIT(14) #define CLK_CTRL_ACCUM_RST_ON_LOOP BIT(15) #define CLK_CTRL_CLK_POLARITY BIT(16) #define HSSPI_PROFILE_SIGNAL_CTRL_REG(x) (0x104 + (x) * 0x20) #define SIGNAL_CTRL_LATCH_RISING BIT(12) #define SIGNAL_CTRL_LAUNCH_RISING BIT(13) #define SIGNAL_CTRL_ASYNC_INPUT_PATH BIT(16) #define HSSPI_PROFILE_MODE_CTRL_REG(x) (0x108 + (x) * 0x20) #define MODE_CTRL_MULTIDATA_RD_STRT_SHIFT 8 #define MODE_CTRL_MULTIDATA_WR_STRT_SHIFT 12 #define MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT 16 #define MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT 18 #define MODE_CTRL_MODE_3WIRE BIT(20) #define MODE_CTRL_PREPENDBYTE_CNT_SHIFT 24 #define HSSPI_FIFO_REG(x) (0x200 + (x) * 0x200) #define HSSPI_OP_MULTIBIT BIT(11) #define HSSPI_OP_CODE_SHIFT 13 #define HSSPI_OP_SLEEP (0 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_READ_WRITE (1 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_WRITE (2 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_READ (3 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_SETIRQ (4 << HSSPI_OP_CODE_SHIFT) #define HSSPI_BUFFER_LEN 512 #define HSSPI_OPCODE_LEN 2 #define HSSPI_MAX_PREPEND_LEN 15 #define HSSPI_MAX_SYNC_CLOCK 30000000 #define HSSPI_SPI_MAX_CS 8 #define HSSPI_BUS_NUM 1 /* 0 is legacy SPI */ #define HSSPI_POLL_STATUS_TIMEOUT_MS 100 #define HSSPI_WAIT_MODE_POLLING 0 #define HSSPI_WAIT_MODE_INTR 1 #define HSSPI_WAIT_MODE_MAX HSSPI_WAIT_MODE_INTR #define SPIM_CTRL_CS_OVERRIDE_SEL_SHIFT 0 #define SPIM_CTRL_CS_OVERRIDE_SEL_MASK 0xff #define SPIM_CTRL_CS_OVERRIDE_VAL_SHIFT 8 #define SPIM_CTRL_CS_OVERRIDE_VAL_MASK 0xff struct bcmbca_hsspi { struct completion done; struct mutex bus_mutex; struct mutex msg_mutex; struct platform_device *pdev; struct clk *clk; struct clk *pll_clk; void __iomem *regs; void __iomem *spim_ctrl; u8 __iomem *fifo; u32 speed_hz; u8 cs_polarity; u32 wait_mode; }; static ssize_t wait_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct bcmbca_hsspi *bs = spi_controller_get_devdata(ctrl); return sprintf(buf, "%d\n", bs->wait_mode); } static ssize_t wait_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct bcmbca_hsspi *bs = spi_controller_get_devdata(ctrl); u32 val; if (kstrtou32(buf, 10, &val)) return -EINVAL; if (val > HSSPI_WAIT_MODE_MAX) { dev_warn(dev, "invalid wait mode %u\n", val); return -EINVAL; } mutex_lock(&bs->msg_mutex); bs->wait_mode = val; /* clear interrupt status to avoid spurious int on next transfer */ if (val == HSSPI_WAIT_MODE_INTR) __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); mutex_unlock(&bs->msg_mutex); return count; } static DEVICE_ATTR_RW(wait_mode); static struct attribute *bcmbca_hsspi_attrs[] = { &dev_attr_wait_mode.attr, NULL, }; static const struct attribute_group bcmbca_hsspi_group = { .attrs = bcmbca_hsspi_attrs, }; static void bcmbca_hsspi_set_cs(struct bcmbca_hsspi *bs, unsigned int cs, bool active) { u32 reg; /* No cs orerriden needed for SS7 internal cs on pcm based voice dev */ if (cs == 7) return; mutex_lock(&bs->bus_mutex); reg = __raw_readl(bs->spim_ctrl); if (active) reg |= BIT(cs + SPIM_CTRL_CS_OVERRIDE_SEL_SHIFT); else reg &= ~BIT(cs + SPIM_CTRL_CS_OVERRIDE_SEL_SHIFT); __raw_writel(reg, bs->spim_ctrl); mutex_unlock(&bs->bus_mutex); } static void bcmbca_hsspi_set_clk(struct bcmbca_hsspi *bs, struct spi_device *spi, int hz) { unsigned int profile = spi_get_chipselect(spi, 0); u32 reg; reg = DIV_ROUND_UP(2048, DIV_ROUND_UP(bs->speed_hz, hz)); __raw_writel(CLK_CTRL_ACCUM_RST_ON_LOOP | reg, bs->regs + HSSPI_PROFILE_CLK_CTRL_REG(profile)); reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile)); if (hz > HSSPI_MAX_SYNC_CLOCK) reg |= SIGNAL_CTRL_ASYNC_INPUT_PATH; else reg &= ~SIGNAL_CTRL_ASYNC_INPUT_PATH; __raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile)); mutex_lock(&bs->bus_mutex); /* setup clock polarity */ reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); reg &= ~GLOBAL_CTRL_CLK_POLARITY; if (spi->mode & SPI_CPOL) reg |= GLOBAL_CTRL_CLK_POLARITY; __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); mutex_unlock(&bs->bus_mutex); } static int bcmbca_hsspi_wait_cmd(struct bcmbca_hsspi *bs, unsigned int cs) { unsigned long limit; u32 reg = 0; int rc = 0; if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) { if (wait_for_completion_timeout(&bs->done, HZ) == 0) rc = 1; } else { limit = jiffies + msecs_to_jiffies(HSSPI_POLL_STATUS_TIMEOUT_MS); while (!time_after(jiffies, limit)) { reg = __raw_readl(bs->regs + HSSPI_PINGPONG_STATUS_REG(0)); if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY) cpu_relax(); else break; } if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY) rc = 1; } if (rc) dev_err(&bs->pdev->dev, "transfer timed out!\n"); return rc; } static int bcmbca_hsspi_do_txrx(struct spi_device *spi, struct spi_transfer *t, struct spi_message *msg) { struct bcmbca_hsspi *bs = spi_controller_get_devdata(spi->controller); unsigned int chip_select = spi_get_chipselect(spi, 0); u16 opcode = 0, val; int pending = t->len; int step_size = HSSPI_BUFFER_LEN; const u8 *tx = t->tx_buf; u8 *rx = t->rx_buf; u32 reg = 0, cs_act = 0; bcmbca_hsspi_set_clk(bs, spi, t->speed_hz); if (tx && rx) opcode = HSSPI_OP_READ_WRITE; else if (tx) opcode = HSSPI_OP_WRITE; else if (rx) opcode = HSSPI_OP_READ; if (opcode != HSSPI_OP_READ) step_size -= HSSPI_OPCODE_LEN; if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) || (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) { opcode |= HSSPI_OP_MULTIBIT; if (t->rx_nbits == SPI_NBITS_DUAL) reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT; if (t->tx_nbits == SPI_NBITS_DUAL) reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT; } __raw_writel(reg | 0xff, bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select)); while (pending > 0) { int curr_step = min_t(int, step_size, pending); reinit_completion(&bs->done); if (tx) { memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, tx, curr_step); tx += curr_step; } *(__be16 *)(&val) = cpu_to_be16(opcode | curr_step); __raw_writew(val, bs->fifo); /* enable interrupt */ if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) __raw_writel(HSSPI_PINGx_CMD_DONE(0), bs->regs + HSSPI_INT_MASK_REG); if (!cs_act) { /* must apply cs signal as close as the cmd starts */ bcmbca_hsspi_set_cs(bs, chip_select, true); cs_act = 1; } reg = chip_select << PINGPONG_CMD_SS_SHIFT | chip_select << PINGPONG_CMD_PROFILE_SHIFT | PINGPONG_COMMAND_START_NOW; __raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0)); if (bcmbca_hsspi_wait_cmd(bs, spi_get_chipselect(spi, 0))) return -ETIMEDOUT; pending -= curr_step; if (rx) { memcpy_fromio(rx, bs->fifo, curr_step); rx += curr_step; } } return 0; } static int bcmbca_hsspi_setup(struct spi_device *spi) { struct bcmbca_hsspi *bs = spi_controller_get_devdata(spi->controller); u32 reg; reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(spi_get_chipselect(spi, 0))); reg &= ~(SIGNAL_CTRL_LAUNCH_RISING | SIGNAL_CTRL_LATCH_RISING); if (spi->mode & SPI_CPHA) reg |= SIGNAL_CTRL_LAUNCH_RISING; else reg |= SIGNAL_CTRL_LATCH_RISING; __raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(spi_get_chipselect(spi, 0))); mutex_lock(&bs->bus_mutex); reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); if (spi->mode & SPI_CS_HIGH) reg |= BIT(spi_get_chipselect(spi, 0)); else reg &= ~BIT(spi_get_chipselect(spi, 0)); __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); if (spi->mode & SPI_CS_HIGH) bs->cs_polarity |= BIT(spi_get_chipselect(spi, 0)); else bs->cs_polarity &= ~BIT(spi_get_chipselect(spi, 0)); reg = __raw_readl(bs->spim_ctrl); reg &= ~BIT(spi_get_chipselect(spi, 0) + SPIM_CTRL_CS_OVERRIDE_VAL_SHIFT); if (spi->mode & SPI_CS_HIGH) reg |= BIT(spi_get_chipselect(spi, 0) + SPIM_CTRL_CS_OVERRIDE_VAL_SHIFT); __raw_writel(reg, bs->spim_ctrl); mutex_unlock(&bs->bus_mutex); return 0; } static int bcmbca_hsspi_transfer_one(struct spi_controller *host, struct spi_message *msg) { struct bcmbca_hsspi *bs = spi_controller_get_devdata(host); struct spi_transfer *t; struct spi_device *spi = msg->spi; int status = -EINVAL; bool keep_cs = false; mutex_lock(&bs->msg_mutex); list_for_each_entry(t, &msg->transfers, transfer_list) { status = bcmbca_hsspi_do_txrx(spi, t, msg); if (status) break; spi_transfer_delay_exec(t); if (t->cs_change) { if (list_is_last(&t->transfer_list, &msg->transfers)) { keep_cs = true; } else { if (!t->cs_off) bcmbca_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), false); spi_transfer_cs_change_delay_exec(msg, t); if (!list_next_entry(t, transfer_list)->cs_off) bcmbca_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), true); } } else if (!list_is_last(&t->transfer_list, &msg->transfers) && t->cs_off != list_next_entry(t, transfer_list)->cs_off) { bcmbca_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), t->cs_off); } msg->actual_length += t->len; } mutex_unlock(&bs->msg_mutex); if (status || !keep_cs) bcmbca_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), false); msg->status = status; spi_finalize_current_message(host); return 0; } static irqreturn_t bcmbca_hsspi_interrupt(int irq, void *dev_id) { struct bcmbca_hsspi *bs = (struct bcmbca_hsspi *)dev_id; if (__raw_readl(bs->regs + HSSPI_INT_STATUS_MASKED_REG) == 0) return IRQ_NONE; __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); complete(&bs->done); return IRQ_HANDLED; } static int bcmbca_hsspi_probe(struct platform_device *pdev) { struct spi_controller *host; struct bcmbca_hsspi *bs; struct resource *res_mem; void __iomem *spim_ctrl; void __iomem *regs; struct device *dev = &pdev->dev; struct clk *clk, *pll_clk = NULL; int irq, ret; u32 reg, rate, num_cs = HSSPI_SPI_MAX_CS; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; res_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hsspi"); if (!res_mem) return -EINVAL; regs = devm_ioremap_resource(dev, res_mem); if (IS_ERR(regs)) return PTR_ERR(regs); res_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "spim-ctrl"); if (!res_mem) return -EINVAL; spim_ctrl = devm_ioremap_resource(dev, res_mem); if (IS_ERR(spim_ctrl)) return PTR_ERR(spim_ctrl); clk = devm_clk_get(dev, "hsspi"); if (IS_ERR(clk)) return PTR_ERR(clk); ret = clk_prepare_enable(clk); if (ret) return ret; rate = clk_get_rate(clk); if (!rate) { pll_clk = devm_clk_get(dev, "pll"); if (IS_ERR(pll_clk)) { ret = PTR_ERR(pll_clk); goto out_disable_clk; } ret = clk_prepare_enable(pll_clk); if (ret) goto out_disable_clk; rate = clk_get_rate(pll_clk); if (!rate) { ret = -EINVAL; goto out_disable_pll_clk; } } host = spi_alloc_host(&pdev->dev, sizeof(*bs)); if (!host) { ret = -ENOMEM; goto out_disable_pll_clk; } bs = spi_controller_get_devdata(host); bs->pdev = pdev; bs->clk = clk; bs->pll_clk = pll_clk; bs->regs = regs; bs->spim_ctrl = spim_ctrl; bs->speed_hz = rate; bs->fifo = (u8 __iomem *) (bs->regs + HSSPI_FIFO_REG(0)); bs->wait_mode = HSSPI_WAIT_MODE_POLLING; mutex_init(&bs->bus_mutex); mutex_init(&bs->msg_mutex); init_completion(&bs->done); host->dev.of_node = dev->of_node; if (!dev->of_node) host->bus_num = HSSPI_BUS_NUM; of_property_read_u32(dev->of_node, "num-cs", &num_cs); if (num_cs > 8) { dev_warn(dev, "unsupported number of cs (%i), reducing to 8\n", num_cs); num_cs = HSSPI_SPI_MAX_CS; } host->num_chipselect = num_cs; host->setup = bcmbca_hsspi_setup; host->transfer_one_message = bcmbca_hsspi_transfer_one; host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_RX_DUAL | SPI_TX_DUAL; host->bits_per_word_mask = SPI_BPW_MASK(8); host->auto_runtime_pm = true; platform_set_drvdata(pdev, host); /* Initialize the hardware */ __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); /* clean up any pending interrupts */ __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); /* read out default CS polarities */ reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); bs->cs_polarity = reg & GLOBAL_CTRL_CS_POLARITY_MASK; __raw_writel(reg | GLOBAL_CTRL_CLK_GATE_SSOFF, bs->regs + HSSPI_GLOBAL_CTRL_REG); if (irq > 0) { ret = devm_request_irq(dev, irq, bcmbca_hsspi_interrupt, IRQF_SHARED, pdev->name, bs); if (ret) goto out_put_host; } pm_runtime_enable(&pdev->dev); ret = sysfs_create_group(&pdev->dev.kobj, &bcmbca_hsspi_group); if (ret) { dev_err(&pdev->dev, "couldn't register sysfs group\n"); goto out_pm_disable; } /* register and we are done */ ret = devm_spi_register_controller(dev, host); if (ret) goto out_sysgroup_disable; dev_info(dev, "Broadcom BCMBCA High Speed SPI Controller driver"); return 0; out_sysgroup_disable: sysfs_remove_group(&pdev->dev.kobj, &bcmbca_hsspi_group); out_pm_disable: pm_runtime_disable(&pdev->dev); out_put_host: spi_controller_put(host); out_disable_pll_clk: clk_disable_unprepare(pll_clk); out_disable_clk: clk_disable_unprepare(clk); return ret; } static void bcmbca_hsspi_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); struct bcmbca_hsspi *bs = spi_controller_get_devdata(host); /* reset the hardware and block queue progress */ __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); clk_disable_unprepare(bs->pll_clk); clk_disable_unprepare(bs->clk); sysfs_remove_group(&pdev->dev.kobj, &bcmbca_hsspi_group); } #ifdef CONFIG_PM_SLEEP static int bcmbca_hsspi_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct bcmbca_hsspi *bs = spi_controller_get_devdata(host); spi_controller_suspend(host); clk_disable_unprepare(bs->pll_clk); clk_disable_unprepare(bs->clk); return 0; } static int bcmbca_hsspi_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct bcmbca_hsspi *bs = spi_controller_get_devdata(host); int ret; ret = clk_prepare_enable(bs->clk); if (ret) return ret; if (bs->pll_clk) { ret = clk_prepare_enable(bs->pll_clk); if (ret) { clk_disable_unprepare(bs->clk); return ret; } } spi_controller_resume(host); return 0; } #endif static SIMPLE_DEV_PM_OPS(bcmbca_hsspi_pm_ops, bcmbca_hsspi_suspend, bcmbca_hsspi_resume); static const struct of_device_id bcmbca_hsspi_of_match[] = { { .compatible = "brcm,bcmbca-hsspi-v1.1", }, {}, }; MODULE_DEVICE_TABLE(of, bcmbca_hsspi_of_match); static struct platform_driver bcmbca_hsspi_driver = { .driver = { .name = "bcmbca-hsspi", .pm = &bcmbca_hsspi_pm_ops, .of_match_table = bcmbca_hsspi_of_match, }, .probe = bcmbca_hsspi_probe, .remove_new = bcmbca_hsspi_remove, }; module_platform_driver(bcmbca_hsspi_driver); MODULE_ALIAS("platform:bcmbca_hsspi"); MODULE_DESCRIPTION("Broadcom BCMBCA High Speed SPI Controller driver"); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-bcmbca-hsspi.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs * Copyright (C) 2013, 2021 Intel Corporation */ #include <linux/acpi.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dmaengine.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/gpio/consumer.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/slab.h> #include <linux/spi/pxa2xx_spi.h> #include <linux/spi/spi.h> #include "spi-pxa2xx.h" MODULE_AUTHOR("Stephen Street"); MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pxa2xx-spi"); #define TIMOUT_DFLT 1000 /* * For testing SSCR1 changes that require SSP restart, basically * everything except the service and interrupt enables, the PXA270 developer * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this * list, but the PXA255 developer manual says all bits without really meaning * the service and interrupt enables. */ #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ | QUARK_X1000_SSCR1_EFWR \ | QUARK_X1000_SSCR1_RFT \ | QUARK_X1000_SSCR1_TFT \ | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) #define LPSS_CS_CONTROL_SW_MODE BIT(0) #define LPSS_CS_CONTROL_CS_HIGH BIT(1) #define LPSS_CAPS_CS_EN_SHIFT 9 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) #define LPSS_PRIV_CLOCK_GATE 0x38 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 struct lpss_config { /* LPSS offset from drv_data->ioaddr */ unsigned offset; /* Register offsets from drv_data->lpss_base or -1 */ int reg_general; int reg_ssp; int reg_cs_ctrl; int reg_capabilities; /* FIFO thresholds */ u32 rx_threshold; u32 tx_threshold_lo; u32 tx_threshold_hi; /* Chip select control */ unsigned cs_sel_shift; unsigned cs_sel_mask; unsigned cs_num; /* Quirks */ unsigned cs_clk_stays_gated : 1; }; /* Keep these sorted with enum pxa_ssp_type */ static const struct lpss_config lpss_platforms[] = { { /* LPSS_LPT_SSP */ .offset = 0x800, .reg_general = 0x08, .reg_ssp = 0x0c, .reg_cs_ctrl = 0x18, .reg_capabilities = -1, .rx_threshold = 64, .tx_threshold_lo = 160, .tx_threshold_hi = 224, }, { /* LPSS_BYT_SSP */ .offset = 0x400, .reg_general = 0x08, .reg_ssp = 0x0c, .reg_cs_ctrl = 0x18, .reg_capabilities = -1, .rx_threshold = 64, .tx_threshold_lo = 160, .tx_threshold_hi = 224, }, { /* LPSS_BSW_SSP */ .offset = 0x400, .reg_general = 0x08, .reg_ssp = 0x0c, .reg_cs_ctrl = 0x18, .reg_capabilities = -1, .rx_threshold = 64, .tx_threshold_lo = 160, .tx_threshold_hi = 224, .cs_sel_shift = 2, .cs_sel_mask = 1 << 2, .cs_num = 2, }, { /* LPSS_SPT_SSP */ .offset = 0x200, .reg_general = -1, .reg_ssp = 0x20, .reg_cs_ctrl = 0x24, .reg_capabilities = -1, .rx_threshold = 1, .tx_threshold_lo = 32, .tx_threshold_hi = 56, }, { /* LPSS_BXT_SSP */ .offset = 0x200, .reg_general = -1, .reg_ssp = 0x20, .reg_cs_ctrl = 0x24, .reg_capabilities = 0xfc, .rx_threshold = 1, .tx_threshold_lo = 16, .tx_threshold_hi = 48, .cs_sel_shift = 8, .cs_sel_mask = 3 << 8, .cs_clk_stays_gated = true, }, { /* LPSS_CNL_SSP */ .offset = 0x200, .reg_general = -1, .reg_ssp = 0x20, .reg_cs_ctrl = 0x24, .reg_capabilities = 0xfc, .rx_threshold = 1, .tx_threshold_lo = 32, .tx_threshold_hi = 56, .cs_sel_shift = 8, .cs_sel_mask = 3 << 8, .cs_clk_stays_gated = true, }, }; static inline const struct lpss_config *lpss_get_config(const struct driver_data *drv_data) { return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; } static bool is_lpss_ssp(const struct driver_data *drv_data) { switch (drv_data->ssp_type) { case LPSS_LPT_SSP: case LPSS_BYT_SSP: case LPSS_BSW_SSP: case LPSS_SPT_SSP: case LPSS_BXT_SSP: case LPSS_CNL_SSP: return true; default: return false; } } static bool is_quark_x1000_ssp(const struct driver_data *drv_data) { return drv_data->ssp_type == QUARK_X1000_SSP; } static bool is_mmp2_ssp(const struct driver_data *drv_data) { return drv_data->ssp_type == MMP2_SSP; } static bool is_mrfld_ssp(const struct driver_data *drv_data) { return drv_data->ssp_type == MRFLD_SSP; } static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value) { if ((pxa2xx_spi_read(drv_data, reg) & mask) != value) pxa2xx_spi_write(drv_data, reg, value & mask); } static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) { switch (drv_data->ssp_type) { case QUARK_X1000_SSP: return QUARK_X1000_SSCR1_CHANGE_MASK; case CE4100_SSP: return CE4100_SSCR1_CHANGE_MASK; default: return SSCR1_CHANGE_MASK; } } static u32 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) { switch (drv_data->ssp_type) { case QUARK_X1000_SSP: return RX_THRESH_QUARK_X1000_DFLT; case CE4100_SSP: return RX_THRESH_CE4100_DFLT; default: return RX_THRESH_DFLT; } } static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) { u32 mask; switch (drv_data->ssp_type) { case QUARK_X1000_SSP: mask = QUARK_X1000_SSSR_TFL_MASK; break; case CE4100_SSP: mask = CE4100_SSSR_TFL_MASK; break; default: mask = SSSR_TFL_MASK; break; } return read_SSSR_bits(drv_data, mask) == mask; } static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, u32 *sccr1_reg) { u32 mask; switch (drv_data->ssp_type) { case QUARK_X1000_SSP: mask = QUARK_X1000_SSCR1_RFT; break; case CE4100_SSP: mask = CE4100_SSCR1_RFT; break; default: mask = SSCR1_RFT; break; } *sccr1_reg &= ~mask; } static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, u32 *sccr1_reg, u32 threshold) { switch (drv_data->ssp_type) { case QUARK_X1000_SSP: *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); break; case CE4100_SSP: *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); break; default: *sccr1_reg |= SSCR1_RxTresh(threshold); break; } } static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, u32 clk_div, u8 bits) { switch (drv_data->ssp_type) { case QUARK_X1000_SSP: return clk_div | QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits); default: return clk_div | SSCR0_Motorola | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) | (bits > 16 ? SSCR0_EDSS : 0); } } /* * Read and write LPSS SSP private registers. Caller must first check that * is_lpss_ssp() returns true before these can be called. */ static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) { WARN_ON(!drv_data->lpss_base); return readl(drv_data->lpss_base + offset); } static void __lpss_ssp_write_priv(struct driver_data *drv_data, unsigned offset, u32 value) { WARN_ON(!drv_data->lpss_base); writel(value, drv_data->lpss_base + offset); } /* * lpss_ssp_setup - perform LPSS SSP specific setup * @drv_data: pointer to the driver private data * * Perform LPSS SSP specific setup. This function must be called first if * one is going to use LPSS SSP private registers. */ static void lpss_ssp_setup(struct driver_data *drv_data) { const struct lpss_config *config; u32 value; config = lpss_get_config(drv_data); drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset; /* Enable software chip select control */ value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); /* Enable multiblock DMA transfers */ if (drv_data->controller_info->enable_dma) { __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); if (config->reg_general >= 0) { value = __lpss_ssp_read_priv(drv_data, config->reg_general); value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; __lpss_ssp_write_priv(drv_data, config->reg_general, value); } } } static void lpss_ssp_select_cs(struct spi_device *spi, const struct lpss_config *config) { struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); u32 value, cs; if (!config->cs_sel_mask) return; value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); cs = spi_get_chipselect(spi, 0); cs <<= config->cs_sel_shift; if (cs != (value & config->cs_sel_mask)) { /* * When switching another chip select output active the * output must be selected first and wait 2 ssp_clk cycles * before changing state to active. Otherwise a short * glitch will occur on the previous chip select since * output select is latched but state control is not. */ value &= ~config->cs_sel_mask; value |= cs; __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); ndelay(1000000000 / (drv_data->controller->max_speed_hz / 2)); } } static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) { struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); const struct lpss_config *config; u32 value; config = lpss_get_config(drv_data); if (enable) lpss_ssp_select_cs(spi, config); value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); if (enable) value &= ~LPSS_CS_CONTROL_CS_HIGH; else value |= LPSS_CS_CONTROL_CS_HIGH; __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); if (config->cs_clk_stays_gated) { u32 clkgate; /* * Changing CS alone when dynamic clock gating is on won't * actually flip CS at that time. This ruins SPI transfers * that specify delays, or have no data. Toggle the clock mode * to force on briefly to poke the CS pin to move. */ clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE); value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) | LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON; __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value); __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate); } } static void cs_assert(struct spi_device *spi) { struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); if (drv_data->ssp_type == CE4100_SSP) { pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0)); return; } if (is_lpss_ssp(drv_data)) lpss_ssp_cs_control(spi, true); } static void cs_deassert(struct spi_device *spi) { struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); unsigned long timeout; if (drv_data->ssp_type == CE4100_SSP) return; /* Wait until SSP becomes idle before deasserting the CS */ timeout = jiffies + msecs_to_jiffies(10); while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && !time_after(jiffies, timeout)) cpu_relax(); if (is_lpss_ssp(drv_data)) lpss_ssp_cs_control(spi, false); } static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) { if (level) cs_deassert(spi); else cs_assert(spi); } int pxa2xx_spi_flush(struct driver_data *drv_data) { unsigned long limit = loops_per_jiffy << 1; do { while (read_SSSR_bits(drv_data, SSSR_RNE)) pxa2xx_spi_read(drv_data, SSDR); } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); write_SSSR_CS(drv_data, SSSR_ROR); return limit; } static void pxa2xx_spi_off(struct driver_data *drv_data) { /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ if (is_mmp2_ssp(drv_data)) return; pxa_ssp_disable(drv_data->ssp); } static int null_writer(struct driver_data *drv_data) { u8 n_bytes = drv_data->n_bytes; if (pxa2xx_spi_txfifo_full(drv_data) || (drv_data->tx == drv_data->tx_end)) return 0; pxa2xx_spi_write(drv_data, SSDR, 0); drv_data->tx += n_bytes; return 1; } static int null_reader(struct driver_data *drv_data) { u8 n_bytes = drv_data->n_bytes; while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { pxa2xx_spi_read(drv_data, SSDR); drv_data->rx += n_bytes; } return drv_data->rx == drv_data->rx_end; } static int u8_writer(struct driver_data *drv_data) { if (pxa2xx_spi_txfifo_full(drv_data) || (drv_data->tx == drv_data->tx_end)) return 0; pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); ++drv_data->tx; return 1; } static int u8_reader(struct driver_data *drv_data) { while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); ++drv_data->rx; } return drv_data->rx == drv_data->rx_end; } static int u16_writer(struct driver_data *drv_data) { if (pxa2xx_spi_txfifo_full(drv_data) || (drv_data->tx == drv_data->tx_end)) return 0; pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); drv_data->tx += 2; return 1; } static int u16_reader(struct driver_data *drv_data) { while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); drv_data->rx += 2; } return drv_data->rx == drv_data->rx_end; } static int u32_writer(struct driver_data *drv_data) { if (pxa2xx_spi_txfifo_full(drv_data) || (drv_data->tx == drv_data->tx_end)) return 0; pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); drv_data->tx += 4; return 1; } static int u32_reader(struct driver_data *drv_data) { while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); drv_data->rx += 4; } return drv_data->rx == drv_data->rx_end; } static void reset_sccr1(struct driver_data *drv_data) { u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold; struct chip_data *chip; if (drv_data->controller->cur_msg) { chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); threshold = chip->threshold; } else { threshold = 0; } switch (drv_data->ssp_type) { case QUARK_X1000_SSP: mask |= QUARK_X1000_SSCR1_RFT; break; case CE4100_SSP: mask |= CE4100_SSCR1_RFT; break; default: mask |= SSCR1_RFT; break; } pxa2xx_spi_update(drv_data, SSCR1, mask, threshold); } static void int_stop_and_reset(struct driver_data *drv_data) { /* Clear and disable interrupts */ write_SSSR_CS(drv_data, drv_data->clear_sr); reset_sccr1(drv_data); if (pxa25x_ssp_comp(drv_data)) return; pxa2xx_spi_write(drv_data, SSTO, 0); } static void int_error_stop(struct driver_data *drv_data, const char *msg, int err) { int_stop_and_reset(drv_data); pxa2xx_spi_flush(drv_data); pxa2xx_spi_off(drv_data); dev_err(drv_data->ssp->dev, "%s\n", msg); drv_data->controller->cur_msg->status = err; spi_finalize_current_transfer(drv_data->controller); } static void int_transfer_complete(struct driver_data *drv_data) { int_stop_and_reset(drv_data); spi_finalize_current_transfer(drv_data->controller); } static irqreturn_t interrupt_transfer(struct driver_data *drv_data) { u32 irq_status; irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr); if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE)) irq_status &= ~SSSR_TFS; if (irq_status & SSSR_ROR) { int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO); return IRQ_HANDLED; } if (irq_status & SSSR_TUR) { int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO); return IRQ_HANDLED; } if (irq_status & SSSR_TINT) { pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); if (drv_data->read(drv_data)) { int_transfer_complete(drv_data); return IRQ_HANDLED; } } /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */ do { if (drv_data->read(drv_data)) { int_transfer_complete(drv_data); return IRQ_HANDLED; } } while (drv_data->write(drv_data)); if (drv_data->read(drv_data)) { int_transfer_complete(drv_data); return IRQ_HANDLED; } if (drv_data->tx == drv_data->tx_end) { u32 bytes_left; u32 sccr1_reg; sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); sccr1_reg &= ~SSCR1_TIE; /* * PXA25x_SSP has no timeout, set up Rx threshold for * the remaining Rx bytes. */ if (pxa25x_ssp_comp(drv_data)) { u32 rx_thre; pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); bytes_left = drv_data->rx_end - drv_data->rx; switch (drv_data->n_bytes) { case 4: bytes_left >>= 2; break; case 2: bytes_left >>= 1; break; } rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); if (rx_thre > bytes_left) rx_thre = bytes_left; pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); } pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); } /* We did something */ return IRQ_HANDLED; } static void handle_bad_msg(struct driver_data *drv_data) { int_stop_and_reset(drv_data); pxa2xx_spi_off(drv_data); dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n"); } static irqreturn_t ssp_int(int irq, void *dev_id) { struct driver_data *drv_data = dev_id; u32 sccr1_reg; u32 mask = drv_data->mask_sr; u32 status; /* * The IRQ might be shared with other peripherals so we must first * check that are we RPM suspended or not. If we are we assume that * the IRQ was not for us (we shouldn't be RPM suspended when the * interrupt is enabled). */ if (pm_runtime_suspended(drv_data->ssp->dev)) return IRQ_NONE; /* * If the device is not yet in RPM suspended state and we get an * interrupt that is meant for another device, check if status bits * are all set to one. That means that the device is already * powered off. */ status = pxa2xx_spi_read(drv_data, SSSR); if (status == ~0) return IRQ_NONE; sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); /* Ignore possible writes if we don't need to write */ if (!(sccr1_reg & SSCR1_TIE)) mask &= ~SSSR_TFS; /* Ignore RX timeout interrupt if it is disabled */ if (!(sccr1_reg & SSCR1_TINTE)) mask &= ~SSSR_TINT; if (!(status & mask)) return IRQ_NONE; pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); if (!drv_data->controller->cur_msg) { handle_bad_msg(drv_data); /* Never fail */ return IRQ_HANDLED; } return drv_data->transfer_handler(drv_data); } /* * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply * input frequency by fractions of 2^24. It also has a divider by 5. * * There are formulas to get baud rate value for given input frequency and * divider parameters, such as DDS_CLK_RATE and SCR: * * Fsys = 200MHz * * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) * * DDS_CLK_RATE either 2^n or 2^n / 5. * SCR is in range 0 .. 255 * * Divisor = 5^i * 2^j * 2 * k * i = [0, 1] i = 1 iff j = 0 or j > 3 * j = [0, 23] j = 0 iff i = 1 * k = [1, 256] * Special case: j = 0, i = 1: Divisor = 2 / 5 * * Accordingly to the specification the recommended values for DDS_CLK_RATE * are: * Case 1: 2^n, n = [0, 23] * Case 2: 2^24 * 2 / 5 (0x666666) * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) * * In all cases the lowest possible value is better. * * The function calculates parameters for all cases and chooses the one closest * to the asked baud rate. */ static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) { unsigned long xtal = 200000000; unsigned long fref = xtal / 2; /* mandatory division by 2, see (2) */ /* case 3 */ unsigned long fref1 = fref / 2; /* case 1 */ unsigned long fref2 = fref * 2 / 5; /* case 2 */ unsigned long scale; unsigned long q, q1, q2; long r, r1, r2; u32 mul; /* Case 1 */ /* Set initial value for DDS_CLK_RATE */ mul = (1 << 24) >> 1; /* Calculate initial quot */ q1 = DIV_ROUND_UP(fref1, rate); /* Scale q1 if it's too big */ if (q1 > 256) { /* Scale q1 to range [1, 512] */ scale = fls_long(q1 - 1); if (scale > 9) { q1 >>= scale - 9; mul >>= scale - 9; } /* Round the result if we have a remainder */ q1 += q1 & 1; } /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ scale = __ffs(q1); q1 >>= scale; mul >>= scale; /* Get the remainder */ r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); /* Case 2 */ q2 = DIV_ROUND_UP(fref2, rate); r2 = abs(fref2 / q2 - rate); /* * Choose the best between two: less remainder we have the better. We * can't go case 2 if q2 is greater than 256 since SCR register can * hold only values 0 .. 255. */ if (r2 >= r1 || q2 > 256) { /* case 1 is better */ r = r1; q = q1; } else { /* case 2 is better */ r = r2; q = q2; mul = (1 << 24) * 2 / 5; } /* Check case 3 only if the divisor is big enough */ if (fref / rate >= 80) { u64 fssp; u32 m; /* Calculate initial quot */ q1 = DIV_ROUND_UP(fref, rate); m = (1 << 24) / q1; /* Get the remainder */ fssp = (u64)fref * m; do_div(fssp, 1 << 24); r1 = abs(fssp - rate); /* Choose this one if it suits better */ if (r1 < r) { /* case 3 is better */ q = 1; mul = m; } } *dds = mul; return q - 1; } static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) { unsigned long ssp_clk = drv_data->controller->max_speed_hz; const struct ssp_device *ssp = drv_data->ssp; rate = min_t(int, ssp_clk, rate); /* * Calculate the divisor for the SCR (Serial Clock Rate), avoiding * that the SSP transmission rate can be greater than the device rate. */ if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; else return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; } static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, int rate) { struct chip_data *chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); unsigned int clk_div; switch (drv_data->ssp_type) { case QUARK_X1000_SSP: clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); break; default: clk_div = ssp_get_clk_div(drv_data, rate); break; } return clk_div << 8; } static bool pxa2xx_spi_can_dma(struct spi_controller *controller, struct spi_device *spi, struct spi_transfer *xfer) { struct chip_data *chip = spi_get_ctldata(spi); return chip->enable_dma && xfer->len <= MAX_DMA_LEN && xfer->len >= chip->dma_burst_size; } static int pxa2xx_spi_transfer_one(struct spi_controller *controller, struct spi_device *spi, struct spi_transfer *transfer) { struct driver_data *drv_data = spi_controller_get_devdata(controller); struct spi_message *message = controller->cur_msg; struct chip_data *chip = spi_get_ctldata(spi); u32 dma_thresh = chip->dma_threshold; u32 dma_burst = chip->dma_burst_size; u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); u32 clk_div; u8 bits; u32 speed; u32 cr0; u32 cr1; int err; int dma_mapped; /* Check if we can DMA this transfer */ if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { /* Reject already-mapped transfers; PIO won't always work */ if (message->is_dma_mapped || transfer->rx_dma || transfer->tx_dma) { dev_err(&spi->dev, "Mapped transfer length of %u is greater than %d\n", transfer->len, MAX_DMA_LEN); return -EINVAL; } /* Warn ... we force this to PIO mode */ dev_warn_ratelimited(&spi->dev, "DMA disabled for transfer length %u greater than %d\n", transfer->len, MAX_DMA_LEN); } /* Setup the transfer state based on the type of transfer */ if (pxa2xx_spi_flush(drv_data) == 0) { dev_err(&spi->dev, "Flush failed\n"); return -EIO; } drv_data->tx = (void *)transfer->tx_buf; drv_data->tx_end = drv_data->tx + transfer->len; drv_data->rx = transfer->rx_buf; drv_data->rx_end = drv_data->rx + transfer->len; /* Change speed and bit per word on a per transfer */ bits = transfer->bits_per_word; speed = transfer->speed_hz; clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); if (bits <= 8) { drv_data->n_bytes = 1; drv_data->read = drv_data->rx ? u8_reader : null_reader; drv_data->write = drv_data->tx ? u8_writer : null_writer; } else if (bits <= 16) { drv_data->n_bytes = 2; drv_data->read = drv_data->rx ? u16_reader : null_reader; drv_data->write = drv_data->tx ? u16_writer : null_writer; } else if (bits <= 32) { drv_data->n_bytes = 4; drv_data->read = drv_data->rx ? u32_reader : null_reader; drv_data->write = drv_data->tx ? u32_writer : null_writer; } /* * If bits per word is changed in DMA mode, then must check * the thresholds and burst also. */ if (chip->enable_dma) { if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, bits, &dma_burst, &dma_thresh)) dev_warn_ratelimited(&spi->dev, "DMA burst size reduced to match bits_per_word\n"); } dma_mapped = controller->can_dma && controller->can_dma(controller, spi, transfer) && controller->cur_msg_mapped; if (dma_mapped) { /* Ensure we have the correct interrupt handler */ drv_data->transfer_handler = pxa2xx_spi_dma_transfer; err = pxa2xx_spi_dma_prepare(drv_data, transfer); if (err) return err; /* Clear status and start DMA engine */ cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); pxa2xx_spi_dma_start(drv_data); } else { /* Ensure we have the correct interrupt handler */ drv_data->transfer_handler = interrupt_transfer; /* Clear status */ cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; write_SSSR_CS(drv_data, drv_data->clear_sr); } /* NOTE: PXA25x_SSP _could_ use external clocking ... */ cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); if (!pxa25x_ssp_comp(drv_data)) dev_dbg(&spi->dev, "%u Hz actual, %s\n", controller->max_speed_hz / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), dma_mapped ? "DMA" : "PIO"); else dev_dbg(&spi->dev, "%u Hz actual, %s\n", controller->max_speed_hz / 2 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), dma_mapped ? "DMA" : "PIO"); if (is_lpss_ssp(drv_data)) { pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold); pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold); } if (is_mrfld_ssp(drv_data)) { u32 mask = SFIFOTT_RFT | SFIFOTT_TFT; u32 thresh = 0; thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold); thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold); pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh); } if (is_quark_x1000_ssp(drv_data)) pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate); /* Stop the SSP */ if (!is_mmp2_ssp(drv_data)) pxa_ssp_disable(drv_data->ssp); if (!pxa25x_ssp_comp(drv_data)) pxa2xx_spi_write(drv_data, SSTO, chip->timeout); /* First set CR1 without interrupt and service enables */ pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1); /* See if we need to reload the configuration registers */ pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0); /* Restart the SSP */ pxa_ssp_enable(drv_data->ssp); if (is_mmp2_ssp(drv_data)) { u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8; if (tx_level) { /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */ dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level); if (tx_level > transfer->len) tx_level = transfer->len; drv_data->tx += tx_level; } } if (spi_controller_is_target(controller)) { while (drv_data->write(drv_data)) ; if (drv_data->gpiod_ready) { gpiod_set_value(drv_data->gpiod_ready, 1); udelay(1); gpiod_set_value(drv_data->gpiod_ready, 0); } } /* * Release the data by enabling service requests and interrupts, * without changing any mode bits. */ pxa2xx_spi_write(drv_data, SSCR1, cr1); return 1; } static int pxa2xx_spi_target_abort(struct spi_controller *controller) { struct driver_data *drv_data = spi_controller_get_devdata(controller); int_error_stop(drv_data, "transfer aborted", -EINTR); return 0; } static void pxa2xx_spi_handle_err(struct spi_controller *controller, struct spi_message *msg) { struct driver_data *drv_data = spi_controller_get_devdata(controller); int_stop_and_reset(drv_data); /* Disable the SSP */ pxa2xx_spi_off(drv_data); /* * Stop the DMA if running. Note DMA callback handler may have unset * the dma_running already, which is fine as stopping is not needed * then but we shouldn't rely this flag for anything else than * stopping. For instance to differentiate between PIO and DMA * transfers. */ if (atomic_read(&drv_data->dma_running)) pxa2xx_spi_dma_stop(drv_data); } static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) { struct driver_data *drv_data = spi_controller_get_devdata(controller); /* Disable the SSP now */ pxa2xx_spi_off(drv_data); return 0; } static int setup(struct spi_device *spi) { struct pxa2xx_spi_chip *chip_info; struct chip_data *chip; const struct lpss_config *config; struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); uint tx_thres, tx_hi_thres, rx_thres; switch (drv_data->ssp_type) { case QUARK_X1000_SSP: tx_thres = TX_THRESH_QUARK_X1000_DFLT; tx_hi_thres = 0; rx_thres = RX_THRESH_QUARK_X1000_DFLT; break; case MRFLD_SSP: tx_thres = TX_THRESH_MRFLD_DFLT; tx_hi_thres = 0; rx_thres = RX_THRESH_MRFLD_DFLT; break; case CE4100_SSP: tx_thres = TX_THRESH_CE4100_DFLT; tx_hi_thres = 0; rx_thres = RX_THRESH_CE4100_DFLT; break; case LPSS_LPT_SSP: case LPSS_BYT_SSP: case LPSS_BSW_SSP: case LPSS_SPT_SSP: case LPSS_BXT_SSP: case LPSS_CNL_SSP: config = lpss_get_config(drv_data); tx_thres = config->tx_threshold_lo; tx_hi_thres = config->tx_threshold_hi; rx_thres = config->rx_threshold; break; default: tx_hi_thres = 0; if (spi_controller_is_target(drv_data->controller)) { tx_thres = 1; rx_thres = 2; } else { tx_thres = TX_THRESH_DFLT; rx_thres = RX_THRESH_DFLT; } break; } /* Only allocate on the first setup */ chip = spi_get_ctldata(spi); if (!chip) { chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); if (!chip) return -ENOMEM; if (drv_data->ssp_type == CE4100_SSP) { if (spi_get_chipselect(spi, 0) > 4) { dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n"); kfree(chip); return -EINVAL; } } chip->enable_dma = drv_data->controller_info->enable_dma; chip->timeout = TIMOUT_DFLT; } /* * Protocol drivers may change the chip settings, so... * if chip_info exists, use it. */ chip_info = spi->controller_data; /* chip_info isn't always needed */ if (chip_info) { if (chip_info->timeout) chip->timeout = chip_info->timeout; if (chip_info->tx_threshold) tx_thres = chip_info->tx_threshold; if (chip_info->tx_hi_threshold) tx_hi_thres = chip_info->tx_hi_threshold; if (chip_info->rx_threshold) rx_thres = chip_info->rx_threshold; chip->dma_threshold = 0; } chip->cr1 = 0; if (spi_controller_is_target(drv_data->controller)) { chip->cr1 |= SSCR1_SCFR; chip->cr1 |= SSCR1_SCLKDIR; chip->cr1 |= SSCR1_SFRMDIR; chip->cr1 |= SSCR1_SPH; } if (is_lpss_ssp(drv_data)) { chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) | SSITF_TxHiThresh(tx_hi_thres); } if (is_mrfld_ssp(drv_data)) { chip->lpss_rx_threshold = rx_thres; chip->lpss_tx_threshold = tx_thres; } /* * Set DMA burst and threshold outside of chip_info path so that if * chip_info goes away after setting chip->enable_dma, the burst and * threshold can still respond to changes in bits_per_word. */ if (chip->enable_dma) { /* Set up legal burst and threshold for DMA */ if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, spi->bits_per_word, &chip->dma_burst_size, &chip->dma_threshold)) { dev_warn(&spi->dev, "in setup: DMA burst size reduced to match bits_per_word\n"); } dev_dbg(&spi->dev, "in setup: DMA burst size set to %u\n", chip->dma_burst_size); } switch (drv_data->ssp_type) { case QUARK_X1000_SSP: chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) & QUARK_X1000_SSCR1_RFT) | (QUARK_X1000_SSCR1_TxTresh(tx_thres) & QUARK_X1000_SSCR1_TFT); break; case CE4100_SSP: chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); break; default: chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); break; } chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) | ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0); if (spi->mode & SPI_LOOP) chip->cr1 |= SSCR1_LBM; spi_set_ctldata(spi, chip); return 0; } static void cleanup(struct spi_device *spi) { struct chip_data *chip = spi_get_ctldata(spi); kfree(chip); } static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) { return param == chan->device->dev; } static struct pxa2xx_spi_controller * pxa2xx_spi_init_pdata(struct platform_device *pdev) { struct pxa2xx_spi_controller *pdata; struct device *dev = &pdev->dev; struct device *parent = dev->parent; struct ssp_device *ssp; struct resource *res; enum pxa_ssp_type type = SSP_UNDEFINED; const void *match; bool is_lpss_priv; int status; u64 uid; is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv"); match = device_get_match_data(dev); if (match) type = (uintptr_t)match; else if (is_lpss_priv) { u32 value; status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value); if (status) return ERR_PTR(status); type = (enum pxa_ssp_type)value; } /* Validate the SSP type correctness */ if (!(type > SSP_UNDEFINED && type < SSP_MAX)) return ERR_PTR(-EINVAL); pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return ERR_PTR(-ENOMEM); ssp = &pdata->ssp; ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(ssp->mmio_base)) return ERR_CAST(ssp->mmio_base); ssp->phys_base = res->start; /* Platforms with iDMA 64-bit */ if (is_lpss_priv) { pdata->tx_param = parent; pdata->rx_param = parent; pdata->dma_filter = pxa2xx_spi_idma_filter; } ssp->clk = devm_clk_get(dev, NULL); if (IS_ERR(ssp->clk)) return ERR_CAST(ssp->clk); ssp->irq = platform_get_irq(pdev, 0); if (ssp->irq < 0) return ERR_PTR(ssp->irq); ssp->type = type; ssp->dev = dev; status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid); if (status) ssp->port_id = -1; else ssp->port_id = uid; pdata->is_target = device_property_read_bool(dev, "spi-slave"); pdata->num_chipselect = 1; pdata->enable_dma = true; pdata->dma_burst_size = 1; return pdata; } static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, unsigned int cs) { struct driver_data *drv_data = spi_controller_get_devdata(controller); if (has_acpi_companion(drv_data->ssp->dev)) { switch (drv_data->ssp_type) { /* * For Atoms the ACPI DeviceSelection used by the Windows * driver starts from 1 instead of 0 so translate it here * to match what Linux expects. */ case LPSS_BYT_SSP: case LPSS_BSW_SSP: return cs - 1; default: break; } } return cs; } static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) { return MAX_DMA_LEN; } static int pxa2xx_spi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct pxa2xx_spi_controller *platform_info; struct spi_controller *controller; struct driver_data *drv_data; struct ssp_device *ssp; const struct lpss_config *config; int status; u32 tmp; platform_info = dev_get_platdata(dev); if (!platform_info) { platform_info = pxa2xx_spi_init_pdata(pdev); if (IS_ERR(platform_info)) { dev_err(&pdev->dev, "missing platform data\n"); return PTR_ERR(platform_info); } } ssp = pxa_ssp_request(pdev->id, pdev->name); if (!ssp) ssp = &platform_info->ssp; if (!ssp->mmio_base) { dev_err(&pdev->dev, "failed to get SSP\n"); return -ENODEV; } if (platform_info->is_target) controller = devm_spi_alloc_target(dev, sizeof(*drv_data)); else controller = devm_spi_alloc_host(dev, sizeof(*drv_data)); if (!controller) { dev_err(&pdev->dev, "cannot alloc spi_controller\n"); status = -ENOMEM; goto out_error_controller_alloc; } drv_data = spi_controller_get_devdata(controller); drv_data->controller = controller; drv_data->controller_info = platform_info; drv_data->ssp = ssp; device_set_node(&controller->dev, dev_fwnode(dev)); /* The spi->mode bits understood by this driver: */ controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; controller->bus_num = ssp->port_id; controller->dma_alignment = DMA_ALIGNMENT; controller->cleanup = cleanup; controller->setup = setup; controller->set_cs = pxa2xx_spi_set_cs; controller->transfer_one = pxa2xx_spi_transfer_one; controller->target_abort = pxa2xx_spi_target_abort; controller->handle_err = pxa2xx_spi_handle_err; controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; controller->auto_runtime_pm = true; controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; drv_data->ssp_type = ssp->type; if (pxa25x_ssp_comp(drv_data)) { switch (drv_data->ssp_type) { case QUARK_X1000_SSP: controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); break; default: controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); break; } drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; drv_data->dma_cr1 = 0; drv_data->clear_sr = SSSR_ROR; drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; } else { controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; drv_data->dma_cr1 = DEFAULT_DMA_CR1; drv_data->clear_sr = SSSR_ROR | SSSR_TINT; drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR | SSSR_TUR; } status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), drv_data); if (status < 0) { dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); goto out_error_controller_alloc; } /* Setup DMA if requested */ if (platform_info->enable_dma) { status = pxa2xx_spi_dma_setup(drv_data); if (status) { dev_warn(dev, "no DMA channels available, using PIO\n"); platform_info->enable_dma = false; } else { controller->can_dma = pxa2xx_spi_can_dma; controller->max_dma_len = MAX_DMA_LEN; controller->max_transfer_size = pxa2xx_spi_max_dma_transfer_size; } } /* Enable SOC clock */ status = clk_prepare_enable(ssp->clk); if (status) goto out_error_dma_irq_alloc; controller->max_speed_hz = clk_get_rate(ssp->clk); /* * Set minimum speed for all other platforms than Intel Quark which is * able do under 1 Hz transfers. */ if (!pxa25x_ssp_comp(drv_data)) controller->min_speed_hz = DIV_ROUND_UP(controller->max_speed_hz, 4096); else if (!is_quark_x1000_ssp(drv_data)) controller->min_speed_hz = DIV_ROUND_UP(controller->max_speed_hz, 512); pxa_ssp_disable(ssp); /* Load default SSP configuration */ switch (drv_data->ssp_type) { case QUARK_X1000_SSP: tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); pxa2xx_spi_write(drv_data, SSCR1, tmp); /* Using the Motorola SPI protocol and use 8 bit frame */ tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); pxa2xx_spi_write(drv_data, SSCR0, tmp); break; case CE4100_SSP: tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); pxa2xx_spi_write(drv_data, SSCR1, tmp); tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); pxa2xx_spi_write(drv_data, SSCR0, tmp); break; default: if (spi_controller_is_target(controller)) { tmp = SSCR1_SCFR | SSCR1_SCLKDIR | SSCR1_SFRMDIR | SSCR1_RxTresh(2) | SSCR1_TxTresh(1) | SSCR1_SPH; } else { tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT); } pxa2xx_spi_write(drv_data, SSCR1, tmp); tmp = SSCR0_Motorola | SSCR0_DataSize(8); if (!spi_controller_is_target(controller)) tmp |= SSCR0_SCR(2); pxa2xx_spi_write(drv_data, SSCR0, tmp); break; } if (!pxa25x_ssp_comp(drv_data)) pxa2xx_spi_write(drv_data, SSTO, 0); if (!is_quark_x1000_ssp(drv_data)) pxa2xx_spi_write(drv_data, SSPSP, 0); if (is_lpss_ssp(drv_data)) { lpss_ssp_setup(drv_data); config = lpss_get_config(drv_data); if (config->reg_capabilities >= 0) { tmp = __lpss_ssp_read_priv(drv_data, config->reg_capabilities); tmp &= LPSS_CAPS_CS_EN_MASK; tmp >>= LPSS_CAPS_CS_EN_SHIFT; platform_info->num_chipselect = ffz(tmp); } else if (config->cs_num) { platform_info->num_chipselect = config->cs_num; } } controller->num_chipselect = platform_info->num_chipselect; controller->use_gpio_descriptors = true; if (platform_info->is_target) { drv_data->gpiod_ready = devm_gpiod_get_optional(dev, "ready", GPIOD_OUT_LOW); if (IS_ERR(drv_data->gpiod_ready)) { status = PTR_ERR(drv_data->gpiod_ready); goto out_error_clock_enabled; } } pm_runtime_set_autosuspend_delay(&pdev->dev, 50); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); /* Register with the SPI framework */ platform_set_drvdata(pdev, drv_data); status = spi_register_controller(controller); if (status) { dev_err(&pdev->dev, "problem registering SPI controller\n"); goto out_error_pm_runtime_enabled; } return status; out_error_pm_runtime_enabled: pm_runtime_disable(&pdev->dev); out_error_clock_enabled: clk_disable_unprepare(ssp->clk); out_error_dma_irq_alloc: pxa2xx_spi_dma_release(drv_data); free_irq(ssp->irq, drv_data); out_error_controller_alloc: pxa_ssp_free(ssp); return status; } static void pxa2xx_spi_remove(struct platform_device *pdev) { struct driver_data *drv_data = platform_get_drvdata(pdev); struct ssp_device *ssp = drv_data->ssp; pm_runtime_get_sync(&pdev->dev); spi_unregister_controller(drv_data->controller); /* Disable the SSP at the peripheral and SOC level */ pxa_ssp_disable(ssp); clk_disable_unprepare(ssp->clk); /* Release DMA */ if (drv_data->controller_info->enable_dma) pxa2xx_spi_dma_release(drv_data); pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); /* Release IRQ */ free_irq(ssp->irq, drv_data); /* Release SSP */ pxa_ssp_free(ssp); } static int pxa2xx_spi_suspend(struct device *dev) { struct driver_data *drv_data = dev_get_drvdata(dev); struct ssp_device *ssp = drv_data->ssp; int status; status = spi_controller_suspend(drv_data->controller); if (status) return status; pxa_ssp_disable(ssp); if (!pm_runtime_suspended(dev)) clk_disable_unprepare(ssp->clk); return 0; } static int pxa2xx_spi_resume(struct device *dev) { struct driver_data *drv_data = dev_get_drvdata(dev); struct ssp_device *ssp = drv_data->ssp; int status; /* Enable the SSP clock */ if (!pm_runtime_suspended(dev)) { status = clk_prepare_enable(ssp->clk); if (status) return status; } /* Start the queue running */ return spi_controller_resume(drv_data->controller); } static int pxa2xx_spi_runtime_suspend(struct device *dev) { struct driver_data *drv_data = dev_get_drvdata(dev); clk_disable_unprepare(drv_data->ssp->clk); return 0; } static int pxa2xx_spi_runtime_resume(struct device *dev) { struct driver_data *drv_data = dev_get_drvdata(dev); return clk_prepare_enable(drv_data->ssp->clk); } static const struct dev_pm_ops pxa2xx_spi_pm_ops = { SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL) }; #ifdef CONFIG_ACPI static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { { "80860F0E", LPSS_BYT_SSP }, { "8086228E", LPSS_BSW_SSP }, { "INT33C0", LPSS_LPT_SSP }, { "INT33C1", LPSS_LPT_SSP }, { "INT3430", LPSS_LPT_SSP }, { "INT3431", LPSS_LPT_SSP }, {} }; MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); #endif static const struct of_device_id pxa2xx_spi_of_match[] __maybe_unused = { { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP }, {} }; MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match); static struct platform_driver driver = { .driver = { .name = "pxa2xx-spi", .pm = pm_ptr(&pxa2xx_spi_pm_ops), .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), .of_match_table = of_match_ptr(pxa2xx_spi_of_match), }, .probe = pxa2xx_spi_probe, .remove_new = pxa2xx_spi_remove, }; static int __init pxa2xx_spi_init(void) { return platform_driver_register(&driver); } subsys_initcall(pxa2xx_spi_init); static void __exit pxa2xx_spi_exit(void) { platform_driver_unregister(&driver); } module_exit(pxa2xx_spi_exit); MODULE_SOFTDEP("pre: dw_dmac");
linux-master
drivers/spi/spi-pxa2xx.c
// SPDX-License-Identifier: GPL-2.0 // // STMicroelectronics STM32 SPI Controller driver // // Copyright (C) 2017, STMicroelectronics - All Rights Reserved // Author(s): Amelie Delaunay <[email protected]> for STMicroelectronics. #include <linux/bitfield.h> #include <linux/debugfs.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/interrupt.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of_platform.h> #include <linux/pinctrl/consumer.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <linux/spi/spi.h> #define DRIVER_NAME "spi_stm32" /* STM32F4 SPI registers */ #define STM32F4_SPI_CR1 0x00 #define STM32F4_SPI_CR2 0x04 #define STM32F4_SPI_SR 0x08 #define STM32F4_SPI_DR 0x0C #define STM32F4_SPI_I2SCFGR 0x1C /* STM32F4_SPI_CR1 bit fields */ #define STM32F4_SPI_CR1_CPHA BIT(0) #define STM32F4_SPI_CR1_CPOL BIT(1) #define STM32F4_SPI_CR1_MSTR BIT(2) #define STM32F4_SPI_CR1_BR_SHIFT 3 #define STM32F4_SPI_CR1_BR GENMASK(5, 3) #define STM32F4_SPI_CR1_SPE BIT(6) #define STM32F4_SPI_CR1_LSBFRST BIT(7) #define STM32F4_SPI_CR1_SSI BIT(8) #define STM32F4_SPI_CR1_SSM BIT(9) #define STM32F4_SPI_CR1_RXONLY BIT(10) #define STM32F4_SPI_CR1_DFF BIT(11) #define STM32F4_SPI_CR1_CRCNEXT BIT(12) #define STM32F4_SPI_CR1_CRCEN BIT(13) #define STM32F4_SPI_CR1_BIDIOE BIT(14) #define STM32F4_SPI_CR1_BIDIMODE BIT(15) #define STM32F4_SPI_CR1_BR_MIN 0 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3) /* STM32F4_SPI_CR2 bit fields */ #define STM32F4_SPI_CR2_RXDMAEN BIT(0) #define STM32F4_SPI_CR2_TXDMAEN BIT(1) #define STM32F4_SPI_CR2_SSOE BIT(2) #define STM32F4_SPI_CR2_FRF BIT(4) #define STM32F4_SPI_CR2_ERRIE BIT(5) #define STM32F4_SPI_CR2_RXNEIE BIT(6) #define STM32F4_SPI_CR2_TXEIE BIT(7) /* STM32F4_SPI_SR bit fields */ #define STM32F4_SPI_SR_RXNE BIT(0) #define STM32F4_SPI_SR_TXE BIT(1) #define STM32F4_SPI_SR_CHSIDE BIT(2) #define STM32F4_SPI_SR_UDR BIT(3) #define STM32F4_SPI_SR_CRCERR BIT(4) #define STM32F4_SPI_SR_MODF BIT(5) #define STM32F4_SPI_SR_OVR BIT(6) #define STM32F4_SPI_SR_BSY BIT(7) #define STM32F4_SPI_SR_FRE BIT(8) /* STM32F4_SPI_I2SCFGR bit fields */ #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11) /* STM32F4 SPI Baud Rate min/max divisor */ #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN) #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX) /* STM32H7 SPI registers */ #define STM32H7_SPI_CR1 0x00 #define STM32H7_SPI_CR2 0x04 #define STM32H7_SPI_CFG1 0x08 #define STM32H7_SPI_CFG2 0x0C #define STM32H7_SPI_IER 0x10 #define STM32H7_SPI_SR 0x14 #define STM32H7_SPI_IFCR 0x18 #define STM32H7_SPI_TXDR 0x20 #define STM32H7_SPI_RXDR 0x30 #define STM32H7_SPI_I2SCFGR 0x50 /* STM32H7_SPI_CR1 bit fields */ #define STM32H7_SPI_CR1_SPE BIT(0) #define STM32H7_SPI_CR1_MASRX BIT(8) #define STM32H7_SPI_CR1_CSTART BIT(9) #define STM32H7_SPI_CR1_CSUSP BIT(10) #define STM32H7_SPI_CR1_HDDIR BIT(11) #define STM32H7_SPI_CR1_SSI BIT(12) /* STM32H7_SPI_CR2 bit fields */ #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) #define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0) /* STM32H7_SPI_CFG1 bit fields */ #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) #define STM32H7_SPI_CFG1_RXDMAEN BIT(14) #define STM32H7_SPI_CFG1_TXDMAEN BIT(15) #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) #define STM32H7_SPI_CFG1_MBR_SHIFT 28 #define STM32H7_SPI_CFG1_MBR_MIN 0 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) /* STM32H7_SPI_CFG2 bit fields */ #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) #define STM32H7_SPI_CFG2_SP GENMASK(21, 19) #define STM32H7_SPI_CFG2_MASTER BIT(22) #define STM32H7_SPI_CFG2_LSBFRST BIT(23) #define STM32H7_SPI_CFG2_CPHA BIT(24) #define STM32H7_SPI_CFG2_CPOL BIT(25) #define STM32H7_SPI_CFG2_SSM BIT(26) #define STM32H7_SPI_CFG2_SSIOP BIT(28) #define STM32H7_SPI_CFG2_AFCNTR BIT(31) /* STM32H7_SPI_IER bit fields */ #define STM32H7_SPI_IER_RXPIE BIT(0) #define STM32H7_SPI_IER_TXPIE BIT(1) #define STM32H7_SPI_IER_DXPIE BIT(2) #define STM32H7_SPI_IER_EOTIE BIT(3) #define STM32H7_SPI_IER_TXTFIE BIT(4) #define STM32H7_SPI_IER_OVRIE BIT(6) #define STM32H7_SPI_IER_MODFIE BIT(9) #define STM32H7_SPI_IER_ALL GENMASK(10, 0) /* STM32H7_SPI_SR bit fields */ #define STM32H7_SPI_SR_RXP BIT(0) #define STM32H7_SPI_SR_TXP BIT(1) #define STM32H7_SPI_SR_EOT BIT(3) #define STM32H7_SPI_SR_OVR BIT(6) #define STM32H7_SPI_SR_MODF BIT(9) #define STM32H7_SPI_SR_SUSP BIT(11) #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) #define STM32H7_SPI_SR_RXWNE BIT(15) /* STM32H7_SPI_IFCR bit fields */ #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3) /* STM32H7_SPI_I2SCFGR bit fields */ #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0) /* STM32H7 SPI Master Baud Rate min/max divisor */ #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN) #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX) /* STM32H7 SPI Communication mode */ #define STM32H7_SPI_FULL_DUPLEX 0 #define STM32H7_SPI_SIMPLEX_TX 1 #define STM32H7_SPI_SIMPLEX_RX 2 #define STM32H7_SPI_HALF_DUPLEX 3 /* SPI Communication type */ #define SPI_FULL_DUPLEX 0 #define SPI_SIMPLEX_TX 1 #define SPI_SIMPLEX_RX 2 #define SPI_3WIRE_TX 3 #define SPI_3WIRE_RX 4 #define STM32_SPI_AUTOSUSPEND_DELAY 1 /* 1 ms */ /* * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers * without fifo buffers. */ #define SPI_DMA_MIN_BYTES 16 /* STM32 SPI driver helpers */ #define STM32_SPI_MASTER_MODE(stm32_spi) (!(stm32_spi)->device_mode) #define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode) /** * struct stm32_spi_reg - stm32 SPI register & bitfield desc * @reg: register offset * @mask: bitfield mask * @shift: left shift */ struct stm32_spi_reg { int reg; int mask; int shift; }; /** * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data * @en: enable register and SPI enable bit * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit * @cpol: clock polarity register and polarity bit * @cpha: clock phase register and phase bit * @lsb_first: LSB transmitted first register and bit * @cs_high: chips select active value * @br: baud rate register and bitfields * @rx: SPI RX data register * @tx: SPI TX data register */ struct stm32_spi_regspec { const struct stm32_spi_reg en; const struct stm32_spi_reg dma_rx_en; const struct stm32_spi_reg dma_tx_en; const struct stm32_spi_reg cpol; const struct stm32_spi_reg cpha; const struct stm32_spi_reg lsb_first; const struct stm32_spi_reg cs_high; const struct stm32_spi_reg br; const struct stm32_spi_reg rx; const struct stm32_spi_reg tx; }; struct stm32_spi; /** * struct stm32_spi_cfg - stm32 compatible configuration data * @regs: registers descriptions * @get_fifo_size: routine to get fifo size * @get_bpw_mask: routine to get bits per word mask * @disable: routine to disable controller * @config: routine to configure controller as SPI Master * @set_bpw: routine to configure registers to for bits per word * @set_mode: routine to configure registers to desired mode * @set_data_idleness: optional routine to configure registers to desired idle * time between frames (if driver has this functionality) * @set_number_of_data: optional routine to configure registers to desired * number of data (if driver has this functionality) * @transfer_one_dma_start: routine to start transfer a single spi_transfer * using DMA * @dma_rx_cb: routine to call after DMA RX channel operation is complete * @dma_tx_cb: routine to call after DMA TX channel operation is complete * @transfer_one_irq: routine to configure interrupts for driver * @irq_handler_event: Interrupt handler for SPI controller events * @irq_handler_thread: thread of interrupt handler for SPI controller * @baud_rate_div_min: minimum baud rate divisor * @baud_rate_div_max: maximum baud rate divisor * @has_fifo: boolean to know if fifo is used for driver * @has_device_mode: is this compatible capable to switch on device mode * @flags: compatible specific SPI controller flags used at registration time */ struct stm32_spi_cfg { const struct stm32_spi_regspec *regs; int (*get_fifo_size)(struct stm32_spi *spi); int (*get_bpw_mask)(struct stm32_spi *spi); void (*disable)(struct stm32_spi *spi); int (*config)(struct stm32_spi *spi); void (*set_bpw)(struct stm32_spi *spi); int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type); void (*set_data_idleness)(struct stm32_spi *spi, u32 length); int (*set_number_of_data)(struct stm32_spi *spi, u32 length); void (*transfer_one_dma_start)(struct stm32_spi *spi); void (*dma_rx_cb)(void *data); void (*dma_tx_cb)(void *data); int (*transfer_one_irq)(struct stm32_spi *spi); irqreturn_t (*irq_handler_event)(int irq, void *dev_id); irqreturn_t (*irq_handler_thread)(int irq, void *dev_id); unsigned int baud_rate_div_min; unsigned int baud_rate_div_max; bool has_fifo; bool has_device_mode; u16 flags; }; /** * struct stm32_spi - private data of the SPI controller * @dev: driver model representation of the controller * @ctrl: controller interface * @cfg: compatible configuration data * @base: virtual memory area * @clk: hw kernel clock feeding the SPI clock generator * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator * @lock: prevent I/O concurrent access * @irq: SPI controller interrupt line * @fifo_size: size of the embedded fifo in bytes * @cur_midi: master inter-data idleness in ns * @cur_speed: speed configured in Hz * @cur_half_period: time of a half bit in us * @cur_bpw: number of bits in a single SPI data frame * @cur_fthlv: fifo threshold level (data frames in a single data packet) * @cur_comm: SPI communication mode * @cur_xferlen: current transfer length in bytes * @cur_usedma: boolean to know if dma is used in current transfer * @tx_buf: data to be written, or NULL * @rx_buf: data to be read, or NULL * @tx_len: number of data to be written in bytes * @rx_len: number of data to be read in bytes * @dma_tx: dma channel for TX transfer * @dma_rx: dma channel for RX transfer * @phys_addr: SPI registers physical base address * @device_mode: the controller is configured as SPI device */ struct stm32_spi { struct device *dev; struct spi_controller *ctrl; const struct stm32_spi_cfg *cfg; void __iomem *base; struct clk *clk; u32 clk_rate; spinlock_t lock; /* prevent I/O concurrent access */ int irq; unsigned int fifo_size; unsigned int cur_midi; unsigned int cur_speed; unsigned int cur_half_period; unsigned int cur_bpw; unsigned int cur_fthlv; unsigned int cur_comm; unsigned int cur_xferlen; bool cur_usedma; const void *tx_buf; void *rx_buf; int tx_len; int rx_len; struct dma_chan *dma_tx; struct dma_chan *dma_rx; dma_addr_t phys_addr; bool device_mode; }; static const struct stm32_spi_regspec stm32f4_spi_regspec = { .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE }, .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN }, .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN }, .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL }, .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA }, .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST }, .cs_high = {}, .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT }, .rx = { STM32F4_SPI_DR }, .tx = { STM32F4_SPI_DR }, }; static const struct stm32_spi_regspec stm32h7_spi_regspec = { /* SPI data transfer is enabled but spi_ker_ck is idle. * CFG1 and CFG2 registers are write protected when SPE is enabled. */ .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP }, .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, STM32H7_SPI_CFG1_MBR_SHIFT }, .rx = { STM32H7_SPI_RXDR }, .tx = { STM32H7_SPI_TXDR }, }; static inline void stm32_spi_set_bits(struct stm32_spi *spi, u32 offset, u32 bits) { writel_relaxed(readl_relaxed(spi->base + offset) | bits, spi->base + offset); } static inline void stm32_spi_clr_bits(struct stm32_spi *spi, u32 offset, u32 bits) { writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, spi->base + offset); } /** * stm32h7_spi_get_fifo_size - Return fifo size * @spi: pointer to the spi controller data structure */ static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi) { unsigned long flags; u32 count = 0; spin_lock_irqsave(&spi->lock, flags); stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP) writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR); stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); spin_unlock_irqrestore(&spi->lock, flags); dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); return count; } /** * stm32f4_spi_get_bpw_mask - Return bits per word mask * @spi: pointer to the spi controller data structure */ static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi) { dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); } /** * stm32h7_spi_get_bpw_mask - Return bits per word mask * @spi: pointer to the spi controller data structure */ static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) { unsigned long flags; u32 cfg1, max_bpw; spin_lock_irqsave(&spi->lock, flags); /* * The most significant bit at DSIZE bit field is reserved when the * maximum data size of periperal instances is limited to 16-bit */ stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1; spin_unlock_irqrestore(&spi->lock, flags); dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); return SPI_BPW_RANGE_MASK(4, max_bpw); } /** * stm32_spi_prepare_mbr - Determine baud rate divisor value * @spi: pointer to the spi controller data structure * @speed_hz: requested speed * @min_div: minimum baud rate divisor * @max_div: maximum baud rate divisor * * Return baud rate divisor value in case of success or -EINVAL */ static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, u32 min_div, u32 max_div) { u32 div, mbrdiv; /* Ensure spi->clk_rate is even */ div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz); /* * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so * no need to check it there. * However, we need to ensure the following calculations. */ if ((div < min_div) || (div > max_div)) return -EINVAL; /* Determine the first power of 2 greater than or equal to div */ if (div & (div - 1)) mbrdiv = fls(div); else mbrdiv = fls(div) - 1; spi->cur_speed = spi->clk_rate / (1 << mbrdiv); spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed); return mbrdiv - 1; } /** * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level * @spi: pointer to the spi controller data structure * @xfer_len: length of the message to be transferred */ static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) { u32 packet, bpw; /* data packet should not exceed 1/2 of fifo space */ packet = clamp(xfer_len, 1U, spi->fifo_size / 2); /* align packet size with data registers access */ bpw = DIV_ROUND_UP(spi->cur_bpw, 8); return DIV_ROUND_UP(packet, bpw); } /** * stm32f4_spi_write_tx - Write bytes to Transmit Data Register * @spi: pointer to the spi controller data structure * * Read from tx_buf depends on remaining bytes to avoid to read beyond * tx_buf end. */ static void stm32f4_spi_write_tx(struct stm32_spi *spi) { if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & STM32F4_SPI_SR_TXE)) { u32 offs = spi->cur_xferlen - spi->tx_len; if (spi->cur_bpw == 16) { const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR); spi->tx_len -= sizeof(u16); } else { const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR); spi->tx_len -= sizeof(u8); } } dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); } /** * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register * @spi: pointer to the spi controller data structure * * Read from tx_buf depends on remaining bytes to avoid to read beyond * tx_buf end. */ static void stm32h7_spi_write_txfifo(struct stm32_spi *spi) { while ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)) { u32 offs = spi->cur_xferlen - spi->tx_len; if (spi->tx_len >= sizeof(u32)) { const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR); spi->tx_len -= sizeof(u32); } else if (spi->tx_len >= sizeof(u16)) { const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR); spi->tx_len -= sizeof(u16); } else { const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR); spi->tx_len -= sizeof(u8); } } dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); } /** * stm32f4_spi_read_rx - Read bytes from Receive Data Register * @spi: pointer to the spi controller data structure * * Write in rx_buf depends on remaining bytes to avoid to write beyond * rx_buf end. */ static void stm32f4_spi_read_rx(struct stm32_spi *spi) { if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & STM32F4_SPI_SR_RXNE)) { u32 offs = spi->cur_xferlen - spi->rx_len; if (spi->cur_bpw == 16) { u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR); spi->rx_len -= sizeof(u16); } else { u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR); spi->rx_len -= sizeof(u8); } } dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len); } /** * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register * @spi: pointer to the spi controller data structure * * Write in rx_buf depends on remaining bytes to avoid to write beyond * rx_buf end. */ static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi) { u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); while ((spi->rx_len > 0) && ((sr & STM32H7_SPI_SR_RXP) || ((sr & STM32H7_SPI_SR_EOT) && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) { u32 offs = spi->cur_xferlen - spi->rx_len; if ((spi->rx_len >= sizeof(u32)) || (sr & STM32H7_SPI_SR_RXWNE)) { u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR); spi->rx_len -= sizeof(u32); } else if ((spi->rx_len >= sizeof(u16)) || (!(sr & STM32H7_SPI_SR_RXWNE) && (rxplvl >= 2 || spi->cur_bpw > 8))) { u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR); spi->rx_len -= sizeof(u16); } else { u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR); spi->rx_len -= sizeof(u8); } sr = readl_relaxed(spi->base + STM32H7_SPI_SR); rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); } dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n", __func__, spi->rx_len, sr); } /** * stm32_spi_enable - Enable SPI controller * @spi: pointer to the spi controller data structure */ static void stm32_spi_enable(struct stm32_spi *spi) { dev_dbg(spi->dev, "enable controller\n"); stm32_spi_set_bits(spi, spi->cfg->regs->en.reg, spi->cfg->regs->en.mask); } /** * stm32f4_spi_disable - Disable SPI controller * @spi: pointer to the spi controller data structure */ static void stm32f4_spi_disable(struct stm32_spi *spi) { unsigned long flags; u32 sr; dev_dbg(spi->dev, "disable controller\n"); spin_lock_irqsave(&spi->lock, flags); if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) & STM32F4_SPI_CR1_SPE)) { spin_unlock_irqrestore(&spi->lock, flags); return; } /* Disable interrupts */ stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE | STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE); /* Wait until BSY = 0 */ if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR, sr, !(sr & STM32F4_SPI_SR_BSY), 10, 100000) < 0) { dev_warn(spi->dev, "disabling condition timeout\n"); } if (spi->cur_usedma && spi->dma_tx) dmaengine_terminate_async(spi->dma_tx); if (spi->cur_usedma && spi->dma_rx) dmaengine_terminate_async(spi->dma_rx); stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE); stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN | STM32F4_SPI_CR2_RXDMAEN); /* Sequence to clear OVR flag */ readl_relaxed(spi->base + STM32F4_SPI_DR); readl_relaxed(spi->base + STM32F4_SPI_SR); spin_unlock_irqrestore(&spi->lock, flags); } /** * stm32h7_spi_disable - Disable SPI controller * @spi: pointer to the spi controller data structure * * RX-Fifo is flushed when SPI controller is disabled. */ static void stm32h7_spi_disable(struct stm32_spi *spi) { unsigned long flags; u32 cr1; dev_dbg(spi->dev, "disable controller\n"); spin_lock_irqsave(&spi->lock, flags); cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1); if (!(cr1 & STM32H7_SPI_CR1_SPE)) { spin_unlock_irqrestore(&spi->lock, flags); return; } /* Add a delay to make sure that transmission is ended. */ if (spi->cur_half_period) udelay(spi->cur_half_period); if (spi->cur_usedma && spi->dma_tx) dmaengine_terminate_async(spi->dma_tx); if (spi->cur_usedma && spi->dma_rx) dmaengine_terminate_async(spi->dma_rx); stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN | STM32H7_SPI_CFG1_RXDMAEN); /* Disable interrupts and clear status flags */ writel_relaxed(0, spi->base + STM32H7_SPI_IER); writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR); spin_unlock_irqrestore(&spi->lock, flags); } /** * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use * @ctrl: controller interface * @spi_dev: pointer to the spi device * @transfer: pointer to spi transfer * * If driver has fifo and the current transfer size is greater than fifo size, * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes. */ static bool stm32_spi_can_dma(struct spi_controller *ctrl, struct spi_device *spi_dev, struct spi_transfer *transfer) { unsigned int dma_size; struct stm32_spi *spi = spi_controller_get_devdata(ctrl); if (spi->cfg->has_fifo) dma_size = spi->fifo_size; else dma_size = SPI_DMA_MIN_BYTES; dev_dbg(spi->dev, "%s: %s\n", __func__, (transfer->len > dma_size) ? "true" : "false"); return (transfer->len > dma_size); } /** * stm32f4_spi_irq_event - Interrupt handler for SPI controller events * @irq: interrupt line * @dev_id: SPI controller ctrl interface */ static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id) { struct spi_controller *ctrl = dev_id; struct stm32_spi *spi = spi_controller_get_devdata(ctrl); u32 sr, mask = 0; bool end = false; spin_lock(&spi->lock); sr = readl_relaxed(spi->base + STM32F4_SPI_SR); /* * BSY flag is not handled in interrupt but it is normal behavior when * this flag is set. */ sr &= ~STM32F4_SPI_SR_BSY; if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)) { /* OVR flag shouldn't be handled for TX only mode */ sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE); mask |= STM32F4_SPI_SR_TXE; } if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX || spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX)) { /* TXE flag is set and is handled when RXNE flag occurs */ sr &= ~STM32F4_SPI_SR_TXE; mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR; } if (!(sr & mask)) { dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr); spin_unlock(&spi->lock); return IRQ_NONE; } if (sr & STM32F4_SPI_SR_OVR) { dev_warn(spi->dev, "Overrun: received value discarded\n"); /* Sequence to clear OVR flag */ readl_relaxed(spi->base + STM32F4_SPI_DR); readl_relaxed(spi->base + STM32F4_SPI_SR); /* * If overrun is detected, it means that something went wrong, * so stop the current transfer. Transfer can wait for next * RXNE but DR is already read and end never happens. */ end = true; goto end_irq; } if (sr & STM32F4_SPI_SR_TXE) { if (spi->tx_buf) stm32f4_spi_write_tx(spi); if (spi->tx_len == 0) end = true; } if (sr & STM32F4_SPI_SR_RXNE) { stm32f4_spi_read_rx(spi); if (spi->rx_len == 0) end = true; else if (spi->tx_buf)/* Load data for discontinuous mode */ stm32f4_spi_write_tx(spi); } end_irq: if (end) { /* Immediately disable interrupts to do not generate new one */ stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE | STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE); spin_unlock(&spi->lock); return IRQ_WAKE_THREAD; } spin_unlock(&spi->lock); return IRQ_HANDLED; } /** * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller * @irq: interrupt line * @dev_id: SPI controller interface */ static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id) { struct spi_controller *ctrl = dev_id; struct stm32_spi *spi = spi_controller_get_devdata(ctrl); spi_finalize_current_transfer(ctrl); stm32f4_spi_disable(spi); return IRQ_HANDLED; } /** * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller * @irq: interrupt line * @dev_id: SPI controller interface */ static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) { struct spi_controller *ctrl = dev_id; struct stm32_spi *spi = spi_controller_get_devdata(ctrl); u32 sr, ier, mask; unsigned long flags; bool end = false; spin_lock_irqsave(&spi->lock, flags); sr = readl_relaxed(spi->base + STM32H7_SPI_SR); ier = readl_relaxed(spi->base + STM32H7_SPI_IER); mask = ier; /* * EOTIE enables irq from EOT, SUSP and TXC events. We need to set * SUSP to acknowledge it later. TXC is automatically cleared */ mask |= STM32H7_SPI_SR_SUSP; /* * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP * are set. So in case of Full-Duplex, need to poll TXP and RXP event. */ if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma) mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP; if (!(sr & mask)) { dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", sr, ier); spin_unlock_irqrestore(&spi->lock, flags); return IRQ_NONE; } if (sr & STM32H7_SPI_SR_SUSP) { static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL * 10, 1); ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE); if (__ratelimit(&rs)) dev_dbg_ratelimited(spi->dev, "Communication suspended\n"); if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) stm32h7_spi_read_rxfifo(spi); /* * If communication is suspended while using DMA, it means * that something went wrong, so stop the current transfer */ if (spi->cur_usedma) end = true; } if (sr & STM32H7_SPI_SR_MODF) { dev_warn(spi->dev, "Mode fault: transfer aborted\n"); end = true; } if (sr & STM32H7_SPI_SR_OVR) { dev_err(spi->dev, "Overrun: RX data lost\n"); end = true; } if (sr & STM32H7_SPI_SR_EOT) { if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) stm32h7_spi_read_rxfifo(spi); if (!spi->cur_usedma || (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)) end = true; } if (sr & STM32H7_SPI_SR_TXP) if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) stm32h7_spi_write_txfifo(spi); if (sr & STM32H7_SPI_SR_RXP) if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) stm32h7_spi_read_rxfifo(spi); writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR); spin_unlock_irqrestore(&spi->lock, flags); if (end) { stm32h7_spi_disable(spi); spi_finalize_current_transfer(ctrl); } return IRQ_HANDLED; } /** * stm32_spi_prepare_msg - set up the controller to transfer a single message * @ctrl: controller interface * @msg: pointer to spi message */ static int stm32_spi_prepare_msg(struct spi_controller *ctrl, struct spi_message *msg) { struct stm32_spi *spi = spi_controller_get_devdata(ctrl); struct spi_device *spi_dev = msg->spi; struct device_node *np = spi_dev->dev.of_node; unsigned long flags; u32 clrb = 0, setb = 0; /* SPI slave device may need time between data frames */ spi->cur_midi = 0; if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); if (spi_dev->mode & SPI_CPOL) setb |= spi->cfg->regs->cpol.mask; else clrb |= spi->cfg->regs->cpol.mask; if (spi_dev->mode & SPI_CPHA) setb |= spi->cfg->regs->cpha.mask; else clrb |= spi->cfg->regs->cpha.mask; if (spi_dev->mode & SPI_LSB_FIRST) setb |= spi->cfg->regs->lsb_first.mask; else clrb |= spi->cfg->regs->lsb_first.mask; if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH) setb |= spi->cfg->regs->cs_high.mask; else clrb |= spi->cfg->regs->cs_high.mask; dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", !!(spi_dev->mode & SPI_CPOL), !!(spi_dev->mode & SPI_CPHA), !!(spi_dev->mode & SPI_LSB_FIRST), !!(spi_dev->mode & SPI_CS_HIGH)); /* On STM32H7, messages should not exceed a maximum size setted * afterward via the set_number_of_data function. In order to * ensure that, split large messages into several messages */ if (spi->cfg->set_number_of_data) { int ret; ret = spi_split_transfers_maxwords(ctrl, msg, STM32H7_SPI_TSIZE_MAX, GFP_KERNEL | GFP_DMA); if (ret) return ret; } spin_lock_irqsave(&spi->lock, flags); /* CPOL, CPHA and LSB FIRST bits have common register */ if (clrb || setb) writel_relaxed( (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) & ~clrb) | setb, spi->base + spi->cfg->regs->cpol.reg); spin_unlock_irqrestore(&spi->lock, flags); return 0; } /** * stm32f4_spi_dma_tx_cb - dma callback * @data: pointer to the spi controller data structure * * DMA callback is called when the transfer is complete for DMA TX channel. */ static void stm32f4_spi_dma_tx_cb(void *data) { struct stm32_spi *spi = data; if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { spi_finalize_current_transfer(spi->ctrl); stm32f4_spi_disable(spi); } } /** * stm32_spi_dma_rx_cb - dma callback * @data: pointer to the spi controller data structure * * DMA callback is called when the transfer is complete for DMA RX channel. */ static void stm32_spi_dma_rx_cb(void *data) { struct stm32_spi *spi = data; spi_finalize_current_transfer(spi->ctrl); spi->cfg->disable(spi); } /** * stm32_spi_dma_config - configure dma slave channel depending on current * transfer bits_per_word. * @spi: pointer to the spi controller data structure * @dma_conf: pointer to the dma_slave_config structure * @dir: direction of the dma transfer */ static void stm32_spi_dma_config(struct stm32_spi *spi, struct dma_slave_config *dma_conf, enum dma_transfer_direction dir) { enum dma_slave_buswidth buswidth; u32 maxburst; if (spi->cur_bpw <= 8) buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; else if (spi->cur_bpw <= 16) buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; else buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; if (spi->cfg->has_fifo) { /* Valid for DMA Half or Full Fifo threshold */ if (spi->cur_fthlv == 2) maxburst = 1; else maxburst = spi->cur_fthlv; } else { maxburst = 1; } memset(dma_conf, 0, sizeof(struct dma_slave_config)); dma_conf->direction = dir; if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg; dma_conf->src_addr_width = buswidth; dma_conf->src_maxburst = maxburst; dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", buswidth, maxburst); } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg; dma_conf->dst_addr_width = buswidth; dma_conf->dst_maxburst = maxburst; dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", buswidth, maxburst); } } /** * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using * interrupts * @spi: pointer to the spi controller data structure * * It must returns 0 if the transfer is finished or 1 if the transfer is still * in progress. */ static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi) { unsigned long flags; u32 cr2 = 0; /* Enable the interrupts relative to the current communication mode */ if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { cr2 |= STM32F4_SPI_CR2_TXEIE; } else if (spi->cur_comm == SPI_FULL_DUPLEX || spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX) { /* In transmit-only mode, the OVR flag is set in the SR register * since the received data are never read. Therefore set OVR * interrupt only when rx buffer is available. */ cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE; } else { return -EINVAL; } spin_lock_irqsave(&spi->lock, flags); stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2); stm32_spi_enable(spi); /* starting data transfer when buffer is loaded */ if (spi->tx_buf) stm32f4_spi_write_tx(spi); spin_unlock_irqrestore(&spi->lock, flags); return 1; } /** * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using * interrupts * @spi: pointer to the spi controller data structure * * It must returns 0 if the transfer is finished or 1 if the transfer is still * in progress. */ static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi) { unsigned long flags; u32 ier = 0; /* Enable the interrupts relative to the current communication mode */ if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ ier |= STM32H7_SPI_IER_DXPIE; else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ ier |= STM32H7_SPI_IER_TXPIE; else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ ier |= STM32H7_SPI_IER_RXPIE; /* Enable the interrupts relative to the end of transfer */ ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE | STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; spin_lock_irqsave(&spi->lock, flags); stm32_spi_enable(spi); /* Be sure to have data in fifo before starting data transfer */ if (spi->tx_buf) stm32h7_spi_write_txfifo(spi); if (STM32_SPI_MASTER_MODE(spi)) stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); writel_relaxed(ier, spi->base + STM32H7_SPI_IER); spin_unlock_irqrestore(&spi->lock, flags); return 1; } /** * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start * transfer using DMA * @spi: pointer to the spi controller data structure */ static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi) { /* In DMA mode end of transfer is handled by DMA TX or RX callback. */ if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX || spi->cur_comm == SPI_FULL_DUPLEX) { /* * In transmit-only mode, the OVR flag is set in the SR register * since the received data are never read. Therefore set OVR * interrupt only when rx buffer is available. */ stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE); } stm32_spi_enable(spi); } /** * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start * transfer using DMA * @spi: pointer to the spi controller data structure */ static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi) { uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; /* Enable the interrupts */ if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE; stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier); stm32_spi_enable(spi); if (STM32_SPI_MASTER_MODE(spi)) stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); } /** * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA * @spi: pointer to the spi controller data structure * @xfer: pointer to the spi_transfer structure * * It must returns 0 if the transfer is finished or 1 if the transfer is still * in progress. */ static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, struct spi_transfer *xfer) { struct dma_slave_config tx_dma_conf, rx_dma_conf; struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc; unsigned long flags; spin_lock_irqsave(&spi->lock, flags); rx_dma_desc = NULL; if (spi->rx_buf && spi->dma_rx) { stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM); dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); /* Enable Rx DMA request */ stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg, spi->cfg->regs->dma_rx_en.mask); rx_dma_desc = dmaengine_prep_slave_sg( spi->dma_rx, xfer->rx_sg.sgl, xfer->rx_sg.nents, rx_dma_conf.direction, DMA_PREP_INTERRUPT); } tx_dma_desc = NULL; if (spi->tx_buf && spi->dma_tx) { stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV); dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); tx_dma_desc = dmaengine_prep_slave_sg( spi->dma_tx, xfer->tx_sg.sgl, xfer->tx_sg.nents, tx_dma_conf.direction, DMA_PREP_INTERRUPT); } if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) || (spi->rx_buf && spi->dma_rx && !rx_dma_desc)) goto dma_desc_error; if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc)) goto dma_desc_error; if (rx_dma_desc) { rx_dma_desc->callback = spi->cfg->dma_rx_cb; rx_dma_desc->callback_param = spi; if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { dev_err(spi->dev, "Rx DMA submit failed\n"); goto dma_desc_error; } /* Enable Rx DMA channel */ dma_async_issue_pending(spi->dma_rx); } if (tx_dma_desc) { if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { tx_dma_desc->callback = spi->cfg->dma_tx_cb; tx_dma_desc->callback_param = spi; } if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { dev_err(spi->dev, "Tx DMA submit failed\n"); goto dma_submit_error; } /* Enable Tx DMA channel */ dma_async_issue_pending(spi->dma_tx); /* Enable Tx DMA request */ stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg, spi->cfg->regs->dma_tx_en.mask); } spi->cfg->transfer_one_dma_start(spi); spin_unlock_irqrestore(&spi->lock, flags); return 1; dma_submit_error: if (spi->dma_rx) dmaengine_terminate_sync(spi->dma_rx); dma_desc_error: stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg, spi->cfg->regs->dma_rx_en.mask); spin_unlock_irqrestore(&spi->lock, flags); dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); spi->cur_usedma = false; return spi->cfg->transfer_one_irq(spi); } /** * stm32f4_spi_set_bpw - Configure bits per word * @spi: pointer to the spi controller data structure */ static void stm32f4_spi_set_bpw(struct stm32_spi *spi) { if (spi->cur_bpw == 16) stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); else stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); } /** * stm32h7_spi_set_bpw - configure bits per word * @spi: pointer to the spi controller data structure */ static void stm32h7_spi_set_bpw(struct stm32_spi *spi) { u32 bpw, fthlv; u32 cfg1_clrb = 0, cfg1_setb = 0; bpw = spi->cur_bpw - 1; cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw); spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); fthlv = spi->cur_fthlv - 1; cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv); writel_relaxed( (readl_relaxed(spi->base + STM32H7_SPI_CFG1) & ~cfg1_clrb) | cfg1_setb, spi->base + STM32H7_SPI_CFG1); } /** * stm32_spi_set_mbr - Configure baud rate divisor in master mode * @spi: pointer to the spi controller data structure * @mbrdiv: baud rate divisor value */ static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) { u32 clrb = 0, setb = 0; clrb |= spi->cfg->regs->br.mask; setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask; writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & ~clrb) | setb, spi->base + spi->cfg->regs->br.reg); } /** * stm32_spi_communication_type - return transfer communication type * @spi_dev: pointer to the spi device * @transfer: pointer to spi transfer */ static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev, struct spi_transfer *transfer) { unsigned int type = SPI_FULL_DUPLEX; if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ /* * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL * is forbidden and unvalidated by SPI subsystem so depending * on the valid buffer, we can determine the direction of the * transfer. */ if (!transfer->tx_buf) type = SPI_3WIRE_RX; else type = SPI_3WIRE_TX; } else { if (!transfer->tx_buf) type = SPI_SIMPLEX_RX; else if (!transfer->rx_buf) type = SPI_SIMPLEX_TX; } return type; } /** * stm32f4_spi_set_mode - configure communication mode * @spi: pointer to the spi controller data structure * @comm_type: type of communication to configure */ static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) { if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) { stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_BIDIMODE | STM32F4_SPI_CR1_BIDIOE); } else if (comm_type == SPI_FULL_DUPLEX || comm_type == SPI_SIMPLEX_RX) { stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_BIDIMODE | STM32F4_SPI_CR1_BIDIOE); } else if (comm_type == SPI_3WIRE_RX) { stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_BIDIMODE); stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_BIDIOE); } else { return -EINVAL; } return 0; } /** * stm32h7_spi_set_mode - configure communication mode * @spi: pointer to the spi controller data structure * @comm_type: type of communication to configure */ static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) { u32 mode; u32 cfg2_clrb = 0, cfg2_setb = 0; if (comm_type == SPI_3WIRE_RX) { mode = STM32H7_SPI_HALF_DUPLEX; stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); } else if (comm_type == SPI_3WIRE_TX) { mode = STM32H7_SPI_HALF_DUPLEX; stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); } else if (comm_type == SPI_SIMPLEX_RX) { mode = STM32H7_SPI_SIMPLEX_RX; } else if (comm_type == SPI_SIMPLEX_TX) { mode = STM32H7_SPI_SIMPLEX_TX; } else { mode = STM32H7_SPI_FULL_DUPLEX; } cfg2_clrb |= STM32H7_SPI_CFG2_COMM; cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode); writel_relaxed( (readl_relaxed(spi->base + STM32H7_SPI_CFG2) & ~cfg2_clrb) | cfg2_setb, spi->base + STM32H7_SPI_CFG2); return 0; } /** * stm32h7_spi_data_idleness - configure minimum time delay inserted between two * consecutive data frames in master mode * @spi: pointer to the spi controller data structure * @len: transfer len */ static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) { u32 cfg2_clrb = 0, cfg2_setb = 0; cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; if ((len > 1) && (spi->cur_midi > 0)) { u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed); u32 midi = min_t(u32, DIV_ROUND_UP(spi->cur_midi, sck_period_ns), FIELD_GET(STM32H7_SPI_CFG2_MIDI, STM32H7_SPI_CFG2_MIDI)); dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", sck_period_ns, midi, midi * sck_period_ns); cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi); } writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & ~cfg2_clrb) | cfg2_setb, spi->base + STM32H7_SPI_CFG2); } /** * stm32h7_spi_number_of_data - configure number of data at current transfer * @spi: pointer to the spi controller data structure * @nb_words: transfer length (in words) */ static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) { if (nb_words <= STM32H7_SPI_TSIZE_MAX) { writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words), spi->base + STM32H7_SPI_CR2); } else { return -EMSGSIZE; } return 0; } /** * stm32_spi_transfer_one_setup - common setup to transfer a single * spi_transfer either using DMA or * interrupts. * @spi: pointer to the spi controller data structure * @spi_dev: pointer to the spi device * @transfer: pointer to spi transfer */ static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, struct spi_device *spi_dev, struct spi_transfer *transfer) { unsigned long flags; unsigned int comm_type; int nb_words, ret = 0; int mbr; spin_lock_irqsave(&spi->lock, flags); spi->cur_xferlen = transfer->len; spi->cur_bpw = transfer->bits_per_word; spi->cfg->set_bpw(spi); /* Update spi->cur_speed with real clock speed */ if (STM32_SPI_MASTER_MODE(spi)) { mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz, spi->cfg->baud_rate_div_min, spi->cfg->baud_rate_div_max); if (mbr < 0) { ret = mbr; goto out; } transfer->speed_hz = spi->cur_speed; stm32_spi_set_mbr(spi, mbr); } comm_type = stm32_spi_communication_type(spi_dev, transfer); ret = spi->cfg->set_mode(spi, comm_type); if (ret < 0) goto out; spi->cur_comm = comm_type; if (STM32_SPI_MASTER_MODE(spi) && spi->cfg->set_data_idleness) spi->cfg->set_data_idleness(spi, transfer->len); if (spi->cur_bpw <= 8) nb_words = transfer->len; else if (spi->cur_bpw <= 16) nb_words = DIV_ROUND_UP(transfer->len * 8, 16); else nb_words = DIV_ROUND_UP(transfer->len * 8, 32); if (spi->cfg->set_number_of_data) { ret = spi->cfg->set_number_of_data(spi, nb_words); if (ret < 0) goto out; } dev_dbg(spi->dev, "transfer communication mode set to %d\n", spi->cur_comm); dev_dbg(spi->dev, "data frame of %d-bit, data packet of %d data frames\n", spi->cur_bpw, spi->cur_fthlv); if (STM32_SPI_MASTER_MODE(spi)) dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", spi->cur_xferlen, nb_words); dev_dbg(spi->dev, "dma %s\n", (spi->cur_usedma) ? "enabled" : "disabled"); out: spin_unlock_irqrestore(&spi->lock, flags); return ret; } /** * stm32_spi_transfer_one - transfer a single spi_transfer * @ctrl: controller interface * @spi_dev: pointer to the spi device * @transfer: pointer to spi transfer * * It must return 0 if the transfer is finished or 1 if the transfer is still * in progress. */ static int stm32_spi_transfer_one(struct spi_controller *ctrl, struct spi_device *spi_dev, struct spi_transfer *transfer) { struct stm32_spi *spi = spi_controller_get_devdata(ctrl); int ret; spi->tx_buf = transfer->tx_buf; spi->rx_buf = transfer->rx_buf; spi->tx_len = spi->tx_buf ? transfer->len : 0; spi->rx_len = spi->rx_buf ? transfer->len : 0; spi->cur_usedma = (ctrl->can_dma && ctrl->can_dma(ctrl, spi_dev, transfer)); ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); if (ret) { dev_err(spi->dev, "SPI transfer setup failed\n"); return ret; } if (spi->cur_usedma) return stm32_spi_transfer_one_dma(spi, transfer); else return spi->cfg->transfer_one_irq(spi); } /** * stm32_spi_unprepare_msg - relax the hardware * @ctrl: controller interface * @msg: pointer to the spi message */ static int stm32_spi_unprepare_msg(struct spi_controller *ctrl, struct spi_message *msg) { struct stm32_spi *spi = spi_controller_get_devdata(ctrl); spi->cfg->disable(spi); return 0; } /** * stm32f4_spi_config - Configure SPI controller as SPI master * @spi: pointer to the spi controller data structure */ static int stm32f4_spi_config(struct stm32_spi *spi) { unsigned long flags; spin_lock_irqsave(&spi->lock, flags); /* Ensure I2SMOD bit is kept cleared */ stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR, STM32F4_SPI_I2SCFGR_I2SMOD); /* * - SS input value high * - transmitter half duplex direction * - Set the master mode (default Motorola mode) * - Consider 1 master/n slaves configuration and * SS input value is determined by the SSI bit */ stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI | STM32F4_SPI_CR1_BIDIOE | STM32F4_SPI_CR1_MSTR | STM32F4_SPI_CR1_SSM); spin_unlock_irqrestore(&spi->lock, flags); return 0; } /** * stm32h7_spi_config - Configure SPI controller * @spi: pointer to the spi controller data structure */ static int stm32h7_spi_config(struct stm32_spi *spi) { unsigned long flags; u32 cr1 = 0, cfg2 = 0; spin_lock_irqsave(&spi->lock, flags); /* Ensure I2SMOD bit is kept cleared */ stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR, STM32H7_SPI_I2SCFGR_I2SMOD); if (STM32_SPI_DEVICE_MODE(spi)) { /* Use native device select */ cfg2 &= ~STM32H7_SPI_CFG2_SSM; } else { /* * - Transmitter half duplex direction * - Automatic communication suspend when RX-Fifo is full * - SS input value high */ cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI; /* * - Set the master mode (default Motorola mode) * - Consider 1 master/n devices configuration and * SS input value is determined by the SSI bit * - keep control of all associated GPIOs */ cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR; } stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1); stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2); spin_unlock_irqrestore(&spi->lock, flags); return 0; } static const struct stm32_spi_cfg stm32f4_spi_cfg = { .regs = &stm32f4_spi_regspec, .get_bpw_mask = stm32f4_spi_get_bpw_mask, .disable = stm32f4_spi_disable, .config = stm32f4_spi_config, .set_bpw = stm32f4_spi_set_bpw, .set_mode = stm32f4_spi_set_mode, .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start, .dma_tx_cb = stm32f4_spi_dma_tx_cb, .dma_rx_cb = stm32_spi_dma_rx_cb, .transfer_one_irq = stm32f4_spi_transfer_one_irq, .irq_handler_event = stm32f4_spi_irq_event, .irq_handler_thread = stm32f4_spi_irq_thread, .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN, .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX, .has_fifo = false, .has_device_mode = false, .flags = SPI_CONTROLLER_MUST_TX, }; static const struct stm32_spi_cfg stm32h7_spi_cfg = { .regs = &stm32h7_spi_regspec, .get_fifo_size = stm32h7_spi_get_fifo_size, .get_bpw_mask = stm32h7_spi_get_bpw_mask, .disable = stm32h7_spi_disable, .config = stm32h7_spi_config, .set_bpw = stm32h7_spi_set_bpw, .set_mode = stm32h7_spi_set_mode, .set_data_idleness = stm32h7_spi_data_idleness, .set_number_of_data = stm32h7_spi_number_of_data, .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, .dma_rx_cb = stm32_spi_dma_rx_cb, /* * dma_tx_cb is not necessary since in case of TX, dma is followed by * SPI access hence handling is performed within the SPI interrupt */ .transfer_one_irq = stm32h7_spi_transfer_one_irq, .irq_handler_thread = stm32h7_spi_irq_thread, .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, .has_fifo = true, .has_device_mode = true, }; static const struct of_device_id stm32_spi_of_match[] = { { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg }, { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg }, {}, }; MODULE_DEVICE_TABLE(of, stm32_spi_of_match); static int stm32h7_spi_device_abort(struct spi_controller *ctrl) { spi_finalize_current_transfer(ctrl); return 0; } static int stm32_spi_probe(struct platform_device *pdev) { struct spi_controller *ctrl; struct stm32_spi *spi; struct resource *res; struct reset_control *rst; struct device_node *np = pdev->dev.of_node; bool device_mode; int ret; const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev); device_mode = of_property_read_bool(np, "spi-slave"); if (!cfg->has_device_mode && device_mode) { dev_err(&pdev->dev, "spi-slave not supported\n"); return -EPERM; } if (device_mode) ctrl = devm_spi_alloc_slave(&pdev->dev, sizeof(struct stm32_spi)); else ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); if (!ctrl) { dev_err(&pdev->dev, "spi controller allocation failed\n"); return -ENOMEM; } platform_set_drvdata(pdev, ctrl); spi = spi_controller_get_devdata(ctrl); spi->dev = &pdev->dev; spi->ctrl = ctrl; spi->device_mode = device_mode; spin_lock_init(&spi->lock); spi->cfg = cfg; spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(spi->base)) return PTR_ERR(spi->base); spi->phys_addr = (dma_addr_t)res->start; spi->irq = platform_get_irq(pdev, 0); if (spi->irq <= 0) return spi->irq; ret = devm_request_threaded_irq(&pdev->dev, spi->irq, spi->cfg->irq_handler_event, spi->cfg->irq_handler_thread, IRQF_ONESHOT, pdev->name, ctrl); if (ret) { dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, ret); return ret; } spi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(spi->clk)) { ret = PTR_ERR(spi->clk); dev_err(&pdev->dev, "clk get failed: %d\n", ret); return ret; } ret = clk_prepare_enable(spi->clk); if (ret) { dev_err(&pdev->dev, "clk enable failed: %d\n", ret); return ret; } spi->clk_rate = clk_get_rate(spi->clk); if (!spi->clk_rate) { dev_err(&pdev->dev, "clk rate = 0\n"); ret = -EINVAL; goto err_clk_disable; } rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); if (rst) { if (IS_ERR(rst)) { ret = dev_err_probe(&pdev->dev, PTR_ERR(rst), "failed to get reset\n"); goto err_clk_disable; } reset_control_assert(rst); udelay(2); reset_control_deassert(rst); } if (spi->cfg->has_fifo) spi->fifo_size = spi->cfg->get_fifo_size(spi); ret = spi->cfg->config(spi); if (ret) { dev_err(&pdev->dev, "controller configuration failed: %d\n", ret); goto err_clk_disable; } ctrl->dev.of_node = pdev->dev.of_node; ctrl->auto_runtime_pm = true; ctrl->bus_num = pdev->id; ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | SPI_3WIRE; ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi); ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min; ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max; ctrl->use_gpio_descriptors = true; ctrl->prepare_message = stm32_spi_prepare_msg; ctrl->transfer_one = stm32_spi_transfer_one; ctrl->unprepare_message = stm32_spi_unprepare_msg; ctrl->flags = spi->cfg->flags; if (STM32_SPI_DEVICE_MODE(spi)) ctrl->slave_abort = stm32h7_spi_device_abort; spi->dma_tx = dma_request_chan(spi->dev, "tx"); if (IS_ERR(spi->dma_tx)) { ret = PTR_ERR(spi->dma_tx); spi->dma_tx = NULL; if (ret == -EPROBE_DEFER) goto err_clk_disable; dev_warn(&pdev->dev, "failed to request tx dma channel\n"); } else { ctrl->dma_tx = spi->dma_tx; } spi->dma_rx = dma_request_chan(spi->dev, "rx"); if (IS_ERR(spi->dma_rx)) { ret = PTR_ERR(spi->dma_rx); spi->dma_rx = NULL; if (ret == -EPROBE_DEFER) goto err_dma_release; dev_warn(&pdev->dev, "failed to request rx dma channel\n"); } else { ctrl->dma_rx = spi->dma_rx; } if (spi->dma_tx || spi->dma_rx) ctrl->can_dma = stm32_spi_can_dma; pm_runtime_set_autosuspend_delay(&pdev->dev, STM32_SPI_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_get_noresume(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = spi_register_controller(ctrl); if (ret) { dev_err(&pdev->dev, "spi controller registration failed: %d\n", ret); goto err_pm_disable; } pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); dev_info(&pdev->dev, "driver initialized (%s mode)\n", STM32_SPI_MASTER_MODE(spi) ? "master" : "device"); return 0; err_pm_disable: pm_runtime_disable(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_dont_use_autosuspend(&pdev->dev); err_dma_release: if (spi->dma_tx) dma_release_channel(spi->dma_tx); if (spi->dma_rx) dma_release_channel(spi->dma_rx); err_clk_disable: clk_disable_unprepare(spi->clk); return ret; } static void stm32_spi_remove(struct platform_device *pdev) { struct spi_controller *ctrl = platform_get_drvdata(pdev); struct stm32_spi *spi = spi_controller_get_devdata(ctrl); pm_runtime_get_sync(&pdev->dev); spi_unregister_controller(ctrl); spi->cfg->disable(spi); pm_runtime_disable(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_dont_use_autosuspend(&pdev->dev); if (ctrl->dma_tx) dma_release_channel(ctrl->dma_tx); if (ctrl->dma_rx) dma_release_channel(ctrl->dma_rx); clk_disable_unprepare(spi->clk); pinctrl_pm_select_sleep_state(&pdev->dev); } static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct stm32_spi *spi = spi_controller_get_devdata(ctrl); clk_disable_unprepare(spi->clk); return pinctrl_pm_select_sleep_state(dev); } static int __maybe_unused stm32_spi_runtime_resume(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct stm32_spi *spi = spi_controller_get_devdata(ctrl); int ret; ret = pinctrl_pm_select_default_state(dev); if (ret) return ret; return clk_prepare_enable(spi->clk); } static int __maybe_unused stm32_spi_suspend(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); int ret; ret = spi_controller_suspend(ctrl); if (ret) return ret; return pm_runtime_force_suspend(dev); } static int __maybe_unused stm32_spi_resume(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct stm32_spi *spi = spi_controller_get_devdata(ctrl); int ret; ret = pm_runtime_force_resume(dev); if (ret) return ret; ret = spi_controller_resume(ctrl); if (ret) { clk_disable_unprepare(spi->clk); return ret; } ret = pm_runtime_resume_and_get(dev); if (ret < 0) { dev_err(dev, "Unable to power device:%d\n", ret); return ret; } spi->cfg->config(spi); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return 0; } static const struct dev_pm_ops stm32_spi_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, stm32_spi_runtime_resume, NULL) }; static struct platform_driver stm32_spi_driver = { .probe = stm32_spi_probe, .remove_new = stm32_spi_remove, .driver = { .name = DRIVER_NAME, .pm = &stm32_spi_pm_ops, .of_match_table = stm32_spi_of_match, }, }; module_platform_driver(stm32_spi_driver); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); MODULE_AUTHOR("Amelie Delaunay <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/spi/spi-stm32.c
