python_code
stringlengths 0
1.8M
| repo_name
stringclasses 7
values | file_path
stringlengths 5
99
|
---|---|---|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Exynos generic interconnect provider driver
*
* Copyright (c) 2020 Samsung Electronics Co., Ltd.
*
* Authors: Artur Świgoń <[email protected]>
* Sylwester Nawrocki <[email protected]>
*/
#include <linux/device.h>
#include <linux/interconnect-provider.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/slab.h>
#define EXYNOS_ICC_DEFAULT_BUS_CLK_RATIO 8
struct exynos_icc_priv {
struct device *dev;
/* One interconnect node per provider */
struct icc_provider provider;
struct icc_node *node;
struct dev_pm_qos_request qos_req;
u32 bus_clk_ratio;
};
static struct icc_node *exynos_icc_get_parent(struct device_node *np)
{
struct of_phandle_args args;
struct icc_node_data *icc_node_data;
struct icc_node *icc_node;
int num, ret;
num = of_count_phandle_with_args(np, "interconnects",
"#interconnect-cells");
if (num < 1)
return NULL; /* parent nodes are optional */
/* Get the interconnect target node */
ret = of_parse_phandle_with_args(np, "interconnects",
"#interconnect-cells", 0, &args);
if (ret < 0)
return ERR_PTR(ret);
icc_node_data = of_icc_get_from_provider(&args);
of_node_put(args.np);
if (IS_ERR(icc_node_data))
return ERR_CAST(icc_node_data);
icc_node = icc_node_data->node;
kfree(icc_node_data);
return icc_node;
}
static int exynos_generic_icc_set(struct icc_node *src, struct icc_node *dst)
{
struct exynos_icc_priv *src_priv = src->data, *dst_priv = dst->data;
s32 src_freq = max(src->avg_bw, src->peak_bw) / src_priv->bus_clk_ratio;
s32 dst_freq = max(dst->avg_bw, dst->peak_bw) / dst_priv->bus_clk_ratio;
int ret;
ret = dev_pm_qos_update_request(&src_priv->qos_req, src_freq);
if (ret < 0) {
dev_err(src_priv->dev, "failed to update PM QoS of %s (src)\n",
src->name);
return ret;
}
ret = dev_pm_qos_update_request(&dst_priv->qos_req, dst_freq);
if (ret < 0) {
dev_err(dst_priv->dev, "failed to update PM QoS of %s (dst)\n",
dst->name);
return ret;
}
return 0;
}
static struct icc_node *exynos_generic_icc_xlate(struct of_phandle_args *spec,
void *data)
{
struct exynos_icc_priv *priv = data;
if (spec->np != priv->dev->parent->of_node)
return ERR_PTR(-EINVAL);
return priv->node;
}
static int exynos_generic_icc_remove(struct platform_device *pdev)
{
struct exynos_icc_priv *priv = platform_get_drvdata(pdev);
icc_provider_deregister(&priv->provider);
icc_nodes_remove(&priv->provider);
return 0;
}
static int exynos_generic_icc_probe(struct platform_device *pdev)
{
struct device *bus_dev = pdev->dev.parent;
struct exynos_icc_priv *priv;
struct icc_provider *provider;
struct icc_node *icc_node, *icc_parent_node;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = &pdev->dev;
platform_set_drvdata(pdev, priv);
provider = &priv->provider;
provider->set = exynos_generic_icc_set;
provider->aggregate = icc_std_aggregate;
provider->xlate = exynos_generic_icc_xlate;
provider->dev = bus_dev;
provider->inter_set = true;
provider->data = priv;
icc_provider_init(provider);
icc_node = icc_node_create(pdev->id);
if (IS_ERR(icc_node))
return PTR_ERR(icc_node);
priv->node = icc_node;
icc_node->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%pOFn",
bus_dev->of_node);
if (of_property_read_u32(bus_dev->of_node, "samsung,data-clock-ratio",
&priv->bus_clk_ratio))
priv->bus_clk_ratio = EXYNOS_ICC_DEFAULT_BUS_CLK_RATIO;
icc_node->data = priv;
icc_node_add(icc_node, provider);
/*
* Register a PM QoS request for the parent (devfreq) device.
*/
ret = dev_pm_qos_add_request(bus_dev, &priv->qos_req,
DEV_PM_QOS_MIN_FREQUENCY, 0);
if (ret < 0)
goto err_node_del;
icc_parent_node = exynos_icc_get_parent(bus_dev->of_node);
if (IS_ERR(icc_parent_node)) {
ret = PTR_ERR(icc_parent_node);
goto err_pmqos_del;
}
if (icc_parent_node) {
ret = icc_link_create(icc_node, icc_parent_node->id);
if (ret < 0)
goto err_pmqos_del;
}
ret = icc_provider_register(provider);
if (ret < 0)
goto err_pmqos_del;
return 0;
err_pmqos_del:
dev_pm_qos_remove_request(&priv->qos_req);
err_node_del:
icc_nodes_remove(provider);
return ret;
}
static struct platform_driver exynos_generic_icc_driver = {
.driver = {
.name = "exynos-generic-icc",
.sync_state = icc_sync_state,
},
.probe = exynos_generic_icc_probe,
.remove = exynos_generic_icc_remove,
};
module_platform_driver(exynos_generic_icc_driver);
MODULE_DESCRIPTION("Exynos generic interconnect driver");
MODULE_AUTHOR("Artur Świgoń <[email protected]>");
MODULE_AUTHOR("Sylwester Nawrocki <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:exynos-generic-icc");
| linux-master | drivers/interconnect/samsung/exynos.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* IMG Pistachio USB PHY driver
*
* Copyright (C) 2015 Google, Inc.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <dt-bindings/phy/phy-pistachio-usb.h>
#define USB_PHY_CONTROL1 0x04
#define USB_PHY_CONTROL1_FSEL_SHIFT 2
#define USB_PHY_CONTROL1_FSEL_MASK 0x7
#define USB_PHY_STRAP_CONTROL 0x10
#define USB_PHY_STRAP_CONTROL_REFCLK_SHIFT 4
#define USB_PHY_STRAP_CONTROL_REFCLK_MASK 0x3
#define USB_PHY_STATUS 0x14
#define USB_PHY_STATUS_RX_PHY_CLK BIT(9)
#define USB_PHY_STATUS_RX_UTMI_CLK BIT(8)
#define USB_PHY_STATUS_VBUS_FAULT BIT(7)
struct pistachio_usb_phy {
struct device *dev;
struct regmap *cr_top;
struct clk *phy_clk;
unsigned int refclk;
};
static const unsigned long fsel_rate_map[] = {
9600000,
10000000,
12000000,
19200000,
20000000,
24000000,
0,
50000000,
};
static int pistachio_usb_phy_power_on(struct phy *phy)
{
struct pistachio_usb_phy *p_phy = phy_get_drvdata(phy);
unsigned long timeout, rate;
unsigned int i;
int ret;
ret = clk_prepare_enable(p_phy->phy_clk);
if (ret < 0) {
dev_err(p_phy->dev, "Failed to enable PHY clock: %d\n", ret);
return ret;
}
regmap_update_bits(p_phy->cr_top, USB_PHY_STRAP_CONTROL,
USB_PHY_STRAP_CONTROL_REFCLK_MASK <<
USB_PHY_STRAP_CONTROL_REFCLK_SHIFT,
p_phy->refclk << USB_PHY_STRAP_CONTROL_REFCLK_SHIFT);
rate = clk_get_rate(p_phy->phy_clk);
if (p_phy->refclk == REFCLK_XO_CRYSTAL && rate != 12000000) {
dev_err(p_phy->dev, "Unsupported rate for XO crystal: %ld\n",
rate);
ret = -EINVAL;
goto disable_clk;
}
for (i = 0; i < ARRAY_SIZE(fsel_rate_map); i++) {
if (rate == fsel_rate_map[i])
break;
}
if (i == ARRAY_SIZE(fsel_rate_map)) {
dev_err(p_phy->dev, "Unsupported clock rate: %lu\n", rate);
ret = -EINVAL;
goto disable_clk;
}
regmap_update_bits(p_phy->cr_top, USB_PHY_CONTROL1,
USB_PHY_CONTROL1_FSEL_MASK <<
USB_PHY_CONTROL1_FSEL_SHIFT,
i << USB_PHY_CONTROL1_FSEL_SHIFT);
timeout = jiffies + msecs_to_jiffies(200);
while (time_before(jiffies, timeout)) {
unsigned int val;
regmap_read(p_phy->cr_top, USB_PHY_STATUS, &val);
if (val & USB_PHY_STATUS_VBUS_FAULT) {
dev_err(p_phy->dev, "VBUS fault detected\n");
ret = -EIO;
goto disable_clk;
}
if ((val & USB_PHY_STATUS_RX_PHY_CLK) &&
(val & USB_PHY_STATUS_RX_UTMI_CLK))
return 0;
usleep_range(1000, 1500);
}
dev_err(p_phy->dev, "Timed out waiting for PHY to power on\n");
ret = -ETIMEDOUT;
disable_clk:
clk_disable_unprepare(p_phy->phy_clk);
return ret;
}
static int pistachio_usb_phy_power_off(struct phy *phy)
{
struct pistachio_usb_phy *p_phy = phy_get_drvdata(phy);
clk_disable_unprepare(p_phy->phy_clk);
return 0;
}
static const struct phy_ops pistachio_usb_phy_ops = {
.power_on = pistachio_usb_phy_power_on,
.power_off = pistachio_usb_phy_power_off,
.owner = THIS_MODULE,
};
static int pistachio_usb_phy_probe(struct platform_device *pdev)
{
struct pistachio_usb_phy *p_phy;
struct phy_provider *provider;
struct phy *phy;
int ret;
p_phy = devm_kzalloc(&pdev->dev, sizeof(*p_phy), GFP_KERNEL);
if (!p_phy)
return -ENOMEM;
p_phy->dev = &pdev->dev;
platform_set_drvdata(pdev, p_phy);
p_phy->cr_top = syscon_regmap_lookup_by_phandle(p_phy->dev->of_node,
"img,cr-top");
if (IS_ERR(p_phy->cr_top)) {
dev_err(p_phy->dev, "Failed to get CR_TOP registers: %ld\n",
PTR_ERR(p_phy->cr_top));
return PTR_ERR(p_phy->cr_top);
}
p_phy->phy_clk = devm_clk_get(p_phy->dev, "usb_phy");
if (IS_ERR(p_phy->phy_clk)) {
dev_err(p_phy->dev, "Failed to get usb_phy clock: %ld\n",
PTR_ERR(p_phy->phy_clk));
return PTR_ERR(p_phy->phy_clk);
}
ret = of_property_read_u32(p_phy->dev->of_node, "img,refclk",
&p_phy->refclk);
if (ret < 0) {
dev_err(p_phy->dev, "No reference clock selector specified\n");
return ret;
}
phy = devm_phy_create(p_phy->dev, NULL, &pistachio_usb_phy_ops);
if (IS_ERR(phy)) {
dev_err(p_phy->dev, "Failed to create PHY: %ld\n",
PTR_ERR(phy));
return PTR_ERR(phy);
}
phy_set_drvdata(phy, p_phy);
provider = devm_of_phy_provider_register(p_phy->dev,
of_phy_simple_xlate);
if (IS_ERR(provider)) {
dev_err(p_phy->dev, "Failed to register PHY provider: %ld\n",
PTR_ERR(provider));
return PTR_ERR(provider);
}
return 0;
}
static const struct of_device_id pistachio_usb_phy_of_match[] = {
{ .compatible = "img,pistachio-usb-phy", },
{ },
};
MODULE_DEVICE_TABLE(of, pistachio_usb_phy_of_match);
static struct platform_driver pistachio_usb_phy_driver = {
.probe = pistachio_usb_phy_probe,
.driver = {
.name = "pistachio-usb-phy",
.of_match_table = pistachio_usb_phy_of_match,
},
};
module_platform_driver(pistachio_usb_phy_driver);
MODULE_AUTHOR("Andrew Bresticker <[email protected]>");
MODULE_DESCRIPTION("IMG Pistachio USB2.0 PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/phy-pistachio-usb.c |
// SPDX-License-Identifier: GPL-2.0
/*
* phy-can-transceiver.c - phy driver for CAN transceivers
*
* Copyright (C) 2021 Texas Instruments Incorporated - https://www.ti.com
*
*/
#include <linux/of.h>
#include<linux/phy/phy.h>
#include<linux/platform_device.h>
#include<linux/module.h>
#include<linux/gpio.h>
#include<linux/gpio/consumer.h>
#include <linux/mux/consumer.h>
struct can_transceiver_data {
u32 flags;
#define CAN_TRANSCEIVER_STB_PRESENT BIT(0)
#define CAN_TRANSCEIVER_EN_PRESENT BIT(1)
};
struct can_transceiver_phy {
struct phy *generic_phy;
struct gpio_desc *standby_gpio;
struct gpio_desc *enable_gpio;
struct mux_state *mux_state;
};
/* Power on function */
static int can_transceiver_phy_power_on(struct phy *phy)
{
struct can_transceiver_phy *can_transceiver_phy = phy_get_drvdata(phy);
int ret;
if (can_transceiver_phy->mux_state) {
ret = mux_state_select(can_transceiver_phy->mux_state);
if (ret) {
dev_err(&phy->dev, "Failed to select CAN mux: %d\n", ret);
return ret;
}
}
if (can_transceiver_phy->standby_gpio)
gpiod_set_value_cansleep(can_transceiver_phy->standby_gpio, 0);
if (can_transceiver_phy->enable_gpio)
gpiod_set_value_cansleep(can_transceiver_phy->enable_gpio, 1);
return 0;
}
/* Power off function */
static int can_transceiver_phy_power_off(struct phy *phy)
{
struct can_transceiver_phy *can_transceiver_phy = phy_get_drvdata(phy);
if (can_transceiver_phy->standby_gpio)
gpiod_set_value_cansleep(can_transceiver_phy->standby_gpio, 1);
if (can_transceiver_phy->enable_gpio)
gpiod_set_value_cansleep(can_transceiver_phy->enable_gpio, 0);
if (can_transceiver_phy->mux_state)
mux_state_deselect(can_transceiver_phy->mux_state);
return 0;
}
static const struct phy_ops can_transceiver_phy_ops = {
.power_on = can_transceiver_phy_power_on,
.power_off = can_transceiver_phy_power_off,
.owner = THIS_MODULE,
};
static const struct can_transceiver_data tcan1042_drvdata = {
.flags = CAN_TRANSCEIVER_STB_PRESENT,
};
static const struct can_transceiver_data tcan1043_drvdata = {
.flags = CAN_TRANSCEIVER_STB_PRESENT | CAN_TRANSCEIVER_EN_PRESENT,
};
static const struct of_device_id can_transceiver_phy_ids[] = {
{
.compatible = "ti,tcan1042",
.data = &tcan1042_drvdata
},
{
.compatible = "ti,tcan1043",
.data = &tcan1043_drvdata
},
{
.compatible = "nxp,tjr1443",
.data = &tcan1043_drvdata
},
{ }
};
MODULE_DEVICE_TABLE(of, can_transceiver_phy_ids);
static int can_transceiver_phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct device *dev = &pdev->dev;
struct can_transceiver_phy *can_transceiver_phy;
const struct can_transceiver_data *drvdata;
const struct of_device_id *match;
struct phy *phy;
struct gpio_desc *standby_gpio;
struct gpio_desc *enable_gpio;
u32 max_bitrate = 0;
int err;
can_transceiver_phy = devm_kzalloc(dev, sizeof(struct can_transceiver_phy), GFP_KERNEL);
if (!can_transceiver_phy)
return -ENOMEM;
match = of_match_node(can_transceiver_phy_ids, pdev->dev.of_node);
drvdata = match->data;
if (of_property_read_bool(dev->of_node, "mux-states")) {
struct mux_state *mux_state;
mux_state = devm_mux_state_get(dev, NULL);
if (IS_ERR(mux_state))
return dev_err_probe(&pdev->dev, PTR_ERR(mux_state),
"failed to get mux\n");
can_transceiver_phy->mux_state = mux_state;
}
phy = devm_phy_create(dev, dev->of_node,
&can_transceiver_phy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create can transceiver phy\n");
return PTR_ERR(phy);
}
err = device_property_read_u32(dev, "max-bitrate", &max_bitrate);
if ((err != -EINVAL) && !max_bitrate)
dev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit\n");
phy->attrs.max_link_rate = max_bitrate;
can_transceiver_phy->generic_phy = phy;
if (drvdata->flags & CAN_TRANSCEIVER_STB_PRESENT) {
standby_gpio = devm_gpiod_get_optional(dev, "standby", GPIOD_OUT_HIGH);
if (IS_ERR(standby_gpio))
return PTR_ERR(standby_gpio);
can_transceiver_phy->standby_gpio = standby_gpio;
}
if (drvdata->flags & CAN_TRANSCEIVER_EN_PRESENT) {
enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW);
if (IS_ERR(enable_gpio))
return PTR_ERR(enable_gpio);
can_transceiver_phy->enable_gpio = enable_gpio;
}
phy_set_drvdata(can_transceiver_phy->generic_phy, can_transceiver_phy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver can_transceiver_phy_driver = {
.probe = can_transceiver_phy_probe,
.driver = {
.name = "can-transceiver-phy",
.of_match_table = can_transceiver_phy_ids,
},
};
module_platform_driver(can_transceiver_phy_driver);
MODULE_AUTHOR("Faiz Abbas <[email protected]>");
MODULE_AUTHOR("Aswath Govindraju <[email protected]>");
MODULE_DESCRIPTION("CAN TRANSCEIVER PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/phy-can-transceiver.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Intel LGM USB PHY driver
*
* Copyright (C) 2020 Intel Corporation.
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/usb/phy.h>
#include <linux/workqueue.h>
#define CTRL1_OFFSET 0x14
#define SRAM_EXT_LD_DONE BIT(25)
#define SRAM_INIT_DONE BIT(26)
#define TCPC_OFFSET 0x1014
#define TCPC_MUX_CTL GENMASK(1, 0)
#define MUX_NC 0
#define MUX_USB 1
#define MUX_DP 2
#define MUX_USBDP 3
#define TCPC_FLIPPED BIT(2)
#define TCPC_LOW_POWER_EN BIT(3)
#define TCPC_VALID BIT(4)
#define TCPC_CONN \
(TCPC_VALID | FIELD_PREP(TCPC_MUX_CTL, MUX_USB))
#define TCPC_DISCONN \
(TCPC_VALID | FIELD_PREP(TCPC_MUX_CTL, MUX_NC) | TCPC_LOW_POWER_EN)
static const char *const PHY_RESETS[] = { "phy31", "phy", };
static const char *const CTL_RESETS[] = { "apb", "ctrl", };
struct tca_apb {
struct reset_control *resets[ARRAY_SIZE(PHY_RESETS)];
struct regulator *vbus;
struct work_struct wk;
struct usb_phy phy;
bool regulator_enabled;
bool phy_initialized;
bool connected;
};
static int get_flipped(struct tca_apb *ta, bool *flipped)
{
union extcon_property_value property;
int ret;
ret = extcon_get_property(ta->phy.edev, EXTCON_USB_HOST,
EXTCON_PROP_USB_TYPEC_POLARITY, &property);
if (ret) {
dev_err(ta->phy.dev, "no polarity property from extcon\n");
return ret;
}
*flipped = property.intval;
return 0;
}
static int phy_init(struct usb_phy *phy)
{
struct tca_apb *ta = container_of(phy, struct tca_apb, phy);
void __iomem *ctrl1 = phy->io_priv + CTRL1_OFFSET;
int val, ret, i;
if (ta->phy_initialized)
return 0;
for (i = 0; i < ARRAY_SIZE(PHY_RESETS); i++)
reset_control_deassert(ta->resets[i]);
ret = readl_poll_timeout(ctrl1, val, val & SRAM_INIT_DONE, 10, 10 * 1000);
if (ret) {
dev_err(ta->phy.dev, "SRAM init failed, 0x%x\n", val);
return ret;
}
writel(readl(ctrl1) | SRAM_EXT_LD_DONE, ctrl1);
ta->phy_initialized = true;
if (!ta->phy.edev) {
writel(TCPC_CONN, ta->phy.io_priv + TCPC_OFFSET);
return phy->set_vbus(phy, true);
}
schedule_work(&ta->wk);
return ret;
}
static void phy_shutdown(struct usb_phy *phy)
{
struct tca_apb *ta = container_of(phy, struct tca_apb, phy);
int i;
if (!ta->phy_initialized)
return;
ta->phy_initialized = false;
flush_work(&ta->wk);
ta->phy.set_vbus(&ta->phy, false);
ta->connected = false;
writel(TCPC_DISCONN, ta->phy.io_priv + TCPC_OFFSET);
for (i = 0; i < ARRAY_SIZE(PHY_RESETS); i++)
reset_control_assert(ta->resets[i]);
}
static int phy_set_vbus(struct usb_phy *phy, int on)
{
struct tca_apb *ta = container_of(phy, struct tca_apb, phy);
int ret;
if (!!on == ta->regulator_enabled)
return 0;
if (on)
ret = regulator_enable(ta->vbus);
else
ret = regulator_disable(ta->vbus);
if (!ret)
ta->regulator_enabled = on;
dev_dbg(ta->phy.dev, "set vbus: %d\n", on);
return ret;
}
static void tca_work(struct work_struct *work)
{
struct tca_apb *ta = container_of(work, struct tca_apb, wk);
bool connected;
bool flipped = false;
u32 val;
int ret;
ret = get_flipped(ta, &flipped);
if (ret)
return;
connected = extcon_get_state(ta->phy.edev, EXTCON_USB_HOST);
if (connected == ta->connected)
return;
ta->connected = connected;
if (connected) {
val = TCPC_CONN;
if (flipped)
val |= TCPC_FLIPPED;
dev_dbg(ta->phy.dev, "connected%s\n", flipped ? " flipped" : "");
} else {
val = TCPC_DISCONN;
dev_dbg(ta->phy.dev, "disconnected\n");
}
writel(val, ta->phy.io_priv + TCPC_OFFSET);
ret = ta->phy.set_vbus(&ta->phy, connected);
if (ret)
dev_err(ta->phy.dev, "failed to set VBUS\n");
}
static int id_notifier(struct notifier_block *nb, unsigned long event, void *ptr)
{
struct tca_apb *ta = container_of(nb, struct tca_apb, phy.id_nb);
if (ta->phy_initialized)
schedule_work(&ta->wk);
return NOTIFY_DONE;
}
static int vbus_notifier(struct notifier_block *nb, unsigned long evnt, void *ptr)
{
return NOTIFY_DONE;
}
static int phy_probe(struct platform_device *pdev)
{
struct reset_control *resets[ARRAY_SIZE(CTL_RESETS)];
struct device *dev = &pdev->dev;
struct usb_phy *phy;
struct tca_apb *ta;
int i;
ta = devm_kzalloc(dev, sizeof(*ta), GFP_KERNEL);
if (!ta)
return -ENOMEM;
platform_set_drvdata(pdev, ta);
INIT_WORK(&ta->wk, tca_work);
phy = &ta->phy;
phy->dev = dev;
phy->label = dev_name(dev);
phy->type = USB_PHY_TYPE_USB3;
phy->init = phy_init;
phy->shutdown = phy_shutdown;
phy->set_vbus = phy_set_vbus;
phy->id_nb.notifier_call = id_notifier;
phy->vbus_nb.notifier_call = vbus_notifier;
phy->io_priv = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(phy->io_priv))
return PTR_ERR(phy->io_priv);
ta->vbus = devm_regulator_get(dev, "vbus");
if (IS_ERR(ta->vbus))
return PTR_ERR(ta->vbus);
for (i = 0; i < ARRAY_SIZE(CTL_RESETS); i++) {
resets[i] = devm_reset_control_get_exclusive(dev, CTL_RESETS[i]);
if (IS_ERR(resets[i])) {
dev_err(dev, "%s reset not found\n", CTL_RESETS[i]);
return PTR_ERR(resets[i]);
}
}
for (i = 0; i < ARRAY_SIZE(PHY_RESETS); i++) {
ta->resets[i] = devm_reset_control_get_exclusive(dev, PHY_RESETS[i]);
if (IS_ERR(ta->resets[i])) {
dev_err(dev, "%s reset not found\n", PHY_RESETS[i]);
return PTR_ERR(ta->resets[i]);
}
}
for (i = 0; i < ARRAY_SIZE(CTL_RESETS); i++)
reset_control_assert(resets[i]);
for (i = 0; i < ARRAY_SIZE(PHY_RESETS); i++)
reset_control_assert(ta->resets[i]);
/*
* Out-of-band reset of the controller after PHY reset will cause
* controller malfunctioning, so we should use in-band controller
* reset only and leave the controller de-asserted here.
*/
for (i = 0; i < ARRAY_SIZE(CTL_RESETS); i++)
reset_control_deassert(resets[i]);
/* Need to wait at least 20us after de-assert the controller */
usleep_range(20, 100);
return usb_add_phy_dev(phy);
}
static void phy_remove(struct platform_device *pdev)
{
struct tca_apb *ta = platform_get_drvdata(pdev);
usb_remove_phy(&ta->phy);
}
static const struct of_device_id intel_usb_phy_dt_ids[] = {
{ .compatible = "intel,lgm-usb-phy" },
{ }
};
MODULE_DEVICE_TABLE(of, intel_usb_phy_dt_ids);
static struct platform_driver lgm_phy_driver = {
.driver = {
.name = "lgm-usb-phy",
.of_match_table = intel_usb_phy_dt_ids,
},
.probe = phy_probe,
.remove_new = phy_remove,
};
module_platform_driver(lgm_phy_driver);
MODULE_DESCRIPTION("Intel LGM USB PHY driver");
MODULE_AUTHOR("Li Yin <[email protected]>");
MODULE_AUTHOR("Vadivel Murugan R <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/phy-lgm-usb.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* PHY driver for NXP LPC18xx/43xx internal USB OTG PHY
*
* Copyright (C) 2015 Joachim Eastwood <[email protected]>
*/
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
/* USB OTG PHY register offset and bit in CREG */
#define LPC18XX_CREG_CREG0 0x004
#define LPC18XX_CREG_CREG0_USB0PHY BIT(5)
struct lpc18xx_usb_otg_phy {
struct phy *phy;
struct clk *clk;
struct regmap *reg;
};
static int lpc18xx_usb_otg_phy_init(struct phy *phy)
{
struct lpc18xx_usb_otg_phy *lpc = phy_get_drvdata(phy);
int ret;
/* The PHY must be clocked at 480 MHz */
ret = clk_set_rate(lpc->clk, 480000000);
if (ret)
return ret;
return clk_prepare(lpc->clk);
}
static int lpc18xx_usb_otg_phy_exit(struct phy *phy)
{
struct lpc18xx_usb_otg_phy *lpc = phy_get_drvdata(phy);
clk_unprepare(lpc->clk);
return 0;
}
static int lpc18xx_usb_otg_phy_power_on(struct phy *phy)
{
struct lpc18xx_usb_otg_phy *lpc = phy_get_drvdata(phy);
int ret;
ret = clk_enable(lpc->clk);
if (ret)
return ret;
/* The bit in CREG is cleared to enable the PHY */
ret = regmap_update_bits(lpc->reg, LPC18XX_CREG_CREG0,
LPC18XX_CREG_CREG0_USB0PHY, 0);
if (ret) {
clk_disable(lpc->clk);
return ret;
}
return 0;
}
static int lpc18xx_usb_otg_phy_power_off(struct phy *phy)
{
struct lpc18xx_usb_otg_phy *lpc = phy_get_drvdata(phy);
int ret;
ret = regmap_update_bits(lpc->reg, LPC18XX_CREG_CREG0,
LPC18XX_CREG_CREG0_USB0PHY,
LPC18XX_CREG_CREG0_USB0PHY);
if (ret)
return ret;
clk_disable(lpc->clk);
return 0;
}
static const struct phy_ops lpc18xx_usb_otg_phy_ops = {
.init = lpc18xx_usb_otg_phy_init,
.exit = lpc18xx_usb_otg_phy_exit,
.power_on = lpc18xx_usb_otg_phy_power_on,
.power_off = lpc18xx_usb_otg_phy_power_off,
.owner = THIS_MODULE,
};
static int lpc18xx_usb_otg_phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct lpc18xx_usb_otg_phy *lpc;
lpc = devm_kzalloc(&pdev->dev, sizeof(*lpc), GFP_KERNEL);
if (!lpc)
return -ENOMEM;
lpc->reg = syscon_node_to_regmap(pdev->dev.of_node->parent);
if (IS_ERR(lpc->reg)) {
dev_err(&pdev->dev, "failed to get syscon\n");
return PTR_ERR(lpc->reg);
}
lpc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(lpc->clk)) {
dev_err(&pdev->dev, "failed to get clock\n");
return PTR_ERR(lpc->clk);
}
lpc->phy = devm_phy_create(&pdev->dev, NULL, &lpc18xx_usb_otg_phy_ops);
if (IS_ERR(lpc->phy)) {
dev_err(&pdev->dev, "failed to create PHY\n");
return PTR_ERR(lpc->phy);
}
phy_set_drvdata(lpc->phy, lpc);
phy_provider = devm_of_phy_provider_register(&pdev->dev,
of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id lpc18xx_usb_otg_phy_match[] = {
{ .compatible = "nxp,lpc1850-usb-otg-phy" },
{ }
};
MODULE_DEVICE_TABLE(of, lpc18xx_usb_otg_phy_match);
static struct platform_driver lpc18xx_usb_otg_phy_driver = {
.probe = lpc18xx_usb_otg_phy_probe,
.driver = {
.name = "lpc18xx-usb-otg-phy",
.of_match_table = lpc18xx_usb_otg_phy_match,
},
};
module_platform_driver(lpc18xx_usb_otg_phy_driver);
MODULE_AUTHOR("Joachim Eastwood <[email protected]>");
MODULE_DESCRIPTION("NXP LPC18xx/43xx USB OTG PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/phy-lpc18xx-usb-otg.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AppliedMicro X-Gene Multi-purpose PHY driver
*
* Copyright (c) 2014, Applied Micro Circuits Corporation
* Author: Loc Ho <[email protected]>
* Tuan Phan <[email protected]>
* Suman Tripathi <[email protected]>
*
* The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
* The first PLL clock macro is used for internal reference clock. The second
* PLL clock macro is used to generate the clock for the PHY. This driver
* configures the first PLL CMU, the second PLL CMU, and programs the PHY to
* operate according to the mode of operation. The first PLL CMU is only
* required if internal clock is enabled.
*
* Logical Layer Out Of HW module units:
*
* -----------------
* | Internal | |------|
* | Ref PLL CMU |----| | ------------- ---------
* ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes|
* | | | | ---------
* External Clock ------| | -------------
* |------|
*
* The Ref PLL CMU CSR (Configuration System Registers) is accessed
* indirectly from the SDS offset at 0x2000. It is only required for
* internal reference clock.
* The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
* The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
*
* The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
* due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
* it is located outside the PHY IP. This is the case for the PHY located
* at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
* to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
*
* Currently, this driver only supports Gen3 SATA mode with external clock.
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/phy/phy.h>
#include <linux/clk.h>
/* Max 2 lanes per a PHY unit */
#define MAX_LANE 2
/* Register offset inside the PHY */
#define SERDES_PLL_INDIRECT_OFFSET 0x0000
#define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000
#define SERDES_INDIRECT_OFFSET 0x0400
#define SERDES_LANE_STRIDE 0x0200
/* Some default Serdes parameters */
#define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e }
#define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 }
#define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa }
#define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 }
#define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 }
#define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 }
#define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 }
#define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa }
#define SATA_SPD_SEL_GEN3 0x7
#define SATA_SPD_SEL_GEN2 0x3
#define SATA_SPD_SEL_GEN1 0x1
#define SSC_DISABLE 0
#define SSC_ENABLE 1
#define FBDIV_VAL_50M 0x77
#define REFDIV_VAL_50M 0x1
#define FBDIV_VAL_100M 0x3B
#define REFDIV_VAL_100M 0x0
/* SATA Clock/Reset CSR */
#define SATACLKENREG 0x00000000
#define SATA0_CORE_CLKEN 0x00000002
#define SATA1_CORE_CLKEN 0x00000004
#define SATASRESETREG 0x00000004
#define SATA_MEM_RESET_MASK 0x00000020
#define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5)
#define SATA_SDS_RESET_MASK 0x00000004
#define SATA_CSR_RESET_MASK 0x00000001
#define SATA_CORE_RESET_MASK 0x00000002
#define SATA_PMCLK_RESET_MASK 0x00000010
#define SATA_PCLK_RESET_MASK 0x00000008
/* SDS CSR used for PHY Indirect access */
#define SATA_ENET_SDS_PCS_CTL0 0x00000000
#define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
#define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
#define SATA_ENET_SDS_CTL0 0x0000000c
#define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
#define SATA_ENET_SDS_CTL1 0x00000010
#define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
#define SATA_ENET_SDS_RST_CTL 0x00000024
#define SATA_ENET_SDS_IND_CMD_REG 0x0000003c
#define CFG_IND_WR_CMD_MASK 0x00000001
#define CFG_IND_RD_CMD_MASK 0x00000002
#define CFG_IND_CMD_DONE_MASK 0x00000004
#define CFG_IND_ADDR_SET(dst, src) \
(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
#define SATA_ENET_SDS_IND_RDATA_REG 0x00000040
#define SATA_ENET_SDS_IND_WDATA_REG 0x00000044
#define SATA_ENET_CLK_MACRO_REG 0x0000004c
#define I_RESET_B_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
#define I_PLL_FBDIV_SET(dst, src) \
(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
#define I_CUSTOMEROV_SET(dst, src) \
(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
#define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30)
#define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31)
/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
#define CMU_REG0 0x00000
#define CMU_REG0_PLL_REF_SEL_MASK 0x00002000
#define CMU_REG0_PLL_REF_SEL_SET(dst, src) \
(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
#define CMU_REG0_PDOWN_MASK 0x00004000
#define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
#define CMU_REG1 0x00002
#define CMU_REG1_PLL_CP_SET(dst, src) \
(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
#define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define CMU_REG1_PLL_CP_SEL_SET(dst, src) \
(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
#define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001
#define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define CMU_REG2 0x00004
#define CMU_REG2_PLL_REFDIV_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define CMU_REG2_PLL_LFRES_SET(dst, src) \
(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
#define CMU_REG2_PLL_FBDIV_SET(dst, src) \
(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
#define CMU_REG3 0x00006
#define CMU_REG3_VCOVARSEL_SET(dst, src) \
(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
#define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define CMU_REG4 0x00008
#define CMU_REG5 0x0000a
#define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
#define CMU_REG5_PLL_LFCAP_SET(dst, src) \
(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
#define CMU_REG5_PLL_RESETB_MASK 0x00000001
#define CMU_REG6 0x0000c
#define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
#define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define CMU_REG7 0x0000e
#define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
#define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10)
#define CMU_REG8 0x00010
#define CMU_REG9 0x00012
#define CMU_REG9_WORD_LEN_8BIT 0x000
#define CMU_REG9_WORD_LEN_10BIT 0x001
#define CMU_REG9_WORD_LEN_16BIT 0x002
#define CMU_REG9_WORD_LEN_20BIT 0x003
#define CMU_REG9_WORD_LEN_32BIT 0x004
#define CMU_REG9_WORD_LEN_40BIT 0x005
#define CMU_REG9_WORD_LEN_64BIT 0x006
#define CMU_REG9_WORD_LEN_66BIT 0x007
#define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
#define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
#define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define CMU_REG9_VBG_BYPASSB_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define CMU_REG9_IGEN_BYPASS_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define CMU_REG10 0x00014
#define CMU_REG10_VREG_REFSEL_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define CMU_REG11 0x00016
#define CMU_REG12 0x00018
#define CMU_REG12_STATE_DELAY9_SET(dst, src) \
(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
#define CMU_REG13 0x0001a
#define CMU_REG14 0x0001c
#define CMU_REG15 0x0001e
#define CMU_REG16 0x00020
#define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001
#define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002
#define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
#define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
#define CMU_REG17 0x00022
#define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
#define CMU_REG17_RESERVED_7_SET(dst, src) \
(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
#define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000
#define CMU_REG18 0x00024
#define CMU_REG19 0x00026
#define CMU_REG20 0x00028
#define CMU_REG21 0x0002a
#define CMU_REG22 0x0002c
#define CMU_REG23 0x0002e
#define CMU_REG24 0x00030
#define CMU_REG25 0x00032
#define CMU_REG26 0x00034
#define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define CMU_REG27 0x00036
#define CMU_REG28 0x00038
#define CMU_REG29 0x0003a
#define CMU_REG30 0x0003c
#define CMU_REG30_LOCK_COUNT_SET(dst, src) \
(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
#define CMU_REG30_PCIE_MODE_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define CMU_REG31 0x0003e
#define CMU_REG32 0x00040
#define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000
#define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
#define CMU_REG32_IREF_ADJ_SET(dst, src) \
(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
#define CMU_REG33 0x00042
#define CMU_REG34 0x00044
#define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
#define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
#define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
#define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
#define CMU_REG35 0x00046
#define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
#define CMU_REG36 0x00048
#define CMU_REG36_PLL_SSC_EN_SET(dst, src) \
(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
#define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
#define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
#define CMU_REG37 0x0004a
#define CMU_REG38 0x0004c
#define CMU_REG39 0x0004e
/* PHY lane CSR accessing from SDS indirectly */
#define RXTX_REG0 0x000
#define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG1 0x002
#define RXTX_REG1_RXACVCM_SET(dst, src) \
(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
#define RXTX_REG1_CTLE_EQ_SET(dst, src) \
(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
#define RXTX_REG1_RXVREG1_SET(dst, src) \
(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
#define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
#define RXTX_REG2 0x004
#define RXTX_REG2_VTT_ENA_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
#define RXTX_REG2_VTT_SEL_SET(dst, src) \
(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
#define RXTX_REG4 0x008
#define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040
#define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG5 0x00a
#define RXTX_REG5_TX_CN1_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG5_TX_CP1_SET(dst, src) \
(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
#define RXTX_REG5_TX_CN2_SET(dst, src) \
(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
#define RXTX_REG6 0x00c
#define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
#define RXTX_REG6_TXAMP_ENA_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define RXTX_REG6_TX_IDLE_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG7 0x00e
#define RXTX_REG7_RESETB_RXD_MASK 0x00000100
#define RXTX_REG7_RESETB_RXA_MASK 0x00000080
#define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG8 0x010
#define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
#define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
#define RXTX_REG8_SSC_ENABLE_SET(dst, src) \
(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
#define RXTX_REG8_SD_VREF_SET(dst, src) \
(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
#define RXTX_REG8_SD_DISABLE_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG7 0x00e
#define RXTX_REG7_RESETB_RXD_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG7_RESETB_RXA_SET(dst, src) \
(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
#define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000
#define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
#define RXTX_REG11 0x016
#define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG12 0x018
#define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
#define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002
#define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG13 0x01a
#define RXTX_REG14 0x01c
#define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
#define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define RXTX_REG26 0x034
#define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG26_BLWC_ENA_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG21 0x02a
#define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src)))
#define RXTX_REG22 0x02c
#define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src)))
#define RXTX_REG23 0x02e
#define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG24 0x030
#define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG27 0x036
#define RXTX_REG28 0x038
#define RXTX_REG31 0x03e
#define RXTX_REG38 0x04c
#define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
#define RXTX_REG39 0x04e
#define RXTX_REG40 0x050
#define RXTX_REG41 0x052
#define RXTX_REG42 0x054
#define RXTX_REG43 0x056
#define RXTX_REG44 0x058
#define RXTX_REG45 0x05a
#define RXTX_REG46 0x05c
#define RXTX_REG47 0x05e
#define RXTX_REG48 0x060
#define RXTX_REG49 0x062
#define RXTX_REG50 0x064
#define RXTX_REG51 0x066
#define RXTX_REG52 0x068
#define RXTX_REG53 0x06a
#define RXTX_REG54 0x06c
#define RXTX_REG55 0x06e
#define RXTX_REG61 0x07a
#define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
#define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
#define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
#define RXTX_REG62 0x07c
#define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG81 0x0a2
#define RXTX_REG89_MU_TH7_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG89_MU_TH8_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG89_MU_TH9_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG96 0x0c0
#define RXTX_REG96_MU_FREQ1_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG96_MU_FREQ2_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG96_MU_FREQ3_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG99 0x0c6
#define RXTX_REG99_MU_PHASE1_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG99_MU_PHASE2_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG99_MU_PHASE3_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG102 0x0cc
#define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
#define RXTX_REG114 0x0e4
#define RXTX_REG121 0x0f2
#define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
#define RXTX_REG125 0x0fa
#define RXTX_REG125_PQ_REG_SET(dst, src) \
(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
#define RXTX_REG125_SIGN_PQ_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
#define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
#define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG127 0x0fe
#define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002
#define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004
#define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG128 0x100
#define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
#define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG129 0x102
#define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG130 0x104
#define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG145 0x122
#define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define RXTX_REG145_RXES_ENA_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define RXTX_REG147 0x126
#define RXTX_REG148 0x128
/* Clock macro type */
enum cmu_type_t {
REF_CMU = 0, /* Clock macro is the internal reference clock */
PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */
};
enum mux_type_t {
MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */
MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */
};
enum clk_type_t {
CLK_EXT_DIFF = 0, /* External differential */
CLK_INT_DIFF = 1, /* Internal differential */
CLK_INT_SING = 2, /* Internal single ended */
};
enum xgene_phy_mode {
MODE_SATA = 0, /* List them for simple reference */
MODE_SGMII = 1,
MODE_PCIE = 2,
MODE_USB = 3,
MODE_XFI = 4,
MODE_MAX
};
struct xgene_sata_override_param {
u32 speed[MAX_LANE]; /* Index for override parameter per lane */
u32 txspeed[3]; /* Tx speed */
u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */
u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */
u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */
u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
};
struct xgene_phy_ctx {
struct device *dev;
struct phy *phy;
enum xgene_phy_mode mode; /* Mode of operation */
enum clk_type_t clk_type; /* Input clock selection */
void __iomem *sds_base; /* PHY CSR base addr */
struct clk *clk; /* Optional clock */
/* Override Serdes parameters */
struct xgene_sata_override_param sata_param;
};
/*
* For chip earlier than A3 version, enable this flag.
* To enable, pass boot argument phy_xgene.preA3Chip=1
*/
static int preA3Chip;
MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
module_param_named(preA3Chip, preA3Chip, int, 0444);
static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
u32 indirect_data_reg, u32 addr, u32 data)
{
unsigned long deadline = jiffies + HZ;
u32 val;
u32 cmd;
cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
cmd = CFG_IND_ADDR_SET(cmd, addr);
writel(data, csr_base + indirect_data_reg);
readl(csr_base + indirect_data_reg); /* Force a barrier */
writel(cmd, csr_base + indirect_cmd_reg);
readl(csr_base + indirect_cmd_reg); /* Force a barrier */
do {
val = readl(csr_base + indirect_cmd_reg);
} while (!(val & CFG_IND_CMD_DONE_MASK) &&
time_before(jiffies, deadline));
if (!(val & CFG_IND_CMD_DONE_MASK))
pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
csr_base + indirect_cmd_reg, addr, data);
}
static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
u32 indirect_data_reg, u32 addr, u32 *data)
{
unsigned long deadline = jiffies + HZ;
u32 val;
u32 cmd;
cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
cmd = CFG_IND_ADDR_SET(cmd, addr);
writel(cmd, csr_base + indirect_cmd_reg);
readl(csr_base + indirect_cmd_reg); /* Force a barrier */
do {
val = readl(csr_base + indirect_cmd_reg);
} while (!(val & CFG_IND_CMD_DONE_MASK) &&
time_before(jiffies, deadline));
*data = readl(csr_base + indirect_data_reg);
if (!(val & CFG_IND_CMD_DONE_MASK))
pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
csr_base + indirect_cmd_reg, addr, *data);
}
static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 data)
{
void __iomem *sds_base = ctx->sds_base;
u32 val;
if (cmu_type == REF_CMU)
reg += SERDES_PLL_REF_INDIRECT_OFFSET;
else
reg += SERDES_PLL_INDIRECT_OFFSET;
sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_WDATA_REG, reg, data);
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
}
static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 *data)
{
void __iomem *sds_base = ctx->sds_base;
if (cmu_type == REF_CMU)
reg += SERDES_PLL_REF_INDIRECT_OFFSET;
else
reg += SERDES_PLL_INDIRECT_OFFSET;
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, data);
pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
}
static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 bits)
{
u32 val;
cmu_rd(ctx, cmu_type, reg, &val);
val |= bits;
cmu_wr(ctx, cmu_type, reg, val);
cmu_rd(ctx, cmu_type, reg, &val);
val &= ~bits;
cmu_wr(ctx, cmu_type, reg, val);
}
static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 bits)
{
u32 val;
cmu_rd(ctx, cmu_type, reg, &val);
val &= ~bits;
cmu_wr(ctx, cmu_type, reg, val);
}
static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 bits)
{
u32 val;
cmu_rd(ctx, cmu_type, reg, &val);
val |= bits;
cmu_wr(ctx, cmu_type, reg, val);
}
static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
{
void __iomem *sds_base = ctx->sds_base;
u32 val;
reg += SERDES_INDIRECT_OFFSET;
reg += lane * SERDES_LANE_STRIDE;
sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_WDATA_REG, reg, data);
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
val);
}
static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
{
void __iomem *sds_base = ctx->sds_base;
reg += SERDES_INDIRECT_OFFSET;
reg += lane * SERDES_LANE_STRIDE;
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, data);
pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
}
static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
u32 bits)
{
u32 val;
serdes_rd(ctx, lane, reg, &val);
val &= ~bits;
serdes_wr(ctx, lane, reg, val);
}
static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
u32 bits)
{
u32 val;
serdes_rd(ctx, lane, reg, &val);
val |= bits;
serdes_wr(ctx, lane, reg, val);
}
static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type,
enum clk_type_t clk_type)
{
u32 val;
/* Set the reset sequence delay for TX ready assertion */
cmu_rd(ctx, cmu_type, CMU_REG12, &val);
val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG12, val);
/* Set the programmable stage delays between various enable stages */
cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
/* Configure clock type */
if (clk_type == CLK_EXT_DIFF) {
/* Select external clock mux */
cmu_rd(ctx, cmu_type, CMU_REG0, &val);
val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG0, val);
/* Select CMOS as reference clock */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
dev_dbg(ctx->dev, "Set external reference clock\n");
} else if (clk_type == CLK_INT_DIFF) {
/* Select internal clock mux */
cmu_rd(ctx, cmu_type, CMU_REG0, &val);
val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG0, val);
/* Select CMOS as reference clock */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
dev_dbg(ctx->dev, "Set internal reference clock\n");
} else if (clk_type == CLK_INT_SING) {
/*
* NOTE: This clock type is NOT support for controller
* whose internal clock shared in the PCIe controller
*
* Select internal clock mux
*/
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
/* Select CML as reference clock */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
dev_dbg(ctx->dev,
"Set internal single ended reference clock\n");
}
}
static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type,
enum clk_type_t clk_type)
{
u32 val;
int ref_100MHz;
if (cmu_type == REF_CMU) {
/* Set VCO calibration voltage threshold */
cmu_rd(ctx, cmu_type, CMU_REG34, &val);
val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
cmu_wr(ctx, cmu_type, CMU_REG34, val);
}
/* Set the VCO calibration counter */
cmu_rd(ctx, cmu_type, CMU_REG0, &val);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
else
val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
cmu_wr(ctx, cmu_type, CMU_REG0, val);
/* Configure PLL for calibration */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_PLL_CP_SET(val, 0x1);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
else
val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
if (cmu_type == REF_CMU)
val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
else
val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
if (cmu_type != REF_CMU)
cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
/* Configure the PLL for either 100MHz or 50MHz */
cmu_rd(ctx, cmu_type, CMU_REG2, &val);
if (cmu_type == REF_CMU) {
val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
ref_100MHz = 1;
} else {
val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
if (clk_type == CLK_EXT_DIFF)
ref_100MHz = 0;
else
ref_100MHz = 1;
}
if (ref_100MHz) {
val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
} else {
val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
}
cmu_wr(ctx, cmu_type, CMU_REG2, val);
/* Configure the VCO */
cmu_rd(ctx, cmu_type, CMU_REG3, &val);
if (cmu_type == REF_CMU) {
val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
} else {
val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
if (preA3Chip)
val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
else
val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
}
cmu_wr(ctx, cmu_type, CMU_REG3, val);
/* Disable force PLL lock */
cmu_rd(ctx, cmu_type, CMU_REG26, &val);
val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG26, val);
/* Setup PLL loop filter */
cmu_rd(ctx, cmu_type, CMU_REG5, &val);
val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
if (cmu_type == REF_CMU || !preA3Chip)
val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
else
val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
cmu_wr(ctx, cmu_type, CMU_REG5, val);
/* Enable or disable manual calibration */
cmu_rd(ctx, cmu_type, CMU_REG6, &val);
val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
cmu_wr(ctx, cmu_type, CMU_REG6, val);
/* Configure lane for 20-bits */
if (cmu_type == PHY_CMU) {
cmu_rd(ctx, cmu_type, CMU_REG9, &val);
val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
CMU_REG9_WORD_LEN_20BIT);
val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
CMU_REG9_WORD_LEN_20BIT);
val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
if (!preA3Chip) {
val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
}
cmu_wr(ctx, cmu_type, CMU_REG9, val);
if (!preA3Chip) {
cmu_rd(ctx, cmu_type, CMU_REG10, &val);
val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG10, val);
}
}
cmu_rd(ctx, cmu_type, CMU_REG16, &val);
val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
else
val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
cmu_wr(ctx, cmu_type, CMU_REG16, val);
/* Configure for SATA */
cmu_rd(ctx, cmu_type, CMU_REG30, &val);
val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
cmu_wr(ctx, cmu_type, CMU_REG30, val);
/* Disable state machine bypass */
cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
cmu_rd(ctx, cmu_type, CMU_REG32, &val);
val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
else
val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG32, val);
/* Set VCO calibration threshold */
if (cmu_type != REF_CMU && preA3Chip)
cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
else
cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
/* Set CTLE Override and override waiting from state machine */
cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
}
static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type)
{
u32 val;
/* Set SSC modulation value */
cmu_rd(ctx, cmu_type, CMU_REG35, &val);
val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
cmu_wr(ctx, cmu_type, CMU_REG35, val);
/* Enable SSC, set vertical step and DSM value */
cmu_rd(ctx, cmu_type, CMU_REG36, &val);
val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
cmu_wr(ctx, cmu_type, CMU_REG36, val);
/* Reset the PLL */
cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
/* Force VCO calibration to restart */
cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
CMU_REG32_FORCE_VCOCAL_START_MASK);
}
static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
{
u32 val;
u32 reg;
int i;
int lane;
for (lane = 0; lane < MAX_LANE; lane++) {
serdes_wr(ctx, lane, RXTX_REG147, 0x6);
/* Set boost control for quarter, half, and full rate */
serdes_rd(ctx, lane, RXTX_REG0, &val);
val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
serdes_wr(ctx, lane, RXTX_REG0, val);
/* Set boost control value */
serdes_rd(ctx, lane, RXTX_REG1, &val);
val = RXTX_REG1_RXACVCM_SET(val, 0x7);
val = RXTX_REG1_CTLE_EQ_SET(val,
ctx->sata_param.txboostgain[lane * 3 +
ctx->sata_param.speed[lane]]);
serdes_wr(ctx, lane, RXTX_REG1, val);
/* Latch VTT value based on the termination to ground and
* enable TX FIFO
*/
serdes_rd(ctx, lane, RXTX_REG2, &val);
val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
serdes_wr(ctx, lane, RXTX_REG2, val);
/* Configure Tx for 20-bits */
serdes_rd(ctx, lane, RXTX_REG4, &val);
val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
serdes_wr(ctx, lane, RXTX_REG4, val);
if (!preA3Chip) {
serdes_rd(ctx, lane, RXTX_REG1, &val);
val = RXTX_REG1_RXVREG1_SET(val, 0x2);
val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
serdes_wr(ctx, lane, RXTX_REG1, val);
}
/* Set pre-emphasis first 1 and 2, and post-emphasis values */
serdes_rd(ctx, lane, RXTX_REG5, &val);
val = RXTX_REG5_TX_CN1_SET(val,
ctx->sata_param.txprecursor_cn1[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG5_TX_CP1_SET(val,
ctx->sata_param.txpostcursor_cp1[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG5_TX_CN2_SET(val,
ctx->sata_param.txprecursor_cn2[lane * 3 +
ctx->sata_param.speed[lane]]);
serdes_wr(ctx, lane, RXTX_REG5, val);
/* Set TX amplitude value */
serdes_rd(ctx, lane, RXTX_REG6, &val);
val = RXTX_REG6_TXAMP_CNTL_SET(val,
ctx->sata_param.txamplitude[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG6, val);
/* Configure Rx for 20-bits */
serdes_rd(ctx, lane, RXTX_REG7, &val);
val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
serdes_wr(ctx, lane, RXTX_REG7, val);
/* Set CDR and LOS values and enable Rx SSC */
serdes_rd(ctx, lane, RXTX_REG8, &val);
val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
val = RXTX_REG8_SD_VREF_SET(val, 0x4);
serdes_wr(ctx, lane, RXTX_REG8, val);
/* Set phase adjust upper/lower limits */
serdes_rd(ctx, lane, RXTX_REG11, &val);
val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG11, val);
/* Enable Latch Off; disable SUMOS and Tx termination */
serdes_rd(ctx, lane, RXTX_REG12, &val);
val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG12, val);
/* Set period error latch to 512T and enable BWL */
serdes_rd(ctx, lane, RXTX_REG26, &val);
val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
serdes_wr(ctx, lane, RXTX_REG26, val);
serdes_wr(ctx, lane, RXTX_REG28, 0x0);
/* Set DFE loop preset value */
serdes_wr(ctx, lane, RXTX_REG31, 0x0);
/* Set Eye Monitor counter width to 12-bit */
serdes_rd(ctx, lane, RXTX_REG61, &val);
val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG61, val);
serdes_rd(ctx, lane, RXTX_REG62, &val);
val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG62, val);
/* Set BW select tap X for DFE loop */
for (i = 0; i < 9; i++) {
reg = RXTX_REG81 + i * 2;
serdes_rd(ctx, lane, reg, &val);
val = RXTX_REG89_MU_TH7_SET(val, 0xe);
val = RXTX_REG89_MU_TH8_SET(val, 0xe);
val = RXTX_REG89_MU_TH9_SET(val, 0xe);
serdes_wr(ctx, lane, reg, val);
}
/* Set BW select tap X for frequency adjust loop */
for (i = 0; i < 3; i++) {
reg = RXTX_REG96 + i * 2;
serdes_rd(ctx, lane, reg, &val);
val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
serdes_wr(ctx, lane, reg, val);
}
/* Set BW select tap X for phase adjust loop */
for (i = 0; i < 3; i++) {
reg = RXTX_REG99 + i * 2;
serdes_rd(ctx, lane, reg, &val);
val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
serdes_wr(ctx, lane, reg, val);
}
serdes_rd(ctx, lane, RXTX_REG102, &val);
val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG102, val);
serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
serdes_rd(ctx, lane, RXTX_REG125, &val);
val = RXTX_REG125_SIGN_PQ_SET(val,
ctx->sata_param.txeyedirection[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG125_PQ_REG_SET(val,
ctx->sata_param.txeyetuning[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
serdes_wr(ctx, lane, RXTX_REG125, val);
serdes_rd(ctx, lane, RXTX_REG127, &val);
val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG127, val);
serdes_rd(ctx, lane, RXTX_REG128, &val);
val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
serdes_wr(ctx, lane, RXTX_REG128, val);
serdes_rd(ctx, lane, RXTX_REG145, &val);
val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
if (preA3Chip) {
val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
} else {
val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
}
serdes_wr(ctx, lane, RXTX_REG145, val);
/*
* Set Rx LOS filter clock rate, sample rate, and threshold
* windows
*/
for (i = 0; i < 4; i++) {
reg = RXTX_REG148 + i * 2;
serdes_wr(ctx, lane, reg, 0xFFFF);
}
}
}
static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type,
enum clk_type_t clk_type)
{
void __iomem *csr_serdes = ctx->sds_base;
int loop;
u32 val;
/* Release PHY main reset */
writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
if (cmu_type != REF_CMU) {
cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
/*
* As per PHY design spec, the PLL reset requires a minimum
* of 800us.