/* * Broadcom BCM63XX High Speed SPI Controller driver * * Copyright 2000-2010 Broadcom Corporation * Copyright 2012-2013 Jonas Gorski <[email protected]> * * Licensed under the GNU/GPL. See COPYING for details. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/spi/spi.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/spi/spi-mem.h> #include <linux/mtd/spi-nor.h> #include <linux/reset.h> #include <linux/pm_runtime.h> #define HSSPI_GLOBAL_CTRL_REG 0x0 #define GLOBAL_CTRL_CS_POLARITY_SHIFT 0 #define GLOBAL_CTRL_CS_POLARITY_MASK 0x000000ff #define GLOBAL_CTRL_PLL_CLK_CTRL_SHIFT 8 #define GLOBAL_CTRL_PLL_CLK_CTRL_MASK 0x0000ff00 #define GLOBAL_CTRL_CLK_GATE_SSOFF BIT(16) #define GLOBAL_CTRL_CLK_POLARITY BIT(17) #define GLOBAL_CTRL_MOSI_IDLE BIT(18) #define HSSPI_GLOBAL_EXT_TRIGGER_REG 0x4 #define HSSPI_INT_STATUS_REG 0x8 #define HSSPI_INT_STATUS_MASKED_REG 0xc #define HSSPI_INT_MASK_REG 0x10 #define HSSPI_PINGx_CMD_DONE(i) BIT((i * 8) + 0) #define HSSPI_PINGx_RX_OVER(i) BIT((i * 8) + 1) #define HSSPI_PINGx_TX_UNDER(i) BIT((i * 8) + 2) #define HSSPI_PINGx_POLL_TIMEOUT(i) BIT((i * 8) + 3) #define HSSPI_PINGx_CTRL_INVAL(i) BIT((i * 8) + 4) #define HSSPI_INT_CLEAR_ALL 0xff001f1f #define HSSPI_PINGPONG_COMMAND_REG(x) (0x80 + (x) * 0x40) #define PINGPONG_CMD_COMMAND_MASK 0xf #define PINGPONG_COMMAND_NOOP 0 #define PINGPONG_COMMAND_START_NOW 1 #define PINGPONG_COMMAND_START_TRIGGER 2 #define PINGPONG_COMMAND_HALT 3 #define PINGPONG_COMMAND_FLUSH 4 #define PINGPONG_CMD_PROFILE_SHIFT 8 #define PINGPONG_CMD_SS_SHIFT 12 #define HSSPI_PINGPONG_STATUS_REG(x) (0x84 + (x) * 0x40) #define HSSPI_PINGPONG_STATUS_SRC_BUSY BIT(1) #define HSSPI_PROFILE_CLK_CTRL_REG(x) (0x100 + (x) * 0x20) #define CLK_CTRL_FREQ_CTRL_MASK 0x0000ffff #define CLK_CTRL_SPI_CLK_2X_SEL BIT(14) #define CLK_CTRL_ACCUM_RST_ON_LOOP BIT(15) #define HSSPI_PROFILE_SIGNAL_CTRL_REG(x) (0x104 + (x) * 0x20) #define SIGNAL_CTRL_LATCH_RISING BIT(12) #define SIGNAL_CTRL_LAUNCH_RISING BIT(13) #define SIGNAL_CTRL_ASYNC_INPUT_PATH BIT(16) #define HSSPI_PROFILE_MODE_CTRL_REG(x) (0x108 + (x) * 0x20) #define MODE_CTRL_MULTIDATA_RD_STRT_SHIFT 8 #define MODE_CTRL_MULTIDATA_WR_STRT_SHIFT 12 #define MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT 16 #define MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT 18 #define MODE_CTRL_MODE_3WIRE BIT(20) #define MODE_CTRL_PREPENDBYTE_CNT_SHIFT 24 #define HSSPI_FIFO_REG(x) (0x200 + (x) * 0x200) #define HSSPI_OP_MULTIBIT BIT(11) #define HSSPI_OP_CODE_SHIFT 13 #define HSSPI_OP_SLEEP (0 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_READ_WRITE (1 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_WRITE (2 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_READ (3 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_SETIRQ (4 << HSSPI_OP_CODE_SHIFT) #define HSSPI_BUFFER_LEN 512 #define HSSPI_OPCODE_LEN 2 #define HSSPI_MAX_PREPEND_LEN 15 /* * Some chip require 30MHz but other require 25MHz. Use smaller value to cover * both cases. */ #define HSSPI_MAX_SYNC_CLOCK 25000000 #define HSSPI_SPI_MAX_CS 8 #define HSSPI_BUS_NUM 1 /* 0 is legacy SPI */ #define HSSPI_POLL_STATUS_TIMEOUT_MS 100 #define HSSPI_WAIT_MODE_POLLING 0 #define HSSPI_WAIT_MODE_INTR 1 #define HSSPI_WAIT_MODE_MAX HSSPI_WAIT_MODE_INTR /* * Default transfer mode is auto. If the msg is prependable, use the prepend * mode. If not, falls back to use the dummy cs workaround mode but limit the * clock to 25MHz to make sure it works in all board design. */ #define HSSPI_XFER_MODE_AUTO 0 #define HSSPI_XFER_MODE_PREPEND 1 #define HSSPI_XFER_MODE_DUMMYCS 2 #define HSSPI_XFER_MODE_MAX HSSPI_XFER_MODE_DUMMYCS #define bcm63xx_prepend_printk_on_checkfail(bs, fmt, ...) \ do { \ if (bs->xfer_mode == HSSPI_XFER_MODE_AUTO) \ dev_dbg(&bs->pdev->dev, fmt, ##__VA_ARGS__); \ else if (bs->xfer_mode == HSSPI_XFER_MODE_PREPEND) \ dev_err(&bs->pdev->dev, fmt, ##__VA_ARGS__); \ } while (0) struct bcm63xx_hsspi { struct completion done; struct mutex bus_mutex; struct mutex msg_mutex; struct platform_device *pdev; struct clk *clk; struct clk *pll_clk; void __iomem *regs; u8 __iomem *fifo; u32 speed_hz; u8 cs_polarity; u32 wait_mode; u32 xfer_mode; u32 prepend_cnt; u8 *prepend_buf; }; static ssize_t wait_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl); return sprintf(buf, "%d\n", bs->wait_mode); } static ssize_t wait_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl); u32 val; if (kstrtou32(buf, 10, &val)) return -EINVAL; if (val > HSSPI_WAIT_MODE_MAX) { dev_warn(dev, "invalid wait mode %u\n", val); return -EINVAL; } mutex_lock(&bs->msg_mutex); bs->wait_mode = val; /* clear interrupt status to avoid spurious int on next transfer */ if (val == HSSPI_WAIT_MODE_INTR) __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); mutex_unlock(&bs->msg_mutex); return count; } static DEVICE_ATTR_RW(wait_mode); static ssize_t xfer_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl); return sprintf(buf, "%d\n", bs->xfer_mode); } static ssize_t xfer_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl); u32 val; if (kstrtou32(buf, 10, &val)) return -EINVAL; if (val > HSSPI_XFER_MODE_MAX) { dev_warn(dev, "invalid xfer mode %u\n", val); return -EINVAL; } mutex_lock(&bs->msg_mutex); bs->xfer_mode = val; mutex_unlock(&bs->msg_mutex); return count; } static DEVICE_ATTR_RW(xfer_mode); static struct attribute *bcm63xx_hsspi_attrs[] = { &dev_attr_wait_mode.attr, &dev_attr_xfer_mode.attr, NULL, }; static const struct attribute_group bcm63xx_hsspi_group = { .attrs = bcm63xx_hsspi_attrs, }; static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs, struct spi_device *spi, int hz); static size_t bcm63xx_hsspi_max_message_size(struct spi_device *spi) { return HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN; } static int bcm63xx_hsspi_wait_cmd(struct bcm63xx_hsspi *bs) { unsigned long limit; u32 reg = 0; int rc = 0; if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) { if (wait_for_completion_timeout(&bs->done, HZ) == 0) rc = 1; } else { /* polling mode checks for status busy bit */ limit = jiffies + msecs_to_jiffies(HSSPI_POLL_STATUS_TIMEOUT_MS); while (!time_after(jiffies, limit)) { reg = __raw_readl(bs->regs + HSSPI_PINGPONG_STATUS_REG(0)); if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY) cpu_relax(); else break; } if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY) rc = 1; } if (rc) dev_err(&bs->pdev->dev, "transfer timed out!\n"); return rc; } static bool bcm63xx_prepare_prepend_transfer(struct spi_controller *host, struct spi_message *msg, struct spi_transfer *t_prepend) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host); bool tx_only = false; struct spi_transfer *t; /* * Multiple transfers within a message may be combined into one transfer * to the controller using its prepend feature. A SPI message is prependable * only if the following are all true: * 1. One or more half duplex write transfer in single bit mode * 2. Optional full duplex read/write at the end * 3. No delay and cs_change between transfers */ bs->prepend_cnt = 0; list_for_each_entry(t, &msg->transfers, transfer_list) { if ((spi_delay_to_ns(&t->delay, t) > 0) || t->cs_change) { bcm63xx_prepend_printk_on_checkfail(bs, "Delay or cs change not supported in prepend mode!\n"); return false; } tx_only = false; if (t->tx_buf && !t->rx_buf) { tx_only = true; if (bs->prepend_cnt + t->len > (HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN)) { bcm63xx_prepend_printk_on_checkfail(bs, "exceed max buf len, abort prepending transfers!\n"); return false; } if (t->tx_nbits > SPI_NBITS_SINGLE && !list_is_last(&t->transfer_list, &msg->transfers)) { bcm63xx_prepend_printk_on_checkfail(bs, "multi-bit prepend buf not supported!\n"); return false; } if (t->tx_nbits == SPI_NBITS_SINGLE) { memcpy(bs->prepend_buf + bs->prepend_cnt, t->tx_buf, t->len); bs->prepend_cnt += t->len; } } else { if (!list_is_last(&t->transfer_list, &msg->transfers)) { bcm63xx_prepend_printk_on_checkfail(bs, "rx/tx_rx transfer not supported when it is not last one!\n"); return false; } } if (list_is_last(&t->transfer_list, &msg->transfers)) { memcpy(t_prepend, t, sizeof(struct spi_transfer)); if (tx_only && t->tx_nbits == SPI_NBITS_SINGLE) { /* * if the last one is also a single bit tx only transfer, merge * all of them into one single tx transfer */ t_prepend->len = bs->prepend_cnt; t_prepend->tx_buf = bs->prepend_buf; bs->prepend_cnt = 0; } else { /* * if the last one is not a tx only transfer or dual tx xfer, all * the previous transfers are sent through prepend bytes and * make sure it does not exceed the max prepend len */ if (bs->prepend_cnt > HSSPI_MAX_PREPEND_LEN) { bcm63xx_prepend_printk_on_checkfail(bs, "exceed max prepend len, abort prepending transfers!\n"); return false; } } } } return true; } static int bcm63xx_hsspi_do_prepend_txrx(struct spi_device *spi, struct spi_transfer *t) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller); unsigned int chip_select = spi_get_chipselect(spi, 0); u16 opcode = 0, val; const u8 *tx = t->tx_buf; u8 *rx = t->rx_buf; u32 reg = 0; /* * shouldn't happen as we set the max_message_size in the probe. * but check it again in case some driver does not honor the max size */ if (t->len + bs->prepend_cnt > (HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN)) { dev_warn(&bs->pdev->dev, "Prepend message large than fifo size len %d prepend %d\n", t->len, bs->prepend_cnt); return -EINVAL; } bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz); if (tx && rx) opcode = HSSPI_OP_READ_WRITE; else if (tx) opcode = HSSPI_OP_WRITE; else if (rx) opcode = HSSPI_OP_READ; if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) || (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) { opcode |= HSSPI_OP_MULTIBIT; if (t->rx_nbits == SPI_NBITS_DUAL) { reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT; reg |= bs->prepend_cnt << MODE_CTRL_MULTIDATA_RD_STRT_SHIFT; } if (t->tx_nbits == SPI_NBITS_DUAL) { reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT; reg |= bs->prepend_cnt << MODE_CTRL_MULTIDATA_WR_STRT_SHIFT; } } reg |= bs->prepend_cnt << MODE_CTRL_PREPENDBYTE_CNT_SHIFT; __raw_writel(reg | 0xff, bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select)); reinit_completion(&bs->done); if (bs->prepend_cnt) memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, bs->prepend_buf, bs->prepend_cnt); if (tx) memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN + bs->prepend_cnt, tx, t->len); *(__be16 *)(&val) = cpu_to_be16(opcode | t->len); __raw_writew(val, bs->fifo); /* enable interrupt */ if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) __raw_writel(HSSPI_PINGx_CMD_DONE(0), bs->regs + HSSPI_INT_MASK_REG); /* start the transfer */ reg = chip_select << PINGPONG_CMD_SS_SHIFT | chip_select << PINGPONG_CMD_PROFILE_SHIFT | PINGPONG_COMMAND_START_NOW; __raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0)); if (bcm63xx_hsspi_wait_cmd(bs)) return -ETIMEDOUT; if (rx) memcpy_fromio(rx, bs->fifo, t->len); return 0; } static void bcm63xx_hsspi_set_cs(struct bcm63xx_hsspi *bs, unsigned int cs, bool active) { u32 reg; mutex_lock(&bs->bus_mutex); reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); reg &= ~BIT(cs); if (active == !(bs->cs_polarity & BIT(cs))) reg |= BIT(cs); __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); mutex_unlock(&bs->bus_mutex); } static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs, struct spi_device *spi, int hz) { unsigned int profile = spi_get_chipselect(spi, 0); u32 reg; reg = DIV_ROUND_UP(2048, DIV_ROUND_UP(bs->speed_hz, hz)); __raw_writel(CLK_CTRL_ACCUM_RST_ON_LOOP | reg, bs->regs + HSSPI_PROFILE_CLK_CTRL_REG(profile)); reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile)); if (hz > HSSPI_MAX_SYNC_CLOCK) reg |= SIGNAL_CTRL_ASYNC_INPUT_PATH; else reg &= ~SIGNAL_CTRL_ASYNC_INPUT_PATH; __raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile)); mutex_lock(&bs->bus_mutex); /* setup clock polarity */ reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); reg &= ~GLOBAL_CTRL_CLK_POLARITY; if (spi->mode & SPI_CPOL) reg |= GLOBAL_CTRL_CLK_POLARITY; __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); mutex_unlock(&bs->bus_mutex); } static int bcm63xx_hsspi_do_txrx(struct spi_device *spi, struct spi_transfer *t) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller); unsigned int chip_select = spi_get_chipselect(spi, 0); u16 opcode = 0, val; int pending = t->len; int step_size = HSSPI_BUFFER_LEN; const u8 *tx = t->tx_buf; u8 *rx = t->rx_buf; u32 reg = 0; bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz); if (!t->cs_off) bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), true); if (tx && rx) opcode = HSSPI_OP_READ_WRITE; else if (tx) opcode = HSSPI_OP_WRITE; else if (rx) opcode = HSSPI_OP_READ; if (opcode != HSSPI_OP_READ) step_size -= HSSPI_OPCODE_LEN; if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) || (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) { opcode |= HSSPI_OP_MULTIBIT; if (t->rx_nbits == SPI_NBITS_DUAL) reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT; if (t->tx_nbits == SPI_NBITS_DUAL) reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT; } __raw_writel(reg | 0xff, bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select)); while (pending > 0) { int curr_step = min_t(int, step_size, pending); reinit_completion(&bs->done); if (tx) { memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, tx, curr_step); tx += curr_step; } *(__be16 *)(&val) = cpu_to_be16(opcode | curr_step); __raw_writew(val, bs->fifo); /* enable interrupt */ if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) __raw_writel(HSSPI_PINGx_CMD_DONE(0), bs->regs + HSSPI_INT_MASK_REG); reg = !chip_select << PINGPONG_CMD_SS_SHIFT | chip_select << PINGPONG_CMD_PROFILE_SHIFT | PINGPONG_COMMAND_START_NOW; __raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0)); if (bcm63xx_hsspi_wait_cmd(bs)) return -ETIMEDOUT; if (rx) { memcpy_fromio(rx, bs->fifo, curr_step); rx += curr_step; } pending -= curr_step; } return 0; } static int bcm63xx_hsspi_setup(struct spi_device *spi) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller); u32 reg; reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(spi_get_chipselect(spi, 0))); reg &= ~(SIGNAL_CTRL_LAUNCH_RISING | SIGNAL_CTRL_LATCH_RISING); if (spi->mode & SPI_CPHA) reg |= SIGNAL_CTRL_LAUNCH_RISING; else reg |= SIGNAL_CTRL_LATCH_RISING; __raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(spi_get_chipselect(spi, 0))); mutex_lock(&bs->bus_mutex); reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); /* only change actual polarities if there is no transfer */ if ((reg & GLOBAL_CTRL_CS_POLARITY_MASK) == bs->cs_polarity) { if (spi->mode & SPI_CS_HIGH) reg |= BIT(spi_get_chipselect(spi, 0)); else reg &= ~BIT(spi_get_chipselect(spi, 0)); __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); } if (spi->mode & SPI_CS_HIGH) bs->cs_polarity |= BIT(spi_get_chipselect(spi, 0)); else bs->cs_polarity &= ~BIT(spi_get_chipselect(spi, 0)); mutex_unlock(&bs->bus_mutex); return 0; } static int bcm63xx_hsspi_do_dummy_cs_txrx(struct spi_device *spi, struct spi_message *msg) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller); int status = -EINVAL; int dummy_cs; bool keep_cs = false; struct spi_transfer *t; /* * This controller does not support keeping CS active during idle. * To work around this, we use the following ugly hack: * * a. Invert the target chip select's polarity so it will be active. * b. Select a "dummy" chip select to use as the hardware target. * c. Invert the dummy chip select's polarity so it will be inactive * during the actual transfers. * d. Tell the hardware to send to the dummy chip select. Thanks to * the multiplexed nature of SPI the actual target will receive * the transfer and we see its response. * * e. At the end restore the polarities again to their default values. */ dummy_cs = !spi_get_chipselect(spi, 0); bcm63xx_hsspi_set_cs(bs, dummy_cs, true); list_for_each_entry(t, &msg->transfers, transfer_list) { /* * We are here because one of reasons below: * a. Message is not prependable and in default auto xfer mode. This mean * we fallback to dummy cs mode at maximum 25MHz safe clock rate. * b. User set to use the dummy cs mode. */ if (bs->xfer_mode == HSSPI_XFER_MODE_AUTO) { if (t->speed_hz > HSSPI_MAX_SYNC_CLOCK) { t->speed_hz = HSSPI_MAX_SYNC_CLOCK; dev_warn_once(&bs->pdev->dev, "Force to dummy cs mode. Reduce the speed to %dHz", t->speed_hz); } } status = bcm63xx_hsspi_do_txrx(spi, t); if (status) break; msg->actual_length += t->len; spi_transfer_delay_exec(t); /* use existing cs change logic from spi_transfer_one_message */ if (t->cs_change) { if (list_is_last(&t->transfer_list, &msg->transfers)) { keep_cs = true; } else { if (!t->cs_off) bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), false); spi_transfer_cs_change_delay_exec(msg, t); if (!list_next_entry(t, transfer_list)->cs_off) bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), true); } } else if (!list_is_last(&t->transfer_list, &msg->transfers) && t->cs_off != list_next_entry(t, transfer_list)->cs_off) { bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), t->cs_off); } } bcm63xx_hsspi_set_cs(bs, dummy_cs, false); if (status || !keep_cs) bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), false); return status; } static int bcm63xx_hsspi_transfer_one(struct spi_controller *host, struct spi_message *msg) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host); struct spi_device *spi = msg->spi; int status = -EINVAL; bool prependable = false; struct spi_transfer t_prepend; mutex_lock(&bs->msg_mutex); if (bs->xfer_mode != HSSPI_XFER_MODE_DUMMYCS) prependable = bcm63xx_prepare_prepend_transfer(host, msg, &t_prepend); if (prependable) { status = bcm63xx_hsspi_do_prepend_txrx(spi, &t_prepend); msg->actual_length = (t_prepend.len + bs->prepend_cnt); } else { if (bs->xfer_mode == HSSPI_XFER_MODE_PREPEND) { dev_err(&bs->pdev->dev, "User sets prepend mode but msg not prependable! Abort transfer\n"); status = -EINVAL; } else status = bcm63xx_hsspi_do_dummy_cs_txrx(spi, msg); } mutex_unlock(&bs->msg_mutex); msg->status = status; spi_finalize_current_message(host); return 0; } static bool bcm63xx_hsspi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (!spi_mem_default_supports_op(mem, op)) return false; /* Controller doesn't support spi mem dual io mode */ if ((op->cmd.opcode == SPINOR_OP_READ_1_2_2) || (op->cmd.opcode == SPINOR_OP_READ_1_2_2_4B) || (op->cmd.opcode == SPINOR_OP_READ_1_2_2_DTR) || (op->cmd.opcode == SPINOR_OP_READ_1_2_2_DTR_4B)) return false; return true; } static const struct spi_controller_mem_ops bcm63xx_hsspi_mem_ops = { .supports_op = bcm63xx_hsspi_mem_supports_op, }; static irqreturn_t bcm63xx_hsspi_interrupt(int irq, void *dev_id) { struct bcm63xx_hsspi *bs = (struct bcm63xx_hsspi *)dev_id; if (__raw_readl(bs->regs + HSSPI_INT_STATUS_MASKED_REG) == 0) return IRQ_NONE; __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); complete(&bs->done); return IRQ_HANDLED; } static int bcm63xx_hsspi_probe(struct platform_device *pdev) { struct spi_controller *host; struct bcm63xx_hsspi *bs; void __iomem *regs; struct device *dev = &pdev->dev; struct clk *clk, *pll_clk = NULL; int irq, ret; u32 reg, rate, num_cs = HSSPI_SPI_MAX_CS; struct reset_control *reset; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(regs)) return PTR_ERR(regs); clk = devm_clk_get(dev, "hsspi"); if (IS_ERR(clk)) return PTR_ERR(clk); reset = devm_reset_control_get_optional_exclusive(dev, NULL); if (IS_ERR(reset)) return PTR_ERR(reset); ret = clk_prepare_enable(clk); if (ret) return ret; ret = reset_control_reset(reset); if (ret) { dev_err(dev, "unable to reset device: %d\n", ret); goto out_disable_clk; } rate = clk_get_rate(clk); if (!rate) { pll_clk = devm_clk_get(dev, "pll"); if (IS_ERR(pll_clk)) { ret = PTR_ERR(pll_clk); goto out_disable_clk; } ret = clk_prepare_enable(pll_clk); if (ret) goto out_disable_clk; rate = clk_get_rate(pll_clk); if (!rate) { ret = -EINVAL; goto out_disable_pll_clk; } } host = spi_alloc_host(&pdev->dev, sizeof(*bs)); if (!host) { ret = -ENOMEM; goto out_disable_pll_clk; } bs = spi_controller_get_devdata(host); bs->pdev = pdev; bs->clk = clk; bs->pll_clk = pll_clk; bs->regs = regs; bs->speed_hz = rate; bs->fifo = (u8 __iomem *)(bs->regs + HSSPI_FIFO_REG(0)); bs->wait_mode = HSSPI_WAIT_MODE_POLLING; bs->prepend_buf = devm_kzalloc(dev, HSSPI_BUFFER_LEN, GFP_KERNEL); if (!bs->prepend_buf) { ret = -ENOMEM; goto out_put_host; } mutex_init(&bs->bus_mutex); mutex_init(&bs->msg_mutex); init_completion(&bs->done); host->mem_ops = &bcm63xx_hsspi_mem_ops; host->dev.of_node = dev->of_node; if (!dev->of_node) host->bus_num = HSSPI_BUS_NUM; of_property_read_u32(dev->of_node, "num-cs", &num_cs); if (num_cs > 8) { dev_warn(dev, "unsupported number of cs (%i), reducing to 8\n", num_cs); num_cs = HSSPI_SPI_MAX_CS; } host->num_chipselect = num_cs; host->setup = bcm63xx_hsspi_setup; host->transfer_one_message = bcm63xx_hsspi_transfer_one; host->max_transfer_size = bcm63xx_hsspi_max_message_size; host->max_message_size = bcm63xx_hsspi_max_message_size; host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_RX_DUAL | SPI_TX_DUAL; host->bits_per_word_mask = SPI_BPW_MASK(8); host->auto_runtime_pm = true; platform_set_drvdata(pdev, host); /* Initialize the hardware */ __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); /* clean up any pending interrupts */ __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); /* read out default CS polarities */ reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); bs->cs_polarity = reg & GLOBAL_CTRL_CS_POLARITY_MASK; __raw_writel(reg | GLOBAL_CTRL_CLK_GATE_SSOFF, bs->regs + HSSPI_GLOBAL_CTRL_REG); if (irq > 0) { ret = devm_request_irq(dev, irq, bcm63xx_hsspi_interrupt, IRQF_SHARED, pdev->name, bs); if (ret) goto out_put_host; } pm_runtime_enable(&pdev->dev); ret = sysfs_create_group(&pdev->dev.kobj, &bcm63xx_hsspi_group); if (ret) { dev_err(&pdev->dev, "couldn't register sysfs group\n"); goto out_pm_disable; } /* register and we are done */ ret = devm_spi_register_controller(dev, host); if (ret) goto out_sysgroup_disable; dev_info(dev, "Broadcom 63XX High Speed SPI Controller driver"); return 0; out_sysgroup_disable: sysfs_remove_group(&pdev->dev.kobj, &bcm63xx_hsspi_group); out_pm_disable: pm_runtime_disable(&pdev->dev); out_put_host: spi_controller_put(host); out_disable_pll_clk: clk_disable_unprepare(pll_clk); out_disable_clk: clk_disable_unprepare(clk); return ret; } static void bcm63xx_hsspi_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host); /* reset the hardware and block queue progress */ __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); clk_disable_unprepare(bs->pll_clk); clk_disable_unprepare(bs->clk); sysfs_remove_group(&pdev->dev.kobj, &bcm63xx_hsspi_group); } #ifdef CONFIG_PM_SLEEP static int bcm63xx_hsspi_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host); spi_controller_suspend(host); clk_disable_unprepare(bs->pll_clk); clk_disable_unprepare(bs->clk); return 0; } static int bcm63xx_hsspi_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host); int ret; ret = clk_prepare_enable(bs->clk); if (ret) return ret; if (bs->pll_clk) { ret = clk_prepare_enable(bs->pll_clk); if (ret) { clk_disable_unprepare(bs->clk); return ret; } } spi_controller_resume(host); return 0; } #endif static SIMPLE_DEV_PM_OPS(bcm63xx_hsspi_pm_ops, bcm63xx_hsspi_suspend, bcm63xx_hsspi_resume); static const struct of_device_id bcm63xx_hsspi_of_match[] = { { .compatible = "brcm,bcm6328-hsspi", }, { .compatible = "brcm,bcmbca-hsspi-v1.0", }, { }, }; MODULE_DEVICE_TABLE(of, bcm63xx_hsspi_of_match); static struct platform_driver bcm63xx_hsspi_driver = { .driver = { .name = "bcm63xx-hsspi", .pm = &bcm63xx_hsspi_pm_ops, .of_match_table = bcm63xx_hsspi_of_match, }, .probe = bcm63xx_hsspi_probe, .remove_new = bcm63xx_hsspi_remove, }; module_platform_driver(bcm63xx_hsspi_driver); MODULE_ALIAS("platform:bcm63xx_hsspi"); MODULE_DESCRIPTION("Broadcom BCM63xx High Speed SPI Controller driver"); MODULE_AUTHOR("Jonas Gorski <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-bcm63xx-hsspi.c
// SPDX-License-Identifier: (GPL-2.0) /* * Microchip CoreSPI SPI controller driver * * Copyright (c) 2018-2022 Microchip Technology Inc. and its subsidiaries * * Author: Daire McNamara <[email protected]> * Author: Conor Dooley <[email protected]> * */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #define MAX_LEN (0xffff) #define MAX_CS (8) #define DEFAULT_FRAMESIZE (8) #define FIFO_DEPTH (32) #define CLK_GEN_MODE1_MAX (255) #define CLK_GEN_MODE0_MAX (15) #define CLK_GEN_MIN (0) #define MODE_X_MASK_SHIFT (24) #define CONTROL_ENABLE BIT(0) #define CONTROL_MASTER BIT(1) #define CONTROL_RX_DATA_INT BIT(4) #define CONTROL_TX_DATA_INT BIT(5) #define CONTROL_RX_OVER_INT BIT(6) #define CONTROL_TX_UNDER_INT BIT(7) #define CONTROL_SPO BIT(24) #define CONTROL_SPH BIT(25) #define CONTROL_SPS BIT(26) #define CONTROL_FRAMEURUN BIT(27) #define CONTROL_CLKMODE BIT(28) #define CONTROL_BIGFIFO BIT(29) #define CONTROL_OENOFF BIT(30) #define CONTROL_RESET BIT(31) #define CONTROL_MODE_MASK GENMASK(3, 2) #define MOTOROLA_MODE (0) #define CONTROL_FRAMECNT_MASK GENMASK(23, 8) #define CONTROL_FRAMECNT_SHIFT (8) #define STATUS_ACTIVE BIT(14) #define STATUS_SSEL BIT(13) #define STATUS_FRAMESTART BIT(12) #define STATUS_TXFIFO_EMPTY_NEXT_READ BIT(11) #define STATUS_TXFIFO_EMPTY BIT(10) #define STATUS_TXFIFO_FULL_NEXT_WRITE BIT(9) #define STATUS_TXFIFO_FULL BIT(8) #define STATUS_RXFIFO_EMPTY_NEXT_READ BIT(7) #define STATUS_RXFIFO_EMPTY BIT(6) #define STATUS_RXFIFO_FULL_NEXT_WRITE BIT(5) #define STATUS_RXFIFO_FULL BIT(4) #define STATUS_TX_UNDERRUN BIT(3) #define STATUS_RX_OVERFLOW BIT(2) #define STATUS_RXDAT_RXED BIT(1) #define STATUS_TXDAT_SENT BIT(0) #define INT_TXDONE BIT(0) #define INT_RXRDY BIT(1) #define INT_RX_CHANNEL_OVERFLOW BIT(2) #define INT_TX_CHANNEL_UNDERRUN BIT(3) #define INT_ENABLE_MASK (CONTROL_RX_DATA_INT | CONTROL_TX_DATA_INT | \ CONTROL_RX_OVER_INT | CONTROL_TX_UNDER_INT) #define REG_CONTROL (0x00) #define REG_FRAME_SIZE (0x04) #define REG_STATUS (0x08) #define REG_INT_CLEAR (0x0c) #define REG_RX_DATA (0x10) #define REG_TX_DATA (0x14) #define REG_CLK_GEN (0x18) #define REG_SLAVE_SELECT (0x1c) #define SSEL_MASK GENMASK(7, 0) #define SSEL_DIRECT BIT(8) #define SSELOUT_SHIFT 9 #define SSELOUT BIT(SSELOUT_SHIFT) #define REG_MIS (0x20) #define REG_RIS (0x24) #define REG_CONTROL2 (0x28) #define REG_COMMAND (0x2c) #define REG_PKTSIZE (0x30) #define REG_CMD_SIZE (0x34) #define REG_HWSTATUS (0x38) #define REG_STAT8 (0x3c) #define REG_CTRL2 (0x48) #define REG_FRAMESUP (0x50) struct mchp_corespi { void __iomem *regs; struct clk *clk; const u8 *tx_buf; u8 *rx_buf; u32 clk_gen; /* divider for spi output clock generated by the controller */ u32 clk_mode; int irq; int tx_len; int rx_len; int pending; }; static inline u32 mchp_corespi_read(struct mchp_corespi *spi, unsigned int reg) { return readl(spi->regs + reg); } static inline void mchp_corespi_write(struct mchp_corespi *spi, unsigned int reg, u32 val) { writel(val, spi->regs + reg); } static inline void mchp_corespi_disable(struct mchp_corespi *spi) { u32 control = mchp_corespi_read(spi, REG_CONTROL); control &= ~CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static inline void mchp_corespi_read_fifo(struct mchp_corespi *spi) { u8 data; int fifo_max, i = 0; fifo_max = min(spi->rx_len, FIFO_DEPTH); while ((i < fifo_max) && !(mchp_corespi_read(spi, REG_STATUS) & STATUS_RXFIFO_EMPTY)) { data = mchp_corespi_read(spi, REG_RX_DATA); if (spi->rx_buf) *spi->rx_buf++ = data; i++; } spi->rx_len -= i; spi->pending -= i; } static void mchp_corespi_enable_ints(struct mchp_corespi *spi) { u32 control, mask = INT_ENABLE_MASK; mchp_corespi_disable(spi); control = mchp_corespi_read(spi, REG_CONTROL); control |= mask; mchp_corespi_write(spi, REG_CONTROL, control); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static void mchp_corespi_disable_ints(struct mchp_corespi *spi) { u32 control, mask = INT_ENABLE_MASK; mchp_corespi_disable(spi); control = mchp_corespi_read(spi, REG_CONTROL); control &= ~mask; mchp_corespi_write(spi, REG_CONTROL, control); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static inline void mchp_corespi_set_xfer_size(struct mchp_corespi *spi, int len) { u32 control; u16 lenpart; /* * Disable the SPI controller. Writes to transfer length have * no effect when the controller is enabled. */ mchp_corespi_disable(spi); /* * The lower 16 bits of the frame count are stored in the control reg * for legacy reasons, but the upper 16 written to a different register: * FRAMESUP. While both the upper and lower bits can be *READ* from the * FRAMESUP register, writing to the lower 16 bits is a NOP */ lenpart = len & 0xffff; control = mchp_corespi_read(spi, REG_CONTROL); control &= ~CONTROL_FRAMECNT_MASK; control |= lenpart << CONTROL_FRAMECNT_SHIFT; mchp_corespi_write(spi, REG_CONTROL, control); lenpart = len & 0xffff0000; mchp_corespi_write(spi, REG_FRAMESUP, lenpart); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static inline void mchp_corespi_write_fifo(struct mchp_corespi *spi) { u8 byte; int fifo_max, i = 0; fifo_max = min(spi->tx_len, FIFO_DEPTH); mchp_corespi_set_xfer_size(spi, fifo_max); while ((i < fifo_max) && !(mchp_corespi_read(spi, REG_STATUS) & STATUS_TXFIFO_FULL)) { byte = spi->tx_buf ? *spi->tx_buf++ : 0xaa; mchp_corespi_write(spi, REG_TX_DATA, byte); i++; } spi->tx_len -= i; spi->pending += i; } static inline void mchp_corespi_set_framesize(struct mchp_corespi *spi, int bt) { u32 control; /* * Disable the SPI controller. Writes to the frame size have * no effect when the controller is enabled. */ mchp_corespi_disable(spi); mchp_corespi_write(spi, REG_FRAME_SIZE, bt); control = mchp_corespi_read(spi, REG_CONTROL); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static void mchp_corespi_set_cs(struct spi_device *spi, bool disable) { u32 reg; struct mchp_corespi *corespi = spi_master_get_devdata(spi->master); reg = mchp_corespi_read(corespi, REG_SLAVE_SELECT); reg &= ~BIT(spi_get_chipselect(spi, 0)); reg |= !disable << spi_get_chipselect(spi, 0); mchp_corespi_write(corespi, REG_SLAVE_SELECT, reg); } static int mchp_corespi_setup(struct spi_device *spi) { struct mchp_corespi *corespi = spi_master_get_devdata(spi->master); u32 reg; /* * Active high slaves need to be specifically set to their inactive * states during probe by adding them to the "control group" & thus * driving their select line low. */ if (spi->mode & SPI_CS_HIGH) { reg = mchp_corespi_read(corespi, REG_SLAVE_SELECT); reg |= BIT(spi_get_chipselect(spi, 0)); mchp_corespi_write(corespi, REG_SLAVE_SELECT, reg); } return 0; } static void mchp_corespi_init(struct spi_master *master, struct mchp_corespi *spi) { unsigned long clk_hz; u32 control = mchp_corespi_read(spi, REG_CONTROL); control |= CONTROL_MASTER; control &= ~CONTROL_MODE_MASK; control |= MOTOROLA_MODE; mchp_corespi_set_framesize(spi, DEFAULT_FRAMESIZE); /* max. possible spi clock rate is the apb clock rate */ clk_hz = clk_get_rate(spi->clk); master->max_speed_hz = clk_hz; /* * The controller must be configured so that it doesn't remove Chip * Select until the entire message has been transferred, even if at * some points TX FIFO becomes empty. * * BIGFIFO mode is also enabled, which sets the fifo depth to 32 frames * for the 8 bit transfers that this driver uses. */ control = mchp_corespi_read(spi, REG_CONTROL); control |= CONTROL_SPS | CONTROL_BIGFIFO; mchp_corespi_write(spi, REG_CONTROL, control); mchp_corespi_enable_ints(spi); /* * It is required to enable direct mode, otherwise control over the chip * select is relinquished to the hardware. SSELOUT is enabled too so we * can deal with active high slaves. */ mchp_corespi_write(spi, REG_SLAVE_SELECT, SSELOUT | SSEL_DIRECT); control = mchp_corespi_read(spi, REG_CONTROL); control &= ~CONTROL_RESET; control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static inline void mchp_corespi_set_clk_gen(struct mchp_corespi *spi) { u32 control; mchp_corespi_disable(spi); control = mchp_corespi_read(spi, REG_CONTROL); if (spi->clk_mode) control |= CONTROL_CLKMODE; else control &= ~CONTROL_CLKMODE; mchp_corespi_write(spi, REG_CLK_GEN, spi->clk_gen); mchp_corespi_write(spi, REG_CONTROL, control); mchp_corespi_write(spi, REG_CONTROL, control | CONTROL_ENABLE); } static inline void mchp_corespi_set_mode(struct mchp_corespi *spi, unsigned int mode) { u32 control, mode_val; switch (mode & SPI_MODE_X_MASK) { case SPI_MODE_0: mode_val = 0; break; case SPI_MODE_1: mode_val = CONTROL_SPH; break; case SPI_MODE_2: mode_val = CONTROL_SPO; break; case SPI_MODE_3: mode_val = CONTROL_SPH | CONTROL_SPO; break; } /* * Disable the SPI controller. Writes to the frame size have * no effect when the controller is enabled. */ mchp_corespi_disable(spi); control = mchp_corespi_read(spi, REG_CONTROL); control &= ~(SPI_MODE_X_MASK << MODE_X_MASK_SHIFT); control |= mode_val; mchp_corespi_write(spi, REG_CONTROL, control); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static irqreturn_t mchp_corespi_interrupt(int irq, void *dev_id) { struct spi_master *master = dev_id; struct mchp_corespi *spi = spi_master_get_devdata(master); u32 intfield = mchp_corespi_read(spi, REG_MIS) & 0xf; bool finalise = false; /* Interrupt line may be shared and not for us at all */ if (intfield == 0) return IRQ_NONE; if (intfield & INT_TXDONE) { mchp_corespi_write(spi, REG_INT_CLEAR, INT_TXDONE); if (spi->rx_len) mchp_corespi_read_fifo(spi); if (spi->tx_len) mchp_corespi_write_fifo(spi); if (!spi->rx_len) finalise = true; } if (intfield & INT_RXRDY) mchp_corespi_write(spi, REG_INT_CLEAR, INT_RXRDY); if (intfield & INT_RX_CHANNEL_OVERFLOW) { mchp_corespi_write(spi, REG_INT_CLEAR, INT_RX_CHANNEL_OVERFLOW); finalise = true; dev_err(&master->dev, "%s: RX OVERFLOW: rxlen: %d, txlen: %d\n", __func__, spi->rx_len, spi->tx_len); } if (intfield & INT_TX_CHANNEL_UNDERRUN) { mchp_corespi_write(spi, REG_INT_CLEAR, INT_TX_CHANNEL_UNDERRUN); finalise = true; dev_err(&master->dev, "%s: TX UNDERFLOW: rxlen: %d, txlen: %d\n", __func__, spi->rx_len, spi->tx_len); } if (finalise) spi_finalize_current_transfer(master); return IRQ_HANDLED; } static int mchp_corespi_calculate_clkgen(struct mchp_corespi *spi, unsigned long target_hz) { unsigned long clk_hz, spi_hz, clk_gen; clk_hz = clk_get_rate(spi->clk); if (!clk_hz) return -EINVAL; spi_hz = min(target_hz, clk_hz); /* * There are two possible clock modes for the controller generated * clock's division ratio: * CLK_MODE = 0: 1 / (2^(CLK_GEN + 1)) where CLK_GEN = 0 to 15. * CLK_MODE = 1: 1 / (2 * CLK_GEN + 1) where CLK_GEN = 0 to 255. * First try mode 1, fall back to 0 and if we have tried both modes and * we /still/ can't get a good setting, we then throw the toys out of * the pram and give up * clk_gen is the register name for the clock divider on MPFS. */ clk_gen = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1; if (clk_gen > CLK_GEN_MODE1_MAX || clk_gen <= CLK_GEN_MIN) { clk_gen = DIV_ROUND_UP(clk_hz, spi_hz); clk_gen = fls(clk_gen) - 1; if (clk_gen > CLK_GEN_MODE0_MAX) return -EINVAL; spi->clk_mode = 0; } else { spi->clk_mode = 1; } spi->clk_gen = clk_gen; return 0; } static int mchp_corespi_transfer_one(struct spi_master *master, struct spi_device *spi_dev, struct spi_transfer *xfer) { struct mchp_corespi *spi = spi_master_get_devdata(master); int ret; ret = mchp_corespi_calculate_clkgen(spi, (unsigned long)xfer->speed_hz); if (ret) { dev_err(&master->dev, "failed to set clk_gen for target %u Hz\n", xfer->speed_hz); return ret; } mchp_corespi_set_clk_gen(spi); spi->tx_buf = xfer->tx_buf; spi->rx_buf = xfer->rx_buf; spi->tx_len = xfer->len; spi->rx_len = xfer->len; spi->pending = 0; mchp_corespi_set_xfer_size(spi, (spi->tx_len > FIFO_DEPTH) ? FIFO_DEPTH : spi->tx_len); if (spi->tx_len) mchp_corespi_write_fifo(spi); return 1; } static int mchp_corespi_prepare_message(struct spi_master *master, struct spi_message *msg) { struct spi_device *spi_dev = msg->spi; struct mchp_corespi *spi = spi_master_get_devdata(master); mchp_corespi_set_framesize(spi, DEFAULT_FRAMESIZE); mchp_corespi_set_mode(spi, spi_dev->mode); return 0; } static int mchp_corespi_probe(struct platform_device *pdev) { struct spi_master *master; struct mchp_corespi *spi; struct resource *res; u32 num_cs; int ret = 0; master = devm_spi_alloc_master(&pdev->dev, sizeof(*spi)); if (!master) return dev_err_probe(&pdev->dev, -ENOMEM, "unable to allocate master for SPI controller\n"); platform_set_drvdata(pdev, master); if (of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs)) num_cs = MAX_CS; master->num_chipselect = num_cs; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; master->setup = mchp_corespi_setup; master->bits_per_word_mask = SPI_BPW_MASK(8); master->transfer_one = mchp_corespi_transfer_one; master->prepare_message = mchp_corespi_prepare_message; master->set_cs = mchp_corespi_set_cs; master->dev.of_node = pdev->dev.of_node; spi = spi_master_get_devdata(master); spi->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(spi->regs)) return PTR_ERR(spi->regs); spi->irq = platform_get_irq(pdev, 0); if (spi->irq < 0) return spi->irq; ret = devm_request_irq(&pdev->dev, spi->irq, mchp_corespi_interrupt, IRQF_SHARED, dev_name(&pdev->dev), master); if (ret) return dev_err_probe(&pdev->dev, ret, "could not request irq\n"); spi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(spi->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(spi->clk), "could not get clk\n"); ret = clk_prepare_enable(spi->clk); if (ret) return dev_err_probe(&pdev->dev, ret, "failed to enable clock\n"); mchp_corespi_init(master, spi); ret = devm_spi_register_master(&pdev->dev, master); if (ret) { mchp_corespi_disable(spi); clk_disable_unprepare(spi->clk); return dev_err_probe(&pdev->dev, ret, "unable to register master for SPI controller\n"); } dev_info(&pdev->dev, "Registered SPI controller %d\n", master->bus_num); return 0; } static void mchp_corespi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct mchp_corespi *spi = spi_master_get_devdata(master); mchp_corespi_disable_ints(spi); clk_disable_unprepare(spi->clk); mchp_corespi_disable(spi); } #define MICROCHIP_SPI_PM_OPS (NULL) /* * Platform driver data structure */ #if defined(CONFIG_OF) static const struct of_device_id mchp_corespi_dt_ids[] = { { .compatible = "microchip,mpfs-spi" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mchp_corespi_dt_ids); #endif static struct platform_driver mchp_corespi_driver = { .probe = mchp_corespi_probe, .driver = { .name = "microchip-corespi", .pm = MICROCHIP_SPI_PM_OPS, .of_match_table = of_match_ptr(mchp_corespi_dt_ids), }, .remove_new = mchp_corespi_remove, }; module_platform_driver(mchp_corespi_driver); MODULE_DESCRIPTION("Microchip coreSPI SPI controller driver"); MODULE_AUTHOR("Daire McNamara <[email protected]>"); MODULE_AUTHOR("Conor Dooley <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-microchip-core.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright (C) 2020 BAIKAL ELECTRONICS, JSC // // Authors: // Ramil Zaripov <[email protected]> // Serge Semin <[email protected]> // // Baikal-T1 DW APB SPI and System Boot SPI driver // #include <linux/clk.h> #include <linux/cpumask.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/mux/consumer.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/slab.h> #include <linux/spi/spi-mem.h> #include <linux/spi/spi.h> #include "spi-dw.h" #define BT1_BOOT_DIRMAP 0 #define BT1_BOOT_REGS 1 struct dw_spi_bt1 { struct dw_spi dws; struct clk *clk; struct mux_control *mux; #ifdef CONFIG_SPI_DW_BT1_DIRMAP void __iomem *map; resource_size_t map_len; #endif }; #define to_dw_spi_bt1(_ctlr) \ container_of(spi_controller_get_devdata(_ctlr), struct dw_spi_bt1, dws) typedef int (*dw_spi_bt1_init_cb)(struct platform_device *pdev, struct dw_spi_bt1 *dwsbt1); #ifdef CONFIG_SPI_DW_BT1_DIRMAP static int dw_spi_bt1_dirmap_create(struct spi_mem_dirmap_desc *desc) { struct dw_spi_bt1 *dwsbt1 = to_dw_spi_bt1(desc->mem->spi->controller); if (!dwsbt1->map || !dwsbt1->dws.mem_ops.supports_op(desc->mem, &desc->info.op_tmpl)) return -EOPNOTSUPP; /* * Make sure the requested region doesn't go out of the physically * mapped flash memory bounds and the operation is read-only. */ if (desc->info.offset + desc->info.length > dwsbt1->map_len || desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) return -EOPNOTSUPP; return 0; } /* * Directly mapped SPI memory region is only accessible in the dword chunks. * That's why we have to create a dedicated read-method to copy data from there * to the passed buffer. */ static void dw_spi_bt1_dirmap_copy_from_map(void *to, void __iomem *from, size_t len) { size_t shift, chunk; u32 data; /* * We split the copying up into the next three stages: unaligned head, * aligned body, unaligned tail. */ shift = (size_t)from & 0x3; if (shift) { chunk = min_t(size_t, 4 - shift, len); data = readl_relaxed(from - shift); memcpy(to, (char *)&data + shift, chunk); from += chunk; to += chunk; len -= chunk; } while (len >= 4) { data = readl_relaxed(from); memcpy(to, &data, 4); from += 4; to += 4; len -= 4; } if (len) { data = readl_relaxed(from); memcpy(to, &data, len); } } static ssize_t dw_spi_bt1_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct dw_spi_bt1 *dwsbt1 = to_dw_spi_bt1(desc->mem->spi->controller); struct dw_spi *dws = &dwsbt1->dws; struct spi_mem *mem = desc->mem; struct dw_spi_cfg cfg; int ret; /* * Make sure the requested operation length is valid. Truncate the * length if it's greater than the length of the MMIO region. */ if (offs >= dwsbt1->map_len || !len) return 0; len = min_t(size_t, len, dwsbt1->map_len - offs); /* Collect the controller configuration required by the operation */ cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD; cfg.dfs = 8; cfg.ndf = 4; cfg.freq = mem->spi->max_speed_hz; /* Make sure the corresponding CS is de-asserted on transmission */ dw_spi_set_cs(mem->spi, false); dw_spi_enable_chip(dws, 0); dw_spi_update_config(dws, mem->spi, &cfg); dw_spi_umask_intr(dws, DW_SPI_INT_RXFI); dw_spi_enable_chip(dws, 1); /* * Enable the transparent mode of the System Boot Controller. * The SPI core IO should have been locked before calling this method * so noone would be touching the controller' registers during the * dirmap operation. */ ret = mux_control_select(dwsbt1->mux, BT1_BOOT_DIRMAP); if (ret) return ret; dw_spi_bt1_dirmap_copy_from_map(buf, dwsbt1->map + offs, len); mux_control_deselect(dwsbt1->mux); dw_spi_set_cs(mem->spi, true); ret = dw_spi_check_status(dws, true); return ret ?: len; } #endif /* CONFIG_SPI_DW_BT1_DIRMAP */ static int dw_spi_bt1_std_init(struct platform_device *pdev, struct dw_spi_bt1 *dwsbt1) { struct dw_spi *dws = &dwsbt1->dws; dws->irq = platform_get_irq(pdev, 0); if (dws->irq < 0) return dws->irq; dws->num_cs = 4; /* * Baikal-T1 Normal SPI Controllers don't always keep up with full SPI * bus speed especially when it comes to the concurrent access to the * APB bus resources. Thus we have no choice but to set a constraint on * the SPI bus frequency for the memory operations which require to * read/write data as fast as possible. */ dws->max_mem_freq = 20000000U; dw_spi_dma_setup_generic(dws); return 0; } static int dw_spi_bt1_sys_init(struct platform_device *pdev, struct dw_spi_bt1 *dwsbt1) { struct resource *mem __maybe_unused; struct dw_spi *dws = &dwsbt1->dws; /* * Baikal-T1 System Boot Controller is equipped with a mux, which * switches between the directly mapped SPI flash access mode and * IO access to the DW APB SSI registers. Note the mux controller * must be setup to preserve the registers being accessible by default * (on idle-state). */ dwsbt1->mux = devm_mux_control_get(&pdev->dev, NULL); if (IS_ERR(dwsbt1->mux)) return PTR_ERR(dwsbt1->mux); /* * Directly mapped SPI flash memory is a 16MB MMIO region, which can be * used to access a peripheral memory device just by reading/writing * data from/to it. Note the system APB bus will stall during each IO * from/to the dirmap region until the operation is finished. So don't * use it concurrently with time-critical tasks (like the SPI memory * operations implemented in the DW APB SSI driver). */ #ifdef CONFIG_SPI_DW_BT1_DIRMAP mem = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (mem) { dwsbt1->map = devm_ioremap_resource(&pdev->dev, mem); if (!IS_ERR(dwsbt1->map)) { dwsbt1->map_len = resource_size(mem); dws->mem_ops.dirmap_create = dw_spi_bt1_dirmap_create; dws->mem_ops.dirmap_read = dw_spi_bt1_dirmap_read; } else { dwsbt1->map = NULL; } } #endif /* CONFIG_SPI_DW_BT1_DIRMAP */ /* * There is no IRQ, no DMA and just one CS available on the System Boot * SPI controller. */ dws->irq = IRQ_NOTCONNECTED; dws->num_cs = 1; /* * Baikal-T1 System Boot SPI Controller doesn't keep up with the full * SPI bus speed due to relatively slow APB bus and races for it' * resources from different CPUs. The situation is worsen by a small * FIFOs depth (just 8 words). It works better in a single CPU mode * though, but still tends to be not fast enough at low CPU * frequencies. */ if (num_possible_cpus() > 1) dws->max_mem_freq = 10000000U; else dws->max_mem_freq = 20000000U; return 0; } static int dw_spi_bt1_probe(struct platform_device *pdev) { dw_spi_bt1_init_cb init_func; struct dw_spi_bt1 *dwsbt1; struct resource *mem; struct dw_spi *dws; int ret; dwsbt1 = devm_kzalloc(&pdev->dev, sizeof(struct dw_spi_bt1), GFP_KERNEL); if (!dwsbt1) return -ENOMEM; dws = &dwsbt1->dws; dws->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem); if (IS_ERR(dws->regs)) return PTR_ERR(dws->regs); dws->paddr = mem->start; dwsbt1->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dwsbt1->clk)) return PTR_ERR(dwsbt1->clk); ret = clk_prepare_enable(dwsbt1->clk); if (ret) return ret; dws->bus_num = pdev->id; dws->reg_io_width = 4; dws->max_freq = clk_get_rate(dwsbt1->clk); if (!dws->max_freq) { ret = -EINVAL; goto err_disable_clk; } init_func = device_get_match_data(&pdev->dev); ret = init_func(pdev, dwsbt1); if (ret) goto err_disable_clk; pm_runtime_enable(&pdev->dev); ret = dw_spi_add_host(&pdev->dev, dws); if (ret) { pm_runtime_disable(&pdev->dev); goto err_disable_clk; } platform_set_drvdata(pdev, dwsbt1); return 0; err_disable_clk: clk_disable_unprepare(dwsbt1->clk); return ret; } static void dw_spi_bt1_remove(struct platform_device *pdev) { struct dw_spi_bt1 *dwsbt1 = platform_get_drvdata(pdev); dw_spi_remove_host(&dwsbt1->dws); pm_runtime_disable(&pdev->dev); clk_disable_unprepare(dwsbt1->clk); } static const struct of_device_id dw_spi_bt1_of_match[] = { { .compatible = "baikal,bt1-ssi", .data = dw_spi_bt1_std_init}, { .compatible = "baikal,bt1-sys-ssi", .data = dw_spi_bt1_sys_init}, { } }; MODULE_DEVICE_TABLE(of, dw_spi_bt1_of_match); static struct platform_driver dw_spi_bt1_driver = { .probe = dw_spi_bt1_probe, .remove_new = dw_spi_bt1_remove, .driver = { .name = "bt1-sys-ssi", .of_match_table = dw_spi_bt1_of_match, }, }; module_platform_driver(dw_spi_bt1_driver); MODULE_AUTHOR("Serge Semin <[email protected]>"); MODULE_DESCRIPTION("Baikal-T1 System Boot SPI Controller driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(SPI_DW_CORE);
linux-master
drivers/spi/spi-dw-bt1.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale/Motorola Coldfire Queued SPI driver * * Copyright 2010 Steven King <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/errno.h> #include <linux/platform_device.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/spi/spi.h> #include <linux/pm_runtime.h> #include <asm/coldfire.h> #include <asm/mcfsim.h> #include <asm/mcfqspi.h> #define DRIVER_NAME "mcfqspi" #define MCFQSPI_BUSCLK (MCF_BUSCLK / 2) #define MCFQSPI_QMR 0x00 #define MCFQSPI_QMR_MSTR 0x8000 #define MCFQSPI_QMR_CPOL 0x0200 #define MCFQSPI_QMR_CPHA 0x0100 #define MCFQSPI_QDLYR 0x04 #define MCFQSPI_QDLYR_SPE 0x8000 #define MCFQSPI_QWR 0x08 #define MCFQSPI_QWR_HALT 0x8000 #define MCFQSPI_QWR_WREN 0x4000 #define MCFQSPI_QWR_CSIV 0x1000 #define MCFQSPI_QIR 0x0C #define MCFQSPI_QIR_WCEFB 0x8000 #define MCFQSPI_QIR_ABRTB 0x4000 #define MCFQSPI_QIR_ABRTL 0x1000 #define MCFQSPI_QIR_WCEFE 0x0800 #define MCFQSPI_QIR_ABRTE 0x0400 #define MCFQSPI_QIR_SPIFE 0x0100 #define MCFQSPI_QIR_WCEF 0x0008 #define MCFQSPI_QIR_ABRT 0x0004 #define MCFQSPI_QIR_SPIF 0x0001 #define MCFQSPI_QAR 0x010 #define MCFQSPI_QAR_TXBUF 0x00 #define MCFQSPI_QAR_RXBUF 0x10 #define MCFQSPI_QAR_CMDBUF 0x20 #define MCFQSPI_QDR 0x014 #define MCFQSPI_QCR 0x014 #define MCFQSPI_QCR_CONT 0x8000 #define MCFQSPI_QCR_BITSE 0x4000 #define MCFQSPI_QCR_DT 0x2000 struct mcfqspi { void __iomem *iobase; int irq; struct clk *clk; struct mcfqspi_cs_control *cs_control; wait_queue_head_t waitq; }; static void mcfqspi_wr_qmr(struct mcfqspi *mcfqspi, u16 val) { writew(val, mcfqspi->iobase + MCFQSPI_QMR); } static void mcfqspi_wr_qdlyr(struct mcfqspi *mcfqspi, u16 val) { writew(val, mcfqspi->iobase + MCFQSPI_QDLYR); } static u16 mcfqspi_rd_qdlyr(struct mcfqspi *mcfqspi) { return readw(mcfqspi->iobase + MCFQSPI_QDLYR); } static void mcfqspi_wr_qwr(struct mcfqspi *mcfqspi, u16 val) { writew(val, mcfqspi->iobase + MCFQSPI_QWR); } static void mcfqspi_wr_qir(struct mcfqspi *mcfqspi, u16 val) { writew(val, mcfqspi->iobase + MCFQSPI_QIR); } static void mcfqspi_wr_qar(struct mcfqspi *mcfqspi, u16 val) { writew(val, mcfqspi->iobase + MCFQSPI_QAR); } static void mcfqspi_wr_qdr(struct mcfqspi *mcfqspi, u16 val) { writew(val, mcfqspi->iobase + MCFQSPI_QDR); } static u16 mcfqspi_rd_qdr(struct mcfqspi *mcfqspi) { return readw(mcfqspi->iobase + MCFQSPI_QDR); } static void mcfqspi_cs_select(struct mcfqspi *mcfqspi, u8 chip_select, bool cs_high) { mcfqspi->cs_control->select(mcfqspi->cs_control, chip_select, cs_high); } static void mcfqspi_cs_deselect(struct mcfqspi *mcfqspi, u8 chip_select, bool cs_high) { mcfqspi->cs_control->deselect(mcfqspi->cs_control, chip_select, cs_high); } static int mcfqspi_cs_setup(struct mcfqspi *mcfqspi) { return (mcfqspi->cs_control->setup) ? mcfqspi->cs_control->setup(mcfqspi->cs_control) : 0; } static void mcfqspi_cs_teardown(struct mcfqspi *mcfqspi) { if (mcfqspi->cs_control->teardown) mcfqspi->cs_control->teardown(mcfqspi->cs_control); } static u8 mcfqspi_qmr_baud(u32 speed_hz) { return clamp((MCFQSPI_BUSCLK + speed_hz - 1) / speed_hz, 2u, 255u); } static bool mcfqspi_qdlyr_spe(struct mcfqspi *mcfqspi) { return mcfqspi_rd_qdlyr(mcfqspi) & MCFQSPI_QDLYR_SPE; } static irqreturn_t mcfqspi_irq_handler(int this_irq, void *dev_id) { struct mcfqspi *mcfqspi = dev_id; /* clear interrupt */ mcfqspi_wr_qir(mcfqspi, MCFQSPI_QIR_SPIFE | MCFQSPI_QIR_SPIF); wake_up(&mcfqspi->waitq); return IRQ_HANDLED; } static void mcfqspi_transfer_msg8(struct mcfqspi *mcfqspi, unsigned count, const u8 *txbuf, u8 *rxbuf) { unsigned i, n, offset = 0; n = min(count, 16u); mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_CMDBUF); for (i = 0; i < n; ++i) mcfqspi_wr_qdr(mcfqspi, MCFQSPI_QCR_BITSE); mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_TXBUF); if (txbuf) for (i = 0; i < n; ++i) mcfqspi_wr_qdr(mcfqspi, *txbuf++); else for (i = 0; i < count; ++i) mcfqspi_wr_qdr(mcfqspi, 0); count -= n; if (count) { u16 qwr = 0xf08; mcfqspi_wr_qwr(mcfqspi, 0x700); mcfqspi_wr_qdlyr(mcfqspi, MCFQSPI_QDLYR_SPE); do { wait_event(mcfqspi->waitq, !mcfqspi_qdlyr_spe(mcfqspi)); mcfqspi_wr_qwr(mcfqspi, qwr); mcfqspi_wr_qdlyr(mcfqspi, MCFQSPI_QDLYR_SPE); if (rxbuf) { mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_RXBUF + offset); for (i = 0; i < 8; ++i) *rxbuf++ = mcfqspi_rd_qdr(mcfqspi); } n = min(count, 8u); if (txbuf) { mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_TXBUF + offset); for (i = 0; i < n; ++i) mcfqspi_wr_qdr(mcfqspi, *txbuf++); } qwr = (offset ? 0x808 : 0) + ((n - 1) << 8); offset ^= 8; count -= n; } while (count); wait_event(mcfqspi->waitq, !mcfqspi_qdlyr_spe(mcfqspi)); mcfqspi_wr_qwr(mcfqspi, qwr); mcfqspi_wr_qdlyr(mcfqspi, MCFQSPI_QDLYR_SPE); if (rxbuf) { mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_RXBUF + offset); for (i = 0; i < 8; ++i) *rxbuf++ = mcfqspi_rd_qdr(mcfqspi); offset ^= 8; } } else { mcfqspi_wr_qwr(mcfqspi, (n - 1) << 8); mcfqspi_wr_qdlyr(mcfqspi, MCFQSPI_QDLYR_SPE); } wait_event(mcfqspi->waitq, !mcfqspi_qdlyr_spe(mcfqspi)); if (rxbuf) { mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_RXBUF + offset); for (i = 0; i < n; ++i) *rxbuf++ = mcfqspi_rd_qdr(mcfqspi); } } static void mcfqspi_transfer_msg16(struct mcfqspi *mcfqspi, unsigned count, const u16 *txbuf, u16 *rxbuf) { unsigned i, n, offset = 0; n = min(count, 16u); mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_CMDBUF); for (i = 0; i < n; ++i) mcfqspi_wr_qdr(mcfqspi, MCFQSPI_QCR_BITSE); mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_TXBUF); if (txbuf) for (i = 0; i < n; ++i) mcfqspi_wr_qdr(mcfqspi, *txbuf++); else for (i = 0; i < count; ++i) mcfqspi_wr_qdr(mcfqspi, 0); count -= n; if (count) { u16 qwr = 0xf08; mcfqspi_wr_qwr(mcfqspi, 0x700); mcfqspi_wr_qdlyr(mcfqspi, MCFQSPI_QDLYR_SPE); do { wait_event(mcfqspi->waitq, !mcfqspi_qdlyr_spe(mcfqspi)); mcfqspi_wr_qwr(mcfqspi, qwr); mcfqspi_wr_qdlyr(mcfqspi, MCFQSPI_QDLYR_SPE); if (rxbuf) { mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_RXBUF + offset); for (i = 0; i < 8; ++i) *rxbuf++ = mcfqspi_rd_qdr(mcfqspi); } n = min(count, 8u); if (txbuf) { mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_TXBUF + offset); for (i = 0; i < n; ++i) mcfqspi_wr_qdr(mcfqspi, *txbuf++); } qwr = (offset ? 0x808 : 0x000) + ((n - 1) << 8); offset ^= 8; count -= n; } while (count); wait_event(mcfqspi->waitq, !mcfqspi_qdlyr_spe(mcfqspi)); mcfqspi_wr_qwr(mcfqspi, qwr); mcfqspi_wr_qdlyr(mcfqspi, MCFQSPI_QDLYR_SPE); if (rxbuf) { mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_RXBUF + offset); for (i = 0; i < 8; ++i) *rxbuf++ = mcfqspi_rd_qdr(mcfqspi); offset ^= 8; } } else { mcfqspi_wr_qwr(mcfqspi, (n - 1) << 8); mcfqspi_wr_qdlyr(mcfqspi, MCFQSPI_QDLYR_SPE); } wait_event(mcfqspi->waitq, !mcfqspi_qdlyr_spe(mcfqspi)); if (rxbuf) { mcfqspi_wr_qar(mcfqspi, MCFQSPI_QAR_RXBUF + offset); for (i = 0; i < n; ++i) *rxbuf++ = mcfqspi_rd_qdr(mcfqspi); } } static void mcfqspi_set_cs(struct spi_device *spi, bool enable) { struct mcfqspi *mcfqspi = spi_controller_get_devdata(spi->controller); bool cs_high = spi->mode & SPI_CS_HIGH; if (enable) mcfqspi_cs_select(mcfqspi, spi_get_chipselect(spi, 0), cs_high); else mcfqspi_cs_deselect(mcfqspi, spi_get_chipselect(spi, 0), cs_high); } static int mcfqspi_transfer_one(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *t) { struct mcfqspi *mcfqspi = spi_controller_get_devdata(host); u16 qmr = MCFQSPI_QMR_MSTR; qmr |= t->bits_per_word << 10; if (spi->mode & SPI_CPHA) qmr |= MCFQSPI_QMR_CPHA; if (spi->mode & SPI_CPOL) qmr |= MCFQSPI_QMR_CPOL; qmr |= mcfqspi_qmr_baud(t->speed_hz); mcfqspi_wr_qmr(mcfqspi, qmr); mcfqspi_wr_qir(mcfqspi, MCFQSPI_QIR_SPIFE); if (t->bits_per_word == 8) mcfqspi_transfer_msg8(mcfqspi, t->len, t->tx_buf, t->rx_buf); else mcfqspi_transfer_msg16(mcfqspi, t->len / 2, t->tx_buf, t->rx_buf); mcfqspi_wr_qir(mcfqspi, 0); return 0; } static int mcfqspi_setup(struct spi_device *spi) { mcfqspi_cs_deselect(spi_controller_get_devdata(spi->controller), spi_get_chipselect(spi, 0), spi->mode & SPI_CS_HIGH); dev_dbg(&spi->dev, "bits per word %d, chip select %d, speed %d KHz\n", spi->bits_per_word, spi_get_chipselect(spi, 0), (MCFQSPI_BUSCLK / mcfqspi_qmr_baud(spi->max_speed_hz)) / 1000); return 0; } static int mcfqspi_probe(struct platform_device *pdev) { struct spi_controller *host; struct mcfqspi *mcfqspi; struct mcfqspi_platform_data *pdata; int status; pdata = dev_get_platdata(&pdev->dev); if (!pdata) { dev_dbg(&pdev->dev, "platform data is missing\n"); return -ENOENT; } if (!pdata->cs_control) { dev_dbg(&pdev->dev, "pdata->cs_control is NULL\n"); return -EINVAL; } host = spi_alloc_host(&pdev->dev, sizeof(*mcfqspi)); if (host == NULL) { dev_dbg(&pdev->dev, "spi_alloc_host failed\n"); return -ENOMEM; } mcfqspi = spi_controller_get_devdata(host); mcfqspi->iobase = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mcfqspi->iobase)) { status = PTR_ERR(mcfqspi->iobase); goto fail0; } mcfqspi->irq = platform_get_irq(pdev, 0); if (mcfqspi->irq < 0) { dev_dbg(&pdev->dev, "platform_get_irq failed\n"); status = -ENXIO; goto fail0; } status = devm_request_irq(&pdev->dev, mcfqspi->irq, mcfqspi_irq_handler, 0, pdev->name, mcfqspi); if (status) { dev_dbg(&pdev->dev, "request_irq failed\n"); goto fail0; } mcfqspi->clk = devm_clk_get_enabled(&pdev->dev, "qspi_clk"); if (IS_ERR(mcfqspi->clk)) { dev_dbg(&pdev->dev, "clk_get failed\n"); status = PTR_ERR(mcfqspi->clk); goto fail0; } host->bus_num = pdata->bus_num; host->num_chipselect = pdata->num_chipselect; mcfqspi->cs_control = pdata->cs_control; status = mcfqspi_cs_setup(mcfqspi); if (status) { dev_dbg(&pdev->dev, "error initializing cs_control\n"); goto fail0; } init_waitqueue_head(&mcfqspi->waitq); host->mode_bits = SPI_CS_HIGH | SPI_CPOL | SPI_CPHA; host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); host->setup = mcfqspi_setup; host->set_cs = mcfqspi_set_cs; host->transfer_one = mcfqspi_transfer_one; host->auto_runtime_pm = true; platform_set_drvdata(pdev, host); pm_runtime_enable(&pdev->dev); status = devm_spi_register_controller(&pdev->dev, host); if (status) { dev_dbg(&pdev->dev, "devm_spi_register_controller failed\n"); goto fail1; } dev_info(&pdev->dev, "Coldfire QSPI bus driver\n"); return 0; fail1: pm_runtime_disable(&pdev->dev); mcfqspi_cs_teardown(mcfqspi); fail0: spi_controller_put(host); dev_dbg(&pdev->dev, "Coldfire QSPI probe failed\n"); return status; } static void mcfqspi_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); struct mcfqspi *mcfqspi = spi_controller_get_devdata(host); pm_runtime_disable(&pdev->dev); /* disable the hardware (set the baud rate to 0) */ mcfqspi_wr_qmr(mcfqspi, MCFQSPI_QMR_MSTR); mcfqspi_cs_teardown(mcfqspi); clk_disable_unprepare(mcfqspi->clk); } #ifdef CONFIG_PM_SLEEP static int mcfqspi_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct mcfqspi *mcfqspi = spi_controller_get_devdata(host); int ret; ret = spi_controller_suspend(host); if (ret) return ret; clk_disable(mcfqspi->clk); return 0; } static int mcfqspi_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct mcfqspi *mcfqspi = spi_controller_get_devdata(host); clk_enable(mcfqspi->clk); return spi_controller_resume(host); } #endif #ifdef CONFIG_PM static int mcfqspi_runtime_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct mcfqspi *mcfqspi = spi_controller_get_devdata(host); clk_disable(mcfqspi->clk); return 0; } static int mcfqspi_runtime_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct mcfqspi *mcfqspi = spi_controller_get_devdata(host); clk_enable(mcfqspi->clk); return 0; } #endif static const struct dev_pm_ops mcfqspi_pm = { SET_SYSTEM_SLEEP_PM_OPS(mcfqspi_suspend, mcfqspi_resume) SET_RUNTIME_PM_OPS(mcfqspi_runtime_suspend, mcfqspi_runtime_resume, NULL) }; static struct platform_driver mcfqspi_driver = { .driver.name = DRIVER_NAME, .driver.owner = THIS_MODULE, .driver.pm = &mcfqspi_pm, .probe = mcfqspi_probe, .remove_new = mcfqspi_remove, }; module_platform_driver(mcfqspi_driver); MODULE_AUTHOR("Steven King <[email protected]>"); MODULE_DESCRIPTION("Coldfire QSPI Controller Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME);
linux-master
drivers/spi/spi-coldfire-qspi.c
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2022 Jonathan Neuschäfer #include <linux/clk.h> #include <linux/mfd/syscon.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/spi/spi-mem.h> #define FIU_CFG 0x00 #define FIU_BURST_BFG 0x01 #define FIU_RESP_CFG 0x02 #define FIU_CFBB_PROT 0x03 #define FIU_FWIN1_LOW 0x04 #define FIU_FWIN1_HIGH 0x06 #define FIU_FWIN2_LOW 0x08 #define FIU_FWIN2_HIGH 0x0a #define FIU_FWIN3_LOW 0x0c #define FIU_FWIN3_HIGH 0x0e #define FIU_PROT_LOCK 0x10 #define FIU_PROT_CLEAR 0x11 #define FIU_SPI_FL_CFG 0x14 #define FIU_UMA_CODE 0x16 #define FIU_UMA_AB0 0x17 #define FIU_UMA_AB1 0x18 #define FIU_UMA_AB2 0x19 #define FIU_UMA_DB0 0x1a #define FIU_UMA_DB1 0x1b #define FIU_UMA_DB2 0x1c #define FIU_UMA_DB3 0x1d #define FIU_UMA_CTS 0x1e #define FIU_UMA_ECTS 0x1f #define FIU_BURST_CFG_R16 3 #define FIU_UMA_CTS_D_SIZE(x) (x) #define FIU_UMA_CTS_A_SIZE BIT(3) #define FIU_UMA_CTS_WR BIT(4) #define FIU_UMA_CTS_CS(x) ((x) << 5) #define FIU_UMA_CTS_EXEC_DONE BIT(7) #define SHM_FLASH_SIZE 0x02 #define SHM_FLASH_SIZE_STALL_HOST BIT(6) /* * I observed a typical wait time of 16 iterations for a UMA transfer to * finish, so this should be a safe limit. */ #define UMA_WAIT_ITERATIONS 100 /* The memory-mapped view of flash is 16 MiB long */ #define MAX_MEMORY_SIZE_PER_CS (16 << 20) #define MAX_MEMORY_SIZE_TOTAL (4 * MAX_MEMORY_SIZE_PER_CS) struct wpcm_fiu_spi { struct device *dev; struct clk *clk; void __iomem *regs; void __iomem *memory; size_t memory_size; struct regmap *shm_regmap; }; static void wpcm_fiu_set_opcode(struct wpcm_fiu_spi *fiu, u8 opcode) { writeb(opcode, fiu->regs + FIU_UMA_CODE); } static void wpcm_fiu_set_addr(struct wpcm_fiu_spi *fiu, u32 addr) { writeb((addr >> 0) & 0xff, fiu->regs + FIU_UMA_AB0); writeb((addr >> 8) & 0xff, fiu->regs + FIU_UMA_AB1); writeb((addr >> 16) & 0xff, fiu->regs + FIU_UMA_AB2); } static void wpcm_fiu_set_data(struct wpcm_fiu_spi *fiu, const u8 *data, unsigned int nbytes) { int i; for (i = 0; i < nbytes; i++) writeb(data[i], fiu->regs + FIU_UMA_DB0 + i); } static void wpcm_fiu_get_data(struct wpcm_fiu_spi *fiu, u8 *data, unsigned int nbytes) { int i; for (i = 0; i < nbytes; i++) data[i] = readb(fiu->regs + FIU_UMA_DB0 + i); } /* * Perform a UMA (User Mode Access) operation, i.e. a software-controlled SPI transfer. */ static int wpcm_fiu_do_uma(struct wpcm_fiu_spi *fiu, unsigned int cs, bool use_addr, bool write, int data_bytes) { int i = 0; u8 cts = FIU_UMA_CTS_EXEC_DONE | FIU_UMA_CTS_CS(cs); if (use_addr) cts |= FIU_UMA_CTS_A_SIZE; if (write) cts |= FIU_UMA_CTS_WR; cts |= FIU_UMA_CTS_D_SIZE(data_bytes); writeb(cts, fiu->regs + FIU_UMA_CTS); for (i = 0; i < UMA_WAIT_ITERATIONS; i++) if (!(readb(fiu->regs + FIU_UMA_CTS) & FIU_UMA_CTS_EXEC_DONE)) return 0; dev_info(fiu->dev, "UMA transfer has not finished in %d iterations\n", UMA_WAIT_ITERATIONS); return -EIO; } static void wpcm_fiu_ects_assert(struct wpcm_fiu_spi *fiu, unsigned int cs) { u8 ects = readb(fiu->regs + FIU_UMA_ECTS); ects &= ~BIT(cs); writeb(ects, fiu->regs + FIU_UMA_ECTS); } static void wpcm_fiu_ects_deassert(struct wpcm_fiu_spi *fiu, unsigned int cs) { u8 ects = readb(fiu->regs + FIU_UMA_ECTS); ects |= BIT(cs); writeb(ects, fiu->regs + FIU_UMA_ECTS); } struct wpcm_fiu_op_shape { bool (*match)(const struct spi_mem_op *op); int (*exec)(struct spi_mem *mem, const struct spi_mem_op *op); }; static bool wpcm_fiu_normal_match(const struct spi_mem_op *op) { // Opcode 0x0b (FAST READ) is treated differently in hardware if (op->cmd.opcode == 0x0b) return false; return (op->addr.nbytes == 0 || op->addr.nbytes == 3) && op->dummy.nbytes == 0 && op->data.nbytes <= 4; } static int wpcm_fiu_normal_exec(struct spi_mem *mem, const struct spi_mem_op *op) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); int ret; wpcm_fiu_set_opcode(fiu, op->cmd.opcode); wpcm_fiu_set_addr(fiu, op->addr.val); if (op->data.dir == SPI_MEM_DATA_OUT) wpcm_fiu_set_data(fiu, op->data.buf.out, op->data.nbytes); ret = wpcm_fiu_do_uma(fiu, spi_get_chipselect(mem->spi, 0), op->addr.nbytes == 3, op->data.dir == SPI_MEM_DATA_OUT, op->data.nbytes); if (op->data.dir == SPI_MEM_DATA_IN) wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes); return ret; } static bool wpcm_fiu_fast_read_match(const struct spi_mem_op *op) { return op->cmd.opcode == 0x0b && op->addr.nbytes == 3 && op->dummy.nbytes == 1 && op->data.nbytes >= 1 && op->data.nbytes <= 4 && op->data.dir == SPI_MEM_DATA_IN; } static int wpcm_fiu_fast_read_exec(struct spi_mem *mem, const struct spi_mem_op *op) { return -EINVAL; } /* * 4-byte addressing. * * Flash view: [ C A A A A D D D D] * bytes: 13 aa bb cc dd -> 5a a5 f0 0f * FIU's view: [ C A A A][ C D D D D] * FIU mode: [ read/write][ read ] */ static bool wpcm_fiu_4ba_match(const struct spi_mem_op *op) { return op->addr.nbytes == 4 && op->dummy.nbytes == 0 && op->data.nbytes <= 4; } static int wpcm_fiu_4ba_exec(struct spi_mem *mem, const struct spi_mem_op *op) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); int cs = spi_get_chipselect(mem->spi, 0); wpcm_fiu_ects_assert(fiu, cs); wpcm_fiu_set_opcode(fiu, op->cmd.opcode); wpcm_fiu_set_addr(fiu, op->addr.val >> 8); wpcm_fiu_do_uma(fiu, cs, true, false, 0); wpcm_fiu_set_opcode(fiu, op->addr.val & 0xff); wpcm_fiu_set_addr(fiu, 0); if (op->data.dir == SPI_MEM_DATA_OUT) wpcm_fiu_set_data(fiu, op->data.buf.out, op->data.nbytes); wpcm_fiu_do_uma(fiu, cs, false, op->data.dir == SPI_MEM_DATA_OUT, op->data.nbytes); wpcm_fiu_ects_deassert(fiu, cs); if (op->data.dir == SPI_MEM_DATA_IN) wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes); return 0; } /* * RDID (Read Identification) needs special handling because Linux expects to * be able to read 6 ID bytes and FIU can only read up to 4 at once. * * We're lucky in this case, because executing the RDID instruction twice will * result in the same result. * * What we do is as follows (C: write command/opcode byte, D: read data byte, * A: write address byte): * * 1. C D D D * 2. C A A A D D D */ static bool wpcm_fiu_rdid_match(const struct spi_mem_op *op) { return op->cmd.opcode == 0x9f && op->addr.nbytes == 0 && op->dummy.nbytes == 0 && op->data.nbytes == 6 && op->data.dir == SPI_MEM_DATA_IN; } static int wpcm_fiu_rdid_exec(struct spi_mem *mem, const struct spi_mem_op *op) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); int cs = spi_get_chipselect(mem->spi, 0); /* First transfer */ wpcm_fiu_set_opcode(fiu, op->cmd.opcode); wpcm_fiu_set_addr(fiu, 0); wpcm_fiu_do_uma(fiu, cs, false, false, 3); wpcm_fiu_get_data(fiu, op->data.buf.in, 3); /* Second transfer */ wpcm_fiu_set_opcode(fiu, op->cmd.opcode); wpcm_fiu_set_addr(fiu, 0); wpcm_fiu_do_uma(fiu, cs, true, false, 3); wpcm_fiu_get_data(fiu, op->data.buf.in + 3, 3); return 0; } /* * With some dummy bytes. * * C A A A X* X D D D D * [C A A A D*][C D D D D] */ static bool wpcm_fiu_dummy_match(const struct spi_mem_op *op) { // Opcode 0x0b (FAST READ) is treated differently in hardware if (op->cmd.opcode == 0x0b) return false; return (op->addr.nbytes == 0 || op->addr.nbytes == 3) && op->dummy.nbytes >= 1 && op->dummy.nbytes <= 5 && op->data.nbytes <= 4; } static int wpcm_fiu_dummy_exec(struct spi_mem *mem, const struct spi_mem_op *op) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); int cs = spi_get_chipselect(mem->spi, 0); wpcm_fiu_ects_assert(fiu, cs); /* First transfer */ wpcm_fiu_set_opcode(fiu, op->cmd.opcode); wpcm_fiu_set_addr(fiu, op->addr.val); wpcm_fiu_do_uma(fiu, cs, op->addr.nbytes != 0, true, op->dummy.nbytes - 1); /* Second transfer */ wpcm_fiu_set_opcode(fiu, 0); wpcm_fiu_set_addr(fiu, 0); wpcm_fiu_do_uma(fiu, cs, false, false, op->data.nbytes); wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes); wpcm_fiu_ects_deassert(fiu, cs); return 0; } static const struct wpcm_fiu_op_shape wpcm_fiu_op_shapes[] = { { .match = wpcm_fiu_normal_match, .exec = wpcm_fiu_normal_exec }, { .match = wpcm_fiu_fast_read_match, .exec = wpcm_fiu_fast_read_exec }, { .match = wpcm_fiu_4ba_match, .exec = wpcm_fiu_4ba_exec }, { .match = wpcm_fiu_rdid_match, .exec = wpcm_fiu_rdid_exec }, { .match = wpcm_fiu_dummy_match, .exec = wpcm_fiu_dummy_exec }, }; static const struct wpcm_fiu_op_shape *wpcm_fiu_find_op_shape(const struct spi_mem_op *op) { size_t i; for (i = 0; i < ARRAY_SIZE(wpcm_fiu_op_shapes); i++) { const struct wpcm_fiu_op_shape *shape = &wpcm_fiu_op_shapes[i]; if (shape->match(op)) return shape; } return NULL; } static bool wpcm_fiu_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (!spi_mem_default_supports_op(mem, op)) return false; if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr) return false; if (op->cmd.buswidth > 1 || op->addr.buswidth > 1 || op->dummy.buswidth > 1 || op->data.buswidth > 1) return false; return wpcm_fiu_find_op_shape(op) != NULL; } /* * In order to ensure the integrity of SPI transfers performed via UMA, * temporarily disable (stall) memory accesses coming from the host CPU. */ static void wpcm_fiu_stall_host(struct wpcm_fiu_spi *fiu, bool stall) { if (fiu->shm_regmap) { int res = regmap_update_bits(fiu->shm_regmap, SHM_FLASH_SIZE, SHM_FLASH_SIZE_STALL_HOST, stall ? SHM_FLASH_SIZE_STALL_HOST : 0); if (res) dev_warn(fiu->dev, "Failed to (un)stall host memory accesses: %d\n", res); } } static int wpcm_fiu_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); const struct wpcm_fiu_op_shape *shape = wpcm_fiu_find_op_shape(op); wpcm_fiu_stall_host(fiu, true); if (shape) return shape->exec(mem, op); wpcm_fiu_stall_host(fiu, false); return -ENOTSUPP; } static int wpcm_fiu_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { if (op->data.nbytes > 4) op->data.nbytes = 4; return 0; } static int wpcm_fiu_dirmap_create(struct spi_mem_dirmap_desc *desc) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(desc->mem->spi->controller); int cs = spi_get_chipselect(desc->mem->spi, 0); if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) return -ENOTSUPP; /* * Unfortunately, FIU only supports a 16 MiB direct mapping window (per * attached flash chip), but the SPI MEM core doesn't support partial * direct mappings. This means that we can't support direct mapping on * flashes that are bigger than 16 MiB. */ if (desc->info.offset + desc->info.length > MAX_MEMORY_SIZE_PER_CS) return -ENOTSUPP; /* Don't read past the memory window */ if (cs * MAX_MEMORY_SIZE_PER_CS + desc->info.offset + desc->info.length > fiu->memory_size) return -ENOTSUPP; return 0; } static ssize_t wpcm_fiu_direct_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(desc->mem->spi->controller); int cs = spi_get_chipselect(desc->mem->spi, 0); if (offs >= MAX_MEMORY_SIZE_PER_CS) return -ENOTSUPP; offs += cs * MAX_MEMORY_SIZE_PER_CS; if (!fiu->memory || offs >= fiu->memory_size) return -ENOTSUPP; len = min_t(size_t, len, fiu->memory_size - offs); memcpy_fromio(buf, fiu->memory + offs, len); return len; } static const struct spi_controller_mem_ops wpcm_fiu_mem_ops = { .adjust_op_size = wpcm_fiu_adjust_op_size, .supports_op = wpcm_fiu_supports_op, .exec_op = wpcm_fiu_exec_op, .dirmap_create = wpcm_fiu_dirmap_create, .dirmap_read = wpcm_fiu_direct_read, }; static void wpcm_fiu_hw_init(struct wpcm_fiu_spi *fiu) { /* Configure memory-mapped flash access */ writeb(FIU_BURST_CFG_R16, fiu->regs + FIU_BURST_BFG); writeb(MAX_MEMORY_SIZE_TOTAL / (512 << 10), fiu->regs + FIU_CFG); writeb(MAX_MEMORY_SIZE_PER_CS / (512 << 10) | BIT(6), fiu->regs + FIU_SPI_FL_CFG); /* Deassert all manually asserted chip selects */ writeb(0x0f, fiu->regs + FIU_UMA_ECTS); } static int wpcm_fiu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spi_controller *ctrl; struct wpcm_fiu_spi *fiu; struct resource *res; ctrl = devm_spi_alloc_master(dev, sizeof(*fiu)); if (!ctrl) return -ENOMEM; fiu = spi_controller_get_devdata(ctrl); fiu->dev = dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "control"); fiu->regs = devm_ioremap_resource(dev, res); if (IS_ERR(fiu->regs)) { dev_err(dev, "Failed to map registers\n"); return PTR_ERR(fiu->regs); } fiu->clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(fiu->clk)) return PTR_ERR(fiu->clk); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory"); fiu->memory = devm_ioremap_resource(dev, res); fiu->memory_size = min_t(size_t, resource_size(res), MAX_MEMORY_SIZE_TOTAL); if (IS_ERR(fiu->memory)) { dev_err(dev, "Failed to map flash memory window\n"); return PTR_ERR(fiu->memory); } fiu->shm_regmap = syscon_regmap_lookup_by_phandle_optional(dev->of_node, "nuvoton,shm"); wpcm_fiu_hw_init(fiu); ctrl->bus_num = -1; ctrl->mem_ops = &wpcm_fiu_mem_ops; ctrl->num_chipselect = 4; ctrl->dev.of_node = dev->of_node; /* * The FIU doesn't include a clock divider, the clock is entirely * determined by the AHB3 bus clock. */ ctrl->min_speed_hz = clk_get_rate(fiu->clk); ctrl->max_speed_hz = clk_get_rate(fiu->clk); return devm_spi_register_controller(dev, ctrl); } static const struct of_device_id wpcm_fiu_dt_ids[] = { { .compatible = "nuvoton,wpcm450-fiu", }, { } }; MODULE_DEVICE_TABLE(of, wpcm_fiu_dt_ids); static struct platform_driver wpcm_fiu_driver = { .driver = { .name = "wpcm450-fiu", .bus = &platform_bus_type, .of_match_table = wpcm_fiu_dt_ids, }, .probe = wpcm_fiu_probe, }; module_platform_driver(wpcm_fiu_driver); MODULE_DESCRIPTION("Nuvoton WPCM450 FIU SPI controller driver"); MODULE_AUTHOR("Jonathan Neuschäfer <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-wpcm-fiu.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2016 Broadcom */ #include <linux/device.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/of.h> #include "spi-bcm-qspi.h" static const struct of_device_id brcmstb_qspi_of_match[] = { { .compatible = "brcm,spi-brcmstb-qspi" }, { .compatible = "brcm,spi-brcmstb-mspi" }, {}, }; MODULE_DEVICE_TABLE(of, brcmstb_qspi_of_match); static int brcmstb_qspi_probe(struct platform_device *pdev) { return bcm_qspi_probe(pdev, NULL); } static void brcmstb_qspi_remove(struct platform_device *pdev) { bcm_qspi_remove(pdev); } static struct platform_driver brcmstb_qspi_driver = { .probe = brcmstb_qspi_probe, .remove_new = brcmstb_qspi_remove, .driver = { .name = "brcmstb_qspi", .pm = &bcm_qspi_pm_ops, .of_match_table = brcmstb_qspi_of_match, } }; module_platform_driver(brcmstb_qspi_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Kamal Dasu"); MODULE_DESCRIPTION("Broadcom SPI driver for settop SoC");
linux-master
drivers/spi/spi-brcmstb-qspi.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale SPI/eSPI controller driver library. * * Maintainer: Kumar Gala * * Copyright (C) 2006 Polycom, Inc. * * CPM SPI and QE buffer descriptors mode support: * Copyright (c) 2009 MontaVista Software, Inc. * Author: Anton Vorontsov <[email protected]> * * Copyright 2010 Freescale Semiconductor, Inc. */ #include <linux/dma-mapping.h> #include <linux/fsl_devices.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #ifdef CONFIG_FSL_SOC #include <sysdev/fsl_soc.h> #endif #include "spi-fsl-lib.h" #define MPC8XXX_SPI_RX_BUF(type) \ void mpc8xxx_spi_rx_buf_##type(u32 data, struct mpc8xxx_spi *mpc8xxx_spi) \ { \ type *rx = mpc8xxx_spi->rx; \ *rx++ = (type)(data >> mpc8xxx_spi->rx_shift); \ mpc8xxx_spi->rx = rx; \ } \ EXPORT_SYMBOL_GPL(mpc8xxx_spi_rx_buf_##type); #define MPC8XXX_SPI_TX_BUF(type) \ u32 mpc8xxx_spi_tx_buf_##type(struct mpc8xxx_spi *mpc8xxx_spi) \ { \ u32 data; \ const type *tx = mpc8xxx_spi->tx; \ if (!tx) \ return 0; \ data = *tx++ << mpc8xxx_spi->tx_shift; \ mpc8xxx_spi->tx = tx; \ return data; \ } \ EXPORT_SYMBOL_GPL(mpc8xxx_spi_tx_buf_##type); MPC8XXX_SPI_RX_BUF(u8) MPC8XXX_SPI_RX_BUF(u16) MPC8XXX_SPI_RX_BUF(u32) MPC8XXX_SPI_TX_BUF(u8) MPC8XXX_SPI_TX_BUF(u16) MPC8XXX_SPI_TX_BUF(u32) struct mpc8xxx_spi_probe_info *to_of_pinfo(struct fsl_spi_platform_data *pdata) { return container_of(pdata, struct mpc8xxx_spi_probe_info, pdata); } EXPORT_SYMBOL_GPL(to_of_pinfo); const char *mpc8xxx_spi_strmode(unsigned int flags) { if (flags & SPI_QE_CPU_MODE) { return "QE CPU"; } else if (flags & SPI_CPM_MODE) { if (flags & SPI_QE) return "QE"; else if (flags & SPI_CPM2) return "CPM2"; else return "CPM1"; } return "CPU"; } EXPORT_SYMBOL_GPL(mpc8xxx_spi_strmode); void mpc8xxx_spi_probe(struct device *dev, struct resource *mem, unsigned int irq) { struct fsl_spi_platform_data *pdata = dev_get_platdata(dev); struct spi_master *master; struct mpc8xxx_spi *mpc8xxx_spi; master = dev_get_drvdata(dev); /* the spi->mode bits understood by this driver: */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST | SPI_LOOP; master->dev.of_node = dev->of_node; mpc8xxx_spi = spi_master_get_devdata(master); mpc8xxx_spi->dev = dev; mpc8xxx_spi->get_rx = mpc8xxx_spi_rx_buf_u8; mpc8xxx_spi->get_tx = mpc8xxx_spi_tx_buf_u8; mpc8xxx_spi->flags = pdata->flags; mpc8xxx_spi->spibrg = pdata->sysclk; mpc8xxx_spi->irq = irq; mpc8xxx_spi->rx_shift = 0; mpc8xxx_spi->tx_shift = 0; master->bus_num = pdata->bus_num; master->num_chipselect = pdata->max_chipselect; init_completion(&mpc8xxx_spi->done); } EXPORT_SYMBOL_GPL(mpc8xxx_spi_probe); int of_mpc8xxx_spi_probe(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct device_node *np = ofdev->dev.of_node; struct mpc8xxx_spi_probe_info *pinfo; struct fsl_spi_platform_data *pdata; const void *prop; int ret = -ENOMEM; pinfo = devm_kzalloc(&ofdev->dev, sizeof(*pinfo), GFP_KERNEL); if (!pinfo) return ret; pdata = &pinfo->pdata; dev->platform_data = pdata; /* Allocate bus num dynamically. */ pdata->bus_num = -1; #ifdef CONFIG_FSL_SOC /* SPI controller is either clocked from QE or SoC clock. */ pdata->sysclk = get_brgfreq(); if (pdata->sysclk == -1) { pdata->sysclk = fsl_get_sys_freq(); if (pdata->sysclk == -1) return -ENODEV; } #else ret = of_property_read_u32(np, "clock-frequency", &pdata->sysclk); if (ret) return ret; #endif prop = of_get_property(np, "mode", NULL); if (prop && !strcmp(prop, "cpu-qe")) pdata->flags = SPI_QE_CPU_MODE; else if (prop && !strcmp(prop, "qe")) pdata->flags = SPI_CPM_MODE | SPI_QE; else if (of_device_is_compatible(np, "fsl,cpm2-spi")) pdata->flags = SPI_CPM_MODE | SPI_CPM2; else if (of_device_is_compatible(np, "fsl,cpm1-spi")) pdata->flags = SPI_CPM_MODE | SPI_CPM1; return 0; } EXPORT_SYMBOL_GPL(of_mpc8xxx_spi_probe); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-fsl-lib.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale SPI controller driver cpm functions. * * Maintainer: Kumar Gala * * Copyright (C) 2006 Polycom, Inc. * Copyright 2010 Freescale Semiconductor, Inc. * * CPM SPI and QE buffer descriptors mode support: * Copyright (c) 2009 MontaVista Software, Inc. * Author: Anton Vorontsov <[email protected]> */ #include <asm/cpm.h> #include <soc/fsl/qe/qe.h> #include <linux/dma-mapping.h> #include <linux/fsl_devices.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/spi/spi.h> #include <linux/types.h> #include <linux/platform_device.h> #include <linux/byteorder/generic.h> #include "spi-fsl-cpm.h" #include "spi-fsl-lib.h" #include "spi-fsl-spi.h" /* CPM1 and CPM2 are mutually exclusive. */ #ifdef CONFIG_CPM1 #include <asm/cpm1.h> #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0) #else #include <asm/cpm2.h> #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0) #endif #define SPIE_TXB 0x00000200 /* Last char is written to tx fifo */ #define SPIE_RXB 0x00000100 /* Last char is written to rx buf */ /* SPCOM register values */ #define SPCOM_STR (1 << 23) /* Start transmit */ #define SPI_PRAM_SIZE 0x100 #define SPI_MRBLR ((unsigned int)PAGE_SIZE) static void *fsl_dummy_rx; static DEFINE_MUTEX(fsl_dummy_rx_lock); static int fsl_dummy_rx_refcnt; void fsl_spi_cpm_reinit_txrx(struct mpc8xxx_spi *mspi) { if (mspi->flags & SPI_QE) { qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock, QE_CR_PROTOCOL_UNSPECIFIED, 0); } else { if (mspi->flags & SPI_CPM1) { iowrite32be(0, &mspi->pram->rstate); iowrite16be(ioread16be(&mspi->pram->rbase), &mspi->pram->rbptr); iowrite32be(0, &mspi->pram->tstate); iowrite16be(ioread16be(&mspi->pram->tbase), &mspi->pram->tbptr); } else { cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX); } } } EXPORT_SYMBOL_GPL(fsl_spi_cpm_reinit_txrx); static void fsl_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi) { struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd; struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd; unsigned int xfer_len = min(mspi->count, SPI_MRBLR); unsigned int xfer_ofs; struct fsl_spi_reg __iomem *reg_base = mspi->reg_base; xfer_ofs = mspi->xfer_in_progress->len - mspi->count; if (mspi->rx_dma == mspi->dma_dummy_rx) iowrite32be(mspi->rx_dma, &rx_bd->cbd_bufaddr); else iowrite32be(mspi->rx_dma + xfer_ofs, &rx_bd->cbd_bufaddr); iowrite16be(0, &rx_bd->cbd_datlen); iowrite16be(BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP, &rx_bd->cbd_sc); if (mspi->tx_dma == mspi->dma_dummy_tx) iowrite32be(mspi->tx_dma, &tx_bd->cbd_bufaddr); else iowrite32be(mspi->tx_dma + xfer_ofs, &tx_bd->cbd_bufaddr); iowrite16be(xfer_len, &tx_bd->cbd_datlen); iowrite16be(BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP | BD_SC_LAST, &tx_bd->cbd_sc); /* start transfer */ mpc8xxx_spi_write_reg(&reg_base->command, SPCOM_STR); } int fsl_spi_cpm_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t, bool is_dma_mapped) { struct device *dev = mspi->dev; struct fsl_spi_reg __iomem *reg_base = mspi->reg_base; if (is_dma_mapped) { mspi->map_tx_dma = 0; mspi->map_rx_dma = 0; } else { mspi->map_tx_dma = 1; mspi->map_rx_dma = 1; } if (!t->tx_buf) { mspi->tx_dma = mspi->dma_dummy_tx; mspi->map_tx_dma = 0; } if (!t->rx_buf) { mspi->rx_dma = mspi->dma_dummy_rx; mspi->map_rx_dma = 0; } if (t->bits_per_word == 16 && t->tx_buf) { const u16 *src = t->tx_buf; __le16 *dst; int i; dst = kmalloc(t->len, GFP_KERNEL); if (!dst) return -ENOMEM; for (i = 0; i < t->len >> 1; i++) dst[i] = cpu_to_le16p(src + i); mspi->tx = dst; mspi->map_tx_dma = 1; } if (mspi->map_tx_dma) { void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */ mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len, DMA_TO_DEVICE); if (dma_mapping_error(dev, mspi->tx_dma)) { dev_err(dev, "unable to map tx dma\n"); return -ENOMEM; } } else if (t->tx_buf) { mspi->tx_dma = t->tx_dma; } if (mspi->map_rx_dma) { mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len, DMA_FROM_DEVICE); if (dma_mapping_error(dev, mspi->rx_dma)) { dev_err(dev, "unable to map rx dma\n"); goto err_rx_dma; } } else if (t->rx_buf) { mspi->rx_dma = t->rx_dma; } /* enable rx ints */ mpc8xxx_spi_write_reg(&reg_base->mask, SPIE_RXB); mspi->xfer_in_progress = t; mspi->count = t->len; /* start CPM transfers */ fsl_spi_cpm_bufs_start(mspi); return 0; err_rx_dma: if (mspi->map_tx_dma) dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE); return -ENOMEM; } EXPORT_SYMBOL_GPL(fsl_spi_cpm_bufs); void fsl_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi) { struct device *dev = mspi->dev; struct spi_transfer *t = mspi->xfer_in_progress; if (mspi->map_tx_dma) dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE); if (mspi->map_rx_dma) dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE); mspi->xfer_in_progress = NULL; if (t->bits_per_word == 16 && t->rx_buf) { int i; for (i = 0; i < t->len; i += 2) le16_to_cpus(t->rx_buf + i); } } EXPORT_SYMBOL_GPL(fsl_spi_cpm_bufs_complete); void fsl_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events) { u16 len; struct fsl_spi_reg __iomem *reg_base = mspi->reg_base; dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__, ioread16be(&mspi->rx_bd->cbd_datlen), mspi->count); len = ioread16be(&mspi->rx_bd->cbd_datlen); if (len > mspi->count) { WARN_ON(1); len = mspi->count; } /* Clear the events */ mpc8xxx_spi_write_reg(&reg_base->event, events); mspi->count -= len; if (mspi->count) fsl_spi_cpm_bufs_start(mspi); else complete(&mspi->done); } EXPORT_SYMBOL_GPL(fsl_spi_cpm_irq); static void *fsl_spi_alloc_dummy_rx(void) { mutex_lock(&fsl_dummy_rx_lock); if (!fsl_dummy_rx) fsl_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL); if (fsl_dummy_rx) fsl_dummy_rx_refcnt++; mutex_unlock(&fsl_dummy_rx_lock); return fsl_dummy_rx; } static void fsl_spi_free_dummy_rx(void) { mutex_lock(&fsl_dummy_rx_lock); switch (fsl_dummy_rx_refcnt) { case 0: WARN_ON(1); break; case 1: kfree(fsl_dummy_rx); fsl_dummy_rx = NULL; fallthrough; default: fsl_dummy_rx_refcnt--; break; } mutex_unlock(&fsl_dummy_rx_lock); } static unsigned long fsl_spi_cpm_get_pram(struct mpc8xxx_spi *mspi) { struct device *dev = mspi->dev; struct device_node *np = dev->of_node; const u32 *iprop; int size; void __iomem *spi_base; unsigned long pram_ofs = -ENOMEM; /* Can't use of_address_to_resource(), QE muram isn't at 0. */ iprop = of_get_property(np, "reg", &size); /* QE with a fixed pram location? */ if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4) return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE); /* QE but with a dynamic pram location? */ if (mspi->flags & SPI_QE) { pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64); qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock, QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs); return pram_ofs; } spi_base = of_iomap(np, 1); if (spi_base == NULL) return -EINVAL; if (mspi->flags & SPI_CPM2) { pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64); out_be16(spi_base, pram_ofs); } iounmap(spi_base); return pram_ofs; } int fsl_spi_cpm_init(struct mpc8xxx_spi *mspi) { struct device *dev = mspi->dev; struct device_node *np = dev->of_node; const u32 *iprop; int size; unsigned long bds_ofs; if (!(mspi->flags & SPI_CPM_MODE)) return 0; if (!fsl_spi_alloc_dummy_rx()) return -ENOMEM; if (mspi->flags & SPI_QE) { iprop = of_get_property(np, "cell-index", &size); if (iprop && size == sizeof(*iprop)) mspi->subblock = *iprop; switch (mspi->subblock) { default: dev_warn(dev, "cell-index unspecified, assuming SPI1\n"); fallthrough; case 0: mspi->subblock = QE_CR_SUBBLOCK_SPI1; break; case 1: mspi->subblock = QE_CR_SUBBLOCK_SPI2; break; } } if (mspi->flags & SPI_CPM1) { void __iomem *pram; pram = devm_platform_ioremap_resource(to_platform_device(dev), 1); if (IS_ERR(pram)) mspi->pram = NULL; else mspi->pram = pram; } else { unsigned long pram_ofs = fsl_spi_cpm_get_pram(mspi); if (IS_ERR_VALUE(pram_ofs)) mspi->pram = NULL; else mspi->pram = cpm_muram_addr(pram_ofs); } if (mspi->pram == NULL) { dev_err(dev, "can't allocate spi parameter ram\n"); goto err_pram; } bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) + sizeof(*mspi->rx_bd), 8); if (IS_ERR_VALUE(bds_ofs)) { dev_err(dev, "can't allocate bds\n"); goto err_bds; } mspi->dma_dummy_tx = dma_map_single(dev, ZERO_PAGE(0), PAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, mspi->dma_dummy_tx)) { dev_err(dev, "unable to map dummy tx buffer\n"); goto err_dummy_tx; } mspi->dma_dummy_rx = dma_map_single(dev, fsl_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE); if (dma_mapping_error(dev, mspi->dma_dummy_rx)) { dev_err(dev, "unable to map dummy rx buffer\n"); goto err_dummy_rx; } mspi->tx_bd = cpm_muram_addr(bds_ofs); mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd)); /* Initialize parameter ram. */ iowrite16be(cpm_muram_offset(mspi->tx_bd), &mspi->pram->tbase); iowrite16be(cpm_muram_offset(mspi->rx_bd), &mspi->pram->rbase); iowrite8(CPMFCR_EB | CPMFCR_GBL, &mspi->pram->tfcr); iowrite8(CPMFCR_EB | CPMFCR_GBL, &mspi->pram->rfcr); iowrite16be(SPI_MRBLR, &mspi->pram->mrblr); iowrite32be(0, &mspi->pram->rstate); iowrite32be(0, &mspi->pram->rdp); iowrite16be(0, &mspi->pram->rbptr); iowrite16be(0, &mspi->pram->rbc); iowrite32be(0, &mspi->pram->rxtmp); iowrite32be(0, &mspi->pram->tstate); iowrite32be(0, &mspi->pram->tdp); iowrite16be(0, &mspi->pram->tbptr); iowrite16be(0, &mspi->pram->tbc); iowrite32be(0, &mspi->pram->txtmp); return 0; err_dummy_rx: dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE); err_dummy_tx: cpm_muram_free(bds_ofs); err_bds: if (!(mspi->flags & SPI_CPM1)) cpm_muram_free(cpm_muram_offset(mspi->pram)); err_pram: fsl_spi_free_dummy_rx(); return -ENOMEM; } EXPORT_SYMBOL_GPL(fsl_spi_cpm_init); void fsl_spi_cpm_free(struct mpc8xxx_spi *mspi) { struct device *dev = mspi->dev; if (!(mspi->flags & SPI_CPM_MODE)) return; dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE); dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE); cpm_muram_free(cpm_muram_offset(mspi->tx_bd)); if (!(mspi->flags & SPI_CPM1)) cpm_muram_free(cpm_muram_offset(mspi->pram)); fsl_spi_free_dummy_rx(); } EXPORT_SYMBOL_GPL(fsl_spi_cpm_free); MODULE_LICENSE("GPL");
linux-master
drivers/spi/spi-fsl-cpm.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008-2014, The Linux foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/list.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/spi/spi.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #define QUP_CONFIG 0x0000 #define QUP_STATE 0x0004 #define QUP_IO_M_MODES 0x0008 #define QUP_SW_RESET 0x000c #define QUP_OPERATIONAL 0x0018 #define QUP_ERROR_FLAGS 0x001c #define QUP_ERROR_FLAGS_EN 0x0020 #define QUP_OPERATIONAL_MASK 0x0028 #define QUP_HW_VERSION 0x0030 #define QUP_MX_OUTPUT_CNT 0x0100 #define QUP_OUTPUT_FIFO 0x0110 #define QUP_MX_WRITE_CNT 0x0150 #define QUP_MX_INPUT_CNT 0x0200 #define QUP_MX_READ_CNT 0x0208 #define QUP_INPUT_FIFO 0x0218 #define SPI_CONFIG 0x0300 #define SPI_IO_CONTROL 0x0304 #define SPI_ERROR_FLAGS 0x0308 #define SPI_ERROR_FLAGS_EN 0x030c /* QUP_CONFIG fields */ #define QUP_CONFIG_SPI_MODE (1 << 8) #define QUP_CONFIG_CLOCK_AUTO_GATE BIT(13) #define QUP_CONFIG_NO_INPUT BIT(7) #define QUP_CONFIG_NO_OUTPUT BIT(6) #define QUP_CONFIG_N 0x001f /* QUP_STATE fields */ #define QUP_STATE_VALID BIT(2) #define QUP_STATE_RESET 0 #define QUP_STATE_RUN 1 #define QUP_STATE_PAUSE 3 #define QUP_STATE_MASK 3 #define QUP_STATE_CLEAR 2 #define QUP_HW_VERSION_2_1_1 0x20010001 /* QUP_IO_M_MODES fields */ #define QUP_IO_M_PACK_EN BIT(15) #define QUP_IO_M_UNPACK_EN BIT(14) #define QUP_IO_M_INPUT_MODE_MASK_SHIFT 12 #define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT 10 #define QUP_IO_M_INPUT_MODE_MASK (3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT) #define QUP_IO_M_OUTPUT_MODE_MASK (3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT) #define QUP_IO_M_OUTPUT_BLOCK_SIZE(x) (((x) & (0x03 << 0)) >> 0) #define QUP_IO_M_OUTPUT_FIFO_SIZE(x) (((x) & (0x07 << 2)) >> 2) #define QUP_IO_M_INPUT_BLOCK_SIZE(x) (((x) & (0x03 << 5)) >> 5) #define QUP_IO_M_INPUT_FIFO_SIZE(x) (((x) & (0x07 << 7)) >> 7) #define QUP_IO_M_MODE_FIFO 0 #define QUP_IO_M_MODE_BLOCK 1 #define QUP_IO_M_MODE_DMOV 2 #define QUP_IO_M_MODE_BAM 3 /* QUP_OPERATIONAL fields */ #define QUP_OP_IN_BLOCK_READ_REQ BIT(13) #define QUP_OP_OUT_BLOCK_WRITE_REQ BIT(12) #define QUP_OP_MAX_INPUT_DONE_FLAG BIT(11) #define QUP_OP_MAX_OUTPUT_DONE_FLAG BIT(10) #define QUP_OP_IN_SERVICE_FLAG BIT(9) #define QUP_OP_OUT_SERVICE_FLAG BIT(8) #define QUP_OP_IN_FIFO_FULL BIT(7) #define QUP_OP_OUT_FIFO_FULL BIT(6) #define QUP_OP_IN_FIFO_NOT_EMPTY BIT(5) #define QUP_OP_OUT_FIFO_NOT_EMPTY BIT(4) /* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */ #define QUP_ERROR_OUTPUT_OVER_RUN BIT(5) #define QUP_ERROR_INPUT_UNDER_RUN BIT(4) #define QUP_ERROR_OUTPUT_UNDER_RUN BIT(3) #define QUP_ERROR_INPUT_OVER_RUN BIT(2) /* SPI_CONFIG fields */ #define SPI_CONFIG_HS_MODE BIT(10) #define SPI_CONFIG_INPUT_FIRST BIT(9) #define SPI_CONFIG_LOOPBACK BIT(8) /* SPI_IO_CONTROL fields */ #define SPI_IO_C_FORCE_CS BIT(11) #define SPI_IO_C_CLK_IDLE_HIGH BIT(10) #define SPI_IO_C_MX_CS_MODE BIT(8) #define SPI_IO_C_CS_N_POLARITY_0 BIT(4) #define SPI_IO_C_CS_SELECT(x) (((x) & 3) << 2) #define SPI_IO_C_CS_SELECT_MASK 0x000c #define SPI_IO_C_TRISTATE_CS BIT(1) #define SPI_IO_C_NO_TRI_STATE BIT(0) /* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */ #define SPI_ERROR_CLK_OVER_RUN BIT(1) #define SPI_ERROR_CLK_UNDER_RUN BIT(0) #define SPI_NUM_CHIPSELECTS 4 #define SPI_MAX_XFER (SZ_64K - 64) /* high speed mode is when bus rate is greater then 26MHz */ #define SPI_HS_MIN_RATE 26000000 #define SPI_MAX_RATE 50000000 #define SPI_DELAY_THRESHOLD 1 #define SPI_DELAY_RETRY 10 struct spi_qup { void __iomem *base; struct device *dev; struct clk *cclk; /* core clock */ struct clk *iclk; /* interface clock */ int irq; spinlock_t lock; int in_fifo_sz; int out_fifo_sz; int in_blk_sz; int out_blk_sz; struct spi_transfer *xfer; struct completion done; int error; int w_size; /* bytes per SPI word */ int n_words; int tx_bytes; int rx_bytes; const u8 *tx_buf; u8 *rx_buf; int qup_v1; int mode; struct dma_slave_config rx_conf; struct dma_slave_config tx_conf; }; static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer); static inline bool spi_qup_is_flag_set(struct spi_qup *controller, u32 flag) { u32 opflag = readl_relaxed(controller->base + QUP_OPERATIONAL); return (opflag & flag) != 0; } static inline bool spi_qup_is_dma_xfer(int mode) { if (mode == QUP_IO_M_MODE_DMOV || mode == QUP_IO_M_MODE_BAM) return true; return false; } /* get's the transaction size length */ static inline unsigned int spi_qup_len(struct spi_qup *controller) { return controller->n_words * controller->w_size; } static inline bool spi_qup_is_valid_state(struct spi_qup *controller) { u32 opstate = readl_relaxed(controller->base + QUP_STATE); return opstate & QUP_STATE_VALID; } static int spi_qup_set_state(struct spi_qup *controller, u32 state) { unsigned long loop; u32 cur_state; loop = 0; while (!spi_qup_is_valid_state(controller)) { usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2); if (++loop > SPI_DELAY_RETRY) return -EIO; } if (loop) dev_dbg(controller->dev, "invalid state for %ld,us %d\n", loop, state); cur_state = readl_relaxed(controller->base + QUP_STATE); /* * Per spec: for PAUSE_STATE to RESET_STATE, two writes * of (b10) are required */ if (((cur_state & QUP_STATE_MASK) == QUP_STATE_PAUSE) && (state == QUP_STATE_RESET)) { writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE); writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE); } else { cur_state &= ~QUP_STATE_MASK; cur_state |= state; writel_relaxed(cur_state, controller->base + QUP_STATE); } loop = 0; while (!spi_qup_is_valid_state(controller)) { usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2); if (++loop > SPI_DELAY_RETRY) return -EIO; } return 0; } static void spi_qup_read_from_fifo(struct spi_qup *controller, u32 num_words) { u8 *rx_buf = controller->rx_buf; int i, shift, num_bytes; u32 word; for (; num_words; num_words--) { word = readl_relaxed(controller->base + QUP_INPUT_FIFO); num_bytes = min_t(int, spi_qup_len(controller) - controller->rx_bytes, controller->w_size); if (!rx_buf) { controller->rx_bytes += num_bytes; continue; } for (i = 0; i < num_bytes; i++, controller->rx_bytes++) { /* * The data format depends on bytes per SPI word: * 4 bytes: 0x12345678 * 2 bytes: 0x00001234 * 1 byte : 0x00000012 */ shift = BITS_PER_BYTE; shift *= (controller->w_size - i - 1); rx_buf[controller->rx_bytes] = word >> shift; } } } static void spi_qup_read(struct spi_qup *controller, u32 *opflags) { u32 remainder, words_per_block, num_words; bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK; remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->rx_bytes, controller->w_size); words_per_block = controller->in_blk_sz >> 2; do { /* ACK by clearing service flag */ writel_relaxed(QUP_OP_IN_SERVICE_FLAG, controller->base + QUP_OPERATIONAL); if (!remainder) goto exit; if (is_block_mode) { num_words = (remainder > words_per_block) ? words_per_block : remainder; } else { if (!spi_qup_is_flag_set(controller, QUP_OP_IN_FIFO_NOT_EMPTY)) break; num_words = 1; } /* read up to the maximum transfer size available */ spi_qup_read_from_fifo(controller, num_words); remainder -= num_words; /* if block mode, check to see if next block is available */ if (is_block_mode && !spi_qup_is_flag_set(controller, QUP_OP_IN_BLOCK_READ_REQ)) break; } while (remainder); /* * Due to extra stickiness of the QUP_OP_IN_SERVICE_FLAG during block * reads, it has to be cleared again at the very end. However, be sure * to refresh opflags value because MAX_INPUT_DONE_FLAG may now be * present and this is used to determine if transaction is complete */ exit: if (!remainder) { *opflags = readl_relaxed(controller->base + QUP_OPERATIONAL); if (is_block_mode && *opflags & QUP_OP_MAX_INPUT_DONE_FLAG) writel_relaxed(QUP_OP_IN_SERVICE_FLAG, controller->base + QUP_OPERATIONAL); } } static void spi_qup_write_to_fifo(struct spi_qup *controller, u32 num_words) { const u8 *tx_buf = controller->tx_buf; int i, num_bytes; u32 word, data; for (; num_words; num_words--) { word = 0; num_bytes = min_t(int, spi_qup_len(controller) - controller->tx_bytes, controller->w_size); if (tx_buf) for (i = 0; i < num_bytes; i++) { data = tx_buf[controller->tx_bytes + i]; word |= data << (BITS_PER_BYTE * (3 - i)); } controller->tx_bytes += num_bytes; writel_relaxed(word, controller->base + QUP_OUTPUT_FIFO); } } static void spi_qup_dma_done(void *data) { struct spi_qup *qup = data; complete(&qup->done); } static void spi_qup_write(struct spi_qup *controller) { bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK; u32 remainder, words_per_block, num_words; remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->tx_bytes, controller->w_size); words_per_block = controller->out_blk_sz >> 2; do { /* ACK by clearing service flag */ writel_relaxed(QUP_OP_OUT_SERVICE_FLAG, controller->base + QUP_OPERATIONAL); /* make sure the interrupt is valid */ if (!remainder) return; if (is_block_mode) { num_words = (remainder > words_per_block) ? words_per_block : remainder; } else { if (spi_qup_is_flag_set(controller, QUP_OP_OUT_FIFO_FULL)) break; num_words = 1; } spi_qup_write_to_fifo(controller, num_words); remainder -= num_words; /* if block mode, check to see if next block is available */ if (is_block_mode && !spi_qup_is_flag_set(controller, QUP_OP_OUT_BLOCK_WRITE_REQ)) break; } while (remainder); } static int spi_qup_prep_sg(struct spi_controller *host, struct scatterlist *sgl, unsigned int nents, enum dma_transfer_direction dir, dma_async_tx_callback callback) { struct spi_qup *qup = spi_controller_get_devdata(host); unsigned long flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE; struct dma_async_tx_descriptor *desc; struct dma_chan *chan; dma_cookie_t cookie; if (dir == DMA_MEM_TO_DEV) chan = host->dma_tx; else chan = host->dma_rx; desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags); if (IS_ERR_OR_NULL(desc)) return desc ? PTR_ERR(desc) : -EINVAL; desc->callback = callback; desc->callback_param = qup; cookie = dmaengine_submit(desc); return dma_submit_error(cookie); } static void spi_qup_dma_terminate(struct spi_controller *host, struct spi_transfer *xfer) { if (xfer->tx_buf) dmaengine_terminate_all(host->dma_tx); if (xfer->rx_buf) dmaengine_terminate_all(host->dma_rx); } static u32 spi_qup_sgl_get_nents_len(struct scatterlist *sgl, u32 max, u32 *nents) { struct scatterlist *sg; u32 total = 0; for (sg = sgl; sg; sg = sg_next(sg)) { unsigned int len = sg_dma_len(sg); /* check for overflow as well as limit */ if (((total + len) < total) || ((total + len) > max)) break; total += len; (*nents)++; } return total; } static int spi_qup_do_dma(struct spi_device *spi, struct spi_transfer *xfer, unsigned long timeout) { dma_async_tx_callback rx_done = NULL, tx_done = NULL; struct spi_controller *host = spi->controller; struct spi_qup *qup = spi_controller_get_devdata(host); struct scatterlist *tx_sgl, *rx_sgl; int ret; if (xfer->rx_buf) rx_done = spi_qup_dma_done; else if (xfer->tx_buf) tx_done = spi_qup_dma_done; rx_sgl = xfer->rx_sg.sgl; tx_sgl = xfer->tx_sg.sgl; do { u32 rx_nents = 0, tx_nents = 0; if (rx_sgl) qup->n_words = spi_qup_sgl_get_nents_len(rx_sgl, SPI_MAX_XFER, &rx_nents) / qup->w_size; if (tx_sgl) qup->n_words = spi_qup_sgl_get_nents_len(tx_sgl, SPI_MAX_XFER, &tx_nents) / qup->w_size; if (!qup->n_words) return -EIO; ret = spi_qup_io_config(spi, xfer); if (ret) return ret; /* before issuing the descriptors, set the QUP to run */ ret = spi_qup_set_state(qup, QUP_STATE_RUN); if (ret) { dev_warn(qup->dev, "cannot set RUN state\n"); return ret; } if (rx_sgl) { ret = spi_qup_prep_sg(host, rx_sgl, rx_nents, DMA_DEV_TO_MEM, rx_done); if (ret) return ret; dma_async_issue_pending(host->dma_rx); } if (tx_sgl) { ret = spi_qup_prep_sg(host, tx_sgl, tx_nents, DMA_MEM_TO_DEV, tx_done); if (ret) return ret; dma_async_issue_pending(host->dma_tx); } if (!wait_for_completion_timeout(&qup->done, timeout)) return -ETIMEDOUT; for (; rx_sgl && rx_nents--; rx_sgl = sg_next(rx_sgl)) ; for (; tx_sgl && tx_nents--; tx_sgl = sg_next(tx_sgl)) ; } while (rx_sgl || tx_sgl); return 0; } static int spi_qup_do_pio(struct spi_device *spi, struct spi_transfer *xfer, unsigned long timeout) { struct spi_controller *host = spi->controller; struct spi_qup *qup = spi_controller_get_devdata(host); int ret, n_words, iterations, offset = 0; n_words = qup->n_words; iterations = n_words / SPI_MAX_XFER; /* round down */ qup->rx_buf = xfer->rx_buf; qup->tx_buf = xfer->tx_buf; do { if (iterations) qup->n_words = SPI_MAX_XFER; else qup->n_words = n_words % SPI_MAX_XFER; if (qup->tx_buf && offset) qup->tx_buf = xfer->tx_buf + offset * SPI_MAX_XFER; if (qup->rx_buf && offset) qup->rx_buf = xfer->rx_buf + offset * SPI_MAX_XFER; /* * if the transaction is small enough, we need * to fallback to FIFO mode */ if (qup->n_words <= (qup->in_fifo_sz / sizeof(u32))) qup->mode = QUP_IO_M_MODE_FIFO; ret = spi_qup_io_config(spi, xfer); if (ret) return ret; ret = spi_qup_set_state(qup, QUP_STATE_RUN); if (ret) { dev_warn(qup->dev, "cannot set RUN state\n"); return ret; } ret = spi_qup_set_state(qup, QUP_STATE_PAUSE); if (ret) { dev_warn(qup->dev, "cannot set PAUSE state\n"); return ret; } if (qup->mode == QUP_IO_M_MODE_FIFO) spi_qup_write(qup); ret = spi_qup_set_state(qup, QUP_STATE_RUN); if (ret) { dev_warn(qup->dev, "cannot set RUN state\n"); return ret; } if (!wait_for_completion_timeout(&qup->done, timeout)) return -ETIMEDOUT; offset++; } while (iterations--); return 0; } static bool spi_qup_data_pending(struct spi_qup *controller) { unsigned int remainder_tx, remainder_rx; remainder_tx = DIV_ROUND_UP(spi_qup_len(controller) - controller->tx_bytes, controller->w_size); remainder_rx = DIV_ROUND_UP(spi_qup_len(controller) - controller->rx_bytes, controller->w_size); return remainder_tx || remainder_rx; } static irqreturn_t spi_qup_qup_irq(int irq, void *dev_id) { struct spi_qup *controller = dev_id; u32 opflags, qup_err, spi_err; int error = 0; qup_err = readl_relaxed(controller->base + QUP_ERROR_FLAGS); spi_err = readl_relaxed(controller->base + SPI_ERROR_FLAGS); opflags = readl_relaxed(controller->base + QUP_OPERATIONAL); writel_relaxed(qup_err, controller->base + QUP_ERROR_FLAGS); writel_relaxed(spi_err, controller->base + SPI_ERROR_FLAGS); if (qup_err) { if (qup_err & QUP_ERROR_OUTPUT_OVER_RUN) dev_warn(controller->dev, "OUTPUT_OVER_RUN\n"); if (qup_err & QUP_ERROR_INPUT_UNDER_RUN) dev_warn(controller->dev, "INPUT_UNDER_RUN\n"); if (qup_err & QUP_ERROR_OUTPUT_UNDER_RUN) dev_warn(controller->dev, "OUTPUT_UNDER_RUN\n"); if (qup_err & QUP_ERROR_INPUT_OVER_RUN) dev_warn(controller->dev, "INPUT_OVER_RUN\n"); error = -EIO; } if (spi_err) { if (spi_err & SPI_ERROR_CLK_OVER_RUN) dev_warn(controller->dev, "CLK_OVER_RUN\n"); if (spi_err & SPI_ERROR_CLK_UNDER_RUN) dev_warn(controller->dev, "CLK_UNDER_RUN\n"); error = -EIO; } spin_lock(&controller->lock); if (!controller->error) controller->error = error; spin_unlock(&controller->lock); if (spi_qup_is_dma_xfer(controller->mode)) { writel_relaxed(opflags, controller->base + QUP_OPERATIONAL); } else { if (opflags & QUP_OP_IN_SERVICE_FLAG) spi_qup_read(controller, &opflags); if (opflags & QUP_OP_OUT_SERVICE_FLAG) spi_qup_write(controller); if (!spi_qup_data_pending(controller)) complete(&controller->done); } if (error) complete(&controller->done); if (opflags & QUP_OP_MAX_INPUT_DONE_FLAG) { if (!spi_qup_is_dma_xfer(controller->mode)) { if (spi_qup_data_pending(controller)) return IRQ_HANDLED; } complete(&controller->done); } return IRQ_HANDLED; } /* set clock freq ... bits per word, determine mode */ static int spi_qup_io_prep(struct spi_device *spi, struct spi_transfer *xfer) { struct spi_qup *controller = spi_controller_get_devdata(spi->controller); int ret; if (spi->mode & SPI_LOOP && xfer->len > controller->in_fifo_sz) { dev_err(controller->dev, "too big size for loopback %d > %d\n", xfer->len, controller->in_fifo_sz); return -EIO; } ret = clk_set_rate(controller->cclk, xfer->speed_hz); if (ret) { dev_err(controller->dev, "fail to set frequency %d", xfer->speed_hz); return -EIO; } controller->w_size = DIV_ROUND_UP(xfer->bits_per_word, 8); controller->n_words = xfer->len / controller->w_size; if (controller->n_words <= (controller->in_fifo_sz / sizeof(u32))) controller->mode = QUP_IO_M_MODE_FIFO; else if (spi->controller->can_dma && spi->controller->can_dma(spi->controller, spi, xfer) && spi->controller->cur_msg_mapped) controller->mode = QUP_IO_M_MODE_BAM; else controller->mode = QUP_IO_M_MODE_BLOCK; return 0; } /* prep qup for another spi transaction of specific type */ static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer) { struct spi_qup *controller = spi_controller_get_devdata(spi->controller); u32 config, iomode, control; unsigned long flags; spin_lock_irqsave(&controller->lock, flags); controller->xfer = xfer; controller->error = 0; controller->rx_bytes = 0; controller->tx_bytes = 0; spin_unlock_irqrestore(&controller->lock, flags); if (spi_qup_set_state(controller, QUP_STATE_RESET)) { dev_err(controller->dev, "cannot set RESET state\n"); return -EIO; } switch (controller->mode) { case QUP_IO_M_MODE_FIFO: writel_relaxed(controller->n_words, controller->base + QUP_MX_READ_CNT); writel_relaxed(controller->n_words, controller->base + QUP_MX_WRITE_CNT); /* must be zero for FIFO */ writel_relaxed(0, controller->base + QUP_MX_INPUT_CNT); writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT); break; case QUP_IO_M_MODE_BAM: writel_relaxed(controller->n_words, controller->base + QUP_MX_INPUT_CNT); writel_relaxed(controller->n_words, controller->base + QUP_MX_OUTPUT_CNT); /* must be zero for BLOCK and BAM */ writel_relaxed(0, controller->base + QUP_MX_READ_CNT); writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT); if (!controller->qup_v1) { void __iomem *input_cnt; input_cnt = controller->base + QUP_MX_INPUT_CNT; /* * for DMA transfers, both QUP_MX_INPUT_CNT and * QUP_MX_OUTPUT_CNT must be zero to all cases but one. * That case is a non-balanced transfer when there is * only a rx_buf. */ if (xfer->tx_buf) writel_relaxed(0, input_cnt); else writel_relaxed(controller->n_words, input_cnt); writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT); } break; case QUP_IO_M_MODE_BLOCK: reinit_completion(&controller->done); writel_relaxed(controller->n_words, controller->base + QUP_MX_INPUT_CNT); writel_relaxed(controller->n_words, controller->base + QUP_MX_OUTPUT_CNT); /* must be zero for BLOCK and BAM */ writel_relaxed(0, controller->base + QUP_MX_READ_CNT); writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT); break; default: dev_err(controller->dev, "unknown mode = %d\n", controller->mode); return -EIO; } iomode = readl_relaxed(controller->base + QUP_IO_M_MODES); /* Set input and output transfer mode */ iomode &= ~(QUP_IO_M_INPUT_MODE_MASK | QUP_IO_M_OUTPUT_MODE_MASK); if (!spi_qup_is_dma_xfer(controller->mode)) iomode &= ~(QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN); else iomode |= QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN; iomode |= (controller->mode << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT); iomode |= (controller->mode << QUP_IO_M_INPUT_MODE_MASK_SHIFT); writel_relaxed(iomode, controller->base + QUP_IO_M_MODES); control = readl_relaxed(controller->base + SPI_IO_CONTROL); if (spi->mode & SPI_CPOL) control |= SPI_IO_C_CLK_IDLE_HIGH; else control &= ~SPI_IO_C_CLK_IDLE_HIGH; writel_relaxed(control, controller->base + SPI_IO_CONTROL); config = readl_relaxed(controller->base + SPI_CONFIG); if (spi->mode & SPI_LOOP) config |= SPI_CONFIG_LOOPBACK; else config &= ~SPI_CONFIG_LOOPBACK; if (spi->mode & SPI_CPHA) config &= ~SPI_CONFIG_INPUT_FIRST; else config |= SPI_CONFIG_INPUT_FIRST; /* * HS_MODE improves signal stability for spi-clk high rates, * but is invalid in loop back mode. */ if ((xfer->speed_hz >= SPI_HS_MIN_RATE) && !(spi->mode & SPI_LOOP)) config |= SPI_CONFIG_HS_MODE; else config &= ~SPI_CONFIG_HS_MODE; writel_relaxed(config, controller->base + SPI_CONFIG); config = readl_relaxed(controller->base + QUP_CONFIG); config &= ~(QUP_CONFIG_NO_INPUT | QUP_CONFIG_NO_OUTPUT | QUP_CONFIG_N); config |= xfer->bits_per_word - 1; config |= QUP_CONFIG_SPI_MODE; if (spi_qup_is_dma_xfer(controller->mode)) { if (!xfer->tx_buf) config |= QUP_CONFIG_NO_OUTPUT; if (!xfer->rx_buf) config |= QUP_CONFIG_NO_INPUT; } writel_relaxed(config, controller->base + QUP_CONFIG); /* only write to OPERATIONAL_MASK when register is present */ if (!controller->qup_v1) { u32 mask = 0; /* * mask INPUT and OUTPUT service flags to prevent IRQs on FIFO * status change in BAM mode */ if (spi_qup_is_dma_xfer(controller->mode)) mask = QUP_OP_IN_SERVICE_FLAG | QUP_OP_OUT_SERVICE_FLAG; writel_relaxed(mask, controller->base + QUP_OPERATIONAL_MASK); } return 0; } static int spi_qup_transfer_one(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *xfer) { struct spi_qup *controller = spi_controller_get_devdata(host); unsigned long timeout, flags; int ret; ret = spi_qup_io_prep(spi, xfer); if (ret) return ret; timeout = DIV_ROUND_UP(xfer->speed_hz, MSEC_PER_SEC); timeout = DIV_ROUND_UP(min_t(unsigned long, SPI_MAX_XFER, xfer->len) * 8, timeout); timeout = 100 * msecs_to_jiffies(timeout); reinit_completion(&controller->done); spin_lock_irqsave(&controller->lock, flags); controller->xfer = xfer; controller->error = 0; controller->rx_bytes = 0; controller->tx_bytes = 0; spin_unlock_irqrestore(&controller->lock, flags); if (spi_qup_is_dma_xfer(controller->mode)) ret = spi_qup_do_dma(spi, xfer, timeout); else ret = spi_qup_do_pio(spi, xfer, timeout); spi_qup_set_state(controller, QUP_STATE_RESET); spin_lock_irqsave(&controller->lock, flags); if (!ret) ret = controller->error; spin_unlock_irqrestore(&controller->lock, flags); if (ret && spi_qup_is_dma_xfer(controller->mode)) spi_qup_dma_terminate(host, xfer); return ret; } static bool spi_qup_can_dma(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *xfer) { struct spi_qup *qup = spi_controller_get_devdata(host); size_t dma_align = dma_get_cache_alignment(); int n_words; if (xfer->rx_buf) { if (!IS_ALIGNED((size_t)xfer->rx_buf, dma_align) || IS_ERR_OR_NULL(host->dma_rx)) return false; if (qup->qup_v1 && (xfer->len % qup->in_blk_sz)) return false; } if (xfer->tx_buf) { if (!IS_ALIGNED((size_t)xfer->tx_buf, dma_align) || IS_ERR_OR_NULL(host->dma_tx)) return false; if (qup->qup_v1 && (xfer->len % qup->out_blk_sz)) return false; } n_words = xfer->len / DIV_ROUND_UP(xfer->bits_per_word, 8); if (n_words <= (qup->in_fifo_sz / sizeof(u32))) return false; return true; } static void spi_qup_release_dma(struct spi_controller *host) { if (!IS_ERR_OR_NULL(host->dma_rx)) dma_release_channel(host->dma_rx); if (!IS_ERR_OR_NULL(host->dma_tx)) dma_release_channel(host->dma_tx); } static int spi_qup_init_dma(struct spi_controller *host, resource_size_t base) { struct spi_qup *spi = spi_controller_get_devdata(host); struct dma_slave_config *rx_conf = &spi->rx_conf, *tx_conf = &spi->tx_conf; struct device *dev = spi->dev; int ret; /* allocate dma resources, if available */ host->dma_rx = dma_request_chan(dev, "rx"); if (IS_ERR(host->dma_rx)) return PTR_ERR(host->dma_rx); host->dma_tx = dma_request_chan(dev, "tx"); if (IS_ERR(host->dma_tx)) { ret = PTR_ERR(host->dma_tx); goto err_tx; } /* set DMA parameters */ rx_conf->direction = DMA_DEV_TO_MEM; rx_conf->device_fc = 1; rx_conf->src_addr = base + QUP_INPUT_FIFO; rx_conf->src_maxburst = spi->in_blk_sz; tx_conf->direction = DMA_MEM_TO_DEV; tx_conf->device_fc = 1; tx_conf->dst_addr = base + QUP_OUTPUT_FIFO; tx_conf->dst_maxburst = spi->out_blk_sz; ret = dmaengine_slave_config(host->dma_rx, rx_conf); if (ret) { dev_err(dev, "failed to configure RX channel\n"); goto err; } ret = dmaengine_slave_config(host->dma_tx, tx_conf); if (ret) { dev_err(dev, "failed to configure TX channel\n"); goto err; } return 0; err: dma_release_channel(host->dma_tx); err_tx: dma_release_channel(host->dma_rx); return ret; } static void spi_qup_set_cs(struct spi_device *spi, bool val) { struct spi_qup *controller; u32 spi_ioc; u32 spi_ioc_orig; controller = spi_controller_get_devdata(spi->controller); spi_ioc = readl_relaxed(controller->base + SPI_IO_CONTROL); spi_ioc_orig = spi_ioc; if (!val) spi_ioc |= SPI_IO_C_FORCE_CS; else spi_ioc &= ~SPI_IO_C_FORCE_CS; if (spi_ioc != spi_ioc_orig) writel_relaxed(spi_ioc, controller->base + SPI_IO_CONTROL); } static int spi_qup_probe(struct platform_device *pdev) { struct spi_controller *host; struct clk *iclk, *cclk; struct spi_qup *controller; struct resource *res; struct device *dev; void __iomem *base; u32 max_freq, iomode, num_cs; int ret, irq, size; dev = &pdev->dev; base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(base)) return PTR_ERR(base); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; cclk = devm_clk_get(dev, "core"); if (IS_ERR(cclk)) return PTR_ERR(cclk); iclk = devm_clk_get(dev, "iface"); if (IS_ERR(iclk)) return PTR_ERR(iclk); /* This is optional parameter */ if (of_property_read_u32(dev->of_node, "spi-max-frequency", &max_freq)) max_freq = SPI_MAX_RATE; if (!max_freq || max_freq > SPI_MAX_RATE) { dev_err(dev, "invalid clock frequency %d\n", max_freq); return -ENXIO; } host = spi_alloc_host(dev, sizeof(struct spi_qup)); if (!host) { dev_err(dev, "cannot allocate host\n"); return -ENOMEM; } /* use num-cs unless not present or out of range */ if (of_property_read_u32(dev->of_node, "num-cs", &num_cs) || num_cs > SPI_NUM_CHIPSELECTS) host->num_chipselect = SPI_NUM_CHIPSELECTS; else host->num_chipselect = num_cs; host->use_gpio_descriptors = true; host->max_native_cs = SPI_NUM_CHIPSELECTS; host->bus_num = pdev->id; host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); host->max_speed_hz = max_freq; host->transfer_one = spi_qup_transfer_one; host->dev.of_node = pdev->dev.of_node; host->auto_runtime_pm = true; host->dma_alignment = dma_get_cache_alignment(); host->max_dma_len = SPI_MAX_XFER; platform_set_drvdata(pdev, host); controller = spi_controller_get_devdata(host); controller->dev = dev; controller->base = base; controller->iclk = iclk; controller->cclk = cclk; controller->irq = irq; ret = spi_qup_init_dma(host, res->start); if (ret == -EPROBE_DEFER) goto error; else if (!ret) host->can_dma = spi_qup_can_dma; controller->qup_v1 = (uintptr_t)of_device_get_match_data(dev); if (!controller->qup_v1) host->set_cs = spi_qup_set_cs; spin_lock_init(&controller->lock); init_completion(&controller->done); ret = clk_prepare_enable(cclk); if (ret) { dev_err(dev, "cannot enable core clock\n"); goto error_dma; } ret = clk_prepare_enable(iclk); if (ret) { clk_disable_unprepare(cclk); dev_err(dev, "cannot enable iface clock\n"); goto error_dma; } iomode = readl_relaxed(base + QUP_IO_M_MODES); size = QUP_IO_M_OUTPUT_BLOCK_SIZE(iomode); if (size) controller->out_blk_sz = size * 16; else controller->out_blk_sz = 4; size = QUP_IO_M_INPUT_BLOCK_SIZE(iomode); if (size) controller->in_blk_sz = size * 16; else controller->in_blk_sz = 4; size = QUP_IO_M_OUTPUT_FIFO_SIZE(iomode); controller->out_fifo_sz = controller->out_blk_sz * (2 << size); size = QUP_IO_M_INPUT_FIFO_SIZE(iomode); controller->in_fifo_sz = controller->in_blk_sz * (2 << size); dev_info(dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n", controller->in_blk_sz, controller->in_fifo_sz, controller->out_blk_sz, controller->out_fifo_sz); writel_relaxed(1, base + QUP_SW_RESET); ret = spi_qup_set_state(controller, QUP_STATE_RESET); if (ret) { dev_err(dev, "cannot set RESET state\n"); goto error_clk; } writel_relaxed(0, base + QUP_OPERATIONAL); writel_relaxed(0, base + QUP_IO_M_MODES); if (!controller->qup_v1) writel_relaxed(0, base + QUP_OPERATIONAL_MASK); writel_relaxed(SPI_ERROR_CLK_UNDER_RUN | SPI_ERROR_CLK_OVER_RUN, base + SPI_ERROR_FLAGS_EN); /* if earlier version of the QUP, disable INPUT_OVERRUN */ if (controller->qup_v1) writel_relaxed(QUP_ERROR_OUTPUT_OVER_RUN | QUP_ERROR_INPUT_UNDER_RUN | QUP_ERROR_OUTPUT_UNDER_RUN, base + QUP_ERROR_FLAGS_EN); writel_relaxed(0, base + SPI_CONFIG); writel_relaxed(SPI_IO_C_NO_TRI_STATE, base + SPI_IO_CONTROL); ret = devm_request_irq(dev, irq, spi_qup_qup_irq, IRQF_TRIGGER_HIGH, pdev->name, controller); if (ret) goto error_clk; pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC); pm_runtime_use_autosuspend(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); ret = devm_spi_register_controller(dev, host); if (ret) goto disable_pm; return 0; disable_pm: pm_runtime_disable(&pdev->dev); error_clk: clk_disable_unprepare(cclk); clk_disable_unprepare(iclk); error_dma: spi_qup_release_dma(host); error: spi_controller_put(host); return ret; } #ifdef CONFIG_PM static int spi_qup_pm_suspend_runtime(struct device *device) { struct spi_controller *host = dev_get_drvdata(device); struct spi_qup *controller = spi_controller_get_devdata(host); u32 config; /* Enable clocks auto gaiting */ config = readl(controller->base + QUP_CONFIG); config |= QUP_CONFIG_CLOCK_AUTO_GATE; writel_relaxed(config, controller->base + QUP_CONFIG); clk_disable_unprepare(controller->cclk); clk_disable_unprepare(controller->iclk); return 0; } static int spi_qup_pm_resume_runtime(struct device *device) { struct spi_controller *host = dev_get_drvdata(device); struct spi_qup *controller = spi_controller_get_devdata(host); u32 config; int ret; ret = clk_prepare_enable(controller->iclk); if (ret) return ret; ret = clk_prepare_enable(controller->cclk); if (ret) { clk_disable_unprepare(controller->iclk); return ret; } /* Disable clocks auto gaiting */ config = readl_relaxed(controller->base + QUP_CONFIG); config &= ~QUP_CONFIG_CLOCK_AUTO_GATE; writel_relaxed(config, controller->base + QUP_CONFIG); return 0; } #endif /* CONFIG_PM */ #ifdef CONFIG_PM_SLEEP static int spi_qup_suspend(struct device *device) { struct spi_controller *host = dev_get_drvdata(device); struct spi_qup *controller = spi_controller_get_devdata(host); int ret; if (pm_runtime_suspended(device)) { ret = spi_qup_pm_resume_runtime(device); if (ret) return ret; } ret = spi_controller_suspend(host); if (ret) return ret; ret = spi_qup_set_state(controller, QUP_STATE_RESET); if (ret) return ret; clk_disable_unprepare(controller->cclk); clk_disable_unprepare(controller->iclk); return 0; } static int spi_qup_resume(struct device *device) { struct spi_controller *host = dev_get_drvdata(device); struct spi_qup *controller = spi_controller_get_devdata(host); int ret; ret = clk_prepare_enable(controller->iclk); if (ret) return ret; ret = clk_prepare_enable(controller->cclk); if (ret) { clk_disable_unprepare(controller->iclk); return ret; } ret = spi_qup_set_state(controller, QUP_STATE_RESET); if (ret) goto disable_clk; ret = spi_controller_resume(host); if (ret) goto disable_clk; return 0; disable_clk: clk_disable_unprepare(controller->cclk); clk_disable_unprepare(controller->iclk); return ret; } #endif /* CONFIG_PM_SLEEP */ static void spi_qup_remove(struct platform_device *pdev) { struct spi_controller *host = dev_get_drvdata(&pdev->dev); struct spi_qup *controller = spi_controller_get_devdata(host); int ret; ret = pm_runtime_get_sync(&pdev->dev); if (ret >= 0) { ret = spi_qup_set_state(controller, QUP_STATE_RESET); if (ret) dev_warn(&pdev->dev, "failed to reset controller (%pe)\n", ERR_PTR(ret)); clk_disable_unprepare(controller->cclk); clk_disable_unprepare(controller->iclk); } else { dev_warn(&pdev->dev, "failed to resume, skip hw disable (%pe)\n", ERR_PTR(ret)); } spi_qup_release_dma(host); pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); } static const struct of_device_id spi_qup_dt_match[] = { { .compatible = "qcom,spi-qup-v1.1.1", .data = (void *)1, }, { .compatible = "qcom,spi-qup-v2.1.1", }, { .compatible = "qcom,spi-qup-v2.2.1", }, { } }; MODULE_DEVICE_TABLE(of, spi_qup_dt_match); static const struct dev_pm_ops spi_qup_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(spi_qup_suspend, spi_qup_resume) SET_RUNTIME_PM_OPS(spi_qup_pm_suspend_runtime, spi_qup_pm_resume_runtime, NULL) }; static struct platform_driver spi_qup_driver = { .driver = { .name = "spi_qup", .pm = &spi_qup_dev_pm_ops, .of_match_table = spi_qup_dt_match, }, .probe = spi_qup_probe, .remove_new = spi_qup_remove, }; module_platform_driver(spi_qup_driver); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:spi_qup");
linux-master
drivers/spi/spi-qup.c