*/
usleep_range(800, 1000);
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
/*
* As per PHY design spec, the PLL auto calibration requires
* a minimum of 800us.
*/
usleep_range(800, 1000);
cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
CMU_REG32_FORCE_VCOCAL_START_MASK);
/*
* As per PHY design spec, the PLL requires a minimum of
* 800us to settle.
*/
usleep_range(800, 1000);
}
if (!preA3Chip)
goto skip_manual_cal;
/*
* Configure the termination resister calibration
* The serial receive pins, RXP/RXN, have TERMination resistor
* that is required to be calibrated.
*/
cmu_rd(ctx, cmu_type, CMU_REG17, &val);
val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
val = CMU_REG17_RESERVED_7_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG17, val);
cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
CMU_REG17_PVT_TERM_MAN_ENA_MASK);
/*
* The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
* resistors that are required to the calibrated.
* Configure the pull DOWN calibration
*/
cmu_rd(ctx, cmu_type, CMU_REG17, &val);
val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
val = CMU_REG17_RESERVED_7_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG17, val);
cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
CMU_REG16_PVT_DN_MAN_ENA_MASK);
/* Configure the pull UP calibration */
cmu_rd(ctx, cmu_type, CMU_REG17, &val);
val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
val = CMU_REG17_RESERVED_7_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG17, val);
cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
CMU_REG16_PVT_UP_MAN_ENA_MASK);
skip_manual_cal:
/* Poll the PLL calibration completion status for at least 1 ms */
loop = 100;
do {
cmu_rd(ctx, cmu_type, CMU_REG7, &val);
if (CMU_REG7_PLL_CALIB_DONE_RD(val))
break;
/*
* As per PHY design spec, PLL calibration status requires
* a minimum of 10us to be updated.
*/
usleep_range(10, 100);
} while (--loop > 0);
cmu_rd(ctx, cmu_type, CMU_REG7, &val);
dev_dbg(ctx->dev, "PLL calibration %s\n",
CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
dev_err(ctx->dev,
"PLL calibration failed due to VCO failure\n");
return -1;
}
dev_dbg(ctx->dev, "PLL calibration successful\n");
cmu_rd(ctx, cmu_type, CMU_REG15, &val);
dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
return 0;
}
static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type,
enum clk_type_t clk_type)
{
u32 val;
dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
if (cmu_type == PHY_CMU) {
cmu_rd(ctx, cmu_type, CMU_REG16, &val);
val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
cmu_wr(ctx, cmu_type, CMU_REG16, val);
}
cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
CMU_REG32_FORCE_VCOCAL_START_MASK);
}
static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
enum clk_type_t clk_type, int ssc_enable)
{
void __iomem *sds_base = ctx->sds_base;
u32 val;
int i;
/* Configure the PHY for operation */
dev_dbg(ctx->dev, "Reset PHY\n");
/* Place PHY into reset */
writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
val = readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
/* Release PHY lane from reset (active high) */
writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
/* Release all PHY module out of reset except PHY main reset */
writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
/* Set the operation speed */
val = readl(sds_base + SATA_ENET_SDS_CTL1);
val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
writel(val, sds_base + SATA_ENET_SDS_CTL1);
dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
val = readl(sds_base + SATA_ENET_SDS_CTL0);
val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
writel(val, sds_base + SATA_ENET_SDS_CTL0);
/* Configure the clock macro unit (CMU) clock type */
xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
/* Configure the clock macro */
xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
/* Enable SSC if enabled */
if (ssc_enable)
xgene_phy_ssc_enable(ctx, PHY_CMU);
/* Configure PHY lanes */
xgene_phy_sata_cfg_lanes(ctx);
/* Set Rx/Tx 20-bit */
val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
/* Start PLL calibration and try for three times */
i = 10;
do {
if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
break;
/* If failed, toggle the VCO power signal and start again */
xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
} while (--i > 0);
/* Even on failure, allow to continue any way */
if (i <= 0)
dev_err(ctx->dev, "PLL calibration failed\n");
return 0;
}
static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
enum clk_type_t clk_type,
int ssc_enable)
{
int rc;
dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
if (ctx->mode == MODE_SATA) {
rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
if (rc)
return rc;
} else {
dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
ctx->mode);
return -ENODEV;
}
return 0;
}
/*
* Receiver Offset Calibration:
*
* Calibrate the receiver signal path offset in two steps - summar and
* latch calibrations
*/
static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
{
int i;
static const struct {
u32 reg;
u32 val;
} serdes_reg[] = {
{RXTX_REG38, 0x0},
{RXTX_REG39, 0xff00},
{RXTX_REG40, 0xffff},
{RXTX_REG41, 0xffff},
{RXTX_REG42, 0xffff},
{RXTX_REG43, 0xffff},
{RXTX_REG44, 0xffff},
{RXTX_REG45, 0xffff},
{RXTX_REG46, 0xffff},
{RXTX_REG47, 0xfffc},
{RXTX_REG48, 0x0},
{RXTX_REG49, 0x0},
{RXTX_REG50, 0x0},
{RXTX_REG51, 0x0},
{RXTX_REG52, 0x0},
{RXTX_REG53, 0x0},
{RXTX_REG54, 0x0},
{RXTX_REG55, 0x0},
};
/* Start SUMMER calibration */
serdes_setbits(ctx, lane, RXTX_REG127,
RXTX_REG127_FORCE_SUM_CAL_START_MASK);
/*
* As per PHY design spec, the Summer calibration requires a minimum
* of 100us to complete.
*/
usleep_range(100, 500);
serdes_clrbits(ctx, lane, RXTX_REG127,
RXTX_REG127_FORCE_SUM_CAL_START_MASK);
/*
* As per PHY design spec, the auto calibration requires a minimum
* of 100us to complete.
*/
usleep_range(100, 500);
/* Start latch calibration */
serdes_setbits(ctx, lane, RXTX_REG127,
RXTX_REG127_FORCE_LAT_CAL_START_MASK);
/*
* As per PHY design spec, the latch calibration requires a minimum
* of 100us to complete.
*/
usleep_range(100, 500);
serdes_clrbits(ctx, lane, RXTX_REG127,
RXTX_REG127_FORCE_LAT_CAL_START_MASK);
/* Configure the PHY lane for calibration */
serdes_wr(ctx, lane, RXTX_REG28, 0x7);
serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
serdes_clrbits(ctx, lane, RXTX_REG4,
RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
serdes_clrbits(ctx, lane, RXTX_REG7,
RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
serdes_wr(ctx, lane, serdes_reg[i].reg,
serdes_reg[i].val);
}
static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
{
/* Reset digital Rx */
serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
/* As per PHY design spec, the reset requires a minimum of 100us. */
usleep_range(100, 150);
serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
}
static int xgene_phy_get_avg(int accum, int samples)
{
return (accum + (samples / 2)) / samples;
}
static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
{
int max_loop = 10;
int avg_loop = 0;
int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
int sum_cal = 0;
int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
int sum_cal_itr;
int fail_even;
int fail_odd;
u32 val;
dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
lane);
/* Enable RX Hi-Z termination */
serdes_setbits(ctx, lane, RXTX_REG12,
RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
/* Turn off DFE */
serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
/* DFE Presets to zero */
serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
/*
* Receiver Offset Calibration:
* Calibrate the receiver signal path offset in two steps - summar
* and latch calibration.
* Runs the "Receiver Offset Calibration multiple times to determine
* the average value to use.
*/
while (avg_loop < max_loop) {
/* Start the calibration */
xgene_phy_force_lat_summer_cal(ctx, lane);
serdes_rd(ctx, lane, RXTX_REG21, &val);
lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
serdes_rd(ctx, lane, RXTX_REG22, &val);
lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
serdes_rd(ctx, lane, RXTX_REG23, &val);
lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
serdes_rd(ctx, lane, RXTX_REG24, &val);
lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
serdes_rd(ctx, lane, RXTX_REG121, &val);
sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
/* Check for failure. If passed, sum them for averaging */
if ((fail_even == 0 || fail_even == 1) &&
(fail_odd == 0 || fail_odd == 1)) {
lat_do += lat_do_itr;
lat_xo += lat_xo_itr;
lat_eo += lat_eo_itr;
lat_so += lat_so_itr;
lat_de += lat_de_itr;
lat_xe += lat_xe_itr;
lat_ee += lat_ee_itr;
lat_se += lat_se_itr;
sum_cal += sum_cal_itr;
dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
lat_do_itr, lat_xo_itr, lat_eo_itr,
lat_so_itr);
dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
lat_de_itr, lat_xe_itr, lat_ee_itr,
lat_se_itr);
dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
++avg_loop;
} else {
dev_err(ctx->dev,
"Receiver calibration failed at %d loop\n",
avg_loop);
}
xgene_phy_reset_rxd(ctx, lane);
}
/* Update latch manual calibration with average value */
serdes_rd(ctx, lane, RXTX_REG127, &val);
val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_do, max_loop));
val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_xo, max_loop));
serdes_wr(ctx, lane, RXTX_REG127, val);
serdes_rd(ctx, lane, RXTX_REG128, &val);
val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_eo, max_loop));
val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_so, max_loop));
serdes_wr(ctx, lane, RXTX_REG128, val);
serdes_rd(ctx, lane, RXTX_REG129, &val);
val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_de, max_loop));
val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_xe, max_loop));
serdes_wr(ctx, lane, RXTX_REG129, val);
serdes_rd(ctx, lane, RXTX_REG130, &val);
val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_ee, max_loop));
val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_se, max_loop));
serdes_wr(ctx, lane, RXTX_REG130, val);
/* Update SUMMER calibration with average value */
serdes_rd(ctx, lane, RXTX_REG14, &val);
val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
xgene_phy_get_avg(sum_cal, max_loop));
serdes_wr(ctx, lane, RXTX_REG14, val);
dev_dbg(ctx->dev, "Average Value:\n");
dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
xgene_phy_get_avg(lat_do, max_loop),
xgene_phy_get_avg(lat_xo, max_loop),
xgene_phy_get_avg(lat_eo, max_loop),
xgene_phy_get_avg(lat_so, max_loop));
dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
xgene_phy_get_avg(lat_de, max_loop),
xgene_phy_get_avg(lat_xe, max_loop),
xgene_phy_get_avg(lat_ee, max_loop),
xgene_phy_get_avg(lat_se, max_loop));
dev_dbg(ctx->dev, "SUM 0x%x\n",
xgene_phy_get_avg(sum_cal, max_loop));
serdes_rd(ctx, lane, RXTX_REG14, &val);
val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
serdes_wr(ctx, lane, RXTX_REG14, val);
dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
serdes_rd(ctx, lane, RXTX_REG127, &val);
val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
serdes_wr(ctx, lane, RXTX_REG127, val);
/* Disable RX Hi-Z termination */
serdes_rd(ctx, lane, RXTX_REG12, &val);
val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
serdes_wr(ctx, lane, RXTX_REG12, val);
/* Turn on DFE */
serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
/* Set DFE preset */
serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
}
static int xgene_phy_hw_init(struct phy *phy)
{
struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
int rc;
int i;
rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
if (rc) {
dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
return rc;
}
/* Setup clock properly after PHY configuration */
if (!IS_ERR(ctx->clk)) {
/* HW requires an toggle of the clock */
clk_prepare_enable(ctx->clk);
clk_disable_unprepare(ctx->clk);
clk_prepare_enable(ctx->clk);
}
/* Compute average value */
for (i = 0; i < MAX_LANE; i++)
xgene_phy_gen_avg_val(ctx, i);
dev_dbg(ctx->dev, "PHY initialized\n");
return 0;
}
static const struct phy_ops xgene_phy_ops = {
.init = xgene_phy_hw_init,
.owner = THIS_MODULE,
};
static struct phy *xgene_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
if (args->args_count <= 0)
return ERR_PTR(-EINVAL);
if (args->args[0] >= MODE_MAX)
return ERR_PTR(-EINVAL);
ctx->mode = args->args[0];
return ctx->phy;
}
static void xgene_phy_get_param(struct platform_device *pdev,
const char *name, u32 *buffer,
int count, u32 *default_val,
u32 conv_factor)
{
int i;
if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
count)) {
for (i = 0; i < count; i++)
buffer[i] /= conv_factor;
return;
}
/* Does not exist, load default */
for (i = 0; i < count; i++)
buffer[i] = default_val[i % 3];
}
static int xgene_phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct xgene_phy_ctx *ctx;
u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
u32 default_txamp[] = DEFAULT_SATA_TXAMP;
u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
int i;
ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->dev = &pdev->dev;
ctx->sds_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ctx->sds_base))
return PTR_ERR(ctx->sds_base);
/* Retrieve optional clock */
ctx->clk = clk_get(&pdev->dev, NULL);
/* Load override paramaters */
xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
xgene_phy_get_param(pdev, "apm,tx-eye-direction",
ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
xgene_phy_get_param(pdev, "apm,tx-boost-gain",
ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
xgene_phy_get_param(pdev, "apm,tx-amplitude",
ctx->sata_param.txamplitude, 6, default_txamp, 13300);
xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
xgene_phy_get_param(pdev, "apm,tx-post-cursor",
ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
xgene_phy_get_param(pdev, "apm,tx-speed",
ctx->sata_param.txspeed, 3, default_spd, 1);
for (i = 0; i < MAX_LANE; i++)
ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
platform_set_drvdata(pdev, ctx);
ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
if (IS_ERR(ctx->phy)) {
dev_dbg(&pdev->dev, "Failed to create PHY\n");
return PTR_ERR(ctx->phy);
}
phy_set_drvdata(ctx->phy, ctx);
phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id xgene_phy_of_match[] = {
{.compatible = "apm,xgene-phy",},
{},
};
MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
static struct platform_driver xgene_phy_driver = {
.probe = xgene_phy_probe,
.driver = {
.name = "xgene-phy",
.of_match_table = xgene_phy_of_match,
},
};
module_platform_driver(xgene_phy_driver);
MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
MODULE_AUTHOR("Loc Ho <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.1");
| linux-master | drivers/phy/phy-xgene.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* phy-core.c -- Generic Phy framework.
*
* Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
*
* Author: Kishon Vijay Abraham I <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/idr.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
static struct class *phy_class;
static struct dentry *phy_debugfs_root;
static DEFINE_MUTEX(phy_provider_mutex);
static LIST_HEAD(phy_provider_list);
static LIST_HEAD(phys);
static DEFINE_IDA(phy_ida);
static void devm_phy_release(struct device *dev, void *res)
{
struct phy *phy = *(struct phy **)res;
phy_put(dev, phy);
}
static void devm_phy_provider_release(struct device *dev, void *res)
{
struct phy_provider *phy_provider = *(struct phy_provider **)res;
of_phy_provider_unregister(phy_provider);
}
static void devm_phy_consume(struct device *dev, void *res)
{
struct phy *phy = *(struct phy **)res;
phy_destroy(phy);
}
static int devm_phy_match(struct device *dev, void *res, void *match_data)
{
struct phy **phy = res;
return *phy == match_data;
}
/**
* phy_create_lookup() - allocate and register PHY/device association
* @phy: the phy of the association
* @con_id: connection ID string on device
* @dev_id: the device of the association
*
* Creates and registers phy_lookup entry.
*/
int phy_create_lookup(struct phy *phy, const char *con_id, const char *dev_id)
{
struct phy_lookup *pl;
if (!phy || !dev_id || !con_id)
return -EINVAL;
pl = kzalloc(sizeof(*pl), GFP_KERNEL);
if (!pl)
return -ENOMEM;
pl->dev_id = dev_id;
pl->con_id = con_id;
pl->phy = phy;
mutex_lock(&phy_provider_mutex);
list_add_tail(&pl->node, &phys);
mutex_unlock(&phy_provider_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(phy_create_lookup);
/**
* phy_remove_lookup() - find and remove PHY/device association
* @phy: the phy of the association
* @con_id: connection ID string on device
* @dev_id: the device of the association
*
* Finds and unregisters phy_lookup entry that was created with
* phy_create_lookup().
*/
void phy_remove_lookup(struct phy *phy, const char *con_id, const char *dev_id)
{
struct phy_lookup *pl;
if (!phy || !dev_id || !con_id)
return;
mutex_lock(&phy_provider_mutex);
list_for_each_entry(pl, &phys, node)
if (pl->phy == phy && !strcmp(pl->dev_id, dev_id) &&
!strcmp(pl->con_id, con_id)) {
list_del(&pl->node);
kfree(pl);
break;
}
mutex_unlock(&phy_provider_mutex);
}
EXPORT_SYMBOL_GPL(phy_remove_lookup);
static struct phy *phy_find(struct device *dev, const char *con_id)
{
const char *dev_id = dev_name(dev);
struct phy_lookup *p, *pl = NULL;
mutex_lock(&phy_provider_mutex);
list_for_each_entry(p, &phys, node)
if (!strcmp(p->dev_id, dev_id) && !strcmp(p->con_id, con_id)) {
pl = p;
break;
}
mutex_unlock(&phy_provider_mutex);
return pl ? pl->phy : ERR_PTR(-ENODEV);
}
static struct phy_provider *of_phy_provider_lookup(struct device_node *node)
{
struct phy_provider *phy_provider;
struct device_node *child;
list_for_each_entry(phy_provider, &phy_provider_list, list) {
if (phy_provider->dev->of_node == node)
return phy_provider;
for_each_child_of_node(phy_provider->children, child)
if (child == node)
return phy_provider;
}
return ERR_PTR(-EPROBE_DEFER);
}
int phy_pm_runtime_get(struct phy *phy)
{
int ret;
if (!phy)
return 0;
if (!pm_runtime_enabled(&phy->dev))
return -ENOTSUPP;
ret = pm_runtime_get(&phy->dev);
if (ret < 0 && ret != -EINPROGRESS)
pm_runtime_put_noidle(&phy->dev);
return ret;
}
EXPORT_SYMBOL_GPL(phy_pm_runtime_get);
int phy_pm_runtime_get_sync(struct phy *phy)
{
int ret;
if (!phy)
return 0;
if (!pm_runtime_enabled(&phy->dev))
return -ENOTSUPP;
ret = pm_runtime_get_sync(&phy->dev);
if (ret < 0)
pm_runtime_put_sync(&phy->dev);
return ret;
}
EXPORT_SYMBOL_GPL(phy_pm_runtime_get_sync);
int phy_pm_runtime_put(struct phy *phy)
{
if (!phy)
return 0;
if (!pm_runtime_enabled(&phy->dev))
return -ENOTSUPP;
return pm_runtime_put(&phy->dev);
}
EXPORT_SYMBOL_GPL(phy_pm_runtime_put);
int phy_pm_runtime_put_sync(struct phy *phy)
{
if (!phy)
return 0;
if (!pm_runtime_enabled(&phy->dev))
return -ENOTSUPP;
return pm_runtime_put_sync(&phy->dev);
}
EXPORT_SYMBOL_GPL(phy_pm_runtime_put_sync);
void phy_pm_runtime_allow(struct phy *phy)
{
if (!phy)
return;
if (!pm_runtime_enabled(&phy->dev))
return;
pm_runtime_allow(&phy->dev);
}
EXPORT_SYMBOL_GPL(phy_pm_runtime_allow);
void phy_pm_runtime_forbid(struct phy *phy)
{
if (!phy)
return;
if (!pm_runtime_enabled(&phy->dev))
return;
pm_runtime_forbid(&phy->dev);
}
EXPORT_SYMBOL_GPL(phy_pm_runtime_forbid);
/**
* phy_init - phy internal initialization before phy operation
* @phy: the phy returned by phy_get()
*
* Used to allow phy's driver to perform phy internal initialization,
* such as PLL block powering, clock initialization or anything that's
* is required by the phy to perform the start of operation.
* Must be called before phy_power_on().
*
* Return: %0 if successful, a negative error code otherwise
*/
int phy_init(struct phy *phy)
{
int ret;
if (!phy)
return 0;
ret = phy_pm_runtime_get_sync(phy);
if (ret < 0 && ret != -ENOTSUPP)
return ret;
ret = 0; /* Override possible ret == -ENOTSUPP */
mutex_lock(&phy->mutex);
if (phy->power_count > phy->init_count)
dev_warn(&phy->dev, "phy_power_on was called before phy_init\n");
if (phy->init_count == 0 && phy->ops->init) {
ret = phy->ops->init(phy);
if (ret < 0) {
dev_err(&phy->dev, "phy init failed --> %d\n", ret);
goto out;
}
}
++phy->init_count;
out:
mutex_unlock(&phy->mutex);
phy_pm_runtime_put(phy);
return ret;
}
EXPORT_SYMBOL_GPL(phy_init);
/**
* phy_exit - Phy internal un-initialization
* @phy: the phy returned by phy_get()
*
* Must be called after phy_power_off().
*
* Return: %0 if successful, a negative error code otherwise
*/
int phy_exit(struct phy *phy)
{
int ret;
if (!phy)
return 0;
ret = phy_pm_runtime_get_sync(phy);
if (ret < 0 && ret != -ENOTSUPP)
return ret;
ret = 0; /* Override possible ret == -ENOTSUPP */
mutex_lock(&phy->mutex);
if (phy->init_count == 1 && phy->ops->exit) {
ret = phy->ops->exit(phy);
if (ret < 0) {
dev_err(&phy->dev, "phy exit failed --> %d\n", ret);
goto out;
}
}
--phy->init_count;
out:
mutex_unlock(&phy->mutex);
phy_pm_runtime_put(phy);
return ret;
}
EXPORT_SYMBOL_GPL(phy_exit);
/**
* phy_power_on - Enable the phy and enter proper operation
* @phy: the phy returned by phy_get()
*
* Must be called after phy_init().
*
* Return: %0 if successful, a negative error code otherwise
*/
int phy_power_on(struct phy *phy)
{
int ret = 0;
if (!phy)
goto out;
if (phy->pwr) {
ret = regulator_enable(phy->pwr);
if (ret)
goto out;
}
ret = phy_pm_runtime_get_sync(phy);
if (ret < 0 && ret != -ENOTSUPP)
goto err_pm_sync;
ret = 0; /* Override possible ret == -ENOTSUPP */
mutex_lock(&phy->mutex);
if (phy->power_count == 0 && phy->ops->power_on) {
ret = phy->ops->power_on(phy);
if (ret < 0) {
dev_err(&phy->dev, "phy poweron failed --> %d\n", ret);
goto err_pwr_on;
}
}
++phy->power_count;
mutex_unlock(&phy->mutex);
return 0;
err_pwr_on:
mutex_unlock(&phy->mutex);
phy_pm_runtime_put_sync(phy);
err_pm_sync:
if (phy->pwr)
regulator_disable(phy->pwr);
out:
return ret;
}
EXPORT_SYMBOL_GPL(phy_power_on);
/**
* phy_power_off - Disable the phy.
* @phy: the phy returned by phy_get()
*
* Must be called before phy_exit().
*
* Return: %0 if successful, a negative error code otherwise
*/
int phy_power_off(struct phy *phy)
{
int ret;
if (!phy)
return 0;
mutex_lock(&phy->mutex);
if (phy->power_count == 1 && phy->ops->power_off) {
ret = phy->ops->power_off(phy);
if (ret < 0) {
dev_err(&phy->dev, "phy poweroff failed --> %d\n", ret);
mutex_unlock(&phy->mutex);
return ret;
}
}
--phy->power_count;
mutex_unlock(&phy->mutex);
phy_pm_runtime_put(phy);
if (phy->pwr)
regulator_disable(phy->pwr);
return 0;
}
EXPORT_SYMBOL_GPL(phy_power_off);
int phy_set_mode_ext(struct phy *phy, enum phy_mode mode, int submode)
{
int ret;
if (!phy || !phy->ops->set_mode)
return 0;
mutex_lock(&phy->mutex);
ret = phy->ops->set_mode(phy, mode, submode);
if (!ret)
phy->attrs.mode = mode;
mutex_unlock(&phy->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(phy_set_mode_ext);
int phy_set_media(struct phy *phy, enum phy_media media)
{
int ret;
if (!phy || !phy->ops->set_media)
return 0;
mutex_lock(&phy->mutex);
ret = phy->ops->set_media(phy, media);
mutex_unlock(&phy->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(phy_set_media);
int phy_set_speed(struct phy *phy, int speed)
{
int ret;
if (!phy || !phy->ops->set_speed)
return 0;
mutex_lock(&phy->mutex);
ret = phy->ops->set_speed(phy, speed);
mutex_unlock(&phy->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(phy_set_speed);
int phy_reset(struct phy *phy)
{
int ret;
if (!phy || !phy->ops->reset)
return 0;
ret = phy_pm_runtime_get_sync(phy);
if (ret < 0 && ret != -ENOTSUPP)
return ret;
mutex_lock(&phy->mutex);
ret = phy->ops->reset(phy);
mutex_unlock(&phy->mutex);
phy_pm_runtime_put(phy);
return ret;
}
EXPORT_SYMBOL_GPL(phy_reset);
/**
* phy_calibrate() - Tunes the phy hw parameters for current configuration
* @phy: the phy returned by phy_get()
*
* Used to calibrate phy hardware, typically by adjusting some parameters in
* runtime, which are otherwise lost after host controller reset and cannot
* be applied in phy_init() or phy_power_on().
*
* Return: %0 if successful, a negative error code otherwise
*/
int phy_calibrate(struct phy *phy)
{
int ret;
if (!phy || !phy->ops->calibrate)
return 0;
mutex_lock(&phy->mutex);
ret = phy->ops->calibrate(phy);
mutex_unlock(&phy->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(phy_calibrate);
/**
* phy_configure() - Changes the phy parameters
* @phy: the phy returned by phy_get()
* @opts: New configuration to apply
*
* Used to change the PHY parameters. phy_init() must have been called
* on the phy. The configuration will be applied on the current phy
* mode, that can be changed using phy_set_mode().
*
* Return: %0 if successful, a negative error code otherwise
*/
int phy_configure(struct phy *phy, union phy_configure_opts *opts)
{
int ret;
if (!phy)
return -EINVAL;
if (!phy->ops->configure)
return -EOPNOTSUPP;
mutex_lock(&phy->mutex);
ret = phy->ops->configure(phy, opts);
mutex_unlock(&phy->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(phy_configure);
/**
* phy_validate() - Checks the phy parameters
* @phy: the phy returned by phy_get()
* @mode: phy_mode the configuration is applicable to.
* @submode: PHY submode the configuration is applicable to.
* @opts: Configuration to check
*
* Used to check that the current set of parameters can be handled by
* the phy. Implementations are free to tune the parameters passed as
* arguments if needed by some implementation detail or
* constraints. It will not change any actual configuration of the
* PHY, so calling it as many times as deemed fit will have no side
* effect.
*
* Return: %0 if successful, a negative error code otherwise
*/
int phy_validate(struct phy *phy, enum phy_mode mode, int submode,
union phy_configure_opts *opts)
{
int ret;
if (!phy)
return -EINVAL;
if (!phy->ops->validate)
return -EOPNOTSUPP;
mutex_lock(&phy->mutex);
ret = phy->ops->validate(phy, mode, submode, opts);
mutex_unlock(&phy->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(phy_validate);
/**
* _of_phy_get() - lookup and obtain a reference to a phy by phandle
* @np: device_node for which to get the phy
* @index: the index of the phy
*
* Returns the phy associated with the given phandle value,
* after getting a refcount to it or -ENODEV if there is no such phy or
* -EPROBE_DEFER if there is a phandle to the phy, but the device is
* not yet loaded. This function uses of_xlate call back function provided
* while registering the phy_provider to find the phy instance.
*/
static struct phy *_of_phy_get(struct device_node *np, int index)
{
int ret;
struct phy_provider *phy_provider;
struct phy *phy = NULL;
struct of_phandle_args args;
ret = of_parse_phandle_with_args(np, "phys", "#phy-cells",
index, &args);
if (ret)
return ERR_PTR(-ENODEV);
/* This phy type handled by the usb-phy subsystem for now */
if (of_device_is_compatible(args.np, "usb-nop-xceiv"))
return ERR_PTR(-ENODEV);
mutex_lock(&phy_provider_mutex);
phy_provider = of_phy_provider_lookup(args.np);
if (IS_ERR(phy_provider) || !try_module_get(phy_provider->owner)) {
phy = ERR_PTR(-EPROBE_DEFER);
goto out_unlock;
}
if (!of_device_is_available(args.np)) {
dev_warn(phy_provider->dev, "Requested PHY is disabled\n");
phy = ERR_PTR(-ENODEV);
goto out_put_module;
}
phy = phy_provider->of_xlate(phy_provider->dev, &args);
out_put_module:
module_put(phy_provider->owner);
out_unlock:
mutex_unlock(&phy_provider_mutex);
of_node_put(args.np);
return phy;
}
/**
* of_phy_get() - lookup and obtain a reference to a phy using a device_node.
* @np: device_node for which to get the phy
* @con_id: name of the phy from device's point of view
*
* Returns the phy driver, after getting a refcount to it; or
* -ENODEV if there is no such phy. The caller is responsible for
* calling phy_put() to release that count.
*/
struct phy *of_phy_get(struct device_node *np, const char *con_id)
{
struct phy *phy = NULL;
int index = 0;
if (con_id)
index = of_property_match_string(np, "phy-names", con_id);
phy = _of_phy_get(np, index);
if (IS_ERR(phy))
return phy;
if (!try_module_get(phy->ops->owner))
return ERR_PTR(-EPROBE_DEFER);
get_device(&phy->dev);
return phy;
}
EXPORT_SYMBOL_GPL(of_phy_get);
/**
* of_phy_put() - release the PHY
* @phy: the phy returned by of_phy_get()
*
* Releases a refcount the caller received from of_phy_get().
*/
void of_phy_put(struct phy *phy)
{
if (!phy || IS_ERR(phy))
return;
mutex_lock(&phy->mutex);
if (phy->ops->release)
phy->ops->release(phy);
mutex_unlock(&phy->mutex);
module_put(phy->ops->owner);
put_device(&phy->dev);
}
EXPORT_SYMBOL_GPL(of_phy_put);
/**
* phy_put() - release the PHY
* @dev: device that wants to release this phy
* @phy: the phy returned by phy_get()
*
* Releases a refcount the caller received from phy_get().
*/
void phy_put(struct device *dev, struct phy *phy)
{
device_link_remove(dev, &phy->dev);
of_phy_put(phy);
}
EXPORT_SYMBOL_GPL(phy_put);
/**
* devm_phy_put() - release the PHY
* @dev: device that wants to release this phy
* @phy: the phy returned by devm_phy_get()
*
* destroys the devres associated with this phy and invokes phy_put
* to release the phy.
*/
void devm_phy_put(struct device *dev, struct phy *phy)
{
int r;
if (!phy)
return;
r = devres_destroy(dev, devm_phy_release, devm_phy_match, phy);
dev_WARN_ONCE(dev, r, "couldn't find PHY resource\n");
}
EXPORT_SYMBOL_GPL(devm_phy_put);
/**
* of_phy_simple_xlate() - returns the phy instance from phy provider
* @dev: the PHY provider device
* @args: of_phandle_args (not used here)
*
* Intended to be used by phy provider for the common case where #phy-cells is
* 0. For other cases where #phy-cells is greater than '0', the phy provider
* should provide a custom of_xlate function that reads the *args* and returns
* the appropriate phy.
*/
struct phy *of_phy_simple_xlate(struct device *dev, struct of_phandle_args
*args)
{
struct phy *phy;
struct class_dev_iter iter;
class_dev_iter_init(&iter, phy_class, NULL, NULL);
while ((dev = class_dev_iter_next(&iter))) {
phy = to_phy(dev);
if (args->np != phy->dev.of_node)
continue;
class_dev_iter_exit(&iter);
return phy;
}
class_dev_iter_exit(&iter);
return ERR_PTR(-ENODEV);
}
EXPORT_SYMBOL_GPL(of_phy_simple_xlate);
/**
* phy_get() - lookup and obtain a reference to a phy.
* @dev: device that requests this phy
* @string: the phy name as given in the dt data or the name of the controller
* port for non-dt case
*
* Returns the phy driver, after getting a refcount to it; or
* -ENODEV if there is no such phy. The caller is responsible for
* calling phy_put() to release that count.
*/
struct phy *phy_get(struct device *dev, const char *string)
{
int index = 0;
struct phy *phy;
struct device_link *link;
if (dev->of_node) {
if (string)
index = of_property_match_string(dev->of_node, "phy-names",
string);
else
index = 0;
phy = _of_phy_get(dev->of_node, index);
} else {
if (string == NULL) {
dev_WARN(dev, "missing string\n");
return ERR_PTR(-EINVAL);
}
phy = phy_find(dev, string);
}
if (IS_ERR(phy))
return phy;
if (!try_module_get(phy->ops->owner))
return ERR_PTR(-EPROBE_DEFER);
get_device(&phy->dev);
link = device_link_add(dev, &phy->dev, DL_FLAG_STATELESS);
if (!link)
dev_dbg(dev, "failed to create device link to %s\n",
dev_name(phy->dev.parent));
return phy;
}
EXPORT_SYMBOL_GPL(phy_get);
/**
* devm_phy_get() - lookup and obtain a reference to a phy.
* @dev: device that requests this phy
* @string: the phy name as given in the dt data or phy device name
* for non-dt case
*
* Gets the phy using phy_get(), and associates a device with it using
* devres. On driver detach, release function is invoked on the devres data,
* then, devres data is freed.
*/
struct phy *devm_phy_get(struct device *dev, const char *string)
{
struct phy **ptr, *phy;
ptr = devres_alloc(devm_phy_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
phy = phy_get(dev, string);
if (!IS_ERR(phy)) {
*ptr = phy;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return phy;
}
EXPORT_SYMBOL_GPL(devm_phy_get);
/**
* devm_phy_optional_get() - lookup and obtain a reference to an optional phy.
* @dev: device that requests this phy
* @string: the phy name as given in the dt data or phy device name
* for non-dt case
*
* Gets the phy using phy_get(), and associates a device with it using
* devres. On driver detach, release function is invoked on the devres
* data, then, devres data is freed. This differs to devm_phy_get() in
* that if the phy does not exist, it is not considered an error and
* -ENODEV will not be returned. Instead the NULL phy is returned,
* which can be passed to all other phy consumer calls.
*/
struct phy *devm_phy_optional_get(struct device *dev, const char *string)
{
struct phy *phy = devm_phy_get(dev, string);
if (PTR_ERR(phy) == -ENODEV)
phy = NULL;
return phy;
}
EXPORT_SYMBOL_GPL(devm_phy_optional_get);
/**
* devm_of_phy_get() - lookup and obtain a reference to a phy.
* @dev: device that requests this phy
* @np: node containing the phy
* @con_id: name of the phy from device's point of view
*
* Gets the phy using of_phy_get(), and associates a device with it using
* devres. On driver detach, release function is invoked on the devres data,
* then, devres data is freed.
*/
struct phy *devm_of_phy_get(struct device *dev, struct device_node *np,
const char *con_id)
{
struct phy **ptr, *phy;
struct device_link *link;
ptr = devres_alloc(devm_phy_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
phy = of_phy_get(np, con_id);
if (!IS_ERR(phy)) {
*ptr = phy;
devres_add(dev, ptr);
} else {
devres_free(ptr);
return phy;
}
link = device_link_add(dev, &phy->dev, DL_FLAG_STATELESS);
if (!link)
dev_dbg(dev, "failed to create device link to %s\n",
dev_name(phy->dev.parent));
return phy;
}
EXPORT_SYMBOL_GPL(devm_of_phy_get);
/**
* devm_of_phy_optional_get() - lookup and obtain a reference to an optional
* phy.
* @dev: device that requests this phy
* @np: node containing the phy
* @con_id: name of the phy from device's point of view
*
* Gets the phy using of_phy_get(), and associates a device with it using
* devres. On driver detach, release function is invoked on the devres data,
* then, devres data is freed. This differs to devm_of_phy_get() in
* that if the phy does not exist, it is not considered an error and
* -ENODEV will not be returned. Instead the NULL phy is returned,
* which can be passed to all other phy consumer calls.
*/
struct phy *devm_of_phy_optional_get(struct device *dev, struct device_node *np,
const char *con_id)
{
struct phy *phy = devm_of_phy_get(dev, np, con_id);
if (PTR_ERR(phy) == -ENODEV)
phy = NULL;
if (IS_ERR(phy))
dev_err_probe(dev, PTR_ERR(phy), "failed to get PHY %pOF:%s",
np, con_id);
return phy;
}
EXPORT_SYMBOL_GPL(devm_of_phy_optional_get);
/**
* devm_of_phy_get_by_index() - lookup and obtain a reference to a phy by index.
* @dev: device that requests this phy
* @np: node containing the phy
* @index: index of the phy
*
* Gets the phy using _of_phy_get(), then gets a refcount to it,
* and associates a device with it using devres. On driver detach,
* release function is invoked on the devres data,
* then, devres data is freed.
*
*/
struct phy *devm_of_phy_get_by_index(struct device *dev, struct device_node *np,
int index)
{
struct phy **ptr, *phy;
struct device_link *link;
ptr = devres_alloc(devm_phy_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
phy = _of_phy_get(np, index);
if (IS_ERR(phy)) {
devres_free(ptr);
return phy;
}
if (!try_module_get(phy->ops->owner)) {
devres_free(ptr);
return ERR_PTR(-EPROBE_DEFER);
}
get_device(&phy->dev);
*ptr = phy;
devres_add(dev, ptr);
link = device_link_add(dev, &phy->dev, DL_FLAG_STATELESS);
if (!link)
dev_dbg(dev, "failed to create device link to %s\n",
dev_name(phy->dev.parent));
return phy;
}
EXPORT_SYMBOL_GPL(devm_of_phy_get_by_index);
/**
* phy_create() - create a new phy
* @dev: device that is creating the new phy
* @node: device node of the phy
* @ops: function pointers for performing phy operations
*
* Called to create a phy using phy framework.
*/
struct phy *phy_create(struct device *dev, struct device_node *node,
const struct phy_ops *ops)
{
int ret;
int id;
struct phy *phy;
if (WARN_ON(!dev))
return ERR_PTR(-EINVAL);
phy = kzalloc(sizeof(*phy), GFP_KERNEL);
if (!phy)
return ERR_PTR(-ENOMEM);
id = ida_simple_get(&phy_ida, 0, 0, GFP_KERNEL);
if (id < 0) {
dev_err(dev, "unable to get id\n");
ret = id;
goto free_phy;
}
device_initialize(&phy->dev);
mutex_init(&phy->mutex);
phy->dev.class = phy_class;
phy->dev.parent = dev;
phy->dev.of_node = node ?: dev->of_node;
phy->id = id;
phy->ops = ops;
ret = dev_set_name(&phy->dev, "phy-%s.%d", dev_name(dev), id);
if (ret)
goto put_dev;
/* phy-supply */
phy->pwr = regulator_get_optional(&phy->dev, "phy");
if (IS_ERR(phy->pwr)) {
ret = PTR_ERR(phy->pwr);
if (ret == -EPROBE_DEFER)
goto put_dev;
phy->pwr = NULL;
}
ret = device_add(&phy->dev);
if (ret)
goto put_dev;
if (pm_runtime_enabled(dev)) {
pm_runtime_enable(&phy->dev);
pm_runtime_no_callbacks(&phy->dev);
}
phy->debugfs = debugfs_create_dir(dev_name(&phy->dev), phy_debugfs_root);
return phy;
put_dev:
put_device(&phy->dev); /* calls phy_release() which frees resources */
return ERR_PTR(ret);
free_phy:
kfree(phy);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(phy_create);
/**
* devm_phy_create() - create a new phy
* @dev: device that is creating the new phy
* @node: device node of the phy
* @ops: function pointers for performing phy operations
*
* Creates a new PHY device adding it to the PHY class.
* While at that, it also associates the device with the phy using devres.
* On driver detach, release function is invoked on the devres data,
* then, devres data is freed.
*/
struct phy *devm_phy_create(struct device *dev, struct device_node *node,
const struct phy_ops *ops)
{
struct phy **ptr, *phy;
ptr = devres_alloc(devm_phy_consume, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
phy = phy_create(dev, node, ops);
if (!IS_ERR(phy)) {
*ptr = phy;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return phy;
}
EXPORT_SYMBOL_GPL(devm_phy_create);
/**
* phy_destroy() - destroy the phy
* @phy: the phy to be destroyed
*
* Called to destroy the phy.
*/
void phy_destroy(struct phy *phy)
{
pm_runtime_disable(&phy->dev);
device_unregister(&phy->dev);
}
EXPORT_SYMBOL_GPL(phy_destroy);
/**
* devm_phy_destroy() - destroy the PHY
* @dev: device that wants to release this phy
* @phy: the phy returned by devm_phy_get()
*
* destroys the devres associated with this phy and invokes phy_destroy
* to destroy the phy.
*/
void devm_phy_destroy(struct device *dev, struct phy *phy)
{
int r;
r = devres_destroy(dev, devm_phy_consume, devm_phy_match, phy);
dev_WARN_ONCE(dev, r, "couldn't find PHY resource\n");
}
EXPORT_SYMBOL_GPL(devm_phy_destroy);
/**
* __of_phy_provider_register() - create/register phy provider with the framework
* @dev: struct device of the phy provider
* @children: device node containing children (if different from dev->of_node)
* @owner: the module owner containing of_xlate
* @of_xlate: function pointer to obtain phy instance from phy provider
*
* Creates struct phy_provider from dev and of_xlate function pointer.
* This is used in the case of dt boot for finding the phy instance from
* phy provider.
*
* If the PHY provider doesn't nest children directly but uses a separate
* child node to contain the individual children, the @children parameter
* can be used to override the default. If NULL, the default (dev->of_node)
* will be used. If non-NULL, the device node must be a child (or further
* descendant) of dev->of_node. Otherwise an ERR_PTR()-encoded -EINVAL
* error code is returned.
*/
struct phy_provider *__of_phy_provider_register(struct device *dev,
struct device_node *children, struct module *owner,
struct phy * (*of_xlate)(struct device *dev,
struct of_phandle_args *args))
{
struct phy_provider *phy_provider;
/*
* If specified, the device node containing the children must itself
* be the provider's device node or a child (or further descendant)
* thereof.
*/
if (children) {
struct device_node *parent = of_node_get(children), *next;
while (parent) {
if (parent == dev->of_node)
break;
next = of_get_parent(parent);
of_node_put(parent);
parent = next;
}
if (!parent)
return ERR_PTR(-EINVAL);
of_node_put(parent);
} else {
children = dev->of_node;
}
phy_provider = kzalloc(sizeof(*phy_provider), GFP_KERNEL);
if (!phy_provider)
return ERR_PTR(-ENOMEM);
phy_provider->dev = dev;
phy_provider->children = of_node_get(children);
phy_provider->owner = owner;
phy_provider->of_xlate = of_xlate;
mutex_lock(&phy_provider_mutex);
list_add_tail(&phy_provider->list, &phy_provider_list);
mutex_unlock(&phy_provider_mutex);
return phy_provider;
}
EXPORT_SYMBOL_GPL(__of_phy_provider_register);
/**
* __devm_of_phy_provider_register() - create/register phy provider with the
* framework
* @dev: struct device of the phy provider
* @children: device node containing children (if different from dev->of_node)
* @owner: the module owner containing of_xlate
* @of_xlate: function pointer to obtain phy instance from phy provider
*
* Creates struct phy_provider from dev and of_xlate function pointer.
* This is used in the case of dt boot for finding the phy instance from
* phy provider. While at that, it also associates the device with the
* phy provider using devres. On driver detach, release function is invoked
* on the devres data, then, devres data is freed.
*/
struct phy_provider *__devm_of_phy_provider_register(struct device *dev,
struct device_node *children, struct module *owner,
struct phy * (*of_xlate)(struct device *dev,
struct of_phandle_args *args))
{
struct phy_provider **ptr, *phy_provider;
ptr = devres_alloc(devm_phy_provider_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
phy_provider = __of_phy_provider_register(dev, children, owner,
of_xlate);
if (!IS_ERR(phy_provider)) {
*ptr = phy_provider;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return phy_provider;
}
EXPORT_SYMBOL_GPL(__devm_of_phy_provider_register);
/**
* of_phy_provider_unregister() - unregister phy provider from the framework
* @phy_provider: phy provider returned by of_phy_provider_register()
*
* Removes the phy_provider created using of_phy_provider_register().
*/
void of_phy_provider_unregister(struct phy_provider *phy_provider)
{
if (IS_ERR(phy_provider))
return;
mutex_lock(&phy_provider_mutex);
list_del(&phy_provider->list);
of_node_put(phy_provider->children);
kfree(phy_provider);
mutex_unlock(&phy_provider_mutex);
}
EXPORT_SYMBOL_GPL(of_phy_provider_unregister);
/**
* devm_of_phy_provider_unregister() - remove phy provider from the framework
* @dev: struct device of the phy provider
* @phy_provider: phy provider returned by of_phy_provider_register()
*
* destroys the devres associated with this phy provider and invokes
* of_phy_provider_unregister to unregister the phy provider.
*/
void devm_of_phy_provider_unregister(struct device *dev,
struct phy_provider *phy_provider)
{
int r;
r = devres_destroy(dev, devm_phy_provider_release, devm_phy_match,
phy_provider);
dev_WARN_ONCE(dev, r, "couldn't find PHY provider device resource\n");
}
EXPORT_SYMBOL_GPL(devm_of_phy_provider_unregister);
/**
* phy_release() - release the phy
* @dev: the dev member within phy
*
* When the last reference to the device is removed, it is called
* from the embedded kobject as release method.
*/
static void phy_release(struct device *dev)
{
struct phy *phy;
phy = to_phy(dev);
dev_vdbg(dev, "releasing '%s'\n", dev_name(dev));
debugfs_remove_recursive(phy->debugfs);
regulator_put(phy->pwr);
ida_simple_remove(&phy_ida, phy->id);
kfree(phy);
}
static int __init phy_core_init(void)
{
phy_class = class_create("phy");
if (IS_ERR(phy_class)) {
pr_err("failed to create phy class --> %ld\n",
PTR_ERR(phy_class));
return PTR_ERR(phy_class);
}
phy_class->dev_release = phy_release;
phy_debugfs_root = debugfs_create_dir("phy", NULL);
return 0;
}
device_initcall(phy_core_init);
static void __exit phy_core_exit(void)
{
debugfs_remove_recursive(phy_debugfs_root);
class_destroy(phy_class);
}
module_exit(phy_core_exit);
| linux-master | drivers/phy/phy-core.c |
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2013 NVIDIA Corporation
* Copyright (C) 2018 Cadence Design Systems Inc.
*/
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/time64.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-mipi-dphy.h>
/*
* Minimum D-PHY timings based on MIPI D-PHY specification. Derived
* from the valid ranges specified in Section 6.9, Table 14, Page 41
* of the D-PHY specification (v1.2).
*/
static int phy_mipi_dphy_calc_config(unsigned long pixel_clock,
unsigned int bpp,
unsigned int lanes,
unsigned long long hs_clk_rate,
struct phy_configure_opts_mipi_dphy *cfg)
{
unsigned long long ui;
if (!cfg)
return -EINVAL;
if (!hs_clk_rate) {
hs_clk_rate = pixel_clock * bpp;
do_div(hs_clk_rate, lanes);
}
ui = ALIGN(PSEC_PER_SEC, hs_clk_rate);
do_div(ui, hs_clk_rate);
cfg->clk_miss = 0;
cfg->clk_post = 60000 + 52 * ui;
cfg->clk_pre = 8;
cfg->clk_prepare = 38000;
cfg->clk_settle = 95000;
cfg->clk_term_en = 0;
cfg->clk_trail = 60000;
cfg->clk_zero = 262000;
cfg->d_term_en = 0;
cfg->eot = 0;
cfg->hs_exit = 100000;
cfg->hs_prepare = 40000 + 4 * ui;
cfg->hs_zero = 105000 + 6 * ui;
cfg->hs_settle = 85000 + 6 * ui;
cfg->hs_skip = 40000;
/*
* The MIPI D-PHY specification (Section 6.9, v1.2, Table 14, Page 40)
* contains this formula as:
*
* T_HS-TRAIL = max(n * 8 * ui, 60 + n * 4 * ui)
*
* where n = 1 for forward-direction HS mode and n = 4 for reverse-
* direction HS mode. There's only one setting and this function does
* not parameterize on anything other that ui, so this code will
* assumes that reverse-direction HS mode is supported and uses n = 4.
*/
cfg->hs_trail = max(4 * 8 * ui, 60000 + 4 * 4 * ui);
cfg->init = 100;
cfg->lpx = 50000;
cfg->ta_get = 5 * cfg->lpx;
cfg->ta_go = 4 * cfg->lpx;
cfg->ta_sure = cfg->lpx;
cfg->wakeup = 1000;
cfg->hs_clk_rate = hs_clk_rate;
cfg->lanes = lanes;
return 0;
}
int phy_mipi_dphy_get_default_config(unsigned long pixel_clock,
unsigned int bpp,
unsigned int lanes,
struct phy_configure_opts_mipi_dphy *cfg)
{
return phy_mipi_dphy_calc_config(pixel_clock, bpp, lanes, 0, cfg);
}
EXPORT_SYMBOL(phy_mipi_dphy_get_default_config);
int phy_mipi_dphy_get_default_config_for_hsclk(unsigned long long hs_clk_rate,
unsigned int lanes,
struct phy_configure_opts_mipi_dphy *cfg)
{
if (!hs_clk_rate)
return -EINVAL;
return phy_mipi_dphy_calc_config(0, 0, lanes, hs_clk_rate, cfg);
}
EXPORT_SYMBOL(phy_mipi_dphy_get_default_config_for_hsclk);
/*
* Validate D-PHY configuration according to MIPI D-PHY specification
* (v1.2, Section Section 6.9 "Global Operation Timing Parameters").