// SPDX-License-Identifier: GPL-2.0-only /* * SPI driver for NVIDIA's Tegra114 SPI Controller. * * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved. */ #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/of.h> #include <linux/reset.h> #include <linux/spi/spi.h> #define SPI_COMMAND1 0x000 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0) #define SPI_PACKED (1 << 5) #define SPI_TX_EN (1 << 11) #define SPI_RX_EN (1 << 12) #define SPI_BOTH_EN_BYTE (1 << 13) #define SPI_BOTH_EN_BIT (1 << 14) #define SPI_LSBYTE_FE (1 << 15) #define SPI_LSBIT_FE (1 << 16) #define SPI_BIDIROE (1 << 17) #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18) #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18) #define SPI_IDLE_SDA_PULL_LOW (2 << 18) #define SPI_IDLE_SDA_PULL_HIGH (3 << 18) #define SPI_IDLE_SDA_MASK (3 << 18) #define SPI_CS_SW_VAL (1 << 20) #define SPI_CS_SW_HW (1 << 21) /* SPI_CS_POL_INACTIVE bits are default high */ /* n from 0 to 3 */ #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n))) #define SPI_CS_POL_INACTIVE_MASK (0xF << 22) #define SPI_CS_SEL_0 (0 << 26) #define SPI_CS_SEL_1 (1 << 26) #define SPI_CS_SEL_2 (2 << 26) #define SPI_CS_SEL_3 (3 << 26) #define SPI_CS_SEL_MASK (3 << 26) #define SPI_CS_SEL(x) (((x) & 0x3) << 26) #define SPI_CONTROL_MODE_0 (0 << 28) #define SPI_CONTROL_MODE_1 (1 << 28) #define SPI_CONTROL_MODE_2 (2 << 28) #define SPI_CONTROL_MODE_3 (3 << 28) #define SPI_CONTROL_MODE_MASK (3 << 28) #define SPI_MODE_SEL(x) (((x) & 0x3) << 28) #define SPI_M_S (1 << 30) #define SPI_PIO (1 << 31) #define SPI_COMMAND2 0x004 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6) #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0) #define SPI_CS_TIMING1 0x008 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold)) #define SPI_CS_SETUP_HOLD(reg, cs, val) \ ((((val) & 0xFFu) << ((cs) * 8)) | \ ((reg) & ~(0xFFu << ((cs) * 8)))) #define SPI_CS_TIMING2 0x00C #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0) #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5) #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8) #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13) #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16) #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21) #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24) #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29) #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \ (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \ ((reg) & ~(1 << ((cs) * 8 + 5)))) #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \ (reg = (((val) & 0x1F) << ((cs) * 8)) | \ ((reg) & ~(0x1F << ((cs) * 8)))) #define MAX_SETUP_HOLD_CYCLES 16 #define MAX_INACTIVE_CYCLES 32 #define SPI_TRANS_STATUS 0x010 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF) #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF) #define SPI_RDY (1 << 30) #define SPI_FIFO_STATUS 0x014 #define SPI_RX_FIFO_EMPTY (1 << 0) #define SPI_RX_FIFO_FULL (1 << 1) #define SPI_TX_FIFO_EMPTY (1 << 2) #define SPI_TX_FIFO_FULL (1 << 3) #define SPI_RX_FIFO_UNF (1 << 4) #define SPI_RX_FIFO_OVF (1 << 5) #define SPI_TX_FIFO_UNF (1 << 6) #define SPI_TX_FIFO_OVF (1 << 7) #define SPI_ERR (1 << 8) #define SPI_TX_FIFO_FLUSH (1 << 14) #define SPI_RX_FIFO_FLUSH (1 << 15) #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F) #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F) #define SPI_FRAME_END (1 << 30) #define SPI_CS_INACTIVE (1 << 31) #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \ SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF) #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY) #define SPI_TX_DATA 0x018 #define SPI_RX_DATA 0x01C #define SPI_DMA_CTL 0x020 #define SPI_TX_TRIG_1 (0 << 15) #define SPI_TX_TRIG_4 (1 << 15) #define SPI_TX_TRIG_8 (2 << 15) #define SPI_TX_TRIG_16 (3 << 15) #define SPI_TX_TRIG_MASK (3 << 15) #define SPI_RX_TRIG_1 (0 << 19) #define SPI_RX_TRIG_4 (1 << 19) #define SPI_RX_TRIG_8 (2 << 19) #define SPI_RX_TRIG_16 (3 << 19) #define SPI_RX_TRIG_MASK (3 << 19) #define SPI_IE_TX (1 << 28) #define SPI_IE_RX (1 << 29) #define SPI_CONT (1 << 30) #define SPI_DMA (1 << 31) #define SPI_DMA_EN SPI_DMA #define SPI_DMA_BLK 0x024 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0) #define SPI_TX_FIFO 0x108 #define SPI_RX_FIFO 0x188 #define SPI_INTR_MASK 0x18c #define SPI_INTR_ALL_MASK (0x1fUL << 25) #define MAX_CHIP_SELECT 4 #define SPI_FIFO_DEPTH 64 #define DATA_DIR_TX (1 << 0) #define DATA_DIR_RX (1 << 1) #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) #define DEFAULT_SPI_DMA_BUF_LEN (16*1024) #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40) #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0) #define MAX_HOLD_CYCLES 16 #define SPI_DEFAULT_SPEED 25000000 struct tegra_spi_soc_data { bool has_intr_mask_reg; }; struct tegra_spi_client_data { int tx_clk_tap_delay; int rx_clk_tap_delay; }; struct tegra_spi_data { struct device *dev; struct spi_master *master; spinlock_t lock; struct clk *clk; struct reset_control *rst; void __iomem *base; phys_addr_t phys; unsigned irq; u32 cur_speed; struct spi_device *cur_spi; struct spi_device *cs_control; unsigned cur_pos; unsigned words_per_32bit; unsigned bytes_per_word; unsigned curr_dma_words; unsigned cur_direction; unsigned cur_rx_pos; unsigned cur_tx_pos; unsigned dma_buf_size; unsigned max_buf_size; bool is_curr_dma_xfer; bool use_hw_based_cs; struct completion rx_dma_complete; struct completion tx_dma_complete; u32 tx_status; u32 rx_status; u32 status_reg; bool is_packed; u32 command1_reg; u32 dma_control_reg; u32 def_command1_reg; u32 def_command2_reg; u32 spi_cs_timing1; u32 spi_cs_timing2; u8 last_used_cs; struct completion xfer_completion; struct spi_transfer *curr_xfer; struct dma_chan *rx_dma_chan; u32 *rx_dma_buf; dma_addr_t rx_dma_phys; struct dma_async_tx_descriptor *rx_dma_desc; struct dma_chan *tx_dma_chan; u32 *tx_dma_buf; dma_addr_t tx_dma_phys; struct dma_async_tx_descriptor *tx_dma_desc; const struct tegra_spi_soc_data *soc_data; }; static int tegra_spi_runtime_suspend(struct device *dev); static int tegra_spi_runtime_resume(struct device *dev); static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi, unsigned long reg) { return readl(tspi->base + reg); } static inline void tegra_spi_writel(struct tegra_spi_data *tspi, u32 val, unsigned long reg) { writel(val, tspi->base + reg); /* Read back register to make sure that register writes completed */ if (reg != SPI_TX_FIFO) readl(tspi->base + SPI_COMMAND1); } static void tegra_spi_clear_status(struct tegra_spi_data *tspi) { u32 val; /* Write 1 to clear status register */ val = tegra_spi_readl(tspi, SPI_TRANS_STATUS); tegra_spi_writel(tspi, val, SPI_TRANS_STATUS); /* Clear fifo status error if any */ val = tegra_spi_readl(tspi, SPI_FIFO_STATUS); if (val & SPI_ERR) tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR, SPI_FIFO_STATUS); } static unsigned tegra_spi_calculate_curr_xfer_param( struct spi_device *spi, struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned remain_len = t->len - tspi->cur_pos; unsigned max_word; unsigned bits_per_word = t->bits_per_word; unsigned max_len; unsigned total_fifo_words; tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8); if ((bits_per_word == 8 || bits_per_word == 16 || bits_per_word == 32) && t->len > 3) { tspi->is_packed = true; tspi->words_per_32bit = 32/bits_per_word; } else { tspi->is_packed = false; tspi->words_per_32bit = 1; } if (tspi->is_packed) { max_len = min(remain_len, tspi->max_buf_size); tspi->curr_dma_words = max_len/tspi->bytes_per_word; total_fifo_words = (max_len + 3) / 4; } else { max_word = (remain_len - 1) / tspi->bytes_per_word + 1; max_word = min(max_word, tspi->max_buf_size/4); tspi->curr_dma_words = max_word; total_fifo_words = max_word; } return total_fifo_words; } static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned nbytes; unsigned tx_empty_count; u32 fifo_status; unsigned max_n_32bit; unsigned i, count; unsigned int written_words; unsigned fifo_words_left; u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status); if (tspi->is_packed) { fifo_words_left = tx_empty_count * tspi->words_per_32bit; written_words = min(fifo_words_left, tspi->curr_dma_words); nbytes = written_words * tspi->bytes_per_word; max_n_32bit = DIV_ROUND_UP(nbytes, 4); for (count = 0; count < max_n_32bit; count++) { u32 x = 0; for (i = 0; (i < 4) && nbytes; i++, nbytes--) x |= (u32)(*tx_buf++) << (i * 8); tegra_spi_writel(tspi, x, SPI_TX_FIFO); } tspi->cur_tx_pos += written_words * tspi->bytes_per_word; } else { unsigned int write_bytes; max_n_32bit = min(tspi->curr_dma_words, tx_empty_count); written_words = max_n_32bit; nbytes = written_words * tspi->bytes_per_word; if (nbytes > t->len - tspi->cur_pos) nbytes = t->len - tspi->cur_pos; write_bytes = nbytes; for (count = 0; count < max_n_32bit; count++) { u32 x = 0; for (i = 0; nbytes && (i < tspi->bytes_per_word); i++, nbytes--) x |= (u32)(*tx_buf++) << (i * 8); tegra_spi_writel(tspi, x, SPI_TX_FIFO); } tspi->cur_tx_pos += write_bytes; } return written_words; } static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned rx_full_count; u32 fifo_status; unsigned i, count; unsigned int read_words = 0; unsigned len; u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos; fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status); if (tspi->is_packed) { len = tspi->curr_dma_words * tspi->bytes_per_word; for (count = 0; count < rx_full_count; count++) { u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO); for (i = 0; len && (i < 4); i++, len--) *rx_buf++ = (x >> i*8) & 0xFF; } read_words += tspi->curr_dma_words; tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; } else { u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; u8 bytes_per_word = tspi->bytes_per_word; unsigned int read_bytes; len = rx_full_count * bytes_per_word; if (len > t->len - tspi->cur_pos) len = t->len - tspi->cur_pos; read_bytes = len; for (count = 0; count < rx_full_count; count++) { u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask; for (i = 0; len && (i < bytes_per_word); i++, len--) *rx_buf++ = (x >> (i*8)) & 0xFF; } read_words += rx_full_count; tspi->cur_rx_pos += read_bytes; } return read_words; } static void tegra_spi_copy_client_txbuf_to_spi_txbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { /* Make the dma buffer to read by cpu */ dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys, tspi->dma_buf_size, DMA_TO_DEVICE); if (tspi->is_packed) { unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len); tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word; } else { unsigned int i; unsigned int count; u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; unsigned int write_bytes; if (consume > t->len - tspi->cur_pos) consume = t->len - tspi->cur_pos; write_bytes = consume; for (count = 0; count < tspi->curr_dma_words; count++) { u32 x = 0; for (i = 0; consume && (i < tspi->bytes_per_word); i++, consume--) x |= (u32)(*tx_buf++) << (i * 8); tspi->tx_dma_buf[count] = x; } tspi->cur_tx_pos += write_bytes; } /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys, tspi->dma_buf_size, DMA_TO_DEVICE); } static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { /* Make the dma buffer to read by cpu */ dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); if (tspi->is_packed) { unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len); tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; } else { unsigned int i; unsigned int count; unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos; u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; unsigned int read_bytes; if (consume > t->len - tspi->cur_pos) consume = t->len - tspi->cur_pos; read_bytes = consume; for (count = 0; count < tspi->curr_dma_words; count++) { u32 x = tspi->rx_dma_buf[count] & rx_mask; for (i = 0; consume && (i < tspi->bytes_per_word); i++, consume--) *rx_buf++ = (x >> (i*8)) & 0xFF; } tspi->cur_rx_pos += read_bytes; } /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); } static void tegra_spi_dma_complete(void *args) { struct completion *dma_complete = args; complete(dma_complete); } static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len) { reinit_completion(&tspi->tx_dma_complete); tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan, tspi->tx_dma_phys, len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tspi->tx_dma_desc) { dev_err(tspi->dev, "Not able to get desc for Tx\n"); return -EIO; } tspi->tx_dma_desc->callback = tegra_spi_dma_complete; tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete; dmaengine_submit(tspi->tx_dma_desc); dma_async_issue_pending(tspi->tx_dma_chan); return 0; } static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len) { reinit_completion(&tspi->rx_dma_complete); tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan, tspi->rx_dma_phys, len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tspi->rx_dma_desc) { dev_err(tspi->dev, "Not able to get desc for Rx\n"); return -EIO; } tspi->rx_dma_desc->callback = tegra_spi_dma_complete; tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete; dmaengine_submit(tspi->rx_dma_desc); dma_async_issue_pending(tspi->rx_dma_chan); return 0; } static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi) { unsigned long timeout = jiffies + HZ; u32 status; status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) { status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH; tegra_spi_writel(tspi, status, SPI_FIFO_STATUS); while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) { status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); if (time_after(jiffies, timeout)) { dev_err(tspi->dev, "timeout waiting for fifo flush\n"); return -EIO; } udelay(1); } } return 0; } static int tegra_spi_start_dma_based_transfer( struct tegra_spi_data *tspi, struct spi_transfer *t) { u32 val; unsigned int len; int ret = 0; u8 dma_burst; struct dma_slave_config dma_sconfig = {0}; val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1); tegra_spi_writel(tspi, val, SPI_DMA_BLK); if (tspi->is_packed) len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word, 4) * 4; else len = tspi->curr_dma_words * 4; /* Set attention level based on length of transfer */ if (len & 0xF) { val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1; dma_burst = 1; } else if (((len) >> 4) & 0x1) { val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4; dma_burst = 4; } else { val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8; dma_burst = 8; } if (!tspi->soc_data->has_intr_mask_reg) { if (tspi->cur_direction & DATA_DIR_TX) val |= SPI_IE_TX; if (tspi->cur_direction & DATA_DIR_RX) val |= SPI_IE_RX; } tegra_spi_writel(tspi, val, SPI_DMA_CTL); tspi->dma_control_reg = val; dma_sconfig.device_fc = true; if (tspi->cur_direction & DATA_DIR_TX) { dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO; dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.dst_maxburst = dma_burst; ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig); if (ret < 0) { dev_err(tspi->dev, "DMA slave config failed: %d\n", ret); return ret; } tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t); ret = tegra_spi_start_tx_dma(tspi, len); if (ret < 0) { dev_err(tspi->dev, "Starting tx dma failed, err %d\n", ret); return ret; } } if (tspi->cur_direction & DATA_DIR_RX) { dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO; dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.src_maxburst = dma_burst; ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig); if (ret < 0) { dev_err(tspi->dev, "DMA slave config failed: %d\n", ret); return ret; } /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); ret = tegra_spi_start_rx_dma(tspi, len); if (ret < 0) { dev_err(tspi->dev, "Starting rx dma failed, err %d\n", ret); if (tspi->cur_direction & DATA_DIR_TX) dmaengine_terminate_all(tspi->tx_dma_chan); return ret; } } tspi->is_curr_dma_xfer = true; tspi->dma_control_reg = val; val |= SPI_DMA_EN; tegra_spi_writel(tspi, val, SPI_DMA_CTL); return ret; } static int tegra_spi_start_cpu_based_transfer( struct tegra_spi_data *tspi, struct spi_transfer *t) { u32 val; unsigned cur_words; if (tspi->cur_direction & DATA_DIR_TX) cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t); else cur_words = tspi->curr_dma_words; val = SPI_DMA_BLK_SET(cur_words - 1); tegra_spi_writel(tspi, val, SPI_DMA_BLK); val = 0; if (tspi->cur_direction & DATA_DIR_TX) val |= SPI_IE_TX; if (tspi->cur_direction & DATA_DIR_RX) val |= SPI_IE_RX; tegra_spi_writel(tspi, val, SPI_DMA_CTL); tspi->dma_control_reg = val; tspi->is_curr_dma_xfer = false; val = tspi->command1_reg; val |= SPI_PIO; tegra_spi_writel(tspi, val, SPI_COMMAND1); return 0; } static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi, bool dma_to_memory) { struct dma_chan *dma_chan; u32 *dma_buf; dma_addr_t dma_phys; dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx"); if (IS_ERR(dma_chan)) return dev_err_probe(tspi->dev, PTR_ERR(dma_chan), "Dma channel is not available\n"); dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size, &dma_phys, GFP_KERNEL); if (!dma_buf) { dev_err(tspi->dev, " Not able to allocate the dma buffer\n"); dma_release_channel(dma_chan); return -ENOMEM; } if (dma_to_memory) { tspi->rx_dma_chan = dma_chan; tspi->rx_dma_buf = dma_buf; tspi->rx_dma_phys = dma_phys; } else { tspi->tx_dma_chan = dma_chan; tspi->tx_dma_buf = dma_buf; tspi->tx_dma_phys = dma_phys; } return 0; } static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi, bool dma_to_memory) { u32 *dma_buf; dma_addr_t dma_phys; struct dma_chan *dma_chan; if (dma_to_memory) { dma_buf = tspi->rx_dma_buf; dma_chan = tspi->rx_dma_chan; dma_phys = tspi->rx_dma_phys; tspi->rx_dma_chan = NULL; tspi->rx_dma_buf = NULL; } else { dma_buf = tspi->tx_dma_buf; dma_chan = tspi->tx_dma_chan; dma_phys = tspi->tx_dma_phys; tspi->tx_dma_buf = NULL; tspi->tx_dma_chan = NULL; } if (!dma_chan) return; dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); dma_release_channel(dma_chan); } static int tegra_spi_set_hw_cs_timing(struct spi_device *spi) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); struct spi_delay *setup = &spi->cs_setup; struct spi_delay *hold = &spi->cs_hold; struct spi_delay *inactive = &spi->cs_inactive; u8 setup_dly, hold_dly; u32 setup_hold; u32 spi_cs_timing; u32 inactive_cycles; u8 cs_state; if (setup->unit != SPI_DELAY_UNIT_SCK || hold->unit != SPI_DELAY_UNIT_SCK || inactive->unit != SPI_DELAY_UNIT_SCK) { dev_err(&spi->dev, "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n", SPI_DELAY_UNIT_SCK); return -EINVAL; } setup_dly = min_t(u8, setup->value, MAX_SETUP_HOLD_CYCLES); hold_dly = min_t(u8, hold->value, MAX_SETUP_HOLD_CYCLES); if (setup_dly && hold_dly) { setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1); spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1, spi_get_chipselect(spi, 0), setup_hold); if (tspi->spi_cs_timing1 != spi_cs_timing) { tspi->spi_cs_timing1 = spi_cs_timing; tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1); } } inactive_cycles = min_t(u8, inactive->value, MAX_INACTIVE_CYCLES); if (inactive_cycles) inactive_cycles--; cs_state = inactive_cycles ? 0 : 1; spi_cs_timing = tspi->spi_cs_timing2; SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0), cs_state); SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0), inactive_cycles); if (tspi->spi_cs_timing2 != spi_cs_timing) { tspi->spi_cs_timing2 = spi_cs_timing; tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2); } return 0; } static u32 tegra_spi_setup_transfer_one(struct spi_device *spi, struct spi_transfer *t, bool is_first_of_msg, bool is_single_xfer) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); struct tegra_spi_client_data *cdata = spi->controller_data; u32 speed = t->speed_hz; u8 bits_per_word = t->bits_per_word; u32 command1, command2; int req_mode; u32 tx_tap = 0, rx_tap = 0; if (speed != tspi->cur_speed) { clk_set_rate(tspi->clk, speed); tspi->cur_speed = speed; } tspi->cur_spi = spi; tspi->cur_pos = 0; tspi->cur_rx_pos = 0; tspi->cur_tx_pos = 0; tspi->curr_xfer = t; if (is_first_of_msg) { tegra_spi_clear_status(tspi); command1 = tspi->def_command1_reg; command1 |= SPI_BIT_LENGTH(bits_per_word - 1); command1 &= ~SPI_CONTROL_MODE_MASK; req_mode = spi->mode & 0x3; if (req_mode == SPI_MODE_0) command1 |= SPI_CONTROL_MODE_0; else if (req_mode == SPI_MODE_1) command1 |= SPI_CONTROL_MODE_1; else if (req_mode == SPI_MODE_2) command1 |= SPI_CONTROL_MODE_2; else if (req_mode == SPI_MODE_3) command1 |= SPI_CONTROL_MODE_3; if (spi->mode & SPI_LSB_FIRST) command1 |= SPI_LSBIT_FE; else command1 &= ~SPI_LSBIT_FE; if (spi->mode & SPI_3WIRE) command1 |= SPI_BIDIROE; else command1 &= ~SPI_BIDIROE; if (tspi->cs_control) { if (tspi->cs_control != spi) tegra_spi_writel(tspi, command1, SPI_COMMAND1); tspi->cs_control = NULL; } else tegra_spi_writel(tspi, command1, SPI_COMMAND1); /* GPIO based chip select control */ if (spi_get_csgpiod(spi, 0)) gpiod_set_value(spi_get_csgpiod(spi, 0), 1); if (is_single_xfer && !(t->cs_change)) { tspi->use_hw_based_cs = true; command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL); } else { tspi->use_hw_based_cs = false; command1 |= SPI_CS_SW_HW; if (spi->mode & SPI_CS_HIGH) command1 |= SPI_CS_SW_VAL; else command1 &= ~SPI_CS_SW_VAL; } if (tspi->last_used_cs != spi_get_chipselect(spi, 0)) { if (cdata && cdata->tx_clk_tap_delay) tx_tap = cdata->tx_clk_tap_delay; if (cdata && cdata->rx_clk_tap_delay) rx_tap = cdata->rx_clk_tap_delay; command2 = SPI_TX_TAP_DELAY(tx_tap) | SPI_RX_TAP_DELAY(rx_tap); if (command2 != tspi->def_command2_reg) tegra_spi_writel(tspi, command2, SPI_COMMAND2); tspi->last_used_cs = spi_get_chipselect(spi, 0); } } else { command1 = tspi->command1_reg; command1 &= ~SPI_BIT_LENGTH(~0); command1 |= SPI_BIT_LENGTH(bits_per_word - 1); } return command1; } static int tegra_spi_start_transfer_one(struct spi_device *spi, struct spi_transfer *t, u32 command1) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); unsigned total_fifo_words; int ret; total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t); if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL) command1 |= SPI_BOTH_EN_BIT; else command1 &= ~SPI_BOTH_EN_BIT; if (tspi->is_packed) command1 |= SPI_PACKED; else command1 &= ~SPI_PACKED; command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN); tspi->cur_direction = 0; if (t->rx_buf) { command1 |= SPI_RX_EN; tspi->cur_direction |= DATA_DIR_RX; } if (t->tx_buf) { command1 |= SPI_TX_EN; tspi->cur_direction |= DATA_DIR_TX; } command1 |= SPI_CS_SEL(spi_get_chipselect(spi, 0)); tegra_spi_writel(tspi, command1, SPI_COMMAND1); tspi->command1_reg = command1; dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n", tspi->def_command1_reg, (unsigned)command1); ret = tegra_spi_flush_fifos(tspi); if (ret < 0) return ret; if (total_fifo_words > SPI_FIFO_DEPTH) ret = tegra_spi_start_dma_based_transfer(tspi, t); else ret = tegra_spi_start_cpu_based_transfer(tspi, t); return ret; } static struct tegra_spi_client_data *tegra_spi_parse_cdata_dt(struct spi_device *spi) { struct tegra_spi_client_data *cdata; struct device_node *slave_np; slave_np = spi->dev.of_node; if (!slave_np) { dev_dbg(&spi->dev, "device node not found\n"); return NULL; } cdata = kzalloc(sizeof(*cdata), GFP_KERNEL); if (!cdata) return NULL; of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay", &cdata->tx_clk_tap_delay); of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay", &cdata->rx_clk_tap_delay); return cdata; } static void tegra_spi_cleanup(struct spi_device *spi) { struct tegra_spi_client_data *cdata = spi->controller_data; spi->controller_data = NULL; if (spi->dev.of_node) kfree(cdata); } static int tegra_spi_setup(struct spi_device *spi) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); struct tegra_spi_client_data *cdata = spi->controller_data; u32 val; unsigned long flags; int ret; dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n", spi->bits_per_word, spi->mode & SPI_CPOL ? "" : "~", spi->mode & SPI_CPHA ? "" : "~", spi->max_speed_hz); if (!cdata) { cdata = tegra_spi_parse_cdata_dt(spi); spi->controller_data = cdata; } ret = pm_runtime_resume_and_get(tspi->dev); if (ret < 0) { dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret); if (cdata) tegra_spi_cleanup(spi); return ret; } if (tspi->soc_data->has_intr_mask_reg) { val = tegra_spi_readl(tspi, SPI_INTR_MASK); val &= ~SPI_INTR_ALL_MASK; tegra_spi_writel(tspi, val, SPI_INTR_MASK); } spin_lock_irqsave(&tspi->lock, flags); /* GPIO based chip select control */ if (spi_get_csgpiod(spi, 0)) gpiod_set_value(spi_get_csgpiod(spi, 0), 0); val = tspi->def_command1_reg; if (spi->mode & SPI_CS_HIGH) val &= ~SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0)); else val |= SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0)); tspi->def_command1_reg = val; tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); spin_unlock_irqrestore(&tspi->lock, flags); pm_runtime_put(tspi->dev); return 0; } static void tegra_spi_transfer_end(struct spi_device *spi) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1; /* GPIO based chip select control */ if (spi_get_csgpiod(spi, 0)) gpiod_set_value(spi_get_csgpiod(spi, 0), 0); if (!tspi->use_hw_based_cs) { if (cs_val) tspi->command1_reg |= SPI_CS_SW_VAL; else tspi->command1_reg &= ~SPI_CS_SW_VAL; tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1); } tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); } static void tegra_spi_dump_regs(struct tegra_spi_data *tspi) { dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n"); dev_dbg(tspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n", tegra_spi_readl(tspi, SPI_COMMAND1), tegra_spi_readl(tspi, SPI_COMMAND2)); dev_dbg(tspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n", tegra_spi_readl(tspi, SPI_DMA_CTL), tegra_spi_readl(tspi, SPI_DMA_BLK)); dev_dbg(tspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n", tegra_spi_readl(tspi, SPI_TRANS_STATUS), tegra_spi_readl(tspi, SPI_FIFO_STATUS)); } static int tegra_spi_transfer_one_message(struct spi_master *master, struct spi_message *msg) { bool is_first_msg = true; struct tegra_spi_data *tspi = spi_master_get_devdata(master); struct spi_transfer *xfer; struct spi_device *spi = msg->spi; int ret; bool skip = false; int single_xfer; msg->status = 0; msg->actual_length = 0; single_xfer = list_is_singular(&msg->transfers); list_for_each_entry(xfer, &msg->transfers, transfer_list) { u32 cmd1; reinit_completion(&tspi->xfer_completion); cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg, single_xfer); if (!xfer->len) { ret = 0; skip = true; goto complete_xfer; } ret = tegra_spi_start_transfer_one(spi, xfer, cmd1); if (ret < 0) { dev_err(tspi->dev, "spi can not start transfer, err %d\n", ret); goto complete_xfer; } is_first_msg = false; ret = wait_for_completion_timeout(&tspi->xfer_completion, SPI_DMA_TIMEOUT); if (WARN_ON(ret == 0)) { dev_err(tspi->dev, "spi transfer timeout\n"); if (tspi->is_curr_dma_xfer && (tspi->cur_direction & DATA_DIR_TX)) dmaengine_terminate_all(tspi->tx_dma_chan); if (tspi->is_curr_dma_xfer && (tspi->cur_direction & DATA_DIR_RX)) dmaengine_terminate_all(tspi->rx_dma_chan); ret = -EIO; tegra_spi_dump_regs(tspi); tegra_spi_flush_fifos(tspi); reset_control_assert(tspi->rst); udelay(2); reset_control_deassert(tspi->rst); tspi->last_used_cs = master->num_chipselect + 1; goto complete_xfer; } if (tspi->tx_status || tspi->rx_status) { dev_err(tspi->dev, "Error in Transfer\n"); ret = -EIO; tegra_spi_dump_regs(tspi); goto complete_xfer; } msg->actual_length += xfer->len; complete_xfer: if (ret < 0 || skip) { tegra_spi_transfer_end(spi); spi_transfer_delay_exec(xfer); goto exit; } else if (list_is_last(&xfer->transfer_list, &msg->transfers)) { if (xfer->cs_change) tspi->cs_control = spi; else { tegra_spi_transfer_end(spi); spi_transfer_delay_exec(xfer); } } else if (xfer->cs_change) { tegra_spi_transfer_end(spi); spi_transfer_delay_exec(xfer); } } ret = 0; exit: msg->status = ret; spi_finalize_current_message(master); return ret; } static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi) { struct spi_transfer *t = tspi->curr_xfer; unsigned long flags; spin_lock_irqsave(&tspi->lock, flags); if (tspi->tx_status || tspi->rx_status) { dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n", tspi->status_reg); dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n", tspi->command1_reg, tspi->dma_control_reg); tegra_spi_dump_regs(tspi); tegra_spi_flush_fifos(tspi); complete(&tspi->xfer_completion); spin_unlock_irqrestore(&tspi->lock, flags); reset_control_assert(tspi->rst); udelay(2); reset_control_deassert(tspi->rst); return IRQ_HANDLED; } if (tspi->cur_direction & DATA_DIR_RX) tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t); if (tspi->cur_direction & DATA_DIR_TX) tspi->cur_pos = tspi->cur_tx_pos; else tspi->cur_pos = tspi->cur_rx_pos; if (tspi->cur_pos == t->len) { complete(&tspi->xfer_completion); goto exit; } tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); tegra_spi_start_cpu_based_transfer(tspi, t); exit: spin_unlock_irqrestore(&tspi->lock, flags); return IRQ_HANDLED; } static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi) { struct spi_transfer *t = tspi->curr_xfer; long wait_status; int err = 0; unsigned total_fifo_words; unsigned long flags; /* Abort dmas if any error */ if (tspi->cur_direction & DATA_DIR_TX) { if (tspi->tx_status) { dmaengine_terminate_all(tspi->tx_dma_chan); err += 1; } else { wait_status = wait_for_completion_interruptible_timeout( &tspi->tx_dma_complete, SPI_DMA_TIMEOUT); if (wait_status <= 0) { dmaengine_terminate_all(tspi->tx_dma_chan); dev_err(tspi->dev, "TxDma Xfer failed\n"); err += 1; } } } if (tspi->cur_direction & DATA_DIR_RX) { if (tspi->rx_status) { dmaengine_terminate_all(tspi->rx_dma_chan); err += 2; } else { wait_status = wait_for_completion_interruptible_timeout( &tspi->rx_dma_complete, SPI_DMA_TIMEOUT); if (wait_status <= 0) { dmaengine_terminate_all(tspi->rx_dma_chan); dev_err(tspi->dev, "RxDma Xfer failed\n"); err += 2; } } } spin_lock_irqsave(&tspi->lock, flags); if (err) { dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n", tspi->status_reg); dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n", tspi->command1_reg, tspi->dma_control_reg); tegra_spi_dump_regs(tspi); tegra_spi_flush_fifos(tspi); complete(&tspi->xfer_completion); spin_unlock_irqrestore(&tspi->lock, flags); reset_control_assert(tspi->rst); udelay(2); reset_control_deassert(tspi->rst); return IRQ_HANDLED; } if (tspi->cur_direction & DATA_DIR_RX) tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t); if (tspi->cur_direction & DATA_DIR_TX) tspi->cur_pos = tspi->cur_tx_pos; else tspi->cur_pos = tspi->cur_rx_pos; if (tspi->cur_pos == t->len) { complete(&tspi->xfer_completion); goto exit; } /* Continue transfer in current message */ total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); if (total_fifo_words > SPI_FIFO_DEPTH) err = tegra_spi_start_dma_based_transfer(tspi, t); else err = tegra_spi_start_cpu_based_transfer(tspi, t); exit: spin_unlock_irqrestore(&tspi->lock, flags); return IRQ_HANDLED; } static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data) { struct tegra_spi_data *tspi = context_data; if (!tspi->is_curr_dma_xfer) return handle_cpu_based_xfer(tspi); return handle_dma_based_xfer(tspi); } static irqreturn_t tegra_spi_isr(int irq, void *context_data) { struct tegra_spi_data *tspi = context_data; tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS); if (tspi->cur_direction & DATA_DIR_TX) tspi->tx_status = tspi->status_reg & (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF); if (tspi->cur_direction & DATA_DIR_RX) tspi->rx_status = tspi->status_reg & (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF); tegra_spi_clear_status(tspi); return IRQ_WAKE_THREAD; } static struct tegra_spi_soc_data tegra114_spi_soc_data = { .has_intr_mask_reg = false, }; static struct tegra_spi_soc_data tegra124_spi_soc_data = { .has_intr_mask_reg = false, }; static struct tegra_spi_soc_data tegra210_spi_soc_data = { .has_intr_mask_reg = true, }; static const struct of_device_id tegra_spi_of_match[] = { { .compatible = "nvidia,tegra114-spi", .data = &tegra114_spi_soc_data, }, { .compatible = "nvidia,tegra124-spi", .data = &tegra124_spi_soc_data, }, { .compatible = "nvidia,tegra210-spi", .data = &tegra210_spi_soc_data, }, {} }; MODULE_DEVICE_TABLE(of, tegra_spi_of_match); static int tegra_spi_probe(struct platform_device *pdev) { struct spi_master *master; struct tegra_spi_data *tspi; struct resource *r; int ret, spi_irq; int bus_num; master = spi_alloc_master(&pdev->dev, sizeof(*tspi)); if (!master) { dev_err(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } platform_set_drvdata(pdev, master); tspi = spi_master_get_devdata(master); if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency", &master->max_speed_hz)) master->max_speed_hz = 25000000; /* 25MHz */ /* the spi->mode bits understood by this driver: */ master->use_gpio_descriptors = true; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST | SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE; master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); master->setup = tegra_spi_setup; master->cleanup = tegra_spi_cleanup; master->transfer_one_message = tegra_spi_transfer_one_message; master->set_cs_timing = tegra_spi_set_hw_cs_timing; master->num_chipselect = MAX_CHIP_SELECT; master->auto_runtime_pm = true; bus_num = of_alias_get_id(pdev->dev.of_node, "spi"); if (bus_num >= 0) master->bus_num = bus_num; tspi->master = master; tspi->dev = &pdev->dev; spin_lock_init(&tspi->lock); tspi->soc_data = of_device_get_match_data(&pdev->dev); if (!tspi->soc_data) { dev_err(&pdev->dev, "unsupported tegra\n"); ret = -ENODEV; goto exit_free_master; } tspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r); if (IS_ERR(tspi->base)) { ret = PTR_ERR(tspi->base); goto exit_free_master; } tspi->phys = r->start; spi_irq = platform_get_irq(pdev, 0); if (spi_irq < 0) { ret = spi_irq; goto exit_free_master; } tspi->irq = spi_irq; tspi->clk = devm_clk_get(&pdev->dev, "spi"); if (IS_ERR(tspi->clk)) { dev_err(&pdev->dev, "can not get clock\n"); ret = PTR_ERR(tspi->clk); goto exit_free_master; } tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi"); if (IS_ERR(tspi->rst)) { dev_err(&pdev->dev, "can not get reset\n"); ret = PTR_ERR(tspi->rst); goto exit_free_master; } tspi->max_buf_size = SPI_FIFO_DEPTH << 2; tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN; ret = tegra_spi_init_dma_param(tspi, true); if (ret < 0) goto exit_free_master; ret = tegra_spi_init_dma_param(tspi, false); if (ret < 0) goto exit_rx_dma_free; tspi->max_buf_size = tspi->dma_buf_size; init_completion(&tspi->tx_dma_complete); init_completion(&tspi->rx_dma_complete); init_completion(&tspi->xfer_completion); pm_runtime_enable(&pdev->dev); if (!pm_runtime_enabled(&pdev->dev)) { ret = tegra_spi_runtime_resume(&pdev->dev); if (ret) goto exit_pm_disable; } ret = pm_runtime_resume_and_get(&pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); goto exit_pm_disable; } reset_control_assert(tspi->rst); udelay(2); reset_control_deassert(tspi->rst); tspi->def_command1_reg = SPI_M_S; tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1); tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2); tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2); tspi->last_used_cs = master->num_chipselect + 1; pm_runtime_put(&pdev->dev); ret = request_threaded_irq(tspi->irq, tegra_spi_isr, tegra_spi_isr_thread, IRQF_ONESHOT, dev_name(&pdev->dev), tspi); if (ret < 0) { dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n", tspi->irq); goto exit_pm_disable; } master->dev.of_node = pdev->dev.of_node; ret = devm_spi_register_master(&pdev->dev, master); if (ret < 0) { dev_err(&pdev->dev, "can not register to master err %d\n", ret); goto exit_free_irq; } return ret; exit_free_irq: free_irq(spi_irq, tspi); exit_pm_disable: pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) tegra_spi_runtime_suspend(&pdev->dev); tegra_spi_deinit_dma_param(tspi, false); exit_rx_dma_free: tegra_spi_deinit_dma_param(tspi, true); exit_free_master: spi_master_put(master); return ret; } static void tegra_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); free_irq(tspi->irq, tspi); if (tspi->tx_dma_chan) tegra_spi_deinit_dma_param(tspi, false); if (tspi->rx_dma_chan) tegra_spi_deinit_dma_param(tspi, true); pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) tegra_spi_runtime_suspend(&pdev->dev); } #ifdef CONFIG_PM_SLEEP static int tegra_spi_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); return spi_master_suspend(master); } static int tegra_spi_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); int ret; ret = pm_runtime_resume_and_get(dev); if (ret < 0) { dev_err(dev, "pm runtime failed, e = %d\n", ret); return ret; } tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1); tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2); tspi->last_used_cs = master->num_chipselect + 1; pm_runtime_put(dev); return spi_master_resume(master); } #endif static int tegra_spi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); /* Flush all write which are in PPSB queue by reading back */ tegra_spi_readl(tspi, SPI_COMMAND1); clk_disable_unprepare(tspi->clk); return 0; } static int tegra_spi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); int ret; ret = clk_prepare_enable(tspi->clk); if (ret < 0) { dev_err(tspi->dev, "clk_prepare failed: %d\n", ret); return ret; } return 0; } static const struct dev_pm_ops tegra_spi_pm_ops = { SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend, tegra_spi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume) }; static struct platform_driver tegra_spi_driver = { .driver = { .name = "spi-tegra114", .pm = &tegra_spi_pm_ops, .of_match_table = tegra_spi_of_match, }, .probe = tegra_spi_probe, .remove_new = tegra_spi_remove, }; module_platform_driver(tegra_spi_driver); MODULE_ALIAS("platform:spi-tegra114"); MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver"); MODULE_AUTHOR("Laxman Dewangan <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/spi/spi-tegra114.c
// SPDX-License-Identifier: GPL-2.0 /* * SuperH MSIOF SPI Controller Interface * * Copyright (c) 2009 Magnus Damm * Copyright (C) 2014 Renesas Electronics Corporation * Copyright (C) 2014-2017 Glider bvba */ #include <linux/bitmap.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/sh_dma.h> #include <linux/spi/sh_msiof.h> #include <linux/spi/spi.h> #include <asm/unaligned.h> struct sh_msiof_chipdata { u32 bits_per_word_mask; u16 tx_fifo_size; u16 rx_fifo_size; u16 ctlr_flags; u16 min_div_pow; }; struct sh_msiof_spi_priv { struct spi_controller *ctlr; void __iomem *mapbase; struct clk *clk; struct platform_device *pdev; struct sh_msiof_spi_info *info; struct completion done; struct completion done_txdma; unsigned int tx_fifo_size; unsigned int rx_fifo_size; unsigned int min_div_pow; void *tx_dma_page; void *rx_dma_page; dma_addr_t tx_dma_addr; dma_addr_t rx_dma_addr; bool native_cs_inited; bool native_cs_high; bool target_aborted; }; #define MAX_SS 3 /* Maximum number of native chip selects */ #define SITMDR1 0x00 /* Transmit Mode Register 1 */ #define SITMDR2 0x04 /* Transmit Mode Register 2 */ #define SITMDR3 0x08 /* Transmit Mode Register 3 */ #define SIRMDR1 0x10 /* Receive Mode Register 1 */ #define SIRMDR2 0x14 /* Receive Mode Register 2 */ #define SIRMDR3 0x18 /* Receive Mode Register 3 */ #define SITSCR 0x20 /* Transmit Clock Select Register */ #define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ #define SICTR 0x28 /* Control Register */ #define SIFCTR 0x30 /* FIFO Control Register */ #define SISTR 0x40 /* Status Register */ #define SIIER 0x44 /* Interrupt Enable Register */ #define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ #define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ #define SITFDR 0x50 /* Transmit FIFO Data Register */ #define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ #define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ #define SIRFDR 0x60 /* Receive FIFO Data Register */ /* SITMDR1 and SIRMDR1 */ #define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */ #define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */ #define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */ #define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */ #define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ #define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ #define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ #define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ #define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */ #define SIMDR1_FLD_SHIFT 2 #define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */ /* SITMDR1 */ #define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */ #define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */ #define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */ /* SITMDR2 and SIRMDR2 */ #define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ #define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ #define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */ /* SITSCR and SIRSCR */ #define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */ #define SISCR_BRPS(i) (((i) - 1) << 8) #define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */ #define SISCR_BRDV_DIV_2 0 #define SISCR_BRDV_DIV_4 1 #define SISCR_BRDV_DIV_8 2 #define SISCR_BRDV_DIV_16 3 #define SISCR_BRDV_DIV_32 4 #define SISCR_BRDV_DIV_1 7 /* SICTR */ #define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */ #define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */ #define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ #define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */ #define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */ #define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ #define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ #define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ #define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */ #define SICTR_TXDIZ_LOW (0 << 22) /* 0 */ #define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */ #define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */ #define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */ #define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */ #define SICTR_TXE BIT(9) /* Transmit Enable */ #define SICTR_RXE BIT(8) /* Receive Enable */ #define SICTR_TXRST BIT(1) /* Transmit Reset */ #define SICTR_RXRST BIT(0) /* Receive Reset */ /* SIFCTR */ #define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */ #define SIFCTR_TFWM_64 (0 << 29) /* Transfer Request when 64 empty stages */ #define SIFCTR_TFWM_32 (1 << 29) /* Transfer Request when 32 empty stages */ #define SIFCTR_TFWM_24 (2 << 29) /* Transfer Request when 24 empty stages */ #define SIFCTR_TFWM_16 (3 << 29) /* Transfer Request when 16 empty stages */ #define SIFCTR_TFWM_12 (4 << 29) /* Transfer Request when 12 empty stages */ #define SIFCTR_TFWM_8 (5 << 29) /* Transfer Request when 8 empty stages */ #define SIFCTR_TFWM_4 (6 << 29) /* Transfer Request when 4 empty stages */ #define SIFCTR_TFWM_1 (7 << 29) /* Transfer Request when 1 empty stage */ #define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */ #define SIFCTR_TFUA_SHIFT 20 #define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT) #define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */ #define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */ #define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */ #define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */ #define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */ #define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */ #define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */ #define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */ #define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */ #define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */ #define SIFCTR_RFUA_SHIFT 4 #define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT) /* SISTR */ #define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */ #define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */ #define SISTR_TEOF BIT(23) /* Frame Transmission End */ #define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */ #define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */ #define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */ #define SISTR_RFFUL BIT(13) /* Receive FIFO Full */ #define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */ #define SISTR_REOF BIT(7) /* Frame Reception End */ #define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */ #define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */ #define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */ /* SIIER */ #define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */ #define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */ #define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */ #define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */ #define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */ #define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */ #define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */ #define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */ #define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */ #define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */ #define SIIER_REOFE BIT(7) /* Frame Reception End Enable */ #define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */ #define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */ #define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */ static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) { switch (reg_offs) { case SITSCR: case SIRSCR: return ioread16(p->mapbase + reg_offs); default: return ioread32(p->mapbase + reg_offs); } } static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, u32 value) { switch (reg_offs) { case SITSCR: case SIRSCR: iowrite16(value, p->mapbase + reg_offs); break; default: iowrite32(value, p->mapbase + reg_offs); break; } } static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, u32 clr, u32 set) { u32 mask = clr | set; u32 data; data = sh_msiof_read(p, SICTR); data &= ~clr; data |= set; sh_msiof_write(p, SICTR, data); return readl_poll_timeout_atomic(p->mapbase + SICTR, data, (data & mask) == set, 1, 100); } static irqreturn_t sh_msiof_spi_irq(int irq, void *data) { struct sh_msiof_spi_priv *p = data; /* just disable the interrupt and wake up */ sh_msiof_write(p, SIIER, 0); complete(&p->done); return IRQ_HANDLED; } static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p) { u32 mask = SICTR_TXRST | SICTR_RXRST; u32 data; data = sh_msiof_read(p, SICTR); data |= mask; sh_msiof_write(p, SICTR, data); readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1, 100); } static const u32 sh_msiof_spi_div_array[] = { SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4, SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32, }; static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, struct spi_transfer *t) { unsigned long parent_rate = clk_get_rate(p->clk); unsigned int div_pow = p->min_div_pow; u32 spi_hz = t->speed_hz; unsigned long div; u32 brps, scr; if (!spi_hz || !parent_rate) { WARN(1, "Invalid clock rate parameters %lu and %u\n", parent_rate, spi_hz); return; } div = DIV_ROUND_UP(parent_rate, spi_hz); if (div <= 1024) { /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */ if (!div_pow && div <= 32 && div > 2) div_pow = 1; if (div_pow) brps = (div + 1) >> div_pow; else brps = div; for (; brps > 32; div_pow++) brps = (brps + 1) >> 1; } else { /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */ dev_err(&p->pdev->dev, "Requested SPI transfer rate %d is too low\n", spi_hz); div_pow = 5; brps = 32; } t->effective_speed_hz = parent_rate / (brps << div_pow); scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps); sh_msiof_write(p, SITSCR, scr); if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) sh_msiof_write(p, SIRSCR, scr); } static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) { /* * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl * b'000 : 0 * b'001 : 100 * b'010 : 200 * b'011 (SYNCDL only) : 300 * b'101 : 50 * b'110 : 150 */ if (dtdl_or_syncdl % 100) return dtdl_or_syncdl / 100 + 5; else return dtdl_or_syncdl / 100; } static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) { u32 val; if (!p->info) return 0; /* check if DTDL and SYNCDL is allowed value */ if (p->info->dtdl > 200 || p->info->syncdl > 300) { dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); return 0; } /* check if the sum of DTDL and SYNCDL becomes an integer value */ if ((p->info->dtdl + p->info->syncdl) % 100) { dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); return 0; } val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT; val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT; return val; } static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss, u32 cpol, u32 cpha, u32 tx_hi_z, u32 lsb_first, u32 cs_high) { u32 tmp; int edge; /* * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG * 0 0 10 10 1 1 * 0 1 10 10 0 0 * 1 0 11 11 0 0 * 1 1 11 11 1 1 */ tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP; tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT; tmp |= lsb_first << SIMDR1_BITLSB_SHIFT; tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); if (spi_controller_is_target(p->ctlr)) { sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON); } else { sh_msiof_write(p, SITMDR1, tmp | SIMDR1_TRMD | SITMDR1_PCON | (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT); } if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) { /* These bits are reserved if RX needs TX */ tmp &= ~0x0000ffff; } sh_msiof_write(p, SIRMDR1, tmp); tmp = 0; tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT; tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT; edge = cpol ^ !cpha; tmp |= edge << SICTR_TEDG_SHIFT; tmp |= edge << SICTR_REDG_SHIFT; tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW; sh_msiof_write(p, SICTR, tmp); } static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, const void *tx_buf, void *rx_buf, u32 bits, u32 words) { u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words); if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) sh_msiof_write(p, SITMDR2, dr2); else sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1); if (rx_buf) sh_msiof_write(p, SIRMDR2, dr2); } static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) { sh_msiof_write(p, SISTR, sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ)); } static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u8 *buf_8 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, buf_8[k] << fs); } static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u16 *buf_16 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, buf_16[k] << fs); } static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u16 *buf_16 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs); } static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, buf_32[k] << fs); } static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs); } static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs)); } static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs)); } static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u8 *buf_8 = rx_buf; int k; for (k = 0; k < words; k++) buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs; } static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u16 *buf_16 = rx_buf; int k; for (k = 0; k < words; k++) buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs; } static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u16 *buf_16 = rx_buf; int k; for (k = 0; k < words; k++) put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]); } static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs; } static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]); } static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs); } static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]); } static int sh_msiof_spi_setup(struct spi_device *spi) { struct sh_msiof_spi_priv *p = spi_controller_get_devdata(spi->controller); u32 clr, set, tmp; if (spi_get_csgpiod(spi, 0) || spi_controller_is_target(p->ctlr)) return 0; if (p->native_cs_inited && (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH))) return 0; /* Configure native chip select mode/polarity early */ clr = SIMDR1_SYNCMD_MASK; set = SIMDR1_SYNCMD_SPI; if (spi->mode & SPI_CS_HIGH) clr |= BIT(SIMDR1_SYNCAC_SHIFT); else set |= BIT(SIMDR1_SYNCAC_SHIFT); pm_runtime_get_sync(&p->pdev->dev); tmp = sh_msiof_read(p, SITMDR1) & ~clr; sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON); tmp = sh_msiof_read(p, SIRMDR1) & ~clr; sh_msiof_write(p, SIRMDR1, tmp | set); pm_runtime_put(&p->pdev->dev); p->native_cs_high = spi->mode & SPI_CS_HIGH; p->native_cs_inited = true; return 0; } static int sh_msiof_prepare_message(struct spi_controller *ctlr, struct spi_message *msg) { struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); const struct spi_device *spi = msg->spi; u32 ss, cs_high; /* Configure pins before asserting CS */ if (spi_get_csgpiod(spi, 0)) { ss = ctlr->unused_native_cs; cs_high = p->native_cs_high; } else { ss = spi_get_chipselect(spi, 0); cs_high = !!(spi->mode & SPI_CS_HIGH); } sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL), !!(spi->mode & SPI_CPHA), !!(spi->mode & SPI_3WIRE), !!(spi->mode & SPI_LSB_FIRST), cs_high); return 0; } static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) { bool target = spi_controller_is_target(p->ctlr); int ret = 0; /* setup clock and rx/tx signals */ if (!target) ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE); if (rx_buf && !ret) ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE); if (!ret) ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE); /* start by setting frame bit */ if (!ret && !target) ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE); return ret; } static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) { bool target = spi_controller_is_target(p->ctlr); int ret = 0; /* shut down frame, rx/tx and clock signals */ if (!target) ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0); if (!ret) ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0); if (rx_buf && !ret) ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0); if (!ret && !target) ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0); return ret; } static int sh_msiof_target_abort(struct spi_controller *ctlr) { struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); p->target_aborted = true; complete(&p->done); complete(&p->done_txdma); return 0; } static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p, struct completion *x) { if (spi_controller_is_target(p->ctlr)) { if (wait_for_completion_interruptible(x) || p->target_aborted) { dev_dbg(&p->pdev->dev, "interrupted\n"); return -EINTR; } } else { if (!wait_for_completion_timeout(x, HZ)) { dev_err(&p->pdev->dev, "timeout\n"); return -ETIMEDOUT; } } return 0; } static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int), void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int), const void *tx_buf, void *rx_buf, int words, int bits) { int fifo_shift; int ret; /* limit maximum word transfer to rx/tx fifo size */ if (tx_buf) words = min_t(int, words, p->tx_fifo_size); if (rx_buf) words = min_t(int, words, p->rx_fifo_size); /* the fifo contents need shifting */ fifo_shift = 32 - bits; /* default FIFO watermarks for PIO */ sh_msiof_write(p, SIFCTR, 0); /* setup msiof transfer mode registers */ sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE); /* write tx fifo */ if (tx_buf) tx_fifo(p, tx_buf, words, fifo_shift); reinit_completion(&p->done); p->target_aborted = false; ret = sh_msiof_spi_start(p, rx_buf); if (ret) { dev_err(&p->pdev->dev, "failed to start hardware\n"); goto stop_ier; } /* wait for tx fifo to be emptied / rx fifo to be filled */ ret = sh_msiof_wait_for_completion(p, &p->done); if (ret) goto stop_reset; /* read rx fifo */ if (rx_buf) rx_fifo(p, rx_buf, words, fifo_shift); /* clear status bits */ sh_msiof_reset_str(p); ret = sh_msiof_spi_stop(p, rx_buf); if (ret) { dev_err(&p->pdev->dev, "failed to shut down hardware\n"); return ret; } return words; stop_reset: sh_msiof_reset_str(p); sh_msiof_spi_stop(p, rx_buf); stop_ier: sh_msiof_write(p, SIIER, 0); return ret; } static void sh_msiof_dma_complete(void *arg) { complete(arg); } static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, void *rx, unsigned int len) { u32 ier_bits = 0; struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; dma_cookie_t cookie; int ret; /* First prepare and submit the DMA request(s), as this may fail */ if (rx) { ier_bits |= SIIER_RDREQE | SIIER_RDMAE; desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx, p->rx_dma_addr, len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_rx) return -EAGAIN; desc_rx->callback = sh_msiof_dma_complete; desc_rx->callback_param = &p->done; cookie = dmaengine_submit(desc_rx); if (dma_submit_error(cookie)) return cookie; } if (tx) { ier_bits |= SIIER_TDREQE | SIIER_TDMAE; dma_sync_single_for_device(p->ctlr->dma_tx->device->dev, p->tx_dma_addr, len, DMA_TO_DEVICE); desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx, p->tx_dma_addr, len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_tx) { ret = -EAGAIN; goto no_dma_tx; } desc_tx->callback = sh_msiof_dma_complete; desc_tx->callback_param = &p->done_txdma; cookie = dmaengine_submit(desc_tx); if (dma_submit_error(cookie)) { ret = cookie; goto no_dma_tx; } } /* 1 stage FIFO watermarks for DMA */ sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1); /* setup msiof transfer mode registers (32-bit words) */ sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); sh_msiof_write(p, SIIER, ier_bits); reinit_completion(&p->done); if (tx) reinit_completion(&p->done_txdma); p->target_aborted = false; /* Now start DMA */ if (rx) dma_async_issue_pending(p->ctlr->dma_rx); if (tx) dma_async_issue_pending(p->ctlr->dma_tx); ret = sh_msiof_spi_start(p, rx); if (ret) { dev_err(&p->pdev->dev, "failed to start hardware\n"); goto stop_dma; } if (tx) { /* wait for tx DMA completion */ ret = sh_msiof_wait_for_completion(p, &p->done_txdma); if (ret) goto stop_reset; } if (rx) { /* wait for rx DMA completion */ ret = sh_msiof_wait_for_completion(p, &p->done); if (ret) goto stop_reset; sh_msiof_write(p, SIIER, 0); } else { /* wait for tx fifo to be emptied */ sh_msiof_write(p, SIIER, SIIER_TEOFE); ret = sh_msiof_wait_for_completion(p, &p->done); if (ret) goto stop_reset; } /* clear status bits */ sh_msiof_reset_str(p); ret = sh_msiof_spi_stop(p, rx); if (ret) { dev_err(&p->pdev->dev, "failed to shut down hardware\n"); return ret; } if (rx) dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev, p->rx_dma_addr, len, DMA_FROM_DEVICE); return 0; stop_reset: sh_msiof_reset_str(p); sh_msiof_spi_stop(p, rx); stop_dma: if (tx) dmaengine_terminate_sync(p->ctlr->dma_tx); no_dma_tx: if (rx) dmaengine_terminate_sync(p->ctlr->dma_rx); sh_msiof_write(p, SIIER, 0); return ret; } static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) { /* src or dst can be unaligned, but not both */ if ((unsigned long)src & 3) { while (words--) { *dst++ = swab32(get_unaligned(src)); src++; } } else if ((unsigned long)dst & 3) { while (words--) { put_unaligned(swab32(*src++), dst); dst++; } } else { while (words--) *dst++ = swab32(*src++); } } static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) { /* src or dst can be unaligned, but not both */ if ((unsigned long)src & 3) { while (words--) { *dst++ = swahw32(get_unaligned(src)); src++; } } else if ((unsigned long)dst & 3) { while (words--) { put_unaligned(swahw32(*src++), dst); dst++; } } else { while (words--) *dst++ = swahw32(*src++); } } static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) { memcpy(dst, src, words * 4); } static int sh_msiof_transfer_one(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *t) { struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); void (*copy32)(u32 *, const u32 *, unsigned int); void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); const void *tx_buf = t->tx_buf; void *rx_buf = t->rx_buf; unsigned int len = t->len; unsigned int bits = t->bits_per_word; unsigned int bytes_per_word; unsigned int words; int n; bool swab; int ret; /* reset registers */ sh_msiof_spi_reset_regs(p); /* setup clocks (clock already enabled in chipselect()) */ if (!spi_controller_is_target(p->ctlr)) sh_msiof_spi_set_clk_regs(p, t); while (ctlr->dma_tx && len > 15) { /* * DMA supports 32-bit words only, hence pack 8-bit and 16-bit * words, with byte resp. word swapping. */ unsigned int l = 0; if (tx_buf) l = min(round_down(len, 4), p->tx_fifo_size * 4); if (rx_buf) l = min(round_down(len, 4), p->rx_fifo_size * 4); if (bits <= 8) { copy32 = copy_bswap32; } else if (bits <= 16) { copy32 = copy_wswap32; } else { copy32 = copy_plain32; } if (tx_buf) copy32(p->tx_dma_page, tx_buf, l / 4); ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); if (ret == -EAGAIN) { dev_warn_once(&p->pdev->dev, "DMA not available, falling back to PIO\n"); break; } if (ret) return ret; if (rx_buf) { copy32(rx_buf, p->rx_dma_page, l / 4); rx_buf += l; } if (tx_buf) tx_buf += l; len -= l; if (!len) return 0; } if (bits <= 8 && len > 15) { bits = 32; swab = true; } else { swab = false; } /* setup bytes per word and fifo read/write functions */ if (bits <= 8) { bytes_per_word = 1; tx_fifo = sh_msiof_spi_write_fifo_8; rx_fifo = sh_msiof_spi_read_fifo_8; } else if (bits <= 16) { bytes_per_word = 2; if ((unsigned long)tx_buf & 0x01) tx_fifo = sh_msiof_spi_write_fifo_16u; else tx_fifo = sh_msiof_spi_write_fifo_16; if ((unsigned long)rx_buf & 0x01) rx_fifo = sh_msiof_spi_read_fifo_16u; else rx_fifo = sh_msiof_spi_read_fifo_16; } else if (swab) { bytes_per_word = 4; if ((unsigned long)tx_buf & 0x03) tx_fifo = sh_msiof_spi_write_fifo_s32u; else tx_fifo = sh_msiof_spi_write_fifo_s32; if ((unsigned long)rx_buf & 0x03) rx_fifo = sh_msiof_spi_read_fifo_s32u; else rx_fifo = sh_msiof_spi_read_fifo_s32; } else { bytes_per_word = 4; if ((unsigned long)tx_buf & 0x03) tx_fifo = sh_msiof_spi_write_fifo_32u; else tx_fifo = sh_msiof_spi_write_fifo_32; if ((unsigned long)rx_buf & 0x03) rx_fifo = sh_msiof_spi_read_fifo_32u; else rx_fifo = sh_msiof_spi_read_fifo_32; } /* transfer in fifo sized chunks */ words = len / bytes_per_word; while (words > 0) { n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, words, bits); if (n < 0) return n; if (tx_buf) tx_buf += n * bytes_per_word; if (rx_buf) rx_buf += n * bytes_per_word; words -= n; if (words == 0 && (len % bytes_per_word)) { words = len % bytes_per_word; bits = t->bits_per_word; bytes_per_word = 1; tx_fifo = sh_msiof_spi_write_fifo_8; rx_fifo = sh_msiof_spi_read_fifo_8; } } return 0; } static const struct sh_msiof_chipdata sh_data = { .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32), .tx_fifo_size = 64, .rx_fifo_size = 64, .ctlr_flags = 0, .min_div_pow = 0, }; static const struct sh_msiof_chipdata rcar_gen2_data = { .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | SPI_BPW_MASK(24) | SPI_BPW_MASK(32), .tx_fifo_size = 64, .rx_fifo_size = 64, .ctlr_flags = SPI_CONTROLLER_MUST_TX, .min_div_pow = 0, }; static const struct sh_msiof_chipdata rcar_gen3_data = { .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | SPI_BPW_MASK(24) | SPI_BPW_MASK(32), .tx_fifo_size = 64, .rx_fifo_size = 64, .ctlr_flags = SPI_CONTROLLER_MUST_TX, .min_div_pow = 1, }; static const struct of_device_id sh_msiof_match[] __maybe_unused = { { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data }, { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data }, { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data }, { .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data }, { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */ {}, }; MODULE_DEVICE_TABLE(of, sh_msiof_match); #ifdef CONFIG_OF static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) { struct sh_msiof_spi_info *info; struct device_node *np = dev->of_node; u32 num_cs = 1; info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); if (!info) return NULL; info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_TARGET : MSIOF_SPI_HOST; /* Parse the MSIOF properties */ if (info->mode == MSIOF_SPI_HOST) of_property_read_u32(np, "num-cs", &num_cs); of_property_read_u32(np, "renesas,tx-fifo-size", &info->tx_fifo_override); of_property_read_u32(np, "renesas,rx-fifo-size", &info->rx_fifo_override); of_property_read_u32(np, "renesas,dtdl", &info->dtdl); of_property_read_u32(np, "renesas,syncdl", &info->syncdl); info->num_chipselect = num_cs; return info; } #else static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) { return NULL; } #endif static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) { dma_cap_mask_t mask; struct dma_chan *chan; struct dma_slave_config cfg; int ret; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, (void *)(unsigned long)id, dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx"); if (!chan) { dev_warn(dev, "dma_request_slave_channel_compat failed\n"); return NULL; } memset(&cfg, 0, sizeof(cfg)); cfg.direction = dir; if (dir == DMA_MEM_TO_DEV) { cfg.dst_addr = port_addr; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; } else { cfg.src_addr = port_addr; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; } ret = dmaengine_slave_config(chan, &cfg); if (ret) { dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); dma_release_channel(chan); return NULL; } return chan; } static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) { struct platform_device *pdev = p->pdev; struct device *dev = &pdev->dev; const struct sh_msiof_spi_info *info = p->info; unsigned int dma_tx_id, dma_rx_id; const struct resource *res; struct spi_controller *ctlr; struct device *tx_dev, *rx_dev; if (dev->of_node) { /* In the OF case we will get the slave IDs from the DT */ dma_tx_id = 0; dma_rx_id = 0; } else if (info && info->dma_tx_id && info->dma_rx_id) { dma_tx_id = info->dma_tx_id; dma_rx_id = info->dma_rx_id; } else { /* The driver assumes no error */ return 0; } /* The DMA engine uses the second register set, if present */ res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res) res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ctlr = p->ctlr; ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id, res->start + SITFDR); if (!ctlr->dma_tx) return -ENODEV; ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id, res->start + SIRFDR); if (!ctlr->dma_rx) goto free_tx_chan; p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); if (!p->tx_dma_page) goto free_rx_chan; p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); if (!p->rx_dma_page) goto free_tx_page; tx_dev = ctlr->dma_tx->device->dev; p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(tx_dev, p->tx_dma_addr)) goto free_rx_page; rx_dev = ctlr->dma_rx->device->dev; p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(rx_dev, p->rx_dma_addr)) goto unmap_tx_page; dev_info(dev, "DMA available"); return 0; unmap_tx_page: dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); free_rx_page: free_page((unsigned long)p->rx_dma_page); free_tx_page: free_page((unsigned long)p->tx_dma_page); free_rx_chan: dma_release_channel(ctlr->dma_rx); free_tx_chan: dma_release_channel(ctlr->dma_tx); ctlr->dma_tx = NULL; return -ENODEV; } static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) { struct spi_controller *ctlr = p->ctlr; if (!ctlr->dma_tx) return; dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); free_page((unsigned long)p->rx_dma_page); free_page((unsigned long)p->tx_dma_page); dma_release_channel(ctlr->dma_rx); dma_release_channel(ctlr->dma_tx); } static int sh_msiof_spi_probe(struct platform_device *pdev) { struct spi_controller *ctlr; const struct sh_msiof_chipdata *chipdata; struct sh_msiof_spi_info *info; struct sh_msiof_spi_priv *p; unsigned long clksrc; int i; int ret; chipdata = of_device_get_match_data(&pdev->dev); if (chipdata) { info = sh_msiof_spi_parse_dt(&pdev->dev); } else { chipdata = (const void *)pdev->id_entry->driver_data; info = dev_get_platdata(&pdev->dev); } if (!info) { dev_err(&pdev->dev, "failed to obtain device info\n"); return -ENXIO; } if (info->mode == MSIOF_SPI_TARGET) ctlr = spi_alloc_target(&pdev->dev, sizeof(struct sh_msiof_spi_priv)); else ctlr = spi_alloc_host(&pdev->dev, sizeof(struct sh_msiof_spi_priv)); if (ctlr == NULL) return -ENOMEM; p = spi_controller_get_devdata(ctlr); platform_set_drvdata(pdev, p); p->ctlr = ctlr; p->info = info; p->min_div_pow = chipdata->min_div_pow; init_completion(&p->done); init_completion(&p->done_txdma); p->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(p->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); ret = PTR_ERR(p->clk); goto err1; } i = platform_get_irq(pdev, 0); if (i < 0) { ret = i; goto err1; } p->mapbase = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(p->mapbase)) { ret = PTR_ERR(p->mapbase); goto err1; } ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, dev_name(&pdev->dev), p); if (ret) { dev_err(&pdev->dev, "unable to request irq\n"); goto err1; } p->pdev = pdev; pm_runtime_enable(&pdev->dev); /* Platform data may override FIFO sizes */ p->tx_fifo_size = chipdata->tx_fifo_size; p->rx_fifo_size = chipdata->rx_fifo_size; if (p->info->tx_fifo_override) p->tx_fifo_size = p->info->tx_fifo_override; if (p->info->rx_fifo_override) p->rx_fifo_size = p->info->rx_fifo_override; /* init controller code */ ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; clksrc = clk_get_rate(p->clk); ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024); ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow); ctlr->flags = chipdata->ctlr_flags; ctlr->bus_num = pdev->id; ctlr->num_chipselect = p->info->num_chipselect; ctlr->dev.of_node = pdev->dev.of_node; ctlr->setup = sh_msiof_spi_setup; ctlr->prepare_message = sh_msiof_prepare_message; ctlr->target_abort = sh_msiof_target_abort; ctlr->bits_per_word_mask = chipdata->bits_per_word_mask; ctlr->auto_runtime_pm = true; ctlr->transfer_one = sh_msiof_transfer_one; ctlr->use_gpio_descriptors = true; ctlr->max_native_cs = MAX_SS; ret = sh_msiof_request_dma(p); if (ret < 0) dev_warn(&pdev->dev, "DMA not available, using PIO\n"); ret = devm_spi_register_controller(&pdev->dev, ctlr); if (ret < 0) { dev_err(&pdev->dev, "devm_spi_register_controller error.\n"); goto err2; } return 0; err2: sh_msiof_release_dma(p); pm_runtime_disable(&pdev->dev); err1: spi_controller_put(ctlr); return ret; } static void sh_msiof_spi_remove(struct platform_device *pdev) { struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); sh_msiof_release_dma(p); pm_runtime_disable(&pdev->dev); } static const struct platform_device_id spi_driver_ids[] = { { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, {}, }; MODULE_DEVICE_TABLE(platform, spi_driver_ids); #ifdef CONFIG_PM_SLEEP static int sh_msiof_spi_suspend(struct device *dev) { struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); return spi_controller_suspend(p->ctlr); } static int sh_msiof_spi_resume(struct device *dev) { struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); return spi_controller_resume(p->ctlr); } static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend, sh_msiof_spi_resume); #define DEV_PM_OPS (&sh_msiof_spi_pm_ops) #else #define DEV_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static struct platform_driver sh_msiof_spi_drv = { .probe = sh_msiof_spi_probe, .remove_new = sh_msiof_spi_remove, .id_table = spi_driver_ids, .driver = { .name = "spi_sh_msiof", .pm = DEV_PM_OPS, .of_match_table = of_match_ptr(sh_msiof_match), }, }; module_platform_driver(sh_msiof_spi_drv); MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver"); MODULE_AUTHOR("Magnus Damm"); MODULE_LICENSE("GPL v2");
linux-master
drivers/spi/spi-sh-msiof.c
// SPDX-License-Identifier: GPL-2.0+ // Cadence XSPI flash controller driver // Copyright (C) 2020-21 Cadence #include <linux/completion.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> #include <linux/bitfield.h> #include <linux/limits.h> #include <linux/log2.h> #define CDNS_XSPI_MAGIC_NUM_VALUE 0x6522 #define CDNS_XSPI_MAX_BANKS 8 #define CDNS_XSPI_NAME "cadence-xspi" /* * Note: below are additional auxiliary registers to * configure XSPI controller pin-strap settings */ /* PHY DQ timing register */ #define CDNS_XSPI_CCP_PHY_DQ_TIMING 0x0000 /* PHY DQS timing register */ #define CDNS_XSPI_CCP_PHY_DQS_TIMING 0x0004 /* PHY gate loopback control register */ #define CDNS_XSPI_CCP_PHY_GATE_LPBCK_CTRL 0x0008 /* PHY DLL slave control register */ #define CDNS_XSPI_CCP_PHY_DLL_SLAVE_CTRL 0x0010 /* DLL PHY control register */ #define CDNS_XSPI_DLL_PHY_CTRL 0x1034 /* Command registers */ #define CDNS_XSPI_CMD_REG_0 0x0000 #define CDNS_XSPI_CMD_REG_1 0x0004 #define CDNS_XSPI_CMD_REG_2 0x0008 #define CDNS_XSPI_CMD_REG_3 0x000C #define CDNS_XSPI_CMD_REG_4 0x0010 #define CDNS_XSPI_CMD_REG_5 0x0014 /* Command status registers */ #define CDNS_XSPI_CMD_STATUS_REG 0x0044 /* Controller status register */ #define CDNS_XSPI_CTRL_STATUS_REG 0x0100 #define CDNS_XSPI_INIT_COMPLETED BIT(16) #define CDNS_XSPI_INIT_LEGACY BIT(9) #define CDNS_XSPI_INIT_FAIL BIT(8) #define CDNS_XSPI_CTRL_BUSY BIT(7) /* Controller interrupt status register */ #define CDNS_XSPI_INTR_STATUS_REG 0x0110 #define CDNS_XSPI_STIG_DONE BIT(23) #define CDNS_XSPI_SDMA_ERROR BIT(22) #define CDNS_XSPI_SDMA_TRIGGER BIT(21) #define CDNS_XSPI_CMD_IGNRD_EN BIT(20) #define CDNS_XSPI_DDMA_TERR_EN BIT(18) #define CDNS_XSPI_CDMA_TREE_EN BIT(17) #define CDNS_XSPI_CTRL_IDLE_EN BIT(16) #define CDNS_XSPI_TRD_COMP_INTR_STATUS 0x0120 #define CDNS_XSPI_TRD_ERR_INTR_STATUS 0x0130 #define CDNS_XSPI_TRD_ERR_INTR_EN 0x0134 /* Controller interrupt enable register */ #define CDNS_XSPI_INTR_ENABLE_REG 0x0114 #define CDNS_XSPI_INTR_EN BIT(31) #define CDNS_XSPI_STIG_DONE_EN BIT(23) #define CDNS_XSPI_SDMA_ERROR_EN BIT(22) #define CDNS_XSPI_SDMA_TRIGGER_EN BIT(21) #define CDNS_XSPI_INTR_MASK (CDNS_XSPI_INTR_EN | \ CDNS_XSPI_STIG_DONE_EN | \ CDNS_XSPI_SDMA_ERROR_EN | \ CDNS_XSPI_SDMA_TRIGGER_EN) /* Controller config register */ #define CDNS_XSPI_CTRL_CONFIG_REG 0x0230 #define CDNS_XSPI_CTRL_WORK_MODE GENMASK(6, 5) #define CDNS_XSPI_WORK_MODE_DIRECT 0 #define CDNS_XSPI_WORK_MODE_STIG 1 #define CDNS_XSPI_WORK_MODE_ACMD 3 /* SDMA trigger transaction registers */ #define CDNS_XSPI_SDMA_SIZE_REG 0x0240 #define CDNS_XSPI_SDMA_TRD_INFO_REG 0x0244 #define CDNS_XSPI_SDMA_DIR BIT(8) /* Controller features register */ #define CDNS_XSPI_CTRL_FEATURES_REG 0x0F04 #define CDNS_XSPI_NUM_BANKS GENMASK(25, 24) #define CDNS_XSPI_DMA_DATA_WIDTH BIT(21) #define CDNS_XSPI_NUM_THREADS GENMASK(3, 0) /* Controller version register */ #define CDNS_XSPI_CTRL_VERSION_REG 0x0F00 #define CDNS_XSPI_MAGIC_NUM GENMASK(31, 16) #define CDNS_XSPI_CTRL_REV GENMASK(7, 0) /* STIG Profile 1.0 instruction fields (split into registers) */ #define CDNS_XSPI_CMD_INSTR_TYPE GENMASK(6, 0) #define CDNS_XSPI_CMD_P1_R1_ADDR0 GENMASK(31, 24) #define CDNS_XSPI_CMD_P1_R2_ADDR1 GENMASK(7, 0) #define CDNS_XSPI_CMD_P1_R2_ADDR2 GENMASK(15, 8) #define CDNS_XSPI_CMD_P1_R2_ADDR3 GENMASK(23, 16) #define CDNS_XSPI_CMD_P1_R2_ADDR4 GENMASK(31, 24) #define CDNS_XSPI_CMD_P1_R3_ADDR5 GENMASK(7, 0) #define CDNS_XSPI_CMD_P1_R3_CMD GENMASK(23, 16) #define CDNS_XSPI_CMD_P1_R3_NUM_ADDR_BYTES GENMASK(30, 28) #define CDNS_XSPI_CMD_P1_R4_ADDR_IOS GENMASK(1, 0) #define CDNS_XSPI_CMD_P1_R4_CMD_IOS GENMASK(9, 8) #define CDNS_XSPI_CMD_P1_R4_BANK GENMASK(14, 12) /* STIG data sequence instruction fields (split into registers) */ #define CDNS_XSPI_CMD_DSEQ_R2_DCNT_L GENMASK(31, 16) #define CDNS_XSPI_CMD_DSEQ_R3_DCNT_H GENMASK(15, 0) #define CDNS_XSPI_CMD_DSEQ_R3_NUM_OF_DUMMY GENMASK(25, 20) #define CDNS_XSPI_CMD_DSEQ_R4_BANK GENMASK(14, 12) #define CDNS_XSPI_CMD_DSEQ_R4_DATA_IOS GENMASK(9, 8) #define CDNS_XSPI_CMD_DSEQ_R4_DIR BIT(4) /* STIG command status fields */ #define CDNS_XSPI_CMD_STATUS_COMPLETED BIT(15) #define CDNS_XSPI_CMD_STATUS_FAILED BIT(14) #define CDNS_XSPI_CMD_STATUS_DQS_ERROR BIT(3) #define CDNS_XSPI_CMD_STATUS_CRC_ERROR BIT(2) #define CDNS_XSPI_CMD_STATUS_BUS_ERROR BIT(1) #define CDNS_XSPI_CMD_STATUS_INV_SEQ_ERROR BIT(0) #define CDNS_XSPI_STIG_DONE_FLAG BIT(0) #define CDNS_XSPI_TRD_STATUS 0x0104 /* Helper macros for filling command registers */ #define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_1(op, data_phase) ( \ FIELD_PREP(CDNS_XSPI_CMD_INSTR_TYPE, (data_phase) ? \ CDNS_XSPI_STIG_INSTR_TYPE_1 : CDNS_XSPI_STIG_INSTR_TYPE_0) | \ FIELD_PREP(CDNS_XSPI_CMD_P1_R1_ADDR0, (op)->addr.val & 0xff)) #define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_2(op) ( \ FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR1, ((op)->addr.val >> 8) & 0xFF) | \ FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR2, ((op)->addr.val >> 16) & 0xFF) | \ FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR3, ((op)->addr.val >> 24) & 0xFF) | \ FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR4, ((op)->addr.val >> 32) & 0xFF)) #define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_3(op) ( \ FIELD_PREP(CDNS_XSPI_CMD_P1_R3_ADDR5, ((op)->addr.val >> 40) & 0xFF) | \ FIELD_PREP(CDNS_XSPI_CMD_P1_R3_CMD, (op)->cmd.opcode) | \ FIELD_PREP(CDNS_XSPI_CMD_P1_R3_NUM_ADDR_BYTES, (op)->addr.nbytes)) #define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_4(op, chipsel) ( \ FIELD_PREP(CDNS_XSPI_CMD_P1_R4_ADDR_IOS, ilog2((op)->addr.buswidth)) | \ FIELD_PREP(CDNS_XSPI_CMD_P1_R4_CMD_IOS, ilog2((op)->cmd.buswidth)) | \ FIELD_PREP(CDNS_XSPI_CMD_P1_R4_BANK, chipsel)) #define CDNS_XSPI_CMD_FLD_DSEQ_CMD_1(op) \ FIELD_PREP(CDNS_XSPI_CMD_INSTR_TYPE, CDNS_XSPI_STIG_INSTR_TYPE_DATA_SEQ) #define CDNS_XSPI_CMD_FLD_DSEQ_CMD_2(op) \ FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R2_DCNT_L, (op)->data.nbytes & 0xFFFF) #define CDNS_XSPI_CMD_FLD_DSEQ_CMD_3(op) ( \ FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R3_DCNT_H, \ ((op)->data.nbytes >> 16) & 0xffff) | \ FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R3_NUM_OF_DUMMY, \ (op)->dummy.buswidth != 0 ? \ (((op)->dummy.nbytes * 8) / (op)->dummy.buswidth) : \ 0)) #define CDNS_XSPI_CMD_FLD_DSEQ_CMD_4(op, chipsel) ( \ FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_BANK, chipsel) | \ FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_DATA_IOS, \ ilog2((op)->data.buswidth)) | \ FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_DIR, \ ((op)->data.dir == SPI_MEM_DATA_IN) ? \ CDNS_XSPI_STIG_CMD_DIR_READ : CDNS_XSPI_STIG_CMD_DIR_WRITE)) enum cdns_xspi_stig_instr_type { CDNS_XSPI_STIG_INSTR_TYPE_0, CDNS_XSPI_STIG_INSTR_TYPE_1, CDNS_XSPI_STIG_INSTR_TYPE_DATA_SEQ = 127, }; enum cdns_xspi_sdma_dir { CDNS_XSPI_SDMA_DIR_READ, CDNS_XSPI_SDMA_DIR_WRITE, }; enum cdns_xspi_stig_cmd_dir { CDNS_XSPI_STIG_CMD_DIR_READ, CDNS_XSPI_STIG_CMD_DIR_WRITE, }; struct cdns_xspi_dev { struct platform_device *pdev; struct device *dev; void __iomem *iobase; void __iomem *auxbase; void __iomem *sdmabase; int irq; int cur_cs; unsigned int sdmasize; struct completion cmd_complete; struct completion auto_cmd_complete; struct completion sdma_complete; bool sdma_error; void *in_buffer; const void *out_buffer; u8 hw_num_banks; }; static int cdns_xspi_wait_for_controller_idle(struct cdns_xspi_dev *cdns_xspi) { u32 ctrl_stat; return readl_relaxed_poll_timeout(cdns_xspi->iobase + CDNS_XSPI_CTRL_STATUS_REG, ctrl_stat, ((ctrl_stat & CDNS_XSPI_CTRL_BUSY) == 0), 100, 1000); } static void cdns_xspi_trigger_command(struct cdns_xspi_dev *cdns_xspi, u32 cmd_regs[6]) { writel(cmd_regs[5], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_5); writel(cmd_regs[4], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_4); writel(cmd_regs[3], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_3); writel(cmd_regs[2], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_2); writel(cmd_regs[1], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_1); writel(cmd_regs[0], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_0); } static int cdns_xspi_check_command_status(struct cdns_xspi_dev *cdns_xspi) { int ret = 0; u32 cmd_status = readl(cdns_xspi->iobase + CDNS_XSPI_CMD_STATUS_REG); if (cmd_status & CDNS_XSPI_CMD_STATUS_COMPLETED) { if ((cmd_status & CDNS_XSPI_CMD_STATUS_FAILED) != 0) { if (cmd_status & CDNS_XSPI_CMD_STATUS_DQS_ERROR) { dev_err(cdns_xspi->dev, "Incorrect DQS pulses detected\n"); ret = -EPROTO; } if (cmd_status & CDNS_XSPI_CMD_STATUS_CRC_ERROR) { dev_err(cdns_xspi->dev, "CRC error received\n"); ret = -EPROTO; } if (cmd_status & CDNS_XSPI_CMD_STATUS_BUS_ERROR) { dev_err(cdns_xspi->dev, "Error resp on system DMA interface\n"); ret = -EPROTO; } if (cmd_status & CDNS_XSPI_CMD_STATUS_INV_SEQ_ERROR) { dev_err(cdns_xspi->dev, "Invalid command sequence detected\n"); ret = -EPROTO; } } } else { dev_err(cdns_xspi->dev, "Fatal err - command not completed\n"); ret = -EPROTO; } return ret; } static void cdns_xspi_set_interrupts(struct cdns_xspi_dev *cdns_xspi, bool enabled) { u32 intr_enable; intr_enable = readl(cdns_xspi->iobase + CDNS_XSPI_INTR_ENABLE_REG); if (enabled) intr_enable |= CDNS_XSPI_INTR_MASK; else intr_enable &= ~CDNS_XSPI_INTR_MASK; writel(intr_enable, cdns_xspi->iobase + CDNS_XSPI_INTR_ENABLE_REG); } static int cdns_xspi_controller_init(struct cdns_xspi_dev *cdns_xspi) { u32 ctrl_ver; u32 ctrl_features; u16 hw_magic_num; ctrl_ver = readl(cdns_xspi->iobase + CDNS_XSPI_CTRL_VERSION_REG); hw_magic_num = FIELD_GET(CDNS_XSPI_MAGIC_NUM, ctrl_ver); if (hw_magic_num != CDNS_XSPI_MAGIC_NUM_VALUE) { dev_err(cdns_xspi->dev, "Incorrect XSPI magic number: %x, expected: %x\n", hw_magic_num, CDNS_XSPI_MAGIC_NUM_VALUE); return -EIO; } ctrl_features = readl(cdns_xspi->iobase + CDNS_XSPI_CTRL_FEATURES_REG); cdns_xspi->hw_num_banks = FIELD_GET(CDNS_XSPI_NUM_BANKS, ctrl_features); cdns_xspi_set_interrupts(cdns_xspi, false); return 0; } static void cdns_xspi_sdma_handle(struct cdns_xspi_dev *cdns_xspi) { u32 sdma_size, sdma_trd_info; u8 sdma_dir; sdma_size = readl(cdns_xspi->iobase + CDNS_XSPI_SDMA_SIZE_REG); sdma_trd_info = readl(cdns_xspi->iobase + CDNS_XSPI_SDMA_TRD_INFO_REG); sdma_dir = FIELD_GET(CDNS_XSPI_SDMA_DIR, sdma_trd_info); switch (sdma_dir) { case CDNS_XSPI_SDMA_DIR_READ: ioread8_rep(cdns_xspi->sdmabase, cdns_xspi->in_buffer, sdma_size); break; case CDNS_XSPI_SDMA_DIR_WRITE: iowrite8_rep(cdns_xspi->sdmabase, cdns_xspi->out_buffer, sdma_size); break; } } static int cdns_xspi_send_stig_command(struct cdns_xspi_dev *cdns_xspi, const struct spi_mem_op *op, bool data_phase) { u32 cmd_regs[6]; u32 cmd_status; int ret; ret = cdns_xspi_wait_for_controller_idle(cdns_xspi); if (ret < 0) return -EIO; writel(FIELD_PREP(CDNS_XSPI_CTRL_WORK_MODE, CDNS_XSPI_WORK_MODE_STIG), cdns_xspi->iobase + CDNS_XSPI_CTRL_CONFIG_REG); cdns_xspi_set_interrupts(cdns_xspi, true); cdns_xspi->sdma_error = false; memset(cmd_regs, 0, sizeof(cmd_regs)); cmd_regs[1] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_1(op, data_phase); cmd_regs[2] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_2(op); cmd_regs[3] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_3(op); cmd_regs[4] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_4(op, cdns_xspi->cur_cs); cdns_xspi_trigger_command(cdns_xspi, cmd_regs); if (data_phase) { cmd_regs[0] = CDNS_XSPI_STIG_DONE_FLAG; cmd_regs[1] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_1(op); cmd_regs[2] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_2(op); cmd_regs[3] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_3(op); cmd_regs[4] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_4(op, cdns_xspi->cur_cs); cdns_xspi->in_buffer = op->data.buf.in; cdns_xspi->out_buffer = op->data.buf.out; cdns_xspi_trigger_command(cdns_xspi, cmd_regs); wait_for_completion(&cdns_xspi->sdma_complete); if (cdns_xspi->sdma_error) { cdns_xspi_set_interrupts(cdns_xspi, false); return -EIO; } cdns_xspi_sdma_handle(cdns_xspi); } wait_for_completion(&cdns_xspi->cmd_complete); cdns_xspi_set_interrupts(cdns_xspi, false); cmd_status = cdns_xspi_check_command_status(cdns_xspi); if (cmd_status) return -EPROTO; return 0; } static int cdns_xspi_mem_op(struct cdns_xspi_dev *cdns_xspi, struct spi_mem *mem, const struct spi_mem_op *op) { enum spi_mem_data_dir dir = op->data.dir; if (cdns_xspi->cur_cs != spi_get_chipselect(mem->spi, 0)) cdns_xspi->cur_cs = spi_get_chipselect(mem->spi, 0); return cdns_xspi_send_stig_command(cdns_xspi, op, (dir != SPI_MEM_NO_DATA)); } static int cdns_xspi_mem_op_execute(struct spi_mem *mem, const struct spi_mem_op *op) { struct cdns_xspi_dev *cdns_xspi = spi_controller_get_devdata(mem->spi->controller); int ret = 0; ret = cdns_xspi_mem_op(cdns_xspi, mem, op); return ret; } static int cdns_xspi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct cdns_xspi_dev *cdns_xspi = spi_controller_get_devdata(mem->spi->controller); op->data.nbytes = clamp_val(op->data.nbytes, 0, cdns_xspi->sdmasize); return 0; } static const struct spi_controller_mem_ops cadence_xspi_mem_ops = { .exec_op = cdns_xspi_mem_op_execute, .adjust_op_size = cdns_xspi_adjust_mem_op_size, }; static irqreturn_t cdns_xspi_irq_handler(int this_irq, void *dev) { struct cdns_xspi_dev *cdns_xspi = dev; u32 irq_status; irqreturn_t result = IRQ_NONE; irq_status = readl(cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG); writel(irq_status, cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG); if (irq_status & (CDNS_XSPI_SDMA_ERROR | CDNS_XSPI_SDMA_TRIGGER | CDNS_XSPI_STIG_DONE)) { if (irq_status & CDNS_XSPI_SDMA_ERROR) { dev_err(cdns_xspi->dev, "Slave DMA transaction error\n"); cdns_xspi->sdma_error = true; complete(&cdns_xspi->sdma_complete); } if (irq_status & CDNS_XSPI_SDMA_TRIGGER) complete(&cdns_xspi->sdma_complete); if (irq_status & CDNS_XSPI_STIG_DONE) complete(&cdns_xspi->cmd_complete); result = IRQ_HANDLED; } irq_status = readl(cdns_xspi->iobase + CDNS_XSPI_TRD_COMP_INTR_STATUS); if (irq_status) { writel(irq_status, cdns_xspi->iobase + CDNS_XSPI_TRD_COMP_INTR_STATUS); complete(&cdns_xspi->auto_cmd_complete); result = IRQ_HANDLED; } return result; } static int cdns_xspi_of_get_plat_data(struct platform_device *pdev) { struct device_node *node_prop = pdev->dev.of_node; struct device_node *node_child; unsigned int cs; for_each_child_of_node(node_prop, node_child) { if (!of_device_is_available(node_child)) continue; if (of_property_read_u32(node_child, "reg", &cs)) { dev_err(&pdev->dev, "Couldn't get memory chip select\n"); of_node_put(node_child); return -ENXIO; } else if (cs >= CDNS_XSPI_MAX_BANKS) { dev_err(&pdev->dev, "reg (cs) parameter value too large\n"); of_node_put(node_child); return -ENXIO; } } return 0; } static void cdns_xspi_print_phy_config(struct cdns_xspi_dev *cdns_xspi) { struct device *dev = cdns_xspi->dev; dev_info(dev, "PHY configuration\n"); dev_info(dev, " * xspi_dll_phy_ctrl: %08x\n", readl(cdns_xspi->iobase + CDNS_XSPI_DLL_PHY_CTRL)); dev_info(dev, " * phy_dq_timing: %08x\n", readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_DQ_TIMING)); dev_info(dev, " * phy_dqs_timing: %08x\n", readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_DQS_TIMING)); dev_info(dev, " * phy_gate_loopback_ctrl: %08x\n", readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_GATE_LPBCK_CTRL)); dev_info(dev, " * phy_dll_slave_ctrl: %08x\n", readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_DLL_SLAVE_CTRL)); } static int cdns_xspi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spi_controller *host = NULL; struct cdns_xspi_dev *cdns_xspi = NULL; struct resource *res; int ret; host = devm_spi_alloc_host(dev, sizeof(*cdns_xspi)); if (!host) return -ENOMEM; host->mode_bits = SPI_3WIRE | SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_OCTAL | SPI_RX_OCTAL | SPI_MODE_0 | SPI_MODE_3; host->mem_ops = &cadence_xspi_mem_ops; host->dev.of_node = pdev->dev.of_node; host->bus_num = -1; platform_set_drvdata(pdev, host); cdns_xspi = spi_controller_get_devdata(host); cdns_xspi->pdev = pdev; cdns_xspi->dev = &pdev->dev; cdns_xspi->cur_cs = 0; init_completion(&cdns_xspi->cmd_complete); init_completion(&cdns_xspi->auto_cmd_complete); init_completion(&cdns_xspi->sdma_complete); ret = cdns_xspi_of_get_plat_data(pdev); if (ret) return -ENODEV; cdns_xspi->iobase = devm_platform_ioremap_resource_byname(pdev, "io"); if (IS_ERR(cdns_xspi->iobase)) { dev_err(dev, "Failed to remap controller base address\n"); return PTR_ERR(cdns_xspi->iobase); } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sdma"); cdns_xspi->sdmabase = devm_ioremap_resource(dev, res); if (IS_ERR(cdns_xspi->sdmabase)) return PTR_ERR(cdns_xspi->sdmabase); cdns_xspi->sdmasize = resource_size(res); cdns_xspi->auxbase = devm_platform_ioremap_resource_byname(pdev, "aux"); if (IS_ERR(cdns_xspi->auxbase)) { dev_err(dev, "Failed to remap AUX address\n"); return PTR_ERR(cdns_xspi->auxbase); } cdns_xspi->irq = platform_get_irq(pdev, 0); if (cdns_xspi->irq < 0) return -ENXIO; ret = devm_request_irq(dev, cdns_xspi->irq, cdns_xspi_irq_handler, IRQF_SHARED, pdev->name, cdns_xspi); if (ret) { dev_err(dev, "Failed to request IRQ: %d\n", cdns_xspi->irq); return ret; } cdns_xspi_print_phy_config(cdns_xspi); ret = cdns_xspi_controller_init(cdns_xspi); if (ret) { dev_err(dev, "Failed to initialize controller\n"); return ret; } host->num_chipselect = 1 << cdns_xspi->hw_num_banks; ret = devm_spi_register_controller(dev, host); if (ret) { dev_err(dev, "Failed to register SPI host\n"); return ret; } dev_info(dev, "Successfully registered SPI host\n"); return 0; } static const struct of_device_id cdns_xspi_of_match[] = { { .compatible = "cdns,xspi-nor", }, { /* end of table */} }; MODULE_DEVICE_TABLE(of, cdns_xspi_of_match); static struct platform_driver cdns_xspi_platform_driver = { .probe = cdns_xspi_probe, .remove = NULL, .driver = { .name = CDNS_XSPI_NAME, .of_match_table = cdns_xspi_of_match, }, }; module_platform_driver(cdns_xspi_platform_driver); MODULE_DESCRIPTION("Cadence XSPI Controller Driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" CDNS_XSPI_NAME); MODULE_AUTHOR("Konrad Kociolek <[email protected]>"); MODULE_AUTHOR("Jayshri Pawar <[email protected]>"); MODULE_AUTHOR("Parshuram Thombare <[email protected]>");
linux-master
drivers/spi/spi-cadence-xspi.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Analog Devices AD-FMCOMMS1-EBZ board I2C-SPI bridge driver * * Copyright 2012 Analog Devices Inc. * Author: Lars-Peter Clausen <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/spi/spi.h> #include <asm/unaligned.h> #define SPI_XCOMM_SETTINGS_LEN_OFFSET 10 #define SPI_XCOMM_SETTINGS_3WIRE BIT(6) #define SPI_XCOMM_SETTINGS_CS_HIGH BIT(5) #define SPI_XCOMM_SETTINGS_SAMPLE_END BIT(4) #define SPI_XCOMM_SETTINGS_CPHA BIT(3) #define SPI_XCOMM_SETTINGS_CPOL BIT(2) #define SPI_XCOMM_SETTINGS_CLOCK_DIV_MASK 0x3 #define SPI_XCOMM_SETTINGS_CLOCK_DIV_64 0x2 #define SPI_XCOMM_SETTINGS_CLOCK_DIV_16 0x1 #define SPI_XCOMM_SETTINGS_CLOCK_DIV_4 0x0 #define SPI_XCOMM_CMD_UPDATE_CONFIG 0x03 #define SPI_XCOMM_CMD_WRITE 0x04 #define SPI_XCOMM_CLOCK 48000000 struct spi_xcomm { struct i2c_client *i2c; uint16_t settings; uint16_t chipselect; unsigned int current_speed; uint8_t buf[63]; }; static int spi_xcomm_sync_config(struct spi_xcomm *spi_xcomm, unsigned int len) { uint16_t settings; uint8_t *buf = spi_xcomm->buf; settings = spi_xcomm->settings; settings |= len << SPI_XCOMM_SETTINGS_LEN_OFFSET; buf[0] = SPI_XCOMM_CMD_UPDATE_CONFIG; put_unaligned_be16(settings, &buf[1]); put_unaligned_be16(spi_xcomm->chipselect, &buf[3]); return i2c_master_send(spi_xcomm->i2c, buf, 5); } static void spi_xcomm_chipselect(struct spi_xcomm *spi_xcomm, struct spi_device *spi, int is_active) { unsigned long cs = spi_get_chipselect(spi, 0); uint16_t chipselect = spi_xcomm->chipselect; if (is_active) chipselect |= BIT(cs); else chipselect &= ~BIT(cs); spi_xcomm->chipselect = chipselect; } static int spi_xcomm_setup_transfer(struct spi_xcomm *spi_xcomm, struct spi_device *spi, struct spi_transfer *t, unsigned int *settings) { if (t->len > 62) return -EINVAL; if (t->speed_hz != spi_xcomm->current_speed) { unsigned int divider; divider = DIV_ROUND_UP(SPI_XCOMM_CLOCK, t->speed_hz); if (divider >= 64) *settings |= SPI_XCOMM_SETTINGS_CLOCK_DIV_64; else if (divider >= 16) *settings |= SPI_XCOMM_SETTINGS_CLOCK_DIV_16; else *settings |= SPI_XCOMM_SETTINGS_CLOCK_DIV_4; spi_xcomm->current_speed = t->speed_hz; } if (spi->mode & SPI_CPOL) *settings |= SPI_XCOMM_SETTINGS_CPOL; else *settings &= ~SPI_XCOMM_SETTINGS_CPOL; if (spi->mode & SPI_CPHA) *settings &= ~SPI_XCOMM_SETTINGS_CPHA; else *settings |= SPI_XCOMM_SETTINGS_CPHA; if (spi->mode & SPI_3WIRE) *settings |= SPI_XCOMM_SETTINGS_3WIRE; else *settings &= ~SPI_XCOMM_SETTINGS_3WIRE; return 0; } static int spi_xcomm_txrx_bufs(struct spi_xcomm *spi_xcomm, struct spi_device *spi, struct spi_transfer *t) { int ret; if (t->tx_buf) { spi_xcomm->buf[0] = SPI_XCOMM_CMD_WRITE; memcpy(spi_xcomm->buf + 1, t->tx_buf, t->len); ret = i2c_master_send(spi_xcomm->i2c, spi_xcomm->buf, t->len + 1); if (ret < 0) return ret; else if (ret != t->len + 1) return -EIO; } else if (t->rx_buf) { ret = i2c_master_recv(spi_xcomm->i2c, t->rx_buf, t->len); if (ret < 0) return ret; else if (ret != t->len) return -EIO; } return t->len; } static int spi_xcomm_transfer_one(struct spi_master *master, struct spi_message *msg) { struct spi_xcomm *spi_xcomm = spi_master_get_devdata(master); unsigned int settings = spi_xcomm->settings; struct spi_device *spi = msg->spi; unsigned cs_change = 0; struct spi_transfer *t; bool is_first = true; int status = 0; bool is_last; spi_xcomm_chipselect(spi_xcomm, spi, true); list_for_each_entry(t, &msg->transfers, transfer_list) { if (!t->tx_buf && !t->rx_buf && t->len) { status = -EINVAL; break; } status = spi_xcomm_setup_transfer(spi_xcomm, spi, t, &settings); if (status < 0) break; is_last = list_is_last(&t->transfer_list, &msg->transfers); cs_change = t->cs_change; if (cs_change ^ is_last) settings |= BIT(5); else settings &= ~BIT(5); if (t->rx_buf) { spi_xcomm->settings = settings; status = spi_xcomm_sync_config(spi_xcomm, t->len); if (status < 0) break; } else if (settings != spi_xcomm->settings || is_first) { spi_xcomm->settings = settings; status = spi_xcomm_sync_config(spi_xcomm, 0); if (status < 0) break; } if (t->len) { status = spi_xcomm_txrx_bufs(spi_xcomm, spi, t); if (status < 0) break; if (status > 0) msg->actual_length += status; } status = 0; spi_transfer_delay_exec(t); is_first = false; } if (status != 0 || !cs_change) spi_xcomm_chipselect(spi_xcomm, spi, false); msg->status = status; spi_finalize_current_message(master); return status; } static int spi_xcomm_probe(struct i2c_client *i2c) { struct spi_xcomm *spi_xcomm; struct spi_master *master; int ret; master = spi_alloc_master(&i2c->dev, sizeof(*spi_xcomm)); if (!master) return -ENOMEM; spi_xcomm = spi_master_get_devdata(master); spi_xcomm->i2c = i2c; master->num_chipselect = 16; master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_3WIRE; master->bits_per_word_mask = SPI_BPW_MASK(8); master->flags = SPI_CONTROLLER_HALF_DUPLEX; master->transfer_one_message = spi_xcomm_transfer_one; master->dev.of_node = i2c->dev.of_node; i2c_set_clientdata(i2c, master); ret = devm_spi_register_master(&i2c->dev, master); if (ret < 0) spi_master_put(master); return ret; } static const struct i2c_device_id spi_xcomm_ids[] = { { "spi-xcomm" }, { }, }; MODULE_DEVICE_TABLE(i2c, spi_xcomm_ids); static struct i2c_driver spi_xcomm_driver = { .driver = { .name = "spi-xcomm", }, .id_table = spi_xcomm_ids, .probe = spi_xcomm_probe, }; module_i2c_driver(spi_xcomm_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Lars-Peter Clausen <[email protected]>"); MODULE_DESCRIPTION("Analog Devices AD-FMCOMMS1-EBZ board I2C-SPI bridge driver");
linux-master
drivers/spi/spi-xcomm.c
/* * Copyright (C) 2017 Spreadtrum Communications Inc. * * SPDX-License-Identifier: GPL-2.0 */ #include <linux/delay.h> #include <linux/hwspinlock.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/reboot.h> #include <linux/spi/spi.h> #include <linux/sizes.h> /* Registers definitions for ADI controller */ #define REG_ADI_CTRL0 0x4 #define REG_ADI_CHN_PRIL 0x8 #define REG_ADI_CHN_PRIH 0xc #define REG_ADI_INT_EN 0x10 #define REG_ADI_INT_RAW 0x14 #define REG_ADI_INT_MASK 0x18 #define REG_ADI_INT_CLR 0x1c #define REG_ADI_GSSI_CFG0 0x20 #define REG_ADI_GSSI_CFG1 0x24 #define REG_ADI_RD_CMD 0x28 #define REG_ADI_RD_DATA 0x2c #define REG_ADI_ARM_FIFO_STS 0x30 #define REG_ADI_STS 0x34 #define REG_ADI_EVT_FIFO_STS 0x38 #define REG_ADI_ARM_CMD_STS 0x3c #define REG_ADI_CHN_EN 0x40 #define REG_ADI_CHN_ADDR(id) (0x44 + (id - 2) * 4) #define REG_ADI_CHN_EN1 0x20c /* Bits definitions for register REG_ADI_GSSI_CFG0 */ #define BIT_CLK_ALL_ON BIT(30) /* Bits definitions for register REG_ADI_RD_DATA */ #define BIT_RD_CMD_BUSY BIT(31) #define RD_ADDR_SHIFT 16 #define RD_VALUE_MASK GENMASK(15, 0) #define RD_ADDR_MASK GENMASK(30, 16) /* Bits definitions for register REG_ADI_ARM_FIFO_STS */ #define BIT_FIFO_FULL BIT(11) #define BIT_FIFO_EMPTY BIT(10) /* * ADI slave devices include RTC, ADC, regulator, charger, thermal and so on. * ADI supports 12/14bit address for r2p0, and additional 17bit for r3p0 or * later versions. Since bit[1:0] are zero, so the spec describe them as * 10/12/15bit address mode. * The 10bit mode supports sigle slave, 12/15bit mode supports 3 slave, the * high two bits is slave_id. * The slave devices address offset is 0x8000 for 10/12bit address mode, * and 0x20000 for 15bit mode. */ #define ADI_10BIT_SLAVE_ADDR_SIZE SZ_4K #define ADI_10BIT_SLAVE_OFFSET 0x8000 #define ADI_12BIT_SLAVE_ADDR_SIZE SZ_16K #define ADI_12BIT_SLAVE_OFFSET 0x8000 #define ADI_15BIT_SLAVE_ADDR_SIZE SZ_128K #define ADI_15BIT_SLAVE_OFFSET 0x20000 /* Timeout (ms) for the trylock of hardware spinlocks */ #define ADI_HWSPINLOCK_TIMEOUT 5000 /* * ADI controller has 50 channels including 2 software channels * and 48 hardware channels. */ #define ADI_HW_CHNS 50 #define ADI_FIFO_DRAIN_TIMEOUT 1000 #define ADI_READ_TIMEOUT 2000 /* * Read back address from REG_ADI_RD_DATA bit[30:16] which maps to: * REG_ADI_RD_CMD bit[14:0] for r2p0 * REG_ADI_RD_CMD bit[16:2] for r3p0 */ #define RDBACK_ADDR_MASK_R2 GENMASK(14, 0) #define RDBACK_ADDR_MASK_R3 GENMASK(16, 2) #define RDBACK_ADDR_SHIFT_R3 2 /* Registers definitions for PMIC watchdog controller */ #define REG_WDG_LOAD_LOW 0x0 #define REG_WDG_LOAD_HIGH 0x4 #define REG_WDG_CTRL 0x8 #define REG_WDG_LOCK 0x20 /* Bits definitions for register REG_WDG_CTRL */ #define BIT_WDG_RUN BIT(1) #define BIT_WDG_NEW BIT(2) #define BIT_WDG_RST BIT(3) /* Bits definitions for register REG_MODULE_EN */ #define BIT_WDG_EN BIT(2) /* Registers definitions for PMIC */ #define PMIC_RST_STATUS 0xee8 #define PMIC_MODULE_EN 0xc08 #define PMIC_CLK_EN 0xc18 #define PMIC_WDG_BASE 0x80 /* Definition of PMIC reset status register */ #define HWRST_STATUS_SECURITY 0x02 #define HWRST_STATUS_RECOVERY 0x20 #define HWRST_STATUS_NORMAL 0x40 #define HWRST_STATUS_ALARM 0x50 #define HWRST_STATUS_SLEEP 0x60 #define HWRST_STATUS_FASTBOOT 0x30 #define HWRST_STATUS_SPECIAL 0x70 #define HWRST_STATUS_PANIC 0x80 #define HWRST_STATUS_CFTREBOOT 0x90 #define HWRST_STATUS_AUTODLOADER 0xa0 #define HWRST_STATUS_IQMODE 0xb0 #define HWRST_STATUS_SPRDISK 0xc0 #define HWRST_STATUS_FACTORYTEST 0xe0 #define HWRST_STATUS_WATCHDOG 0xf0 /* Use default timeout 50 ms that converts to watchdog values */ #define WDG_LOAD_VAL ((50 * 32768) / 1000) #define WDG_LOAD_MASK GENMASK(15, 0) #define WDG_UNLOCK_KEY 0xe551 struct sprd_adi_wdg { u32 base; u32 rst_sts; u32 wdg_en; u32 wdg_clk; }; struct sprd_adi_data { u32 slave_offset; u32 slave_addr_size; int (*read_check)(u32 val, u32 reg); int (*restart)(struct notifier_block *this, unsigned long mode, void *cmd); void (*wdg_rst)(void *p); }; struct sprd_adi { struct spi_controller *ctlr; struct device *dev; void __iomem *base; struct hwspinlock *hwlock; unsigned long slave_vbase; unsigned long slave_pbase; struct notifier_block restart_handler; const struct sprd_adi_data *data; }; static int sprd_adi_check_addr(struct sprd_adi *sadi, u32 reg) { if (reg >= sadi->data->slave_addr_size) { dev_err(sadi->dev, "slave address offset is incorrect, reg = 0x%x\n", reg); return -EINVAL; } return 0; } static int sprd_adi_drain_fifo(struct sprd_adi *sadi) { u32 timeout = ADI_FIFO_DRAIN_TIMEOUT; u32 sts; do { sts = readl_relaxed(sadi->base + REG_ADI_ARM_FIFO_STS); if (sts & BIT_FIFO_EMPTY) break; cpu_relax(); } while (--timeout); if (timeout == 0) { dev_err(sadi->dev, "drain write fifo timeout\n"); return -EBUSY; } return 0; } static int sprd_adi_fifo_is_full(struct sprd_adi *sadi) { return readl_relaxed(sadi->base + REG_ADI_ARM_FIFO_STS) & BIT_FIFO_FULL; } static int sprd_adi_read_check(u32 val, u32 addr) { u32 rd_addr; rd_addr = (val & RD_ADDR_MASK) >> RD_ADDR_SHIFT; if (rd_addr != addr) { pr_err("ADI read error, addr = 0x%x, val = 0x%x\n", addr, val); return -EIO; } return 0; } static int sprd_adi_read_check_r2(u32 val, u32 reg) { return sprd_adi_read_check(val, reg & RDBACK_ADDR_MASK_R2); } static int sprd_adi_read_check_r3(u32 val, u32 reg) { return sprd_adi_read_check(val, (reg & RDBACK_ADDR_MASK_R3) >> RDBACK_ADDR_SHIFT_R3); } static int sprd_adi_read(struct sprd_adi *sadi, u32 reg, u32 *read_val) { int read_timeout = ADI_READ_TIMEOUT; unsigned long flags; u32 val; int ret = 0; if (sadi->hwlock) { ret = hwspin_lock_timeout_irqsave(sadi->hwlock, ADI_HWSPINLOCK_TIMEOUT, &flags); if (ret) { dev_err(sadi->dev, "get the hw lock failed\n"); return ret; } } ret = sprd_adi_check_addr(sadi, reg); if (ret) goto out; /* * Set the slave address offset need to read into RD_CMD register, * then ADI controller will start to transfer automatically. */ writel_relaxed(reg, sadi->base + REG_ADI_RD_CMD); /* * Wait read operation complete, the BIT_RD_CMD_BUSY will be set * simultaneously when writing read command to register, and the * BIT_RD_CMD_BUSY will be cleared after the read operation is * completed. */ do { val = readl_relaxed(sadi->base + REG_ADI_RD_DATA); if (!(val & BIT_RD_CMD_BUSY)) break; cpu_relax(); } while (--read_timeout); if (read_timeout == 0) { dev_err(sadi->dev, "ADI read timeout\n"); ret = -EBUSY; goto out; } /* * The return value before adi r5p0 includes data and read register * address, from bit 0to bit 15 are data, and from bit 16 to bit 30 * are read register address. Then we can check the returned register * address to validate data. */ if (sadi->data->read_check) { ret = sadi->data->read_check(val, reg); if (ret < 0) goto out; } *read_val = val & RD_VALUE_MASK; out: if (sadi->hwlock) hwspin_unlock_irqrestore(sadi->hwlock, &flags); return ret; } static int sprd_adi_write(struct sprd_adi *sadi, u32 reg, u32 val) { u32 timeout = ADI_FIFO_DRAIN_TIMEOUT; unsigned long flags; int ret; if (sadi->hwlock) { ret = hwspin_lock_timeout_irqsave(sadi->hwlock, ADI_HWSPINLOCK_TIMEOUT, &flags); if (ret) { dev_err(sadi->dev, "get the hw lock failed\n"); return ret; } } ret = sprd_adi_check_addr(sadi, reg); if (ret) goto out; ret = sprd_adi_drain_fifo(sadi); if (ret < 0) goto out; /* * we should wait for write fifo is empty before writing data to PMIC * registers. */ do { if (!sprd_adi_fifo_is_full(sadi)) { /* we need virtual register address to write. */ writel_relaxed(val, (void __iomem *)(sadi->slave_vbase + reg)); break; } cpu_relax(); } while (--timeout); if (timeout == 0) { dev_err(sadi->dev, "write fifo is full\n"); ret = -EBUSY; } out: if (sadi->hwlock) hwspin_unlock_irqrestore(sadi->hwlock, &flags); return ret; } static int sprd_adi_transfer_one(struct spi_controller *ctlr, struct spi_device *spi_dev, struct spi_transfer *t) { struct sprd_adi *sadi = spi_controller_get_devdata(ctlr); u32 reg, val; int ret; if (t->rx_buf) { reg = *(u32 *)t->rx_buf; ret = sprd_adi_read(sadi, reg, &val); *(u32 *)t->rx_buf = val; } else if (t->tx_buf) { u32 *p = (u32 *)t->tx_buf; reg = *p++; val = *p; ret = sprd_adi_write(sadi, reg, val); } else { dev_err(sadi->dev, "no buffer for transfer\n"); ret = -EINVAL; } return ret; } static void sprd_adi_set_wdt_rst_mode(void *p) { #if IS_ENABLED(CONFIG_SPRD_WATCHDOG) u32 val; struct sprd_adi *sadi = (struct sprd_adi *)p; /* Init watchdog reset mode */ sprd_adi_read(sadi, PMIC_RST_STATUS, &val); val |= HWRST_STATUS_WATCHDOG; sprd_adi_write(sadi, PMIC_RST_STATUS, val); #endif } static int sprd_adi_restart(struct notifier_block *this, unsigned long mode, void *cmd, struct sprd_adi_wdg *wdg) { struct sprd_adi *sadi = container_of(this, struct sprd_adi, restart_handler); u32 val, reboot_mode = 0; if (!cmd) reboot_mode = HWRST_STATUS_NORMAL; else if (!strncmp(cmd, "recovery", 8)) reboot_mode = HWRST_STATUS_RECOVERY; else if (!strncmp(cmd, "alarm", 5)) reboot_mode = HWRST_STATUS_ALARM; else if (!strncmp(cmd, "fastsleep", 9)) reboot_mode = HWRST_STATUS_SLEEP; else if (!strncmp(cmd, "bootloader", 10)) reboot_mode = HWRST_STATUS_FASTBOOT; else if (!strncmp(cmd, "panic", 5)) reboot_mode = HWRST_STATUS_PANIC; else if (!strncmp(cmd, "special", 7)) reboot_mode = HWRST_STATUS_SPECIAL; else if (!strncmp(cmd, "cftreboot", 9)) reboot_mode = HWRST_STATUS_CFTREBOOT; else if (!strncmp(cmd, "autodloader", 11)) reboot_mode = HWRST_STATUS_AUTODLOADER; else if (!strncmp(cmd, "iqmode", 6)) reboot_mode = HWRST_STATUS_IQMODE; else if (!strncmp(cmd, "sprdisk", 7)) reboot_mode = HWRST_STATUS_SPRDISK; else if (!strncmp(cmd, "tospanic", 8)) reboot_mode = HWRST_STATUS_SECURITY; else if (!strncmp(cmd, "factorytest", 11)) reboot_mode = HWRST_STATUS_FACTORYTEST; else reboot_mode = HWRST_STATUS_NORMAL; /* Record the reboot mode */ sprd_adi_read(sadi, wdg->rst_sts, &val); val &= ~HWRST_STATUS_WATCHDOG; val |= reboot_mode; sprd_adi_write(sadi, wdg->rst_sts, val); /* Enable the interface clock of the watchdog */ sprd_adi_read(sadi, wdg->wdg_en, &val); val |= BIT_WDG_EN; sprd_adi_write(sadi, wdg->wdg_en, val); /* Enable the work clock of the watchdog */ sprd_adi_read(sadi, wdg->wdg_clk, &val); val |= BIT_WDG_EN; sprd_adi_write(sadi, wdg->wdg_clk, val); /* Unlock the watchdog */ sprd_adi_write(sadi, wdg->base + REG_WDG_LOCK, WDG_UNLOCK_KEY); sprd_adi_read(sadi, wdg->base + REG_WDG_CTRL, &val); val |= BIT_WDG_NEW; sprd_adi_write(sadi, wdg->base + REG_WDG_CTRL, val); /* Load the watchdog timeout value, 50ms is always enough. */ sprd_adi_write(sadi, wdg->base + REG_WDG_LOAD_HIGH, 0); sprd_adi_write(sadi, wdg->base + REG_WDG_LOAD_LOW, WDG_LOAD_VAL & WDG_LOAD_MASK); /* Start the watchdog to reset system */ sprd_adi_read(sadi, wdg->base + REG_WDG_CTRL, &val); val |= BIT_WDG_RUN | BIT_WDG_RST; sprd_adi_write(sadi, wdg->base + REG_WDG_CTRL, val); /* Lock the watchdog */ sprd_adi_write(sadi, wdg->base + REG_WDG_LOCK, ~WDG_UNLOCK_KEY); mdelay(1000); dev_emerg(sadi->dev, "Unable to restart system\n"); return NOTIFY_DONE; } static int sprd_adi_restart_sc9860(struct notifier_block *this, unsigned long mode, void *cmd) { struct sprd_adi_wdg wdg = { .base = PMIC_WDG_BASE, .rst_sts = PMIC_RST_STATUS, .wdg_en = PMIC_MODULE_EN, .wdg_clk = PMIC_CLK_EN, }; return sprd_adi_restart(this, mode, cmd, &wdg); } static void sprd_adi_hw_init(struct sprd_adi *sadi) { struct device_node *np = sadi->dev->of_node; int i, size, chn_cnt; const __be32 *list; u32 tmp; /* Set all channels as default priority */ writel_relaxed(0, sadi->base + REG_ADI_CHN_PRIL); writel_relaxed(0, sadi->base + REG_ADI_CHN_PRIH); /* Set clock auto gate mode */ tmp = readl_relaxed(sadi->base + REG_ADI_GSSI_CFG0); tmp &= ~BIT_CLK_ALL_ON; writel_relaxed(tmp, sadi->base + REG_ADI_GSSI_CFG0); /* Set hardware channels setting */ list = of_get_property(np, "sprd,hw-channels", &size); if (!list || !size) { dev_info(sadi->dev, "no hw channels setting in node\n"); return; } chn_cnt = size / 8; for (i = 0; i < chn_cnt; i++) { u32 value; u32 chn_id = be32_to_cpu(*list++); u32 chn_config = be32_to_cpu(*list++); /* Channel 0 and 1 are software channels */ if (chn_id < 2) continue; writel_relaxed(chn_config, sadi->base + REG_ADI_CHN_ADDR(chn_id)); if (chn_id < 32) { value = readl_relaxed(sadi->base + REG_ADI_CHN_EN); value |= BIT(chn_id); writel_relaxed(value, sadi->base + REG_ADI_CHN_EN); } else if (chn_id < ADI_HW_CHNS) { value = readl_relaxed(sadi->base + REG_ADI_CHN_EN1); value |= BIT(chn_id - 32); writel_relaxed(value, sadi->base + REG_ADI_CHN_EN1); } } } static int sprd_adi_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; const struct sprd_adi_data *data; struct spi_controller *ctlr; struct sprd_adi *sadi; struct resource *res; u16 num_chipselect; int ret; if (!np) { dev_err(&pdev->dev, "can not find the adi bus node\n"); return -ENODEV; } data = of_device_get_match_data(&pdev->dev); if (!data) { dev_err(&pdev->dev, "no matching driver data found\n"); return -EINVAL; } pdev->id = of_alias_get_id(np, "spi"); num_chipselect = of_get_child_count(np); ctlr = spi_alloc_master(&pdev->dev, sizeof(struct sprd_adi)); if (!ctlr) return -ENOMEM; dev_set_drvdata(&pdev->dev, ctlr); sadi = spi_controller_get_devdata(ctlr); sadi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(sadi->base)) { ret = PTR_ERR(sadi->base); goto put_ctlr; } sadi->slave_vbase = (unsigned long)sadi->base + data->slave_offset; sadi->slave_pbase = res->start + data->slave_offset; sadi->ctlr = ctlr; sadi->dev = &pdev->dev; sadi->data = data; ret = of_hwspin_lock_get_id(np, 0); if (ret > 0 || (IS_ENABLED(CONFIG_HWSPINLOCK) && ret == 0)) { sadi->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, ret); if (!sadi->hwlock) { ret = -ENXIO; goto put_ctlr; } } else { switch (ret) { case -ENOENT: dev_info(&pdev->dev, "no hardware spinlock supplied\n"); break; default: dev_err_probe(&pdev->dev, ret, "failed to find hwlock id\n"); goto put_ctlr; } } sprd_adi_hw_init(sadi); if (sadi->data->wdg_rst) sadi->data->wdg_rst(sadi); ctlr->dev.of_node = pdev->dev.of_node; ctlr->bus_num = pdev->id; ctlr->num_chipselect = num_chipselect; ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX; ctlr->bits_per_word_mask = 0; ctlr->transfer_one = sprd_adi_transfer_one; ret = devm_spi_register_controller(&pdev->dev, ctlr); if (ret) { dev_err(&pdev->dev, "failed to register SPI controller\n"); goto put_ctlr; } if (sadi->data->restart) { sadi->restart_handler.notifier_call = sadi->data->restart; sadi->restart_handler.priority = 128; ret = register_restart_handler(&sadi->restart_handler); if (ret) { dev_err(&pdev->dev, "can not register restart handler\n"); goto put_ctlr; } } return 0; put_ctlr: spi_controller_put(ctlr); return ret; } static void sprd_adi_remove(struct platform_device *pdev) { struct spi_controller *ctlr = dev_get_drvdata(&pdev->dev); struct sprd_adi *sadi = spi_controller_get_devdata(ctlr); unregister_restart_handler(&sadi->restart_handler); } static struct sprd_adi_data sc9860_data = { .slave_offset = ADI_10BIT_SLAVE_OFFSET, .slave_addr_size = ADI_10BIT_SLAVE_ADDR_SIZE, .read_check = sprd_adi_read_check_r2, .restart = sprd_adi_restart_sc9860, .wdg_rst = sprd_adi_set_wdt_rst_mode, }; static struct sprd_adi_data sc9863_data = { .slave_offset = ADI_12BIT_SLAVE_OFFSET, .slave_addr_size = ADI_12BIT_SLAVE_ADDR_SIZE, .read_check = sprd_adi_read_check_r3, }; static struct sprd_adi_data ums512_data = { .slave_offset = ADI_15BIT_SLAVE_OFFSET, .slave_addr_size = ADI_15BIT_SLAVE_ADDR_SIZE, .read_check = sprd_adi_read_check_r3, }; static const struct of_device_id sprd_adi_of_match[] = { { .compatible = "sprd,sc9860-adi", .data = &sc9860_data, }, { .compatible = "sprd,sc9863-adi", .data = &sc9863_data, }, { .compatible = "sprd,ums512-adi", .data = &ums512_data, }, { }, }; MODULE_DEVICE_TABLE(of, sprd_adi_of_match); static struct platform_driver sprd_adi_driver = { .driver = { .name = "sprd-adi", .of_match_table = sprd_adi_of_match, }, .probe = sprd_adi_probe, .remove_new = sprd_adi_remove, }; module_platform_driver(sprd_adi_driver); MODULE_DESCRIPTION("Spreadtrum ADI Controller Driver"); MODULE_AUTHOR("Baolin Wang <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/spi/spi-sprd-adi.c
// SPDX-License-Identifier: GPL-2.0-only OR MIT /* * Apple SoC PMGR device power state driver * * Copyright The Asahi Linux Contributors */ #include <linux/bitops.h> #include <linux/bitfield.h> #include <linux/err.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/reset-controller.h> #include <linux/module.h> #define APPLE_PMGR_RESET BIT(31) #define APPLE_PMGR_AUTO_ENABLE BIT(28) #define APPLE_PMGR_PS_AUTO GENMASK(27, 24) #define APPLE_PMGR_PS_MIN GENMASK(19, 16) #define APPLE_PMGR_PARENT_OFF BIT(11) #define APPLE_PMGR_DEV_DISABLE BIT(10) #define APPLE_PMGR_WAS_CLKGATED BIT(9) #define APPLE_PMGR_WAS_PWRGATED BIT(8) #define APPLE_PMGR_PS_ACTUAL GENMASK(7, 4) #define APPLE_PMGR_PS_TARGET GENMASK(3, 0) #define APPLE_PMGR_FLAGS (APPLE_PMGR_WAS_CLKGATED | APPLE_PMGR_WAS_PWRGATED) #define APPLE_PMGR_PS_ACTIVE 0xf #define APPLE_PMGR_PS_CLKGATE 0x4 #define APPLE_PMGR_PS_PWRGATE 0x0 #define APPLE_PMGR_PS_SET_TIMEOUT 100 #define APPLE_PMGR_RESET_TIME 1 struct apple_pmgr_ps { struct device *dev; struct generic_pm_domain genpd; struct reset_controller_dev rcdev; struct regmap *regmap; u32 offset; u32 min_state; }; #define genpd_to_apple_pmgr_ps(_genpd) container_of(_genpd, struct apple_pmgr_ps, genpd) #define rcdev_to_apple_pmgr_ps(_rcdev) container_of(_rcdev, struct apple_pmgr_ps, rcdev) static int apple_pmgr_ps_set(struct generic_pm_domain *genpd, u32 pstate, bool auto_enable) { int ret; struct apple_pmgr_ps *ps = genpd_to_apple_pmgr_ps(genpd); u32 reg; ret = regmap_read(ps->regmap, ps->offset, &reg); if (ret < 0) return ret; /* Resets are synchronous, and only work if the device is powered and clocked. */ if (reg & APPLE_PMGR_RESET && pstate != APPLE_PMGR_PS_ACTIVE) dev_err(ps->dev, "PS %s: powering off with RESET active\n", genpd->name); reg &= ~(APPLE_PMGR_AUTO_ENABLE | APPLE_PMGR_FLAGS | APPLE_PMGR_PS_TARGET); reg |= FIELD_PREP(APPLE_PMGR_PS_TARGET, pstate); dev_dbg(ps->dev, "PS %s: pwrstate = 0x%x: 0x%x\n", genpd->name, pstate, reg); regmap_write(ps->regmap, ps->offset, reg); ret = regmap_read_poll_timeout_atomic( ps->regmap, ps->offset, reg, (FIELD_GET(APPLE_PMGR_PS_ACTUAL, reg) == pstate), 1, APPLE_PMGR_PS_SET_TIMEOUT); if (ret < 0) dev_err(ps->dev, "PS %s: Failed to reach power state 0x%x (now: 0x%x)\n", genpd->name, pstate, reg); if (auto_enable) { /* Not all devices implement this; this is a no-op where not implemented. */ reg &= ~APPLE_PMGR_FLAGS; reg |= APPLE_PMGR_AUTO_ENABLE; regmap_write(ps->regmap, ps->offset, reg); } return ret; } static bool apple_pmgr_ps_is_active(struct apple_pmgr_ps *ps) { u32 reg = 0; regmap_read(ps->regmap, ps->offset, &reg); /* * We consider domains as active if they are actually on, or if they have auto-PM * enabled and the intended target is on. */ return (FIELD_GET(APPLE_PMGR_PS_ACTUAL, reg) == APPLE_PMGR_PS_ACTIVE || (FIELD_GET(APPLE_PMGR_PS_TARGET, reg) == APPLE_PMGR_PS_ACTIVE && reg & APPLE_PMGR_AUTO_ENABLE)); } static int apple_pmgr_ps_power_on(struct generic_pm_domain *genpd) { return apple_pmgr_ps_set(genpd, APPLE_PMGR_PS_ACTIVE, true); } static int apple_pmgr_ps_power_off(struct generic_pm_domain *genpd) { return apple_pmgr_ps_set(genpd, APPLE_PMGR_PS_PWRGATE, false); } static int apple_pmgr_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct apple_pmgr_ps *ps = rcdev_to_apple_pmgr_ps(rcdev); unsigned long flags; spin_lock_irqsave(&ps->genpd.slock, flags); if (ps->genpd.status == GENPD_STATE_OFF) dev_err(ps->dev, "PS 0x%x: asserting RESET while powered down\n", ps->offset); dev_dbg(ps->dev, "PS 0x%x: assert reset\n", ps->offset); /* Quiesce device before asserting reset */ regmap_update_bits(ps->regmap, ps->offset, APPLE_PMGR_FLAGS | APPLE_PMGR_DEV_DISABLE, APPLE_PMGR_DEV_DISABLE); regmap_update_bits(ps->regmap, ps->offset, APPLE_PMGR_FLAGS | APPLE_PMGR_RESET, APPLE_PMGR_RESET); spin_unlock_irqrestore(&ps->genpd.slock, flags); return 0; } static int apple_pmgr_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct apple_pmgr_ps *ps = rcdev_to_apple_pmgr_ps(rcdev); unsigned long flags; spin_lock_irqsave(&ps->genpd.slock, flags); dev_dbg(ps->dev, "PS 0x%x: deassert reset\n", ps->offset); regmap_update_bits(ps->regmap, ps->offset, APPLE_PMGR_FLAGS | APPLE_PMGR_RESET, 0); regmap_update_bits(ps->regmap, ps->offset, APPLE_PMGR_FLAGS | APPLE_PMGR_DEV_DISABLE, 0); if (ps->genpd.status == GENPD_STATE_OFF) dev_err(ps->dev, "PS 0x%x: RESET was deasserted while powered down\n", ps->offset); spin_unlock_irqrestore(&ps->genpd.slock, flags); return 0; } static int apple_pmgr_reset_reset(struct reset_controller_dev *rcdev, unsigned long id) { int ret; ret = apple_pmgr_reset_assert(rcdev, id); if (ret) return ret; usleep_range(APPLE_PMGR_RESET_TIME, 2 * APPLE_PMGR_RESET_TIME); return apple_pmgr_reset_deassert(rcdev, id); } static int apple_pmgr_reset_status(struct reset_controller_dev *rcdev, unsigned long id) { struct apple_pmgr_ps *ps = rcdev_to_apple_pmgr_ps(rcdev); u32 reg = 0; regmap_read(ps->regmap, ps->offset, &reg); return !!(reg & APPLE_PMGR_RESET); } const struct reset_control_ops apple_pmgr_reset_ops = { .assert = apple_pmgr_reset_assert, .deassert = apple_pmgr_reset_deassert, .reset = apple_pmgr_reset_reset, .status = apple_pmgr_reset_status, }; static int apple_pmgr_reset_xlate(struct reset_controller_dev *rcdev, const struct of_phandle_args *reset_spec) { return 0; } static int apple_pmgr_ps_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; struct apple_pmgr_ps *ps; struct regmap *regmap; struct of_phandle_iterator it; int ret; const char *name; bool active; regmap = syscon_node_to_regmap(node->parent); if (IS_ERR(regmap)) return PTR_ERR(regmap); ps = devm_kzalloc(dev, sizeof(*ps), GFP_KERNEL); if (!ps) return -ENOMEM; ps->dev = dev; ps->regmap = regmap; ret = of_property_read_string(node, "label", &name); if (ret < 0) { dev_err(dev, "missing label property\n"); return ret; } ret = of_property_read_u32(node, "reg", &ps->offset); if (ret < 0) { dev_err(dev, "missing reg property\n"); return ret; } ps->genpd.flags |= GENPD_FLAG_IRQ_SAFE; ps->genpd.name = name; ps->genpd.power_on = apple_pmgr_ps_power_on; ps->genpd.power_off = apple_pmgr_ps_power_off; ret = of_property_read_u32(node, "apple,min-state", &ps->min_state); if (ret == 0 && ps->min_state <= APPLE_PMGR_PS_ACTIVE) regmap_update_bits(regmap, ps->offset, APPLE_PMGR_FLAGS | APPLE_PMGR_PS_MIN, FIELD_PREP(APPLE_PMGR_PS_MIN, ps->min_state)); active = apple_pmgr_ps_is_active(ps); if (of_property_read_bool(node, "apple,always-on")) { ps->genpd.flags |= GENPD_FLAG_ALWAYS_ON; if (!active) { dev_warn(dev, "always-on domain %s is not on at boot\n", name); /* Turn it on so pm_genpd_init does not fail */ active = apple_pmgr_ps_power_on(&ps->genpd) == 0; } } /* Turn on auto-PM if the domain is already on */ if (active) regmap_update_bits(regmap, ps->offset, APPLE_PMGR_FLAGS | APPLE_PMGR_AUTO_ENABLE, APPLE_PMGR_AUTO_ENABLE); ret = pm_genpd_init(&ps->genpd, NULL, !active); if (ret < 0) { dev_err(dev, "pm_genpd_init failed\n"); return ret; } ret = of_genpd_add_provider_simple(node, &ps->genpd); if (ret < 0) { dev_err(dev, "of_genpd_add_provider_simple failed\n"); return ret; } of_for_each_phandle(&it, ret, node, "power-domains", "#power-domain-cells", -1) { struct of_phandle_args parent, child; parent.np = it.node; parent.args_count = of_phandle_iterator_args(&it, parent.args, MAX_PHANDLE_ARGS); child.np = node; child.args_count = 0; ret = of_genpd_add_subdomain(&parent, &child); if (ret == -EPROBE_DEFER) { of_node_put(parent.np); goto err_remove; } else if (ret < 0) { dev_err(dev, "failed to add to parent domain: %d (%s -> %s)\n", ret, it.node->name, node->name); of_node_put(parent.np); goto err_remove; } } /* * Do not participate in regular PM; parent power domains are handled via the * genpd hierarchy. */ pm_genpd_remove_device(dev); ps->rcdev.owner = THIS_MODULE; ps->rcdev.nr_resets = 1; ps->rcdev.ops = &apple_pmgr_reset_ops; ps->rcdev.of_node = dev->of_node; ps->rcdev.of_reset_n_cells = 0; ps->rcdev.of_xlate = apple_pmgr_reset_xlate; ret = devm_reset_controller_register(dev, &ps->rcdev); if (ret < 0) goto err_remove; return 0; err_remove: of_genpd_del_provider(node); pm_genpd_remove(&ps->genpd); return ret; } static const struct of_device_id apple_pmgr_ps_of_match[] = { { .compatible = "apple,pmgr-pwrstate" }, {} }; MODULE_DEVICE_TABLE(of, apple_pmgr_ps_of_match); static struct platform_driver apple_pmgr_ps_driver = { .probe = apple_pmgr_ps_probe, .driver = { .name = "apple-pmgr-pwrstate", .of_match_table = apple_pmgr_ps_of_match, }, }; MODULE_AUTHOR("Hector Martin <[email protected]>"); MODULE_DESCRIPTION("PMGR power state driver for Apple SoCs"); module_platform_driver(apple_pmgr_ps_driver);
linux-master