*/
int phy_mipi_dphy_config_validate(struct phy_configure_opts_mipi_dphy *cfg)
{
unsigned long long ui;
if (!cfg)
return -EINVAL;
ui = ALIGN(PSEC_PER_SEC, cfg->hs_clk_rate);
do_div(ui, cfg->hs_clk_rate);
if (cfg->clk_miss > 60000)
return -EINVAL;
if (cfg->clk_post < (60000 + 52 * ui))
return -EINVAL;
if (cfg->clk_pre < 8)
return -EINVAL;
if (cfg->clk_prepare < 38000 || cfg->clk_prepare > 95000)
return -EINVAL;
if (cfg->clk_settle < 95000 || cfg->clk_settle > 300000)
return -EINVAL;
if (cfg->clk_term_en > 38000)
return -EINVAL;
if (cfg->clk_trail < 60000)
return -EINVAL;
if ((cfg->clk_prepare + cfg->clk_zero) < 300000)
return -EINVAL;
if (cfg->d_term_en > (35000 + 4 * ui))
return -EINVAL;
if (cfg->eot > (105000 + 12 * ui))
return -EINVAL;
if (cfg->hs_exit < 100000)
return -EINVAL;
if (cfg->hs_prepare < (40000 + 4 * ui) ||
cfg->hs_prepare > (85000 + 6 * ui))
return -EINVAL;
if ((cfg->hs_prepare + cfg->hs_zero) < (145000 + 10 * ui))
return -EINVAL;
if ((cfg->hs_settle < (85000 + 6 * ui)) ||
(cfg->hs_settle > (145000 + 10 * ui)))
return -EINVAL;
if (cfg->hs_skip < 40000 || cfg->hs_skip > (55000 + 4 * ui))
return -EINVAL;
if (cfg->hs_trail < max(8 * ui, 60000 + 4 * ui))
return -EINVAL;
if (cfg->init < 100)
return -EINVAL;
if (cfg->lpx < 50000)
return -EINVAL;
if (cfg->ta_get != (5 * cfg->lpx))
return -EINVAL;
if (cfg->ta_go != (4 * cfg->lpx))
return -EINVAL;
if (cfg->ta_sure < cfg->lpx || cfg->ta_sure > (2 * cfg->lpx))
return -EINVAL;
if (cfg->wakeup < 1000)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL(phy_mipi_dphy_config_validate);
| linux-master | drivers/phy/phy-core-mipi-dphy.c |
// SPDX-License-Identifier: GPL-2.0
/*
* phy-rtk-usb2.c RTK usb2.0 PHY driver
*
* Copyright (C) 2023 Realtek Semiconductor Corporation
*
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/uaccess.h>
#include <linux/debugfs.h>
#include <linux/nvmem-consumer.h>
#include <linux/regmap.h>
#include <linux/sys_soc.h>
#include <linux/mfd/syscon.h>
#include <linux/phy/phy.h>
#include <linux/usb.h>
#include <linux/usb/phy.h>
#include <linux/usb/hcd.h>
/* GUSB2PHYACCn register */
#define PHY_NEW_REG_REQ BIT(25)
#define PHY_VSTS_BUSY BIT(23)
#define PHY_VCTRL_SHIFT 8
#define PHY_REG_DATA_MASK 0xff
#define GET_LOW_NIBBLE(addr) ((addr) & 0x0f)
#define GET_HIGH_NIBBLE(addr) (((addr) & 0xf0) >> 4)
#define EFUS_USB_DC_CAL_RATE 2
#define EFUS_USB_DC_CAL_MAX 7
#define EFUS_USB_DC_DIS_RATE 1
#define EFUS_USB_DC_DIS_MAX 7
#define MAX_PHY_DATA_SIZE 20
#define OFFEST_PHY_READ 0x20
#define MAX_USB_PHY_NUM 4
#define MAX_USB_PHY_PAGE0_DATA_SIZE 16
#define MAX_USB_PHY_PAGE1_DATA_SIZE 16
#define MAX_USB_PHY_PAGE2_DATA_SIZE 8
#define SET_PAGE_OFFSET 0xf4
#define SET_PAGE_0 0x9b
#define SET_PAGE_1 0xbb
#define SET_PAGE_2 0xdb
#define PAGE_START 0xe0
#define PAGE0_0XE4 0xe4
#define PAGE0_0XE6 0xe6
#define PAGE0_0XE7 0xe7
#define PAGE1_0XE0 0xe0
#define PAGE1_0XE2 0xe2
#define SENSITIVITY_CTRL (BIT(4) | BIT(5) | BIT(6))
#define ENABLE_AUTO_SENSITIVITY_CALIBRATION BIT(2)
#define DEFAULT_DC_DRIVING_VALUE (0x8)
#define DEFAULT_DC_DISCONNECTION_VALUE (0x6)
#define HS_CLK_SELECT BIT(6)
struct phy_reg {
void __iomem *reg_wrap_vstatus;
void __iomem *reg_gusb2phyacc0;
int vstatus_index;
};
struct phy_data {
u8 addr;
u8 data;
};
struct phy_cfg {
int page0_size;
struct phy_data page0[MAX_USB_PHY_PAGE0_DATA_SIZE];
int page1_size;
struct phy_data page1[MAX_USB_PHY_PAGE1_DATA_SIZE];
int page2_size;
struct phy_data page2[MAX_USB_PHY_PAGE2_DATA_SIZE];
int num_phy;
bool check_efuse;
int check_efuse_version;
#define CHECK_EFUSE_V1 1
#define CHECK_EFUSE_V2 2
int efuse_dc_driving_rate;
int efuse_dc_disconnect_rate;
int dc_driving_mask;
int dc_disconnect_mask;
bool usb_dc_disconnect_at_page0;
int driving_updated_for_dev_dis;
bool do_toggle;
bool do_toggle_driving;
bool use_default_parameter;
bool is_double_sensitivity_mode;
};
struct phy_parameter {
struct phy_reg phy_reg;
/* Get from efuse */
s8 efuse_usb_dc_cal;
s8 efuse_usb_dc_dis;
/* Get from dts */
bool inverse_hstx_sync_clock;
u32 driving_level;
s32 driving_level_compensate;
s32 disconnection_compensate;
};
struct rtk_phy {
struct usb_phy phy;
struct device *dev;
struct phy_cfg *phy_cfg;
int num_phy;
struct phy_parameter *phy_parameter;
struct dentry *debug_dir;
};
/* mapping 0xE0 to 0 ... 0xE7 to 7, 0xF0 to 8 ,,, 0xF7 to 15 */
static inline int page_addr_to_array_index(u8 addr)
{
return (int)((((addr) - PAGE_START) & 0x7) +
((((addr) - PAGE_START) & 0x10) >> 1));
}
static inline u8 array_index_to_page_addr(int index)
{
return ((((index) + PAGE_START) & 0x7) +
((((index) & 0x8) << 1) + PAGE_START));
}
#define PHY_IO_TIMEOUT_USEC (50000)
#define PHY_IO_DELAY_US (100)
static inline int utmi_wait_register(void __iomem *reg, u32 mask, u32 result)
{
int ret;
unsigned int val;
ret = read_poll_timeout(readl, val, ((val & mask) == result),
PHY_IO_DELAY_US, PHY_IO_TIMEOUT_USEC, false, reg);
if (ret) {
pr_err("%s can't program USB phy\n", __func__);
return -ETIMEDOUT;
}
return 0;
}
static char rtk_phy_read(struct phy_reg *phy_reg, char addr)
{
void __iomem *reg_gusb2phyacc0 = phy_reg->reg_gusb2phyacc0;
unsigned int val;
int ret = 0;
addr -= OFFEST_PHY_READ;
/* polling until VBusy == 0 */
ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0);
if (ret)
return (char)ret;
/* VCtrl = low nibble of addr, and set PHY_NEW_REG_REQ */
val = PHY_NEW_REG_REQ | (GET_LOW_NIBBLE(addr) << PHY_VCTRL_SHIFT);
writel(val, reg_gusb2phyacc0);
ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0);
if (ret)
return (char)ret;
/* VCtrl = high nibble of addr, and set PHY_NEW_REG_REQ */
val = PHY_NEW_REG_REQ | (GET_HIGH_NIBBLE(addr) << PHY_VCTRL_SHIFT);
writel(val, reg_gusb2phyacc0);
ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0);
if (ret)
return (char)ret;
val = readl(reg_gusb2phyacc0);
return (char)(val & PHY_REG_DATA_MASK);
}
static int rtk_phy_write(struct phy_reg *phy_reg, char addr, char data)
{
unsigned int val;
void __iomem *reg_wrap_vstatus = phy_reg->reg_wrap_vstatus;
void __iomem *reg_gusb2phyacc0 = phy_reg->reg_gusb2phyacc0;
int shift_bits = phy_reg->vstatus_index * 8;
int ret = 0;
/* write data to VStatusOut2 (data output to phy) */
writel((u32)data << shift_bits, reg_wrap_vstatus);
ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0);
if (ret)
return ret;
/* VCtrl = low nibble of addr, set PHY_NEW_REG_REQ */
val = PHY_NEW_REG_REQ | (GET_LOW_NIBBLE(addr) << PHY_VCTRL_SHIFT);
writel(val, reg_gusb2phyacc0);
ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0);
if (ret)
return ret;
/* VCtrl = high nibble of addr, set PHY_NEW_REG_REQ */
val = PHY_NEW_REG_REQ | (GET_HIGH_NIBBLE(addr) << PHY_VCTRL_SHIFT);
writel(val, reg_gusb2phyacc0);
ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0);
if (ret)
return ret;
return 0;
}
static int rtk_phy_set_page(struct phy_reg *phy_reg, int page)
{
switch (page) {
case 0:
return rtk_phy_write(phy_reg, SET_PAGE_OFFSET, SET_PAGE_0);
case 1:
return rtk_phy_write(phy_reg, SET_PAGE_OFFSET, SET_PAGE_1);
case 2:
return rtk_phy_write(phy_reg, SET_PAGE_OFFSET, SET_PAGE_2);
default:
pr_err("%s error page=%d\n", __func__, page);
}
return -EINVAL;
}
static u8 __updated_dc_disconnect_level_page0_0xe4(struct phy_cfg *phy_cfg,
struct phy_parameter *phy_parameter, u8 data)
{
u8 ret;
s32 val;
s32 dc_disconnect_mask = phy_cfg->dc_disconnect_mask;
int offset = 4;
val = (s32)((data >> offset) & dc_disconnect_mask)
+ phy_parameter->efuse_usb_dc_dis
+ phy_parameter->disconnection_compensate;
if (val > dc_disconnect_mask)
val = dc_disconnect_mask;
else if (val < 0)
val = 0;
ret = (data & (~(dc_disconnect_mask << offset))) |
(val & dc_disconnect_mask) << offset;
return ret;
}
/* updated disconnect level at page0 */
static void update_dc_disconnect_level_at_page0(struct rtk_phy *rtk_phy,
struct phy_parameter *phy_parameter, bool update)
{
struct phy_cfg *phy_cfg;
struct phy_reg *phy_reg;
struct phy_data *phy_data_page;
struct phy_data *phy_data;
u8 addr, data;
int offset = 4;
s32 dc_disconnect_mask;
int i;
phy_cfg = rtk_phy->phy_cfg;
phy_reg = &phy_parameter->phy_reg;
/* Set page 0 */
phy_data_page = phy_cfg->page0;
rtk_phy_set_page(phy_reg, 0);
i = page_addr_to_array_index(PAGE0_0XE4);
phy_data = phy_data_page + i;
if (!phy_data->addr) {
phy_data->addr = PAGE0_0XE4;
phy_data->data = rtk_phy_read(phy_reg, PAGE0_0XE4);
}
addr = phy_data->addr;
data = phy_data->data;
dc_disconnect_mask = phy_cfg->dc_disconnect_mask;
if (update)
data = __updated_dc_disconnect_level_page0_0xe4(phy_cfg, phy_parameter, data);
else
data = (data & ~(dc_disconnect_mask << offset)) |
(DEFAULT_DC_DISCONNECTION_VALUE << offset);
if (rtk_phy_write(phy_reg, addr, data))
dev_err(rtk_phy->dev,
"%s: Error to set page1 parameter addr=0x%x value=0x%x\n",
__func__, addr, data);
}
static u8 __updated_dc_disconnect_level_page1_0xe2(struct phy_cfg *phy_cfg,
struct phy_parameter *phy_parameter, u8 data)
{
u8 ret;
s32 val;
s32 dc_disconnect_mask = phy_cfg->dc_disconnect_mask;
if (phy_cfg->check_efuse_version == CHECK_EFUSE_V1) {
val = (s32)(data & dc_disconnect_mask)
+ phy_parameter->efuse_usb_dc_dis
+ phy_parameter->disconnection_compensate;
} else { /* for CHECK_EFUSE_V2 or no efuse */
if (phy_parameter->efuse_usb_dc_dis)
val = (s32)(phy_parameter->efuse_usb_dc_dis +
phy_parameter->disconnection_compensate);
else
val = (s32)((data & dc_disconnect_mask) +
phy_parameter->disconnection_compensate);
}
if (val > dc_disconnect_mask)
val = dc_disconnect_mask;
else if (val < 0)
val = 0;
ret = (data & (~dc_disconnect_mask)) | (val & dc_disconnect_mask);
return ret;
}
/* updated disconnect level at page1 */
static void update_dc_disconnect_level_at_page1(struct rtk_phy *rtk_phy,
struct phy_parameter *phy_parameter, bool update)
{
struct phy_cfg *phy_cfg;
struct phy_data *phy_data_page;
struct phy_data *phy_data;
struct phy_reg *phy_reg;
u8 addr, data;
s32 dc_disconnect_mask;
int i;
phy_cfg = rtk_phy->phy_cfg;
phy_reg = &phy_parameter->phy_reg;
/* Set page 1 */
phy_data_page = phy_cfg->page1;
rtk_phy_set_page(phy_reg, 1);
i = page_addr_to_array_index(PAGE1_0XE2);
phy_data = phy_data_page + i;
if (!phy_data->addr) {
phy_data->addr = PAGE1_0XE2;
phy_data->data = rtk_phy_read(phy_reg, PAGE1_0XE2);
}
addr = phy_data->addr;
data = phy_data->data;
dc_disconnect_mask = phy_cfg->dc_disconnect_mask;
if (update)
data = __updated_dc_disconnect_level_page1_0xe2(phy_cfg, phy_parameter, data);
else
data = (data & ~dc_disconnect_mask) | DEFAULT_DC_DISCONNECTION_VALUE;
if (rtk_phy_write(phy_reg, addr, data))
dev_err(rtk_phy->dev,
"%s: Error to set page1 parameter addr=0x%x value=0x%x\n",
__func__, addr, data);
}
static void update_dc_disconnect_level(struct rtk_phy *rtk_phy,
struct phy_parameter *phy_parameter, bool update)
{
struct phy_cfg *phy_cfg = rtk_phy->phy_cfg;
if (phy_cfg->usb_dc_disconnect_at_page0)
update_dc_disconnect_level_at_page0(rtk_phy, phy_parameter, update);
else
update_dc_disconnect_level_at_page1(rtk_phy, phy_parameter, update);
}
static u8 __update_dc_driving_page0_0xe4(struct phy_cfg *phy_cfg,
struct phy_parameter *phy_parameter, u8 data)
{
s32 driving_level_compensate = phy_parameter->driving_level_compensate;
s32 dc_driving_mask = phy_cfg->dc_driving_mask;
s32 val;
u8 ret;
if (phy_cfg->check_efuse_version == CHECK_EFUSE_V1) {
val = (s32)(data & dc_driving_mask) + driving_level_compensate
+ phy_parameter->efuse_usb_dc_cal;
} else { /* for CHECK_EFUSE_V2 or no efuse */
if (phy_parameter->efuse_usb_dc_cal)
val = (s32)((phy_parameter->efuse_usb_dc_cal & dc_driving_mask)
+ driving_level_compensate);
else
val = (s32)(data & dc_driving_mask);
}
if (val > dc_driving_mask)
val = dc_driving_mask;
else if (val < 0)
val = 0;
ret = (data & (~dc_driving_mask)) | (val & dc_driving_mask);
return ret;
}
static void update_dc_driving_level(struct rtk_phy *rtk_phy,
struct phy_parameter *phy_parameter)
{
struct phy_cfg *phy_cfg;
struct phy_reg *phy_reg;
phy_reg = &phy_parameter->phy_reg;
phy_cfg = rtk_phy->phy_cfg;
if (!phy_cfg->page0[4].addr) {
rtk_phy_set_page(phy_reg, 0);
phy_cfg->page0[4].addr = PAGE0_0XE4;
phy_cfg->page0[4].data = rtk_phy_read(phy_reg, PAGE0_0XE4);
}
if (phy_parameter->driving_level != DEFAULT_DC_DRIVING_VALUE) {
u32 dc_driving_mask;
u8 driving_level;
u8 data;
data = phy_cfg->page0[4].data;
dc_driving_mask = phy_cfg->dc_driving_mask;
driving_level = data & dc_driving_mask;
dev_dbg(rtk_phy->dev, "%s driving_level=%d => dts driving_level=%d\n",
__func__, driving_level, phy_parameter->driving_level);
phy_cfg->page0[4].data = (data & (~dc_driving_mask)) |
(phy_parameter->driving_level & dc_driving_mask);
}
phy_cfg->page0[4].data = __update_dc_driving_page0_0xe4(phy_cfg,
phy_parameter,
phy_cfg->page0[4].data);
}
static void update_hs_clk_select(struct rtk_phy *rtk_phy,
struct phy_parameter *phy_parameter)
{
struct phy_cfg *phy_cfg;
struct phy_reg *phy_reg;
phy_cfg = rtk_phy->phy_cfg;
phy_reg = &phy_parameter->phy_reg;
if (phy_parameter->inverse_hstx_sync_clock) {
if (!phy_cfg->page0[6].addr) {
rtk_phy_set_page(phy_reg, 0);
phy_cfg->page0[6].addr = PAGE0_0XE6;
phy_cfg->page0[6].data = rtk_phy_read(phy_reg, PAGE0_0XE6);
}
phy_cfg->page0[6].data = phy_cfg->page0[6].data | HS_CLK_SELECT;
}
}
static void do_rtk_phy_toggle(struct rtk_phy *rtk_phy,
int index, bool connect)
{
struct phy_parameter *phy_parameter;
struct phy_cfg *phy_cfg;
struct phy_reg *phy_reg;
struct phy_data *phy_data_page;
u8 addr, data;
int i;
phy_cfg = rtk_phy->phy_cfg;
phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index];
phy_reg = &phy_parameter->phy_reg;
if (!phy_cfg->do_toggle)
goto out;
if (phy_cfg->is_double_sensitivity_mode)
goto do_toggle_driving;
/* Set page 0 */
rtk_phy_set_page(phy_reg, 0);
addr = PAGE0_0XE7;
data = rtk_phy_read(phy_reg, addr);
if (connect)
rtk_phy_write(phy_reg, addr, data & (~SENSITIVITY_CTRL));
else
rtk_phy_write(phy_reg, addr, data | (SENSITIVITY_CTRL));
do_toggle_driving:
if (!phy_cfg->do_toggle_driving)
goto do_toggle;
/* Page 0 addr 0xE4 driving capability */
/* Set page 0 */
phy_data_page = phy_cfg->page0;
rtk_phy_set_page(phy_reg, 0);
i = page_addr_to_array_index(PAGE0_0XE4);
addr = phy_data_page[i].addr;
data = phy_data_page[i].data;
if (connect) {
rtk_phy_write(phy_reg, addr, data);
} else {
u8 value;
s32 tmp;
s32 driving_updated =
phy_cfg->driving_updated_for_dev_dis;
s32 dc_driving_mask = phy_cfg->dc_driving_mask;
tmp = (s32)(data & dc_driving_mask) + driving_updated;
if (tmp > dc_driving_mask)
tmp = dc_driving_mask;
else if (tmp < 0)
tmp = 0;
value = (data & (~dc_driving_mask)) | (tmp & dc_driving_mask);
rtk_phy_write(phy_reg, addr, value);
}
do_toggle:
/* restore dc disconnect level before toggle */
update_dc_disconnect_level(rtk_phy, phy_parameter, false);
/* Set page 1 */
rtk_phy_set_page(phy_reg, 1);
addr = PAGE1_0XE0;
data = rtk_phy_read(phy_reg, addr);
rtk_phy_write(phy_reg, addr, data &
(~ENABLE_AUTO_SENSITIVITY_CALIBRATION));
mdelay(1);
rtk_phy_write(phy_reg, addr, data |
(ENABLE_AUTO_SENSITIVITY_CALIBRATION));
/* update dc disconnect level after toggle */
update_dc_disconnect_level(rtk_phy, phy_parameter, true);
out:
return;
}
static int do_rtk_phy_init(struct rtk_phy *rtk_phy, int index)
{
struct phy_parameter *phy_parameter;
struct phy_cfg *phy_cfg;
struct phy_data *phy_data_page;
struct phy_reg *phy_reg;
int i;
phy_cfg = rtk_phy->phy_cfg;
phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index];
phy_reg = &phy_parameter->phy_reg;
if (phy_cfg->use_default_parameter) {
dev_dbg(rtk_phy->dev, "%s phy#%d use default parameter\n",
__func__, index);
goto do_toggle;
}
/* Set page 0 */
phy_data_page = phy_cfg->page0;
rtk_phy_set_page(phy_reg, 0);
for (i = 0; i < phy_cfg->page0_size; i++) {
struct phy_data *phy_data = phy_data_page + i;
u8 addr = phy_data->addr;
u8 data = phy_data->data;
if (!addr)
continue;
if (rtk_phy_write(phy_reg, addr, data)) {
dev_err(rtk_phy->dev,
"%s: Error to set page0 parameter addr=0x%x value=0x%x\n",
__func__, addr, data);
return -EINVAL;
}
}
/* Set page 1 */
phy_data_page = phy_cfg->page1;
rtk_phy_set_page(phy_reg, 1);
for (i = 0; i < phy_cfg->page1_size; i++) {
struct phy_data *phy_data = phy_data_page + i;
u8 addr = phy_data->addr;
u8 data = phy_data->data;
if (!addr)
continue;
if (rtk_phy_write(phy_reg, addr, data)) {
dev_err(rtk_phy->dev,
"%s: Error to set page1 parameter addr=0x%x value=0x%x\n",
__func__, addr, data);
return -EINVAL;
}
}
if (phy_cfg->page2_size == 0)
goto do_toggle;
/* Set page 2 */
phy_data_page = phy_cfg->page2;
rtk_phy_set_page(phy_reg, 2);
for (i = 0; i < phy_cfg->page2_size; i++) {
struct phy_data *phy_data = phy_data_page + i;
u8 addr = phy_data->addr;
u8 data = phy_data->data;
if (!addr)
continue;
if (rtk_phy_write(phy_reg, addr, data)) {
dev_err(rtk_phy->dev,
"%s: Error to set page2 parameter addr=0x%x value=0x%x\n",
__func__, addr, data);
return -EINVAL;
}
}
do_toggle:
do_rtk_phy_toggle(rtk_phy, index, false);
return 0;
}
static int rtk_phy_init(struct phy *phy)
{
struct rtk_phy *rtk_phy = phy_get_drvdata(phy);
unsigned long phy_init_time = jiffies;
int i, ret = 0;
if (!rtk_phy)
return -EINVAL;
for (i = 0; i < rtk_phy->num_phy; i++)
ret = do_rtk_phy_init(rtk_phy, i);
dev_dbg(rtk_phy->dev, "Initialized RTK USB 2.0 PHY (take %dms)\n",
jiffies_to_msecs(jiffies - phy_init_time));
return ret;
}
static int rtk_phy_exit(struct phy *phy)
{
return 0;
}
static const struct phy_ops ops = {
.init = rtk_phy_init,
.exit = rtk_phy_exit,
.owner = THIS_MODULE,
};
static void rtk_phy_toggle(struct usb_phy *usb2_phy, bool connect, int port)
{
int index = port;
struct rtk_phy *rtk_phy = NULL;
rtk_phy = dev_get_drvdata(usb2_phy->dev);
if (index > rtk_phy->num_phy) {
dev_err(rtk_phy->dev, "%s: The port=%d is not in usb phy (num_phy=%d)\n",
__func__, index, rtk_phy->num_phy);
return;
}
do_rtk_phy_toggle(rtk_phy, index, connect);
}
static int rtk_phy_notify_port_status(struct usb_phy *x, int port,
u16 portstatus, u16 portchange)
{
bool connect = false;
pr_debug("%s port=%d portstatus=0x%x portchange=0x%x\n",
__func__, port, (int)portstatus, (int)portchange);
if (portstatus & USB_PORT_STAT_CONNECTION)
connect = true;
if (portchange & USB_PORT_STAT_C_CONNECTION)
rtk_phy_toggle(x, connect, port);
return 0;
}
#ifdef CONFIG_DEBUG_FS
static struct dentry *create_phy_debug_root(void)
{
struct dentry *phy_debug_root;
phy_debug_root = debugfs_lookup("phy", usb_debug_root);
if (!phy_debug_root)
phy_debug_root = debugfs_create_dir("phy", usb_debug_root);
return phy_debug_root;
}
static int rtk_usb2_parameter_show(struct seq_file *s, void *unused)
{
struct rtk_phy *rtk_phy = s->private;
struct phy_cfg *phy_cfg;
int i, index;
phy_cfg = rtk_phy->phy_cfg;
seq_puts(s, "Property:\n");
seq_printf(s, " check_efuse: %s\n",
phy_cfg->check_efuse ? "Enable" : "Disable");
seq_printf(s, " check_efuse_version: %d\n",
phy_cfg->check_efuse_version);
seq_printf(s, " efuse_dc_driving_rate: %d\n",
phy_cfg->efuse_dc_driving_rate);
seq_printf(s, " dc_driving_mask: 0x%x\n",
phy_cfg->dc_driving_mask);
seq_printf(s, " efuse_dc_disconnect_rate: %d\n",
phy_cfg->efuse_dc_disconnect_rate);
seq_printf(s, " dc_disconnect_mask: 0x%x\n",
phy_cfg->dc_disconnect_mask);
seq_printf(s, " usb_dc_disconnect_at_page0: %s\n",
phy_cfg->usb_dc_disconnect_at_page0 ? "true" : "false");
seq_printf(s, " do_toggle: %s\n",
phy_cfg->do_toggle ? "Enable" : "Disable");
seq_printf(s, " do_toggle_driving: %s\n",
phy_cfg->do_toggle_driving ? "Enable" : "Disable");
seq_printf(s, " driving_updated_for_dev_dis: 0x%x\n",
phy_cfg->driving_updated_for_dev_dis);
seq_printf(s, " use_default_parameter: %s\n",
phy_cfg->use_default_parameter ? "Enable" : "Disable");
seq_printf(s, " is_double_sensitivity_mode: %s\n",
phy_cfg->is_double_sensitivity_mode ? "Enable" : "Disable");
for (index = 0; index < rtk_phy->num_phy; index++) {
struct phy_parameter *phy_parameter;
struct phy_reg *phy_reg;
struct phy_data *phy_data_page;
phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index];
phy_reg = &phy_parameter->phy_reg;
seq_printf(s, "PHY %d:\n", index);
seq_puts(s, "Page 0:\n");
/* Set page 0 */
phy_data_page = phy_cfg->page0;
rtk_phy_set_page(phy_reg, 0);
for (i = 0; i < phy_cfg->page0_size; i++) {
struct phy_data *phy_data = phy_data_page + i;
u8 addr = array_index_to_page_addr(i);
u8 data = phy_data->data;
u8 value = rtk_phy_read(phy_reg, addr);
if (phy_data->addr)
seq_printf(s, " Page 0: addr=0x%x data=0x%02x ==> read value=0x%02x\n",
addr, data, value);
else
seq_printf(s, " Page 0: addr=0x%x data=none ==> read value=0x%02x\n",
addr, value);
}
seq_puts(s, "Page 1:\n");
/* Set page 1 */
phy_data_page = phy_cfg->page1;
rtk_phy_set_page(phy_reg, 1);
for (i = 0; i < phy_cfg->page1_size; i++) {
struct phy_data *phy_data = phy_data_page + i;
u8 addr = array_index_to_page_addr(i);
u8 data = phy_data->data;
u8 value = rtk_phy_read(phy_reg, addr);
if (phy_data->addr)
seq_printf(s, " Page 1: addr=0x%x data=0x%02x ==> read value=0x%02x\n",
addr, data, value);
else
seq_printf(s, " Page 1: addr=0x%x data=none ==> read value=0x%02x\n",
addr, value);
}
if (phy_cfg->page2_size == 0)
goto out;
seq_puts(s, "Page 2:\n");
/* Set page 2 */
phy_data_page = phy_cfg->page2;
rtk_phy_set_page(phy_reg, 2);
for (i = 0; i < phy_cfg->page2_size; i++) {
struct phy_data *phy_data = phy_data_page + i;
u8 addr = array_index_to_page_addr(i);
u8 data = phy_data->data;
u8 value = rtk_phy_read(phy_reg, addr);
if (phy_data->addr)
seq_printf(s, " Page 2: addr=0x%x data=0x%02x ==> read value=0x%02x\n",
addr, data, value);
else
seq_printf(s, " Page 2: addr=0x%x data=none ==> read value=0x%02x\n",
addr, value);
}
out:
seq_puts(s, "PHY Property:\n");
seq_printf(s, " efuse_usb_dc_cal: %d\n",
(int)phy_parameter->efuse_usb_dc_cal);
seq_printf(s, " efuse_usb_dc_dis: %d\n",
(int)phy_parameter->efuse_usb_dc_dis);
seq_printf(s, " inverse_hstx_sync_clock: %s\n",
phy_parameter->inverse_hstx_sync_clock ? "Enable" : "Disable");
seq_printf(s, " driving_level: %d\n",
phy_parameter->driving_level);
seq_printf(s, " driving_level_compensate: %d\n",
phy_parameter->driving_level_compensate);
seq_printf(s, " disconnection_compensate: %d\n",
phy_parameter->disconnection_compensate);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(rtk_usb2_parameter);
static inline void create_debug_files(struct rtk_phy *rtk_phy)
{
struct dentry *phy_debug_root = NULL;
phy_debug_root = create_phy_debug_root();
if (!phy_debug_root)
return;
rtk_phy->debug_dir = debugfs_create_dir(dev_name(rtk_phy->dev),
phy_debug_root);
if (!rtk_phy->debug_dir)
return;
if (!debugfs_create_file("parameter", 0444, rtk_phy->debug_dir, rtk_phy,
&rtk_usb2_parameter_fops))
goto file_error;
return;
file_error:
debugfs_remove_recursive(rtk_phy->debug_dir);
}
static inline void remove_debug_files(struct rtk_phy *rtk_phy)
{
debugfs_remove_recursive(rtk_phy->debug_dir);
}
#else
static inline void create_debug_files(struct rtk_phy *rtk_phy) { }
static inline void remove_debug_files(struct rtk_phy *rtk_phy) { }
#endif /* CONFIG_DEBUG_FS */
static int get_phy_data_by_efuse(struct rtk_phy *rtk_phy,
struct phy_parameter *phy_parameter, int index)
{
struct phy_cfg *phy_cfg = rtk_phy->phy_cfg;
u8 value = 0;
struct nvmem_cell *cell;
struct soc_device_attribute rtk_soc_groot[] = {
{ .family = "Realtek Groot",},
{ /* empty */ } };
if (!phy_cfg->check_efuse)
goto out;
/* Read efuse for usb dc cal */
cell = nvmem_cell_get(rtk_phy->dev, "usb-dc-cal");
if (IS_ERR(cell)) {
dev_dbg(rtk_phy->dev, "%s no usb-dc-cal: %ld\n",
__func__, PTR_ERR(cell));
} else {
unsigned char *buf;
size_t buf_size;
buf = nvmem_cell_read(cell, &buf_size);
if (!IS_ERR(buf)) {
value = buf[0] & phy_cfg->dc_driving_mask;
kfree(buf);
}
nvmem_cell_put(cell);
}
if (phy_cfg->check_efuse_version == CHECK_EFUSE_V1) {
int rate = phy_cfg->efuse_dc_driving_rate;
if (value <= EFUS_USB_DC_CAL_MAX)
phy_parameter->efuse_usb_dc_cal = (int8_t)(value * rate);
else
phy_parameter->efuse_usb_dc_cal = -(int8_t)
((EFUS_USB_DC_CAL_MAX & value) * rate);
if (soc_device_match(rtk_soc_groot)) {
dev_dbg(rtk_phy->dev, "For groot IC we need a workaround to adjust efuse_usb_dc_cal\n");
/* We don't multiple dc_cal_rate=2 for positive dc cal compensate */
if (value <= EFUS_USB_DC_CAL_MAX)
phy_parameter->efuse_usb_dc_cal = (int8_t)(value);
/* We set max dc cal compensate is 0x8 if otp is 0x7 */
if (value == 0x7)
phy_parameter->efuse_usb_dc_cal = (int8_t)(value + 1);
}
} else { /* for CHECK_EFUSE_V2 */
phy_parameter->efuse_usb_dc_cal = value & phy_cfg->dc_driving_mask;
}
/* Read efuse for usb dc disconnect level */
value = 0;
cell = nvmem_cell_get(rtk_phy->dev, "usb-dc-dis");
if (IS_ERR(cell)) {
dev_dbg(rtk_phy->dev, "%s no usb-dc-dis: %ld\n",
__func__, PTR_ERR(cell));
} else {
unsigned char *buf;
size_t buf_size;
buf = nvmem_cell_read(cell, &buf_size);
if (!IS_ERR(buf)) {
value = buf[0] & phy_cfg->dc_disconnect_mask;
kfree(buf);
}
nvmem_cell_put(cell);
}
if (phy_cfg->check_efuse_version == CHECK_EFUSE_V1) {
int rate = phy_cfg->efuse_dc_disconnect_rate;
if (value <= EFUS_USB_DC_DIS_MAX)
phy_parameter->efuse_usb_dc_dis = (int8_t)(value * rate);
else
phy_parameter->efuse_usb_dc_dis = -(int8_t)
((EFUS_USB_DC_DIS_MAX & value) * rate);
} else { /* for CHECK_EFUSE_V2 */
phy_parameter->efuse_usb_dc_dis = value & phy_cfg->dc_disconnect_mask;
}
out:
return 0;
}
static int parse_phy_data(struct rtk_phy *rtk_phy)
{
struct device *dev = rtk_phy->dev;
struct device_node *np = dev->of_node;
struct phy_parameter *phy_parameter;
int ret = 0;
int index;
rtk_phy->phy_parameter = devm_kzalloc(dev, sizeof(struct phy_parameter) *
rtk_phy->num_phy, GFP_KERNEL);
if (!rtk_phy->phy_parameter)
return -ENOMEM;
for (index = 0; index < rtk_phy->num_phy; index++) {
phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index];
phy_parameter->phy_reg.reg_wrap_vstatus = of_iomap(np, 0);
phy_parameter->phy_reg.reg_gusb2phyacc0 = of_iomap(np, 1) + index;
phy_parameter->phy_reg.vstatus_index = index;
if (of_property_read_bool(np, "realtek,inverse-hstx-sync-clock"))
phy_parameter->inverse_hstx_sync_clock = true;
else
phy_parameter->inverse_hstx_sync_clock = false;
if (of_property_read_u32_index(np, "realtek,driving-level",
index, &phy_parameter->driving_level))
phy_parameter->driving_level = DEFAULT_DC_DRIVING_VALUE;
if (of_property_read_u32_index(np, "realtek,driving-level-compensate",
index, &phy_parameter->driving_level_compensate))
phy_parameter->driving_level_compensate = 0;
if (of_property_read_u32_index(np, "realtek,disconnection-compensate",
index, &phy_parameter->disconnection_compensate))
phy_parameter->disconnection_compensate = 0;
get_phy_data_by_efuse(rtk_phy, phy_parameter, index);
update_dc_driving_level(rtk_phy, phy_parameter);
update_hs_clk_select(rtk_phy, phy_parameter);
}
return ret;
}
static int rtk_usb2phy_probe(struct platform_device *pdev)
{
struct rtk_phy *rtk_phy;
struct device *dev = &pdev->dev;
struct phy *generic_phy;
struct phy_provider *phy_provider;
const struct phy_cfg *phy_cfg;
int ret = 0;
phy_cfg = of_device_get_match_data(dev);
if (!phy_cfg) {
dev_err(dev, "phy config are not assigned!\n");
return -EINVAL;
}
rtk_phy = devm_kzalloc(dev, sizeof(*rtk_phy), GFP_KERNEL);
if (!rtk_phy)
return -ENOMEM;
rtk_phy->dev = &pdev->dev;
rtk_phy->phy.dev = rtk_phy->dev;
rtk_phy->phy.label = "rtk-usb2phy";
rtk_phy->phy.notify_port_status = rtk_phy_notify_port_status;
rtk_phy->phy_cfg = devm_kzalloc(dev, sizeof(*phy_cfg), GFP_KERNEL);
memcpy(rtk_phy->phy_cfg, phy_cfg, sizeof(*phy_cfg));
rtk_phy->num_phy = phy_cfg->num_phy;
ret = parse_phy_data(rtk_phy);
if (ret)
goto err;
platform_set_drvdata(pdev, rtk_phy);
generic_phy = devm_phy_create(rtk_phy->dev, NULL, &ops);
if (IS_ERR(generic_phy))
return PTR_ERR(generic_phy);
phy_set_drvdata(generic_phy, rtk_phy);
phy_provider = devm_of_phy_provider_register(rtk_phy->dev,
of_phy_simple_xlate);
if (IS_ERR(phy_provider))
return PTR_ERR(phy_provider);
ret = usb_add_phy_dev(&rtk_phy->phy);
if (ret)
goto err;
create_debug_files(rtk_phy);
err:
return ret;
}
static void rtk_usb2phy_remove(struct platform_device *pdev)
{
struct rtk_phy *rtk_phy = platform_get_drvdata(pdev);
remove_debug_files(rtk_phy);
usb_remove_phy(&rtk_phy->phy);
}
static const struct phy_cfg rtd1295_phy_cfg = {
.page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE,
.page0 = { [0] = {0xe0, 0x90},
[3] = {0xe3, 0x3a},
[4] = {0xe4, 0x68},
[6] = {0xe6, 0x91},
[13] = {0xf5, 0x81},
[15] = {0xf7, 0x02}, },
.page1_size = 8,
.page1 = { /* default parameter */ },
.page2_size = 0,
.page2 = { /* no parameter */ },
.num_phy = 1,
.check_efuse = false,
.check_efuse_version = CHECK_EFUSE_V1,
.efuse_dc_driving_rate = 1,
.dc_driving_mask = 0xf,
.efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE,
.dc_disconnect_mask = 0xf,
.usb_dc_disconnect_at_page0 = true,
.do_toggle = true,
.do_toggle_driving = false,
.driving_updated_for_dev_dis = 0xf,
.use_default_parameter = false,
.is_double_sensitivity_mode = false,
};
static const struct phy_cfg rtd1395_phy_cfg = {
.page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE,
.page0 = { [4] = {0xe4, 0xac},
[13] = {0xf5, 0x00},
[15] = {0xf7, 0x02}, },
.page1_size = 8,
.page1 = { /* default parameter */ },
.page2_size = 0,
.page2 = { /* no parameter */ },
.num_phy = 1,
.check_efuse = false,
.check_efuse_version = CHECK_EFUSE_V1,
.efuse_dc_driving_rate = 1,
.dc_driving_mask = 0xf,
.efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE,
.dc_disconnect_mask = 0xf,
.usb_dc_disconnect_at_page0 = true,
.do_toggle = true,
.do_toggle_driving = false,
.driving_updated_for_dev_dis = 0xf,
.use_default_parameter = false,
.is_double_sensitivity_mode = false,
};
static const struct phy_cfg rtd1395_phy_cfg_2port = {
.page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE,
.page0 = { [4] = {0xe4, 0xac},
[13] = {0xf5, 0x00},
[15] = {0xf7, 0x02}, },
.page1_size = 8,
.page1 = { /* default parameter */ },
.page2_size = 0,
.page2 = { /* no parameter */ },
.num_phy = 2,
.check_efuse = false,
.check_efuse_version = CHECK_EFUSE_V1,
.efuse_dc_driving_rate = 1,
.dc_driving_mask = 0xf,
.efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE,
.dc_disconnect_mask = 0xf,
.usb_dc_disconnect_at_page0 = true,
.do_toggle = true,
.do_toggle_driving = false,
.driving_updated_for_dev_dis = 0xf,
.use_default_parameter = false,
.is_double_sensitivity_mode = false,
};
static const struct phy_cfg rtd1619_phy_cfg = {
.page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE,
.page0 = { [4] = {0xe4, 0x68}, },
.page1_size = 8,
.page1 = { /* default parameter */ },
.page2_size = 0,
.page2 = { /* no parameter */ },
.num_phy = 1,
.check_efuse = true,
.check_efuse_version = CHECK_EFUSE_V1,
.efuse_dc_driving_rate = 1,
.dc_driving_mask = 0xf,
.efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE,
.dc_disconnect_mask = 0xf,
.usb_dc_disconnect_at_page0 = true,
.do_toggle = true,
.do_toggle_driving = false,
.driving_updated_for_dev_dis = 0xf,
.use_default_parameter = false,
.is_double_sensitivity_mode = false,
};
static const struct phy_cfg rtd1319_phy_cfg = {
.page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE,
.page0 = { [0] = {0xe0, 0x18},
[4] = {0xe4, 0x6a},
[7] = {0xe7, 0x71},
[13] = {0xf5, 0x15},
[15] = {0xf7, 0x32}, },
.page1_size = 8,
.page1 = { [3] = {0xe3, 0x44}, },
.page2_size = MAX_USB_PHY_PAGE2_DATA_SIZE,
.page2 = { [0] = {0xe0, 0x01}, },
.num_phy = 1,
.check_efuse = true,
.check_efuse_version = CHECK_EFUSE_V1,
.efuse_dc_driving_rate = 1,
.dc_driving_mask = 0xf,
.efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE,
.dc_disconnect_mask = 0xf,
.usb_dc_disconnect_at_page0 = true,
.do_toggle = true,
.do_toggle_driving = true,
.driving_updated_for_dev_dis = 0xf,
.use_default_parameter = false,
.is_double_sensitivity_mode = true,
};
static const struct phy_cfg rtd1312c_phy_cfg = {
.page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE,
.page0 = { [0] = {0xe0, 0x14},
[4] = {0xe4, 0x67},
[5] = {0xe5, 0x55}, },
.page1_size = 8,
.page1 = { [3] = {0xe3, 0x23},
[6] = {0xe6, 0x58}, },
.page2_size = MAX_USB_PHY_PAGE2_DATA_SIZE,
.page2 = { /* default parameter */ },
.num_phy = 1,
.check_efuse = true,
.check_efuse_version = CHECK_EFUSE_V1,
.efuse_dc_driving_rate = 1,
.dc_driving_mask = 0xf,
.efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE,
.dc_disconnect_mask = 0xf,
.usb_dc_disconnect_at_page0 = true,
.do_toggle = true,
.do_toggle_driving = true,
.driving_updated_for_dev_dis = 0xf,
.use_default_parameter = false,
.is_double_sensitivity_mode = true,
};
static const struct phy_cfg rtd1619b_phy_cfg = {
.page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE,
.page0 = { [0] = {0xe0, 0xa3},
[4] = {0xe4, 0x88},
[5] = {0xe5, 0x4f},
[6] = {0xe6, 0x02}, },
.page1_size = 8,
.page1 = { [3] = {0xe3, 0x64}, },
.page2_size = MAX_USB_PHY_PAGE2_DATA_SIZE,
.page2 = { [7] = {0xe7, 0x45}, },
.num_phy = 1,
.check_efuse = true,
.check_efuse_version = CHECK_EFUSE_V1,
.efuse_dc_driving_rate = EFUS_USB_DC_CAL_RATE,
.dc_driving_mask = 0x1f,
.efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE,
.dc_disconnect_mask = 0xf,
.usb_dc_disconnect_at_page0 = false,
.do_toggle = true,
.do_toggle_driving = true,
.driving_updated_for_dev_dis = 0x8,
.use_default_parameter = false,
.is_double_sensitivity_mode = true,
};
static const struct phy_cfg rtd1319d_phy_cfg = {
.page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE,
.page0 = { [0] = {0xe0, 0xa3},
[4] = {0xe4, 0x8e},
[5] = {0xe5, 0x4f},
[6] = {0xe6, 0x02}, },
.page1_size = MAX_USB_PHY_PAGE1_DATA_SIZE,
.page1 = { [14] = {0xf5, 0x1}, },
.page2_size = MAX_USB_PHY_PAGE2_DATA_SIZE,
.page2 = { [7] = {0xe7, 0x44}, },
.check_efuse = true,
.num_phy = 1,
.check_efuse_version = CHECK_EFUSE_V1,
.efuse_dc_driving_rate = EFUS_USB_DC_CAL_RATE,
.dc_driving_mask = 0x1f,
.efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE,
.dc_disconnect_mask = 0xf,
.usb_dc_disconnect_at_page0 = false,
.do_toggle = true,
.do_toggle_driving = false,
.driving_updated_for_dev_dis = 0x8,
.use_default_parameter = false,
.is_double_sensitivity_mode = true,
};
static const struct phy_cfg rtd1315e_phy_cfg = {
.page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE,
.page0 = { [0] = {0xe0, 0xa3},
[4] = {0xe4, 0x8c},
[5] = {0xe5, 0x4f},
[6] = {0xe6, 0x02}, },
.page1_size = MAX_USB_PHY_PAGE1_DATA_SIZE,
.page1 = { [3] = {0xe3, 0x7f},
[14] = {0xf5, 0x01}, },
.page2_size = MAX_USB_PHY_PAGE2_DATA_SIZE,
.page2 = { [7] = {0xe7, 0x44}, },
.num_phy = 1,
.check_efuse = true,
.check_efuse_version = CHECK_EFUSE_V2,
.efuse_dc_driving_rate = EFUS_USB_DC_CAL_RATE,
.dc_driving_mask = 0x1f,
.efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE,
.dc_disconnect_mask = 0xf,
.usb_dc_disconnect_at_page0 = false,
.do_toggle = true,
.do_toggle_driving = false,
.driving_updated_for_dev_dis = 0x8,
.use_default_parameter = false,
.is_double_sensitivity_mode = true,
};
static const struct of_device_id usbphy_rtk_dt_match[] = {
{ .compatible = "realtek,rtd1295-usb2phy", .data = &rtd1295_phy_cfg },
{ .compatible = "realtek,rtd1312c-usb2phy", .data = &rtd1312c_phy_cfg },
{ .compatible = "realtek,rtd1315e-usb2phy", .data = &rtd1315e_phy_cfg },
{ .compatible = "realtek,rtd1319-usb2phy", .data = &rtd1319_phy_cfg },
{ .compatible = "realtek,rtd1319d-usb2phy", .data = &rtd1319d_phy_cfg },
{ .compatible = "realtek,rtd1395-usb2phy", .data = &rtd1395_phy_cfg },
{ .compatible = "realtek,rtd1395-usb2phy-2port", .data = &rtd1395_phy_cfg_2port },
{ .compatible = "realtek,rtd1619-usb2phy", .data = &rtd1619_phy_cfg },
{ .compatible = "realtek,rtd1619b-usb2phy", .data = &rtd1619b_phy_cfg },
{},
};
MODULE_DEVICE_TABLE(of, usbphy_rtk_dt_match);
static struct platform_driver rtk_usb2phy_driver = {
.probe = rtk_usb2phy_probe,
.remove_new = rtk_usb2phy_remove,
.driver = {
.name = "rtk-usb2phy",
.of_match_table = usbphy_rtk_dt_match,
},
};
module_platform_driver(rtk_usb2phy_driver);
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform: rtk-usb2phy");
MODULE_AUTHOR("Stanley Chang <[email protected]>");
MODULE_DESCRIPTION("Realtek usb 2.0 phy driver");
| linux-master | drivers/phy/realtek/phy-rtk-usb2.c |
// SPDX-License-Identifier: GPL-2.0
/*
* phy-rtk-usb3.c RTK usb3.0 phy driver
*
* copyright (c) 2023 realtek semiconductor corporation
*
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/uaccess.h>
#include <linux/debugfs.h>
#include <linux/nvmem-consumer.h>
#include <linux/regmap.h>
#include <linux/sys_soc.h>
#include <linux/mfd/syscon.h>
#include <linux/phy/phy.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/usb/phy.h>
#define USB_MDIO_CTRL_PHY_BUSY BIT(7)
#define USB_MDIO_CTRL_PHY_WRITE BIT(0)
#define USB_MDIO_CTRL_PHY_ADDR_SHIFT 8
#define USB_MDIO_CTRL_PHY_DATA_SHIFT 16
#define MAX_USB_PHY_DATA_SIZE 0x30
#define PHY_ADDR_0X09 0x09
#define PHY_ADDR_0X0B 0x0b
#define PHY_ADDR_0X0D 0x0d
#define PHY_ADDR_0X10 0x10
#define PHY_ADDR_0X1F 0x1f
#define PHY_ADDR_0X20 0x20
#define PHY_ADDR_0X21 0x21
#define PHY_ADDR_0X30 0x30
#define REG_0X09_FORCE_CALIBRATION BIT(9)
#define REG_0X0B_RX_OFFSET_RANGE_MASK 0xc
#define REG_0X0D_RX_DEBUG_TEST_EN BIT(6)
#define REG_0X10_DEBUG_MODE_SETTING 0x3c0
#define REG_0X10_DEBUG_MODE_SETTING_MASK 0x3f8
#define REG_0X1F_RX_OFFSET_CODE_MASK 0x1e
#define USB_U3_TX_LFPS_SWING_TRIM_SHIFT 4
#define USB_U3_TX_LFPS_SWING_TRIM_MASK 0xf
#define AMPLITUDE_CONTROL_COARSE_MASK 0xff
#define AMPLITUDE_CONTROL_FINE_MASK 0xffff
#define AMPLITUDE_CONTROL_COARSE_DEFAULT 0xff
#define AMPLITUDE_CONTROL_FINE_DEFAULT 0xffff
#define PHY_ADDR_MAP_ARRAY_INDEX(addr) (addr)
#define ARRAY_INDEX_MAP_PHY_ADDR(index) (index)
struct phy_reg {
void __iomem *reg_mdio_ctl;
};
struct phy_data {
u8 addr;
u16 data;
};
struct phy_cfg {
int param_size;
struct phy_data param[MAX_USB_PHY_DATA_SIZE];
bool check_efuse;
bool do_toggle;
bool do_toggle_once;
bool use_default_parameter;
bool check_rx_front_end_offset;
};
struct phy_parameter {
struct phy_reg phy_reg;
/* Get from efuse */
u8 efuse_usb_u3_tx_lfps_swing_trim;
/* Get from dts */
u32 amplitude_control_coarse;
u32 amplitude_control_fine;
};
struct rtk_phy {
struct usb_phy phy;
struct device *dev;
struct phy_cfg *phy_cfg;
int num_phy;
struct phy_parameter *phy_parameter;
struct dentry *debug_dir;
};
#define PHY_IO_TIMEOUT_USEC (50000)
#define PHY_IO_DELAY_US (100)
static inline int utmi_wait_register(void __iomem *reg, u32 mask, u32 result)
{
int ret;
unsigned int val;
ret = read_poll_timeout(readl, val, ((val & mask) == result),
PHY_IO_DELAY_US, PHY_IO_TIMEOUT_USEC, false, reg);
if (ret) {
pr_err("%s can't program USB phy\n", __func__);
return -ETIMEDOUT;
}
return 0;
}
static int rtk_phy3_wait_vbusy(struct phy_reg *phy_reg)
{
return utmi_wait_register(phy_reg->reg_mdio_ctl, USB_MDIO_CTRL_PHY_BUSY, 0);
}
static u16 rtk_phy_read(struct phy_reg *phy_reg, char addr)
{
unsigned int tmp;
u32 value;
tmp = (addr << USB_MDIO_CTRL_PHY_ADDR_SHIFT);
writel(tmp, phy_reg->reg_mdio_ctl);
rtk_phy3_wait_vbusy(phy_reg);
value = readl(phy_reg->reg_mdio_ctl);
value = value >> USB_MDIO_CTRL_PHY_DATA_SHIFT;
return (u16)value;
}
static int rtk_phy_write(struct phy_reg *phy_reg, char addr, u16 data)
{
unsigned int val;
val = USB_MDIO_CTRL_PHY_WRITE |
(addr << USB_MDIO_CTRL_PHY_ADDR_SHIFT) |
(data << USB_MDIO_CTRL_PHY_DATA_SHIFT);
writel(val, phy_reg->reg_mdio_ctl);
rtk_phy3_wait_vbusy(phy_reg);
return 0;
}
static void do_rtk_usb3_phy_toggle(struct rtk_phy *rtk_phy, int index, bool connect)
{
struct phy_cfg *phy_cfg = rtk_phy->phy_cfg;
struct phy_reg *phy_reg;
struct phy_parameter *phy_parameter;
struct phy_data *phy_data;
u8 addr;
u16 data;
int i;
phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index];
phy_reg = &phy_parameter->phy_reg;
if (!phy_cfg->do_toggle)
return;
i = PHY_ADDR_MAP_ARRAY_INDEX(PHY_ADDR_0X09);
phy_data = phy_cfg->param + i;
addr = phy_data->addr;
data = phy_data->data;
if (!addr && !data) {
addr = PHY_ADDR_0X09;
data = rtk_phy_read(phy_reg, addr);
phy_data->addr = addr;
phy_data->data = data;
}
rtk_phy_write(phy_reg, addr, data & (~REG_0X09_FORCE_CALIBRATION));
mdelay(1);
rtk_phy_write(phy_reg, addr, data | REG_0X09_FORCE_CALIBRATION);
}
static int do_rtk_phy_init(struct rtk_phy *rtk_phy, int index)
{
struct phy_cfg *phy_cfg;
struct phy_reg *phy_reg;
struct phy_parameter *phy_parameter;
int i = 0;
phy_cfg = rtk_phy->phy_cfg;
phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index];
phy_reg = &phy_parameter->phy_reg;
if (phy_cfg->use_default_parameter)
goto do_toggle;
for (i = 0; i < phy_cfg->param_size; i++) {
struct phy_data *phy_data = phy_cfg->param + i;
u8 addr = phy_data->addr;
u16 data = phy_data->data;
if (!addr && !data)
continue;
rtk_phy_write(phy_reg, addr, data);
}
do_toggle:
if (phy_cfg->do_toggle_once)
phy_cfg->do_toggle = true;
do_rtk_usb3_phy_toggle(rtk_phy, index, false);
if (phy_cfg->do_toggle_once) {
u16 check_value = 0;
int count = 10;
u16 value_0x0d, value_0x10;
/* Enable Debug mode by set 0x0D and 0x10 */
value_0x0d = rtk_phy_read(phy_reg, PHY_ADDR_0X0D);
value_0x10 = rtk_phy_read(phy_reg, PHY_ADDR_0X10);
rtk_phy_write(phy_reg, PHY_ADDR_0X0D,
value_0x0d | REG_0X0D_RX_DEBUG_TEST_EN);
rtk_phy_write(phy_reg, PHY_ADDR_0X10,
(value_0x10 & ~REG_0X10_DEBUG_MODE_SETTING_MASK) |
REG_0X10_DEBUG_MODE_SETTING);
check_value = rtk_phy_read(phy_reg, PHY_ADDR_0X30);
while (!(check_value & BIT(15))) {
check_value = rtk_phy_read(phy_reg, PHY_ADDR_0X30);
mdelay(1);
if (count-- < 0)
break;
}
if (!(check_value & BIT(15)))
dev_info(rtk_phy->dev, "toggle fail addr=0x%02x, data=0x%04x\n",
PHY_ADDR_0X30, check_value);
/* Disable Debug mode by set 0x0D and 0x10 to default*/
rtk_phy_write(phy_reg, PHY_ADDR_0X0D, value_0x0d);
rtk_phy_write(phy_reg, PHY_ADDR_0X10, value_0x10);
phy_cfg->do_toggle = false;
}
if (phy_cfg->check_rx_front_end_offset) {
u16 rx_offset_code, rx_offset_range;
u16 code_mask = REG_0X1F_RX_OFFSET_CODE_MASK;
u16 range_mask = REG_0X0B_RX_OFFSET_RANGE_MASK;
bool do_update = false;
rx_offset_code = rtk_phy_read(phy_reg, PHY_ADDR_0X1F);
if (((rx_offset_code & code_mask) == 0x0) ||
((rx_offset_code & code_mask) == code_mask))
do_update = true;