drivers/pmdomain/apple/pmgr-pwrstate.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2022 NXP, Peng Fan <[email protected]> */ #include <linux/clk.h> #include <linux/device.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/sizes.h> #include <dt-bindings/power/fsl,imx93-power.h> #define BLK_SFT_RSTN 0x0 #define BLK_CLK_EN 0x4 #define BLK_MAX_CLKS 4 #define DOMAIN_MAX_CLKS 4 #define LCDIF_QOS_REG 0xC #define LCDIF_DEFAULT_QOS_OFF 12 #define LCDIF_CFG_QOS_OFF 8 #define PXP_QOS_REG 0x10 #define PXP_R_DEFAULT_QOS_OFF 28 #define PXP_R_CFG_QOS_OFF 24 #define PXP_W_DEFAULT_QOS_OFF 20 #define PXP_W_CFG_QOS_OFF 16 #define ISI_CACHE_REG 0x14 #define ISI_QOS_REG 0x1C #define ISI_V_DEFAULT_QOS_OFF 28 #define ISI_V_CFG_QOS_OFF 24 #define ISI_U_DEFAULT_QOS_OFF 20 #define ISI_U_CFG_QOS_OFF 16 #define ISI_Y_R_DEFAULT_QOS_OFF 12 #define ISI_Y_R_CFG_QOS_OFF 8 #define ISI_Y_W_DEFAULT_QOS_OFF 4 #define ISI_Y_W_CFG_QOS_OFF 0 #define PRIO_MASK 0xF #define PRIO(X) (X) struct imx93_blk_ctrl_domain; struct imx93_blk_ctrl { struct device *dev; struct regmap *regmap; int num_clks; struct clk_bulk_data clks[BLK_MAX_CLKS]; struct imx93_blk_ctrl_domain *domains; struct genpd_onecell_data onecell_data; }; #define DOMAIN_MAX_QOS 4 struct imx93_blk_ctrl_qos { u32 reg; u32 cfg_off; u32 default_prio; u32 cfg_prio; }; struct imx93_blk_ctrl_domain_data { const char *name; const char * const *clk_names; int num_clks; u32 rst_mask; u32 clk_mask; int num_qos; struct imx93_blk_ctrl_qos qos[DOMAIN_MAX_QOS]; }; struct imx93_blk_ctrl_domain { struct generic_pm_domain genpd; const struct imx93_blk_ctrl_domain_data *data; struct clk_bulk_data clks[DOMAIN_MAX_CLKS]; struct imx93_blk_ctrl *bc; }; struct imx93_blk_ctrl_data { const struct imx93_blk_ctrl_domain_data *domains; int num_domains; const char * const *clk_names; int num_clks; const struct regmap_access_table *reg_access_table; }; static inline struct imx93_blk_ctrl_domain * to_imx93_blk_ctrl_domain(struct generic_pm_domain *genpd) { return container_of(genpd, struct imx93_blk_ctrl_domain, genpd); } static int imx93_blk_ctrl_set_qos(struct imx93_blk_ctrl_domain *domain) { const struct imx93_blk_ctrl_domain_data *data = domain->data; struct imx93_blk_ctrl *bc = domain->bc; const struct imx93_blk_ctrl_qos *qos; u32 val, mask; int i; for (i = 0; i < data->num_qos; i++) { qos = &data->qos[i]; mask = PRIO_MASK << qos->cfg_off; mask |= PRIO_MASK << (qos->cfg_off + 4); val = qos->cfg_prio << qos->cfg_off; val |= qos->default_prio << (qos->cfg_off + 4); regmap_write_bits(bc->regmap, qos->reg, mask, val); dev_dbg(bc->dev, "data->qos[i].reg 0x%x 0x%x\n", qos->reg, val); } return 0; } static int imx93_blk_ctrl_power_on(struct generic_pm_domain *genpd) { struct imx93_blk_ctrl_domain *domain = to_imx93_blk_ctrl_domain(genpd); const struct imx93_blk_ctrl_domain_data *data = domain->data; struct imx93_blk_ctrl *bc = domain->bc; int ret; ret = clk_bulk_prepare_enable(bc->num_clks, bc->clks); if (ret) { dev_err(bc->dev, "failed to enable bus clocks\n"); return ret; } ret = clk_bulk_prepare_enable(data->num_clks, domain->clks); if (ret) { clk_bulk_disable_unprepare(bc->num_clks, bc->clks); dev_err(bc->dev, "failed to enable clocks\n"); return ret; } ret = pm_runtime_get_sync(bc->dev); if (ret < 0) { pm_runtime_put_noidle(bc->dev); dev_err(bc->dev, "failed to power up domain\n"); goto disable_clk; } /* ungate clk */ regmap_clear_bits(bc->regmap, BLK_CLK_EN, data->clk_mask); /* release reset */ regmap_set_bits(bc->regmap, BLK_SFT_RSTN, data->rst_mask); dev_dbg(bc->dev, "pd_on: name: %s\n", genpd->name); return imx93_blk_ctrl_set_qos(domain); disable_clk: clk_bulk_disable_unprepare(data->num_clks, domain->clks); clk_bulk_disable_unprepare(bc->num_clks, bc->clks); return ret; } static int imx93_blk_ctrl_power_off(struct generic_pm_domain *genpd) { struct imx93_blk_ctrl_domain *domain = to_imx93_blk_ctrl_domain(genpd); const struct imx93_blk_ctrl_domain_data *data = domain->data; struct imx93_blk_ctrl *bc = domain->bc; dev_dbg(bc->dev, "pd_off: name: %s\n", genpd->name); regmap_clear_bits(bc->regmap, BLK_SFT_RSTN, data->rst_mask); regmap_set_bits(bc->regmap, BLK_CLK_EN, data->clk_mask); pm_runtime_put(bc->dev); clk_bulk_disable_unprepare(data->num_clks, domain->clks); clk_bulk_disable_unprepare(bc->num_clks, bc->clks); return 0; } static struct lock_class_key blk_ctrl_genpd_lock_class; static int imx93_blk_ctrl_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct imx93_blk_ctrl_data *bc_data = of_device_get_match_data(dev); struct imx93_blk_ctrl *bc; void __iomem *base; int i, ret; struct regmap_config regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .rd_table = bc_data->reg_access_table, .wr_table = bc_data->reg_access_table, .max_register = SZ_4K, }; bc = devm_kzalloc(dev, sizeof(*bc), GFP_KERNEL); if (!bc) return -ENOMEM; bc->dev = dev; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); bc->regmap = devm_regmap_init_mmio(dev, base, &regmap_config); if (IS_ERR(bc->regmap)) return dev_err_probe(dev, PTR_ERR(bc->regmap), "failed to init regmap\n"); bc->domains = devm_kcalloc(dev, bc_data->num_domains, sizeof(struct imx93_blk_ctrl_domain), GFP_KERNEL); if (!bc->domains) return -ENOMEM; bc->onecell_data.num_domains = bc_data->num_domains; bc->onecell_data.domains = devm_kcalloc(dev, bc_data->num_domains, sizeof(struct generic_pm_domain *), GFP_KERNEL); if (!bc->onecell_data.domains) return -ENOMEM; for (i = 0; i < bc_data->num_clks; i++) bc->clks[i].id = bc_data->clk_names[i]; bc->num_clks = bc_data->num_clks; ret = devm_clk_bulk_get(dev, bc->num_clks, bc->clks); if (ret) { dev_err_probe(dev, ret, "failed to get bus clock\n"); return ret; } for (i = 0; i < bc_data->num_domains; i++) { const struct imx93_blk_ctrl_domain_data *data = &bc_data->domains[i]; struct imx93_blk_ctrl_domain *domain = &bc->domains[i]; int j; domain->data = data; for (j = 0; j < data->num_clks; j++) domain->clks[j].id = data->clk_names[j]; ret = devm_clk_bulk_get(dev, data->num_clks, domain->clks); if (ret) { dev_err_probe(dev, ret, "failed to get clock\n"); goto cleanup_pds; } domain->genpd.name = data->name; domain->genpd.power_on = imx93_blk_ctrl_power_on; domain->genpd.power_off = imx93_blk_ctrl_power_off; domain->bc = bc; ret = pm_genpd_init(&domain->genpd, NULL, true); if (ret) { dev_err_probe(dev, ret, "failed to init power domain\n"); goto cleanup_pds; } /* * We use runtime PM to trigger power on/off of the upstream GPC * domain, as a strict hierarchical parent/child power domain * setup doesn't allow us to meet the sequencing requirements. * This means we have nested locking of genpd locks, without the * nesting being visible at the genpd level, so we need a * separate lock class to make lockdep aware of the fact that * this are separate domain locks that can be nested without a * self-deadlock. */ lockdep_set_class(&domain->genpd.mlock, &blk_ctrl_genpd_lock_class); bc->onecell_data.domains[i] = &domain->genpd; } pm_runtime_enable(dev); ret = of_genpd_add_provider_onecell(dev->of_node, &bc->onecell_data); if (ret) { dev_err_probe(dev, ret, "failed to add power domain provider\n"); goto cleanup_pds; } dev_set_drvdata(dev, bc); return 0; cleanup_pds: for (i--; i >= 0; i--) pm_genpd_remove(&bc->domains[i].genpd); return ret; } static int imx93_blk_ctrl_remove(struct platform_device *pdev) { struct imx93_blk_ctrl *bc = dev_get_drvdata(&pdev->dev); int i; of_genpd_del_provider(pdev->dev.of_node); for (i = 0; bc->onecell_data.num_domains; i++) { struct imx93_blk_ctrl_domain *domain = &bc->domains[i]; pm_genpd_remove(&domain->genpd); } return 0; } static const struct imx93_blk_ctrl_domain_data imx93_media_blk_ctl_domain_data[] = { [IMX93_MEDIABLK_PD_MIPI_DSI] = { .name = "mediablk-mipi-dsi", .clk_names = (const char *[]){ "dsi" }, .num_clks = 1, .rst_mask = BIT(11) | BIT(12), .clk_mask = BIT(11) | BIT(12), }, [IMX93_MEDIABLK_PD_MIPI_CSI] = { .name = "mediablk-mipi-csi", .clk_names = (const char *[]){ "cam", "csi" }, .num_clks = 2, .rst_mask = BIT(9) | BIT(10), .clk_mask = BIT(9) | BIT(10), }, [IMX93_MEDIABLK_PD_PXP] = { .name = "mediablk-pxp", .clk_names = (const char *[]){ "pxp" }, .num_clks = 1, .rst_mask = BIT(7) | BIT(8), .clk_mask = BIT(7) | BIT(8), .num_qos = 2, .qos = { { .reg = PXP_QOS_REG, .cfg_off = PXP_R_CFG_QOS_OFF, .default_prio = PRIO(3), .cfg_prio = PRIO(6), }, { .reg = PXP_QOS_REG, .cfg_off = PXP_W_CFG_QOS_OFF, .default_prio = PRIO(3), .cfg_prio = PRIO(6), } } }, [IMX93_MEDIABLK_PD_LCDIF] = { .name = "mediablk-lcdif", .clk_names = (const char *[]){ "disp", "lcdif" }, .num_clks = 2, .rst_mask = BIT(4) | BIT(5) | BIT(6), .clk_mask = BIT(4) | BIT(5) | BIT(6), .num_qos = 1, .qos = { { .reg = LCDIF_QOS_REG, .cfg_off = LCDIF_CFG_QOS_OFF, .default_prio = PRIO(3), .cfg_prio = PRIO(7), } } }, [IMX93_MEDIABLK_PD_ISI] = { .name = "mediablk-isi", .clk_names = (const char *[]){ "isi" }, .num_clks = 1, .rst_mask = BIT(2) | BIT(3), .clk_mask = BIT(2) | BIT(3), .num_qos = 4, .qos = { { .reg = ISI_QOS_REG, .cfg_off = ISI_Y_W_CFG_QOS_OFF, .default_prio = PRIO(3), .cfg_prio = PRIO(7), }, { .reg = ISI_QOS_REG, .cfg_off = ISI_Y_R_CFG_QOS_OFF, .default_prio = PRIO(3), .cfg_prio = PRIO(7), }, { .reg = ISI_QOS_REG, .cfg_off = ISI_U_CFG_QOS_OFF, .default_prio = PRIO(3), .cfg_prio = PRIO(7), }, { .reg = ISI_QOS_REG, .cfg_off = ISI_V_CFG_QOS_OFF, .default_prio = PRIO(3), .cfg_prio = PRIO(7), } } }, }; static const struct regmap_range imx93_media_blk_ctl_yes_ranges[] = { regmap_reg_range(BLK_SFT_RSTN, BLK_CLK_EN), regmap_reg_range(LCDIF_QOS_REG, ISI_CACHE_REG), regmap_reg_range(ISI_QOS_REG, ISI_QOS_REG), }; static const struct regmap_access_table imx93_media_blk_ctl_access_table = { .yes_ranges = imx93_media_blk_ctl_yes_ranges, .n_yes_ranges = ARRAY_SIZE(imx93_media_blk_ctl_yes_ranges), }; static const struct imx93_blk_ctrl_data imx93_media_blk_ctl_dev_data = { .domains = imx93_media_blk_ctl_domain_data, .num_domains = ARRAY_SIZE(imx93_media_blk_ctl_domain_data), .clk_names = (const char *[]){ "axi", "apb", "nic", }, .num_clks = 3, .reg_access_table = &imx93_media_blk_ctl_access_table, }; static const struct of_device_id imx93_blk_ctrl_of_match[] = { { .compatible = "fsl,imx93-media-blk-ctrl", .data = &imx93_media_blk_ctl_dev_data }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, imx93_blk_ctrl_of_match); static struct platform_driver imx93_blk_ctrl_driver = { .probe = imx93_blk_ctrl_probe, .remove = imx93_blk_ctrl_remove, .driver = { .name = "imx93-blk-ctrl", .of_match_table = imx93_blk_ctrl_of_match, }, }; module_platform_driver(imx93_blk_ctrl_driver); MODULE_AUTHOR("Peng Fan <[email protected]>"); MODULE_DESCRIPTION("i.MX93 BLK CTRL driver"); MODULE_LICENSE("GPL");
linux-master
drivers/pmdomain/imx/imx93-blk-ctrl.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2015-2017 Pengutronix, Lucas Stach <[email protected]> * Copyright 2011-2013 Freescale Semiconductor, Inc. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #define GPC_CNTR 0x000 #define GPC_PGC_CTRL_OFFS 0x0 #define GPC_PGC_PUPSCR_OFFS 0x4 #define GPC_PGC_PDNSCR_OFFS 0x8 #define GPC_PGC_SW2ISO_SHIFT 0x8 #define GPC_PGC_SW_SHIFT 0x0 #define GPC_PGC_PCI_PDN 0x200 #define GPC_PGC_PCI_SR 0x20c #define GPC_PGC_GPU_PDN 0x260 #define GPC_PGC_GPU_PUPSCR 0x264 #define GPC_PGC_GPU_PDNSCR 0x268 #define GPC_PGC_GPU_SR 0x26c #define GPC_PGC_DISP_PDN 0x240 #define GPC_PGC_DISP_SR 0x24c #define GPU_VPU_PUP_REQ BIT(1) #define GPU_VPU_PDN_REQ BIT(0) #define GPC_CLK_MAX 7 #define PGC_DOMAIN_FLAG_NO_PD BIT(0) struct imx_pm_domain { struct generic_pm_domain base; struct regmap *regmap; struct regulator *supply; struct clk *clk[GPC_CLK_MAX]; int num_clks; unsigned int reg_offs; signed char cntr_pdn_bit; unsigned int ipg_rate_mhz; }; static inline struct imx_pm_domain * to_imx_pm_domain(struct generic_pm_domain *genpd) { return container_of(genpd, struct imx_pm_domain, base); } static int imx6_pm_domain_power_off(struct generic_pm_domain *genpd) { struct imx_pm_domain *pd = to_imx_pm_domain(genpd); int iso, iso2sw; u32 val; /* Read ISO and ISO2SW power down delays */ regmap_read(pd->regmap, pd->reg_offs + GPC_PGC_PDNSCR_OFFS, &val); iso = val & 0x3f; iso2sw = (val >> 8) & 0x3f; /* Gate off domain when powered down */ regmap_update_bits(pd->regmap, pd->reg_offs + GPC_PGC_CTRL_OFFS, 0x1, 0x1); /* Request GPC to power down domain */ val = BIT(pd->cntr_pdn_bit); regmap_update_bits(pd->regmap, GPC_CNTR, val, val); /* Wait ISO + ISO2SW IPG clock cycles */ udelay(DIV_ROUND_UP(iso + iso2sw, pd->ipg_rate_mhz)); if (pd->supply) regulator_disable(pd->supply); return 0; } static int imx6_pm_domain_power_on(struct generic_pm_domain *genpd) { struct imx_pm_domain *pd = to_imx_pm_domain(genpd); int i, ret; u32 val, req; if (pd->supply) { ret = regulator_enable(pd->supply); if (ret) { pr_err("%s: failed to enable regulator: %d\n", __func__, ret); return ret; } } /* Enable reset clocks for all devices in the domain */ for (i = 0; i < pd->num_clks; i++) clk_prepare_enable(pd->clk[i]); /* Gate off domain when powered down */ regmap_update_bits(pd->regmap, pd->reg_offs + GPC_PGC_CTRL_OFFS, 0x1, 0x1); /* Request GPC to power up domain */ req = BIT(pd->cntr_pdn_bit + 1); regmap_update_bits(pd->regmap, GPC_CNTR, req, req); /* Wait for the PGC to handle the request */ ret = regmap_read_poll_timeout(pd->regmap, GPC_CNTR, val, !(val & req), 1, 50); if (ret) pr_err("powerup request on domain %s timed out\n", genpd->name); /* Wait for reset to propagate through peripherals */ usleep_range(5, 10); /* Disable reset clocks for all devices in the domain */ for (i = 0; i < pd->num_clks; i++) clk_disable_unprepare(pd->clk[i]); return 0; } static int imx_pgc_get_clocks(struct device *dev, struct imx_pm_domain *domain) { int i, ret; for (i = 0; ; i++) { struct clk *clk = of_clk_get(dev->of_node, i); if (IS_ERR(clk)) break; if (i >= GPC_CLK_MAX) { dev_err(dev, "more than %d clocks\n", GPC_CLK_MAX); ret = -EINVAL; goto clk_err; } domain->clk[i] = clk; } domain->num_clks = i; return 0; clk_err: while (i--) clk_put(domain->clk[i]); return ret; } static void imx_pgc_put_clocks(struct imx_pm_domain *domain) { int i; for (i = domain->num_clks - 1; i >= 0; i--) clk_put(domain->clk[i]); } static int imx_pgc_parse_dt(struct device *dev, struct imx_pm_domain *domain) { /* try to get the domain supply regulator */ domain->supply = devm_regulator_get_optional(dev, "power"); if (IS_ERR(domain->supply)) { if (PTR_ERR(domain->supply) == -ENODEV) domain->supply = NULL; else return PTR_ERR(domain->supply); } /* try to get all clocks needed for reset propagation */ return imx_pgc_get_clocks(dev, domain); } static int imx_pgc_power_domain_probe(struct platform_device *pdev) { struct imx_pm_domain *domain = pdev->dev.platform_data; struct device *dev = &pdev->dev; int ret; /* if this PD is associated with a DT node try to parse it */ if (dev->of_node) { ret = imx_pgc_parse_dt(dev, domain); if (ret) return ret; } /* initially power on the domain */ if (domain->base.power_on) domain->base.power_on(&domain->base); if (IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS)) { pm_genpd_init(&domain->base, NULL, false); ret = of_genpd_add_provider_simple(dev->of_node, &domain->base); if (ret) goto genpd_err; } device_link_add(dev, dev->parent, DL_FLAG_AUTOREMOVE_CONSUMER); return 0; genpd_err: pm_genpd_remove(&domain->base); imx_pgc_put_clocks(domain); return ret; } static int imx_pgc_power_domain_remove(struct platform_device *pdev) { struct imx_pm_domain *domain = pdev->dev.platform_data; if (IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS)) { of_genpd_del_provider(pdev->dev.of_node); pm_genpd_remove(&domain->base); imx_pgc_put_clocks(domain); } return 0; } static const struct platform_device_id imx_pgc_power_domain_id[] = { { "imx-pgc-power-domain"}, { }, }; static struct platform_driver imx_pgc_power_domain_driver = { .driver = { .name = "imx-pgc-pd", }, .probe = imx_pgc_power_domain_probe, .remove = imx_pgc_power_domain_remove, .id_table = imx_pgc_power_domain_id, }; builtin_platform_driver(imx_pgc_power_domain_driver) #define GPC_PGC_DOMAIN_ARM 0 #define GPC_PGC_DOMAIN_PU 1 #define GPC_PGC_DOMAIN_DISPLAY 2 #define GPC_PGC_DOMAIN_PCI 3 static struct genpd_power_state imx6_pm_domain_pu_state = { .power_off_latency_ns = 25000, .power_on_latency_ns = 2000000, }; static struct imx_pm_domain imx_gpc_domains[] = { [GPC_PGC_DOMAIN_ARM] = { .base = { .name = "ARM", .flags = GENPD_FLAG_ALWAYS_ON, }, }, [GPC_PGC_DOMAIN_PU] = { .base = { .name = "PU", .power_off = imx6_pm_domain_power_off, .power_on = imx6_pm_domain_power_on, .states = &imx6_pm_domain_pu_state, .state_count = 1, }, .reg_offs = 0x260, .cntr_pdn_bit = 0, }, [GPC_PGC_DOMAIN_DISPLAY] = { .base = { .name = "DISPLAY", .power_off = imx6_pm_domain_power_off, .power_on = imx6_pm_domain_power_on, }, .reg_offs = 0x240, .cntr_pdn_bit = 4, }, [GPC_PGC_DOMAIN_PCI] = { .base = { .name = "PCI", .power_off = imx6_pm_domain_power_off, .power_on = imx6_pm_domain_power_on, }, .reg_offs = 0x200, .cntr_pdn_bit = 6, }, }; struct imx_gpc_dt_data { int num_domains; bool err009619_present; bool err006287_present; }; static const struct imx_gpc_dt_data imx6q_dt_data = { .num_domains = 2, .err009619_present = false, .err006287_present = false, }; static const struct imx_gpc_dt_data imx6qp_dt_data = { .num_domains = 2, .err009619_present = true, .err006287_present = false, }; static const struct imx_gpc_dt_data imx6sl_dt_data = { .num_domains = 3, .err009619_present = false, .err006287_present = true, }; static const struct imx_gpc_dt_data imx6sx_dt_data = { .num_domains = 4, .err009619_present = false, .err006287_present = false, }; static const struct of_device_id imx_gpc_dt_ids[] = { { .compatible = "fsl,imx6q-gpc", .data = &imx6q_dt_data }, { .compatible = "fsl,imx6qp-gpc", .data = &imx6qp_dt_data }, { .compatible = "fsl,imx6sl-gpc", .data = &imx6sl_dt_data }, { .compatible = "fsl,imx6sx-gpc", .data = &imx6sx_dt_data }, { } }; static const struct regmap_range yes_ranges[] = { regmap_reg_range(GPC_CNTR, GPC_CNTR), regmap_reg_range(GPC_PGC_PCI_PDN, GPC_PGC_PCI_SR), regmap_reg_range(GPC_PGC_GPU_PDN, GPC_PGC_GPU_SR), regmap_reg_range(GPC_PGC_DISP_PDN, GPC_PGC_DISP_SR), }; static const struct regmap_access_table access_table = { .yes_ranges = yes_ranges, .n_yes_ranges = ARRAY_SIZE(yes_ranges), }; static const struct regmap_config imx_gpc_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .rd_table = &access_table, .wr_table = &access_table, .max_register = 0x2ac, .fast_io = true, }; static struct generic_pm_domain *imx_gpc_onecell_domains[] = { &imx_gpc_domains[GPC_PGC_DOMAIN_ARM].base, &imx_gpc_domains[GPC_PGC_DOMAIN_PU].base, }; static struct genpd_onecell_data imx_gpc_onecell_data = { .domains = imx_gpc_onecell_domains, .num_domains = 2, }; static int imx_gpc_old_dt_init(struct device *dev, struct regmap *regmap, unsigned int num_domains) { struct imx_pm_domain *domain; int i, ret; for (i = 0; i < num_domains; i++) { domain = &imx_gpc_domains[i]; domain->regmap = regmap; domain->ipg_rate_mhz = 66; if (i == 1) { domain->supply = devm_regulator_get(dev, "pu"); if (IS_ERR(domain->supply)) return PTR_ERR(domain->supply); ret = imx_pgc_get_clocks(dev, domain); if (ret) goto clk_err; domain->base.power_on(&domain->base); } } for (i = 0; i < num_domains; i++) pm_genpd_init(&imx_gpc_domains[i].base, NULL, false); if (IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS)) { ret = of_genpd_add_provider_onecell(dev->of_node, &imx_gpc_onecell_data); if (ret) goto genpd_err; } return 0; genpd_err: for (i = 0; i < num_domains; i++) pm_genpd_remove(&imx_gpc_domains[i].base); imx_pgc_put_clocks(&imx_gpc_domains[GPC_PGC_DOMAIN_PU]); clk_err: return ret; } static int imx_gpc_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(imx_gpc_dt_ids, &pdev->dev); const struct imx_gpc_dt_data *of_id_data = of_id->data; struct device_node *pgc_node; struct regmap *regmap; void __iomem *base; int ret; pgc_node = of_get_child_by_name(pdev->dev.of_node, "pgc"); /* bail out if DT too old and doesn't provide the necessary info */ if (!of_property_read_bool(pdev->dev.of_node, "#power-domain-cells") && !pgc_node) return 0; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base, &imx_gpc_regmap_config); if (IS_ERR(regmap)) { ret = PTR_ERR(regmap); dev_err(&pdev->dev, "failed to init regmap: %d\n", ret); return ret; } /* * Disable PU power down by runtime PM if ERR009619 is present. * * The PRE clock will be paused for several cycles when turning on the * PU domain LDO from power down state. If PRE is in use at that time, * the IPU/PRG cannot get the correct display data from the PRE. * * This is not a concern when the whole system enters suspend state, so * it's safe to power down PU in this case. */ if (of_id_data->err009619_present) imx_gpc_domains[GPC_PGC_DOMAIN_PU].base.flags |= GENPD_FLAG_RPM_ALWAYS_ON; /* Keep DISP always on if ERR006287 is present */ if (of_id_data->err006287_present) imx_gpc_domains[GPC_PGC_DOMAIN_DISPLAY].base.flags |= GENPD_FLAG_ALWAYS_ON; if (!pgc_node) { ret = imx_gpc_old_dt_init(&pdev->dev, regmap, of_id_data->num_domains); if (ret) return ret; } else { struct imx_pm_domain *domain; struct platform_device *pd_pdev; struct device_node *np; struct clk *ipg_clk; unsigned int ipg_rate_mhz; int domain_index; ipg_clk = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(ipg_clk)) return PTR_ERR(ipg_clk); ipg_rate_mhz = clk_get_rate(ipg_clk) / 1000000; for_each_child_of_node(pgc_node, np) { ret = of_property_read_u32(np, "reg", &domain_index); if (ret) { of_node_put(np); return ret; } if (domain_index >= of_id_data->num_domains) continue; pd_pdev = platform_device_alloc("imx-pgc-power-domain", domain_index); if (!pd_pdev) { of_node_put(np); return -ENOMEM; } ret = platform_device_add_data(pd_pdev, &imx_gpc_domains[domain_index], sizeof(imx_gpc_domains[domain_index])); if (ret) { platform_device_put(pd_pdev); of_node_put(np); return ret; } domain = pd_pdev->dev.platform_data; domain->regmap = regmap; domain->ipg_rate_mhz = ipg_rate_mhz; pd_pdev->dev.parent = &pdev->dev; pd_pdev->dev.of_node = np; ret = platform_device_add(pd_pdev); if (ret) { platform_device_put(pd_pdev); of_node_put(np); return ret; } } } return 0; } static int imx_gpc_remove(struct platform_device *pdev) { struct device_node *pgc_node; int ret; pgc_node = of_get_child_by_name(pdev->dev.of_node, "pgc"); /* bail out if DT too old and doesn't provide the necessary info */ if (!of_property_read_bool(pdev->dev.of_node, "#power-domain-cells") && !pgc_node) return 0; /* * If the old DT binding is used the toplevel driver needs to * de-register the power domains */ if (!pgc_node) { of_genpd_del_provider(pdev->dev.of_node); ret = pm_genpd_remove(&imx_gpc_domains[GPC_PGC_DOMAIN_PU].base); if (ret) return ret; imx_pgc_put_clocks(&imx_gpc_domains[GPC_PGC_DOMAIN_PU]); ret = pm_genpd_remove(&imx_gpc_domains[GPC_PGC_DOMAIN_ARM].base); if (ret) return ret; } return 0; } static struct platform_driver imx_gpc_driver = { .driver = { .name = "imx-gpc", .of_match_table = imx_gpc_dt_ids, }, .probe = imx_gpc_probe, .remove = imx_gpc_remove, }; builtin_platform_driver(imx_gpc_driver)
linux-master
drivers/pmdomain/imx/gpc.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Freescale Semiconductor, Inc. * Copyright 2017-2018 NXP * Dong Aisheng <[email protected]> * * Implementation of the SCU based Power Domains * * NOTE: a better implementation suggested by Ulf Hansson is using a * single global power domain and implement the ->attach|detach_dev() * callback for the genpd and use the regular of_genpd_add_provider_simple(). * From within the ->attach_dev(), we could get the OF node for * the device that is being attached and then parse the power-domain * cell containing the "resource id" and store that in the per device * struct generic_pm_domain_data (we have void pointer there for * storing these kind of things). * * Additionally, we need to implement the ->stop() and ->start() * callbacks of genpd, which is where you "power on/off" devices, * rather than using the above ->power_on|off() callbacks. * * However, there're two known issues: * 1. The ->attach_dev() of power domain infrastructure still does * not support multi domains case as the struct device *dev passed * in is a virtual PD device, it does not help for parsing the real * device resource id from device tree, so it's unware of which * real sub power domain of device should be attached. * * The framework needs some proper extension to support multi power * domain cases. * * Update: Genpd assigns the ->of_node for the virtual device before it * invokes ->attach_dev() callback, hence parsing for device resources via * DT should work fine. * * 2. It also breaks most of current drivers as the driver probe sequence * behavior changed if removing ->power_on|off() callback and use * ->start() and ->stop() instead. genpd_dev_pm_attach will only power * up the domain and attach device, but will not call .start() which * relies on device runtime pm. That means the device power is still * not up before running driver probe function. For SCU enabled * platforms, all device drivers accessing registers/clock without power * domain enabled will trigger a HW access error. That means we need fix * most drivers probe sequence with proper runtime pm. * * Update: Runtime PM support isn't necessary. Instead, this can easily be * fixed in drivers by adding a call to dev_pm_domain_start() during probe. * * In summary, the second part needs to be addressed via minor updates to the * relevant drivers, before the "single global power domain" model can be used. * */ #include <dt-bindings/firmware/imx/rsrc.h> #include <linux/console.h> #include <linux/firmware/imx/sci.h> #include <linux/firmware/imx/svc/rm.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/pm_domain.h> #include <linux/slab.h> /* SCU Power Mode Protocol definition */ struct imx_sc_msg_req_set_resource_power_mode { struct imx_sc_rpc_msg hdr; u16 resource; u8 mode; } __packed __aligned(4); struct req_get_resource_mode { u16 resource; }; struct resp_get_resource_mode { u8 mode; }; struct imx_sc_msg_req_get_resource_power_mode { struct imx_sc_rpc_msg hdr; union { struct req_get_resource_mode req; struct resp_get_resource_mode resp; } data; } __packed __aligned(4); #define IMX_SCU_PD_NAME_SIZE 20 struct imx_sc_pm_domain { struct generic_pm_domain pd; char name[IMX_SCU_PD_NAME_SIZE]; u32 rsrc; }; struct imx_sc_pd_range { char *name; u32 rsrc; u8 num; /* add domain index */ bool postfix; u8 start_from; }; struct imx_sc_pd_soc { const struct imx_sc_pd_range *pd_ranges; u8 num_ranges; }; static int imx_con_rsrc; /* Align with the IMX_SC_PM_PW_MODE_[OFF,STBY,LP,ON] macros */ static const char * const imx_sc_pm_mode[] = { "IMX_SC_PM_PW_MODE_OFF", "IMX_SC_PM_PW_MODE_STBY", "IMX_SC_PM_PW_MODE_LP", "IMX_SC_PM_PW_MODE_ON" }; static const struct imx_sc_pd_range imx8qxp_scu_pd_ranges[] = { /* LSIO SS */ { "pwm", IMX_SC_R_PWM_0, 8, true, 0 }, { "gpio", IMX_SC_R_GPIO_0, 8, true, 0 }, { "gpt", IMX_SC_R_GPT_0, 5, true, 0 }, { "kpp", IMX_SC_R_KPP, 1, false, 0 }, { "fspi", IMX_SC_R_FSPI_0, 2, true, 0 }, { "mu_a", IMX_SC_R_MU_0A, 14, true, 0 }, { "mu_b", IMX_SC_R_MU_5B, 9, true, 5 }, /* CONN SS */ { "usb", IMX_SC_R_USB_0, 2, true, 0 }, { "usb0phy", IMX_SC_R_USB_0_PHY, 1, false, 0 }, { "usb1phy", IMX_SC_R_USB_1_PHY, 1, false, 0}, { "usb2", IMX_SC_R_USB_2, 1, false, 0 }, { "usb2phy", IMX_SC_R_USB_2_PHY, 1, false, 0 }, { "sdhc", IMX_SC_R_SDHC_0, 3, true, 0 }, { "enet", IMX_SC_R_ENET_0, 2, true, 0 }, { "nand", IMX_SC_R_NAND, 1, false, 0 }, { "mlb", IMX_SC_R_MLB_0, 1, true, 0 }, /* AUDIO SS */ { "audio-pll0", IMX_SC_R_AUDIO_PLL_0, 1, false, 0 }, { "audio-pll1", IMX_SC_R_AUDIO_PLL_1, 1, false, 0 }, { "audio-clk-0", IMX_SC_R_AUDIO_CLK_0, 1, false, 0 }, { "audio-clk-1", IMX_SC_R_AUDIO_CLK_1, 1, false, 0 }, { "mclk-out-0", IMX_SC_R_MCLK_OUT_0, 1, false, 0 }, { "mclk-out-1", IMX_SC_R_MCLK_OUT_1, 1, false, 0 }, { "dma0-ch", IMX_SC_R_DMA_0_CH0, 32, true, 0 }, { "dma1-ch", IMX_SC_R_DMA_1_CH0, 16, true, 0 }, { "dma2-ch", IMX_SC_R_DMA_2_CH0, 32, true, 0 }, { "dma3-ch", IMX_SC_R_DMA_3_CH0, 32, true, 0 }, { "asrc0", IMX_SC_R_ASRC_0, 1, false, 0 }, { "asrc1", IMX_SC_R_ASRC_1, 1, false, 0 }, { "esai0", IMX_SC_R_ESAI_0, 1, false, 0 }, { "esai1", IMX_SC_R_ESAI_1, 1, false, 0 }, { "spdif0", IMX_SC_R_SPDIF_0, 1, false, 0 }, { "spdif1", IMX_SC_R_SPDIF_1, 1, false, 0 }, { "sai", IMX_SC_R_SAI_0, 3, true, 0 }, { "sai3", IMX_SC_R_SAI_3, 1, false, 0 }, { "sai4", IMX_SC_R_SAI_4, 1, false, 0 }, { "sai5", IMX_SC_R_SAI_5, 1, false, 0 }, { "sai6", IMX_SC_R_SAI_6, 1, false, 0 }, { "sai7", IMX_SC_R_SAI_7, 1, false, 0 }, { "amix", IMX_SC_R_AMIX, 1, false, 0 }, { "mqs0", IMX_SC_R_MQS_0, 1, false, 0 }, { "dsp", IMX_SC_R_DSP, 1, false, 0 }, { "dsp-ram", IMX_SC_R_DSP_RAM, 1, false, 0 }, /* DMA SS */ { "can", IMX_SC_R_CAN_0, 3, true, 0 }, { "ftm", IMX_SC_R_FTM_0, 2, true, 0 }, { "lpi2c", IMX_SC_R_I2C_0, 5, true, 0 }, { "adc", IMX_SC_R_ADC_0, 2, true, 0 }, { "lcd", IMX_SC_R_LCD_0, 1, true, 0 }, { "lcd-pll", IMX_SC_R_ELCDIF_PLL, 1, true, 0 }, { "lcd0-pwm", IMX_SC_R_LCD_0_PWM_0, 1, true, 0 }, { "lpuart", IMX_SC_R_UART_0, 5, true, 0 }, { "sim", IMX_SC_R_EMVSIM_0, 2, true, 0 }, { "lpspi", IMX_SC_R_SPI_0, 4, true, 0 }, { "irqstr_dsp", IMX_SC_R_IRQSTR_DSP, 1, false, 0 }, /* VPU SS */ { "vpu", IMX_SC_R_VPU, 1, false, 0 }, { "vpu-pid", IMX_SC_R_VPU_PID0, 8, true, 0 }, { "vpu-dec0", IMX_SC_R_VPU_DEC_0, 1, false, 0 }, { "vpu-enc0", IMX_SC_R_VPU_ENC_0, 1, false, 0 }, { "vpu-enc1", IMX_SC_R_VPU_ENC_1, 1, false, 0 }, { "vpu-mu0", IMX_SC_R_VPU_MU_0, 1, false, 0 }, { "vpu-mu1", IMX_SC_R_VPU_MU_1, 1, false, 0 }, { "vpu-mu2", IMX_SC_R_VPU_MU_2, 1, false, 0 }, /* GPU SS */ { "gpu0-pid", IMX_SC_R_GPU_0_PID0, 4, true, 0 }, { "gpu1-pid", IMX_SC_R_GPU_1_PID0, 4, true, 0 }, /* HSIO SS */ { "pcie-a", IMX_SC_R_PCIE_A, 1, false, 0 }, { "serdes-0", IMX_SC_R_SERDES_0, 1, false, 0 }, { "pcie-b", IMX_SC_R_PCIE_B, 1, false, 0 }, { "serdes-1", IMX_SC_R_SERDES_1, 1, false, 0 }, { "sata-0", IMX_SC_R_SATA_0, 1, false, 0 }, { "hsio-gpio", IMX_SC_R_HSIO_GPIO, 1, false, 0 }, /* MIPI SS */ { "mipi0", IMX_SC_R_MIPI_0, 1, false, 0 }, { "mipi0-pwm0", IMX_SC_R_MIPI_0_PWM_0, 1, false, 0 }, { "mipi0-i2c", IMX_SC_R_MIPI_0_I2C_0, 2, true, 0 }, { "mipi1", IMX_SC_R_MIPI_1, 1, false, 0 }, { "mipi1-pwm0", IMX_SC_R_MIPI_1_PWM_0, 1, false, 0 }, { "mipi1-i2c", IMX_SC_R_MIPI_1_I2C_0, 2, true, 0 }, /* LVDS SS */ { "lvds0", IMX_SC_R_LVDS_0, 1, false, 0 }, { "lvds0-pwm", IMX_SC_R_LVDS_0_PWM_0, 1, false, 0 }, { "lvds0-lpi2c", IMX_SC_R_LVDS_0_I2C_0, 2, true, 0 }, { "lvds1", IMX_SC_R_LVDS_1, 1, false, 0 }, { "lvds1-pwm", IMX_SC_R_LVDS_1_PWM_0, 1, false, 0 }, { "lvds1-lpi2c", IMX_SC_R_LVDS_1_I2C_0, 2, true, 0 }, { "mipi1", IMX_SC_R_MIPI_1, 1, 0 }, { "mipi1-pwm0", IMX_SC_R_MIPI_1_PWM_0, 1, 0 }, { "mipi1-i2c", IMX_SC_R_MIPI_1_I2C_0, 2, 1 }, { "lvds1", IMX_SC_R_LVDS_1, 1, 0 }, /* DC SS */ { "dc0", IMX_SC_R_DC_0, 1, false, 0 }, { "dc0-pll", IMX_SC_R_DC_0_PLL_0, 2, true, 0 }, { "dc0-video", IMX_SC_R_DC_0_VIDEO0, 2, true, 0 }, { "dc1", IMX_SC_R_DC_1, 1, false, 0 }, { "dc1-pll", IMX_SC_R_DC_1_PLL_0, 2, true, 0 }, { "dc1-video", IMX_SC_R_DC_1_VIDEO0, 2, true, 0 }, /* CM40 SS */ { "cm40-i2c", IMX_SC_R_M4_0_I2C, 1, false, 0 }, { "cm40-intmux", IMX_SC_R_M4_0_INTMUX, 1, false, 0 }, { "cm40-pid", IMX_SC_R_M4_0_PID0, 5, true, 0}, { "cm40-mu-a1", IMX_SC_R_M4_0_MU_1A, 1, false, 0}, { "cm40-lpuart", IMX_SC_R_M4_0_UART, 1, false, 0}, /* CM41 SS */ { "cm41-i2c", IMX_SC_R_M4_1_I2C, 1, false, 0 }, { "cm41-intmux", IMX_SC_R_M4_1_INTMUX, 1, false, 0 }, { "cm41-pid", IMX_SC_R_M4_1_PID0, 5, true, 0}, { "cm41-mu-a1", IMX_SC_R_M4_1_MU_1A, 1, false, 0}, { "cm41-lpuart", IMX_SC_R_M4_1_UART, 1, false, 0}, /* CM41 SS */ { "cm41_i2c", IMX_SC_R_M4_1_I2C, 1, false, 0 }, { "cm41_intmux", IMX_SC_R_M4_1_INTMUX, 1, false, 0 }, /* DB SS */ { "perf", IMX_SC_R_PERF, 1, false, 0}, /* IMAGE SS */ { "img-jpegdec-mp", IMX_SC_R_MJPEG_DEC_MP, 1, false, 0 }, { "img-jpegdec-s0", IMX_SC_R_MJPEG_DEC_S0, 4, true, 0 }, { "img-jpegenc-mp", IMX_SC_R_MJPEG_ENC_MP, 1, false, 0 }, { "img-jpegenc-s0", IMX_SC_R_MJPEG_ENC_S0, 4, true, 0 }, /* SECO SS */ { "seco_mu", IMX_SC_R_SECO_MU_2, 3, true, 2}, /* V2X SS */ { "v2x_mu", IMX_SC_R_V2X_MU_0, 2, true, 0}, { "v2x_mu", IMX_SC_R_V2X_MU_2, 1, true, 2}, { "v2x_mu", IMX_SC_R_V2X_MU_3, 2, true, 3}, { "img-pdma", IMX_SC_R_ISI_CH0, 8, true, 0 }, { "img-csi0", IMX_SC_R_CSI_0, 1, false, 0 }, { "img-csi0-i2c0", IMX_SC_R_CSI_0_I2C_0, 1, false, 0 }, { "img-csi0-pwm0", IMX_SC_R_CSI_0_PWM_0, 1, false, 0 }, { "img-csi1", IMX_SC_R_CSI_1, 1, false, 0 }, { "img-csi1-i2c0", IMX_SC_R_CSI_1_I2C_0, 1, false, 0 }, { "img-csi1-pwm0", IMX_SC_R_CSI_1_PWM_0, 1, false, 0 }, { "img-parallel", IMX_SC_R_PI_0, 1, false, 0 }, { "img-parallel-i2c0", IMX_SC_R_PI_0_I2C_0, 1, false, 0 }, { "img-parallel-pwm0", IMX_SC_R_PI_0_PWM_0, 2, true, 0 }, { "img-parallel-pll", IMX_SC_R_PI_0_PLL, 1, false, 0 }, /* HDMI TX SS */ { "hdmi-tx", IMX_SC_R_HDMI, 1, false, 0}, { "hdmi-tx-i2s", IMX_SC_R_HDMI_I2S, 1, false, 0}, { "hdmi-tx-i2c0", IMX_SC_R_HDMI_I2C_0, 1, false, 0}, { "hdmi-tx-pll0", IMX_SC_R_HDMI_PLL_0, 1, false, 0}, { "hdmi-tx-pll1", IMX_SC_R_HDMI_PLL_1, 1, false, 0}, /* HDMI RX SS */ { "hdmi-rx", IMX_SC_R_HDMI_RX, 1, false, 0}, { "hdmi-rx-pwm", IMX_SC_R_HDMI_RX_PWM_0, 1, false, 0}, { "hdmi-rx-i2c0", IMX_SC_R_HDMI_RX_I2C_0, 1, false, 0}, { "hdmi-rx-bypass", IMX_SC_R_HDMI_RX_BYPASS, 1, false, 0}, /* SECURITY SS */ { "sec-jr", IMX_SC_R_CAAM_JR2, 2, true, 2}, /* BOARD SS */ { "board", IMX_SC_R_BOARD_R0, 8, true, 0}, }; static const struct imx_sc_pd_soc imx8qxp_scu_pd = { .pd_ranges = imx8qxp_scu_pd_ranges, .num_ranges = ARRAY_SIZE(imx8qxp_scu_pd_ranges), }; static struct imx_sc_ipc *pm_ipc_handle; static inline struct imx_sc_pm_domain * to_imx_sc_pd(struct generic_pm_domain *genpd) { return container_of(genpd, struct imx_sc_pm_domain, pd); } static void imx_sc_pd_get_console_rsrc(void) { struct of_phandle_args specs; int ret; if (!of_stdout) return; ret = of_parse_phandle_with_args(of_stdout, "power-domains", "#power-domain-cells", 0, &specs); if (ret) return; imx_con_rsrc = specs.args[0]; } static int imx_sc_get_pd_power(struct device *dev, u32 rsrc) { struct imx_sc_msg_req_get_resource_power_mode msg; struct imx_sc_rpc_msg *hdr = &msg.hdr; int ret; hdr->ver = IMX_SC_RPC_VERSION; hdr->svc = IMX_SC_RPC_SVC_PM; hdr->func = IMX_SC_PM_FUNC_GET_RESOURCE_POWER_MODE; hdr->size = 2; msg.data.req.resource = rsrc; ret = imx_scu_call_rpc(pm_ipc_handle, &msg, true); if (ret) dev_err(dev, "failed to get power resource %d mode, ret %d\n", rsrc, ret); return msg.data.resp.mode; } static int imx_sc_pd_power(struct generic_pm_domain *domain, bool power_on) { struct imx_sc_msg_req_set_resource_power_mode msg; struct imx_sc_rpc_msg *hdr = &msg.hdr; struct imx_sc_pm_domain *pd; int ret; pd = to_imx_sc_pd(domain); hdr->ver = IMX_SC_RPC_VERSION; hdr->svc = IMX_SC_RPC_SVC_PM; hdr->func = IMX_SC_PM_FUNC_SET_RESOURCE_POWER_MODE; hdr->size = 2; msg.resource = pd->rsrc; msg.mode = power_on ? IMX_SC_PM_PW_MODE_ON : IMX_SC_PM_PW_MODE_LP; /* keep uart console power on for no_console_suspend */ if (imx_con_rsrc == pd->rsrc && !console_suspend_enabled && !power_on) return -EBUSY; ret = imx_scu_call_rpc(pm_ipc_handle, &msg, true); if (ret) dev_err(&domain->dev, "failed to power %s resource %d ret %d\n", power_on ? "up" : "off", pd->rsrc, ret); return ret; } static int imx_sc_pd_power_on(struct generic_pm_domain *domain) { return imx_sc_pd_power(domain, true); } static int imx_sc_pd_power_off(struct generic_pm_domain *domain) { return imx_sc_pd_power(domain, false); } static struct generic_pm_domain *imx_scu_pd_xlate(struct of_phandle_args *spec, void *data) { struct generic_pm_domain *domain = ERR_PTR(-ENOENT); struct genpd_onecell_data *pd_data = data; unsigned int i; for (i = 0; i < pd_data->num_domains; i++) { struct imx_sc_pm_domain *sc_pd; sc_pd = to_imx_sc_pd(pd_data->domains[i]); if (sc_pd->rsrc == spec->args[0]) { domain = &sc_pd->pd; break; } } return domain; } static struct imx_sc_pm_domain * imx_scu_add_pm_domain(struct device *dev, int idx, const struct imx_sc_pd_range *pd_ranges) { struct imx_sc_pm_domain *sc_pd; bool is_off; int mode, ret; if (!imx_sc_rm_is_resource_owned(pm_ipc_handle, pd_ranges->rsrc + idx)) return NULL; sc_pd = devm_kzalloc(dev, sizeof(*sc_pd), GFP_KERNEL); if (!sc_pd) return ERR_PTR(-ENOMEM); sc_pd->rsrc = pd_ranges->rsrc + idx; sc_pd->pd.power_off = imx_sc_pd_power_off; sc_pd->pd.power_on = imx_sc_pd_power_on; if (pd_ranges->postfix) snprintf(sc_pd->name, sizeof(sc_pd->name), "%s%i", pd_ranges->name, pd_ranges->start_from + idx); else snprintf(sc_pd->name, sizeof(sc_pd->name), "%s", pd_ranges->name); sc_pd->pd.name = sc_pd->name; if (imx_con_rsrc == sc_pd->rsrc) sc_pd->pd.flags = GENPD_FLAG_RPM_ALWAYS_ON; mode = imx_sc_get_pd_power(dev, pd_ranges->rsrc + idx); if (mode == IMX_SC_PM_PW_MODE_ON) is_off = false; else is_off = true; dev_dbg(dev, "%s : %s\n", sc_pd->name, imx_sc_pm_mode[mode]); if (sc_pd->rsrc >= IMX_SC_R_LAST) { dev_warn(dev, "invalid pd %s rsrc id %d found", sc_pd->name, sc_pd->rsrc); devm_kfree(dev, sc_pd); return NULL; } ret = pm_genpd_init(&sc_pd->pd, NULL, is_off); if (ret) { dev_warn(dev, "failed to init pd %s rsrc id %d", sc_pd->name, sc_pd->rsrc); devm_kfree(dev, sc_pd); return NULL; } return sc_pd; } static int imx_scu_init_pm_domains(struct device *dev, const struct imx_sc_pd_soc *pd_soc) { const struct imx_sc_pd_range *pd_ranges = pd_soc->pd_ranges; struct generic_pm_domain **domains; struct genpd_onecell_data *pd_data; struct imx_sc_pm_domain *sc_pd; u32 count = 0; int i, j; for (i = 0; i < pd_soc->num_ranges; i++) count += pd_ranges[i].num; domains = devm_kcalloc(dev, count, sizeof(*domains), GFP_KERNEL); if (!domains) return -ENOMEM; pd_data = devm_kzalloc(dev, sizeof(*pd_data), GFP_KERNEL); if (!pd_data) return -ENOMEM; count = 0; for (i = 0; i < pd_soc->num_ranges; i++) { for (j = 0; j < pd_ranges[i].num; j++) { sc_pd = imx_scu_add_pm_domain(dev, j, &pd_ranges[i]); if (IS_ERR_OR_NULL(sc_pd)) continue; domains[count++] = &sc_pd->pd; dev_dbg(dev, "added power domain %s\n", sc_pd->pd.name); } } pd_data->domains = domains; pd_data->num_domains = count; pd_data->xlate = imx_scu_pd_xlate; of_genpd_add_provider_onecell(dev->of_node, pd_data); return 0; } static int imx_sc_pd_probe(struct platform_device *pdev) { const struct imx_sc_pd_soc *pd_soc; int ret; ret = imx_scu_get_handle(&pm_ipc_handle); if (ret) return ret; pd_soc = of_device_get_match_data(&pdev->dev); if (!pd_soc) return -ENODEV; imx_sc_pd_get_console_rsrc(); return imx_scu_init_pm_domains(&pdev->dev, pd_soc); } static const struct of_device_id imx_sc_pd_match[] = { { .compatible = "fsl,imx8qxp-scu-pd", &imx8qxp_scu_pd}, { .compatible = "fsl,scu-pd", &imx8qxp_scu_pd}, { /* sentinel */ } }; static struct platform_driver imx_sc_pd_driver = { .driver = { .name = "imx-scu-pd", .of_match_table = imx_sc_pd_match, .suppress_bind_attrs = true, }, .probe = imx_sc_pd_probe, }; builtin_platform_driver(imx_sc_pd_driver); MODULE_AUTHOR("Dong Aisheng <[email protected]>"); MODULE_DESCRIPTION("IMX SCU Power Domain driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pmdomain/imx/scu-pd.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2022 NXP */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/iopoll.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #define MIX_SLICE_SW_CTRL_OFF 0x20 #define SLICE_SW_CTRL_PSW_CTRL_OFF_MASK BIT(4) #define SLICE_SW_CTRL_PDN_SOFT_MASK BIT(31) #define MIX_FUNC_STAT_OFF 0xB4 #define FUNC_STAT_PSW_STAT_MASK BIT(0) #define FUNC_STAT_RST_STAT_MASK BIT(2) #define FUNC_STAT_ISO_STAT_MASK BIT(4) struct imx93_power_domain { struct generic_pm_domain genpd; struct device *dev; void __iomem *addr; struct clk_bulk_data *clks; int num_clks; bool init_off; }; #define to_imx93_pd(_genpd) container_of(_genpd, struct imx93_power_domain, genpd) static int imx93_pd_on(struct generic_pm_domain *genpd) { struct imx93_power_domain *domain = to_imx93_pd(genpd); void __iomem *addr = domain->addr; u32 val; int ret; ret = clk_bulk_prepare_enable(domain->num_clks, domain->clks); if (ret) { dev_err(domain->dev, "failed to enable clocks for domain: %s\n", genpd->name); return ret; } val = readl(addr + MIX_SLICE_SW_CTRL_OFF); val &= ~SLICE_SW_CTRL_PDN_SOFT_MASK; writel(val, addr + MIX_SLICE_SW_CTRL_OFF); ret = readl_poll_timeout(addr + MIX_FUNC_STAT_OFF, val, !(val & FUNC_STAT_ISO_STAT_MASK), 1, 10000); if (ret) { dev_err(domain->dev, "pd_on timeout: name: %s, stat: %x\n", genpd->name, val); return ret; } return 0; } static int imx93_pd_off(struct generic_pm_domain *genpd) { struct imx93_power_domain *domain = to_imx93_pd(genpd); void __iomem *addr = domain->addr; int ret; u32 val; /* Power off MIX */ val = readl(addr + MIX_SLICE_SW_CTRL_OFF); val |= SLICE_SW_CTRL_PDN_SOFT_MASK; writel(val, addr + MIX_SLICE_SW_CTRL_OFF); ret = readl_poll_timeout(addr + MIX_FUNC_STAT_OFF, val, val & FUNC_STAT_PSW_STAT_MASK, 1, 1000); if (ret) { dev_err(domain->dev, "pd_off timeout: name: %s, stat: %x\n", genpd->name, val); return ret; } clk_bulk_disable_unprepare(domain->num_clks, domain->clks); return 0; }; static int imx93_pd_remove(struct platform_device *pdev) { struct imx93_power_domain *domain = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; if (!domain->init_off) clk_bulk_disable_unprepare(domain->num_clks, domain->clks); of_genpd_del_provider(np); pm_genpd_remove(&domain->genpd); return 0; } static int imx93_pd_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct imx93_power_domain *domain; int ret; domain = devm_kzalloc(dev, sizeof(*domain), GFP_KERNEL); if (!domain) return -ENOMEM; domain->addr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(domain->addr)) return PTR_ERR(domain->addr); domain->num_clks = devm_clk_bulk_get_all(dev, &domain->clks); if (domain->num_clks < 0) return dev_err_probe(dev, domain->num_clks, "Failed to get domain's clocks\n"); domain->genpd.name = dev_name(dev); domain->genpd.power_off = imx93_pd_off; domain->genpd.power_on = imx93_pd_on; domain->dev = dev; domain->init_off = readl(domain->addr + MIX_FUNC_STAT_OFF) & FUNC_STAT_ISO_STAT_MASK; /* Just to sync the status of hardware */ if (!domain->init_off) { ret = clk_bulk_prepare_enable(domain->num_clks, domain->clks); if (ret) { dev_err(domain->dev, "failed to enable clocks for domain: %s\n", domain->genpd.name); return ret; } } ret = pm_genpd_init(&domain->genpd, NULL, domain->init_off); if (ret) goto err_clk_unprepare; platform_set_drvdata(pdev, domain); ret = of_genpd_add_provider_simple(np, &domain->genpd); if (ret) goto err_genpd_remove; return 0; err_genpd_remove: pm_genpd_remove(&domain->genpd); err_clk_unprepare: if (!domain->init_off) clk_bulk_disable_unprepare(domain->num_clks, domain->clks); return ret; } static const struct of_device_id imx93_pd_ids[] = { { .compatible = "fsl,imx93-src-slice" }, { } }; MODULE_DEVICE_TABLE(of, imx93_pd_ids); static struct platform_driver imx93_power_domain_driver = { .driver = { .name = "imx93_power_domain", .of_match_table = imx93_pd_ids, }, .probe = imx93_pd_probe, .remove = imx93_pd_remove, }; module_platform_driver(imx93_power_domain_driver); MODULE_AUTHOR("Peng Fan <[email protected]>"); MODULE_DESCRIPTION("NXP i.MX93 power domain driver"); MODULE_LICENSE("GPL");
linux-master
drivers/pmdomain/imx/imx93-pd.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2022 Pengutronix, Lucas Stach <[email protected]> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/device.h> #include <linux/interconnect.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <dt-bindings/power/imx8mp-power.h> #define GPR_REG0 0x0 #define PCIE_CLOCK_MODULE_EN BIT(0) #define USB_CLOCK_MODULE_EN BIT(1) #define PCIE_PHY_APB_RST BIT(4) #define PCIE_PHY_INIT_RST BIT(5) #define GPR_REG1 0x4 #define PLL_LOCK BIT(13) #define GPR_REG2 0x8 #define P_PLL_MASK GENMASK(5, 0) #define M_PLL_MASK GENMASK(15, 6) #define S_PLL_MASK GENMASK(18, 16) #define GPR_REG3 0xc #define PLL_CKE BIT(17) #define PLL_RST BIT(31) struct imx8mp_blk_ctrl_domain; struct imx8mp_blk_ctrl { struct device *dev; struct notifier_block power_nb; struct device *bus_power_dev; struct regmap *regmap; struct imx8mp_blk_ctrl_domain *domains; struct genpd_onecell_data onecell_data; void (*power_off) (struct imx8mp_blk_ctrl *bc, struct imx8mp_blk_ctrl_domain *domain); void (*power_on) (struct imx8mp_blk_ctrl *bc, struct imx8mp_blk_ctrl_domain *domain); }; struct imx8mp_blk_ctrl_domain_data { const char *name; const char * const *clk_names; int num_clks; const char * const *path_names; int num_paths; const char *gpc_name; }; #define DOMAIN_MAX_CLKS 2 #define DOMAIN_MAX_PATHS 3 struct imx8mp_blk_ctrl_domain { struct generic_pm_domain genpd; const struct imx8mp_blk_ctrl_domain_data *data; struct clk_bulk_data clks[DOMAIN_MAX_CLKS]; struct icc_bulk_data paths[DOMAIN_MAX_PATHS]; struct device *power_dev; struct imx8mp_blk_ctrl *bc; int num_paths; int id; }; struct imx8mp_blk_ctrl_data { int max_reg; int (*probe) (struct imx8mp_blk_ctrl *bc); notifier_fn_t power_notifier_fn; void (*power_off) (struct imx8mp_blk_ctrl *bc, struct imx8mp_blk_ctrl_domain *domain); void (*power_on) (struct imx8mp_blk_ctrl *bc, struct imx8mp_blk_ctrl_domain *domain); const struct imx8mp_blk_ctrl_domain_data *domains; int num_domains; }; static inline struct imx8mp_blk_ctrl_domain * to_imx8mp_blk_ctrl_domain(struct generic_pm_domain *genpd) { return container_of(genpd, struct imx8mp_blk_ctrl_domain, genpd); } struct clk_hsio_pll { struct clk_hw hw; struct regmap *regmap; }; static inline struct clk_hsio_pll *to_clk_hsio_pll(struct clk_hw *hw) { return container_of(hw, struct clk_hsio_pll, hw); } static int clk_hsio_pll_prepare(struct clk_hw *hw) { struct clk_hsio_pll *clk = to_clk_hsio_pll(hw); u32 val; /* set the PLL configuration */ regmap_update_bits(clk->regmap, GPR_REG2, P_PLL_MASK | M_PLL_MASK | S_PLL_MASK, FIELD_PREP(P_PLL_MASK, 12) | FIELD_PREP(M_PLL_MASK, 800) | FIELD_PREP(S_PLL_MASK, 4)); /* de-assert PLL reset */ regmap_update_bits(clk->regmap, GPR_REG3, PLL_RST, PLL_RST); /* enable PLL */ regmap_update_bits(clk->regmap, GPR_REG3, PLL_CKE, PLL_CKE); return regmap_read_poll_timeout(clk->regmap, GPR_REG1, val, val & PLL_LOCK, 10, 100); } static void clk_hsio_pll_unprepare(struct clk_hw *hw) { struct clk_hsio_pll *clk = to_clk_hsio_pll(hw); regmap_update_bits(clk->regmap, GPR_REG3, PLL_RST | PLL_CKE, 0); } static int clk_hsio_pll_is_prepared(struct clk_hw *hw) { struct clk_hsio_pll *clk = to_clk_hsio_pll(hw); return regmap_test_bits(clk->regmap, GPR_REG1, PLL_LOCK); } static unsigned long clk_hsio_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return 100000000; } static const struct clk_ops clk_hsio_pll_ops = { .prepare = clk_hsio_pll_prepare, .unprepare = clk_hsio_pll_unprepare, .is_prepared = clk_hsio_pll_is_prepared, .recalc_rate = clk_hsio_pll_recalc_rate, }; static int imx8mp_hsio_blk_ctrl_probe(struct imx8mp_blk_ctrl *bc) { struct clk_hsio_pll *clk_hsio_pll; struct clk_hw *hw; struct clk_init_data init = {}; int ret; clk_hsio_pll = devm_kzalloc(bc->dev, sizeof(*clk_hsio_pll), GFP_KERNEL); if (!clk_hsio_pll) return -ENOMEM; init.name = "hsio_pll"; init.ops = &clk_hsio_pll_ops; init.parent_names = (const char *[]){"osc_24m"}; init.num_parents = 1; clk_hsio_pll->regmap = bc->regmap; clk_hsio_pll->hw.init = &init; hw = &clk_hsio_pll->hw; ret = devm_clk_hw_register(bc->bus_power_dev, hw); if (ret) return ret; return devm_of_clk_add_hw_provider(bc->dev, of_clk_hw_simple_get, hw); } static void imx8mp_hsio_blk_ctrl_power_on(struct imx8mp_blk_ctrl *bc, struct imx8mp_blk_ctrl_domain *domain) { switch (domain->id) { case IMX8MP_HSIOBLK_PD_USB: regmap_set_bits(bc->regmap, GPR_REG0, USB_CLOCK_MODULE_EN); break; case IMX8MP_HSIOBLK_PD_PCIE: regmap_set_bits(bc->regmap, GPR_REG0, PCIE_CLOCK_MODULE_EN); break; case IMX8MP_HSIOBLK_PD_PCIE_PHY: regmap_set_bits(bc->regmap, GPR_REG0, PCIE_PHY_APB_RST | PCIE_PHY_INIT_RST); break; default: break; } } static void imx8mp_hsio_blk_ctrl_power_off(struct imx8mp_blk_ctrl *bc, struct imx8mp_blk_ctrl_domain *domain) { switch (domain->id) { case IMX8MP_HSIOBLK_PD_USB: regmap_clear_bits(bc->regmap, GPR_REG0, USB_CLOCK_MODULE_EN); break; case IMX8MP_HSIOBLK_PD_PCIE: regmap_clear_bits(bc->regmap, GPR_REG0, PCIE_CLOCK_MODULE_EN); break; case IMX8MP_HSIOBLK_PD_PCIE_PHY: regmap_clear_bits(bc->regmap, GPR_REG0, PCIE_PHY_APB_RST | PCIE_PHY_INIT_RST); break; default: break; } } static int imx8mp_hsio_power_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct imx8mp_blk_ctrl *bc = container_of(nb, struct imx8mp_blk_ctrl, power_nb); struct clk_bulk_data *usb_clk = bc->domains[IMX8MP_HSIOBLK_PD_USB].clks; int num_clks = bc->domains[IMX8MP_HSIOBLK_PD_USB].data->num_clks; int ret; switch (action) { case GENPD_NOTIFY_ON: /* * enable USB clock for a moment for the power-on ADB handshake * to proceed */ ret = clk_bulk_prepare_enable(num_clks, usb_clk); if (ret) return NOTIFY_BAD; regmap_set_bits(bc->regmap, GPR_REG0, USB_CLOCK_MODULE_EN); udelay(5); regmap_clear_bits(bc->regmap, GPR_REG0, USB_CLOCK_MODULE_EN); clk_bulk_disable_unprepare(num_clks, usb_clk); break; case GENPD_NOTIFY_PRE_OFF: /* enable USB clock for the power-down ADB handshake to work */ ret = clk_bulk_prepare_enable(num_clks, usb_clk); if (ret) return NOTIFY_BAD; regmap_set_bits(bc->regmap, GPR_REG0, USB_CLOCK_MODULE_EN); break; case GENPD_NOTIFY_OFF: clk_bulk_disable_unprepare(num_clks, usb_clk); break; default: break; } return NOTIFY_OK; } static const struct imx8mp_blk_ctrl_domain_data imx8mp_hsio_domain_data[] = { [IMX8MP_HSIOBLK_PD_USB] = { .name = "hsioblk-usb", .clk_names = (const char *[]){ "usb" }, .num_clks = 1, .gpc_name = "usb", .path_names = (const char *[]){"usb1", "usb2"}, .num_paths = 2, }, [IMX8MP_HSIOBLK_PD_USB_PHY1] = { .name = "hsioblk-usb-phy1", .gpc_name = "usb-phy1", }, [IMX8MP_HSIOBLK_PD_USB_PHY2] = { .name = "hsioblk-usb-phy2", .gpc_name = "usb-phy2", }, [IMX8MP_HSIOBLK_PD_PCIE] = { .name = "hsioblk-pcie", .clk_names = (const char *[]){ "pcie" }, .num_clks = 1, .gpc_name = "pcie", .path_names = (const char *[]){"noc-pcie", "pcie"}, .num_paths = 2, }, [IMX8MP_HSIOBLK_PD_PCIE_PHY] = { .name = "hsioblk-pcie-phy", .gpc_name = "pcie-phy", }, }; static const struct imx8mp_blk_ctrl_data imx8mp_hsio_blk_ctl_dev_data = { .max_reg = 0x24, .probe = imx8mp_hsio_blk_ctrl_probe, .power_on = imx8mp_hsio_blk_ctrl_power_on, .power_off = imx8mp_hsio_blk_ctrl_power_off, .power_notifier_fn = imx8mp_hsio_power_notifier, .domains = imx8mp_hsio_domain_data, .num_domains = ARRAY_SIZE(imx8mp_hsio_domain_data), }; #define HDMI_RTX_RESET_CTL0 0x20 #define HDMI_RTX_CLK_CTL0 0x40 #define HDMI_RTX_CLK_CTL1 0x50 #define HDMI_RTX_CLK_CTL2 0x60 #define HDMI_RTX_CLK_CTL3 0x70 #define HDMI_RTX_CLK_CTL4 0x80 #define HDMI_TX_CONTROL0 0x200 #define HDMI_LCDIF_NOC_HURRY_MASK GENMASK(14, 12) static void imx8mp_hdmi_blk_ctrl_power_on(struct imx8mp_blk_ctrl *bc, struct imx8mp_blk_ctrl_domain *domain) { switch (domain->id) { case IMX8MP_HDMIBLK_PD_IRQSTEER: regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(9)); regmap_set_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(16)); break; case IMX8MP_HDMIBLK_PD_LCDIF: regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(16) | BIT(17) | BIT(18) | BIT(19) | BIT(20)); regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(11)); regmap_set_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(4) | BIT(5) | BIT(6)); regmap_set_bits(bc->regmap, HDMI_TX_CONTROL0, FIELD_PREP(HDMI_LCDIF_NOC_HURRY_MASK, 7)); break; case IMX8MP_HDMIBLK_PD_PAI: regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(17)); regmap_set_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(18)); break; case IMX8MP_HDMIBLK_PD_PVI: regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(28)); regmap_set_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(22)); break; case IMX8MP_HDMIBLK_PD_TRNG: regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(27) | BIT(30)); regmap_set_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(20)); break; case IMX8MP_HDMIBLK_PD_HDMI_TX: regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(2) | BIT(4) | BIT(5)); regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(12) | BIT(13) | BIT(14) | BIT(15) | BIT(16) | BIT(18) | BIT(19) | BIT(20) | BIT(21)); regmap_set_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(7) | BIT(10) | BIT(11)); regmap_set_bits(bc->regmap, HDMI_TX_CONTROL0, BIT(1)); break; case IMX8MP_HDMIBLK_PD_HDMI_TX_PHY: regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(7)); regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(22) | BIT(24)); regmap_set_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(12)); regmap_clear_bits(bc->regmap, HDMI_TX_CONTROL0, BIT(3)); break; case IMX8MP_HDMIBLK_PD_HDCP: regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(11)); break; case IMX8MP_HDMIBLK_PD_HRV: regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(3) | BIT(4) | BIT(5)); regmap_set_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(15)); break; default: break; } } static void imx8mp_hdmi_blk_ctrl_power_off(struct imx8mp_blk_ctrl *bc, struct imx8mp_blk_ctrl_domain *domain) { switch (domain->id) { case IMX8MP_HDMIBLK_PD_IRQSTEER: regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(9)); regmap_clear_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(16)); break; case IMX8MP_HDMIBLK_PD_LCDIF: regmap_clear_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(4) | BIT(5) | BIT(6)); regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(11)); regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(16) | BIT(17) | BIT(18) | BIT(19) | BIT(20)); break; case IMX8MP_HDMIBLK_PD_PAI: regmap_clear_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(18)); regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(17)); break; case IMX8MP_HDMIBLK_PD_PVI: regmap_clear_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(22)); regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(28)); break; case IMX8MP_HDMIBLK_PD_TRNG: regmap_clear_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(20)); regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(27) | BIT(30)); break; case IMX8MP_HDMIBLK_PD_HDMI_TX: regmap_clear_bits(bc->regmap, HDMI_TX_CONTROL0, BIT(1)); regmap_clear_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(7) | BIT(10) | BIT(11)); regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(12) | BIT(13) | BIT(14) | BIT(15) | BIT(16) | BIT(18) | BIT(19) | BIT(20) | BIT(21)); regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(2) | BIT(4) | BIT(5)); break; case IMX8MP_HDMIBLK_PD_HDMI_TX_PHY: regmap_set_bits(bc->regmap, HDMI_TX_CONTROL0, BIT(3)); regmap_clear_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(12)); regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(7)); regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(22) | BIT(24)); break; case IMX8MP_HDMIBLK_PD_HDCP: regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(11)); break; case IMX8MP_HDMIBLK_PD_HRV: regmap_clear_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(15)); regmap_clear_bits(bc->regmap, HDMI_RTX_CLK_CTL1, BIT(3) | BIT(4) | BIT(5)); break; default: break; } } static int imx8mp_hdmi_power_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct imx8mp_blk_ctrl *bc = container_of(nb, struct imx8mp_blk_ctrl, power_nb); if (action != GENPD_NOTIFY_ON) return NOTIFY_OK; /* * Contrary to other blk-ctrls the reset and clock don't clear when the * power domain is powered down. To ensure the proper reset pulsing, * first clear them all to asserted state, then enable the bus clocks * and then release the ADB reset. */ regmap_write(bc->regmap, HDMI_RTX_RESET_CTL0, 0x0); regmap_write(bc->regmap, HDMI_RTX_CLK_CTL0, 0x0); regmap_write(bc->regmap, HDMI_RTX_CLK_CTL1, 0x0); regmap_set_bits(bc->regmap, HDMI_RTX_CLK_CTL0, BIT(0) | BIT(1) | BIT(10)); regmap_set_bits(bc->regmap, HDMI_RTX_RESET_CTL0, BIT(0)); /* * On power up we have no software backchannel to the GPC to * wait for the ADB handshake to happen, so we just delay for a * bit. On power down the GPC driver waits for the handshake. */ udelay(5); return NOTIFY_OK; } static const struct imx8mp_blk_ctrl_domain_data imx8mp_hdmi_domain_data[] = { [IMX8MP_HDMIBLK_PD_IRQSTEER] = { .name = "hdmiblk-irqsteer", .clk_names = (const char *[]){ "apb" }, .num_clks = 1, .gpc_name = "irqsteer", }, [IMX8MP_HDMIBLK_PD_LCDIF] = { .name = "hdmiblk-lcdif", .clk_names = (const char *[]){ "axi", "apb" }, .num_clks = 2, .gpc_name = "lcdif", .path_names = (const char *[]){"lcdif-hdmi"}, .num_paths = 1, }, [IMX8MP_HDMIBLK_PD_PAI] = { .name = "hdmiblk-pai", .clk_names = (const char *[]){ "apb" }, .num_clks = 1, .gpc_name = "pai", }, [IMX8MP_HDMIBLK_PD_PVI] = { .name = "hdmiblk-pvi", .clk_names = (const char *[]){ "apb" }, .num_clks = 1, .gpc_name = "pvi", }, [IMX8MP_HDMIBLK_PD_TRNG] = { .name = "hdmiblk-trng", .clk_names = (const char *[]){ "apb" }, .num_clks = 1, .gpc_name = "trng", }, [IMX8MP_HDMIBLK_PD_HDMI_TX] = { .name = "hdmiblk-hdmi-tx", .clk_names = (const char *[]){ "apb", "ref_266m" }, .num_clks = 2, .gpc_name = "hdmi-tx", }, [IMX8MP_HDMIBLK_PD_HDMI_TX_PHY] = { .name = "hdmiblk-hdmi-tx-phy", .clk_names = (const char *[]){ "apb", "ref_24m" }, .num_clks = 2, .gpc_name = "hdmi-tx-phy", }, [IMX8MP_HDMIBLK_PD_HRV] = { .name = "hdmiblk-hrv", .clk_names = (const char *[]){ "axi", "apb" }, .num_clks = 2, .gpc_name = "hrv", .path_names = (const char *[]){"hrv"}, .num_paths = 1, }, [IMX8MP_HDMIBLK_PD_HDCP] = { .name = "hdmiblk-hdcp", .clk_names = (const char *[]){ "axi", "apb" }, .num_clks = 2, .gpc_name = "hdcp", .path_names = (const char *[]){"hdcp"}, .num_paths = 1, }, }; static const struct imx8mp_blk_ctrl_data imx8mp_hdmi_blk_ctl_dev_data = { .max_reg = 0x23c, .power_on = imx8mp_hdmi_blk_ctrl_power_on, .power_off = imx8mp_hdmi_blk_ctrl_power_off, .power_notifier_fn = imx8mp_hdmi_power_notifier, .domains = imx8mp_hdmi_domain_data, .num_domains = ARRAY_SIZE(imx8mp_hdmi_domain_data), }; static int imx8mp_blk_ctrl_power_on(struct generic_pm_domain *genpd) { struct imx8mp_blk_ctrl_domain *domain = to_imx8mp_blk_ctrl_domain(genpd); const struct imx8mp_blk_ctrl_domain_data *data = domain->data; struct imx8mp_blk_ctrl *bc = domain->bc; int ret; /* make sure bus domain is awake */ ret = pm_runtime_resume_and_get(bc->bus_power_dev); if (ret < 0) { dev_err(bc->dev, "failed to power up bus domain\n"); return ret; } /* enable upstream clocks */ ret = clk_bulk_prepare_enable(data->num_clks, domain->clks); if (ret) { dev_err(bc->dev, "failed to enable clocks\n"); goto bus_put; } /* domain specific blk-ctrl manipulation */ bc->power_on(bc, domain); /* power up upstream GPC domain */ ret = pm_runtime_resume_and_get(domain->power_dev); if (ret < 0) { dev_err(bc->dev, "failed to power up peripheral domain\n"); goto clk_disable; } ret = icc_bulk_set_bw(domain->num_paths, domain->paths); if (ret) dev_err(bc->dev, "failed to set icc bw\n"); clk_bulk_disable_unprepare(data->num_clks, domain->clks); return 0; clk_disable: clk_bulk_disable_unprepare(data->num_clks, domain->clks); bus_put: pm_runtime_put(bc->bus_power_dev); return ret; } static int imx8mp_blk_ctrl_power_off(struct generic_pm_domain *genpd) { struct imx8mp_blk_ctrl_domain *domain = to_imx8mp_blk_ctrl_domain(genpd); const struct imx8mp_blk_ctrl_domain_data *data = domain->data; struct imx8mp_blk_ctrl *bc = domain->bc; int ret; ret = clk_bulk_prepare_enable(data->num_clks, domain->clks); if (ret) { dev_err(bc->dev, "failed to enable clocks\n"); return ret; } /* domain specific blk-ctrl manipulation */ bc->power_off(bc, domain); clk_bulk_disable_unprepare(data->num_clks, domain->clks); /* power down upstream GPC domain */ pm_runtime_put(domain->power_dev); /* allow bus domain to suspend */ pm_runtime_put(bc->bus_power_dev); return 0; } static struct lock_class_key blk_ctrl_genpd_lock_class; static int imx8mp_blk_ctrl_probe(struct platform_device *pdev) { const struct imx8mp_blk_ctrl_data *bc_data; struct device *dev = &pdev->dev; struct imx8mp_blk_ctrl *bc; void __iomem *base; int num_domains, i, ret; struct regmap_config regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, }; bc = devm_kzalloc(dev, sizeof(*bc), GFP_KERNEL); if (!bc) return -ENOMEM; bc->dev = dev; bc_data = of_device_get_match_data(dev); num_domains = bc_data->num_domains; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); regmap_config.max_register = bc_data->max_reg; bc->regmap = devm_regmap_init_mmio(dev, base, &regmap_config); if (IS_ERR(bc->regmap)) return dev_err_probe(dev, PTR_ERR(bc->regmap), "failed to init regmap\n"); bc->domains = devm_kcalloc(dev, num_domains, sizeof(struct imx8mp_blk_ctrl_domain), GFP_KERNEL); if (!bc->domains) return -ENOMEM; bc->onecell_data.num_domains = num_domains; bc->onecell_data.domains = devm_kcalloc(dev, num_domains, sizeof(struct generic_pm_domain *), GFP_KERNEL); if (!bc->onecell_data.domains) return -ENOMEM; bc->bus_power_dev = dev_pm_domain_attach_by_name(dev, "bus"); if (IS_ERR(bc->bus_power_dev)) return dev_err_probe(dev, PTR_ERR(bc->bus_power_dev), "failed to attach bus power domain\n"); bc->power_off = bc_data->power_off; bc->power_on = bc_data->power_on; for (i = 0; i < num_domains; i++) { const struct imx8mp_blk_ctrl_domain_data *data = &bc_data->domains[i]; struct imx8mp_blk_ctrl_domain *domain = &bc->domains[i]; int j; domain->data = data; domain->num_paths = data->num_paths; for (j = 0; j < data->num_clks; j++) domain->clks[j].id = data->clk_names[j]; for (j = 0; j < data->num_paths; j++) { domain->paths[j].name = data->path_names[j]; /* Fake value for now, just let ICC could configure NoC mode/priority */ domain->paths[j].avg_bw = 1; domain->paths[j].peak_bw = 1; } ret = devm_of_icc_bulk_get(dev, data->num_paths, domain->paths); if (ret) { if (ret != -EPROBE_DEFER) { dev_warn_once(dev, "Could not get interconnect paths, NoC will stay unconfigured!\n"); domain->num_paths = 0; } else { dev_err_probe(dev, ret, "failed to get noc entries\n"); goto cleanup_pds; } } ret = devm_clk_bulk_get(dev, data->num_clks, domain->clks); if (ret) { dev_err_probe(dev, ret, "failed to get clock\n"); goto cleanup_pds; } domain->power_dev = dev_pm_domain_attach_by_name(dev, data->gpc_name); if (IS_ERR(domain->power_dev)) { dev_err_probe(dev, PTR_ERR(domain->power_dev), "failed to attach power domain %s\n", data->gpc_name); ret = PTR_ERR(domain->power_dev); goto cleanup_pds; } domain->genpd.name = data->name; domain->genpd.power_on = imx8mp_blk_ctrl_power_on; domain->genpd.power_off = imx8mp_blk_ctrl_power_off; domain->bc = bc; domain->id = i; ret = pm_genpd_init(&domain->genpd, NULL, true); if (ret) { dev_err_probe(dev, ret, "failed to init power domain\n"); dev_pm_domain_detach(domain->power_dev, true); goto cleanup_pds; } /* * We use runtime PM to trigger power on/off of the upstream GPC * domain, as a strict hierarchical parent/child power domain * setup doesn't allow us to meet the sequencing requirements. * This means we have nested locking of genpd locks, without the * nesting being visible at the genpd level, so we need a * separate lock class to make lockdep aware of the fact that * this are separate domain locks that can be nested without a * self-deadlock. */ lockdep_set_class(&domain->genpd.mlock, &blk_ctrl_genpd_lock_class); bc->onecell_data.domains[i] = &domain->genpd; } ret = of_genpd_add_provider_onecell(dev->of_node, &bc->onecell_data); if (ret) { dev_err_probe(dev, ret, "failed to add power domain provider\n"); goto cleanup_pds; } bc->power_nb.notifier_call = bc_data->power_notifier_fn; ret = dev_pm_genpd_add_notifier(bc->bus_power_dev, &bc->power_nb); if (ret) { dev_err_probe(dev, ret, "failed to add power notifier\n"); goto cleanup_provider; } if (bc_data->probe) { ret = bc_data->probe(bc); if (ret) goto cleanup_provider; } dev_set_drvdata(dev, bc); return 0; cleanup_provider: of_genpd_del_provider(dev->of_node); cleanup_pds: for (i--; i >= 0; i--) { pm_genpd_remove(&bc->domains[i].genpd); dev_pm_domain_detach(bc->domains[i].power_dev, true); } dev_pm_domain_detach(bc->bus_power_dev, true); return ret; } static int imx8mp_blk_ctrl_remove(struct platform_device *pdev) { struct imx8mp_blk_ctrl *bc = dev_get_drvdata(&pdev->dev); int i; of_genpd_del_provider(pdev->dev.of_node); for (i = 0; bc->onecell_data.num_domains; i++) { struct imx8mp_blk_ctrl_domain *domain = &bc->domains[i]; pm_genpd_remove(&domain->genpd); dev_pm_domain_detach(domain->power_dev, true); } dev_pm_genpd_remove_notifier(bc->bus_power_dev); dev_pm_domain_detach(bc->bus_power_dev, true); return 0; } #ifdef CONFIG_PM_SLEEP static int imx8mp_blk_ctrl_suspend(struct device *dev) { struct imx8mp_blk_ctrl *bc = dev_get_drvdata(dev); int ret, i; /* * This may look strange, but is done so the generic PM_SLEEP code * can power down our domains and more importantly power them up again * after resume, without tripping over our usage of runtime PM to * control the upstream GPC domains. Things happen in the right order * in the system suspend/resume paths due to the device parent/child * hierarchy. */ ret = pm_runtime_get_sync(bc->bus_power_dev); if (ret < 0) { pm_runtime_put_noidle(bc->bus_power_dev); return ret; } for (i = 0; i < bc->onecell_data.num_domains; i++) { struct imx8mp_blk_ctrl_domain *domain = &bc->domains[i]; ret = pm_runtime_get_sync(domain->power_dev); if (ret < 0) { pm_runtime_put_noidle(domain->power_dev); goto out_fail; } } return 0; out_fail: for (i--; i >= 0; i--) pm_runtime_put(bc->domains[i].power_dev); pm_runtime_put(bc->bus_power_dev); return ret; } static int imx8mp_blk_ctrl_resume(struct device *dev) { struct imx8mp_blk_ctrl *bc = dev_get_drvdata(dev); int i; for (i = 0; i < bc->onecell_data.num_domains; i++) pm_runtime_put(bc->domains[i].power_dev); pm_runtime_put(bc->bus_power_dev); return 0; } #endif static const struct dev_pm_ops imx8mp_blk_ctrl_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(imx8mp_blk_ctrl_suspend, imx8mp_blk_ctrl_resume) }; static const struct of_device_id imx8mp_blk_ctrl_of_match[] = { { .compatible = "fsl,imx8mp-hsio-blk-ctrl", .data = &imx8mp_hsio_blk_ctl_dev_data, }, { .compatible = "fsl,imx8mp-hdmi-blk-ctrl", .data = &imx8mp_hdmi_blk_ctl_dev_data, }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, imx8mp_blk_ctrl_of_match); static struct platform_driver imx8mp_blk_ctrl_driver = { .probe = imx8mp_blk_ctrl_probe, .remove = imx8mp_blk_ctrl_remove, .driver = { .name = "imx8mp-blk-ctrl", .pm = &imx8mp_blk_ctrl_pm_ops, .of_match_table = imx8mp_blk_ctrl_of_match, }, }; module_platform_driver(imx8mp_blk_ctrl_driver); MODULE_LICENSE("GPL");
linux-master
drivers/pmdomain/imx/imx8mp-blk-ctrl.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2021 Pengutronix, Lucas Stach <[email protected]> */ #include <linux/bitfield.h> #include <linux/device.h> #include <linux/interconnect.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/clk.h> #include <dt-bindings/power/imx8mm-power.h> #include <dt-bindings/power/imx8mn-power.h> #include <dt-bindings/power/imx8mp-power.h> #include <dt-bindings/power/imx8mq-power.h> #define BLK_SFT_RSTN 0x0 #define BLK_CLK_EN 0x4 #define BLK_MIPI_RESET_DIV 0x8 /* Mini/Nano/Plus DISPLAY_BLK_CTRL only */ struct imx8m_blk_ctrl_domain; struct imx8m_blk_ctrl { struct device *dev; struct notifier_block power_nb; struct device *bus_power_dev; struct regmap *regmap; struct imx8m_blk_ctrl_domain *domains; struct genpd_onecell_data onecell_data; }; struct imx8m_blk_ctrl_domain_data { const char *name; const char * const *clk_names; const char * const *path_names; const char *gpc_name; int num_clks; int num_paths; u32 rst_mask; u32 clk_mask; /* * i.MX8M Mini, Nano and Plus have a third DISPLAY_BLK_CTRL register * which is used to control the reset for the MIPI Phy. * Since it's only present in certain circumstances, * an if-statement should be used before setting and clearing this * register. */ u32 mipi_phy_rst_mask; }; #define DOMAIN_MAX_CLKS 4 #define DOMAIN_MAX_PATHS 4 struct imx8m_blk_ctrl_domain { struct generic_pm_domain genpd; const struct imx8m_blk_ctrl_domain_data *data; struct clk_bulk_data clks[DOMAIN_MAX_CLKS]; struct icc_bulk_data paths[DOMAIN_MAX_PATHS]; struct device *power_dev; struct imx8m_blk_ctrl *bc; int num_paths; }; struct imx8m_blk_ctrl_data { int max_reg; notifier_fn_t power_notifier_fn; const struct imx8m_blk_ctrl_domain_data *domains; int num_domains; }; static inline struct imx8m_blk_ctrl_domain * to_imx8m_blk_ctrl_domain(struct generic_pm_domain *genpd) { return container_of(genpd, struct imx8m_blk_ctrl_domain, genpd); } static int imx8m_blk_ctrl_power_on(struct generic_pm_domain *genpd) { struct imx8m_blk_ctrl_domain *domain = to_imx8m_blk_ctrl_domain(genpd); const struct imx8m_blk_ctrl_domain_data *data = domain->data; struct imx8m_blk_ctrl *bc = domain->bc; int ret; /* make sure bus domain is awake */ ret = pm_runtime_get_sync(bc->bus_power_dev); if (ret < 0) { pm_runtime_put_noidle(bc->bus_power_dev); dev_err(bc->dev, "failed to power up bus domain\n"); return ret; } /* put devices into reset */ regmap_clear_bits(bc->regmap, BLK_SFT_RSTN, data->rst_mask); if (data->mipi_phy_rst_mask) regmap_clear_bits(bc->regmap, BLK_MIPI_RESET_DIV, data->mipi_phy_rst_mask); /* enable upstream and blk-ctrl clocks to allow reset to propagate */ ret = clk_bulk_prepare_enable(data->num_clks, domain->clks); if (ret) { dev_err(bc->dev, "failed to enable clocks\n"); goto bus_put; } regmap_set_bits(bc->regmap, BLK_CLK_EN, data->clk_mask); /* power up upstream GPC domain */ ret = pm_runtime_get_sync(domain->power_dev); if (ret < 0) { dev_err(bc->dev, "failed to power up peripheral domain\n"); goto clk_disable; } /* wait for reset to propagate */ udelay(5); /* release reset */ regmap_set_bits(bc->regmap, BLK_SFT_RSTN, data->rst_mask); if (data->mipi_phy_rst_mask) regmap_set_bits(bc->regmap, BLK_MIPI_RESET_DIV, data->mipi_phy_rst_mask); ret = icc_bulk_set_bw(domain->num_paths, domain->paths); if (ret) dev_err(bc->dev, "failed to set icc bw\n"); /* disable upstream clocks */ clk_bulk_disable_unprepare(data->num_clks, domain->clks); return 0; clk_disable: clk_bulk_disable_unprepare(data->num_clks, domain->clks); bus_put: pm_runtime_put(bc->bus_power_dev); return ret; } static int imx8m_blk_ctrl_power_off(struct generic_pm_domain *genpd) { struct imx8m_blk_ctrl_domain *domain = to_imx8m_blk_ctrl_domain(genpd); const struct imx8m_blk_ctrl_domain_data *data = domain->data; struct imx8m_blk_ctrl *bc = domain->bc; /* put devices into reset and disable clocks */ if (data->mipi_phy_rst_mask) regmap_clear_bits(bc->regmap, BLK_MIPI_RESET_DIV, data->mipi_phy_rst_mask); regmap_clear_bits(bc->regmap, BLK_SFT_RSTN, data->rst_mask); regmap_clear_bits(bc->regmap, BLK_CLK_EN, data->clk_mask); /* power down upstream GPC domain */ pm_runtime_put(domain->power_dev); /* allow bus domain to suspend */ pm_runtime_put(bc->bus_power_dev); return 0; } static struct lock_class_key blk_ctrl_genpd_lock_class; static int imx8m_blk_ctrl_probe(struct platform_device *pdev) { const struct imx8m_blk_ctrl_data *bc_data; struct device *dev = &pdev->dev; struct imx8m_blk_ctrl *bc; void __iomem *base; int i, ret; struct regmap_config regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, }; bc = devm_kzalloc(dev, sizeof(*bc), GFP_KERNEL); if (!bc) return -ENOMEM; bc->dev = dev; bc_data = of_device_get_match_data(dev); base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); regmap_config.max_register = bc_data->max_reg; bc->regmap = devm_regmap_init_mmio(dev, base, &regmap_config); if (IS_ERR(bc->regmap)) return dev_err_probe(dev, PTR_ERR(bc->regmap), "failed to init regmap\n"); bc->domains = devm_kcalloc(dev, bc_data->num_domains, sizeof(struct imx8m_blk_ctrl_domain), GFP_KERNEL); if (!bc->domains) return -ENOMEM; bc->onecell_data.num_domains = bc_data->num_domains; bc->onecell_data.domains = devm_kcalloc(dev, bc_data->num_domains, sizeof(struct generic_pm_domain *), GFP_KERNEL); if (!bc->onecell_data.domains) return -ENOMEM; bc->bus_power_dev = dev_pm_domain_attach_by_name(dev, "bus"); if (IS_ERR(bc->bus_power_dev)) { if (PTR_ERR(bc->bus_power_dev) == -ENODEV) return dev_err_probe(dev, -EPROBE_DEFER, "failed to attach power domain \"bus\"\n"); else return dev_err_probe(dev, PTR_ERR(bc->bus_power_dev), "failed to attach power domain \"bus\"\n"); } for (i = 0; i < bc_data->num_domains; i++) { const struct imx8m_blk_ctrl_domain_data *data = &bc_data->domains[i]; struct imx8m_blk_ctrl_domain *domain = &bc->domains[i]; int j; domain->data = data; domain->num_paths = data->num_paths; for (j = 0; j < data->num_clks; j++) domain->clks[j].id = data->clk_names[j]; for (j = 0; j < data->num_paths; j++) { domain->paths[j].name = data->path_names[j]; /* Fake value for now, just let ICC could configure NoC mode/priority */ domain->paths[j].avg_bw = 1; domain->paths[j].peak_bw = 1; } ret = devm_of_icc_bulk_get(dev, data->num_paths, domain->paths); if (ret) { if (ret != -EPROBE_DEFER) { dev_warn_once(dev, "Could not get interconnect paths, NoC will stay unconfigured!\n"); domain->num_paths = 0; } else { dev_err_probe(dev, ret, "failed to get noc entries\n"); goto cleanup_pds; } } ret = devm_clk_bulk_get(dev, data->num_clks, domain->clks); if (ret) { dev_err_probe(dev, ret, "failed to get clock\n"); goto cleanup_pds; } domain->power_dev = dev_pm_domain_attach_by_name(dev, data->gpc_name); if (IS_ERR(domain->power_dev)) { dev_err_probe(dev, PTR_ERR(domain->power_dev), "failed to attach power domain \"%s\"\n", data->gpc_name); ret = PTR_ERR(domain->power_dev); goto cleanup_pds; } domain->genpd.name = data->name; domain->genpd.power_on = imx8m_blk_ctrl_power_on; domain->genpd.power_off = imx8m_blk_ctrl_power_off; domain->bc = bc; ret = pm_genpd_init(&domain->genpd, NULL, true); if (ret) { dev_err_probe(dev, ret, "failed to init power domain \"%s\"\n", data->gpc_name); dev_pm_domain_detach(domain->power_dev, true); goto cleanup_pds; } /* * We use runtime PM to trigger power on/off of the upstream GPC * domain, as a strict hierarchical parent/child power domain * setup doesn't allow us to meet the sequencing requirements. * This means we have nested locking of genpd locks, without the * nesting being visible at the genpd level, so we need a * separate lock class to make lockdep aware of the fact that * this are separate domain locks that can be nested without a * self-deadlock. */ lockdep_set_class(&domain->genpd.mlock, &blk_ctrl_genpd_lock_class); bc->onecell_data.domains[i] = &domain->genpd; } ret = of_genpd_add_provider_onecell(dev->of_node, &bc->onecell_data); if (ret) { dev_err_probe(dev, ret, "failed to add power domain provider\n"); goto cleanup_pds; } bc->power_nb.notifier_call = bc_data->power_notifier_fn; ret = dev_pm_genpd_add_notifier(bc->bus_power_dev, &bc->power_nb); if (ret) { dev_err_probe(dev, ret, "failed to add power notifier\n"); goto cleanup_provider; } dev_set_drvdata(dev, bc); ret = devm_of_platform_populate(dev); if (ret) goto cleanup_provider; return 0; cleanup_provider: of_genpd_del_provider(dev->of_node); cleanup_pds: for (i--; i >= 0; i--) { pm_genpd_remove(&bc->domains[i].genpd); dev_pm_domain_detach(bc->domains[i].power_dev, true); } dev_pm_domain_detach(bc->bus_power_dev, true); return ret; } static int imx8m_blk_ctrl_remove(struct platform_device *pdev) { struct imx8m_blk_ctrl *bc = dev_get_drvdata(&pdev->dev); int i; of_genpd_del_provider(pdev->dev.of_node); for (i = 0; bc->onecell_data.num_domains; i++) { struct imx8m_blk_ctrl_domain *domain = &bc->domains[i]; pm_genpd_remove(&domain->genpd); dev_pm_domain_detach(domain->power_dev, true); } dev_pm_genpd_remove_notifier(bc->bus_power_dev); dev_pm_domain_detach(bc->bus_power_dev, true); return 0; } #ifdef CONFIG_PM_SLEEP static int imx8m_blk_ctrl_suspend(struct device *dev) { struct imx8m_blk_ctrl *bc = dev_get_drvdata(dev); int ret, i; /* * This may look strange, but is done so the generic PM_SLEEP code * can power down our domains and more importantly power them up again * after resume, without tripping over our usage of runtime PM to * control the upstream GPC domains. Things happen in the right order * in the system suspend/resume paths due to the device parent/child * hierarchy. */ ret = pm_runtime_get_sync(bc->bus_power_dev); if (ret < 0) { pm_runtime_put_noidle(bc->bus_power_dev); return ret; } for (i = 0; i < bc->onecell_data.num_domains; i++) { struct imx8m_blk_ctrl_domain *domain = &bc->domains[i]; ret = pm_runtime_get_sync(domain->power_dev); if (ret < 0) { pm_runtime_put_noidle(domain->power_dev); goto out_fail; } } return 0; out_fail: for (i--; i >= 0; i--) pm_runtime_put(bc->domains[i].power_dev); pm_runtime_put(bc->bus_power_dev); return ret; } static int imx8m_blk_ctrl_resume(struct device *dev) { struct imx8m_blk_ctrl *bc = dev_get_drvdata(dev); int i; for (i = 0; i < bc->onecell_data.num_domains; i++) pm_runtime_put(bc->domains[i].power_dev); pm_runtime_put(bc->bus_power_dev); return 0; } #endif static const struct dev_pm_ops imx8m_blk_ctrl_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(imx8m_blk_ctrl_suspend, imx8m_blk_ctrl_resume) }; static int imx8mm_vpu_power_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct imx8m_blk_ctrl *bc = container_of(nb, struct imx8m_blk_ctrl, power_nb); if (action != GENPD_NOTIFY_ON && action != GENPD_NOTIFY_PRE_OFF) return NOTIFY_OK; /* * The ADB in the VPUMIX domain has no separate reset and clock * enable bits, but is ungated together with the VPU clocks. To * allow the handshake with the GPC to progress we put the VPUs * in reset and ungate the clocks. */ regmap_clear_bits(bc->regmap, BLK_SFT_RSTN, BIT(0) | BIT(1) | BIT(2)); regmap_set_bits(bc->regmap, BLK_CLK_EN, BIT(0) | BIT(1) | BIT(2)); if (action == GENPD_NOTIFY_ON) { /* * On power up we have no software backchannel to the GPC to * wait for the ADB handshake to happen, so we just delay for a * bit. On power down the GPC driver waits for the handshake. */ udelay(5); /* set "fuse" bits to enable the VPUs */ regmap_set_bits(bc->regmap, 0x8, 0xffffffff); regmap_set_bits(bc->regmap, 0xc, 0xffffffff); regmap_set_bits(bc->regmap, 0x10, 0xffffffff); regmap_set_bits(bc->regmap, 0x14, 0xffffffff); } return NOTIFY_OK; } static const struct imx8m_blk_ctrl_domain_data imx8mm_vpu_blk_ctl_domain_data[] = { [IMX8MM_VPUBLK_PD_G1] = { .name = "vpublk-g1", .clk_names = (const char *[]){ "g1", }, .num_clks = 1, .gpc_name = "g1", .rst_mask = BIT(1), .clk_mask = BIT(1), }, [IMX8MM_VPUBLK_PD_G2] = { .name = "vpublk-g2", .clk_names = (const char *[]){ "g2", }, .num_clks = 1, .gpc_name = "g2", .rst_mask = BIT(0), .clk_mask = BIT(0), }, [IMX8MM_VPUBLK_PD_H1] = { .name = "vpublk-h1", .clk_names = (const char *[]){ "h1", }, .num_clks = 1, .gpc_name = "h1", .rst_mask = BIT(2), .clk_mask = BIT(2), }, }; static const struct imx8m_blk_ctrl_data imx8mm_vpu_blk_ctl_dev_data = { .max_reg = 0x18, .power_notifier_fn = imx8mm_vpu_power_notifier, .domains = imx8mm_vpu_blk_ctl_domain_data, .num_domains = ARRAY_SIZE(imx8mm_vpu_blk_ctl_domain_data), }; static const struct imx8m_blk_ctrl_domain_data imx8mp_vpu_blk_ctl_domain_data[] = { [IMX8MP_VPUBLK_PD_G1] = { .name = "vpublk-g1", .clk_names = (const char *[]){ "g1", }, .num_clks = 1, .gpc_name = "g1", .rst_mask = BIT(1), .clk_mask = BIT(1), .path_names = (const char *[]){"g1"}, .num_paths = 1, }, [IMX8MP_VPUBLK_PD_G2] = { .name = "vpublk-g2", .clk_names = (const char *[]){ "g2", }, .num_clks = 1, .gpc_name = "g2", .rst_mask = BIT(0), .clk_mask = BIT(0), .path_names = (const char *[]){"g2"}, .num_paths = 1, }, [IMX8MP_VPUBLK_PD_VC8000E] = { .name = "vpublk-vc8000e", .clk_names = (const char *[]){ "vc8000e", }, .num_clks = 1, .gpc_name = "vc8000e", .rst_mask = BIT(2), .clk_mask = BIT(2), .path_names = (const char *[]){"vc8000e"}, .num_paths = 1, }, }; static const struct imx8m_blk_ctrl_data imx8mp_vpu_blk_ctl_dev_data = { .max_reg = 0x18, .power_notifier_fn = imx8mm_vpu_power_notifier, .domains = imx8mp_vpu_blk_ctl_domain_data, .num_domains = ARRAY_SIZE(imx8mp_vpu_blk_ctl_domain_data), }; static int imx8mm_disp_power_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct imx8m_blk_ctrl *bc = container_of(nb, struct imx8m_blk_ctrl, power_nb); if (action != GENPD_NOTIFY_ON && action != GENPD_NOTIFY_PRE_OFF) return NOTIFY_OK; /* Enable bus clock and deassert bus reset */ regmap_set_bits(bc->regmap, BLK_CLK_EN, BIT(12)); regmap_set_bits(bc->regmap, BLK_SFT_RSTN, BIT(6)); /* * On power up we have no software backchannel to the GPC to * wait for the ADB handshake to happen, so we just delay for a * bit. On power down the GPC driver waits for the handshake. */ if (action == GENPD_NOTIFY_ON) udelay(5); return NOTIFY_OK; } static const struct imx8m_blk_ctrl_domain_data imx8mm_disp_blk_ctl_domain_data[] = { [IMX8MM_DISPBLK_PD_CSI_BRIDGE] = { .name = "dispblk-csi-bridge", .clk_names = (const char *[]){ "csi-bridge-axi", "csi-bridge-apb", "csi-bridge-core", }, .num_clks = 3, .gpc_name = "csi-bridge", .rst_mask = BIT(0) | BIT(1) | BIT(2), .clk_mask = BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5), }, [IMX8MM_DISPBLK_PD_LCDIF] = { .name = "dispblk-lcdif", .clk_names = (const char *[]){ "lcdif-axi", "lcdif-apb", "lcdif-pix", }, .num_clks = 3, .gpc_name = "lcdif", .clk_mask = BIT(6) | BIT(7), }, [IMX8MM_DISPBLK_PD_MIPI_DSI] = { .name = "dispblk-mipi-dsi", .clk_names = (const char *[]){ "dsi-pclk", "dsi-ref", }, .num_clks = 2, .gpc_name = "mipi-dsi", .rst_mask = BIT(5), .clk_mask = BIT(8) | BIT(9), .mipi_phy_rst_mask = BIT(17), }, [IMX8MM_DISPBLK_PD_MIPI_CSI] = { .name = "dispblk-mipi-csi", .clk_names = (const char *[]){ "csi-aclk", "csi-pclk" }, .num_clks = 2, .gpc_name = "mipi-csi", .rst_mask = BIT(3) | BIT(4), .clk_mask = BIT(10) | BIT(11), .mipi_phy_rst_mask = BIT(16), }, }; static const struct imx8m_blk_ctrl_data imx8mm_disp_blk_ctl_dev_data = { .max_reg = 0x2c, .power_notifier_fn = imx8mm_disp_power_notifier, .domains = imx8mm_disp_blk_ctl_domain_data, .num_domains = ARRAY_SIZE(imx8mm_disp_blk_ctl_domain_data), }; static int imx8mn_disp_power_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct imx8m_blk_ctrl *bc = container_of(nb, struct imx8m_blk_ctrl, power_nb); if (action != GENPD_NOTIFY_ON && action != GENPD_NOTIFY_PRE_OFF) return NOTIFY_OK; /* Enable bus clock and deassert bus reset */ regmap_set_bits(bc->regmap, BLK_CLK_EN, BIT(8)); regmap_set_bits(bc->regmap, BLK_SFT_RSTN, BIT(8)); /* * On power up we have no software backchannel to the GPC to * wait for the ADB handshake to happen, so we just delay for a * bit. On power down the GPC driver waits for the handshake. */ if (action == GENPD_NOTIFY_ON) udelay(5); return NOTIFY_OK; } static const struct imx8m_blk_ctrl_domain_data imx8mn_disp_blk_ctl_domain_data[] = { [IMX8MN_DISPBLK_PD_MIPI_DSI] = { .name = "dispblk-mipi-dsi", .clk_names = (const char *[]){ "dsi-pclk", "dsi-ref", }, .num_clks = 2, .gpc_name = "mipi-dsi", .rst_mask = BIT(0) | BIT(1), .clk_mask = BIT(0) | BIT(1), .mipi_phy_rst_mask = BIT(17), }, [IMX8MN_DISPBLK_PD_MIPI_CSI] = { .name = "dispblk-mipi-csi", .clk_names = (const char *[]){ "csi-aclk", "csi-pclk" }, .num_clks = 2, .gpc_name = "mipi-csi", .rst_mask = BIT(2) | BIT(3), .clk_mask = BIT(2) | BIT(3), .mipi_phy_rst_mask = BIT(16), }, [IMX8MN_DISPBLK_PD_LCDIF] = { .name = "dispblk-lcdif", .clk_names = (const char *[]){ "lcdif-axi", "lcdif-apb", "lcdif-pix", }, .num_clks = 3, .gpc_name = "lcdif", .rst_mask = BIT(4) | BIT(5), .clk_mask = BIT(4) | BIT(5), }, [IMX8MN_DISPBLK_PD_ISI] = { .name = "dispblk-isi", .clk_names = (const char *[]){ "disp_axi", "disp_apb", "disp_axi_root", "disp_apb_root"}, .num_clks = 4, .gpc_name = "isi", .rst_mask = BIT(6) | BIT(7), .clk_mask = BIT(6) | BIT(7), }, }; static const struct imx8m_blk_ctrl_data imx8mn_disp_blk_ctl_dev_data = { .max_reg = 0x84, .power_notifier_fn = imx8mn_disp_power_notifier, .domains = imx8mn_disp_blk_ctl_domain_data, .num_domains = ARRAY_SIZE(imx8mn_disp_blk_ctl_domain_data), }; #define LCDIF_ARCACHE_CTRL 0x4c #define LCDIF_1_RD_HURRY GENMASK(15, 13) #define LCDIF_0_RD_HURRY GENMASK(12, 10) static int imx8mp_media_power_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct imx8m_blk_ctrl *bc = container_of(nb, struct imx8m_blk_ctrl, power_nb); if (action != GENPD_NOTIFY_ON && action != GENPD_NOTIFY_PRE_OFF) return NOTIFY_OK; /* Enable bus clock and deassert bus reset */ regmap_set_bits(bc->regmap, BLK_CLK_EN, BIT(8)); regmap_set_bits(bc->regmap, BLK_SFT_RSTN, BIT(8)); if (action == GENPD_NOTIFY_ON) { /* * On power up we have no software backchannel to the GPC to * wait for the ADB handshake to happen, so we just delay for a * bit. On power down the GPC driver waits for the handshake. */ udelay(5); /* * Set panic read hurry level for both LCDIF interfaces to * maximum priority to minimize chances of display FIFO * underflow. */ regmap_set_bits(bc->regmap, LCDIF_ARCACHE_CTRL, FIELD_PREP(LCDIF_1_RD_HURRY, 7) | FIELD_PREP(LCDIF_0_RD_HURRY, 7)); } return NOTIFY_OK; } /* * From i.MX 8M Plus Applications Processor Reference Manual, Rev. 1, * section 13.2.2, 13.2.3 * isp-ahb and dwe are not in Figure 13-5. Media BLK_CTRL Clocks */ static const struct imx8m_blk_ctrl_domain_data imx8mp_media_blk_ctl_domain_data[] = { [IMX8MP_MEDIABLK_PD_MIPI_DSI_1] = { .name = "mediablk-mipi-dsi-1", .clk_names = (const char *[]){ "apb", "phy", }, .num_clks = 2, .gpc_name = "mipi-dsi1", .rst_mask = BIT(0) | BIT(1), .clk_mask = BIT(0) | BIT(1), .mipi_phy_rst_mask = BIT(17), }, [IMX8MP_MEDIABLK_PD_MIPI_CSI2_1] = { .name = "mediablk-mipi-csi2-1", .clk_names = (const char *[]){ "apb", "cam1" }, .num_clks = 2, .gpc_name = "mipi-csi1", .rst_mask = BIT(2) | BIT(3), .clk_mask = BIT(2) | BIT(3), .mipi_phy_rst_mask = BIT(16), }, [IMX8MP_MEDIABLK_PD_LCDIF_1] = { .name = "mediablk-lcdif-1", .clk_names = (const char *[]){ "disp1", "apb", "axi", }, .num_clks = 3, .gpc_name = "lcdif1", .rst_mask = BIT(4) | BIT(5) | BIT(23), .clk_mask = BIT(4) | BIT(5) | BIT(23), .path_names = (const char *[]){"lcdif-rd", "lcdif-wr"}, .num_paths = 2, }, [IMX8MP_MEDIABLK_PD_ISI] = { .name = "mediablk-isi", .clk_names = (const char *[]){ "axi", "apb" }, .num_clks = 2, .gpc_name = "isi", .rst_mask = BIT(6) | BIT(7), .clk_mask = BIT(6) | BIT(7), .path_names = (const char *[]){"isi0", "isi1", "isi2"}, .num_paths = 3, }, [IMX8MP_MEDIABLK_PD_MIPI_CSI2_2] = { .name = "mediablk-mipi-csi2-2", .clk_names = (const char *[]){ "apb", "cam2" }, .num_clks = 2, .gpc_name = "mipi-csi2", .rst_mask = BIT(9) | BIT(10), .clk_mask = BIT(9) | BIT(10), .mipi_phy_rst_mask = BIT(30), }, [IMX8MP_MEDIABLK_PD_LCDIF_2] = { .name = "mediablk-lcdif-2", .clk_names = (const char *[]){ "disp2", "apb", "axi", }, .num_clks = 3, .gpc_name = "lcdif2", .rst_mask = BIT(11) | BIT(12) | BIT(24), .clk_mask = BIT(11) | BIT(12) | BIT(24), .path_names = (const char *[]){"lcdif-rd", "lcdif-wr"}, .num_paths = 2, }, [IMX8MP_MEDIABLK_PD_ISP] = { .name = "mediablk-isp", .clk_names = (const char *[]){ "isp", "axi", "apb" }, .num_clks = 3, .gpc_name = "isp", .rst_mask = BIT(16) | BIT(17) | BIT(18), .clk_mask = BIT(16) | BIT(17) | BIT(18), .path_names = (const char *[]){"isp0", "isp1"}, .num_paths = 2, }, [IMX8MP_MEDIABLK_PD_DWE] = { .name = "mediablk-dwe", .clk_names = (const char *[]){ "axi", "apb" }, .num_clks = 2, .gpc_name = "dwe", .rst_mask = BIT(19) | BIT(20) | BIT(21), .clk_mask = BIT(19) | BIT(20) | BIT(21), .path_names = (const char *[]){"dwe"}, .num_paths = 1, }, [IMX8MP_MEDIABLK_PD_MIPI_DSI_2] = { .name = "mediablk-mipi-dsi-2", .clk_names = (const char *[]){ "phy", }, .num_clks = 1, .gpc_name = "mipi-dsi2", .rst_mask = BIT(22), .clk_mask = BIT(22), .mipi_phy_rst_mask = BIT(29), }, }; static const struct imx8m_blk_ctrl_data imx8mp_media_blk_ctl_dev_data = { .max_reg = 0x138, .power_notifier_fn = imx8mp_media_power_notifier, .domains = imx8mp_media_blk_ctl_domain_data, .num_domains = ARRAY_SIZE(imx8mp_media_blk_ctl_domain_data), }; static int imx8mq_vpu_power_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct imx8m_blk_ctrl *bc = container_of(nb, struct imx8m_blk_ctrl, power_nb); if (action != GENPD_NOTIFY_ON && action != GENPD_NOTIFY_PRE_OFF) return NOTIFY_OK; /* * The ADB in the VPUMIX domain has no separate reset and clock * enable bits, but is ungated and reset together with the VPUs. The * reset and clock enable inputs to the ADB is a logical OR of the * VPU bits. In order to set the G2 fuse bits, the G2 clock must * also be enabled. */ regmap_set_bits(bc->regmap, BLK_SFT_RSTN, BIT(0) | BIT(1)); regmap_set_bits(bc->regmap, BLK_CLK_EN, BIT(0) | BIT(1)); if (action == GENPD_NOTIFY_ON) { /* * On power up we have no software backchannel to the GPC to * wait for the ADB handshake to happen, so we just delay for a * bit. On power down the GPC driver waits for the handshake. */ udelay(5); /* set "fuse" bits to enable the VPUs */ regmap_set_bits(bc->regmap, 0x8, 0xffffffff); regmap_set_bits(bc->regmap, 0xc, 0xffffffff); regmap_set_bits(bc->regmap, 0x10, 0xffffffff); } return NOTIFY_OK; } static const struct imx8m_blk_ctrl_domain_data imx8mq_vpu_blk_ctl_domain_data[] = { [IMX8MQ_VPUBLK_PD_G1] = { .name = "vpublk-g1", .clk_names = (const char *[]){ "g1", }, .num_clks = 1, .gpc_name = "g1", .rst_mask = BIT(1), .clk_mask = BIT(1), }, [IMX8MQ_VPUBLK_PD_G2] = { .name = "vpublk-g2", .clk_names = (const char *[]){ "g2", }, .num_clks = 1, .gpc_name = "g2", .rst_mask = BIT(0), .clk_mask = BIT(0), }, }; static const struct imx8m_blk_ctrl_data imx8mq_vpu_blk_ctl_dev_data = { .max_reg = 0x14, .power_notifier_fn = imx8mq_vpu_power_notifier, .domains = imx8mq_vpu_blk_ctl_domain_data, .num_domains = ARRAY_SIZE(imx8mq_vpu_blk_ctl_domain_data), }; static const struct of_device_id imx8m_blk_ctrl_of_match[] = { { .compatible = "fsl,imx8mm-vpu-blk-ctrl", .data = &imx8mm_vpu_blk_ctl_dev_data }, { .compatible = "fsl,imx8mm-disp-blk-ctrl", .data = &imx8mm_disp_blk_ctl_dev_data }, { .compatible = "fsl,imx8mn-disp-blk-ctrl", .data = &imx8mn_disp_blk_ctl_dev_data }, { .compatible = "fsl,imx8mp-media-blk-ctrl", .data = &imx8mp_media_blk_ctl_dev_data }, { .compatible = "fsl,imx8mq-vpu-blk-ctrl", .data = &imx8mq_vpu_blk_ctl_dev_data }, { .compatible = "fsl,imx8mp-vpu-blk-ctrl", .data = &imx8mp_vpu_blk_ctl_dev_data }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, imx8m_blk_ctrl_of_match); static struct platform_driver imx8m_blk_ctrl_driver = { .probe = imx8m_blk_ctrl_probe, .remove = imx8m_blk_ctrl_remove, .driver = { .name = "imx8m-blk-ctrl", .pm = &imx8m_blk_ctrl_pm_ops, .of_match_table = imx8m_blk_ctrl_of_match, }, }; module_platform_driver(imx8m_blk_ctrl_driver); MODULE_LICENSE("GPL");
linux-master
drivers/pmdomain/imx/imx8m-blk-ctrl.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2017 Impinj, Inc * Author: Andrey Smirnov <[email protected]> * * Based on the code of analogus driver: * * Copyright 2015-2017 Pengutronix, Lucas Stach <[email protected]> */ #include <linux/clk.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/sizes.h> #include <dt-bindings/power/imx7-power.h> #include <dt-bindings/power/imx8mq-power.h> #include <dt-bindings/power/imx8mm-power.h> #include <dt-bindings/power/imx8mn-power.h> #include <dt-bindings/power/imx8mp-power.h> #define GPC_LPCR_A_CORE_BSC 0x000 #define GPC_PGC_CPU_MAPPING 0x0ec #define IMX8MP_GPC_PGC_CPU_MAPPING 0x1cc #define IMX7_USB_HSIC_PHY_A_CORE_DOMAIN BIT(6) #define IMX7_USB_OTG2_PHY_A_CORE_DOMAIN BIT(5) #define IMX7_USB_OTG1_PHY_A_CORE_DOMAIN BIT(4) #define IMX7_PCIE_PHY_A_CORE_DOMAIN BIT(3) #define IMX7_MIPI_PHY_A_CORE_DOMAIN BIT(2) #define IMX8M_PCIE2_A53_DOMAIN BIT(15) #define IMX8M_MIPI_CSI2_A53_DOMAIN BIT(14) #define IMX8M_MIPI_CSI1_A53_DOMAIN BIT(13) #define IMX8M_DISP_A53_DOMAIN BIT(12) #define IMX8M_HDMI_A53_DOMAIN BIT(11) #define IMX8M_VPU_A53_DOMAIN BIT(10) #define IMX8M_GPU_A53_DOMAIN BIT(9) #define IMX8M_DDR2_A53_DOMAIN BIT(8) #define IMX8M_DDR1_A53_DOMAIN BIT(7) #define IMX8M_OTG2_A53_DOMAIN BIT(5) #define IMX8M_OTG1_A53_DOMAIN BIT(4) #define IMX8M_PCIE1_A53_DOMAIN BIT(3) #define IMX8M_MIPI_A53_DOMAIN BIT(2) #define IMX8MM_VPUH1_A53_DOMAIN BIT(15) #define IMX8MM_VPUG2_A53_DOMAIN BIT(14) #define IMX8MM_VPUG1_A53_DOMAIN BIT(13) #define IMX8MM_DISPMIX_A53_DOMAIN BIT(12) #define IMX8MM_VPUMIX_A53_DOMAIN BIT(10) #define IMX8MM_GPUMIX_A53_DOMAIN BIT(9) #define IMX8MM_GPU_A53_DOMAIN (BIT(8) | BIT(11)) #define IMX8MM_DDR1_A53_DOMAIN BIT(7) #define IMX8MM_OTG2_A53_DOMAIN BIT(5) #define IMX8MM_OTG1_A53_DOMAIN BIT(4) #define IMX8MM_PCIE_A53_DOMAIN BIT(3) #define IMX8MM_MIPI_A53_DOMAIN BIT(2) #define IMX8MN_DISPMIX_A53_DOMAIN BIT(12) #define IMX8MN_GPUMIX_A53_DOMAIN BIT(9) #define IMX8MN_DDR1_A53_DOMAIN BIT(7) #define IMX8MN_OTG1_A53_DOMAIN BIT(4) #define IMX8MN_MIPI_A53_DOMAIN BIT(2) #define IMX8MP_MEDIA_ISPDWP_A53_DOMAIN BIT(20) #define IMX8MP_HSIOMIX_A53_DOMAIN BIT(19) #define IMX8MP_MIPI_PHY2_A53_DOMAIN BIT(18) #define IMX8MP_HDMI_PHY_A53_DOMAIN BIT(17) #define IMX8MP_HDMIMIX_A53_DOMAIN BIT(16) #define IMX8MP_VPU_VC8000E_A53_DOMAIN BIT(15) #define IMX8MP_VPU_G2_A53_DOMAIN BIT(14) #define IMX8MP_VPU_G1_A53_DOMAIN BIT(13) #define IMX8MP_MEDIAMIX_A53_DOMAIN BIT(12) #define IMX8MP_GPU3D_A53_DOMAIN BIT(11) #define IMX8MP_VPUMIX_A53_DOMAIN BIT(10) #define IMX8MP_GPUMIX_A53_DOMAIN BIT(9) #define IMX8MP_GPU2D_A53_DOMAIN BIT(8) #define IMX8MP_AUDIOMIX_A53_DOMAIN BIT(7) #define IMX8MP_MLMIX_A53_DOMAIN BIT(6) #define IMX8MP_USB2_PHY_A53_DOMAIN BIT(5) #define IMX8MP_USB1_PHY_A53_DOMAIN BIT(4) #define IMX8MP_PCIE_PHY_A53_DOMAIN BIT(3) #define IMX8MP_MIPI_PHY1_A53_DOMAIN BIT(2) #define IMX8MP_GPC_PU_PGC_SW_PUP_REQ 0x0d8 #define IMX8MP_GPC_PU_PGC_SW_PDN_REQ 0x0e4 #define GPC_PU_PGC_SW_PUP_REQ 0x0f8 #define GPC_PU_PGC_SW_PDN_REQ 0x104 #define IMX7_USB_HSIC_PHY_SW_Pxx_REQ BIT(4) #define IMX7_USB_OTG2_PHY_SW_Pxx_REQ BIT(3) #define IMX7_USB_OTG1_PHY_SW_Pxx_REQ BIT(2) #define IMX7_PCIE_PHY_SW_Pxx_REQ BIT(1) #define IMX7_MIPI_PHY_SW_Pxx_REQ BIT(0) #define IMX8M_PCIE2_SW_Pxx_REQ BIT(13) #define IMX8M_MIPI_CSI2_SW_Pxx_REQ BIT(12) #define IMX8M_MIPI_CSI1_SW_Pxx_REQ BIT(11) #define IMX8M_DISP_SW_Pxx_REQ BIT(10) #define IMX8M_HDMI_SW_Pxx_REQ BIT(9) #define IMX8M_VPU_SW_Pxx_REQ BIT(8) #define IMX8M_GPU_SW_Pxx_REQ BIT(7) #define IMX8M_DDR2_SW_Pxx_REQ BIT(6) #define IMX8M_DDR1_SW_Pxx_REQ BIT(5) #define IMX8M_OTG2_SW_Pxx_REQ BIT(3) #define IMX8M_OTG1_SW_Pxx_REQ BIT(2) #define IMX8M_PCIE1_SW_Pxx_REQ BIT(1) #define IMX8M_MIPI_SW_Pxx_REQ BIT(0) #define IMX8MM_VPUH1_SW_Pxx_REQ BIT(13) #define IMX8MM_VPUG2_SW_Pxx_REQ BIT(12) #define IMX8MM_VPUG1_SW_Pxx_REQ BIT(11) #define IMX8MM_DISPMIX_SW_Pxx_REQ BIT(10) #define IMX8MM_VPUMIX_SW_Pxx_REQ BIT(8) #define IMX8MM_GPUMIX_SW_Pxx_REQ BIT(7) #define IMX8MM_GPU_SW_Pxx_REQ (BIT(6) | BIT(9)) #define IMX8MM_DDR1_SW_Pxx_REQ BIT(5) #define IMX8MM_OTG2_SW_Pxx_REQ BIT(3) #define IMX8MM_OTG1_SW_Pxx_REQ BIT(2) #define IMX8MM_PCIE_SW_Pxx_REQ BIT(1) #define IMX8MM_MIPI_SW_Pxx_REQ BIT(0) #define IMX8MN_DISPMIX_SW_Pxx_REQ BIT(10) #define IMX8MN_GPUMIX_SW_Pxx_REQ BIT(7) #define IMX8MN_DDR1_SW_Pxx_REQ BIT(5) #define IMX8MN_OTG1_SW_Pxx_REQ BIT(2) #define IMX8MN_MIPI_SW_Pxx_REQ BIT(0) #define IMX8MP_DDRMIX_Pxx_REQ BIT(19) #define IMX8MP_MEDIA_ISP_DWP_Pxx_REQ BIT(18) #define IMX8MP_HSIOMIX_Pxx_REQ BIT(17) #define IMX8MP_MIPI_PHY2_Pxx_REQ BIT(16) #define IMX8MP_HDMI_PHY_Pxx_REQ BIT(15) #define IMX8MP_HDMIMIX_Pxx_REQ BIT(14) #define IMX8MP_VPU_VC8K_Pxx_REQ BIT(13) #define IMX8MP_VPU_G2_Pxx_REQ BIT(12) #define IMX8MP_VPU_G1_Pxx_REQ BIT(11) #define IMX8MP_MEDIMIX_Pxx_REQ BIT(10) #define IMX8MP_GPU_3D_Pxx_REQ BIT(9) #define IMX8MP_VPU_MIX_SHARE_LOGIC_Pxx_REQ BIT(8) #define IMX8MP_GPU_SHARE_LOGIC_Pxx_REQ BIT(7) #define IMX8MP_GPU_2D_Pxx_REQ BIT(6) #define IMX8MP_AUDIOMIX_Pxx_REQ BIT(5) #define IMX8MP_MLMIX_Pxx_REQ BIT(4) #define IMX8MP_USB2_PHY_Pxx_REQ BIT(3) #define IMX8MP_USB1_PHY_Pxx_REQ BIT(2) #define IMX8MP_PCIE_PHY_SW_Pxx_REQ BIT(1) #define IMX8MP_MIPI_PHY1_SW_Pxx_REQ BIT(0) #define GPC_M4_PU_PDN_FLG 0x1bc #define IMX8MP_GPC_PU_PWRHSK 0x190 #define GPC_PU_PWRHSK 0x1fc #define IMX8M_GPU_HSK_PWRDNACKN BIT(26) #define IMX8M_VPU_HSK_PWRDNACKN BIT(25) #define IMX8M_DISP_HSK_PWRDNACKN BIT(24) #define IMX8M_GPU_HSK_PWRDNREQN BIT(6) #define IMX8M_VPU_HSK_PWRDNREQN BIT(5) #define IMX8M_DISP_HSK_PWRDNREQN BIT(4) #define IMX8MM_GPUMIX_HSK_PWRDNACKN BIT(29) #define IMX8MM_GPU_HSK_PWRDNACKN (BIT(27) | BIT(28)) #define IMX8MM_VPUMIX_HSK_PWRDNACKN BIT(26) #define IMX8MM_DISPMIX_HSK_PWRDNACKN BIT(25) #define IMX8MM_HSIO_HSK_PWRDNACKN (BIT(23) | BIT(24)) #define IMX8MM_GPUMIX_HSK_PWRDNREQN BIT(11) #define IMX8MM_GPU_HSK_PWRDNREQN (BIT(9) | BIT(10)) #define IMX8MM_VPUMIX_HSK_PWRDNREQN BIT(8) #define IMX8MM_DISPMIX_HSK_PWRDNREQN BIT(7) #define IMX8MM_HSIO_HSK_PWRDNREQN (BIT(5) | BIT(6)) #define IMX8MN_GPUMIX_HSK_PWRDNACKN (BIT(29) | BIT(27)) #define IMX8MN_DISPMIX_HSK_PWRDNACKN BIT(25) #define IMX8MN_HSIO_HSK_PWRDNACKN BIT(23) #define IMX8MN_GPUMIX_HSK_PWRDNREQN (BIT(11) | BIT(9)) #define IMX8MN_DISPMIX_HSK_PWRDNREQN BIT(7) #define IMX8MN_HSIO_HSK_PWRDNREQN BIT(5) #define IMX8MP_MEDIAMIX_PWRDNACKN BIT(30) #define IMX8MP_HDMIMIX_PWRDNACKN BIT(29) #define IMX8MP_HSIOMIX_PWRDNACKN BIT(28) #define IMX8MP_VPUMIX_PWRDNACKN BIT(26) #define IMX8MP_GPUMIX_PWRDNACKN BIT(25) #define IMX8MP_MLMIX_PWRDNACKN (BIT(23) | BIT(24)) #define IMX8MP_AUDIOMIX_PWRDNACKN (BIT(20) | BIT(31)) #define IMX8MP_MEDIAMIX_PWRDNREQN BIT(14) #define IMX8MP_HDMIMIX_PWRDNREQN BIT(13) #define IMX8MP_HSIOMIX_PWRDNREQN BIT(12) #define IMX8MP_VPUMIX_PWRDNREQN BIT(10) #define IMX8MP_GPUMIX_PWRDNREQN BIT(9) #define IMX8MP_MLMIX_PWRDNREQN (BIT(7) | BIT(8)) #define IMX8MP_AUDIOMIX_PWRDNREQN (BIT(4) | BIT(15)) /* * The PGC offset values in Reference Manual * (Rev. 1, 01/2018 and the older ones) GPC chapter's * GPC_PGC memory map are incorrect, below offset * values are from design RTL. */ #define IMX7_PGC_MIPI 16 #define IMX7_PGC_PCIE 17 #define IMX7_PGC_USB_HSIC 20 #define IMX8M_PGC_MIPI 16 #define IMX8M_PGC_PCIE1 17 #define IMX8M_PGC_OTG1 18 #define IMX8M_PGC_OTG2 19 #define IMX8M_PGC_DDR1 21 #define IMX8M_PGC_GPU 23 #define IMX8M_PGC_VPU 24 #define IMX8M_PGC_DISP 26 #define IMX8M_PGC_MIPI_CSI1 27 #define IMX8M_PGC_MIPI_CSI2 28 #define IMX8M_PGC_PCIE2 29 #define IMX8MM_PGC_MIPI 16 #define IMX8MM_PGC_PCIE 17 #define IMX8MM_PGC_OTG1 18 #define IMX8MM_PGC_OTG2 19 #define IMX8MM_PGC_DDR1 21 #define IMX8MM_PGC_GPU2D 22 #define IMX8MM_PGC_GPUMIX 23 #define IMX8MM_PGC_VPUMIX 24 #define IMX8MM_PGC_GPU3D 25 #define IMX8MM_PGC_DISPMIX 26 #define IMX8MM_PGC_VPUG1 27 #define IMX8MM_PGC_VPUG2 28 #define IMX8MM_PGC_VPUH1 29 #define IMX8MN_PGC_MIPI 16 #define IMX8MN_PGC_OTG1 18 #define IMX8MN_PGC_DDR1 21 #define IMX8MN_PGC_GPUMIX 23 #define IMX8MN_PGC_DISPMIX 26 #define IMX8MP_PGC_NOC 9 #define IMX8MP_PGC_MIPI1 12 #define IMX8MP_PGC_PCIE 13 #define IMX8MP_PGC_USB1 14 #define IMX8MP_PGC_USB2 15 #define IMX8MP_PGC_MLMIX 16 #define IMX8MP_PGC_AUDIOMIX 17 #define IMX8MP_PGC_GPU2D 18 #define IMX8MP_PGC_GPUMIX 19 #define IMX8MP_PGC_VPUMIX 20 #define IMX8MP_PGC_GPU3D 21 #define IMX8MP_PGC_MEDIAMIX 22 #define IMX8MP_PGC_VPU_G1 23 #define IMX8MP_PGC_VPU_G2 24 #define IMX8MP_PGC_VPU_VC8000E 25 #define IMX8MP_PGC_HDMIMIX 26 #define IMX8MP_PGC_HDMI 27 #define IMX8MP_PGC_MIPI2 28 #define IMX8MP_PGC_HSIOMIX 29 #define IMX8MP_PGC_MEDIA_ISP_DWP 30 #define IMX8MP_PGC_DDRMIX 31 #define GPC_PGC_CTRL(n) (0x800 + (n) * 0x40) #define GPC_PGC_SR(n) (GPC_PGC_CTRL(n) + 0xc) #define GPC_PGC_CTRL_PCR BIT(0) struct imx_pgc_regs { u16 map; u16 pup; u16 pdn; u16 hsk; }; struct imx_pgc_domain { struct generic_pm_domain genpd; struct regmap *regmap; const struct imx_pgc_regs *regs; struct regulator *regulator; struct reset_control *reset; struct clk_bulk_data *clks; int num_clks; unsigned long pgc; const struct { u32 pxx; u32 map; u32 hskreq; u32 hskack; } bits; const int voltage; const bool keep_clocks; struct device *dev; unsigned int pgc_sw_pup_reg; unsigned int pgc_sw_pdn_reg; }; struct imx_pgc_domain_data { const struct imx_pgc_domain *domains; size_t domains_num; const struct regmap_access_table *reg_access_table; const struct imx_pgc_regs *pgc_regs; }; static inline struct imx_pgc_domain * to_imx_pgc_domain(struct generic_pm_domain *genpd) { return container_of(genpd, struct imx_pgc_domain, genpd); } static int imx_pgc_power_up(struct generic_pm_domain *genpd) { struct imx_pgc_domain *domain = to_imx_pgc_domain(genpd); u32 reg_val, pgc; int ret; ret = pm_runtime_get_sync(domain->dev); if (ret < 0) { pm_runtime_put_noidle(domain->dev); return ret; } if (!IS_ERR(domain->regulator)) { ret = regulator_enable(domain->regulator); if (ret) { dev_err(domain->dev, "failed to enable regulator: %pe\n", ERR_PTR(ret)); goto out_put_pm; } } reset_control_assert(domain->reset); /* Enable reset clocks for all devices in the domain */ ret = clk_bulk_prepare_enable(domain->num_clks, domain->clks); if (ret) { dev_err(domain->dev, "failed to enable reset clocks\n"); goto out_regulator_disable; } /* delays for reset to propagate */ udelay(5); if (domain->bits.pxx) { /* request the domain to power up */ regmap_update_bits(domain->regmap, domain->regs->pup, domain->bits.pxx, domain->bits.pxx); /* * As per "5.5.9.4 Example Code 4" in IMX7DRM.pdf wait * for PUP_REQ/PDN_REQ bit to be cleared */ ret = regmap_read_poll_timeout(domain->regmap, domain->regs->pup, reg_val, !(reg_val & domain->bits.pxx), 0, USEC_PER_MSEC); if (ret) { dev_err(domain->dev, "failed to command PGC\n"); goto out_clk_disable; } /* disable power control */ for_each_set_bit(pgc, &domain->pgc, 32) { regmap_clear_bits(domain->regmap, GPC_PGC_CTRL(pgc), GPC_PGC_CTRL_PCR); } } /* delay for reset to propagate */ udelay(5); reset_control_deassert(domain->reset); /* request the ADB400 to power up */ if (domain->bits.hskreq) { regmap_update_bits(domain->regmap, domain->regs->hsk, domain->bits.hskreq, domain->bits.hskreq); /* * ret = regmap_read_poll_timeout(domain->regmap, domain->regs->hsk, reg_val, * (reg_val & domain->bits.hskack), 0, * USEC_PER_MSEC); * Technically we need the commented code to wait handshake. But that needs * the BLK-CTL module BUS clk-en bit being set. * * There is a separate BLK-CTL module and we will have such a driver for it, * that driver will set the BUS clk-en bit and handshake will be triggered * automatically there. Just add a delay and suppose the handshake finish * after that. */ } /* Disable reset clocks for all devices in the domain */ if (!domain->keep_clocks) clk_bulk_disable_unprepare(domain->num_clks, domain->clks); return 0; out_clk_disable: clk_bulk_disable_unprepare(domain->num_clks, domain->clks); out_regulator_disable: if (!IS_ERR(domain->regulator)) regulator_disable(domain->regulator); out_put_pm: pm_runtime_put(domain->dev); return ret; } static int imx_pgc_power_down(struct generic_pm_domain *genpd) { struct imx_pgc_domain *domain = to_imx_pgc_domain(genpd); u32 reg_val, pgc; int ret; /* Enable reset clocks for all devices in the domain */ if (!domain->keep_clocks) { ret = clk_bulk_prepare_enable(domain->num_clks, domain->clks); if (ret) { dev_err(domain->dev, "failed to enable reset clocks\n"); return ret; } } /* request the ADB400 to power down */ if (domain->bits.hskreq) { regmap_clear_bits(domain->regmap, domain->regs->hsk, domain->bits.hskreq); ret = regmap_read_poll_timeout(domain->regmap, domain->regs->hsk, reg_val, !(reg_val & domain->bits.hskack), 0, USEC_PER_MSEC); if (ret) { dev_err(domain->dev, "failed to power down ADB400\n"); goto out_clk_disable; } } if (domain->bits.pxx) { /* enable power control */ for_each_set_bit(pgc, &domain->pgc, 32) { regmap_update_bits(domain->regmap, GPC_PGC_CTRL(pgc), GPC_PGC_CTRL_PCR, GPC_PGC_CTRL_PCR); } /* request the domain to power down */ regmap_update_bits(domain->regmap, domain->regs->pdn, domain->bits.pxx, domain->bits.pxx); /* * As per "5.5.9.4 Example Code 4" in IMX7DRM.pdf wait * for PUP_REQ/PDN_REQ bit to be cleared */ ret = regmap_read_poll_timeout(domain->regmap, domain->regs->pdn, reg_val, !(reg_val & domain->bits.pxx), 0, USEC_PER_MSEC); if (ret) { dev_err(domain->dev, "failed to command PGC\n"); goto out_clk_disable; } } /* Disable reset clocks for all devices in the domain */ clk_bulk_disable_unprepare(domain->num_clks, domain->clks); if (!IS_ERR(domain->regulator)) { ret = regulator_disable(domain->regulator); if (ret) { dev_err(domain->dev, "failed to disable regulator: %pe\n", ERR_PTR(ret)); return ret; } } pm_runtime_put_sync_suspend(domain->dev); return 0; out_clk_disable: if (!domain->keep_clocks) clk_bulk_disable_unprepare(domain->num_clks, domain->clks); return ret; } static const struct imx_pgc_domain imx7_pgc_domains[] = { [IMX7_POWER_DOMAIN_MIPI_PHY] = { .genpd = { .name = "mipi-phy", }, .bits = { .pxx = IMX7_MIPI_PHY_SW_Pxx_REQ, .map = IMX7_MIPI_PHY_A_CORE_DOMAIN, }, .voltage = 1000000, .pgc = BIT(IMX7_PGC_MIPI), }, [IMX7_POWER_DOMAIN_PCIE_PHY] = { .genpd = { .name = "pcie-phy", }, .bits = { .pxx = IMX7_PCIE_PHY_SW_Pxx_REQ, .map = IMX7_PCIE_PHY_A_CORE_DOMAIN, }, .voltage = 1000000, .pgc = BIT(IMX7_PGC_PCIE), }, [IMX7_POWER_DOMAIN_USB_HSIC_PHY] = { .genpd = { .name = "usb-hsic-phy", }, .bits = { .pxx = IMX7_USB_HSIC_PHY_SW_Pxx_REQ, .map = IMX7_USB_HSIC_PHY_A_CORE_DOMAIN, }, .voltage = 1200000, .pgc = BIT(IMX7_PGC_USB_HSIC), }, }; static const struct regmap_range imx7_yes_ranges[] = { regmap_reg_range(GPC_LPCR_A_CORE_BSC, GPC_M4_PU_PDN_FLG), regmap_reg_range(GPC_PGC_CTRL(IMX7_PGC_MIPI), GPC_PGC_SR(IMX7_PGC_MIPI)), regmap_reg_range(GPC_PGC_CTRL(IMX7_PGC_PCIE), GPC_PGC_SR(IMX7_PGC_PCIE)), regmap_reg_range(GPC_PGC_CTRL(IMX7_PGC_USB_HSIC), GPC_PGC_SR(IMX7_PGC_USB_HSIC)), }; static const struct regmap_access_table imx7_access_table = { .yes_ranges = imx7_yes_ranges, .n_yes_ranges = ARRAY_SIZE(imx7_yes_ranges), }; static const struct imx_pgc_regs imx7_pgc_regs = { .map = GPC_PGC_CPU_MAPPING, .pup = GPC_PU_PGC_SW_PUP_REQ, .pdn = GPC_PU_PGC_SW_PDN_REQ, .hsk = GPC_PU_PWRHSK, }; static const struct imx_pgc_domain_data imx7_pgc_domain_data = { .domains = imx7_pgc_domains, .domains_num = ARRAY_SIZE(imx7_pgc_domains), .reg_access_table = &imx7_access_table, .pgc_regs = &imx7_pgc_regs, }; static const struct imx_pgc_domain imx8m_pgc_domains[] = { [IMX8M_POWER_DOMAIN_MIPI] = { .genpd = { .name = "mipi", }, .bits = { .pxx = IMX8M_MIPI_SW_Pxx_REQ, .map = IMX8M_MIPI_A53_DOMAIN, }, .pgc = BIT(IMX8M_PGC_MIPI), }, [IMX8M_POWER_DOMAIN_PCIE1] = { .genpd = { .name = "pcie1", }, .bits = { .pxx = IMX8M_PCIE1_SW_Pxx_REQ, .map = IMX8M_PCIE1_A53_DOMAIN, }, .pgc = BIT(IMX8M_PGC_PCIE1), }, [IMX8M_POWER_DOMAIN_USB_OTG1] = { .genpd = { .name = "usb-otg1", }, .bits = { .pxx = IMX8M_OTG1_SW_Pxx_REQ, .map = IMX8M_OTG1_A53_DOMAIN, }, .pgc = BIT(IMX8M_PGC_OTG1), }, [IMX8M_POWER_DOMAIN_USB_OTG2] = { .genpd = { .name = "usb-otg2", }, .bits = { .pxx = IMX8M_OTG2_SW_Pxx_REQ, .map = IMX8M_OTG2_A53_DOMAIN, }, .pgc = BIT(IMX8M_PGC_OTG2), }, [IMX8M_POWER_DOMAIN_DDR1] = { .genpd = { .name = "ddr1", }, .bits = { .pxx = IMX8M_DDR1_SW_Pxx_REQ, .map = IMX8M_DDR2_A53_DOMAIN, }, .pgc = BIT(IMX8M_PGC_DDR1), }, [IMX8M_POWER_DOMAIN_GPU] = { .genpd = { .name = "gpu", }, .bits = { .pxx = IMX8M_GPU_SW_Pxx_REQ, .map = IMX8M_GPU_A53_DOMAIN, .hskreq = IMX8M_GPU_HSK_PWRDNREQN, .hskack = IMX8M_GPU_HSK_PWRDNACKN, }, .pgc = BIT(IMX8M_PGC_GPU), }, [IMX8M_POWER_DOMAIN_VPU] = { .genpd = { .name = "vpu", }, .bits = { .pxx = IMX8M_VPU_SW_Pxx_REQ, .map = IMX8M_VPU_A53_DOMAIN, .hskreq = IMX8M_VPU_HSK_PWRDNREQN, .hskack = IMX8M_VPU_HSK_PWRDNACKN, }, .pgc = BIT(IMX8M_PGC_VPU), .keep_clocks = true, }, [IMX8M_POWER_DOMAIN_DISP] = { .genpd = { .name = "disp", }, .bits = { .pxx = IMX8M_DISP_SW_Pxx_REQ, .map = IMX8M_DISP_A53_DOMAIN, .hskreq = IMX8M_DISP_HSK_PWRDNREQN, .hskack = IMX8M_DISP_HSK_PWRDNACKN, }, .pgc = BIT(IMX8M_PGC_DISP), }, [IMX8M_POWER_DOMAIN_MIPI_CSI1] = { .genpd = { .name = "mipi-csi1", }, .bits = { .pxx = IMX8M_MIPI_CSI1_SW_Pxx_REQ, .map = IMX8M_MIPI_CSI1_A53_DOMAIN, }, .pgc = BIT(IMX8M_PGC_MIPI_CSI1), }, [IMX8M_POWER_DOMAIN_MIPI_CSI2] = { .genpd = { .name = "mipi-csi2", }, .bits = { .pxx = IMX8M_MIPI_CSI2_SW_Pxx_REQ, .map = IMX8M_MIPI_CSI2_A53_DOMAIN, }, .pgc = BIT(IMX8M_PGC_MIPI_CSI2), }, [IMX8M_POWER_DOMAIN_PCIE2] = { .genpd = { .name = "pcie2", }, .bits = { .pxx = IMX8M_PCIE2_SW_Pxx_REQ, .map = IMX8M_PCIE2_A53_DOMAIN, }, .pgc = BIT(IMX8M_PGC_PCIE2), }, }; static const struct regmap_range imx8m_yes_ranges[] = { regmap_reg_range(GPC_LPCR_A_CORE_BSC, GPC_PU_PWRHSK), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_MIPI), GPC_PGC_SR(IMX8M_PGC_MIPI)), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_PCIE1), GPC_PGC_SR(IMX8M_PGC_PCIE1)), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_OTG1), GPC_PGC_SR(IMX8M_PGC_OTG1)), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_OTG2), GPC_PGC_SR(IMX8M_PGC_OTG2)), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_DDR1), GPC_PGC_SR(IMX8M_PGC_DDR1)), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_GPU), GPC_PGC_SR(IMX8M_PGC_GPU)), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_VPU), GPC_PGC_SR(IMX8M_PGC_VPU)), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_DISP), GPC_PGC_SR(IMX8M_PGC_DISP)), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_MIPI_CSI1), GPC_PGC_SR(IMX8M_PGC_MIPI_CSI1)), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_MIPI_CSI2), GPC_PGC_SR(IMX8M_PGC_MIPI_CSI2)), regmap_reg_range(GPC_PGC_CTRL(IMX8M_PGC_PCIE2), GPC_PGC_SR(IMX8M_PGC_PCIE2)), }; static const struct regmap_access_table imx8m_access_table = { .yes_ranges = imx8m_yes_ranges, .n_yes_ranges = ARRAY_SIZE(imx8m_yes_ranges), }; static const struct imx_pgc_domain_data imx8m_pgc_domain_data = { .domains = imx8m_pgc_domains, .domains_num = ARRAY_SIZE(imx8m_pgc_domains), .reg_access_table = &imx8m_access_table, .pgc_regs = &imx7_pgc_regs, }; static const struct imx_pgc_domain imx8mm_pgc_domains[] = { [IMX8MM_POWER_DOMAIN_HSIOMIX] = { .genpd = { .name = "hsiomix", }, .bits = { .pxx = 0, /* no power sequence control */ .map = 0, /* no power sequence control */ .hskreq = IMX8MM_HSIO_HSK_PWRDNREQN, .hskack = IMX8MM_HSIO_HSK_PWRDNACKN, }, .keep_clocks = true, }, [IMX8MM_POWER_DOMAIN_PCIE] = { .genpd = { .name = "pcie", }, .bits = { .pxx = IMX8MM_PCIE_SW_Pxx_REQ, .map = IMX8MM_PCIE_A53_DOMAIN, }, .pgc = BIT(IMX8MM_PGC_PCIE), }, [IMX8MM_POWER_DOMAIN_OTG1] = { .genpd = { .name = "usb-otg1", .flags = GENPD_FLAG_ACTIVE_WAKEUP, }, .bits = { .pxx = IMX8MM_OTG1_SW_Pxx_REQ, .map = IMX8MM_OTG1_A53_DOMAIN, }, .pgc = BIT(IMX8MM_PGC_OTG1), }, [IMX8MM_POWER_DOMAIN_OTG2] = { .genpd = { .name = "usb-otg2", .flags = GENPD_FLAG_ACTIVE_WAKEUP, }, .bits = { .pxx = IMX8MM_OTG2_SW_Pxx_REQ, .map = IMX8MM_OTG2_A53_DOMAIN, }, .pgc = BIT(IMX8MM_PGC_OTG2), }, [IMX8MM_POWER_DOMAIN_GPUMIX] = { .genpd = { .name = "gpumix", }, .bits = { .pxx = IMX8MM_GPUMIX_SW_Pxx_REQ, .map = IMX8MM_GPUMIX_A53_DOMAIN, .hskreq = IMX8MM_GPUMIX_HSK_PWRDNREQN, .hskack = IMX8MM_GPUMIX_HSK_PWRDNACKN, }, .pgc = BIT(IMX8MM_PGC_GPUMIX), .keep_clocks = true, }, [IMX8MM_POWER_DOMAIN_GPU] = { .genpd = { .name = "gpu", }, .bits = { .pxx = IMX8MM_GPU_SW_Pxx_REQ, .map = IMX8MM_GPU_A53_DOMAIN, .hskreq = IMX8MM_GPU_HSK_PWRDNREQN, .hskack = IMX8MM_GPU_HSK_PWRDNACKN, }, .pgc = BIT(IMX8MM_PGC_GPU2D) | BIT(IMX8MM_PGC_GPU3D), }, [IMX8MM_POWER_DOMAIN_VPUMIX] = { .genpd = { .name = "vpumix", }, .bits = { .pxx = IMX8MM_VPUMIX_SW_Pxx_REQ, .map = IMX8MM_VPUMIX_A53_DOMAIN, .hskreq = IMX8MM_VPUMIX_HSK_PWRDNREQN, .hskack = IMX8MM_VPUMIX_HSK_PWRDNACKN, }, .pgc = BIT(IMX8MM_PGC_VPUMIX), .keep_clocks = true, }, [IMX8MM_POWER_DOMAIN_VPUG1] = { .genpd = { .name = "vpu-g1", }, .bits = { .pxx = IMX8MM_VPUG1_SW_Pxx_REQ, .map = IMX8MM_VPUG1_A53_DOMAIN, }, .pgc = BIT(IMX8MM_PGC_VPUG1), }, [IMX8MM_POWER_DOMAIN_VPUG2] = { .genpd = { .name = "vpu-g2", }, .bits = { .pxx = IMX8MM_VPUG2_SW_Pxx_REQ, .map = IMX8MM_VPUG2_A53_DOMAIN, }, .pgc = BIT(IMX8MM_PGC_VPUG2), }, [IMX8MM_POWER_DOMAIN_VPUH1] = { .genpd = { .name = "vpu-h1", }, .bits = { .pxx = IMX8MM_VPUH1_SW_Pxx_REQ, .map = IMX8MM_VPUH1_A53_DOMAIN, }, .pgc = BIT(IMX8MM_PGC_VPUH1), .keep_clocks = true, }, [IMX8MM_POWER_DOMAIN_DISPMIX] = { .genpd = { .name = "dispmix", }, .bits = { .pxx = IMX8MM_DISPMIX_SW_Pxx_REQ, .map = IMX8MM_DISPMIX_A53_DOMAIN, .hskreq = IMX8MM_DISPMIX_HSK_PWRDNREQN, .hskack = IMX8MM_DISPMIX_HSK_PWRDNACKN, }, .pgc = BIT(IMX8MM_PGC_DISPMIX), .keep_clocks = true, }, [IMX8MM_POWER_DOMAIN_MIPI] = { .genpd = { .name = "mipi", }, .bits = { .pxx = IMX8MM_MIPI_SW_Pxx_REQ, .map = IMX8MM_MIPI_A53_DOMAIN, }, .pgc = BIT(IMX8MM_PGC_MIPI), }, }; static const struct regmap_range imx8mm_yes_ranges[] = { regmap_reg_range(GPC_LPCR_A_CORE_BSC, GPC_PU_PWRHSK), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_MIPI), GPC_PGC_SR(IMX8MM_PGC_MIPI)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_PCIE), GPC_PGC_SR(IMX8MM_PGC_PCIE)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_OTG1), GPC_PGC_SR(IMX8MM_PGC_OTG1)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_OTG2), GPC_PGC_SR(IMX8MM_PGC_OTG2)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_DDR1), GPC_PGC_SR(IMX8MM_PGC_DDR1)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_GPU2D), GPC_PGC_SR(IMX8MM_PGC_GPU2D)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_GPUMIX), GPC_PGC_SR(IMX8MM_PGC_GPUMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_VPUMIX), GPC_PGC_SR(IMX8MM_PGC_VPUMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_GPU3D), GPC_PGC_SR(IMX8MM_PGC_GPU3D)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_DISPMIX), GPC_PGC_SR(IMX8MM_PGC_DISPMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_VPUG1), GPC_PGC_SR(IMX8MM_PGC_VPUG1)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_VPUG2), GPC_PGC_SR(IMX8MM_PGC_VPUG2)), regmap_reg_range(GPC_PGC_CTRL(IMX8MM_PGC_VPUH1), GPC_PGC_SR(IMX8MM_PGC_VPUH1)), }; static const struct regmap_access_table imx8mm_access_table = { .yes_ranges = imx8mm_yes_ranges, .n_yes_ranges = ARRAY_SIZE(imx8mm_yes_ranges), }; static const struct imx_pgc_domain_data imx8mm_pgc_domain_data = { .domains = imx8mm_pgc_domains, .domains_num = ARRAY_SIZE(imx8mm_pgc_domains), .reg_access_table = &imx8mm_access_table, .pgc_regs = &imx7_pgc_regs, }; static const struct imx_pgc_domain imx8mp_pgc_domains[] = { [IMX8MP_POWER_DOMAIN_MIPI_PHY1] = { .genpd = { .name = "mipi-phy1", }, .bits = { .pxx = IMX8MP_MIPI_PHY1_SW_Pxx_REQ, .map = IMX8MP_MIPI_PHY1_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_MIPI1), }, [IMX8MP_POWER_DOMAIN_PCIE_PHY] = { .genpd = { .name = "pcie-phy1", }, .bits = { .pxx = IMX8MP_PCIE_PHY_SW_Pxx_REQ, .map = IMX8MP_PCIE_PHY_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_PCIE), }, [IMX8MP_POWER_DOMAIN_USB1_PHY] = { .genpd = { .name = "usb-otg1", }, .bits = { .pxx = IMX8MP_USB1_PHY_Pxx_REQ, .map = IMX8MP_USB1_PHY_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_USB1), }, [IMX8MP_POWER_DOMAIN_USB2_PHY] = { .genpd = { .name = "usb-otg2", }, .bits = { .pxx = IMX8MP_USB2_PHY_Pxx_REQ, .map = IMX8MP_USB2_PHY_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_USB2), }, [IMX8MP_POWER_DOMAIN_MLMIX] = { .genpd = { .name = "mlmix", }, .bits = { .pxx = IMX8MP_MLMIX_Pxx_REQ, .map = IMX8MP_MLMIX_A53_DOMAIN, .hskreq = IMX8MP_MLMIX_PWRDNREQN, .hskack = IMX8MP_MLMIX_PWRDNACKN, }, .pgc = BIT(IMX8MP_PGC_MLMIX), .keep_clocks = true, }, [IMX8MP_POWER_DOMAIN_AUDIOMIX] = { .genpd = { .name = "audiomix", }, .bits = { .pxx = IMX8MP_AUDIOMIX_Pxx_REQ, .map = IMX8MP_AUDIOMIX_A53_DOMAIN, .hskreq = IMX8MP_AUDIOMIX_PWRDNREQN, .hskack = IMX8MP_AUDIOMIX_PWRDNACKN, }, .pgc = BIT(IMX8MP_PGC_AUDIOMIX), .keep_clocks = true, }, [IMX8MP_POWER_DOMAIN_GPU2D] = { .genpd = { .name = "gpu2d", }, .bits = { .pxx = IMX8MP_GPU_2D_Pxx_REQ, .map = IMX8MP_GPU2D_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_GPU2D), }, [IMX8MP_POWER_DOMAIN_GPUMIX] = { .genpd = { .name = "gpumix", }, .bits = { .pxx = IMX8MP_GPU_SHARE_LOGIC_Pxx_REQ, .map = IMX8MP_GPUMIX_A53_DOMAIN, .hskreq = IMX8MP_GPUMIX_PWRDNREQN, .hskack = IMX8MP_GPUMIX_PWRDNACKN, }, .pgc = BIT(IMX8MP_PGC_GPUMIX), .keep_clocks = true, }, [IMX8MP_POWER_DOMAIN_VPUMIX] = { .genpd = { .name = "vpumix", }, .bits = { .pxx = IMX8MP_VPU_MIX_SHARE_LOGIC_Pxx_REQ, .map = IMX8MP_VPUMIX_A53_DOMAIN, .hskreq = IMX8MP_VPUMIX_PWRDNREQN, .hskack = IMX8MP_VPUMIX_PWRDNACKN, }, .pgc = BIT(IMX8MP_PGC_VPUMIX), .keep_clocks = true, }, [IMX8MP_POWER_DOMAIN_GPU3D] = { .genpd = { .name = "gpu3d", }, .bits = { .pxx = IMX8MP_GPU_3D_Pxx_REQ, .map = IMX8MP_GPU3D_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_GPU3D), }, [IMX8MP_POWER_DOMAIN_MEDIAMIX] = { .genpd = { .name = "mediamix", }, .bits = { .pxx = IMX8MP_MEDIMIX_Pxx_REQ, .map = IMX8MP_MEDIAMIX_A53_DOMAIN, .hskreq = IMX8MP_MEDIAMIX_PWRDNREQN, .hskack = IMX8MP_MEDIAMIX_PWRDNACKN, }, .pgc = BIT(IMX8MP_PGC_MEDIAMIX), .keep_clocks = true, }, [IMX8MP_POWER_DOMAIN_VPU_G1] = { .genpd = { .name = "vpu-g1", }, .bits = { .pxx = IMX8MP_VPU_G1_Pxx_REQ, .map = IMX8MP_VPU_G1_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_VPU_G1), }, [IMX8MP_POWER_DOMAIN_VPU_G2] = { .genpd = { .name = "vpu-g2", }, .bits = { .pxx = IMX8MP_VPU_G2_Pxx_REQ, .map = IMX8MP_VPU_G2_A53_DOMAIN }, .pgc = BIT(IMX8MP_PGC_VPU_G2), }, [IMX8MP_POWER_DOMAIN_VPU_VC8000E] = { .genpd = { .name = "vpu-h1", }, .bits = { .pxx = IMX8MP_VPU_VC8K_Pxx_REQ, .map = IMX8MP_VPU_VC8000E_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_VPU_VC8000E), }, [IMX8MP_POWER_DOMAIN_HDMIMIX] = { .genpd = { .name = "hdmimix", }, .bits = { .pxx = IMX8MP_HDMIMIX_Pxx_REQ, .map = IMX8MP_HDMIMIX_A53_DOMAIN, .hskreq = IMX8MP_HDMIMIX_PWRDNREQN, .hskack = IMX8MP_HDMIMIX_PWRDNACKN, }, .pgc = BIT(IMX8MP_PGC_HDMIMIX), .keep_clocks = true, }, [IMX8MP_POWER_DOMAIN_HDMI_PHY] = { .genpd = { .name = "hdmi-phy", }, .bits = { .pxx = IMX8MP_HDMI_PHY_Pxx_REQ, .map = IMX8MP_HDMI_PHY_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_HDMI), }, [IMX8MP_POWER_DOMAIN_MIPI_PHY2] = { .genpd = { .name = "mipi-phy2", }, .bits = { .pxx = IMX8MP_MIPI_PHY2_Pxx_REQ, .map = IMX8MP_MIPI_PHY2_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_MIPI2), }, [IMX8MP_POWER_DOMAIN_HSIOMIX] = { .genpd = { .name = "hsiomix", }, .bits = { .pxx = IMX8MP_HSIOMIX_Pxx_REQ, .map = IMX8MP_HSIOMIX_A53_DOMAIN, .hskreq = IMX8MP_HSIOMIX_PWRDNREQN, .hskack = IMX8MP_HSIOMIX_PWRDNACKN, }, .pgc = BIT(IMX8MP_PGC_HSIOMIX), .keep_clocks = true, }, [IMX8MP_POWER_DOMAIN_MEDIAMIX_ISPDWP] = { .genpd = { .name = "mediamix-isp-dwp", }, .bits = { .pxx = IMX8MP_MEDIA_ISP_DWP_Pxx_REQ, .map = IMX8MP_MEDIA_ISPDWP_A53_DOMAIN, }, .pgc = BIT(IMX8MP_PGC_MEDIA_ISP_DWP), }, }; static const struct regmap_range imx8mp_yes_ranges[] = { regmap_reg_range(GPC_LPCR_A_CORE_BSC, IMX8MP_GPC_PGC_CPU_MAPPING), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_NOC), GPC_PGC_SR(IMX8MP_PGC_NOC)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_MIPI1), GPC_PGC_SR(IMX8MP_PGC_MIPI1)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_PCIE), GPC_PGC_SR(IMX8MP_PGC_PCIE)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_USB1), GPC_PGC_SR(IMX8MP_PGC_USB1)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_USB2), GPC_PGC_SR(IMX8MP_PGC_USB2)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_MLMIX), GPC_PGC_SR(IMX8MP_PGC_MLMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_AUDIOMIX), GPC_PGC_SR(IMX8MP_PGC_AUDIOMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_GPU2D), GPC_PGC_SR(IMX8MP_PGC_GPU2D)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_GPUMIX), GPC_PGC_SR(IMX8MP_PGC_GPUMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_VPUMIX), GPC_PGC_SR(IMX8MP_PGC_VPUMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_GPU3D), GPC_PGC_SR(IMX8MP_PGC_GPU3D)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_MEDIAMIX), GPC_PGC_SR(IMX8MP_PGC_MEDIAMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_VPU_G1), GPC_PGC_SR(IMX8MP_PGC_VPU_G1)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_VPU_G2), GPC_PGC_SR(IMX8MP_PGC_VPU_G2)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_VPU_VC8000E), GPC_PGC_SR(IMX8MP_PGC_VPU_VC8000E)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_HDMIMIX), GPC_PGC_SR(IMX8MP_PGC_HDMIMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_HDMI), GPC_PGC_SR(IMX8MP_PGC_HDMI)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_MIPI2), GPC_PGC_SR(IMX8MP_PGC_MIPI2)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_HSIOMIX), GPC_PGC_SR(IMX8MP_PGC_HSIOMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_MEDIA_ISP_DWP), GPC_PGC_SR(IMX8MP_PGC_MEDIA_ISP_DWP)), regmap_reg_range(GPC_PGC_CTRL(IMX8MP_PGC_DDRMIX), GPC_PGC_SR(IMX8MP_PGC_DDRMIX)), }; static const struct regmap_access_table imx8mp_access_table = { .yes_ranges = imx8mp_yes_ranges, .n_yes_ranges = ARRAY_SIZE(imx8mp_yes_ranges), }; static const struct imx_pgc_regs imx8mp_pgc_regs = { .map = IMX8MP_GPC_PGC_CPU_MAPPING, .pup = IMX8MP_GPC_PU_PGC_SW_PUP_REQ, .pdn = IMX8MP_GPC_PU_PGC_SW_PDN_REQ, .hsk = IMX8MP_GPC_PU_PWRHSK, }; static const struct imx_pgc_domain_data imx8mp_pgc_domain_data = { .domains = imx8mp_pgc_domains, .domains_num = ARRAY_SIZE(imx8mp_pgc_domains), .reg_access_table = &imx8mp_access_table, .pgc_regs = &imx8mp_pgc_regs, }; static const struct imx_pgc_domain imx8mn_pgc_domains[] = { [IMX8MN_POWER_DOMAIN_HSIOMIX] = { .genpd = { .name = "hsiomix", }, .bits = { .pxx = 0, /* no power sequence control */ .map = 0, /* no power sequence control */ .hskreq = IMX8MN_HSIO_HSK_PWRDNREQN, .hskack = IMX8MN_HSIO_HSK_PWRDNACKN, }, .keep_clocks = true, }, [IMX8MN_POWER_DOMAIN_OTG1] = { .genpd = { .name = "usb-otg1", .flags = GENPD_FLAG_ACTIVE_WAKEUP, }, .bits = { .pxx = IMX8MN_OTG1_SW_Pxx_REQ, .map = IMX8MN_OTG1_A53_DOMAIN, }, .pgc = BIT(IMX8MN_PGC_OTG1), }, [IMX8MN_POWER_DOMAIN_GPUMIX] = { .genpd = { .name = "gpumix", }, .bits = { .pxx = IMX8MN_GPUMIX_SW_Pxx_REQ, .map = IMX8MN_GPUMIX_A53_DOMAIN, .hskreq = IMX8MN_GPUMIX_HSK_PWRDNREQN, .hskack = IMX8MN_GPUMIX_HSK_PWRDNACKN, }, .pgc = BIT(IMX8MN_PGC_GPUMIX), .keep_clocks = true, }, [IMX8MN_POWER_DOMAIN_DISPMIX] = { .genpd = { .name = "dispmix", }, .bits = { .pxx = IMX8MN_DISPMIX_SW_Pxx_REQ, .map = IMX8MN_DISPMIX_A53_DOMAIN, .hskreq = IMX8MN_DISPMIX_HSK_PWRDNREQN, .hskack = IMX8MN_DISPMIX_HSK_PWRDNACKN, }, .pgc = BIT(IMX8MN_PGC_DISPMIX), .keep_clocks = true, }, [IMX8MN_POWER_DOMAIN_MIPI] = { .genpd = { .name = "mipi", }, .bits = { .pxx = IMX8MN_MIPI_SW_Pxx_REQ, .map = IMX8MN_MIPI_A53_DOMAIN, }, .pgc = BIT(IMX8MN_PGC_MIPI), }, }; static const struct regmap_range imx8mn_yes_ranges[] = { regmap_reg_range(GPC_LPCR_A_CORE_BSC, GPC_PU_PWRHSK), regmap_reg_range(GPC_PGC_CTRL(IMX8MN_PGC_MIPI), GPC_PGC_SR(IMX8MN_PGC_MIPI)), regmap_reg_range(GPC_PGC_CTRL(IMX8MN_PGC_OTG1), GPC_PGC_SR(IMX8MN_PGC_OTG1)), regmap_reg_range(GPC_PGC_CTRL(IMX8MN_PGC_DDR1), GPC_PGC_SR(IMX8MN_PGC_DDR1)), regmap_reg_range(GPC_PGC_CTRL(IMX8MN_PGC_GPUMIX), GPC_PGC_SR(IMX8MN_PGC_GPUMIX)), regmap_reg_range(GPC_PGC_CTRL(IMX8MN_PGC_DISPMIX), GPC_PGC_SR(IMX8MN_PGC_DISPMIX)), }; static const struct regmap_access_table imx8mn_access_table = { .yes_ranges = imx8mn_yes_ranges, .n_yes_ranges = ARRAY_SIZE(imx8mn_yes_ranges), }; static const struct imx_pgc_domain_data imx8mn_pgc_domain_data = { .domains = imx8mn_pgc_domains, .domains_num = ARRAY_SIZE(imx8mn_pgc_domains), .reg_access_table = &imx8mn_access_table, .pgc_regs = &imx7_pgc_regs, }; static int imx_pgc_domain_probe(struct platform_device *pdev) { struct imx_pgc_domain *domain = pdev->dev.platform_data; int ret; domain->dev = &pdev->dev; domain->regulator = devm_regulator_get_optional(domain->dev, "power"); if (IS_ERR(domain->regulator)) { if (PTR_ERR(domain->regulator) != -ENODEV) return dev_err_probe(domain->dev, PTR_ERR(domain->regulator), "Failed to get domain's regulator\n"); } else if (domain->voltage) { regulator_set_voltage(domain->regulator, domain->voltage, domain->voltage); } domain->num_clks = devm_clk_bulk_get_all(domain->dev, &domain->clks); if (domain->num_clks < 0) return dev_err_probe(domain->dev, domain->num_clks, "Failed to get domain's clocks\n"); domain->reset = devm_reset_control_array_get_optional_exclusive(domain->dev); if (IS_ERR(domain->reset)) return dev_err_probe(domain->dev, PTR_ERR(domain->reset), "Failed to get domain's resets\n"); pm_runtime_enable(domain->dev); if (domain->bits.map) regmap_update_bits(domain->regmap, domain->regs->map, domain->bits.map, domain->bits.map); ret = pm_genpd_init(&domain->genpd, NULL, true); if (ret) { dev_err(domain->dev, "Failed to init power domain\n"); goto out_domain_unmap; } if (IS_ENABLED(CONFIG_LOCKDEP) && of_property_read_bool(domain->dev->of_node, "power-domains")) lockdep_set_subclass(&domain->genpd.mlock, 1); ret = of_genpd_add_provider_simple(domain->dev->of_node, &domain->genpd); if (ret) { dev_err(domain->dev, "Failed to add genpd provider\n"); goto out_genpd_remove; } return 0; out_genpd_remove: pm_genpd_remove(&domain->genpd); out_domain_unmap: if (domain->bits.map) regmap_update_bits(domain->regmap, domain->regs->map, domain->bits.map, 0); pm_runtime_disable(domain->dev); return ret; } static int imx_pgc_domain_remove(struct platform_device *pdev) { struct imx_pgc_domain *domain = pdev->dev.platform_data; of_genpd_del_provider(domain->dev->of_node); pm_genpd_remove(&domain->genpd); if (domain->bits.map) regmap_update_bits(domain->regmap, domain->regs->map, domain->bits.map, 0); pm_runtime_disable(domain->dev); return 0; } #ifdef CONFIG_PM_SLEEP static int imx_pgc_domain_suspend(struct device *dev) { int ret; /* * This may look strange, but is done so the generic PM_SLEEP code * can power down our domain and more importantly power it up again * after resume, without tripping over our usage of runtime PM to * power up/down the nested domains. */ ret = pm_runtime_get_sync(dev); if (ret < 0) { pm_runtime_put_noidle(dev); return ret; } return 0; } static int imx_pgc_domain_resume(struct device *dev) { return pm_runtime_put(dev); } #endif static const struct dev_pm_ops imx_pgc_domain_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(imx_pgc_domain_suspend, imx_pgc_domain_resume) }; static const struct platform_device_id imx_pgc_domain_id[] = { { "imx-pgc-domain", }, { }, }; static struct platform_driver imx_pgc_domain_driver = { .driver = { .name = "imx-pgc", .pm = &imx_pgc_domain_pm_ops, }, .probe = imx_pgc_domain_probe, .remove = imx_pgc_domain_remove, .id_table = imx_pgc_domain_id, }; builtin_platform_driver(imx_pgc_domain_driver) static int imx_gpcv2_probe(struct platform_device *pdev) { const struct imx_pgc_domain_data *domain_data = of_device_get_match_data(&pdev->dev); struct regmap_config regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .rd_table = domain_data->reg_access_table, .wr_table = domain_data->reg_access_table, .max_register = SZ_4K, }; struct device *dev = &pdev->dev; struct device_node *pgc_np, *np; struct regmap *regmap; void __iomem *base; int ret; pgc_np = of_get_child_by_name(dev->of_node, "pgc"); if (!pgc_np) { dev_err(dev, "No power domains specified in DT\n"); return -EINVAL; } base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); regmap = devm_regmap_init_mmio(dev, base, &regmap_config); if (IS_ERR(regmap)) { ret = PTR_ERR(regmap); dev_err(dev, "failed to init regmap (%d)\n", ret); return ret; } for_each_child_of_node(pgc_np, np) { struct platform_device *pd_pdev; struct imx_pgc_domain *domain; u32 domain_index; if (!of_device_is_available(np)) continue; ret = of_property_read_u32(np, "reg", &domain_index); if (ret) { dev_err(dev, "Failed to read 'reg' property\n"); of_node_put(np); return ret; } if (domain_index >= domain_data->domains_num) { dev_warn(dev, "Domain index %d is out of bounds\n", domain_index); continue; } pd_pdev = platform_device_alloc("imx-pgc-domain", domain_index); if (!pd_pdev) { dev_err(dev, "Failed to allocate platform device\n"); of_node_put(np); return -ENOMEM; } ret = platform_device_add_data(pd_pdev, &domain_data->domains[domain_index], sizeof(domain_data->domains[domain_index])); if (ret) { platform_device_put(pd_pdev); of_node_put(np); return ret; } domain = pd_pdev->dev.platform_data; domain->regmap = regmap; domain->regs = domain_data->pgc_regs; domain->genpd.power_on = imx_pgc_power_up; domain->genpd.power_off = imx_pgc_power_down; pd_pdev->dev.parent = dev; device_set_node(&pd_pdev->dev, of_fwnode_handle(np)); ret = platform_device_add(pd_pdev); if (ret) { platform_device_put(pd_pdev); of_node_put(np); return ret; } } return 0; } static const struct of_device_id imx_gpcv2_dt_ids[] = { { .compatible = "fsl,imx7d-gpc", .data = &imx7_pgc_domain_data, }, { .compatible = "fsl,imx8mm-gpc", .data = &imx8mm_pgc_domain_data, }, { .compatible = "fsl,imx8mn-gpc", .data = &imx8mn_pgc_domain_data, }, { .compatible = "fsl,imx8mp-gpc", .data = &imx8mp_pgc_domain_data, }, { .compatible = "fsl,imx8mq-gpc", .data = &imx8m_pgc_domain_data, }, { } }; static struct platform_driver imx_gpc_driver = { .driver = { .name = "imx-gpcv2", .of_match_table = imx_gpcv2_dt_ids, }, .probe = imx_gpcv2_probe, }; builtin_platform_driver(imx_gpc_driver)
linux-master
drivers/pmdomain/imx/gpcv2.c
// SPDX-License-Identifier: GPL-2.0 /* * ZynqMP Generic PM domain support * * Copyright (C) 2015-2019 Xilinx, Inc. * * Davorin Mista <[email protected]> * Jolly Shah <[email protected]> * Rajan Vaja <[email protected]> */ #include <linux/err.h> #include <linux/list.h> #include <linux/module.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/firmware/xlnx-zynqmp.h> #define ZYNQMP_NUM_DOMAINS (100) static int min_capability; /** * struct zynqmp_pm_domain - Wrapper around struct generic_pm_domain * @gpd: Generic power domain * @node_id: PM node ID corresponding to device inside PM domain * @requested: The PM node mapped to the PM domain has been requested */ struct zynqmp_pm_domain { struct generic_pm_domain gpd; u32 node_id; bool requested; }; #define to_zynqmp_pm_domain(pm_domain) \ container_of(pm_domain, struct zynqmp_pm_domain, gpd) /** * zynqmp_gpd_is_active_wakeup_path() - Check if device is in wakeup source * path * @dev: Device to check for wakeup source path * @not_used: Data member (not required) * * This function is checks device's child hierarchy and checks if any device is * set as wakeup source. * * Return: 1 if device is in wakeup source path else 0 */ static int zynqmp_gpd_is_active_wakeup_path(struct device *dev, void *not_used) { int may_wakeup; may_wakeup = device_may_wakeup(dev); if (may_wakeup) return may_wakeup; return device_for_each_child(dev, NULL, zynqmp_gpd_is_active_wakeup_path); } /** * zynqmp_gpd_power_on() - Power on PM domain * @domain: Generic PM domain * * This function is called before devices inside a PM domain are resumed, to * power on PM domain. * * Return: 0 on success, error code otherwise */ static int zynqmp_gpd_power_on(struct generic_pm_domain *domain) { struct zynqmp_pm_domain *pd = to_zynqmp_pm_domain(domain); int ret; ret = zynqmp_pm_set_requirement(pd->node_id, ZYNQMP_PM_CAPABILITY_ACCESS, ZYNQMP_PM_MAX_QOS, ZYNQMP_PM_REQUEST_ACK_BLOCKING); if (ret) { dev_err(&domain->dev, "failed to set requirement to 0x%x for PM node id %d: %d\n", ZYNQMP_PM_CAPABILITY_ACCESS, pd->node_id, ret); return ret; } dev_dbg(&domain->dev, "set requirement to 0x%x for PM node id %d\n", ZYNQMP_PM_CAPABILITY_ACCESS, pd->node_id); return 0; } /** * zynqmp_gpd_power_off() - Power off PM domain * @domain: Generic PM domain * * This function is called after devices inside a PM domain are suspended, to * power off PM domain. * * Return: 0 on success, error code otherwise */ static int zynqmp_gpd_power_off(struct generic_pm_domain *domain) { struct zynqmp_pm_domain *pd = to_zynqmp_pm_domain(domain); int ret; struct pm_domain_data *pdd, *tmp; u32 capabilities = min_capability; bool may_wakeup; /* If domain is already released there is nothing to be done */ if (!pd->requested) { dev_dbg(&domain->dev, "PM node id %d is already released\n", pd->node_id); return 0; } list_for_each_entry_safe(pdd, tmp, &domain->dev_list, list_node) { /* If device is in wakeup path, set capability to WAKEUP */ may_wakeup = zynqmp_gpd_is_active_wakeup_path(pdd->dev, NULL); if (may_wakeup) { dev_dbg(pdd->dev, "device is in wakeup path in %s\n", domain->name); capabilities = ZYNQMP_PM_CAPABILITY_WAKEUP; break; } } ret = zynqmp_pm_set_requirement(pd->node_id, capabilities, 0, ZYNQMP_PM_REQUEST_ACK_NO); if (ret) { dev_err(&domain->dev, "failed to set requirement to 0x%x for PM node id %d: %d\n", capabilities, pd->node_id, ret); return ret; } dev_dbg(&domain->dev, "set requirement to 0x%x for PM node id %d\n", capabilities, pd->node_id); return 0; } /** * zynqmp_gpd_attach_dev() - Attach device to the PM domain * @domain: Generic PM domain * @dev: Device to attach * * Return: 0 on success, error code otherwise */ static int zynqmp_gpd_attach_dev(struct generic_pm_domain *domain, struct device *dev) { struct zynqmp_pm_domain *pd = to_zynqmp_pm_domain(domain); struct device_link *link; int ret; link = device_link_add(dev, &domain->dev, DL_FLAG_SYNC_STATE_ONLY); if (!link) dev_dbg(&domain->dev, "failed to create device link for %s\n", dev_name(dev)); /* If this is not the first device to attach there is nothing to do */ if (domain->device_count) return 0; ret = zynqmp_pm_request_node(pd->node_id, 0, 0, ZYNQMP_PM_REQUEST_ACK_BLOCKING); if (ret) { dev_err(&domain->dev, "%s request failed for node %d: %d\n", domain->name, pd->node_id, ret); return ret; } pd->requested = true; dev_dbg(&domain->dev, "%s requested PM node id %d\n", dev_name(dev), pd->node_id); return 0; } /** * zynqmp_gpd_detach_dev() - Detach device from the PM domain * @domain: Generic PM domain * @dev: Device to detach */ static void zynqmp_gpd_detach_dev(struct generic_pm_domain *domain, struct device *dev) { struct zynqmp_pm_domain *pd = to_zynqmp_pm_domain(domain); int ret; /* If this is not the last device to detach there is nothing to do */ if (domain->device_count) return; ret = zynqmp_pm_release_node(pd->node_id); if (ret) { dev_err(&domain->dev, "failed to release PM node id %d: %d\n", pd->node_id, ret); return; } pd->requested = false; dev_dbg(&domain->dev, "%s released PM node id %d\n", dev_name(dev), pd->node_id); } static struct generic_pm_domain *zynqmp_gpd_xlate (struct of_phandle_args *genpdspec, void *data) { struct genpd_onecell_data *genpd_data = data; unsigned int i, idx = genpdspec->args[0]; struct zynqmp_pm_domain *pd; pd = to_zynqmp_pm_domain(genpd_data->domains[0]); if (genpdspec->args_count != 1) return ERR_PTR(-EINVAL); /* Check for existing pm domains */ for (i = 0; i < ZYNQMP_NUM_DOMAINS; i++) { if (pd[i].node_id == idx) goto done; } /* * Add index in empty node_id of power domain list as no existing * power domain found for current index. */ for (i = 0; i < ZYNQMP_NUM_DOMAINS; i++) { if (pd[i].node_id == 0) { pd[i].node_id = idx; break; } } done: if (!genpd_data->domains[i] || i == ZYNQMP_NUM_DOMAINS) return ERR_PTR(-ENOENT); return genpd_data->domains[i]; } static int zynqmp_gpd_probe(struct platform_device *pdev) { int i; struct genpd_onecell_data *zynqmp_pd_data; struct generic_pm_domain **domains; struct zynqmp_pm_domain *pd; struct device *dev = &pdev->dev; pd = devm_kcalloc(dev, ZYNQMP_NUM_DOMAINS, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; zynqmp_pd_data = devm_kzalloc(dev, sizeof(*zynqmp_pd_data), GFP_KERNEL); if (!zynqmp_pd_data) return -ENOMEM; zynqmp_pd_data->xlate = zynqmp_gpd_xlate; domains = devm_kcalloc(dev, ZYNQMP_NUM_DOMAINS, sizeof(*domains), GFP_KERNEL); if (!domains) return -ENOMEM; if (!of_device_is_compatible(dev->parent->of_node, "xlnx,zynqmp-firmware")) min_capability = ZYNQMP_PM_CAPABILITY_UNUSABLE; for (i = 0; i < ZYNQMP_NUM_DOMAINS; i++, pd++) { pd->node_id = 0; pd->gpd.name = kasprintf(GFP_KERNEL, "domain%d", i); pd->gpd.power_off = zynqmp_gpd_power_off; pd->gpd.power_on = zynqmp_gpd_power_on; pd->gpd.attach_dev = zynqmp_gpd_attach_dev; pd->gpd.detach_dev = zynqmp_gpd_detach_dev; domains[i] = &pd->gpd; /* Mark all PM domains as initially powered off */ pm_genpd_init(&pd->gpd, NULL, true); } zynqmp_pd_data->domains = domains; zynqmp_pd_data->num_domains = ZYNQMP_NUM_DOMAINS; of_genpd_add_provider_onecell(dev->parent->of_node, zynqmp_pd_data); return 0; } static int zynqmp_gpd_remove(struct platform_device *pdev) { of_genpd_del_provider(pdev->dev.parent->of_node); return 0; } static void zynqmp_gpd_sync_state(struct device *dev) { int ret; ret = zynqmp_pm_init_finalize(); if (ret) dev_warn(dev, "failed to release power management to firmware\n"); } static struct platform_driver zynqmp_power_domain_driver = { .driver = { .name = "zynqmp_power_controller", .sync_state = zynqmp_gpd_sync_state, }, .probe = zynqmp_gpd_probe, .remove = zynqmp_gpd_remove, }; module_platform_driver(zynqmp_power_domain_driver); MODULE_ALIAS("platform:zynqmp_power_controller");
linux-master
drivers/pmdomain/xilinx/zynqmp-pm-domains.c
/* * Copyright (c) 2017 BayLibre, SAS * Author: Neil Armstrong <[email protected]> * * SPDX-License-Identifier: GPL-2.0+ */ #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/bitfield.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/reset.h> #include <linux/clk.h> #include <linux/module.h> /* AO Offsets */ #define AO_RTI_GEN_PWR_SLEEP0 (0x3a << 2) #define GEN_PWR_VPU_HDMI BIT(8) #define GEN_PWR_VPU_HDMI_ISO BIT(9) /* HHI Offsets */ #define HHI_MEM_PD_REG0 (0x40 << 2) #define HHI_VPU_MEM_PD_REG0 (0x41 << 2) #define HHI_VPU_MEM_PD_REG1 (0x42 << 2) #define HHI_VPU_MEM_PD_REG2 (0x4d << 2) struct meson_gx_pwrc_vpu { struct generic_pm_domain genpd; struct regmap *regmap_ao; struct regmap *regmap_hhi; struct reset_control *rstc; struct clk *vpu_clk; struct clk *vapb_clk; }; static inline struct meson_gx_pwrc_vpu *genpd_to_pd(struct generic_pm_domain *d) { return container_of(d, struct meson_gx_pwrc_vpu, genpd); } static int meson_gx_pwrc_vpu_power_off(struct generic_pm_domain *genpd) { struct meson_gx_pwrc_vpu *pd = genpd_to_pd(genpd); int i; regmap_update_bits(pd->regmap_ao, AO_RTI_GEN_PWR_SLEEP0, GEN_PWR_VPU_HDMI_ISO, GEN_PWR_VPU_HDMI_ISO); udelay(20); /* Power Down Memories */ for (i = 0; i < 32; i += 2) { regmap_update_bits(pd->regmap_hhi, HHI_VPU_MEM_PD_REG0, 0x3 << i, 0x3 << i); udelay(5); } for (i = 0; i < 32; i += 2) { regmap_update_bits(pd->regmap_hhi, HHI_VPU_MEM_PD_REG1, 0x3 << i, 0x3 << i); udelay(5); } for (i = 8; i < 16; i++) { regmap_update_bits(pd->regmap_hhi, HHI_MEM_PD_REG0, BIT(i), BIT(i)); udelay(5); } udelay(20); regmap_update_bits(pd->regmap_ao, AO_RTI_GEN_PWR_SLEEP0, GEN_PWR_VPU_HDMI, GEN_PWR_VPU_HDMI); msleep(20); clk_disable_unprepare(pd->vpu_clk); clk_disable_unprepare(pd->vapb_clk); return 0; } static int meson_g12a_pwrc_vpu_power_off(struct generic_pm_domain *genpd) { struct meson_gx_pwrc_vpu *pd = genpd_to_pd(genpd); int i; regmap_update_bits(pd->regmap_ao, AO_RTI_GEN_PWR_SLEEP0, GEN_PWR_VPU_HDMI_ISO, GEN_PWR_VPU_HDMI_ISO); udelay(20); /* Power Down Memories */ for (i = 0; i < 32; i += 2) { regmap_update_bits(pd->regmap_hhi, HHI_VPU_MEM_PD_REG0, 0x3 << i, 0x3 << i); udelay(5); } for (i = 0; i < 32; i += 2) { regmap_update_bits(pd->regmap_hhi, HHI_VPU_MEM_PD_REG1, 0x3 << i, 0x3 << i); udelay(5); } for (i = 0; i < 32; i += 2) { regmap_update_bits(pd->regmap_hhi, HHI_VPU_MEM_PD_REG2, 0x3 << i, 0x3 << i); udelay(5); } for (i = 8; i < 16; i++) { regmap_update_bits(pd->regmap_hhi, HHI_MEM_PD_REG0, BIT(i), BIT(i)); udelay(5); } udelay(20); regmap_update_bits(pd->regmap_ao, AO_RTI_GEN_PWR_SLEEP0, GEN_PWR_VPU_HDMI, GEN_PWR_VPU_HDMI); msleep(20); clk_disable_unprepare(pd->vpu_clk); clk_disable_unprepare(pd->vapb_clk); return 0; } static int meson_gx_pwrc_vpu_setup_clk(struct meson_gx_pwrc_vpu *pd) { int ret; ret = clk_prepare_enable(pd->vpu_clk); if (ret) return ret; ret = clk_prepare_enable(pd->vapb_clk); if (ret) clk_disable_unprepare(pd->vpu_clk); return ret; } static int meson_gx_pwrc_vpu_power_on(struct generic_pm_domain *genpd) { struct meson_gx_pwrc_vpu *pd = genpd_to_pd(genpd); int ret; int i; regmap_update_bits(pd->regmap_ao, AO_RTI_GEN_PWR_SLEEP0, GEN_PWR_VPU_HDMI, 0); udelay(20); /* Power Up Memories */ for (i = 0; i < 32; i += 2) { regmap_update_bits(pd->regmap_hhi, HHI_VPU_MEM_PD_REG0, 0x3 << i, 0); udelay(5); } for (i = 0; i < 32; i += 2) { regmap_update_bits(pd->regmap_hhi, HHI_VPU_MEM_PD_REG1, 0x3 << i, 0); udelay(5); } for (i = 8; i < 16; i++) { regmap_update_bits(pd->regmap_hhi, HHI_MEM_PD_REG0, BIT(i), 0); udelay(5); } udelay(20); ret = reset_control_assert(pd->rstc); if (ret) return ret; regmap_update_bits(pd->regmap_ao, AO_RTI_GEN_PWR_SLEEP0, GEN_PWR_VPU_HDMI_ISO, 0); ret = reset_control_deassert(pd->rstc); if (ret) return ret; ret = meson_gx_pwrc_vpu_setup_clk(pd); if (ret) return ret; return 0; } static int meson_g12a_pwrc_vpu_power_on(struct generic_pm_domain *genpd) { struct meson_gx_pwrc_vpu *pd = genpd_to_pd(genpd); int ret; int i; regmap_update_bits(pd->regmap_ao, AO_RTI_GEN_PWR_SLEEP0, GEN_PWR_VPU_HDMI, 0); udelay(20); /* Power Up Memories */ for (i = 0; i < 32; i += 2) { regmap_update_bits(pd->regmap_hhi, HHI_VPU_MEM_PD_REG0, 0x3 << i, 0); udelay(5); } for (i = 0; i < 32; i += 2) { regmap_update_bits(pd->regmap_hhi, HHI_VPU_MEM_PD_REG1, 0x3 << i, 0); udelay(5); } for (i = 0; i < 32; i += 2) { regmap_update_bits(pd->regmap_hhi, HHI_VPU_MEM_PD_REG2, 0x3 << i, 0); udelay(5); } for (i = 8; i < 16; i++) { regmap_update_bits(pd->regmap_hhi, HHI_MEM_PD_REG0, BIT(i), 0); udelay(5); } udelay(20); ret = reset_control_assert(pd->rstc); if (ret) return ret; regmap_update_bits(pd->regmap_ao, AO_RTI_GEN_PWR_SLEEP0, GEN_PWR_VPU_HDMI_ISO, 0); ret = reset_control_deassert(pd->rstc); if (ret) return ret; ret = meson_gx_pwrc_vpu_setup_clk(pd); if (ret) return ret; return 0; } static bool meson_gx_pwrc_vpu_get_power(struct meson_gx_pwrc_vpu *pd) { u32 reg; regmap_read(pd->regmap_ao, AO_RTI_GEN_PWR_SLEEP0, &reg); return (reg & GEN_PWR_VPU_HDMI); } static struct meson_gx_pwrc_vpu vpu_hdmi_pd = { .genpd = { .name = "vpu_hdmi", .power_off = meson_gx_pwrc_vpu_power_off, .power_on = meson_gx_pwrc_vpu_power_on, }, }; static struct meson_gx_pwrc_vpu vpu_hdmi_pd_g12a = { .genpd = { .name = "vpu_hdmi", .power_off = meson_g12a_pwrc_vpu_power_off, .power_on = meson_g12a_pwrc_vpu_power_on, }, }; static int meson_gx_pwrc_vpu_probe(struct platform_device *pdev) { const struct meson_gx_pwrc_vpu *vpu_pd_match; struct regmap *regmap_ao, *regmap_hhi; struct meson_gx_pwrc_vpu *vpu_pd; struct device_node *parent_np; struct reset_control *rstc; struct clk *vpu_clk; struct clk *vapb_clk; bool powered_off; int ret; vpu_pd_match = of_device_get_match_data(&pdev->dev); if (!vpu_pd_match) { dev_err(&pdev->dev, "failed to get match data\n"); return -ENODEV; } vpu_pd = devm_kzalloc(&pdev->dev, sizeof(*vpu_pd), GFP_KERNEL); if (!vpu_pd) return -ENOMEM; memcpy(vpu_pd, vpu_pd_match, sizeof(*vpu_pd)); parent_np = of_get_parent(pdev->dev.of_node); regmap_ao = syscon_node_to_regmap(parent_np); of_node_put(parent_np); if (IS_ERR(regmap_ao)) { dev_err(&pdev->dev, "failed to get regmap\n"); return PTR_ERR(regmap_ao); } regmap_hhi = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "amlogic,hhi-sysctrl"); if (IS_ERR(regmap_hhi)) { dev_err(&pdev->dev, "failed to get HHI regmap\n"); return PTR_ERR(regmap_hhi); } rstc = devm_reset_control_array_get_exclusive(&pdev->dev); if (IS_ERR(rstc)) return dev_err_probe(&pdev->dev, PTR_ERR(rstc), "failed to get reset lines\n"); vpu_clk = devm_clk_get(&pdev->dev, "vpu"); if (IS_ERR(vpu_clk)) { dev_err(&pdev->dev, "vpu clock request failed\n"); return PTR_ERR(vpu_clk); } vapb_clk = devm_clk_get(&pdev->dev, "vapb"); if (IS_ERR(vapb_clk)) { dev_err(&pdev->dev, "vapb clock request failed\n"); return PTR_ERR(vapb_clk); } vpu_pd->regmap_ao = regmap_ao; vpu_pd->regmap_hhi = regmap_hhi; vpu_pd->rstc = rstc; vpu_pd->vpu_clk = vpu_clk; vpu_pd->vapb_clk = vapb_clk; platform_set_drvdata(pdev, vpu_pd); powered_off = meson_gx_pwrc_vpu_get_power(vpu_pd); /* If already powered, sync the clock states */ if (!powered_off) { ret = meson_gx_pwrc_vpu_setup_clk(vpu_pd); if (ret) return ret; } vpu_pd->genpd.flags = GENPD_FLAG_ALWAYS_ON; pm_genpd_init(&vpu_pd->genpd, NULL, powered_off); return of_genpd_add_provider_simple(pdev->dev.of_node, &vpu_pd->genpd); } static void meson_gx_pwrc_vpu_shutdown(struct platform_device *pdev) { struct meson_gx_pwrc_vpu *vpu_pd = platform_get_drvdata(pdev); bool powered_off; powered_off = meson_gx_pwrc_vpu_get_power(vpu_pd); if (!powered_off) vpu_pd->genpd.power_off(&vpu_pd->genpd); } static const struct of_device_id meson_gx_pwrc_vpu_match_table[] = { { .compatible = "amlogic,meson-gx-pwrc-vpu", .data = &vpu_hdmi_pd }, { .compatible = "amlogic,meson-g12a-pwrc-vpu", .data = &vpu_hdmi_pd_g12a }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, meson_gx_pwrc_vpu_match_table); static struct platform_driver meson_gx_pwrc_vpu_driver = { .probe = meson_gx_pwrc_vpu_probe, .shutdown = meson_gx_pwrc_vpu_shutdown, .driver = { .name = "meson_gx_pwrc_vpu", .of_match_table = meson_gx_pwrc_vpu_match_table, }, }; module_platform_driver(meson_gx_pwrc_vpu_driver); MODULE_LICENSE("GPL v2");
linux-master
drivers/pmdomain/amlogic/meson-gx-pwrc-vpu.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2019 BayLibre, SAS * Author: Neil Armstrong <[email protected]> */ #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/bitfield.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/reset-controller.h> #include <linux/reset.h> #include <linux/clk.h> #include <linux/module.h> #include <dt-bindings/power/meson8-power.h> #include <dt-bindings/power/meson-axg-power.h> #include <dt-bindings/power/meson-g12a-power.h> #include <dt-bindings/power/meson-gxbb-power.h> #include <dt-bindings/power/meson-sm1-power.h> /* AO Offsets */ #define GX_AO_RTI_GEN_PWR_SLEEP0 (0x3a << 2) #define GX_AO_RTI_GEN_PWR_ISO0 (0x3b << 2) /* * Meson8/Meson8b/Meson8m2 only expose the power management registers of the * AO-bus as syscon. 0x3a from GX translates to 0x02, 0x3b translates to 0x03 * and so on. */ #define MESON8_AO_RTI_GEN_PWR_SLEEP0 (0x02 << 2) #define MESON8_AO_RTI_GEN_PWR_ISO0 (0x03 << 2) /* HHI Offsets */ #define HHI_MEM_PD_REG0 (0x40 << 2) #define HHI_VPU_MEM_PD_REG0 (0x41 << 2) #define HHI_VPU_MEM_PD_REG1 (0x42 << 2) #define HHI_VPU_MEM_PD_REG3 (0x43 << 2) #define HHI_VPU_MEM_PD_REG4 (0x44 << 2) #define HHI_AUDIO_MEM_PD_REG0 (0x45 << 2) #define HHI_NANOQ_MEM_PD_REG0 (0x46 << 2) #define HHI_NANOQ_MEM_PD_REG1 (0x47 << 2) #define HHI_VPU_MEM_PD_REG2 (0x4d << 2) #define G12A_HHI_NANOQ_MEM_PD_REG0 (0x43 << 2) #define G12A_HHI_NANOQ_MEM_PD_REG1 (0x44 << 2) struct meson_ee_pwrc; struct meson_ee_pwrc_domain; struct meson_ee_pwrc_mem_domain { unsigned int reg; unsigned int mask; }; struct meson_ee_pwrc_top_domain { unsigned int sleep_reg; unsigned int sleep_mask; unsigned int iso_reg; unsigned int iso_mask; }; struct meson_ee_pwrc_domain_desc { char *name; unsigned int reset_names_count; unsigned int clk_names_count; struct meson_ee_pwrc_top_domain *top_pd; unsigned int mem_pd_count; struct meson_ee_pwrc_mem_domain *mem_pd; bool (*is_powered_off)(struct meson_ee_pwrc_domain *pwrc_domain); }; struct meson_ee_pwrc_domain_data { unsigned int count; struct meson_ee_pwrc_domain_desc *domains; }; /* TOP Power Domains */ static struct meson_ee_pwrc_top_domain gx_pwrc_vpu = { .sleep_reg = GX_AO_RTI_GEN_PWR_SLEEP0, .sleep_mask = BIT(8), .iso_reg = GX_AO_RTI_GEN_PWR_SLEEP0, .iso_mask = BIT(9), }; static struct meson_ee_pwrc_top_domain meson8_pwrc_vpu = { .sleep_reg = MESON8_AO_RTI_GEN_PWR_SLEEP0, .sleep_mask = BIT(8), .iso_reg = MESON8_AO_RTI_GEN_PWR_SLEEP0, .iso_mask = BIT(9), }; #define SM1_EE_PD(__bit) \ { \ .sleep_reg = GX_AO_RTI_GEN_PWR_SLEEP0, \ .sleep_mask = BIT(__bit), \ .iso_reg = GX_AO_RTI_GEN_PWR_ISO0, \ .iso_mask = BIT(__bit), \ } static struct meson_ee_pwrc_top_domain sm1_pwrc_vpu = SM1_EE_PD(8); static struct meson_ee_pwrc_top_domain sm1_pwrc_nna = SM1_EE_PD(16); static struct meson_ee_pwrc_top_domain sm1_pwrc_usb = SM1_EE_PD(17); static struct meson_ee_pwrc_top_domain sm1_pwrc_pci = SM1_EE_PD(18); static struct meson_ee_pwrc_top_domain sm1_pwrc_ge2d = SM1_EE_PD(19); static struct meson_ee_pwrc_top_domain g12a_pwrc_nna = { .sleep_reg = GX_AO_RTI_GEN_PWR_SLEEP0, .sleep_mask = BIT(16) | BIT(17), .iso_reg = GX_AO_RTI_GEN_PWR_ISO0, .iso_mask = BIT(16) | BIT(17), }; /* Memory PD Domains */ #define VPU_MEMPD(__reg) \ { __reg, GENMASK(1, 0) }, \ { __reg, GENMASK(3, 2) }, \ { __reg, GENMASK(5, 4) }, \ { __reg, GENMASK(7, 6) }, \ { __reg, GENMASK(9, 8) }, \ { __reg, GENMASK(11, 10) }, \ { __reg, GENMASK(13, 12) }, \ { __reg, GENMASK(15, 14) }, \ { __reg, GENMASK(17, 16) }, \ { __reg, GENMASK(19, 18) }, \ { __reg, GENMASK(21, 20) }, \ { __reg, GENMASK(23, 22) }, \ { __reg, GENMASK(25, 24) }, \ { __reg, GENMASK(27, 26) }, \ { __reg, GENMASK(29, 28) }, \ { __reg, GENMASK(31, 30) } #define VPU_HHI_MEMPD(__reg) \ { __reg, BIT(8) }, \ { __reg, BIT(9) }, \ { __reg, BIT(10) }, \ { __reg, BIT(11) }, \ { __reg, BIT(12) }, \ { __reg, BIT(13) }, \ { __reg, BIT(14) }, \ { __reg, BIT(15) } static struct meson_ee_pwrc_mem_domain axg_pwrc_mem_vpu[] = { VPU_MEMPD(HHI_VPU_MEM_PD_REG0), VPU_HHI_MEMPD(HHI_MEM_PD_REG0), }; static struct meson_ee_pwrc_mem_domain g12a_pwrc_mem_vpu[] = { VPU_MEMPD(HHI_VPU_MEM_PD_REG0), VPU_MEMPD(HHI_VPU_MEM_PD_REG1), VPU_MEMPD(HHI_VPU_MEM_PD_REG2), VPU_HHI_MEMPD(HHI_MEM_PD_REG0), }; static struct meson_ee_pwrc_mem_domain gxbb_pwrc_mem_vpu[] = { VPU_MEMPD(HHI_VPU_MEM_PD_REG0), VPU_MEMPD(HHI_VPU_MEM_PD_REG1), VPU_HHI_MEMPD(HHI_MEM_PD_REG0), }; static struct meson_ee_pwrc_mem_domain meson_pwrc_mem_eth[] = { { HHI_MEM_PD_REG0, GENMASK(3, 2) }, }; static struct meson_ee_pwrc_mem_domain meson8_pwrc_audio_dsp_mem[] = { { HHI_MEM_PD_REG0, GENMASK(1, 0) }, }; static struct meson_ee_pwrc_mem_domain meson8_pwrc_mem_vpu[] = { VPU_MEMPD(HHI_VPU_MEM_PD_REG0), VPU_MEMPD(HHI_VPU_MEM_PD_REG1), VPU_HHI_MEMPD(HHI_MEM_PD_REG0), }; static struct meson_ee_pwrc_mem_domain sm1_pwrc_mem_vpu[] = { VPU_MEMPD(HHI_VPU_MEM_PD_REG0), VPU_MEMPD(HHI_VPU_MEM_PD_REG1), VPU_MEMPD(HHI_VPU_MEM_PD_REG2), VPU_MEMPD(HHI_VPU_MEM_PD_REG3), { HHI_VPU_MEM_PD_REG4, GENMASK(1, 0) }, { HHI_VPU_MEM_PD_REG4, GENMASK(3, 2) }, { HHI_VPU_MEM_PD_REG4, GENMASK(5, 4) }, { HHI_VPU_MEM_PD_REG4, GENMASK(7, 6) }, VPU_HHI_MEMPD(HHI_MEM_PD_REG0), }; static struct meson_ee_pwrc_mem_domain sm1_pwrc_mem_nna[] = { { HHI_NANOQ_MEM_PD_REG0, 0xff }, { HHI_NANOQ_MEM_PD_REG1, 0xff }, }; static struct meson_ee_pwrc_mem_domain sm1_pwrc_mem_usb[] = { { HHI_MEM_PD_REG0, GENMASK(31, 30) }, }; static struct meson_ee_pwrc_mem_domain sm1_pwrc_mem_pcie[] = { { HHI_MEM_PD_REG0, GENMASK(29, 26) }, }; static struct meson_ee_pwrc_mem_domain sm1_pwrc_mem_ge2d[] = { { HHI_MEM_PD_REG0, GENMASK(25, 18) }, }; static struct meson_ee_pwrc_mem_domain axg_pwrc_mem_audio[] = { { HHI_MEM_PD_REG0, GENMASK(5, 4) }, }; static struct meson_ee_pwrc_mem_domain sm1_pwrc_mem_audio[] = { { HHI_MEM_PD_REG0, GENMASK(5, 4) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(1, 0) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(3, 2) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(5, 4) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(7, 6) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(13, 12) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(15, 14) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(17, 16) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(19, 18) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(21, 20) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(23, 22) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(25, 24) }, { HHI_AUDIO_MEM_PD_REG0, GENMASK(27, 26) }, }; static struct meson_ee_pwrc_mem_domain g12a_pwrc_mem_nna[] = { { G12A_HHI_NANOQ_MEM_PD_REG0, GENMASK(31, 0) }, { G12A_HHI_NANOQ_MEM_PD_REG1, GENMASK(23, 0) }, }; #define VPU_PD(__name, __top_pd, __mem, __is_pwr_off, __resets, __clks) \ { \ .name = __name, \ .reset_names_count = __resets, \ .clk_names_count = __clks, \ .top_pd = __top_pd, \ .mem_pd_count = ARRAY_SIZE(__mem), \ .mem_pd = __mem, \ .is_powered_off = __is_pwr_off, \ } #define TOP_PD(__name, __top_pd, __mem, __is_pwr_off) \ { \ .name = __name, \ .top_pd = __top_pd, \ .mem_pd_count = ARRAY_SIZE(__mem), \ .mem_pd = __mem, \ .is_powered_off = __is_pwr_off, \ } #define MEM_PD(__name, __mem) \ TOP_PD(__name, NULL, __mem, NULL) static bool pwrc_ee_is_powered_off(struct meson_ee_pwrc_domain *pwrc_domain); static struct meson_ee_pwrc_domain_desc axg_pwrc_domains[] = { [PWRC_AXG_VPU_ID] = VPU_PD("VPU", &gx_pwrc_vpu, axg_pwrc_mem_vpu, pwrc_ee_is_powered_off, 5, 2), [PWRC_AXG_ETHERNET_MEM_ID] = MEM_PD("ETH", meson_pwrc_mem_eth), [PWRC_AXG_AUDIO_ID] = MEM_PD("AUDIO", axg_pwrc_mem_audio), }; static struct meson_ee_pwrc_domain_desc g12a_pwrc_domains[] = { [PWRC_G12A_VPU_ID] = VPU_PD("VPU", &gx_pwrc_vpu, g12a_pwrc_mem_vpu, pwrc_ee_is_powered_off, 11, 2), [PWRC_G12A_ETH_ID] = MEM_PD("ETH", meson_pwrc_mem_eth), [PWRC_G12A_NNA_ID] = TOP_PD("NNA", &g12a_pwrc_nna, g12a_pwrc_mem_nna, pwrc_ee_is_powered_off), }; static struct meson_ee_pwrc_domain_desc gxbb_pwrc_domains[] = { [PWRC_GXBB_VPU_ID] = VPU_PD("VPU", &gx_pwrc_vpu, gxbb_pwrc_mem_vpu, pwrc_ee_is_powered_off, 12, 2), [PWRC_GXBB_ETHERNET_MEM_ID] = MEM_PD("ETH", meson_pwrc_mem_eth), }; static struct meson_ee_pwrc_domain_desc meson8_pwrc_domains[] = { [PWRC_MESON8_VPU_ID] = VPU_PD("VPU", &meson8_pwrc_vpu, meson8_pwrc_mem_vpu, pwrc_ee_is_powered_off, 0, 1), [PWRC_MESON8_ETHERNET_MEM_ID] = MEM_PD("ETHERNET_MEM", meson_pwrc_mem_eth), [PWRC_MESON8_AUDIO_DSP_MEM_ID] = MEM_PD("AUDIO_DSP_MEM", meson8_pwrc_audio_dsp_mem), }; static struct meson_ee_pwrc_domain_desc meson8b_pwrc_domains[] = { [PWRC_MESON8_VPU_ID] = VPU_PD("VPU", &meson8_pwrc_vpu, meson8_pwrc_mem_vpu, pwrc_ee_is_powered_off, 11, 1), [PWRC_MESON8_ETHERNET_MEM_ID] = MEM_PD("ETHERNET_MEM", meson_pwrc_mem_eth), [PWRC_MESON8_AUDIO_DSP_MEM_ID] = MEM_PD("AUDIO_DSP_MEM", meson8_pwrc_audio_dsp_mem), }; static struct meson_ee_pwrc_domain_desc sm1_pwrc_domains[] = { [PWRC_SM1_VPU_ID] = VPU_PD("VPU", &sm1_pwrc_vpu, sm1_pwrc_mem_vpu, pwrc_ee_is_powered_off, 11, 2), [PWRC_SM1_NNA_ID] = TOP_PD("NNA", &sm1_pwrc_nna, sm1_pwrc_mem_nna, pwrc_ee_is_powered_off), [PWRC_SM1_USB_ID] = TOP_PD("USB", &sm1_pwrc_usb, sm1_pwrc_mem_usb, pwrc_ee_is_powered_off), [PWRC_SM1_PCIE_ID] = TOP_PD("PCI", &sm1_pwrc_pci, sm1_pwrc_mem_pcie, pwrc_ee_is_powered_off), [PWRC_SM1_GE2D_ID] = TOP_PD("GE2D", &sm1_pwrc_ge2d, sm1_pwrc_mem_ge2d, pwrc_ee_is_powered_off), [PWRC_SM1_AUDIO_ID] = MEM_PD("AUDIO", sm1_pwrc_mem_audio), [PWRC_SM1_ETH_ID] = MEM_PD("ETH", meson_pwrc_mem_eth), }; struct meson_ee_pwrc_domain { struct generic_pm_domain base; bool enabled; struct meson_ee_pwrc *pwrc; struct meson_ee_pwrc_domain_desc desc; struct clk_bulk_data *clks; int num_clks; struct reset_control *rstc; int num_rstc; }; struct meson_ee_pwrc { struct regmap *regmap_ao; struct regmap *regmap_hhi; struct meson_ee_pwrc_domain *domains; struct genpd_onecell_data xlate; }; static bool pwrc_ee_is_powered_off(struct meson_ee_pwrc_domain *pwrc_domain) { u32 reg; regmap_read(pwrc_domain->pwrc->regmap_ao, pwrc_domain->desc.top_pd->sleep_reg, &reg); return (reg & pwrc_domain->desc.top_pd->sleep_mask); } static int meson_ee_pwrc_off(struct generic_pm_domain *domain) { struct meson_ee_pwrc_domain *pwrc_domain = container_of(domain, struct meson_ee_pwrc_domain, base); int i; if (pwrc_domain->desc.top_pd) regmap_update_bits(pwrc_domain->pwrc->regmap_ao, pwrc_domain->desc.top_pd->sleep_reg, pwrc_domain->desc.top_pd->sleep_mask, pwrc_domain->desc.top_pd->sleep_mask); udelay(20); for (i = 0 ; i < pwrc_domain->desc.mem_pd_count ; ++i) regmap_update_bits(pwrc_domain->pwrc->regmap_hhi, pwrc_domain->desc.mem_pd[i].reg, pwrc_domain->desc.mem_pd[i].mask, pwrc_domain->desc.mem_pd[i].mask); udelay(20); if (pwrc_domain->desc.top_pd) regmap_update_bits(pwrc_domain->pwrc->regmap_ao, pwrc_domain->desc.top_pd->iso_reg, pwrc_domain->desc.top_pd->iso_mask, pwrc_domain->desc.top_pd->iso_mask); if (pwrc_domain->num_clks) { msleep(20); clk_bulk_disable_unprepare(pwrc_domain->num_clks, pwrc_domain->clks); } return 0; } static int meson_ee_pwrc_on(struct generic_pm_domain *domain) { struct meson_ee_pwrc_domain *pwrc_domain = container_of(domain, struct meson_ee_pwrc_domain, base); int i, ret; if (pwrc_domain->desc.top_pd) regmap_update_bits(pwrc_domain->pwrc->regmap_ao, pwrc_domain->desc.top_pd->sleep_reg, pwrc_domain->desc.top_pd->sleep_mask, 0); udelay(20); for (i = 0 ; i < pwrc_domain->desc.mem_pd_count ; ++i) regmap_update_bits(pwrc_domain->pwrc->regmap_hhi, pwrc_domain->desc.mem_pd[i].reg, pwrc_domain->desc.mem_pd[i].mask, 0); udelay(20); ret = reset_control_assert(pwrc_domain->rstc); if (ret) return ret; if (pwrc_domain->desc.top_pd) regmap_update_bits(pwrc_domain->pwrc->regmap_ao, pwrc_domain->desc.top_pd->iso_reg, pwrc_domain->desc.top_pd->iso_mask, 0); ret = reset_control_deassert(pwrc_domain->rstc); if (ret) return ret; return clk_bulk_prepare_enable(pwrc_domain->num_clks, pwrc_domain->clks); } static int meson_ee_pwrc_init_domain(struct platform_device *pdev, struct meson_ee_pwrc *pwrc, struct meson_ee_pwrc_domain *dom) { int ret; dom->pwrc = pwrc; dom->num_rstc = dom->desc.reset_names_count; dom->num_clks = dom->desc.clk_names_count; if (dom->num_rstc) { int count = reset_control_get_count(&pdev->dev); if (count != dom->num_rstc) dev_warn(&pdev->dev, "Invalid resets count %d for domain %s\n", count, dom->desc.name); dom->rstc = devm_reset_control_array_get_exclusive(&pdev->dev); if (IS_ERR(dom->rstc)) return PTR_ERR(dom->rstc); } if (dom->num_clks) { int ret = devm_clk_bulk_get_all(&pdev->dev, &dom->clks); if (ret < 0) return ret; if (dom->num_clks != ret) { dev_warn(&pdev->dev, "Invalid clocks count %d for domain %s\n", ret, dom->desc.name); dom->num_clks = ret; } } dom->base.name = dom->desc.name; dom->base.power_on = meson_ee_pwrc_on; dom->base.power_off = meson_ee_pwrc_off; /* * TOFIX: This is a special case for the VPU power domain, which can * be enabled previously by the bootloader. In this case the VPU * pipeline may be functional but no driver maybe never attach * to this power domain, and if the domain is disabled it could * cause system errors. This is why the pm_domain_always_on_gov * is used here. * For the same reason, the clocks should be enabled in case * we need to power the domain off, otherwise the internal clocks * prepare/enable counters won't be in sync. */ if (dom->num_clks && dom->desc.is_powered_off && !dom->desc.is_powered_off(dom)) { ret = clk_bulk_prepare_enable(dom->num_clks, dom->clks); if (ret) return ret; dom->base.flags = GENPD_FLAG_ALWAYS_ON; ret = pm_genpd_init(&dom->base, NULL, false); if (ret) return ret; } else { ret = pm_genpd_init(&dom->base, NULL, (dom->desc.is_powered_off ? dom->desc.is_powered_off(dom) : true)); if (ret) return ret; } return 0; } static int meson_ee_pwrc_probe(struct platform_device *pdev) { const struct meson_ee_pwrc_domain_data *match; struct regmap *regmap_ao, *regmap_hhi; struct device_node *parent_np; struct meson_ee_pwrc *pwrc; int i, ret; match = of_device_get_match_data(&pdev->dev); if (!match) { dev_err(&pdev->dev, "failed to get match data\n"); return -ENODEV; } pwrc = devm_kzalloc(&pdev->dev, sizeof(*pwrc), GFP_KERNEL); if (!pwrc) return -ENOMEM; pwrc->xlate.domains = devm_kcalloc(&pdev->dev, match->count, sizeof(*pwrc->xlate.domains), GFP_KERNEL); if (!pwrc->xlate.domains) return -ENOMEM; pwrc->domains = devm_kcalloc(&pdev->dev, match->count, sizeof(*pwrc->domains), GFP_KERNEL); if (!pwrc->domains) return -ENOMEM; pwrc->xlate.num_domains = match->count; parent_np = of_get_parent(pdev->dev.of_node); regmap_hhi = syscon_node_to_regmap(parent_np); of_node_put(parent_np); if (IS_ERR(regmap_hhi)) { dev_err(&pdev->dev, "failed to get HHI regmap\n"); return PTR_ERR(regmap_hhi); } regmap_ao = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "amlogic,ao-sysctrl"); if (IS_ERR(regmap_ao)) { dev_err(&pdev->dev, "failed to get AO regmap\n"); return PTR_ERR(regmap_ao); } pwrc->regmap_ao = regmap_ao; pwrc->regmap_hhi = regmap_hhi; platform_set_drvdata(pdev, pwrc); for (i = 0 ; i < match->count ; ++i) { struct meson_ee_pwrc_domain *dom = &pwrc->domains[i]; memcpy(&dom->desc, &match->domains[i], sizeof(dom->desc)); ret = meson_ee_pwrc_init_domain(pdev, pwrc, dom); if (ret) return ret; pwrc->xlate.domains[i] = &dom->base; } return of_genpd_add_provider_onecell(pdev->dev.of_node, &pwrc->xlate); } static void meson_ee_pwrc_shutdown(struct platform_device *pdev) { struct meson_ee_pwrc *pwrc = platform_get_drvdata(pdev); int i; for (i = 0 ; i < pwrc->xlate.num_domains ; ++i) { struct meson_ee_pwrc_domain *dom = &pwrc->domains[i]; if (dom->desc.is_powered_off && !dom->desc.is_powered_off(dom)) meson_ee_pwrc_off(&dom->base); } } static struct meson_ee_pwrc_domain_data meson_ee_g12a_pwrc_data = { .count = ARRAY_SIZE(g12a_pwrc_domains), .domains = g12a_pwrc_domains, }; static struct meson_ee_pwrc_domain_data meson_ee_axg_pwrc_data = { .count = ARRAY_SIZE(axg_pwrc_domains), .domains = axg_pwrc_domains, }; static struct meson_ee_pwrc_domain_data meson_ee_gxbb_pwrc_data = { .count = ARRAY_SIZE(gxbb_pwrc_domains), .domains = gxbb_pwrc_domains, }; static struct meson_ee_pwrc_domain_data meson_ee_m8_pwrc_data = { .count = ARRAY_SIZE(meson8_pwrc_domains), .domains = meson8_pwrc_domains, }; static struct meson_ee_pwrc_domain_data meson_ee_m8b_pwrc_data = { .count = ARRAY_SIZE(meson8b_pwrc_domains), .domains = meson8b_pwrc_domains, }; static struct meson_ee_pwrc_domain_data meson_ee_sm1_pwrc_data = { .count = ARRAY_SIZE(sm1_pwrc_domains), .domains = sm1_pwrc_domains, }; static const struct of_device_id meson_ee_pwrc_match_table[] = { { .compatible = "amlogic,meson8-pwrc", .data = &meson_ee_m8_pwrc_data, }, { .compatible = "amlogic,meson8b-pwrc", .data = &meson_ee_m8b_pwrc_data, }, { .compatible = "amlogic,meson8m2-pwrc", .data = &meson_ee_m8b_pwrc_data, }, { .compatible = "amlogic,meson-axg-pwrc", .data = &meson_ee_axg_pwrc_data, }, { .compatible = "amlogic,meson-gxbb-pwrc", .data = &meson_ee_gxbb_pwrc_data, }, { .compatible = "amlogic,meson-g12a-pwrc", .data = &meson_ee_g12a_pwrc_data, }, { .compatible = "amlogic,meson-sm1-pwrc", .data = &meson_ee_sm1_pwrc_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, meson_ee_pwrc_match_table); static struct platform_driver meson_ee_pwrc_driver = { .probe = meson_ee_pwrc_probe, .shutdown = meson_ee_pwrc_shutdown, .driver = { .name = "meson_ee_pwrc", .of_match_table = meson_ee_pwrc_match_table, }, }; module_platform_driver(meson_ee_pwrc_driver); MODULE_LICENSE("GPL v2");
linux-master
drivers/pmdomain/amlogic/meson-ee-pwrc.c
// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Copyright (c) 2019 Amlogic, Inc. * Author: Jianxin Pan <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/io.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <dt-bindings/power/meson-a1-power.h> #include <dt-bindings/power/amlogic,c3-pwrc.h> #include <dt-bindings/power/meson-s4-power.h> #include <linux/arm-smccc.h> #include <linux/firmware/meson/meson_sm.h> #include <linux/module.h> #define PWRC_ON 1 #define PWRC_OFF 0 struct meson_secure_pwrc_domain { struct generic_pm_domain base; unsigned int index; struct meson_secure_pwrc *pwrc; }; struct meson_secure_pwrc { struct meson_secure_pwrc_domain *domains; struct genpd_onecell_data xlate; struct meson_sm_firmware *fw; }; struct meson_secure_pwrc_domain_desc { unsigned int index; unsigned int flags; char *name; bool (*is_off)(struct meson_secure_pwrc_domain *pwrc_domain); }; struct meson_secure_pwrc_domain_data { unsigned int count; struct meson_secure_pwrc_domain_desc *domains; }; static bool pwrc_secure_is_off(struct meson_secure_pwrc_domain *pwrc_domain) { int is_off = 1; if (meson_sm_call(pwrc_domain->pwrc->fw, SM_A1_PWRC_GET, &is_off, pwrc_domain->index, 0, 0, 0, 0) < 0) pr_err("failed to get power domain status\n"); return is_off; } static int meson_secure_pwrc_off(struct generic_pm_domain *domain) { int ret = 0; struct meson_secure_pwrc_domain *pwrc_domain = container_of(domain, struct meson_secure_pwrc_domain, base); if (meson_sm_call(pwrc_domain->pwrc->fw, SM_A1_PWRC_SET, NULL, pwrc_domain->index, PWRC_OFF, 0, 0, 0) < 0) { pr_err("failed to set power domain off\n"); ret = -EINVAL; } return ret; } static int meson_secure_pwrc_on(struct generic_pm_domain *domain) { int ret = 0; struct meson_secure_pwrc_domain *pwrc_domain = container_of(domain, struct meson_secure_pwrc_domain, base); if (meson_sm_call(pwrc_domain->pwrc->fw, SM_A1_PWRC_SET, NULL, pwrc_domain->index, PWRC_ON, 0, 0, 0) < 0) { pr_err("failed to set power domain on\n"); ret = -EINVAL; } return ret; } #define SEC_PD(__name, __flag) \ [PWRC_##__name##_ID] = \ { \ .name = #__name, \ .index = PWRC_##__name##_ID, \ .is_off = pwrc_secure_is_off, \ .flags = __flag, \ } static struct meson_secure_pwrc_domain_desc a1_pwrc_domains[] = { SEC_PD(DSPA, 0), SEC_PD(DSPB, 0), /* UART should keep working in ATF after suspend and before resume */ SEC_PD(UART, GENPD_FLAG_ALWAYS_ON), /* DMC is for DDR PHY ana/dig and DMC, and should be always on */ SEC_PD(DMC, GENPD_FLAG_ALWAYS_ON), SEC_PD(I2C, 0), SEC_PD(PSRAM, 0), SEC_PD(ACODEC, 0), SEC_PD(AUDIO, 0), SEC_PD(OTP, 0), SEC_PD(DMA, GENPD_FLAG_ALWAYS_ON | GENPD_FLAG_IRQ_SAFE), SEC_PD(SD_EMMC, 0), SEC_PD(RAMA, 0), /* SRAMB is used as ATF runtime memory, and should be always on */ SEC_PD(RAMB, GENPD_FLAG_ALWAYS_ON), SEC_PD(IR, 0), SEC_PD(SPICC, 0), SEC_PD(SPIFC, 0), SEC_PD(USB, 0), /* NIC is for the Arm NIC-400 interconnect, and should be always on */ SEC_PD(NIC, GENPD_FLAG_ALWAYS_ON), SEC_PD(PDMIN, 0), SEC_PD(RSA, 0), }; static struct meson_secure_pwrc_domain_desc c3_pwrc_domains[] = { SEC_PD(C3_NNA, 0), SEC_PD(C3_AUDIO, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_SDIOA, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_EMMC, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_USB_COMB, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_SDCARD, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_ETH, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_GE2D, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_CVE, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_GDC_WRAP, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_ISP_TOP, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_MIPI_ISP_WRAP, GENPD_FLAG_ALWAYS_ON), SEC_PD(C3_VCODEC, 0), }; static struct meson_secure_pwrc_domain_desc s4_pwrc_domains[] = { SEC_PD(S4_DOS_HEVC, 0), SEC_PD(S4_DOS_VDEC, 0), SEC_PD(S4_VPU_HDMI, 0), SEC_PD(S4_USB_COMB, 0), SEC_PD(S4_GE2D, 0), /* ETH is for ethernet online wakeup, and should be always on */ SEC_PD(S4_ETH, GENPD_FLAG_ALWAYS_ON), SEC_PD(S4_DEMOD, 0), SEC_PD(S4_AUDIO, 0), }; static int meson_secure_pwrc_probe(struct platform_device *pdev) { int i; struct device_node *sm_np; struct meson_secure_pwrc *pwrc; const struct meson_secure_pwrc_domain_data *match; match = of_device_get_match_data(&pdev->dev); if (!match) { dev_err(&pdev->dev, "failed to get match data\n"); return -ENODEV; } sm_np = of_find_compatible_node(NULL, NULL, "amlogic,meson-gxbb-sm"); if (!sm_np) { dev_err(&pdev->dev, "no secure-monitor node\n"); return -ENODEV; } pwrc = devm_kzalloc(&pdev->dev, sizeof(*pwrc), GFP_KERNEL); if (!pwrc) { of_node_put(sm_np); return -ENOMEM; } pwrc->fw = meson_sm_get(sm_np); of_node_put(sm_np); if (!pwrc->fw) return -EPROBE_DEFER; pwrc->xlate.domains = devm_kcalloc(&pdev->dev, match->count, sizeof(*pwrc->xlate.domains), GFP_KERNEL); if (!pwrc->xlate.domains) return -ENOMEM; pwrc->domains = devm_kcalloc(&pdev->dev, match->count, sizeof(*pwrc->domains), GFP_KERNEL); if (!pwrc->domains) return -ENOMEM; pwrc->xlate.num_domains = match->count; platform_set_drvdata(pdev, pwrc); for (i = 0 ; i < match->count ; ++i) { struct meson_secure_pwrc_domain *dom = &pwrc->domains[i]; if (!match->domains[i].name) continue; dom->pwrc = pwrc; dom->index = match->domains[i].index; dom->base.name = match->domains[i].name; dom->base.flags = match->domains[i].flags; dom->base.power_on = meson_secure_pwrc_on; dom->base.power_off = meson_secure_pwrc_off; pm_genpd_init(&dom->base, NULL, match->domains[i].is_off(dom)); pwrc->xlate.domains[i] = &dom->base; } return of_genpd_add_provider_onecell(pdev->dev.of_node, &pwrc->xlate); } static struct meson_secure_pwrc_domain_data meson_secure_a1_pwrc_data = { .domains = a1_pwrc_domains, .count = ARRAY_SIZE(a1_pwrc_domains), }; static struct meson_secure_pwrc_domain_data amlogic_secure_c3_pwrc_data = { .domains = c3_pwrc_domains, .count = ARRAY_SIZE(c3_pwrc_domains), }; static struct meson_secure_pwrc_domain_data meson_secure_s4_pwrc_data = { .domains = s4_pwrc_domains, .count = ARRAY_SIZE(s4_pwrc_domains), }; static const struct of_device_id meson_secure_pwrc_match_table[] = { { .compatible = "amlogic,meson-a1-pwrc", .data = &meson_secure_a1_pwrc_data, }, { .compatible = "amlogic,c3-pwrc", .data = &amlogic_secure_c3_pwrc_data, }, { .compatible = "amlogic,meson-s4-pwrc", .data = &meson_secure_s4_pwrc_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, meson_secure_pwrc_match_table); static struct platform_driver meson_secure_pwrc_driver = { .probe = meson_secure_pwrc_probe, .driver = { .name = "meson_secure_pwrc", .of_match_table = meson_secure_pwrc_match_table, }, }; module_platform_driver(meson_secure_pwrc_driver); MODULE_LICENSE("Dual MIT/GPL");
linux-master
drivers/pmdomain/amlogic/meson-secure-pwrc.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, The Linux Foundation. All rights reserved.*/ #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <soc/qcom/cmd-db.h> #include <soc/qcom/rpmh.h> #include <dt-bindings/power/qcom-rpmpd.h> #include <dt-bindings/power/qcom,rpmhpd.h> #define domain_to_rpmhpd(domain) container_of(domain, struct rpmhpd, pd) #define RPMH_ARC_MAX_LEVELS 16 /** * struct rpmhpd - top level RPMh power domain resource data structure * @dev: rpmh power domain controller device * @pd: generic_pm_domain corresponding to the power domain * @parent: generic_pm_domain corresponding to the parent's power domain * @peer: A peer power domain in case Active only Voting is * supported * @active_only: True if it represents an Active only peer * @corner: current corner * @active_corner: current active corner * @enable_corner: lowest non-zero corner * @level: An array of level (vlvl) to corner (hlvl) mappings * derived from cmd-db * @level_count: Number of levels supported by the power domain. max * being 16 (0 - 15) * @enabled: true if the power domain is enabled * @res_name: Resource name used for cmd-db lookup * @addr: Resource address as looped up using resource name from * cmd-db * @state_synced: Indicator that sync_state has been invoked for the rpmhpd resource */ struct rpmhpd { struct device *dev; struct generic_pm_domain pd; struct generic_pm_domain *parent; struct rpmhpd *peer; const bool active_only; unsigned int corner; unsigned int active_corner; unsigned int enable_corner; u32 level[RPMH_ARC_MAX_LEVELS]; size_t level_count; bool enabled; const char *res_name; u32 addr; bool state_synced; }; struct rpmhpd_desc { struct rpmhpd **rpmhpds; size_t num_pds; }; static DEFINE_MUTEX(rpmhpd_lock); /* RPMH powerdomains */ static struct rpmhpd cx_ao; static struct rpmhpd mx; static struct rpmhpd mx_ao; static struct rpmhpd cx = { .pd = { .name = "cx", }, .peer = &cx_ao, .res_name = "cx.lvl", }; static struct rpmhpd cx_ao = { .pd = { .name = "cx_ao", }, .active_only = true, .peer = &cx, .res_name = "cx.lvl", }; static struct rpmhpd cx_ao_w_mx_parent; static struct rpmhpd cx_w_mx_parent = { .pd = { .name = "cx", }, .peer = &cx_ao_w_mx_parent, .parent = &mx.pd, .res_name = "cx.lvl", }; static struct rpmhpd cx_ao_w_mx_parent = { .pd = { .name = "cx_ao", }, .active_only = true, .peer = &cx_w_mx_parent, .parent = &mx_ao.pd, .res_name = "cx.lvl", }; static struct rpmhpd ebi = { .pd = { .name = "ebi", }, .res_name = "ebi.lvl", }; static struct rpmhpd gfx = { .pd = { .name = "gfx", }, .res_name = "gfx.lvl", }; static struct rpmhpd lcx = { .pd = { .name = "lcx", }, .res_name = "lcx.lvl", }; static struct rpmhpd lmx = { .pd = { .name = "lmx", }, .res_name = "lmx.lvl", }; static struct rpmhpd mmcx_ao; static struct rpmhpd mmcx = { .pd = { .name = "mmcx", }, .peer = &mmcx_ao, .res_name = "mmcx.lvl", }; static struct rpmhpd mmcx_ao = { .pd = { .name = "mmcx_ao", }, .active_only = true, .peer = &mmcx, .res_name = "mmcx.lvl", }; static struct rpmhpd mmcx_ao_w_cx_parent; static struct rpmhpd mmcx_w_cx_parent = { .pd = { .name = "mmcx", }, .peer = &mmcx_ao_w_cx_parent, .parent = &cx.pd, .res_name = "mmcx.lvl", }; static struct rpmhpd mmcx_ao_w_cx_parent = { .pd = { .name = "mmcx_ao", }, .active_only = true, .peer = &mmcx_w_cx_parent, .parent = &cx_ao.pd, .res_name = "mmcx.lvl", }; static struct rpmhpd mss = { .pd = { .name = "mss", }, .res_name = "mss.lvl", }; static struct rpmhpd mx_ao; static struct rpmhpd mx = { .pd = { .name = "mx", }, .peer = &mx_ao, .res_name = "mx.lvl", }; static struct rpmhpd mx_ao = { .pd = { .name = "mx_ao", }, .active_only = true, .peer = &mx, .res_name = "mx.lvl", }; static struct rpmhpd mxc_ao; static struct rpmhpd mxc = { .pd = { .name = "mxc", }, .peer = &mxc_ao, .res_name = "mxc.lvl", }; static struct rpmhpd mxc_ao = { .pd = { .name = "mxc_ao", }, .active_only = true, .peer = &mxc, .res_name = "mxc.lvl", }; static struct rpmhpd nsp = { .pd = { .name = "nsp", }, .res_name = "nsp.lvl", }; static struct rpmhpd nsp0 = { .pd = { .name = "nsp0", }, .res_name = "nsp0.lvl", }; static struct rpmhpd nsp1 = { .pd = { .name = "nsp1", }, .res_name = "nsp1.lvl", }; static struct rpmhpd qphy = { .pd = { .name = "qphy", }, .res_name = "qphy.lvl", }; /* SA8540P RPMH powerdomains */ static struct rpmhpd *sa8540p_rpmhpds[] = { [SC8280XP_CX] = &cx, [SC8280XP_CX_AO] = &cx_ao, [SC8280XP_EBI] = &ebi, [SC8280XP_GFX] = &gfx, [SC8280XP_LCX] = &lcx, [SC8280XP_LMX] = &lmx, [SC8280XP_MMCX] = &mmcx, [SC8280XP_MMCX_AO] = &mmcx_ao, [SC8280XP_MX] = &mx, [SC8280XP_MX_AO] = &mx_ao, [SC8280XP_NSP] = &nsp, }; static const struct rpmhpd_desc sa8540p_desc = { .rpmhpds = sa8540p_rpmhpds, .num_pds = ARRAY_SIZE(sa8540p_rpmhpds), }; /* SA8775P RPMH power domains */ static struct rpmhpd *sa8775p_rpmhpds[] = { [SA8775P_CX] = &cx, [SA8775P_CX_AO] = &cx_ao, [SA8775P_EBI] = &ebi, [SA8775P_GFX] = &gfx, [SA8775P_LCX] = &lcx, [SA8775P_LMX] = &lmx, [SA8775P_MMCX] = &mmcx, [SA8775P_MMCX_AO] = &mmcx_ao, [SA8775P_MXC] = &mxc, [SA8775P_MXC_AO] = &mxc_ao, [SA8775P_MX] = &mx, [SA8775P_MX_AO] = &mx_ao, [SA8775P_NSP0] = &nsp0, [SA8775P_NSP1] = &nsp1, }; static const struct rpmhpd_desc sa8775p_desc = { .rpmhpds = sa8775p_rpmhpds, .num_pds = ARRAY_SIZE(sa8775p_rpmhpds), }; /* SDM670 RPMH powerdomains */ static struct rpmhpd *sdm670_rpmhpds[] = { [SDM670_CX] = &cx_w_mx_parent, [SDM670_CX_AO] = &cx_ao_w_mx_parent, [SDM670_GFX] = &gfx, [SDM670_LCX] = &lcx, [SDM670_LMX] = &lmx, [SDM670_MSS] = &mss, [SDM670_MX] = &mx, [SDM670_MX_AO] = &mx_ao, }; static const struct rpmhpd_desc sdm670_desc = { .rpmhpds = sdm670_rpmhpds, .num_pds = ARRAY_SIZE(sdm670_rpmhpds), }; /* SDM845 RPMH powerdomains */ static struct rpmhpd *sdm845_rpmhpds[] = { [SDM845_CX] = &cx_w_mx_parent, [SDM845_CX_AO] = &cx_ao_w_mx_parent, [SDM845_EBI] = &ebi, [SDM845_GFX] = &gfx, [SDM845_LCX] = &lcx, [SDM845_LMX] = &lmx, [SDM845_MSS] = &mss, [SDM845_MX] = &mx, [SDM845_MX_AO] = &mx_ao, }; static const struct rpmhpd_desc sdm845_desc = { .rpmhpds = sdm845_rpmhpds, .num_pds = ARRAY_SIZE(sdm845_rpmhpds), }; /* SDX55 RPMH powerdomains */ static struct rpmhpd *sdx55_rpmhpds[] = { [SDX55_CX] = &cx_w_mx_parent, [SDX55_MSS] = &mss, [SDX55_MX] = &mx, }; static const struct rpmhpd_desc sdx55_desc = { .rpmhpds = sdx55_rpmhpds, .num_pds = ARRAY_SIZE(sdx55_rpmhpds), }; /* SDX65 RPMH powerdomains */ static struct rpmhpd *sdx65_rpmhpds[] = { [SDX65_CX] = &cx_w_mx_parent, [SDX65_CX_AO] = &cx_ao_w_mx_parent, [SDX65_MSS] = &mss, [SDX65_MX] = &mx, [SDX65_MX_AO] = &mx_ao, [SDX65_MXC] = &mxc, }; static const struct rpmhpd_desc sdx65_desc = { .rpmhpds = sdx65_rpmhpds, .num_pds = ARRAY_SIZE(sdx65_rpmhpds), }; /* SDX75 RPMH powerdomains */ static struct rpmhpd *sdx75_rpmhpds[] = { [RPMHPD_CX] = &cx, [RPMHPD_CX_AO] = &cx_ao, [RPMHPD_MSS] = &mss, [RPMHPD_MX] = &mx, [RPMHPD_MX_AO] = &mx_ao, [RPMHPD_MXC] = &mxc, }; static const struct rpmhpd_desc sdx75_desc = { .rpmhpds = sdx75_rpmhpds, .num_pds = ARRAY_SIZE(sdx75_rpmhpds), }; /* SM6350 RPMH powerdomains */ static struct rpmhpd *sm6350_rpmhpds[] = { [SM6350_CX] = &cx_w_mx_parent, [SM6350_GFX] = &gfx, [SM6350_LCX] = &lcx, [SM6350_LMX] = &lmx, [SM6350_MSS] = &mss, [SM6350_MX] = &mx, }; static const struct rpmhpd_desc sm6350_desc = { .rpmhpds = sm6350_rpmhpds, .num_pds = ARRAY_SIZE(sm6350_rpmhpds), }; /* SM8150 RPMH powerdomains */ static struct rpmhpd *sm8150_rpmhpds[] = { [SM8150_CX] = &cx_w_mx_parent, [SM8150_CX_AO] = &cx_ao_w_mx_parent, [SM8150_EBI] = &ebi, [SM8150_GFX] = &gfx, [SM8150_LCX] = &lcx, [SM8150_LMX] = &lmx, [SM8150_MMCX] = &mmcx, [SM8150_MMCX_AO] = &mmcx_ao, [SM8150_MSS] = &mss, [SM8150_MX] = &mx, [SM8150_MX_AO] = &mx_ao, }; static const struct rpmhpd_desc sm8150_desc = { .rpmhpds = sm8150_rpmhpds, .num_pds = ARRAY_SIZE(sm8150_rpmhpds), }; static struct rpmhpd *sa8155p_rpmhpds[] = { [SA8155P_CX] = &cx_w_mx_parent, [SA8155P_CX_AO] = &cx_ao_w_mx_parent, [SA8155P_EBI] = &ebi, [SA8155P_GFX] = &gfx, [SA8155P_MSS] = &mss, [SA8155P_MX] = &mx, [SA8155P_MX_AO] = &mx_ao, }; static const struct rpmhpd_desc sa8155p_desc = { .rpmhpds = sa8155p_rpmhpds, .num_pds = ARRAY_SIZE(sa8155p_rpmhpds), }; /* SM8250 RPMH powerdomains */ static struct rpmhpd *sm8250_rpmhpds[] = { [RPMHPD_CX] = &cx_w_mx_parent, [RPMHPD_CX_AO] = &cx_ao_w_mx_parent, [RPMHPD_EBI] = &ebi, [RPMHPD_GFX] = &gfx, [RPMHPD_LCX] = &lcx, [RPMHPD_LMX] = &lmx, [RPMHPD_MMCX] = &mmcx, [RPMHPD_MMCX_AO] = &mmcx_ao, [RPMHPD_MX] = &mx, [RPMHPD_MX_AO] = &mx_ao, }; static const struct rpmhpd_desc sm8250_desc = { .rpmhpds = sm8250_rpmhpds, .num_pds = ARRAY_SIZE(sm8250_rpmhpds), }; /* SM8350 Power domains */ static struct rpmhpd *sm8350_rpmhpds[] = { [RPMHPD_CX] = &cx_w_mx_parent, [RPMHPD_CX_AO] = &cx_ao_w_mx_parent, [RPMHPD_EBI] = &ebi, [RPMHPD_GFX] = &gfx, [RPMHPD_LCX] = &lcx, [RPMHPD_LMX] = &lmx, [RPMHPD_MMCX] = &mmcx, [RPMHPD_MMCX_AO] = &mmcx_ao, [RPMHPD_MSS] = &mss, [RPMHPD_MX] = &mx, [RPMHPD_MX_AO] = &mx_ao, [RPMHPD_MXC] = &mxc, [RPMHPD_MXC_AO] = &mxc_ao, }; static const struct rpmhpd_desc sm8350_desc = { .rpmhpds = sm8350_rpmhpds, .num_pds = ARRAY_SIZE(sm8350_rpmhpds), }; /* SM8450 RPMH powerdomains */ static struct rpmhpd *sm8450_rpmhpds[] = { [RPMHPD_CX] = &cx, [RPMHPD_CX_AO] = &cx_ao, [RPMHPD_EBI] = &ebi, [RPMHPD_GFX] = &gfx, [RPMHPD_LCX] = &lcx, [RPMHPD_LMX] = &lmx, [RPMHPD_MMCX] = &mmcx_w_cx_parent, [RPMHPD_MMCX_AO] = &mmcx_ao_w_cx_parent, [RPMHPD_MSS] = &mss, [RPMHPD_MX] = &mx, [RPMHPD_MX_AO] = &mx_ao, [RPMHPD_MXC] = &mxc, [RPMHPD_MXC_AO] = &mxc_ao, }; static const struct rpmhpd_desc sm8450_desc = { .rpmhpds = sm8450_rpmhpds, .num_pds = ARRAY_SIZE(sm8450_rpmhpds), }; /* SM8550 RPMH powerdomains */ static struct rpmhpd *sm8550_rpmhpds[] = { [RPMHPD_CX] = &cx, [RPMHPD_CX_AO] = &cx_ao, [RPMHPD_EBI] = &ebi, [RPMHPD_GFX] = &gfx, [RPMHPD_LCX] = &lcx, [RPMHPD_LMX] = &lmx, [RPMHPD_MMCX] = &mmcx_w_cx_parent, [RPMHPD_MMCX_AO] = &mmcx_ao_w_cx_parent, [RPMHPD_MSS] = &mss, [RPMHPD_MX] = &mx, [RPMHPD_MX_AO] = &mx_ao, [RPMHPD_MXC] = &mxc, [RPMHPD_MXC_AO] = &mxc_ao, [RPMHPD_NSP] = &nsp, }; static const struct rpmhpd_desc sm8550_desc = { .rpmhpds = sm8550_rpmhpds, .num_pds = ARRAY_SIZE(sm8550_rpmhpds), }; /* QDU1000/QRU1000 RPMH powerdomains */ static struct rpmhpd *qdu1000_rpmhpds[] = { [QDU1000_CX] = &cx, [QDU1000_EBI] = &ebi, [QDU1000_MSS] = &mss, [QDU1000_MX] = &mx, }; static const struct rpmhpd_desc qdu1000_desc = { .rpmhpds = qdu1000_rpmhpds, .num_pds = ARRAY_SIZE(qdu1000_rpmhpds), }; /* SC7180 RPMH powerdomains */ static struct rpmhpd *sc7180_rpmhpds[] = { [SC7180_CX] = &cx_w_mx_parent, [SC7180_CX_AO] = &cx_ao_w_mx_parent, [SC7180_GFX] = &gfx, [SC7180_LCX] = &lcx, [SC7180_LMX] = &lmx, [SC7180_MSS] = &mss, [SC7180_MX] = &mx, [SC7180_MX_AO] = &mx_ao, }; static const struct rpmhpd_desc sc7180_desc = { .rpmhpds = sc7180_rpmhpds, .num_pds = ARRAY_SIZE(sc7180_rpmhpds), }; /* SC7280 RPMH powerdomains */ static struct rpmhpd *sc7280_rpmhpds[] = { [SC7280_CX] = &cx, [SC7280_CX_AO] = &cx_ao, [SC7280_EBI] = &ebi, [SC7280_GFX] = &gfx, [SC7280_LCX] = &lcx, [SC7280_LMX] = &lmx, [SC7280_MSS] = &mss, [SC7280_MX] = &mx, [SC7280_MX_AO] = &mx_ao, }; static const struct rpmhpd_desc sc7280_desc = { .rpmhpds = sc7280_rpmhpds, .num_pds = ARRAY_SIZE(sc7280_rpmhpds), }; /* SC8180x RPMH powerdomains */ static struct rpmhpd *sc8180x_rpmhpds[] = { [SC8180X_CX] = &cx_w_mx_parent, [SC8180X_CX_AO] = &cx_ao_w_mx_parent, [SC8180X_EBI] = &ebi, [SC8180X_GFX] = &gfx, [SC8180X_LCX] = &lcx, [SC8180X_LMX] = &lmx, [SC8180X_MMCX] = &mmcx, [SC8180X_MMCX_AO] = &mmcx_ao, [SC8180X_MSS] = &mss, [SC8180X_MX] = &mx, [SC8180X_MX_AO] = &mx_ao, }; static const struct rpmhpd_desc sc8180x_desc = { .rpmhpds = sc8180x_rpmhpds, .num_pds = ARRAY_SIZE(sc8180x_rpmhpds), }; /* SC8280xp RPMH powerdomains */ static struct rpmhpd *sc8280xp_rpmhpds[] = { [SC8280XP_CX] = &cx, [SC8280XP_CX_AO] = &cx_ao, [SC8280XP_EBI] = &ebi, [SC8280XP_GFX] = &gfx, [SC8280XP_LCX] = &lcx, [SC8280XP_LMX] = &lmx, [SC8280XP_MMCX] = &mmcx, [SC8280XP_MMCX_AO] = &mmcx_ao, [SC8280XP_MX] = &mx, [SC8280XP_MX_AO] = &mx_ao, [SC8280XP_NSP] = &nsp, [SC8280XP_QPHY] = &qphy, }; static const struct rpmhpd_desc sc8280xp_desc = { .rpmhpds = sc8280xp_rpmhpds, .num_pds = ARRAY_SIZE(sc8280xp_rpmhpds), }; static const struct of_device_id rpmhpd_match_table[] = { { .compatible = "qcom,qdu1000-rpmhpd", .data = &qdu1000_desc }, { .compatible = "qcom,sa8155p-rpmhpd", .data = &sa8155p_desc }, { .compatible = "qcom,sa8540p-rpmhpd", .data = &sa8540p_desc }, { .compatible = "qcom,sa8775p-rpmhpd", .data = &sa8775p_desc }, { .compatible = "qcom,sc7180-rpmhpd", .data = &sc7180_desc }, { .compatible = "qcom,sc7280-rpmhpd", .data = &sc7280_desc }, { .compatible = "qcom,sc8180x-rpmhpd", .data = &sc8180x_desc }, { .compatible = "qcom,sc8280xp-rpmhpd", .data = &sc8280xp_desc }, { .compatible = "qcom,sdm670-rpmhpd", .data = &sdm670_desc }, { .compatible = "qcom,sdm845-rpmhpd", .data = &sdm845_desc }, { .compatible = "qcom,sdx55-rpmhpd", .data = &sdx55_desc}, { .compatible = "qcom,sdx65-rpmhpd", .data = &sdx65_desc}, { .compatible = "qcom,sdx75-rpmhpd", .data = &sdx75_desc}, { .compatible = "qcom,sm6350-rpmhpd", .data = &sm6350_desc }, { .compatible = "qcom,sm8150-rpmhpd", .data = &sm8150_desc }, { .compatible = "qcom,sm8250-rpmhpd", .data = &sm8250_desc }, { .compatible = "qcom,sm8350-rpmhpd", .data = &sm8350_desc }, { .compatible = "qcom,sm8450-rpmhpd", .data = &sm8450_desc }, { .compatible = "qcom,sm8550-rpmhpd", .data = &sm8550_desc }, { } }; MODULE_DEVICE_TABLE(of, rpmhpd_match_table); static int rpmhpd_send_corner(struct rpmhpd *pd, int state, unsigned int corner, bool sync) { struct tcs_cmd cmd = { .addr = pd->addr, .data = corner, }; /* * Wait for an ack only when we are increasing the * perf state of the power domain */ if (sync) return rpmh_write(pd->dev, state, &cmd, 1); else return rpmh_write_async(pd->dev, state, &cmd, 1); } static void to_active_sleep(struct rpmhpd *pd, unsigned int corner, unsigned int *active, unsigned int *sleep) { *active = corner; if (pd->active_only) *sleep = 0; else *sleep = *active; } /* * This function is used to aggregate the votes across the active only * resources and its peers. The aggregated votes are sent to RPMh as * ACTIVE_ONLY votes (which take effect immediately), as WAKE_ONLY votes * (applied by RPMh on system wakeup) and as SLEEP votes (applied by RPMh * on system sleep). * We send ACTIVE_ONLY votes for resources without any peers. For others, * which have an active only peer, all 3 votes are sent. */ static int rpmhpd_aggregate_corner(struct rpmhpd *pd, unsigned int corner) { int ret; struct rpmhpd *peer = pd->peer; unsigned int active_corner, sleep_corner; unsigned int this_active_corner = 0, this_sleep_corner = 0; unsigned int peer_active_corner = 0, peer_sleep_corner = 0; if (pd->state_synced) { to_active_sleep(pd, corner, &this_active_corner, &this_sleep_corner); } else { /* Clamp to highest corner if sync_state hasn't happened */ this_active_corner = pd->level_count - 1; this_sleep_corner = pd->level_count - 1; } if (peer && peer->enabled) to_active_sleep(peer, peer->corner, &peer_active_corner, &peer_sleep_corner); active_corner = max(this_active_corner, peer_active_corner); ret = rpmhpd_send_corner(pd, RPMH_ACTIVE_ONLY_STATE, active_corner, active_corner > pd->active_corner); if (ret) return ret; pd->active_corner = active_corner; if (peer) { peer->active_corner = active_corner; ret = rpmhpd_send_corner(pd, RPMH_WAKE_ONLY_STATE, active_corner, false); if (ret) return ret; sleep_corner = max(this_sleep_corner, peer_sleep_corner); return rpmhpd_send_corner(pd, RPMH_SLEEP_STATE, sleep_corner, false); } return ret; } static int rpmhpd_power_on(struct generic_pm_domain *domain) { struct rpmhpd *pd = domain_to_rpmhpd(domain); unsigned int corner; int ret; mutex_lock(&rpmhpd_lock); corner = max(pd->corner, pd->enable_corner); ret = rpmhpd_aggregate_corner(pd, corner); if (!ret) pd->enabled = true; mutex_unlock(&rpmhpd_lock); return ret; } static int rpmhpd_power_off(struct generic_pm_domain *domain) { struct rpmhpd *pd = domain_to_rpmhpd(domain); int ret; mutex_lock(&rpmhpd_lock); ret = rpmhpd_aggregate_corner(pd, 0); if (!ret) pd->enabled = false; mutex_unlock(&rpmhpd_lock); return ret; } static int rpmhpd_set_performance_state(struct generic_pm_domain *domain, unsigned int level) { struct rpmhpd *pd = domain_to_rpmhpd(domain); int ret = 0, i; mutex_lock(&rpmhpd_lock); for (i = 0; i < pd->level_count; i++) if (level <= pd->level[i]) break; /* * If the level requested is more than that supported by the * max corner, just set it to max anyway. */ if (i == pd->level_count) i--; if (pd->enabled) { /* Ensure that the domain isn't turn off */ if (i < pd->enable_corner) i = pd->enable_corner; ret = rpmhpd_aggregate_corner(pd, i); if (ret) goto out; } pd->corner = i; out: mutex_unlock(&rpmhpd_lock); return ret; } static unsigned int rpmhpd_get_performance_state(struct generic_pm_domain *genpd, struct dev_pm_opp *opp) { return dev_pm_opp_get_level(opp); } static int rpmhpd_update_level_mapping(struct rpmhpd *rpmhpd) { int i; const u16 *buf; buf = cmd_db_read_aux_data(rpmhpd->res_name, &rpmhpd->level_count); if (IS_ERR(buf)) return PTR_ERR(buf); /* 2 bytes used for each command DB aux data entry */ rpmhpd->level_count >>= 1; if (rpmhpd->level_count > RPMH_ARC_MAX_LEVELS) return -EINVAL; for (i = 0; i < rpmhpd->level_count; i++) { rpmhpd->level[i] = buf[i]; /* Remember the first corner with non-zero level */ if (!rpmhpd->level[rpmhpd->enable_corner] && rpmhpd->level[i]) rpmhpd->enable_corner = i; /* * The AUX data may be zero padded. These 0 valued entries at * the end of the map must be ignored. */ if (i > 0 && rpmhpd->level[i] == 0) { rpmhpd->level_count = i; break; } pr_debug("%s: ARC hlvl=%2d --> vlvl=%4u\n", rpmhpd->res_name, i, rpmhpd->level[i]); } return 0; } static int rpmhpd_probe(struct platform_device *pdev) { int i, ret; size_t num_pds; struct device *dev = &pdev->dev; struct genpd_onecell_data *data; struct rpmhpd **rpmhpds; const struct rpmhpd_desc *desc; desc = of_device_get_match_data(dev); if (!desc) return -EINVAL; rpmhpds = desc->rpmhpds; num_pds = desc->num_pds; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->domains = devm_kcalloc(dev, num_pds, sizeof(*data->domains), GFP_KERNEL); if (!data->domains) return -ENOMEM; data->num_domains = num_pds; for (i = 0; i < num_pds; i++) { if (!rpmhpds[i]) continue; rpmhpds[i]->dev = dev; rpmhpds[i]->addr = cmd_db_read_addr(rpmhpds[i]->res_name); if (!rpmhpds[i]->addr) { dev_err(dev, "Could not find RPMh address for resource %s\n", rpmhpds[i]->res_name); return -ENODEV; } ret = cmd_db_read_slave_id(rpmhpds[i]->res_name); if (ret != CMD_DB_HW_ARC) { dev_err(dev, "RPMh slave ID mismatch\n"); return -EINVAL; } ret = rpmhpd_update_level_mapping(rpmhpds[i]); if (ret) return ret; rpmhpds[i]->pd.power_off = rpmhpd_power_off; rpmhpds[i]->pd.power_on = rpmhpd_power_on; rpmhpds[i]->pd.set_performance_state = rpmhpd_set_performance_state; rpmhpds[i]->pd.opp_to_performance_state = rpmhpd_get_performance_state; pm_genpd_init(&rpmhpds[i]->pd, NULL, true); data->domains[i] = &rpmhpds[i]->pd; } /* Add subdomains */ for (i = 0; i < num_pds; i++) { if (!rpmhpds[i]) continue; if (rpmhpds[i]->parent) pm_genpd_add_subdomain(rpmhpds[i]->parent, &rpmhpds[i]->pd); } return of_genpd_add_provider_onecell(pdev->dev.of_node, data); } static void rpmhpd_sync_state(struct device *dev) { const struct rpmhpd_desc *desc = of_device_get_match_data(dev); struct rpmhpd **rpmhpds = desc->rpmhpds; unsigned int corner; struct rpmhpd *pd; unsigned int i; int ret; mutex_lock(&rpmhpd_lock); for (i = 0; i < desc->num_pds; i++) { pd = rpmhpds[i]; if (!pd) continue; pd->state_synced = true; if (pd->enabled) corner = max(pd->corner, pd->enable_corner); else corner = 0; ret = rpmhpd_aggregate_corner(pd, corner); if (ret) dev_err(dev, "failed to sync %s\n", pd->res_name); } mutex_unlock(&rpmhpd_lock); } static struct platform_driver rpmhpd_driver = { .driver = { .name = "qcom-rpmhpd", .of_match_table = rpmhpd_match_table, .suppress_bind_attrs = true, .sync_state = rpmhpd_sync_state, }, .probe = rpmhpd_probe, }; static int __init rpmhpd_init(void) { return platform_driver_register(&rpmhpd_driver); } core_initcall(rpmhpd_init); MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Power Domain Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pmdomain/qcom/rpmhpd.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved. * Copyright (c) 2019, Linaro Limited */ #include <linux/module.h> #include <linux/err.h> #include <linux/debugfs.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/init.h> #include <linux/io.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_opp.h> #include <linux/interrupt.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/regulator/consumer.h> #include <linux/clk.h> #include <linux/nvmem-consumer.h> /* Register Offsets for RB-CPR and Bit Definitions */ /* RBCPR Version Register */ #define REG_RBCPR_VERSION 0 #define RBCPR_VER_2 0x02 #define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0) /* RBCPR Gate Count and Target Registers */ #define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n)) #define RBCPR_GCNT_TARGET_TARGET_SHIFT 0 #define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0) #define RBCPR_GCNT_TARGET_GCNT_SHIFT 12 #define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0) /* RBCPR Timer Control */ #define REG_RBCPR_TIMER_INTERVAL 0x44 #define REG_RBIF_TIMER_ADJUST 0x4c #define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0) #define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0 #define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0) #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4 #define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0) #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8 /* RBCPR Config Register */ #define REG_RBIF_LIMIT 0x48 #define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0) #define RBIF_LIMIT_CEILING_SHIFT 6 #define RBIF_LIMIT_FLOOR_BITS 6 #define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0) #define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK #define RBIF_LIMIT_FLOOR_DEFAULT 0 #define REG_RBIF_SW_VLEVEL 0x94 #define RBIF_SW_VLEVEL_DEFAULT 0x20 #define REG_RBCPR_STEP_QUOT 0x80 #define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0) #define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0) #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8 /* RBCPR Control Register */ #define REG_RBCPR_CTL 0x90 #define RBCPR_CTL_LOOP_EN BIT(0) #define RBCPR_CTL_TIMER_EN BIT(3) #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5) #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6) #define RBCPR_CTL_COUNT_MODE BIT(10) #define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0) #define RBCPR_CTL_UP_THRESHOLD_SHIFT 24 #define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0) #define RBCPR_CTL_DN_THRESHOLD_SHIFT 28 /* RBCPR Ack/Nack Response */ #define REG_RBIF_CONT_ACK_CMD 0x98 #define REG_RBIF_CONT_NACK_CMD 0x9c /* RBCPR Result status Register */ #define REG_RBCPR_RESULT_0 0xa0 #define RBCPR_RESULT0_BUSY_SHIFT 19 #define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT) #define RBCPR_RESULT0_ERROR_LT0_SHIFT 18 #define RBCPR_RESULT0_ERROR_SHIFT 6 #define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0) #define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2 #define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0) #define RBCPR_RESULT0_STEP_UP_SHIFT 1 /* RBCPR Interrupt Control Register */ #define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n)) #define REG_RBIF_IRQ_CLEAR 0x110 #define REG_RBIF_IRQ_STATUS 0x114 #define CPR_INT_DONE BIT(0) #define CPR_INT_MIN BIT(1) #define CPR_INT_DOWN BIT(2) #define CPR_INT_MID BIT(3) #define CPR_INT_UP BIT(4) #define CPR_INT_MAX BIT(5) #define CPR_INT_CLAMP BIT(6) #define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \ CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP) #define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN) #define CPR_NUM_RING_OSC 8 /* CPR eFuse parameters */ #define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0) #define CPR_FUSE_MIN_QUOT_DIFF 50 #define FUSE_REVISION_UNKNOWN (-1) enum voltage_change_dir { NO_CHANGE, DOWN, UP, }; struct cpr_fuse { char *ring_osc; char *init_voltage; char *quotient; char *quotient_offset; }; struct fuse_corner_data { int ref_uV; int max_uV; int min_uV; int max_volt_scale; int max_quot_scale; /* fuse quot */ int quot_offset; int quot_scale; int quot_adjust; /* fuse quot_offset */ int quot_offset_scale; int quot_offset_adjust; }; struct cpr_fuses { int init_voltage_step; int init_voltage_width; struct fuse_corner_data *fuse_corner_data; }; struct corner_data { unsigned int fuse_corner; unsigned long freq; }; struct cpr_desc { unsigned int num_fuse_corners; int min_diff_quot; int *step_quot; unsigned int timer_delay_us; unsigned int timer_cons_up; unsigned int timer_cons_down; unsigned int up_threshold; unsigned int down_threshold; unsigned int idle_clocks; unsigned int gcnt_us; unsigned int vdd_apc_step_up_limit; unsigned int vdd_apc_step_down_limit; unsigned int clamp_timer_interval; struct cpr_fuses cpr_fuses; bool reduce_to_fuse_uV; bool reduce_to_corner_uV; }; struct acc_desc { unsigned int enable_reg; u32 enable_mask; struct reg_sequence *config; struct reg_sequence *settings; int num_regs_per_fuse; }; struct cpr_acc_desc { const struct cpr_desc *cpr_desc; const struct acc_desc *acc_desc; }; struct fuse_corner { int min_uV; int max_uV; int uV; int quot; int step_quot; const struct reg_sequence *accs; int num_accs; unsigned long max_freq; u8 ring_osc_idx; }; struct corner { int min_uV; int max_uV; int uV; int last_uV; int quot_adjust; u32 save_ctl; u32 save_irq; unsigned long freq; struct fuse_corner *fuse_corner; }; struct cpr_drv { unsigned int num_corners; unsigned int ref_clk_khz; struct generic_pm_domain pd; struct device *dev; struct device *attached_cpu_dev; struct mutex lock; void __iomem *base; struct corner *corner; struct regulator *vdd_apc; struct clk *cpu_clk; struct regmap *tcsr; bool loop_disabled; u32 gcnt; unsigned long flags; struct fuse_corner *fuse_corners; struct corner *corners; const struct cpr_desc *desc; const struct acc_desc *acc_desc; const struct cpr_fuse *cpr_fuses; struct dentry *debugfs; }; static bool cpr_is_allowed(struct cpr_drv *drv) { return !drv->loop_disabled; } static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value) { writel_relaxed(value, drv->base + offset); } static u32 cpr_read(struct cpr_drv *drv, u32 offset) { return readl_relaxed(drv->base + offset); } static void cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value) { u32 val; val = readl_relaxed(drv->base + offset); val &= ~mask; val |= value & mask; writel_relaxed(val, drv->base + offset); } static void cpr_irq_clr(struct cpr_drv *drv) { cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL); } static void cpr_irq_clr_nack(struct cpr_drv *drv) { cpr_irq_clr(drv); cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1); } static void cpr_irq_clr_ack(struct cpr_drv *drv) { cpr_irq_clr(drv); cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1); } static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits) { cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits); } static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value) { cpr_masked_write(drv, REG_RBCPR_CTL, mask, value); } static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner) { u32 val, mask; const struct cpr_desc *desc = drv->desc; /* Program Consecutive Up & Down */ val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT; val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT; mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK; cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val); cpr_masked_write(drv, REG_RBCPR_CTL, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN | RBCPR_CTL_SW_AUTO_CONT_ACK_EN, corner->save_ctl); cpr_irq_set(drv, corner->save_irq); if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV) val = RBCPR_CTL_LOOP_EN; else val = 0; cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val); } static void cpr_ctl_disable(struct cpr_drv *drv) { cpr_irq_set(drv, 0); cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN | RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0); cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0); cpr_irq_clr(drv); cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1); cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1); cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0); } static bool cpr_ctl_is_enabled(struct cpr_drv *drv) { u32 reg_val; reg_val = cpr_read(drv, REG_RBCPR_CTL); return reg_val & RBCPR_CTL_LOOP_EN; } static bool cpr_ctl_is_busy(struct cpr_drv *drv) { u32 reg_val; reg_val = cpr_read(drv, REG_RBCPR_RESULT_0); return reg_val & RBCPR_RESULT0_BUSY_MASK; } static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner) { corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL); corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0)); } static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner) { u32 gcnt, ctl, irq, ro_sel, step_quot; struct fuse_corner *fuse = corner->fuse_corner; const struct cpr_desc *desc = drv->desc; int i; ro_sel = fuse->ring_osc_idx; gcnt = drv->gcnt; gcnt |= fuse->quot - corner->quot_adjust; /* Program the step quotient and idle clocks */ step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT; step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK; cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot); /* Clear the target quotient value and gate count of all ROs */ for (i = 0; i < CPR_NUM_RING_OSC; i++) cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0); cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt); ctl = corner->save_ctl; cpr_write(drv, REG_RBCPR_CTL, ctl); irq = corner->save_irq; cpr_irq_set(drv, irq); dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt, ctl, irq); } static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f, struct fuse_corner *end) { if (f == end) return; if (f < end) { for (f += 1; f <= end; f++) regmap_multi_reg_write(tcsr, f->accs, f->num_accs); } else { for (f -= 1; f >= end; f--) regmap_multi_reg_write(tcsr, f->accs, f->num_accs); } } static int cpr_pre_voltage(struct cpr_drv *drv, struct fuse_corner *fuse_corner, enum voltage_change_dir dir) { struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner; if (drv->tcsr && dir == DOWN) cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner); return 0; } static int cpr_post_voltage(struct cpr_drv *drv, struct fuse_corner *fuse_corner, enum voltage_change_dir dir) { struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner; if (drv->tcsr && dir == UP) cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner); return 0; } static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner, int new_uV, enum voltage_change_dir dir) { int ret; struct fuse_corner *fuse_corner = corner->fuse_corner; ret = cpr_pre_voltage(drv, fuse_corner, dir); if (ret) return ret; ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV); if (ret) { dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n", new_uV); return ret; } ret = cpr_post_voltage(drv, fuse_corner, dir); if (ret) return ret; return 0; } static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv) { return drv->corner ? drv->corner - drv->corners + 1 : 0; } static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir) { u32 val, error_steps, reg_mask; int last_uV, new_uV, step_uV, ret; struct corner *corner; const struct cpr_desc *desc = drv->desc; if (dir != UP && dir != DOWN) return 0; step_uV = regulator_get_linear_step(drv->vdd_apc); if (!step_uV) return -EINVAL; corner = drv->corner; val = cpr_read(drv, REG_RBCPR_RESULT_0); error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT; error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK; last_uV = corner->last_uV; if (dir == UP) { if (desc->clamp_timer_interval && error_steps < desc->up_threshold) { /* * Handle the case where another measurement started * after the interrupt was triggered due to a core * exiting from power collapse. */ error_steps = max(desc->up_threshold, desc->vdd_apc_step_up_limit); } if (last_uV >= corner->max_uV) { cpr_irq_clr_nack(drv); /* Maximize the UP threshold */ reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK; reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; val = reg_mask; cpr_ctl_modify(drv, reg_mask, val); /* Disable UP interrupt */ cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP); return 0; } if (error_steps > desc->vdd_apc_step_up_limit) error_steps = desc->vdd_apc_step_up_limit; /* Calculate new voltage */ new_uV = last_uV + error_steps * step_uV; new_uV = min(new_uV, corner->max_uV); dev_dbg(drv->dev, "UP: -> new_uV: %d last_uV: %d perf state: %u\n", new_uV, last_uV, cpr_get_cur_perf_state(drv)); } else { if (desc->clamp_timer_interval && error_steps < desc->down_threshold) { /* * Handle the case where another measurement started * after the interrupt was triggered due to a core * exiting from power collapse. */ error_steps = max(desc->down_threshold, desc->vdd_apc_step_down_limit); } if (last_uV <= corner->min_uV) { cpr_irq_clr_nack(drv); /* Enable auto nack down */ reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; cpr_ctl_modify(drv, reg_mask, val); /* Disable DOWN interrupt */ cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN); return 0; } if (error_steps > desc->vdd_apc_step_down_limit) error_steps = desc->vdd_apc_step_down_limit; /* Calculate new voltage */ new_uV = last_uV - error_steps * step_uV; new_uV = max(new_uV, corner->min_uV); dev_dbg(drv->dev, "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n", new_uV, last_uV, cpr_get_cur_perf_state(drv)); } ret = cpr_scale_voltage(drv, corner, new_uV, dir); if (ret) { cpr_irq_clr_nack(drv); return ret; } drv->corner->last_uV = new_uV; if (dir == UP) { /* Disable auto nack down */ reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; val = 0; } else { /* Restore default threshold for UP */ reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK; reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; val = desc->up_threshold; val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; } cpr_ctl_modify(drv, reg_mask, val); /* Re-enable default interrupts */ cpr_irq_set(drv, CPR_INT_DEFAULT); /* Ack */ cpr_irq_clr_ack(drv); return 0; } static irqreturn_t cpr_irq_handler(int irq, void *dev) { struct cpr_drv *drv = dev; const struct cpr_desc *desc = drv->desc; irqreturn_t ret = IRQ_HANDLED; u32 val; mutex_lock(&drv->lock); val = cpr_read(drv, REG_RBIF_IRQ_STATUS); if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS) val = cpr_read(drv, REG_RBIF_IRQ_STATUS); dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val); if (!cpr_ctl_is_enabled(drv)) { dev_dbg(drv->dev, "CPR is disabled\n"); ret = IRQ_NONE; } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) { dev_dbg(drv->dev, "CPR measurement is not ready\n"); } else if (!cpr_is_allowed(drv)) { val = cpr_read(drv, REG_RBCPR_CTL); dev_err_ratelimited(drv->dev, "Interrupt broken? RBCPR_CTL = %#02x\n", val); ret = IRQ_NONE; } else { /* * Following sequence of handling is as per each IRQ's * priority */ if (val & CPR_INT_UP) { cpr_scale(drv, UP); } else if (val & CPR_INT_DOWN) { cpr_scale(drv, DOWN); } else if (val & CPR_INT_MIN) { cpr_irq_clr_nack(drv); } else if (val & CPR_INT_MAX) { cpr_irq_clr_nack(drv); } else if (val & CPR_INT_MID) { /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */ dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n"); } else { dev_dbg(drv->dev, "IRQ occurred for unknown flag (%#08x)\n", val); } /* Save register values for the corner */ cpr_corner_save(drv, drv->corner); } mutex_unlock(&drv->lock); return ret; } static int cpr_enable(struct cpr_drv *drv) { int ret; ret = regulator_enable(drv->vdd_apc); if (ret) return ret; mutex_lock(&drv->lock); if (cpr_is_allowed(drv) && drv->corner) { cpr_irq_clr(drv); cpr_corner_restore(drv, drv->corner); cpr_ctl_enable(drv, drv->corner); } mutex_unlock(&drv->lock); return 0; } static int cpr_disable(struct cpr_drv *drv) { mutex_lock(&drv->lock); if (cpr_is_allowed(drv)) { cpr_ctl_disable(drv); cpr_irq_clr(drv); } mutex_unlock(&drv->lock); return regulator_disable(drv->vdd_apc); } static int cpr_config(struct cpr_drv *drv) { int i; u32 val, gcnt; struct corner *corner; const struct cpr_desc *desc = drv->desc; /* Disable interrupt and CPR */ cpr_write(drv, REG_RBIF_IRQ_EN(0), 0); cpr_write(drv, REG_RBCPR_CTL, 0); /* Program the default HW ceiling, floor and vlevel */ val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK) << RBIF_LIMIT_CEILING_SHIFT; val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK; cpr_write(drv, REG_RBIF_LIMIT, val); cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT); /* * Clear the target quotient value and gate count of all * ring oscillators */ for (i = 0; i < CPR_NUM_RING_OSC; i++) cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0); /* Init and save gcnt */ gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000; gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK; gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT; drv->gcnt = gcnt; /* Program the delay count for the timer */ val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000; cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val); dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val, desc->timer_delay_us); /* Program Consecutive Up & Down */ val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT; val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT; val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT; cpr_write(drv, REG_RBIF_TIMER_ADJUST, val); /* Program the control register */ val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT; val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT; val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE; val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN; cpr_write(drv, REG_RBCPR_CTL, val); for (i = 0; i < drv->num_corners; i++) { corner = &drv->corners[i]; corner->save_ctl = val; corner->save_irq = CPR_INT_DEFAULT; } cpr_irq_set(drv, CPR_INT_DEFAULT); val = cpr_read(drv, REG_RBCPR_VERSION); if (val <= RBCPR_VER_2) drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS; return 0; } static int cpr_set_performance_state(struct generic_pm_domain *domain, unsigned int state) { struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); struct corner *corner, *end; enum voltage_change_dir dir; int ret = 0, new_uV; mutex_lock(&drv->lock); dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n", __func__, state, cpr_get_cur_perf_state(drv)); /* * Determine new corner we're going to. * Remove one since lowest performance state is 1. */ corner = drv->corners + state - 1; end = &drv->corners[drv->num_corners - 1]; if (corner > end || corner < drv->corners) { ret = -EINVAL; goto unlock; } /* Determine direction */ if (drv->corner > corner) dir = DOWN; else if (drv->corner < corner) dir = UP; else dir = NO_CHANGE; if (cpr_is_allowed(drv)) new_uV = corner->last_uV; else new_uV = corner->uV; if (cpr_is_allowed(drv)) cpr_ctl_disable(drv); ret = cpr_scale_voltage(drv, corner, new_uV, dir); if (ret) goto unlock; if (cpr_is_allowed(drv)) { cpr_irq_clr(drv); if (drv->corner != corner) cpr_corner_restore(drv, corner); cpr_ctl_enable(drv, corner); } drv->corner = corner; unlock: mutex_unlock(&drv->lock); return ret; } static int cpr_populate_ring_osc_idx(struct cpr_drv *drv) { struct fuse_corner *fuse = drv->fuse_corners; struct fuse_corner *end = fuse + drv->desc->num_fuse_corners; const struct cpr_fuse *fuses = drv->cpr_fuses; u32 data; int ret; for (; fuse < end; fuse++, fuses++) { ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->ring_osc, &data); if (ret) return ret; fuse->ring_osc_idx = data; } return 0; } static int cpr_read_fuse_uV(const struct cpr_desc *desc, const struct fuse_corner_data *fdata, const char *init_v_efuse, int step_volt, struct cpr_drv *drv) { int step_size_uV, steps, uV; u32 bits = 0; int ret; ret = nvmem_cell_read_variable_le_u32(drv->dev, init_v_efuse, &bits); if (ret) return ret; steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1); /* Not two's complement.. instead highest bit is sign bit */ if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1)) steps = -steps; step_size_uV = desc->cpr_fuses.init_voltage_step; uV = fdata->ref_uV + steps * step_size_uV; return DIV_ROUND_UP(uV, step_volt) * step_volt; } static int cpr_fuse_corner_init(struct cpr_drv *drv) { const struct cpr_desc *desc = drv->desc; const struct cpr_fuse *fuses = drv->cpr_fuses; const struct acc_desc *acc_desc = drv->acc_desc; int i; unsigned int step_volt; struct fuse_corner_data *fdata; struct fuse_corner *fuse, *end; int uV; const struct reg_sequence *accs; int ret; accs = acc_desc->settings; step_volt = regulator_get_linear_step(drv->vdd_apc); if (!step_volt) return -EINVAL; /* Populate fuse_corner members */ fuse = drv->fuse_corners; end = &fuse[desc->num_fuse_corners - 1]; fdata = desc->cpr_fuses.fuse_corner_data; for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) { /* * Update SoC voltages: platforms might choose a different * regulators than the one used to characterize the algorithms * (ie, init_voltage_step). */ fdata->min_uV = roundup(fdata->min_uV, step_volt); fdata->max_uV = roundup(fdata->max_uV, step_volt); /* Populate uV */ uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage, step_volt, drv); if (uV < 0) return uV; fuse->min_uV = fdata->min_uV; fuse->max_uV = fdata->max_uV; fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV); if (fuse == end) { /* * Allow the highest fuse corner's PVS voltage to * define the ceiling voltage for that corner in order * to support SoC's in which variable ceiling values * are required. */ end->max_uV = max(end->max_uV, end->uV); } /* Populate target quotient by scaling */ ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->quotient, &fuse->quot); if (ret) return ret; fuse->quot *= fdata->quot_scale; fuse->quot += fdata->quot_offset; fuse->quot += fdata->quot_adjust; fuse->step_quot = desc->step_quot[fuse->ring_osc_idx]; /* Populate acc settings */ fuse->accs = accs; fuse->num_accs = acc_desc->num_regs_per_fuse; accs += acc_desc->num_regs_per_fuse; } /* * Restrict all fuse corner PVS voltages based upon per corner * ceiling and floor voltages. */ for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) { if (fuse->uV > fuse->max_uV) fuse->uV = fuse->max_uV; else if (fuse->uV < fuse->min_uV) fuse->uV = fuse->min_uV; ret = regulator_is_supported_voltage(drv->vdd_apc, fuse->min_uV, fuse->min_uV); if (!ret) { dev_err(drv->dev, "min uV: %d (fuse corner: %d) not supported by regulator\n", fuse->min_uV, i); return -EINVAL; } ret = regulator_is_supported_voltage(drv->vdd_apc, fuse->max_uV, fuse->max_uV); if (!ret) { dev_err(drv->dev, "max uV: %d (fuse corner: %d) not supported by regulator\n", fuse->max_uV, i); return -EINVAL; } dev_dbg(drv->dev, "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n", i, fuse->min_uV, fuse->uV, fuse->max_uV, fuse->ring_osc_idx, fuse->quot, fuse->step_quot); } return 0; } static int cpr_calculate_scaling(const char *quot_offset, struct cpr_drv *drv, const struct fuse_corner_data *fdata, const struct corner *corner) { u32 quot_diff = 0; unsigned long freq_diff; int scaling; const struct fuse_corner *fuse, *prev_fuse; int ret; fuse = corner->fuse_corner; prev_fuse = fuse - 1; if (quot_offset) { ret = nvmem_cell_read_variable_le_u32(drv->dev, quot_offset, &quot_diff); if (ret) return ret; quot_diff *= fdata->quot_offset_scale; quot_diff += fdata->quot_offset_adjust; } else { quot_diff = fuse->quot - prev_fuse->quot; } freq_diff = fuse->max_freq - prev_fuse->max_freq; freq_diff /= 1000000; /* Convert to MHz */ scaling = 1000 * quot_diff / freq_diff; return min(scaling, fdata->max_quot_scale); } static int cpr_interpolate(const struct corner *corner, int step_volt, const struct fuse_corner_data *fdata) { unsigned long f_high, f_low, f_diff; int uV_high, uV_low, uV; u64 temp, temp_limit; const struct fuse_corner *fuse, *prev_fuse; fuse = corner->fuse_corner; prev_fuse = fuse - 1; f_high = fuse->max_freq; f_low = prev_fuse->max_freq; uV_high = fuse->uV; uV_low = prev_fuse->uV; f_diff = fuse->max_freq - corner->freq; /* * Don't interpolate in the wrong direction. This could happen * if the adjusted fuse voltage overlaps with the previous fuse's * adjusted voltage. */ if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq) return corner->uV; temp = f_diff * (uV_high - uV_low); temp = div64_ul(temp, f_high - f_low); /* * max_volt_scale has units of uV/MHz while freq values * have units of Hz. Divide by 1000000 to convert to. */ temp_limit = f_diff * fdata->max_volt_scale; do_div(temp_limit, 1000000); uV = uV_high - min(temp, temp_limit); return roundup(uV, step_volt); } static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp) { struct device_node *np; unsigned int fuse_corner = 0; np = dev_pm_opp_get_of_node(opp); if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner)) pr_err("%s: missing 'qcom,opp-fuse-level' property\n", __func__); of_node_put(np); return fuse_corner; } static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref, struct device *cpu_dev) { u64 rate = 0; struct device_node *ref_np; struct device_node *desc_np; struct device_node *child_np = NULL; struct device_node *child_req_np = NULL; desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); if (!desc_np) return 0; ref_np = dev_pm_opp_get_of_node(ref); if (!ref_np) goto out_ref; do { of_node_put(child_req_np); child_np = of_get_next_available_child(desc_np, child_np); child_req_np = of_parse_phandle(child_np, "required-opps", 0); } while (child_np && child_req_np != ref_np); if (child_np && child_req_np == ref_np) of_property_read_u64(child_np, "opp-hz", &rate); of_node_put(child_req_np); of_node_put(child_np); of_node_put(ref_np); out_ref: of_node_put(desc_np); return (unsigned long) rate; } static int cpr_corner_init(struct cpr_drv *drv) { const struct cpr_desc *desc = drv->desc; const struct cpr_fuse *fuses = drv->cpr_fuses; int i, level, scaling = 0; unsigned int fnum, fc; const char *quot_offset; struct fuse_corner *fuse, *prev_fuse; struct corner *corner, *end; struct corner_data *cdata; const struct fuse_corner_data *fdata; bool apply_scaling; unsigned long freq_diff, freq_diff_mhz; unsigned long freq; int step_volt = regulator_get_linear_step(drv->vdd_apc); struct dev_pm_opp *opp; if (!step_volt) return -EINVAL; corner = drv->corners; end = &corner[drv->num_corners - 1]; cdata = devm_kcalloc(drv->dev, drv->num_corners, sizeof(struct corner_data), GFP_KERNEL); if (!cdata) return -ENOMEM; /* * Store maximum frequency for each fuse corner based on the frequency * plan */ for (level = 1; level <= drv->num_corners; level++) { opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level); if (IS_ERR(opp)) return -EINVAL; fc = cpr_get_fuse_corner(opp); if (!fc) { dev_pm_opp_put(opp); return -EINVAL; } fnum = fc - 1; freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev); if (!freq) { dev_pm_opp_put(opp); return -EINVAL; } cdata[level - 1].fuse_corner = fnum; cdata[level - 1].freq = freq; fuse = &drv->fuse_corners[fnum]; dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n", freq, dev_pm_opp_get_level(opp) - 1, fnum); if (freq > fuse->max_freq) fuse->max_freq = freq; dev_pm_opp_put(opp); } /* * Get the quotient adjustment scaling factor, according to: * * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1)) * / (freq(corner_N) - freq(corner_N-1)), max_factor) * * QUOT(corner_N): quotient read from fuse for fuse corner N * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1) * freq(corner_N): max frequency in MHz supported by fuse corner N * freq(corner_N-1): max frequency in MHz supported by fuse corner * (N - 1) * * Then walk through the corners mapped to each fuse corner * and calculate the quotient adjustment for each one using the * following formula: * * quot_adjust = (freq_max - freq_corner) * scaling / 1000 * * freq_max: max frequency in MHz supported by the fuse corner * freq_corner: frequency in MHz corresponding to the corner * scaling: calculated from above equation * * * + + * | v | * q | f c o | f c * u | c l | c * o | f t | f * t | c a | c * | c f g | c f * | e | * +--------------- +---------------- * 0 1 2 3 4 5 6 0 1 2 3 4 5 6 * corner corner * * c = corner * f = fuse corner * */ for (apply_scaling = false, i = 0; corner <= end; corner++, i++) { fnum = cdata[i].fuse_corner; fdata = &desc->cpr_fuses.fuse_corner_data[fnum]; quot_offset = fuses[fnum].quotient_offset; fuse = &drv->fuse_corners[fnum]; if (fnum) prev_fuse = &drv->fuse_corners[fnum - 1]; else prev_fuse = NULL; corner->fuse_corner = fuse; corner->freq = cdata[i].freq; corner->uV = fuse->uV; if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) { scaling = cpr_calculate_scaling(quot_offset, drv, fdata, corner); if (scaling < 0) return scaling; apply_scaling = true; } else if (corner->freq == fuse->max_freq) { /* This is a fuse corner; don't scale anything */ apply_scaling = false; } if (apply_scaling) { freq_diff = fuse->max_freq - corner->freq; freq_diff_mhz = freq_diff / 1000000; corner->quot_adjust = scaling * freq_diff_mhz / 1000; corner->uV = cpr_interpolate(corner, step_volt, fdata); } corner->max_uV = fuse->max_uV; corner->min_uV = fuse->min_uV; corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV); corner->last_uV = corner->uV; /* Reduce the ceiling voltage if needed */ if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV) corner->max_uV = corner->uV; else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV) corner->max_uV = max(corner->min_uV, fuse->uV); dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i, corner->min_uV, corner->uV, corner->max_uV, fuse->quot - corner->quot_adjust); } return 0; } static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv) { const struct cpr_desc *desc = drv->desc; struct cpr_fuse *fuses; int i; fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners, sizeof(struct cpr_fuse), GFP_KERNEL); if (!fuses) return ERR_PTR(-ENOMEM); for (i = 0; i < desc->num_fuse_corners; i++) { char tbuf[32]; snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1); fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); if (!fuses[i].ring_osc) return ERR_PTR(-ENOMEM); snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1); fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); if (!fuses[i].init_voltage) return ERR_PTR(-ENOMEM); snprintf(tbuf, 32, "cpr_quotient%d", i + 1); fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); if (!fuses[i].quotient) return ERR_PTR(-ENOMEM); snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1); fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); if (!fuses[i].quotient_offset) return ERR_PTR(-ENOMEM); } return fuses; } static void cpr_set_loop_allowed(struct cpr_drv *drv) { drv->loop_disabled = false; } static int cpr_init_parameters(struct cpr_drv *drv) { const struct cpr_desc *desc = drv->desc; struct clk *clk; clk = clk_get(drv->dev, "ref"); if (IS_ERR(clk)) return PTR_ERR(clk); drv->ref_clk_khz = clk_get_rate(clk) / 1000; clk_put(clk); if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK || desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK || desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK || desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK || desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK || desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK) return -EINVAL; dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n", desc->up_threshold, desc->down_threshold); return 0; } static int cpr_find_initial_corner(struct cpr_drv *drv) { unsigned long rate; const struct corner *end; struct corner *iter; unsigned int i = 0; if (!drv->cpu_clk) { dev_err(drv->dev, "cannot get rate from NULL clk\n"); return -EINVAL; } end = &drv->corners[drv->num_corners - 1]; rate = clk_get_rate(drv->cpu_clk); /* * Some bootloaders set a CPU clock frequency that is not defined * in the OPP table. When running at an unlisted frequency, * cpufreq_online() will change to the OPP which has the lowest * frequency, at or above the unlisted frequency. * Since cpufreq_online() always "rounds up" in the case of an * unlisted frequency, this function always "rounds down" in case * of an unlisted frequency. That way, when cpufreq_online() * triggers the first ever call to cpr_set_performance_state(), * it will correctly determine the direction as UP. */ for (iter = drv->corners; iter <= end; iter++) { if (iter->freq > rate) break; i++; if (iter->freq == rate) { drv->corner = iter; break; } if (iter->freq < rate) drv->corner = iter; } if (!drv->corner) { dev_err(drv->dev, "boot up corner not found\n"); return -EINVAL; } dev_dbg(drv->dev, "boot up perf state: %u\n", i); return 0; } static const struct cpr_desc qcs404_cpr_desc = { .num_fuse_corners = 3, .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF, .step_quot = (int []){ 25, 25, 25, }, .timer_delay_us = 5000, .timer_cons_up = 0, .timer_cons_down = 2, .up_threshold = 1, .down_threshold = 3, .idle_clocks = 15, .gcnt_us = 1, .vdd_apc_step_up_limit = 1, .vdd_apc_step_down_limit = 1, .cpr_fuses = { .init_voltage_step = 8000, .init_voltage_width = 6, .fuse_corner_data = (struct fuse_corner_data[]){ /* fuse corner 0 */ { .ref_uV = 1224000, .max_uV = 1224000, .min_uV = 1048000, .max_volt_scale = 0, .max_quot_scale = 0, .quot_offset = 0, .quot_scale = 1, .quot_adjust = 0, .quot_offset_scale = 5, .quot_offset_adjust = 0, }, /* fuse corner 1 */ { .ref_uV = 1288000, .max_uV = 1288000, .min_uV = 1048000, .max_volt_scale = 2000, .max_quot_scale = 1400, .quot_offset = 0, .quot_scale = 1, .quot_adjust = -20, .quot_offset_scale = 5, .quot_offset_adjust = 0, }, /* fuse corner 2 */ { .ref_uV = 1352000, .max_uV = 1384000, .min_uV = 1088000, .max_volt_scale = 2000, .max_quot_scale = 1400, .quot_offset = 0, .quot_scale = 1, .quot_adjust = 0, .quot_offset_scale = 5, .quot_offset_adjust = 0, }, }, }, }; static const struct acc_desc qcs404_acc_desc = { .settings = (struct reg_sequence[]){ { 0xb120, 0x1041040 }, { 0xb124, 0x41 }, { 0xb120, 0x0 }, { 0xb124, 0x0 }, { 0xb120, 0x0 }, { 0xb124, 0x0 }, }, .config = (struct reg_sequence[]){ { 0xb138, 0xff }, { 0xb130, 0x5555 }, }, .num_regs_per_fuse = 2, }; static const struct cpr_acc_desc qcs404_cpr_acc_desc = { .cpr_desc = &qcs404_cpr_desc, .acc_desc = &qcs404_acc_desc, }; static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd, struct dev_pm_opp *opp) { return dev_pm_opp_get_level(opp); } static int cpr_power_off(struct generic_pm_domain *domain) { struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); return cpr_disable(drv); } static int cpr_power_on(struct generic_pm_domain *domain) { struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); return cpr_enable(drv); } static int cpr_pd_attach_dev(struct generic_pm_domain *domain, struct device *dev) { struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); const struct acc_desc *acc_desc = drv->acc_desc; int ret = 0; mutex_lock(&drv->lock); dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev)); /* * This driver only supports scaling voltage for a CPU cluster * where all CPUs in the cluster share a single regulator. * Therefore, save the struct device pointer only for the first * CPU device that gets attached. There is no need to do any * additional initialization when further CPUs get attached. */ if (drv->attached_cpu_dev) goto unlock; /* * cpr_scale_voltage() requires the direction (if we are changing * to a higher or lower OPP). The first time * cpr_set_performance_state() is called, there is no previous * performance state defined. Therefore, we call * cpr_find_initial_corner() that gets the CPU clock frequency * set by the bootloader, so that we can determine the direction * the first time cpr_set_performance_state() is called. */ drv->cpu_clk = devm_clk_get(dev, NULL); if (IS_ERR(drv->cpu_clk)) { ret = PTR_ERR(drv->cpu_clk); if (ret != -EPROBE_DEFER) dev_err(drv->dev, "could not get cpu clk: %d\n", ret); goto unlock; } drv->attached_cpu_dev = dev; dev_dbg(drv->dev, "using cpu clk from: %s\n", dev_name(drv->attached_cpu_dev)); /* * Everything related to (virtual) corners has to be initialized * here, when attaching to the power domain, since we need to know * the maximum frequency for each fuse corner, and this is only * available after the cpufreq driver has attached to us. * The reason for this is that we need to know the highest * frequency associated with each fuse corner. */ ret = dev_pm_opp_get_opp_count(&drv->pd.dev); if (ret < 0) { dev_err(drv->dev, "could not get OPP count\n"); goto unlock; } drv->num_corners = ret; if (drv->num_corners < 2) { dev_err(drv->dev, "need at least 2 OPPs to use CPR\n"); ret = -EINVAL; goto unlock; } drv->corners = devm_kcalloc(drv->dev, drv->num_corners, sizeof(*drv->corners), GFP_KERNEL); if (!drv->corners) { ret = -ENOMEM; goto unlock; } ret = cpr_corner_init(drv); if (ret) goto unlock; cpr_set_loop_allowed(drv); ret = cpr_init_parameters(drv); if (ret) goto unlock; /* Configure CPR HW but keep it disabled */ ret = cpr_config(drv); if (ret) goto unlock; ret = cpr_find_initial_corner(drv); if (ret) goto unlock; if (acc_desc->config) regmap_multi_reg_write(drv->tcsr, acc_desc->config, acc_desc->num_regs_per_fuse); /* Enable ACC if required */ if (acc_desc->enable_mask) regmap_update_bits(drv->tcsr, acc_desc->enable_reg, acc_desc->enable_mask, acc_desc->enable_mask); dev_info(drv->dev, "driver initialized with %u OPPs\n", drv->num_corners); unlock: mutex_unlock(&drv->lock); return ret; } static int cpr_debug_info_show(struct seq_file *s, void *unused) { u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps; u32 step_dn, step_up, error, error_lt0, busy; struct cpr_drv *drv = s->private; struct fuse_corner *fuse_corner; struct corner *corner; corner = drv->corner; fuse_corner = corner->fuse_corner; seq_printf(s, "corner, current_volt = %d uV\n", corner->last_uV); ro_sel = fuse_corner->ring_osc_idx; gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel)); seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt); ctl = cpr_read(drv, REG_RBCPR_CTL); seq_printf(s, "rbcpr_ctl = %#02X\n", ctl); irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS); seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status); reg = cpr_read(drv, REG_RBCPR_RESULT_0); seq_printf(s, "rbcpr_result_0 = %#02X\n", reg); step_dn = reg & 0x01; step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01; seq_printf(s, " [step_dn = %u", step_dn); seq_printf(s, ", step_up = %u", step_up); error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT) & RBCPR_RESULT0_ERROR_STEPS_MASK; seq_printf(s, ", error_steps = %u", error_steps); error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK; seq_printf(s, ", error = %u", error); error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01; seq_printf(s, ", error_lt_0 = %u", error_lt0); busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01; seq_printf(s, ", busy = %u]\n", busy); return 0; } DEFINE_SHOW_ATTRIBUTE(cpr_debug_info); static void cpr_debugfs_init(struct cpr_drv *drv) { drv->debugfs = debugfs_create_dir("qcom_cpr", NULL); debugfs_create_file("debug_info", 0444, drv->debugfs, drv, &cpr_debug_info_fops); } static int cpr_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct cpr_drv *drv; int irq, ret; const struct cpr_acc_desc *data; struct device_node *np; u32 cpr_rev = FUSE_REVISION_UNKNOWN; data = of_device_get_match_data(dev); if (!data || !data->cpr_desc || !data->acc_desc) return -EINVAL; drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL); if (!drv) return -ENOMEM; drv->dev = dev; drv->desc = data->cpr_desc; drv->acc_desc = data->acc_desc; drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners, sizeof(*drv->fuse_corners), GFP_KERNEL); if (!drv->fuse_corners) return -ENOMEM; np = of_parse_phandle(dev->of_node, "acc-syscon", 0); if (!np) return -ENODEV; drv->tcsr = syscon_node_to_regmap(np); of_node_put(np); if (IS_ERR(drv->tcsr)) return PTR_ERR(drv->tcsr); drv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(drv->base)) return PTR_ERR(drv->base); irq = platform_get_irq(pdev, 0); if (irq < 0) return -EINVAL; drv->vdd_apc = devm_regulator_get(dev, "vdd-apc"); if (IS_ERR(drv->vdd_apc)) return PTR_ERR(drv->vdd_apc); /* * Initialize fuse corners, since it simply depends * on data in efuses. * Everything related to (virtual) corners has to be * initialized after attaching to the power domain, * since it depends on the CPU's OPP table. */ ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &cpr_rev); if (ret) return ret; drv->cpr_fuses = cpr_get_fuses(drv); if (IS_ERR(drv->cpr_fuses)) return PTR_ERR(drv->cpr_fuses); ret = cpr_populate_ring_osc_idx(drv); if (ret) return ret; ret = cpr_fuse_corner_init(drv); if (ret) return ret; mutex_init(&drv->lock); ret = devm_request_threaded_irq(dev, irq, NULL, cpr_irq_handler, IRQF_ONESHOT | IRQF_TRIGGER_RISING, "cpr", drv); if (ret) return ret; drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name, GFP_KERNEL); if (!drv->pd.name) return -EINVAL; drv->pd.power_off = cpr_power_off; drv->pd.power_on = cpr_power_on; drv->pd.set_performance_state = cpr_set_performance_state; drv->pd.opp_to_performance_state = cpr_get_performance_state; drv->pd.attach_dev = cpr_pd_attach_dev; ret = pm_genpd_init(&drv->pd, NULL, true); if (ret) return ret; ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd); if (ret) goto err_remove_genpd; platform_set_drvdata(pdev, drv); cpr_debugfs_init(drv); return 0; err_remove_genpd: pm_genpd_remove(&drv->pd); return ret; } static int cpr_remove(struct platform_device *pdev) { struct cpr_drv *drv = platform_get_drvdata(pdev); if (cpr_is_allowed(drv)) { cpr_ctl_disable(drv); cpr_irq_set(drv, 0); } of_genpd_del_provider(pdev->dev.of_node); pm_genpd_remove(&drv->pd); debugfs_remove_recursive(drv->debugfs); return 0; } static const struct of_device_id cpr_match_table[] = { { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc }, { } }; MODULE_DEVICE_TABLE(of, cpr_match_table); static struct platform_driver cpr_driver = { .probe = cpr_probe, .remove = cpr_remove, .driver = { .name = "qcom-cpr", .of_match_table = cpr_match_table, }, }; module_platform_driver(cpr_driver); MODULE_DESCRIPTION("Core Power Reduction (CPR) driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pmdomain/qcom/cpr.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2017-2018, The Linux Foundation. All rights reserved. */ #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/pm_domain.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/soc/qcom/smd-rpm.h> #include <dt-bindings/power/qcom-rpmpd.h> #define domain_to_rpmpd(domain) container_of(domain, struct rpmpd, pd) /* Resource types: * RPMPD_X is X encoded as a little-endian, lower-case, ASCII string */ #define RPMPD_SMPA 0x61706d73 #define RPMPD_LDOA 0x616f646c #define RPMPD_SMPB 0x62706d73 #define RPMPD_LDOB 0x626f646c #define RPMPD_RWCX 0x78637772 #define RPMPD_RWMX 0x786d7772 #define RPMPD_RWLC 0x636c7772 #define RPMPD_RWLM 0x6d6c7772 #define RPMPD_RWSC 0x63737772 #define RPMPD_RWSM 0x6d737772 #define RPMPD_RWGX 0x78677772 /* Operation Keys */ #define KEY_CORNER 0x6e726f63 /* corn */ #define KEY_ENABLE 0x6e657773 /* swen */ #define KEY_FLOOR_CORNER 0x636676 /* vfc */ #define KEY_FLOOR_LEVEL 0x6c6676 /* vfl */ #define KEY_LEVEL 0x6c766c76 /* vlvl */ #define MAX_CORNER_RPMPD_STATE 6 struct rpmpd_req { __le32 key; __le32 nbytes; __le32 value; }; struct rpmpd { struct generic_pm_domain pd; struct generic_pm_domain *parent; struct rpmpd *peer; const bool active_only; unsigned int corner; bool enabled; const int res_type; const int res_id; struct qcom_smd_rpm *rpm; unsigned int max_state; __le32 key; bool state_synced; }; struct rpmpd_desc { struct rpmpd **rpmpds; size_t num_pds; unsigned int max_state; }; static DEFINE_MUTEX(rpmpd_lock); /* CX */ static struct rpmpd cx_rwcx0_lvl_ao; static struct rpmpd cx_rwcx0_lvl = { .pd = { .name = "cx", }, .peer = &cx_rwcx0_lvl_ao, .res_type = RPMPD_RWCX, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd cx_rwcx0_lvl_ao = { .pd = { .name = "cx_ao", }, .peer = &cx_rwcx0_lvl, .active_only = true, .res_type = RPMPD_RWCX, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd cx_s1a_corner_ao; static struct rpmpd cx_s1a_corner = { .pd = { .name = "cx", }, .peer = &cx_s1a_corner_ao, .res_type = RPMPD_SMPA, .res_id = 1, .key = KEY_CORNER, }; static struct rpmpd cx_s1a_corner_ao = { .pd = { .name = "cx_ao", }, .peer = &cx_s1a_corner, .active_only = true, .res_type = RPMPD_SMPA, .res_id = 1, .key = KEY_CORNER, }; static struct rpmpd cx_s2a_corner_ao; static struct rpmpd cx_s2a_corner = { .pd = { .name = "cx", }, .peer = &cx_s2a_corner_ao, .res_type = RPMPD_SMPA, .res_id = 2, .key = KEY_CORNER, }; static struct rpmpd cx_s2a_corner_ao = { .pd = { .name = "cx_ao", }, .peer = &cx_s2a_corner, .active_only = true, .res_type = RPMPD_SMPA, .res_id = 2, .key = KEY_CORNER, }; static struct rpmpd cx_s2a_lvl_ao; static struct rpmpd cx_s2a_lvl = { .pd = { .name = "cx", }, .peer = &cx_s2a_lvl_ao, .res_type = RPMPD_SMPA, .res_id = 2, .key = KEY_LEVEL, }; static struct rpmpd cx_s2a_lvl_ao = { .pd = { .name = "cx_ao", }, .peer = &cx_s2a_lvl, .active_only = true, .res_type = RPMPD_SMPA, .res_id = 2, .key = KEY_LEVEL, }; static struct rpmpd cx_s3a_lvl_ao; static struct rpmpd cx_s3a_lvl = { .pd = { .name = "cx", }, .peer = &cx_s3a_lvl_ao, .res_type = RPMPD_SMPA, .res_id = 3, .key = KEY_LEVEL, }; static struct rpmpd cx_s3a_lvl_ao = { .pd = { .name = "cx_ao", }, .peer = &cx_s3a_lvl, .active_only = true, .res_type = RPMPD_SMPA, .res_id = 3, .key = KEY_LEVEL, }; static struct rpmpd cx_rwcx0_vfl = { .pd = { .name = "cx_vfl", }, .res_type = RPMPD_RWCX, .res_id = 0, .key = KEY_FLOOR_LEVEL, }; static struct rpmpd cx_rwsc2_vfl = { .pd = { .name = "cx_vfl", }, .res_type = RPMPD_RWSC, .res_id = 2, .key = KEY_FLOOR_LEVEL, }; static struct rpmpd cx_s1a_vfc = { .pd = { .name = "cx_vfc", }, .res_type = RPMPD_SMPA, .res_id = 1, .key = KEY_FLOOR_CORNER, }; static struct rpmpd cx_s2a_vfc = { .pd = { .name = "cx_vfc", }, .res_type = RPMPD_SMPA, .res_id = 2, .key = KEY_FLOOR_CORNER, }; static struct rpmpd cx_s2a_vfl = { .pd = { .name = "cx_vfl", }, .res_type = RPMPD_SMPA, .res_id = 2, .key = KEY_FLOOR_LEVEL, }; static struct rpmpd cx_s3a_vfl = { .pd = { .name = "cx_vfl", }, .res_type = RPMPD_SMPA, .res_id = 3, .key = KEY_FLOOR_LEVEL, }; /* G(F)X */ static struct rpmpd gfx_s2b_corner = { .pd = { .name = "gfx", }, .res_type = RPMPD_SMPB, .res_id = 2, .key = KEY_CORNER, }; static struct rpmpd gfx_s2b_vfc = { .pd = { .name = "gfx_vfc", }, .res_type = RPMPD_SMPB, .res_id = 2, .key = KEY_FLOOR_CORNER, }; static struct rpmpd mx_rwmx0_lvl; static struct rpmpd gx_rwgx0_lvl_ao; static struct rpmpd gx_rwgx0_lvl = { .pd = { .name = "gx", }, .peer = &gx_rwgx0_lvl_ao, .res_type = RPMPD_RWGX, .parent = &mx_rwmx0_lvl.pd, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd mx_rwmx0_lvl_ao; static struct rpmpd gx_rwgx0_lvl_ao = { .pd = { .name = "gx_ao", }, .peer = &gx_rwgx0_lvl, .parent = &mx_rwmx0_lvl_ao.pd, .active_only = true, .res_type = RPMPD_RWGX, .res_id = 0, .key = KEY_LEVEL, }; /* MX */ static struct rpmpd mx_l3a_corner_ao; static struct rpmpd mx_l3a_corner = { .pd = { .name = "mx", }, .peer = &mx_l3a_corner_ao, .res_type = RPMPD_LDOA, .res_id = 3, .key = KEY_CORNER, }; static struct rpmpd mx_l3a_corner_ao = { .pd = { .name = "mx_ao", }, .peer = &mx_l3a_corner, .active_only = true, .res_type = RPMPD_LDOA, .res_id = 3, .key = KEY_CORNER, }; static struct rpmpd mx_l12a_lvl_ao; static struct rpmpd mx_l12a_lvl = { .pd = { .name = "mx", }, .peer = &mx_l12a_lvl_ao, .res_type = RPMPD_LDOA, .res_id = 12, .key = KEY_LEVEL, }; static struct rpmpd mx_l12a_lvl_ao = { .pd = { .name = "mx_ao", }, .peer = &mx_l12a_lvl, .active_only = true, .res_type = RPMPD_LDOA, .res_id = 12, .key = KEY_LEVEL, }; static struct rpmpd mx_s2a_corner_ao; static struct rpmpd mx_s2a_corner = { .pd = { .name = "mx", }, .peer = &mx_s2a_corner_ao, .res_type = RPMPD_SMPA, .res_id = 2, .key = KEY_CORNER, }; static struct rpmpd mx_s2a_corner_ao = { .pd = { .name = "mx_ao", }, .peer = &mx_s2a_corner, .active_only = true, .res_type = RPMPD_SMPA, .res_id = 2, .key = KEY_CORNER, }; static struct rpmpd mx_rwmx0_lvl_ao; static struct rpmpd mx_rwmx0_lvl = { .pd = { .name = "mx", }, .peer = &mx_rwmx0_lvl_ao, .res_type = RPMPD_RWMX, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd mx_rwmx0_lvl_ao = { .pd = { .name = "mx_ao", }, .peer = &mx_rwmx0_lvl, .active_only = true, .res_type = RPMPD_RWMX, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd mx_s6a_lvl_ao; static struct rpmpd mx_s6a_lvl = { .pd = { .name = "mx", }, .peer = &mx_s6a_lvl_ao, .res_type = RPMPD_SMPA, .res_id = 6, .key = KEY_LEVEL, }; static struct rpmpd mx_s6a_lvl_ao = { .pd = { .name = "mx_ao", }, .peer = &mx_s6a_lvl, .active_only = true, .res_type = RPMPD_SMPA, .res_id = 6, .key = KEY_LEVEL, }; static struct rpmpd mx_s7a_lvl_ao; static struct rpmpd mx_s7a_lvl = { .pd = { .name = "mx", }, .peer = &mx_s7a_lvl_ao, .res_type = RPMPD_SMPA, .res_id = 7, .key = KEY_LEVEL, }; static struct rpmpd mx_s7a_lvl_ao = { .pd = { .name = "mx_ao", }, .peer = &mx_s7a_lvl, .active_only = true, .res_type = RPMPD_SMPA, .res_id = 7, .key = KEY_LEVEL, }; static struct rpmpd mx_l12a_vfl = { .pd = { .name = "mx_vfl", }, .res_type = RPMPD_LDOA, .res_id = 12, .key = KEY_FLOOR_LEVEL, }; static struct rpmpd mx_rwmx0_vfl = { .pd = { .name = "mx_vfl", }, .res_type = RPMPD_RWMX, .res_id = 0, .key = KEY_FLOOR_LEVEL, }; static struct rpmpd mx_rwsm6_vfl = { .pd = { .name = "mx_vfl", }, .res_type = RPMPD_RWSM, .res_id = 6, .key = KEY_FLOOR_LEVEL, }; /* MD */ static struct rpmpd md_s1a_corner_ao; static struct rpmpd md_s1a_corner = { .pd = { .name = "md", }, .peer = &md_s1a_corner_ao, .res_type = RPMPD_SMPA, .res_id = 1, .key = KEY_CORNER, }; static struct rpmpd md_s1a_corner_ao = { .pd = { .name = "md_ao", }, .peer = &md_s1a_corner, .active_only = true, .res_type = RPMPD_SMPA, .res_id = 1, .key = KEY_CORNER, }; static struct rpmpd md_s1a_lvl_ao; static struct rpmpd md_s1a_lvl = { .pd = { .name = "md", }, .peer = &md_s1a_lvl_ao, .res_type = RPMPD_SMPA, .res_id = 1, .key = KEY_LEVEL, }; static struct rpmpd md_s1a_lvl_ao = { .pd = { .name = "md_ao", }, .peer = &md_s1a_lvl, .active_only = true, .res_type = RPMPD_SMPA, .res_id = 1, .key = KEY_LEVEL, }; static struct rpmpd md_s1a_vfc = { .pd = { .name = "md_vfc", }, .res_type = RPMPD_SMPA, .res_id = 1, .key = KEY_FLOOR_CORNER, }; /* LPI_CX */ static struct rpmpd lpi_cx_rwlc0_lvl = { .pd = { .name = "lpi_cx", }, .res_type = RPMPD_RWLC, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd lpi_cx_rwlc0_vfl = { .pd = { .name = "lpi_cx_vfl", }, .res_type = RPMPD_RWLC, .res_id = 0, .key = KEY_FLOOR_LEVEL, }; /* LPI_MX */ static struct rpmpd lpi_mx_rwlm0_lvl = { .pd = { .name = "lpi_mx", }, .res_type = RPMPD_RWLM, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd lpi_mx_rwlm0_vfl = { .pd = { .name = "lpi_mx_vfl", }, .res_type = RPMPD_RWLM, .res_id = 0, .key = KEY_FLOOR_LEVEL, }; /* SSC_CX */ static struct rpmpd ssc_cx_l26a_corner = { .pd = { .name = "ssc_cx", }, .res_type = RPMPD_LDOA, .res_id = 26, .key = KEY_CORNER, }; static struct rpmpd ssc_cx_rwlc0_lvl = { .pd = { .name = "ssc_cx", }, .res_type = RPMPD_RWLC, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd ssc_cx_rwsc0_lvl = { .pd = { .name = "ssc_cx", }, .res_type = RPMPD_RWSC, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd ssc_cx_l26a_vfc = { .pd = { .name = "ssc_cx_vfc", }, .res_type = RPMPD_LDOA, .res_id = 26, .key = KEY_FLOOR_CORNER, }; static struct rpmpd ssc_cx_rwlc0_vfl = { .pd = { .name = "ssc_cx_vfl", }, .res_type = RPMPD_RWLC, .res_id = 0, .key = KEY_FLOOR_LEVEL, }; static struct rpmpd ssc_cx_rwsc0_vfl = { .pd = { .name = "ssc_cx_vfl", }, .res_type = RPMPD_RWSC, .res_id = 0, .key = KEY_FLOOR_LEVEL, }; /* SSC_MX */ static struct rpmpd ssc_mx_rwlm0_lvl = { .pd = { .name = "ssc_mx", }, .res_type = RPMPD_RWLM, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd ssc_mx_rwsm0_lvl = { .pd = { .name = "ssc_mx", }, .res_type = RPMPD_RWSM, .res_id = 0, .key = KEY_LEVEL, }; static struct rpmpd ssc_mx_rwlm0_vfl = { .pd = { .name = "ssc_mx_vfl", }, .res_type = RPMPD_RWLM, .res_id = 0, .key = KEY_FLOOR_LEVEL, }; static struct rpmpd ssc_mx_rwsm0_vfl = { .pd = { .name = "ssc_mx_vfl", }, .res_type = RPMPD_RWSM, .res_id = 0, .key = KEY_FLOOR_LEVEL, }; static struct rpmpd *mdm9607_rpmpds[] = { [MDM9607_VDDCX] = &cx_s3a_lvl, [MDM9607_VDDCX_AO] = &cx_s3a_lvl_ao, [MDM9607_VDDCX_VFL] = &cx_s3a_vfl, [MDM9607_VDDMX] = &mx_l12a_lvl, [MDM9607_VDDMX_AO] = &mx_l12a_lvl_ao, [MDM9607_VDDMX_VFL] = &mx_l12a_vfl, }; static const struct rpmpd_desc mdm9607_desc = { .rpmpds = mdm9607_rpmpds, .num_pds = ARRAY_SIZE(mdm9607_rpmpds), .max_state = RPM_SMD_LEVEL_TURBO, }; static struct rpmpd *msm8226_rpmpds[] = { [MSM8226_VDDCX] = &cx_s1a_corner, [MSM8226_VDDCX_AO] = &cx_s1a_corner_ao, [MSM8226_VDDCX_VFC] = &cx_s1a_vfc, }; static const struct rpmpd_desc msm8226_desc = { .rpmpds = msm8226_rpmpds, .num_pds = ARRAY_SIZE(msm8226_rpmpds), .max_state = MAX_CORNER_RPMPD_STATE, }; static struct rpmpd *msm8939_rpmpds[] = { [MSM8939_VDDMDCX] = &md_s1a_corner, [MSM8939_VDDMDCX_AO] = &md_s1a_corner_ao, [MSM8939_VDDMDCX_VFC] = &md_s1a_vfc, [MSM8939_VDDCX] = &cx_s2a_corner, [MSM8939_VDDCX_AO] = &cx_s2a_corner_ao, [MSM8939_VDDCX_VFC] = &cx_s2a_vfc, [MSM8939_VDDMX] = &mx_l3a_corner, [MSM8939_VDDMX_AO] = &mx_l3a_corner_ao, }; static const struct rpmpd_desc msm8939_desc = { .rpmpds = msm8939_rpmpds, .num_pds = ARRAY_SIZE(msm8939_rpmpds), .max_state = MAX_CORNER_RPMPD_STATE, }; static struct rpmpd *msm8916_rpmpds[] = { [MSM8916_VDDCX] = &cx_s1a_corner, [MSM8916_VDDCX_AO] = &cx_s1a_corner_ao, [MSM8916_VDDCX_VFC] = &cx_s1a_vfc, [MSM8916_VDDMX] = &mx_l3a_corner, [MSM8916_VDDMX_AO] = &mx_l3a_corner_ao, }; static const struct rpmpd_desc msm8916_desc = { .rpmpds = msm8916_rpmpds, .num_pds = ARRAY_SIZE(msm8916_rpmpds), .max_state = MAX_CORNER_RPMPD_STATE, }; static struct rpmpd *msm8953_rpmpds[] = { [MSM8953_VDDMD] = &md_s1a_lvl, [MSM8953_VDDMD_AO] = &md_s1a_lvl_ao, [MSM8953_VDDCX] = &cx_s2a_lvl, [MSM8953_VDDCX_AO] = &cx_s2a_lvl_ao, [MSM8953_VDDCX_VFL] = &cx_s2a_vfl, [MSM8953_VDDMX] = &mx_s7a_lvl, [MSM8953_VDDMX_AO] = &mx_s7a_lvl_ao, }; static const struct rpmpd_desc msm8953_desc = { .rpmpds = msm8953_rpmpds, .num_pds = ARRAY_SIZE(msm8953_rpmpds), .max_state = RPM_SMD_LEVEL_TURBO, }; static struct rpmpd *msm8976_rpmpds[] = { [MSM8976_VDDCX] = &cx_s2a_lvl, [MSM8976_VDDCX_AO] = &cx_s2a_lvl_ao, [MSM8976_VDDCX_VFL] = &cx_rwsc2_vfl, [MSM8976_VDDMX] = &mx_s6a_lvl, [MSM8976_VDDMX_AO] = &mx_s6a_lvl_ao, [MSM8976_VDDMX_VFL] = &mx_rwsm6_vfl, }; static const struct rpmpd_desc msm8976_desc = { .rpmpds = msm8976_rpmpds, .num_pds = ARRAY_SIZE(msm8976_rpmpds), .max_state = RPM_SMD_LEVEL_TURBO_HIGH, }; static struct rpmpd *msm8994_rpmpds[] = { [MSM8994_VDDCX] = &cx_s1a_corner, [MSM8994_VDDCX_AO] = &cx_s1a_corner_ao, [MSM8994_VDDCX_VFC] = &cx_s1a_vfc, [MSM8994_VDDMX] = &mx_s2a_corner, [MSM8994_VDDMX_AO] = &mx_s2a_corner_ao, /* Attention! *Some* 8994 boards with pm8004 may use SMPC here! */ [MSM8994_VDDGFX] = &gfx_s2b_corner, [MSM8994_VDDGFX_VFC] = &gfx_s2b_vfc, }; static const struct rpmpd_desc msm8994_desc = { .rpmpds = msm8994_rpmpds, .num_pds = ARRAY_SIZE(msm8994_rpmpds), .max_state = MAX_CORNER_RPMPD_STATE, }; static struct rpmpd *msm8996_rpmpds[] = { [MSM8996_VDDCX] = &cx_s1a_corner, [MSM8996_VDDCX_AO] = &cx_s1a_corner_ao, [MSM8996_VDDCX_VFC] = &cx_s1a_vfc, [MSM8996_VDDMX] = &mx_s2a_corner, [MSM8996_VDDMX_AO] = &mx_s2a_corner_ao, [MSM8996_VDDSSCX] = &ssc_cx_l26a_corner, [MSM8996_VDDSSCX_VFC] = &ssc_cx_l26a_vfc, }; static const struct rpmpd_desc msm8996_desc = { .rpmpds = msm8996_rpmpds, .num_pds = ARRAY_SIZE(msm8996_rpmpds), .max_state = MAX_CORNER_RPMPD_STATE, }; static struct rpmpd *msm8998_rpmpds[] = { [MSM8998_VDDCX] = &cx_rwcx0_lvl, [MSM8998_VDDCX_AO] = &cx_rwcx0_lvl_ao, [MSM8998_VDDCX_VFL] = &cx_rwcx0_vfl, [MSM8998_VDDMX] = &mx_rwmx0_lvl, [MSM8998_VDDMX_AO] = &mx_rwmx0_lvl_ao, [MSM8998_VDDMX_VFL] = &mx_rwmx0_vfl, [MSM8998_SSCCX] = &ssc_cx_rwsc0_lvl, [MSM8998_SSCCX_VFL] = &ssc_cx_rwsc0_vfl, [MSM8998_SSCMX] = &ssc_mx_rwsm0_lvl, [MSM8998_SSCMX_VFL] = &ssc_mx_rwsm0_vfl, }; static const struct rpmpd_desc msm8998_desc = { .rpmpds = msm8998_rpmpds, .num_pds = ARRAY_SIZE(msm8998_rpmpds), .max_state = RPM_SMD_LEVEL_BINNING, }; static struct rpmpd *qcs404_rpmpds[] = { [QCS404_VDDMX] = &mx_rwmx0_lvl, [QCS404_VDDMX_AO] = &mx_rwmx0_lvl_ao, [QCS404_VDDMX_VFL] = &mx_rwmx0_vfl, [QCS404_LPICX] = &lpi_cx_rwlc0_lvl, [QCS404_LPICX_VFL] = &lpi_cx_rwlc0_vfl, [QCS404_LPIMX] = &lpi_mx_rwlm0_lvl, [QCS404_LPIMX_VFL] = &lpi_mx_rwlm0_vfl, }; static const struct rpmpd_desc qcs404_desc = { .rpmpds = qcs404_rpmpds, .num_pds = ARRAY_SIZE(qcs404_rpmpds), .max_state = RPM_SMD_LEVEL_BINNING, }; static struct rpmpd *sdm660_rpmpds[] = { [SDM660_VDDCX] = &cx_rwcx0_lvl, [SDM660_VDDCX_AO] = &cx_rwcx0_lvl_ao, [SDM660_VDDCX_VFL] = &cx_rwcx0_vfl, [SDM660_VDDMX] = &mx_rwmx0_lvl, [SDM660_VDDMX_AO] = &mx_rwmx0_lvl_ao, [SDM660_VDDMX_VFL] = &mx_rwmx0_vfl, [SDM660_SSCCX] = &ssc_cx_rwlc0_lvl, [SDM660_SSCCX_VFL] = &ssc_cx_rwlc0_vfl, [SDM660_SSCMX] = &ssc_mx_rwlm0_lvl, [SDM660_SSCMX_VFL] = &ssc_mx_rwlm0_vfl, }; static const struct rpmpd_desc sdm660_desc = { .rpmpds = sdm660_rpmpds, .num_pds = ARRAY_SIZE(sdm660_rpmpds), .max_state = RPM_SMD_LEVEL_TURBO, }; static struct rpmpd *sm6115_rpmpds[] = { [SM6115_VDDCX] = &cx_rwcx0_lvl, [SM6115_VDDCX_AO] = &cx_rwcx0_lvl_ao, [SM6115_VDDCX_VFL] = &cx_rwcx0_vfl, [SM6115_VDDMX] = &mx_rwmx0_lvl, [SM6115_VDDMX_AO] = &mx_rwmx0_lvl_ao, [SM6115_VDDMX_VFL] = &mx_rwmx0_vfl, [SM6115_VDD_LPI_CX] = &lpi_cx_rwlc0_lvl, [SM6115_VDD_LPI_MX] = &lpi_mx_rwlm0_lvl, }; static const struct rpmpd_desc sm6115_desc = { .rpmpds = sm6115_rpmpds, .num_pds = ARRAY_SIZE(sm6115_rpmpds), .max_state = RPM_SMD_LEVEL_TURBO_NO_CPR, }; static struct rpmpd *sm6125_rpmpds[] = { [SM6125_VDDCX] = &cx_rwcx0_lvl, [SM6125_VDDCX_AO] = &cx_rwcx0_lvl_ao, [SM6125_VDDCX_VFL] = &cx_rwcx0_vfl, [SM6125_VDDMX] = &mx_rwmx0_lvl, [SM6125_VDDMX_AO] = &mx_rwmx0_lvl_ao, [SM6125_VDDMX_VFL] = &mx_rwmx0_vfl, }; static const struct rpmpd_desc sm6125_desc = { .rpmpds = sm6125_rpmpds, .num_pds = ARRAY_SIZE(sm6125_rpmpds), .max_state = RPM_SMD_LEVEL_BINNING, }; static struct rpmpd *sm6375_rpmpds[] = { [SM6375_VDDCX] = &cx_rwcx0_lvl, [SM6375_VDDCX_AO] = &cx_rwcx0_lvl_ao, [SM6375_VDDCX_VFL] = &cx_rwcx0_vfl, [SM6375_VDDMX] = &mx_rwmx0_lvl, [SM6375_VDDMX_AO] = &mx_rwmx0_lvl_ao, [SM6375_VDDMX_VFL] = &mx_rwmx0_vfl, [SM6375_VDDGX] = &gx_rwgx0_lvl, [SM6375_VDDGX_AO] = &gx_rwgx0_lvl_ao, [SM6375_VDD_LPI_CX] = &lpi_cx_rwlc0_lvl, [SM6375_VDD_LPI_MX] = &lpi_mx_rwlm0_lvl, }; static const struct rpmpd_desc sm6375_desc = { .rpmpds = sm6375_rpmpds, .num_pds = ARRAY_SIZE(sm6375_rpmpds), .max_state = RPM_SMD_LEVEL_TURBO_NO_CPR, }; static struct rpmpd *qcm2290_rpmpds[] = { [QCM2290_VDDCX] = &cx_rwcx0_lvl, [QCM2290_VDDCX_AO] = &cx_rwcx0_lvl_ao, [QCM2290_VDDCX_VFL] = &cx_rwcx0_vfl, [QCM2290_VDDMX] = &mx_rwmx0_lvl, [QCM2290_VDDMX_AO] = &mx_rwmx0_lvl_ao, [QCM2290_VDDMX_VFL] = &mx_rwmx0_vfl, [QCM2290_VDD_LPI_CX] = &lpi_cx_rwlc0_lvl, [QCM2290_VDD_LPI_MX] = &lpi_mx_rwlm0_lvl, }; static const struct rpmpd_desc qcm2290_desc = { .rpmpds = qcm2290_rpmpds, .num_pds = ARRAY_SIZE(qcm2290_rpmpds), .max_state = RPM_SMD_LEVEL_TURBO_NO_CPR, }; static const struct of_device_id rpmpd_match_table[] = { { .compatible = "qcom,mdm9607-rpmpd", .data = &mdm9607_desc }, { .compatible = "qcom,msm8226-rpmpd", .data = &msm8226_desc }, { .compatible = "qcom,msm8909-rpmpd", .data = &msm8916_desc }, { .compatible = "qcom,msm8916-rpmpd", .data = &msm8916_desc }, { .compatible = "qcom,msm8939-rpmpd", .data = &msm8939_desc }, { .compatible = "qcom,msm8953-rpmpd", .data = &msm8953_desc }, { .compatible = "qcom,msm8976-rpmpd", .data = &msm8976_desc }, { .compatible = "qcom,msm8994-rpmpd", .data = &msm8994_desc }, { .compatible = "qcom,msm8996-rpmpd", .data = &msm8996_desc }, { .compatible = "qcom,msm8998-rpmpd", .data = &msm8998_desc }, { .compatible = "qcom,qcm2290-rpmpd", .data = &qcm2290_desc }, { .compatible = "qcom,qcs404-rpmpd", .data = &qcs404_desc }, { .compatible = "qcom,sdm660-rpmpd", .data = &sdm660_desc }, { .compatible = "qcom,sm6115-rpmpd", .data = &sm6115_desc }, { .compatible = "qcom,sm6125-rpmpd", .data = &sm6125_desc }, { .compatible = "qcom,sm6375-rpmpd", .data = &sm6375_desc }, { } }; MODULE_DEVICE_TABLE(of, rpmpd_match_table); static int rpmpd_send_enable(struct rpmpd *pd, bool enable) { struct rpmpd_req req = { .key = KEY_ENABLE, .nbytes = cpu_to_le32(sizeof(u32)), .value = cpu_to_le32(enable), }; return qcom_rpm_smd_write(pd->rpm, QCOM_SMD_RPM_ACTIVE_STATE, pd->res_type, pd->res_id, &req, sizeof(req)); } static int rpmpd_send_corner(struct rpmpd *pd, int state, unsigned int corner) { struct rpmpd_req req = { .key = pd->key, .nbytes = cpu_to_le32(sizeof(u32)), .value = cpu_to_le32(corner), }; return qcom_rpm_smd_write(pd->rpm, state, pd->res_type, pd->res_id, &req, sizeof(req)); }; static void to_active_sleep(struct rpmpd *pd, unsigned int corner, unsigned int *active, unsigned int *sleep) { *active = corner; if (pd->active_only) *sleep = 0; else *sleep = *active; } static int rpmpd_aggregate_corner(struct rpmpd *pd) { int ret; struct rpmpd *peer = pd->peer; unsigned int active_corner, sleep_corner; unsigned int this_active_corner = 0, this_sleep_corner = 0; unsigned int peer_active_corner = 0, peer_sleep_corner = 0; /* Clamp to the highest corner/level if sync_state isn't done yet */ if (!pd->state_synced) this_active_corner = this_sleep_corner = pd->max_state - 1; else to_active_sleep(pd, pd->corner, &this_active_corner, &this_sleep_corner); if (peer && peer->enabled) to_active_sleep(peer, peer->corner, &peer_active_corner, &peer_sleep_corner); active_corner = max(this_active_corner, peer_active_corner); ret = rpmpd_send_corner(pd, QCOM_SMD_RPM_ACTIVE_STATE, active_corner); if (ret) return ret; sleep_corner = max(this_sleep_corner, peer_sleep_corner); return rpmpd_send_corner(pd, QCOM_SMD_RPM_SLEEP_STATE, sleep_corner); } static int rpmpd_power_on(struct generic_pm_domain *domain) { int ret; struct rpmpd *pd = domain_to_rpmpd(domain); mutex_lock(&rpmpd_lock); ret = rpmpd_send_enable(pd, true); if (ret) goto out; pd->enabled = true; if (pd->corner) ret = rpmpd_aggregate_corner(pd); out: mutex_unlock(&rpmpd_lock); return ret; } static int rpmpd_power_off(struct generic_pm_domain *domain) { int ret; struct rpmpd *pd = domain_to_rpmpd(domain); mutex_lock(&rpmpd_lock); ret = rpmpd_send_enable(pd, false); if (!ret) pd->enabled = false; mutex_unlock(&rpmpd_lock); return ret; } static int rpmpd_set_performance(struct generic_pm_domain *domain, unsigned int state) { int ret = 0; struct rpmpd *pd = domain_to_rpmpd(domain); if (state > pd->max_state) state = pd->max_state; mutex_lock(&rpmpd_lock); pd->corner = state; /* Always send updates for vfc and vfl */ if (!pd->enabled && pd->key != cpu_to_le32(KEY_FLOOR_CORNER) && pd->key != cpu_to_le32(KEY_FLOOR_LEVEL)) goto out; ret = rpmpd_aggregate_corner(pd); out: mutex_unlock(&rpmpd_lock); return ret; } static unsigned int rpmpd_get_performance(struct generic_pm_domain *genpd, struct dev_pm_opp *opp) { return dev_pm_opp_get_level(opp); } static int rpmpd_probe(struct platform_device *pdev) { int i; size_t num; struct genpd_onecell_data *data; struct qcom_smd_rpm *rpm; struct rpmpd **rpmpds; const struct rpmpd_desc *desc; rpm = dev_get_drvdata(pdev->dev.parent); if (!rpm) { dev_err(&pdev->dev, "Unable to retrieve handle to RPM\n"); return -ENODEV; } desc = of_device_get_match_data(&pdev->dev); if (!desc) return -EINVAL; rpmpds = desc->rpmpds; num = desc->num_pds; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->domains = devm_kcalloc(&pdev->dev, num, sizeof(*data->domains), GFP_KERNEL); if (!data->domains) return -ENOMEM; data->num_domains = num; for (i = 0; i < num; i++) { if (!rpmpds[i]) { dev_warn(&pdev->dev, "rpmpds[] with empty entry at index=%d\n", i); continue; } rpmpds[i]->rpm = rpm; rpmpds[i]->max_state = desc->max_state; rpmpds[i]->pd.power_off = rpmpd_power_off; rpmpds[i]->pd.power_on = rpmpd_power_on; rpmpds[i]->pd.set_performance_state = rpmpd_set_performance; rpmpds[i]->pd.opp_to_performance_state = rpmpd_get_performance; pm_genpd_init(&rpmpds[i]->pd, NULL, true); data->domains[i] = &rpmpds[i]->pd; } /* Add subdomains */ for (i = 0; i < num; i++) { if (!rpmpds[i]) continue; if (rpmpds[i]->parent) pm_genpd_add_subdomain(rpmpds[i]->parent, &rpmpds[i]->pd); } return of_genpd_add_provider_onecell(pdev->dev.of_node, data); } static void rpmpd_sync_state(struct device *dev) { const struct rpmpd_desc *desc = of_device_get_match_data(dev); struct rpmpd **rpmpds = desc->rpmpds; struct rpmpd *pd; unsigned int i; int ret; mutex_lock(&rpmpd_lock); for (i = 0; i < desc->num_pds; i++) { pd = rpmpds[i]; if (!pd) continue; pd->state_synced = true; if (!pd->enabled) pd->corner = 0; ret = rpmpd_aggregate_corner(pd); if (ret) dev_err(dev, "failed to sync %s: %d\n", pd->pd.name, ret); } mutex_unlock(&rpmpd_lock); } static struct platform_driver rpmpd_driver = { .driver = { .name = "qcom-rpmpd", .of_match_table = rpmpd_match_table, .suppress_bind_attrs = true, .sync_state = rpmpd_sync_state, }, .probe = rpmpd_probe, }; static int __init rpmpd_init(void) { return platform_driver_register(&rpmpd_driver); } core_initcall(rpmpd_init); MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPM Power Domain Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pmdomain/qcom/rpmpd.c