rx_offset_range = rtk_phy_read(phy_reg, PHY_ADDR_0X0B);
if (((rx_offset_range & range_mask) == range_mask) && do_update) {
dev_warn(rtk_phy->dev, "Don't update rx_offset_range (rx_offset_code=0x%x, rx_offset_range=0x%x)\n",
rx_offset_code, rx_offset_range);
do_update = false;
}
if (do_update) {
u16 tmp1, tmp2;
tmp1 = rx_offset_range & (~range_mask);
tmp2 = rx_offset_range & range_mask;
tmp2 += (1 << 2);
rx_offset_range = tmp1 | (tmp2 & range_mask);
rtk_phy_write(phy_reg, PHY_ADDR_0X0B, rx_offset_range);
goto do_toggle;
}
}
return 0;
}
static int rtk_phy_init(struct phy *phy)
{
struct rtk_phy *rtk_phy = phy_get_drvdata(phy);
int ret = 0;
int i;
unsigned long phy_init_time = jiffies;
for (i = 0; i < rtk_phy->num_phy; i++)
ret = do_rtk_phy_init(rtk_phy, i);
dev_dbg(rtk_phy->dev, "Initialized RTK USB 3.0 PHY (take %dms)\n",
jiffies_to_msecs(jiffies - phy_init_time));
return ret;
}
static int rtk_phy_exit(struct phy *phy)
{
return 0;
}
static const struct phy_ops ops = {
.init = rtk_phy_init,
.exit = rtk_phy_exit,
.owner = THIS_MODULE,
};
static void rtk_phy_toggle(struct usb_phy *usb3_phy, bool connect, int port)
{
int index = port;
struct rtk_phy *rtk_phy = NULL;
rtk_phy = dev_get_drvdata(usb3_phy->dev);
if (index > rtk_phy->num_phy) {
dev_err(rtk_phy->dev, "%s: The port=%d is not in usb phy (num_phy=%d)\n",
__func__, index, rtk_phy->num_phy);
return;
}
do_rtk_usb3_phy_toggle(rtk_phy, index, connect);
}
static int rtk_phy_notify_port_status(struct usb_phy *x, int port,
u16 portstatus, u16 portchange)
{
bool connect = false;
pr_debug("%s port=%d portstatus=0x%x portchange=0x%x\n",
__func__, port, (int)portstatus, (int)portchange);
if (portstatus & USB_PORT_STAT_CONNECTION)
connect = true;
if (portchange & USB_PORT_STAT_C_CONNECTION)
rtk_phy_toggle(x, connect, port);
return 0;
}
#ifdef CONFIG_DEBUG_FS
static struct dentry *create_phy_debug_root(void)
{
struct dentry *phy_debug_root;
phy_debug_root = debugfs_lookup("phy", usb_debug_root);
if (!phy_debug_root)
phy_debug_root = debugfs_create_dir("phy", usb_debug_root);
return phy_debug_root;
}
static int rtk_usb3_parameter_show(struct seq_file *s, void *unused)
{
struct rtk_phy *rtk_phy = s->private;
struct phy_cfg *phy_cfg;
int i, index;
phy_cfg = rtk_phy->phy_cfg;
seq_puts(s, "Property:\n");
seq_printf(s, " check_efuse: %s\n",
phy_cfg->check_efuse ? "Enable" : "Disable");
seq_printf(s, " do_toggle: %s\n",
phy_cfg->do_toggle ? "Enable" : "Disable");
seq_printf(s, " do_toggle_once: %s\n",
phy_cfg->do_toggle_once ? "Enable" : "Disable");
seq_printf(s, " use_default_parameter: %s\n",
phy_cfg->use_default_parameter ? "Enable" : "Disable");
for (index = 0; index < rtk_phy->num_phy; index++) {
struct phy_reg *phy_reg;
struct phy_parameter *phy_parameter;
phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index];
phy_reg = &phy_parameter->phy_reg;
seq_printf(s, "PHY %d:\n", index);
for (i = 0; i < phy_cfg->param_size; i++) {
struct phy_data *phy_data = phy_cfg->param + i;
u8 addr = ARRAY_INDEX_MAP_PHY_ADDR(i);
u16 data = phy_data->data;
if (!phy_data->addr && !data)
seq_printf(s, " addr = 0x%02x, data = none ==> read value = 0x%04x\n",
addr, rtk_phy_read(phy_reg, addr));
else
seq_printf(s, " addr = 0x%02x, data = 0x%04x ==> read value = 0x%04x\n",
addr, data, rtk_phy_read(phy_reg, addr));
}
seq_puts(s, "PHY Property:\n");
seq_printf(s, " efuse_usb_u3_tx_lfps_swing_trim: 0x%x\n",
(int)phy_parameter->efuse_usb_u3_tx_lfps_swing_trim);
seq_printf(s, " amplitude_control_coarse: 0x%x\n",
(int)phy_parameter->amplitude_control_coarse);
seq_printf(s, " amplitude_control_fine: 0x%x\n",
(int)phy_parameter->amplitude_control_fine);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(rtk_usb3_parameter);
static inline void create_debug_files(struct rtk_phy *rtk_phy)
{
struct dentry *phy_debug_root = NULL;
phy_debug_root = create_phy_debug_root();
if (!phy_debug_root)
return;
rtk_phy->debug_dir = debugfs_create_dir(dev_name(rtk_phy->dev), phy_debug_root);
if (!rtk_phy->debug_dir)
return;
if (!debugfs_create_file("parameter", 0444, rtk_phy->debug_dir, rtk_phy,
&rtk_usb3_parameter_fops))
goto file_error;
return;
file_error:
debugfs_remove_recursive(rtk_phy->debug_dir);
}
static inline void remove_debug_files(struct rtk_phy *rtk_phy)
{
debugfs_remove_recursive(rtk_phy->debug_dir);
}
#else
static inline void create_debug_files(struct rtk_phy *rtk_phy) { }
static inline void remove_debug_files(struct rtk_phy *rtk_phy) { }
#endif /* CONFIG_DEBUG_FS */
static int get_phy_data_by_efuse(struct rtk_phy *rtk_phy,
struct phy_parameter *phy_parameter, int index)
{
struct phy_cfg *phy_cfg = rtk_phy->phy_cfg;
u8 value = 0;
struct nvmem_cell *cell;
if (!phy_cfg->check_efuse)
goto out;
cell = nvmem_cell_get(rtk_phy->dev, "usb_u3_tx_lfps_swing_trim");
if (IS_ERR(cell)) {
dev_dbg(rtk_phy->dev, "%s no usb_u3_tx_lfps_swing_trim: %ld\n",
__func__, PTR_ERR(cell));
} else {
unsigned char *buf;
size_t buf_size;
buf = nvmem_cell_read(cell, &buf_size);
if (!IS_ERR(buf)) {
value = buf[0] & USB_U3_TX_LFPS_SWING_TRIM_MASK;
kfree(buf);
}
nvmem_cell_put(cell);
}
if (value > 0 && value < 0x8)
phy_parameter->efuse_usb_u3_tx_lfps_swing_trim = 0x8;
else
phy_parameter->efuse_usb_u3_tx_lfps_swing_trim = (u8)value;
out:
return 0;
}
static void update_amplitude_control_value(struct rtk_phy *rtk_phy,
struct phy_parameter *phy_parameter)
{
struct phy_cfg *phy_cfg;
struct phy_reg *phy_reg;
phy_reg = &phy_parameter->phy_reg;
phy_cfg = rtk_phy->phy_cfg;
if (phy_parameter->amplitude_control_coarse != AMPLITUDE_CONTROL_COARSE_DEFAULT) {
u16 val_mask = AMPLITUDE_CONTROL_COARSE_MASK;
u16 data;
if (!phy_cfg->param[PHY_ADDR_0X20].addr && !phy_cfg->param[PHY_ADDR_0X20].data) {
phy_cfg->param[PHY_ADDR_0X20].addr = PHY_ADDR_0X20;
data = rtk_phy_read(phy_reg, PHY_ADDR_0X20);
} else {
data = phy_cfg->param[PHY_ADDR_0X20].data;
}
data &= (~val_mask);
data |= (phy_parameter->amplitude_control_coarse & val_mask);
phy_cfg->param[PHY_ADDR_0X20].data = data;
}
if (phy_parameter->efuse_usb_u3_tx_lfps_swing_trim) {
u8 efuse_val = phy_parameter->efuse_usb_u3_tx_lfps_swing_trim;
u16 val_mask = USB_U3_TX_LFPS_SWING_TRIM_MASK;
int val_shift = USB_U3_TX_LFPS_SWING_TRIM_SHIFT;
u16 data;
if (!phy_cfg->param[PHY_ADDR_0X20].addr && !phy_cfg->param[PHY_ADDR_0X20].data) {
phy_cfg->param[PHY_ADDR_0X20].addr = PHY_ADDR_0X20;
data = rtk_phy_read(phy_reg, PHY_ADDR_0X20);
} else {
data = phy_cfg->param[PHY_ADDR_0X20].data;
}
data &= ~(val_mask << val_shift);
data |= ((efuse_val & val_mask) << val_shift);
phy_cfg->param[PHY_ADDR_0X20].data = data;
}
if (phy_parameter->amplitude_control_fine != AMPLITUDE_CONTROL_FINE_DEFAULT) {
u16 val_mask = AMPLITUDE_CONTROL_FINE_MASK;
if (!phy_cfg->param[PHY_ADDR_0X21].addr && !phy_cfg->param[PHY_ADDR_0X21].data)
phy_cfg->param[PHY_ADDR_0X21].addr = PHY_ADDR_0X21;
phy_cfg->param[PHY_ADDR_0X21].data =
phy_parameter->amplitude_control_fine & val_mask;
}
}
static int parse_phy_data(struct rtk_phy *rtk_phy)
{
struct device *dev = rtk_phy->dev;
struct phy_parameter *phy_parameter;
int ret = 0;
int index;
rtk_phy->phy_parameter = devm_kzalloc(dev, sizeof(struct phy_parameter) *
rtk_phy->num_phy, GFP_KERNEL);
if (!rtk_phy->phy_parameter)
return -ENOMEM;
for (index = 0; index < rtk_phy->num_phy; index++) {
phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index];
phy_parameter->phy_reg.reg_mdio_ctl = of_iomap(dev->of_node, 0) + index;
/* Amplitude control address 0x20 bit 0 to bit 7 */
if (of_property_read_u32(dev->of_node, "realtek,amplitude-control-coarse-tuning",
&phy_parameter->amplitude_control_coarse))
phy_parameter->amplitude_control_coarse = AMPLITUDE_CONTROL_COARSE_DEFAULT;
/* Amplitude control address 0x21 bit 0 to bit 16 */
if (of_property_read_u32(dev->of_node, "realtek,amplitude-control-fine-tuning",
&phy_parameter->amplitude_control_fine))
phy_parameter->amplitude_control_fine = AMPLITUDE_CONTROL_FINE_DEFAULT;
get_phy_data_by_efuse(rtk_phy, phy_parameter, index);
update_amplitude_control_value(rtk_phy, phy_parameter);
}
return ret;
}
static int rtk_usb3phy_probe(struct platform_device *pdev)
{
struct rtk_phy *rtk_phy;
struct device *dev = &pdev->dev;
struct phy *generic_phy;
struct phy_provider *phy_provider;
const struct phy_cfg *phy_cfg;
int ret;
phy_cfg = of_device_get_match_data(dev);
if (!phy_cfg) {
dev_err(dev, "phy config are not assigned!\n");
return -EINVAL;
}
rtk_phy = devm_kzalloc(dev, sizeof(*rtk_phy), GFP_KERNEL);
if (!rtk_phy)
return -ENOMEM;
rtk_phy->dev = &pdev->dev;
rtk_phy->phy.dev = rtk_phy->dev;
rtk_phy->phy.label = "rtk-usb3phy";
rtk_phy->phy.notify_port_status = rtk_phy_notify_port_status;
rtk_phy->phy_cfg = devm_kzalloc(dev, sizeof(*phy_cfg), GFP_KERNEL);
memcpy(rtk_phy->phy_cfg, phy_cfg, sizeof(*phy_cfg));
rtk_phy->num_phy = 1;
ret = parse_phy_data(rtk_phy);
if (ret)
goto err;
platform_set_drvdata(pdev, rtk_phy);
generic_phy = devm_phy_create(rtk_phy->dev, NULL, &ops);
if (IS_ERR(generic_phy))
return PTR_ERR(generic_phy);
phy_set_drvdata(generic_phy, rtk_phy);
phy_provider = devm_of_phy_provider_register(rtk_phy->dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider))
return PTR_ERR(phy_provider);
ret = usb_add_phy_dev(&rtk_phy->phy);
if (ret)
goto err;
create_debug_files(rtk_phy);
err:
return ret;
}
static void rtk_usb3phy_remove(struct platform_device *pdev)
{
struct rtk_phy *rtk_phy = platform_get_drvdata(pdev);
remove_debug_files(rtk_phy);
usb_remove_phy(&rtk_phy->phy);
}
static const struct phy_cfg rtd1295_phy_cfg = {
.param_size = MAX_USB_PHY_DATA_SIZE,
.param = { [0] = {0x01, 0x4008}, [1] = {0x01, 0xe046},
[2] = {0x02, 0x6046}, [3] = {0x03, 0x2779},
[4] = {0x04, 0x72f5}, [5] = {0x05, 0x2ad3},
[6] = {0x06, 0x000e}, [7] = {0x07, 0x2e00},
[8] = {0x08, 0x3591}, [9] = {0x09, 0x525c},
[10] = {0x0a, 0xa600}, [11] = {0x0b, 0xa904},
[12] = {0x0c, 0xc000}, [13] = {0x0d, 0xef1c},
[14] = {0x0e, 0x2000}, [15] = {0x0f, 0x0000},
[16] = {0x10, 0x000c}, [17] = {0x11, 0x4c00},
[18] = {0x12, 0xfc00}, [19] = {0x13, 0x0c81},
[20] = {0x14, 0xde01}, [21] = {0x15, 0x0000},
[22] = {0x16, 0x0000}, [23] = {0x17, 0x0000},
[24] = {0x18, 0x0000}, [25] = {0x19, 0x4004},
[26] = {0x1a, 0x1260}, [27] = {0x1b, 0xff00},
[28] = {0x1c, 0xcb00}, [29] = {0x1d, 0xa03f},
[30] = {0x1e, 0xc2e0}, [31] = {0x1f, 0x2807},
[32] = {0x20, 0x947a}, [33] = {0x21, 0x88aa},
[34] = {0x22, 0x0057}, [35] = {0x23, 0xab66},
[36] = {0x24, 0x0800}, [37] = {0x25, 0x0000},
[38] = {0x26, 0x040a}, [39] = {0x27, 0x01d6},
[40] = {0x28, 0xf8c2}, [41] = {0x29, 0x3080},
[42] = {0x2a, 0x3082}, [43] = {0x2b, 0x2078},
[44] = {0x2c, 0xffff}, [45] = {0x2d, 0xffff},
[46] = {0x2e, 0x0000}, [47] = {0x2f, 0x0040}, },
.check_efuse = false,
.do_toggle = true,
.do_toggle_once = false,
.use_default_parameter = false,
.check_rx_front_end_offset = false,
};
static const struct phy_cfg rtd1619_phy_cfg = {
.param_size = MAX_USB_PHY_DATA_SIZE,
.param = { [8] = {0x08, 0x3591},
[38] = {0x26, 0x840b},
[40] = {0x28, 0xf842}, },
.check_efuse = false,
.do_toggle = true,
.do_toggle_once = false,
.use_default_parameter = false,
.check_rx_front_end_offset = false,
};
static const struct phy_cfg rtd1319_phy_cfg = {
.param_size = MAX_USB_PHY_DATA_SIZE,
.param = { [1] = {0x01, 0xac86},
[6] = {0x06, 0x0003},
[9] = {0x09, 0x924c},
[10] = {0x0a, 0xa608},
[11] = {0x0b, 0xb905},
[14] = {0x0e, 0x2010},
[32] = {0x20, 0x705a},
[33] = {0x21, 0xf645},
[34] = {0x22, 0x0013},
[35] = {0x23, 0xcb66},
[41] = {0x29, 0xff00}, },
.check_efuse = true,
.do_toggle = true,
.do_toggle_once = false,
.use_default_parameter = false,
.check_rx_front_end_offset = false,
};
static const struct phy_cfg rtd1619b_phy_cfg = {
.param_size = MAX_USB_PHY_DATA_SIZE,
.param = { [1] = {0x01, 0xac8c},
[6] = {0x06, 0x0017},
[9] = {0x09, 0x724c},
[10] = {0x0a, 0xb610},
[11] = {0x0b, 0xb90d},
[13] = {0x0d, 0xef2a},
[15] = {0x0f, 0x9050},
[16] = {0x10, 0x000c},
[32] = {0x20, 0x70ff},
[34] = {0x22, 0x0013},
[35] = {0x23, 0xdb66},
[38] = {0x26, 0x8609},
[41] = {0x29, 0xff13},
[42] = {0x2a, 0x3070}, },
.check_efuse = true,
.do_toggle = false,
.do_toggle_once = true,
.use_default_parameter = false,
.check_rx_front_end_offset = false,
};
static const struct phy_cfg rtd1319d_phy_cfg = {
.param_size = MAX_USB_PHY_DATA_SIZE,
.param = { [1] = {0x01, 0xac89},
[4] = {0x04, 0xf2f5},
[6] = {0x06, 0x0017},
[9] = {0x09, 0x424c},
[10] = {0x0a, 0x9610},
[11] = {0x0b, 0x9901},
[12] = {0x0c, 0xf000},
[13] = {0x0d, 0xef2a},
[14] = {0x0e, 0x1000},
[15] = {0x0f, 0x9050},
[32] = {0x20, 0x7077},
[35] = {0x23, 0x0b62},
[37] = {0x25, 0x10ec},
[42] = {0x2a, 0x3070}, },
.check_efuse = true,
.do_toggle = false,
.do_toggle_once = true,
.use_default_parameter = false,
.check_rx_front_end_offset = true,
};
static const struct of_device_id usbphy_rtk_dt_match[] = {
{ .compatible = "realtek,rtd1295-usb3phy", .data = &rtd1295_phy_cfg },
{ .compatible = "realtek,rtd1319-usb3phy", .data = &rtd1319_phy_cfg },
{ .compatible = "realtek,rtd1319d-usb3phy", .data = &rtd1319d_phy_cfg },
{ .compatible = "realtek,rtd1619-usb3phy", .data = &rtd1619_phy_cfg },
{ .compatible = "realtek,rtd1619b-usb3phy", .data = &rtd1619b_phy_cfg },
{},
};
MODULE_DEVICE_TABLE(of, usbphy_rtk_dt_match);
static struct platform_driver rtk_usb3phy_driver = {
.probe = rtk_usb3phy_probe,
.remove_new = rtk_usb3phy_remove,
.driver = {
.name = "rtk-usb3phy",
.of_match_table = usbphy_rtk_dt_match,
},
};
module_platform_driver(rtk_usb3phy_driver);
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform: rtk-usb3phy");
MODULE_AUTHOR("Stanley Chang <[email protected]>");
MODULE_DESCRIPTION("Realtek usb 3.0 phy driver");
| linux-master | drivers/phy/realtek/phy-rtk-usb3.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel Keem Bay USB PHY driver
* Copyright (C) 2020 Intel Corporation
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
/* USS (USB Subsystem) clock control registers */
#define USS_CPR_CLK_EN 0x00
#define USS_CPR_CLK_SET 0x04
#define USS_CPR_CLK_CLR 0x08
#define USS_CPR_RST_EN 0x10
#define USS_CPR_RST_SET 0x14
#define USS_CPR_RST_CLR 0x18
/* USS clock/reset bit fields */
#define USS_CPR_PHY_TST BIT(6)
#define USS_CPR_LOW_JIT BIT(5)
#define USS_CPR_CORE BIT(4)
#define USS_CPR_SUSPEND BIT(3)
#define USS_CPR_ALT_REF BIT(2)
#define USS_CPR_REF BIT(1)
#define USS_CPR_SYS BIT(0)
#define USS_CPR_MASK GENMASK(6, 0)
/* USS APB slave registers */
#define USS_USB_CTRL_CFG0 0x10
#define VCC_RESET_N_MASK BIT(31)
#define USS_USB_PHY_CFG0 0x30
#define POR_MASK BIT(15)
#define PHY_RESET_MASK BIT(14)
#define PHY_REF_USE_PAD_MASK BIT(5)
#define USS_USB_PHY_CFG6 0x64
#define PHY0_SRAM_EXT_LD_DONE_MASK BIT(23)
#define USS_USB_PARALLEL_IF_CTRL 0xa0
#define USB_PHY_CR_PARA_SEL_MASK BIT(2)
#define USS_USB_TSET_SIGNALS_AND_GLOB 0xac
#define USB_PHY_CR_PARA_CLK_EN_MASK BIT(7)
#define USS_USB_STATUS_REG 0xb8
#define PHY0_SRAM_INIT_DONE_MASK BIT(3)
#define USS_USB_TIEOFFS_CONSTANTS_REG1 0xc0
#define IDDQ_ENABLE_MASK BIT(10)
struct keembay_usb_phy {
struct device *dev;
struct regmap *regmap_cpr;
struct regmap *regmap_slv;
};
static const struct regmap_config keembay_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = USS_USB_TIEOFFS_CONSTANTS_REG1,
};
static int keembay_usb_clocks_on(struct keembay_usb_phy *priv)
{
int ret;
ret = regmap_update_bits(priv->regmap_cpr, USS_CPR_CLK_SET,
USS_CPR_MASK, USS_CPR_MASK);
if (ret) {
dev_err(priv->dev, "error clock set: %d\n", ret);
return ret;
}
ret = regmap_update_bits(priv->regmap_cpr, USS_CPR_RST_SET,
USS_CPR_MASK, USS_CPR_MASK);
if (ret) {
dev_err(priv->dev, "error reset set: %d\n", ret);
return ret;
}
ret = regmap_update_bits(priv->regmap_slv,
USS_USB_TIEOFFS_CONSTANTS_REG1,
IDDQ_ENABLE_MASK,
FIELD_PREP(IDDQ_ENABLE_MASK, 0));
if (ret) {
dev_err(priv->dev, "error iddq disable: %d\n", ret);
return ret;
}
/* Wait 30us to ensure all analog blocks are powered up. */
usleep_range(30, 60);
ret = regmap_update_bits(priv->regmap_slv, USS_USB_PHY_CFG0,
PHY_REF_USE_PAD_MASK,
FIELD_PREP(PHY_REF_USE_PAD_MASK, 1));
if (ret)
dev_err(priv->dev, "error ref clock select: %d\n", ret);
return ret;
}
static int keembay_usb_core_off(struct keembay_usb_phy *priv)
{
int ret;
ret = regmap_update_bits(priv->regmap_slv, USS_USB_CTRL_CFG0,
VCC_RESET_N_MASK,
FIELD_PREP(VCC_RESET_N_MASK, 0));
if (ret)
dev_err(priv->dev, "error core reset: %d\n", ret);
return ret;
}
static int keembay_usb_core_on(struct keembay_usb_phy *priv)
{
int ret;
ret = regmap_update_bits(priv->regmap_slv, USS_USB_CTRL_CFG0,
VCC_RESET_N_MASK,
FIELD_PREP(VCC_RESET_N_MASK, 1));
if (ret)
dev_err(priv->dev, "error core on: %d\n", ret);
return ret;
}
static int keembay_usb_phys_on(struct keembay_usb_phy *priv)
{
int ret;
ret = regmap_update_bits(priv->regmap_slv, USS_USB_PHY_CFG0,
POR_MASK | PHY_RESET_MASK,
FIELD_PREP(POR_MASK | PHY_RESET_MASK, 0));
if (ret)
dev_err(priv->dev, "error phys on: %d\n", ret);
return ret;
}
static int keembay_usb_phy_init(struct phy *phy)
{
struct keembay_usb_phy *priv = phy_get_drvdata(phy);
u32 val;
int ret;
ret = keembay_usb_core_off(priv);
if (ret)
return ret;
/*
* According to Keem Bay datasheet, wait minimum 20us after clock
* enable before bringing PHYs out of reset.
*/
usleep_range(20, 40);
ret = keembay_usb_phys_on(priv);
if (ret)
return ret;
ret = regmap_update_bits(priv->regmap_slv,
USS_USB_TSET_SIGNALS_AND_GLOB,
USB_PHY_CR_PARA_CLK_EN_MASK,
FIELD_PREP(USB_PHY_CR_PARA_CLK_EN_MASK, 0));
if (ret) {
dev_err(priv->dev, "error cr clock disable: %d\n", ret);
return ret;
}
/*
* According to Keem Bay datasheet, wait 2us after disabling the
* clock into the USB 3.x parallel interface.
*/
udelay(2);
ret = regmap_update_bits(priv->regmap_slv,
USS_USB_PARALLEL_IF_CTRL,
USB_PHY_CR_PARA_SEL_MASK,
FIELD_PREP(USB_PHY_CR_PARA_SEL_MASK, 1));
if (ret) {
dev_err(priv->dev, "error cr select: %d\n", ret);
return ret;
}
ret = regmap_update_bits(priv->regmap_slv,
USS_USB_TSET_SIGNALS_AND_GLOB,
USB_PHY_CR_PARA_CLK_EN_MASK,
FIELD_PREP(USB_PHY_CR_PARA_CLK_EN_MASK, 1));
if (ret) {
dev_err(priv->dev, "error cr clock enable: %d\n", ret);
return ret;
}
ret = regmap_read_poll_timeout(priv->regmap_slv, USS_USB_STATUS_REG,
val, val & PHY0_SRAM_INIT_DONE_MASK,
USEC_PER_MSEC, 10 * USEC_PER_MSEC);
if (ret) {
dev_err(priv->dev, "SRAM init not done: %d\n", ret);
return ret;
}
ret = regmap_update_bits(priv->regmap_slv, USS_USB_PHY_CFG6,
PHY0_SRAM_EXT_LD_DONE_MASK,
FIELD_PREP(PHY0_SRAM_EXT_LD_DONE_MASK, 1));
if (ret) {
dev_err(priv->dev, "error SRAM init done set: %d\n", ret);
return ret;
}
/*
* According to Keem Bay datasheet, wait 20us after setting the
* SRAM load done bit, before releasing the controller reset.
*/
usleep_range(20, 40);
return keembay_usb_core_on(priv);
}
static const struct phy_ops ops = {
.init = keembay_usb_phy_init,
.owner = THIS_MODULE,
};
static int keembay_usb_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct keembay_usb_phy *priv;
struct phy *generic_phy;
struct phy_provider *phy_provider;
void __iomem *base;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
base = devm_platform_ioremap_resource_byname(pdev, "cpr-apb-base");
if (IS_ERR(base))
return PTR_ERR(base);
priv->regmap_cpr = devm_regmap_init_mmio(dev, base,
&keembay_regmap_config);
if (IS_ERR(priv->regmap_cpr))
return PTR_ERR(priv->regmap_cpr);
base = devm_platform_ioremap_resource_byname(pdev, "slv-apb-base");
if (IS_ERR(base))
return PTR_ERR(base);
priv->regmap_slv = devm_regmap_init_mmio(dev, base,
&keembay_regmap_config);
if (IS_ERR(priv->regmap_slv))
return PTR_ERR(priv->regmap_slv);
generic_phy = devm_phy_create(dev, dev->of_node, &ops);
if (IS_ERR(generic_phy))
return dev_err_probe(dev, PTR_ERR(generic_phy),
"failed to create PHY\n");
phy_set_drvdata(generic_phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider))
return dev_err_probe(dev, PTR_ERR(phy_provider),
"failed to register phy provider\n");
/* Setup USB subsystem clocks */
ret = keembay_usb_clocks_on(priv);
if (ret)
return ret;
/* and turn on the DWC3 core, prior to DWC3 driver init. */
return keembay_usb_core_on(priv);
}
static const struct of_device_id keembay_usb_phy_dt_ids[] = {
{ .compatible = "intel,keembay-usb-phy" },
{}
};
MODULE_DEVICE_TABLE(of, keembay_usb_phy_dt_ids);
static struct platform_driver keembay_usb_phy_driver = {
.probe = keembay_usb_phy_probe,
.driver = {
.name = "keembay-usb-phy",
.of_match_table = keembay_usb_phy_dt_ids,
},
};
module_platform_driver(keembay_usb_phy_driver);
MODULE_AUTHOR("Wan Ahmad Zainie <[email protected]>");
MODULE_DESCRIPTION("Intel Keem Bay USB PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/intel/phy-intel-keembay-usb.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Intel Combo-PHY driver
*
* Copyright (C) 2019-2020 Intel Corporation.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <dt-bindings/phy/phy.h>
#define PCIE_PHY_GEN_CTRL 0x00
#define PCIE_PHY_CLK_PAD BIT(17)
#define PAD_DIS_CFG 0x174
#define PCS_XF_ATE_OVRD_IN_2 0x3008
#define ADAPT_REQ_MSK GENMASK(5, 4)
#define PCS_XF_RX_ADAPT_ACK 0x3010
#define RX_ADAPT_ACK_BIT BIT(0)
#define CR_ADDR(addr, lane) (((addr) + (lane) * 0x100) << 2)
#define REG_COMBO_MODE(x) ((x) * 0x200)
#define REG_CLK_DISABLE(x) ((x) * 0x200 + 0x124)
#define COMBO_PHY_ID(x) ((x)->parent->id)
#define PHY_ID(x) ((x)->id)
#define CLK_100MHZ 100000000
#define CLK_156_25MHZ 156250000
static const unsigned long intel_iphy_clk_rates[] = {
CLK_100MHZ, CLK_156_25MHZ, CLK_100MHZ,
};
enum {
PHY_0,
PHY_1,
PHY_MAX_NUM
};
/*
* Clock Register bit fields to enable clocks
* for ComboPhy according to the mode.
*/
enum intel_phy_mode {
PHY_PCIE_MODE = 0,
PHY_XPCS_MODE,
PHY_SATA_MODE,
};
/* ComboPhy mode Register values */
enum intel_combo_mode {
PCIE0_PCIE1_MODE = 0,
PCIE_DL_MODE,
RXAUI_MODE,
XPCS0_XPCS1_MODE,
SATA0_SATA1_MODE,
};
enum aggregated_mode {
PHY_SL_MODE,
PHY_DL_MODE,
};
struct intel_combo_phy;
struct intel_cbphy_iphy {
struct phy *phy;
struct intel_combo_phy *parent;
struct reset_control *app_rst;
u32 id;
};
struct intel_combo_phy {
struct device *dev;
struct clk *core_clk;
unsigned long clk_rate;
void __iomem *app_base;
void __iomem *cr_base;
struct regmap *syscfg;
struct regmap *hsiocfg;
u32 id;
u32 bid;
struct reset_control *phy_rst;
struct reset_control *core_rst;
struct intel_cbphy_iphy iphy[PHY_MAX_NUM];
enum intel_phy_mode phy_mode;
enum aggregated_mode aggr_mode;
u32 init_cnt;
struct mutex lock;
};
static int intel_cbphy_iphy_enable(struct intel_cbphy_iphy *iphy, bool set)
{
struct intel_combo_phy *cbphy = iphy->parent;
u32 mask = BIT(cbphy->phy_mode * 2 + iphy->id);
u32 val;
/* Register: 0 is enable, 1 is disable */
val = set ? 0 : mask;
return regmap_update_bits(cbphy->hsiocfg, REG_CLK_DISABLE(cbphy->bid),
mask, val);
}
static int intel_cbphy_pcie_refclk_cfg(struct intel_cbphy_iphy *iphy, bool set)
{
struct intel_combo_phy *cbphy = iphy->parent;
u32 mask = BIT(cbphy->id * 2 + iphy->id);
u32 val;
/* Register: 0 is enable, 1 is disable */
val = set ? 0 : mask;
return regmap_update_bits(cbphy->syscfg, PAD_DIS_CFG, mask, val);
}
static inline void combo_phy_w32_off_mask(void __iomem *base, unsigned int reg,
u32 mask, u32 val)
{
u32 reg_val;
reg_val = readl(base + reg);
reg_val &= ~mask;
reg_val |= val;
writel(reg_val, base + reg);
}
static int intel_cbphy_iphy_cfg(struct intel_cbphy_iphy *iphy,
int (*phy_cfg)(struct intel_cbphy_iphy *))
{
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
ret = phy_cfg(iphy);
if (ret)
return ret;
if (cbphy->aggr_mode != PHY_DL_MODE)
return 0;
return phy_cfg(&cbphy->iphy[PHY_1]);
}
static int intel_cbphy_pcie_en_pad_refclk(struct intel_cbphy_iphy *iphy)
{
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
ret = intel_cbphy_pcie_refclk_cfg(iphy, true);
if (ret) {
dev_err(cbphy->dev, "Failed to enable PCIe pad refclk\n");
return ret;
}
if (cbphy->init_cnt)
return 0;
combo_phy_w32_off_mask(cbphy->app_base, PCIE_PHY_GEN_CTRL,
PCIE_PHY_CLK_PAD, FIELD_PREP(PCIE_PHY_CLK_PAD, 0));
/* Delay for stable clock PLL */
usleep_range(50, 100);
return 0;
}
static int intel_cbphy_pcie_dis_pad_refclk(struct intel_cbphy_iphy *iphy)
{
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
ret = intel_cbphy_pcie_refclk_cfg(iphy, false);
if (ret) {
dev_err(cbphy->dev, "Failed to disable PCIe pad refclk\n");
return ret;
}
if (cbphy->init_cnt)
return 0;
combo_phy_w32_off_mask(cbphy->app_base, PCIE_PHY_GEN_CTRL,
PCIE_PHY_CLK_PAD, FIELD_PREP(PCIE_PHY_CLK_PAD, 1));
return 0;
}
static int intel_cbphy_set_mode(struct intel_combo_phy *cbphy)
{
enum intel_combo_mode cb_mode;
enum aggregated_mode aggr = cbphy->aggr_mode;
struct device *dev = cbphy->dev;
enum intel_phy_mode mode;
int ret;
mode = cbphy->phy_mode;
switch (mode) {
case PHY_PCIE_MODE:
cb_mode = (aggr == PHY_DL_MODE) ? PCIE_DL_MODE : PCIE0_PCIE1_MODE;
break;
case PHY_XPCS_MODE:
cb_mode = (aggr == PHY_DL_MODE) ? RXAUI_MODE : XPCS0_XPCS1_MODE;
break;
case PHY_SATA_MODE:
if (aggr == PHY_DL_MODE) {
dev_err(dev, "Mode:%u not support dual lane!\n", mode);
return -EINVAL;
}
cb_mode = SATA0_SATA1_MODE;
break;
default:
return -EINVAL;
}
ret = regmap_write(cbphy->hsiocfg, REG_COMBO_MODE(cbphy->bid), cb_mode);
if (ret)
dev_err(dev, "Failed to set ComboPhy mode: %d\n", ret);
return ret;
}
static void intel_cbphy_rst_assert(struct intel_combo_phy *cbphy)
{
reset_control_assert(cbphy->core_rst);
reset_control_assert(cbphy->phy_rst);
}
static void intel_cbphy_rst_deassert(struct intel_combo_phy *cbphy)
{
reset_control_deassert(cbphy->core_rst);
reset_control_deassert(cbphy->phy_rst);
/* Delay to ensure reset process is done */
usleep_range(10, 20);
}
static int intel_cbphy_iphy_power_on(struct intel_cbphy_iphy *iphy)
{
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
if (!cbphy->init_cnt) {
ret = clk_prepare_enable(cbphy->core_clk);
if (ret) {
dev_err(cbphy->dev, "Clock enable failed!\n");
return ret;
}
ret = clk_set_rate(cbphy->core_clk, cbphy->clk_rate);
if (ret) {
dev_err(cbphy->dev, "Clock freq set to %lu failed!\n",
cbphy->clk_rate);
goto clk_err;
}
intel_cbphy_rst_assert(cbphy);
intel_cbphy_rst_deassert(cbphy);
ret = intel_cbphy_set_mode(cbphy);
if (ret)
goto clk_err;
}
ret = intel_cbphy_iphy_enable(iphy, true);
if (ret) {
dev_err(cbphy->dev, "Failed enabling PHY core\n");
goto clk_err;
}
ret = reset_control_deassert(iphy->app_rst);
if (ret) {
dev_err(cbphy->dev, "PHY(%u:%u) reset deassert failed!\n",
COMBO_PHY_ID(iphy), PHY_ID(iphy));
goto clk_err;
}
/* Delay to ensure reset process is done */
udelay(1);
return 0;
clk_err:
clk_disable_unprepare(cbphy->core_clk);
return ret;
}
static int intel_cbphy_iphy_power_off(struct intel_cbphy_iphy *iphy)
{
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
ret = reset_control_assert(iphy->app_rst);
if (ret) {
dev_err(cbphy->dev, "PHY(%u:%u) reset assert failed!\n",
COMBO_PHY_ID(iphy), PHY_ID(iphy));
return ret;
}
ret = intel_cbphy_iphy_enable(iphy, false);
if (ret) {
dev_err(cbphy->dev, "Failed disabling PHY core\n");
return ret;
}
if (cbphy->init_cnt)
return 0;
clk_disable_unprepare(cbphy->core_clk);
intel_cbphy_rst_assert(cbphy);
return 0;
}
static int intel_cbphy_init(struct phy *phy)
{
struct intel_cbphy_iphy *iphy = phy_get_drvdata(phy);
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
mutex_lock(&cbphy->lock);
ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_iphy_power_on);
if (ret)
goto err;
if (cbphy->phy_mode == PHY_PCIE_MODE) {
ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_pcie_en_pad_refclk);
if (ret)
goto err;
}
cbphy->init_cnt++;
err:
mutex_unlock(&cbphy->lock);
return ret;
}
static int intel_cbphy_exit(struct phy *phy)
{
struct intel_cbphy_iphy *iphy = phy_get_drvdata(phy);
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
mutex_lock(&cbphy->lock);
cbphy->init_cnt--;
if (cbphy->phy_mode == PHY_PCIE_MODE) {
ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_pcie_dis_pad_refclk);
if (ret)
goto err;
}
ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_iphy_power_off);
err:
mutex_unlock(&cbphy->lock);
return ret;
}
static int intel_cbphy_calibrate(struct phy *phy)
{
struct intel_cbphy_iphy *iphy = phy_get_drvdata(phy);
struct intel_combo_phy *cbphy = iphy->parent;
void __iomem *cr_base = cbphy->cr_base;
int val, ret, id;
if (cbphy->phy_mode != PHY_XPCS_MODE)
return 0;
id = PHY_ID(iphy);
/* trigger auto RX adaptation */
combo_phy_w32_off_mask(cr_base, CR_ADDR(PCS_XF_ATE_OVRD_IN_2, id),
ADAPT_REQ_MSK, FIELD_PREP(ADAPT_REQ_MSK, 3));
/* Wait RX adaptation to finish */
ret = readl_poll_timeout(cr_base + CR_ADDR(PCS_XF_RX_ADAPT_ACK, id),
val, val & RX_ADAPT_ACK_BIT, 10, 5000);
if (ret)
dev_err(cbphy->dev, "RX Adaptation failed!\n");
else
dev_dbg(cbphy->dev, "RX Adaptation success!\n");
/* Stop RX adaptation */
combo_phy_w32_off_mask(cr_base, CR_ADDR(PCS_XF_ATE_OVRD_IN_2, id),
ADAPT_REQ_MSK, FIELD_PREP(ADAPT_REQ_MSK, 0));
return ret;
}
static int intel_cbphy_fwnode_parse(struct intel_combo_phy *cbphy)
{
struct device *dev = cbphy->dev;
struct platform_device *pdev = to_platform_device(dev);
struct fwnode_handle *fwnode = dev_fwnode(dev);
struct fwnode_reference_args ref;
int ret;
u32 val;
cbphy->core_clk = devm_clk_get(dev, NULL);
if (IS_ERR(cbphy->core_clk))
return dev_err_probe(dev, PTR_ERR(cbphy->core_clk),
"Get clk failed!\n");
cbphy->core_rst = devm_reset_control_get_optional(dev, "core");
if (IS_ERR(cbphy->core_rst))
return dev_err_probe(dev, PTR_ERR(cbphy->core_rst),
"Get core reset control err!\n");
cbphy->phy_rst = devm_reset_control_get_optional(dev, "phy");
if (IS_ERR(cbphy->phy_rst))
return dev_err_probe(dev, PTR_ERR(cbphy->phy_rst),
"Get PHY reset control err!\n");
cbphy->iphy[0].app_rst = devm_reset_control_get_optional(dev, "iphy0");
if (IS_ERR(cbphy->iphy[0].app_rst))
return dev_err_probe(dev, PTR_ERR(cbphy->iphy[0].app_rst),
"Get phy0 reset control err!\n");
cbphy->iphy[1].app_rst = devm_reset_control_get_optional(dev, "iphy1");
if (IS_ERR(cbphy->iphy[1].app_rst))
return dev_err_probe(dev, PTR_ERR(cbphy->iphy[1].app_rst),
"Get phy1 reset control err!\n");
cbphy->app_base = devm_platform_ioremap_resource_byname(pdev, "app");
if (IS_ERR(cbphy->app_base))
return PTR_ERR(cbphy->app_base);
cbphy->cr_base = devm_platform_ioremap_resource_byname(pdev, "core");
if (IS_ERR(cbphy->cr_base))
return PTR_ERR(cbphy->cr_base);
/*
* syscfg and hsiocfg variables stores the handle of the registers set
* in which ComboPhy subsystem specific registers are subset. Using
* Register map framework to access the registers set.
*/
ret = fwnode_property_get_reference_args(fwnode, "intel,syscfg", NULL,
1, 0, &ref);
if (ret < 0)
return ret;
cbphy->id = ref.args[0];
cbphy->syscfg = device_node_to_regmap(to_of_node(ref.fwnode));
fwnode_handle_put(ref.fwnode);
ret = fwnode_property_get_reference_args(fwnode, "intel,hsio", NULL, 1,
0, &ref);
if (ret < 0)
return ret;
cbphy->bid = ref.args[0];
cbphy->hsiocfg = device_node_to_regmap(to_of_node(ref.fwnode));
fwnode_handle_put(ref.fwnode);
ret = fwnode_property_read_u32_array(fwnode, "intel,phy-mode", &val, 1);
if (ret)
return ret;
switch (val) {
case PHY_TYPE_PCIE:
cbphy->phy_mode = PHY_PCIE_MODE;
break;
case PHY_TYPE_SATA:
cbphy->phy_mode = PHY_SATA_MODE;
break;
case PHY_TYPE_XPCS:
cbphy->phy_mode = PHY_XPCS_MODE;
break;
default:
dev_err(dev, "Invalid PHY mode: %u\n", val);
return -EINVAL;
}
cbphy->clk_rate = intel_iphy_clk_rates[cbphy->phy_mode];
if (fwnode_property_present(fwnode, "intel,aggregation"))
cbphy->aggr_mode = PHY_DL_MODE;
else
cbphy->aggr_mode = PHY_SL_MODE;
return 0;
}
static const struct phy_ops intel_cbphy_ops = {
.init = intel_cbphy_init,
.exit = intel_cbphy_exit,
.calibrate = intel_cbphy_calibrate,
.owner = THIS_MODULE,
};
static struct phy *intel_cbphy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct intel_combo_phy *cbphy = dev_get_drvdata(dev);
u32 iphy_id;
if (args->args_count < 1) {
dev_err(dev, "Invalid number of arguments\n");
return ERR_PTR(-EINVAL);
}
iphy_id = args->args[0];
if (iphy_id >= PHY_MAX_NUM) {
dev_err(dev, "Invalid phy instance %d\n", iphy_id);
return ERR_PTR(-EINVAL);
}
if (cbphy->aggr_mode == PHY_DL_MODE && iphy_id == PHY_1) {
dev_err(dev, "Invalid. ComboPhy is in Dual lane mode %d\n", iphy_id);
return ERR_PTR(-EINVAL);
}
return cbphy->iphy[iphy_id].phy;
}
static int intel_cbphy_create(struct intel_combo_phy *cbphy)
{
struct phy_provider *phy_provider;
struct device *dev = cbphy->dev;
struct intel_cbphy_iphy *iphy;
int i;
for (i = 0; i < PHY_MAX_NUM; i++) {
iphy = &cbphy->iphy[i];
iphy->parent = cbphy;
iphy->id = i;
/* In dual lane mode skip phy creation for the second phy */
if (cbphy->aggr_mode == PHY_DL_MODE && iphy->id == PHY_1)
continue;
iphy->phy = devm_phy_create(dev, NULL, &intel_cbphy_ops);
if (IS_ERR(iphy->phy)) {
dev_err(dev, "PHY[%u:%u]: create PHY instance failed!\n",
COMBO_PHY_ID(iphy), PHY_ID(iphy));
return PTR_ERR(iphy->phy);
}
phy_set_drvdata(iphy->phy, iphy);
}
dev_set_drvdata(dev, cbphy);
phy_provider = devm_of_phy_provider_register(dev, intel_cbphy_xlate);
if (IS_ERR(phy_provider))
dev_err(dev, "Register PHY provider failed!\n");
return PTR_ERR_OR_ZERO(phy_provider);
}
static int intel_cbphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct intel_combo_phy *cbphy;
int ret;
cbphy = devm_kzalloc(dev, sizeof(*cbphy), GFP_KERNEL);
if (!cbphy)
return -ENOMEM;
cbphy->dev = dev;
cbphy->init_cnt = 0;
mutex_init(&cbphy->lock);
ret = intel_cbphy_fwnode_parse(cbphy);
if (ret)
return ret;
platform_set_drvdata(pdev, cbphy);
return intel_cbphy_create(cbphy);
}
static void intel_cbphy_remove(struct platform_device *pdev)
{
struct intel_combo_phy *cbphy = platform_get_drvdata(pdev);
intel_cbphy_rst_assert(cbphy);
clk_disable_unprepare(cbphy->core_clk);
}
static const struct of_device_id of_intel_cbphy_match[] = {
{ .compatible = "intel,combo-phy" },
{ .compatible = "intel,combophy-lgm" },
{}
};
static struct platform_driver intel_cbphy_driver = {
.probe = intel_cbphy_probe,
.remove_new = intel_cbphy_remove,
.driver = {
.name = "intel-combo-phy",
.of_match_table = of_intel_cbphy_match,
}
};
module_platform_driver(intel_cbphy_driver);
MODULE_DESCRIPTION("Intel Combo-phy driver");
| linux-master | drivers/phy/intel/phy-intel-lgm-combo.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel Keem Bay eMMC PHY driver
* Copyright (C) 2020 Intel Corporation
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
/* eMMC/SD/SDIO core/phy configuration registers */
#define PHY_CFG_0 0x24
#define SEL_DLY_TXCLK_MASK BIT(29)
#define OTAP_DLY_ENA_MASK BIT(27)
#define OTAP_DLY_SEL_MASK GENMASK(26, 23)
#define DLL_EN_MASK BIT(10)
#define PWR_DOWN_MASK BIT(0)
#define PHY_CFG_2 0x2c
#define SEL_FREQ_MASK GENMASK(12, 10)
#define PHY_STAT 0x40
#define CAL_DONE_MASK BIT(6)
#define IS_CALDONE(x) ((x) & CAL_DONE_MASK)
#define DLL_RDY_MASK BIT(5)
#define IS_DLLRDY(x) ((x) & DLL_RDY_MASK)
/* From ACS_eMMC51_16nFFC_RO1100_Userguide_v1p0.pdf p17 */
#define FREQSEL_200M_170M 0x0
#define FREQSEL_170M_140M 0x1
#define FREQSEL_140M_110M 0x2
#define FREQSEL_110M_80M 0x3
#define FREQSEL_80M_50M 0x4
struct keembay_emmc_phy {
struct regmap *syscfg;
struct clk *emmcclk;
};
static const struct regmap_config keembay_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
static int keembay_emmc_phy_power(struct phy *phy, bool on_off)
{
struct keembay_emmc_phy *priv = phy_get_drvdata(phy);
unsigned int caldone;
unsigned int dllrdy;
unsigned int freqsel;
unsigned int mhz;
int ret;
/*
* Keep phyctrl_pdb and phyctrl_endll low to allow
* initialization of CALIO state M/C DFFs
*/
ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, PWR_DOWN_MASK,
FIELD_PREP(PWR_DOWN_MASK, 0));
if (ret) {
dev_err(&phy->dev, "CALIO power down bar failed: %d\n", ret);
return ret;
}
ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, DLL_EN_MASK,
FIELD_PREP(DLL_EN_MASK, 0));
if (ret) {
dev_err(&phy->dev, "turn off the dll failed: %d\n", ret);
return ret;
}
/* Already finish power off above */
if (!on_off)
return 0;
mhz = DIV_ROUND_CLOSEST(clk_get_rate(priv->emmcclk), 1000000);
if (mhz <= 200 && mhz >= 170)
freqsel = FREQSEL_200M_170M;
else if (mhz <= 170 && mhz >= 140)
freqsel = FREQSEL_170M_140M;
else if (mhz <= 140 && mhz >= 110)
freqsel = FREQSEL_140M_110M;
else if (mhz <= 110 && mhz >= 80)
freqsel = FREQSEL_110M_80M;
else if (mhz <= 80 && mhz >= 50)
freqsel = FREQSEL_80M_50M;
else
freqsel = 0x0;
/* Check for EMMC clock rate*/
if (mhz > 175)
dev_warn(&phy->dev, "Unsupported rate: %d MHz\n", mhz);
/*
* According to the user manual, calpad calibration
* cycle takes more than 2us without the minimal recommended
* value, so we may need a little margin here
*/
udelay(5);
ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, PWR_DOWN_MASK,
FIELD_PREP(PWR_DOWN_MASK, 1));
if (ret) {
dev_err(&phy->dev, "CALIO power down bar failed: %d\n", ret);
return ret;
}
/*
* According to the user manual, it asks driver to wait 5us for
* calpad busy trimming. However it is documented that this value is
* PVT(A.K.A. process, voltage and temperature) relevant, so some
* failure cases are found which indicates we should be more tolerant
* to calpad busy trimming.
*/
ret = regmap_read_poll_timeout(priv->syscfg, PHY_STAT,
caldone, IS_CALDONE(caldone),
0, 50);
if (ret) {
dev_err(&phy->dev, "caldone failed, ret=%d\n", ret);
return ret;
}
/* Set the frequency of the DLL operation */
ret = regmap_update_bits(priv->syscfg, PHY_CFG_2, SEL_FREQ_MASK,
FIELD_PREP(SEL_FREQ_MASK, freqsel));
if (ret) {
dev_err(&phy->dev, "set the frequency of dll failed:%d\n", ret);
return ret;
}
/* Turn on the DLL */
ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, DLL_EN_MASK,
FIELD_PREP(DLL_EN_MASK, 1));
if (ret) {
dev_err(&phy->dev, "turn on the dll failed: %d\n", ret);
return ret;
}
/*
* We turned on the DLL even though the rate was 0 because we the
* clock might be turned on later. ...but we can't wait for the DLL
* to lock when the rate is 0 because it will never lock with no
* input clock.
*
* Technically we should be checking the lock later when the clock
* is turned on, but for now we won't.
*/
if (mhz == 0)
return 0;
/*
* After enabling analog DLL circuits docs say that we need 10.2 us if
* our source clock is at 50 MHz and that lock time scales linearly
* with clock speed. If we are powering on the PHY and the card clock
* is super slow (like 100kHz) this could take as long as 5.1 ms as
* per the math: 10.2 us * (50000000 Hz / 100000 Hz) => 5.1 ms
* hopefully we won't be running at 100 kHz, but we should still make
* sure we wait long enough.
*
* NOTE: There appear to be corner cases where the DLL seems to take
* extra long to lock for reasons that aren't understood. In some
* extreme cases we've seen it take up to over 10ms (!). We'll be
* generous and give it 50ms.
*/
ret = regmap_read_poll_timeout(priv->syscfg, PHY_STAT,
dllrdy, IS_DLLRDY(dllrdy),
0, 50 * USEC_PER_MSEC);
if (ret)
dev_err(&phy->dev, "dllrdy failed, ret=%d\n", ret);
return ret;
}
static int keembay_emmc_phy_init(struct phy *phy)
{
struct keembay_emmc_phy *priv = phy_get_drvdata(phy);
/*
* We purposely get the clock here and not in probe to avoid the
* circular dependency problem. We expect:
* - PHY driver to probe
* - SDHCI driver to start probe
* - SDHCI driver to register it's clock
* - SDHCI driver to get the PHY
* - SDHCI driver to init the PHY
*
* The clock is optional, so upon any error just return it like
* any other error to user.
*/
priv->emmcclk = clk_get_optional(&phy->dev, "emmcclk");
return PTR_ERR_OR_ZERO(priv->emmcclk);
}
static int keembay_emmc_phy_exit(struct phy *phy)
{
struct keembay_emmc_phy *priv = phy_get_drvdata(phy);
clk_put(priv->emmcclk);
return 0;
};
static int keembay_emmc_phy_power_on(struct phy *phy)
{
struct keembay_emmc_phy *priv = phy_get_drvdata(phy);
int ret;
/* Delay chain based txclk: enable */
ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, SEL_DLY_TXCLK_MASK,
FIELD_PREP(SEL_DLY_TXCLK_MASK, 1));
if (ret) {
dev_err(&phy->dev, "ERROR: delay chain txclk set: %d\n", ret);
return ret;
}
/* Output tap delay: enable */
ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, OTAP_DLY_ENA_MASK,
FIELD_PREP(OTAP_DLY_ENA_MASK, 1));
if (ret) {
dev_err(&phy->dev, "ERROR: output tap delay set: %d\n", ret);
return ret;
}
/* Output tap delay */
ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, OTAP_DLY_SEL_MASK,
FIELD_PREP(OTAP_DLY_SEL_MASK, 2));
if (ret) {
dev_err(&phy->dev, "ERROR: output tap delay select: %d\n", ret);
return ret;
}
/* Power up eMMC phy analog blocks */
return keembay_emmc_phy_power(phy, true);
}
static int keembay_emmc_phy_power_off(struct phy *phy)
{
/* Power down eMMC phy analog blocks */
return keembay_emmc_phy_power(phy, false);
}
static const struct phy_ops ops = {
.init = keembay_emmc_phy_init,
.exit = keembay_emmc_phy_exit,
.power_on = keembay_emmc_phy_power_on,
.power_off = keembay_emmc_phy_power_off,
.owner = THIS_MODULE,
};
static int keembay_emmc_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct keembay_emmc_phy *priv;
struct phy *generic_phy;
struct phy_provider *phy_provider;
void __iomem *base;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
priv->syscfg = devm_regmap_init_mmio(dev, base, &keembay_regmap_config);
if (IS_ERR(priv->syscfg))
return PTR_ERR(priv->syscfg);
generic_phy = devm_phy_create(dev, np, &ops);
if (IS_ERR(generic_phy))
return dev_err_probe(dev, PTR_ERR(generic_phy),
"failed to create PHY\n");
phy_set_drvdata(generic_phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id keembay_emmc_phy_dt_ids[] = {
{ .compatible = "intel,keembay-emmc-phy" },
{}
};
MODULE_DEVICE_TABLE(of, keembay_emmc_phy_dt_ids);
static struct platform_driver keembay_emmc_phy_driver = {
.probe = keembay_emmc_phy_probe,
.driver = {
.name = "keembay-emmc-phy",
.of_match_table = keembay_emmc_phy_dt_ids,
},
};
module_platform_driver(keembay_emmc_phy_driver);
MODULE_AUTHOR("Wan Ahmad Zainie <[email protected]>");
MODULE_DESCRIPTION("Intel Keem Bay eMMC PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/intel/phy-intel-keembay-emmc.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Intel eMMC PHY driver
* Copyright (C) 2019 Intel, Corp.
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
/* eMMC phy register definitions */
#define EMMC_PHYCTRL0_REG 0xa8
#define DR_TY_MASK GENMASK(30, 28)
#define DR_TY_SHIFT(x) (((x) << 28) & DR_TY_MASK)
#define OTAPDLYENA BIT(14)
#define OTAPDLYSEL_MASK GENMASK(13, 10)
#define OTAPDLYSEL_SHIFT(x) (((x) << 10) & OTAPDLYSEL_MASK)
#define EMMC_PHYCTRL1_REG 0xac
#define PDB_MASK BIT(0)
#define PDB_SHIFT(x) (((x) << 0) & PDB_MASK)
#define ENDLL_MASK BIT(7)
#define ENDLL_SHIFT(x) (((x) << 7) & ENDLL_MASK)
#define EMMC_PHYCTRL2_REG 0xb0
#define FRQSEL_25M 0
#define FRQSEL_50M 1
#define FRQSEL_100M 2
#define FRQSEL_150M 3
#define FRQSEL_MASK GENMASK(24, 22)
#define FRQSEL_SHIFT(x) (((x) << 22) & FRQSEL_MASK)
#define EMMC_PHYSTAT_REG 0xbc
#define CALDONE_MASK BIT(9)
#define DLLRDY_MASK BIT(8)
#define IS_CALDONE(x) ((x) & CALDONE_MASK)
#define IS_DLLRDY(x) ((x) & DLLRDY_MASK)
struct intel_emmc_phy {
struct regmap *syscfg;
struct clk *emmcclk;
};
static int intel_emmc_phy_power(struct phy *phy, bool on_off)
{
struct intel_emmc_phy *priv = phy_get_drvdata(phy);
unsigned int caldone;
unsigned int dllrdy;
unsigned int freqsel;
unsigned long rate;
int ret, quot;
/*
* Keep phyctrl_pdb and phyctrl_endll low to allow
* initialization of CALIO state M/C DFFs
*/
ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL1_REG, PDB_MASK,
PDB_SHIFT(0));
if (ret) {
dev_err(&phy->dev, "CALIO power down bar failed: %d\n", ret);
return ret;
}
/* Already finish power_off above */
if (!on_off)
return 0;
rate = clk_get_rate(priv->emmcclk);
quot = DIV_ROUND_CLOSEST(rate, 50000000);
if (quot > FRQSEL_150M)
dev_warn(&phy->dev, "Unsupported rate: %lu\n", rate);
freqsel = clamp_t(int, quot, FRQSEL_25M, FRQSEL_150M);
/*
* According to the user manual, calpad calibration
* cycle takes more than 2us without the minimal recommended
* value, so we may need a little margin here
*/
udelay(5);
ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL1_REG, PDB_MASK,
PDB_SHIFT(1));
if (ret) {
dev_err(&phy->dev, "CALIO power down bar failed: %d\n", ret);
return ret;
}
/*
* According to the user manual, it asks driver to wait 5us for
* calpad busy trimming. However it is documented that this value is
* PVT(A.K.A process,voltage and temperature) relevant, so some
* failure cases are found which indicates we should be more tolerant
* to calpad busy trimming.
*/
ret = regmap_read_poll_timeout(priv->syscfg, EMMC_PHYSTAT_REG,
caldone, IS_CALDONE(caldone),
0, 50);
if (ret) {
dev_err(&phy->dev, "caldone failed, ret=%d\n", ret);
return ret;
}
/* Set the frequency of the DLL operation */
ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL2_REG, FRQSEL_MASK,
FRQSEL_SHIFT(freqsel));
if (ret) {
dev_err(&phy->dev, "set the frequency of dll failed:%d\n", ret);
return ret;
}
/* Turn on the DLL */
ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL1_REG, ENDLL_MASK,
ENDLL_SHIFT(1));
if (ret) {
dev_err(&phy->dev, "turn on the dll failed: %d\n", ret);
return ret;
}
/*
* After enabling analog DLL circuits docs say that we need 10.2 us if
* our source clock is at 50 MHz and that lock time scales linearly
* with clock speed. If we are powering on the PHY and the card clock
* is super slow (like 100 kHZ) this could take as long as 5.1 ms as
* per the math: 10.2 us * (50000000 Hz / 100000 Hz) => 5.1 ms
* Hopefully we won't be running at 100 kHz, but we should still make
* sure we wait long enough.
*
* NOTE: There appear to be corner cases where the DLL seems to take
* extra long to lock for reasons that aren't understood. In some
* extreme cases we've seen it take up to over 10ms (!). We'll be
* generous and give it 50ms.
*/
ret = regmap_read_poll_timeout(priv->syscfg,
EMMC_PHYSTAT_REG,
dllrdy, IS_DLLRDY(dllrdy),
0, 50 * USEC_PER_MSEC);
if (ret) {
dev_err(&phy->dev, "dllrdy failed. ret=%d\n", ret);
return ret;
}
return 0;
}
static int intel_emmc_phy_init(struct phy *phy)
{
struct intel_emmc_phy *priv = phy_get_drvdata(phy);
/*
* We purposely get the clock here and not in probe to avoid the
* circular dependency problem. We expect:
* - PHY driver to probe
* - SDHCI driver to start probe
* - SDHCI driver to register it's clock
* - SDHCI driver to get the PHY
* - SDHCI driver to init the PHY
*
* The clock is optional, so upon any error just return it like
* any other error to user.
*
*/
priv->emmcclk = clk_get_optional(&phy->dev, "emmcclk");
if (IS_ERR(priv->emmcclk)) {
dev_err(&phy->dev, "ERROR: getting emmcclk\n");
return PTR_ERR(priv->emmcclk);
}
return 0;
}
static int intel_emmc_phy_exit(struct phy *phy)
{
struct intel_emmc_phy *priv = phy_get_drvdata(phy);
clk_put(priv->emmcclk);
return 0;
}
static int intel_emmc_phy_power_on(struct phy *phy)
{
struct intel_emmc_phy *priv = phy_get_drvdata(phy);
int ret;
/* Drive impedance: 50 Ohm */
ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL0_REG, DR_TY_MASK,
DR_TY_SHIFT(6));
if (ret) {
dev_err(&phy->dev, "ERROR set drive-impednce-50ohm: %d\n", ret);
return ret;
}
/* Output tap delay: disable */
ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL0_REG, OTAPDLYENA,
0);
if (ret) {
dev_err(&phy->dev, "ERROR Set output tap delay : %d\n", ret);
return ret;
}
/* Output tap delay */
ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL0_REG,
OTAPDLYSEL_MASK, OTAPDLYSEL_SHIFT(4));
if (ret) {
dev_err(&phy->dev, "ERROR: output tap dly select: %d\n", ret);
return ret;
}
/* Power up eMMC phy analog blocks */
return intel_emmc_phy_power(phy, true);
}
static int intel_emmc_phy_power_off(struct phy *phy)
{
/* Power down eMMC phy analog blocks */
return intel_emmc_phy_power(phy, false);
}
static const struct phy_ops ops = {
.init = intel_emmc_phy_init,
.exit = intel_emmc_phy_exit,
.power_on = intel_emmc_phy_power_on,
.power_off = intel_emmc_phy_power_off,
.owner = THIS_MODULE,
};
static int intel_emmc_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct intel_emmc_phy *priv;
struct phy *generic_phy;
struct phy_provider *phy_provider;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
/* Get eMMC phy (accessed via chiptop) regmap */
priv->syscfg = syscon_regmap_lookup_by_phandle(np, "intel,syscon");
if (IS_ERR(priv->syscfg)) {
dev_err(dev, "failed to find syscon\n");
return PTR_ERR(priv->syscfg);
}
generic_phy = devm_phy_create(dev, np, &ops);
if (IS_ERR(generic_phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(generic_phy);
}
phy_set_drvdata(generic_phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id intel_emmc_phy_dt_ids[] = {
{ .compatible = "intel,lgm-emmc-phy" },
{}
};
MODULE_DEVICE_TABLE(of, intel_emmc_phy_dt_ids);
static struct platform_driver intel_emmc_driver = {
.probe = intel_emmc_phy_probe,
.driver = {
.name = "intel-emmc-phy",
.of_match_table = intel_emmc_phy_dt_ids,
},
};
module_platform_driver(intel_emmc_driver);
MODULE_AUTHOR("Peter Harliman Liem <[email protected]>");
MODULE_DESCRIPTION("Intel eMMC PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/intel/phy-intel-lgm-emmc.c |
// SPDX-License-Identifier: GPL-2.0
/*
* phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
*
* Copyright (C) 2018-2020 Xilinx Inc.
*
* Author: Anurag Kumar Vulisha <[email protected]>
* Author: Subbaraya Sundeep <[email protected]>
* Author: Laurent Pinchart <[email protected]>
*
* This driver is tested for USB, SGMII, SATA and Display Port currently.
* PCIe should also work but that is experimental as of now.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <dt-bindings/phy/phy.h>
/*
* Lane Registers
*/
/* TX De-emphasis parameters */
#define L0_TX_ANA_TM_18 0x0048
#define L0_TX_ANA_TM_118 0x01d8
#define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0)
/* DN Resistor calibration code parameters */
#define L0_TXPMA_ST_3 0x0b0c
#define L0_DN_CALIB_CODE 0x3f
/* PMA control parameters */
#define L0_TXPMD_TM_45 0x0cb4
#define L0_TXPMD_TM_48 0x0cc0
#define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0)
#define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1)
#define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2)
#define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3)
#define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4)
#define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5)
/* PCS control parameters */
#define L0_TM_DIG_6 0x106c
#define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f
#define L0_TX_DIG_61 0x00f4
#define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f
/* PLL Test Mode register parameters */
#define L0_TM_PLL_DIG_37 0x2094
#define L0_TM_COARSE_CODE_LIMIT 0x10
/* PLL SSC step size offsets */
#define L0_PLL_SS_STEPS_0_LSB 0x2368
#define L0_PLL_SS_STEPS_1_MSB 0x236c
#define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370
#define L0_PLL_SS_STEP_SIZE_1 0x2374
#define L0_PLL_SS_STEP_SIZE_2 0x2378
#define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c
#define L0_PLL_STATUS_READ_1 0x23e4
/* SSC step size parameters */
#define STEP_SIZE_0_MASK 0xff
#define STEP_SIZE_1_MASK 0xff
#define STEP_SIZE_2_MASK 0xff
#define STEP_SIZE_3_MASK 0x3
#define STEP_SIZE_SHIFT 8
#define FORCE_STEP_SIZE 0x10
#define FORCE_STEPS 0x20
#define STEPS_0_MASK 0xff
#define STEPS_1_MASK 0x07
/* Reference clock selection parameters */
#define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4)
#define L0_REF_CLK_SEL_MASK 0x8f
/* Calibration digital logic parameters */
#define L3_TM_CALIB_DIG19 0xec4c
#define L3_CALIB_DONE_STATUS 0xef14
#define L3_TM_CALIB_DIG18 0xec48
#define L3_TM_CALIB_DIG19_NSW 0x07
#define L3_TM_CALIB_DIG18_NSW 0xe0
#define L3_TM_OVERRIDE_NSW_CODE 0x20
#define L3_CALIB_DONE 0x02
#define L3_NSW_SHIFT 5
#define L3_NSW_PIPE_SHIFT 4
#define L3_NSW_CALIB_SHIFT 3
#define PHY_REG_OFFSET 0x4000
/*
* Global Registers
*/
/* Refclk selection parameters */
#define PLL_REF_SEL(n) (0x10000 + (n) * 4)
#define PLL_FREQ_MASK 0x1f
#define PLL_STATUS_LOCKED 0x10
/* Inter Connect Matrix parameters */
#define ICM_CFG0 0x10010
#define ICM_CFG1 0x10014
#define ICM_CFG0_L0_MASK 0x07
#define ICM_CFG0_L1_MASK 0x70
#define ICM_CFG1_L2_MASK 0x07
#define ICM_CFG2_L3_MASK 0x70
#define ICM_CFG_SHIFT 4
/* Inter Connect Matrix allowed protocols */
#define ICM_PROTOCOL_PD 0x0
#define ICM_PROTOCOL_PCIE 0x1
#define ICM_PROTOCOL_SATA 0x2
#define ICM_PROTOCOL_USB 0x3
#define ICM_PROTOCOL_DP 0x4
#define ICM_PROTOCOL_SGMII 0x5
/* Test Mode common reset control parameters */
#define TM_CMN_RST 0x10018
#define TM_CMN_RST_EN 0x1
#define TM_CMN_RST_SET 0x2
#define TM_CMN_RST_MASK 0x3
/* Bus width parameters */
#define TX_PROT_BUS_WIDTH 0x10040
#define RX_PROT_BUS_WIDTH 0x10044
#define PROT_BUS_WIDTH_10 0x0
#define PROT_BUS_WIDTH_20 0x1
#define PROT_BUS_WIDTH_40 0x2
#define PROT_BUS_WIDTH_SHIFT(n) ((n) * 2)
#define PROT_BUS_WIDTH_MASK(n) GENMASK((n) * 2 + 1, (n) * 2)
/* Number of GT lanes */
#define NUM_LANES 4
/* SIOU SATA control register */
#define SATA_CONTROL_OFFSET 0x0100
/* Total number of controllers */
#define CONTROLLERS_PER_LANE 5
/* Protocol Type parameters */
#define XPSGTR_TYPE_USB0 0 /* USB controller 0 */
#define XPSGTR_TYPE_USB1 1 /* USB controller 1 */
#define XPSGTR_TYPE_SATA_0 2 /* SATA controller lane 0 */
#define XPSGTR_TYPE_SATA_1 3 /* SATA controller lane 1 */
#define XPSGTR_TYPE_PCIE_0 4 /* PCIe controller lane 0 */
#define XPSGTR_TYPE_PCIE_1 5 /* PCIe controller lane 1 */
#define XPSGTR_TYPE_PCIE_2 6 /* PCIe controller lane 2 */
#define XPSGTR_TYPE_PCIE_3 7 /* PCIe controller lane 3 */
#define XPSGTR_TYPE_DP_0 8 /* Display Port controller lane 0 */
#define XPSGTR_TYPE_DP_1 9 /* Display Port controller lane 1 */
#define XPSGTR_TYPE_SGMII0 10 /* Ethernet SGMII controller 0 */
#define XPSGTR_TYPE_SGMII1 11 /* Ethernet SGMII controller 1 */
#define XPSGTR_TYPE_SGMII2 12 /* Ethernet SGMII controller 2 */
#define XPSGTR_TYPE_SGMII3 13 /* Ethernet SGMII controller 3 */
/* Timeout values */
#define TIMEOUT_US 1000
struct xpsgtr_dev;
/**
* struct xpsgtr_ssc - structure to hold SSC settings for a lane
* @refclk_rate: PLL reference clock frequency
* @pll_ref_clk: value to be written to register for corresponding ref clk rate
* @steps: number of steps of SSC (Spread Spectrum Clock)
* @step_size: step size of each step
*/
struct xpsgtr_ssc {
u32 refclk_rate;
u8 pll_ref_clk;
u32 steps;
u32 step_size;
};
/**
* struct xpsgtr_phy - representation of a lane
* @phy: pointer to the kernel PHY device
* @type: controller which uses this lane
* @lane: lane number
* @protocol: protocol in which the lane operates
* @skip_phy_init: skip phy_init() if true
* @dev: pointer to the xpsgtr_dev instance
* @refclk: reference clock index
*/
struct xpsgtr_phy {
struct phy *phy;
u8 type;
u8 lane;
u8 protocol;
bool skip_phy_init;
struct xpsgtr_dev *dev;
unsigned int refclk;
};
/**
* struct xpsgtr_dev - representation of a ZynMP GT device
* @dev: pointer to device
* @serdes: serdes base address
* @siou: siou base address
* @gtr_mutex: mutex for locking
* @phys: PHY lanes
* @refclk_sscs: spread spectrum settings for the reference clocks
* @clk: reference clocks
* @tx_term_fix: fix for GT issue
* @saved_icm_cfg0: stored value of ICM CFG0 register
* @saved_icm_cfg1: stored value of ICM CFG1 register
*/
struct xpsgtr_dev {
struct device *dev;
void __iomem *serdes;
void __iomem *siou;
struct mutex gtr_mutex; /* mutex for locking */
struct xpsgtr_phy phys[NUM_LANES];
const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
struct clk *clk[NUM_LANES];
bool tx_term_fix;
unsigned int saved_icm_cfg0;
unsigned int saved_icm_cfg1;
};
/*
* Configuration Data
*/
/* lookup table to hold all settings needed for a ref clock frequency */
static const struct xpsgtr_ssc ssc_lookup[] = {
{ 19200000, 0x05, 608, 264020 },
{ 20000000, 0x06, 634, 243454 },
{ 24000000, 0x07, 760, 168973 },
{ 26000000, 0x08, 824, 143860 },
{ 27000000, 0x09, 856, 86551 },
{ 38400000, 0x0a, 1218, 65896 },
{ 40000000, 0x0b, 634, 243454 },
{ 52000000, 0x0c, 824, 143860 },
{ 100000000, 0x0d, 1058, 87533 },
{ 108000000, 0x0e, 856, 86551 },
{ 125000000, 0x0f, 992, 119497 },
{ 135000000, 0x10, 1070, 55393 },
{ 150000000, 0x11, 792, 187091 }
};
/*
* I/O Accessors
*/
static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
{
return readl(gtr_dev->serdes + reg);
}
static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
{
writel(value, gtr_dev->serdes + reg);
}
static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
u32 clr, u32 set)
{
u32 value = xpsgtr_read(gtr_dev, reg);
value &= ~clr;
value |= set;
xpsgtr_write(gtr_dev, reg, value);
}
static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
return readl(addr);
}
static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
u32 reg, u32 value)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
writel(value, addr);
}
static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
u32 reg, u32 clr, u32 set)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
writel((readl(addr) & ~clr) | set, addr);
}
/*
* Hardware Configuration
*/
/* Wait for the PLL to lock (with a timeout). */
static int xpsgtr_wait_pll_lock(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
unsigned int timeout = TIMEOUT_US;
int ret;
dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
while (1) {
u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
ret = 0;
break;
}
if (--timeout == 0) {
ret = -ETIMEDOUT;
break;
}
udelay(1);
}
if (ret == -ETIMEDOUT)
dev_err(gtr_dev->dev,
"lane %u (type %u, protocol %u): PLL lock timeout\n",
gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
return ret;
}
/* Configure PLL and spread-sprectrum clock. */
static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
{
const struct xpsgtr_ssc *ssc;
u32 step_size;
ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
step_size = ssc->step_size;
xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
PLL_FREQ_MASK, ssc->pll_ref_clk);
/* Enable lane clock sharing, if required */
if (gtr_phy->refclk != gtr_phy->lane) {
/* Lane3 Ref Clock Selection Register */
xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
}
/* SSC step size [7:0] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
/* SSC step size [15:8] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
/* SSC step size [23:16] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
/* SSC steps [7:0] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
/* SSC steps [10:8] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
STEPS_1_MASK,
(ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
/* SSC step size [24:25] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
FORCE_STEP_SIZE | FORCE_STEPS);
}
/* Configure the lane protocol. */
static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u8 protocol = gtr_phy->protocol;
switch (gtr_phy->lane) {
case 0:
xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
break;
case 1:
xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
protocol << ICM_CFG_SHIFT);
break;
case 2:
xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
break;
case 3:
xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
protocol << ICM_CFG_SHIFT);
break;
default:
/* We already checked 0 <= lane <= 3 */
break;
}
}
/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
{
xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
}
/* DP-specific initialization. */
static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
{
xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
L0_TXPMD_TM_45_OVER_DP_MAIN |
L0_TXPMD_TM_45_ENABLE_DP_MAIN |
L0_TXPMD_TM_45_OVER_DP_POST1 |
L0_TXPMD_TM_45_OVER_DP_POST2 |
L0_TXPMD_TM_45_ENABLE_DP_POST2);
xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
L0_TX_ANA_TM_118_FORCE_17_0);
}
/* SATA-specific initialization. */
static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
xpsgtr_bypass_scrambler_8b10b(gtr_phy);
writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
}
/* SGMII-specific initialization. */
static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane);
u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane);
/* Set SGMII protocol TX and RX bus width to 10 bits. */
xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val);
xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val);
xpsgtr_bypass_scrambler_8b10b(gtr_phy);
}
/* Configure TX de-emphasis and margining for DP. */
static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
unsigned int voltage)
{
static const u8 voltage_swing[4][4] = {
{ 0x2a, 0x27, 0x24, 0x20 },
{ 0x27, 0x23, 0x20, 0xff },
{ 0x24, 0x20, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff }
};
static const u8 pre_emphasis[4][4] = {
{ 0x02, 0x02, 0x02, 0x02 },
{ 0x01, 0x01, 0x01, 0xff },
{ 0x00, 0x00, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff }
};
xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
}
/*
* PHY Operations
*/
static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
{
/*
* As USB may save the snapshot of the states during hibernation, doing
* phy_init() will put the USB controller into reset, resulting in the
* losing of the saved snapshot. So try to avoid phy_init() for USB
* except when gtr_phy->skip_phy_init is false (this happens when FPD is
* shutdown during suspend or when gt lane is changed from current one)
*/
if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
return false;
else
return true;
}
/*
* There is a functional issue in the GT. The TX termination resistance can be
* out of spec due to a issue in the calibration logic. This is the workaround
* to fix it, required for XCZU9EG silicon.
*/
static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u32 timeout = TIMEOUT_US;
u32 nsw;
/* Enabling Test Mode control for CMN Rest */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
/* Set Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
/*
* As a part of work around sequence for PMOS calibration fix,
* we need to configure any lane ICM_CFG to valid protocol. This
* will deassert the CMN_Resetn signal.
*/
xpsgtr_lane_set_protocol(gtr_phy);
/* Clear Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
dev_dbg(gtr_dev->dev, "calibrating...\n");
do {
u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
break;
if (!--timeout) {
dev_err(gtr_dev->dev, "calibration time out\n");
return -ETIMEDOUT;
}
udelay(1);
} while (timeout > 0);
dev_dbg(gtr_dev->dev, "calibration done\n");
/* Reading NMOS Register Code */
nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
/* Set Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
/* Writing NMOS register values back [5:3] */
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
/* Writing NMOS register value [2:0] */
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
(1 << L3_NSW_PIPE_SHIFT));
/* Clear Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
return 0;
}
static int xpsgtr_phy_init(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
int ret = 0;
mutex_lock(>r_dev->gtr_mutex);
/* Configure and enable the clock when peripheral phy_init call */
if (clk_prepare_enable(gtr_dev->clk[gtr_phy->lane]))
goto out;
/* Skip initialization if not required. */
if (!xpsgtr_phy_init_required(gtr_phy))
goto out;
if (gtr_dev->tx_term_fix) {
ret = xpsgtr_phy_tx_term_fix(gtr_phy);
if (ret < 0)
goto out;
gtr_dev->tx_term_fix = false;
}
/* Enable coarse code saturation limiting logic. */
xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
/*
* Configure the PLL, the lane protocol, and perform protocol-specific
* initialization.
*/
xpsgtr_configure_pll(gtr_phy);
xpsgtr_lane_set_protocol(gtr_phy);
switch (gtr_phy->protocol) {
case ICM_PROTOCOL_DP:
xpsgtr_phy_init_dp(gtr_phy);
break;
case ICM_PROTOCOL_SATA:
xpsgtr_phy_init_sata(gtr_phy);
break;
case ICM_PROTOCOL_SGMII:
xpsgtr_phy_init_sgmii(gtr_phy);
break;
}
out:
mutex_unlock(>r_dev->gtr_mutex);
return ret;
}
static int xpsgtr_phy_exit(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
gtr_phy->skip_phy_init = false;
/* Ensure that disable clock only, which configure for lane */
clk_disable_unprepare(gtr_dev->clk[gtr_phy->lane]);
return 0;
}
static int xpsgtr_phy_power_on(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
int ret = 0;
/* Skip initialization if not required. */
if (!xpsgtr_phy_init_required(gtr_phy))
return ret;
/*
* Wait for the PLL to lock. For DP, only wait on DP0 to avoid
* cumulating waits for both lanes. The user is expected to initialize
* lane 0 last.
*/
if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
gtr_phy->type == XPSGTR_TYPE_DP_0)
ret = xpsgtr_wait_pll_lock(phy);
return ret;
}
static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
if (gtr_phy->protocol != ICM_PROTOCOL_DP)
return 0;
xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
return 0;
}
static const struct phy_ops xpsgtr_phyops = {
.init = xpsgtr_phy_init,
.exit = xpsgtr_phy_exit,
.power_on = xpsgtr_phy_power_on,
.configure = xpsgtr_phy_configure,
.owner = THIS_MODULE,
};
/*
* OF Xlate Support
*/
/* Set the lane type and protocol based on the PHY type and instance number. */
static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
unsigned int phy_instance)
{
unsigned int num_phy_types;
const int *phy_types;
switch (phy_type) {
case PHY_TYPE_SATA: {
static const int types[] = {
XPSGTR_TYPE_SATA_0,
XPSGTR_TYPE_SATA_1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_SATA;
break;
}
case PHY_TYPE_USB3: {
static const int types[] = {
XPSGTR_TYPE_USB0,
XPSGTR_TYPE_USB1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_USB;
break;
}
case PHY_TYPE_DP: {
static const int types[] = {
XPSGTR_TYPE_DP_0,
XPSGTR_TYPE_DP_1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_DP;
break;
}
case PHY_TYPE_PCIE: {
static const int types[] = {
XPSGTR_TYPE_PCIE_0,
XPSGTR_TYPE_PCIE_1,
XPSGTR_TYPE_PCIE_2,
XPSGTR_TYPE_PCIE_3,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_PCIE;
break;
}
case PHY_TYPE_SGMII: {
static const int types[] = {
XPSGTR_TYPE_SGMII0,
XPSGTR_TYPE_SGMII1,
XPSGTR_TYPE_SGMII2,
XPSGTR_TYPE_SGMII3,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_SGMII;
break;
}
default:
return -EINVAL;
}
if (phy_instance >= num_phy_types)
return -EINVAL;
gtr_phy->type = phy_types[phy_instance];
return 0;
}
/*
* Valid combinations of controllers and lanes (Interconnect Matrix).
*/
static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
};
/* Translate OF phandle and args to PHY instance. */
static struct phy *xpsgtr_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
struct xpsgtr_phy *gtr_phy;
unsigned int phy_instance;
unsigned int phy_lane;
unsigned int phy_type;
unsigned int refclk;
unsigned int i;
int ret;
if (args->args_count != 4) {
dev_err(dev, "Invalid number of cells in 'phy' property\n");
return ERR_PTR(-EINVAL);
}
/*
* Get the PHY parameters from the OF arguments and derive the lane
* type.
*/
phy_lane = args->args[0];
if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
dev_err(dev, "Invalid lane number %u\n", phy_lane);
return ERR_PTR(-ENODEV);
}
gtr_phy = >r_dev->phys[phy_lane];
phy_type = args->args[1];
phy_instance = args->args[2];
ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
if (ret < 0) {
dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
return ERR_PTR(ret);
}
refclk = args->args[3];
if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
!gtr_dev->refclk_sscs[refclk]) {
dev_err(dev, "Invalid reference clock number %u\n", refclk);
return ERR_PTR(-EINVAL);
}
gtr_phy->refclk = refclk;
/*
* Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
* is allowed to operate on the lane.
*/
for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
if (icm_matrix[phy_lane][i] == gtr_phy->type)
return gtr_phy->phy;
}
return ERR_PTR(-EINVAL);
}
/*
* Power Management
*/
static int xpsgtr_runtime_suspend(struct device *dev)
{
struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
/* Save the snapshot ICM_CFG registers. */
gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
return 0;
}
static int xpsgtr_runtime_resume(struct device *dev)
{
struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
unsigned int icm_cfg0, icm_cfg1;
unsigned int i;
bool skip_phy_init;
icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
/* Return if no GT lanes got configured before suspend. */
if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
return 0;
/* Check if the ICM configurations changed after suspend. */
if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
icm_cfg1 == gtr_dev->saved_icm_cfg1)
skip_phy_init = true;
else
skip_phy_init = false;
/* Update the skip_phy_init for all gtr_phy instances. */
for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
gtr_dev->phys[i].skip_phy_init = skip_phy_init;
return 0;
}
static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend,
xpsgtr_runtime_resume, NULL);
/*
* Probe & Platform Driver
*/
static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
{
unsigned int refclk;
for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
unsigned long rate;
unsigned int i;
struct clk *clk;
char name[8];
snprintf(name, sizeof(name), "ref%u", refclk);
clk = devm_clk_get_optional(gtr_dev->dev, name);
if (IS_ERR(clk)) {
return dev_err_probe(gtr_dev->dev, PTR_ERR(clk),
"Failed to get ref clock %u\n",
refclk);
}
if (!clk)
continue;
gtr_dev->clk[refclk] = clk;
/*
* Get the spread spectrum (SSC) settings for the reference
* clock rate.
*/
rate = clk_get_rate(clk);
for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
/* Allow an error of 100 ppm */
unsigned long error = ssc_lookup[i].refclk_rate / 10000;
if (abs(rate - ssc_lookup[i].refclk_rate) < error) {
gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
break;
}
}
if (i == ARRAY_SIZE(ssc_lookup)) {
dev_err(gtr_dev->dev,
"Invalid rate %lu for reference clock %u\n",
rate, refclk);
return -EINVAL;
}
}
return 0;
}
static int xpsgtr_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct xpsgtr_dev *gtr_dev;
struct phy_provider *provider;
unsigned int port;
int ret;
gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
if (!gtr_dev)
return -ENOMEM;
gtr_dev->dev = &pdev->dev;
platform_set_drvdata(pdev, gtr_dev);
mutex_init(>r_dev->gtr_mutex);
if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
gtr_dev->tx_term_fix =
of_property_read_bool(np, "xlnx,tx-termination-fix");
/* Acquire resources. */
gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
if (IS_ERR(gtr_dev->serdes))
return PTR_ERR(gtr_dev->serdes);
gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
if (IS_ERR(gtr_dev->siou))
return PTR_ERR(gtr_dev->siou);
ret = xpsgtr_get_ref_clocks(gtr_dev);
if (ret)
return ret;
/* Create PHYs. */
for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
struct xpsgtr_phy *gtr_phy = >r_dev->phys[port];
struct phy *phy;
gtr_phy->lane = port;
gtr_phy->dev = gtr_dev;
phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
if (IS_ERR(phy)) {
dev_err(&pdev->dev, "failed to create PHY\n");
return PTR_ERR(phy);
}
gtr_phy->phy = phy;
phy_set_drvdata(phy, gtr_phy);
}
/* Register the PHY provider. */
provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
if (IS_ERR(provider)) {
dev_err(&pdev->dev, "registering provider failed\n");
return PTR_ERR(provider);
}
pm_runtime_set_active(gtr_dev->dev);
pm_runtime_enable(gtr_dev->dev);
ret = pm_runtime_resume_and_get(gtr_dev->dev);
if (ret < 0) {
pm_runtime_disable(gtr_dev->dev);
return ret;
}
return 0;
}
static int xpsgtr_remove(struct platform_device *pdev)
{
struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev);
pm_runtime_disable(gtr_dev->dev);
pm_runtime_put_noidle(gtr_dev->dev);
pm_runtime_set_suspended(gtr_dev->dev);
return 0;
}
static const struct of_device_id xpsgtr_of_match[] = {
{ .compatible = "xlnx,zynqmp-psgtr", },
{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
{},
};
MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
static struct platform_driver xpsgtr_driver = {
.probe = xpsgtr_probe,
.remove = xpsgtr_remove,
.driver = {
.name = "xilinx-psgtr",
.of_match_table = xpsgtr_of_match,
.pm = pm_ptr(&xpsgtr_pm_ops),
},
};
module_platform_driver(xpsgtr_driver);
MODULE_AUTHOR("Xilinx Inc.");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");
| linux-master | drivers/phy/xilinx/phy-zynqmp.c |
// SPDX-License-Identifier: GPL-2.0
/*
* phy-uniphier-usb3ss.c - SS-PHY driver for Socionext UniPhier USB3 controller
* Copyright 2015-2018 Socionext Inc.
* Author:
* Kunihiko Hayashi <[email protected]>
* Contributors:
* Motoya Tanigawa <[email protected]>
* Masami Hiramatsu <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#define SSPHY_TESTI 0x0
#define TESTI_DAT_MASK GENMASK(13, 6)
#define TESTI_ADR_MASK GENMASK(5, 1)
#define TESTI_WR_EN BIT(0)
#define SSPHY_TESTO 0x4
#define TESTO_DAT_MASK GENMASK(7, 0)
#define PHY_F(regno, msb, lsb) { (regno), (msb), (lsb) }
#define CDR_CPD_TRIM PHY_F(7, 3, 0) /* RxPLL charge pump current */
#define CDR_CPF_TRIM PHY_F(8, 3, 0) /* RxPLL charge pump current 2 */
#define TX_PLL_TRIM PHY_F(9, 3, 0) /* TxPLL charge pump current */
#define BGAP_TRIM PHY_F(11, 3, 0) /* Bandgap voltage */
#define CDR_TRIM PHY_F(13, 6, 5) /* Clock Data Recovery setting */
#define VCO_CTRL PHY_F(26, 7, 4) /* VCO control */
#define VCOPLL_CTRL PHY_F(27, 2, 0) /* TxPLL VCO tuning */
#define VCOPLL_CM PHY_F(28, 1, 0) /* TxPLL voltage */
#define MAX_PHY_PARAMS 7
struct uniphier_u3ssphy_param {
struct {
int reg_no;
int msb;
int lsb;
} field;
u8 value;
};
struct uniphier_u3ssphy_priv {
struct device *dev;
void __iomem *base;
struct clk *clk, *clk_ext, *clk_parent, *clk_parent_gio;
struct reset_control *rst, *rst_parent, *rst_parent_gio;
struct regulator *vbus;
const struct uniphier_u3ssphy_soc_data *data;
};
struct uniphier_u3ssphy_soc_data {
bool is_legacy;
int nparams;
const struct uniphier_u3ssphy_param param[MAX_PHY_PARAMS];
};
static void uniphier_u3ssphy_testio_write(struct uniphier_u3ssphy_priv *priv,
u32 data)
{
/* need to read TESTO twice after accessing TESTI */
writel(data, priv->base + SSPHY_TESTI);
readl(priv->base + SSPHY_TESTO);
readl(priv->base + SSPHY_TESTO);
}
static void uniphier_u3ssphy_set_param(struct uniphier_u3ssphy_priv *priv,
const struct uniphier_u3ssphy_param *p)
{
u32 val;
u8 field_mask = GENMASK(p->field.msb, p->field.lsb);
u8 data;
/* read previous data */
val = FIELD_PREP(TESTI_DAT_MASK, 1);
val |= FIELD_PREP(TESTI_ADR_MASK, p->field.reg_no);
uniphier_u3ssphy_testio_write(priv, val);
val = readl(priv->base + SSPHY_TESTO) & TESTO_DAT_MASK;
/* update value */
val &= ~field_mask;
data = field_mask & (p->value << p->field.lsb);
val = FIELD_PREP(TESTI_DAT_MASK, data | val);
val |= FIELD_PREP(TESTI_ADR_MASK, p->field.reg_no);
uniphier_u3ssphy_testio_write(priv, val);
uniphier_u3ssphy_testio_write(priv, val | TESTI_WR_EN);
uniphier_u3ssphy_testio_write(priv, val);
/* read current data as dummy */
val = FIELD_PREP(TESTI_DAT_MASK, 1);
val |= FIELD_PREP(TESTI_ADR_MASK, p->field.reg_no);
uniphier_u3ssphy_testio_write(priv, val);
readl(priv->base + SSPHY_TESTO);
}
static int uniphier_u3ssphy_power_on(struct phy *phy)
{
struct uniphier_u3ssphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = clk_prepare_enable(priv->clk_ext);
if (ret)
return ret;
ret = clk_prepare_enable(priv->clk);
if (ret)
goto out_clk_ext_disable;
ret = reset_control_deassert(priv->rst);
if (ret)
goto out_clk_disable;
if (priv->vbus) {
ret = regulator_enable(priv->vbus);
if (ret)
goto out_rst_assert;
}
return 0;
out_rst_assert:
reset_control_assert(priv->rst);
out_clk_disable:
clk_disable_unprepare(priv->clk);
out_clk_ext_disable:
clk_disable_unprepare(priv->clk_ext);
return ret;
}
static int uniphier_u3ssphy_power_off(struct phy *phy)
{
struct uniphier_u3ssphy_priv *priv = phy_get_drvdata(phy);
if (priv->vbus)
regulator_disable(priv->vbus);
reset_control_assert(priv->rst);
clk_disable_unprepare(priv->clk);
clk_disable_unprepare(priv->clk_ext);
return 0;
}
static int uniphier_u3ssphy_init(struct phy *phy)
{
struct uniphier_u3ssphy_priv *priv = phy_get_drvdata(phy);
int i, ret;
ret = clk_prepare_enable(priv->clk_parent);
if (ret)
return ret;
ret = clk_prepare_enable(priv->clk_parent_gio);
if (ret)
goto out_clk_disable;
ret = reset_control_deassert(priv->rst_parent);
if (ret)
goto out_clk_gio_disable;
ret = reset_control_deassert(priv->rst_parent_gio);
if (ret)
goto out_rst_assert;
if (priv->data->is_legacy)
return 0;
for (i = 0; i < priv->data->nparams; i++)
uniphier_u3ssphy_set_param(priv, &priv->data->param[i]);
return 0;
out_rst_assert:
reset_control_assert(priv->rst_parent);
out_clk_gio_disable:
clk_disable_unprepare(priv->clk_parent_gio);
out_clk_disable:
clk_disable_unprepare(priv->clk_parent);
return ret;
}
static int uniphier_u3ssphy_exit(struct phy *phy)
{
struct uniphier_u3ssphy_priv *priv = phy_get_drvdata(phy);
reset_control_assert(priv->rst_parent_gio);
reset_control_assert(priv->rst_parent);
clk_disable_unprepare(priv->clk_parent_gio);
clk_disable_unprepare(priv->clk_parent);
return 0;
}
static const struct phy_ops uniphier_u3ssphy_ops = {
.init = uniphier_u3ssphy_init,
.exit = uniphier_u3ssphy_exit,
.power_on = uniphier_u3ssphy_power_on,
.power_off = uniphier_u3ssphy_power_off,
.owner = THIS_MODULE,
};
static int uniphier_u3ssphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct uniphier_u3ssphy_priv *priv;
struct phy_provider *phy_provider;
struct phy *phy;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->data = of_device_get_match_data(dev);
if (WARN_ON(!priv->data ||
priv->data->nparams > MAX_PHY_PARAMS))
return -EINVAL;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
if (!priv->data->is_legacy) {
priv->clk = devm_clk_get(dev, "phy");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
priv->clk_ext = devm_clk_get_optional(dev, "phy-ext");
if (IS_ERR(priv->clk_ext))
return PTR_ERR(priv->clk_ext);
priv->rst = devm_reset_control_get_shared(dev, "phy");
if (IS_ERR(priv->rst))
return PTR_ERR(priv->rst);
} else {
priv->clk_parent_gio = devm_clk_get(dev, "gio");
if (IS_ERR(priv->clk_parent_gio))
return PTR_ERR(priv->clk_parent_gio);
priv->rst_parent_gio =
devm_reset_control_get_shared(dev, "gio");
if (IS_ERR(priv->rst_parent_gio))
return PTR_ERR(priv->rst_parent_gio);
}
priv->clk_parent = devm_clk_get(dev, "link");
if (IS_ERR(priv->clk_parent))
return PTR_ERR(priv->clk_parent);
priv->rst_parent = devm_reset_control_get_shared(dev, "link");
if (IS_ERR(priv->rst_parent))
return PTR_ERR(priv->rst_parent);
priv->vbus = devm_regulator_get_optional(dev, "vbus");
if (IS_ERR(priv->vbus)) {
if (PTR_ERR(priv->vbus) == -EPROBE_DEFER)
return PTR_ERR(priv->vbus);
priv->vbus = NULL;
}
phy = devm_phy_create(dev, dev->of_node, &uniphier_u3ssphy_ops);
if (IS_ERR(phy))
return PTR_ERR(phy);
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct uniphier_u3ssphy_soc_data uniphier_pro4_data = {
.is_legacy = true,
};
static const struct uniphier_u3ssphy_soc_data uniphier_pxs2_data = {
.is_legacy = false,
.nparams = 7,
.param = {
{ CDR_CPD_TRIM, 10 },
{ CDR_CPF_TRIM, 3 },
{ TX_PLL_TRIM, 5 },
{ BGAP_TRIM, 9 },
{ CDR_TRIM, 2 },
{ VCOPLL_CTRL, 7 },
{ VCOPLL_CM, 1 },
},
};
static const struct uniphier_u3ssphy_soc_data uniphier_ld20_data = {
.is_legacy = false,
.nparams = 3,
.param = {
{ CDR_CPD_TRIM, 6 },
{ CDR_TRIM, 2 },
{ VCO_CTRL, 5 },
},
};
static const struct of_device_id uniphier_u3ssphy_match[] = {
{
.compatible = "socionext,uniphier-pro4-usb3-ssphy",
.data = &uniphier_pro4_data,
},
{
.compatible = "socionext,uniphier-pro5-usb3-ssphy",
.data = &uniphier_pro4_data,
},
{
.compatible = "socionext,uniphier-pxs2-usb3-ssphy",
.data = &uniphier_pxs2_data,
},
{
.compatible = "socionext,uniphier-ld20-usb3-ssphy",
.data = &uniphier_ld20_data,
},
{
.compatible = "socionext,uniphier-pxs3-usb3-ssphy",
.data = &uniphier_ld20_data,
},
{
.compatible = "socionext,uniphier-nx1-usb3-ssphy",
.data = &uniphier_ld20_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, uniphier_u3ssphy_match);
static struct platform_driver uniphier_u3ssphy_driver = {
.probe = uniphier_u3ssphy_probe,
.driver = {
.name = "uniphier-usb3-ssphy",
.of_match_table = uniphier_u3ssphy_match,
},
};
module_platform_driver(uniphier_u3ssphy_driver);
MODULE_AUTHOR("Kunihiko Hayashi <[email protected]>");
MODULE_DESCRIPTION("UniPhier SS-PHY driver for USB3 controller");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/socionext/phy-uniphier-usb3ss.c |
// SPDX-License-Identifier: GPL-2.0
/*
* phy-uniphier-pcie.c - PHY driver for UniPhier PCIe controller
* Copyright 2018, Socionext Inc.
* Author: Kunihiko Hayashi <[email protected]>
*/
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/resource.h>
/* PHY */
#define PCL_PHY_CLKCTRL 0x0000
#define PORT_SEL_MASK GENMASK(11, 9)
#define PORT_SEL_1 FIELD_PREP(PORT_SEL_MASK, 1)
#define PCL_PHY_TEST_I 0x2000
#define TESTI_DAT_MASK GENMASK(13, 6)
#define TESTI_ADR_MASK GENMASK(5, 1)
#define TESTI_WR_EN BIT(0)
#define TESTIO_PHY_SHIFT 16
#define PCL_PHY_TEST_O 0x2004
#define TESTO_DAT_MASK GENMASK(7, 0)
#define PCL_PHY_RESET 0x200c
#define PCL_PHY_RESET_N_MNMODE BIT(8) /* =1:manual */
#define PCL_PHY_RESET_N BIT(0) /* =1:deasssert */
/* SG */
#define SG_USBPCIESEL 0x590
#define SG_USBPCIESEL_PCIE BIT(0)
/* SC */
#define SC_US3SRCSEL 0x2244
#define SC_US3SRCSEL_2LANE GENMASK(9, 8)
#define PCL_PHY_R00 0
#define RX_EQ_ADJ_EN BIT(3) /* enable for EQ adjustment */
#define PCL_PHY_R06 6
#define RX_EQ_ADJ GENMASK(5, 0) /* EQ adjustment value */
#define RX_EQ_ADJ_VAL 0
#define PCL_PHY_R26 26
#define VCO_CTRL GENMASK(7, 4) /* Tx VCO adjustment value */
#define VCO_CTRL_INIT_VAL 5
#define PCL_PHY_R28 28
#define VCOPLL_CLMP GENMASK(3, 2) /* Tx VCOPLL clamp mode */
#define VCOPLL_CLMP_VAL 0
struct uniphier_pciephy_priv {
void __iomem *base;
struct device *dev;
struct clk *clk, *clk_gio;
struct reset_control *rst, *rst_gio;
const struct uniphier_pciephy_soc_data *data;
};
struct uniphier_pciephy_soc_data {
bool is_legacy;
bool is_dual_phy;
void (*set_phymode)(struct regmap *regmap);
};
static void uniphier_pciephy_testio_write(struct uniphier_pciephy_priv *priv,
int id, u32 data)
{
if (id)
data <<= TESTIO_PHY_SHIFT;
/* need to read TESTO twice after accessing TESTI */
writel(data, priv->base + PCL_PHY_TEST_I);
readl(priv->base + PCL_PHY_TEST_O);
readl(priv->base + PCL_PHY_TEST_O);
}
static u32 uniphier_pciephy_testio_read(struct uniphier_pciephy_priv *priv, int id)
{
u32 val = readl(priv->base + PCL_PHY_TEST_O);
if (id)
val >>= TESTIO_PHY_SHIFT;
return val & TESTO_DAT_MASK;
}
static void uniphier_pciephy_set_param(struct uniphier_pciephy_priv *priv,
int id, u32 reg, u32 mask, u32 param)
{
u32 val;
/* read previous data */
val = FIELD_PREP(TESTI_DAT_MASK, 1);
val |= FIELD_PREP(TESTI_ADR_MASK, reg);
uniphier_pciephy_testio_write(priv, id, val);
val = uniphier_pciephy_testio_read(priv, id);
/* update value */
val &= ~mask;
val |= mask & param;
val = FIELD_PREP(TESTI_DAT_MASK, val);
val |= FIELD_PREP(TESTI_ADR_MASK, reg);
uniphier_pciephy_testio_write(priv, id, val);
uniphier_pciephy_testio_write(priv, id, val | TESTI_WR_EN);
uniphier_pciephy_testio_write(priv, id, val);
/* read current data as dummy */
val = FIELD_PREP(TESTI_DAT_MASK, 1);
val |= FIELD_PREP(TESTI_ADR_MASK, reg);
uniphier_pciephy_testio_write(priv, id, val);
uniphier_pciephy_testio_read(priv, id);
}
static void uniphier_pciephy_assert(struct uniphier_pciephy_priv *priv)
{
u32 val;
val = readl(priv->base + PCL_PHY_RESET);
val &= ~PCL_PHY_RESET_N;
val |= PCL_PHY_RESET_N_MNMODE;
writel(val, priv->base + PCL_PHY_RESET);
}
static void uniphier_pciephy_deassert(struct uniphier_pciephy_priv *priv)
{
u32 val;
val = readl(priv->base + PCL_PHY_RESET);
val |= PCL_PHY_RESET_N_MNMODE | PCL_PHY_RESET_N;
writel(val, priv->base + PCL_PHY_RESET);
}
static int uniphier_pciephy_init(struct phy *phy)
{
struct uniphier_pciephy_priv *priv = phy_get_drvdata(phy);
u32 val;
int ret, id;
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
ret = clk_prepare_enable(priv->clk_gio);
if (ret)
goto out_clk_disable;
ret = reset_control_deassert(priv->rst);
if (ret)
goto out_clk_gio_disable;
ret = reset_control_deassert(priv->rst_gio);
if (ret)
goto out_rst_assert;
/* support only 1 port */
val = readl(priv->base + PCL_PHY_CLKCTRL);
val &= ~PORT_SEL_MASK;
val |= PORT_SEL_1;
writel(val, priv->base + PCL_PHY_CLKCTRL);
/* legacy controller doesn't have phy_reset and parameters */
if (priv->data->is_legacy)
return 0;
for (id = 0; id < (priv->data->is_dual_phy ? 2 : 1); id++) {
uniphier_pciephy_set_param(priv, id, PCL_PHY_R00,
RX_EQ_ADJ_EN, RX_EQ_ADJ_EN);
uniphier_pciephy_set_param(priv, id, PCL_PHY_R06, RX_EQ_ADJ,
FIELD_PREP(RX_EQ_ADJ, RX_EQ_ADJ_VAL));
uniphier_pciephy_set_param(priv, id, PCL_PHY_R26, VCO_CTRL,
FIELD_PREP(VCO_CTRL, VCO_CTRL_INIT_VAL));
uniphier_pciephy_set_param(priv, id, PCL_PHY_R28, VCOPLL_CLMP,
FIELD_PREP(VCOPLL_CLMP, VCOPLL_CLMP_VAL));
}
usleep_range(1, 10);
uniphier_pciephy_deassert(priv);
usleep_range(1, 10);
return 0;
out_rst_assert:
reset_control_assert(priv->rst);
out_clk_gio_disable:
clk_disable_unprepare(priv->clk_gio);
out_clk_disable:
clk_disable_unprepare(priv->clk);
return ret;
}
static int uniphier_pciephy_exit(struct phy *phy)
{
struct uniphier_pciephy_priv *priv = phy_get_drvdata(phy);
if (!priv->data->is_legacy)
uniphier_pciephy_assert(priv);
reset_control_assert(priv->rst_gio);
reset_control_assert(priv->rst);
clk_disable_unprepare(priv->clk_gio);
clk_disable_unprepare(priv->clk);
return 0;
}
static const struct phy_ops uniphier_pciephy_ops = {
.init = uniphier_pciephy_init,
.exit = uniphier_pciephy_exit,
.owner = THIS_MODULE,
};
static int uniphier_pciephy_probe(struct platform_device *pdev)
{
struct uniphier_pciephy_priv *priv;
struct phy_provider *phy_provider;
struct device *dev = &pdev->dev;
struct regmap *regmap;
struct phy *phy;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->data = of_device_get_match_data(dev);
if (WARN_ON(!priv->data))
return -EINVAL;
priv->dev = dev;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
if (priv->data->is_legacy) {
priv->clk_gio = devm_clk_get(dev, "gio");
if (IS_ERR(priv->clk_gio))
return PTR_ERR(priv->clk_gio);
priv->rst_gio =
devm_reset_control_get_shared(dev, "gio");
if (IS_ERR(priv->rst_gio))
return PTR_ERR(priv->rst_gio);
priv->clk = devm_clk_get(dev, "link");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
priv->rst = devm_reset_control_get_shared(dev, "link");
if (IS_ERR(priv->rst))
return PTR_ERR(priv->rst);
} else {
priv->clk = devm_clk_get(dev, NULL);
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
priv->rst = devm_reset_control_get_shared(dev, NULL);
if (IS_ERR(priv->rst))
return PTR_ERR(priv->rst);
}
phy = devm_phy_create(dev, dev->of_node, &uniphier_pciephy_ops);
if (IS_ERR(phy))
return PTR_ERR(phy);
regmap = syscon_regmap_lookup_by_phandle(dev->of_node,
"socionext,syscon");
if (!IS_ERR(regmap) && priv->data->set_phymode)
priv->data->set_phymode(regmap);
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static void uniphier_pciephy_ld20_setmode(struct regmap *regmap)
{
regmap_update_bits(regmap, SG_USBPCIESEL,
SG_USBPCIESEL_PCIE, SG_USBPCIESEL_PCIE);
}
static void uniphier_pciephy_nx1_setmode(struct regmap *regmap)
{
regmap_update_bits(regmap, SC_US3SRCSEL,
SC_US3SRCSEL_2LANE, SC_US3SRCSEL_2LANE);
}
static const struct uniphier_pciephy_soc_data uniphier_pro5_data = {
.is_legacy = true,
};
static const struct uniphier_pciephy_soc_data uniphier_ld20_data = {
.is_legacy = false,
.is_dual_phy = false,
.set_phymode = uniphier_pciephy_ld20_setmode,
};
static const struct uniphier_pciephy_soc_data uniphier_pxs3_data = {
.is_legacy = false,
.is_dual_phy = false,
};
static const struct uniphier_pciephy_soc_data uniphier_nx1_data = {
.is_legacy = false,
.is_dual_phy = true,
.set_phymode = uniphier_pciephy_nx1_setmode,
};
static const struct of_device_id uniphier_pciephy_match[] = {
{
.compatible = "socionext,uniphier-pro5-pcie-phy",
.data = &uniphier_pro5_data,
},
{
.compatible = "socionext,uniphier-ld20-pcie-phy",
.data = &uniphier_ld20_data,
},
{
.compatible = "socionext,uniphier-pxs3-pcie-phy",
.data = &uniphier_pxs3_data,
},
{
.compatible = "socionext,uniphier-nx1-pcie-phy",
.data = &uniphier_nx1_data,
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, uniphier_pciephy_match);
static struct platform_driver uniphier_pciephy_driver = {
.probe = uniphier_pciephy_probe,
.driver = {
.name = "uniphier-pcie-phy",
.of_match_table = uniphier_pciephy_match,
},
};
module_platform_driver(uniphier_pciephy_driver);
MODULE_AUTHOR("Kunihiko Hayashi <[email protected]>");
MODULE_DESCRIPTION("UniPhier PHY driver for PCIe controller");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/socionext/phy-uniphier-pcie.c |
// SPDX-License-Identifier: GPL-2.0
/*
* phy-uniphier-ahci.c - PHY driver for UniPhier AHCI controller
* Copyright 2016-2020, Socionext Inc.