// SPDX-License-Identifier: GPL-2.0-only /* * Rockchip Generic power domain support. * * Copyright (c) 2015 ROCKCHIP, Co. Ltd. */ #include <linux/io.h> #include <linux/iopoll.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/pm_clock.h> #include <linux/pm_domain.h> #include <linux/of_address.h> #include <linux/of_clk.h> #include <linux/of_platform.h> #include <linux/clk.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <soc/rockchip/pm_domains.h> #include <dt-bindings/power/px30-power.h> #include <dt-bindings/power/rockchip,rv1126-power.h> #include <dt-bindings/power/rk3036-power.h> #include <dt-bindings/power/rk3066-power.h> #include <dt-bindings/power/rk3128-power.h> #include <dt-bindings/power/rk3188-power.h> #include <dt-bindings/power/rk3228-power.h> #include <dt-bindings/power/rk3288-power.h> #include <dt-bindings/power/rk3328-power.h> #include <dt-bindings/power/rk3366-power.h> #include <dt-bindings/power/rk3368-power.h> #include <dt-bindings/power/rk3399-power.h> #include <dt-bindings/power/rk3568-power.h> #include <dt-bindings/power/rk3588-power.h> struct rockchip_domain_info { const char *name; int pwr_mask; int status_mask; int req_mask; int idle_mask; int ack_mask; bool active_wakeup; int pwr_w_mask; int req_w_mask; int mem_status_mask; int repair_status_mask; u32 pwr_offset; u32 mem_offset; u32 req_offset; }; struct rockchip_pmu_info { u32 pwr_offset; u32 status_offset; u32 req_offset; u32 idle_offset; u32 ack_offset; u32 mem_pwr_offset; u32 chain_status_offset; u32 mem_status_offset; u32 repair_status_offset; u32 core_pwrcnt_offset; u32 gpu_pwrcnt_offset; unsigned int core_power_transition_time; unsigned int gpu_power_transition_time; int num_domains; const struct rockchip_domain_info *domain_info; }; #define MAX_QOS_REGS_NUM 5 #define QOS_PRIORITY 0x08 #define QOS_MODE 0x0c #define QOS_BANDWIDTH 0x10 #define QOS_SATURATION 0x14 #define QOS_EXTCONTROL 0x18 struct rockchip_pm_domain { struct generic_pm_domain genpd; const struct rockchip_domain_info *info; struct rockchip_pmu *pmu; int num_qos; struct regmap **qos_regmap; u32 *qos_save_regs[MAX_QOS_REGS_NUM]; int num_clks; struct clk_bulk_data *clks; }; struct rockchip_pmu { struct device *dev; struct regmap *regmap; const struct rockchip_pmu_info *info; struct mutex mutex; /* mutex lock for pmu */ struct genpd_onecell_data genpd_data; struct generic_pm_domain *domains[]; }; #define to_rockchip_pd(gpd) container_of(gpd, struct rockchip_pm_domain, genpd) #define DOMAIN(_name, pwr, status, req, idle, ack, wakeup) \ { \ .name = _name, \ .pwr_mask = (pwr), \ .status_mask = (status), \ .req_mask = (req), \ .idle_mask = (idle), \ .ack_mask = (ack), \ .active_wakeup = (wakeup), \ } #define DOMAIN_M(_name, pwr, status, req, idle, ack, wakeup) \ { \ .name = _name, \ .pwr_w_mask = (pwr) << 16, \ .pwr_mask = (pwr), \ .status_mask = (status), \ .req_w_mask = (req) << 16, \ .req_mask = (req), \ .idle_mask = (idle), \ .ack_mask = (ack), \ .active_wakeup = wakeup, \ } #define DOMAIN_M_O_R(_name, p_offset, pwr, status, m_offset, m_status, r_status, r_offset, req, idle, ack, wakeup) \ { \ .name = _name, \ .pwr_offset = p_offset, \ .pwr_w_mask = (pwr) << 16, \ .pwr_mask = (pwr), \ .status_mask = (status), \ .mem_offset = m_offset, \ .mem_status_mask = (m_status), \ .repair_status_mask = (r_status), \ .req_offset = r_offset, \ .req_w_mask = (req) << 16, \ .req_mask = (req), \ .idle_mask = (idle), \ .ack_mask = (ack), \ .active_wakeup = wakeup, \ } #define DOMAIN_RK3036(_name, req, ack, idle, wakeup) \ { \ .name = _name, \ .req_mask = (req), \ .req_w_mask = (req) << 16, \ .ack_mask = (ack), \ .idle_mask = (idle), \ .active_wakeup = wakeup, \ } #define DOMAIN_PX30(name, pwr, status, req, wakeup) \ DOMAIN_M(name, pwr, status, req, (req) << 16, req, wakeup) #define DOMAIN_RV1126(name, pwr, req, idle, wakeup) \ DOMAIN_M(name, pwr, pwr, req, idle, idle, wakeup) #define DOMAIN_RK3288(name, pwr, status, req, wakeup) \ DOMAIN(name, pwr, status, req, req, (req) << 16, wakeup) #define DOMAIN_RK3328(name, pwr, status, req, wakeup) \ DOMAIN_M(name, pwr, pwr, req, (req) << 10, req, wakeup) #define DOMAIN_RK3368(name, pwr, status, req, wakeup) \ DOMAIN(name, pwr, status, req, (req) << 16, req, wakeup) #define DOMAIN_RK3399(name, pwr, status, req, wakeup) \ DOMAIN(name, pwr, status, req, req, req, wakeup) #define DOMAIN_RK3568(name, pwr, req, wakeup) \ DOMAIN_M(name, pwr, pwr, req, req, req, wakeup) /* * Dynamic Memory Controller may need to coordinate with us -- see * rockchip_pmu_block(). * * dmc_pmu_mutex protects registration-time races, so DMC driver doesn't try to * block() while we're initializing the PMU. */ static DEFINE_MUTEX(dmc_pmu_mutex); static struct rockchip_pmu *dmc_pmu; /* * Block PMU transitions and make sure they don't interfere with ARM Trusted * Firmware operations. There are two conflicts, noted in the comments below. * * Caller must unblock PMU transitions via rockchip_pmu_unblock(). */ int rockchip_pmu_block(void) { struct rockchip_pmu *pmu; struct generic_pm_domain *genpd; struct rockchip_pm_domain *pd; int i, ret; mutex_lock(&dmc_pmu_mutex); /* No PMU (yet)? Then we just block rockchip_pmu_probe(). */ if (!dmc_pmu) return 0; pmu = dmc_pmu; /* * mutex blocks all idle transitions: we can't touch the * PMU_BUS_IDLE_REQ (our ".idle_offset") register while ARM Trusted * Firmware might be using it. */ mutex_lock(&pmu->mutex); /* * Power domain clocks: Per Rockchip, we *must* keep certain clocks * enabled for the duration of power-domain transitions. Most * transitions are handled by this driver, but some cases (in * particular, DRAM DVFS / memory-controller idle) must be handled by * firmware. Firmware can handle most clock management via a special * "ungate" register (PMU_CRU_GATEDIS_CON0), but unfortunately, this * doesn't handle PLLs. We can assist this transition by doing the * clock management on behalf of firmware. */ for (i = 0; i < pmu->genpd_data.num_domains; i++) { genpd = pmu->genpd_data.domains[i]; if (genpd) { pd = to_rockchip_pd(genpd); ret = clk_bulk_enable(pd->num_clks, pd->clks); if (ret < 0) { dev_err(pmu->dev, "failed to enable clks for domain '%s': %d\n", genpd->name, ret); goto err; } } } return 0; err: for (i = i - 1; i >= 0; i--) { genpd = pmu->genpd_data.domains[i]; if (genpd) { pd = to_rockchip_pd(genpd); clk_bulk_disable(pd->num_clks, pd->clks); } } mutex_unlock(&pmu->mutex); mutex_unlock(&dmc_pmu_mutex); return ret; } EXPORT_SYMBOL_GPL(rockchip_pmu_block); /* Unblock PMU transitions. */ void rockchip_pmu_unblock(void) { struct rockchip_pmu *pmu; struct generic_pm_domain *genpd; struct rockchip_pm_domain *pd; int i; if (dmc_pmu) { pmu = dmc_pmu; for (i = 0; i < pmu->genpd_data.num_domains; i++) { genpd = pmu->genpd_data.domains[i]; if (genpd) { pd = to_rockchip_pd(genpd); clk_bulk_disable(pd->num_clks, pd->clks); } } mutex_unlock(&pmu->mutex); } mutex_unlock(&dmc_pmu_mutex); } EXPORT_SYMBOL_GPL(rockchip_pmu_unblock); #define DOMAIN_RK3588(name, p_offset, pwr, status, m_offset, m_status, r_status, r_offset, req, idle, wakeup) \ DOMAIN_M_O_R(name, p_offset, pwr, status, m_offset, m_status, r_status, r_offset, req, idle, idle, wakeup) static bool rockchip_pmu_domain_is_idle(struct rockchip_pm_domain *pd) { struct rockchip_pmu *pmu = pd->pmu; const struct rockchip_domain_info *pd_info = pd->info; unsigned int val; regmap_read(pmu->regmap, pmu->info->idle_offset, &val); return (val & pd_info->idle_mask) == pd_info->idle_mask; } static unsigned int rockchip_pmu_read_ack(struct rockchip_pmu *pmu) { unsigned int val; regmap_read(pmu->regmap, pmu->info->ack_offset, &val); return val; } static int rockchip_pmu_set_idle_request(struct rockchip_pm_domain *pd, bool idle) { const struct rockchip_domain_info *pd_info = pd->info; struct generic_pm_domain *genpd = &pd->genpd; struct rockchip_pmu *pmu = pd->pmu; u32 pd_req_offset = pd_info->req_offset; unsigned int target_ack; unsigned int val; bool is_idle; int ret; if (pd_info->req_mask == 0) return 0; else if (pd_info->req_w_mask) regmap_write(pmu->regmap, pmu->info->req_offset + pd_req_offset, idle ? (pd_info->req_mask | pd_info->req_w_mask) : pd_info->req_w_mask); else regmap_update_bits(pmu->regmap, pmu->info->req_offset + pd_req_offset, pd_info->req_mask, idle ? -1U : 0); wmb(); /* Wait util idle_ack = 1 */ target_ack = idle ? pd_info->ack_mask : 0; ret = readx_poll_timeout_atomic(rockchip_pmu_read_ack, pmu, val, (val & pd_info->ack_mask) == target_ack, 0, 10000); if (ret) { dev_err(pmu->dev, "failed to get ack on domain '%s', val=0x%x\n", genpd->name, val); return ret; } ret = readx_poll_timeout_atomic(rockchip_pmu_domain_is_idle, pd, is_idle, is_idle == idle, 0, 10000); if (ret) { dev_err(pmu->dev, "failed to set idle on domain '%s', val=%d\n", genpd->name, is_idle); return ret; } return 0; } static int rockchip_pmu_save_qos(struct rockchip_pm_domain *pd) { int i; for (i = 0; i < pd->num_qos; i++) { regmap_read(pd->qos_regmap[i], QOS_PRIORITY, &pd->qos_save_regs[0][i]); regmap_read(pd->qos_regmap[i], QOS_MODE, &pd->qos_save_regs[1][i]); regmap_read(pd->qos_regmap[i], QOS_BANDWIDTH, &pd->qos_save_regs[2][i]); regmap_read(pd->qos_regmap[i], QOS_SATURATION, &pd->qos_save_regs[3][i]); regmap_read(pd->qos_regmap[i], QOS_EXTCONTROL, &pd->qos_save_regs[4][i]); } return 0; } static int rockchip_pmu_restore_qos(struct rockchip_pm_domain *pd) { int i; for (i = 0; i < pd->num_qos; i++) { regmap_write(pd->qos_regmap[i], QOS_PRIORITY, pd->qos_save_regs[0][i]); regmap_write(pd->qos_regmap[i], QOS_MODE, pd->qos_save_regs[1][i]); regmap_write(pd->qos_regmap[i], QOS_BANDWIDTH, pd->qos_save_regs[2][i]); regmap_write(pd->qos_regmap[i], QOS_SATURATION, pd->qos_save_regs[3][i]); regmap_write(pd->qos_regmap[i], QOS_EXTCONTROL, pd->qos_save_regs[4][i]); } return 0; } static bool rockchip_pmu_domain_is_on(struct rockchip_pm_domain *pd) { struct rockchip_pmu *pmu = pd->pmu; unsigned int val; if (pd->info->repair_status_mask) { regmap_read(pmu->regmap, pmu->info->repair_status_offset, &val); /* 1'b1: power on, 1'b0: power off */ return val & pd->info->repair_status_mask; } /* check idle status for idle-only domains */ if (pd->info->status_mask == 0) return !rockchip_pmu_domain_is_idle(pd); regmap_read(pmu->regmap, pmu->info->status_offset, &val); /* 1'b0: power on, 1'b1: power off */ return !(val & pd->info->status_mask); } static bool rockchip_pmu_domain_is_mem_on(struct rockchip_pm_domain *pd) { struct rockchip_pmu *pmu = pd->pmu; unsigned int val; regmap_read(pmu->regmap, pmu->info->mem_status_offset + pd->info->mem_offset, &val); /* 1'b0: power on, 1'b1: power off */ return !(val & pd->info->mem_status_mask); } static bool rockchip_pmu_domain_is_chain_on(struct rockchip_pm_domain *pd) { struct rockchip_pmu *pmu = pd->pmu; unsigned int val; regmap_read(pmu->regmap, pmu->info->chain_status_offset + pd->info->mem_offset, &val); /* 1'b1: power on, 1'b0: power off */ return val & pd->info->mem_status_mask; } static int rockchip_pmu_domain_mem_reset(struct rockchip_pm_domain *pd) { struct rockchip_pmu *pmu = pd->pmu; struct generic_pm_domain *genpd = &pd->genpd; bool is_on; int ret = 0; ret = readx_poll_timeout_atomic(rockchip_pmu_domain_is_chain_on, pd, is_on, is_on == true, 0, 10000); if (ret) { dev_err(pmu->dev, "failed to get chain status '%s', target_on=1, val=%d\n", genpd->name, is_on); goto error; } udelay(20); regmap_write(pmu->regmap, pmu->info->mem_pwr_offset + pd->info->pwr_offset, (pd->info->pwr_mask | pd->info->pwr_w_mask)); wmb(); ret = readx_poll_timeout_atomic(rockchip_pmu_domain_is_mem_on, pd, is_on, is_on == false, 0, 10000); if (ret) { dev_err(pmu->dev, "failed to get mem status '%s', target_on=0, val=%d\n", genpd->name, is_on); goto error; } regmap_write(pmu->regmap, pmu->info->mem_pwr_offset + pd->info->pwr_offset, pd->info->pwr_w_mask); wmb(); ret = readx_poll_timeout_atomic(rockchip_pmu_domain_is_mem_on, pd, is_on, is_on == true, 0, 10000); if (ret) { dev_err(pmu->dev, "failed to get mem status '%s', target_on=1, val=%d\n", genpd->name, is_on); } error: return ret; } static void rockchip_do_pmu_set_power_domain(struct rockchip_pm_domain *pd, bool on) { struct rockchip_pmu *pmu = pd->pmu; struct generic_pm_domain *genpd = &pd->genpd; u32 pd_pwr_offset = pd->info->pwr_offset; bool is_on, is_mem_on = false; if (pd->info->pwr_mask == 0) return; if (on && pd->info->mem_status_mask) is_mem_on = rockchip_pmu_domain_is_mem_on(pd); if (pd->info->pwr_w_mask) regmap_write(pmu->regmap, pmu->info->pwr_offset + pd_pwr_offset, on ? pd->info->pwr_w_mask : (pd->info->pwr_mask | pd->info->pwr_w_mask)); else regmap_update_bits(pmu->regmap, pmu->info->pwr_offset + pd_pwr_offset, pd->info->pwr_mask, on ? 0 : -1U); wmb(); if (is_mem_on && rockchip_pmu_domain_mem_reset(pd)) return; if (readx_poll_timeout_atomic(rockchip_pmu_domain_is_on, pd, is_on, is_on == on, 0, 10000)) { dev_err(pmu->dev, "failed to set domain '%s', val=%d\n", genpd->name, is_on); return; } } static int rockchip_pd_power(struct rockchip_pm_domain *pd, bool power_on) { struct rockchip_pmu *pmu = pd->pmu; int ret; mutex_lock(&pmu->mutex); if (rockchip_pmu_domain_is_on(pd) != power_on) { ret = clk_bulk_enable(pd->num_clks, pd->clks); if (ret < 0) { dev_err(pmu->dev, "failed to enable clocks\n"); mutex_unlock(&pmu->mutex); return ret; } if (!power_on) { rockchip_pmu_save_qos(pd); /* if powering down, idle request to NIU first */ rockchip_pmu_set_idle_request(pd, true); } rockchip_do_pmu_set_power_domain(pd, power_on); if (power_on) { /* if powering up, leave idle mode */ rockchip_pmu_set_idle_request(pd, false); rockchip_pmu_restore_qos(pd); } clk_bulk_disable(pd->num_clks, pd->clks); } mutex_unlock(&pmu->mutex); return 0; } static int rockchip_pd_power_on(struct generic_pm_domain *domain) { struct rockchip_pm_domain *pd = to_rockchip_pd(domain); return rockchip_pd_power(pd, true); } static int rockchip_pd_power_off(struct generic_pm_domain *domain) { struct rockchip_pm_domain *pd = to_rockchip_pd(domain); return rockchip_pd_power(pd, false); } static int rockchip_pd_attach_dev(struct generic_pm_domain *genpd, struct device *dev) { struct clk *clk; int i; int error; dev_dbg(dev, "attaching to power domain '%s'\n", genpd->name); error = pm_clk_create(dev); if (error) { dev_err(dev, "pm_clk_create failed %d\n", error); return error; } i = 0; while ((clk = of_clk_get(dev->of_node, i++)) && !IS_ERR(clk)) { dev_dbg(dev, "adding clock '%pC' to list of PM clocks\n", clk); error = pm_clk_add_clk(dev, clk); if (error) { dev_err(dev, "pm_clk_add_clk failed %d\n", error); clk_put(clk); pm_clk_destroy(dev); return error; } } return 0; } static void rockchip_pd_detach_dev(struct generic_pm_domain *genpd, struct device *dev) { dev_dbg(dev, "detaching from power domain '%s'\n", genpd->name); pm_clk_destroy(dev); } static int rockchip_pm_add_one_domain(struct rockchip_pmu *pmu, struct device_node *node) { const struct rockchip_domain_info *pd_info; struct rockchip_pm_domain *pd; struct device_node *qos_node; int i, j; u32 id; int error; error = of_property_read_u32(node, "reg", &id); if (error) { dev_err(pmu->dev, "%pOFn: failed to retrieve domain id (reg): %d\n", node, error); return -EINVAL; } if (id >= pmu->info->num_domains) { dev_err(pmu->dev, "%pOFn: invalid domain id %d\n", node, id); return -EINVAL; } /* RK3588 has domains with two parents (RKVDEC0/RKVDEC1) */ if (pmu->genpd_data.domains[id]) return 0; pd_info = &pmu->info->domain_info[id]; if (!pd_info) { dev_err(pmu->dev, "%pOFn: undefined domain id %d\n", node, id); return -EINVAL; } pd = devm_kzalloc(pmu->dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pd->info = pd_info; pd->pmu = pmu; pd->num_clks = of_clk_get_parent_count(node); if (pd->num_clks > 0) { pd->clks = devm_kcalloc(pmu->dev, pd->num_clks, sizeof(*pd->clks), GFP_KERNEL); if (!pd->clks) return -ENOMEM; } else { dev_dbg(pmu->dev, "%pOFn: doesn't have clocks: %d\n", node, pd->num_clks); pd->num_clks = 0; } for (i = 0; i < pd->num_clks; i++) { pd->clks[i].clk = of_clk_get(node, i); if (IS_ERR(pd->clks[i].clk)) { error = PTR_ERR(pd->clks[i].clk); dev_err(pmu->dev, "%pOFn: failed to get clk at index %d: %d\n", node, i, error); return error; } } error = clk_bulk_prepare(pd->num_clks, pd->clks); if (error) goto err_put_clocks; pd->num_qos = of_count_phandle_with_args(node, "pm_qos", NULL); if (pd->num_qos > 0) { pd->qos_regmap = devm_kcalloc(pmu->dev, pd->num_qos, sizeof(*pd->qos_regmap), GFP_KERNEL); if (!pd->qos_regmap) { error = -ENOMEM; goto err_unprepare_clocks; } for (j = 0; j < MAX_QOS_REGS_NUM; j++) { pd->qos_save_regs[j] = devm_kcalloc(pmu->dev, pd->num_qos, sizeof(u32), GFP_KERNEL); if (!pd->qos_save_regs[j]) { error = -ENOMEM; goto err_unprepare_clocks; } } for (j = 0; j < pd->num_qos; j++) { qos_node = of_parse_phandle(node, "pm_qos", j); if (!qos_node) { error = -ENODEV; goto err_unprepare_clocks; } pd->qos_regmap[j] = syscon_node_to_regmap(qos_node); if (IS_ERR(pd->qos_regmap[j])) { error = -ENODEV; of_node_put(qos_node); goto err_unprepare_clocks; } of_node_put(qos_node); } } if (pd->info->name) pd->genpd.name = pd->info->name; else pd->genpd.name = kbasename(node->full_name); pd->genpd.power_off = rockchip_pd_power_off; pd->genpd.power_on = rockchip_pd_power_on; pd->genpd.attach_dev = rockchip_pd_attach_dev; pd->genpd.detach_dev = rockchip_pd_detach_dev; pd->genpd.flags = GENPD_FLAG_PM_CLK; if (pd_info->active_wakeup) pd->genpd.flags |= GENPD_FLAG_ACTIVE_WAKEUP; pm_genpd_init(&pd->genpd, NULL, !rockchip_pmu_domain_is_on(pd) || (pd->info->mem_status_mask && !rockchip_pmu_domain_is_mem_on(pd))); pmu->genpd_data.domains[id] = &pd->genpd; return 0; err_unprepare_clocks: clk_bulk_unprepare(pd->num_clks, pd->clks); err_put_clocks: clk_bulk_put(pd->num_clks, pd->clks); return error; } static void rockchip_pm_remove_one_domain(struct rockchip_pm_domain *pd) { int ret; /* * We're in the error cleanup already, so we only complain, * but won't emit another error on top of the original one. */ ret = pm_genpd_remove(&pd->genpd); if (ret < 0) dev_err(pd->pmu->dev, "failed to remove domain '%s' : %d - state may be inconsistent\n", pd->genpd.name, ret); clk_bulk_unprepare(pd->num_clks, pd->clks); clk_bulk_put(pd->num_clks, pd->clks); /* protect the zeroing of pm->num_clks */ mutex_lock(&pd->pmu->mutex); pd->num_clks = 0; mutex_unlock(&pd->pmu->mutex); /* devm will free our memory */ } static void rockchip_pm_domain_cleanup(struct rockchip_pmu *pmu) { struct generic_pm_domain *genpd; struct rockchip_pm_domain *pd; int i; for (i = 0; i < pmu->genpd_data.num_domains; i++) { genpd = pmu->genpd_data.domains[i]; if (genpd) { pd = to_rockchip_pd(genpd); rockchip_pm_remove_one_domain(pd); } } /* devm will free our memory */ } static void rockchip_configure_pd_cnt(struct rockchip_pmu *pmu, u32 domain_reg_offset, unsigned int count) { /* First configure domain power down transition count ... */ regmap_write(pmu->regmap, domain_reg_offset, count); /* ... and then power up count. */ regmap_write(pmu->regmap, domain_reg_offset + 4, count); } static int rockchip_pm_add_subdomain(struct rockchip_pmu *pmu, struct device_node *parent) { struct device_node *np; struct generic_pm_domain *child_domain, *parent_domain; int error; for_each_child_of_node(parent, np) { u32 idx; error = of_property_read_u32(parent, "reg", &idx); if (error) { dev_err(pmu->dev, "%pOFn: failed to retrieve domain id (reg): %d\n", parent, error); goto err_out; } parent_domain = pmu->genpd_data.domains[idx]; error = rockchip_pm_add_one_domain(pmu, np); if (error) { dev_err(pmu->dev, "failed to handle node %pOFn: %d\n", np, error); goto err_out; } error = of_property_read_u32(np, "reg", &idx); if (error) { dev_err(pmu->dev, "%pOFn: failed to retrieve domain id (reg): %d\n", np, error); goto err_out; } child_domain = pmu->genpd_data.domains[idx]; error = pm_genpd_add_subdomain(parent_domain, child_domain); if (error) { dev_err(pmu->dev, "%s failed to add subdomain %s: %d\n", parent_domain->name, child_domain->name, error); goto err_out; } else { dev_dbg(pmu->dev, "%s add subdomain: %s\n", parent_domain->name, child_domain->name); } rockchip_pm_add_subdomain(pmu, np); } return 0; err_out: of_node_put(np); return error; } static int rockchip_pm_domain_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct device_node *node; struct device *parent; struct rockchip_pmu *pmu; const struct of_device_id *match; const struct rockchip_pmu_info *pmu_info; int error; if (!np) { dev_err(dev, "device tree node not found\n"); return -ENODEV; } match = of_match_device(dev->driver->of_match_table, dev); if (!match || !match->data) { dev_err(dev, "missing pmu data\n"); return -EINVAL; } pmu_info = match->data; pmu = devm_kzalloc(dev, struct_size(pmu, domains, pmu_info->num_domains), GFP_KERNEL); if (!pmu) return -ENOMEM; pmu->dev = &pdev->dev; mutex_init(&pmu->mutex); pmu->info = pmu_info; pmu->genpd_data.domains = pmu->domains; pmu->genpd_data.num_domains = pmu_info->num_domains; parent = dev->parent; if (!parent) { dev_err(dev, "no parent for syscon devices\n"); return -ENODEV; } pmu->regmap = syscon_node_to_regmap(parent->of_node); if (IS_ERR(pmu->regmap)) { dev_err(dev, "no regmap available\n"); return PTR_ERR(pmu->regmap); } /* * Configure power up and down transition delays for CORE * and GPU domains. */ if (pmu_info->core_power_transition_time) rockchip_configure_pd_cnt(pmu, pmu_info->core_pwrcnt_offset, pmu_info->core_power_transition_time); if (pmu_info->gpu_pwrcnt_offset) rockchip_configure_pd_cnt(pmu, pmu_info->gpu_pwrcnt_offset, pmu_info->gpu_power_transition_time); error = -ENODEV; /* * Prevent any rockchip_pmu_block() from racing with the remainder of * setup (clocks, register initialization). */ mutex_lock(&dmc_pmu_mutex); for_each_available_child_of_node(np, node) { error = rockchip_pm_add_one_domain(pmu, node); if (error) { dev_err(dev, "failed to handle node %pOFn: %d\n", node, error); of_node_put(node); goto err_out; } error = rockchip_pm_add_subdomain(pmu, node); if (error < 0) { dev_err(dev, "failed to handle subdomain node %pOFn: %d\n", node, error); of_node_put(node); goto err_out; } } if (error) { dev_dbg(dev, "no power domains defined\n"); goto err_out; } error = of_genpd_add_provider_onecell(np, &pmu->genpd_data); if (error) { dev_err(dev, "failed to add provider: %d\n", error); goto err_out; } /* We only expect one PMU. */ if (!WARN_ON_ONCE(dmc_pmu)) dmc_pmu = pmu; mutex_unlock(&dmc_pmu_mutex); return 0; err_out: rockchip_pm_domain_cleanup(pmu); mutex_unlock(&dmc_pmu_mutex); return error; } static const struct rockchip_domain_info px30_pm_domains[] = { [PX30_PD_USB] = DOMAIN_PX30("usb", BIT(5), BIT(5), BIT(10), false), [PX30_PD_SDCARD] = DOMAIN_PX30("sdcard", BIT(8), BIT(8), BIT(9), false), [PX30_PD_GMAC] = DOMAIN_PX30("gmac", BIT(10), BIT(10), BIT(6), false), [PX30_PD_MMC_NAND] = DOMAIN_PX30("mmc_nand", BIT(11), BIT(11), BIT(5), false), [PX30_PD_VPU] = DOMAIN_PX30("vpu", BIT(12), BIT(12), BIT(14), false), [PX30_PD_VO] = DOMAIN_PX30("vo", BIT(13), BIT(13), BIT(7), false), [PX30_PD_VI] = DOMAIN_PX30("vi", BIT(14), BIT(14), BIT(8), false), [PX30_PD_GPU] = DOMAIN_PX30("gpu", BIT(15), BIT(15), BIT(2), false), }; static const struct rockchip_domain_info rv1126_pm_domains[] = { [RV1126_PD_VEPU] = DOMAIN_RV1126("vepu", BIT(2), BIT(9), BIT(9), false), [RV1126_PD_VI] = DOMAIN_RV1126("vi", BIT(4), BIT(6), BIT(6), false), [RV1126_PD_VO] = DOMAIN_RV1126("vo", BIT(5), BIT(7), BIT(7), false), [RV1126_PD_ISPP] = DOMAIN_RV1126("ispp", BIT(1), BIT(8), BIT(8), false), [RV1126_PD_VDPU] = DOMAIN_RV1126("vdpu", BIT(3), BIT(10), BIT(10), false), [RV1126_PD_NVM] = DOMAIN_RV1126("nvm", BIT(7), BIT(11), BIT(11), false), [RV1126_PD_SDIO] = DOMAIN_RV1126("sdio", BIT(8), BIT(13), BIT(13), false), [RV1126_PD_USB] = DOMAIN_RV1126("usb", BIT(9), BIT(15), BIT(15), false), }; static const struct rockchip_domain_info rk3036_pm_domains[] = { [RK3036_PD_MSCH] = DOMAIN_RK3036("msch", BIT(14), BIT(23), BIT(30), true), [RK3036_PD_CORE] = DOMAIN_RK3036("core", BIT(13), BIT(17), BIT(24), false), [RK3036_PD_PERI] = DOMAIN_RK3036("peri", BIT(12), BIT(18), BIT(25), false), [RK3036_PD_VIO] = DOMAIN_RK3036("vio", BIT(11), BIT(19), BIT(26), false), [RK3036_PD_VPU] = DOMAIN_RK3036("vpu", BIT(10), BIT(20), BIT(27), false), [RK3036_PD_GPU] = DOMAIN_RK3036("gpu", BIT(9), BIT(21), BIT(28), false), [RK3036_PD_SYS] = DOMAIN_RK3036("sys", BIT(8), BIT(22), BIT(29), false), }; static const struct rockchip_domain_info rk3066_pm_domains[] = { [RK3066_PD_GPU] = DOMAIN("gpu", BIT(9), BIT(9), BIT(3), BIT(24), BIT(29), false), [RK3066_PD_VIDEO] = DOMAIN("video", BIT(8), BIT(8), BIT(4), BIT(23), BIT(28), false), [RK3066_PD_VIO] = DOMAIN("vio", BIT(7), BIT(7), BIT(5), BIT(22), BIT(27), false), [RK3066_PD_PERI] = DOMAIN("peri", BIT(6), BIT(6), BIT(2), BIT(25), BIT(30), false), [RK3066_PD_CPU] = DOMAIN("cpu", 0, BIT(5), BIT(1), BIT(26), BIT(31), false), }; static const struct rockchip_domain_info rk3128_pm_domains[] = { [RK3128_PD_CORE] = DOMAIN_RK3288("core", BIT(0), BIT(0), BIT(4), false), [RK3128_PD_MSCH] = DOMAIN_RK3288("msch", 0, 0, BIT(6), true), [RK3128_PD_VIO] = DOMAIN_RK3288("vio", BIT(3), BIT(3), BIT(2), false), [RK3128_PD_VIDEO] = DOMAIN_RK3288("video", BIT(2), BIT(2), BIT(1), false), [RK3128_PD_GPU] = DOMAIN_RK3288("gpu", BIT(1), BIT(1), BIT(3), false), }; static const struct rockchip_domain_info rk3188_pm_domains[] = { [RK3188_PD_GPU] = DOMAIN("gpu", BIT(9), BIT(9), BIT(3), BIT(24), BIT(29), false), [RK3188_PD_VIDEO] = DOMAIN("video", BIT(8), BIT(8), BIT(4), BIT(23), BIT(28), false), [RK3188_PD_VIO] = DOMAIN("vio", BIT(7), BIT(7), BIT(5), BIT(22), BIT(27), false), [RK3188_PD_PERI] = DOMAIN("peri", BIT(6), BIT(6), BIT(2), BIT(25), BIT(30), false), [RK3188_PD_CPU] = DOMAIN("cpu", BIT(5), BIT(5), BIT(1), BIT(26), BIT(31), false), }; static const struct rockchip_domain_info rk3228_pm_domains[] = { [RK3228_PD_CORE] = DOMAIN_RK3036("core", BIT(0), BIT(0), BIT(16), true), [RK3228_PD_MSCH] = DOMAIN_RK3036("msch", BIT(1), BIT(1), BIT(17), true), [RK3228_PD_BUS] = DOMAIN_RK3036("bus", BIT(2), BIT(2), BIT(18), true), [RK3228_PD_SYS] = DOMAIN_RK3036("sys", BIT(3), BIT(3), BIT(19), true), [RK3228_PD_VIO] = DOMAIN_RK3036("vio", BIT(4), BIT(4), BIT(20), false), [RK3228_PD_VOP] = DOMAIN_RK3036("vop", BIT(5), BIT(5), BIT(21), false), [RK3228_PD_VPU] = DOMAIN_RK3036("vpu", BIT(6), BIT(6), BIT(22), false), [RK3228_PD_RKVDEC] = DOMAIN_RK3036("vdec", BIT(7), BIT(7), BIT(23), false), [RK3228_PD_GPU] = DOMAIN_RK3036("gpu", BIT(8), BIT(8), BIT(24), false), [RK3228_PD_PERI] = DOMAIN_RK3036("peri", BIT(9), BIT(9), BIT(25), true), [RK3228_PD_GMAC] = DOMAIN_RK3036("gmac", BIT(10), BIT(10), BIT(26), false), }; static const struct rockchip_domain_info rk3288_pm_domains[] = { [RK3288_PD_VIO] = DOMAIN_RK3288("vio", BIT(7), BIT(7), BIT(4), false), [RK3288_PD_HEVC] = DOMAIN_RK3288("hevc", BIT(14), BIT(10), BIT(9), false), [RK3288_PD_VIDEO] = DOMAIN_RK3288("video", BIT(8), BIT(8), BIT(3), false), [RK3288_PD_GPU] = DOMAIN_RK3288("gpu", BIT(9), BIT(9), BIT(2), false), }; static const struct rockchip_domain_info rk3328_pm_domains[] = { [RK3328_PD_CORE] = DOMAIN_RK3328("core", 0, BIT(0), BIT(0), false), [RK3328_PD_GPU] = DOMAIN_RK3328("gpu", 0, BIT(1), BIT(1), false), [RK3328_PD_BUS] = DOMAIN_RK3328("bus", 0, BIT(2), BIT(2), true), [RK3328_PD_MSCH] = DOMAIN_RK3328("msch", 0, BIT(3), BIT(3), true), [RK3328_PD_PERI] = DOMAIN_RK3328("peri", 0, BIT(4), BIT(4), true), [RK3328_PD_VIDEO] = DOMAIN_RK3328("video", 0, BIT(5), BIT(5), false), [RK3328_PD_HEVC] = DOMAIN_RK3328("hevc", 0, BIT(6), BIT(6), false), [RK3328_PD_VIO] = DOMAIN_RK3328("vio", 0, BIT(8), BIT(8), false), [RK3328_PD_VPU] = DOMAIN_RK3328("vpu", 0, BIT(9), BIT(9), false), }; static const struct rockchip_domain_info rk3366_pm_domains[] = { [RK3366_PD_PERI] = DOMAIN_RK3368("peri", BIT(10), BIT(10), BIT(6), true), [RK3366_PD_VIO] = DOMAIN_RK3368("vio", BIT(14), BIT(14), BIT(8), false), [RK3366_PD_VIDEO] = DOMAIN_RK3368("video", BIT(13), BIT(13), BIT(7), false), [RK3366_PD_RKVDEC] = DOMAIN_RK3368("vdec", BIT(11), BIT(11), BIT(7), false), [RK3366_PD_WIFIBT] = DOMAIN_RK3368("wifibt", BIT(8), BIT(8), BIT(9), false), [RK3366_PD_VPU] = DOMAIN_RK3368("vpu", BIT(12), BIT(12), BIT(7), false), [RK3366_PD_GPU] = DOMAIN_RK3368("gpu", BIT(15), BIT(15), BIT(2), false), }; static const struct rockchip_domain_info rk3368_pm_domains[] = { [RK3368_PD_PERI] = DOMAIN_RK3368("peri", BIT(13), BIT(12), BIT(6), true), [RK3368_PD_VIO] = DOMAIN_RK3368("vio", BIT(15), BIT(14), BIT(8), false), [RK3368_PD_VIDEO] = DOMAIN_RK3368("video", BIT(14), BIT(13), BIT(7), false), [RK3368_PD_GPU_0] = DOMAIN_RK3368("gpu_0", BIT(16), BIT(15), BIT(2), false), [RK3368_PD_GPU_1] = DOMAIN_RK3368("gpu_1", BIT(17), BIT(16), BIT(2), false), }; static const struct rockchip_domain_info rk3399_pm_domains[] = { [RK3399_PD_TCPD0] = DOMAIN_RK3399("tcpd0", BIT(8), BIT(8), 0, false), [RK3399_PD_TCPD1] = DOMAIN_RK3399("tcpd1", BIT(9), BIT(9), 0, false), [RK3399_PD_CCI] = DOMAIN_RK3399("cci", BIT(10), BIT(10), 0, true), [RK3399_PD_CCI0] = DOMAIN_RK3399("cci0", 0, 0, BIT(15), true), [RK3399_PD_CCI1] = DOMAIN_RK3399("cci1", 0, 0, BIT(16), true), [RK3399_PD_PERILP] = DOMAIN_RK3399("perilp", BIT(11), BIT(11), BIT(1), true), [RK3399_PD_PERIHP] = DOMAIN_RK3399("perihp", BIT(12), BIT(12), BIT(2), true), [RK3399_PD_CENTER] = DOMAIN_RK3399("center", BIT(13), BIT(13), BIT(14), true), [RK3399_PD_VIO] = DOMAIN_RK3399("vio", BIT(14), BIT(14), BIT(17), false), [RK3399_PD_GPU] = DOMAIN_RK3399("gpu", BIT(15), BIT(15), BIT(0), false), [RK3399_PD_VCODEC] = DOMAIN_RK3399("vcodec", BIT(16), BIT(16), BIT(3), false), [RK3399_PD_VDU] = DOMAIN_RK3399("vdu", BIT(17), BIT(17), BIT(4), false), [RK3399_PD_RGA] = DOMAIN_RK3399("rga", BIT(18), BIT(18), BIT(5), false), [RK3399_PD_IEP] = DOMAIN_RK3399("iep", BIT(19), BIT(19), BIT(6), false), [RK3399_PD_VO] = DOMAIN_RK3399("vo", BIT(20), BIT(20), 0, false), [RK3399_PD_VOPB] = DOMAIN_RK3399("vopb", 0, 0, BIT(7), false), [RK3399_PD_VOPL] = DOMAIN_RK3399("vopl", 0, 0, BIT(8), false), [RK3399_PD_ISP0] = DOMAIN_RK3399("isp0", BIT(22), BIT(22), BIT(9), false), [RK3399_PD_ISP1] = DOMAIN_RK3399("isp1", BIT(23), BIT(23), BIT(10), false), [RK3399_PD_HDCP] = DOMAIN_RK3399("hdcp", BIT(24), BIT(24), BIT(11), false), [RK3399_PD_GMAC] = DOMAIN_RK3399("gmac", BIT(25), BIT(25), BIT(23), true), [RK3399_PD_EMMC] = DOMAIN_RK3399("emmc", BIT(26), BIT(26), BIT(24), true), [RK3399_PD_USB3] = DOMAIN_RK3399("usb3", BIT(27), BIT(27), BIT(12), true), [RK3399_PD_EDP] = DOMAIN_RK3399("edp", BIT(28), BIT(28), BIT(22), false), [RK3399_PD_GIC] = DOMAIN_RK3399("gic", BIT(29), BIT(29), BIT(27), true), [RK3399_PD_SD] = DOMAIN_RK3399("sd", BIT(30), BIT(30), BIT(28), true), [RK3399_PD_SDIOAUDIO] = DOMAIN_RK3399("sdioaudio", BIT(31), BIT(31), BIT(29), true), }; static const struct rockchip_domain_info rk3568_pm_domains[] = { [RK3568_PD_NPU] = DOMAIN_RK3568("npu", BIT(1), BIT(2), false), [RK3568_PD_GPU] = DOMAIN_RK3568("gpu", BIT(0), BIT(1), false), [RK3568_PD_VI] = DOMAIN_RK3568("vi", BIT(6), BIT(3), false), [RK3568_PD_VO] = DOMAIN_RK3568("vo", BIT(7), BIT(4), false), [RK3568_PD_RGA] = DOMAIN_RK3568("rga", BIT(5), BIT(5), false), [RK3568_PD_VPU] = DOMAIN_RK3568("vpu", BIT(2), BIT(6), false), [RK3568_PD_RKVDEC] = DOMAIN_RK3568("vdec", BIT(4), BIT(8), false), [RK3568_PD_RKVENC] = DOMAIN_RK3568("venc", BIT(3), BIT(7), false), [RK3568_PD_PIPE] = DOMAIN_RK3568("pipe", BIT(8), BIT(11), false), }; static const struct rockchip_domain_info rk3588_pm_domains[] = { [RK3588_PD_GPU] = DOMAIN_RK3588("gpu", 0x0, BIT(0), 0, 0x0, 0, BIT(1), 0x0, BIT(0), BIT(0), false), [RK3588_PD_NPU] = DOMAIN_RK3588("npu", 0x0, BIT(1), BIT(1), 0x0, 0, 0, 0x0, 0, 0, false), [RK3588_PD_VCODEC] = DOMAIN_RK3588("vcodec", 0x0, BIT(2), BIT(2), 0x0, 0, 0, 0x0, 0, 0, false), [RK3588_PD_NPUTOP] = DOMAIN_RK3588("nputop", 0x0, BIT(3), 0, 0x0, BIT(11), BIT(2), 0x0, BIT(1), BIT(1), false), [RK3588_PD_NPU1] = DOMAIN_RK3588("npu1", 0x0, BIT(4), 0, 0x0, BIT(12), BIT(3), 0x0, BIT(2), BIT(2), false), [RK3588_PD_NPU2] = DOMAIN_RK3588("npu2", 0x0, BIT(5), 0, 0x0, BIT(13), BIT(4), 0x0, BIT(3), BIT(3), false), [RK3588_PD_VENC0] = DOMAIN_RK3588("venc0", 0x0, BIT(6), 0, 0x0, BIT(14), BIT(5), 0x0, BIT(4), BIT(4), false), [RK3588_PD_VENC1] = DOMAIN_RK3588("venc1", 0x0, BIT(7), 0, 0x0, BIT(15), BIT(6), 0x0, BIT(5), BIT(5), false), [RK3588_PD_RKVDEC0] = DOMAIN_RK3588("rkvdec0", 0x0, BIT(8), 0, 0x0, BIT(16), BIT(7), 0x0, BIT(6), BIT(6), false), [RK3588_PD_RKVDEC1] = DOMAIN_RK3588("rkvdec1", 0x0, BIT(9), 0, 0x0, BIT(17), BIT(8), 0x0, BIT(7), BIT(7), false), [RK3588_PD_VDPU] = DOMAIN_RK3588("vdpu", 0x0, BIT(10), 0, 0x0, BIT(18), BIT(9), 0x0, BIT(8), BIT(8), false), [RK3588_PD_RGA30] = DOMAIN_RK3588("rga30", 0x0, BIT(11), 0, 0x0, BIT(19), BIT(10), 0x0, 0, 0, false), [RK3588_PD_AV1] = DOMAIN_RK3588("av1", 0x0, BIT(12), 0, 0x0, BIT(20), BIT(11), 0x0, BIT(9), BIT(9), false), [RK3588_PD_VI] = DOMAIN_RK3588("vi", 0x0, BIT(13), 0, 0x0, BIT(21), BIT(12), 0x0, BIT(10), BIT(10), false), [RK3588_PD_FEC] = DOMAIN_RK3588("fec", 0x0, BIT(14), 0, 0x0, BIT(22), BIT(13), 0x0, 0, 0, false), [RK3588_PD_ISP1] = DOMAIN_RK3588("isp1", 0x0, BIT(15), 0, 0x0, BIT(23), BIT(14), 0x0, BIT(11), BIT(11), false), [RK3588_PD_RGA31] = DOMAIN_RK3588("rga31", 0x4, BIT(0), 0, 0x0, BIT(24), BIT(15), 0x0, BIT(12), BIT(12), false), [RK3588_PD_VOP] = DOMAIN_RK3588("vop", 0x4, BIT(1), 0, 0x0, BIT(25), BIT(16), 0x0, BIT(13) | BIT(14), BIT(13) | BIT(14), false), [RK3588_PD_VO0] = DOMAIN_RK3588("vo0", 0x4, BIT(2), 0, 0x0, BIT(26), BIT(17), 0x0, BIT(15), BIT(15), false), [RK3588_PD_VO1] = DOMAIN_RK3588("vo1", 0x4, BIT(3), 0, 0x0, BIT(27), BIT(18), 0x4, BIT(0), BIT(16), false), [RK3588_PD_AUDIO] = DOMAIN_RK3588("audio", 0x4, BIT(4), 0, 0x0, BIT(28), BIT(19), 0x4, BIT(1), BIT(17), false), [RK3588_PD_PHP] = DOMAIN_RK3588("php", 0x4, BIT(5), 0, 0x0, BIT(29), BIT(20), 0x4, BIT(5), BIT(21), false), [RK3588_PD_GMAC] = DOMAIN_RK3588("gmac", 0x4, BIT(6), 0, 0x0, BIT(30), BIT(21), 0x0, 0, 0, false), [RK3588_PD_PCIE] = DOMAIN_RK3588("pcie", 0x4, BIT(7), 0, 0x0, BIT(31), BIT(22), 0x0, 0, 0, true), [RK3588_PD_NVM] = DOMAIN_RK3588("nvm", 0x4, BIT(8), BIT(24), 0x4, 0, 0, 0x4, BIT(2), BIT(18), false), [RK3588_PD_NVM0] = DOMAIN_RK3588("nvm0", 0x4, BIT(9), 0, 0x4, BIT(1), BIT(23), 0x0, 0, 0, false), [RK3588_PD_SDIO] = DOMAIN_RK3588("sdio", 0x4, BIT(10), 0, 0x4, BIT(2), BIT(24), 0x4, BIT(3), BIT(19), false), [RK3588_PD_USB] = DOMAIN_RK3588("usb", 0x4, BIT(11), 0, 0x4, BIT(3), BIT(25), 0x4, BIT(4), BIT(20), true), [RK3588_PD_SDMMC] = DOMAIN_RK3588("sdmmc", 0x4, BIT(13), 0, 0x4, BIT(5), BIT(26), 0x0, 0, 0, false), }; static const struct rockchip_pmu_info px30_pmu = { .pwr_offset = 0x18, .status_offset = 0x20, .req_offset = 0x64, .idle_offset = 0x6c, .ack_offset = 0x6c, .num_domains = ARRAY_SIZE(px30_pm_domains), .domain_info = px30_pm_domains, }; static const struct rockchip_pmu_info rk3036_pmu = { .req_offset = 0x148, .idle_offset = 0x14c, .ack_offset = 0x14c, .num_domains = ARRAY_SIZE(rk3036_pm_domains), .domain_info = rk3036_pm_domains, }; static const struct rockchip_pmu_info rk3066_pmu = { .pwr_offset = 0x08, .status_offset = 0x0c, .req_offset = 0x38, /* PMU_MISC_CON1 */ .idle_offset = 0x0c, .ack_offset = 0x0c, .num_domains = ARRAY_SIZE(rk3066_pm_domains), .domain_info = rk3066_pm_domains, }; static const struct rockchip_pmu_info rk3128_pmu = { .pwr_offset = 0x04, .status_offset = 0x08, .req_offset = 0x0c, .idle_offset = 0x10, .ack_offset = 0x10, .num_domains = ARRAY_SIZE(rk3128_pm_domains), .domain_info = rk3128_pm_domains, }; static const struct rockchip_pmu_info rk3188_pmu = { .pwr_offset = 0x08, .status_offset = 0x0c, .req_offset = 0x38, /* PMU_MISC_CON1 */ .idle_offset = 0x0c, .ack_offset = 0x0c, .num_domains = ARRAY_SIZE(rk3188_pm_domains), .domain_info = rk3188_pm_domains, }; static const struct rockchip_pmu_info rk3228_pmu = { .req_offset = 0x40c, .idle_offset = 0x488, .ack_offset = 0x488, .num_domains = ARRAY_SIZE(rk3228_pm_domains), .domain_info = rk3228_pm_domains, }; static const struct rockchip_pmu_info rk3288_pmu = { .pwr_offset = 0x08, .status_offset = 0x0c, .req_offset = 0x10, .idle_offset = 0x14, .ack_offset = 0x14, .core_pwrcnt_offset = 0x34, .gpu_pwrcnt_offset = 0x3c, .core_power_transition_time = 24, /* 1us */ .gpu_power_transition_time = 24, /* 1us */ .num_domains = ARRAY_SIZE(rk3288_pm_domains), .domain_info = rk3288_pm_domains, }; static const struct rockchip_pmu_info rk3328_pmu = { .req_offset = 0x414, .idle_offset = 0x484, .ack_offset = 0x484, .num_domains = ARRAY_SIZE(rk3328_pm_domains), .domain_info = rk3328_pm_domains, }; static const struct rockchip_pmu_info rk3366_pmu = { .pwr_offset = 0x0c, .status_offset = 0x10, .req_offset = 0x3c, .idle_offset = 0x40, .ack_offset = 0x40, .core_pwrcnt_offset = 0x48, .gpu_pwrcnt_offset = 0x50, .core_power_transition_time = 24, .gpu_power_transition_time = 24, .num_domains = ARRAY_SIZE(rk3366_pm_domains), .domain_info = rk3366_pm_domains, }; static const struct rockchip_pmu_info rk3368_pmu = { .pwr_offset = 0x0c, .status_offset = 0x10, .req_offset = 0x3c, .idle_offset = 0x40, .ack_offset = 0x40, .core_pwrcnt_offset = 0x48, .gpu_pwrcnt_offset = 0x50, .core_power_transition_time = 24, .gpu_power_transition_time = 24, .num_domains = ARRAY_SIZE(rk3368_pm_domains), .domain_info = rk3368_pm_domains, }; static const struct rockchip_pmu_info rk3399_pmu = { .pwr_offset = 0x14, .status_offset = 0x18, .req_offset = 0x60, .idle_offset = 0x64, .ack_offset = 0x68, /* ARM Trusted Firmware manages power transition times */ .num_domains = ARRAY_SIZE(rk3399_pm_domains), .domain_info = rk3399_pm_domains, }; static const struct rockchip_pmu_info rk3568_pmu = { .pwr_offset = 0xa0, .status_offset = 0x98, .req_offset = 0x50, .idle_offset = 0x68, .ack_offset = 0x60, .num_domains = ARRAY_SIZE(rk3568_pm_domains), .domain_info = rk3568_pm_domains, }; static const struct rockchip_pmu_info rk3588_pmu = { .pwr_offset = 0x14c, .status_offset = 0x180, .req_offset = 0x10c, .idle_offset = 0x120, .ack_offset = 0x118, .mem_pwr_offset = 0x1a0, .chain_status_offset = 0x1f0, .mem_status_offset = 0x1f8, .repair_status_offset = 0x290, .num_domains = ARRAY_SIZE(rk3588_pm_domains), .domain_info = rk3588_pm_domains, }; static const struct rockchip_pmu_info rv1126_pmu = { .pwr_offset = 0x110, .status_offset = 0x108, .req_offset = 0xc0, .idle_offset = 0xd8, .ack_offset = 0xd0, .num_domains = ARRAY_SIZE(rv1126_pm_domains), .domain_info = rv1126_pm_domains, }; static const struct of_device_id rockchip_pm_domain_dt_match[] = { { .compatible = "rockchip,px30-power-controller", .data = (void *)&px30_pmu, }, { .compatible = "rockchip,rk3036-power-controller", .data = (void *)&rk3036_pmu, }, { .compatible = "rockchip,rk3066-power-controller", .data = (void *)&rk3066_pmu, }, { .compatible = "rockchip,rk3128-power-controller", .data = (void *)&rk3128_pmu, }, { .compatible = "rockchip,rk3188-power-controller", .data = (void *)&rk3188_pmu, }, { .compatible = "rockchip,rk3228-power-controller", .data = (void *)&rk3228_pmu, }, { .compatible = "rockchip,rk3288-power-controller", .data = (void *)&rk3288_pmu, }, { .compatible = "rockchip,rk3328-power-controller", .data = (void *)&rk3328_pmu, }, { .compatible = "rockchip,rk3366-power-controller", .data = (void *)&rk3366_pmu, }, { .compatible = "rockchip,rk3368-power-controller", .data = (void *)&rk3368_pmu, }, { .compatible = "rockchip,rk3399-power-controller", .data = (void *)&rk3399_pmu, }, { .compatible = "rockchip,rk3568-power-controller", .data = (void *)&rk3568_pmu, }, { .compatible = "rockchip,rk3588-power-controller", .data = (void *)&rk3588_pmu, }, { .compatible = "rockchip,rv1126-power-controller", .data = (void *)&rv1126_pmu, }, { /* sentinel */ }, }; static struct platform_driver rockchip_pm_domain_driver = { .probe = rockchip_pm_domain_probe, .driver = { .name = "rockchip-pm-domain", .of_match_table = rockchip_pm_domain_dt_match, /* * We can't forcibly eject devices from the power * domain, so we can't really remove power domains * once they were added. */ .suppress_bind_attrs = true, }, }; static int __init rockchip_pm_domain_drv_register(void) { return platform_driver_register(&rockchip_pm_domain_driver); } postcore_initcall(rockchip_pm_domain_drv_register);
linux-master
drivers/pmdomain/rockchip/pm-domains.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * StarFive JH71XX PMU (Power Management Unit) Controller Driver * * Copyright (C) 2022 StarFive Technology Co., Ltd. */ #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <dt-bindings/power/starfive,jh7110-pmu.h> /* register offset */ #define JH71XX_PMU_SW_TURN_ON_POWER 0x0C #define JH71XX_PMU_SW_TURN_OFF_POWER 0x10 #define JH71XX_PMU_SW_ENCOURAGE 0x44 #define JH71XX_PMU_TIMER_INT_MASK 0x48 #define JH71XX_PMU_CURR_POWER_MODE 0x80 #define JH71XX_PMU_EVENT_STATUS 0x88 #define JH71XX_PMU_INT_STATUS 0x8C /* sw encourage cfg */ #define JH71XX_PMU_SW_ENCOURAGE_EN_LO 0x05 #define JH71XX_PMU_SW_ENCOURAGE_EN_HI 0x50 #define JH71XX_PMU_SW_ENCOURAGE_DIS_LO 0x0A #define JH71XX_PMU_SW_ENCOURAGE_DIS_HI 0xA0 #define JH71XX_PMU_SW_ENCOURAGE_ON 0xFF /* pmu int status */ #define JH71XX_PMU_INT_SEQ_DONE BIT(0) #define JH71XX_PMU_INT_HW_REQ BIT(1) #define JH71XX_PMU_INT_SW_FAIL GENMASK(3, 2) #define JH71XX_PMU_INT_HW_FAIL GENMASK(5, 4) #define JH71XX_PMU_INT_PCH_FAIL GENMASK(8, 6) #define JH71XX_PMU_INT_ALL_MASK GENMASK(8, 0) /* * The time required for switching power status is based on the time * to turn on the largest domain's power, which is at microsecond level */ #define JH71XX_PMU_TIMEOUT_US 100 struct jh71xx_domain_info { const char * const name; unsigned int flags; u8 bit; }; struct jh71xx_pmu_match_data { const struct jh71xx_domain_info *domain_info; int num_domains; }; struct jh71xx_pmu { struct device *dev; const struct jh71xx_pmu_match_data *match_data; void __iomem *base; struct generic_pm_domain **genpd; struct genpd_onecell_data genpd_data; int irq; spinlock_t lock; /* protects pmu reg */ }; struct jh71xx_pmu_dev { const struct jh71xx_domain_info *domain_info; struct jh71xx_pmu *pmu; struct generic_pm_domain genpd; }; static int jh71xx_pmu_get_state(struct jh71xx_pmu_dev *pmd, u32 mask, bool *is_on) { struct jh71xx_pmu *pmu = pmd->pmu; if (!mask) return -EINVAL; *is_on = readl(pmu->base + JH71XX_PMU_CURR_POWER_MODE) & mask; return 0; } static int jh71xx_pmu_set_state(struct jh71xx_pmu_dev *pmd, u32 mask, bool on) { struct jh71xx_pmu *pmu = pmd->pmu; unsigned long flags; u32 val; u32 mode; u32 encourage_lo; u32 encourage_hi; bool is_on; int ret; ret = jh71xx_pmu_get_state(pmd, mask, &is_on); if (ret) { dev_dbg(pmu->dev, "unable to get current state for %s\n", pmd->genpd.name); return ret; } if (is_on == on) { dev_dbg(pmu->dev, "pm domain [%s] is already %sable status.\n", pmd->genpd.name, on ? "en" : "dis"); return 0; } spin_lock_irqsave(&pmu->lock, flags); /* * The PMU accepts software encourage to switch power mode in the following 2 steps: * * 1.Configure the register SW_TURN_ON_POWER (offset 0x0c) by writing 1 to * the bit corresponding to the power domain that will be turned on * and writing 0 to the others. * Likewise, configure the register SW_TURN_OFF_POWER (offset 0x10) by * writing 1 to the bit corresponding to the power domain that will be * turned off and writing 0 to the others. */ if (on) { mode = JH71XX_PMU_SW_TURN_ON_POWER; encourage_lo = JH71XX_PMU_SW_ENCOURAGE_EN_LO; encourage_hi = JH71XX_PMU_SW_ENCOURAGE_EN_HI; } else { mode = JH71XX_PMU_SW_TURN_OFF_POWER; encourage_lo = JH71XX_PMU_SW_ENCOURAGE_DIS_LO; encourage_hi = JH71XX_PMU_SW_ENCOURAGE_DIS_HI; } writel(mask, pmu->base + mode); /* * 2.Write SW encourage command sequence to the Software Encourage Reg (offset 0x44) * First write SW_MODE_ENCOURAGE_ON to JH71XX_PMU_SW_ENCOURAGE. This will reset * the state machine which parses the command sequence. This register must be * written every time software wants to power on/off a domain. * Then write the lower bits of the command sequence, followed by the upper * bits. The sequence differs between powering on & off a domain. */ writel(JH71XX_PMU_SW_ENCOURAGE_ON, pmu->base + JH71XX_PMU_SW_ENCOURAGE); writel(encourage_lo, pmu->base + JH71XX_PMU_SW_ENCOURAGE); writel(encourage_hi, pmu->base + JH71XX_PMU_SW_ENCOURAGE); spin_unlock_irqrestore(&pmu->lock, flags); /* Wait for the power domain bit to be enabled / disabled */ if (on) { ret = readl_poll_timeout_atomic(pmu->base + JH71XX_PMU_CURR_POWER_MODE, val, val & mask, 1, JH71XX_PMU_TIMEOUT_US); } else { ret = readl_poll_timeout_atomic(pmu->base + JH71XX_PMU_CURR_POWER_MODE, val, !(val & mask), 1, JH71XX_PMU_TIMEOUT_US); } if (ret) { dev_err(pmu->dev, "%s: failed to power %s\n", pmd->genpd.name, on ? "on" : "off"); return -ETIMEDOUT; } return 0; } static int jh71xx_pmu_on(struct generic_pm_domain *genpd) { struct jh71xx_pmu_dev *pmd = container_of(genpd, struct jh71xx_pmu_dev, genpd); u32 pwr_mask = BIT(pmd->domain_info->bit); return jh71xx_pmu_set_state(pmd, pwr_mask, true); } static int jh71xx_pmu_off(struct generic_pm_domain *genpd) { struct jh71xx_pmu_dev *pmd = container_of(genpd, struct jh71xx_pmu_dev, genpd); u32 pwr_mask = BIT(pmd->domain_info->bit); return jh71xx_pmu_set_state(pmd, pwr_mask, false); } static void jh71xx_pmu_int_enable(struct jh71xx_pmu *pmu, u32 mask, bool enable) { u32 val; unsigned long flags; spin_lock_irqsave(&pmu->lock, flags); val = readl(pmu->base + JH71XX_PMU_TIMER_INT_MASK); if (enable) val &= ~mask; else val |= mask; writel(val, pmu->base + JH71XX_PMU_TIMER_INT_MASK); spin_unlock_irqrestore(&pmu->lock, flags); } static irqreturn_t jh71xx_pmu_interrupt(int irq, void *data) { struct jh71xx_pmu *pmu = data; u32 val; val = readl(pmu->base + JH71XX_PMU_INT_STATUS); if (val & JH71XX_PMU_INT_SEQ_DONE) dev_dbg(pmu->dev, "sequence done.\n"); if (val & JH71XX_PMU_INT_HW_REQ) dev_dbg(pmu->dev, "hardware encourage requestion.\n"); if (val & JH71XX_PMU_INT_SW_FAIL) dev_err(pmu->dev, "software encourage fail.\n"); if (val & JH71XX_PMU_INT_HW_FAIL) dev_err(pmu->dev, "hardware encourage fail.\n"); if (val & JH71XX_PMU_INT_PCH_FAIL) dev_err(pmu->dev, "p-channel fail event.\n"); /* clear interrupts */ writel(val, pmu->base + JH71XX_PMU_INT_STATUS); writel(val, pmu->base + JH71XX_PMU_EVENT_STATUS); return IRQ_HANDLED; } static int jh71xx_pmu_init_domain(struct jh71xx_pmu *pmu, int index) { struct jh71xx_pmu_dev *pmd; u32 pwr_mask; int ret; bool is_on = false; pmd = devm_kzalloc(pmu->dev, sizeof(*pmd), GFP_KERNEL); if (!pmd) return -ENOMEM; pmd->domain_info = &pmu->match_data->domain_info[index]; pmd->pmu = pmu; pwr_mask = BIT(pmd->domain_info->bit); pmd->genpd.name = pmd->domain_info->name; pmd->genpd.flags = pmd->domain_info->flags; ret = jh71xx_pmu_get_state(pmd, pwr_mask, &is_on); if (ret) dev_warn(pmu->dev, "unable to get current state for %s\n", pmd->genpd.name); pmd->genpd.power_on = jh71xx_pmu_on; pmd->genpd.power_off = jh71xx_pmu_off; pm_genpd_init(&pmd->genpd, NULL, !is_on); pmu->genpd_data.domains[index] = &pmd->genpd; return 0; } static int jh71xx_pmu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct jh71xx_pmu_match_data *match_data; struct jh71xx_pmu *pmu; unsigned int i; int ret; pmu = devm_kzalloc(dev, sizeof(*pmu), GFP_KERNEL); if (!pmu) return -ENOMEM; pmu->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pmu->base)) return PTR_ERR(pmu->base); pmu->irq = platform_get_irq(pdev, 0); if (pmu->irq < 0) return pmu->irq; ret = devm_request_irq(dev, pmu->irq, jh71xx_pmu_interrupt, 0, pdev->name, pmu); if (ret) dev_err(dev, "failed to request irq\n"); match_data = of_device_get_match_data(dev); if (!match_data) return -EINVAL; pmu->genpd = devm_kcalloc(dev, match_data->num_domains, sizeof(struct generic_pm_domain *), GFP_KERNEL); if (!pmu->genpd) return -ENOMEM; pmu->dev = dev; pmu->match_data = match_data; pmu->genpd_data.domains = pmu->genpd; pmu->genpd_data.num_domains = match_data->num_domains; for (i = 0; i < match_data->num_domains; i++) { ret = jh71xx_pmu_init_domain(pmu, i); if (ret) { dev_err(dev, "failed to initialize power domain\n"); return ret; } } spin_lock_init(&pmu->lock); jh71xx_pmu_int_enable(pmu, JH71XX_PMU_INT_ALL_MASK & ~JH71XX_PMU_INT_PCH_FAIL, true); ret = of_genpd_add_provider_onecell(np, &pmu->genpd_data); if (ret) { dev_err(dev, "failed to register genpd driver: %d\n", ret); return ret; } dev_dbg(dev, "registered %u power domains\n", i); return 0; } static const struct jh71xx_domain_info jh7110_power_domains[] = { [JH7110_PD_SYSTOP] = { .name = "SYSTOP", .bit = 0, .flags = GENPD_FLAG_ALWAYS_ON, }, [JH7110_PD_CPU] = { .name = "CPU", .bit = 1, .flags = GENPD_FLAG_ALWAYS_ON, }, [JH7110_PD_GPUA] = { .name = "GPUA", .bit = 2, }, [JH7110_PD_VDEC] = { .name = "VDEC", .bit = 3, }, [JH7110_PD_VOUT] = { .name = "VOUT", .bit = 4, }, [JH7110_PD_ISP] = { .name = "ISP", .bit = 5, }, [JH7110_PD_VENC] = { .name = "VENC", .bit = 6, }, }; static const struct jh71xx_pmu_match_data jh7110_pmu = { .num_domains = ARRAY_SIZE(jh7110_power_domains), .domain_info = jh7110_power_domains, }; static const struct of_device_id jh71xx_pmu_of_match[] = { { .compatible = "starfive,jh7110-pmu", .data = (void *)&jh7110_pmu, }, { /* sentinel */ } }; static struct platform_driver jh71xx_pmu_driver = { .probe = jh71xx_pmu_probe, .driver = { .name = "jh71xx-pmu", .of_match_table = jh71xx_pmu_of_match, .suppress_bind_attrs = true, }, }; builtin_platform_driver(jh71xx_pmu_driver); MODULE_AUTHOR("Walker Chen <[email protected]>"); MODULE_DESCRIPTION("StarFive JH71XX PMU Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/pmdomain/starfive/jh71xx-pmu.c
// SPDX-License-Identifier: GPL-2.0 // // Exynos Generic power domain support. // // Copyright (c) 2012 Samsung Electronics Co., Ltd. // http://www.samsung.com // // Implementation of Exynos specific power domain control which is used in // conjunction with runtime-pm. Support for both device-tree and non-device-tree // based power domain support is included. #include <linux/io.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/pm_domain.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/pm_runtime.h> struct exynos_pm_domain_config { /* Value for LOCAL_PWR_CFG and STATUS fields for each domain */ u32 local_pwr_cfg; }; /* * Exynos specific wrapper around the generic power domain */ struct exynos_pm_domain { void __iomem *base; struct generic_pm_domain pd; u32 local_pwr_cfg; }; static int exynos_pd_power(struct generic_pm_domain *domain, bool power_on) { struct exynos_pm_domain *pd; void __iomem *base; u32 timeout, pwr; char *op; pd = container_of(domain, struct exynos_pm_domain, pd); base = pd->base; pwr = power_on ? pd->local_pwr_cfg : 0; writel_relaxed(pwr, base); /* Wait max 1ms */ timeout = 10; while ((readl_relaxed(base + 0x4) & pd->local_pwr_cfg) != pwr) { if (!timeout) { op = (power_on) ? "enable" : "disable"; pr_err("Power domain %s %s failed\n", domain->name, op); return -ETIMEDOUT; } timeout--; cpu_relax(); usleep_range(80, 100); } return 0; } static int exynos_pd_power_on(struct generic_pm_domain *domain) { return exynos_pd_power(domain, true); } static int exynos_pd_power_off(struct generic_pm_domain *domain) { return exynos_pd_power(domain, false); } static const struct exynos_pm_domain_config exynos4210_cfg = { .local_pwr_cfg = 0x7, }; static const struct exynos_pm_domain_config exynos5433_cfg = { .local_pwr_cfg = 0xf, }; static const struct of_device_id exynos_pm_domain_of_match[] = { { .compatible = "samsung,exynos4210-pd", .data = &exynos4210_cfg, }, { .compatible = "samsung,exynos5433-pd", .data = &exynos5433_cfg, }, { }, }; static const char *exynos_get_domain_name(struct device_node *node) { const char *name; if (of_property_read_string(node, "label", &name) < 0) name = kbasename(node->full_name); return kstrdup_const(name, GFP_KERNEL); } static int exynos_pd_probe(struct platform_device *pdev) { const struct exynos_pm_domain_config *pm_domain_cfg; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct of_phandle_args child, parent; struct exynos_pm_domain *pd; int on, ret; pm_domain_cfg = of_device_get_match_data(dev); pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pd->pd.name = exynos_get_domain_name(np); if (!pd->pd.name) return -ENOMEM; pd->base = of_iomap(np, 0); if (!pd->base) { kfree_const(pd->pd.name); return -ENODEV; } pd->pd.power_off = exynos_pd_power_off; pd->pd.power_on = exynos_pd_power_on; pd->local_pwr_cfg = pm_domain_cfg->local_pwr_cfg; on = readl_relaxed(pd->base + 0x4) & pd->local_pwr_cfg; pm_genpd_init(&pd->pd, NULL, !on); ret = of_genpd_add_provider_simple(np, &pd->pd); if (ret == 0 && of_parse_phandle_with_args(np, "power-domains", "#power-domain-cells", 0, &parent) == 0) { child.np = np; child.args_count = 0; if (of_genpd_add_subdomain(&parent, &child)) pr_warn("%pOF failed to add subdomain: %pOF\n", parent.np, child.np); else pr_info("%pOF has as child subdomain: %pOF.\n", parent.np, child.np); } pm_runtime_enable(dev); return ret; } static struct platform_driver exynos_pd_driver = { .probe = exynos_pd_probe, .driver = { .name = "exynos-pd", .of_match_table = exynos_pm_domain_of_match, .suppress_bind_attrs = true, } }; static __init int exynos4_pm_init_power_domain(void) { return platform_driver_register(&exynos_pd_driver); } core_initcall(exynos4_pm_init_power_domain);
linux-master
drivers/pmdomain/samsung/exynos-pm-domains.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015 Pengutronix, Sascha Hauer <[email protected]> */ #include <linux/clk.h> #include <linux/init.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/regulator/consumer.h> #include <linux/soc/mediatek/infracfg.h> #include <dt-bindings/power/mt2701-power.h> #include <dt-bindings/power/mt2712-power.h> #include <dt-bindings/power/mt6797-power.h> #include <dt-bindings/power/mt7622-power.h> #include <dt-bindings/power/mt7623a-power.h> #include <dt-bindings/power/mt8173-power.h> #define MTK_POLL_DELAY_US 10 #define MTK_POLL_TIMEOUT USEC_PER_SEC #define MTK_SCPD_ACTIVE_WAKEUP BIT(0) #define MTK_SCPD_FWAIT_SRAM BIT(1) #define MTK_SCPD_CAPS(_scpd, _x) ((_scpd)->data->caps & (_x)) #define SPM_VDE_PWR_CON 0x0210 #define SPM_MFG_PWR_CON 0x0214 #define SPM_VEN_PWR_CON 0x0230 #define SPM_ISP_PWR_CON 0x0238 #define SPM_DIS_PWR_CON 0x023c #define SPM_CONN_PWR_CON 0x0280 #define SPM_VEN2_PWR_CON 0x0298 #define SPM_AUDIO_PWR_CON 0x029c /* MT8173, MT2712 */ #define SPM_BDP_PWR_CON 0x029c /* MT2701 */ #define SPM_ETH_PWR_CON 0x02a0 #define SPM_HIF_PWR_CON 0x02a4 #define SPM_IFR_MSC_PWR_CON 0x02a8 #define SPM_MFG_2D_PWR_CON 0x02c0 #define SPM_MFG_ASYNC_PWR_CON 0x02c4 #define SPM_USB_PWR_CON 0x02cc #define SPM_USB2_PWR_CON 0x02d4 /* MT2712 */ #define SPM_ETHSYS_PWR_CON 0x02e0 /* MT7622 */ #define SPM_HIF0_PWR_CON 0x02e4 /* MT7622 */ #define SPM_HIF1_PWR_CON 0x02e8 /* MT7622 */ #define SPM_WB_PWR_CON 0x02ec /* MT7622 */ #define SPM_PWR_STATUS 0x060c #define SPM_PWR_STATUS_2ND 0x0610 #define PWR_RST_B_BIT BIT(0) #define PWR_ISO_BIT BIT(1) #define PWR_ON_BIT BIT(2) #define PWR_ON_2ND_BIT BIT(3) #define PWR_CLK_DIS_BIT BIT(4) #define PWR_STATUS_CONN BIT(1) #define PWR_STATUS_DISP BIT(3) #define PWR_STATUS_MFG BIT(4) #define PWR_STATUS_ISP BIT(5) #define PWR_STATUS_VDEC BIT(7) #define PWR_STATUS_BDP BIT(14) #define PWR_STATUS_ETH BIT(15) #define PWR_STATUS_HIF BIT(16) #define PWR_STATUS_IFR_MSC BIT(17) #define PWR_STATUS_USB2 BIT(19) /* MT2712 */ #define PWR_STATUS_VENC_LT BIT(20) #define PWR_STATUS_VENC BIT(21) #define PWR_STATUS_MFG_2D BIT(22) /* MT8173 */ #define PWR_STATUS_MFG_ASYNC BIT(23) /* MT8173 */ #define PWR_STATUS_AUDIO BIT(24) /* MT8173, MT2712 */ #define PWR_STATUS_USB BIT(25) /* MT8173, MT2712 */ #define PWR_STATUS_ETHSYS BIT(24) /* MT7622 */ #define PWR_STATUS_HIF0 BIT(25) /* MT7622 */ #define PWR_STATUS_HIF1 BIT(26) /* MT7622 */ #define PWR_STATUS_WB BIT(27) /* MT7622 */ enum clk_id { CLK_NONE, CLK_MM, CLK_MFG, CLK_VENC, CLK_VENC_LT, CLK_ETHIF, CLK_VDEC, CLK_HIFSEL, CLK_JPGDEC, CLK_AUDIO, CLK_MAX, }; static const char * const clk_names[] = { NULL, "mm", "mfg", "venc", "venc_lt", "ethif", "vdec", "hif_sel", "jpgdec", "audio", NULL, }; #define MAX_CLKS 3 /** * struct scp_domain_data - scp domain data for power on/off flow * @name: The domain name. * @sta_mask: The mask for power on/off status bit. * @ctl_offs: The offset for main power control register. * @sram_pdn_bits: The mask for sram power control bits. * @sram_pdn_ack_bits: The mask for sram power control acked bits. * @bus_prot_mask: The mask for single step bus protection. * @clk_id: The basic clocks required by this power domain. * @caps: The flag for active wake-up action. */ struct scp_domain_data { const char *name; u32 sta_mask; int ctl_offs; u32 sram_pdn_bits; u32 sram_pdn_ack_bits; u32 bus_prot_mask; enum clk_id clk_id[MAX_CLKS]; u8 caps; }; struct scp; struct scp_domain { struct generic_pm_domain genpd; struct scp *scp; struct clk *clk[MAX_CLKS]; const struct scp_domain_data *data; struct regulator *supply; }; struct scp_ctrl_reg { int pwr_sta_offs; int pwr_sta2nd_offs; }; struct scp { struct scp_domain *domains; struct genpd_onecell_data pd_data; struct device *dev; void __iomem *base; struct regmap *infracfg; struct scp_ctrl_reg ctrl_reg; bool bus_prot_reg_update; }; struct scp_subdomain { int origin; int subdomain; }; struct scp_soc_data { const struct scp_domain_data *domains; int num_domains; const struct scp_subdomain *subdomains; int num_subdomains; const struct scp_ctrl_reg regs; bool bus_prot_reg_update; }; static int scpsys_domain_is_on(struct scp_domain *scpd) { struct scp *scp = scpd->scp; u32 status = readl(scp->base + scp->ctrl_reg.pwr_sta_offs) & scpd->data->sta_mask; u32 status2 = readl(scp->base + scp->ctrl_reg.pwr_sta2nd_offs) & scpd->data->sta_mask; /* * A domain is on when both status bits are set. If only one is set * return an error. This happens while powering up a domain */ if (status && status2) return true; if (!status && !status2) return false; return -EINVAL; } static int scpsys_regulator_enable(struct scp_domain *scpd) { if (!scpd->supply) return 0; return regulator_enable(scpd->supply); } static int scpsys_regulator_disable(struct scp_domain *scpd) { if (!scpd->supply) return 0; return regulator_disable(scpd->supply); } static void scpsys_clk_disable(struct clk *clk[], int max_num) { int i; for (i = max_num - 1; i >= 0; i--) clk_disable_unprepare(clk[i]); } static int scpsys_clk_enable(struct clk *clk[], int max_num) { int i, ret = 0; for (i = 0; i < max_num && clk[i]; i++) { ret = clk_prepare_enable(clk[i]); if (ret) { scpsys_clk_disable(clk, i); break; } } return ret; } static int scpsys_sram_enable(struct scp_domain *scpd, void __iomem *ctl_addr) { u32 val; u32 pdn_ack = scpd->data->sram_pdn_ack_bits; int tmp; val = readl(ctl_addr); val &= ~scpd->data->sram_pdn_bits; writel(val, ctl_addr); /* Either wait until SRAM_PDN_ACK all 0 or have a force wait */ if (MTK_SCPD_CAPS(scpd, MTK_SCPD_FWAIT_SRAM)) { /* * Currently, MTK_SCPD_FWAIT_SRAM is necessary only for * MT7622_POWER_DOMAIN_WB and thus just a trivial setup * is applied here. */ usleep_range(12000, 12100); } else { /* Either wait until SRAM_PDN_ACK all 1 or 0 */ int ret = readl_poll_timeout(ctl_addr, tmp, (tmp & pdn_ack) == 0, MTK_POLL_DELAY_US, MTK_POLL_TIMEOUT); if (ret < 0) return ret; } return 0; } static int scpsys_sram_disable(struct scp_domain *scpd, void __iomem *ctl_addr) { u32 val; u32 pdn_ack = scpd->data->sram_pdn_ack_bits; int tmp; val = readl(ctl_addr); val |= scpd->data->sram_pdn_bits; writel(val, ctl_addr); /* Either wait until SRAM_PDN_ACK all 1 or 0 */ return readl_poll_timeout(ctl_addr, tmp, (tmp & pdn_ack) == pdn_ack, MTK_POLL_DELAY_US, MTK_POLL_TIMEOUT); } static int scpsys_bus_protect_enable(struct scp_domain *scpd) { struct scp *scp = scpd->scp; if (!scpd->data->bus_prot_mask) return 0; return mtk_infracfg_set_bus_protection(scp->infracfg, scpd->data->bus_prot_mask, scp->bus_prot_reg_update); } static int scpsys_bus_protect_disable(struct scp_domain *scpd) { struct scp *scp = scpd->scp; if (!scpd->data->bus_prot_mask) return 0; return mtk_infracfg_clear_bus_protection(scp->infracfg, scpd->data->bus_prot_mask, scp->bus_prot_reg_update); } static int scpsys_power_on(struct generic_pm_domain *genpd) { struct scp_domain *scpd = container_of(genpd, struct scp_domain, genpd); struct scp *scp = scpd->scp; void __iomem *ctl_addr = scp->base + scpd->data->ctl_offs; u32 val; int ret, tmp; ret = scpsys_regulator_enable(scpd); if (ret < 0) return ret; ret = scpsys_clk_enable(scpd->clk, MAX_CLKS); if (ret) goto err_clk; /* subsys power on */ val = readl(ctl_addr); val |= PWR_ON_BIT; writel(val, ctl_addr); val |= PWR_ON_2ND_BIT; writel(val, ctl_addr); /* wait until PWR_ACK = 1 */ ret = readx_poll_timeout(scpsys_domain_is_on, scpd, tmp, tmp > 0, MTK_POLL_DELAY_US, MTK_POLL_TIMEOUT); if (ret < 0) goto err_pwr_ack; val &= ~PWR_CLK_DIS_BIT; writel(val, ctl_addr); val &= ~PWR_ISO_BIT; writel(val, ctl_addr); val |= PWR_RST_B_BIT; writel(val, ctl_addr); ret = scpsys_sram_enable(scpd, ctl_addr); if (ret < 0) goto err_pwr_ack; ret = scpsys_bus_protect_disable(scpd); if (ret < 0) goto err_pwr_ack; return 0; err_pwr_ack: scpsys_clk_disable(scpd->clk, MAX_CLKS); err_clk: scpsys_regulator_disable(scpd); dev_err(scp->dev, "Failed to power on domain %s\n", genpd->name); return ret; } static int scpsys_power_off(struct generic_pm_domain *genpd) { struct scp_domain *scpd = container_of(genpd, struct scp_domain, genpd); struct scp *scp = scpd->scp; void __iomem *ctl_addr = scp->base + scpd->data->ctl_offs; u32 val; int ret, tmp; ret = scpsys_bus_protect_enable(scpd); if (ret < 0) goto out; ret = scpsys_sram_disable(scpd, ctl_addr); if (ret < 0) goto out; /* subsys power off */ val = readl(ctl_addr); val |= PWR_ISO_BIT; writel(val, ctl_addr); val &= ~PWR_RST_B_BIT; writel(val, ctl_addr); val |= PWR_CLK_DIS_BIT; writel(val, ctl_addr); val &= ~PWR_ON_BIT; writel(val, ctl_addr); val &= ~PWR_ON_2ND_BIT; writel(val, ctl_addr); /* wait until PWR_ACK = 0 */ ret = readx_poll_timeout(scpsys_domain_is_on, scpd, tmp, tmp == 0, MTK_POLL_DELAY_US, MTK_POLL_TIMEOUT); if (ret < 0) goto out; scpsys_clk_disable(scpd->clk, MAX_CLKS); ret = scpsys_regulator_disable(scpd); if (ret < 0) goto out; return 0; out: dev_err(scp->dev, "Failed to power off domain %s\n", genpd->name); return ret; } static void init_clks(struct platform_device *pdev, struct clk **clk) { int i; for (i = CLK_NONE + 1; i < CLK_MAX; i++) clk[i] = devm_clk_get(&pdev->dev, clk_names[i]); } static struct scp *init_scp(struct platform_device *pdev, const struct scp_domain_data *scp_domain_data, int num, const struct scp_ctrl_reg *scp_ctrl_reg, bool bus_prot_reg_update) { struct genpd_onecell_data *pd_data; struct resource *res; int i, j; struct scp *scp; struct clk *clk[CLK_MAX]; scp = devm_kzalloc(&pdev->dev, sizeof(*scp), GFP_KERNEL); if (!scp) return ERR_PTR(-ENOMEM); scp->ctrl_reg.pwr_sta_offs = scp_ctrl_reg->pwr_sta_offs; scp->ctrl_reg.pwr_sta2nd_offs = scp_ctrl_reg->pwr_sta2nd_offs; scp->bus_prot_reg_update = bus_prot_reg_update; scp->dev = &pdev->dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); scp->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(scp->base)) return ERR_CAST(scp->base); scp->domains = devm_kcalloc(&pdev->dev, num, sizeof(*scp->domains), GFP_KERNEL); if (!scp->domains) return ERR_PTR(-ENOMEM); pd_data = &scp->pd_data; pd_data->domains = devm_kcalloc(&pdev->dev, num, sizeof(*pd_data->domains), GFP_KERNEL); if (!pd_data->domains) return ERR_PTR(-ENOMEM); scp->infracfg = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "infracfg"); if (IS_ERR(scp->infracfg)) { dev_err(&pdev->dev, "Cannot find infracfg controller: %ld\n", PTR_ERR(scp->infracfg)); return ERR_CAST(scp->infracfg); } for (i = 0; i < num; i++) { struct scp_domain *scpd = &scp->domains[i]; const struct scp_domain_data *data = &scp_domain_data[i]; scpd->supply = devm_regulator_get_optional(&pdev->dev, data->name); if (IS_ERR(scpd->supply)) { if (PTR_ERR(scpd->supply) == -ENODEV) scpd->supply = NULL; else return ERR_CAST(scpd->supply); } } pd_data->num_domains = num; init_clks(pdev, clk); for (i = 0; i < num; i++) { struct scp_domain *scpd = &scp->domains[i]; struct generic_pm_domain *genpd = &scpd->genpd; const struct scp_domain_data *data = &scp_domain_data[i]; pd_data->domains[i] = genpd; scpd->scp = scp; scpd->data = data; for (j = 0; j < MAX_CLKS && data->clk_id[j]; j++) { struct clk *c = clk[data->clk_id[j]]; if (IS_ERR(c)) { dev_err(&pdev->dev, "%s: clk unavailable\n", data->name); return ERR_CAST(c); } scpd->clk[j] = c; } genpd->name = data->name; genpd->power_off = scpsys_power_off; genpd->power_on = scpsys_power_on; if (MTK_SCPD_CAPS(scpd, MTK_SCPD_ACTIVE_WAKEUP)) genpd->flags |= GENPD_FLAG_ACTIVE_WAKEUP; } return scp; } static void mtk_register_power_domains(struct platform_device *pdev, struct scp *scp, int num) { struct genpd_onecell_data *pd_data; int i, ret; for (i = 0; i < num; i++) { struct scp_domain *scpd = &scp->domains[i]; struct generic_pm_domain *genpd = &scpd->genpd; bool on; /* * Initially turn on all domains to make the domains usable * with !CONFIG_PM and to get the hardware in sync with the * software. The unused domains will be switched off during * late_init time. */ on = !WARN_ON(genpd->power_on(genpd) < 0); pm_genpd_init(genpd, NULL, !on); } /* * We are not allowed to fail here since there is no way to unregister * a power domain. Once registered above we have to keep the domains * valid. */ pd_data = &scp->pd_data; ret = of_genpd_add_provider_onecell(pdev->dev.of_node, pd_data); if (ret) dev_err(&pdev->dev, "Failed to add OF provider: %d\n", ret); } /* * MT2701 power domain support */ static const struct scp_domain_data scp_domain_data_mt2701[] = { [MT2701_POWER_DOMAIN_CONN] = { .name = "conn", .sta_mask = PWR_STATUS_CONN, .ctl_offs = SPM_CONN_PWR_CON, .bus_prot_mask = MT2701_TOP_AXI_PROT_EN_CONN_M | MT2701_TOP_AXI_PROT_EN_CONN_S, .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2701_POWER_DOMAIN_DISP] = { .name = "disp", .sta_mask = PWR_STATUS_DISP, .ctl_offs = SPM_DIS_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .clk_id = {CLK_MM}, .bus_prot_mask = MT2701_TOP_AXI_PROT_EN_MM_M0, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2701_POWER_DOMAIN_MFG] = { .name = "mfg", .sta_mask = PWR_STATUS_MFG, .ctl_offs = SPM_MFG_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(12, 12), .clk_id = {CLK_MFG}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2701_POWER_DOMAIN_VDEC] = { .name = "vdec", .sta_mask = PWR_STATUS_VDEC, .ctl_offs = SPM_VDE_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(12, 12), .clk_id = {CLK_MM}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2701_POWER_DOMAIN_ISP] = { .name = "isp", .sta_mask = PWR_STATUS_ISP, .ctl_offs = SPM_ISP_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(13, 12), .clk_id = {CLK_MM}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2701_POWER_DOMAIN_BDP] = { .name = "bdp", .sta_mask = PWR_STATUS_BDP, .ctl_offs = SPM_BDP_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2701_POWER_DOMAIN_ETH] = { .name = "eth", .sta_mask = PWR_STATUS_ETH, .ctl_offs = SPM_ETH_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_ETHIF}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2701_POWER_DOMAIN_HIF] = { .name = "hif", .sta_mask = PWR_STATUS_HIF, .ctl_offs = SPM_HIF_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_ETHIF}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2701_POWER_DOMAIN_IFR_MSC] = { .name = "ifr_msc", .sta_mask = PWR_STATUS_IFR_MSC, .ctl_offs = SPM_IFR_MSC_PWR_CON, .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, }; /* * MT2712 power domain support */ static const struct scp_domain_data scp_domain_data_mt2712[] = { [MT2712_POWER_DOMAIN_MM] = { .name = "mm", .sta_mask = PWR_STATUS_DISP, .ctl_offs = SPM_DIS_PWR_CON, .sram_pdn_bits = GENMASK(8, 8), .sram_pdn_ack_bits = GENMASK(12, 12), .clk_id = {CLK_MM}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2712_POWER_DOMAIN_VDEC] = { .name = "vdec", .sta_mask = PWR_STATUS_VDEC, .ctl_offs = SPM_VDE_PWR_CON, .sram_pdn_bits = GENMASK(8, 8), .sram_pdn_ack_bits = GENMASK(12, 12), .clk_id = {CLK_MM, CLK_VDEC}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2712_POWER_DOMAIN_VENC] = { .name = "venc", .sta_mask = PWR_STATUS_VENC, .ctl_offs = SPM_VEN_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_MM, CLK_VENC, CLK_JPGDEC}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2712_POWER_DOMAIN_ISP] = { .name = "isp", .sta_mask = PWR_STATUS_ISP, .ctl_offs = SPM_ISP_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(13, 12), .clk_id = {CLK_MM}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2712_POWER_DOMAIN_AUDIO] = { .name = "audio", .sta_mask = PWR_STATUS_AUDIO, .ctl_offs = SPM_AUDIO_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_AUDIO}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2712_POWER_DOMAIN_USB] = { .name = "usb", .sta_mask = PWR_STATUS_USB, .ctl_offs = SPM_USB_PWR_CON, .sram_pdn_bits = GENMASK(10, 8), .sram_pdn_ack_bits = GENMASK(14, 12), .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2712_POWER_DOMAIN_USB2] = { .name = "usb2", .sta_mask = PWR_STATUS_USB2, .ctl_offs = SPM_USB2_PWR_CON, .sram_pdn_bits = GENMASK(10, 8), .sram_pdn_ack_bits = GENMASK(14, 12), .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2712_POWER_DOMAIN_MFG] = { .name = "mfg", .sta_mask = PWR_STATUS_MFG, .ctl_offs = SPM_MFG_PWR_CON, .sram_pdn_bits = GENMASK(8, 8), .sram_pdn_ack_bits = GENMASK(16, 16), .clk_id = {CLK_MFG}, .bus_prot_mask = BIT(14) | BIT(21) | BIT(23), .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2712_POWER_DOMAIN_MFG_SC1] = { .name = "mfg_sc1", .sta_mask = BIT(22), .ctl_offs = 0x02c0, .sram_pdn_bits = GENMASK(8, 8), .sram_pdn_ack_bits = GENMASK(16, 16), .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2712_POWER_DOMAIN_MFG_SC2] = { .name = "mfg_sc2", .sta_mask = BIT(23), .ctl_offs = 0x02c4, .sram_pdn_bits = GENMASK(8, 8), .sram_pdn_ack_bits = GENMASK(16, 16), .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT2712_POWER_DOMAIN_MFG_SC3] = { .name = "mfg_sc3", .sta_mask = BIT(30), .ctl_offs = 0x01f8, .sram_pdn_bits = GENMASK(8, 8), .sram_pdn_ack_bits = GENMASK(16, 16), .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, }; static const struct scp_subdomain scp_subdomain_mt2712[] = { {MT2712_POWER_DOMAIN_MM, MT2712_POWER_DOMAIN_VDEC}, {MT2712_POWER_DOMAIN_MM, MT2712_POWER_DOMAIN_VENC}, {MT2712_POWER_DOMAIN_MM, MT2712_POWER_DOMAIN_ISP}, {MT2712_POWER_DOMAIN_MFG, MT2712_POWER_DOMAIN_MFG_SC1}, {MT2712_POWER_DOMAIN_MFG_SC1, MT2712_POWER_DOMAIN_MFG_SC2}, {MT2712_POWER_DOMAIN_MFG_SC2, MT2712_POWER_DOMAIN_MFG_SC3}, }; /* * MT6797 power domain support */ static const struct scp_domain_data scp_domain_data_mt6797[] = { [MT6797_POWER_DOMAIN_VDEC] = { .name = "vdec", .sta_mask = BIT(7), .ctl_offs = 0x300, .sram_pdn_bits = GENMASK(8, 8), .sram_pdn_ack_bits = GENMASK(12, 12), .clk_id = {CLK_VDEC}, }, [MT6797_POWER_DOMAIN_VENC] = { .name = "venc", .sta_mask = BIT(21), .ctl_offs = 0x304, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_NONE}, }, [MT6797_POWER_DOMAIN_ISP] = { .name = "isp", .sta_mask = BIT(5), .ctl_offs = 0x308, .sram_pdn_bits = GENMASK(9, 8), .sram_pdn_ack_bits = GENMASK(13, 12), .clk_id = {CLK_NONE}, }, [MT6797_POWER_DOMAIN_MM] = { .name = "mm", .sta_mask = BIT(3), .ctl_offs = 0x30C, .sram_pdn_bits = GENMASK(8, 8), .sram_pdn_ack_bits = GENMASK(12, 12), .clk_id = {CLK_MM}, .bus_prot_mask = (BIT(1) | BIT(2)), }, [MT6797_POWER_DOMAIN_AUDIO] = { .name = "audio", .sta_mask = BIT(24), .ctl_offs = 0x314, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_NONE}, }, [MT6797_POWER_DOMAIN_MFG_ASYNC] = { .name = "mfg_async", .sta_mask = BIT(13), .ctl_offs = 0x334, .sram_pdn_bits = 0, .sram_pdn_ack_bits = 0, .clk_id = {CLK_MFG}, }, [MT6797_POWER_DOMAIN_MJC] = { .name = "mjc", .sta_mask = BIT(20), .ctl_offs = 0x310, .sram_pdn_bits = GENMASK(8, 8), .sram_pdn_ack_bits = GENMASK(12, 12), .clk_id = {CLK_NONE}, }, }; #define SPM_PWR_STATUS_MT6797 0x0180 #define SPM_PWR_STATUS_2ND_MT6797 0x0184 static const struct scp_subdomain scp_subdomain_mt6797[] = { {MT6797_POWER_DOMAIN_MM, MT6797_POWER_DOMAIN_VDEC}, {MT6797_POWER_DOMAIN_MM, MT6797_POWER_DOMAIN_ISP}, {MT6797_POWER_DOMAIN_MM, MT6797_POWER_DOMAIN_VENC}, {MT6797_POWER_DOMAIN_MM, MT6797_POWER_DOMAIN_MJC}, }; /* * MT7622 power domain support */ static const struct scp_domain_data scp_domain_data_mt7622[] = { [MT7622_POWER_DOMAIN_ETHSYS] = { .name = "ethsys", .sta_mask = PWR_STATUS_ETHSYS, .ctl_offs = SPM_ETHSYS_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_NONE}, .bus_prot_mask = MT7622_TOP_AXI_PROT_EN_ETHSYS, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT7622_POWER_DOMAIN_HIF0] = { .name = "hif0", .sta_mask = PWR_STATUS_HIF0, .ctl_offs = SPM_HIF0_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_HIFSEL}, .bus_prot_mask = MT7622_TOP_AXI_PROT_EN_HIF0, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT7622_POWER_DOMAIN_HIF1] = { .name = "hif1", .sta_mask = PWR_STATUS_HIF1, .ctl_offs = SPM_HIF1_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_HIFSEL}, .bus_prot_mask = MT7622_TOP_AXI_PROT_EN_HIF1, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT7622_POWER_DOMAIN_WB] = { .name = "wb", .sta_mask = PWR_STATUS_WB, .ctl_offs = SPM_WB_PWR_CON, .sram_pdn_bits = 0, .sram_pdn_ack_bits = 0, .clk_id = {CLK_NONE}, .bus_prot_mask = MT7622_TOP_AXI_PROT_EN_WB, .caps = MTK_SCPD_ACTIVE_WAKEUP | MTK_SCPD_FWAIT_SRAM, }, }; /* * MT7623A power domain support */ static const struct scp_domain_data scp_domain_data_mt7623a[] = { [MT7623A_POWER_DOMAIN_CONN] = { .name = "conn", .sta_mask = PWR_STATUS_CONN, .ctl_offs = SPM_CONN_PWR_CON, .bus_prot_mask = MT2701_TOP_AXI_PROT_EN_CONN_M | MT2701_TOP_AXI_PROT_EN_CONN_S, .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT7623A_POWER_DOMAIN_ETH] = { .name = "eth", .sta_mask = PWR_STATUS_ETH, .ctl_offs = SPM_ETH_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_ETHIF}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT7623A_POWER_DOMAIN_HIF] = { .name = "hif", .sta_mask = PWR_STATUS_HIF, .ctl_offs = SPM_HIF_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_ETHIF}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT7623A_POWER_DOMAIN_IFR_MSC] = { .name = "ifr_msc", .sta_mask = PWR_STATUS_IFR_MSC, .ctl_offs = SPM_IFR_MSC_PWR_CON, .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, }; /* * MT8173 power domain support */ static const struct scp_domain_data scp_domain_data_mt8173[] = { [MT8173_POWER_DOMAIN_VDEC] = { .name = "vdec", .sta_mask = PWR_STATUS_VDEC, .ctl_offs = SPM_VDE_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(12, 12), .clk_id = {CLK_MM}, }, [MT8173_POWER_DOMAIN_VENC] = { .name = "venc", .sta_mask = PWR_STATUS_VENC, .ctl_offs = SPM_VEN_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_MM, CLK_VENC}, }, [MT8173_POWER_DOMAIN_ISP] = { .name = "isp", .sta_mask = PWR_STATUS_ISP, .ctl_offs = SPM_ISP_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(13, 12), .clk_id = {CLK_MM}, }, [MT8173_POWER_DOMAIN_MM] = { .name = "mm", .sta_mask = PWR_STATUS_DISP, .ctl_offs = SPM_DIS_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(12, 12), .clk_id = {CLK_MM}, .bus_prot_mask = MT8173_TOP_AXI_PROT_EN_MM_M0 | MT8173_TOP_AXI_PROT_EN_MM_M1, }, [MT8173_POWER_DOMAIN_VENC_LT] = { .name = "venc_lt", .sta_mask = PWR_STATUS_VENC_LT, .ctl_offs = SPM_VEN2_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_MM, CLK_VENC_LT}, }, [MT8173_POWER_DOMAIN_AUDIO] = { .name = "audio", .sta_mask = PWR_STATUS_AUDIO, .ctl_offs = SPM_AUDIO_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_NONE}, }, [MT8173_POWER_DOMAIN_USB] = { .name = "usb", .sta_mask = PWR_STATUS_USB, .ctl_offs = SPM_USB_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(15, 12), .clk_id = {CLK_NONE}, .caps = MTK_SCPD_ACTIVE_WAKEUP, }, [MT8173_POWER_DOMAIN_MFG_ASYNC] = { .name = "mfg_async", .sta_mask = PWR_STATUS_MFG_ASYNC, .ctl_offs = SPM_MFG_ASYNC_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = 0, .clk_id = {CLK_MFG}, }, [MT8173_POWER_DOMAIN_MFG_2D] = { .name = "mfg_2d", .sta_mask = PWR_STATUS_MFG_2D, .ctl_offs = SPM_MFG_2D_PWR_CON, .sram_pdn_bits = GENMASK(11, 8), .sram_pdn_ack_bits = GENMASK(13, 12), .clk_id = {CLK_NONE}, }, [MT8173_POWER_DOMAIN_MFG] = { .name = "mfg", .sta_mask = PWR_STATUS_MFG, .ctl_offs = SPM_MFG_PWR_CON, .sram_pdn_bits = GENMASK(13, 8), .sram_pdn_ack_bits = GENMASK(21, 16), .clk_id = {CLK_NONE}, .bus_prot_mask = MT8173_TOP_AXI_PROT_EN_MFG_S | MT8173_TOP_AXI_PROT_EN_MFG_M0 | MT8173_TOP_AXI_PROT_EN_MFG_M1 | MT8173_TOP_AXI_PROT_EN_MFG_SNOOP_OUT, }, }; static const struct scp_subdomain scp_subdomain_mt8173[] = { {MT8173_POWER_DOMAIN_MFG_ASYNC, MT8173_POWER_DOMAIN_MFG_2D}, {MT8173_POWER_DOMAIN_MFG_2D, MT8173_POWER_DOMAIN_MFG}, }; static const struct scp_soc_data mt2701_data = { .domains = scp_domain_data_mt2701, .num_domains = ARRAY_SIZE(scp_domain_data_mt2701), .regs = { .pwr_sta_offs = SPM_PWR_STATUS, .pwr_sta2nd_offs = SPM_PWR_STATUS_2ND }, .bus_prot_reg_update = true, }; static const struct scp_soc_data mt2712_data = { .domains = scp_domain_data_mt2712, .num_domains = ARRAY_SIZE(scp_domain_data_mt2712), .subdomains = scp_subdomain_mt2712, .num_subdomains = ARRAY_SIZE(scp_subdomain_mt2712), .regs = { .pwr_sta_offs = SPM_PWR_STATUS, .pwr_sta2nd_offs = SPM_PWR_STATUS_2ND }, .bus_prot_reg_update = false, }; static const struct scp_soc_data mt6797_data = { .domains = scp_domain_data_mt6797, .num_domains = ARRAY_SIZE(scp_domain_data_mt6797), .subdomains = scp_subdomain_mt6797, .num_subdomains = ARRAY_SIZE(scp_subdomain_mt6797), .regs = { .pwr_sta_offs = SPM_PWR_STATUS_MT6797, .pwr_sta2nd_offs = SPM_PWR_STATUS_2ND_MT6797 }, .bus_prot_reg_update = true, }; static const struct scp_soc_data mt7622_data = { .domains = scp_domain_data_mt7622, .num_domains = ARRAY_SIZE(scp_domain_data_mt7622), .regs = { .pwr_sta_offs = SPM_PWR_STATUS, .pwr_sta2nd_offs = SPM_PWR_STATUS_2ND }, .bus_prot_reg_update = true, }; static const struct scp_soc_data mt7623a_data = { .domains = scp_domain_data_mt7623a, .num_domains = ARRAY_SIZE(scp_domain_data_mt7623a), .regs = { .pwr_sta_offs = SPM_PWR_STATUS, .pwr_sta2nd_offs = SPM_PWR_STATUS_2ND }, .bus_prot_reg_update = true, }; static const struct scp_soc_data mt8173_data = { .domains = scp_domain_data_mt8173, .num_domains = ARRAY_SIZE(scp_domain_data_mt8173), .subdomains = scp_subdomain_mt8173, .num_subdomains = ARRAY_SIZE(scp_subdomain_mt8173), .regs = { .pwr_sta_offs = SPM_PWR_STATUS, .pwr_sta2nd_offs = SPM_PWR_STATUS_2ND }, .bus_prot_reg_update = true, }; /* * scpsys driver init */ static const struct of_device_id of_scpsys_match_tbl[] = { { .compatible = "mediatek,mt2701-scpsys", .data = &mt2701_data, }, { .compatible = "mediatek,mt2712-scpsys", .data = &mt2712_data, }, { .compatible = "mediatek,mt6797-scpsys", .data = &mt6797_data, }, { .compatible = "mediatek,mt7622-scpsys", .data = &mt7622_data, }, { .compatible = "mediatek,mt7623a-scpsys", .data = &mt7623a_data, }, { .compatible = "mediatek,mt8173-scpsys", .data = &mt8173_data, }, { /* sentinel */ } }; static int scpsys_probe(struct platform_device *pdev) { const struct scp_subdomain *sd; const struct scp_soc_data *soc; struct scp *scp; struct genpd_onecell_data *pd_data; int i, ret; soc = of_device_get_match_data(&pdev->dev); scp = init_scp(pdev, soc->domains, soc->num_domains, &soc->regs, soc->bus_prot_reg_update); if (IS_ERR(scp)) return PTR_ERR(scp); mtk_register_power_domains(pdev, scp, soc->num_domains); pd_data = &scp->pd_data; for (i = 0, sd = soc->subdomains; i < soc->num_subdomains; i++, sd++) { ret = pm_genpd_add_subdomain(pd_data->domains[sd->origin], pd_data->domains[sd->subdomain]); if (ret && IS_ENABLED(CONFIG_PM)) dev_err(&pdev->dev, "Failed to add subdomain: %d\n", ret); } return 0; } static struct platform_driver scpsys_drv = { .probe = scpsys_probe, .driver = { .name = "mtk-scpsys", .suppress_bind_attrs = true, .owner = THIS_MODULE, .of_match_table = of_scpsys_match_tbl, }, }; builtin_platform_driver(scpsys_drv);
linux-master
drivers/pmdomain/mediatek/mtk-scpsys.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2020 Collabora Ltd. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/init.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/of_clk.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/soc/mediatek/infracfg.h> #include "mt6795-pm-domains.h" #include "mt8167-pm-domains.h" #include "mt8173-pm-domains.h" #include "mt8183-pm-domains.h" #include "mt8186-pm-domains.h" #include "mt8188-pm-domains.h" #include "mt8192-pm-domains.h" #include "mt8195-pm-domains.h" #define MTK_POLL_DELAY_US 10 #define MTK_POLL_TIMEOUT USEC_PER_SEC #define PWR_RST_B_BIT BIT(0) #define PWR_ISO_BIT BIT(1) #define PWR_ON_BIT BIT(2) #define PWR_ON_2ND_BIT BIT(3) #define PWR_CLK_DIS_BIT BIT(4) #define PWR_SRAM_CLKISO_BIT BIT(5) #define PWR_SRAM_ISOINT_B_BIT BIT(6) struct scpsys_domain { struct generic_pm_domain genpd; const struct scpsys_domain_data *data; struct scpsys *scpsys; int num_clks; struct clk_bulk_data *clks; int num_subsys_clks; struct clk_bulk_data *subsys_clks; struct regmap *infracfg; struct regmap *smi; struct regulator *supply; }; struct scpsys { struct device *dev; struct regmap *base; const struct scpsys_soc_data *soc_data; struct genpd_onecell_data pd_data; struct generic_pm_domain *domains[]; }; #define to_scpsys_domain(gpd) container_of(gpd, struct scpsys_domain, genpd) static bool scpsys_domain_is_on(struct scpsys_domain *pd) { struct scpsys *scpsys = pd->scpsys; u32 status, status2; regmap_read(scpsys->base, pd->data->pwr_sta_offs, &status); status &= pd->data->sta_mask; regmap_read(scpsys->base, pd->data->pwr_sta2nd_offs, &status2); status2 &= pd->data->sta_mask; /* A domain is on when both status bits are set. */ return status && status2; } static int scpsys_sram_enable(struct scpsys_domain *pd) { u32 pdn_ack = pd->data->sram_pdn_ack_bits; struct scpsys *scpsys = pd->scpsys; unsigned int tmp; int ret; regmap_clear_bits(scpsys->base, pd->data->ctl_offs, pd->data->sram_pdn_bits); /* Either wait until SRAM_PDN_ACK all 1 or 0 */ ret = regmap_read_poll_timeout(scpsys->base, pd->data->ctl_offs, tmp, (tmp & pdn_ack) == 0, MTK_POLL_DELAY_US, MTK_POLL_TIMEOUT); if (ret < 0) return ret; if (MTK_SCPD_CAPS(pd, MTK_SCPD_SRAM_ISO)) { regmap_set_bits(scpsys->base, pd->data->ctl_offs, PWR_SRAM_ISOINT_B_BIT); udelay(1); regmap_clear_bits(scpsys->base, pd->data->ctl_offs, PWR_SRAM_CLKISO_BIT); } return 0; } static int scpsys_sram_disable(struct scpsys_domain *pd) { u32 pdn_ack = pd->data->sram_pdn_ack_bits; struct scpsys *scpsys = pd->scpsys; unsigned int tmp; if (MTK_SCPD_CAPS(pd, MTK_SCPD_SRAM_ISO)) { regmap_set_bits(scpsys->base, pd->data->ctl_offs, PWR_SRAM_CLKISO_BIT); udelay(1); regmap_clear_bits(scpsys->base, pd->data->ctl_offs, PWR_SRAM_ISOINT_B_BIT); } regmap_set_bits(scpsys->base, pd->data->ctl_offs, pd->data->sram_pdn_bits); /* Either wait until SRAM_PDN_ACK all 1 or 0 */ return regmap_read_poll_timeout(scpsys->base, pd->data->ctl_offs, tmp, (tmp & pdn_ack) == pdn_ack, MTK_POLL_DELAY_US, MTK_POLL_TIMEOUT); } static int _scpsys_bus_protect_enable(const struct scpsys_bus_prot_data *bpd, struct regmap *regmap) { int i, ret; for (i = 0; i < SPM_MAX_BUS_PROT_DATA; i++) { u32 val, mask = bpd[i].bus_prot_mask; if (!mask) break; if (bpd[i].bus_prot_reg_update) regmap_set_bits(regmap, bpd[i].bus_prot_set, mask); else regmap_write(regmap, bpd[i].bus_prot_set, mask); ret = regmap_read_poll_timeout(regmap, bpd[i].bus_prot_sta, val, (val & mask) == mask, MTK_POLL_DELAY_US, MTK_POLL_TIMEOUT); if (ret) return ret; } return 0; } static int scpsys_bus_protect_enable(struct scpsys_domain *pd) { int ret; ret = _scpsys_bus_protect_enable(pd->data->bp_infracfg, pd->infracfg); if (ret) return ret; return _scpsys_bus_protect_enable(pd->data->bp_smi, pd->smi); } static int _scpsys_bus_protect_disable(const struct scpsys_bus_prot_data *bpd, struct regmap *regmap) { int i, ret; for (i = SPM_MAX_BUS_PROT_DATA - 1; i >= 0; i--) { u32 val, mask = bpd[i].bus_prot_mask; if (!mask) continue; if (bpd[i].bus_prot_reg_update) regmap_clear_bits(regmap, bpd[i].bus_prot_clr, mask); else regmap_write(regmap, bpd[i].bus_prot_clr, mask); if (bpd[i].ignore_clr_ack) continue; ret = regmap_read_poll_timeout(regmap, bpd[i].bus_prot_sta, val, !(val & mask), MTK_POLL_DELAY_US, MTK_POLL_TIMEOUT); if (ret) return ret; } return 0; } static int scpsys_bus_protect_disable(struct scpsys_domain *pd) { int ret; ret = _scpsys_bus_protect_disable(pd->data->bp_smi, pd->smi); if (ret) return ret; return _scpsys_bus_protect_disable(pd->data->bp_infracfg, pd->infracfg); } static int scpsys_regulator_enable(struct regulator *supply) { return supply ? regulator_enable(supply) : 0; } static int scpsys_regulator_disable(struct regulator *supply) { return supply ? regulator_disable(supply) : 0; } static int scpsys_power_on(struct generic_pm_domain *genpd) { struct scpsys_domain *pd = container_of(genpd, struct scpsys_domain, genpd); struct scpsys *scpsys = pd->scpsys; bool tmp; int ret; ret = scpsys_regulator_enable(pd->supply); if (ret) return ret; ret = clk_bulk_prepare_enable(pd->num_clks, pd->clks); if (ret) goto err_reg; if (pd->data->ext_buck_iso_offs && MTK_SCPD_CAPS(pd, MTK_SCPD_EXT_BUCK_ISO)) regmap_clear_bits(scpsys->base, pd->data->ext_buck_iso_offs, pd->data->ext_buck_iso_mask); /* subsys power on */ regmap_set_bits(scpsys->base, pd->data->ctl_offs, PWR_ON_BIT); regmap_set_bits(scpsys->base, pd->data->ctl_offs, PWR_ON_2ND_BIT); /* wait until PWR_ACK = 1 */ ret = readx_poll_timeout(scpsys_domain_is_on, pd, tmp, tmp, MTK_POLL_DELAY_US, MTK_POLL_TIMEOUT); if (ret < 0) goto err_pwr_ack; regmap_clear_bits(scpsys->base, pd->data->ctl_offs, PWR_CLK_DIS_BIT); regmap_clear_bits(scpsys->base, pd->data->ctl_offs, PWR_ISO_BIT); regmap_set_bits(scpsys->base, pd->data->ctl_offs, PWR_RST_B_BIT); ret = clk_bulk_prepare_enable(pd->num_subsys_clks, pd->subsys_clks); if (ret) goto err_pwr_ack; ret = scpsys_sram_enable(pd); if (ret < 0) goto err_disable_subsys_clks; ret = scpsys_bus_protect_disable(pd); if (ret < 0) goto err_disable_sram; return 0; err_disable_sram: scpsys_sram_disable(pd); err_disable_subsys_clks: clk_bulk_disable_unprepare(pd->num_subsys_clks, pd->subsys_clks); err_pwr_ack: clk_bulk_disable_unprepare(pd->num_clks, pd->clks); err_reg: scpsys_regulator_disable(pd->supply); return ret; } static int scpsys_power_off(struct generic_pm_domain *genpd) { struct scpsys_domain *pd = container_of(genpd, struct scpsys_domain, genpd); struct scpsys *scpsys = pd->scpsys; bool tmp; int ret; ret = scpsys_bus_protect_enable(pd); if (ret < 0) return ret; ret = scpsys_sram_disable(pd); if (ret < 0) return ret; if (pd->data->ext_buck_iso_offs && MTK_SCPD_CAPS(pd, MTK_SCPD_EXT_BUCK_ISO)) regmap_set_bits(scpsys->base, pd->data->ext_buck_iso_offs, pd->data->ext_buck_iso_mask); clk_bulk_disable_unprepare(pd->num_subsys_clks, pd->subsys_clks); /* subsys power off */ regmap_set_bits(scpsys->base, pd->data->ctl_offs, PWR_ISO_BIT); regmap_set_bits(scpsys->base, pd->data->ctl_offs, PWR_CLK_DIS_BIT); regmap_clear_bits(scpsys->base, pd->data->ctl_offs, PWR_RST_B_BIT); regmap_clear_bits(scpsys->base, pd->data->ctl_offs, PWR_ON_2ND_BIT); regmap_clear_bits(scpsys->base, pd->data->ctl_offs, PWR_ON_BIT); /* wait until PWR_ACK = 0 */ ret = readx_poll_timeout(scpsys_domain_is_on, pd, tmp, !tmp, MTK_POLL_DELAY_US, MTK_POLL_TIMEOUT); if (ret < 0) return ret; clk_bulk_disable_unprepare(pd->num_clks, pd->clks); scpsys_regulator_disable(pd->supply); return 0; } static struct generic_pm_domain *scpsys_add_one_domain(struct scpsys *scpsys, struct device_node *node) { const struct scpsys_domain_data *domain_data; struct scpsys_domain *pd; struct device_node *root_node = scpsys->dev->of_node; struct device_node *smi_node; struct property *prop; const char *clk_name; int i, ret, num_clks; struct clk *clk; int clk_ind = 0; u32 id; ret = of_property_read_u32(node, "reg", &id); if (ret) { dev_err(scpsys->dev, "%pOF: failed to retrieve domain id from reg: %d\n", node, ret); return ERR_PTR(-EINVAL); } if (id >= scpsys->soc_data->num_domains) { dev_err(scpsys->dev, "%pOF: invalid domain id %d\n", node, id); return ERR_PTR(-EINVAL); } domain_data = &scpsys->soc_data->domains_data[id]; if (domain_data->sta_mask == 0) { dev_err(scpsys->dev, "%pOF: undefined domain id %d\n", node, id); return ERR_PTR(-EINVAL); } pd = devm_kzalloc(scpsys->dev, sizeof(*pd), GFP_KERNEL); if (!pd) return ERR_PTR(-ENOMEM); pd->data = domain_data; pd->scpsys = scpsys; if (MTK_SCPD_CAPS(pd, MTK_SCPD_DOMAIN_SUPPLY)) { /* * Find regulator in current power domain node. * devm_regulator_get() finds regulator in a node and its child * node, so set of_node to current power domain node then change * back to original node after regulator is found for current * power domain node. */ scpsys->dev->of_node = node; pd->supply = devm_regulator_get(scpsys->dev, "domain"); scpsys->dev->of_node = root_node; if (IS_ERR(pd->supply)) { dev_err_probe(scpsys->dev, PTR_ERR(pd->supply), "%pOF: failed to get power supply.\n", node); return ERR_CAST(pd->supply); } } pd->infracfg = syscon_regmap_lookup_by_phandle_optional(node, "mediatek,infracfg"); if (IS_ERR(pd->infracfg)) return ERR_CAST(pd->infracfg); smi_node = of_parse_phandle(node, "mediatek,smi", 0); if (smi_node) { pd->smi = device_node_to_regmap(smi_node); of_node_put(smi_node); if (IS_ERR(pd->smi)) return ERR_CAST(pd->smi); } num_clks = of_clk_get_parent_count(node); if (num_clks > 0) { /* Calculate number of subsys_clks */ of_property_for_each_string(node, "clock-names", prop, clk_name) { char *subsys; subsys = strchr(clk_name, '-'); if (subsys) pd->num_subsys_clks++; else pd->num_clks++; } pd->clks = devm_kcalloc(scpsys->dev, pd->num_clks, sizeof(*pd->clks), GFP_KERNEL); if (!pd->clks) return ERR_PTR(-ENOMEM); pd->subsys_clks = devm_kcalloc(scpsys->dev, pd->num_subsys_clks, sizeof(*pd->subsys_clks), GFP_KERNEL); if (!pd->subsys_clks) return ERR_PTR(-ENOMEM); } for (i = 0; i < pd->num_clks; i++) { clk = of_clk_get(node, i); if (IS_ERR(clk)) { ret = PTR_ERR(clk); dev_err_probe(scpsys->dev, ret, "%pOF: failed to get clk at index %d\n", node, i); goto err_put_clocks; } pd->clks[clk_ind++].clk = clk; } for (i = 0; i < pd->num_subsys_clks; i++) { clk = of_clk_get(node, i + clk_ind); if (IS_ERR(clk)) { ret = PTR_ERR(clk); dev_err_probe(scpsys->dev, ret, "%pOF: failed to get clk at index %d\n", node, i + clk_ind); goto err_put_subsys_clocks; } pd->subsys_clks[i].clk = clk; } /* * Initially turn on all domains to make the domains usable * with !CONFIG_PM and to get the hardware in sync with the * software. The unused domains will be switched off during * late_init time. */ if (MTK_SCPD_CAPS(pd, MTK_SCPD_KEEP_DEFAULT_OFF)) { if (scpsys_domain_is_on(pd)) dev_warn(scpsys->dev, "%pOF: A default off power domain has been ON\n", node); } else { ret = scpsys_power_on(&pd->genpd); if (ret < 0) { dev_err(scpsys->dev, "%pOF: failed to power on domain: %d\n", node, ret); goto err_put_subsys_clocks; } if (MTK_SCPD_CAPS(pd, MTK_SCPD_ALWAYS_ON)) pd->genpd.flags |= GENPD_FLAG_ALWAYS_ON; } if (scpsys->domains[id]) { ret = -EINVAL; dev_err(scpsys->dev, "power domain with id %d already exists, check your device-tree\n", id); goto err_put_subsys_clocks; } if (!pd->data->name) pd->genpd.name = node->name; else pd->genpd.name = pd->data->name; pd->genpd.power_off = scpsys_power_off; pd->genpd.power_on = scpsys_power_on; if (MTK_SCPD_CAPS(pd, MTK_SCPD_ACTIVE_WAKEUP)) pd->genpd.flags |= GENPD_FLAG_ACTIVE_WAKEUP; if (MTK_SCPD_CAPS(pd, MTK_SCPD_KEEP_DEFAULT_OFF)) pm_genpd_init(&pd->genpd, NULL, true); else pm_genpd_init(&pd->genpd, NULL, false); scpsys->domains[id] = &pd->genpd; return scpsys->pd_data.domains[id]; err_put_subsys_clocks: clk_bulk_put(pd->num_subsys_clks, pd->subsys_clks); err_put_clocks: clk_bulk_put(pd->num_clks, pd->clks); return ERR_PTR(ret); } static int scpsys_add_subdomain(struct scpsys *scpsys, struct device_node *parent) { struct generic_pm_domain *child_pd, *parent_pd; struct device_node *child; int ret; for_each_child_of_node(parent, child) { u32 id; ret = of_property_read_u32(parent, "reg", &id); if (ret) { dev_err(scpsys->dev, "%pOF: failed to get parent domain id\n", child); goto err_put_node; } if (!scpsys->pd_data.domains[id]) { ret = -EINVAL; dev_err(scpsys->dev, "power domain with id %d does not exist\n", id); goto err_put_node; } parent_pd = scpsys->pd_data.domains[id]; child_pd = scpsys_add_one_domain(scpsys, child); if (IS_ERR(child_pd)) { ret = PTR_ERR(child_pd); dev_err_probe(scpsys->dev, ret, "%pOF: failed to get child domain id\n", child); goto err_put_node; } ret = pm_genpd_add_subdomain(parent_pd, child_pd); if (ret) { dev_err(scpsys->dev, "failed to add %s subdomain to parent %s\n", child_pd->name, parent_pd->name); goto err_put_node; } else { dev_dbg(scpsys->dev, "%s add subdomain: %s\n", parent_pd->name, child_pd->name); } /* recursive call to add all subdomains */ ret = scpsys_add_subdomain(scpsys, child); if (ret) goto err_put_node; } return 0; err_put_node: of_node_put(child); return ret; } static void scpsys_remove_one_domain(struct scpsys_domain *pd) { int ret; if (scpsys_domain_is_on(pd)) scpsys_power_off(&pd->genpd); /* * We're in the error cleanup already, so we only complain, * but won't emit another error on top of the original one. */ ret = pm_genpd_remove(&pd->genpd); if (ret < 0) dev_err(pd->scpsys->dev, "failed to remove domain '%s' : %d - state may be inconsistent\n", pd->genpd.name, ret); clk_bulk_put(pd->num_clks, pd->clks); clk_bulk_put(pd->num_subsys_clks, pd->subsys_clks); } static void scpsys_domain_cleanup(struct scpsys *scpsys) { struct generic_pm_domain *genpd; struct scpsys_domain *pd; int i; for (i = scpsys->pd_data.num_domains - 1; i >= 0; i--) { genpd = scpsys->pd_data.domains[i]; if (genpd) { pd = to_scpsys_domain(genpd); scpsys_remove_one_domain(pd); } } } static const struct of_device_id scpsys_of_match[] = { { .compatible = "mediatek,mt6795-power-controller", .data = &mt6795_scpsys_data, }, { .compatible = "mediatek,mt8167-power-controller", .data = &mt8167_scpsys_data, }, { .compatible = "mediatek,mt8173-power-controller", .data = &mt8173_scpsys_data, }, { .compatible = "mediatek,mt8183-power-controller", .data = &mt8183_scpsys_data, }, { .compatible = "mediatek,mt8186-power-controller", .data = &mt8186_scpsys_data, }, { .compatible = "mediatek,mt8188-power-controller", .data = &mt8188_scpsys_data, }, { .compatible = "mediatek,mt8192-power-controller", .data = &mt8192_scpsys_data, }, { .compatible = "mediatek,mt8195-power-controller", .data = &mt8195_scpsys_data, }, { } }; static int scpsys_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct scpsys_soc_data *soc; struct device_node *node; struct device *parent; struct scpsys *scpsys; int ret; soc = of_device_get_match_data(&pdev->dev); if (!soc) { dev_err(&pdev->dev, "no power controller data\n"); return -EINVAL; } scpsys = devm_kzalloc(dev, struct_size(scpsys, domains, soc->num_domains), GFP_KERNEL); if (!scpsys) return -ENOMEM; scpsys->dev = dev; scpsys->soc_data = soc; scpsys->pd_data.domains = scpsys->domains; scpsys->pd_data.num_domains = soc->num_domains; parent = dev->parent; if (!parent) { dev_err(dev, "no parent for syscon devices\n"); return -ENODEV; } scpsys->base = syscon_node_to_regmap(parent->of_node); if (IS_ERR(scpsys->base)) { dev_err(dev, "no regmap available\n"); return PTR_ERR(scpsys->base); } ret = -ENODEV; for_each_available_child_of_node(np, node) { struct generic_pm_domain *domain; domain = scpsys_add_one_domain(scpsys, node); if (IS_ERR(domain)) { ret = PTR_ERR(domain); of_node_put(node); goto err_cleanup_domains; } ret = scpsys_add_subdomain(scpsys, node); if (ret) { of_node_put(node); goto err_cleanup_domains; } } if (ret) { dev_dbg(dev, "no power domains present\n"); return ret; } ret = of_genpd_add_provider_onecell(np, &scpsys->pd_data); if (ret) { dev_err(dev, "failed to add provider: %d\n", ret); goto err_cleanup_domains; } return 0; err_cleanup_domains: scpsys_domain_cleanup(scpsys); return ret; } static struct platform_driver scpsys_pm_domain_driver = { .probe = scpsys_probe, .driver = { .name = "mtk-power-controller", .suppress_bind_attrs = true, .of_match_table = scpsys_of_match, }, }; builtin_platform_driver(scpsys_pm_domain_driver);
linux-master
drivers/pmdomain/mediatek/mtk-pm-domains.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved */ #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <soc/tegra/bpmp.h> #include <soc/tegra/bpmp-abi.h> struct tegra_powergate_info { unsigned int id; char *name; }; struct tegra_powergate { struct generic_pm_domain genpd; struct tegra_bpmp *bpmp; unsigned int id; }; static inline struct tegra_powergate * to_tegra_powergate(struct generic_pm_domain *genpd) { return container_of(genpd, struct tegra_powergate, genpd); } static int tegra_bpmp_powergate_set_state(struct tegra_bpmp *bpmp, unsigned int id, u32 state) { struct mrq_pg_request request; struct tegra_bpmp_message msg; int err; memset(&request, 0, sizeof(request)); request.cmd = CMD_PG_SET_STATE; request.id = id; request.set_state.state = state; memset(&msg, 0, sizeof(msg)); msg.mrq = MRQ_PG; msg.tx.data = &request; msg.tx.size = sizeof(request); err = tegra_bpmp_transfer(bpmp, &msg); if (err < 0) return err; else if (msg.rx.ret < 0) return -EINVAL; return 0; } static int tegra_bpmp_powergate_get_state(struct tegra_bpmp *bpmp, unsigned int id) { struct mrq_pg_response response; struct mrq_pg_request request; struct tegra_bpmp_message msg; int err; memset(&request, 0, sizeof(request)); request.cmd = CMD_PG_GET_STATE; request.id = id; memset(&response, 0, sizeof(response)); memset(&msg, 0, sizeof(msg)); msg.mrq = MRQ_PG; msg.tx.data = &request; msg.tx.size = sizeof(request); msg.rx.data = &response; msg.rx.size = sizeof(response); err = tegra_bpmp_transfer(bpmp, &msg); if (err < 0) return PG_STATE_OFF; else if (msg.rx.ret < 0) return -EINVAL; return response.get_state.state; } static int tegra_bpmp_powergate_get_max_id(struct tegra_bpmp *bpmp) { struct mrq_pg_response response; struct mrq_pg_request request; struct tegra_bpmp_message msg; int err; memset(&request, 0, sizeof(request)); request.cmd = CMD_PG_GET_MAX_ID; memset(&response, 0, sizeof(response)); memset(&msg, 0, sizeof(msg)); msg.mrq = MRQ_PG; msg.tx.data = &request; msg.tx.size = sizeof(request); msg.rx.data = &response; msg.rx.size = sizeof(response); err = tegra_bpmp_transfer(bpmp, &msg); if (err < 0) return err; else if (msg.rx.ret < 0) return -EINVAL; return response.get_max_id.max_id; } static char *tegra_bpmp_powergate_get_name(struct tegra_bpmp *bpmp, unsigned int id) { struct mrq_pg_response response; struct mrq_pg_request request; struct tegra_bpmp_message msg; int err; memset(&request, 0, sizeof(request)); request.cmd = CMD_PG_GET_NAME; request.id = id; memset(&response, 0, sizeof(response)); memset(&msg, 0, sizeof(msg)); msg.mrq = MRQ_PG; msg.tx.data = &request; msg.tx.size = sizeof(request); msg.rx.data = &response; msg.rx.size = sizeof(response); err = tegra_bpmp_transfer(bpmp, &msg); if (err < 0 || msg.rx.ret < 0) return NULL; return kstrdup(response.get_name.name, GFP_KERNEL); } static inline bool tegra_bpmp_powergate_is_powered(struct tegra_bpmp *bpmp, unsigned int id) { return tegra_bpmp_powergate_get_state(bpmp, id) != PG_STATE_OFF; } static int tegra_powergate_power_on(struct generic_pm_domain *domain) { struct tegra_powergate *powergate = to_tegra_powergate(domain); struct tegra_bpmp *bpmp = powergate->bpmp; return tegra_bpmp_powergate_set_state(bpmp, powergate->id, PG_STATE_ON); } static int tegra_powergate_power_off(struct generic_pm_domain *domain) { struct tegra_powergate *powergate = to_tegra_powergate(domain); struct tegra_bpmp *bpmp = powergate->bpmp; return tegra_bpmp_powergate_set_state(bpmp, powergate->id, PG_STATE_OFF); } static struct tegra_powergate * tegra_powergate_add(struct tegra_bpmp *bpmp, const struct tegra_powergate_info *info) { struct tegra_powergate *powergate; bool off; int err; off = !tegra_bpmp_powergate_is_powered(bpmp, info->id); powergate = devm_kzalloc(bpmp->dev, sizeof(*powergate), GFP_KERNEL); if (!powergate) return ERR_PTR(-ENOMEM); powergate->id = info->id; powergate->bpmp = bpmp; powergate->genpd.name = kstrdup(info->name, GFP_KERNEL); powergate->genpd.power_on = tegra_powergate_power_on; powergate->genpd.power_off = tegra_powergate_power_off; err = pm_genpd_init(&powergate->genpd, NULL, off); if (err < 0) { kfree(powergate->genpd.name); return ERR_PTR(err); } return powergate; } static void tegra_powergate_remove(struct tegra_powergate *powergate) { struct generic_pm_domain *genpd = &powergate->genpd; struct tegra_bpmp *bpmp = powergate->bpmp; int err; err = pm_genpd_remove(genpd); if (err < 0) dev_err(bpmp->dev, "failed to remove power domain %s: %d\n", genpd->name, err); kfree(genpd->name); } static int tegra_bpmp_probe_powergates(struct tegra_bpmp *bpmp, struct tegra_powergate_info **powergatesp) { struct tegra_powergate_info *powergates; unsigned int max_id, id, count = 0; unsigned int num_holes = 0; int err; err = tegra_bpmp_powergate_get_max_id(bpmp); if (err < 0) return err; max_id = err; dev_dbg(bpmp->dev, "maximum powergate ID: %u\n", max_id); powergates = kcalloc(max_id + 1, sizeof(*powergates), GFP_KERNEL); if (!powergates) return -ENOMEM; for (id = 0; id <= max_id; id++) { struct tegra_powergate_info *info = &powergates[count]; info->name = tegra_bpmp_powergate_get_name(bpmp, id); if (!info->name || info->name[0] == '\0') { num_holes++; continue; } info->id = id; count++; } dev_dbg(bpmp->dev, "holes: %u\n", num_holes); *powergatesp = powergates; return count; } static int tegra_bpmp_add_powergates(struct tegra_bpmp *bpmp, struct tegra_powergate_info *powergates, unsigned int count) { struct genpd_onecell_data *genpd = &bpmp->genpd; struct generic_pm_domain **domains; struct tegra_powergate *powergate; unsigned int i; int err; domains = kcalloc(count, sizeof(*domains), GFP_KERNEL); if (!domains) return -ENOMEM; for (i = 0; i < count; i++) { powergate = tegra_powergate_add(bpmp, &powergates[i]); if (IS_ERR(powergate)) { err = PTR_ERR(powergate); goto remove; } dev_dbg(bpmp->dev, "added power domain %s\n", powergate->genpd.name); domains[i] = &powergate->genpd; } genpd->num_domains = count; genpd->domains = domains; return 0; remove: while (i--) { powergate = to_tegra_powergate(domains[i]); tegra_powergate_remove(powergate); } kfree(domains); return err; } static void tegra_bpmp_remove_powergates(struct tegra_bpmp *bpmp) { struct genpd_onecell_data *genpd = &bpmp->genpd; unsigned int i = genpd->num_domains; struct tegra_powergate *powergate; while (i--) { dev_dbg(bpmp->dev, "removing power domain %s\n", genpd->domains[i]->name); powergate = to_tegra_powergate(genpd->domains[i]); tegra_powergate_remove(powergate); } } static struct generic_pm_domain * tegra_powergate_xlate(struct of_phandle_args *spec, void *data) { struct generic_pm_domain *domain = ERR_PTR(-ENOENT); struct genpd_onecell_data *genpd = data; unsigned int i; for (i = 0; i < genpd->num_domains; i++) { struct tegra_powergate *powergate; powergate = to_tegra_powergate(genpd->domains[i]); if (powergate->id == spec->args[0]) { domain = &powergate->genpd; break; } } return domain; } int tegra_bpmp_init_powergates(struct tegra_bpmp *bpmp) { struct device_node *np = bpmp->dev->of_node; struct tegra_powergate_info *powergates; struct device *dev = bpmp->dev; unsigned int count, i; int err; err = tegra_bpmp_probe_powergates(bpmp, &powergates); if (err < 0) return err; count = err; dev_dbg(dev, "%u power domains probed\n", count); err = tegra_bpmp_add_powergates(bpmp, powergates, count); if (err < 0) goto free; bpmp->genpd.xlate = tegra_powergate_xlate; err = of_genpd_add_provider_onecell(np, &bpmp->genpd); if (err < 0) { dev_err(dev, "failed to add power domain provider: %d\n", err); tegra_bpmp_remove_powergates(bpmp); } free: for (i = 0; i < count; i++) kfree(powergates[i].name); kfree(powergates); return err; }
linux-master
drivers/pmdomain/tegra/powergate-bpmp.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 Linaro Ltd. * * Author: Ulf Hansson <[email protected]> * * Implements PM domains using the generic PM domain for ux500. */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/printk.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/of.h> #include <linux/pm_domain.h> #include <dt-bindings/arm/ux500_pm_domains.h> static int pd_power_off(struct generic_pm_domain *domain) { /* * Handle the gating of the PM domain regulator here. * * Drivers/subsystems handling devices in the PM domain needs to perform * register context save/restore from their respective runtime PM * callbacks, to be able to enable PM domain gating/ungating. */ return 0; } static int pd_power_on(struct generic_pm_domain *domain) { /* * Handle the ungating of the PM domain regulator here. * * Drivers/subsystems handling devices in the PM domain needs to perform * register context save/restore from their respective runtime PM * callbacks, to be able to enable PM domain gating/ungating. */ return 0; } static struct generic_pm_domain ux500_pm_domain_vape = { .name = "VAPE", .power_off = pd_power_off, .power_on = pd_power_on, }; static struct generic_pm_domain *ux500_pm_domains[NR_DOMAINS] = { [DOMAIN_VAPE] = &ux500_pm_domain_vape, }; static const struct of_device_id ux500_pm_domain_matches[] = { { .compatible = "stericsson,ux500-pm-domains", }, { }, }; static int ux500_pm_domains_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct genpd_onecell_data *genpd_data; int i; if (!np) return -ENODEV; genpd_data = kzalloc(sizeof(*genpd_data), GFP_KERNEL); if (!genpd_data) return -ENOMEM; genpd_data->domains = ux500_pm_domains; genpd_data->num_domains = ARRAY_SIZE(ux500_pm_domains); for (i = 0; i < ARRAY_SIZE(ux500_pm_domains); ++i) pm_genpd_init(ux500_pm_domains[i], NULL, false); of_genpd_add_provider_onecell(np, genpd_data); return 0; } static struct platform_driver ux500_pm_domains_driver = { .probe = ux500_pm_domains_probe, .driver = { .name = "ux500_pm_domains", .of_match_table = ux500_pm_domain_matches, }, }; static int __init ux500_pm_domains_init(void) { return platform_driver_register(&ux500_pm_domains_driver); } arch_initcall(ux500_pm_domains_init);
linux-master
drivers/pmdomain/st/ste-ux500-pm-domain.c
// SPDX-License-Identifier: GPL-2.0-only #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/reset.h> #define PD_STATE_ON 1 #define PD_STATE_OFF 2 #define PD_RSTN_REG 0x00 #define PD_CLK_GATE_REG 0x04 #define PD_PWROFF_GATE_REG 0x08 #define PD_PSW_ON_REG 0x0c #define PD_PSW_OFF_REG 0x10 #define PD_PSW_DELAY_REG 0x14 #define PD_OFF_DELAY_REG 0x18 #define PD_ON_DELAY_REG 0x1c #define PD_COMMAND_REG 0x20 #define PD_STATUS_REG 0x24 #define PD_STATUS_COMPLETE BIT(1) #define PD_STATUS_BUSY BIT(3) #define PD_STATUS_STATE GENMASK(17, 16) #define PD_ACTIVE_CTRL_REG 0x2c #define PD_GATE_STATUS_REG 0x30 #define PD_RSTN_STATUS BIT(0) #define PD_CLK_GATE_STATUS BIT(1) #define PD_PWROFF_GATE_STATUS BIT(2) #define PD_PSW_STATUS_REG 0x34 #define PD_REGS_SIZE 0x80 struct sun20i_ppu_desc { const char *const *names; unsigned int num_domains; }; struct sun20i_ppu_pd { struct generic_pm_domain genpd; void __iomem *base; }; #define to_sun20i_ppu_pd(_genpd) \ container_of(_genpd, struct sun20i_ppu_pd, genpd) static bool sun20i_ppu_pd_is_on(const struct sun20i_ppu_pd *pd) { u32 status = readl(pd->base + PD_STATUS_REG); return FIELD_GET(PD_STATUS_STATE, status) == PD_STATE_ON; } static int sun20i_ppu_pd_set_power(const struct sun20i_ppu_pd *pd, bool power_on) { u32 state, status; int ret; if (sun20i_ppu_pd_is_on(pd) == power_on) return 0; /* Wait for the power controller to be idle. */ ret = readl_poll_timeout(pd->base + PD_STATUS_REG, status, !(status & PD_STATUS_BUSY), 100, 1000); if (ret) return ret; state = power_on ? PD_STATE_ON : PD_STATE_OFF; writel(state, pd->base + PD_COMMAND_REG); /* Wait for the state transition to complete. */ ret = readl_poll_timeout(pd->base + PD_STATUS_REG, status, FIELD_GET(PD_STATUS_STATE, status) == state && (status & PD_STATUS_COMPLETE), 100, 1000); if (ret) return ret; /* Clear the completion flag. */ writel(status, pd->base + PD_STATUS_REG); return 0; } static int sun20i_ppu_pd_power_on(struct generic_pm_domain *genpd) { const struct sun20i_ppu_pd *pd = to_sun20i_ppu_pd(genpd); return sun20i_ppu_pd_set_power(pd, true); } static int sun20i_ppu_pd_power_off(struct generic_pm_domain *genpd) { const struct sun20i_ppu_pd *pd = to_sun20i_ppu_pd(genpd); return sun20i_ppu_pd_set_power(pd, false); } static int sun20i_ppu_probe(struct platform_device *pdev) { const struct sun20i_ppu_desc *desc; struct device *dev = &pdev->dev; struct genpd_onecell_data *ppu; struct sun20i_ppu_pd *pds; struct reset_control *rst; void __iomem *base; struct clk *clk; int ret; desc = of_device_get_match_data(dev); if (!desc) return -EINVAL; pds = devm_kcalloc(dev, desc->num_domains, sizeof(*pds), GFP_KERNEL); if (!pds) return -ENOMEM; ppu = devm_kzalloc(dev, sizeof(*ppu), GFP_KERNEL); if (!ppu) return -ENOMEM; ppu->domains = devm_kcalloc(dev, desc->num_domains, sizeof(*ppu->domains), GFP_KERNEL); if (!ppu->domains) return -ENOMEM; ppu->num_domains = desc->num_domains; platform_set_drvdata(pdev, ppu); base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(clk)) return PTR_ERR(clk); rst = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(rst)) return PTR_ERR(rst); ret = reset_control_deassert(rst); if (ret) return ret; for (unsigned int i = 0; i < ppu->num_domains; ++i) { struct sun20i_ppu_pd *pd = &pds[i]; pd->genpd.name = desc->names[i]; pd->genpd.power_off = sun20i_ppu_pd_power_off; pd->genpd.power_on = sun20i_ppu_pd_power_on; pd->base = base + PD_REGS_SIZE * i; ret = pm_genpd_init(&pd->genpd, NULL, sun20i_ppu_pd_is_on(pd)); if (ret) { dev_warn(dev, "Failed to add '%s' domain: %d\n", pd->genpd.name, ret); continue; } ppu->domains[i] = &pd->genpd; } ret = of_genpd_add_provider_onecell(dev->of_node, ppu); if (ret) dev_warn(dev, "Failed to add provider: %d\n", ret); return 0; } static const char *const sun20i_d1_ppu_pd_names[] = { "CPU", "VE", "DSP", }; static const struct sun20i_ppu_desc sun20i_d1_ppu_desc = { .names = sun20i_d1_ppu_pd_names, .num_domains = ARRAY_SIZE(sun20i_d1_ppu_pd_names), }; static const struct of_device_id sun20i_ppu_of_match[] = { { .compatible = "allwinner,sun20i-d1-ppu", .data = &sun20i_d1_ppu_desc, }, { } }; MODULE_DEVICE_TABLE(of, sun20i_ppu_of_match); static struct platform_driver sun20i_ppu_driver = { .probe = sun20i_ppu_probe, .driver = { .name = "sun20i-ppu", .of_match_table = sun20i_ppu_of_match, /* Power domains cannot be removed while they are in use. */ .suppress_bind_attrs = true, }, }; module_platform_driver(sun20i_ppu_driver); MODULE_AUTHOR("Samuel Holland <[email protected]>"); MODULE_DESCRIPTION("Allwinner D1 PPU power domain driver"); MODULE_LICENSE("GPL");
linux-master
drivers/pmdomain/sunxi/sun20i-ppu.c
// SPDX-License-Identifier: GPL-2.0+ /* * Actions Semi Owl Smart Power System (SPS) shared helpers * * Copyright 2012 Actions Semi Inc. * Author: Actions Semi, Inc. * * Copyright (c) 2017 Andreas Färber */ #include <linux/delay.h> #include <linux/io.h> #include <linux/soc/actions/owl-sps.h> #define OWL_SPS_PG_CTL 0x0 int owl_sps_set_pg(void __iomem *base, u32 pwr_mask, u32 ack_mask, bool enable) { u32 val; bool ack; int timeout; val = readl(base + OWL_SPS_PG_CTL); ack = val & ack_mask; if (ack == enable) return 0; if (enable) val |= pwr_mask; else val &= ~pwr_mask; writel(val, base + OWL_SPS_PG_CTL); for (timeout = 5000; timeout > 0; timeout -= 50) { val = readl(base + OWL_SPS_PG_CTL); if ((val & ack_mask) == (enable ? ack_mask : 0)) break; udelay(50); } if (timeout <= 0) return -ETIMEDOUT; udelay(10); return 0; } EXPORT_SYMBOL_GPL(owl_sps_set_pg);
linux-master
drivers/pmdomain/actions/owl-sps-helper.c
// SPDX-License-Identifier: GPL-2.0+ /* * Actions Semi Owl Smart Power System (SPS) * * Copyright 2012 Actions Semi Inc. * Author: Actions Semi, Inc. * * Copyright (c) 2017 Andreas Färber */ #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/pm_domain.h> #include <linux/soc/actions/owl-sps.h> #include <dt-bindings/power/owl-s500-powergate.h> #include <dt-bindings/power/owl-s700-powergate.h> #include <dt-bindings/power/owl-s900-powergate.h> struct owl_sps_domain_info { const char *name; int pwr_bit; int ack_bit; unsigned int genpd_flags; }; struct owl_sps_info { unsigned num_domains; const struct owl_sps_domain_info *domains; }; struct owl_sps { struct device *dev; const struct owl_sps_info *info; void __iomem *base; struct genpd_onecell_data genpd_data; struct generic_pm_domain *domains[]; }; #define to_owl_pd(gpd) container_of(gpd, struct owl_sps_domain, genpd) struct owl_sps_domain { struct generic_pm_domain genpd; const struct owl_sps_domain_info *info; struct owl_sps *sps; }; static int owl_sps_set_power(struct owl_sps_domain *pd, bool enable) { u32 pwr_mask, ack_mask; ack_mask = BIT(pd->info->ack_bit); pwr_mask = BIT(pd->info->pwr_bit); return owl_sps_set_pg(pd->sps->base, pwr_mask, ack_mask, enable); } static int owl_sps_power_on(struct generic_pm_domain *domain) { struct owl_sps_domain *pd = to_owl_pd(domain); dev_dbg(pd->sps->dev, "%s power on", pd->info->name); return owl_sps_set_power(pd, true); } static int owl_sps_power_off(struct generic_pm_domain *domain) { struct owl_sps_domain *pd = to_owl_pd(domain); dev_dbg(pd->sps->dev, "%s power off", pd->info->name); return owl_sps_set_power(pd, false); } static int owl_sps_init_domain(struct owl_sps *sps, int index) { struct owl_sps_domain *pd; pd = devm_kzalloc(sps->dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pd->info = &sps->info->domains[index]; pd->sps = sps; pd->genpd.name = pd->info->name; pd->genpd.power_on = owl_sps_power_on; pd->genpd.power_off = owl_sps_power_off; pd->genpd.flags = pd->info->genpd_flags; pm_genpd_init(&pd->genpd, NULL, false); sps->genpd_data.domains[index] = &pd->genpd; return 0; } static int owl_sps_probe(struct platform_device *pdev) { const struct of_device_id *match; const struct owl_sps_info *sps_info; struct owl_sps *sps; int i, ret; if (!pdev->dev.of_node) { dev_err(&pdev->dev, "no device node\n"); return -ENODEV; } match = of_match_device(pdev->dev.driver->of_match_table, &pdev->dev); if (!match || !match->data) { dev_err(&pdev->dev, "unknown compatible or missing data\n"); return -EINVAL; } sps_info = match->data; sps = devm_kzalloc(&pdev->dev, struct_size(sps, domains, sps_info->num_domains), GFP_KERNEL); if (!sps) return -ENOMEM; sps->base = of_io_request_and_map(pdev->dev.of_node, 0, "owl-sps"); if (IS_ERR(sps->base)) { dev_err(&pdev->dev, "failed to map sps registers\n"); return PTR_ERR(sps->base); } sps->dev = &pdev->dev; sps->info = sps_info; sps->genpd_data.domains = sps->domains; sps->genpd_data.num_domains = sps_info->num_domains; for (i = 0; i < sps_info->num_domains; i++) { ret = owl_sps_init_domain(sps, i); if (ret) return ret; } ret = of_genpd_add_provider_onecell(pdev->dev.of_node, &sps->genpd_data); if (ret) { dev_err(&pdev->dev, "failed to add provider (%d)", ret); return ret; } return 0; } static const struct owl_sps_domain_info s500_sps_domains[] = { [S500_PD_VDE] = { .name = "VDE", .pwr_bit = 0, .ack_bit = 16, }, [S500_PD_VCE_SI] = { .name = "VCE_SI", .pwr_bit = 1, .ack_bit = 17, }, [S500_PD_USB2_1] = { .name = "USB2_1", .pwr_bit = 2, .ack_bit = 18, }, [S500_PD_CPU2] = { .name = "CPU2", .pwr_bit = 5, .ack_bit = 21, .genpd_flags = GENPD_FLAG_ALWAYS_ON, }, [S500_PD_CPU3] = { .name = "CPU3", .pwr_bit = 6, .ack_bit = 22, .genpd_flags = GENPD_FLAG_ALWAYS_ON, }, [S500_PD_DMA] = { .name = "DMA", .pwr_bit = 8, .ack_bit = 12, }, [S500_PD_DS] = { .name = "DS", .pwr_bit = 9, .ack_bit = 13, }, [S500_PD_USB3] = { .name = "USB3", .pwr_bit = 10, .ack_bit = 14, }, [S500_PD_USB2_0] = { .name = "USB2_0", .pwr_bit = 11, .ack_bit = 15, }, }; static const struct owl_sps_info s500_sps_info = { .num_domains = ARRAY_SIZE(s500_sps_domains), .domains = s500_sps_domains, }; static const struct owl_sps_domain_info s700_sps_domains[] = { [S700_PD_VDE] = { .name = "VDE", .pwr_bit = 0, }, [S700_PD_VCE_SI] = { .name = "VCE_SI", .pwr_bit = 1, }, [S700_PD_USB2_1] = { .name = "USB2_1", .pwr_bit = 2, }, [S700_PD_HDE] = { .name = "HDE", .pwr_bit = 7, }, [S700_PD_DMA] = { .name = "DMA", .pwr_bit = 8, }, [S700_PD_DS] = { .name = "DS", .pwr_bit = 9, }, [S700_PD_USB3] = { .name = "USB3", .pwr_bit = 10, }, [S700_PD_USB2_0] = { .name = "USB2_0", .pwr_bit = 11, }, }; static const struct owl_sps_info s700_sps_info = { .num_domains = ARRAY_SIZE(s700_sps_domains), .domains = s700_sps_domains, }; static const struct owl_sps_domain_info s900_sps_domains[] = { [S900_PD_GPU_B] = { .name = "GPU_B", .pwr_bit = 3, }, [S900_PD_VCE] = { .name = "VCE", .pwr_bit = 4, }, [S900_PD_SENSOR] = { .name = "SENSOR", .pwr_bit = 5, }, [S900_PD_VDE] = { .name = "VDE", .pwr_bit = 6, }, [S900_PD_HDE] = { .name = "HDE", .pwr_bit = 7, }, [S900_PD_USB3] = { .name = "USB3", .pwr_bit = 8, }, [S900_PD_DDR0] = { .name = "DDR0", .pwr_bit = 9, }, [S900_PD_DDR1] = { .name = "DDR1", .pwr_bit = 10, }, [S900_PD_DE] = { .name = "DE", .pwr_bit = 13, }, [S900_PD_NAND] = { .name = "NAND", .pwr_bit = 14, }, [S900_PD_USB2_H0] = { .name = "USB2_H0", .pwr_bit = 15, }, [S900_PD_USB2_H1] = { .name = "USB2_H1", .pwr_bit = 16, }, }; static const struct owl_sps_info s900_sps_info = { .num_domains = ARRAY_SIZE(s900_sps_domains), .domains = s900_sps_domains, }; static const struct of_device_id owl_sps_of_matches[] = { { .compatible = "actions,s500-sps", .data = &s500_sps_info }, { .compatible = "actions,s700-sps", .data = &s700_sps_info }, { .compatible = "actions,s900-sps", .data = &s900_sps_info }, { } }; static struct platform_driver owl_sps_platform_driver = { .probe = owl_sps_probe, .driver = { .name = "owl-sps", .of_match_table = owl_sps_of_matches, .suppress_bind_attrs = true, }, }; static int __init owl_sps_init(void) { return platform_driver_register(&owl_sps_platform_driver); } postcore_initcall(owl_sps_init);
linux-master
drivers/pmdomain/actions/owl-sps.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * BCM63xx Power Domain Controller Driver * * Copyright (C) 2020 Álvaro Fernández Rojas <[email protected]> */ #include <dt-bindings/soc/bcm6318-pm.h> #include <dt-bindings/soc/bcm6328-pm.h> #include <dt-bindings/soc/bcm6362-pm.h> #include <dt-bindings/soc/bcm63268-pm.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/of.h> struct bcm63xx_power_dev { struct generic_pm_domain genpd; struct bcm63xx_power *power; uint32_t mask; }; struct bcm63xx_power { void __iomem *base; spinlock_t lock; struct bcm63xx_power_dev *dev; struct genpd_onecell_data genpd_data; struct generic_pm_domain **genpd; }; struct bcm63xx_power_data { const char * const name; uint8_t bit; unsigned int flags; }; static int bcm63xx_power_get_state(struct bcm63xx_power_dev *pmd, bool *is_on) { struct bcm63xx_power *power = pmd->power; if (!pmd->mask) { *is_on = false; return -EINVAL; } *is_on = !(__raw_readl(power->base) & pmd->mask); return 0; } static int bcm63xx_power_set_state(struct bcm63xx_power_dev *pmd, bool on) { struct bcm63xx_power *power = pmd->power; unsigned long flags; uint32_t val; if (!pmd->mask) return -EINVAL; spin_lock_irqsave(&power->lock, flags); val = __raw_readl(power->base); if (on) val &= ~pmd->mask; else val |= pmd->mask; __raw_writel(val, power->base); spin_unlock_irqrestore(&power->lock, flags); return 0; } static int bcm63xx_power_on(struct generic_pm_domain *genpd) { struct bcm63xx_power_dev *pmd = container_of(genpd, struct bcm63xx_power_dev, genpd); return bcm63xx_power_set_state(pmd, true); } static int bcm63xx_power_off(struct generic_pm_domain *genpd) { struct bcm63xx_power_dev *pmd = container_of(genpd, struct bcm63xx_power_dev, genpd); return bcm63xx_power_set_state(pmd, false); } static int bcm63xx_power_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct bcm63xx_power_data *entry, *table; struct bcm63xx_power *power; unsigned int ndom; uint8_t max_bit = 0; int ret; power = devm_kzalloc(dev, sizeof(*power), GFP_KERNEL); if (!power) return -ENOMEM; power->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(power->base)) return PTR_ERR(power->base); table = of_device_get_match_data(dev); if (!table) return -EINVAL; power->genpd_data.num_domains = 0; ndom = 0; for (entry = table; entry->name; entry++) { max_bit = max(max_bit, entry->bit); ndom++; } if (!ndom) return -ENODEV; power->genpd_data.num_domains = max_bit + 1; power->dev = devm_kcalloc(dev, power->genpd_data.num_domains, sizeof(struct bcm63xx_power_dev), GFP_KERNEL); if (!power->dev) return -ENOMEM; power->genpd = devm_kcalloc(dev, power->genpd_data.num_domains, sizeof(struct generic_pm_domain *), GFP_KERNEL); if (!power->genpd) return -ENOMEM; power->genpd_data.domains = power->genpd; ndom = 0; for (entry = table; entry->name; entry++) { struct bcm63xx_power_dev *pmd = &power->dev[ndom]; bool is_on; pmd->power = power; pmd->mask = BIT(entry->bit); pmd->genpd.name = entry->name; pmd->genpd.flags = entry->flags; ret = bcm63xx_power_get_state(pmd, &is_on); if (ret) dev_warn(dev, "unable to get current state for %s\n", pmd->genpd.name); pmd->genpd.power_on = bcm63xx_power_on; pmd->genpd.power_off = bcm63xx_power_off; pm_genpd_init(&pmd->genpd, NULL, !is_on); power->genpd[entry->bit] = &pmd->genpd; ndom++; } spin_lock_init(&power->lock); ret = of_genpd_add_provider_onecell(np, &power->genpd_data); if (ret) { dev_err(dev, "failed to register genpd driver: %d\n", ret); return ret; } dev_info(dev, "registered %u power domains\n", ndom); return 0; } static const struct bcm63xx_power_data bcm6318_power_domains[] = { { .name = "pcie", .bit = BCM6318_POWER_DOMAIN_PCIE, }, { .name = "usb", .bit = BCM6318_POWER_DOMAIN_USB, }, { .name = "ephy0", .bit = BCM6318_POWER_DOMAIN_EPHY0, }, { .name = "ephy1", .bit = BCM6318_POWER_DOMAIN_EPHY1, }, { .name = "ephy2", .bit = BCM6318_POWER_DOMAIN_EPHY2, }, { .name = "ephy3", .bit = BCM6318_POWER_DOMAIN_EPHY3, }, { .name = "ldo2p5", .bit = BCM6318_POWER_DOMAIN_LDO2P5, .flags = GENPD_FLAG_ALWAYS_ON, }, { .name = "ldo2p9", .bit = BCM6318_POWER_DOMAIN_LDO2P9, .flags = GENPD_FLAG_ALWAYS_ON, }, { .name = "sw1p0", .bit = BCM6318_POWER_DOMAIN_SW1P0, .flags = GENPD_FLAG_ALWAYS_ON, }, { .name = "pad", .bit = BCM6318_POWER_DOMAIN_PAD, .flags = GENPD_FLAG_ALWAYS_ON, }, { /* sentinel */ }, }; static const struct bcm63xx_power_data bcm6328_power_domains[] = { { .name = "adsl2-mips", .bit = BCM6328_POWER_DOMAIN_ADSL2_MIPS, }, { .name = "adsl2-phy", .bit = BCM6328_POWER_DOMAIN_ADSL2_PHY, }, { .name = "adsl2-afe", .bit = BCM6328_POWER_DOMAIN_ADSL2_AFE, }, { .name = "sar", .bit = BCM6328_POWER_DOMAIN_SAR, }, { .name = "pcm", .bit = BCM6328_POWER_DOMAIN_PCM, }, { .name = "usbd", .bit = BCM6328_POWER_DOMAIN_USBD, }, { .name = "usbh", .bit = BCM6328_POWER_DOMAIN_USBH, }, { .name = "pcie", .bit = BCM6328_POWER_DOMAIN_PCIE, }, { .name = "robosw", .bit = BCM6328_POWER_DOMAIN_ROBOSW, }, { .name = "ephy", .bit = BCM6328_POWER_DOMAIN_EPHY, }, { /* sentinel */ }, }; static const struct bcm63xx_power_data bcm6362_power_domains[] = { { .name = "sar", .bit = BCM6362_POWER_DOMAIN_SAR, }, { .name = "ipsec", .bit = BCM6362_POWER_DOMAIN_IPSEC, }, { .name = "mips", .bit = BCM6362_POWER_DOMAIN_MIPS, .flags = GENPD_FLAG_ALWAYS_ON, }, { .name = "dect", .bit = BCM6362_POWER_DOMAIN_DECT, }, { .name = "usbh", .bit = BCM6362_POWER_DOMAIN_USBH, }, { .name = "usbd", .bit = BCM6362_POWER_DOMAIN_USBD, }, { .name = "robosw", .bit = BCM6362_POWER_DOMAIN_ROBOSW, }, { .name = "pcm", .bit = BCM6362_POWER_DOMAIN_PCM, }, { .name = "periph", .bit = BCM6362_POWER_DOMAIN_PERIPH, .flags = GENPD_FLAG_ALWAYS_ON, }, { .name = "adsl-phy", .bit = BCM6362_POWER_DOMAIN_ADSL_PHY, }, { .name = "gmii-pads", .bit = BCM6362_POWER_DOMAIN_GMII_PADS, }, { .name = "fap", .bit = BCM6362_POWER_DOMAIN_FAP, }, { .name = "pcie", .bit = BCM6362_POWER_DOMAIN_PCIE, }, { .name = "wlan-pads", .bit = BCM6362_POWER_DOMAIN_WLAN_PADS, }, { /* sentinel */ }, }; static const struct bcm63xx_power_data bcm63268_power_domains[] = { { .name = "sar", .bit = BCM63268_POWER_DOMAIN_SAR, }, { .name = "ipsec", .bit = BCM63268_POWER_DOMAIN_IPSEC, }, { .name = "mips", .bit = BCM63268_POWER_DOMAIN_MIPS, .flags = GENPD_FLAG_ALWAYS_ON, }, { .name = "dect", .bit = BCM63268_POWER_DOMAIN_DECT, }, { .name = "usbh", .bit = BCM63268_POWER_DOMAIN_USBH, }, { .name = "usbd", .bit = BCM63268_POWER_DOMAIN_USBD, }, { .name = "robosw", .bit = BCM63268_POWER_DOMAIN_ROBOSW, }, { .name = "pcm", .bit = BCM63268_POWER_DOMAIN_PCM, }, { .name = "periph", .bit = BCM63268_POWER_DOMAIN_PERIPH, .flags = GENPD_FLAG_ALWAYS_ON, }, { .name = "vdsl-phy", .bit = BCM63268_POWER_DOMAIN_VDSL_PHY, }, { .name = "vdsl-mips", .bit = BCM63268_POWER_DOMAIN_VDSL_MIPS, }, { .name = "fap", .bit = BCM63268_POWER_DOMAIN_FAP, }, { .name = "pcie", .bit = BCM63268_POWER_DOMAIN_PCIE, }, { .name = "wlan-pads", .bit = BCM63268_POWER_DOMAIN_WLAN_PADS, }, { /* sentinel */ }, }; static const struct of_device_id bcm63xx_power_of_match[] = { { .compatible = "brcm,bcm6318-power-controller", .data = &bcm6318_power_domains, }, { .compatible = "brcm,bcm6328-power-controller", .data = &bcm6328_power_domains, }, { .compatible = "brcm,bcm6362-power-controller", .data = &bcm6362_power_domains, }, { .compatible = "brcm,bcm63268-power-controller", .data = &bcm63268_power_domains, }, { /* sentinel */ } }; static struct platform_driver bcm63xx_power_driver = { .driver = { .name = "bcm63xx-power-controller", .of_match_table = bcm63xx_power_of_match, }, .probe = bcm63xx_power_probe, }; builtin_platform_driver(bcm63xx_power_driver);
linux-master
drivers/pmdomain/bcm/bcm63xx-power.c
// SPDX-License-Identifier: GPL-2.0 /* (C) 2015 Pengutronix, Alexander Aring <[email protected]> * * Authors: * Alexander Aring <[email protected]> * Eric Anholt <[email protected]> */ #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <dt-bindings/power/raspberrypi-power.h> #include <soc/bcm2835/raspberrypi-firmware.h> /* * Firmware indices for the old power domains interface. Only a few * of them were actually implemented. */ #define RPI_OLD_POWER_DOMAIN_USB 3 #define RPI_OLD_POWER_DOMAIN_V3D 10 struct rpi_power_domain { u32 domain; bool enabled; bool old_interface; struct generic_pm_domain base; struct rpi_firmware *fw; }; struct rpi_power_domains { bool has_new_interface; struct genpd_onecell_data xlate; struct rpi_firmware *fw; struct rpi_power_domain domains[RPI_POWER_DOMAIN_COUNT]; }; /* * Packet definition used by RPI_FIRMWARE_SET_POWER_STATE and * RPI_FIRMWARE_SET_DOMAIN_STATE */ struct rpi_power_domain_packet { u32 domain; u32 on; }; /* * Asks the firmware to enable or disable power on a specific power * domain. */ static int rpi_firmware_set_power(struct rpi_power_domain *rpi_domain, bool on) { struct rpi_power_domain_packet packet; packet.domain = rpi_domain->domain; packet.on = on; return rpi_firmware_property(rpi_domain->fw, rpi_domain->old_interface ? RPI_FIRMWARE_SET_POWER_STATE : RPI_FIRMWARE_SET_DOMAIN_STATE, &packet, sizeof(packet)); } static int rpi_domain_off(struct generic_pm_domain *domain) { struct rpi_power_domain *rpi_domain = container_of(domain, struct rpi_power_domain, base); return rpi_firmware_set_power(rpi_domain, false); } static int rpi_domain_on(struct generic_pm_domain *domain) { struct rpi_power_domain *rpi_domain = container_of(domain, struct rpi_power_domain, base); return rpi_firmware_set_power(rpi_domain, true); } static void rpi_common_init_power_domain(struct rpi_power_domains *rpi_domains, int xlate_index, const char *name) { struct rpi_power_domain *dom = &rpi_domains->domains[xlate_index]; dom->fw = rpi_domains->fw; dom->base.name = name; dom->base.power_on = rpi_domain_on; dom->base.power_off = rpi_domain_off; /* * Treat all power domains as off at boot. * * The firmware itself may be keeping some domains on, but * from Linux's perspective all we control is the refcounts * that we give to the firmware, and we can't ask the firmware * to turn off something that we haven't ourselves turned on. */ pm_genpd_init(&dom->base, NULL, true); rpi_domains->xlate.domains[xlate_index] = &dom->base; } static void rpi_init_power_domain(struct rpi_power_domains *rpi_domains, int xlate_index, const char *name) { struct rpi_power_domain *dom = &rpi_domains->domains[xlate_index]; if (!rpi_domains->has_new_interface) return; /* The DT binding index is the firmware's domain index minus one. */ dom->domain = xlate_index + 1; rpi_common_init_power_domain(rpi_domains, xlate_index, name); } static void rpi_init_old_power_domain(struct rpi_power_domains *rpi_domains, int xlate_index, int domain, const char *name) { struct rpi_power_domain *dom = &rpi_domains->domains[xlate_index]; dom->old_interface = true; dom->domain = domain; rpi_common_init_power_domain(rpi_domains, xlate_index, name); } /* * Detects whether the firmware supports the new power domains interface. * * The firmware doesn't actually return an error on an unknown tag, * and just skips over it, so we do the detection by putting an * unexpected value in the return field and checking if it was * unchanged. */ static bool rpi_has_new_domain_support(struct rpi_power_domains *rpi_domains) { struct rpi_power_domain_packet packet; int ret; packet.domain = RPI_POWER_DOMAIN_ARM; packet.on = ~0; ret = rpi_firmware_property(rpi_domains->fw, RPI_FIRMWARE_GET_DOMAIN_STATE, &packet, sizeof(packet)); return ret == 0 && packet.on != ~0; } static int rpi_power_probe(struct platform_device *pdev) { struct device_node *fw_np; struct device *dev = &pdev->dev; struct rpi_power_domains *rpi_domains; rpi_domains = devm_kzalloc(dev, sizeof(*rpi_domains), GFP_KERNEL); if (!rpi_domains) return -ENOMEM; rpi_domains->xlate.domains = devm_kcalloc(dev, RPI_POWER_DOMAIN_COUNT, sizeof(*rpi_domains->xlate.domains), GFP_KERNEL); if (!rpi_domains->xlate.domains) return -ENOMEM; rpi_domains->xlate.num_domains = RPI_POWER_DOMAIN_COUNT; fw_np = of_parse_phandle(pdev->dev.of_node, "firmware", 0); if (!fw_np) { dev_err(&pdev->dev, "no firmware node\n"); return -ENODEV; } rpi_domains->fw = devm_rpi_firmware_get(&pdev->dev, fw_np); of_node_put(fw_np); if (!rpi_domains->fw) return -EPROBE_DEFER; rpi_domains->has_new_interface = rpi_has_new_domain_support(rpi_domains); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_I2C0, "I2C0"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_I2C1, "I2C1"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_I2C2, "I2C2"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_VIDEO_SCALER, "VIDEO_SCALER"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_VPU1, "VPU1"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_HDMI, "HDMI"); /* * Use the old firmware interface for USB power, so that we * can turn it on even if the firmware hasn't been updated. */ rpi_init_old_power_domain(rpi_domains, RPI_POWER_DOMAIN_USB, RPI_OLD_POWER_DOMAIN_USB, "USB"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_VEC, "VEC"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_JPEG, "JPEG"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_H264, "H264"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_V3D, "V3D"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_ISP, "ISP"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_UNICAM0, "UNICAM0"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_UNICAM1, "UNICAM1"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_CCP2RX, "CCP2RX"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_CSI2, "CSI2"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_CPI, "CPI"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_DSI0, "DSI0"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_DSI1, "DSI1"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_TRANSPOSER, "TRANSPOSER"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_CCP2TX, "CCP2TX"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_CDP, "CDP"); rpi_init_power_domain(rpi_domains, RPI_POWER_DOMAIN_ARM, "ARM"); of_genpd_add_provider_onecell(dev->of_node, &rpi_domains->xlate); platform_set_drvdata(pdev, rpi_domains); return 0; } static const struct of_device_id rpi_power_of_match[] = { { .compatible = "raspberrypi,bcm2835-power", }, {}, }; MODULE_DEVICE_TABLE(of, rpi_power_of_match); static struct platform_driver rpi_power_driver = { .driver = { .name = "raspberrypi-power", .of_match_table = rpi_power_of_match, }, .probe = rpi_power_probe, }; builtin_platform_driver(rpi_power_driver); MODULE_AUTHOR("Alexander Aring <[email protected]>"); MODULE_AUTHOR("Eric Anholt <[email protected]>"); MODULE_DESCRIPTION("Raspberry Pi power domain driver");
linux-master
drivers/pmdomain/bcm/raspberrypi-power.c
// SPDX-License-Identifier: GPL-2.0+ /* * Power domain driver for Broadcom BCM2835 * * Copyright (C) 2018 Broadcom */ #include <dt-bindings/soc/bcm2835-pm.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/mfd/bcm2835-pm.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/reset-controller.h> #include <linux/types.h> #define PM_GNRIC 0x00 #define PM_AUDIO 0x04 #define PM_STATUS 0x18 #define PM_RSTC 0x1c #define PM_RSTS 0x20 #define PM_WDOG 0x24 #define PM_PADS0 0x28 #define PM_PADS2 0x2c #define PM_PADS3 0x30 #define PM_PADS4 0x34 #define PM_PADS5 0x38 #define PM_PADS6 0x3c #define PM_CAM0 0x44 #define PM_CAM0_LDOHPEN BIT(2) #define PM_CAM0_LDOLPEN BIT(1) #define PM_CAM0_CTRLEN BIT(0) #define PM_CAM1 0x48 #define PM_CAM1_LDOHPEN BIT(2) #define PM_CAM1_LDOLPEN BIT(1) #define PM_CAM1_CTRLEN BIT(0) #define PM_CCP2TX 0x4c #define PM_CCP2TX_LDOEN BIT(1) #define PM_CCP2TX_CTRLEN BIT(0) #define PM_DSI0 0x50 #define PM_DSI0_LDOHPEN BIT(2) #define PM_DSI0_LDOLPEN BIT(1) #define PM_DSI0_CTRLEN BIT(0) #define PM_DSI1 0x54 #define PM_DSI1_LDOHPEN BIT(2) #define PM_DSI1_LDOLPEN BIT(1) #define PM_DSI1_CTRLEN BIT(0) #define PM_HDMI 0x58 #define PM_HDMI_RSTDR BIT(19) #define PM_HDMI_LDOPD BIT(1) #define PM_HDMI_CTRLEN BIT(0) #define PM_USB 0x5c /* The power gates must be enabled with this bit before enabling the LDO in the * USB block. */ #define PM_USB_CTRLEN BIT(0) #define PM_PXLDO 0x60 #define PM_PXBG 0x64 #define PM_DFT 0x68 #define PM_SMPS 0x6c #define PM_XOSC 0x70 #define PM_SPAREW 0x74 #define PM_SPARER 0x78 #define PM_AVS_RSTDR 0x7c #define PM_AVS_STAT 0x80 #define PM_AVS_EVENT 0x84 #define PM_AVS_INTEN 0x88 #define PM_DUMMY 0xfc #define PM_IMAGE 0x108 #define PM_GRAFX 0x10c #define PM_PROC 0x110 #define PM_ENAB BIT(12) #define PM_ISPRSTN BIT(8) #define PM_H264RSTN BIT(7) #define PM_PERIRSTN BIT(6) #define PM_V3DRSTN BIT(6) #define PM_ISFUNC BIT(5) #define PM_MRDONE BIT(4) #define PM_MEMREP BIT(3) #define PM_ISPOW BIT(2) #define PM_POWOK BIT(1) #define PM_POWUP BIT(0) #define PM_INRUSH_SHIFT 13 #define PM_INRUSH_3_5_MA 0 #define PM_INRUSH_5_MA 1 #define PM_INRUSH_10_MA 2 #define PM_INRUSH_20_MA 3 #define PM_INRUSH_MASK (3 << PM_INRUSH_SHIFT) #define PM_PASSWORD 0x5a000000 #define PM_WDOG_TIME_SET 0x000fffff #define PM_RSTC_WRCFG_CLR 0xffffffcf #define PM_RSTS_HADWRH_SET 0x00000040 #define PM_RSTC_WRCFG_SET 0x00000030 #define PM_RSTC_WRCFG_FULL_RESET 0x00000020 #define PM_RSTC_RESET 0x00000102 #define PM_READ(reg) readl(power->base + (reg)) #define PM_WRITE(reg, val) writel(PM_PASSWORD | (val), power->base + (reg)) #define ASB_BRDG_VERSION 0x00 #define ASB_CPR_CTRL 0x04 #define ASB_V3D_S_CTRL 0x08 #define ASB_V3D_M_CTRL 0x0c #define ASB_ISP_S_CTRL 0x10 #define ASB_ISP_M_CTRL 0x14 #define ASB_H264_S_CTRL 0x18 #define ASB_H264_M_CTRL 0x1c #define ASB_REQ_STOP BIT(0) #define ASB_ACK BIT(1) #define ASB_EMPTY BIT(2) #define ASB_FULL BIT(3) #define ASB_AXI_BRDG_ID 0x20 #define BCM2835_BRDG_ID 0x62726467 struct bcm2835_power_domain { struct generic_pm_domain base; struct bcm2835_power *power; u32 domain; struct clk *clk; }; struct bcm2835_power { struct device *dev; /* PM registers. */ void __iomem *base; /* AXI Async bridge registers. */ void __iomem *asb; /* RPiVid bridge registers. */ void __iomem *rpivid_asb; struct genpd_onecell_data pd_xlate; struct bcm2835_power_domain domains[BCM2835_POWER_DOMAIN_COUNT]; struct reset_controller_dev reset; }; static int bcm2835_asb_control(struct bcm2835_power *power, u32 reg, bool enable) { void __iomem *base = power->asb; u64 start; u32 val; switch (reg) { case 0: return 0; case ASB_V3D_S_CTRL: case ASB_V3D_M_CTRL: if (power->rpivid_asb) base = power->rpivid_asb; break; } start = ktime_get_ns(); /* Enable the module's async AXI bridges. */ if (enable) { val = readl(base + reg) & ~ASB_REQ_STOP; } else { val = readl(base + reg) | ASB_REQ_STOP; } writel(PM_PASSWORD | val, base + reg); while (readl(base + reg) & ASB_ACK) { cpu_relax(); if (ktime_get_ns() - start >= 1000) return -ETIMEDOUT; } return 0; } static int bcm2835_asb_enable(struct bcm2835_power *power, u32 reg) { return bcm2835_asb_control(power, reg, true); } static int bcm2835_asb_disable(struct bcm2835_power *power, u32 reg) { return bcm2835_asb_control(power, reg, false); } static int bcm2835_power_power_off(struct bcm2835_power_domain *pd, u32 pm_reg) { struct bcm2835_power *power = pd->power; /* We don't run this on BCM2711 */ if (power->rpivid_asb) return 0; /* Enable functional isolation */ PM_WRITE(pm_reg, PM_READ(pm_reg) & ~PM_ISFUNC); /* Enable electrical isolation */ PM_WRITE(pm_reg, PM_READ(pm_reg) & ~PM_ISPOW); /* Open the power switches. */ PM_WRITE(pm_reg, PM_READ(pm_reg) & ~PM_POWUP); return 0; } static int bcm2835_power_power_on(struct bcm2835_power_domain *pd, u32 pm_reg) { struct bcm2835_power *power = pd->power; struct device *dev = power->dev; u64 start; int ret; int inrush; bool powok; /* We don't run this on BCM2711 */ if (power->rpivid_asb) return 0; /* If it was already powered on by the fw, leave it that way. */ if (PM_READ(pm_reg) & PM_POWUP) return 0; /* Enable power. Allowing too much current at once may result * in POWOK never getting set, so start low and ramp it up as * necessary to succeed. */ powok = false; for (inrush = PM_INRUSH_3_5_MA; inrush <= PM_INRUSH_20_MA; inrush++) { PM_WRITE(pm_reg, (PM_READ(pm_reg) & ~PM_INRUSH_MASK) | (inrush << PM_INRUSH_SHIFT) | PM_POWUP); start = ktime_get_ns(); while (!(powok = !!(PM_READ(pm_reg) & PM_POWOK))) { cpu_relax(); if (ktime_get_ns() - start >= 3000) break; } } if (!powok) { dev_err(dev, "Timeout waiting for %s power OK\n", pd->base.name); ret = -ETIMEDOUT; goto err_disable_powup; } /* Disable electrical isolation */ PM_WRITE(pm_reg, PM_READ(pm_reg) | PM_ISPOW); /* Repair memory */ PM_WRITE(pm_reg, PM_READ(pm_reg) | PM_MEMREP); start = ktime_get_ns(); while (!(PM_READ(pm_reg) & PM_MRDONE)) { cpu_relax(); if (ktime_get_ns() - start >= 1000) { dev_err(dev, "Timeout waiting for %s memory repair\n", pd->base.name); ret = -ETIMEDOUT; goto err_disable_ispow; } } /* Disable functional isolation */ PM_WRITE(pm_reg, PM_READ(pm_reg) | PM_ISFUNC); return 0; err_disable_ispow: PM_WRITE(pm_reg, PM_READ(pm_reg) & ~PM_ISPOW); err_disable_powup: PM_WRITE(pm_reg, PM_READ(pm_reg) & ~(PM_POWUP | PM_INRUSH_MASK)); return ret; } static int bcm2835_asb_power_on(struct bcm2835_power_domain *pd, u32 pm_reg, u32 asb_m_reg, u32 asb_s_reg, u32 reset_flags) { struct bcm2835_power *power = pd->power; int ret; ret = clk_prepare_enable(pd->clk); if (ret) { dev_err(power->dev, "Failed to enable clock for %s\n", pd->base.name); return ret; } /* Wait 32 clocks for reset to propagate, 1 us will be enough */ udelay(1); clk_disable_unprepare(pd->clk); /* Deassert the resets. */ PM_WRITE(pm_reg, PM_READ(pm_reg) | reset_flags); ret = clk_prepare_enable(pd->clk); if (ret) { dev_err(power->dev, "Failed to enable clock for %s\n", pd->base.name); goto err_enable_resets; } ret = bcm2835_asb_enable(power, asb_m_reg); if (ret) { dev_err(power->dev, "Failed to enable ASB master for %s\n", pd->base.name); goto err_disable_clk; } ret = bcm2835_asb_enable(power, asb_s_reg); if (ret) { dev_err(power->dev, "Failed to enable ASB slave for %s\n", pd->base.name); goto err_disable_asb_master; } return 0; err_disable_asb_master: bcm2835_asb_disable(power, asb_m_reg); err_disable_clk: clk_disable_unprepare(pd->clk); err_enable_resets: PM_WRITE(pm_reg, PM_READ(pm_reg) & ~reset_flags); return ret; } static int bcm2835_asb_power_off(struct bcm2835_power_domain *pd, u32 pm_reg, u32 asb_m_reg, u32 asb_s_reg, u32 reset_flags) { struct bcm2835_power *power = pd->power; int ret; ret = bcm2835_asb_disable(power, asb_s_reg); if (ret) { dev_warn(power->dev, "Failed to disable ASB slave for %s\n", pd->base.name); return ret; } ret = bcm2835_asb_disable(power, asb_m_reg); if (ret) { dev_warn(power->dev, "Failed to disable ASB master for %s\n", pd->base.name); bcm2835_asb_enable(power, asb_s_reg); return ret; } clk_disable_unprepare(pd->clk); /* Assert the resets. */ PM_WRITE(pm_reg, PM_READ(pm_reg) & ~reset_flags); return 0; } static int bcm2835_power_pd_power_on(struct generic_pm_domain *domain) { struct bcm2835_power_domain *pd = container_of(domain, struct bcm2835_power_domain, base); struct bcm2835_power *power = pd->power; switch (pd->domain) { case BCM2835_POWER_DOMAIN_GRAFX: return bcm2835_power_power_on(pd, PM_GRAFX); case BCM2835_POWER_DOMAIN_GRAFX_V3D: return bcm2835_asb_power_on(pd, PM_GRAFX, ASB_V3D_M_CTRL, ASB_V3D_S_CTRL, PM_V3DRSTN); case BCM2835_POWER_DOMAIN_IMAGE: return bcm2835_power_power_on(pd, PM_IMAGE); case BCM2835_POWER_DOMAIN_IMAGE_PERI: return bcm2835_asb_power_on(pd, PM_IMAGE, 0, 0, PM_PERIRSTN); case BCM2835_POWER_DOMAIN_IMAGE_ISP: return bcm2835_asb_power_on(pd, PM_IMAGE, ASB_ISP_M_CTRL, ASB_ISP_S_CTRL, PM_ISPRSTN); case BCM2835_POWER_DOMAIN_IMAGE_H264: return bcm2835_asb_power_on(pd, PM_IMAGE, ASB_H264_M_CTRL, ASB_H264_S_CTRL, PM_H264RSTN); case BCM2835_POWER_DOMAIN_USB: PM_WRITE(PM_USB, PM_USB_CTRLEN); return 0; case BCM2835_POWER_DOMAIN_DSI0: PM_WRITE(PM_DSI0, PM_DSI0_CTRLEN); PM_WRITE(PM_DSI0, PM_DSI0_CTRLEN | PM_DSI0_LDOHPEN); return 0; case BCM2835_POWER_DOMAIN_DSI1: PM_WRITE(PM_DSI1, PM_DSI1_CTRLEN); PM_WRITE(PM_DSI1, PM_DSI1_CTRLEN | PM_DSI1_LDOHPEN); return 0; case BCM2835_POWER_DOMAIN_CCP2TX: PM_WRITE(PM_CCP2TX, PM_CCP2TX_CTRLEN); PM_WRITE(PM_CCP2TX, PM_CCP2TX_CTRLEN | PM_CCP2TX_LDOEN); return 0; case BCM2835_POWER_DOMAIN_HDMI: PM_WRITE(PM_HDMI, PM_READ(PM_HDMI) | PM_HDMI_RSTDR); PM_WRITE(PM_HDMI, PM_READ(PM_HDMI) | PM_HDMI_CTRLEN); PM_WRITE(PM_HDMI, PM_READ(PM_HDMI) & ~PM_HDMI_LDOPD); usleep_range(100, 200); PM_WRITE(PM_HDMI, PM_READ(PM_HDMI) & ~PM_HDMI_RSTDR); return 0; default: dev_err(power->dev, "Invalid domain %d\n", pd->domain); return -EINVAL; } } static int bcm2835_power_pd_power_off(struct generic_pm_domain *domain) { struct bcm2835_power_domain *pd = container_of(domain, struct bcm2835_power_domain, base); struct bcm2835_power *power = pd->power; switch (pd->domain) { case BCM2835_POWER_DOMAIN_GRAFX: return bcm2835_power_power_off(pd, PM_GRAFX); case BCM2835_POWER_DOMAIN_GRAFX_V3D: return bcm2835_asb_power_off(pd, PM_GRAFX, ASB_V3D_M_CTRL, ASB_V3D_S_CTRL, PM_V3DRSTN); case BCM2835_POWER_DOMAIN_IMAGE: return bcm2835_power_power_off(pd, PM_IMAGE); case BCM2835_POWER_DOMAIN_IMAGE_PERI: return bcm2835_asb_power_off(pd, PM_IMAGE, 0, 0, PM_PERIRSTN); case BCM2835_POWER_DOMAIN_IMAGE_ISP: return bcm2835_asb_power_off(pd, PM_IMAGE, ASB_ISP_M_CTRL, ASB_ISP_S_CTRL, PM_ISPRSTN); case BCM2835_POWER_DOMAIN_IMAGE_H264: return bcm2835_asb_power_off(pd, PM_IMAGE, ASB_H264_M_CTRL, ASB_H264_S_CTRL, PM_H264RSTN); case BCM2835_POWER_DOMAIN_USB: PM_WRITE(PM_USB, 0); return 0; case BCM2835_POWER_DOMAIN_DSI0: PM_WRITE(PM_DSI0, PM_DSI0_CTRLEN); PM_WRITE(PM_DSI0, 0); return 0; case BCM2835_POWER_DOMAIN_DSI1: PM_WRITE(PM_DSI1, PM_DSI1_CTRLEN); PM_WRITE(PM_DSI1, 0); return 0; case BCM2835_POWER_DOMAIN_CCP2TX: PM_WRITE(PM_CCP2TX, PM_CCP2TX_CTRLEN); PM_WRITE(PM_CCP2TX, 0); return 0; case BCM2835_POWER_DOMAIN_HDMI: PM_WRITE(PM_HDMI, PM_READ(PM_HDMI) | PM_HDMI_LDOPD); PM_WRITE(PM_HDMI, PM_READ(PM_HDMI) & ~PM_HDMI_CTRLEN); return 0; default: dev_err(power->dev, "Invalid domain %d\n", pd->domain); return -EINVAL; } } static int bcm2835_init_power_domain(struct bcm2835_power *power, int pd_xlate_index, const char *name) { struct device *dev = power->dev; struct bcm2835_power_domain *dom = &power->domains[pd_xlate_index]; dom->clk = devm_clk_get(dev->parent, name); if (IS_ERR(dom->clk)) { int ret = PTR_ERR(dom->clk); if (ret == -EPROBE_DEFER) return ret; /* Some domains don't have a clk, so make sure that we * don't deref an error pointer later. */ dom->clk = NULL; } dom->base.name = name; dom->base.power_on = bcm2835_power_pd_power_on; dom->base.power_off = bcm2835_power_pd_power_off; dom->domain = pd_xlate_index; dom->power = power; /* XXX: on/off at boot? */ pm_genpd_init(&dom->base, NULL, true); power->pd_xlate.domains[pd_xlate_index] = &dom->base; return 0; } /** bcm2835_reset_reset - Resets a block that has a reset line in the * PM block. * * The consumer of the reset controller must have the power domain up * -- there's no reset ability with the power domain down. To reset * the sub-block, we just disable its access to memory through the * ASB, reset, and re-enable. */ static int bcm2835_reset_reset(struct reset_controller_dev *rcdev, unsigned long id) { struct bcm2835_power *power = container_of(rcdev, struct bcm2835_power, reset); struct bcm2835_power_domain *pd; int ret; switch (id) { case BCM2835_RESET_V3D: pd = &power->domains[BCM2835_POWER_DOMAIN_GRAFX_V3D]; break; case BCM2835_RESET_H264: pd = &power->domains[BCM2835_POWER_DOMAIN_IMAGE_H264]; break; case BCM2835_RESET_ISP: pd = &power->domains[BCM2835_POWER_DOMAIN_IMAGE_ISP]; break; default: dev_err(power->dev, "Bad reset id %ld\n", id); return -EINVAL; } ret = bcm2835_power_pd_power_off(&pd->base); if (ret) return ret; return bcm2835_power_pd_power_on(&pd->base); } static int bcm2835_reset_status(struct reset_controller_dev *rcdev, unsigned long id) { struct bcm2835_power *power = container_of(rcdev, struct bcm2835_power, reset); switch (id) { case BCM2835_RESET_V3D: return !PM_READ(PM_GRAFX & PM_V3DRSTN); case BCM2835_RESET_H264: return !PM_READ(PM_IMAGE & PM_H264RSTN); case BCM2835_RESET_ISP: return !PM_READ(PM_IMAGE & PM_ISPRSTN); default: return -EINVAL; } } static const struct reset_control_ops bcm2835_reset_ops = { .reset = bcm2835_reset_reset, .status = bcm2835_reset_status, }; static const char *const power_domain_names[] = { [BCM2835_POWER_DOMAIN_GRAFX] = "grafx", [BCM2835_POWER_DOMAIN_GRAFX_V3D] = "v3d", [BCM2835_POWER_DOMAIN_IMAGE] = "image", [BCM2835_POWER_DOMAIN_IMAGE_PERI] = "peri_image", [BCM2835_POWER_DOMAIN_IMAGE_H264] = "h264", [BCM2835_POWER_DOMAIN_IMAGE_ISP] = "isp", [BCM2835_POWER_DOMAIN_USB] = "usb", [BCM2835_POWER_DOMAIN_DSI0] = "dsi0", [BCM2835_POWER_DOMAIN_DSI1] = "dsi1", [BCM2835_POWER_DOMAIN_CAM0] = "cam0", [BCM2835_POWER_DOMAIN_CAM1] = "cam1", [BCM2835_POWER_DOMAIN_CCP2TX] = "ccp2tx", [BCM2835_POWER_DOMAIN_HDMI] = "hdmi", }; static int bcm2835_power_probe(struct platform_device *pdev) { struct bcm2835_pm *pm = dev_get_drvdata(pdev->dev.parent); struct device *dev = &pdev->dev; struct bcm2835_power *power; static const struct { int parent, child; } domain_deps[] = { { BCM2835_POWER_DOMAIN_GRAFX, BCM2835_POWER_DOMAIN_GRAFX_V3D }, { BCM2835_POWER_DOMAIN_IMAGE, BCM2835_POWER_DOMAIN_IMAGE_PERI }, { BCM2835_POWER_DOMAIN_IMAGE, BCM2835_POWER_DOMAIN_IMAGE_H264 }, { BCM2835_POWER_DOMAIN_IMAGE, BCM2835_POWER_DOMAIN_IMAGE_ISP }, { BCM2835_POWER_DOMAIN_IMAGE_PERI, BCM2835_POWER_DOMAIN_USB }, { BCM2835_POWER_DOMAIN_IMAGE_PERI, BCM2835_POWER_DOMAIN_CAM0 }, { BCM2835_POWER_DOMAIN_IMAGE_PERI, BCM2835_POWER_DOMAIN_CAM1 }, }; int ret = 0, i; u32 id; power = devm_kzalloc(dev, sizeof(*power), GFP_KERNEL); if (!power) return -ENOMEM; platform_set_drvdata(pdev, power); power->dev = dev; power->base = pm->base; power->asb = pm->asb; power->rpivid_asb = pm->rpivid_asb; id = readl(power->asb + ASB_AXI_BRDG_ID); if (id != BCM2835_BRDG_ID /* "BRDG" */) { dev_err(dev, "ASB register ID returned 0x%08x\n", id); return -ENODEV; } if (power->rpivid_asb) { id = readl(power->rpivid_asb + ASB_AXI_BRDG_ID); if (id != BCM2835_BRDG_ID /* "BRDG" */) { dev_err(dev, "RPiVid ASB register ID returned 0x%08x\n", id); return -ENODEV; } } power->pd_xlate.domains = devm_kcalloc(dev, ARRAY_SIZE(power_domain_names), sizeof(*power->pd_xlate.domains), GFP_KERNEL); if (!power->pd_xlate.domains) return -ENOMEM; power->pd_xlate.num_domains = ARRAY_SIZE(power_domain_names); for (i = 0; i < ARRAY_SIZE(power_domain_names); i++) { ret = bcm2835_init_power_domain(power, i, power_domain_names[i]); if (ret) goto fail; } for (i = 0; i < ARRAY_SIZE(domain_deps); i++) { pm_genpd_add_subdomain(&power->domains[domain_deps[i].parent].base, &power->domains[domain_deps[i].child].base); } power->reset.owner = THIS_MODULE; power->reset.nr_resets = BCM2835_RESET_COUNT; power->reset.ops = &bcm2835_reset_ops; power->reset.of_node = dev->parent->of_node; ret = devm_reset_controller_register(dev, &power->reset); if (ret) goto fail; of_genpd_add_provider_onecell(dev->parent->of_node, &power->pd_xlate); dev_info(dev, "Broadcom BCM2835 power domains driver"); return 0; fail: for (i = 0; i < ARRAY_SIZE(power_domain_names); i++) { struct generic_pm_domain *dom = &power->domains[i].base; if (dom->name) pm_genpd_remove(dom); } return ret; } static struct platform_driver bcm2835_power_driver = { .probe = bcm2835_power_probe, .driver = { .name = "bcm2835-power", }, }; module_platform_driver(bcm2835_power_driver); MODULE_AUTHOR("Eric Anholt <[email protected]>"); MODULE_DESCRIPTION("Driver for Broadcom BCM2835 PM power domains and reset");
linux-master
drivers/pmdomain/bcm/bcm2835-power.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2013 Broadcom * Copyright (C) 2020 Rafał Miłecki <[email protected]> */ #include <dt-bindings/soc/bcm-pmb.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/reset/bcm63xx_pmb.h> #define BPCM_ID_REG 0x00 #define BPCM_CAPABILITIES 0x04 #define BPCM_CAP_NUM_ZONES 0x000000ff #define BPCM_CAP_SR_REG_BITS 0x0000ff00 #define BPCM_CAP_PLLTYPE 0x00030000 #define BPCM_CAP_UBUS 0x00080000 #define BPCM_CONTROL 0x08 #define BPCM_STATUS 0x0c #define BPCM_ROSC_CONTROL 0x10 #define BPCM_ROSC_THRESH_H 0x14 #define BPCM_ROSC_THRESHOLD_BCM6838 0x14 #define BPCM_ROSC_THRESH_S 0x18 #define BPCM_ROSC_COUNT_BCM6838 0x18 #define BPCM_ROSC_COUNT 0x1c #define BPCM_PWD_CONTROL_BCM6838 0x1c #define BPCM_PWD_CONTROL 0x20 #define BPCM_SR_CONTROL_BCM6838 0x20 #define BPCM_PWD_ACCUM_CONTROL 0x24 #define BPCM_SR_CONTROL 0x28 #define BPCM_GLOBAL_CONTROL 0x2c #define BPCM_MISC_CONTROL 0x30 #define BPCM_MISC_CONTROL2 0x34 #define BPCM_SGPHY_CNTL 0x38 #define BPCM_SGPHY_STATUS 0x3c #define BPCM_ZONE0 0x40 #define BPCM_ZONE_CONTROL 0x00 #define BPCM_ZONE_CONTROL_MANUAL_CLK_EN 0x00000001 #define BPCM_ZONE_CONTROL_MANUAL_RESET_CTL 0x00000002 #define BPCM_ZONE_CONTROL_FREQ_SCALE_USED 0x00000004 /* R/O */ #define BPCM_ZONE_CONTROL_DPG_CAPABLE 0x00000008 /* R/O */ #define BPCM_ZONE_CONTROL_MANUAL_MEM_PWR 0x00000030 #define BPCM_ZONE_CONTROL_MANUAL_ISO_CTL 0x00000040 #define BPCM_ZONE_CONTROL_MANUAL_CTL 0x00000080 #define BPCM_ZONE_CONTROL_DPG_CTL_EN 0x00000100 #define BPCM_ZONE_CONTROL_PWR_DN_REQ 0x00000200 #define BPCM_ZONE_CONTROL_PWR_UP_REQ 0x00000400 #define BPCM_ZONE_CONTROL_MEM_PWR_CTL_EN 0x00000800 #define BPCM_ZONE_CONTROL_BLK_RESET_ASSERT 0x00001000 #define BPCM_ZONE_CONTROL_MEM_STBY 0x00002000 #define BPCM_ZONE_CONTROL_RESERVED 0x0007c000 #define BPCM_ZONE_CONTROL_PWR_CNTL_STATE 0x00f80000 #define BPCM_ZONE_CONTROL_FREQ_SCALAR_DYN_SEL 0x01000000 /* R/O */ #define BPCM_ZONE_CONTROL_PWR_OFF_STATE 0x02000000 /* R/O */ #define BPCM_ZONE_CONTROL_PWR_ON_STATE 0x04000000 /* R/O */ #define BPCM_ZONE_CONTROL_PWR_GOOD 0x08000000 /* R/O */ #define BPCM_ZONE_CONTROL_DPG_PWR_STATE 0x10000000 /* R/O */ #define BPCM_ZONE_CONTROL_MEM_PWR_STATE 0x20000000 /* R/O */ #define BPCM_ZONE_CONTROL_ISO_STATE 0x40000000 /* R/O */ #define BPCM_ZONE_CONTROL_RESET_STATE 0x80000000 /* R/O */ #define BPCM_ZONE_CONFIG1 0x04 #define BPCM_ZONE_CONFIG2 0x08 #define BPCM_ZONE_FREQ_SCALAR_CONTROL 0x0c #define BPCM_ZONE_SIZE 0x10 struct bcm_pmb { struct device *dev; void __iomem *base; spinlock_t lock; bool little_endian; struct genpd_onecell_data genpd_onecell_data; }; struct bcm_pmb_pd_data { const char * const name; int id; u8 bus; u8 device; }; struct bcm_pmb_pm_domain { struct bcm_pmb *pmb; const struct bcm_pmb_pd_data *data; struct generic_pm_domain genpd; }; static int bcm_pmb_bpcm_read(struct bcm_pmb *pmb, int bus, u8 device, int offset, u32 *val) { void __iomem *base = pmb->base + bus * 0x20; unsigned long flags; int err; spin_lock_irqsave(&pmb->lock, flags); err = bpcm_rd(base, device, offset, val); spin_unlock_irqrestore(&pmb->lock, flags); if (!err) *val = pmb->little_endian ? le32_to_cpu(*val) : be32_to_cpu(*val); return err; } static int bcm_pmb_bpcm_write(struct bcm_pmb *pmb, int bus, u8 device, int offset, u32 val) { void __iomem *base = pmb->base + bus * 0x20; unsigned long flags; int err; val = pmb->little_endian ? cpu_to_le32(val) : cpu_to_be32(val); spin_lock_irqsave(&pmb->lock, flags); err = bpcm_wr(base, device, offset, val); spin_unlock_irqrestore(&pmb->lock, flags); return err; } static int bcm_pmb_power_off_zone(struct bcm_pmb *pmb, int bus, u8 device, int zone) { int offset; u32 val; int err; offset = BPCM_ZONE0 + zone * BPCM_ZONE_SIZE + BPCM_ZONE_CONTROL; err = bcm_pmb_bpcm_read(pmb, bus, device, offset, &val); if (err) return err; val |= BPCM_ZONE_CONTROL_PWR_DN_REQ; val &= ~BPCM_ZONE_CONTROL_PWR_UP_REQ; err = bcm_pmb_bpcm_write(pmb, bus, device, offset, val); return err; } static int bcm_pmb_power_on_zone(struct bcm_pmb *pmb, int bus, u8 device, int zone) { int offset; u32 val; int err; offset = BPCM_ZONE0 + zone * BPCM_ZONE_SIZE + BPCM_ZONE_CONTROL; err = bcm_pmb_bpcm_read(pmb, bus, device, offset, &val); if (err) return err; if (!(val & BPCM_ZONE_CONTROL_PWR_ON_STATE)) { val &= ~BPCM_ZONE_CONTROL_PWR_DN_REQ; val |= BPCM_ZONE_CONTROL_DPG_CTL_EN; val |= BPCM_ZONE_CONTROL_PWR_UP_REQ; val |= BPCM_ZONE_CONTROL_MEM_PWR_CTL_EN; val |= BPCM_ZONE_CONTROL_BLK_RESET_ASSERT; err = bcm_pmb_bpcm_write(pmb, bus, device, offset, val); } return err; } static int bcm_pmb_power_off_device(struct bcm_pmb *pmb, int bus, u8 device) { int offset; u32 val; int err; /* Entire device can be powered off by powering off the 0th zone */ offset = BPCM_ZONE0 + BPCM_ZONE_CONTROL; err = bcm_pmb_bpcm_read(pmb, bus, device, offset, &val); if (err) return err; if (!(val & BPCM_ZONE_CONTROL_PWR_OFF_STATE)) { val = BPCM_ZONE_CONTROL_PWR_DN_REQ; err = bcm_pmb_bpcm_write(pmb, bus, device, offset, val); } return err; } static int bcm_pmb_power_on_device(struct bcm_pmb *pmb, int bus, u8 device) { u32 val; int err; int i; err = bcm_pmb_bpcm_read(pmb, bus, device, BPCM_CAPABILITIES, &val); if (err) return err; for (i = 0; i < (val & BPCM_CAP_NUM_ZONES); i++) { err = bcm_pmb_power_on_zone(pmb, bus, device, i); if (err) return err; } return err; } static int bcm_pmb_power_on_sata(struct bcm_pmb *pmb, int bus, u8 device) { int err; err = bcm_pmb_power_on_zone(pmb, bus, device, 0); if (err) return err; /* Does not apply to the BCM963158 */ err = bcm_pmb_bpcm_write(pmb, bus, device, BPCM_MISC_CONTROL, 0); if (err) return err; err = bcm_pmb_bpcm_write(pmb, bus, device, BPCM_SR_CONTROL, 0xffffffff); if (err) return err; err = bcm_pmb_bpcm_write(pmb, bus, device, BPCM_SR_CONTROL, 0); return err; } static int bcm_pmb_power_on(struct generic_pm_domain *genpd) { struct bcm_pmb_pm_domain *pd = container_of(genpd, struct bcm_pmb_pm_domain, genpd); const struct bcm_pmb_pd_data *data = pd->data; struct bcm_pmb *pmb = pd->pmb; switch (data->id) { case BCM_PMB_PCIE0: case BCM_PMB_PCIE1: case BCM_PMB_PCIE2: return bcm_pmb_power_on_zone(pmb, data->bus, data->device, 0); case BCM_PMB_HOST_USB: return bcm_pmb_power_on_device(pmb, data->bus, data->device); case BCM_PMB_SATA: return bcm_pmb_power_on_sata(pmb, data->bus, data->device); default: dev_err(pmb->dev, "unsupported device id: %d\n", data->id); return -EINVAL; } } static int bcm_pmb_power_off(struct generic_pm_domain *genpd) { struct bcm_pmb_pm_domain *pd = container_of(genpd, struct bcm_pmb_pm_domain, genpd); const struct bcm_pmb_pd_data *data = pd->data; struct bcm_pmb *pmb = pd->pmb; switch (data->id) { case BCM_PMB_PCIE0: case BCM_PMB_PCIE1: case BCM_PMB_PCIE2: return bcm_pmb_power_off_zone(pmb, data->bus, data->device, 0); case BCM_PMB_HOST_USB: return bcm_pmb_power_off_device(pmb, data->bus, data->device); default: dev_err(pmb->dev, "unsupported device id: %d\n", data->id); return -EINVAL; } } static int bcm_pmb_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct bcm_pmb_pd_data *table; const struct bcm_pmb_pd_data *e; struct bcm_pmb *pmb; int max_id; int err; pmb = devm_kzalloc(dev, sizeof(*pmb), GFP_KERNEL); if (!pmb) return -ENOMEM; pmb->dev = dev; pmb->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pmb->base)) return PTR_ERR(pmb->base); spin_lock_init(&pmb->lock); pmb->little_endian = !of_device_is_big_endian(dev->of_node); table = of_device_get_match_data(dev); if (!table) return -EINVAL; max_id = 0; for (e = table; e->name; e++) max_id = max(max_id, e->id); pmb->genpd_onecell_data.num_domains = max_id + 1; pmb->genpd_onecell_data.domains = devm_kcalloc(dev, pmb->genpd_onecell_data.num_domains, sizeof(struct generic_pm_domain *), GFP_KERNEL); if (!pmb->genpd_onecell_data.domains) return -ENOMEM; for (e = table; e->name; e++) { struct bcm_pmb_pm_domain *pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pd->pmb = pmb; pd->data = e; pd->genpd.name = e->name; pd->genpd.power_on = bcm_pmb_power_on; pd->genpd.power_off = bcm_pmb_power_off; pm_genpd_init(&pd->genpd, NULL, true); pmb->genpd_onecell_data.domains[e->id] = &pd->genpd; } err = of_genpd_add_provider_onecell(dev->of_node, &pmb->genpd_onecell_data); if (err) { dev_err(dev, "failed to add genpd provider: %d\n", err); return err; } return 0; } static const struct bcm_pmb_pd_data bcm_pmb_bcm4908_data[] = { { .name = "pcie2", .id = BCM_PMB_PCIE2, .bus = 0, .device = 2, }, { .name = "pcie0", .id = BCM_PMB_PCIE0, .bus = 1, .device = 14, }, { .name = "pcie1", .id = BCM_PMB_PCIE1, .bus = 1, .device = 15, }, { .name = "usb", .id = BCM_PMB_HOST_USB, .bus = 1, .device = 17, }, { }, }; static const struct bcm_pmb_pd_data bcm_pmb_bcm63138_data[] = { { .name = "sata", .id = BCM_PMB_SATA, .bus = 0, .device = 3, }, { }, }; static const struct of_device_id bcm_pmb_of_match[] = { { .compatible = "brcm,bcm4908-pmb", .data = &bcm_pmb_bcm4908_data, }, { .compatible = "brcm,bcm63138-pmb", .data = &bcm_pmb_bcm63138_data, }, { }, }; static struct platform_driver bcm_pmb_driver = { .driver = { .name = "bcm-pmb", .of_match_table = bcm_pmb_of_match, }, .probe = bcm_pmb_probe, }; builtin_platform_driver(bcm_pmb_driver);
linux-master
drivers/pmdomain/bcm/bcm-pmb.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car S4-8 System Controller * * Copyright (C) 2021 Renesas Electronics Corp. */ #include <linux/bits.h> #include <linux/clk/renesas.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/of_address.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include <dt-bindings/power/r8a779f0-sysc.h> #include "rcar-gen4-sysc.h" static struct rcar_gen4_sysc_area r8a779f0_areas[] __initdata = { { "always-on", R8A779F0_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "a3e0", R8A779F0_PD_A3E0, R8A779F0_PD_ALWAYS_ON, PD_SCU }, { "a3e1", R8A779F0_PD_A3E1, R8A779F0_PD_ALWAYS_ON, PD_SCU }, { "a2e0d0", R8A779F0_PD_A2E0D0, R8A779F0_PD_A3E0, PD_SCU }, { "a2e0d1", R8A779F0_PD_A2E0D1, R8A779F0_PD_A3E0, PD_SCU }, { "a2e1d0", R8A779F0_PD_A2E1D0, R8A779F0_PD_A3E1, PD_SCU }, { "a2e1d1", R8A779F0_PD_A2E1D1, R8A779F0_PD_A3E1, PD_SCU }, { "a1e0d0c0", R8A779F0_PD_A1E0D0C0, R8A779F0_PD_A2E0D0, PD_CPU_NOCR }, { "a1e0d0c1", R8A779F0_PD_A1E0D0C1, R8A779F0_PD_A2E0D0, PD_CPU_NOCR }, { "a1e0d1c0", R8A779F0_PD_A1E0D1C0, R8A779F0_PD_A2E0D1, PD_CPU_NOCR }, { "a1e0d1c1", R8A779F0_PD_A1E0D1C1, R8A779F0_PD_A2E0D1, PD_CPU_NOCR }, { "a1e1d0c0", R8A779F0_PD_A1E1D0C0, R8A779F0_PD_A2E1D0, PD_CPU_NOCR }, { "a1e1d0c1", R8A779F0_PD_A1E1D0C1, R8A779F0_PD_A2E1D0, PD_CPU_NOCR }, { "a1e1d1c0", R8A779F0_PD_A1E1D1C0, R8A779F0_PD_A2E1D1, PD_CPU_NOCR }, { "a1e1d1c1", R8A779F0_PD_A1E1D1C1, R8A779F0_PD_A2E1D1, PD_CPU_NOCR }, }; const struct rcar_gen4_sysc_info r8a779f0_sysc_info __initconst = { .areas = r8a779f0_areas, .num_areas = ARRAY_SIZE(r8a779f0_areas), };
linux-master
drivers/pmdomain/renesas/r8a779f0-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car V4H System Controller * * Copyright (C) 2022 Renesas Electronics Corp. */ #include <linux/bits.h> #include <linux/clk/renesas.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/of_address.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include <dt-bindings/power/r8a779g0-sysc.h> #include "rcar-gen4-sysc.h" static struct rcar_gen4_sysc_area r8a779g0_areas[] __initdata = { { "always-on", R8A779G0_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "a3e0", R8A779G0_PD_A3E0, R8A779G0_PD_ALWAYS_ON, PD_SCU }, { "a2e0d0", R8A779G0_PD_A2E0D0, R8A779G0_PD_A3E0, PD_SCU }, { "a2e0d1", R8A779G0_PD_A2E0D1, R8A779G0_PD_A3E0, PD_SCU }, { "a1e0d0c0", R8A779G0_PD_A1E0D0C0, R8A779G0_PD_A2E0D0, PD_CPU_NOCR }, { "a1e0d0c1", R8A779G0_PD_A1E0D0C1, R8A779G0_PD_A2E0D0, PD_CPU_NOCR }, { "a1e0d1c0", R8A779G0_PD_A1E0D1C0, R8A779G0_PD_A2E0D1, PD_CPU_NOCR }, { "a1e0d1c1", R8A779G0_PD_A1E0D1C1, R8A779G0_PD_A2E0D1, PD_CPU_NOCR }, { "a33dga", R8A779G0_PD_A33DGA, R8A779G0_PD_ALWAYS_ON }, { "a23dgb", R8A779G0_PD_A23DGB, R8A779G0_PD_A33DGA }, { "a3vip0", R8A779G0_PD_A3VIP0, R8A779G0_PD_ALWAYS_ON }, { "a3vip1", R8A779G0_PD_A3VIP1, R8A779G0_PD_ALWAYS_ON }, { "a3vip2", R8A779G0_PD_A3VIP2, R8A779G0_PD_ALWAYS_ON }, { "a3dul", R8A779G0_PD_A3DUL, R8A779G0_PD_ALWAYS_ON }, { "a3isp0", R8A779G0_PD_A3ISP0, R8A779G0_PD_ALWAYS_ON }, { "a3isp1", R8A779G0_PD_A3ISP1, R8A779G0_PD_ALWAYS_ON }, { "a3ir", R8A779G0_PD_A3IR, R8A779G0_PD_ALWAYS_ON }, { "a2cn0", R8A779G0_PD_A2CN0, R8A779G0_PD_A3IR }, { "a1cnn0", R8A779G0_PD_A1CNN0, R8A779G0_PD_A2CN0 }, { "a1dsp0", R8A779G0_PD_A1DSP0, R8A779G0_PD_A2CN0 }, { "a1dsp1", R8A779G0_PD_A1DSP1, R8A779G0_PD_A2CN0 }, { "a1dsp2", R8A779G0_PD_A1DSP2, R8A779G0_PD_A2CN0 }, { "a1dsp3", R8A779G0_PD_A1DSP3, R8A779G0_PD_A2CN0 }, { "a2imp01", R8A779G0_PD_A2IMP01, R8A779G0_PD_A3IR }, { "a2imp23", R8A779G0_PD_A2IMP23, R8A779G0_PD_A3IR }, { "a2psc", R8A779G0_PD_A2PSC, R8A779G0_PD_A3IR }, { "a2dma", R8A779G0_PD_A2DMA, R8A779G0_PD_A3IR }, { "a2cv0", R8A779G0_PD_A2CV0, R8A779G0_PD_A3IR }, { "a2cv1", R8A779G0_PD_A2CV1, R8A779G0_PD_A3IR }, { "a2cv2", R8A779G0_PD_A2CV2, R8A779G0_PD_A3IR }, { "a2cv3", R8A779G0_PD_A2CV3, R8A779G0_PD_A3IR }, }; const struct rcar_gen4_sysc_info r8a779g0_sysc_info __initconst = { .areas = r8a779g0_areas, .num_areas = ARRAY_SIZE(r8a779g0_areas), };
linux-master
drivers/pmdomain/renesas/r8a779g0-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car H3 System Controller * * Copyright (C) 2016-2017 Glider bvba */ #include <linux/bits.h> #include <linux/kernel.h> #include <linux/sys_soc.h> #include <dt-bindings/power/r8a7795-sysc.h> #include "rcar-sysc.h" static struct rcar_sysc_area r8a7795_areas[] __initdata = { { "always-on", 0, 0, R8A7795_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca57-scu", 0x1c0, 0, R8A7795_PD_CA57_SCU, R8A7795_PD_ALWAYS_ON, PD_SCU }, { "ca57-cpu0", 0x80, 0, R8A7795_PD_CA57_CPU0, R8A7795_PD_CA57_SCU, PD_CPU_NOCR }, { "ca57-cpu1", 0x80, 1, R8A7795_PD_CA57_CPU1, R8A7795_PD_CA57_SCU, PD_CPU_NOCR }, { "ca57-cpu2", 0x80, 2, R8A7795_PD_CA57_CPU2, R8A7795_PD_CA57_SCU, PD_CPU_NOCR }, { "ca57-cpu3", 0x80, 3, R8A7795_PD_CA57_CPU3, R8A7795_PD_CA57_SCU, PD_CPU_NOCR }, { "ca53-scu", 0x140, 0, R8A7795_PD_CA53_SCU, R8A7795_PD_ALWAYS_ON, PD_SCU }, { "ca53-cpu0", 0x200, 0, R8A7795_PD_CA53_CPU0, R8A7795_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu1", 0x200, 1, R8A7795_PD_CA53_CPU1, R8A7795_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu2", 0x200, 2, R8A7795_PD_CA53_CPU2, R8A7795_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu3", 0x200, 3, R8A7795_PD_CA53_CPU3, R8A7795_PD_CA53_SCU, PD_CPU_NOCR }, { "a3vp", 0x340, 0, R8A7795_PD_A3VP, R8A7795_PD_ALWAYS_ON }, { "cr7", 0x240, 0, R8A7795_PD_CR7, R8A7795_PD_ALWAYS_ON }, { "a3vc", 0x380, 0, R8A7795_PD_A3VC, R8A7795_PD_ALWAYS_ON }, { "a2vc1", 0x3c0, 1, R8A7795_PD_A2VC1, R8A7795_PD_A3VC }, { "3dg-a", 0x100, 0, R8A7795_PD_3DG_A, R8A7795_PD_ALWAYS_ON }, { "3dg-b", 0x100, 1, R8A7795_PD_3DG_B, R8A7795_PD_3DG_A }, { "3dg-c", 0x100, 2, R8A7795_PD_3DG_C, R8A7795_PD_3DG_B }, { "3dg-d", 0x100, 3, R8A7795_PD_3DG_D, R8A7795_PD_3DG_C }, { "3dg-e", 0x100, 4, R8A7795_PD_3DG_E, R8A7795_PD_3DG_D }, { "a3ir", 0x180, 0, R8A7795_PD_A3IR, R8A7795_PD_ALWAYS_ON }, }; /* * Fixups for R-Car H3 revisions */ #define NO_EXTMASK BIT(1) /* Missing SYSCEXTMASK register */ static const struct soc_device_attribute r8a7795_quirks_match[] __initconst = { { .soc_id = "r8a7795", .revision = "ES2.*", .data = (void *)(NO_EXTMASK), }, { /* sentinel */ } }; static int __init r8a7795_sysc_init(void) { const struct soc_device_attribute *attr; u32 quirks = 0; attr = soc_device_match(r8a7795_quirks_match); if (attr) quirks = (uintptr_t)attr->data; if (quirks & NO_EXTMASK) r8a7795_sysc_info.extmask_val = 0; return 0; } struct rcar_sysc_info r8a7795_sysc_info __initdata = { .init = r8a7795_sysc_init, .areas = r8a7795_areas, .num_areas = ARRAY_SIZE(r8a7795_areas), .extmask_offs = 0x2f8, .extmask_val = BIT(0), };
linux-master
drivers/pmdomain/renesas/r8a7795-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car V3M System Controller * * Copyright (C) 2017 Cogent Embedded Inc. */ #include <linux/bits.h> #include <linux/kernel.h> #include <dt-bindings/power/r8a77970-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a77970_areas[] __initconst = { { "always-on", 0, 0, R8A77970_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca53-scu", 0x140, 0, R8A77970_PD_CA53_SCU, R8A77970_PD_ALWAYS_ON, PD_SCU }, { "ca53-cpu0", 0x200, 0, R8A77970_PD_CA53_CPU0, R8A77970_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu1", 0x200, 1, R8A77970_PD_CA53_CPU1, R8A77970_PD_CA53_SCU, PD_CPU_NOCR }, { "a3ir", 0x180, 0, R8A77970_PD_A3IR, R8A77970_PD_ALWAYS_ON }, { "a2ir0", 0x400, 0, R8A77970_PD_A2IR0, R8A77970_PD_A3IR }, { "a2ir1", 0x400, 1, R8A77970_PD_A2IR1, R8A77970_PD_A3IR }, { "a2dp", 0x400, 2, R8A77970_PD_A2DP, R8A77970_PD_A3IR }, { "a2cn", 0x400, 3, R8A77970_PD_A2CN, R8A77970_PD_A3IR }, { "a2sc0", 0x400, 4, R8A77970_PD_A2SC0, R8A77970_PD_A3IR }, { "a2sc1", 0x400, 5, R8A77970_PD_A2SC1, R8A77970_PD_A3IR }, }; const struct rcar_sysc_info r8a77970_sysc_info __initconst = { .areas = r8a77970_areas, .num_areas = ARRAY_SIZE(r8a77970_areas), .extmask_offs = 0x1b0, .extmask_val = BIT(0), };
linux-master
drivers/pmdomain/renesas/r8a77970-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/G2N System Controller * Copyright (C) 2019 Renesas Electronics Corp. * * Based on Renesas R-Car M3-W System Controller * Copyright (C) 2016 Glider bvba */ #include <linux/bits.h> #include <linux/kernel.h> #include <dt-bindings/power/r8a774b1-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a774b1_areas[] __initconst = { { "always-on", 0, 0, R8A774B1_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca57-scu", 0x1c0, 0, R8A774B1_PD_CA57_SCU, R8A774B1_PD_ALWAYS_ON, PD_SCU }, { "ca57-cpu0", 0x80, 0, R8A774B1_PD_CA57_CPU0, R8A774B1_PD_CA57_SCU, PD_CPU_NOCR }, { "ca57-cpu1", 0x80, 1, R8A774B1_PD_CA57_CPU1, R8A774B1_PD_CA57_SCU, PD_CPU_NOCR }, { "a3vc", 0x380, 0, R8A774B1_PD_A3VC, R8A774B1_PD_ALWAYS_ON }, { "a3vp", 0x340, 0, R8A774B1_PD_A3VP, R8A774B1_PD_ALWAYS_ON }, { "a2vc1", 0x3c0, 1, R8A774B1_PD_A2VC1, R8A774B1_PD_A3VC }, { "3dg-a", 0x100, 0, R8A774B1_PD_3DG_A, R8A774B1_PD_ALWAYS_ON }, { "3dg-b", 0x100, 1, R8A774B1_PD_3DG_B, R8A774B1_PD_3DG_A }, }; const struct rcar_sysc_info r8a774b1_sysc_info __initconst = { .areas = r8a774b1_areas, .num_areas = ARRAY_SIZE(r8a774b1_areas), .extmask_offs = 0x2f8, .extmask_val = BIT(0), };
linux-master
drivers/pmdomain/renesas/r8a774b1-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * rmobile power management support * * Copyright (C) 2012 Renesas Solutions Corp. * Copyright (C) 2012 Kuninori Morimoto <[email protected]> * Copyright (C) 2014 Glider bvba * * based on pm-sh7372.c * Copyright (C) 2011 Magnus Damm */ #include <linux/clk/renesas.h> #include <linux/console.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/pm.h> #include <linux/pm_clock.h> #include <linux/pm_domain.h> #include <linux/slab.h> /* SYSC */ #define SPDCR 0x08 /* SYS Power Down Control Register */ #define SWUCR 0x14 /* SYS Wakeup Control Register */ #define PSTR 0x80 /* Power Status Register */ #define PSTR_RETRIES 100 #define PSTR_DELAY_US 10 struct rmobile_pm_domain { struct generic_pm_domain genpd; struct dev_power_governor *gov; int (*suspend)(void); void __iomem *base; unsigned int bit_shift; }; static inline struct rmobile_pm_domain *to_rmobile_pd(struct generic_pm_domain *d) { return container_of(d, struct rmobile_pm_domain, genpd); } static int rmobile_pd_power_down(struct generic_pm_domain *genpd) { struct rmobile_pm_domain *rmobile_pd = to_rmobile_pd(genpd); unsigned int mask = BIT(rmobile_pd->bit_shift); u32 val; if (rmobile_pd->suspend) { int ret = rmobile_pd->suspend(); if (ret) return ret; } if (readl(rmobile_pd->base + PSTR) & mask) { writel(mask, rmobile_pd->base + SPDCR); readl_poll_timeout_atomic(rmobile_pd->base + SPDCR, val, !(val & mask), 0, PSTR_RETRIES); } pr_debug("%s: Power off, 0x%08x -> PSTR = 0x%08x\n", genpd->name, mask, readl(rmobile_pd->base + PSTR)); return 0; } static int __rmobile_pd_power_up(struct rmobile_pm_domain *rmobile_pd) { unsigned int val, mask = BIT(rmobile_pd->bit_shift); int ret = 0; if (readl(rmobile_pd->base + PSTR) & mask) return ret; writel(mask, rmobile_pd->base + SWUCR); ret = readl_poll_timeout_atomic(rmobile_pd->base + SWUCR, val, (val & mask), PSTR_DELAY_US, PSTR_RETRIES * PSTR_DELAY_US); pr_debug("%s: Power on, 0x%08x -> PSTR = 0x%08x\n", rmobile_pd->genpd.name, mask, readl(rmobile_pd->base + PSTR)); return ret; } static int rmobile_pd_power_up(struct generic_pm_domain *genpd) { return __rmobile_pd_power_up(to_rmobile_pd(genpd)); } static void rmobile_init_pm_domain(struct rmobile_pm_domain *rmobile_pd) { struct generic_pm_domain *genpd = &rmobile_pd->genpd; struct dev_power_governor *gov = rmobile_pd->gov; genpd->flags |= GENPD_FLAG_PM_CLK | GENPD_FLAG_ACTIVE_WAKEUP; genpd->attach_dev = cpg_mstp_attach_dev; genpd->detach_dev = cpg_mstp_detach_dev; if (!(genpd->flags & GENPD_FLAG_ALWAYS_ON)) { genpd->power_off = rmobile_pd_power_down; genpd->power_on = rmobile_pd_power_up; __rmobile_pd_power_up(rmobile_pd); } pm_genpd_init(genpd, gov ? : &simple_qos_governor, false); } static int rmobile_pd_suspend_console(void) { /* * Serial consoles make use of SCIF hardware located in this domain, * hence keep the power domain on if "no_console_suspend" is set. */ return console_suspend_enabled ? 0 : -EBUSY; } enum pd_types { PD_NORMAL, PD_CPU, PD_CONSOLE, PD_DEBUG, PD_MEMCTL, }; #define MAX_NUM_SPECIAL_PDS 16 static struct special_pd { struct device_node *pd; enum pd_types type; } special_pds[MAX_NUM_SPECIAL_PDS] __initdata; static unsigned int num_special_pds __initdata; static const struct of_device_id special_ids[] __initconst = { { .compatible = "arm,coresight-etm3x", .data = (void *)PD_DEBUG }, { .compatible = "renesas,dbsc-r8a73a4", .data = (void *)PD_MEMCTL, }, { .compatible = "renesas,dbsc3-r8a7740", .data = (void *)PD_MEMCTL, }, { .compatible = "renesas,sbsc-sh73a0", .data = (void *)PD_MEMCTL, }, { /* sentinel */ }, }; static void __init add_special_pd(struct device_node *np, enum pd_types type) { unsigned int i; struct device_node *pd; pd = of_parse_phandle(np, "power-domains", 0); if (!pd) return; for (i = 0; i < num_special_pds; i++) if (pd == special_pds[i].pd && type == special_pds[i].type) { of_node_put(pd); return; } if (num_special_pds == ARRAY_SIZE(special_pds)) { pr_warn("Too many special PM domains\n"); of_node_put(pd); return; } pr_debug("Special PM domain %pOFn type %d for %pOF\n", pd, type, np); special_pds[num_special_pds].pd = pd; special_pds[num_special_pds].type = type; num_special_pds++; } static void __init get_special_pds(void) { struct device_node *np; const struct of_device_id *id; /* PM domains containing CPUs */ for_each_of_cpu_node(np) add_special_pd(np, PD_CPU); /* PM domain containing console */ if (of_stdout) add_special_pd(of_stdout, PD_CONSOLE); /* PM domains containing other special devices */ for_each_matching_node_and_match(np, special_ids, &id) add_special_pd(np, (enum pd_types)id->data); } static void __init put_special_pds(void) { unsigned int i; for (i = 0; i < num_special_pds; i++) of_node_put(special_pds[i].pd); } static enum pd_types __init pd_type(const struct device_node *pd) { unsigned int i; for (i = 0; i < num_special_pds; i++) if (pd == special_pds[i].pd) return special_pds[i].type; return PD_NORMAL; } static void __init rmobile_setup_pm_domain(struct device_node *np, struct rmobile_pm_domain *pd) { const char *name = pd->genpd.name; switch (pd_type(np)) { case PD_CPU: /* * This domain contains the CPU core and therefore it should * only be turned off if the CPU is not in use. */ pr_debug("PM domain %s contains CPU\n", name); pd->genpd.flags |= GENPD_FLAG_ALWAYS_ON; break; case PD_CONSOLE: pr_debug("PM domain %s contains serial console\n", name); pd->gov = &pm_domain_always_on_gov; pd->suspend = rmobile_pd_suspend_console; break; case PD_DEBUG: /* * This domain contains the Coresight-ETM hardware block and * therefore it should only be turned off if the debug module * is not in use. */ pr_debug("PM domain %s contains Coresight-ETM\n", name); pd->genpd.flags |= GENPD_FLAG_ALWAYS_ON; break; case PD_MEMCTL: /* * This domain contains a memory-controller and therefore it * should only be turned off if memory is not in use. */ pr_debug("PM domain %s contains MEMCTL\n", name); pd->genpd.flags |= GENPD_FLAG_ALWAYS_ON; break; case PD_NORMAL: if (pd->bit_shift == ~0) { /* Top-level always-on domain */ pr_debug("PM domain %s is always-on domain\n", name); pd->genpd.flags |= GENPD_FLAG_ALWAYS_ON; } break; } rmobile_init_pm_domain(pd); } static int __init rmobile_add_pm_domains(void __iomem *base, struct device_node *parent, struct generic_pm_domain *genpd_parent) { struct device_node *np; for_each_child_of_node(parent, np) { struct rmobile_pm_domain *pd; u32 idx = ~0; if (of_property_read_u32(np, "reg", &idx)) { /* always-on domain */ } pd = kzalloc(sizeof(*pd), GFP_KERNEL); if (!pd) { of_node_put(np); return -ENOMEM; } pd->genpd.name = np->name; pd->base = base; pd->bit_shift = idx; rmobile_setup_pm_domain(np, pd); if (genpd_parent) pm_genpd_add_subdomain(genpd_parent, &pd->genpd); of_genpd_add_provider_simple(np, &pd->genpd); rmobile_add_pm_domains(base, np, &pd->genpd); } return 0; } static int __init rmobile_init_pm_domains(void) { struct device_node *np, *pmd; bool scanned = false; void __iomem *base; int ret = 0; for_each_compatible_node(np, NULL, "renesas,sysc-rmobile") { base = of_iomap(np, 0); if (!base) { pr_warn("%pOF cannot map reg 0\n", np); continue; } pmd = of_get_child_by_name(np, "pm-domains"); if (!pmd) { iounmap(base); pr_warn("%pOF lacks pm-domains node\n", np); continue; } if (!scanned) { /* Find PM domains containing special blocks */ get_special_pds(); scanned = true; } ret = rmobile_add_pm_domains(base, pmd, NULL); of_node_put(pmd); if (ret) { of_node_put(np); break; } fwnode_dev_initialized(of_fwnode_handle(np), true); } put_special_pds(); return ret; } core_initcall(rmobile_init_pm_domains);
linux-master
drivers/pmdomain/renesas/rmobile-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/G1H System Controller * * Copyright (C) 2020 Renesas Electronics Corp. */ #include <linux/kernel.h> #include <dt-bindings/power/r8a7742-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a7742_areas[] __initconst = { { "always-on", 0, 0, R8A7742_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca15-scu", 0x180, 0, R8A7742_PD_CA15_SCU, R8A7742_PD_ALWAYS_ON, PD_SCU }, { "ca15-cpu0", 0x40, 0, R8A7742_PD_CA15_CPU0, R8A7742_PD_CA15_SCU, PD_CPU_NOCR }, { "ca15-cpu1", 0x40, 1, R8A7742_PD_CA15_CPU1, R8A7742_PD_CA15_SCU, PD_CPU_NOCR }, { "ca15-cpu2", 0x40, 2, R8A7742_PD_CA15_CPU2, R8A7742_PD_CA15_SCU, PD_CPU_NOCR }, { "ca15-cpu3", 0x40, 3, R8A7742_PD_CA15_CPU3, R8A7742_PD_CA15_SCU, PD_CPU_NOCR }, { "ca7-scu", 0x100, 0, R8A7742_PD_CA7_SCU, R8A7742_PD_ALWAYS_ON, PD_SCU }, { "ca7-cpu0", 0x1c0, 0, R8A7742_PD_CA7_CPU0, R8A7742_PD_CA7_SCU, PD_CPU_NOCR }, { "ca7-cpu1", 0x1c0, 1, R8A7742_PD_CA7_CPU1, R8A7742_PD_CA7_SCU, PD_CPU_NOCR }, { "ca7-cpu2", 0x1c0, 2, R8A7742_PD_CA7_CPU2, R8A7742_PD_CA7_SCU, PD_CPU_NOCR }, { "ca7-cpu3", 0x1c0, 3, R8A7742_PD_CA7_CPU3, R8A7742_PD_CA7_SCU, PD_CPU_NOCR }, { "rgx", 0xc0, 0, R8A7742_PD_RGX, R8A7742_PD_ALWAYS_ON }, }; const struct rcar_sysc_info r8a7742_sysc_info __initconst = { .areas = r8a7742_areas, .num_areas = ARRAY_SIZE(r8a7742_areas), };
linux-master
drivers/pmdomain/renesas/r8a7742-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * R-Car Gen4 SYSC Power management support * * Copyright (C) 2021 Renesas Electronics Corp. */ #include <linux/bits.h> #include <linux/clk/renesas.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/of_address.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include "rcar-gen4-sysc.h" /* SYSC Common */ #define SYSCSR 0x000 /* SYSC Status Register */ #define SYSCPONSR(x) (0x800 + ((x) * 0x4)) /* Power-ON Status Register 0 */ #define SYSCPOFFSR(x) (0x808 + ((x) * 0x4)) /* Power-OFF Status Register */ #define SYSCISCR(x) (0x810 + ((x) * 0x4)) /* Interrupt Status/Clear Register */ #define SYSCIER(x) (0x820 + ((x) * 0x4)) /* Interrupt Enable Register */ #define SYSCIMR(x) (0x830 + ((x) * 0x4)) /* Interrupt Mask Register */ /* Power Domain Registers */ #define PDRSR(n) (0x1000 + ((n) * 0x40)) #define PDRONCR(n) (0x1004 + ((n) * 0x40)) #define PDROFFCR(n) (0x1008 + ((n) * 0x40)) #define PDRESR(n) (0x100C + ((n) * 0x40)) /* PWRON/PWROFF */ #define PWRON_PWROFF BIT(0) /* Power-ON/OFF request */ /* PDRESR */ #define PDRESR_ERR BIT(0) /* PDRSR */ #define PDRSR_OFF BIT(0) /* Power-OFF state */ #define PDRSR_ON BIT(4) /* Power-ON state */ #define PDRSR_OFF_STATE BIT(8) /* Processing Power-OFF sequence */ #define PDRSR_ON_STATE BIT(12) /* Processing Power-ON sequence */ #define SYSCSR_BUSY GENMASK(1, 0) /* All bit sets is not busy */ #define SYSCSR_TIMEOUT 10000 #define SYSCSR_DELAY_US 10 #define PDRESR_RETRIES 1000 #define PDRESR_DELAY_US 10 #define SYSCISR_TIMEOUT 10000 #define SYSCISR_DELAY_US 10 #define RCAR_GEN4_PD_ALWAYS_ON 64 #define NUM_DOMAINS_EACH_REG BITS_PER_TYPE(u32) static void __iomem *rcar_gen4_sysc_base; static DEFINE_SPINLOCK(rcar_gen4_sysc_lock); /* SMP CPUs + I/O devices */ static int rcar_gen4_sysc_pwr_on_off(u8 pdr, bool on) { unsigned int reg_offs; u32 val; int ret; if (on) reg_offs = PDRONCR(pdr); else reg_offs = PDROFFCR(pdr); /* Wait until SYSC is ready to accept a power request */ ret = readl_poll_timeout_atomic(rcar_gen4_sysc_base + SYSCSR, val, (val & SYSCSR_BUSY) == SYSCSR_BUSY, SYSCSR_DELAY_US, SYSCSR_TIMEOUT); if (ret < 0) return -EAGAIN; /* Submit power shutoff or power resume request */ iowrite32(PWRON_PWROFF, rcar_gen4_sysc_base + reg_offs); return 0; } static int clear_irq_flags(unsigned int reg_idx, unsigned int isr_mask) { u32 val; int ret; iowrite32(isr_mask, rcar_gen4_sysc_base + SYSCISCR(reg_idx)); ret = readl_poll_timeout_atomic(rcar_gen4_sysc_base + SYSCISCR(reg_idx), val, !(val & isr_mask), SYSCISR_DELAY_US, SYSCISR_TIMEOUT); if (ret < 0) { pr_err("\n %s : Can not clear IRQ flags in SYSCISCR", __func__); return -EIO; } return 0; } static int rcar_gen4_sysc_power(u8 pdr, bool on) { unsigned int isr_mask; unsigned int reg_idx, bit_idx; unsigned int status; unsigned long flags; int ret = 0; u32 val; int k; spin_lock_irqsave(&rcar_gen4_sysc_lock, flags); reg_idx = pdr / NUM_DOMAINS_EACH_REG; bit_idx = pdr % NUM_DOMAINS_EACH_REG; isr_mask = BIT(bit_idx); /* * The interrupt source needs to be enabled, but masked, to prevent the * CPU from receiving it. */ iowrite32(ioread32(rcar_gen4_sysc_base + SYSCIER(reg_idx)) | isr_mask, rcar_gen4_sysc_base + SYSCIER(reg_idx)); iowrite32(ioread32(rcar_gen4_sysc_base + SYSCIMR(reg_idx)) | isr_mask, rcar_gen4_sysc_base + SYSCIMR(reg_idx)); ret = clear_irq_flags(reg_idx, isr_mask); if (ret) goto out; /* Submit power shutoff or resume request until it was accepted */ for (k = 0; k < PDRESR_RETRIES; k++) { ret = rcar_gen4_sysc_pwr_on_off(pdr, on); if (ret) goto out; status = ioread32(rcar_gen4_sysc_base + PDRESR(pdr)); if (!(status & PDRESR_ERR)) break; udelay(PDRESR_DELAY_US); } if (k == PDRESR_RETRIES) { ret = -EIO; goto out; } /* Wait until the power shutoff or resume request has completed * */ ret = readl_poll_timeout_atomic(rcar_gen4_sysc_base + SYSCISCR(reg_idx), val, (val & isr_mask), SYSCISR_DELAY_US, SYSCISR_TIMEOUT); if (ret < 0) { ret = -EIO; goto out; } /* Clear interrupt flags */ ret = clear_irq_flags(reg_idx, isr_mask); if (ret) goto out; out: spin_unlock_irqrestore(&rcar_gen4_sysc_lock, flags); pr_debug("sysc power %s domain %d: %08x -> %d\n", on ? "on" : "off", pdr, ioread32(rcar_gen4_sysc_base + SYSCISCR(reg_idx)), ret); return ret; } static bool rcar_gen4_sysc_power_is_off(u8 pdr) { unsigned int st; st = ioread32(rcar_gen4_sysc_base + PDRSR(pdr)); if (st & PDRSR_OFF) return true; return false; } struct rcar_gen4_sysc_pd { struct generic_pm_domain genpd; u8 pdr; unsigned int flags; char name[]; }; static inline struct rcar_gen4_sysc_pd *to_rcar_gen4_pd(struct generic_pm_domain *d) { return container_of(d, struct rcar_gen4_sysc_pd, genpd); } static int rcar_gen4_sysc_pd_power_off(struct generic_pm_domain *genpd) { struct rcar_gen4_sysc_pd *pd = to_rcar_gen4_pd(genpd); pr_debug("%s: %s\n", __func__, genpd->name); return rcar_gen4_sysc_power(pd->pdr, false); } static int rcar_gen4_sysc_pd_power_on(struct generic_pm_domain *genpd) { struct rcar_gen4_sysc_pd *pd = to_rcar_gen4_pd(genpd); pr_debug("%s: %s\n", __func__, genpd->name); return rcar_gen4_sysc_power(pd->pdr, true); } static int __init rcar_gen4_sysc_pd_setup(struct rcar_gen4_sysc_pd *pd) { struct generic_pm_domain *genpd = &pd->genpd; const char *name = pd->genpd.name; int error; if (pd->flags & PD_CPU) { /* * This domain contains a CPU core and therefore it should * only be turned off if the CPU is not in use. */ pr_debug("PM domain %s contains %s\n", name, "CPU"); genpd->flags |= GENPD_FLAG_ALWAYS_ON; } else if (pd->flags & PD_SCU) { /* * This domain contains an SCU and cache-controller, and * therefore it should only be turned off if the CPU cores are * not in use. */ pr_debug("PM domain %s contains %s\n", name, "SCU"); genpd->flags |= GENPD_FLAG_ALWAYS_ON; } else if (pd->flags & PD_NO_CR) { /* * This domain cannot be turned off. */ genpd->flags |= GENPD_FLAG_ALWAYS_ON; } if (!(pd->flags & (PD_CPU | PD_SCU))) { /* Enable Clock Domain for I/O devices */ genpd->flags |= GENPD_FLAG_PM_CLK | GENPD_FLAG_ACTIVE_WAKEUP; genpd->attach_dev = cpg_mssr_attach_dev; genpd->detach_dev = cpg_mssr_detach_dev; } genpd->power_off = rcar_gen4_sysc_pd_power_off; genpd->power_on = rcar_gen4_sysc_pd_power_on; if (pd->flags & (PD_CPU | PD_NO_CR)) { /* Skip CPUs (handled by SMP code) and areas without control */ pr_debug("%s: Not touching %s\n", __func__, genpd->name); goto finalize; } if (!rcar_gen4_sysc_power_is_off(pd->pdr)) { pr_debug("%s: %s is already powered\n", __func__, genpd->name); goto finalize; } rcar_gen4_sysc_power(pd->pdr, true); finalize: error = pm_genpd_init(genpd, &simple_qos_governor, false); if (error) pr_err("Failed to init PM domain %s: %d\n", name, error); return error; } static const struct of_device_id rcar_gen4_sysc_matches[] __initconst = { #ifdef CONFIG_SYSC_R8A779A0 { .compatible = "renesas,r8a779a0-sysc", .data = &r8a779a0_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A779F0 { .compatible = "renesas,r8a779f0-sysc", .data = &r8a779f0_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A779G0 { .compatible = "renesas,r8a779g0-sysc", .data = &r8a779g0_sysc_info }, #endif { /* sentinel */ } }; struct rcar_gen4_pm_domains { struct genpd_onecell_data onecell_data; struct generic_pm_domain *domains[RCAR_GEN4_PD_ALWAYS_ON + 1]; }; static struct genpd_onecell_data *rcar_gen4_sysc_onecell_data; static int __init rcar_gen4_sysc_pd_init(void) { const struct rcar_gen4_sysc_info *info; const struct of_device_id *match; struct rcar_gen4_pm_domains *domains; struct device_node *np; void __iomem *base; unsigned int i; int error; np = of_find_matching_node_and_match(NULL, rcar_gen4_sysc_matches, &match); if (!np) return -ENODEV; info = match->data; base = of_iomap(np, 0); if (!base) { pr_warn("%pOF: Cannot map regs\n", np); error = -ENOMEM; goto out_put; } rcar_gen4_sysc_base = base; domains = kzalloc(sizeof(*domains), GFP_KERNEL); if (!domains) { error = -ENOMEM; goto out_put; } domains->onecell_data.domains = domains->domains; domains->onecell_data.num_domains = ARRAY_SIZE(domains->domains); rcar_gen4_sysc_onecell_data = &domains->onecell_data; for (i = 0; i < info->num_areas; i++) { const struct rcar_gen4_sysc_area *area = &info->areas[i]; struct rcar_gen4_sysc_pd *pd; size_t n; if (!area->name) { /* Skip NULLified area */ continue; } n = strlen(area->name) + 1; pd = kzalloc(sizeof(*pd) + n, GFP_KERNEL); if (!pd) { error = -ENOMEM; goto out_put; } memcpy(pd->name, area->name, n); pd->genpd.name = pd->name; pd->pdr = area->pdr; pd->flags = area->flags; error = rcar_gen4_sysc_pd_setup(pd); if (error) goto out_put; domains->domains[area->pdr] = &pd->genpd; if (area->parent < 0) continue; error = pm_genpd_add_subdomain(domains->domains[area->parent], &pd->genpd); if (error) { pr_warn("Failed to add PM subdomain %s to parent %u\n", area->name, area->parent); goto out_put; } } error = of_genpd_add_provider_onecell(np, &domains->onecell_data); out_put: of_node_put(np); return error; } early_initcall(rcar_gen4_sysc_pd_init);
linux-master
drivers/pmdomain/renesas/rcar-gen4-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car M2-W/N System Controller * * Copyright (C) 2016 Glider bvba */ #include <linux/kernel.h> #include <dt-bindings/power/r8a7791-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a7791_areas[] __initconst = { { "always-on", 0, 0, R8A7791_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca15-scu", 0x180, 0, R8A7791_PD_CA15_SCU, R8A7791_PD_ALWAYS_ON, PD_SCU }, { "ca15-cpu0", 0x40, 0, R8A7791_PD_CA15_CPU0, R8A7791_PD_CA15_SCU, PD_CPU_NOCR }, { "ca15-cpu1", 0x40, 1, R8A7791_PD_CA15_CPU1, R8A7791_PD_CA15_SCU, PD_CPU_NOCR }, { "sh-4a", 0x80, 0, R8A7791_PD_SH_4A, R8A7791_PD_ALWAYS_ON }, { "sgx", 0xc0, 0, R8A7791_PD_SGX, R8A7791_PD_ALWAYS_ON }, }; const struct rcar_sysc_info r8a7791_sysc_info __initconst = { .areas = r8a7791_areas, .num_areas = ARRAY_SIZE(r8a7791_areas), };
linux-master
drivers/pmdomain/renesas/r8a7791-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car D3 System Controller * * Copyright (C) 2017 Glider bvba */ #include <linux/kernel.h> #include <dt-bindings/power/r8a77995-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a77995_areas[] __initconst = { { "always-on", 0, 0, R8A77995_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca53-scu", 0x140, 0, R8A77995_PD_CA53_SCU, R8A77995_PD_ALWAYS_ON, PD_SCU }, { "ca53-cpu0", 0x200, 0, R8A77995_PD_CA53_CPU0, R8A77995_PD_CA53_SCU, PD_CPU_NOCR }, }; const struct rcar_sysc_info r8a77995_sysc_info __initconst = { .areas = r8a77995_areas, .num_areas = ARRAY_SIZE(r8a77995_areas), };
linux-master
drivers/pmdomain/renesas/r8a77995-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/G1C System Controller * * Copyright (C) 2018 Renesas Electronics Corp. */ #include <linux/kernel.h> #include <dt-bindings/power/r8a77470-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a77470_areas[] __initconst = { { "always-on", 0, 0, R8A77470_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca7-scu", 0x100, 0, R8A77470_PD_CA7_SCU, R8A77470_PD_ALWAYS_ON, PD_SCU }, { "ca7-cpu0", 0x1c0, 0, R8A77470_PD_CA7_CPU0, R8A77470_PD_CA7_SCU, PD_CPU_NOCR }, { "ca7-cpu1", 0x1c0, 1, R8A77470_PD_CA7_CPU1, R8A77470_PD_CA7_SCU, PD_CPU_NOCR }, { "sgx", 0xc0, 0, R8A77470_PD_SGX, R8A77470_PD_ALWAYS_ON }, }; const struct rcar_sysc_info r8a77470_sysc_info __initconst = { .areas = r8a77470_areas, .num_areas = ARRAY_SIZE(r8a77470_areas), };
linux-master
drivers/pmdomain/renesas/r8a77470-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/G2M System Controller * Copyright (C) 2018 Renesas Electronics Corp. * * Based on Renesas R-Car M3-W System Controller * Copyright (C) 2016 Glider bvba */ #include <linux/kernel.h> #include <dt-bindings/power/r8a774a1-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a774a1_areas[] __initconst = { { "always-on", 0, 0, R8A774A1_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca57-scu", 0x1c0, 0, R8A774A1_PD_CA57_SCU, R8A774A1_PD_ALWAYS_ON, PD_SCU }, { "ca57-cpu0", 0x80, 0, R8A774A1_PD_CA57_CPU0, R8A774A1_PD_CA57_SCU, PD_CPU_NOCR }, { "ca57-cpu1", 0x80, 1, R8A774A1_PD_CA57_CPU1, R8A774A1_PD_CA57_SCU, PD_CPU_NOCR }, { "ca53-scu", 0x140, 0, R8A774A1_PD_CA53_SCU, R8A774A1_PD_ALWAYS_ON, PD_SCU }, { "ca53-cpu0", 0x200, 0, R8A774A1_PD_CA53_CPU0, R8A774A1_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu1", 0x200, 1, R8A774A1_PD_CA53_CPU1, R8A774A1_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu2", 0x200, 2, R8A774A1_PD_CA53_CPU2, R8A774A1_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu3", 0x200, 3, R8A774A1_PD_CA53_CPU3, R8A774A1_PD_CA53_SCU, PD_CPU_NOCR }, { "a3vc", 0x380, 0, R8A774A1_PD_A3VC, R8A774A1_PD_ALWAYS_ON }, { "a2vc0", 0x3c0, 0, R8A774A1_PD_A2VC0, R8A774A1_PD_A3VC }, { "a2vc1", 0x3c0, 1, R8A774A1_PD_A2VC1, R8A774A1_PD_A3VC }, { "3dg-a", 0x100, 0, R8A774A1_PD_3DG_A, R8A774A1_PD_ALWAYS_ON }, { "3dg-b", 0x100, 1, R8A774A1_PD_3DG_B, R8A774A1_PD_3DG_A }, }; const struct rcar_sysc_info r8a774a1_sysc_info __initconst = { .areas = r8a774a1_areas, .num_areas = ARRAY_SIZE(r8a774a1_areas), };
linux-master
drivers/pmdomain/renesas/r8a774a1-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car M3-W/W+ System Controller * * Copyright (C) 2016 Glider bvba * Copyright (C) 2018-2019 Renesas Electronics Corporation */ #include <linux/bits.h> #include <linux/kernel.h> #include <dt-bindings/power/r8a7796-sysc.h> #include "rcar-sysc.h" static struct rcar_sysc_area r8a7796_areas[] __initdata = { { "always-on", 0, 0, R8A7796_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca57-scu", 0x1c0, 0, R8A7796_PD_CA57_SCU, R8A7796_PD_ALWAYS_ON, PD_SCU }, { "ca57-cpu0", 0x80, 0, R8A7796_PD_CA57_CPU0, R8A7796_PD_CA57_SCU, PD_CPU_NOCR }, { "ca57-cpu1", 0x80, 1, R8A7796_PD_CA57_CPU1, R8A7796_PD_CA57_SCU, PD_CPU_NOCR }, { "ca53-scu", 0x140, 0, R8A7796_PD_CA53_SCU, R8A7796_PD_ALWAYS_ON, PD_SCU }, { "ca53-cpu0", 0x200, 0, R8A7796_PD_CA53_CPU0, R8A7796_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu1", 0x200, 1, R8A7796_PD_CA53_CPU1, R8A7796_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu2", 0x200, 2, R8A7796_PD_CA53_CPU2, R8A7796_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu3", 0x200, 3, R8A7796_PD_CA53_CPU3, R8A7796_PD_CA53_SCU, PD_CPU_NOCR }, { "cr7", 0x240, 0, R8A7796_PD_CR7, R8A7796_PD_ALWAYS_ON }, { "a3vc", 0x380, 0, R8A7796_PD_A3VC, R8A7796_PD_ALWAYS_ON }, { "a2vc0", 0x3c0, 0, R8A7796_PD_A2VC0, R8A7796_PD_A3VC }, { "a2vc1", 0x3c0, 1, R8A7796_PD_A2VC1, R8A7796_PD_A3VC }, { "3dg-a", 0x100, 0, R8A7796_PD_3DG_A, R8A7796_PD_ALWAYS_ON }, { "3dg-b", 0x100, 1, R8A7796_PD_3DG_B, R8A7796_PD_3DG_A }, { "a3ir", 0x180, 0, R8A7796_PD_A3IR, R8A7796_PD_ALWAYS_ON }, }; #ifdef CONFIG_SYSC_R8A77960 const struct rcar_sysc_info r8a77960_sysc_info __initconst = { .areas = r8a7796_areas, .num_areas = ARRAY_SIZE(r8a7796_areas), }; #endif /* CONFIG_SYSC_R8A77960 */ #ifdef CONFIG_SYSC_R8A77961 static int __init r8a77961_sysc_init(void) { rcar_sysc_nullify(r8a7796_areas, ARRAY_SIZE(r8a7796_areas), R8A7796_PD_A2VC0); return 0; } const struct rcar_sysc_info r8a77961_sysc_info __initconst = { .init = r8a77961_sysc_init, .areas = r8a7796_areas, .num_areas = ARRAY_SIZE(r8a7796_areas), .extmask_offs = 0x2f8, .extmask_val = BIT(0), }; #endif /* CONFIG_SYSC_R8A77961 */
linux-master
drivers/pmdomain/renesas/r8a7796-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car V3U System Controller * * Copyright (C) 2020 Renesas Electronics Corp. */ #include <linux/bits.h> #include <linux/clk/renesas.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/of_address.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include <dt-bindings/power/r8a779a0-sysc.h> #include "rcar-gen4-sysc.h" static struct rcar_gen4_sysc_area r8a779a0_areas[] __initdata = { { "always-on", R8A779A0_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "a3e0", R8A779A0_PD_A3E0, R8A779A0_PD_ALWAYS_ON, PD_SCU }, { "a3e1", R8A779A0_PD_A3E1, R8A779A0_PD_ALWAYS_ON, PD_SCU }, { "a2e0d0", R8A779A0_PD_A2E0D0, R8A779A0_PD_A3E0, PD_SCU }, { "a2e0d1", R8A779A0_PD_A2E0D1, R8A779A0_PD_A3E0, PD_SCU }, { "a2e1d0", R8A779A0_PD_A2E1D0, R8A779A0_PD_A3E1, PD_SCU }, { "a2e1d1", R8A779A0_PD_A2E1D1, R8A779A0_PD_A3E1, PD_SCU }, { "a1e0d0c0", R8A779A0_PD_A1E0D0C0, R8A779A0_PD_A2E0D0, PD_CPU_NOCR }, { "a1e0d0c1", R8A779A0_PD_A1E0D0C1, R8A779A0_PD_A2E0D0, PD_CPU_NOCR }, { "a1e0d1c0", R8A779A0_PD_A1E0D1C0, R8A779A0_PD_A2E0D1, PD_CPU_NOCR }, { "a1e0d1c1", R8A779A0_PD_A1E0D1C1, R8A779A0_PD_A2E0D1, PD_CPU_NOCR }, { "a1e1d0c0", R8A779A0_PD_A1E1D0C0, R8A779A0_PD_A2E1D0, PD_CPU_NOCR }, { "a1e1d0c1", R8A779A0_PD_A1E1D0C1, R8A779A0_PD_A2E1D0, PD_CPU_NOCR }, { "a1e1d1c0", R8A779A0_PD_A1E1D1C0, R8A779A0_PD_A2E1D1, PD_CPU_NOCR }, { "a1e1d1c1", R8A779A0_PD_A1E1D1C1, R8A779A0_PD_A2E1D1, PD_CPU_NOCR }, { "3dg-a", R8A779A0_PD_3DG_A, R8A779A0_PD_ALWAYS_ON }, { "3dg-b", R8A779A0_PD_3DG_B, R8A779A0_PD_3DG_A }, { "a3vip0", R8A779A0_PD_A3VIP0, R8A779A0_PD_ALWAYS_ON }, { "a3vip1", R8A779A0_PD_A3VIP1, R8A779A0_PD_ALWAYS_ON }, { "a3vip3", R8A779A0_PD_A3VIP3, R8A779A0_PD_ALWAYS_ON }, { "a3vip2", R8A779A0_PD_A3VIP2, R8A779A0_PD_ALWAYS_ON }, { "a3isp01", R8A779A0_PD_A3ISP01, R8A779A0_PD_ALWAYS_ON }, { "a3isp23", R8A779A0_PD_A3ISP23, R8A779A0_PD_ALWAYS_ON }, { "a3ir", R8A779A0_PD_A3IR, R8A779A0_PD_ALWAYS_ON }, { "a2cn0", R8A779A0_PD_A2CN0, R8A779A0_PD_A3IR }, { "a2imp01", R8A779A0_PD_A2IMP01, R8A779A0_PD_A3IR }, { "a2dp0", R8A779A0_PD_A2DP0, R8A779A0_PD_A3IR }, { "a2cv0", R8A779A0_PD_A2CV0, R8A779A0_PD_A3IR }, { "a2cv1", R8A779A0_PD_A2CV1, R8A779A0_PD_A3IR }, { "a2cv4", R8A779A0_PD_A2CV4, R8A779A0_PD_A3IR }, { "a2cv6", R8A779A0_PD_A2CV6, R8A779A0_PD_A3IR }, { "a2cn2", R8A779A0_PD_A2CN2, R8A779A0_PD_A3IR }, { "a2imp23", R8A779A0_PD_A2IMP23, R8A779A0_PD_A3IR }, { "a2dp1", R8A779A0_PD_A2DP1, R8A779A0_PD_A3IR }, { "a2cv2", R8A779A0_PD_A2CV2, R8A779A0_PD_A3IR }, { "a2cv3", R8A779A0_PD_A2CV3, R8A779A0_PD_A3IR }, { "a2cv5", R8A779A0_PD_A2CV5, R8A779A0_PD_A3IR }, { "a2cv7", R8A779A0_PD_A2CV7, R8A779A0_PD_A3IR }, { "a2cn1", R8A779A0_PD_A2CN1, R8A779A0_PD_A3IR }, { "a1cnn0", R8A779A0_PD_A1CNN0, R8A779A0_PD_A2CN0 }, { "a1cnn2", R8A779A0_PD_A1CNN2, R8A779A0_PD_A2CN2 }, { "a1dsp0", R8A779A0_PD_A1DSP0, R8A779A0_PD_A2CN2 }, { "a1cnn1", R8A779A0_PD_A1CNN1, R8A779A0_PD_A2CN1 }, { "a1dsp1", R8A779A0_PD_A1DSP1, R8A779A0_PD_A2CN1 }, }; const struct rcar_gen4_sysc_info r8a779a0_sysc_info __initconst = { .areas = r8a779a0_areas, .num_areas = ARRAY_SIZE(r8a779a0_areas), };
linux-master
drivers/pmdomain/renesas/r8a779a0-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car V3H System Controller * * Copyright (C) 2018 Renesas Electronics Corp. * Copyright (C) 2018 Cogent Embedded, Inc. */ #include <linux/bits.h> #include <linux/kernel.h> #include <dt-bindings/power/r8a77980-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a77980_areas[] __initconst = { { "always-on", 0, 0, R8A77980_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca53-scu", 0x140, 0, R8A77980_PD_CA53_SCU, R8A77980_PD_ALWAYS_ON, PD_SCU }, { "ca53-cpu0", 0x200, 0, R8A77980_PD_CA53_CPU0, R8A77980_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu1", 0x200, 1, R8A77980_PD_CA53_CPU1, R8A77980_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu2", 0x200, 2, R8A77980_PD_CA53_CPU2, R8A77980_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu3", 0x200, 3, R8A77980_PD_CA53_CPU3, R8A77980_PD_CA53_SCU, PD_CPU_NOCR }, { "cr7", 0x240, 0, R8A77980_PD_CR7, R8A77980_PD_ALWAYS_ON }, { "a3ir", 0x180, 0, R8A77980_PD_A3IR, R8A77980_PD_ALWAYS_ON }, { "a2ir0", 0x400, 0, R8A77980_PD_A2IR0, R8A77980_PD_A3IR }, { "a2ir1", 0x400, 1, R8A77980_PD_A2IR1, R8A77980_PD_A3IR }, { "a2ir2", 0x400, 2, R8A77980_PD_A2IR2, R8A77980_PD_A3IR }, { "a2ir3", 0x400, 3, R8A77980_PD_A2IR3, R8A77980_PD_A3IR }, { "a2ir4", 0x400, 4, R8A77980_PD_A2IR4, R8A77980_PD_A3IR }, { "a2ir5", 0x400, 5, R8A77980_PD_A2IR5, R8A77980_PD_A3IR }, { "a2sc0", 0x400, 6, R8A77980_PD_A2SC0, R8A77980_PD_A3IR }, { "a2sc1", 0x400, 7, R8A77980_PD_A2SC1, R8A77980_PD_A3IR }, { "a2sc2", 0x400, 8, R8A77980_PD_A2SC2, R8A77980_PD_A3IR }, { "a2sc3", 0x400, 9, R8A77980_PD_A2SC3, R8A77980_PD_A3IR }, { "a2sc4", 0x400, 10, R8A77980_PD_A2SC4, R8A77980_PD_A3IR }, { "a2dp0", 0x400, 11, R8A77980_PD_A2DP0, R8A77980_PD_A3IR }, { "a2dp1", 0x400, 12, R8A77980_PD_A2DP1, R8A77980_PD_A3IR }, { "a2cn", 0x400, 13, R8A77980_PD_A2CN, R8A77980_PD_A3IR }, { "a3vip0", 0x2c0, 0, R8A77980_PD_A3VIP0, R8A77980_PD_ALWAYS_ON }, { "a3vip1", 0x300, 0, R8A77980_PD_A3VIP1, R8A77980_PD_ALWAYS_ON }, { "a3vip2", 0x280, 0, R8A77980_PD_A3VIP2, R8A77980_PD_ALWAYS_ON }, }; const struct rcar_sysc_info r8a77980_sysc_info __initconst = { .areas = r8a77980_areas, .num_areas = ARRAY_SIZE(r8a77980_areas), .extmask_offs = 0x138, .extmask_val = BIT(0), };
linux-master
drivers/pmdomain/renesas/r8a77980-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/G2E System Controller * Copyright (C) 2018 Renesas Electronics Corp. * * Based on Renesas R-Car E3 System Controller */ #include <linux/bits.h> #include <linux/kernel.h> #include <linux/sys_soc.h> #include <dt-bindings/power/r8a774c0-sysc.h> #include "rcar-sysc.h" static struct rcar_sysc_area r8a774c0_areas[] __initdata = { { "always-on", 0, 0, R8A774C0_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca53-scu", 0x140, 0, R8A774C0_PD_CA53_SCU, R8A774C0_PD_ALWAYS_ON, PD_SCU }, { "ca53-cpu0", 0x200, 0, R8A774C0_PD_CA53_CPU0, R8A774C0_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu1", 0x200, 1, R8A774C0_PD_CA53_CPU1, R8A774C0_PD_CA53_SCU, PD_CPU_NOCR }, { "a3vc", 0x380, 0, R8A774C0_PD_A3VC, R8A774C0_PD_ALWAYS_ON }, { "a2vc1", 0x3c0, 1, R8A774C0_PD_A2VC1, R8A774C0_PD_A3VC }, { "3dg-a", 0x100, 0, R8A774C0_PD_3DG_A, R8A774C0_PD_ALWAYS_ON }, { "3dg-b", 0x100, 1, R8A774C0_PD_3DG_B, R8A774C0_PD_3DG_A }, }; /* Fixups for RZ/G2E ES1.0 revision */ static const struct soc_device_attribute r8a774c0[] __initconst = { { .soc_id = "r8a774c0", .revision = "ES1.0" }, { /* sentinel */ } }; static int __init r8a774c0_sysc_init(void) { if (soc_device_match(r8a774c0)) { /* Fix incorrect 3DG hierarchy */ swap(r8a774c0_areas[6], r8a774c0_areas[7]); r8a774c0_areas[6].parent = R8A774C0_PD_ALWAYS_ON; r8a774c0_areas[7].parent = R8A774C0_PD_3DG_B; } return 0; } const struct rcar_sysc_info r8a774c0_sysc_info __initconst = { .init = r8a774c0_sysc_init, .areas = r8a774c0_areas, .num_areas = ARRAY_SIZE(r8a774c0_areas), .extmask_offs = 0x2f8, .extmask_val = BIT(0), };
linux-master
drivers/pmdomain/renesas/r8a774c0-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/G1M System Controller * * Copyright (C) 2016 Cogent Embedded Inc. */ #include <linux/kernel.h> #include <dt-bindings/power/r8a7743-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a7743_areas[] __initconst = { { "always-on", 0, 0, R8A7743_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca15-scu", 0x180, 0, R8A7743_PD_CA15_SCU, R8A7743_PD_ALWAYS_ON, PD_SCU }, { "ca15-cpu0", 0x40, 0, R8A7743_PD_CA15_CPU0, R8A7743_PD_CA15_SCU, PD_CPU_NOCR }, { "ca15-cpu1", 0x40, 1, R8A7743_PD_CA15_CPU1, R8A7743_PD_CA15_SCU, PD_CPU_NOCR }, { "sgx", 0xc0, 0, R8A7743_PD_SGX, R8A7743_PD_ALWAYS_ON }, }; const struct rcar_sysc_info r8a7743_sysc_info __initconst = { .areas = r8a7743_areas, .num_areas = ARRAY_SIZE(r8a7743_areas), };
linux-master
drivers/pmdomain/renesas/r8a7743-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car E3 System Controller * * Copyright (C) 2018 Renesas Electronics Corp. */ #include <linux/bits.h> #include <linux/kernel.h> #include <linux/sys_soc.h> #include <dt-bindings/power/r8a77990-sysc.h> #include "rcar-sysc.h" static struct rcar_sysc_area r8a77990_areas[] __initdata = { { "always-on", 0, 0, R8A77990_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca53-scu", 0x140, 0, R8A77990_PD_CA53_SCU, R8A77990_PD_ALWAYS_ON, PD_SCU }, { "ca53-cpu0", 0x200, 0, R8A77990_PD_CA53_CPU0, R8A77990_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu1", 0x200, 1, R8A77990_PD_CA53_CPU1, R8A77990_PD_CA53_SCU, PD_CPU_NOCR }, { "cr7", 0x240, 0, R8A77990_PD_CR7, R8A77990_PD_ALWAYS_ON }, { "a3vc", 0x380, 0, R8A77990_PD_A3VC, R8A77990_PD_ALWAYS_ON }, { "a2vc1", 0x3c0, 1, R8A77990_PD_A2VC1, R8A77990_PD_A3VC }, { "3dg-a", 0x100, 0, R8A77990_PD_3DG_A, R8A77990_PD_ALWAYS_ON }, { "3dg-b", 0x100, 1, R8A77990_PD_3DG_B, R8A77990_PD_3DG_A }, }; /* Fixups for R-Car E3 ES1.0 revision */ static const struct soc_device_attribute r8a77990[] __initconst = { { .soc_id = "r8a77990", .revision = "ES1.0" }, { /* sentinel */ } }; static int __init r8a77990_sysc_init(void) { if (soc_device_match(r8a77990)) { /* Fix incorrect 3DG hierarchy */ swap(r8a77990_areas[7], r8a77990_areas[8]); r8a77990_areas[7].parent = R8A77990_PD_ALWAYS_ON; r8a77990_areas[8].parent = R8A77990_PD_3DG_B; } return 0; } const struct rcar_sysc_info r8a77990_sysc_info __initconst = { .init = r8a77990_sysc_init, .areas = r8a77990_areas, .num_areas = ARRAY_SIZE(r8a77990_areas), .extmask_offs = 0x2f8, .extmask_val = BIT(0), };
linux-master
drivers/pmdomain/renesas/r8a77990-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car H1 System Controller * * Copyright (C) 2016 Glider bvba */ #include <linux/kernel.h> #include <dt-bindings/power/r8a7779-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a7779_areas[] __initconst = { { "always-on", 0, 0, R8A7779_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "arm1", 0x40, 1, R8A7779_PD_ARM1, R8A7779_PD_ALWAYS_ON, PD_CPU_CR }, { "arm2", 0x40, 2, R8A7779_PD_ARM2, R8A7779_PD_ALWAYS_ON, PD_CPU_CR }, { "arm3", 0x40, 3, R8A7779_PD_ARM3, R8A7779_PD_ALWAYS_ON, PD_CPU_CR }, { "sgx", 0xc0, 0, R8A7779_PD_SGX, R8A7779_PD_ALWAYS_ON }, { "vdp", 0x100, 0, R8A7779_PD_VDP, R8A7779_PD_ALWAYS_ON }, { "imp", 0x140, 0, R8A7779_PD_IMP, R8A7779_PD_ALWAYS_ON }, }; const struct rcar_sysc_info r8a7779_sysc_info __initconst = { .areas = r8a7779_areas, .num_areas = ARRAY_SIZE(r8a7779_areas), };
linux-master
drivers/pmdomain/renesas/r8a7779-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/G2H System Controller * Copyright (C) 2020 Renesas Electronics Corp. * * Based on Renesas R-Car H3 System Controller * Copyright (C) 2016-2017 Glider bvba */ #include <linux/kernel.h> #include <dt-bindings/power/r8a774e1-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a774e1_areas[] __initconst = { { "always-on", 0, 0, R8A774E1_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca57-scu", 0x1c0, 0, R8A774E1_PD_CA57_SCU, R8A774E1_PD_ALWAYS_ON, PD_SCU }, { "ca57-cpu0", 0x80, 0, R8A774E1_PD_CA57_CPU0, R8A774E1_PD_CA57_SCU, PD_CPU_NOCR }, { "ca57-cpu1", 0x80, 1, R8A774E1_PD_CA57_CPU1, R8A774E1_PD_CA57_SCU, PD_CPU_NOCR }, { "ca57-cpu2", 0x80, 2, R8A774E1_PD_CA57_CPU2, R8A774E1_PD_CA57_SCU, PD_CPU_NOCR }, { "ca57-cpu3", 0x80, 3, R8A774E1_PD_CA57_CPU3, R8A774E1_PD_CA57_SCU, PD_CPU_NOCR }, { "ca53-scu", 0x140, 0, R8A774E1_PD_CA53_SCU, R8A774E1_PD_ALWAYS_ON, PD_SCU }, { "ca53-cpu0", 0x200, 0, R8A774E1_PD_CA53_CPU0, R8A774E1_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu1", 0x200, 1, R8A774E1_PD_CA53_CPU1, R8A774E1_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu2", 0x200, 2, R8A774E1_PD_CA53_CPU2, R8A774E1_PD_CA53_SCU, PD_CPU_NOCR }, { "ca53-cpu3", 0x200, 3, R8A774E1_PD_CA53_CPU3, R8A774E1_PD_CA53_SCU, PD_CPU_NOCR }, { "a3vp", 0x340, 0, R8A774E1_PD_A3VP, R8A774E1_PD_ALWAYS_ON }, { "a3vc", 0x380, 0, R8A774E1_PD_A3VC, R8A774E1_PD_ALWAYS_ON }, { "a2vc1", 0x3c0, 1, R8A774E1_PD_A2VC1, R8A774E1_PD_A3VC }, { "3dg-a", 0x100, 0, R8A774E1_PD_3DG_A, R8A774E1_PD_ALWAYS_ON }, { "3dg-b", 0x100, 1, R8A774E1_PD_3DG_B, R8A774E1_PD_3DG_A }, { "3dg-c", 0x100, 2, R8A774E1_PD_3DG_C, R8A774E1_PD_3DG_B }, { "3dg-d", 0x100, 3, R8A774E1_PD_3DG_D, R8A774E1_PD_3DG_C }, { "3dg-e", 0x100, 4, R8A774E1_PD_3DG_E, R8A774E1_PD_3DG_D }, }; const struct rcar_sysc_info r8a774e1_sysc_info __initconst = { .areas = r8a774e1_areas, .num_areas = ARRAY_SIZE(r8a774e1_areas), .extmask_offs = 0x2f8, .extmask_val = BIT(0), };
linux-master
drivers/pmdomain/renesas/r8a774e1-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car E2 System Controller * * Copyright (C) 2016 Glider bvba */ #include <linux/kernel.h> #include <dt-bindings/power/r8a7794-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a7794_areas[] __initconst = { { "always-on", 0, 0, R8A7794_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca7-scu", 0x100, 0, R8A7794_PD_CA7_SCU, R8A7794_PD_ALWAYS_ON, PD_SCU }, { "ca7-cpu0", 0x1c0, 0, R8A7794_PD_CA7_CPU0, R8A7794_PD_CA7_SCU, PD_CPU_NOCR }, { "ca7-cpu1", 0x1c0, 1, R8A7794_PD_CA7_CPU1, R8A7794_PD_CA7_SCU, PD_CPU_NOCR }, { "sh-4a", 0x80, 0, R8A7794_PD_SH_4A, R8A7794_PD_ALWAYS_ON }, { "sgx", 0xc0, 0, R8A7794_PD_SGX, R8A7794_PD_ALWAYS_ON }, }; const struct rcar_sysc_info r8a7794_sysc_info __initconst = { .areas = r8a7794_areas, .num_areas = ARRAY_SIZE(r8a7794_areas), };
linux-master
drivers/pmdomain/renesas/r8a7794-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car H2 System Controller * * Copyright (C) 2016 Glider bvba */ #include <linux/kernel.h> #include <dt-bindings/power/r8a7790-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a7790_areas[] __initconst = { { "always-on", 0, 0, R8A7790_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca15-scu", 0x180, 0, R8A7790_PD_CA15_SCU, R8A7790_PD_ALWAYS_ON, PD_SCU }, { "ca15-cpu0", 0x40, 0, R8A7790_PD_CA15_CPU0, R8A7790_PD_CA15_SCU, PD_CPU_NOCR }, { "ca15-cpu1", 0x40, 1, R8A7790_PD_CA15_CPU1, R8A7790_PD_CA15_SCU, PD_CPU_NOCR }, { "ca15-cpu2", 0x40, 2, R8A7790_PD_CA15_CPU2, R8A7790_PD_CA15_SCU, PD_CPU_NOCR }, { "ca15-cpu3", 0x40, 3, R8A7790_PD_CA15_CPU3, R8A7790_PD_CA15_SCU, PD_CPU_NOCR }, { "ca7-scu", 0x100, 0, R8A7790_PD_CA7_SCU, R8A7790_PD_ALWAYS_ON, PD_SCU }, { "ca7-cpu0", 0x1c0, 0, R8A7790_PD_CA7_CPU0, R8A7790_PD_CA7_SCU, PD_CPU_NOCR }, { "ca7-cpu1", 0x1c0, 1, R8A7790_PD_CA7_CPU1, R8A7790_PD_CA7_SCU, PD_CPU_NOCR }, { "ca7-cpu2", 0x1c0, 2, R8A7790_PD_CA7_CPU2, R8A7790_PD_CA7_SCU, PD_CPU_NOCR }, { "ca7-cpu3", 0x1c0, 3, R8A7790_PD_CA7_CPU3, R8A7790_PD_CA7_SCU, PD_CPU_NOCR }, { "sh-4a", 0x80, 0, R8A7790_PD_SH_4A, R8A7790_PD_ALWAYS_ON }, { "rgx", 0xc0, 0, R8A7790_PD_RGX, R8A7790_PD_ALWAYS_ON }, { "imp", 0x140, 0, R8A7790_PD_IMP, R8A7790_PD_ALWAYS_ON }, }; const struct rcar_sysc_info r8a7790_sysc_info __initconst = { .areas = r8a7790_areas, .num_areas = ARRAY_SIZE(r8a7790_areas), };
linux-master
drivers/pmdomain/renesas/r8a7790-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car V2H (R8A7792) System Controller * * Copyright (C) 2016 Cogent Embedded Inc. */ #include <linux/init.h> #include <linux/kernel.h> #include <dt-bindings/power/r8a7792-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a7792_areas[] __initconst = { { "always-on", 0, 0, R8A7792_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca15-scu", 0x180, 0, R8A7792_PD_CA15_SCU, R8A7792_PD_ALWAYS_ON, PD_SCU }, { "ca15-cpu0", 0x40, 0, R8A7792_PD_CA15_CPU0, R8A7792_PD_CA15_SCU, PD_CPU_NOCR }, { "ca15-cpu1", 0x40, 1, R8A7792_PD_CA15_CPU1, R8A7792_PD_CA15_SCU, PD_CPU_NOCR }, { "sgx", 0xc0, 0, R8A7792_PD_SGX, R8A7792_PD_ALWAYS_ON }, { "imp", 0x140, 0, R8A7792_PD_IMP, R8A7792_PD_ALWAYS_ON }, }; const struct rcar_sysc_info r8a7792_sysc_info __initconst = { .areas = r8a7792_areas, .num_areas = ARRAY_SIZE(r8a7792_areas), };
linux-master
drivers/pmdomain/renesas/r8a7792-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas R-Car M3-N System Controller * Copyright (C) 2018 Jacopo Mondi <[email protected]> * * Based on Renesas R-Car M3-W System Controller * Copyright (C) 2016 Glider bvba */ #include <linux/bits.h> #include <linux/kernel.h> #include <dt-bindings/power/r8a77965-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a77965_areas[] __initconst = { { "always-on", 0, 0, R8A77965_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca57-scu", 0x1c0, 0, R8A77965_PD_CA57_SCU, R8A77965_PD_ALWAYS_ON, PD_SCU }, { "ca57-cpu0", 0x80, 0, R8A77965_PD_CA57_CPU0, R8A77965_PD_CA57_SCU, PD_CPU_NOCR }, { "ca57-cpu1", 0x80, 1, R8A77965_PD_CA57_CPU1, R8A77965_PD_CA57_SCU, PD_CPU_NOCR }, { "cr7", 0x240, 0, R8A77965_PD_CR7, R8A77965_PD_ALWAYS_ON }, { "a3vc", 0x380, 0, R8A77965_PD_A3VC, R8A77965_PD_ALWAYS_ON }, { "a3vp", 0x340, 0, R8A77965_PD_A3VP, R8A77965_PD_ALWAYS_ON }, { "a2vc1", 0x3c0, 1, R8A77965_PD_A2VC1, R8A77965_PD_A3VC }, { "3dg-a", 0x100, 0, R8A77965_PD_3DG_A, R8A77965_PD_ALWAYS_ON }, { "3dg-b", 0x100, 1, R8A77965_PD_3DG_B, R8A77965_PD_3DG_A }, }; const struct rcar_sysc_info r8a77965_sysc_info __initconst = { .areas = r8a77965_areas, .num_areas = ARRAY_SIZE(r8a77965_areas), .extmask_offs = 0x2f8, .extmask_val = BIT(0), };
linux-master
drivers/pmdomain/renesas/r8a77965-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/G1E System Controller * * Copyright (C) 2016 Cogent Embedded Inc. */ #include <linux/kernel.h> #include <dt-bindings/power/r8a7745-sysc.h> #include "rcar-sysc.h" static const struct rcar_sysc_area r8a7745_areas[] __initconst = { { "always-on", 0, 0, R8A7745_PD_ALWAYS_ON, -1, PD_ALWAYS_ON }, { "ca7-scu", 0x100, 0, R8A7745_PD_CA7_SCU, R8A7745_PD_ALWAYS_ON, PD_SCU }, { "ca7-cpu0", 0x1c0, 0, R8A7745_PD_CA7_CPU0, R8A7745_PD_CA7_SCU, PD_CPU_NOCR }, { "ca7-cpu1", 0x1c0, 1, R8A7745_PD_CA7_CPU1, R8A7745_PD_CA7_SCU, PD_CPU_NOCR }, { "sgx", 0xc0, 0, R8A7745_PD_SGX, R8A7745_PD_ALWAYS_ON }, }; const struct rcar_sysc_info r8a7745_sysc_info __initconst = { .areas = r8a7745_areas, .num_areas = ARRAY_SIZE(r8a7745_areas), };
linux-master
drivers/pmdomain/renesas/r8a7745-sysc.c
// SPDX-License-Identifier: GPL-2.0 /* * R-Car SYSC Power management support * * Copyright (C) 2014 Magnus Damm * Copyright (C) 2015-2017 Glider bvba */ #include <linux/clk/renesas.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/mm.h> #include <linux/of_address.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/soc/renesas/rcar-sysc.h> #include "rcar-sysc.h" /* SYSC Common */ #define SYSCSR 0x00 /* SYSC Status Register */ #define SYSCISR 0x04 /* Interrupt Status Register */ #define SYSCISCR 0x08 /* Interrupt Status Clear Register */ #define SYSCIER 0x0c /* Interrupt Enable Register */ #define SYSCIMR 0x10 /* Interrupt Mask Register */ /* SYSC Status Register */ #define SYSCSR_PONENB 1 /* Ready for power resume requests */ #define SYSCSR_POFFENB 0 /* Ready for power shutoff requests */ /* * Power Control Register Offsets inside the register block for each domain * Note: The "CR" registers for ARM cores exist on H1 only * Use WFI to power off, CPG/APMU to resume ARM cores on R-Car Gen2 * Use PSCI on R-Car Gen3 */ #define PWRSR_OFFS 0x00 /* Power Status Register */ #define PWROFFCR_OFFS 0x04 /* Power Shutoff Control Register */ #define PWROFFSR_OFFS 0x08 /* Power Shutoff Status Register */ #define PWRONCR_OFFS 0x0c /* Power Resume Control Register */ #define PWRONSR_OFFS 0x10 /* Power Resume Status Register */ #define PWRER_OFFS 0x14 /* Power Shutoff/Resume Error */ #define SYSCSR_TIMEOUT 100 #define SYSCSR_DELAY_US 1 #define PWRER_RETRIES 100 #define PWRER_DELAY_US 1 #define SYSCISR_TIMEOUT 1000 #define SYSCISR_DELAY_US 1 #define RCAR_PD_ALWAYS_ON 32 /* Always-on power area */ struct rcar_sysc_ch { u16 chan_offs; u8 chan_bit; u8 isr_bit; }; static void __iomem *rcar_sysc_base; static DEFINE_SPINLOCK(rcar_sysc_lock); /* SMP CPUs + I/O devices */ static u32 rcar_sysc_extmask_offs, rcar_sysc_extmask_val; static int rcar_sysc_pwr_on_off(const struct rcar_sysc_ch *sysc_ch, bool on) { unsigned int sr_bit, reg_offs; u32 val; int ret; if (on) { sr_bit = SYSCSR_PONENB; reg_offs = PWRONCR_OFFS; } else { sr_bit = SYSCSR_POFFENB; reg_offs = PWROFFCR_OFFS; } /* Wait until SYSC is ready to accept a power request */ ret = readl_poll_timeout_atomic(rcar_sysc_base + SYSCSR, val, val & BIT(sr_bit), SYSCSR_DELAY_US, SYSCSR_TIMEOUT); if (ret) return -EAGAIN; /* Submit power shutoff or power resume request */ iowrite32(BIT(sysc_ch->chan_bit), rcar_sysc_base + sysc_ch->chan_offs + reg_offs); return 0; } static int rcar_sysc_power(const struct rcar_sysc_ch *sysc_ch, bool on) { unsigned int isr_mask = BIT(sysc_ch->isr_bit); unsigned int chan_mask = BIT(sysc_ch->chan_bit); unsigned int status, k; unsigned long flags; int ret; spin_lock_irqsave(&rcar_sysc_lock, flags); /* * Mask external power requests for CPU or 3DG domains */ if (rcar_sysc_extmask_val) { iowrite32(rcar_sysc_extmask_val, rcar_sysc_base + rcar_sysc_extmask_offs); } /* * The interrupt source needs to be enabled, but masked, to prevent the * CPU from receiving it. */ iowrite32(ioread32(rcar_sysc_base + SYSCIMR) | isr_mask, rcar_sysc_base + SYSCIMR); iowrite32(ioread32(rcar_sysc_base + SYSCIER) | isr_mask, rcar_sysc_base + SYSCIER); iowrite32(isr_mask, rcar_sysc_base + SYSCISCR); /* Submit power shutoff or resume request until it was accepted */ for (k = 0; k < PWRER_RETRIES; k++) { ret = rcar_sysc_pwr_on_off(sysc_ch, on); if (ret) goto out; status = ioread32(rcar_sysc_base + sysc_ch->chan_offs + PWRER_OFFS); if (!(status & chan_mask)) break; udelay(PWRER_DELAY_US); } if (k == PWRER_RETRIES) { ret = -EIO; goto out; } /* Wait until the power shutoff or resume request has completed * */ ret = readl_poll_timeout_atomic(rcar_sysc_base + SYSCISR, status, status & isr_mask, SYSCISR_DELAY_US, SYSCISR_TIMEOUT); if (ret) ret = -EIO; iowrite32(isr_mask, rcar_sysc_base + SYSCISCR); out: if (rcar_sysc_extmask_val) iowrite32(0, rcar_sysc_base + rcar_sysc_extmask_offs); spin_unlock_irqrestore(&rcar_sysc_lock, flags); pr_debug("sysc power %s domain %d: %08x -> %d\n", on ? "on" : "off", sysc_ch->isr_bit, ioread32(rcar_sysc_base + SYSCISR), ret); return ret; } static bool rcar_sysc_power_is_off(const struct rcar_sysc_ch *sysc_ch) { unsigned int st; st = ioread32(rcar_sysc_base + sysc_ch->chan_offs + PWRSR_OFFS); if (st & BIT(sysc_ch->chan_bit)) return true; return false; } struct rcar_sysc_pd { struct generic_pm_domain genpd; struct rcar_sysc_ch ch; unsigned int flags; char name[]; }; static inline struct rcar_sysc_pd *to_rcar_pd(struct generic_pm_domain *d) { return container_of(d, struct rcar_sysc_pd, genpd); } static int rcar_sysc_pd_power_off(struct generic_pm_domain *genpd) { struct rcar_sysc_pd *pd = to_rcar_pd(genpd); pr_debug("%s: %s\n", __func__, genpd->name); return rcar_sysc_power(&pd->ch, false); } static int rcar_sysc_pd_power_on(struct generic_pm_domain *genpd) { struct rcar_sysc_pd *pd = to_rcar_pd(genpd); pr_debug("%s: %s\n", __func__, genpd->name); return rcar_sysc_power(&pd->ch, true); } static bool has_cpg_mstp; static int __init rcar_sysc_pd_setup(struct rcar_sysc_pd *pd) { struct generic_pm_domain *genpd = &pd->genpd; const char *name = pd->genpd.name; int error; if (pd->flags & PD_CPU) { /* * This domain contains a CPU core and therefore it should * only be turned off if the CPU is not in use. */ pr_debug("PM domain %s contains %s\n", name, "CPU"); genpd->flags |= GENPD_FLAG_ALWAYS_ON; } else if (pd->flags & PD_SCU) { /* * This domain contains an SCU and cache-controller, and * therefore it should only be turned off if the CPU cores are * not in use. */ pr_debug("PM domain %s contains %s\n", name, "SCU"); genpd->flags |= GENPD_FLAG_ALWAYS_ON; } else if (pd->flags & PD_NO_CR) { /* * This domain cannot be turned off. */ genpd->flags |= GENPD_FLAG_ALWAYS_ON; } if (!(pd->flags & (PD_CPU | PD_SCU))) { /* Enable Clock Domain for I/O devices */ genpd->flags |= GENPD_FLAG_PM_CLK | GENPD_FLAG_ACTIVE_WAKEUP; if (has_cpg_mstp) { genpd->attach_dev = cpg_mstp_attach_dev; genpd->detach_dev = cpg_mstp_detach_dev; } else { genpd->attach_dev = cpg_mssr_attach_dev; genpd->detach_dev = cpg_mssr_detach_dev; } } genpd->power_off = rcar_sysc_pd_power_off; genpd->power_on = rcar_sysc_pd_power_on; if (pd->flags & (PD_CPU | PD_NO_CR)) { /* Skip CPUs (handled by SMP code) and areas without control */ pr_debug("%s: Not touching %s\n", __func__, genpd->name); goto finalize; } if (!rcar_sysc_power_is_off(&pd->ch)) { pr_debug("%s: %s is already powered\n", __func__, genpd->name); goto finalize; } rcar_sysc_power(&pd->ch, true); finalize: error = pm_genpd_init(genpd, &simple_qos_governor, false); if (error) pr_err("Failed to init PM domain %s: %d\n", name, error); return error; } static const struct of_device_id rcar_sysc_matches[] __initconst = { #ifdef CONFIG_SYSC_R8A7742 { .compatible = "renesas,r8a7742-sysc", .data = &r8a7742_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7743 { .compatible = "renesas,r8a7743-sysc", .data = &r8a7743_sysc_info }, /* RZ/G1N is identical to RZ/G2M w.r.t. power domains. */ { .compatible = "renesas,r8a7744-sysc", .data = &r8a7743_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7745 { .compatible = "renesas,r8a7745-sysc", .data = &r8a7745_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77470 { .compatible = "renesas,r8a77470-sysc", .data = &r8a77470_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A774A1 { .compatible = "renesas,r8a774a1-sysc", .data = &r8a774a1_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A774B1 { .compatible = "renesas,r8a774b1-sysc", .data = &r8a774b1_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A774C0 { .compatible = "renesas,r8a774c0-sysc", .data = &r8a774c0_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A774E1 { .compatible = "renesas,r8a774e1-sysc", .data = &r8a774e1_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7779 { .compatible = "renesas,r8a7779-sysc", .data = &r8a7779_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7790 { .compatible = "renesas,r8a7790-sysc", .data = &r8a7790_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7791 { .compatible = "renesas,r8a7791-sysc", .data = &r8a7791_sysc_info }, /* R-Car M2-N is identical to R-Car M2-W w.r.t. power domains. */ { .compatible = "renesas,r8a7793-sysc", .data = &r8a7791_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7792 { .compatible = "renesas,r8a7792-sysc", .data = &r8a7792_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7794 { .compatible = "renesas,r8a7794-sysc", .data = &r8a7794_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7795 { .compatible = "renesas,r8a7795-sysc", .data = &r8a7795_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77960 { .compatible = "renesas,r8a7796-sysc", .data = &r8a77960_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77961 { .compatible = "renesas,r8a77961-sysc", .data = &r8a77961_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77965 { .compatible = "renesas,r8a77965-sysc", .data = &r8a77965_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77970 { .compatible = "renesas,r8a77970-sysc", .data = &r8a77970_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77980 { .compatible = "renesas,r8a77980-sysc", .data = &r8a77980_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77990 { .compatible = "renesas,r8a77990-sysc", .data = &r8a77990_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77995 { .compatible = "renesas,r8a77995-sysc", .data = &r8a77995_sysc_info }, #endif { /* sentinel */ } }; struct rcar_pm_domains { struct genpd_onecell_data onecell_data; struct generic_pm_domain *domains[RCAR_PD_ALWAYS_ON + 1]; }; static struct genpd_onecell_data *rcar_sysc_onecell_data; static int __init rcar_sysc_pd_init(void) { const struct rcar_sysc_info *info; const struct of_device_id *match; struct rcar_pm_domains *domains; struct device_node *np; void __iomem *base; unsigned int i; int error; np = of_find_matching_node_and_match(NULL, rcar_sysc_matches, &match); if (!np) return -ENODEV; info = match->data; if (info->init) { error = info->init(); if (error) goto out_put; } has_cpg_mstp = of_find_compatible_node(NULL, NULL, "renesas,cpg-mstp-clocks"); base = of_iomap(np, 0); if (!base) { pr_warn("%pOF: Cannot map regs\n", np); error = -ENOMEM; goto out_put; } rcar_sysc_base = base; /* Optional External Request Mask Register */ rcar_sysc_extmask_offs = info->extmask_offs; rcar_sysc_extmask_val = info->extmask_val; domains = kzalloc(sizeof(*domains), GFP_KERNEL); if (!domains) { error = -ENOMEM; goto out_put; } domains->onecell_data.domains = domains->domains; domains->onecell_data.num_domains = ARRAY_SIZE(domains->domains); rcar_sysc_onecell_data = &domains->onecell_data; for (i = 0; i < info->num_areas; i++) { const struct rcar_sysc_area *area = &info->areas[i]; struct rcar_sysc_pd *pd; size_t n; if (!area->name) { /* Skip NULLified area */ continue; } n = strlen(area->name) + 1; pd = kzalloc(sizeof(*pd) + n, GFP_KERNEL); if (!pd) { error = -ENOMEM; goto out_put; } memcpy(pd->name, area->name, n); pd->genpd.name = pd->name; pd->ch.chan_offs = area->chan_offs; pd->ch.chan_bit = area->chan_bit; pd->ch.isr_bit = area->isr_bit; pd->flags = area->flags; error = rcar_sysc_pd_setup(pd); if (error) goto out_put; domains->domains[area->isr_bit] = &pd->genpd; if (area->parent < 0) continue; error = pm_genpd_add_subdomain(domains->domains[area->parent], &pd->genpd); if (error) { pr_warn("Failed to add PM subdomain %s to parent %u\n", area->name, area->parent); goto out_put; } } error = of_genpd_add_provider_onecell(np, &domains->onecell_data); if (!error) fwnode_dev_initialized(of_fwnode_handle(np), true); out_put: of_node_put(np); return error; } early_initcall(rcar_sysc_pd_init); void __init rcar_sysc_nullify(struct rcar_sysc_area *areas, unsigned int num_areas, u8 id) { unsigned int i; for (i = 0; i < num_areas; i++) if (areas[i].isr_bit == id) { areas[i].name = NULL; return; } } #ifdef CONFIG_ARCH_R8A7779 static int rcar_sysc_power_cpu(unsigned int idx, bool on) { struct generic_pm_domain *genpd; struct rcar_sysc_pd *pd; unsigned int i; if (!rcar_sysc_onecell_data) return -ENODEV; for (i = 0; i < rcar_sysc_onecell_data->num_domains; i++) { genpd = rcar_sysc_onecell_data->domains[i]; if (!genpd) continue; pd = to_rcar_pd(genpd); if (!(pd->flags & PD_CPU) || pd->ch.chan_bit != idx) continue; return rcar_sysc_power(&pd->ch, on); } return -ENOENT; } int rcar_sysc_power_down_cpu(unsigned int cpu) { return rcar_sysc_power_cpu(cpu, false); } int rcar_sysc_power_up_cpu(unsigned int cpu) { return rcar_sysc_power_cpu(cpu, true); } #endif /* CONFIG_ARCH_R8A7779 */