* Author: Kunihiko Hayashi <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
struct uniphier_ahciphy_priv {
struct device *dev;
void __iomem *base;
struct clk *clk, *clk_parent, *clk_parent_gio;
struct reset_control *rst, *rst_parent, *rst_parent_gio;
struct reset_control *rst_pm, *rst_tx, *rst_rx;
const struct uniphier_ahciphy_soc_data *data;
};
struct uniphier_ahciphy_soc_data {
int (*init)(struct uniphier_ahciphy_priv *priv);
int (*power_on)(struct uniphier_ahciphy_priv *priv);
int (*power_off)(struct uniphier_ahciphy_priv *priv);
bool is_legacy;
bool is_ready_high;
bool is_phy_clk;
};
/* for Pro4 */
#define CKCTRL0 0x0
#define CKCTRL0_CK_OFF BIT(9)
#define CKCTRL0_NCY_MASK GENMASK(8, 4)
#define CKCTRL0_NCY5_MASK GENMASK(3, 2)
#define CKCTRL0_PRESCALE_MASK GENMASK(1, 0)
#define CKCTRL1 0x4
#define CKCTRL1_LOS_LVL_MASK GENMASK(20, 16)
#define CKCTRL1_TX_LVL_MASK GENMASK(12, 8)
#define RXTXCTRL 0x8
#define RXTXCTRL_RX_EQ_VALL_MASK GENMASK(31, 29)
#define RXTXCTRL_RX_DPLL_MODE_MASK GENMASK(28, 26)
#define RXTXCTRL_TX_ATTEN_MASK GENMASK(14, 12)
#define RXTXCTRL_TX_BOOST_MASK GENMASK(11, 8)
#define RXTXCTRL_TX_EDGERATE_MASK GENMASK(3, 2)
#define RXTXCTRL_TX_CKO_EN BIT(0)
#define RSTPWR 0x30
#define RSTPWR_RX_EN_VAL BIT(18)
/* for PXs2/PXs3 */
#define CKCTRL 0x0
#define CKCTRL_P0_READY BIT(15)
#define CKCTRL_P0_RESET BIT(10)
#define CKCTRL_REF_SSP_EN BIT(9)
#define TXCTRL0 0x4
#define TXCTRL0_AMP_G3_MASK GENMASK(22, 16)
#define TXCTRL0_AMP_G2_MASK GENMASK(14, 8)
#define TXCTRL0_AMP_G1_MASK GENMASK(6, 0)
#define TXCTRL1 0x8
#define TXCTRL1_DEEMPH_G3_MASK GENMASK(21, 16)
#define TXCTRL1_DEEMPH_G2_MASK GENMASK(13, 8)
#define TXCTRL1_DEEMPH_G1_MASK GENMASK(5, 0)
#define RXCTRL 0xc
#define RXCTRL_LOS_LVL_MASK GENMASK(20, 16)
#define RXCTRL_LOS_BIAS_MASK GENMASK(10, 8)
#define RXCTRL_RX_EQ_MASK GENMASK(2, 0)
static int uniphier_ahciphy_pro4_init(struct uniphier_ahciphy_priv *priv)
{
u32 val;
/* set phy MPLL parameters */
val = readl(priv->base + CKCTRL0);
val &= ~CKCTRL0_NCY_MASK;
val |= FIELD_PREP(CKCTRL0_NCY_MASK, 0x6);
val &= ~CKCTRL0_NCY5_MASK;
val |= FIELD_PREP(CKCTRL0_NCY5_MASK, 0x2);
val &= ~CKCTRL0_PRESCALE_MASK;
val |= FIELD_PREP(CKCTRL0_PRESCALE_MASK, 0x1);
writel(val, priv->base + CKCTRL0);
/* setup phy control parameters */
val = readl(priv->base + CKCTRL1);
val &= ~CKCTRL1_LOS_LVL_MASK;
val |= FIELD_PREP(CKCTRL1_LOS_LVL_MASK, 0x10);
val &= ~CKCTRL1_TX_LVL_MASK;
val |= FIELD_PREP(CKCTRL1_TX_LVL_MASK, 0x06);
writel(val, priv->base + CKCTRL1);
val = readl(priv->base + RXTXCTRL);
val &= ~RXTXCTRL_RX_EQ_VALL_MASK;
val |= FIELD_PREP(RXTXCTRL_RX_EQ_VALL_MASK, 0x6);
val &= ~RXTXCTRL_RX_DPLL_MODE_MASK;
val |= FIELD_PREP(RXTXCTRL_RX_DPLL_MODE_MASK, 0x3);
val &= ~RXTXCTRL_TX_ATTEN_MASK;
val |= FIELD_PREP(RXTXCTRL_TX_ATTEN_MASK, 0x3);
val &= ~RXTXCTRL_TX_BOOST_MASK;
val |= FIELD_PREP(RXTXCTRL_TX_BOOST_MASK, 0x5);
val &= ~RXTXCTRL_TX_EDGERATE_MASK;
val |= FIELD_PREP(RXTXCTRL_TX_EDGERATE_MASK, 0x0);
writel(val, priv->base + RXTXCTRL);
return 0;
}
static int uniphier_ahciphy_pro4_power_on(struct uniphier_ahciphy_priv *priv)
{
u32 val;
int ret;
/* enable reference clock for phy */
val = readl(priv->base + CKCTRL0);
val &= ~CKCTRL0_CK_OFF;
writel(val, priv->base + CKCTRL0);
/* enable TX clock */
val = readl(priv->base + RXTXCTRL);
val |= RXTXCTRL_TX_CKO_EN;
writel(val, priv->base + RXTXCTRL);
/* wait until RX is ready */
ret = readl_poll_timeout(priv->base + RSTPWR, val,
!(val & RSTPWR_RX_EN_VAL), 200, 2000);
if (ret) {
dev_err(priv->dev, "Failed to check whether Rx is ready\n");
goto out_disable_clock;
}
/* release all reset */
ret = reset_control_deassert(priv->rst_pm);
if (ret) {
dev_err(priv->dev, "Failed to release PM reset\n");
goto out_disable_clock;
}
ret = reset_control_deassert(priv->rst_tx);
if (ret) {
dev_err(priv->dev, "Failed to release Tx reset\n");
goto out_reset_pm_assert;
}
ret = reset_control_deassert(priv->rst_rx);
if (ret) {
dev_err(priv->dev, "Failed to release Rx reset\n");
goto out_reset_tx_assert;
}
return 0;
out_reset_tx_assert:
reset_control_assert(priv->rst_tx);
out_reset_pm_assert:
reset_control_assert(priv->rst_pm);
out_disable_clock:
/* disable TX clock */
val = readl(priv->base + RXTXCTRL);
val &= ~RXTXCTRL_TX_CKO_EN;
writel(val, priv->base + RXTXCTRL);
/* disable reference clock for phy */
val = readl(priv->base + CKCTRL0);
val |= CKCTRL0_CK_OFF;
writel(val, priv->base + CKCTRL0);
return ret;
}
static int uniphier_ahciphy_pro4_power_off(struct uniphier_ahciphy_priv *priv)
{
u32 val;
reset_control_assert(priv->rst_rx);
reset_control_assert(priv->rst_tx);
reset_control_assert(priv->rst_pm);
/* disable TX clock */
val = readl(priv->base + RXTXCTRL);
val &= ~RXTXCTRL_TX_CKO_EN;
writel(val, priv->base + RXTXCTRL);
/* disable reference clock for phy */
val = readl(priv->base + CKCTRL0);
val |= CKCTRL0_CK_OFF;
writel(val, priv->base + CKCTRL0);
return 0;
}
static void uniphier_ahciphy_pxs2_enable(struct uniphier_ahciphy_priv *priv,
bool enable)
{
u32 val;
val = readl(priv->base + CKCTRL);
if (enable) {
val |= CKCTRL_REF_SSP_EN;
writel(val, priv->base + CKCTRL);
val &= ~CKCTRL_P0_RESET;
writel(val, priv->base + CKCTRL);
} else {
val |= CKCTRL_P0_RESET;
writel(val, priv->base + CKCTRL);
val &= ~CKCTRL_REF_SSP_EN;
writel(val, priv->base + CKCTRL);
}
}
static int uniphier_ahciphy_pxs2_power_on(struct uniphier_ahciphy_priv *priv)
{
int ret;
u32 val;
uniphier_ahciphy_pxs2_enable(priv, true);
/* wait until PLL is ready */
if (priv->data->is_ready_high)
ret = readl_poll_timeout(priv->base + CKCTRL, val,
(val & CKCTRL_P0_READY), 200, 400);
else
ret = readl_poll_timeout(priv->base + CKCTRL, val,
!(val & CKCTRL_P0_READY), 200, 400);
if (ret) {
dev_err(priv->dev, "Failed to check whether PHY PLL is ready\n");
uniphier_ahciphy_pxs2_enable(priv, false);
}
return ret;
}
static int uniphier_ahciphy_pxs2_power_off(struct uniphier_ahciphy_priv *priv)
{
uniphier_ahciphy_pxs2_enable(priv, false);
return 0;
}
static int uniphier_ahciphy_pxs3_init(struct uniphier_ahciphy_priv *priv)
{
int i;
u32 val;
/* setup port parameter */
val = readl(priv->base + TXCTRL0);
val &= ~TXCTRL0_AMP_G3_MASK;
val |= FIELD_PREP(TXCTRL0_AMP_G3_MASK, 0x73);
val &= ~TXCTRL0_AMP_G2_MASK;
val |= FIELD_PREP(TXCTRL0_AMP_G2_MASK, 0x46);
val &= ~TXCTRL0_AMP_G1_MASK;
val |= FIELD_PREP(TXCTRL0_AMP_G1_MASK, 0x42);
writel(val, priv->base + TXCTRL0);
val = readl(priv->base + TXCTRL1);
val &= ~TXCTRL1_DEEMPH_G3_MASK;
val |= FIELD_PREP(TXCTRL1_DEEMPH_G3_MASK, 0x23);
val &= ~TXCTRL1_DEEMPH_G2_MASK;
val |= FIELD_PREP(TXCTRL1_DEEMPH_G2_MASK, 0x05);
val &= ~TXCTRL1_DEEMPH_G1_MASK;
val |= FIELD_PREP(TXCTRL1_DEEMPH_G1_MASK, 0x05);
val = readl(priv->base + RXCTRL);
val &= ~RXCTRL_LOS_LVL_MASK;
val |= FIELD_PREP(RXCTRL_LOS_LVL_MASK, 0x9);
val &= ~RXCTRL_LOS_BIAS_MASK;
val |= FIELD_PREP(RXCTRL_LOS_BIAS_MASK, 0x2);
val &= ~RXCTRL_RX_EQ_MASK;
val |= FIELD_PREP(RXCTRL_RX_EQ_MASK, 0x1);
/* dummy read 25 times to make a wait time for the phy to stabilize */
for (i = 0; i < 25; i++)
readl(priv->base + CKCTRL);
return 0;
}
static int uniphier_ahciphy_init(struct phy *phy)
{
struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = clk_prepare_enable(priv->clk_parent_gio);
if (ret)
return ret;
ret = clk_prepare_enable(priv->clk_parent);
if (ret)
goto out_clk_gio_disable;
ret = reset_control_deassert(priv->rst_parent_gio);
if (ret)
goto out_clk_disable;
ret = reset_control_deassert(priv->rst_parent);
if (ret)
goto out_rst_gio_assert;
if (priv->data->init) {
ret = priv->data->init(priv);
if (ret)
goto out_rst_assert;
}
return 0;
out_rst_assert:
reset_control_assert(priv->rst_parent);
out_rst_gio_assert:
reset_control_assert(priv->rst_parent_gio);
out_clk_disable:
clk_disable_unprepare(priv->clk_parent);
out_clk_gio_disable:
clk_disable_unprepare(priv->clk_parent_gio);
return ret;
}
static int uniphier_ahciphy_exit(struct phy *phy)
{
struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy);
reset_control_assert(priv->rst_parent);
reset_control_assert(priv->rst_parent_gio);
clk_disable_unprepare(priv->clk_parent);
clk_disable_unprepare(priv->clk_parent_gio);
return 0;
}
static int uniphier_ahciphy_power_on(struct phy *phy)
{
struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy);
int ret = 0;
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
ret = reset_control_deassert(priv->rst);
if (ret)
goto out_clk_disable;
if (priv->data->power_on) {
ret = priv->data->power_on(priv);
if (ret)
goto out_reset_assert;
}
return 0;
out_reset_assert:
reset_control_assert(priv->rst);
out_clk_disable:
clk_disable_unprepare(priv->clk);
return ret;
}
static int uniphier_ahciphy_power_off(struct phy *phy)
{
struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy);
int ret = 0;
if (priv->data->power_off)
ret = priv->data->power_off(priv);
reset_control_assert(priv->rst);
clk_disable_unprepare(priv->clk);
return ret;
}
static const struct phy_ops uniphier_ahciphy_ops = {
.init = uniphier_ahciphy_init,
.exit = uniphier_ahciphy_exit,
.power_on = uniphier_ahciphy_power_on,
.power_off = uniphier_ahciphy_power_off,
.owner = THIS_MODULE,
};
static int uniphier_ahciphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct uniphier_ahciphy_priv *priv;
struct phy *phy;
struct phy_provider *phy_provider;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->data = of_device_get_match_data(dev);
if (WARN_ON(!priv->data))
return -EINVAL;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
priv->clk_parent = devm_clk_get(dev, "link");
if (IS_ERR(priv->clk_parent))
return PTR_ERR(priv->clk_parent);
if (priv->data->is_phy_clk) {
priv->clk = devm_clk_get(dev, "phy");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
}
priv->rst_parent = devm_reset_control_get_shared(dev, "link");
if (IS_ERR(priv->rst_parent))
return PTR_ERR(priv->rst_parent);
priv->rst = devm_reset_control_get_shared(dev, "phy");
if (IS_ERR(priv->rst))
return PTR_ERR(priv->rst);
if (priv->data->is_legacy) {
priv->clk_parent_gio = devm_clk_get(dev, "gio");
if (IS_ERR(priv->clk_parent_gio))
return PTR_ERR(priv->clk_parent_gio);
priv->rst_parent_gio =
devm_reset_control_get_shared(dev, "gio");
if (IS_ERR(priv->rst_parent_gio))
return PTR_ERR(priv->rst_parent_gio);
priv->rst_pm = devm_reset_control_get_shared(dev, "pm");
if (IS_ERR(priv->rst_pm))
return PTR_ERR(priv->rst_pm);
priv->rst_tx = devm_reset_control_get_shared(dev, "tx");
if (IS_ERR(priv->rst_tx))
return PTR_ERR(priv->rst_tx);
priv->rst_rx = devm_reset_control_get_shared(dev, "rx");
if (IS_ERR(priv->rst_rx))
return PTR_ERR(priv->rst_rx);
}
phy = devm_phy_create(dev, dev->of_node, &uniphier_ahciphy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create phy\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider))
return PTR_ERR(phy_provider);
return 0;
}
static const struct uniphier_ahciphy_soc_data uniphier_pro4_data = {
.init = uniphier_ahciphy_pro4_init,
.power_on = uniphier_ahciphy_pro4_power_on,
.power_off = uniphier_ahciphy_pro4_power_off,
.is_legacy = true,
.is_phy_clk = false,
};
static const struct uniphier_ahciphy_soc_data uniphier_pxs2_data = {
.power_on = uniphier_ahciphy_pxs2_power_on,
.power_off = uniphier_ahciphy_pxs2_power_off,
.is_legacy = false,
.is_ready_high = false,
.is_phy_clk = false,
};
static const struct uniphier_ahciphy_soc_data uniphier_pxs3_data = {
.init = uniphier_ahciphy_pxs3_init,
.power_on = uniphier_ahciphy_pxs2_power_on,
.power_off = uniphier_ahciphy_pxs2_power_off,
.is_legacy = false,
.is_ready_high = true,
.is_phy_clk = true,
};
static const struct of_device_id uniphier_ahciphy_match[] = {
{
.compatible = "socionext,uniphier-pro4-ahci-phy",
.data = &uniphier_pro4_data,
},
{
.compatible = "socionext,uniphier-pxs2-ahci-phy",
.data = &uniphier_pxs2_data,
},
{
.compatible = "socionext,uniphier-pxs3-ahci-phy",
.data = &uniphier_pxs3_data,
},
{ /* Sentinel */ },
};
MODULE_DEVICE_TABLE(of, uniphier_ahciphy_match);
static struct platform_driver uniphier_ahciphy_driver = {
.probe = uniphier_ahciphy_probe,
.driver = {
.name = "uniphier-ahci-phy",
.of_match_table = uniphier_ahciphy_match,
},
};
module_platform_driver(uniphier_ahciphy_driver);
MODULE_AUTHOR("Kunihiko Hayashi <[email protected]>");
MODULE_DESCRIPTION("UniPhier PHY driver for AHCI controller");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/socionext/phy-uniphier-ahci.c |
// SPDX-License-Identifier: GPL-2.0
/*
* phy-uniphier-usb2.c - PHY driver for UniPhier USB2 controller
* Copyright 2015-2018 Socionext Inc.
* Author:
* Kunihiko Hayashi <[email protected]>
*/
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#define SG_USBPHY1CTRL 0x500
#define SG_USBPHY1CTRL2 0x504
#define SG_USBPHY2CTRL 0x508
#define SG_USBPHY2CTRL2 0x50c /* LD11 */
#define SG_USBPHY12PLL 0x50c /* Pro4 */
#define SG_USBPHY3CTRL 0x510
#define SG_USBPHY3CTRL2 0x514
#define SG_USBPHY4CTRL 0x518 /* Pro4 */
#define SG_USBPHY4CTRL2 0x51c /* Pro4 */
#define SG_USBPHY34PLL 0x51c /* Pro4 */
struct uniphier_u2phy_param {
u32 offset;
u32 value;
};
struct uniphier_u2phy_soc_data {
struct uniphier_u2phy_param config0;
struct uniphier_u2phy_param config1;
};
struct uniphier_u2phy_priv {
struct regmap *regmap;
struct phy *phy;
struct regulator *vbus;
const struct uniphier_u2phy_soc_data *data;
struct uniphier_u2phy_priv *next;
};
static int uniphier_u2phy_power_on(struct phy *phy)
{
struct uniphier_u2phy_priv *priv = phy_get_drvdata(phy);
int ret = 0;
if (priv->vbus)
ret = regulator_enable(priv->vbus);
return ret;
}
static int uniphier_u2phy_power_off(struct phy *phy)
{
struct uniphier_u2phy_priv *priv = phy_get_drvdata(phy);
if (priv->vbus)
regulator_disable(priv->vbus);
return 0;
}
static int uniphier_u2phy_init(struct phy *phy)
{
struct uniphier_u2phy_priv *priv = phy_get_drvdata(phy);
if (!priv->data)
return 0;
regmap_write(priv->regmap, priv->data->config0.offset,
priv->data->config0.value);
regmap_write(priv->regmap, priv->data->config1.offset,
priv->data->config1.value);
return 0;
}
static struct phy *uniphier_u2phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct uniphier_u2phy_priv *priv = dev_get_drvdata(dev);
while (priv && args->np != priv->phy->dev.of_node)
priv = priv->next;
if (!priv) {
dev_err(dev, "Failed to find appropriate phy\n");
return ERR_PTR(-EINVAL);
}
return priv->phy;
}
static const struct phy_ops uniphier_u2phy_ops = {
.init = uniphier_u2phy_init,
.power_on = uniphier_u2phy_power_on,
.power_off = uniphier_u2phy_power_off,
.owner = THIS_MODULE,
};
static int uniphier_u2phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *parent, *child;
struct uniphier_u2phy_priv *priv = NULL, *next = NULL;
struct phy_provider *phy_provider;
struct regmap *regmap;
const struct uniphier_u2phy_soc_data *data;
int ret, data_idx, ndatas;
data = of_device_get_match_data(dev);
if (WARN_ON(!data))
return -EINVAL;
/* get number of data */
for (ndatas = 0; data[ndatas].config0.offset; ndatas++)
;
parent = of_get_parent(dev->of_node);
regmap = syscon_node_to_regmap(parent);
of_node_put(parent);
if (IS_ERR(regmap)) {
dev_err(dev, "Failed to get regmap\n");
return PTR_ERR(regmap);
}
for_each_child_of_node(dev->of_node, child) {
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv) {
ret = -ENOMEM;
goto out_put_child;
}
priv->regmap = regmap;
priv->vbus = devm_regulator_get_optional(dev, "vbus");
if (IS_ERR(priv->vbus)) {
if (PTR_ERR(priv->vbus) == -EPROBE_DEFER) {
ret = PTR_ERR(priv->vbus);
goto out_put_child;
}
priv->vbus = NULL;
}
priv->phy = devm_phy_create(dev, child, &uniphier_u2phy_ops);
if (IS_ERR(priv->phy)) {
dev_err(dev, "Failed to create phy\n");
ret = PTR_ERR(priv->phy);
goto out_put_child;
}
ret = of_property_read_u32(child, "reg", &data_idx);
if (ret) {
dev_err(dev, "Failed to get reg property\n");
goto out_put_child;
}
if (data_idx < ndatas)
priv->data = &data[data_idx];
else
dev_warn(dev, "No phy configuration: %s\n",
child->full_name);
phy_set_drvdata(priv->phy, priv);
priv->next = next;
next = priv;
}
dev_set_drvdata(dev, priv);
phy_provider = devm_of_phy_provider_register(dev,
uniphier_u2phy_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
out_put_child:
of_node_put(child);
return ret;
}
static const struct uniphier_u2phy_soc_data uniphier_pro4_data[] = {
{
.config0 = { SG_USBPHY1CTRL, 0x05142400 },
.config1 = { SG_USBPHY12PLL, 0x00010010 },
},
{
.config0 = { SG_USBPHY2CTRL, 0x05142400 },
.config1 = { SG_USBPHY12PLL, 0x00010010 },
},
{
.config0 = { SG_USBPHY3CTRL, 0x05142400 },
.config1 = { SG_USBPHY34PLL, 0x00010010 },
},
{
.config0 = { SG_USBPHY4CTRL, 0x05142400 },
.config1 = { SG_USBPHY34PLL, 0x00010010 },
},
{ /* sentinel */ }
};
static const struct uniphier_u2phy_soc_data uniphier_ld11_data[] = {
{
.config0 = { SG_USBPHY1CTRL, 0x82280000 },
.config1 = { SG_USBPHY1CTRL2, 0x00000106 },
},
{
.config0 = { SG_USBPHY2CTRL, 0x82280000 },
.config1 = { SG_USBPHY2CTRL2, 0x00000106 },
},
{
.config0 = { SG_USBPHY3CTRL, 0x82280000 },
.config1 = { SG_USBPHY3CTRL2, 0x00000106 },
},
{ /* sentinel */ }
};
static const struct of_device_id uniphier_u2phy_match[] = {
{
.compatible = "socionext,uniphier-pro4-usb2-phy",
.data = &uniphier_pro4_data,
},
{
.compatible = "socionext,uniphier-ld11-usb2-phy",
.data = &uniphier_ld11_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, uniphier_u2phy_match);
static struct platform_driver uniphier_u2phy_driver = {
.probe = uniphier_u2phy_probe,
.driver = {
.name = "uniphier-usb2-phy",
.of_match_table = uniphier_u2phy_match,
},
};
module_platform_driver(uniphier_u2phy_driver);
MODULE_AUTHOR("Kunihiko Hayashi <[email protected]>");
MODULE_DESCRIPTION("UniPhier PHY driver for USB2 controller");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/socionext/phy-uniphier-usb2.c |
// SPDX-License-Identifier: GPL-2.0
/*
* phy-uniphier-usb3hs.c - HS-PHY driver for Socionext UniPhier USB3 controller
* Copyright 2015-2018 Socionext Inc.
* Author:
* Kunihiko Hayashi <[email protected]>
* Contributors:
* Motoya Tanigawa <[email protected]>
* Masami Hiramatsu <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#define HSPHY_CFG0 0x0
#define HSPHY_CFG0_HS_I_MASK GENMASK(31, 28)
#define HSPHY_CFG0_HSDISC_MASK GENMASK(27, 26)
#define HSPHY_CFG0_SWING_MASK GENMASK(17, 16)
#define HSPHY_CFG0_SEL_T_MASK GENMASK(15, 12)
#define HSPHY_CFG0_RTERM_MASK GENMASK(7, 6)
#define HSPHY_CFG0_TRIMMASK (HSPHY_CFG0_HS_I_MASK \
| HSPHY_CFG0_SEL_T_MASK \
| HSPHY_CFG0_RTERM_MASK)
#define HSPHY_CFG1 0x4
#define HSPHY_CFG1_DAT_EN BIT(29)
#define HSPHY_CFG1_ADR_EN BIT(28)
#define HSPHY_CFG1_ADR_MASK GENMASK(27, 16)
#define HSPHY_CFG1_DAT_MASK GENMASK(23, 16)
#define PHY_F(regno, msb, lsb) { (regno), (msb), (lsb) }
#define RX_CHK_SYNC PHY_F(0, 5, 5) /* RX sync mode */
#define RX_SYNC_SEL PHY_F(1, 1, 0) /* RX sync length */
#define LS_SLEW PHY_F(10, 6, 6) /* LS mode slew rate */
#define FS_LS_DRV PHY_F(10, 5, 5) /* FS/LS slew rate */
#define MAX_PHY_PARAMS 4
struct uniphier_u3hsphy_param {
struct {
int reg_no;
int msb;
int lsb;
} field;
u8 value;
};
struct uniphier_u3hsphy_trim_param {
unsigned int rterm;
unsigned int sel_t;
unsigned int hs_i;
};
#define trim_param_is_valid(p) ((p)->rterm || (p)->sel_t || (p)->hs_i)
struct uniphier_u3hsphy_priv {
struct device *dev;
void __iomem *base;
struct clk *clk, *clk_parent, *clk_ext, *clk_parent_gio;
struct reset_control *rst, *rst_parent, *rst_parent_gio;
struct regulator *vbus;
const struct uniphier_u3hsphy_soc_data *data;
};
struct uniphier_u3hsphy_soc_data {
bool is_legacy;
int nparams;
const struct uniphier_u3hsphy_param param[MAX_PHY_PARAMS];
u32 config0;
u32 config1;
void (*trim_func)(struct uniphier_u3hsphy_priv *priv, u32 *pconfig,
struct uniphier_u3hsphy_trim_param *pt);
};
static void uniphier_u3hsphy_trim_ld20(struct uniphier_u3hsphy_priv *priv,
u32 *pconfig,
struct uniphier_u3hsphy_trim_param *pt)
{
*pconfig &= ~HSPHY_CFG0_RTERM_MASK;
*pconfig |= FIELD_PREP(HSPHY_CFG0_RTERM_MASK, pt->rterm);
*pconfig &= ~HSPHY_CFG0_SEL_T_MASK;
*pconfig |= FIELD_PREP(HSPHY_CFG0_SEL_T_MASK, pt->sel_t);
*pconfig &= ~HSPHY_CFG0_HS_I_MASK;
*pconfig |= FIELD_PREP(HSPHY_CFG0_HS_I_MASK, pt->hs_i);
}
static int uniphier_u3hsphy_get_nvparam(struct uniphier_u3hsphy_priv *priv,
const char *name, unsigned int *val)
{
struct nvmem_cell *cell;
u8 *buf;
cell = devm_nvmem_cell_get(priv->dev, name);
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = nvmem_cell_read(cell, NULL);
if (IS_ERR(buf))
return PTR_ERR(buf);
*val = *buf;
kfree(buf);
return 0;
}
static int uniphier_u3hsphy_get_nvparams(struct uniphier_u3hsphy_priv *priv,
struct uniphier_u3hsphy_trim_param *pt)
{
int ret;
ret = uniphier_u3hsphy_get_nvparam(priv, "rterm", &pt->rterm);
if (ret)
return ret;
ret = uniphier_u3hsphy_get_nvparam(priv, "sel_t", &pt->sel_t);
if (ret)
return ret;
ret = uniphier_u3hsphy_get_nvparam(priv, "hs_i", &pt->hs_i);
if (ret)
return ret;
return 0;
}
static int uniphier_u3hsphy_update_config(struct uniphier_u3hsphy_priv *priv,
u32 *pconfig)
{
struct uniphier_u3hsphy_trim_param trim;
int ret, trimmed = 0;
if (priv->data->trim_func) {
ret = uniphier_u3hsphy_get_nvparams(priv, &trim);
if (ret == -EPROBE_DEFER)
return ret;
/*
* call trim_func only when trimming parameters that aren't
* all-zero can be acquired. All-zero parameters mean nothing
* has been written to nvmem.
*/
if (!ret && trim_param_is_valid(&trim)) {
priv->data->trim_func(priv, pconfig, &trim);
trimmed = 1;
} else {
dev_dbg(priv->dev, "can't get parameter from nvmem\n");
}
}
/* use default parameters without trimming values */
if (!trimmed) {
*pconfig &= ~HSPHY_CFG0_HSDISC_MASK;
*pconfig |= FIELD_PREP(HSPHY_CFG0_HSDISC_MASK, 3);
}
return 0;
}
static void uniphier_u3hsphy_set_param(struct uniphier_u3hsphy_priv *priv,
const struct uniphier_u3hsphy_param *p)
{
u32 val;
u32 field_mask = GENMASK(p->field.msb, p->field.lsb);
u8 data;
val = readl(priv->base + HSPHY_CFG1);
val &= ~HSPHY_CFG1_ADR_MASK;
val |= FIELD_PREP(HSPHY_CFG1_ADR_MASK, p->field.reg_no)
| HSPHY_CFG1_ADR_EN;
writel(val, priv->base + HSPHY_CFG1);
val = readl(priv->base + HSPHY_CFG1);
val &= ~HSPHY_CFG1_ADR_EN;
writel(val, priv->base + HSPHY_CFG1);
val = readl(priv->base + HSPHY_CFG1);
val &= ~FIELD_PREP(HSPHY_CFG1_DAT_MASK, field_mask);
data = field_mask & (p->value << p->field.lsb);
val |= FIELD_PREP(HSPHY_CFG1_DAT_MASK, data) | HSPHY_CFG1_DAT_EN;
writel(val, priv->base + HSPHY_CFG1);
val = readl(priv->base + HSPHY_CFG1);
val &= ~HSPHY_CFG1_DAT_EN;
writel(val, priv->base + HSPHY_CFG1);
}
static int uniphier_u3hsphy_power_on(struct phy *phy)
{
struct uniphier_u3hsphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = clk_prepare_enable(priv->clk_ext);
if (ret)
return ret;
ret = clk_prepare_enable(priv->clk);
if (ret)
goto out_clk_ext_disable;
ret = reset_control_deassert(priv->rst);
if (ret)
goto out_clk_disable;
if (priv->vbus) {
ret = regulator_enable(priv->vbus);
if (ret)
goto out_rst_assert;
}
return 0;
out_rst_assert:
reset_control_assert(priv->rst);
out_clk_disable:
clk_disable_unprepare(priv->clk);
out_clk_ext_disable:
clk_disable_unprepare(priv->clk_ext);
return ret;
}
static int uniphier_u3hsphy_power_off(struct phy *phy)
{
struct uniphier_u3hsphy_priv *priv = phy_get_drvdata(phy);
if (priv->vbus)
regulator_disable(priv->vbus);
reset_control_assert(priv->rst);
clk_disable_unprepare(priv->clk);
clk_disable_unprepare(priv->clk_ext);
return 0;
}
static int uniphier_u3hsphy_init(struct phy *phy)
{
struct uniphier_u3hsphy_priv *priv = phy_get_drvdata(phy);
u32 config0, config1;
int i, ret;
ret = clk_prepare_enable(priv->clk_parent);
if (ret)
return ret;
ret = clk_prepare_enable(priv->clk_parent_gio);
if (ret)
goto out_clk_disable;
ret = reset_control_deassert(priv->rst_parent);
if (ret)
goto out_clk_gio_disable;
ret = reset_control_deassert(priv->rst_parent_gio);
if (ret)
goto out_rst_assert;
if ((priv->data->is_legacy)
|| (!priv->data->config0 && !priv->data->config1))
return 0;
config0 = priv->data->config0;
config1 = priv->data->config1;
ret = uniphier_u3hsphy_update_config(priv, &config0);
if (ret)
goto out_rst_assert;
writel(config0, priv->base + HSPHY_CFG0);
writel(config1, priv->base + HSPHY_CFG1);
for (i = 0; i < priv->data->nparams; i++)
uniphier_u3hsphy_set_param(priv, &priv->data->param[i]);
return 0;
out_rst_assert:
reset_control_assert(priv->rst_parent);
out_clk_gio_disable:
clk_disable_unprepare(priv->clk_parent_gio);
out_clk_disable:
clk_disable_unprepare(priv->clk_parent);
return ret;
}
static int uniphier_u3hsphy_exit(struct phy *phy)
{
struct uniphier_u3hsphy_priv *priv = phy_get_drvdata(phy);
reset_control_assert(priv->rst_parent_gio);
reset_control_assert(priv->rst_parent);
clk_disable_unprepare(priv->clk_parent_gio);
clk_disable_unprepare(priv->clk_parent);
return 0;
}
static const struct phy_ops uniphier_u3hsphy_ops = {
.init = uniphier_u3hsphy_init,
.exit = uniphier_u3hsphy_exit,
.power_on = uniphier_u3hsphy_power_on,
.power_off = uniphier_u3hsphy_power_off,
.owner = THIS_MODULE,
};
static int uniphier_u3hsphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct uniphier_u3hsphy_priv *priv;
struct phy_provider *phy_provider;
struct phy *phy;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->data = of_device_get_match_data(dev);
if (WARN_ON(!priv->data ||
priv->data->nparams > MAX_PHY_PARAMS))
return -EINVAL;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
if (!priv->data->is_legacy) {
priv->clk = devm_clk_get(dev, "phy");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
priv->clk_ext = devm_clk_get_optional(dev, "phy-ext");
if (IS_ERR(priv->clk_ext))
return PTR_ERR(priv->clk_ext);
priv->rst = devm_reset_control_get_shared(dev, "phy");
if (IS_ERR(priv->rst))
return PTR_ERR(priv->rst);
} else {
priv->clk_parent_gio = devm_clk_get(dev, "gio");
if (IS_ERR(priv->clk_parent_gio))
return PTR_ERR(priv->clk_parent_gio);
priv->rst_parent_gio =
devm_reset_control_get_shared(dev, "gio");
if (IS_ERR(priv->rst_parent_gio))
return PTR_ERR(priv->rst_parent_gio);
}
priv->clk_parent = devm_clk_get(dev, "link");
if (IS_ERR(priv->clk_parent))
return PTR_ERR(priv->clk_parent);
priv->rst_parent = devm_reset_control_get_shared(dev, "link");
if (IS_ERR(priv->rst_parent))
return PTR_ERR(priv->rst_parent);
priv->vbus = devm_regulator_get_optional(dev, "vbus");
if (IS_ERR(priv->vbus)) {
if (PTR_ERR(priv->vbus) == -EPROBE_DEFER)
return PTR_ERR(priv->vbus);
priv->vbus = NULL;
}
phy = devm_phy_create(dev, dev->of_node, &uniphier_u3hsphy_ops);
if (IS_ERR(phy))
return PTR_ERR(phy);
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct uniphier_u3hsphy_soc_data uniphier_pro5_data = {
.is_legacy = true,
.nparams = 0,
};
static const struct uniphier_u3hsphy_soc_data uniphier_pxs2_data = {
.is_legacy = false,
.nparams = 2,
.param = {
{ RX_CHK_SYNC, 1 },
{ RX_SYNC_SEL, 1 },
},
};
static const struct uniphier_u3hsphy_soc_data uniphier_ld20_data = {
.is_legacy = false,
.nparams = 4,
.param = {
{ RX_CHK_SYNC, 1 },
{ RX_SYNC_SEL, 1 },
{ LS_SLEW, 1 },
{ FS_LS_DRV, 1 },
},
.trim_func = uniphier_u3hsphy_trim_ld20,
.config0 = 0x92316680,
.config1 = 0x00000106,
};
static const struct uniphier_u3hsphy_soc_data uniphier_pxs3_data = {
.is_legacy = false,
.nparams = 2,
.param = {
{ RX_CHK_SYNC, 1 },
{ RX_SYNC_SEL, 1 },
},
.trim_func = uniphier_u3hsphy_trim_ld20,
.config0 = 0x92316680,
.config1 = 0x00000106,
};
static const struct of_device_id uniphier_u3hsphy_match[] = {
{
.compatible = "socionext,uniphier-pro5-usb3-hsphy",
.data = &uniphier_pro5_data,
},
{
.compatible = "socionext,uniphier-pxs2-usb3-hsphy",
.data = &uniphier_pxs2_data,
},
{
.compatible = "socionext,uniphier-ld20-usb3-hsphy",
.data = &uniphier_ld20_data,
},
{
.compatible = "socionext,uniphier-pxs3-usb3-hsphy",
.data = &uniphier_pxs3_data,
},
{
.compatible = "socionext,uniphier-nx1-usb3-hsphy",
.data = &uniphier_pxs3_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, uniphier_u3hsphy_match);
static struct platform_driver uniphier_u3hsphy_driver = {
.probe = uniphier_u3hsphy_probe,
.driver = {
.name = "uniphier-usb3-hsphy",
.of_match_table = uniphier_u3hsphy_match,
},
};
module_platform_driver(uniphier_u3hsphy_driver);
MODULE_AUTHOR("Kunihiko Hayashi <[email protected]>");
MODULE_DESCRIPTION("UniPhier HS-PHY driver for USB3 controller");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/socionext/phy-uniphier-usb3hs.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Meson GXL and GXM USB2 PHY driver
*
* Copyright (C) 2017 Martin Blumenstingl <[email protected]>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
/* bits [31:27] are read-only */
#define U2P_R0 0x0
#define U2P_R0_BYPASS_SEL BIT(0)
#define U2P_R0_BYPASS_DM_EN BIT(1)
#define U2P_R0_BYPASS_DP_EN BIT(2)
#define U2P_R0_TXBITSTUFF_ENH BIT(3)
#define U2P_R0_TXBITSTUFF_EN BIT(4)
#define U2P_R0_DM_PULLDOWN BIT(5)
#define U2P_R0_DP_PULLDOWN BIT(6)
#define U2P_R0_DP_VBUS_VLD_EXT_SEL BIT(7)
#define U2P_R0_DP_VBUS_VLD_EXT BIT(8)
#define U2P_R0_ADP_PRB_EN BIT(9)
#define U2P_R0_ADP_DISCHARGE BIT(10)
#define U2P_R0_ADP_CHARGE BIT(11)
#define U2P_R0_DRV_VBUS BIT(12)
#define U2P_R0_ID_PULLUP BIT(13)
#define U2P_R0_LOOPBACK_EN_B BIT(14)
#define U2P_R0_OTG_DISABLE BIT(15)
#define U2P_R0_COMMON_ONN BIT(16)
#define U2P_R0_FSEL_MASK GENMASK(19, 17)
#define U2P_R0_REF_CLK_SEL_MASK GENMASK(21, 20)
#define U2P_R0_POWER_ON_RESET BIT(22)
#define U2P_R0_V_ATE_TEST_EN_B_MASK GENMASK(24, 23)
#define U2P_R0_ID_SET_ID_DQ BIT(25)
#define U2P_R0_ATE_RESET BIT(26)
#define U2P_R0_FSV_MINUS BIT(27)
#define U2P_R0_FSV_PLUS BIT(28)
#define U2P_R0_BYPASS_DM_DATA BIT(29)
#define U2P_R0_BYPASS_DP_DATA BIT(30)
#define U2P_R1 0x4
#define U2P_R1_BURN_IN_TEST BIT(0)
#define U2P_R1_ACA_ENABLE BIT(1)
#define U2P_R1_DCD_ENABLE BIT(2)
#define U2P_R1_VDAT_SRC_EN_B BIT(3)
#define U2P_R1_VDAT_DET_EN_B BIT(4)
#define U2P_R1_CHARGES_SEL BIT(5)
#define U2P_R1_TX_PREEMP_PULSE_TUNE BIT(6)
#define U2P_R1_TX_PREEMP_AMP_TUNE_MASK GENMASK(8, 7)
#define U2P_R1_TX_RES_TUNE_MASK GENMASK(10, 9)
#define U2P_R1_TX_RISE_TUNE_MASK GENMASK(12, 11)
#define U2P_R1_TX_VREF_TUNE_MASK GENMASK(16, 13)
#define U2P_R1_TX_FSLS_TUNE_MASK GENMASK(20, 17)
#define U2P_R1_TX_HSXV_TUNE_MASK GENMASK(22, 21)
#define U2P_R1_OTG_TUNE_MASK GENMASK(25, 23)
#define U2P_R1_SQRX_TUNE_MASK GENMASK(28, 26)
#define U2P_R1_COMP_DIS_TUNE_MASK GENMASK(31, 29)
/* bits [31:14] are read-only */
#define U2P_R2 0x8
#define U2P_R2_TESTDATA_IN_MASK GENMASK(7, 0)
#define U2P_R2_TESTADDR_MASK GENMASK(11, 8)
#define U2P_R2_TESTDATA_OUT_SEL BIT(12)
#define U2P_R2_TESTCLK BIT(13)
#define U2P_R2_TESTDATA_OUT_MASK GENMASK(17, 14)
#define U2P_R2_ACA_PIN_RANGE_C BIT(18)
#define U2P_R2_ACA_PIN_RANGE_B BIT(19)
#define U2P_R2_ACA_PIN_RANGE_A BIT(20)
#define U2P_R2_ACA_PIN_GND BIT(21)
#define U2P_R2_ACA_PIN_FLOAT BIT(22)
#define U2P_R2_CHARGE_DETECT BIT(23)
#define U2P_R2_DEVICE_SESSION_VALID BIT(24)
#define U2P_R2_ADP_PROBE BIT(25)
#define U2P_R2_ADP_SENSE BIT(26)
#define U2P_R2_SESSION_END BIT(27)
#define U2P_R2_VBUS_VALID BIT(28)
#define U2P_R2_B_VALID BIT(29)
#define U2P_R2_A_VALID BIT(30)
#define U2P_R2_ID_DIG BIT(31)
#define U2P_R3 0xc
#define RESET_COMPLETE_TIME 500
struct phy_meson_gxl_usb2_priv {
struct regmap *regmap;
enum phy_mode mode;
int is_enabled;
struct clk *clk;
struct reset_control *reset;
};
static const struct regmap_config phy_meson_gxl_usb2_regmap_conf = {
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = U2P_R3,
};
static int phy_meson_gxl_usb2_init(struct phy *phy)
{
struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy);
int ret;
ret = reset_control_reset(priv->reset);
if (ret)
return ret;
ret = clk_prepare_enable(priv->clk);
if (ret) {
reset_control_rearm(priv->reset);
return ret;
}
return 0;
}
static int phy_meson_gxl_usb2_exit(struct phy *phy)
{
struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy);
clk_disable_unprepare(priv->clk);
reset_control_rearm(priv->reset);
return 0;
}
static int phy_meson_gxl_usb2_reset(struct phy *phy)
{
struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy);
if (priv->is_enabled) {
/* reset the PHY and wait until settings are stabilized */
regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_POWER_ON_RESET,
U2P_R0_POWER_ON_RESET);
udelay(RESET_COMPLETE_TIME);
regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_POWER_ON_RESET,
0);
udelay(RESET_COMPLETE_TIME);
}
return 0;
}
static int phy_meson_gxl_usb2_set_mode(struct phy *phy,
enum phy_mode mode, int submode)
{
struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy);
switch (mode) {
case PHY_MODE_USB_HOST:
case PHY_MODE_USB_OTG:
regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_DM_PULLDOWN,
U2P_R0_DM_PULLDOWN);
regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_DP_PULLDOWN,
U2P_R0_DP_PULLDOWN);
regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_ID_PULLUP,
U2P_R0_ID_PULLUP);
break;
case PHY_MODE_USB_DEVICE:
regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_DM_PULLDOWN,
0);
regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_DP_PULLDOWN,
0);
regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_ID_PULLUP,
U2P_R0_ID_PULLUP);
break;
default:
return -EINVAL;
}
phy_meson_gxl_usb2_reset(phy);
priv->mode = mode;
return 0;
}
static int phy_meson_gxl_usb2_power_off(struct phy *phy)
{
struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy);
priv->is_enabled = 0;
/* power off the PHY by putting it into reset mode */
regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_POWER_ON_RESET,
U2P_R0_POWER_ON_RESET);
return 0;
}
static int phy_meson_gxl_usb2_power_on(struct phy *phy)
{
struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy);
int ret;
priv->is_enabled = 1;
/* power on the PHY by taking it out of reset mode */
regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_POWER_ON_RESET, 0);
ret = phy_meson_gxl_usb2_set_mode(phy, priv->mode, 0);
if (ret) {
phy_meson_gxl_usb2_power_off(phy);
dev_err(&phy->dev, "Failed to initialize PHY with mode %d\n",
priv->mode);
return ret;
}
return 0;
}
static const struct phy_ops phy_meson_gxl_usb2_ops = {
.init = phy_meson_gxl_usb2_init,
.exit = phy_meson_gxl_usb2_exit,
.power_on = phy_meson_gxl_usb2_power_on,
.power_off = phy_meson_gxl_usb2_power_off,
.set_mode = phy_meson_gxl_usb2_set_mode,
.reset = phy_meson_gxl_usb2_reset,
.owner = THIS_MODULE,
};
static int phy_meson_gxl_usb2_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct phy_meson_gxl_usb2_priv *priv;
struct phy *phy;
void __iomem *base;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
platform_set_drvdata(pdev, priv);
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
/* start in host mode */
priv->mode = PHY_MODE_USB_HOST;
priv->regmap = devm_regmap_init_mmio(dev, base,
&phy_meson_gxl_usb2_regmap_conf);
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
priv->clk = devm_clk_get_optional(dev, "phy");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
priv->reset = devm_reset_control_get_optional_shared(dev, "phy");
if (IS_ERR(priv->reset))
return PTR_ERR(priv->reset);
phy = devm_phy_create(dev, NULL, &phy_meson_gxl_usb2_ops);
if (IS_ERR(phy)) {
ret = PTR_ERR(phy);
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to create PHY\n");
return ret;
}
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id phy_meson_gxl_usb2_of_match[] = {
{ .compatible = "amlogic,meson-gxl-usb2-phy", },
{ },
};
MODULE_DEVICE_TABLE(of, phy_meson_gxl_usb2_of_match);
static struct platform_driver phy_meson_gxl_usb2_driver = {
.probe = phy_meson_gxl_usb2_probe,
.driver = {
.name = "phy-meson-gxl-usb2",
.of_match_table = phy_meson_gxl_usb2_of_match,
},
};
module_platform_driver(phy_meson_gxl_usb2_driver);
MODULE_AUTHOR("Martin Blumenstingl <[email protected]>");
MODULE_DESCRIPTION("Meson GXL and GXM USB2 PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/amlogic/phy-meson-gxl-usb2.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Meson G12A MIPI DSI Analog PHY
*
* Copyright (C) 2018 Amlogic, Inc. All rights reserved
* Copyright (C) 2022 BayLibre, SAS
* Author: Neil Armstrong <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/phy/phy.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <dt-bindings/phy/phy.h>
#define HHI_MIPI_CNTL0 0x00
#define HHI_MIPI_CNTL0_DIF_REF_CTL1 GENMASK(31, 16)
#define HHI_MIPI_CNTL0_DIF_REF_CTL0 GENMASK(15, 0)
#define HHI_MIPI_CNTL1 0x04
#define HHI_MIPI_CNTL1_BANDGAP BIT(16)
#define HHI_MIPI_CNTL2_DIF_REF_CTL2 GENMASK(15, 0)
#define HHI_MIPI_CNTL2 0x08
#define HHI_MIPI_CNTL2_DIF_TX_CTL1 GENMASK(31, 16)
#define HHI_MIPI_CNTL2_CH_EN GENMASK(15, 11)
#define HHI_MIPI_CNTL2_DIF_TX_CTL0 GENMASK(10, 0)
#define DSI_LANE_0 BIT(4)
#define DSI_LANE_1 BIT(3)
#define DSI_LANE_CLK BIT(2)
#define DSI_LANE_2 BIT(1)
#define DSI_LANE_3 BIT(0)
struct phy_g12a_mipi_dphy_analog_priv {
struct phy *phy;
struct regmap *regmap;
struct phy_configure_opts_mipi_dphy config;
};
static int phy_g12a_mipi_dphy_analog_configure(struct phy *phy,
union phy_configure_opts *opts)
{
struct phy_g12a_mipi_dphy_analog_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
if (ret)
return ret;
memcpy(&priv->config, opts, sizeof(priv->config));
return 0;
}
static int phy_g12a_mipi_dphy_analog_power_on(struct phy *phy)
{
struct phy_g12a_mipi_dphy_analog_priv *priv = phy_get_drvdata(phy);
unsigned int reg;
regmap_write(priv->regmap, HHI_MIPI_CNTL0,
FIELD_PREP(HHI_MIPI_CNTL0_DIF_REF_CTL0, 0x8) |
FIELD_PREP(HHI_MIPI_CNTL0_DIF_REF_CTL1, 0xa487));
regmap_write(priv->regmap, HHI_MIPI_CNTL1,
FIELD_PREP(HHI_MIPI_CNTL2_DIF_REF_CTL2, 0x2e) |
HHI_MIPI_CNTL1_BANDGAP);
regmap_write(priv->regmap, HHI_MIPI_CNTL2,
FIELD_PREP(HHI_MIPI_CNTL2_DIF_TX_CTL0, 0x45a) |
FIELD_PREP(HHI_MIPI_CNTL2_DIF_TX_CTL1, 0x2680));
reg = DSI_LANE_CLK;
switch (priv->config.lanes) {
case 4:
reg |= DSI_LANE_3;
fallthrough;
case 3:
reg |= DSI_LANE_2;
fallthrough;
case 2:
reg |= DSI_LANE_1;
fallthrough;
case 1:
reg |= DSI_LANE_0;
break;
default:
reg = 0;
}
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL2,
HHI_MIPI_CNTL2_CH_EN,
FIELD_PREP(HHI_MIPI_CNTL2_CH_EN, reg));
return 0;
}
static int phy_g12a_mipi_dphy_analog_power_off(struct phy *phy)
{
struct phy_g12a_mipi_dphy_analog_priv *priv = phy_get_drvdata(phy);
regmap_write(priv->regmap, HHI_MIPI_CNTL0, 0);
regmap_write(priv->regmap, HHI_MIPI_CNTL1, 0);
regmap_write(priv->regmap, HHI_MIPI_CNTL2, 0);
return 0;
}
static const struct phy_ops phy_g12a_mipi_dphy_analog_ops = {
.configure = phy_g12a_mipi_dphy_analog_configure,
.power_on = phy_g12a_mipi_dphy_analog_power_on,
.power_off = phy_g12a_mipi_dphy_analog_power_off,
.owner = THIS_MODULE,
};
static int phy_g12a_mipi_dphy_analog_probe(struct platform_device *pdev)
{
struct phy_provider *phy;
struct device *dev = &pdev->dev;
struct phy_g12a_mipi_dphy_analog_priv *priv;
struct device_node *np = dev->of_node, *parent_np;
struct regmap *map;
priv = devm_kmalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
/* Get the hhi system controller node */
parent_np = of_get_parent(np);
map = syscon_node_to_regmap(parent_np);
of_node_put(parent_np);
if (IS_ERR(map))
return dev_err_probe(dev, PTR_ERR(map), "failed to get HHI regmap\n");
priv->regmap = map;
priv->phy = devm_phy_create(dev, np, &phy_g12a_mipi_dphy_analog_ops);
if (IS_ERR(priv->phy))
return dev_err_probe(dev, PTR_ERR(priv->phy), "failed to create PHY\n");
phy_set_drvdata(priv->phy, priv);
dev_set_drvdata(dev, priv);
phy = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy);
}
static const struct of_device_id phy_g12a_mipi_dphy_analog_of_match[] = {
{
.compatible = "amlogic,g12a-mipi-dphy-analog",
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, phy_g12a_mipi_dphy_analog_of_match);
static struct platform_driver phy_g12a_mipi_dphy_analog_driver = {
.probe = phy_g12a_mipi_dphy_analog_probe,
.driver = {
.name = "phy-meson-g12a-mipi-dphy-analog",
.of_match_table = phy_g12a_mipi_dphy_analog_of_match,
},
};
module_platform_driver(phy_g12a_mipi_dphy_analog_driver);
MODULE_AUTHOR("Neil Armstrong <[email protected]>");
MODULE_DESCRIPTION("Meson G12A MIPI Analog D-PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/amlogic/phy-meson-g12a-mipi-dphy-analog.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Amlogic G12A USB3 + PCIE Combo PHY driver
*
* Copyright (C) 2017 Amlogic, Inc. All rights reserved
* Copyright (C) 2019 BayLibre, SAS
* Author: Neil Armstrong <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/platform_device.h>
#include <dt-bindings/phy/phy.h>
#define PHY_R0 0x00
#define PHY_R0_PCIE_POWER_STATE GENMASK(4, 0)
#define PHY_R0_PCIE_USB3_SWITCH GENMASK(6, 5)
#define PHY_R1 0x04
#define PHY_R1_PHY_TX1_TERM_OFFSET GENMASK(4, 0)
#define PHY_R1_PHY_TX0_TERM_OFFSET GENMASK(9, 5)
#define PHY_R1_PHY_RX1_EQ GENMASK(12, 10)
#define PHY_R1_PHY_RX0_EQ GENMASK(15, 13)
#define PHY_R1_PHY_LOS_LEVEL GENMASK(20, 16)
#define PHY_R1_PHY_LOS_BIAS GENMASK(23, 21)
#define PHY_R1_PHY_REF_CLKDIV2 BIT(24)
#define PHY_R1_PHY_MPLL_MULTIPLIER GENMASK(31, 25)
#define PHY_R2 0x08
#define PHY_R2_PCS_TX_DEEMPH_GEN2_6DB GENMASK(5, 0)
#define PHY_R2_PCS_TX_DEEMPH_GEN2_3P5DB GENMASK(11, 6)
#define PHY_R2_PCS_TX_DEEMPH_GEN1 GENMASK(17, 12)
#define PHY_R2_PHY_TX_VBOOST_LVL GENMASK(20, 18)
#define PHY_R4 0x10
#define PHY_R4_PHY_CR_WRITE BIT(0)
#define PHY_R4_PHY_CR_READ BIT(1)
#define PHY_R4_PHY_CR_DATA_IN GENMASK(17, 2)
#define PHY_R4_PHY_CR_CAP_DATA BIT(18)
#define PHY_R4_PHY_CR_CAP_ADDR BIT(19)
#define PHY_R5 0x14
#define PHY_R5_PHY_CR_DATA_OUT GENMASK(15, 0)
#define PHY_R5_PHY_CR_ACK BIT(16)
#define PHY_R5_PHY_BS_OUT BIT(17)
#define PCIE_RESET_DELAY 500
struct phy_g12a_usb3_pcie_priv {
struct regmap *regmap;
struct regmap *regmap_cr;
struct clk *clk_ref;
struct reset_control *reset;
struct phy *phy;
unsigned int mode;
};
static const struct regmap_config phy_g12a_usb3_pcie_regmap_conf = {
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = PHY_R5,
};
static int phy_g12a_usb3_pcie_cr_bus_addr(struct phy_g12a_usb3_pcie_priv *priv,
unsigned int addr)
{
unsigned int val, reg;
int ret;
reg = FIELD_PREP(PHY_R4_PHY_CR_DATA_IN, addr);
regmap_write(priv->regmap, PHY_R4, reg);
regmap_write(priv->regmap, PHY_R4, reg);
regmap_write(priv->regmap, PHY_R4, reg | PHY_R4_PHY_CR_CAP_ADDR);
ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val,
(val & PHY_R5_PHY_CR_ACK),
5, 1000);
if (ret)
return ret;
regmap_write(priv->regmap, PHY_R4, reg);
ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val,
!(val & PHY_R5_PHY_CR_ACK),
5, 1000);
if (ret)
return ret;
return 0;
}
static int phy_g12a_usb3_pcie_cr_bus_read(void *context, unsigned int addr,
unsigned int *data)
{
struct phy_g12a_usb3_pcie_priv *priv = context;
unsigned int val;
int ret;
ret = phy_g12a_usb3_pcie_cr_bus_addr(priv, addr);
if (ret)
return ret;
regmap_write(priv->regmap, PHY_R4, 0);
regmap_write(priv->regmap, PHY_R4, PHY_R4_PHY_CR_READ);
ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val,
(val & PHY_R5_PHY_CR_ACK),
5, 1000);
if (ret)
return ret;
*data = FIELD_GET(PHY_R5_PHY_CR_DATA_OUT, val);
regmap_write(priv->regmap, PHY_R4, 0);
ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val,
!(val & PHY_R5_PHY_CR_ACK),
5, 1000);
if (ret)
return ret;
return 0;
}
static int phy_g12a_usb3_pcie_cr_bus_write(void *context, unsigned int addr,
unsigned int data)
{
struct phy_g12a_usb3_pcie_priv *priv = context;
unsigned int val, reg;
int ret;
ret = phy_g12a_usb3_pcie_cr_bus_addr(priv, addr);
if (ret)
return ret;
reg = FIELD_PREP(PHY_R4_PHY_CR_DATA_IN, data);
regmap_write(priv->regmap, PHY_R4, reg);
regmap_write(priv->regmap, PHY_R4, reg);
regmap_write(priv->regmap, PHY_R4, reg | PHY_R4_PHY_CR_CAP_DATA);
ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val,
(val & PHY_R5_PHY_CR_ACK),
5, 1000);
if (ret)
return ret;
regmap_write(priv->regmap, PHY_R4, reg);
ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val,
(val & PHY_R5_PHY_CR_ACK) == 0,
5, 1000);
if (ret)
return ret;
regmap_write(priv->regmap, PHY_R4, reg);
regmap_write(priv->regmap, PHY_R4, reg | PHY_R4_PHY_CR_WRITE);
ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val,
(val & PHY_R5_PHY_CR_ACK),
5, 1000);
if (ret)
return ret;
regmap_write(priv->regmap, PHY_R4, reg);
ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val,
(val & PHY_R5_PHY_CR_ACK) == 0,
5, 1000);
if (ret)
return ret;
return 0;
}
static const struct regmap_config phy_g12a_usb3_pcie_cr_regmap_conf = {
.reg_bits = 16,
.val_bits = 16,
.reg_read = phy_g12a_usb3_pcie_cr_bus_read,
.reg_write = phy_g12a_usb3_pcie_cr_bus_write,
.max_register = 0xffff,
.disable_locking = true,
};
static int phy_g12a_usb3_init(struct phy *phy)
{
struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy);
int data, ret;
ret = reset_control_reset(priv->reset);
if (ret)
return ret;
/* Switch PHY to USB3 */
/* TODO figure out how to handle when PCIe was set in the bootloader */
regmap_update_bits(priv->regmap, PHY_R0,
PHY_R0_PCIE_USB3_SWITCH,
PHY_R0_PCIE_USB3_SWITCH);
/*
* WORKAROUND: There is SSPHY suspend bug due to
* which USB enumerates
* in HS mode instead of SS mode. Workaround it by asserting
* LANE0.TX_ALT_BLOCK.EN_ALT_BUS to enable TX to use alt bus
* mode
*/
ret = regmap_update_bits(priv->regmap_cr, 0x102d, BIT(7), BIT(7));
if (ret)
return ret;
ret = regmap_update_bits(priv->regmap_cr, 0x1010, 0xff0, 20);
if (ret)
return ret;
/*
* Fix RX Equalization setting as follows
* LANE0.RX_OVRD_IN_HI. RX_EQ_EN set to 0
* LANE0.RX_OVRD_IN_HI.RX_EQ_EN_OVRD set to 1
* LANE0.RX_OVRD_IN_HI.RX_EQ set to 3
* LANE0.RX_OVRD_IN_HI.RX_EQ_OVRD set to 1
*/
ret = regmap_read(priv->regmap_cr, 0x1006, &data);
if (ret)
return ret;
data &= ~BIT(6);
data |= BIT(7);
data &= ~(0x7 << 8);
data |= (0x3 << 8);
data |= (1 << 11);
ret = regmap_write(priv->regmap_cr, 0x1006, data);
if (ret)
return ret;
/*
* Set EQ and TX launch amplitudes as follows
* LANE0.TX_OVRD_DRV_LO.PREEMPH set to 22
* LANE0.TX_OVRD_DRV_LO.AMPLITUDE set to 127
* LANE0.TX_OVRD_DRV_LO.EN set to 1.