linux-master
drivers/pmdomain/renesas/rcar-sysc.c
// SPDX-License-Identifier: GPL-2.0-only /* * TI SCI Generic Power Domain Driver * * Copyright (C) 2015-2017 Texas Instruments Incorporated - http://www.ti.com/ * J Keerthy <[email protected]> * Dave Gerlach <[email protected]> */ #include <linux/err.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/soc/ti/ti_sci_protocol.h> #include <dt-bindings/soc/ti,sci_pm_domain.h> /** * struct ti_sci_genpd_provider: holds common TI SCI genpd provider data * @ti_sci: handle to TI SCI protocol driver that provides ops to * communicate with system control processor. * @dev: pointer to dev for the driver for devm allocs * @pd_list: list of all the power domains on the device * @data: onecell data for genpd core */ struct ti_sci_genpd_provider { const struct ti_sci_handle *ti_sci; struct device *dev; struct list_head pd_list; struct genpd_onecell_data data; }; /** * struct ti_sci_pm_domain: TI specific data needed for power domain * @idx: index of the device that identifies it with the system * control processor. * @exclusive: Permissions for exclusive request or shared request of the * device. * @pd: generic_pm_domain for use with the genpd framework * @node: link for the genpd list * @parent: link to the parent TI SCI genpd provider */ struct ti_sci_pm_domain { int idx; u8 exclusive; struct generic_pm_domain pd; struct list_head node; struct ti_sci_genpd_provider *parent; }; #define genpd_to_ti_sci_pd(gpd) container_of(gpd, struct ti_sci_pm_domain, pd) /* * ti_sci_pd_power_off(): genpd power down hook * @domain: pointer to the powerdomain to power off */ static int ti_sci_pd_power_off(struct generic_pm_domain *domain) { struct ti_sci_pm_domain *pd = genpd_to_ti_sci_pd(domain); const struct ti_sci_handle *ti_sci = pd->parent->ti_sci; return ti_sci->ops.dev_ops.put_device(ti_sci, pd->idx); } /* * ti_sci_pd_power_on(): genpd power up hook * @domain: pointer to the powerdomain to power on */ static int ti_sci_pd_power_on(struct generic_pm_domain *domain) { struct ti_sci_pm_domain *pd = genpd_to_ti_sci_pd(domain); const struct ti_sci_handle *ti_sci = pd->parent->ti_sci; if (pd->exclusive) return ti_sci->ops.dev_ops.get_device_exclusive(ti_sci, pd->idx); else return ti_sci->ops.dev_ops.get_device(ti_sci, pd->idx); } /* * ti_sci_pd_xlate(): translation service for TI SCI genpds * @genpdspec: DT identification data for the genpd * @data: genpd core data for all the powerdomains on the device */ static struct generic_pm_domain *ti_sci_pd_xlate( struct of_phandle_args *genpdspec, void *data) { struct genpd_onecell_data *genpd_data = data; unsigned int idx = genpdspec->args[0]; if (genpdspec->args_count != 1 && genpdspec->args_count != 2) return ERR_PTR(-EINVAL); if (idx >= genpd_data->num_domains) { pr_err("%s: invalid domain index %u\n", __func__, idx); return ERR_PTR(-EINVAL); } if (!genpd_data->domains[idx]) return ERR_PTR(-ENOENT); genpd_to_ti_sci_pd(genpd_data->domains[idx])->exclusive = genpdspec->args[1]; return genpd_data->domains[idx]; } static const struct of_device_id ti_sci_pm_domain_matches[] = { { .compatible = "ti,sci-pm-domain", }, { }, }; MODULE_DEVICE_TABLE(of, ti_sci_pm_domain_matches); static int ti_sci_pm_domain_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ti_sci_genpd_provider *pd_provider; struct ti_sci_pm_domain *pd; struct device_node *np; struct of_phandle_args args; int ret; u32 max_id = 0; int index; pd_provider = devm_kzalloc(dev, sizeof(*pd_provider), GFP_KERNEL); if (!pd_provider) return -ENOMEM; pd_provider->ti_sci = devm_ti_sci_get_handle(dev); if (IS_ERR(pd_provider->ti_sci)) return PTR_ERR(pd_provider->ti_sci); pd_provider->dev = dev; INIT_LIST_HEAD(&pd_provider->pd_list); /* Find highest device ID used for power domains */ for_each_node_with_property(np, "power-domains") { index = 0; while (1) { ret = of_parse_phandle_with_args(np, "power-domains", "#power-domain-cells", index, &args); if (ret) break; if (args.args_count >= 1 && args.np == dev->of_node) { if (args.args[0] > max_id) max_id = args.args[0]; pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pd->pd.name = devm_kasprintf(dev, GFP_KERNEL, "pd:%d", args.args[0]); if (!pd->pd.name) return -ENOMEM; pd->pd.power_off = ti_sci_pd_power_off; pd->pd.power_on = ti_sci_pd_power_on; pd->idx = args.args[0]; pd->parent = pd_provider; pm_genpd_init(&pd->pd, NULL, true); list_add(&pd->node, &pd_provider->pd_list); } index++; } } pd_provider->data.domains = devm_kcalloc(dev, max_id + 1, sizeof(*pd_provider->data.domains), GFP_KERNEL); if (!pd_provider->data.domains) return -ENOMEM; pd_provider->data.num_domains = max_id + 1; pd_provider->data.xlate = ti_sci_pd_xlate; list_for_each_entry(pd, &pd_provider->pd_list, node) pd_provider->data.domains[pd->idx] = &pd->pd; return of_genpd_add_provider_onecell(dev->of_node, &pd_provider->data); } static struct platform_driver ti_sci_pm_domains_driver = { .probe = ti_sci_pm_domain_probe, .driver = { .name = "ti_sci_pm_domains", .of_match_table = ti_sci_pm_domain_matches, }, }; module_platform_driver(ti_sci_pm_domains_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI System Control Interface (SCI) Power Domain driver"); MODULE_AUTHOR("Dave Gerlach");
linux-master
drivers/pmdomain/ti/ti_sci_pm_domains.c
// SPDX-License-Identifier: GPL-2.0 /* * OMAP2+ PRM driver * * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/ * Tero Kristo <[email protected]> */ #include <linux/kernel.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_clock.h> #include <linux/pm_domain.h> #include <linux/reset-controller.h> #include <linux/delay.h> #include <linux/platform_data/ti-prm.h> enum omap_prm_domain_mode { OMAP_PRMD_OFF, OMAP_PRMD_RETENTION, OMAP_PRMD_ON_INACTIVE, OMAP_PRMD_ON_ACTIVE, }; struct omap_prm_domain_map { unsigned int usable_modes; /* Mask of hardware supported modes */ unsigned long statechange:1; /* Optional low-power state change */ unsigned long logicretstate:1; /* Optional logic off mode */ }; struct omap_prm_domain { struct device *dev; struct omap_prm *prm; struct generic_pm_domain pd; u16 pwrstctrl; u16 pwrstst; const struct omap_prm_domain_map *cap; u32 pwrstctrl_saved; unsigned int uses_pm_clk:1; }; struct omap_rst_map { s8 rst; s8 st; }; struct omap_prm_data { u32 base; const char *name; const char *clkdm_name; u16 pwrstctrl; u16 pwrstst; const struct omap_prm_domain_map *dmap; u16 rstctrl; u16 rstst; const struct omap_rst_map *rstmap; u8 flags; }; struct omap_prm { const struct omap_prm_data *data; void __iomem *base; struct omap_prm_domain *prmd; }; struct omap_reset_data { struct reset_controller_dev rcdev; struct omap_prm *prm; u32 mask; spinlock_t lock; struct clockdomain *clkdm; struct device *dev; }; #define genpd_to_prm_domain(gpd) container_of(gpd, struct omap_prm_domain, pd) #define to_omap_reset_data(p) container_of((p), struct omap_reset_data, rcdev) #define OMAP_MAX_RESETS 8 #define OMAP_RESET_MAX_WAIT 10000 #define OMAP_PRM_HAS_RSTCTRL BIT(0) #define OMAP_PRM_HAS_RSTST BIT(1) #define OMAP_PRM_HAS_NO_CLKDM BIT(2) #define OMAP_PRM_RET_WHEN_IDLE BIT(3) #define OMAP_PRM_HAS_RESETS (OMAP_PRM_HAS_RSTCTRL | OMAP_PRM_HAS_RSTST) #define PRM_STATE_MAX_WAIT 10000 #define PRM_LOGICRETSTATE BIT(2) #define PRM_LOWPOWERSTATECHANGE BIT(4) #define PRM_POWERSTATE_MASK OMAP_PRMD_ON_ACTIVE #define PRM_ST_INTRANSITION BIT(20) static const struct omap_prm_domain_map omap_prm_all = { .usable_modes = BIT(OMAP_PRMD_ON_ACTIVE) | BIT(OMAP_PRMD_ON_INACTIVE) | BIT(OMAP_PRMD_RETENTION) | BIT(OMAP_PRMD_OFF), .statechange = 1, .logicretstate = 1, }; static const struct omap_prm_domain_map omap_prm_noinact = { .usable_modes = BIT(OMAP_PRMD_ON_ACTIVE) | BIT(OMAP_PRMD_RETENTION) | BIT(OMAP_PRMD_OFF), .statechange = 1, .logicretstate = 1, }; static const struct omap_prm_domain_map omap_prm_nooff = { .usable_modes = BIT(OMAP_PRMD_ON_ACTIVE) | BIT(OMAP_PRMD_ON_INACTIVE) | BIT(OMAP_PRMD_RETENTION), .statechange = 1, .logicretstate = 1, }; static const struct omap_prm_domain_map omap_prm_onoff_noauto = { .usable_modes = BIT(OMAP_PRMD_ON_ACTIVE) | BIT(OMAP_PRMD_OFF), .statechange = 1, }; static const struct omap_prm_domain_map omap_prm_alwon = { .usable_modes = BIT(OMAP_PRMD_ON_ACTIVE), }; static const struct omap_prm_domain_map omap_prm_reton = { .usable_modes = BIT(OMAP_PRMD_ON_ACTIVE) | BIT(OMAP_PRMD_RETENTION), .statechange = 1, .logicretstate = 1, }; static const struct omap_rst_map rst_map_0[] = { { .rst = 0, .st = 0 }, { .rst = -1 }, }; static const struct omap_rst_map rst_map_01[] = { { .rst = 0, .st = 0 }, { .rst = 1, .st = 1 }, { .rst = -1 }, }; static const struct omap_rst_map rst_map_012[] = { { .rst = 0, .st = 0 }, { .rst = 1, .st = 1 }, { .rst = 2, .st = 2 }, { .rst = -1 }, }; static const struct omap_prm_data omap4_prm_data[] = { { .name = "mpu", .base = 0x4a306300, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_reton, }, { .name = "tesla", .base = 0x4a306400, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_noinact, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_01 }, { .name = "abe", .base = 0x4a306500, .pwrstctrl = 0, .pwrstst = 0x4, .dmap = &omap_prm_all, }, { .name = "always_on_core", .base = 0x4a306600, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, }, { .name = "core", .base = 0x4a306700, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_reton, .rstctrl = 0x210, .rstst = 0x214, .clkdm_name = "ducati", .rstmap = rst_map_012, .flags = OMAP_PRM_RET_WHEN_IDLE, }, { .name = "ivahd", .base = 0x4a306f00, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_noinact, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_012 }, { .name = "cam", .base = 0x4a307000, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, }, { .name = "dss", .base = 0x4a307100, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_noinact }, { .name = "gfx", .base = 0x4a307200, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto }, { .name = "l3init", .base = 0x4a307300, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_reton }, { .name = "l4per", .base = 0x4a307400, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_reton, .flags = OMAP_PRM_RET_WHEN_IDLE, }, { .name = "cefuse", .base = 0x4a307600, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto }, { .name = "wkup", .base = 0x4a307700, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon }, { .name = "emu", .base = 0x4a307900, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto }, { .name = "device", .base = 0x4a307b00, .rstctrl = 0x0, .rstst = 0x4, .rstmap = rst_map_01, .flags = OMAP_PRM_HAS_RSTCTRL | OMAP_PRM_HAS_NO_CLKDM }, { }, }; static const struct omap_prm_data omap5_prm_data[] = { { .name = "mpu", .base = 0x4ae06300, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_reton, }, { .name = "dsp", .base = 0x4ae06400, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_noinact, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_01 }, { .name = "abe", .base = 0x4ae06500, .pwrstctrl = 0, .pwrstst = 0x4, .dmap = &omap_prm_nooff, }, { .name = "coreaon", .base = 0x4ae06600, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon }, { .name = "core", .base = 0x4ae06700, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_reton, .rstctrl = 0x210, .rstst = 0x214, .clkdm_name = "ipu", .rstmap = rst_map_012 }, { .name = "iva", .base = 0x4ae07200, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_noinact, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_012 }, { .name = "cam", .base = 0x4ae07300, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto }, { .name = "dss", .base = 0x4ae07400, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_noinact }, { .name = "gpu", .base = 0x4ae07500, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto }, { .name = "l3init", .base = 0x4ae07600, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_reton }, { .name = "custefuse", .base = 0x4ae07700, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto }, { .name = "wkupaon", .base = 0x4ae07800, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon }, { .name = "emu", .base = 0x4ae07a00, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto }, { .name = "device", .base = 0x4ae07c00, .rstctrl = 0x0, .rstst = 0x4, .rstmap = rst_map_01, .flags = OMAP_PRM_HAS_RSTCTRL | OMAP_PRM_HAS_NO_CLKDM }, { }, }; static const struct omap_prm_data dra7_prm_data[] = { { .name = "mpu", .base = 0x4ae06300, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_reton, }, { .name = "dsp1", .base = 0x4ae06400, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_01, }, { .name = "ipu", .base = 0x4ae06500, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_012, .clkdm_name = "ipu1" }, { .name = "coreaon", .base = 0x4ae06628, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, }, { .name = "core", .base = 0x4ae06700, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, .rstctrl = 0x210, .rstst = 0x214, .rstmap = rst_map_012, .clkdm_name = "ipu2" }, { .name = "iva", .base = 0x4ae06f00, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_012, }, { .name = "cam", .base = 0x4ae07000, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, }, { .name = "dss", .base = 0x4ae07100, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, }, { .name = "gpu", .base = 0x4ae07200, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, }, { .name = "l3init", .base = 0x4ae07300, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_01, .clkdm_name = "pcie" }, { .name = "l4per", .base = 0x4ae07400, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, }, { .name = "custefuse", .base = 0x4ae07600, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, }, { .name = "wkupaon", .base = 0x4ae07724, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, }, { .name = "emu", .base = 0x4ae07900, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, }, { .name = "dsp2", .base = 0x4ae07b00, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_01 }, { .name = "eve1", .base = 0x4ae07b40, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_01 }, { .name = "eve2", .base = 0x4ae07b80, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_01 }, { .name = "eve3", .base = 0x4ae07bc0, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_01 }, { .name = "eve4", .base = 0x4ae07c00, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_01 }, { .name = "rtc", .base = 0x4ae07c60, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, }, { .name = "vpe", .base = 0x4ae07c80, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, }, { }, }; static const struct omap_rst_map am3_per_rst_map[] = { { .rst = 1 }, { .rst = -1 }, }; static const struct omap_rst_map am3_wkup_rst_map[] = { { .rst = 3, .st = 5 }, { .rst = -1 }, }; static const struct omap_prm_data am3_prm_data[] = { { .name = "per", .base = 0x44e00c00, .pwrstctrl = 0xc, .pwrstst = 0x8, .dmap = &omap_prm_noinact, .rstctrl = 0x0, .rstmap = am3_per_rst_map, .flags = OMAP_PRM_HAS_RSTCTRL, .clkdm_name = "pruss_ocp" }, { .name = "wkup", .base = 0x44e00d00, .pwrstctrl = 0x4, .pwrstst = 0x4, .dmap = &omap_prm_alwon, .rstctrl = 0x0, .rstst = 0xc, .rstmap = am3_wkup_rst_map, .flags = OMAP_PRM_HAS_RSTCTRL | OMAP_PRM_HAS_NO_CLKDM }, { .name = "mpu", .base = 0x44e00e00, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_noinact, }, { .name = "device", .base = 0x44e00f00, .rstctrl = 0x0, .rstst = 0x8, .rstmap = rst_map_01, .flags = OMAP_PRM_HAS_RSTCTRL | OMAP_PRM_HAS_NO_CLKDM }, { .name = "rtc", .base = 0x44e01000, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, }, { .name = "gfx", .base = 0x44e01100, .pwrstctrl = 0, .pwrstst = 0x10, .dmap = &omap_prm_noinact, .rstctrl = 0x4, .rstst = 0x14, .rstmap = rst_map_0, .clkdm_name = "gfx_l3", }, { .name = "cefuse", .base = 0x44e01200, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, }, { }, }; static const struct omap_rst_map am4_per_rst_map[] = { { .rst = 1, .st = 0 }, { .rst = -1 }, }; static const struct omap_rst_map am4_device_rst_map[] = { { .rst = 0, .st = 1 }, { .rst = 1, .st = 0 }, { .rst = -1 }, }; static const struct omap_prm_data am4_prm_data[] = { { .name = "mpu", .base = 0x44df0300, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_noinact, }, { .name = "gfx", .base = 0x44df0400, .pwrstctrl = 0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, .rstctrl = 0x10, .rstst = 0x14, .rstmap = rst_map_0, .clkdm_name = "gfx_l3", }, { .name = "rtc", .base = 0x44df0500, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, }, { .name = "tamper", .base = 0x44df0600, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, }, { .name = "cefuse", .base = 0x44df0700, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_onoff_noauto, }, { .name = "per", .base = 0x44df0800, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_noinact, .rstctrl = 0x10, .rstst = 0x14, .rstmap = am4_per_rst_map, .clkdm_name = "pruss_ocp" }, { .name = "wkup", .base = 0x44df2000, .pwrstctrl = 0x0, .pwrstst = 0x4, .dmap = &omap_prm_alwon, .rstctrl = 0x10, .rstst = 0x14, .rstmap = am3_wkup_rst_map, .flags = OMAP_PRM_HAS_NO_CLKDM }, { .name = "device", .base = 0x44df4000, .rstctrl = 0x0, .rstst = 0x4, .rstmap = am4_device_rst_map, .flags = OMAP_PRM_HAS_RSTCTRL | OMAP_PRM_HAS_NO_CLKDM }, { }, }; static const struct of_device_id omap_prm_id_table[] = { { .compatible = "ti,omap4-prm-inst", .data = omap4_prm_data }, { .compatible = "ti,omap5-prm-inst", .data = omap5_prm_data }, { .compatible = "ti,dra7-prm-inst", .data = dra7_prm_data }, { .compatible = "ti,am3-prm-inst", .data = am3_prm_data }, { .compatible = "ti,am4-prm-inst", .data = am4_prm_data }, { }, }; #ifdef DEBUG static void omap_prm_domain_show_state(struct omap_prm_domain *prmd, const char *desc) { dev_dbg(prmd->dev, "%s %s: %08x/%08x\n", prmd->pd.name, desc, readl_relaxed(prmd->prm->base + prmd->pwrstctrl), readl_relaxed(prmd->prm->base + prmd->pwrstst)); } #else static inline void omap_prm_domain_show_state(struct omap_prm_domain *prmd, const char *desc) { } #endif static int omap_prm_domain_power_on(struct generic_pm_domain *domain) { struct omap_prm_domain *prmd; int ret; u32 v, mode; prmd = genpd_to_prm_domain(domain); if (!prmd->cap) return 0; omap_prm_domain_show_state(prmd, "on: previous state"); if (prmd->pwrstctrl_saved) v = prmd->pwrstctrl_saved; else v = readl_relaxed(prmd->prm->base + prmd->pwrstctrl); if (prmd->prm->data->flags & OMAP_PRM_RET_WHEN_IDLE) mode = OMAP_PRMD_RETENTION; else mode = OMAP_PRMD_ON_ACTIVE; writel_relaxed((v & ~PRM_POWERSTATE_MASK) | mode, prmd->prm->base + prmd->pwrstctrl); /* wait for the transition bit to get cleared */ ret = readl_relaxed_poll_timeout(prmd->prm->base + prmd->pwrstst, v, !(v & PRM_ST_INTRANSITION), 1, PRM_STATE_MAX_WAIT); if (ret) dev_err(prmd->dev, "%s: %s timed out\n", prmd->pd.name, __func__); omap_prm_domain_show_state(prmd, "on: new state"); return ret; } /* No need to check for holes in the mask for the lowest mode */ static int omap_prm_domain_find_lowest(struct omap_prm_domain *prmd) { return __ffs(prmd->cap->usable_modes); } static int omap_prm_domain_power_off(struct generic_pm_domain *domain) { struct omap_prm_domain *prmd; int ret; u32 v; prmd = genpd_to_prm_domain(domain); if (!prmd->cap) return 0; omap_prm_domain_show_state(prmd, "off: previous state"); v = readl_relaxed(prmd->prm->base + prmd->pwrstctrl); prmd->pwrstctrl_saved = v; v &= ~PRM_POWERSTATE_MASK; v |= omap_prm_domain_find_lowest(prmd); if (prmd->cap->statechange) v |= PRM_LOWPOWERSTATECHANGE; if (prmd->cap->logicretstate) v &= ~PRM_LOGICRETSTATE; else v |= PRM_LOGICRETSTATE; writel_relaxed(v, prmd->prm->base + prmd->pwrstctrl); /* wait for the transition bit to get cleared */ ret = readl_relaxed_poll_timeout(prmd->prm->base + prmd->pwrstst, v, !(v & PRM_ST_INTRANSITION), 1, PRM_STATE_MAX_WAIT); if (ret) dev_warn(prmd->dev, "%s: %s timed out\n", __func__, prmd->pd.name); omap_prm_domain_show_state(prmd, "off: new state"); return 0; } /* * Note that ti-sysc already manages the module clocks separately so * no need to manage those. Interconnect instances need clocks managed * for simple-pm-bus. */ static int omap_prm_domain_attach_clock(struct device *dev, struct omap_prm_domain *prmd) { struct device_node *np = dev->of_node; int error; if (!of_device_is_compatible(np, "simple-pm-bus")) return 0; if (!of_property_read_bool(np, "clocks")) return 0; error = pm_clk_create(dev); if (error) return error; error = of_pm_clk_add_clks(dev); if (error < 0) { pm_clk_destroy(dev); return error; } prmd->uses_pm_clk = 1; return 0; } static int omap_prm_domain_attach_dev(struct generic_pm_domain *domain, struct device *dev) { struct generic_pm_domain_data *genpd_data; struct of_phandle_args pd_args; struct omap_prm_domain *prmd; struct device_node *np; int ret; prmd = genpd_to_prm_domain(domain); np = dev->of_node; ret = of_parse_phandle_with_args(np, "power-domains", "#power-domain-cells", 0, &pd_args); if (ret < 0) return ret; if (pd_args.args_count != 0) dev_warn(dev, "%s: unusupported #power-domain-cells: %i\n", prmd->pd.name, pd_args.args_count); genpd_data = dev_gpd_data(dev); genpd_data->data = NULL; ret = omap_prm_domain_attach_clock(dev, prmd); if (ret) return ret; return 0; } static void omap_prm_domain_detach_dev(struct generic_pm_domain *domain, struct device *dev) { struct generic_pm_domain_data *genpd_data; struct omap_prm_domain *prmd; prmd = genpd_to_prm_domain(domain); if (prmd->uses_pm_clk) pm_clk_destroy(dev); genpd_data = dev_gpd_data(dev); genpd_data->data = NULL; } static int omap_prm_domain_init(struct device *dev, struct omap_prm *prm) { struct omap_prm_domain *prmd; struct device_node *np = dev->of_node; const struct omap_prm_data *data; const char *name; int error; if (!of_property_present(dev->of_node, "#power-domain-cells")) return 0; of_node_put(dev->of_node); prmd = devm_kzalloc(dev, sizeof(*prmd), GFP_KERNEL); if (!prmd) return -ENOMEM; data = prm->data; name = devm_kasprintf(dev, GFP_KERNEL, "prm_%s", data->name); prmd->dev = dev; prmd->prm = prm; prmd->cap = prmd->prm->data->dmap; prmd->pwrstctrl = prmd->prm->data->pwrstctrl; prmd->pwrstst = prmd->prm->data->pwrstst; prmd->pd.name = name; prmd->pd.power_on = omap_prm_domain_power_on; prmd->pd.power_off = omap_prm_domain_power_off; prmd->pd.attach_dev = omap_prm_domain_attach_dev; prmd->pd.detach_dev = omap_prm_domain_detach_dev; prmd->pd.flags = GENPD_FLAG_PM_CLK; pm_genpd_init(&prmd->pd, NULL, true); error = of_genpd_add_provider_simple(np, &prmd->pd); if (error) pm_genpd_remove(&prmd->pd); else prm->prmd = prmd; return error; } static bool _is_valid_reset(struct omap_reset_data *reset, unsigned long id) { if (reset->mask & BIT(id)) return true; return false; } static int omap_reset_get_st_bit(struct omap_reset_data *reset, unsigned long id) { const struct omap_rst_map *map = reset->prm->data->rstmap; while (map->rst >= 0) { if (map->rst == id) return map->st; map++; } return id; } static int omap_reset_status(struct reset_controller_dev *rcdev, unsigned long id) { struct omap_reset_data *reset = to_omap_reset_data(rcdev); u32 v; int st_bit = omap_reset_get_st_bit(reset, id); bool has_rstst = reset->prm->data->rstst || (reset->prm->data->flags & OMAP_PRM_HAS_RSTST); /* Check if we have rstst */ if (!has_rstst) return -ENOTSUPP; /* Check if hw reset line is asserted */ v = readl_relaxed(reset->prm->base + reset->prm->data->rstctrl); if (v & BIT(id)) return 1; /* * Check reset status, high value means reset sequence has been * completed successfully so we can return 0 here (reset deasserted) */ v = readl_relaxed(reset->prm->base + reset->prm->data->rstst); v >>= st_bit; v &= 1; return !v; } static int omap_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct omap_reset_data *reset = to_omap_reset_data(rcdev); u32 v; unsigned long flags; /* assert the reset control line */ spin_lock_irqsave(&reset->lock, flags); v = readl_relaxed(reset->prm->base + reset->prm->data->rstctrl); v |= 1 << id; writel_relaxed(v, reset->prm->base + reset->prm->data->rstctrl); spin_unlock_irqrestore(&reset->lock, flags); return 0; } static int omap_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct omap_reset_data *reset = to_omap_reset_data(rcdev); u32 v; int st_bit; bool has_rstst; unsigned long flags; struct ti_prm_platform_data *pdata = dev_get_platdata(reset->dev); int ret = 0; /* Nothing to do if the reset is already deasserted */ if (!omap_reset_status(rcdev, id)) return 0; has_rstst = reset->prm->data->rstst || (reset->prm->data->flags & OMAP_PRM_HAS_RSTST); if (has_rstst) { st_bit = omap_reset_get_st_bit(reset, id); /* Clear the reset status by writing 1 to the status bit */ v = 1 << st_bit; writel_relaxed(v, reset->prm->base + reset->prm->data->rstst); } if (reset->clkdm) pdata->clkdm_deny_idle(reset->clkdm); /* de-assert the reset control line */ spin_lock_irqsave(&reset->lock, flags); v = readl_relaxed(reset->prm->base + reset->prm->data->rstctrl); v &= ~(1 << id); writel_relaxed(v, reset->prm->base + reset->prm->data->rstctrl); spin_unlock_irqrestore(&reset->lock, flags); /* wait for the reset bit to clear */ ret = readl_relaxed_poll_timeout_atomic(reset->prm->base + reset->prm->data->rstctrl, v, !(v & BIT(id)), 1, OMAP_RESET_MAX_WAIT); if (ret) pr_err("%s: timedout waiting for %s:%lu\n", __func__, reset->prm->data->name, id); /* wait for the status to be set */ if (has_rstst) { ret = readl_relaxed_poll_timeout_atomic(reset->prm->base + reset->prm->data->rstst, v, v & BIT(st_bit), 1, OMAP_RESET_MAX_WAIT); if (ret) pr_err("%s: timedout waiting for %s:%lu\n", __func__, reset->prm->data->name, id); } if (reset->clkdm) pdata->clkdm_allow_idle(reset->clkdm); return ret; } static const struct reset_control_ops omap_reset_ops = { .assert = omap_reset_assert, .deassert = omap_reset_deassert, .status = omap_reset_status, }; static int omap_prm_reset_xlate(struct reset_controller_dev *rcdev, const struct of_phandle_args *reset_spec) { struct omap_reset_data *reset = to_omap_reset_data(rcdev); if (!_is_valid_reset(reset, reset_spec->args[0])) return -EINVAL; return reset_spec->args[0]; } static int omap_prm_reset_init(struct platform_device *pdev, struct omap_prm *prm) { struct omap_reset_data *reset; const struct omap_rst_map *map; struct ti_prm_platform_data *pdata = dev_get_platdata(&pdev->dev); char buf[32]; u32 v; /* * Check if we have controllable resets. If either rstctrl is non-zero * or OMAP_PRM_HAS_RSTCTRL flag is set, we have reset control register * for the domain. */ if (!prm->data->rstctrl && !(prm->data->flags & OMAP_PRM_HAS_RSTCTRL)) return 0; /* Check if we have the pdata callbacks in place */ if (!pdata || !pdata->clkdm_lookup || !pdata->clkdm_deny_idle || !pdata->clkdm_allow_idle) return -EINVAL; map = prm->data->rstmap; if (!map) return -EINVAL; reset = devm_kzalloc(&pdev->dev, sizeof(*reset), GFP_KERNEL); if (!reset) return -ENOMEM; reset->rcdev.owner = THIS_MODULE; reset->rcdev.ops = &omap_reset_ops; reset->rcdev.of_node = pdev->dev.of_node; reset->rcdev.nr_resets = OMAP_MAX_RESETS; reset->rcdev.of_xlate = omap_prm_reset_xlate; reset->rcdev.of_reset_n_cells = 1; reset->dev = &pdev->dev; spin_lock_init(&reset->lock); reset->prm = prm; sprintf(buf, "%s_clkdm", prm->data->clkdm_name ? prm->data->clkdm_name : prm->data->name); if (!(prm->data->flags & OMAP_PRM_HAS_NO_CLKDM)) { reset->clkdm = pdata->clkdm_lookup(buf); if (!reset->clkdm) return -EINVAL; } while (map->rst >= 0) { reset->mask |= BIT(map->rst); map++; } /* Quirk handling to assert rst_map_012 bits on reset and avoid errors */ if (prm->data->rstmap == rst_map_012) { v = readl_relaxed(reset->prm->base + reset->prm->data->rstctrl); if ((v & reset->mask) != reset->mask) { dev_dbg(&pdev->dev, "Asserting all resets: %08x\n", v); writel_relaxed(reset->mask, reset->prm->base + reset->prm->data->rstctrl); } } return devm_reset_controller_register(&pdev->dev, &reset->rcdev); } static int omap_prm_probe(struct platform_device *pdev) { struct resource *res; const struct omap_prm_data *data; struct omap_prm *prm; int ret; data = of_device_get_match_data(&pdev->dev); if (!data) return -ENOTSUPP; prm = devm_kzalloc(&pdev->dev, sizeof(*prm), GFP_KERNEL); if (!prm) return -ENOMEM; prm->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(prm->base)) return PTR_ERR(prm->base); while (data->base != res->start) { if (!data->base) return -EINVAL; data++; } prm->data = data; ret = omap_prm_domain_init(&pdev->dev, prm); if (ret) return ret; ret = omap_prm_reset_init(pdev, prm); if (ret) goto err_domain; return 0; err_domain: of_genpd_del_provider(pdev->dev.of_node); pm_genpd_remove(&prm->prmd->pd); return ret; } static struct platform_driver omap_prm_driver = { .probe = omap_prm_probe, .driver = { .name = KBUILD_MODNAME, .of_match_table = omap_prm_id_table, }, }; builtin_platform_driver(omap_prm_driver);
linux-master
drivers/pmdomain/ti/omap_prm.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020 TOSHIBA CORPORATION * Copyright (c) 2020 Toshiba Electronic Devices & Storage Corporation * Copyright (c) 2020 Nobuhiro Iwamatsu <[email protected]> */ #include <linux/clk.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/watchdog.h> #define WDT_CNT 0x00 #define WDT_MIN 0x04 #define WDT_MAX 0x08 #define WDT_CTL 0x0c #define WDT_CMD 0x10 #define WDT_CMD_CLEAR 0x4352 #define WDT_CMD_START_STOP 0x5354 #define WDT_DIV 0x30 #define VISCONTI_WDT_FREQ 2000000 /* 2MHz */ #define WDT_DEFAULT_TIMEOUT 10U /* in seconds */ static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, 0); MODULE_PARM_DESC( nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT)")"); struct visconti_wdt_priv { struct watchdog_device wdev; void __iomem *base; u32 div; }; static int visconti_wdt_start(struct watchdog_device *wdev) { struct visconti_wdt_priv *priv = watchdog_get_drvdata(wdev); u32 timeout = wdev->timeout * VISCONTI_WDT_FREQ; writel(priv->div, priv->base + WDT_DIV); writel(0, priv->base + WDT_MIN); writel(timeout, priv->base + WDT_MAX); writel(0, priv->base + WDT_CTL); writel(WDT_CMD_START_STOP, priv->base + WDT_CMD); return 0; } static int visconti_wdt_stop(struct watchdog_device *wdev) { struct visconti_wdt_priv *priv = watchdog_get_drvdata(wdev); writel(1, priv->base + WDT_CTL); writel(WDT_CMD_START_STOP, priv->base + WDT_CMD); return 0; } static int visconti_wdt_ping(struct watchdog_device *wdd) { struct visconti_wdt_priv *priv = watchdog_get_drvdata(wdd); writel(WDT_CMD_CLEAR, priv->base + WDT_CMD); return 0; } static unsigned int visconti_wdt_get_timeleft(struct watchdog_device *wdev) { struct visconti_wdt_priv *priv = watchdog_get_drvdata(wdev); u32 timeout = wdev->timeout * VISCONTI_WDT_FREQ; u32 cnt = readl(priv->base + WDT_CNT); if (timeout <= cnt) return 0; timeout -= cnt; return timeout / VISCONTI_WDT_FREQ; } static int visconti_wdt_set_timeout(struct watchdog_device *wdev, unsigned int timeout) { u32 val; struct visconti_wdt_priv *priv = watchdog_get_drvdata(wdev); wdev->timeout = timeout; val = wdev->timeout * VISCONTI_WDT_FREQ; /* Clear counter before setting timeout because WDT expires */ writel(WDT_CMD_CLEAR, priv->base + WDT_CMD); writel(val, priv->base + WDT_MAX); return 0; } static const struct watchdog_info visconti_wdt_info = { .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING, .identity = "Visconti Watchdog", }; static const struct watchdog_ops visconti_wdt_ops = { .owner = THIS_MODULE, .start = visconti_wdt_start, .stop = visconti_wdt_stop, .ping = visconti_wdt_ping, .get_timeleft = visconti_wdt_get_timeleft, .set_timeout = visconti_wdt_set_timeout, }; static int visconti_wdt_probe(struct platform_device *pdev) { struct watchdog_device *wdev; struct visconti_wdt_priv *priv; struct device *dev = &pdev->dev; struct clk *clk; int ret; unsigned long clk_freq; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(clk)) return dev_err_probe(dev, PTR_ERR(clk), "Could not get clock\n"); clk_freq = clk_get_rate(clk); if (!clk_freq) return -EINVAL; priv->div = clk_freq / VISCONTI_WDT_FREQ; /* Initialize struct watchdog_device. */ wdev = &priv->wdev; wdev->info = &visconti_wdt_info; wdev->ops = &visconti_wdt_ops; wdev->parent = dev; wdev->min_timeout = 1; wdev->max_timeout = 0xffffffff / VISCONTI_WDT_FREQ; wdev->timeout = min(wdev->max_timeout, WDT_DEFAULT_TIMEOUT); watchdog_set_drvdata(wdev, priv); watchdog_set_nowayout(wdev, nowayout); watchdog_stop_on_unregister(wdev); /* This overrides the default timeout only if DT configuration was found */ ret = watchdog_init_timeout(wdev, 0, dev); if (ret) dev_warn(dev, "Specified timeout value invalid, using default\n"); return devm_watchdog_register_device(dev, wdev); } static const struct of_device_id visconti_wdt_of_match[] = { { .compatible = "toshiba,visconti-wdt", }, {} }; MODULE_DEVICE_TABLE(of, visconti_wdt_of_match); static struct platform_driver visconti_wdt_driver = { .driver = { .name = "visconti_wdt", .of_match_table = visconti_wdt_of_match, }, .probe = visconti_wdt_probe, }; module_platform_driver(visconti_wdt_driver); MODULE_DESCRIPTION("TOSHIBA Visconti Watchdog Driver"); MODULE_AUTHOR("Nobuhiro Iwamatsu <[email protected]"); MODULE_LICENSE("GPL v2");
linux-master
drivers/watchdog/visconti_wdt.c
// SPDX-License-Identifier: GPL-2.0-only /* * Kontron PLD watchdog driver * * Copyright (c) 2010-2013 Kontron Europe GmbH * Author: Michael Brunner <[email protected]> * * Note: From the PLD watchdog point of view timeout and pretimeout are * defined differently than in the kernel. * First the pretimeout stage runs out before the timeout stage gets * active. * * Kernel/API: P-----| pretimeout * |-----------------------T timeout * Watchdog: |-----------------P pretimeout_stage * |-----T timeout_stage */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/uaccess.h> #include <linux/watchdog.h> #include <linux/platform_device.h> #include <linux/mfd/kempld.h> #define KEMPLD_WDT_STAGE_TIMEOUT(x) (0x1b + (x) * 4) #define KEMPLD_WDT_STAGE_CFG(x) (0x18 + (x)) #define STAGE_CFG_GET_PRESCALER(x) (((x) & 0x30) >> 4) #define STAGE_CFG_SET_PRESCALER(x) (((x) & 0x3) << 4) #define STAGE_CFG_PRESCALER_MASK 0x30 #define STAGE_CFG_ACTION_MASK 0x7 #define STAGE_CFG_ASSERT (1 << 3) #define KEMPLD_WDT_MAX_STAGES 2 #define KEMPLD_WDT_KICK 0x16 #define KEMPLD_WDT_CFG 0x17 #define KEMPLD_WDT_CFG_ENABLE 0x10 #define KEMPLD_WDT_CFG_ENABLE_LOCK 0x8 #define KEMPLD_WDT_CFG_GLOBAL_LOCK 0x80 enum { ACTION_NONE = 0, ACTION_RESET, ACTION_NMI, ACTION_SMI, ACTION_SCI, ACTION_DELAY, }; enum { STAGE_TIMEOUT = 0, STAGE_PRETIMEOUT, }; enum { PRESCALER_21 = 0, PRESCALER_17, PRESCALER_12, }; static const u32 kempld_prescaler[] = { [PRESCALER_21] = (1 << 21) - 1, [PRESCALER_17] = (1 << 17) - 1, [PRESCALER_12] = (1 << 12) - 1, 0, }; struct kempld_wdt_stage { unsigned int id; u32 mask; }; struct kempld_wdt_data { struct kempld_device_data *pld; struct watchdog_device wdd; unsigned int pretimeout; struct kempld_wdt_stage stage[KEMPLD_WDT_MAX_STAGES]; u8 pm_status_store; }; #define DEFAULT_TIMEOUT 30 /* seconds */ #define DEFAULT_PRETIMEOUT 0 static unsigned int timeout = DEFAULT_TIMEOUT; module_param(timeout, uint, 0); MODULE_PARM_DESC(timeout, "Watchdog timeout in seconds. (>=0, default=" __MODULE_STRING(DEFAULT_TIMEOUT) ")"); static unsigned int pretimeout = DEFAULT_PRETIMEOUT; module_param(pretimeout, uint, 0); MODULE_PARM_DESC(pretimeout, "Watchdog pretimeout in seconds. (>=0, default=" __MODULE_STRING(DEFAULT_PRETIMEOUT) ")"); static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, 0); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); static int kempld_wdt_set_stage_action(struct kempld_wdt_data *wdt_data, struct kempld_wdt_stage *stage, u8 action) { struct kempld_device_data *pld = wdt_data->pld; u8 stage_cfg; if (!stage || !stage->mask) return -EINVAL; kempld_get_mutex(pld); stage_cfg = kempld_read8(pld, KEMPLD_WDT_STAGE_CFG(stage->id)); stage_cfg &= ~STAGE_CFG_ACTION_MASK; stage_cfg |= (action & STAGE_CFG_ACTION_MASK); if (action == ACTION_RESET) stage_cfg |= STAGE_CFG_ASSERT; else stage_cfg &= ~STAGE_CFG_ASSERT; kempld_write8(pld, KEMPLD_WDT_STAGE_CFG(stage->id), stage_cfg); kempld_release_mutex(pld); return 0; } static int kempld_wdt_set_stage_timeout(struct kempld_wdt_data *wdt_data, struct kempld_wdt_stage *stage, unsigned int timeout) { struct kempld_device_data *pld = wdt_data->pld; u32 prescaler; u64 stage_timeout64; u32 stage_timeout; u32 remainder; u8 stage_cfg; prescaler = kempld_prescaler[PRESCALER_21]; if (!stage) return -EINVAL; stage_timeout64 = (u64)timeout * pld->pld_clock; remainder = do_div(stage_timeout64, prescaler); if (remainder) stage_timeout64++; if (stage_timeout64 > stage->mask) return -EINVAL; stage_timeout = stage_timeout64 & stage->mask; kempld_get_mutex(pld); stage_cfg = kempld_read8(pld, KEMPLD_WDT_STAGE_CFG(stage->id)); stage_cfg &= ~STAGE_CFG_PRESCALER_MASK; stage_cfg |= STAGE_CFG_SET_PRESCALER(PRESCALER_21); kempld_write8(pld, KEMPLD_WDT_STAGE_CFG(stage->id), stage_cfg); kempld_write32(pld, KEMPLD_WDT_STAGE_TIMEOUT(stage->id), stage_timeout); kempld_release_mutex(pld); return 0; } /* * kempld_get_mutex must be called prior to calling this function. */ static unsigned int kempld_wdt_get_timeout(struct kempld_wdt_data *wdt_data, struct kempld_wdt_stage *stage) { struct kempld_device_data *pld = wdt_data->pld; unsigned int timeout; u64 stage_timeout; u32 prescaler; u32 remainder; u8 stage_cfg; if (!stage->mask) return 0; stage_cfg = kempld_read8(pld, KEMPLD_WDT_STAGE_CFG(stage->id)); stage_timeout = kempld_read32(pld, KEMPLD_WDT_STAGE_TIMEOUT(stage->id)); prescaler = kempld_prescaler[STAGE_CFG_GET_PRESCALER(stage_cfg)]; stage_timeout = (stage_timeout & stage->mask) * prescaler; remainder = do_div(stage_timeout, pld->pld_clock); if (remainder) stage_timeout++; timeout = stage_timeout; WARN_ON_ONCE(timeout != stage_timeout); return timeout; } static int kempld_wdt_set_timeout(struct watchdog_device *wdd, unsigned int timeout) { struct kempld_wdt_data *wdt_data = watchdog_get_drvdata(wdd); struct kempld_wdt_stage *pretimeout_stage; struct kempld_wdt_stage *timeout_stage; int ret; timeout_stage = &wdt_data->stage[STAGE_TIMEOUT]; pretimeout_stage = &wdt_data->stage[STAGE_PRETIMEOUT]; if (pretimeout_stage->mask && wdt_data->pretimeout > 0) timeout = wdt_data->pretimeout; ret = kempld_wdt_set_stage_action(wdt_data, timeout_stage, ACTION_RESET); if (ret) return ret; ret = kempld_wdt_set_stage_timeout(wdt_data, timeout_stage, timeout); if (ret) return ret; wdd->timeout = timeout; return 0; } static int kempld_wdt_set_pretimeout(struct watchdog_device *wdd, unsigned int pretimeout) { struct kempld_wdt_data *wdt_data = watchdog_get_drvdata(wdd); struct kempld_wdt_stage *pretimeout_stage; u8 action = ACTION_NONE; int ret; pretimeout_stage = &wdt_data->stage[STAGE_PRETIMEOUT]; if (!pretimeout_stage->mask) return -ENXIO; if (pretimeout > wdd->timeout) return -EINVAL; if (pretimeout > 0) action = ACTION_NMI; ret = kempld_wdt_set_stage_action(wdt_data, pretimeout_stage, action); if (ret) return ret; ret = kempld_wdt_set_stage_timeout(wdt_data, pretimeout_stage, wdd->timeout - pretimeout); if (ret) return ret; wdt_data->pretimeout = pretimeout; return 0; } static void kempld_wdt_update_timeouts(struct kempld_wdt_data *wdt_data) { struct kempld_device_data *pld = wdt_data->pld; struct kempld_wdt_stage *pretimeout_stage; struct kempld_wdt_stage *timeout_stage; unsigned int pretimeout, timeout; pretimeout_stage = &wdt_data->stage[STAGE_PRETIMEOUT]; timeout_stage = &wdt_data->stage[STAGE_TIMEOUT]; kempld_get_mutex(pld); pretimeout = kempld_wdt_get_timeout(wdt_data, pretimeout_stage); timeout = kempld_wdt_get_timeout(wdt_data, timeout_stage); kempld_release_mutex(pld); if (pretimeout) wdt_data->pretimeout = timeout; else wdt_data->pretimeout = 0; wdt_data->wdd.timeout = pretimeout + timeout; } static int kempld_wdt_start(struct watchdog_device *wdd) { struct kempld_wdt_data *wdt_data = watchdog_get_drvdata(wdd); struct kempld_device_data *pld = wdt_data->pld; u8 status; int ret; ret = kempld_wdt_set_timeout(wdd, wdd->timeout); if (ret) return ret; kempld_get_mutex(pld); status = kempld_read8(pld, KEMPLD_WDT_CFG); status |= KEMPLD_WDT_CFG_ENABLE; kempld_write8(pld, KEMPLD_WDT_CFG, status); status = kempld_read8(pld, KEMPLD_WDT_CFG); kempld_release_mutex(pld); /* Check if the watchdog was enabled */ if (!(status & KEMPLD_WDT_CFG_ENABLE)) return -EACCES; return 0; } static int kempld_wdt_stop(struct watchdog_device *wdd) { struct kempld_wdt_data *wdt_data = watchdog_get_drvdata(wdd); struct kempld_device_data *pld = wdt_data->pld; u8 status; kempld_get_mutex(pld); status = kempld_read8(pld, KEMPLD_WDT_CFG); status &= ~KEMPLD_WDT_CFG_ENABLE; kempld_write8(pld, KEMPLD_WDT_CFG, status); status = kempld_read8(pld, KEMPLD_WDT_CFG); kempld_release_mutex(pld); /* Check if the watchdog was disabled */ if (status & KEMPLD_WDT_CFG_ENABLE) return -EACCES; return 0; } static int kempld_wdt_keepalive(struct watchdog_device *wdd) { struct kempld_wdt_data *wdt_data = watchdog_get_drvdata(wdd); struct kempld_device_data *pld = wdt_data->pld; kempld_get_mutex(pld); kempld_write8(pld, KEMPLD_WDT_KICK, 'K'); kempld_release_mutex(pld); return 0; } static long kempld_wdt_ioctl(struct watchdog_device *wdd, unsigned int cmd, unsigned long arg) { struct kempld_wdt_data *wdt_data = watchdog_get_drvdata(wdd); void __user *argp = (void __user *)arg; int ret = -ENOIOCTLCMD; int __user *p = argp; int new_value; switch (cmd) { case WDIOC_SETPRETIMEOUT: if (get_user(new_value, p)) return -EFAULT; ret = kempld_wdt_set_pretimeout(wdd, new_value); if (ret) return ret; ret = kempld_wdt_keepalive(wdd); break; case WDIOC_GETPRETIMEOUT: ret = put_user(wdt_data->pretimeout, (int __user *)arg); break; } return ret; } static int kempld_wdt_probe_stages(struct watchdog_device *wdd) { struct kempld_wdt_data *wdt_data = watchdog_get_drvdata(wdd); struct kempld_device_data *pld = wdt_data->pld; struct kempld_wdt_stage *pretimeout_stage; struct kempld_wdt_stage *timeout_stage; u8 index, data, data_orig; u32 mask; int i, j; pretimeout_stage = &wdt_data->stage[STAGE_PRETIMEOUT]; timeout_stage = &wdt_data->stage[STAGE_TIMEOUT]; pretimeout_stage->mask = 0; timeout_stage->mask = 0; for (i = 0; i < 3; i++) { index = KEMPLD_WDT_STAGE_TIMEOUT(i); mask = 0; kempld_get_mutex(pld); /* Probe each byte individually. */ for (j = 0; j < 4; j++) { data_orig = kempld_read8(pld, index + j); kempld_write8(pld, index + j, 0x00); data = kempld_read8(pld, index + j); /* A failed write means this byte is reserved */ if (data != 0x00) break; kempld_write8(pld, index + j, data_orig); mask |= 0xff << (j * 8); } kempld_release_mutex(pld); /* Assign available stages to timeout and pretimeout */ if (!timeout_stage->mask) { timeout_stage->mask = mask; timeout_stage->id = i; } else { if (pld->feature_mask & KEMPLD_FEATURE_BIT_NMI) { pretimeout_stage->mask = timeout_stage->mask; timeout_stage->mask = mask; pretimeout_stage->id = timeout_stage->id; timeout_stage->id = i; } break; } } if (!timeout_stage->mask) return -ENODEV; return 0; } static const struct watchdog_info kempld_wdt_info = { .identity = "KEMPLD Watchdog", .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE | WDIOF_PRETIMEOUT }; static const struct watchdog_ops kempld_wdt_ops = { .owner = THIS_MODULE, .start = kempld_wdt_start, .stop = kempld_wdt_stop, .ping = kempld_wdt_keepalive, .set_timeout = kempld_wdt_set_timeout, .ioctl = kempld_wdt_ioctl, }; static int kempld_wdt_probe(struct platform_device *pdev) { struct kempld_device_data *pld = dev_get_drvdata(pdev->dev.parent); struct kempld_wdt_data *wdt_data; struct device *dev = &pdev->dev; struct watchdog_device *wdd; u8 status; int ret = 0; wdt_data = devm_kzalloc(dev, sizeof(*wdt_data), GFP_KERNEL); if (!wdt_data) return -ENOMEM; wdt_data->pld = pld; wdd = &wdt_data->wdd; wdd->parent = dev; kempld_get_mutex(pld); status = kempld_read8(pld, KEMPLD_WDT_CFG); kempld_release_mutex(pld); /* Enable nowayout if watchdog is already locked */ if (status & (KEMPLD_WDT_CFG_ENABLE_LOCK | KEMPLD_WDT_CFG_GLOBAL_LOCK)) { if (!nowayout) dev_warn(dev, "Forcing nowayout - watchdog lock enabled!\n"); nowayout = true; } wdd->info = &kempld_wdt_info; wdd->ops = &kempld_wdt_ops; watchdog_set_drvdata(wdd, wdt_data); watchdog_set_nowayout(wdd, nowayout); ret = kempld_wdt_probe_stages(wdd); if (ret) return ret; kempld_wdt_set_timeout(wdd, timeout); kempld_wdt_set_pretimeout(wdd, pretimeout); /* Check if watchdog is already enabled */ if (status & KEMPLD_WDT_CFG_ENABLE) { /* Get current watchdog settings */ kempld_wdt_update_timeouts(wdt_data); dev_info(dev, "Watchdog was already enabled\n"); } platform_set_drvdata(pdev, wdt_data); watchdog_stop_on_reboot(wdd); watchdog_stop_on_unregister(wdd); ret = devm_watchdog_register_device(dev, wdd); if (ret) return ret; dev_info(dev, "Watchdog registered with %ds timeout\n", wdd->timeout); return 0; } /* Disable watchdog if it is active during suspend */ static int kempld_wdt_suspend(struct platform_device *pdev, pm_message_t message) { struct kempld_wdt_data *wdt_data = platform_get_drvdata(pdev); struct kempld_device_data *pld = wdt_data->pld; struct watchdog_device *wdd = &wdt_data->wdd; kempld_get_mutex(pld); wdt_data->pm_status_store = kempld_read8(pld, KEMPLD_WDT_CFG); kempld_release_mutex(pld); kempld_wdt_update_timeouts(wdt_data); if (wdt_data->pm_status_store & KEMPLD_WDT_CFG_ENABLE) return kempld_wdt_stop(wdd); return 0; } /* Enable watchdog and configure it if necessary */ static int kempld_wdt_resume(struct platform_device *pdev) { struct kempld_wdt_data *wdt_data = platform_get_drvdata(pdev); struct watchdog_device *wdd = &wdt_data->wdd; /* * If watchdog was stopped before suspend be sure it gets disabled * again, for the case BIOS has enabled it during resume */ if (wdt_data->pm_status_store & KEMPLD_WDT_CFG_ENABLE) return kempld_wdt_start(wdd); else return kempld_wdt_stop(wdd); } static struct platform_driver kempld_wdt_driver = { .driver = { .name = "kempld-wdt", }, .probe = kempld_wdt_probe, .suspend = pm_ptr(kempld_wdt_suspend), .resume = pm_ptr(kempld_wdt_resume), }; module_platform_driver(kempld_wdt_driver); MODULE_DESCRIPTION("KEM PLD Watchdog Driver"); MODULE_AUTHOR("Michael Brunner <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/watchdog/kempld_wdt.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Watchdog driver for Alphascale ASM9260. * * Copyright (c) 2014 Oleksij Rempel <[email protected]> */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/watchdog.h> #define CLOCK_FREQ 1000000 /* Watchdog Mode register */ #define HW_WDMOD 0x00 /* Wake interrupt. Set by HW, can't be cleared. */ #define BM_MOD_WDINT BIT(3) /* This bit set if timeout reached. Cleared by SW. */ #define BM_MOD_WDTOF BIT(2) /* HW Reset on timeout */ #define BM_MOD_WDRESET BIT(1) /* WD enable */ #define BM_MOD_WDEN BIT(0) /* * Watchdog Timer Constant register * Minimal value is 0xff, the meaning of this value * depends on used clock: T = WDCLK * (0xff + 1) * 4 */ #define HW_WDTC 0x04 #define BM_WDTC_MAX(freq) (0x7fffffff / (freq)) /* Watchdog Feed register */ #define HW_WDFEED 0x08 /* Watchdog Timer Value register */ #define HW_WDTV 0x0c #define ASM9260_WDT_DEFAULT_TIMEOUT 30 enum asm9260_wdt_mode { HW_RESET, SW_RESET, DEBUG, }; struct asm9260_wdt_priv { struct device *dev; struct watchdog_device wdd; struct clk *clk; struct clk *clk_ahb; struct reset_control *rst; void __iomem *iobase; int irq; unsigned long wdt_freq; enum asm9260_wdt_mode mode; }; static int asm9260_wdt_feed(struct watchdog_device *wdd) { struct asm9260_wdt_priv *priv = watchdog_get_drvdata(wdd); iowrite32(0xaa, priv->iobase + HW_WDFEED); iowrite32(0x55, priv->iobase + HW_WDFEED); return 0; } static unsigned int asm9260_wdt_gettimeleft(struct watchdog_device *wdd) { struct asm9260_wdt_priv *priv = watchdog_get_drvdata(wdd); u32 counter; counter = ioread32(priv->iobase + HW_WDTV); return counter / priv->wdt_freq; } static int asm9260_wdt_updatetimeout(struct watchdog_device *wdd) { struct asm9260_wdt_priv *priv = watchdog_get_drvdata(wdd); u32 counter; counter = wdd->timeout * priv->wdt_freq; iowrite32(counter, priv->iobase + HW_WDTC); return 0; } static int asm9260_wdt_enable(struct watchdog_device *wdd) { struct asm9260_wdt_priv *priv = watchdog_get_drvdata(wdd); u32 mode = 0; if (priv->mode == HW_RESET) mode = BM_MOD_WDRESET; iowrite32(BM_MOD_WDEN | mode, priv->iobase + HW_WDMOD); asm9260_wdt_updatetimeout(wdd); asm9260_wdt_feed(wdd); return 0; } static int asm9260_wdt_disable(struct watchdog_device *wdd) { struct asm9260_wdt_priv *priv = watchdog_get_drvdata(wdd); /* The only way to disable WD is to reset it. */ reset_control_assert(priv->rst); reset_control_deassert(priv->rst); return 0; } static int asm9260_wdt_settimeout(struct watchdog_device *wdd, unsigned int to) { wdd->timeout = to; asm9260_wdt_updatetimeout(wdd); return 0; } static void asm9260_wdt_sys_reset(struct asm9260_wdt_priv *priv) { /* init WD if it was not started */ iowrite32(BM_MOD_WDEN | BM_MOD_WDRESET, priv->iobase + HW_WDMOD); iowrite32(0xff, priv->iobase + HW_WDTC); /* first pass correct sequence */ asm9260_wdt_feed(&priv->wdd); /* * Then write wrong pattern to the feed to trigger reset * ASAP. */ iowrite32(0xff, priv->iobase + HW_WDFEED); mdelay(1000); } static irqreturn_t asm9260_wdt_irq(int irq, void *devid) { struct asm9260_wdt_priv *priv = devid; u32 stat; stat = ioread32(priv->iobase + HW_WDMOD); if (!(stat & BM_MOD_WDINT)) return IRQ_NONE; if (priv->mode == DEBUG) { dev_info(priv->dev, "Watchdog Timeout. Do nothing.\n"); } else { dev_info(priv->dev, "Watchdog Timeout. Doing SW Reset.\n"); asm9260_wdt_sys_reset(priv); } return IRQ_HANDLED; } static int asm9260_restart(struct watchdog_device *wdd, unsigned long action, void *data) { struct asm9260_wdt_priv *priv = watchdog_get_drvdata(wdd); asm9260_wdt_sys_reset(priv); return 0; } static const struct watchdog_info asm9260_wdt_ident = { .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE, .identity = "Alphascale asm9260 Watchdog", }; static const struct watchdog_ops asm9260_wdt_ops = { .owner = THIS_MODULE, .start = asm9260_wdt_enable, .stop = asm9260_wdt_disable, .get_timeleft = asm9260_wdt_gettimeleft, .ping = asm9260_wdt_feed, .set_timeout = asm9260_wdt_settimeout, .restart = asm9260_restart, }; static void asm9260_clk_disable_unprepare(void *data) { clk_disable_unprepare(data); } static int asm9260_wdt_get_dt_clks(struct asm9260_wdt_priv *priv) { int err; unsigned long clk; priv->clk = devm_clk_get(priv->dev, "mod"); if (IS_ERR(priv->clk)) { dev_err(priv->dev, "Failed to get \"mod\" clk\n"); return PTR_ERR(priv->clk); } /* configure AHB clock */ priv->clk_ahb = devm_clk_get(priv->dev, "ahb"); if (IS_ERR(priv->clk_ahb)) { dev_err(priv->dev, "Failed to get \"ahb\" clk\n"); return PTR_ERR(priv->clk_ahb); } err = clk_prepare_enable(priv->clk_ahb); if (err) { dev_err(priv->dev, "Failed to enable ahb_clk!\n"); return err; } err = devm_add_action_or_reset(priv->dev, asm9260_clk_disable_unprepare, priv->clk_ahb); if (err) return err; err = clk_set_rate(priv->clk, CLOCK_FREQ); if (err) { dev_err(priv->dev, "Failed to set rate!\n"); return err; } err = clk_prepare_enable(priv->clk); if (err) { dev_err(priv->dev, "Failed to enable clk!\n"); return err; } err = devm_add_action_or_reset(priv->dev, asm9260_clk_disable_unprepare, priv->clk); if (err) return err; /* wdt has internal divider */ clk = clk_get_rate(priv->clk); if (!clk) { dev_err(priv->dev, "Failed, clk is 0!\n"); return -EINVAL; } priv->wdt_freq = clk / 2; return 0; } static void asm9260_wdt_get_dt_mode(struct asm9260_wdt_priv *priv) { const char *tmp; int ret; /* default mode */ priv->mode = HW_RESET; ret = of_property_read_string(priv->dev->of_node, "alphascale,mode", &tmp); if (ret < 0) return; if (!strcmp(tmp, "hw")) priv->mode = HW_RESET; else if (!strcmp(tmp, "sw")) priv->mode = SW_RESET; else if (!strcmp(tmp, "debug")) priv->mode = DEBUG; else dev_warn(priv->dev, "unknown reset-type: %s. Using default \"hw\" mode.", tmp); } static int asm9260_wdt_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct asm9260_wdt_priv *priv; struct watchdog_device *wdd; int ret; static const char * const mode_name[] = { "hw", "sw", "debug", }; priv = devm_kzalloc(dev, sizeof(struct asm9260_wdt_priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->iobase = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->iobase)) return PTR_ERR(priv->iobase); priv->rst = devm_reset_control_get_exclusive(dev, "wdt_rst"); if (IS_ERR(priv->rst)) return PTR_ERR(priv->rst); ret = asm9260_wdt_get_dt_clks(priv); if (ret) return ret; wdd = &priv->wdd; wdd->info = &asm9260_wdt_ident; wdd->ops = &asm9260_wdt_ops; wdd->min_timeout = 1; wdd->max_timeout = BM_WDTC_MAX(priv->wdt_freq); wdd->parent = dev; watchdog_set_drvdata(wdd, priv); /* * If 'timeout-sec' unspecified in devicetree, assume a 30 second * default, unless the max timeout is less than 30 seconds, then use * the max instead. */ wdd->timeout = ASM9260_WDT_DEFAULT_TIMEOUT; watchdog_init_timeout(wdd, 0, dev); asm9260_wdt_get_dt_mode(priv); if (priv->mode != HW_RESET) priv->irq = platform_get_irq(pdev, 0); if (priv->irq > 0) { /* * Not all supported platforms specify an interrupt for the * watchdog, so let's make it optional. */ ret = devm_request_irq(dev, priv->irq, asm9260_wdt_irq, 0, pdev->name, priv); if (ret < 0) dev_warn(dev, "failed to request IRQ\n"); } watchdog_set_restart_priority(wdd, 128); watchdog_stop_on_reboot(wdd); watchdog_stop_on_unregister(wdd); ret = devm_watchdog_register_device(dev, wdd); if (ret) return ret; platform_set_drvdata(pdev, priv); dev_info(dev, "Watchdog enabled (timeout: %d sec, mode: %s)\n", wdd->timeout, mode_name[priv->mode]); return 0; } static const struct of_device_id asm9260_wdt_of_match[] = { { .compatible = "alphascale,asm9260-wdt"}, {}, }; MODULE_DEVICE_TABLE(of, asm9260_wdt_of_match); static struct platform_driver asm9260_wdt_driver = { .driver = { .name = "asm9260-wdt", .of_match_table = asm9260_wdt_of_match, }, .probe = asm9260_wdt_probe, }; module_platform_driver(asm9260_wdt_driver); MODULE_DESCRIPTION("asm9260 WatchDog Timer Driver"); MODULE_AUTHOR("Oleksij Rempel <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/watchdog/asm9260_wdt.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IT8712F "Smart Guardian" Watchdog support * * Copyright (c) 2006-2007 Jorge Boncompte - DTI2 <[email protected]> * * Based on info and code taken from: * * drivers/char/watchdog/scx200_wdt.c * drivers/hwmon/it87.c * IT8712F EC-LPC I/O Preliminary Specification 0.8.2 * IT8712F EC-LPC I/O Preliminary Specification 0.9.3 * * The author(s) of this software shall not be held liable for damages * of any nature resulting due to the use of this software. This * software is provided AS-IS with no warranties. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/miscdevice.h> #include <linux/watchdog.h> #include <linux/notifier.h> #include <linux/reboot.h> #include <linux/fs.h> #include <linux/spinlock.h> #include <linux/uaccess.h> #include <linux/io.h> #include <linux/ioport.h> #define NAME "it8712f_wdt" MODULE_AUTHOR("Jorge Boncompte - DTI2 <[email protected]>"); MODULE_DESCRIPTION("IT8712F Watchdog Driver"); MODULE_LICENSE("GPL"); static int max_units = 255; static int margin = 60; /* in seconds */ module_param(margin, int, 0); MODULE_PARM_DESC(margin, "Watchdog margin in seconds"); static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, 0); MODULE_PARM_DESC(nowayout, "Disable watchdog shutdown on close"); static unsigned long wdt_open; static unsigned expect_close; static unsigned char revision; /* Dog Food address - We use the game port address */ static unsigned short address; #define REG 0x2e /* The register to read/write */ #define VAL 0x2f /* The value to read/write */ #define LDN 0x07 /* Register: Logical device select */ #define DEVID 0x20 /* Register: Device ID */ #define DEVREV 0x22 /* Register: Device Revision */ #define ACT_REG 0x30 /* LDN Register: Activation */ #define BASE_REG 0x60 /* LDN Register: Base address */ #define IT8712F_DEVID 0x8712 #define LDN_GPIO 0x07 /* GPIO and Watch Dog Timer */ #define LDN_GAME 0x09 /* Game Port */ #define WDT_CONTROL 0x71 /* WDT Register: Control */ #define WDT_CONFIG 0x72 /* WDT Register: Configuration */ #define WDT_TIMEOUT 0x73 /* WDT Register: Timeout Value */ #define WDT_RESET_GAME 0x10 /* Reset timer on read or write to game port */ #define WDT_RESET_KBD 0x20 /* Reset timer on keyboard interrupt */ #define WDT_RESET_MOUSE 0x40 /* Reset timer on mouse interrupt */ #define WDT_RESET_CIR 0x80 /* Reset timer on consumer IR interrupt */ #define WDT_UNIT_SEC 0x80 /* If 0 in MINUTES */ #define WDT_OUT_PWROK 0x10 /* Pulse PWROK on timeout */ #define WDT_OUT_KRST 0x40 /* Pulse reset on timeout */ static int wdt_control_reg = WDT_RESET_GAME; module_param(wdt_control_reg, int, 0); MODULE_PARM_DESC(wdt_control_reg, "Value to write to watchdog control " "register. The default WDT_RESET_GAME resets the timer on " "game port reads that this driver generates. You can also " "use KBD, MOUSE or CIR if you have some external way to " "generate those interrupts."); static int superio_inb(int reg) { outb(reg, REG); return inb(VAL); } static void superio_outb(int val, int reg) { outb(reg, REG); outb(val, VAL); } static int superio_inw(int reg) { int val; outb(reg++, REG); val = inb(VAL) << 8; outb(reg, REG); val |= inb(VAL); return val; } static inline void superio_select(int ldn) { outb(LDN, REG); outb(ldn, VAL); } static inline int superio_enter(void) { /* * Try to reserve REG and REG + 1 for exclusive access. */ if (!request_muxed_region(REG, 2, NAME)) return -EBUSY; outb(0x87, REG); outb(0x01, REG); outb(0x55, REG); outb(0x55, REG); return 0; } static inline void superio_exit(void) { outb(0x02, REG); outb(0x02, VAL); release_region(REG, 2); } static inline void it8712f_wdt_ping(void) { if (wdt_control_reg & WDT_RESET_GAME) inb(address); } static void it8712f_wdt_update_margin(void) { int config = WDT_OUT_KRST | WDT_OUT_PWROK; int units = margin; /* Switch to minutes precision if the configured margin * value does not fit within the register width. */ if (units <= max_units) { config |= WDT_UNIT_SEC; /* else UNIT is MINUTES */ pr_info("timer margin %d seconds\n", units); } else { units /= 60; pr_info("timer margin %d minutes\n", units); } superio_outb(config, WDT_CONFIG); if (revision >= 0x08) superio_outb(units >> 8, WDT_TIMEOUT + 1); superio_outb(units, WDT_TIMEOUT); } static int it8712f_wdt_get_status(void) { if (superio_inb(WDT_CONTROL) & 0x01) return WDIOF_CARDRESET; else return 0; } static int it8712f_wdt_enable(void) { int ret = superio_enter(); if (ret) return ret; pr_debug("enabling watchdog timer\n"); superio_select(LDN_GPIO); superio_outb(wdt_control_reg, WDT_CONTROL); it8712f_wdt_update_margin(); superio_exit(); it8712f_wdt_ping(); return 0; } static int it8712f_wdt_disable(void) { int ret = superio_enter(); if (ret) return ret; pr_debug("disabling watchdog timer\n"); superio_select(LDN_GPIO); superio_outb(0, WDT_CONFIG); superio_outb(0, WDT_CONTROL); if (revision >= 0x08) superio_outb(0, WDT_TIMEOUT + 1); superio_outb(0, WDT_TIMEOUT); superio_exit(); return 0; } static int it8712f_wdt_notify(struct notifier_block *this, unsigned long code, void *unused) { if (code == SYS_HALT || code == SYS_POWER_OFF) if (!nowayout) it8712f_wdt_disable(); return NOTIFY_DONE; } static struct notifier_block it8712f_wdt_notifier = { .notifier_call = it8712f_wdt_notify, }; static ssize_t it8712f_wdt_write(struct file *file, const char __user *data, size_t len, loff_t *ppos) { /* check for a magic close character */ if (len) { size_t i; it8712f_wdt_ping(); expect_close = 0; for (i = 0; i < len; ++i) { char c; if (get_user(c, data + i)) return -EFAULT; if (c == 'V') expect_close = 42; } } return len; } static long it8712f_wdt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; int __user *p = argp; static const struct watchdog_info ident = { .identity = "IT8712F Watchdog", .firmware_version = 1, .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE, }; int value; int ret; switch (cmd) { case WDIOC_GETSUPPORT: if (copy_to_user(argp, &ident, sizeof(ident))) return -EFAULT; return 0; case WDIOC_GETSTATUS: ret = superio_enter(); if (ret) return ret; superio_select(LDN_GPIO); value = it8712f_wdt_get_status(); superio_exit(); return put_user(value, p); case WDIOC_GETBOOTSTATUS: return put_user(0, p); case WDIOC_KEEPALIVE: it8712f_wdt_ping(); return 0; case WDIOC_SETTIMEOUT: if (get_user(value, p)) return -EFAULT; if (value < 1) return -EINVAL; if (value > (max_units * 60)) return -EINVAL; margin = value; ret = superio_enter(); if (ret) return ret; superio_select(LDN_GPIO); it8712f_wdt_update_margin(); superio_exit(); it8712f_wdt_ping(); fallthrough; case WDIOC_GETTIMEOUT: if (put_user(margin, p)) return -EFAULT; return 0; default: return -ENOTTY; } } static int it8712f_wdt_open(struct inode *inode, struct file *file) { int ret; /* only allow one at a time */ if (test_and_set_bit(0, &wdt_open)) return -EBUSY; ret = it8712f_wdt_enable(); if (ret) return ret; return stream_open(inode, file); } static int it8712f_wdt_release(struct inode *inode, struct file *file) { if (expect_close != 42) { pr_warn("watchdog device closed unexpectedly, will not disable the watchdog timer\n"); } else if (!nowayout) { if (it8712f_wdt_disable()) pr_warn("Watchdog disable failed\n"); } expect_close = 0; clear_bit(0, &wdt_open); return 0; } static const struct file_operations it8712f_wdt_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .write = it8712f_wdt_write, .unlocked_ioctl = it8712f_wdt_ioctl, .compat_ioctl = compat_ptr_ioctl, .open = it8712f_wdt_open, .release = it8712f_wdt_release, }; static struct miscdevice it8712f_wdt_miscdev = { .minor = WATCHDOG_MINOR, .name = "watchdog", .fops = &it8712f_wdt_fops, }; static int __init it8712f_wdt_find(unsigned short *address) { int err = -ENODEV; int chip_type; int ret = superio_enter(); if (ret) return ret; chip_type = superio_inw(DEVID); if (chip_type != IT8712F_DEVID) goto exit; superio_select(LDN_GAME); superio_outb(1, ACT_REG); if (!(superio_inb(ACT_REG) & 0x01)) { pr_err("Device not activated, skipping\n"); goto exit; } *address = superio_inw(BASE_REG); if (*address == 0) { pr_err("Base address not set, skipping\n"); goto exit; } err = 0; revision = superio_inb(DEVREV) & 0x0f; /* Later revisions have 16-bit values per datasheet 0.9.1 */ if (revision >= 0x08) max_units = 65535; if (margin > (max_units * 60)) margin = (max_units * 60); pr_info("Found IT%04xF chip revision %d - using DogFood address 0x%x\n", chip_type, revision, *address); exit: superio_exit(); return err; } static int __init it8712f_wdt_init(void) { int err = 0; if (it8712f_wdt_find(&address)) return -ENODEV; if (!request_region(address, 1, "IT8712F Watchdog")) { pr_warn("watchdog I/O region busy\n"); return -EBUSY; } err = it8712f_wdt_disable(); if (err) { pr_err("unable to disable watchdog timer\n"); goto out; } err = register_reboot_notifier(&it8712f_wdt_notifier); if (err) { pr_err("unable to register reboot notifier\n"); goto out; } err = misc_register(&it8712f_wdt_miscdev); if (err) { pr_err("cannot register miscdev on minor=%d (err=%d)\n", WATCHDOG_MINOR, err); goto reboot_out; } return 0; reboot_out: unregister_reboot_notifier(&it8712f_wdt_notifier); out: release_region(address, 1); return err; } static void __exit it8712f_wdt_exit(void) { misc_deregister(&it8712f_wdt_miscdev); unregister_reboot_notifier(&it8712f_wdt_notifier); release_region(address, 1); } module_init(it8712f_wdt_init); module_exit(it8712f_wdt_exit);
linux-master
drivers/watchdog/it8712f_wdt.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Watchdog timer for PowerPC Book-E systems * * Author: Matthew McClintock * Maintainer: Kumar Gala <[email protected]> * * Copyright 2005, 2008, 2010-2011 Freescale Semiconductor Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/smp.h> #include <linux/watchdog.h> #include <asm/reg_booke.h> #include <asm/time.h> #include <asm/div64.h> /* If the kernel parameter wdt=1, the watchdog will be enabled at boot. * Also, the wdt_period sets the watchdog timer period timeout. * For E500 cpus the wdt_period sets which bit changing from 0->1 will * trigger a watchdog timeout. This watchdog timeout will occur 3 times, the * first time nothing will happen, the second time a watchdog exception will * occur, and the final time the board will reset. */ #ifdef CONFIG_PPC_E500 #define WDTP(x) ((((x)&0x3)<<30)|(((x)&0x3c)<<15)) #define WDTP_MASK (WDTP(0x3f)) #else #define WDTP(x) (TCR_WP(x)) #define WDTP_MASK (TCR_WP_MASK) #endif static bool booke_wdt_enabled; module_param(booke_wdt_enabled, bool, 0); static int booke_wdt_period = CONFIG_BOOKE_WDT_DEFAULT_TIMEOUT; module_param(booke_wdt_period, int, 0); static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, 0); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); #ifdef CONFIG_PPC_E500 /* For the specified period, determine the number of seconds * corresponding to the reset time. There will be a watchdog * exception at approximately 3/5 of this time. * * The formula to calculate this is given by: * 2.5 * (2^(63-period+1)) / timebase_freq * * In order to simplify things, we assume that period is * at least 1. This will still result in a very long timeout. */ static unsigned long long period_to_sec(unsigned int period) { unsigned long long tmp = 1ULL << (64 - period); unsigned long tmp2 = ppc_tb_freq; /* tmp may be a very large number and we don't want to overflow, * so divide the timebase freq instead of multiplying tmp */ tmp2 = tmp2 / 5 * 2; do_div(tmp, tmp2); return tmp; } /* * This procedure will find the highest period which will give a timeout * greater than the one required. e.g. for a bus speed of 66666666 and * a parameter of 2 secs, then this procedure will return a value of 38. */ static unsigned int sec_to_period(unsigned int secs) { unsigned int period; for (period = 63; period > 0; period--) { if (period_to_sec(period) >= secs) return period; } return 0; } #define MAX_WDT_TIMEOUT period_to_sec(1) #else /* CONFIG_PPC_E500 */ static unsigned long long period_to_sec(unsigned int period) { return period; } static unsigned int sec_to_period(unsigned int secs) { return secs; } #define MAX_WDT_TIMEOUT 3 /* from Kconfig */ #endif /* !CONFIG_PPC_E500 */ static void __booke_wdt_set(void *data) { u32 val; struct watchdog_device *wdog = data; val = mfspr(SPRN_TCR); val &= ~WDTP_MASK; val |= WDTP(sec_to_period(wdog->timeout)); mtspr(SPRN_TCR, val); } static void booke_wdt_set(void *data) { on_each_cpu(__booke_wdt_set, data, 0); } static void __booke_wdt_ping(void *data) { mtspr(SPRN_TSR, TSR_ENW|TSR_WIS); } static int booke_wdt_ping(struct watchdog_device *wdog) { on_each_cpu(__booke_wdt_ping, NULL, 0); return 0; } static void __booke_wdt_enable(void *data) { u32 val; struct watchdog_device *wdog = data; /* clear status before enabling watchdog */ __booke_wdt_ping(NULL); val = mfspr(SPRN_TCR); val &= ~WDTP_MASK; val |= (TCR_WIE|TCR_WRC(WRC_CHIP)|WDTP(sec_to_period(wdog->timeout))); mtspr(SPRN_TCR, val); } /** * __booke_wdt_disable - disable the watchdog on the given CPU * * This function is called on each CPU. It disables the watchdog on that CPU. * * TCR[WRC] cannot be changed once it has been set to non-zero, but we can * effectively disable the watchdog by setting its period to the maximum value. */ static void __booke_wdt_disable(void *data) { u32 val; val = mfspr(SPRN_TCR); val &= ~(TCR_WIE | WDTP_MASK); mtspr(SPRN_TCR, val); /* clear status to make sure nothing is pending */ __booke_wdt_ping(NULL); } static int booke_wdt_start(struct watchdog_device *wdog) { on_each_cpu(__booke_wdt_enable, wdog, 0); pr_debug("watchdog enabled (timeout = %u sec)\n", wdog->timeout); return 0; } static int booke_wdt_stop(struct watchdog_device *wdog) { on_each_cpu(__booke_wdt_disable, NULL, 0); pr_debug("watchdog disabled\n"); return 0; } static int booke_wdt_set_timeout(struct watchdog_device *wdt_dev, unsigned int timeout) { wdt_dev->timeout = timeout; booke_wdt_set(wdt_dev); return 0; } static struct watchdog_info booke_wdt_info __ro_after_init = { .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING, .identity = "PowerPC Book-E Watchdog", }; static const struct watchdog_ops booke_wdt_ops = { .owner = THIS_MODULE, .start = booke_wdt_start, .stop = booke_wdt_stop, .ping = booke_wdt_ping, .set_timeout = booke_wdt_set_timeout, }; static struct watchdog_device booke_wdt_dev = { .info = &booke_wdt_info, .ops = &booke_wdt_ops, .min_timeout = 1, }; static void __exit booke_wdt_exit(void) { watchdog_unregister_device(&booke_wdt_dev); } static int __init booke_wdt_init(void) { int ret = 0; pr_info("powerpc book-e watchdog driver loaded\n"); booke_wdt_info.firmware_version = cur_cpu_spec->pvr_value; booke_wdt_set_timeout(&booke_wdt_dev, period_to_sec(booke_wdt_period)); watchdog_set_nowayout(&booke_wdt_dev, nowayout); booke_wdt_dev.max_timeout = MAX_WDT_TIMEOUT; if (booke_wdt_enabled) booke_wdt_start(&booke_wdt_dev); ret = watchdog_register_device(&booke_wdt_dev); return ret; } module_init(booke_wdt_init); module_exit(booke_wdt_exit); MODULE_ALIAS("booke_wdt"); MODULE_DESCRIPTION("PowerPC Book-E watchdog driver"); MODULE_LICENSE("GPL");
linux-master
drivers/watchdog/booke_wdt.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2010, Paul Cercueil <[email protected]> * JZ4740 Watchdog driver */ #include <linux/mfd/ingenic-tcu.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/watchdog.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/device.h> #include <linux/clk.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/of.h> #include <linux/regmap.h> #define DEFAULT_HEARTBEAT 5 #define MAX_HEARTBEAT 2048 static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, 0); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); static unsigned int heartbeat = DEFAULT_HEARTBEAT; module_param(heartbeat, uint, 0); MODULE_PARM_DESC(heartbeat, "Watchdog heartbeat period in seconds from 1 to " __MODULE_STRING(MAX_HEARTBEAT) ", default " __MODULE_STRING(DEFAULT_HEARTBEAT)); struct jz4740_wdt_drvdata { struct watchdog_device wdt; struct regmap *map; struct clk *clk; unsigned long clk_rate; }; static int jz4740_wdt_ping(struct watchdog_device *wdt_dev) { struct jz4740_wdt_drvdata *drvdata = watchdog_get_drvdata(wdt_dev); regmap_write(drvdata->map, TCU_REG_WDT_TCNT, 0); return 0; } static int jz4740_wdt_set_timeout(struct watchdog_device *wdt_dev, unsigned int new_timeout) { struct jz4740_wdt_drvdata *drvdata = watchdog_get_drvdata(wdt_dev); u16 timeout_value = (u16)(drvdata->clk_rate * new_timeout); unsigned int tcer; regmap_read(drvdata->map, TCU_REG_WDT_TCER, &tcer); regmap_write(drvdata->map, TCU_REG_WDT_TCER, 0); regmap_write(drvdata->map, TCU_REG_WDT_TDR, timeout_value); regmap_write(drvdata->map, TCU_REG_WDT_TCNT, 0); if (tcer & TCU_WDT_TCER_TCEN) regmap_write(drvdata->map, TCU_REG_WDT_TCER, TCU_WDT_TCER_TCEN); wdt_dev->timeout = new_timeout; return 0; } static int jz4740_wdt_start(struct watchdog_device *wdt_dev) { struct jz4740_wdt_drvdata *drvdata = watchdog_get_drvdata(wdt_dev); unsigned int tcer; int ret; ret = clk_prepare_enable(drvdata->clk); if (ret) return ret; regmap_read(drvdata->map, TCU_REG_WDT_TCER, &tcer); jz4740_wdt_set_timeout(wdt_dev, wdt_dev->timeout); /* Start watchdog if it wasn't started already */ if (!(tcer & TCU_WDT_TCER_TCEN)) regmap_write(drvdata->map, TCU_REG_WDT_TCER, TCU_WDT_TCER_TCEN); return 0; } static int jz4740_wdt_stop(struct watchdog_device *wdt_dev) { struct jz4740_wdt_drvdata *drvdata = watchdog_get_drvdata(wdt_dev); regmap_write(drvdata->map, TCU_REG_WDT_TCER, 0); clk_disable_unprepare(drvdata->clk); return 0; } static int jz4740_wdt_restart(struct watchdog_device *wdt_dev, unsigned long action, void *data) { wdt_dev->timeout = 0; jz4740_wdt_start(wdt_dev); return 0; } static const struct watchdog_info jz4740_wdt_info = { .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE, .identity = "jz4740 Watchdog", }; static const struct watchdog_ops jz4740_wdt_ops = { .owner = THIS_MODULE, .start = jz4740_wdt_start, .stop = jz4740_wdt_stop, .ping = jz4740_wdt_ping, .set_timeout = jz4740_wdt_set_timeout, .restart = jz4740_wdt_restart, }; #ifdef CONFIG_OF static const struct of_device_id jz4740_wdt_of_matches[] = { { .compatible = "ingenic,jz4740-watchdog", }, { .compatible = "ingenic,jz4780-watchdog", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, jz4740_wdt_of_matches); #endif static int jz4740_wdt_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct jz4740_wdt_drvdata *drvdata; struct watchdog_device *jz4740_wdt; long rate; int ret; drvdata = devm_kzalloc(dev, sizeof(struct jz4740_wdt_drvdata), GFP_KERNEL); if (!drvdata) return -ENOMEM; drvdata->clk = devm_clk_get(&pdev->dev, "wdt"); if (IS_ERR(drvdata->clk)) { dev_err(&pdev->dev, "cannot find WDT clock\n"); return PTR_ERR(drvdata->clk); } /* Set smallest clock possible */ rate = clk_round_rate(drvdata->clk, 1); if (rate < 0) return rate; ret = clk_set_rate(drvdata->clk, rate); if (ret) return ret; drvdata->clk_rate = rate; jz4740_wdt = &drvdata->wdt; jz4740_wdt->info = &jz4740_wdt_info; jz4740_wdt->ops = &jz4740_wdt_ops; jz4740_wdt->min_timeout = 1; jz4740_wdt->max_timeout = 0xffff / rate; jz4740_wdt->timeout = clamp(heartbeat, jz4740_wdt->min_timeout, jz4740_wdt->max_timeout); jz4740_wdt->parent = dev; watchdog_set_nowayout(jz4740_wdt, nowayout); watchdog_set_drvdata(jz4740_wdt, drvdata); drvdata->map = device_node_to_regmap(dev->parent->of_node); if (IS_ERR(drvdata->map)) { dev_err(dev, "regmap not found\n"); return PTR_ERR(drvdata->map); } return devm_watchdog_register_device(dev, &drvdata->wdt); } static struct platform_driver jz4740_wdt_driver = { .probe = jz4740_wdt_probe, .driver = { .name = "jz4740-wdt", .of_match_table = of_match_ptr(jz4740_wdt_of_matches), }, }; module_platform_driver(jz4740_wdt_driver); MODULE_AUTHOR("Paul Cercueil <[email protected]>"); MODULE_DESCRIPTION("jz4740 Watchdog Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:jz4740-wdt");
linux-master
drivers/watchdog/jz4740_wdt.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * drivers/watchdog/shwdt.c * * Watchdog driver for integrated watchdog in the SuperH processors. * * Copyright (C) 2001 - 2012 Paul Mundt <[email protected]> * * 14-Dec-2001 Matt Domsch <[email protected]> * Added nowayout module option to override CONFIG_WATCHDOG_NOWAYOUT * * 19-Apr-2002 Rob Radez <[email protected]> * Added expect close support, made emulated timeout runtime changeable * general cleanups, add some ioctls */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/platform_device.h> #include <linux/init.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/watchdog.h> #include <linux/pm_runtime.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/err.h> #include <asm/watchdog.h> #define DRV_NAME "sh-wdt" /* * Default clock division ratio is 5.25 msecs. For an additional table of * values, consult the asm-sh/watchdog.h. Overload this at module load * time. * * In order for this to work reliably we need to have HZ set to 1000 or * something quite higher than 100 (or we need a proper high-res timer * implementation that will deal with this properly), otherwise the 10ms * resolution of a jiffy is enough to trigger the overflow. For things like * the SH-4 and SH-5, this isn't necessarily that big of a problem, though * for the SH-2 and SH-3, this isn't recommended unless the WDT is absolutely * necssary. * * As a result of this timing problem, the only modes that are particularly * feasible are the 4096 and the 2048 divisors, which yield 5.25 and 2.62ms * overflow periods respectively. * * Also, since we can't really expect userspace to be responsive enough * before the overflow happens, we maintain two separate timers .. One in * the kernel for clearing out WOVF every 2ms or so (again, this depends on * HZ == 1000), and another for monitoring userspace writes to the WDT device. * * As such, we currently use a configurable heartbeat interval which defaults * to 30s. In this case, the userspace daemon is only responsible for periodic * writes to the device before the next heartbeat is scheduled. If the daemon * misses its deadline, the kernel timer will allow the WDT to overflow. */ static int clock_division_ratio = WTCSR_CKS_4096; #define next_ping_period(cks) (jiffies + msecs_to_jiffies(cks - 4)) #define WATCHDOG_HEARTBEAT 30 /* 30 sec default heartbeat */ static int heartbeat = WATCHDOG_HEARTBEAT; /* in seconds */ static bool nowayout = WATCHDOG_NOWAYOUT; static unsigned long next_heartbeat; struct sh_wdt { void __iomem *base; struct device *dev; struct clk *clk; spinlock_t lock; struct timer_list timer; }; static int sh_wdt_start(struct watchdog_device *wdt_dev) { struct sh_wdt *wdt = watchdog_get_drvdata(wdt_dev); unsigned long flags; u8 csr; pm_runtime_get_sync(wdt->dev); clk_enable(wdt->clk); spin_lock_irqsave(&wdt->lock, flags); next_heartbeat = jiffies + (heartbeat * HZ); mod_timer(&wdt->timer, next_ping_period(clock_division_ratio)); csr = sh_wdt_read_csr(); csr |= WTCSR_WT | clock_division_ratio; sh_wdt_write_csr(csr); sh_wdt_write_cnt(0); /* * These processors have a bit of an inconsistent initialization * process.. starting with SH-3, RSTS was moved to WTCSR, and the * RSTCSR register was removed. * * On the SH-2 however, in addition with bits being in different * locations, we must deal with RSTCSR outright.. */ csr = sh_wdt_read_csr(); csr |= WTCSR_TME; csr &= ~WTCSR_RSTS; sh_wdt_write_csr(csr); #ifdef CONFIG_CPU_SH2 csr = sh_wdt_read_rstcsr(); csr &= ~RSTCSR_RSTS; sh_wdt_write_rstcsr(csr); #endif spin_unlock_irqrestore(&wdt->lock, flags); return 0; } static int sh_wdt_stop(struct watchdog_device *wdt_dev) { struct sh_wdt *wdt = watchdog_get_drvdata(wdt_dev); unsigned long flags; u8 csr; spin_lock_irqsave(&wdt->lock, flags); del_timer(&wdt->timer); csr = sh_wdt_read_csr(); csr &= ~WTCSR_TME; sh_wdt_write_csr(csr); spin_unlock_irqrestore(&wdt->lock, flags); clk_disable(wdt->clk); pm_runtime_put_sync(wdt->dev); return 0; } static int sh_wdt_keepalive(struct watchdog_device *wdt_dev) { struct sh_wdt *wdt = watchdog_get_drvdata(wdt_dev); unsigned long flags; spin_lock_irqsave(&wdt->lock, flags); next_heartbeat = jiffies + (heartbeat * HZ); spin_unlock_irqrestore(&wdt->lock, flags); return 0; } static int sh_wdt_set_heartbeat(struct watchdog_device *wdt_dev, unsigned t) { struct sh_wdt *wdt = watchdog_get_drvdata(wdt_dev); unsigned long flags; if (unlikely(t < 1 || t > 3600)) /* arbitrary upper limit */ return -EINVAL; spin_lock_irqsave(&wdt->lock, flags); heartbeat = t; wdt_dev->timeout = t; spin_unlock_irqrestore(&wdt->lock, flags); return 0; } static void sh_wdt_ping(struct timer_list *t) { struct sh_wdt *wdt = from_timer(wdt, t, timer); unsigned long flags; spin_lock_irqsave(&wdt->lock, flags); if (time_before(jiffies, next_heartbeat)) { u8 csr; csr = sh_wdt_read_csr(); csr &= ~WTCSR_IOVF; sh_wdt_write_csr(csr); sh_wdt_write_cnt(0); mod_timer(&wdt->timer, next_ping_period(clock_division_ratio)); } else dev_warn(wdt->dev, "Heartbeat lost! Will not ping " "the watchdog\n"); spin_unlock_irqrestore(&wdt->lock, flags); } static const struct watchdog_info sh_wdt_info = { .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE, .firmware_version = 1, .identity = "SH WDT", }; static const struct watchdog_ops sh_wdt_ops = { .owner = THIS_MODULE, .start = sh_wdt_start, .stop = sh_wdt_stop, .ping = sh_wdt_keepalive, .set_timeout = sh_wdt_set_heartbeat, }; static struct watchdog_device sh_wdt_dev = { .info = &sh_wdt_info, .ops = &sh_wdt_ops, }; static int sh_wdt_probe(struct platform_device *pdev) { struct sh_wdt *wdt; int rc; /* * As this driver only covers the global watchdog case, reject * any attempts to register per-CPU watchdogs. */ if (pdev->id != -1) return -EINVAL; wdt = devm_kzalloc(&pdev->dev, sizeof(struct sh_wdt), GFP_KERNEL); if (unlikely(!wdt)) return -ENOMEM; wdt->dev = &pdev->dev; wdt->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(wdt->clk)) { /* * Clock framework support is optional, continue on * anyways if we don't find a matching clock. */ wdt->clk = NULL; } wdt->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(wdt->base)) return PTR_ERR(wdt->base); watchdog_set_nowayout(&sh_wdt_dev, nowayout); watchdog_set_drvdata(&sh_wdt_dev, wdt); sh_wdt_dev.parent = &pdev->dev; spin_lock_init(&wdt->lock); rc = sh_wdt_set_heartbeat(&sh_wdt_dev, heartbeat); if (unlikely(rc)) { /* Default timeout if invalid */ sh_wdt_set_heartbeat(&sh_wdt_dev, WATCHDOG_HEARTBEAT); dev_warn(&pdev->dev, "heartbeat value must be 1<=x<=3600, using %d\n", sh_wdt_dev.timeout); } dev_info(&pdev->dev, "configured with heartbeat=%d sec (nowayout=%d)\n", sh_wdt_dev.timeout, nowayout); rc = watchdog_register_device(&sh_wdt_dev); if (unlikely(rc)) { dev_err(&pdev->dev, "Can't register watchdog (err=%d)\n", rc); return rc; } timer_setup(&wdt->timer, sh_wdt_ping, 0); wdt->timer.expires = next_ping_period(clock_division_ratio); dev_info(&pdev->dev, "initialized.\n"); pm_runtime_enable(&pdev->dev); return 0; } static void sh_wdt_remove(struct platform_device *pdev) { watchdog_unregister_device(&sh_wdt_dev); pm_runtime_disable(&pdev->dev); } static void sh_wdt_shutdown(struct platform_device *pdev) { sh_wdt_stop(&sh_wdt_dev); } static struct platform_driver sh_wdt_driver = { .driver = { .name = DRV_NAME, }, .probe = sh_wdt_probe, .remove_new = sh_wdt_remove, .shutdown = sh_wdt_shutdown, }; static int __init sh_wdt_init(void) { if (unlikely(clock_division_ratio < 0x5 || clock_division_ratio > 0x7)) { clock_division_ratio = WTCSR_CKS_4096; pr_info("divisor must be 0x5<=x<=0x7, using %d\n", clock_division_ratio); } return platform_driver_register(&sh_wdt_driver); } static void __exit sh_wdt_exit(void) { platform_driver_unregister(&sh_wdt_driver); } module_init(sh_wdt_init); module_exit(sh_wdt_exit); MODULE_AUTHOR("Paul Mundt <[email protected]>"); MODULE_DESCRIPTION("SuperH watchdog driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRV_NAME); module_param(clock_division_ratio, int, 0); MODULE_PARM_DESC(clock_division_ratio, "Clock division ratio. Valid ranges are from 0x5 (1.31ms) " "to 0x7 (5.25ms). (default=" __MODULE_STRING(WTCSR_CKS_4096) ")"); module_param(heartbeat, int, 0); MODULE_PARM_DESC(heartbeat, "Watchdog heartbeat in seconds. (1 <= heartbeat <= 3600, default=" __MODULE_STRING(WATCHDOG_HEARTBEAT) ")"); module_param(nowayout, bool, 0); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
linux-master
drivers/watchdog/shwdt.c
// SPDX-License-Identifier: GPL-2.0+ /* * watchdog_core.c * * (c) Copyright 2008-2011 Alan Cox <[email protected]>, * All Rights Reserved. * * (c) Copyright 2008-2011 Wim Van Sebroeck <[email protected]>. * * This source code is part of the generic code that can be used * by all the watchdog timer drivers. * * Based on source code of the following authors: * Matt Domsch <[email protected]>, * Rob Radez <[email protected]>, * Rusty Lynch <[email protected]> * Satyam Sharma <[email protected]> * Randy Dunlap <[email protected]> * * Neither Alan Cox, CymruNet Ltd., Wim Van Sebroeck nor Iguana vzw. * admit liability nor provide warranty for any of this software. * This material is provided "AS-IS" and at no charge. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> /* For EXPORT_SYMBOL/module stuff/... */ #include <linux/types.h> /* For standard types */ #include <linux/errno.h> /* For the -ENODEV/... values */ #include <linux/kernel.h> /* For printk/panic/... */ #include <linux/reboot.h> /* For restart handler */ #include <linux/watchdog.h> /* For watchdog specific items */ #include <linux/init.h> /* For __init/__exit/... */ #include <linux/idr.h> /* For ida_* macros */ #include <linux/err.h> /* For IS_ERR macros */ #include <linux/of.h> /* For of_get_timeout_sec */ #include <linux/suspend.h> #include "watchdog_core.h" /* For watchdog_dev_register/... */ #define CREATE_TRACE_POINTS #include <trace/events/watchdog.h> static DEFINE_IDA(watchdog_ida); static int stop_on_reboot = -1; module_param(stop_on_reboot, int, 0444); MODULE_PARM_DESC(stop_on_reboot, "Stop watchdogs on reboot (0=keep watching, 1=stop)"); /* * Deferred Registration infrastructure. * * Sometimes watchdog drivers needs to be loaded as soon as possible, * for example when it's impossible to disable it. To do so, * raising the initcall level of the watchdog driver is a solution. * But in such case, the miscdev is maybe not ready (subsys_initcall), and * watchdog_core need miscdev to register the watchdog as a char device. * * The deferred registration infrastructure offer a way for the watchdog * subsystem to register a watchdog properly, even before miscdev is ready. */ static DEFINE_MUTEX(wtd_deferred_reg_mutex); static LIST_HEAD(wtd_deferred_reg_list); static bool wtd_deferred_reg_done; static void watchdog_deferred_registration_add(struct watchdog_device *wdd) { list_add_tail(&wdd->deferred, &wtd_deferred_reg_list); } static void watchdog_deferred_registration_del(struct watchdog_device *wdd) { struct list_head *p, *n; struct watchdog_device *wdd_tmp; list_for_each_safe(p, n, &wtd_deferred_reg_list) { wdd_tmp = list_entry(p, struct watchdog_device, deferred); if (wdd_tmp == wdd) { list_del(&wdd_tmp->deferred); break; } } } static void watchdog_check_min_max_timeout(struct watchdog_device *wdd) { /* * Check that we have valid min and max timeout values, if * not reset them both to 0 (=not used or unknown) */ if (!wdd->max_hw_heartbeat_ms && wdd->min_timeout > wdd->max_timeout) { pr_info("Invalid min and max timeout values, resetting to 0!\n"); wdd->min_timeout = 0; wdd->max_timeout = 0; } } /** * watchdog_init_timeout() - initialize the timeout field * @wdd: watchdog device * @timeout_parm: timeout module parameter * @dev: Device that stores the timeout-sec property * * Initialize the timeout field of the watchdog_device struct with either the * timeout module parameter (if it is valid value) or the timeout-sec property * (only if it is a valid value and the timeout_parm is out of bounds). * If none of them are valid then we keep the old value (which should normally * be the default timeout value). Note that for the module parameter, '0' means * 'use default' while it is an invalid value for the timeout-sec property. * It should simply be dropped if you want to use the default value then. * * A zero is returned on success or -EINVAL if all provided values are out of * bounds. */ int watchdog_init_timeout(struct watchdog_device *wdd, unsigned int timeout_parm, struct device *dev) { const char *dev_str = wdd->parent ? dev_name(wdd->parent) : (const char *)wdd->info->identity; unsigned int t = 0; int ret = 0; watchdog_check_min_max_timeout(wdd); /* check the driver supplied value (likely a module parameter) first */ if (timeout_parm) { if (!watchdog_timeout_invalid(wdd, timeout_parm)) { wdd->timeout = timeout_parm; return 0; } pr_err("%s: driver supplied timeout (%u) out of range\n", dev_str, timeout_parm); ret = -EINVAL; } /* try to get the timeout_sec property */ if (dev && dev->of_node && of_property_read_u32(dev->of_node, "timeout-sec", &t) == 0) { if (t && !watchdog_timeout_invalid(wdd, t)) { wdd->timeout = t; return 0; } pr_err("%s: DT supplied timeout (%u) out of range\n", dev_str, t); ret = -EINVAL; } if (ret < 0 && wdd->timeout) pr_warn("%s: falling back to default timeout (%u)\n", dev_str, wdd->timeout); return ret; } EXPORT_SYMBOL_GPL(watchdog_init_timeout); static int watchdog_reboot_notifier(struct notifier_block *nb, unsigned long code, void *data) { struct watchdog_device *wdd; wdd = container_of(nb, struct watchdog_device, reboot_nb); if (code == SYS_DOWN || code == SYS_HALT || code == SYS_POWER_OFF) { if (watchdog_hw_running(wdd)) { int ret; ret = wdd->ops->stop(wdd); trace_watchdog_stop(wdd, ret); if (ret) return NOTIFY_BAD; } } return NOTIFY_DONE; } static int watchdog_restart_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct watchdog_device *wdd = container_of(nb, struct watchdog_device, restart_nb); int ret; ret = wdd->ops->restart(wdd, action, data); if (ret) return NOTIFY_BAD; return NOTIFY_DONE; } static int watchdog_pm_notifier(struct notifier_block *nb, unsigned long mode, void *data) { struct watchdog_device *wdd; int ret = 0; wdd = container_of(nb, struct watchdog_device, pm_nb); switch (mode) { case PM_HIBERNATION_PREPARE: case PM_RESTORE_PREPARE: case PM_SUSPEND_PREPARE: ret = watchdog_dev_suspend(wdd); break; case PM_POST_HIBERNATION: case PM_POST_RESTORE: case PM_POST_SUSPEND: ret = watchdog_dev_resume(wdd); break; } if (ret) return NOTIFY_BAD; return NOTIFY_DONE; } /** * watchdog_set_restart_priority - Change priority of restart handler * @wdd: watchdog device * @priority: priority of the restart handler, should follow these guidelines: * 0: use watchdog's restart function as last resort, has limited restart * capabilies * 128: default restart handler, use if no other handler is expected to be * available and/or if restart is sufficient to restart the entire system * 255: preempt all other handlers * * If a wdd->ops->restart function is provided when watchdog_register_device is * called, it will be registered as a restart handler with the priority given * here. */ void watchdog_set_restart_priority(struct watchdog_device *wdd, int priority) { wdd->restart_nb.priority = priority; } EXPORT_SYMBOL_GPL(watchdog_set_restart_priority); static int __watchdog_register_device(struct watchdog_device *wdd) { int ret, id = -1; if (wdd == NULL || wdd->info == NULL || wdd->ops == NULL) return -EINVAL; /* Mandatory operations need to be supported */ if (!wdd->ops->start || (!wdd->ops->stop && !wdd->max_hw_heartbeat_ms)) return -EINVAL; watchdog_check_min_max_timeout(wdd); /* * Note: now that all watchdog_device data has been verified, we * will not check this anymore in other functions. If data gets * corrupted in a later stage then we expect a kernel panic! */ /* Use alias for watchdog id if possible */ if (wdd->parent) { ret = of_alias_get_id(wdd->parent->of_node, "watchdog"); if (ret >= 0) id = ida_simple_get(&watchdog_ida, ret, ret + 1, GFP_KERNEL); } if (id < 0) id = ida_simple_get(&watchdog_ida, 0, MAX_DOGS, GFP_KERNEL); if (id < 0) return id; wdd->id = id; ret = watchdog_dev_register(wdd); if (ret) { ida_simple_remove(&watchdog_ida, id); if (!(id == 0 && ret == -EBUSY)) return ret; /* Retry in case a legacy watchdog module exists */ id = ida_simple_get(&watchdog_ida, 1, MAX_DOGS, GFP_KERNEL); if (id < 0) return id; wdd->id = id; ret = watchdog_dev_register(wdd); if (ret) { ida_simple_remove(&watchdog_ida, id); return ret; } } /* Module parameter to force watchdog policy on reboot. */ if (stop_on_reboot != -1) { if (stop_on_reboot) set_bit(WDOG_STOP_ON_REBOOT, &wdd->status); else clear_bit(WDOG_STOP_ON_REBOOT, &wdd->status); } if (test_bit(WDOG_STOP_ON_REBOOT, &wdd->status)) { if (!wdd->ops->stop) pr_warn("watchdog%d: stop_on_reboot not supported\n", wdd->id); else { wdd->reboot_nb.notifier_call = watchdog_reboot_notifier; ret = register_reboot_notifier(&wdd->reboot_nb); if (ret) { pr_err("watchdog%d: Cannot register reboot notifier (%d)\n", wdd->id, ret); watchdog_dev_unregister(wdd); ida_simple_remove(&watchdog_ida, id); return ret; } } } if (wdd->ops->restart) { wdd->restart_nb.notifier_call = watchdog_restart_notifier; ret = register_restart_handler(&wdd->restart_nb); if (ret) pr_warn("watchdog%d: Cannot register restart handler (%d)\n", wdd->id, ret); } if (test_bit(WDOG_NO_PING_ON_SUSPEND, &wdd->status)) { wdd->pm_nb.notifier_call = watchdog_pm_notifier; ret = register_pm_notifier(&wdd->pm_nb); if (ret) pr_warn("watchdog%d: Cannot register pm handler (%d)\n", wdd->id, ret); } return 0; } /** * watchdog_register_device() - register a watchdog device * @wdd: watchdog device * * Register a watchdog device with the kernel so that the * watchdog timer can be accessed from userspace. * * A zero is returned on success and a negative errno code for * failure. */ int watchdog_register_device(struct watchdog_device *wdd) { const char *dev_str; int ret = 0; mutex_lock(&wtd_deferred_reg_mutex); if (wtd_deferred_reg_done) ret = __watchdog_register_device(wdd); else watchdog_deferred_registration_add(wdd); mutex_unlock(&wtd_deferred_reg_mutex); if (ret) { dev_str = wdd->parent ? dev_name(wdd->parent) : (const char *)wdd->info->identity; pr_err("%s: failed to register watchdog device (err = %d)\n", dev_str, ret); } return ret; } EXPORT_SYMBOL_GPL(watchdog_register_device); static void __watchdog_unregister_device(struct watchdog_device *wdd) { if (wdd == NULL) return; if (wdd->ops->restart) unregister_restart_handler(&wdd->restart_nb); if (test_bit(WDOG_STOP_ON_REBOOT, &wdd->status)) unregister_reboot_notifier(&wdd->reboot_nb); watchdog_dev_unregister(wdd); ida_simple_remove(&watchdog_ida, wdd->id); } /** * watchdog_unregister_device() - unregister a watchdog device * @wdd: watchdog device to unregister * * Unregister a watchdog device that was previously successfully * registered with watchdog_register_device(). */ void watchdog_unregister_device(struct watchdog_device *wdd) { mutex_lock(&wtd_deferred_reg_mutex); if (wtd_deferred_reg_done) __watchdog_unregister_device(wdd); else watchdog_deferred_registration_del(wdd); mutex_unlock(&wtd_deferred_reg_mutex); } EXPORT_SYMBOL_GPL(watchdog_unregister_device); static void devm_watchdog_unregister_device(struct device *dev, void *res) { watchdog_unregister_device(*(struct watchdog_device **)res); } /** * devm_watchdog_register_device() - resource managed watchdog_register_device() * @dev: device that is registering this watchdog device * @wdd: watchdog device * * Managed watchdog_register_device(). For watchdog device registered by this * function, watchdog_unregister_device() is automatically called on driver * detach. See watchdog_register_device() for more information. */ int devm_watchdog_register_device(struct device *dev, struct watchdog_device *wdd) { struct watchdog_device **rcwdd; int ret; rcwdd = devres_alloc(devm_watchdog_unregister_device, sizeof(*rcwdd), GFP_KERNEL); if (!rcwdd) return -ENOMEM; ret = watchdog_register_device(wdd); if (!ret) { *rcwdd = wdd; devres_add(dev, rcwdd); } else { devres_free(rcwdd); } return ret; } EXPORT_SYMBOL_GPL(devm_watchdog_register_device); static int __init watchdog_deferred_registration(void) { mutex_lock(&wtd_deferred_reg_mutex); wtd_deferred_reg_done = true; while (!list_empty(&wtd_deferred_reg_list)) { struct watchdog_device *wdd; wdd = list_first_entry(&wtd_deferred_reg_list, struct watchdog_device, deferred); list_del(&wdd->deferred); __watchdog_register_device(wdd); } mutex_unlock(&wtd_deferred_reg_mutex); return 0; } static int __init watchdog_init(void) { int err; err = watchdog_dev_init(); if (err < 0) return err; watchdog_deferred_registration(); return 0; } static void __exit watchdog_exit(void) { watchdog_dev_exit(); ida_destroy(&watchdog_ida); } subsys_initcall_sync(watchdog_init); module_exit(watchdog_exit); MODULE_AUTHOR("Alan Cox <[email protected]>"); MODULE_AUTHOR("Wim Van Sebroeck <[email protected]>"); MODULE_DESCRIPTION("WatchDog Timer Driver Core"); MODULE_LICENSE("GPL");
linux-master
drivers/watchdog/watchdog_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * sunplus Watchdog Driver * * Copyright (C) 2021 Sunplus Technology Co., Ltd. * */ #include <linux/clk.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/watchdog.h> #define WDT_CTRL 0x00 #define WDT_CNT 0x04 #define WDT_STOP 0x3877 #define WDT_RESUME 0x4A4B #define WDT_CLRIRQ 0x7482 #define WDT_UNLOCK 0xAB00 #define WDT_LOCK 0xAB01 #define WDT_CONMAX 0xDEAF /* TIMEOUT_MAX = ffff0/90kHz =11.65, so longer than 11 seconds will time out. */ #define SP_WDT_MAX_TIMEOUT 11U #define SP_WDT_DEFAULT_TIMEOUT 10 #define STC_CLK 90000 #define DEVICE_NAME "sunplus-wdt" static unsigned int timeout; module_param(timeout, int, 0); MODULE_PARM_DESC(timeout, "Watchdog timeout in seconds"); static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, 0); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); struct sp_wdt_priv { struct watchdog_device wdev; void __iomem *base; struct clk *clk; struct reset_control *rstc; }; static int sp_wdt_restart(struct watchdog_device *wdev, unsigned long action, void *data) { struct sp_wdt_priv *priv = watchdog_get_drvdata(wdev); void __iomem *base = priv->base; writel(WDT_STOP, base + WDT_CTRL); writel(WDT_UNLOCK, base + WDT_CTRL); writel(0x0001, base + WDT_CNT); writel(WDT_LOCK, base + WDT_CTRL); writel(WDT_RESUME, base + WDT_CTRL); return 0; } static int sp_wdt_ping(struct watchdog_device *wdev) { struct sp_wdt_priv *priv = watchdog_get_drvdata(wdev); void __iomem *base = priv->base; u32 count; if (wdev->timeout > SP_WDT_MAX_TIMEOUT) { /* WDT_CONMAX sets the count to the maximum (down-counting). */ writel(WDT_CONMAX, base + WDT_CTRL); } else { writel(WDT_UNLOCK, base + WDT_CTRL); /* * Watchdog timer is a 20-bit down-counting based on STC_CLK. * This register bits[16:0] is from bit[19:4] of the watchdog * timer counter. */ count = (wdev->timeout * STC_CLK) >> 4; writel(count, base + WDT_CNT); writel(WDT_LOCK, base + WDT_CTRL); } return 0; } static int sp_wdt_stop(struct watchdog_device *wdev) { struct sp_wdt_priv *priv = watchdog_get_drvdata(wdev); void __iomem *base = priv->base; writel(WDT_STOP, base + WDT_CTRL); return 0; } static int sp_wdt_start(struct watchdog_device *wdev) { struct sp_wdt_priv *priv = watchdog_get_drvdata(wdev); void __iomem *base = priv->base; writel(WDT_RESUME, base + WDT_CTRL); return 0; } static unsigned int sp_wdt_get_timeleft(struct watchdog_device *wdev) { struct sp_wdt_priv *priv = watchdog_get_drvdata(wdev); void __iomem *base = priv->base; u32 val; val = readl(base + WDT_CNT); val &= 0xffff; val = val << 4; return val; } static const struct watchdog_info sp_wdt_info = { .identity = DEVICE_NAME, .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING, }; static const struct watchdog_ops sp_wdt_ops = { .owner = THIS_MODULE, .start = sp_wdt_start, .stop = sp_wdt_stop, .ping = sp_wdt_ping, .get_timeleft = sp_wdt_get_timeleft, .restart = sp_wdt_restart, }; static void sp_clk_disable_unprepare(void *data) { clk_disable_unprepare(data); } static void sp_reset_control_assert(void *data) { reset_control_assert(data); } static int sp_wdt_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sp_wdt_priv *priv; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->clk = devm_clk_get(dev, NULL); if (IS_ERR(priv->clk)) return dev_err_probe(dev, PTR_ERR(priv->clk), "Failed to get clock\n"); ret = clk_prepare_enable(priv->clk); if (ret) return dev_err_probe(dev, ret, "Failed to enable clock\n"); ret = devm_add_action_or_reset(dev, sp_clk_disable_unprepare, priv->clk); if (ret) return ret; /* The timer and watchdog shared the STC reset */ priv->rstc = devm_reset_control_get_shared(dev, NULL); if (IS_ERR(priv->rstc)) return dev_err_probe(dev, PTR_ERR(priv->rstc), "Failed to get reset\n"); reset_control_deassert(priv->rstc); ret = devm_add_action_or_reset(dev, sp_reset_control_assert, priv->rstc); if (ret) return ret; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); priv->wdev.info = &sp_wdt_info; priv->wdev.ops = &sp_wdt_ops; priv->wdev.timeout = SP_WDT_DEFAULT_TIMEOUT; priv->wdev.max_hw_heartbeat_ms = SP_WDT_MAX_TIMEOUT * 1000; priv->wdev.min_timeout = 1; priv->wdev.parent = dev; watchdog_set_drvdata(&priv->wdev, priv); watchdog_init_timeout(&priv->wdev, timeout, dev); watchdog_set_nowayout(&priv->wdev, nowayout); watchdog_stop_on_reboot(&priv->wdev); watchdog_set_restart_priority(&priv->wdev, 128); return devm_watchdog_register_device(dev, &priv->wdev); } static const struct of_device_id sp_wdt_of_match[] = { {.compatible = "sunplus,sp7021-wdt", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sp_wdt_of_match); static struct platform_driver sp_wdt_driver = { .probe = sp_wdt_probe, .driver = { .name = DEVICE_NAME, .of_match_table = sp_wdt_of_match, }, }; module_platform_driver(sp_wdt_driver); MODULE_AUTHOR("Xiantao Hu <[email protected]>"); MODULE_DESCRIPTION("Sunplus Watchdog Timer Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/watchdog/sunplus_wdt.c
// SPDX-License-Identifier: GPL-2.0-only /* * Watchdog driver for z/VM and LPAR using the diag 288 interface. * * Under z/VM, expiration of the watchdog will send a "system restart" command * to CP. * * The command can be altered using the module parameter "cmd". This is * not recommended because it's only supported on z/VM but not whith LPAR. * * On LPAR, the watchdog will always trigger a system restart. the module * paramter cmd is meaningless here. * * * Copyright IBM Corp. 2004, 2013 * Author(s): Arnd Bergmann ([email protected]) * Philipp Hachtmann ([email protected]) * */ #define KMSG_COMPONENT "diag288_wdt" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/slab.h> #include <linux/watchdog.h> #include <asm/ebcdic.h> #include <asm/diag.h> #include <linux/io.h> #define MAX_CMDLEN 240 #define DEFAULT_CMD "SYSTEM RESTART" #define MIN_INTERVAL 15 /* Minimal time supported by diag88 */ #define MAX_INTERVAL 3600 /* One hour should be enough - pure estimation */ #define WDT_DEFAULT_TIMEOUT 30 /* Function codes - init, change, cancel */ #define WDT_FUNC_INIT 0 #define WDT_FUNC_CHANGE 1 #define WDT_FUNC_CANCEL 2 #define WDT_FUNC_CONCEAL 0x80000000 /* Action codes for LPAR watchdog */ #define LPARWDT_RESTART 0 static char wdt_cmd[MAX_CMDLEN] = DEFAULT_CMD; static bool conceal_on; static bool nowayout_info = WATCHDOG_NOWAYOUT; MODULE_LICENSE("GPL"); MODULE_AUTHOR("Arnd Bergmann <[email protected]>"); MODULE_AUTHOR("Philipp Hachtmann <[email protected]>"); MODULE_DESCRIPTION("System z diag288 Watchdog Timer"); module_param_string(cmd, wdt_cmd, MAX_CMDLEN, 0644); MODULE_PARM_DESC(cmd, "CP command that is run when the watchdog triggers (z/VM only)"); module_param_named(conceal, conceal_on, bool, 0644); MODULE_PARM_DESC(conceal, "Enable the CONCEAL CP option while the watchdog is active (z/VM only)"); module_param_named(nowayout, nowayout_info, bool, 0444); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default = CONFIG_WATCHDOG_NOWAYOUT)"); MODULE_ALIAS("vmwatchdog"); static char *cmd_buf; static int diag288(unsigned int func, unsigned int timeout, unsigned long action, unsigned int len) { union register_pair r1 = { .even = func, .odd = timeout, }; union register_pair r3 = { .even = action, .odd = len, }; int err; diag_stat_inc(DIAG_STAT_X288); err = -EINVAL; asm volatile( " diag %[r1],%[r3],0x288\n" "0: la %[err],0\n" "1:\n" EX_TABLE(0b, 1b) : [err] "+d" (err) : [r1] "d" (r1.pair), [r3] "d" (r3.pair) : "cc", "memory"); return err; } static int diag288_str(unsigned int func, unsigned int timeout, char *cmd) { ssize_t len; len = strscpy(cmd_buf, cmd, MAX_CMDLEN); if (len < 0) return len; ASCEBC(cmd_buf, MAX_CMDLEN); EBC_TOUPPER(cmd_buf, MAX_CMDLEN); return diag288(func, timeout, virt_to_phys(cmd_buf), len); } static int wdt_start(struct watchdog_device *dev) { int ret; unsigned int func; if (MACHINE_IS_VM) { func = conceal_on ? (WDT_FUNC_INIT | WDT_FUNC_CONCEAL) : WDT_FUNC_INIT; ret = diag288_str(func, dev->timeout, wdt_cmd); WARN_ON(ret != 0); } else { ret = diag288(WDT_FUNC_INIT, dev->timeout, LPARWDT_RESTART, 0); } if (ret) { pr_err("The watchdog cannot be activated\n"); return ret; } return 0; } static int wdt_stop(struct watchdog_device *dev) { return diag288(WDT_FUNC_CANCEL, 0, 0, 0); } static int wdt_ping(struct watchdog_device *dev) { int ret; unsigned int func; if (MACHINE_IS_VM) { /* * It seems to be ok to z/VM to use the init function to * retrigger the watchdog. On LPAR WDT_FUNC_CHANGE must * be used when the watchdog is running. */ func = conceal_on ? (WDT_FUNC_INIT | WDT_FUNC_CONCEAL) : WDT_FUNC_INIT; ret = diag288_str(func, dev->timeout, wdt_cmd); WARN_ON(ret != 0); } else { ret = diag288(WDT_FUNC_CHANGE, dev->timeout, 0, 0); } if (ret) pr_err("The watchdog timer cannot be started or reset\n"); return ret; } static int wdt_set_timeout(struct watchdog_device * dev, unsigned int new_to) { dev->timeout = new_to; return wdt_ping(dev); } static const struct watchdog_ops wdt_ops = { .owner = THIS_MODULE, .start = wdt_start, .stop = wdt_stop, .ping = wdt_ping, .set_timeout = wdt_set_timeout, }; static const struct watchdog_info wdt_info = { .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE, .firmware_version = 0, .identity = "z Watchdog", }; static struct watchdog_device wdt_dev = { .parent = NULL, .info = &wdt_info, .ops = &wdt_ops, .bootstatus = 0, .timeout = WDT_DEFAULT_TIMEOUT, .min_timeout = MIN_INTERVAL, .max_timeout = MAX_INTERVAL, }; static int __init diag288_init(void) { int ret; watchdog_set_nowayout(&wdt_dev, nowayout_info); if (MACHINE_IS_VM) { cmd_buf = kmalloc(MAX_CMDLEN, GFP_KERNEL); if (!cmd_buf) { pr_err("The watchdog cannot be initialized\n"); return -ENOMEM; } ret = diag288_str(WDT_FUNC_INIT, MIN_INTERVAL, "BEGIN"); if (ret != 0) { pr_err("The watchdog cannot be initialized\n"); kfree(cmd_buf); return -EINVAL; } } else { if (diag288(WDT_FUNC_INIT, WDT_DEFAULT_TIMEOUT, LPARWDT_RESTART, 0)) { pr_err("The watchdog cannot be initialized\n"); return -EINVAL; } } if (diag288(WDT_FUNC_CANCEL, 0, 0, 0)) { pr_err("The watchdog cannot be deactivated\n"); return -EINVAL; } return watchdog_register_device(&wdt_dev); } static void __exit diag288_exit(void) { watchdog_unregister_device(&wdt_dev); kfree(cmd_buf); } module_init(diag288_init); module_exit(diag288_exit);
linux-master
drivers/watchdog/diag288_wdt.c
// SPDX-License-Identifier: GPL-2.0-only /* * SBSA(Server Base System Architecture) Generic Watchdog driver * * Copyright (c) 2015, Linaro Ltd. * Author: Fu Wei <[email protected]> * Suravee Suthikulpanit <[email protected]> * Al Stone <[email protected]> * Timur Tabi <[email protected]> * * ARM SBSA Generic Watchdog has two stage timeouts: * the first signal (WS0) is for alerting the system by interrupt, * the second one (WS1) is a real hardware reset. * More details about the hardware specification of this device: * ARM DEN0029B - Server Base System Architecture (SBSA) * * This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog * or a two stages watchdog, it's set up by the module parameter "action". * In the single stage mode, when the timeout is reached, your system * will be reset by WS1. The first signal (WS0) is ignored. * In the two stages mode, when the timeout is reached, the first signal (WS0) * will trigger panic. If the system is getting into trouble and cannot be reset * by panic or restart properly by the kdump kernel(if supported), then the * second stage (as long as the first stage) will be reached, system will be * reset by WS1. This function can help administrator to backup the system * context info by panic console output or kdump. * * SBSA GWDT: * if action is 1 (the two stages mode): * |--------WOR-------WS0--------WOR-------WS1 * |----timeout-----(panic)----timeout-----reset * * if action is 0 (the single stage mode): * |------WOR-----WS0(ignored)-----WOR------WS1 * |--------------timeout-------------------reset * * Note: Since this watchdog timer has two stages, and each stage is determined * by WOR, in the single stage mode, the timeout is (WOR * 2); in the two * stages mode, the timeout is WOR. The maximum timeout in the two stages mode * is half of that in the single stage mode. */ #include <linux/io.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/interrupt.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/platform_device.h> #include <linux/uaccess.h> #include <linux/watchdog.h> #include <asm/arch_timer.h> #define DRV_NAME "sbsa-gwdt" #define WATCHDOG_NAME "SBSA Generic Watchdog" /* SBSA Generic Watchdog register definitions */ /* refresh frame */ #define SBSA_GWDT_WRR 0x000 /* control frame */ #define SBSA_GWDT_WCS 0x000 #define SBSA_GWDT_WOR 0x008 #define SBSA_GWDT_WCV 0x010 /* refresh/control frame */ #define SBSA_GWDT_W_IIDR 0xfcc #define SBSA_GWDT_IDR 0xfd0 /* Watchdog Control and Status Register */ #define SBSA_GWDT_WCS_EN BIT(0) #define SBSA_GWDT_WCS_WS0 BIT(1) #define SBSA_GWDT_WCS_WS1 BIT(2) #define SBSA_GWDT_VERSION_MASK 0xF #define SBSA_GWDT_VERSION_SHIFT 16 /** * struct sbsa_gwdt - Internal representation of the SBSA GWDT * @wdd: kernel watchdog_device structure * @clk: store the System Counter clock frequency, in Hz. * @version: store the architecture version * @refresh_base: Virtual address of the watchdog refresh frame * @control_base: Virtual address of the watchdog control frame */ struct sbsa_gwdt { struct watchdog_device wdd; u32 clk; int version; void __iomem *refresh_base; void __iomem *control_base; }; #define DEFAULT_TIMEOUT 10 /* seconds */ static unsigned int timeout; module_param(timeout, uint, 0); MODULE_PARM_DESC(timeout, "Watchdog timeout in seconds. (>=0, default=" __MODULE_STRING(DEFAULT_TIMEOUT) ")"); /* * action refers to action taken when watchdog gets WS0 * 0 = skip * 1 = panic * defaults to skip (0) */ static int action; module_param(action, int, 0); MODULE_PARM_DESC(action, "after watchdog gets WS0 interrupt, do: " "0 = skip(*) 1 = panic"); static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, S_IRUGO); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); /* * Arm Base System Architecture 1.0 introduces watchdog v1 which * increases the length watchdog offset register to 48 bits. * - For version 0: WOR is 32 bits; * - For version 1: WOR is 48 bits which comprises the register * offset 0x8 and 0xC, and the bits [63:48] are reserved which are * Read-As-Zero and Writes-Ignored. */ static u64 sbsa_gwdt_reg_read(struct sbsa_gwdt *gwdt) { if (gwdt->version == 0) return readl(gwdt->control_base + SBSA_GWDT_WOR); else return lo_hi_readq(gwdt->control_base + SBSA_GWDT_WOR); } static void sbsa_gwdt_reg_write(u64 val, struct sbsa_gwdt *gwdt) { if (gwdt->version == 0) writel((u32)val, gwdt->control_base + SBSA_GWDT_WOR); else lo_hi_writeq(val, gwdt->control_base + SBSA_GWDT_WOR); } /* * watchdog operation functions */ static int sbsa_gwdt_set_timeout(struct watchdog_device *wdd, unsigned int timeout) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); wdd->timeout = timeout; timeout = clamp_t(unsigned int, timeout, 1, wdd->max_hw_heartbeat_ms / 1000); if (action) sbsa_gwdt_reg_write(gwdt->clk * timeout, gwdt); else /* * In the single stage mode, The first signal (WS0) is ignored, * the timeout is (WOR * 2), so the WOR should be configured * to half value of timeout. */ sbsa_gwdt_reg_write(gwdt->clk / 2 * timeout, gwdt); return 0; } static unsigned int sbsa_gwdt_get_timeleft(struct watchdog_device *wdd) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); u64 timeleft = 0; /* * In the single stage mode, if WS0 is deasserted * (watchdog is in the first stage), * timeleft = WOR + (WCV - system counter) */ if (!action && !(readl(gwdt->control_base + SBSA_GWDT_WCS) & SBSA_GWDT_WCS_WS0)) timeleft += sbsa_gwdt_reg_read(gwdt); timeleft += lo_hi_readq(gwdt->control_base + SBSA_GWDT_WCV) - arch_timer_read_counter(); do_div(timeleft, gwdt->clk); return timeleft; } static int sbsa_gwdt_keepalive(struct watchdog_device *wdd) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); /* * Writing WRR for an explicit watchdog refresh. * You can write anyting (like 0). */ writel(0, gwdt->refresh_base + SBSA_GWDT_WRR); return 0; } static void sbsa_gwdt_get_version(struct watchdog_device *wdd) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); int ver; ver = readl(gwdt->control_base + SBSA_GWDT_W_IIDR); ver = (ver >> SBSA_GWDT_VERSION_SHIFT) & SBSA_GWDT_VERSION_MASK; gwdt->version = ver; } static int sbsa_gwdt_start(struct watchdog_device *wdd) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); /* writing WCS will cause an explicit watchdog refresh */ writel(SBSA_GWDT_WCS_EN, gwdt->control_base + SBSA_GWDT_WCS); return 0; } static int sbsa_gwdt_stop(struct watchdog_device *wdd) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); /* Simply write 0 to WCS to clean WCS_EN bit */ writel(0, gwdt->control_base + SBSA_GWDT_WCS); return 0; } static irqreturn_t sbsa_gwdt_interrupt(int irq, void *dev_id) { panic(WATCHDOG_NAME " timeout"); return IRQ_HANDLED; } static const struct watchdog_info sbsa_gwdt_info = { .identity = WATCHDOG_NAME, .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE | WDIOF_CARDRESET, }; static const struct watchdog_ops sbsa_gwdt_ops = { .owner = THIS_MODULE, .start = sbsa_gwdt_start, .stop = sbsa_gwdt_stop, .ping = sbsa_gwdt_keepalive, .set_timeout = sbsa_gwdt_set_timeout, .get_timeleft = sbsa_gwdt_get_timeleft, }; static int sbsa_gwdt_probe(struct platform_device *pdev) { void __iomem *rf_base, *cf_base; struct device *dev = &pdev->dev; struct watchdog_device *wdd; struct sbsa_gwdt *gwdt; int ret, irq; u32 status; gwdt = devm_kzalloc(dev, sizeof(*gwdt), GFP_KERNEL); if (!gwdt) return -ENOMEM; platform_set_drvdata(pdev, gwdt); cf_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(cf_base)) return PTR_ERR(cf_base); rf_base = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(rf_base)) return PTR_ERR(rf_base); /* * Get the frequency of system counter from the cp15 interface of ARM * Generic timer. We don't need to check it, because if it returns "0", * system would panic in very early stage. */ gwdt->clk = arch_timer_get_cntfrq(); gwdt->refresh_base = rf_base; gwdt->control_base = cf_base; wdd = &gwdt->wdd; wdd->parent = dev; wdd->info = &sbsa_gwdt_info; wdd->ops = &sbsa_gwdt_ops; wdd->min_timeout = 1; wdd->timeout = DEFAULT_TIMEOUT; watchdog_set_drvdata(wdd, gwdt); watchdog_set_nowayout(wdd, nowayout); sbsa_gwdt_get_version(wdd); if (gwdt->version == 0) wdd->max_hw_heartbeat_ms = U32_MAX / gwdt->clk * 1000; else wdd->max_hw_heartbeat_ms = GENMASK_ULL(47, 0) / gwdt->clk * 1000; status = readl(cf_base + SBSA_GWDT_WCS); if (status & SBSA_GWDT_WCS_WS1) { dev_warn(dev, "System reset by WDT.\n"); wdd->bootstatus |= WDIOF_CARDRESET; } if (status & SBSA_GWDT_WCS_EN) set_bit(WDOG_HW_RUNNING, &wdd->status); if (action) { irq = platform_get_irq(pdev, 0); if (irq < 0) { action = 0; dev_warn(dev, "unable to get ws0 interrupt.\n"); } else { /* * In case there is a pending ws0 interrupt, just ping * the watchdog before registering the interrupt routine */ writel(0, rf_base + SBSA_GWDT_WRR); if (devm_request_irq(dev, irq, sbsa_gwdt_interrupt, 0, pdev->name, gwdt)) { action = 0; dev_warn(dev, "unable to request IRQ %d.\n", irq); } } if (!action) dev_warn(dev, "falling back to single stage mode.\n"); } /* * In the single stage mode, The first signal (WS0) is ignored, * the timeout is (WOR * 2), so the maximum timeout should be doubled. */ if (!action) wdd->max_hw_heartbeat_ms *= 2; watchdog_init_timeout(wdd, timeout, dev); /* * Update timeout to WOR. * Because of the explicit watchdog refresh mechanism, * it's also a ping, if watchdog is enabled. */ sbsa_gwdt_set_timeout(wdd, wdd->timeout); watchdog_stop_on_reboot(wdd); ret = devm_watchdog_register_device(dev, wdd); if (ret) return ret; dev_info(dev, "Initialized with %ds timeout @ %u Hz, action=%d.%s\n", wdd->timeout, gwdt->clk, action, status & SBSA_GWDT_WCS_EN ? " [enabled]" : ""); return 0; } /* Disable watchdog if it is active during suspend */ static int __maybe_unused sbsa_gwdt_suspend(struct device *dev) { struct sbsa_gwdt *gwdt = dev_get_drvdata(dev); if (watchdog_hw_running(&gwdt->wdd)) sbsa_gwdt_stop(&gwdt->wdd); return 0; } /* Enable watchdog if necessary */ static int __maybe_unused sbsa_gwdt_resume(struct device *dev) { struct sbsa_gwdt *gwdt = dev_get_drvdata(dev); if (watchdog_hw_running(&gwdt->wdd)) sbsa_gwdt_start(&gwdt->wdd); return 0; } static const struct dev_pm_ops sbsa_gwdt_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sbsa_gwdt_suspend, sbsa_gwdt_resume) }; static const struct of_device_id sbsa_gwdt_of_match[] = { { .compatible = "arm,sbsa-gwdt", }, {}, }; MODULE_DEVICE_TABLE(of, sbsa_gwdt_of_match); static const struct platform_device_id sbsa_gwdt_pdev_match[] = { { .name = DRV_NAME, }, {}, }; MODULE_DEVICE_TABLE(platform, sbsa_gwdt_pdev_match); static struct platform_driver sbsa_gwdt_driver = { .driver = { .name = DRV_NAME, .pm = &sbsa_gwdt_pm_ops, .of_match_table = sbsa_gwdt_of_match, }, .probe = sbsa_gwdt_probe, .id_table = sbsa_gwdt_pdev_match, }; module_platform_driver(sbsa_gwdt_driver); MODULE_DESCRIPTION("SBSA Generic Watchdog Driver"); MODULE_AUTHOR("Fu Wei <[email protected]>"); MODULE_AUTHOR("Suravee Suthikulpanit <[email protected]>"); MODULE_AUTHOR("Al Stone <[email protected]>"); MODULE_AUTHOR("Timur Tabi <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/watchdog/sbsa_gwdt.c