*/
ret = regmap_read(priv->regmap_cr, 0x1002, &data);
if (ret)
return ret;
data &= ~0x3f80;
data |= (0x16 << 7);
data &= ~0x7f;
data |= (0x7f | BIT(14));
ret = regmap_write(priv->regmap_cr, 0x1002, data);
if (ret)
return ret;
/* MPLL_LOOP_CTL.PROP_CNTRL = 8 */
ret = regmap_update_bits(priv->regmap_cr, 0x30, 0xf << 4, 8 << 4);
if (ret)
return ret;
regmap_update_bits(priv->regmap, PHY_R2,
PHY_R2_PHY_TX_VBOOST_LVL,
FIELD_PREP(PHY_R2_PHY_TX_VBOOST_LVL, 0x4));
regmap_update_bits(priv->regmap, PHY_R1,
PHY_R1_PHY_LOS_BIAS | PHY_R1_PHY_LOS_LEVEL,
FIELD_PREP(PHY_R1_PHY_LOS_BIAS, 4) |
FIELD_PREP(PHY_R1_PHY_LOS_LEVEL, 9));
return 0;
}
static int phy_g12a_usb3_pcie_power_on(struct phy *phy)
{
struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy);
if (priv->mode == PHY_TYPE_USB3)
return 0;
regmap_update_bits(priv->regmap, PHY_R0,
PHY_R0_PCIE_POWER_STATE,
FIELD_PREP(PHY_R0_PCIE_POWER_STATE, 0x1c));
return 0;
}
static int phy_g12a_usb3_pcie_power_off(struct phy *phy)
{
struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy);
if (priv->mode == PHY_TYPE_USB3)
return 0;
regmap_update_bits(priv->regmap, PHY_R0,
PHY_R0_PCIE_POWER_STATE,
FIELD_PREP(PHY_R0_PCIE_POWER_STATE, 0x1d));
return 0;
}
static int phy_g12a_usb3_pcie_reset(struct phy *phy)
{
struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy);
int ret;
if (priv->mode == PHY_TYPE_USB3)
return 0;
ret = reset_control_assert(priv->reset);
if (ret)
return ret;
udelay(PCIE_RESET_DELAY);
ret = reset_control_deassert(priv->reset);
if (ret)
return ret;
udelay(PCIE_RESET_DELAY);
return 0;
}
static int phy_g12a_usb3_pcie_init(struct phy *phy)
{
struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy);
if (priv->mode == PHY_TYPE_USB3)
return phy_g12a_usb3_init(phy);
return 0;
}
static int phy_g12a_usb3_pcie_exit(struct phy *phy)
{
struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy);
if (priv->mode == PHY_TYPE_USB3)
return reset_control_reset(priv->reset);
return 0;
}
static struct phy *phy_g12a_usb3_pcie_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct phy_g12a_usb3_pcie_priv *priv = dev_get_drvdata(dev);
unsigned int mode;
if (args->args_count < 1) {
dev_err(dev, "invalid number of arguments\n");
return ERR_PTR(-EINVAL);
}
mode = args->args[0];
if (mode != PHY_TYPE_USB3 && mode != PHY_TYPE_PCIE) {
dev_err(dev, "invalid phy mode select argument\n");
return ERR_PTR(-EINVAL);
}
priv->mode = mode;
return priv->phy;
}
static const struct phy_ops phy_g12a_usb3_pcie_ops = {
.init = phy_g12a_usb3_pcie_init,
.exit = phy_g12a_usb3_pcie_exit,
.power_on = phy_g12a_usb3_pcie_power_on,
.power_off = phy_g12a_usb3_pcie_power_off,
.reset = phy_g12a_usb3_pcie_reset,
.owner = THIS_MODULE,
};
static int phy_g12a_usb3_pcie_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct phy_g12a_usb3_pcie_priv *priv;
struct phy_provider *phy_provider;
void __iomem *base;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
priv->regmap = devm_regmap_init_mmio(dev, base,
&phy_g12a_usb3_pcie_regmap_conf);
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
priv->regmap_cr = devm_regmap_init(dev, NULL, priv,
&phy_g12a_usb3_pcie_cr_regmap_conf);
if (IS_ERR(priv->regmap_cr))
return PTR_ERR(priv->regmap_cr);
priv->clk_ref = devm_clk_get_enabled(dev, "ref_clk");
if (IS_ERR(priv->clk_ref))
return PTR_ERR(priv->clk_ref);
priv->reset = devm_reset_control_array_get_exclusive(dev);
if (IS_ERR(priv->reset))
return PTR_ERR(priv->reset);
priv->phy = devm_phy_create(dev, np, &phy_g12a_usb3_pcie_ops);
if (IS_ERR(priv->phy))
return dev_err_probe(dev, PTR_ERR(priv->phy), "failed to create PHY\n");
phy_set_drvdata(priv->phy, priv);
dev_set_drvdata(dev, priv);
phy_provider = devm_of_phy_provider_register(dev,
phy_g12a_usb3_pcie_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id phy_g12a_usb3_pcie_of_match[] = {
{ .compatible = "amlogic,g12a-usb3-pcie-phy", },
{ },
};
MODULE_DEVICE_TABLE(of, phy_g12a_usb3_pcie_of_match);
static struct platform_driver phy_g12a_usb3_pcie_driver = {
.probe = phy_g12a_usb3_pcie_probe,
.driver = {
.name = "phy-g12a-usb3-pcie",
.of_match_table = phy_g12a_usb3_pcie_of_match,
},
};
module_platform_driver(phy_g12a_usb3_pcie_driver);
MODULE_AUTHOR("Neil Armstrong <[email protected]>");
MODULE_DESCRIPTION("Amlogic G12A USB3 + PCIE Combo PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/amlogic/phy-meson-g12a-usb3-pcie.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Meson8, Meson8b and Meson8m2 HDMI TX PHY.
*
* Copyright (C) 2021 Martin Blumenstingl <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
/*
* Unfortunately there is no detailed documentation available for the
* HHI_HDMI_PHY_CNTL0 register. CTL0 and CTL1 is all we know about.
* Magic register values in the driver below are taken from the vendor
* BSP / kernel.
*/
#define HHI_HDMI_PHY_CNTL0 0x3a0
#define HHI_HDMI_PHY_CNTL0_HDMI_CTL1 GENMASK(31, 16)
#define HHI_HDMI_PHY_CNTL0_HDMI_CTL0 GENMASK(15, 0)
#define HHI_HDMI_PHY_CNTL1 0x3a4
#define HHI_HDMI_PHY_CNTL1_CLOCK_ENABLE BIT(1)
#define HHI_HDMI_PHY_CNTL1_SOFT_RESET BIT(0)
#define HHI_HDMI_PHY_CNTL2 0x3a8
struct phy_meson8_hdmi_tx_priv {
struct regmap *hhi;
struct clk *tmds_clk;
};
static int phy_meson8_hdmi_tx_init(struct phy *phy)
{
struct phy_meson8_hdmi_tx_priv *priv = phy_get_drvdata(phy);
return clk_prepare_enable(priv->tmds_clk);
}
static int phy_meson8_hdmi_tx_exit(struct phy *phy)
{
struct phy_meson8_hdmi_tx_priv *priv = phy_get_drvdata(phy);
clk_disable_unprepare(priv->tmds_clk);
return 0;
}
static int phy_meson8_hdmi_tx_power_on(struct phy *phy)
{
struct phy_meson8_hdmi_tx_priv *priv = phy_get_drvdata(phy);
unsigned int i;
u16 hdmi_ctl0;
if (clk_get_rate(priv->tmds_clk) >= 2970UL * 1000 * 1000)
hdmi_ctl0 = 0x1e8b;
else
hdmi_ctl0 = 0x4d0b;
regmap_write(priv->hhi, HHI_HDMI_PHY_CNTL0,
FIELD_PREP(HHI_HDMI_PHY_CNTL0_HDMI_CTL1, 0x08c3) |
FIELD_PREP(HHI_HDMI_PHY_CNTL0_HDMI_CTL0, hdmi_ctl0));
regmap_write(priv->hhi, HHI_HDMI_PHY_CNTL1, 0x0);
/* Reset three times, just like the vendor driver does */
for (i = 0; i < 3; i++) {
regmap_write(priv->hhi, HHI_HDMI_PHY_CNTL1,
HHI_HDMI_PHY_CNTL1_CLOCK_ENABLE |
HHI_HDMI_PHY_CNTL1_SOFT_RESET);
usleep_range(1000, 2000);
regmap_write(priv->hhi, HHI_HDMI_PHY_CNTL1,
HHI_HDMI_PHY_CNTL1_CLOCK_ENABLE);
usleep_range(1000, 2000);
}
return 0;
}
static int phy_meson8_hdmi_tx_power_off(struct phy *phy)
{
struct phy_meson8_hdmi_tx_priv *priv = phy_get_drvdata(phy);
regmap_write(priv->hhi, HHI_HDMI_PHY_CNTL0,
FIELD_PREP(HHI_HDMI_PHY_CNTL0_HDMI_CTL1, 0x0841) |
FIELD_PREP(HHI_HDMI_PHY_CNTL0_HDMI_CTL0, 0x8d00));
return 0;
}
static const struct phy_ops phy_meson8_hdmi_tx_ops = {
.init = phy_meson8_hdmi_tx_init,
.exit = phy_meson8_hdmi_tx_exit,
.power_on = phy_meson8_hdmi_tx_power_on,
.power_off = phy_meson8_hdmi_tx_power_off,
.owner = THIS_MODULE,
};
static int phy_meson8_hdmi_tx_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct phy_meson8_hdmi_tx_priv *priv;
struct phy_provider *phy_provider;
struct resource *res;
struct phy *phy;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->hhi = syscon_node_to_regmap(np->parent);
if (IS_ERR(priv->hhi))
return PTR_ERR(priv->hhi);
priv->tmds_clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(priv->tmds_clk))
return PTR_ERR(priv->tmds_clk);
phy = devm_phy_create(&pdev->dev, np, &phy_meson8_hdmi_tx_ops);
if (IS_ERR(phy))
return PTR_ERR(phy);
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(&pdev->dev,
of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id phy_meson8_hdmi_tx_of_match[] = {
{ .compatible = "amlogic,meson8-hdmi-tx-phy" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, phy_meson8_hdmi_tx_of_match);
static struct platform_driver phy_meson8_hdmi_tx_driver = {
.probe = phy_meson8_hdmi_tx_probe,
.driver = {
.name = "phy-meson8-hdmi-tx",
.of_match_table = phy_meson8_hdmi_tx_of_match,
},
};
module_platform_driver(phy_meson8_hdmi_tx_driver);
MODULE_AUTHOR("Martin Blumenstingl <[email protected]>");
MODULE_DESCRIPTION("Meson8, Meson8b and Meson8m2 HDMI TX PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/amlogic/phy-meson8-hdmi-tx.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Meson AXG MIPI DPHY driver
*
* Copyright (C) 2018 Amlogic, Inc. All rights reserved
* Copyright (C) 2020 BayLibre, SAS
* Author: Neil Armstrong <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
/* [31] soft reset for the phy.
* 1: reset. 0: dessert the reset.
* [30] clock lane soft reset.
* [29] data byte lane 3 soft reset.
* [28] data byte lane 2 soft reset.
* [27] data byte lane 1 soft reset.
* [26] data byte lane 0 soft reset.
* [25] mipi dsi pll clock selection.
* 1: clock from fixed 850Mhz clock source. 0: from VID2 PLL.
* [12] mipi HSbyteclk enable.
* [11] mipi divider clk selection.
* 1: select the mipi DDRCLKHS from clock divider.
* 0: from PLL clock.
* [10] mipi clock divider control.
* 1: /4. 0: /2.
* [9] mipi divider output enable.
* [8] mipi divider counter enable.
* [7] PLL clock enable.
* [5] LPDT data endian.
* 1 = transfer the high bit first. 0 : transfer the low bit first.
* [4] HS data endian.
* [3] force data byte lane in stop mode.
* [2] force data byte lane 0 in receiver mode.
* [1] write 1 to sync the txclkesc input. the internal logic have to
* use txclkesc to decide Txvalid and Txready.
* [0] enalbe the MIPI DPHY TxDDRClk.
*/
#define MIPI_DSI_PHY_CTRL 0x0
/* [31] clk lane tx_hs_en control selection.
* 1: from register. 0: use clk lane state machine.
* [30] register bit for clock lane tx_hs_en.
* [29] clk lane tx_lp_en contrl selection.
* 1: from register. 0: from clk lane state machine.
* [28] register bit for clock lane tx_lp_en.
* [27] chan0 tx_hs_en control selection.
* 1: from register. 0: from chan0 state machine.
* [26] register bit for chan0 tx_hs_en.
* [25] chan0 tx_lp_en control selection.
* 1: from register. 0: from chan0 state machine.
* [24] register bit from chan0 tx_lp_en.
* [23] chan0 rx_lp_en control selection.
* 1: from register. 0: from chan0 state machine.
* [22] register bit from chan0 rx_lp_en.
* [21] chan0 contention detection enable control selection.
* 1: from register. 0: from chan0 state machine.
* [20] register bit from chan0 contention dectection enable.
* [19] chan1 tx_hs_en control selection.
* 1: from register. 0: from chan0 state machine.
* [18] register bit for chan1 tx_hs_en.
* [17] chan1 tx_lp_en control selection.
* 1: from register. 0: from chan0 state machine.
* [16] register bit from chan1 tx_lp_en.
* [15] chan2 tx_hs_en control selection.
* 1: from register. 0: from chan0 state machine.
* [14] register bit for chan2 tx_hs_en.
* [13] chan2 tx_lp_en control selection.
* 1: from register. 0: from chan0 state machine.
* [12] register bit from chan2 tx_lp_en.
* [11] chan3 tx_hs_en control selection.
* 1: from register. 0: from chan0 state machine.
* [10] register bit for chan3 tx_hs_en.
* [9] chan3 tx_lp_en control selection.
* 1: from register. 0: from chan0 state machine.
* [8] register bit from chan3 tx_lp_en.
* [4] clk chan power down. this bit is also used as the power down
* of the whole MIPI_DSI_PHY.
* [3] chan3 power down.
* [2] chan2 power down.
* [1] chan1 power down.
* [0] chan0 power down.
*/
#define MIPI_DSI_CHAN_CTRL 0x4
/* [24] rx turn watch dog triggered.
* [23] rx esc watchdog triggered.
* [22] mbias ready.
* [21] txclkesc synced and ready.
* [20:17] clk lane state. {mbias_ready, tx_stop, tx_ulps, tx_hs_active}
* [16:13] chan3 state{0, tx_stop, tx_ulps, tx_hs_active}
* [12:9] chan2 state.{0, tx_stop, tx_ulps, tx_hs_active}
* [8:5] chan1 state. {0, tx_stop, tx_ulps, tx_hs_active}
* [4:0] chan0 state. {TX_STOP, tx_ULPS, hs_active, direction, rxulpsesc}
*/
#define MIPI_DSI_CHAN_STS 0x8
/* [31:24] TCLK_PREPARE.
* [23:16] TCLK_ZERO.
* [15:8] TCLK_POST.
* [7:0] TCLK_TRAIL.
*/
#define MIPI_DSI_CLK_TIM 0xc
/* [31:24] THS_PREPARE.
* [23:16] THS_ZERO.
* [15:8] THS_TRAIL.
* [7:0] THS_EXIT.
*/
#define MIPI_DSI_HS_TIM 0x10
/* [31:24] tTA_GET.
* [23:16] tTA_GO.
* [15:8] tTA_SURE.
* [7:0] tLPX.
*/
#define MIPI_DSI_LP_TIM 0x14
/* wait time to MIPI DIS analog ready. */
#define MIPI_DSI_ANA_UP_TIM 0x18
/* TINIT. */
#define MIPI_DSI_INIT_TIM 0x1c
/* TWAKEUP. */
#define MIPI_DSI_WAKEUP_TIM 0x20
/* when in RxULPS check state, after the logic enable the analog,
* how long we should wait to check the lP state .
*/
#define MIPI_DSI_LPOK_TIM 0x24
/* Watchdog for RX low power state no finished. */
#define MIPI_DSI_LP_WCHDOG 0x28
/* tMBIAS, after send power up signals to analog,
* how long we should wait for analog powered up.
*/
#define MIPI_DSI_ANA_CTRL 0x2c
/* [31:8] reserved for future.
* [7:0] tCLK_PRE.
*/
#define MIPI_DSI_CLK_TIM1 0x30
/* watchdog for turn around waiting time. */
#define MIPI_DSI_TURN_WCHDOG 0x34
/* When in RxULPS state, how frequency we should to check
* if the TX side out of ULPS state.
*/
#define MIPI_DSI_ULPS_CHECK 0x38
#define MIPI_DSI_TEST_CTRL0 0x3c
#define MIPI_DSI_TEST_CTRL1 0x40
struct phy_meson_axg_mipi_dphy_priv {
struct device *dev;
struct regmap *regmap;
struct clk *clk;
struct reset_control *reset;
struct phy *analog;
struct phy_configure_opts_mipi_dphy config;
};
static const struct regmap_config phy_meson_axg_mipi_dphy_regmap_conf = {
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = MIPI_DSI_TEST_CTRL1,
};
static int phy_meson_axg_mipi_dphy_init(struct phy *phy)
{
struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_init(priv->analog);
if (ret)
return ret;
ret = reset_control_reset(priv->reset);
if (ret)
return ret;
return 0;
}
static int phy_meson_axg_mipi_dphy_configure(struct phy *phy,
union phy_configure_opts *opts)
{
struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
if (ret)
return ret;
ret = phy_configure(priv->analog, opts);
if (ret)
return ret;
memcpy(&priv->config, opts, sizeof(priv->config));
return 0;
}
static int phy_meson_axg_mipi_dphy_power_on(struct phy *phy)
{
struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
unsigned long temp;
ret = phy_power_on(priv->analog);
if (ret)
return ret;
/* enable phy clock */
regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL, 0x1);
regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL,
BIT(0) | /* enable the DSI PLL clock . */
BIT(7) | /* enable pll clock which connected to DDR clock path */
BIT(8)); /* enable the clock divider counter */
/* enable the divider clock out */
regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(9), BIT(9));
/* enable the byte clock generation. */
regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(12), BIT(12));
regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31), BIT(31));
regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31), 0);
/* Calculate lanebyteclk period in ps */
temp = (1000000 * 100) / (priv->config.hs_clk_rate / 1000);
temp = temp * 8 * 10;
regmap_write(priv->regmap, MIPI_DSI_CLK_TIM,
DIV_ROUND_UP(priv->config.clk_trail, temp) |
(DIV_ROUND_UP(priv->config.clk_post +
priv->config.hs_trail, temp) << 8) |
(DIV_ROUND_UP(priv->config.clk_zero, temp) << 16) |
(DIV_ROUND_UP(priv->config.clk_prepare, temp) << 24));
regmap_write(priv->regmap, MIPI_DSI_CLK_TIM1,
DIV_ROUND_UP(priv->config.clk_pre, BITS_PER_BYTE));
regmap_write(priv->regmap, MIPI_DSI_HS_TIM,
DIV_ROUND_UP(priv->config.hs_exit, temp) |
(DIV_ROUND_UP(priv->config.hs_trail, temp) << 8) |
(DIV_ROUND_UP(priv->config.hs_zero, temp) << 16) |
(DIV_ROUND_UP(priv->config.hs_prepare, temp) << 24));
regmap_write(priv->regmap, MIPI_DSI_LP_TIM,
DIV_ROUND_UP(priv->config.lpx, temp) |
(DIV_ROUND_UP(priv->config.ta_sure, temp) << 8) |
(DIV_ROUND_UP(priv->config.ta_go, temp) << 16) |
(DIV_ROUND_UP(priv->config.ta_get, temp) << 24));
regmap_write(priv->regmap, MIPI_DSI_ANA_UP_TIM, 0x0100);
regmap_write(priv->regmap, MIPI_DSI_INIT_TIM,
DIV_ROUND_UP(priv->config.init * NSEC_PER_MSEC, temp));
regmap_write(priv->regmap, MIPI_DSI_WAKEUP_TIM,
DIV_ROUND_UP(priv->config.wakeup * NSEC_PER_MSEC, temp));
regmap_write(priv->regmap, MIPI_DSI_LPOK_TIM, 0x7C);
regmap_write(priv->regmap, MIPI_DSI_ULPS_CHECK, 0x927C);
regmap_write(priv->regmap, MIPI_DSI_LP_WCHDOG, 0x1000);
regmap_write(priv->regmap, MIPI_DSI_TURN_WCHDOG, 0x1000);
/* Powerup the analog circuit */
switch (priv->config.lanes) {
case 1:
regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xe);
break;
case 2:
regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xc);
break;
case 3:
regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0x8);
break;
case 4:
default:
regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0);
break;
}
/* Trigger a sync active for esc_clk */
regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(1), BIT(1));
return 0;
}
static int phy_meson_axg_mipi_dphy_power_off(struct phy *phy)
{
struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy);
regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xf);
regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31));
phy_power_off(priv->analog);
return 0;
}
static int phy_meson_axg_mipi_dphy_exit(struct phy *phy)
{
struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_exit(priv->analog);
if (ret)
return ret;
return reset_control_reset(priv->reset);
}
static const struct phy_ops phy_meson_axg_mipi_dphy_ops = {
.configure = phy_meson_axg_mipi_dphy_configure,
.init = phy_meson_axg_mipi_dphy_init,
.exit = phy_meson_axg_mipi_dphy_exit,
.power_on = phy_meson_axg_mipi_dphy_power_on,
.power_off = phy_meson_axg_mipi_dphy_power_off,
.owner = THIS_MODULE,
};
static int phy_meson_axg_mipi_dphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct phy_meson_axg_mipi_dphy_priv *priv;
struct phy *phy;
void __iomem *base;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
platform_set_drvdata(pdev, priv);
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
priv->regmap = devm_regmap_init_mmio(dev, base,
&phy_meson_axg_mipi_dphy_regmap_conf);
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
priv->clk = devm_clk_get(dev, "pclk");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
priv->reset = devm_reset_control_get(dev, "phy");
if (IS_ERR(priv->reset))
return PTR_ERR(priv->reset);
priv->analog = devm_phy_get(dev, "analog");
if (IS_ERR(priv->analog))
return PTR_ERR(priv->analog);
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
ret = reset_control_deassert(priv->reset);
if (ret)
return ret;
phy = devm_phy_create(dev, NULL, &phy_meson_axg_mipi_dphy_ops);
if (IS_ERR(phy)) {
ret = PTR_ERR(phy);
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to create PHY\n");
return ret;
}
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id phy_meson_axg_mipi_dphy_of_match[] = {
{ .compatible = "amlogic,axg-mipi-dphy", },
{ },
};
MODULE_DEVICE_TABLE(of, phy_meson_axg_mipi_dphy_of_match);
static struct platform_driver phy_meson_axg_mipi_dphy_driver = {
.probe = phy_meson_axg_mipi_dphy_probe,
.driver = {
.name = "phy-meson-axg-mipi-dphy",
.of_match_table = phy_meson_axg_mipi_dphy_of_match,
},
};
module_platform_driver(phy_meson_axg_mipi_dphy_driver);
MODULE_AUTHOR("Neil Armstrong <[email protected]>");
MODULE_DESCRIPTION("Meson AXG MIPI DPHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/amlogic/phy-meson-axg-mipi-dphy.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Amlogic AXG PCIE PHY driver
*
* Copyright (C) 2020 Remi Pommarel <[email protected]>
*/
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/phy/phy.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/platform_device.h>
#include <linux/bitfield.h>
#include <dt-bindings/phy/phy.h>
#define MESON_PCIE_REG0 0x00
#define MESON_PCIE_COMMON_CLK BIT(4)
#define MESON_PCIE_PORT_SEL GENMASK(3, 2)
#define MESON_PCIE_CLK BIT(1)
#define MESON_PCIE_POWERDOWN BIT(0)
#define MESON_PCIE_TWO_X1 FIELD_PREP(MESON_PCIE_PORT_SEL, 0x3)
#define MESON_PCIE_COMMON_REF_CLK FIELD_PREP(MESON_PCIE_COMMON_CLK, 0x1)
#define MESON_PCIE_PHY_INIT (MESON_PCIE_TWO_X1 | \
MESON_PCIE_COMMON_REF_CLK)
#define MESON_PCIE_RESET_DELAY 500
struct phy_axg_pcie_priv {
struct phy *phy;
struct phy *analog;
struct regmap *regmap;
struct reset_control *reset;
};
static const struct regmap_config phy_axg_pcie_regmap_conf = {
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = MESON_PCIE_REG0,
};
static int phy_axg_pcie_power_on(struct phy *phy)
{
struct phy_axg_pcie_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_power_on(priv->analog);
if (ret != 0)
return ret;
regmap_update_bits(priv->regmap, MESON_PCIE_REG0,
MESON_PCIE_POWERDOWN, 0);
return 0;
}
static int phy_axg_pcie_power_off(struct phy *phy)
{
struct phy_axg_pcie_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_power_off(priv->analog);
if (ret != 0)
return ret;
regmap_update_bits(priv->regmap, MESON_PCIE_REG0,
MESON_PCIE_POWERDOWN, 1);
return 0;
}
static int phy_axg_pcie_init(struct phy *phy)
{
struct phy_axg_pcie_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_init(priv->analog);
if (ret != 0)
return ret;
regmap_write(priv->regmap, MESON_PCIE_REG0, MESON_PCIE_PHY_INIT);
return reset_control_reset(priv->reset);
}
static int phy_axg_pcie_exit(struct phy *phy)
{
struct phy_axg_pcie_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_exit(priv->analog);
if (ret != 0)
return ret;
return reset_control_reset(priv->reset);
}
static int phy_axg_pcie_reset(struct phy *phy)
{
struct phy_axg_pcie_priv *priv = phy_get_drvdata(phy);
int ret = 0;
ret = phy_reset(priv->analog);
if (ret != 0)
goto out;
ret = reset_control_assert(priv->reset);
if (ret != 0)
goto out;
udelay(MESON_PCIE_RESET_DELAY);
ret = reset_control_deassert(priv->reset);
if (ret != 0)
goto out;
udelay(MESON_PCIE_RESET_DELAY);
out:
return ret;
}
static const struct phy_ops phy_axg_pcie_ops = {
.init = phy_axg_pcie_init,
.exit = phy_axg_pcie_exit,
.power_on = phy_axg_pcie_power_on,
.power_off = phy_axg_pcie_power_off,
.reset = phy_axg_pcie_reset,
.owner = THIS_MODULE,
};
static int phy_axg_pcie_probe(struct platform_device *pdev)
{
struct phy_provider *pphy;
struct device *dev = &pdev->dev;
struct phy_axg_pcie_priv *priv;
struct device_node *np = dev->of_node;
void __iomem *base;
int ret;
priv = devm_kmalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->phy = devm_phy_create(dev, np, &phy_axg_pcie_ops);
if (IS_ERR(priv->phy)) {
ret = PTR_ERR(priv->phy);
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to create PHY\n");
return ret;
}
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
priv->regmap = devm_regmap_init_mmio(dev, base,
&phy_axg_pcie_regmap_conf);
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
priv->reset = devm_reset_control_array_get_exclusive(dev);
if (IS_ERR(priv->reset))
return PTR_ERR(priv->reset);
priv->analog = devm_phy_get(dev, "analog");
if (IS_ERR(priv->analog))
return PTR_ERR(priv->analog);
phy_set_drvdata(priv->phy, priv);
dev_set_drvdata(dev, priv);
pphy = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(pphy);
}
static const struct of_device_id phy_axg_pcie_of_match[] = {
{
.compatible = "amlogic,axg-pcie-phy",
},
{ },
};
MODULE_DEVICE_TABLE(of, phy_axg_pcie_of_match);
static struct platform_driver phy_axg_pcie_driver = {
.probe = phy_axg_pcie_probe,
.driver = {
.name = "phy-axg-pcie",
.of_match_table = phy_axg_pcie_of_match,
},
};
module_platform_driver(phy_axg_pcie_driver);
MODULE_AUTHOR("Remi Pommarel <[email protected]>");
MODULE_DESCRIPTION("Amlogic AXG PCIE PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/amlogic/phy-meson-axg-pcie.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Amlogic AXG MIPI + PCIE analog PHY driver
*
* Copyright (C) 2019 Remi Pommarel <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/phy/phy.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <dt-bindings/phy/phy.h>
#define HHI_MIPI_CNTL0 0x00
#define HHI_MIPI_CNTL0_COMMON_BLOCK GENMASK(31, 28)
#define HHI_MIPI_CNTL0_ENABLE BIT(29)
#define HHI_MIPI_CNTL0_BANDGAP BIT(26)
#define HHI_MIPI_CNTL0_DIF_REF_CTL1 GENMASK(25, 16)
#define HHI_MIPI_CNTL0_DIF_REF_CTL0 GENMASK(15, 0)
#define HHI_MIPI_CNTL1 0x04
#define HHI_MIPI_CNTL1_CH0_CML_PDR_EN BIT(12)
#define HHI_MIPI_CNTL1_LP_ABILITY GENMASK(5, 4)
#define HHI_MIPI_CNTL1_LP_RESISTER BIT(3)
#define HHI_MIPI_CNTL1_INPUT_SETTING BIT(2)
#define HHI_MIPI_CNTL1_INPUT_SEL BIT(1)
#define HHI_MIPI_CNTL1_PRBS7_EN BIT(0)
#define HHI_MIPI_CNTL2 0x08
#define HHI_MIPI_CNTL2_CH_PU GENMASK(31, 25)
#define HHI_MIPI_CNTL2_CH_CTL GENMASK(24, 19)
#define HHI_MIPI_CNTL2_CH0_DIGDR_EN BIT(18)
#define HHI_MIPI_CNTL2_CH_DIGDR_EN BIT(17)
#define HHI_MIPI_CNTL2_LPULPS_EN BIT(16)
#define HHI_MIPI_CNTL2_CH_EN GENMASK(15, 11)
#define HHI_MIPI_CNTL2_CH0_LP_CTL GENMASK(10, 1)
#define DSI_LANE_0 BIT(4)
#define DSI_LANE_1 BIT(3)
#define DSI_LANE_CLK BIT(2)
#define DSI_LANE_2 BIT(1)
#define DSI_LANE_3 BIT(0)
struct phy_axg_mipi_pcie_analog_priv {
struct phy *phy;
struct regmap *regmap;
bool dsi_configured;
bool dsi_enabled;
bool powered;
struct phy_configure_opts_mipi_dphy config;
};
static void phy_bandgap_enable(struct phy_axg_mipi_pcie_analog_priv *priv)
{
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0,
HHI_MIPI_CNTL0_BANDGAP, HHI_MIPI_CNTL0_BANDGAP);
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0,
HHI_MIPI_CNTL0_ENABLE, HHI_MIPI_CNTL0_ENABLE);
}
static void phy_bandgap_disable(struct phy_axg_mipi_pcie_analog_priv *priv)
{
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0,
HHI_MIPI_CNTL0_BANDGAP, 0);
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0,
HHI_MIPI_CNTL0_ENABLE, 0);
}
static void phy_dsi_analog_enable(struct phy_axg_mipi_pcie_analog_priv *priv)
{
u32 reg;
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0,
HHI_MIPI_CNTL0_DIF_REF_CTL1,
FIELD_PREP(HHI_MIPI_CNTL0_DIF_REF_CTL1, 0x1b8));
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0,
BIT(31), BIT(31));
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0,
HHI_MIPI_CNTL0_DIF_REF_CTL0,
FIELD_PREP(HHI_MIPI_CNTL0_DIF_REF_CTL0, 0x8));
regmap_write(priv->regmap, HHI_MIPI_CNTL1, 0x001e);
regmap_write(priv->regmap, HHI_MIPI_CNTL2,
(0x26e0 << 16) | (0x459 << 0));
reg = DSI_LANE_CLK;
switch (priv->config.lanes) {
case 4:
reg |= DSI_LANE_3;
fallthrough;
case 3:
reg |= DSI_LANE_2;
fallthrough;
case 2:
reg |= DSI_LANE_1;
fallthrough;
case 1:
reg |= DSI_LANE_0;
break;
default:
reg = 0;
}
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL2,
HHI_MIPI_CNTL2_CH_EN,
FIELD_PREP(HHI_MIPI_CNTL2_CH_EN, reg));
priv->dsi_enabled = true;
}
static void phy_dsi_analog_disable(struct phy_axg_mipi_pcie_analog_priv *priv)
{
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0,
HHI_MIPI_CNTL0_DIF_REF_CTL1,
FIELD_PREP(HHI_MIPI_CNTL0_DIF_REF_CTL1, 0));
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, BIT(31), 0);
regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0,
HHI_MIPI_CNTL0_DIF_REF_CTL1, 0);
regmap_write(priv->regmap, HHI_MIPI_CNTL1, 0x6);
regmap_write(priv->regmap, HHI_MIPI_CNTL2, 0x00200000);
priv->dsi_enabled = false;
}
static int phy_axg_mipi_pcie_analog_configure(struct phy *phy,
union phy_configure_opts *opts)
{
struct phy_axg_mipi_pcie_analog_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
if (ret)
return ret;
memcpy(&priv->config, opts, sizeof(priv->config));
priv->dsi_configured = true;
/* If PHY was already powered on, setup the DSI analog part */
if (priv->powered) {
/* If reconfiguring, disable & reconfigure */
if (priv->dsi_enabled)
phy_dsi_analog_disable(priv);
usleep_range(100, 200);
phy_dsi_analog_enable(priv);
}
return 0;
}
static int phy_axg_mipi_pcie_analog_power_on(struct phy *phy)
{
struct phy_axg_mipi_pcie_analog_priv *priv = phy_get_drvdata(phy);
phy_bandgap_enable(priv);
if (priv->dsi_configured)
phy_dsi_analog_enable(priv);
priv->powered = true;
return 0;
}
static int phy_axg_mipi_pcie_analog_power_off(struct phy *phy)
{
struct phy_axg_mipi_pcie_analog_priv *priv = phy_get_drvdata(phy);
phy_bandgap_disable(priv);
if (priv->dsi_enabled)
phy_dsi_analog_disable(priv);
priv->powered = false;
return 0;
}
static const struct phy_ops phy_axg_mipi_pcie_analog_ops = {
.configure = phy_axg_mipi_pcie_analog_configure,
.power_on = phy_axg_mipi_pcie_analog_power_on,
.power_off = phy_axg_mipi_pcie_analog_power_off,
.owner = THIS_MODULE,
};
static int phy_axg_mipi_pcie_analog_probe(struct platform_device *pdev)
{
struct phy_provider *phy;
struct device *dev = &pdev->dev;
struct phy_axg_mipi_pcie_analog_priv *priv;
struct device_node *np = dev->of_node, *parent_np;
struct regmap *map;
int ret;
priv = devm_kmalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
/* Get the hhi system controller node */
parent_np = of_get_parent(dev->of_node);
map = syscon_node_to_regmap(parent_np);
of_node_put(parent_np);
if (IS_ERR(map)) {
dev_err(dev,
"failed to get HHI regmap\n");
return PTR_ERR(map);
}
priv->regmap = map;
priv->phy = devm_phy_create(dev, np, &phy_axg_mipi_pcie_analog_ops);
if (IS_ERR(priv->phy)) {
ret = PTR_ERR(priv->phy);
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to create PHY\n");
return ret;
}
phy_set_drvdata(priv->phy, priv);
dev_set_drvdata(dev, priv);
phy = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy);
}
static const struct of_device_id phy_axg_mipi_pcie_analog_of_match[] = {
{
.compatible = "amlogic,axg-mipi-pcie-analog-phy",
},
{ },
};
MODULE_DEVICE_TABLE(of, phy_axg_mipi_pcie_analog_of_match);
static struct platform_driver phy_axg_mipi_pcie_analog_driver = {
.probe = phy_axg_mipi_pcie_analog_probe,
.driver = {
.name = "phy-axg-mipi-pcie-analog",
.of_match_table = phy_axg_mipi_pcie_analog_of_match,
},
};
module_platform_driver(phy_axg_mipi_pcie_analog_driver);
MODULE_AUTHOR("Remi Pommarel <[email protected]>");
MODULE_DESCRIPTION("Amlogic AXG MIPI + PCIE analog PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/amlogic/phy-meson-axg-mipi-pcie-analog.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Meson8, Meson8b and GXBB USB2 PHY driver
*
* Copyright (C) 2016 Martin Blumenstingl <[email protected]>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/usb/of.h>
#define REG_CONFIG 0x00
#define REG_CONFIG_CLK_EN BIT(0)
#define REG_CONFIG_CLK_SEL_MASK GENMASK(3, 1)
#define REG_CONFIG_CLK_DIV_MASK GENMASK(10, 4)
#define REG_CONFIG_CLK_32k_ALTSEL BIT(15)
#define REG_CONFIG_TEST_TRIG BIT(31)
#define REG_CTRL 0x04
#define REG_CTRL_SOFT_PRST BIT(0)
#define REG_CTRL_SOFT_HRESET BIT(1)
#define REG_CTRL_SS_SCALEDOWN_MODE_MASK GENMASK(3, 2)
#define REG_CTRL_CLK_DET_RST BIT(4)
#define REG_CTRL_INTR_SEL BIT(5)
#define REG_CTRL_CLK_DETECTED BIT(8)
#define REG_CTRL_SOF_SENT_RCVD_TGL BIT(9)
#define REG_CTRL_SOF_TOGGLE_OUT BIT(10)
#define REG_CTRL_POWER_ON_RESET BIT(15)
#define REG_CTRL_SLEEPM BIT(16)
#define REG_CTRL_TX_BITSTUFF_ENN_H BIT(17)
#define REG_CTRL_TX_BITSTUFF_ENN BIT(18)
#define REG_CTRL_COMMON_ON BIT(19)
#define REG_CTRL_REF_CLK_SEL_MASK GENMASK(21, 20)
#define REG_CTRL_REF_CLK_SEL_SHIFT 20
#define REG_CTRL_FSEL_MASK GENMASK(24, 22)
#define REG_CTRL_FSEL_SHIFT 22
#define REG_CTRL_PORT_RESET BIT(25)
#define REG_CTRL_THREAD_ID_MASK GENMASK(31, 26)
#define REG_ENDP_INTR 0x08
/* bits [31:26], [24:21] and [15:3] seem to be read-only */
#define REG_ADP_BC 0x0c
#define REG_ADP_BC_VBUS_VLD_EXT_SEL BIT(0)
#define REG_ADP_BC_VBUS_VLD_EXT BIT(1)
#define REG_ADP_BC_OTG_DISABLE BIT(2)
#define REG_ADP_BC_ID_PULLUP BIT(3)
#define REG_ADP_BC_DRV_VBUS BIT(4)
#define REG_ADP_BC_ADP_PRB_EN BIT(5)
#define REG_ADP_BC_ADP_DISCHARGE BIT(6)
#define REG_ADP_BC_ADP_CHARGE BIT(7)
#define REG_ADP_BC_SESS_END BIT(8)
#define REG_ADP_BC_DEVICE_SESS_VLD BIT(9)
#define REG_ADP_BC_B_VALID BIT(10)
#define REG_ADP_BC_A_VALID BIT(11)
#define REG_ADP_BC_ID_DIG BIT(12)
#define REG_ADP_BC_VBUS_VALID BIT(13)
#define REG_ADP_BC_ADP_PROBE BIT(14)
#define REG_ADP_BC_ADP_SENSE BIT(15)
#define REG_ADP_BC_ACA_ENABLE BIT(16)
#define REG_ADP_BC_DCD_ENABLE BIT(17)
#define REG_ADP_BC_VDAT_DET_EN_B BIT(18)
#define REG_ADP_BC_VDAT_SRC_EN_B BIT(19)
#define REG_ADP_BC_CHARGE_SEL BIT(20)
#define REG_ADP_BC_CHARGE_DETECT BIT(21)
#define REG_ADP_BC_ACA_PIN_RANGE_C BIT(22)
#define REG_ADP_BC_ACA_PIN_RANGE_B BIT(23)
#define REG_ADP_BC_ACA_PIN_RANGE_A BIT(24)
#define REG_ADP_BC_ACA_PIN_GND BIT(25)
#define REG_ADP_BC_ACA_PIN_FLOAT BIT(26)
#define REG_DBG_UART 0x10
#define REG_DBG_UART_BYPASS_SEL BIT(0)
#define REG_DBG_UART_BYPASS_DM_EN BIT(1)
#define REG_DBG_UART_BYPASS_DP_EN BIT(2)
#define REG_DBG_UART_BYPASS_DM_DATA BIT(3)
#define REG_DBG_UART_BYPASS_DP_DATA BIT(4)
#define REG_DBG_UART_FSV_MINUS BIT(5)
#define REG_DBG_UART_FSV_PLUS BIT(6)
#define REG_DBG_UART_FSV_BURN_IN_TEST BIT(7)
#define REG_DBG_UART_LOOPBACK_EN_B BIT(8)
#define REG_DBG_UART_SET_IDDQ BIT(9)
#define REG_DBG_UART_ATE_RESET BIT(10)
#define REG_TEST 0x14
#define REG_TEST_DATA_IN_MASK GENMASK(3, 0)
#define REG_TEST_EN_MASK GENMASK(7, 4)
#define REG_TEST_ADDR_MASK GENMASK(11, 8)
#define REG_TEST_DATA_OUT_SEL BIT(12)
#define REG_TEST_CLK BIT(13)
#define REG_TEST_VA_TEST_EN_B_MASK GENMASK(15, 14)
#define REG_TEST_DATA_OUT_MASK GENMASK(19, 16)
#define REG_TEST_DISABLE_ID_PULLUP BIT(20)
#define REG_TUNE 0x18
#define REG_TUNE_TX_RES_TUNE_MASK GENMASK(1, 0)
#define REG_TUNE_TX_HSXV_TUNE_MASK GENMASK(3, 2)
#define REG_TUNE_TX_VREF_TUNE_MASK GENMASK(7, 4)
#define REG_TUNE_TX_RISE_TUNE_MASK GENMASK(9, 8)
#define REG_TUNE_TX_PREEMP_PULSE_TUNE BIT(10)
#define REG_TUNE_TX_PREEMP_AMP_TUNE_MASK GENMASK(12, 11)
#define REG_TUNE_TX_FSLS_TUNE_MASK GENMASK(16, 13)
#define REG_TUNE_SQRX_TUNE_MASK GENMASK(19, 17)
#define REG_TUNE_OTG_TUNE GENMASK(22, 20)
#define REG_TUNE_COMP_DIS_TUNE GENMASK(25, 23)
#define REG_TUNE_HOST_DM_PULLDOWN BIT(26)
#define REG_TUNE_HOST_DP_PULLDOWN BIT(27)
#define RESET_COMPLETE_TIME 500
#define ACA_ENABLE_COMPLETE_TIME 50
struct phy_meson8b_usb2_match_data {
bool host_enable_aca;
};
struct phy_meson8b_usb2_priv {
struct regmap *regmap;
enum usb_dr_mode dr_mode;
struct clk *clk_usb_general;
struct clk *clk_usb;
struct reset_control *reset;
const struct phy_meson8b_usb2_match_data *match;
};
static const struct regmap_config phy_meson8b_usb2_regmap_conf = {
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = REG_TUNE,
};
static int phy_meson8b_usb2_power_on(struct phy *phy)
{
struct phy_meson8b_usb2_priv *priv = phy_get_drvdata(phy);
u32 reg;
int ret;
if (!IS_ERR_OR_NULL(priv->reset)) {
ret = reset_control_reset(priv->reset);
if (ret) {
dev_err(&phy->dev, "Failed to trigger USB reset\n");
return ret;
}
}
ret = clk_prepare_enable(priv->clk_usb_general);
if (ret) {
dev_err(&phy->dev, "Failed to enable USB general clock\n");
reset_control_rearm(priv->reset);
return ret;
}
ret = clk_prepare_enable(priv->clk_usb);
if (ret) {
dev_err(&phy->dev, "Failed to enable USB DDR clock\n");
clk_disable_unprepare(priv->clk_usb_general);
reset_control_rearm(priv->reset);
return ret;
}
regmap_update_bits(priv->regmap, REG_CONFIG, REG_CONFIG_CLK_32k_ALTSEL,
REG_CONFIG_CLK_32k_ALTSEL);
regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_REF_CLK_SEL_MASK,
0x2 << REG_CTRL_REF_CLK_SEL_SHIFT);
regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_FSEL_MASK,
0x5 << REG_CTRL_FSEL_SHIFT);
/* reset the PHY */
regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_POWER_ON_RESET,
REG_CTRL_POWER_ON_RESET);
udelay(RESET_COMPLETE_TIME);
regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_POWER_ON_RESET, 0);
udelay(RESET_COMPLETE_TIME);
regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_SOF_TOGGLE_OUT,
REG_CTRL_SOF_TOGGLE_OUT);
if (priv->dr_mode == USB_DR_MODE_HOST) {
regmap_update_bits(priv->regmap, REG_DBG_UART,
REG_DBG_UART_SET_IDDQ, 0);
if (priv->match->host_enable_aca) {
regmap_update_bits(priv->regmap, REG_ADP_BC,
REG_ADP_BC_ACA_ENABLE,
REG_ADP_BC_ACA_ENABLE);
udelay(ACA_ENABLE_COMPLETE_TIME);
regmap_read(priv->regmap, REG_ADP_BC, ®);
if (reg & REG_ADP_BC_ACA_PIN_FLOAT) {
dev_warn(&phy->dev, "USB ID detect failed!\n");
clk_disable_unprepare(priv->clk_usb);
clk_disable_unprepare(priv->clk_usb_general);
reset_control_rearm(priv->reset);
return -EINVAL;
}
}
}
return 0;
}
static int phy_meson8b_usb2_power_off(struct phy *phy)
{
struct phy_meson8b_usb2_priv *priv = phy_get_drvdata(phy);
if (priv->dr_mode == USB_DR_MODE_HOST)
regmap_update_bits(priv->regmap, REG_DBG_UART,
REG_DBG_UART_SET_IDDQ,
REG_DBG_UART_SET_IDDQ);
clk_disable_unprepare(priv->clk_usb);
clk_disable_unprepare(priv->clk_usb_general);
reset_control_rearm(priv->reset);
/* power off the PHY by putting it into reset mode */
regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_POWER_ON_RESET,
REG_CTRL_POWER_ON_RESET);
return 0;
}
static const struct phy_ops phy_meson8b_usb2_ops = {
.power_on = phy_meson8b_usb2_power_on,
.power_off = phy_meson8b_usb2_power_off,
.owner = THIS_MODULE,
};
static int phy_meson8b_usb2_probe(struct platform_device *pdev)
{
struct phy_meson8b_usb2_priv *priv;
struct phy *phy;
struct phy_provider *phy_provider;
void __iomem *base;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
priv->match = device_get_match_data(&pdev->dev);
if (!priv->match)
return -ENODEV;
priv->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&phy_meson8b_usb2_regmap_conf);
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
priv->clk_usb_general = devm_clk_get(&pdev->dev, "usb_general");
if (IS_ERR(priv->clk_usb_general))
return PTR_ERR(priv->clk_usb_general);
priv->clk_usb = devm_clk_get(&pdev->dev, "usb");
if (IS_ERR(priv->clk_usb))
return PTR_ERR(priv->clk_usb);
priv->reset = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
if (IS_ERR(priv->reset))
return dev_err_probe(&pdev->dev, PTR_ERR(priv->reset),
"Failed to get the reset line");
priv->dr_mode = of_usb_get_dr_mode_by_phy(pdev->dev.of_node, -1);
if (priv->dr_mode == USB_DR_MODE_UNKNOWN) {
dev_err(&pdev->dev,
"missing dual role configuration of the controller\n");
return -EINVAL;
}
phy = devm_phy_create(&pdev->dev, NULL, &phy_meson8b_usb2_ops);
if (IS_ERR(phy)) {
return dev_err_probe(&pdev->dev, PTR_ERR(phy),
"failed to create PHY\n");
}
phy_set_drvdata(phy, priv);
phy_provider =
devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct phy_meson8b_usb2_match_data phy_meson8_usb2_match_data = {
.host_enable_aca = false,
};
static const struct phy_meson8b_usb2_match_data phy_meson8b_usb2_match_data = {
.host_enable_aca = true,
};
static const struct of_device_id phy_meson8b_usb2_of_match[] = {
{
.compatible = "amlogic,meson8-usb2-phy",
.data = &phy_meson8_usb2_match_data
},
{
.compatible = "amlogic,meson8b-usb2-phy",
.data = &phy_meson8b_usb2_match_data
},
{
.compatible = "amlogic,meson8m2-usb2-phy",
.data = &phy_meson8b_usb2_match_data
},
{
.compatible = "amlogic,meson-gxbb-usb2-phy",
.data = &phy_meson8b_usb2_match_data
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, phy_meson8b_usb2_of_match);
static struct platform_driver phy_meson8b_usb2_driver = {
.probe = phy_meson8b_usb2_probe,
.driver = {
.name = "phy-meson-usb2",
.of_match_table = phy_meson8b_usb2_of_match,
},
};
module_platform_driver(phy_meson8b_usb2_driver);
MODULE_AUTHOR("Martin Blumenstingl <[email protected]>");
MODULE_DESCRIPTION("Meson8, Meson8b, Meson8m2 and GXBB USB2 PHY driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/amlogic/phy-meson8b-usb2.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Meson G12A USB2 PHY driver
*
* Copyright (C) 2017 Martin Blumenstingl <[email protected]>
* Copyright (C) 2017 Amlogic, Inc. All rights reserved
* Copyright (C) 2019 BayLibre, SAS
* Author: Neil Armstrong <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#define PHY_CTRL_R0 0x0
#define PHY_CTRL_R1 0x4
#define PHY_CTRL_R2 0x8
#define PHY_CTRL_R3 0xc
#define PHY_CTRL_R3_SQUELCH_REF GENMASK(1, 0)
#define PHY_CTRL_R3_HSDIC_REF GENMASK(3, 2)
#define PHY_CTRL_R3_DISC_THRESH GENMASK(7, 4)
#define PHY_CTRL_R4 0x10
#define PHY_CTRL_R4_CALIB_CODE_7_0 GENMASK(7, 0)
#define PHY_CTRL_R4_CALIB_CODE_15_8 GENMASK(15, 8)
#define PHY_CTRL_R4_CALIB_CODE_23_16 GENMASK(23, 16)
#define PHY_CTRL_R4_I_C2L_CAL_EN BIT(24)
#define PHY_CTRL_R4_I_C2L_CAL_RESET_N BIT(25)
#define PHY_CTRL_R4_I_C2L_CAL_DONE BIT(26)
#define PHY_CTRL_R4_TEST_BYPASS_MODE_EN BIT(27)
#define PHY_CTRL_R4_I_C2L_BIAS_TRIM_1_0 GENMASK(29, 28)
#define PHY_CTRL_R4_I_C2L_BIAS_TRIM_3_2 GENMASK(31, 30)
#define PHY_CTRL_R5 0x14
#define PHY_CTRL_R6 0x18
#define PHY_CTRL_R7 0x1c
#define PHY_CTRL_R8 0x20
#define PHY_CTRL_R9 0x24
#define PHY_CTRL_R10 0x28
#define PHY_CTRL_R11 0x2c
#define PHY_CTRL_R12 0x30
#define PHY_CTRL_R13 0x34
#define PHY_CTRL_R13_CUSTOM_PATTERN_19 GENMASK(7, 0)
#define PHY_CTRL_R13_LOAD_STAT BIT(14)
#define PHY_CTRL_R13_UPDATE_PMA_SIGNALS BIT(15)
#define PHY_CTRL_R13_MIN_COUNT_FOR_SYNC_DET GENMASK(20, 16)
#define PHY_CTRL_R13_CLEAR_HOLD_HS_DISCONNECT BIT(21)
#define PHY_CTRL_R13_BYPASS_HOST_DISCONNECT_VAL BIT(22)
#define PHY_CTRL_R13_BYPASS_HOST_DISCONNECT_EN BIT(23)
#define PHY_CTRL_R13_I_C2L_HS_EN BIT(24)
#define PHY_CTRL_R13_I_C2L_FS_EN BIT(25)
#define PHY_CTRL_R13_I_C2L_LS_EN BIT(26)
#define PHY_CTRL_R13_I_C2L_HS_OE BIT(27)
#define PHY_CTRL_R13_I_C2L_FS_OE BIT(28)
#define PHY_CTRL_R13_I_C2L_HS_RX_EN BIT(29)
#define PHY_CTRL_R13_I_C2L_FSLS_RX_EN BIT(30)
#define PHY_CTRL_R14 0x38
#define PHY_CTRL_R14_I_RDP_EN BIT(0)
#define PHY_CTRL_R14_I_RPU_SW1_EN BIT(1)
#define PHY_CTRL_R14_I_RPU_SW2_EN GENMASK(3, 2)
#define PHY_CTRL_R14_PG_RSTN BIT(4)
#define PHY_CTRL_R14_I_C2L_DATA_16_8 BIT(5)
#define PHY_CTRL_R14_I_C2L_ASSERT_SINGLE_EN_ZERO BIT(6)
#define PHY_CTRL_R14_BYPASS_CTRL_7_0 GENMASK(15, 8)
#define PHY_CTRL_R14_BYPASS_CTRL_15_8 GENMASK(23, 16)
#define PHY_CTRL_R15 0x3c
#define PHY_CTRL_R16 0x40
#define PHY_CTRL_R16_MPLL_M GENMASK(8, 0)
#define PHY_CTRL_R16_MPLL_N GENMASK(14, 10)
#define PHY_CTRL_R16_MPLL_TDC_MODE BIT(20)
#define PHY_CTRL_R16_MPLL_SDM_EN BIT(21)
#define PHY_CTRL_R16_MPLL_LOAD BIT(22)
#define PHY_CTRL_R16_MPLL_DCO_SDM_EN BIT(23)
#define PHY_CTRL_R16_MPLL_LOCK_LONG GENMASK(25, 24)
#define PHY_CTRL_R16_MPLL_LOCK_F BIT(26)
#define PHY_CTRL_R16_MPLL_FAST_LOCK BIT(27)
#define PHY_CTRL_R16_MPLL_EN BIT(28)
#define PHY_CTRL_R16_MPLL_RESET BIT(29)
#define PHY_CTRL_R16_MPLL_LOCK BIT(30)
#define PHY_CTRL_R16_MPLL_LOCK_DIG BIT(31)
#define PHY_CTRL_R17 0x44
#define PHY_CTRL_R17_MPLL_FRAC_IN GENMASK(13, 0)
#define PHY_CTRL_R17_MPLL_FIX_EN BIT(16)
#define PHY_CTRL_R17_MPLL_LAMBDA1 GENMASK(19, 17)
#define PHY_CTRL_R17_MPLL_LAMBDA0 GENMASK(22, 20)
#define PHY_CTRL_R17_MPLL_FILTER_MODE BIT(23)
#define PHY_CTRL_R17_MPLL_FILTER_PVT2 GENMASK(27, 24)
#define PHY_CTRL_R17_MPLL_FILTER_PVT1 GENMASK(31, 28)
#define PHY_CTRL_R18 0x48
#define PHY_CTRL_R18_MPLL_LKW_SEL GENMASK(1, 0)
#define PHY_CTRL_R18_MPLL_LK_W GENMASK(5, 2)
#define PHY_CTRL_R18_MPLL_LK_S GENMASK(11, 6)
#define PHY_CTRL_R18_MPLL_DCO_M_EN BIT(12)
#define PHY_CTRL_R18_MPLL_DCO_CLK_SEL BIT(13)
#define PHY_CTRL_R18_MPLL_PFD_GAIN GENMASK(15, 14)
#define PHY_CTRL_R18_MPLL_ROU GENMASK(18, 16)
#define PHY_CTRL_R18_MPLL_DATA_SEL GENMASK(21, 19)
#define PHY_CTRL_R18_MPLL_BIAS_ADJ GENMASK(23, 22)
#define PHY_CTRL_R18_MPLL_BB_MODE GENMASK(25, 24)
#define PHY_CTRL_R18_MPLL_ALPHA GENMASK(28, 26)
#define PHY_CTRL_R18_MPLL_ADJ_LDO GENMASK(30, 29)
#define PHY_CTRL_R18_MPLL_ACG_RANGE BIT(31)
#define PHY_CTRL_R19 0x4c
#define PHY_CTRL_R20 0x50
#define PHY_CTRL_R20_USB2_IDDET_EN BIT(0)
#define PHY_CTRL_R20_USB2_OTG_VBUS_TRIM_2_0 GENMASK(3, 1)
#define PHY_CTRL_R20_USB2_OTG_VBUSDET_EN BIT(4)
#define PHY_CTRL_R20_USB2_AMON_EN BIT(5)
#define PHY_CTRL_R20_USB2_CAL_CODE_R5 BIT(6)
#define PHY_CTRL_R20_BYPASS_OTG_DET BIT(7)
#define PHY_CTRL_R20_USB2_DMON_EN BIT(8)
#define PHY_CTRL_R20_USB2_DMON_SEL_3_0 GENMASK(12, 9)
#define PHY_CTRL_R20_USB2_EDGE_DRV_EN BIT(13)
#define PHY_CTRL_R20_USB2_EDGE_DRV_TRIM_1_0 GENMASK(15, 14)
#define PHY_CTRL_R20_USB2_BGR_ADJ_4_0 GENMASK(20, 16)
#define PHY_CTRL_R20_USB2_BGR_START BIT(21)
#define PHY_CTRL_R20_USB2_BGR_VREF_4_0 GENMASK(28, 24)
#define PHY_CTRL_R20_USB2_BGR_DBG_1_0 GENMASK(30, 29)
#define PHY_CTRL_R20_BYPASS_CAL_DONE_R5 BIT(31)
#define PHY_CTRL_R21 0x54
#define PHY_CTRL_R21_USB2_BGR_FORCE BIT(0)
#define PHY_CTRL_R21_USB2_CAL_ACK_EN BIT(1)
#define PHY_CTRL_R21_USB2_OTG_ACA_EN BIT(2)
#define PHY_CTRL_R21_USB2_TX_STRG_PD BIT(3)
#define PHY_CTRL_R21_USB2_OTG_ACA_TRIM_1_0 GENMASK(5, 4)
#define PHY_CTRL_R21_BYPASS_UTMI_CNTR GENMASK(15, 6)
#define PHY_CTRL_R21_BYPASS_UTMI_REG GENMASK(25, 20)
#define PHY_CTRL_R22 0x58
#define PHY_CTRL_R23 0x5c
#define RESET_COMPLETE_TIME 1000
#define PLL_RESET_COMPLETE_TIME 100
enum meson_soc_id {
MESON_SOC_G12A = 0,
MESON_SOC_A1,
};
struct phy_meson_g12a_usb2_priv {
struct device *dev;
struct regmap *regmap;
struct clk *clk;
struct reset_control *reset;
int soc_id;
};
static const struct regmap_config phy_meson_g12a_usb2_regmap_conf = {
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = PHY_CTRL_R23,
};
static int phy_meson_g12a_usb2_init(struct phy *phy)
{
struct phy_meson_g12a_usb2_priv *priv = phy_get_drvdata(phy);
int ret;
unsigned int value;
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
ret = reset_control_reset(priv->reset);
if (ret) {
clk_disable_unprepare(priv->clk);
return ret;
}
udelay(RESET_COMPLETE_TIME);
/* usb2_otg_aca_en == 0 */
regmap_update_bits(priv->regmap, PHY_CTRL_R21,
PHY_CTRL_R21_USB2_OTG_ACA_EN, 0);
/* PLL Setup : 24MHz * 20 / 1 = 480MHz */
regmap_write(priv->regmap, PHY_CTRL_R16,
FIELD_PREP(PHY_CTRL_R16_MPLL_M, 20) |
FIELD_PREP(PHY_CTRL_R16_MPLL_N, 1) |
PHY_CTRL_R16_MPLL_LOAD |
FIELD_PREP(PHY_CTRL_R16_MPLL_LOCK_LONG, 1) |
PHY_CTRL_R16_MPLL_FAST_LOCK |
PHY_CTRL_R16_MPLL_EN |
PHY_CTRL_R16_MPLL_RESET);
regmap_write(priv->regmap, PHY_CTRL_R17,
FIELD_PREP(PHY_CTRL_R17_MPLL_FRAC_IN, 0) |
FIELD_PREP(PHY_CTRL_R17_MPLL_LAMBDA1, 7) |
FIELD_PREP(PHY_CTRL_R17_MPLL_LAMBDA0, 7) |
FIELD_PREP(PHY_CTRL_R17_MPLL_FILTER_PVT2, 2) |
FIELD_PREP(PHY_CTRL_R17_MPLL_FILTER_PVT1, 9));
value = FIELD_PREP(PHY_CTRL_R18_MPLL_LKW_SEL, 1) |
FIELD_PREP(PHY_CTRL_R18_MPLL_LK_W, 9) |
FIELD_PREP(PHY_CTRL_R18_MPLL_LK_S, 0x27) |
FIELD_PREP(PHY_CTRL_R18_MPLL_PFD_GAIN, 1) |
FIELD_PREP(PHY_CTRL_R18_MPLL_ROU, 7) |
FIELD_PREP(PHY_CTRL_R18_MPLL_DATA_SEL, 3) |
FIELD_PREP(PHY_CTRL_R18_MPLL_BIAS_ADJ, 1) |
FIELD_PREP(PHY_CTRL_R18_MPLL_BB_MODE, 0) |
FIELD_PREP(PHY_CTRL_R18_MPLL_ALPHA, 3) |
FIELD_PREP(PHY_CTRL_R18_MPLL_ADJ_LDO, 1) |
PHY_CTRL_R18_MPLL_ACG_RANGE;
if (priv->soc_id == MESON_SOC_A1)
value |= PHY_CTRL_R18_MPLL_DCO_CLK_SEL;
regmap_write(priv->regmap, PHY_CTRL_R18, value);
udelay(PLL_RESET_COMPLETE_TIME);
/* UnReset PLL */
regmap_write(priv->regmap, PHY_CTRL_R16,
FIELD_PREP(PHY_CTRL_R16_MPLL_M, 20) |
FIELD_PREP(PHY_CTRL_R16_MPLL_N, 1) |
PHY_CTRL_R16_MPLL_LOAD |
FIELD_PREP(PHY_CTRL_R16_MPLL_LOCK_LONG, 1) |
PHY_CTRL_R16_MPLL_FAST_LOCK |
PHY_CTRL_R16_MPLL_EN);
/* PHY Tuning */
regmap_write(priv->regmap, PHY_CTRL_R20,
FIELD_PREP(PHY_CTRL_R20_USB2_OTG_VBUS_TRIM_2_0, 4) |
PHY_CTRL_R20_USB2_OTG_VBUSDET_EN |
FIELD_PREP(PHY_CTRL_R20_USB2_DMON_SEL_3_0, 15) |
PHY_CTRL_R20_USB2_EDGE_DRV_EN |
FIELD_PREP(PHY_CTRL_R20_USB2_EDGE_DRV_TRIM_1_0, 3) |
FIELD_PREP(PHY_CTRL_R20_USB2_BGR_ADJ_4_0, 0) |
FIELD_PREP(PHY_CTRL_R20_USB2_BGR_VREF_4_0, 0) |
FIELD_PREP(PHY_CTRL_R20_USB2_BGR_DBG_1_0, 0));
if (priv->soc_id == MESON_SOC_G12A)
regmap_write(priv->regmap, PHY_CTRL_R4,
FIELD_PREP(PHY_CTRL_R4_CALIB_CODE_7_0, 0xf) |
FIELD_PREP(PHY_CTRL_R4_CALIB_CODE_15_8, 0xf) |
FIELD_PREP(PHY_CTRL_R4_CALIB_CODE_23_16, 0xf) |
PHY_CTRL_R4_TEST_BYPASS_MODE_EN |
FIELD_PREP(PHY_CTRL_R4_I_C2L_BIAS_TRIM_1_0, 0) |
FIELD_PREP(PHY_CTRL_R4_I_C2L_BIAS_TRIM_3_2, 0));
else if (priv->soc_id == MESON_SOC_A1) {
regmap_write(priv->regmap, PHY_CTRL_R21,
PHY_CTRL_R21_USB2_CAL_ACK_EN |
PHY_CTRL_R21_USB2_TX_STRG_PD |
FIELD_PREP(PHY_CTRL_R21_USB2_OTG_ACA_TRIM_1_0, 2));
/* Analog Settings */
regmap_write(priv->regmap, PHY_CTRL_R13,
FIELD_PREP(PHY_CTRL_R13_MIN_COUNT_FOR_SYNC_DET, 7));
}
/* Tuning Disconnect Threshold */
regmap_write(priv->regmap, PHY_CTRL_R3,
FIELD_PREP(PHY_CTRL_R3_SQUELCH_REF, 0) |
FIELD_PREP(PHY_CTRL_R3_HSDIC_REF, 1) |
FIELD_PREP(PHY_CTRL_R3_DISC_THRESH, 3));
if (priv->soc_id == MESON_SOC_G12A) {
/* Analog Settings */
regmap_write(priv->regmap, PHY_CTRL_R14, 0);
regmap_write(priv->regmap, PHY_CTRL_R13,
PHY_CTRL_R13_UPDATE_PMA_SIGNALS |
FIELD_PREP(PHY_CTRL_R13_MIN_COUNT_FOR_SYNC_DET, 7));
}
return 0;
}
static int phy_meson_g12a_usb2_exit(struct phy *phy)
{
struct phy_meson_g12a_usb2_priv *priv = phy_get_drvdata(phy);
int ret;
ret = reset_control_reset(priv->reset);
if (!ret)
clk_disable_unprepare(priv->clk);
return ret;
}
/* set_mode is not needed, mode setting is handled via the UTMI bus */
static const struct phy_ops phy_meson_g12a_usb2_ops = {
.init = phy_meson_g12a_usb2_init,
.exit = phy_meson_g12a_usb2_exit,
.owner = THIS_MODULE,
};
static int phy_meson_g12a_usb2_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct phy_meson_g12a_usb2_priv *priv;
struct phy *phy;
void __iomem *base;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
platform_set_drvdata(pdev, priv);
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
priv->soc_id = (uintptr_t)of_device_get_match_data(&pdev->dev);
priv->regmap = devm_regmap_init_mmio(dev, base,
&phy_meson_g12a_usb2_regmap_conf);
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
priv->clk = devm_clk_get(dev, "xtal");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
priv->reset = devm_reset_control_get(dev, "phy");
if (IS_ERR(priv->reset))
return PTR_ERR(priv->reset);
ret = reset_control_deassert(priv->reset);
if (ret)
return ret;
phy = devm_phy_create(dev, NULL, &phy_meson_g12a_usb2_ops);
if (IS_ERR(phy)) {
ret = PTR_ERR(phy);
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to create PHY\n");
return ret;
}
phy_set_bus_width(phy, 8);
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id phy_meson_g12a_usb2_of_match[] = {
{
.compatible = "amlogic,g12a-usb2-phy",
.data = (void *)MESON_SOC_G12A,
},
{
.compatible = "amlogic,a1-usb2-phy",
.data = (void *)MESON_SOC_A1,
},
{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(of, phy_meson_g12a_usb2_of_match);
static struct platform_driver phy_meson_g12a_usb2_driver = {
.probe = phy_meson_g12a_usb2_probe,
.driver = {
.name = "phy-meson-g12a-usb2",
.of_match_table = phy_meson_g12a_usb2_of_match,
},
};
module_platform_driver(phy_meson_g12a_usb2_driver);
MODULE_AUTHOR("Martin Blumenstingl <[email protected]>");
MODULE_AUTHOR("Neil Armstrong <[email protected]>");
MODULE_DESCRIPTION("Meson G12A USB2 PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/amlogic/phy-meson-g12a-usb2.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2014 Marvell Technology Group Ltd.
*
* Antoine Tenart <[email protected]>
* Jisheng Zhang <[email protected]>
*/
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#define USB_PHY_PLL 0x04
#define USB_PHY_PLL_CONTROL 0x08
#define USB_PHY_TX_CTRL0 0x10
#define USB_PHY_TX_CTRL1 0x14
#define USB_PHY_TX_CTRL2 0x18
#define USB_PHY_RX_CTRL 0x20
#define USB_PHY_ANALOG 0x34
/* USB_PHY_PLL */
#define CLK_REF_DIV(x) ((x) << 4)
#define FEEDBACK_CLK_DIV(x) ((x) << 8)
/* USB_PHY_PLL_CONTROL */
#define CLK_STABLE BIT(0)
#define PLL_CTRL_PIN BIT(1)
#define PLL_CTRL_REG BIT(2)
#define PLL_ON BIT(3)
#define PHASE_OFF_TOL_125 (0x0 << 5)
#define PHASE_OFF_TOL_250 BIT(5)
#define KVC0_CALIB (0x0 << 9)
#define KVC0_REG_CTRL BIT(9)
#define KVC0_HIGH (0x0 << 10)
#define KVC0_LOW (0x3 << 10)
#define CLK_BLK_EN BIT(13)
/* USB_PHY_TX_CTRL0 */
#define EXT_HS_RCAL_EN BIT(3)
#define EXT_FS_RCAL_EN BIT(4)
#define IMPCAL_VTH_DIV(x) ((x) << 5)
#define EXT_RS_RCAL_DIV(x) ((x) << 8)
#define EXT_FS_RCAL_DIV(x) ((x) << 12)
/* USB_PHY_TX_CTRL1 */
#define TX_VDD15_14 (0x0 << 4)
#define TX_VDD15_15 BIT(4)
#define TX_VDD15_16 (0x2 << 4)
#define TX_VDD15_17 (0x3 << 4)
#define TX_VDD12_VDD (0x0 << 6)
#define TX_VDD12_11 BIT(6)
#define TX_VDD12_12 (0x2 << 6)
#define TX_VDD12_13 (0x3 << 6)
#define LOW_VDD_EN BIT(8)
#define TX_OUT_AMP(x) ((x) << 9)
/* USB_PHY_TX_CTRL2 */
#define TX_CHAN_CTRL_REG(x) ((x) << 0)
#define DRV_SLEWRATE(x) ((x) << 4)
#define IMP_CAL_FS_HS_DLY_0 (0x0 << 6)
#define IMP_CAL_FS_HS_DLY_1 BIT(6)
#define IMP_CAL_FS_HS_DLY_2 (0x2 << 6)
#define IMP_CAL_FS_HS_DLY_3 (0x3 << 6)
#define FS_DRV_EN_MASK(x) ((x) << 8)
#define HS_DRV_EN_MASK(x) ((x) << 12)
/* USB_PHY_RX_CTRL */
#define PHASE_FREEZE_DLY_2_CL (0x0 << 0)
#define PHASE_FREEZE_DLY_4_CL BIT(0)
#define ACK_LENGTH_8_CL (0x0 << 2)
#define ACK_LENGTH_12_CL BIT(2)
#define ACK_LENGTH_16_CL (0x2 << 2)
#define ACK_LENGTH_20_CL (0x3 << 2)
#define SQ_LENGTH_3 (0x0 << 4)
#define SQ_LENGTH_6 BIT(4)
#define SQ_LENGTH_9 (0x2 << 4)
#define SQ_LENGTH_12 (0x3 << 4)
#define DISCON_THRESHOLD_260 (0x0 << 6)
#define DISCON_THRESHOLD_270 BIT(6)
#define DISCON_THRESHOLD_280 (0x2 << 6)
#define DISCON_THRESHOLD_290 (0x3 << 6)
#define SQ_THRESHOLD(x) ((x) << 8)
#define LPF_COEF(x) ((x) << 12)
#define INTPL_CUR_10 (0x0 << 14)
#define INTPL_CUR_20 BIT(14)
#define INTPL_CUR_30 (0x2 << 14)
#define INTPL_CUR_40 (0x3 << 14)
/* USB_PHY_ANALOG */
#define ANA_PWR_UP BIT(1)
#define ANA_PWR_DOWN BIT(2)
#define V2I_VCO_RATIO(x) ((x) << 7)
#define R_ROTATE_90 (0x0 << 10)
#define R_ROTATE_0 BIT(10)
#define MODE_TEST_EN BIT(11)
#define ANA_TEST_DC_CTRL(x) ((x) << 12)
static const u32 phy_berlin_pll_dividers[] = {
/* Berlin 2 */
CLK_REF_DIV(0x6) | FEEDBACK_CLK_DIV(0x55),
/* Berlin 2CD/Q */
CLK_REF_DIV(0xc) | FEEDBACK_CLK_DIV(0x54),
};
struct phy_berlin_usb_priv {
void __iomem *base;
struct reset_control *rst_ctrl;
u32 pll_divider;
};
static int phy_berlin_usb_power_on(struct phy *phy)
{
struct phy_berlin_usb_priv *priv = phy_get_drvdata(phy);
reset_control_reset(priv->rst_ctrl);
writel(priv->pll_divider,
priv->base + USB_PHY_PLL);
writel(CLK_STABLE | PLL_CTRL_REG | PHASE_OFF_TOL_250 | KVC0_REG_CTRL |
CLK_BLK_EN, priv->base + USB_PHY_PLL_CONTROL);
writel(V2I_VCO_RATIO(0x5) | R_ROTATE_0 | ANA_TEST_DC_CTRL(0x5),
priv->base + USB_PHY_ANALOG);
writel(PHASE_FREEZE_DLY_4_CL | ACK_LENGTH_16_CL | SQ_LENGTH_12 |
DISCON_THRESHOLD_270 | SQ_THRESHOLD(0xa) | LPF_COEF(0x2) |
INTPL_CUR_30, priv->base + USB_PHY_RX_CTRL);
writel(TX_VDD12_13 | TX_OUT_AMP(0x3), priv->base + USB_PHY_TX_CTRL1);
writel(EXT_HS_RCAL_EN | IMPCAL_VTH_DIV(0x3) | EXT_RS_RCAL_DIV(0x4),
priv->base + USB_PHY_TX_CTRL0);
writel(EXT_HS_RCAL_EN | IMPCAL_VTH_DIV(0x3) | EXT_RS_RCAL_DIV(0x4) |
EXT_FS_RCAL_DIV(0x2), priv->base + USB_PHY_TX_CTRL0);
writel(EXT_HS_RCAL_EN | IMPCAL_VTH_DIV(0x3) | EXT_RS_RCAL_DIV(0x4),
priv->base + USB_PHY_TX_CTRL0);
writel(TX_CHAN_CTRL_REG(0xf) | DRV_SLEWRATE(0x3) | IMP_CAL_FS_HS_DLY_3 |
FS_DRV_EN_MASK(0xd), priv->base + USB_PHY_TX_CTRL2);
return 0;
}
static const struct phy_ops phy_berlin_usb_ops = {
.power_on = phy_berlin_usb_power_on,
.owner = THIS_MODULE,
};
static const struct of_device_id phy_berlin_usb_of_match[] = {
{
.compatible = "marvell,berlin2-usb-phy",
.data = &phy_berlin_pll_dividers[0],
},
{
.compatible = "marvell,berlin2cd-usb-phy",
.data = &phy_berlin_pll_dividers[1],
},
{ },
};
MODULE_DEVICE_TABLE(of, phy_berlin_usb_of_match);
static int phy_berlin_usb_probe(struct platform_device *pdev)
{
const struct of_device_id *match =
of_match_device(phy_berlin_usb_of_match, &pdev->dev);
struct phy_berlin_usb_priv *priv;
struct phy *phy;
struct phy_provider *phy_provider;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
priv->rst_ctrl = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(priv->rst_ctrl))
return PTR_ERR(priv->rst_ctrl);
priv->pll_divider = *((u32 *)match->data);
phy = devm_phy_create(&pdev->dev, NULL, &phy_berlin_usb_ops);
if (IS_ERR(phy)) {
dev_err(&pdev->dev, "failed to create PHY\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, priv);
phy_provider =
devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver phy_berlin_usb_driver = {
.probe = phy_berlin_usb_probe,
.driver = {
.name = "phy-berlin-usb",
.of_match_table = phy_berlin_usb_of_match,
},
};
module_platform_driver(phy_berlin_usb_driver);
MODULE_AUTHOR("Antoine Tenart <[email protected]>");
MODULE_DESCRIPTION("Marvell Berlin PHY driver for USB");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/marvell/phy-berlin-usb.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Marvell
*
* Authors:
* Evan Wang <[email protected]>
* Miquèl Raynal <[email protected]>
* Pali Rohár <[email protected]>
* Marek Behún <[email protected]>
*
* Structure inspired from phy-mvebu-cp110-comphy.c written by Antoine Tenart.
* Comphy code from ARM Trusted Firmware ported by Pali Rohár <[email protected]>
* and Marek Behún <[email protected]>.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#define PLL_SET_DELAY_US 600
#define COMPHY_PLL_SLEEP 1000
#define COMPHY_PLL_TIMEOUT 150000
/* Comphy lane2 indirect access register offset */
#define COMPHY_LANE2_INDIR_ADDR 0x0
#define COMPHY_LANE2_INDIR_DATA 0x4
/* SATA and USB3 PHY offset compared to SATA PHY */
#define COMPHY_LANE2_REGS_BASE 0x200
/*
* When accessing common PHY lane registers directly, we need to shift by 1,
* since the registers are 16-bit.
*/
#define COMPHY_LANE_REG_DIRECT(reg) (((reg) & 0x7FF) << 1)
/* COMPHY registers */
#define COMPHY_POWER_PLL_CTRL 0x01
#define PU_IVREF_BIT BIT(15)
#define PU_PLL_BIT BIT(14)
#define PU_RX_BIT BIT(13)
#define PU_TX_BIT BIT(12)
#define PU_TX_INTP_BIT BIT(11)
#define PU_DFE_BIT BIT(10)
#define RESET_DTL_RX_BIT BIT(9)
#define PLL_LOCK_BIT BIT(8)
#define REF_FREF_SEL_MASK GENMASK(4, 0)
#define REF_FREF_SEL_SERDES_25MHZ FIELD_PREP(REF_FREF_SEL_MASK, 0x1)
#define REF_FREF_SEL_SERDES_40MHZ FIELD_PREP(REF_FREF_SEL_MASK, 0x3)
#define REF_FREF_SEL_SERDES_50MHZ FIELD_PREP(REF_FREF_SEL_MASK, 0x4)
#define REF_FREF_SEL_PCIE_USB3_25MHZ FIELD_PREP(REF_FREF_SEL_MASK, 0x2)
#define REF_FREF_SEL_PCIE_USB3_40MHZ FIELD_PREP(REF_FREF_SEL_MASK, 0x3)
#define COMPHY_MODE_MASK GENMASK(7, 5)
#define COMPHY_MODE_SATA FIELD_PREP(COMPHY_MODE_MASK, 0x0)
#define COMPHY_MODE_PCIE FIELD_PREP(COMPHY_MODE_MASK, 0x3)
#define COMPHY_MODE_SERDES FIELD_PREP(COMPHY_MODE_MASK, 0x4)
#define COMPHY_MODE_USB3 FIELD_PREP(COMPHY_MODE_MASK, 0x5)
#define COMPHY_KVCO_CAL_CTRL 0x02
#define USE_MAX_PLL_RATE_BIT BIT(12)
#define SPEED_PLL_MASK GENMASK(7, 2)
#define SPEED_PLL_VALUE_16 FIELD_PREP(SPEED_PLL_MASK, 0x10)
#define COMPHY_DIG_LOOPBACK_EN 0x23
#define SEL_DATA_WIDTH_MASK GENMASK(11, 10)
#define DATA_WIDTH_10BIT FIELD_PREP(SEL_DATA_WIDTH_MASK, 0x0)
#define DATA_WIDTH_20BIT FIELD_PREP(SEL_DATA_WIDTH_MASK, 0x1)
#define DATA_WIDTH_40BIT FIELD_PREP(SEL_DATA_WIDTH_MASK, 0x2)
#define PLL_READY_TX_BIT BIT(4)
#define COMPHY_SYNC_PATTERN 0x24
#define TXD_INVERT_BIT BIT(10)
#define RXD_INVERT_BIT BIT(11)
#define COMPHY_SYNC_MASK_GEN 0x25
#define PHY_GEN_MAX_MASK GENMASK(11, 10)
#define PHY_GEN_MAX_USB3_5G FIELD_PREP(PHY_GEN_MAX_MASK, 0x1)
#define COMPHY_ISOLATION_CTRL 0x26
#define PHY_ISOLATE_MODE BIT(15)
#define COMPHY_GEN2_SET2 0x3e
#define GS2_TX_SSC_AMP_MASK GENMASK(15, 9)
#define GS2_TX_SSC_AMP_4128 FIELD_PREP(GS2_TX_SSC_AMP_MASK, 0x20)
#define GS2_VREG_RXTX_MAS_ISET_MASK GENMASK(8, 7)
#define GS2_VREG_RXTX_MAS_ISET_60U FIELD_PREP(GS2_VREG_RXTX_MAS_ISET_MASK,\
0x0)
#define GS2_VREG_RXTX_MAS_ISET_80U FIELD_PREP(GS2_VREG_RXTX_MAS_ISET_MASK,\
0x1)
#define GS2_VREG_RXTX_MAS_ISET_100U FIELD_PREP(GS2_VREG_RXTX_MAS_ISET_MASK,\
0x2)
#define GS2_VREG_RXTX_MAS_ISET_120U FIELD_PREP(GS2_VREG_RXTX_MAS_ISET_MASK,\
0x3)
#define GS2_RSVD_6_0_MASK GENMASK(6, 0)
#define COMPHY_GEN3_SET2 0x3f
#define COMPHY_IDLE_SYNC_EN 0x48
#define IDLE_SYNC_EN BIT(12)
#define COMPHY_MISC_CTRL0 0x4F
#define CLK100M_125M_EN BIT(4)
#define TXDCLK_2X_SEL BIT(6)
#define CLK500M_EN BIT(7)
#define PHY_REF_CLK_SEL BIT(10)
#define COMPHY_SFT_RESET 0x52
#define SFT_RST BIT(9)
#define SFT_RST_NO_REG BIT(10)
#define COMPHY_MISC_CTRL1 0x73
#define SEL_BITS_PCIE_FORCE BIT(15)
#define COMPHY_GEN2_SET3 0x112
#define GS3_FFE_CAP_SEL_MASK GENMASK(3, 0)
#define GS3_FFE_CAP_SEL_VALUE FIELD_PREP(GS3_FFE_CAP_SEL_MASK, 0xF)
/* PIPE registers */
#define COMPHY_PIPE_LANE_CFG0 0x180
#define PRD_TXDEEMPH0_MASK BIT(0)
#define PRD_TXMARGIN_MASK GENMASK(3, 1)
#define PRD_TXSWING_MASK BIT(4)
#define CFG_TX_ALIGN_POS_MASK GENMASK(8, 5)
#define COMPHY_PIPE_LANE_CFG1 0x181
#define PRD_TXDEEMPH1_MASK BIT(15)
#define USE_MAX_PLL_RATE_EN BIT(9)
#define TX_DET_RX_MODE BIT(6)
#define GEN2_TX_DATA_DLY_MASK GENMASK(4, 3)
#define GEN2_TX_DATA_DLY_DEFT FIELD_PREP(GEN2_TX_DATA_DLY_MASK, 2)
#define TX_ELEC_IDLE_MODE_EN BIT(0)
#define COMPHY_PIPE_LANE_STAT1 0x183
#define TXDCLK_PCLK_EN BIT(0)
#define COMPHY_PIPE_LANE_CFG4 0x188
#define SPREAD_SPECTRUM_CLK_EN BIT(7)
#define COMPHY_PIPE_RST_CLK_CTRL 0x1C1
#define PIPE_SOFT_RESET BIT(0)
#define PIPE_REG_RESET BIT(1)
#define MODE_CORE_CLK_FREQ_SEL BIT(9)
#define MODE_PIPE_WIDTH_32 BIT(3)
#define MODE_REFDIV_MASK GENMASK(5, 4)
#define MODE_REFDIV_BY_4 FIELD_PREP(MODE_REFDIV_MASK, 0x2)
#define COMPHY_PIPE_TEST_MODE_CTRL 0x1C2
#define MODE_MARGIN_OVERRIDE BIT(2)
#define COMPHY_PIPE_CLK_SRC_LO 0x1C3
#define MODE_CLK_SRC BIT(0)
#define BUNDLE_PERIOD_SEL BIT(1)
#define BUNDLE_PERIOD_SCALE_MASK GENMASK(3, 2)
#define BUNDLE_SAMPLE_CTRL BIT(4)
#define PLL_READY_DLY_MASK GENMASK(7, 5)
#define CFG_SEL_20B BIT(15)
#define COMPHY_PIPE_PWR_MGM_TIM1 0x1D0
#define CFG_PM_OSCCLK_WAIT_MASK GENMASK(15, 12)
#define CFG_PM_RXDEN_WAIT_MASK GENMASK(11, 8)
#define CFG_PM_RXDEN_WAIT_1_UNIT FIELD_PREP(CFG_PM_RXDEN_WAIT_MASK, 0x1)
#define CFG_PM_RXDLOZ_WAIT_MASK GENMASK(7, 0)
#define CFG_PM_RXDLOZ_WAIT_7_UNIT FIELD_PREP(CFG_PM_RXDLOZ_WAIT_MASK, 0x7)
#define CFG_PM_RXDLOZ_WAIT_12_UNIT FIELD_PREP(CFG_PM_RXDLOZ_WAIT_MASK, 0xC)
/*
* This register is not from PHY lane register space. It only exists in the
* indirect register space, before the actual PHY lane 2 registers. So the
* offset is absolute, not relative to COMPHY_LANE2_REGS_BASE.
* It is used only for SATA PHY initialization.
*/
#define COMPHY_RESERVED_REG 0x0E
#define PHYCTRL_FRM_PIN_BIT BIT(13)
/* South Bridge PHY Configuration Registers */
#define COMPHY_PHY_REG(lane, reg) (((1 - (lane)) * 0x28) + ((reg) & 0x3f))
/*
* lane0: USB3/GbE1 PHY Configuration 1
* lane1: PCIe/GbE0 PHY Configuration 1
* (used only by SGMII code)
*/
#define COMPHY_PHY_CFG1 0x0
#define PIN_PU_IVREF_BIT BIT(1)
#define PIN_RESET_CORE_BIT BIT(11)
#define PIN_RESET_COMPHY_BIT BIT(12)
#define PIN_PU_PLL_BIT BIT(16)
#define PIN_PU_RX_BIT BIT(17)
#define PIN_PU_TX_BIT BIT(18)
#define PIN_TX_IDLE_BIT BIT(19)
#define GEN_RX_SEL_MASK GENMASK(25, 22)
#define GEN_RX_SEL_VALUE(val) FIELD_PREP(GEN_RX_SEL_MASK, (val))
#define GEN_TX_SEL_MASK GENMASK(29, 26)
#define GEN_TX_SEL_VALUE(val) FIELD_PREP(GEN_TX_SEL_MASK, (val))
#define SERDES_SPEED_1_25_G 0x6
#define SERDES_SPEED_3_125_G 0x8
#define PHY_RX_INIT_BIT BIT(30)
/*
* lane0: USB3/GbE1 PHY Status 1
* lane1: PCIe/GbE0 PHY Status 1
* (used only by SGMII code)
*/
#define COMPHY_PHY_STAT1 0x18
#define PHY_RX_INIT_DONE_BIT BIT(0)
#define PHY_PLL_READY_RX_BIT BIT(2)
#define PHY_PLL_READY_TX_BIT BIT(3)
/* PHY Selector */
#define COMPHY_SELECTOR_PHY_REG 0xFC
/* bit0: 0: Lane1 is GbE0; 1: Lane1 is PCIe */
#define COMPHY_SELECTOR_PCIE_GBE0_SEL_BIT BIT(0)
/* bit4: 0: Lane0 is GbE1; 1: Lane0 is USB3 */
#define COMPHY_SELECTOR_USB3_GBE1_SEL_BIT BIT(4)
/* bit8: 0: Lane0 is USB3 instead of GbE1, Lane2 is SATA; 1: Lane2 is USB3 */
#define COMPHY_SELECTOR_USB3_PHY_SEL_BIT BIT(8)
struct mvebu_a3700_comphy_conf {
unsigned int lane;
enum phy_mode mode;
int submode;
};
#define MVEBU_A3700_COMPHY_CONF(_lane, _mode, _smode) \
{ \
.lane = _lane, \
.mode = _mode, \
.submode = _smode, \
}
#define MVEBU_A3700_COMPHY_CONF_GEN(_lane, _mode) \
MVEBU_A3700_COMPHY_CONF(_lane, _mode, PHY_INTERFACE_MODE_NA)
#define MVEBU_A3700_COMPHY_CONF_ETH(_lane, _smode) \
MVEBU_A3700_COMPHY_CONF(_lane, PHY_MODE_ETHERNET, _smode)
static const struct mvebu_a3700_comphy_conf mvebu_a3700_comphy_modes[] = {
/* lane 0 */
MVEBU_A3700_COMPHY_CONF_GEN(0, PHY_MODE_USB_HOST_SS),
MVEBU_A3700_COMPHY_CONF_ETH(0, PHY_INTERFACE_MODE_SGMII),
MVEBU_A3700_COMPHY_CONF_ETH(0, PHY_INTERFACE_MODE_1000BASEX),
MVEBU_A3700_COMPHY_CONF_ETH(0, PHY_INTERFACE_MODE_2500BASEX),
/* lane 1 */
MVEBU_A3700_COMPHY_CONF_GEN(1, PHY_MODE_PCIE),
MVEBU_A3700_COMPHY_CONF_ETH(1, PHY_INTERFACE_MODE_SGMII),
MVEBU_A3700_COMPHY_CONF_ETH(1, PHY_INTERFACE_MODE_1000BASEX),
MVEBU_A3700_COMPHY_CONF_ETH(1, PHY_INTERFACE_MODE_2500BASEX),
/* lane 2 */
MVEBU_A3700_COMPHY_CONF_GEN(2, PHY_MODE_SATA),
MVEBU_A3700_COMPHY_CONF_GEN(2, PHY_MODE_USB_HOST_SS),
};
struct mvebu_a3700_comphy_priv {
void __iomem *comphy_regs;
void __iomem *lane0_phy_regs; /* USB3 and GbE1 */
void __iomem *lane1_phy_regs; /* PCIe and GbE0 */
void __iomem *lane2_phy_indirect; /* SATA and USB3 */
spinlock_t lock; /* for PHY selector access */
bool xtal_is_40m;
};
struct mvebu_a3700_comphy_lane {
struct mvebu_a3700_comphy_priv *priv;
struct device *dev;
unsigned int id;
enum phy_mode mode;
int submode;
bool invert_tx;
bool invert_rx;
};
struct gbe_phy_init_data_fix {
u16 addr;
u16 value;
};
/* Changes to 40M1G25 mode data required for running 40M3G125 init mode */
static struct gbe_phy_init_data_fix gbe_phy_init_fix[] = {
{ 0x005, 0x07CC }, { 0x015, 0x0000 }, { 0x01B, 0x0000 },
{ 0x01D, 0x0000 }, { 0x01E, 0x0000 }, { 0x01F, 0x0000 },
{ 0x020, 0x0000 }, { 0x021, 0x0030 }, { 0x026, 0x0888 },
{ 0x04D, 0x0152 }, { 0x04F, 0xA020 }, { 0x050, 0x07CC },
{ 0x053, 0xE9CA }, { 0x055, 0xBD97 }, { 0x071, 0x3015 },
{ 0x076, 0x03AA }, { 0x07C, 0x0FDF }, { 0x0C2, 0x3030 },
{ 0x0C3, 0x8000 }, { 0x0E2, 0x5550 }, { 0x0E3, 0x12A4 },
{ 0x0E4, 0x7D00 }, { 0x0E6, 0x0C83 }, { 0x101, 0xFCC0 },
{ 0x104, 0x0C10 }
};
/* 40M1G25 mode init data */
static u16 gbe_phy_init[512] = {
/* 0 1 2 3 4 5 6 7 */
/*-----------------------------------------------------------*/
/* 8 9 A B C D E F */
0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26, /* 00 */
0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52, /* 08 */
0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000, /* 10 */
0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF, /* 18 */
0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000, /* 20 */
0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, /* 28 */
0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100, /* 38 */
0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00, /* 40 */
0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A, /* 48 */
0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001, /* 50 */
0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF, /* 58 */
0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000, /* 60 */
0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002, /* 68 */
0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780, /* 70 */
0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000, /* 78 */
0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000, /* 80 */
0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210, /* 88 */
0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F, /* 90 */
0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651, /* 98 */
0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000, /* A0 */
0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* A8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* B0 */
0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000, /* B8 */
0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003, /* C0 */
0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000, /* C8 */
0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00, /* D0 */
0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000, /* D8 */
0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541, /* E0 */
0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200, /* E8 */
0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000, /* F0 */
0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000, /* F8 */
0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000, /*100 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*108 */
0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000, /*110 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*118 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*120 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*128 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*130 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*138 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*140 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*148 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*150 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*158 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*160 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*168 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*170 */
0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000, /*178 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*180 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*188 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*190 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*198 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1F0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 /*1F8 */
};
static inline void comphy_reg_set(void __iomem *addr, u32 data, u32 mask)
{
u32 val;
val = readl(addr);
val = (val & ~mask) | (data & mask);
writel(val, addr);
}
static inline void comphy_reg_set16(void __iomem *addr, u16 data, u16 mask)
{
u16 val;
val = readw(addr);
val = (val & ~mask) | (data & mask);
writew(val, addr);
}
/* Used for accessing lane 2 registers (SATA/USB3 PHY) */
static void comphy_set_indirect(struct mvebu_a3700_comphy_priv *priv,
u32 offset, u16 data, u16 mask)
{
writel(offset,
priv->lane2_phy_indirect + COMPHY_LANE2_INDIR_ADDR);
comphy_reg_set(priv->lane2_phy_indirect + COMPHY_LANE2_INDIR_DATA,
data, mask);
}
static void comphy_lane_reg_set(struct mvebu_a3700_comphy_lane *lane,
u16 reg, u16 data, u16 mask)
{
if (lane->id == 2) {
/* lane 2 PHY registers are accessed indirectly */
comphy_set_indirect(lane->priv,
reg + COMPHY_LANE2_REGS_BASE,
data, mask);
} else {
void __iomem *base = lane->id == 1 ?
lane->priv->lane1_phy_regs :
lane->priv->lane0_phy_regs;
comphy_reg_set16(base + COMPHY_LANE_REG_DIRECT(reg),
data, mask);
}
}
static int comphy_lane_reg_poll(struct mvebu_a3700_comphy_lane *lane,
u16 reg, u16 bits,
ulong sleep_us, ulong timeout_us)
{
int ret;
if (lane->id == 2) {
u32 data;
/* lane 2 PHY registers are accessed indirectly */
writel(reg + COMPHY_LANE2_REGS_BASE,
lane->priv->lane2_phy_indirect +
COMPHY_LANE2_INDIR_ADDR);
ret = readl_poll_timeout(lane->priv->lane2_phy_indirect +
COMPHY_LANE2_INDIR_DATA,
data, (data & bits) == bits,
sleep_us, timeout_us);
} else {
void __iomem *base = lane->id == 1 ?
lane->priv->lane1_phy_regs :
lane->priv->lane0_phy_regs;
u16 data;
ret = readw_poll_timeout(base + COMPHY_LANE_REG_DIRECT(reg),
data, (data & bits) == bits,
sleep_us, timeout_us);
}
return ret;
}
static void comphy_periph_reg_set(struct mvebu_a3700_comphy_lane *lane,
u8 reg, u32 data, u32 mask)
{
comphy_reg_set(lane->priv->comphy_regs + COMPHY_PHY_REG(lane->id, reg),
data, mask);
}
static int comphy_periph_reg_poll(struct mvebu_a3700_comphy_lane *lane,
u8 reg, u32 bits,
ulong sleep_us, ulong timeout_us)
{
u32 data;
return readl_poll_timeout(lane->priv->comphy_regs +
COMPHY_PHY_REG(lane->id, reg),
data, (data & bits) == bits,
sleep_us, timeout_us);
}
/* PHY selector configures with corresponding modes */
static int
mvebu_a3700_comphy_set_phy_selector(struct mvebu_a3700_comphy_lane *lane)
{
u32 old, new, clr = 0, set = 0;
unsigned long flags;
switch (lane->mode) {
case PHY_MODE_SATA:
/* SATA must be in Lane2 */
if (lane->id == 2)
clr = COMPHY_SELECTOR_USB3_PHY_SEL_BIT;
else
goto error;
break;
case PHY_MODE_ETHERNET:
if (lane->id == 0)
clr = COMPHY_SELECTOR_USB3_GBE1_SEL_BIT;
else if (lane->id == 1)
clr = COMPHY_SELECTOR_PCIE_GBE0_SEL_BIT;
else
goto error;
break;
case PHY_MODE_USB_HOST_SS:
if (lane->id == 2)
set = COMPHY_SELECTOR_USB3_PHY_SEL_BIT;
else if (lane->id == 0)
set = COMPHY_SELECTOR_USB3_GBE1_SEL_BIT;
else
goto error;
break;
case PHY_MODE_PCIE:
/* PCIE must be in Lane1 */
if (lane->id == 1)
set = COMPHY_SELECTOR_PCIE_GBE0_SEL_BIT;
else
goto error;
break;
default:
goto error;
}
spin_lock_irqsave(&lane->priv->lock, flags);
old = readl(lane->priv->comphy_regs + COMPHY_SELECTOR_PHY_REG);
new = (old & ~clr) | set;
writel(new, lane->priv->comphy_regs + COMPHY_SELECTOR_PHY_REG);
spin_unlock_irqrestore(&lane->priv->lock, flags);
dev_dbg(lane->dev,
"COMPHY[%d] mode[%d] changed PHY selector 0x%08x -> 0x%08x\n",
lane->id, lane->mode, old, new);
return 0;
error:
dev_err(lane->dev, "COMPHY[%d] mode[%d] is invalid\n", lane->id,
lane->mode);
return -EINVAL;
}
static int
mvebu_a3700_comphy_sata_power_on(struct mvebu_a3700_comphy_lane *lane)
{
u32 mask, data, ref_clk;
int ret;
/* Configure phy selector for SATA */
ret = mvebu_a3700_comphy_set_phy_selector(lane);
if (ret)
return ret;
/* Clear phy isolation mode to make it work in normal mode */
comphy_lane_reg_set(lane, COMPHY_ISOLATION_CTRL,
0x0, PHY_ISOLATE_MODE);
/* 0. Check the Polarity invert bits */
data = 0x0;
if (lane->invert_tx)
data |= TXD_INVERT_BIT;
if (lane->invert_rx)
data |= RXD_INVERT_BIT;
mask = TXD_INVERT_BIT | RXD_INVERT_BIT;
comphy_lane_reg_set(lane, COMPHY_SYNC_PATTERN, data, mask);
/* 1. Select 40-bit data width */
comphy_lane_reg_set(lane, COMPHY_DIG_LOOPBACK_EN,
DATA_WIDTH_40BIT, SEL_DATA_WIDTH_MASK);
/* 2. Select reference clock(25M) and PHY mode (SATA) */
if (lane->priv->xtal_is_40m)
ref_clk = REF_FREF_SEL_SERDES_40MHZ;
else
ref_clk = REF_FREF_SEL_SERDES_25MHZ;
data = ref_clk | COMPHY_MODE_SATA;
mask = REF_FREF_SEL_MASK | COMPHY_MODE_MASK;
comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, data, mask);
/* 3. Use maximum PLL rate (no power save) */
comphy_lane_reg_set(lane, COMPHY_KVCO_CAL_CTRL,
USE_MAX_PLL_RATE_BIT, USE_MAX_PLL_RATE_BIT);
/* 4. Reset reserved bit */
comphy_set_indirect(lane->priv, COMPHY_RESERVED_REG,
0x0, PHYCTRL_FRM_PIN_BIT);
/* 5. Set vendor-specific configuration (It is done in sata driver) */
/* XXX: in U-Boot below sequence was executed in this place, in Linux
* not. Now it is done only in U-Boot before this comphy
* initialization - tests shows that it works ok, but in case of any
* future problem it is left for reference.
* reg_set(MVEBU_REGS_BASE + 0xe00a0, 0, 0xffffffff);
* reg_set(MVEBU_REGS_BASE + 0xe00a4, BIT(6), BIT(6));
*/
/* Wait for > 55 us to allow PLL be enabled */
udelay(PLL_SET_DELAY_US);
/* Polling status */
ret = comphy_lane_reg_poll(lane, COMPHY_DIG_LOOPBACK_EN,
PLL_READY_TX_BIT, COMPHY_PLL_SLEEP,
COMPHY_PLL_TIMEOUT);
if (ret)
dev_err(lane->dev, "Failed to lock SATA PLL\n");
return ret;
}
static void comphy_gbe_phy_init(struct mvebu_a3700_comphy_lane *lane,
bool is_1gbps)
{
int addr, fix_idx;
u16 val;
fix_idx = 0;
for (addr = 0; addr < 512; addr++) {
/*
* All PHY register values are defined in full for 3.125Gbps
* SERDES speed. The values required for 1.25 Gbps are almost
* the same and only few registers should be "fixed" in
* comparison to 3.125 Gbps values. These register values are
* stored in "gbe_phy_init_fix" array.
*/
if (!is_1gbps && gbe_phy_init_fix[fix_idx].addr == addr) {
/* Use new value */
val = gbe_phy_init_fix[fix_idx].value;
if (fix_idx < ARRAY_SIZE(gbe_phy_init_fix))
fix_idx++;
} else {
val = gbe_phy_init[addr];
}
comphy_lane_reg_set(lane, addr, val, 0xFFFF);
}
}
static int
mvebu_a3700_comphy_ethernet_power_on(struct mvebu_a3700_comphy_lane *lane)
{
u32 mask, data, speed_sel;
int ret;
/* Set selector */
ret = mvebu_a3700_comphy_set_phy_selector(lane);
if (ret)
return ret;
/*
* 1. Reset PHY by setting PHY input port PIN_RESET=1.
* 2. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep
* PHY TXP/TXN output to idle state during PHY initialization
* 3. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0.
*/
data = PIN_PU_IVREF_BIT | PIN_TX_IDLE_BIT | PIN_RESET_COMPHY_BIT;
mask = data | PIN_RESET_CORE_BIT | PIN_PU_PLL_BIT | PIN_PU_RX_BIT |
PIN_PU_TX_BIT | PHY_RX_INIT_BIT;
comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, data, mask);
/* 4. Release reset to the PHY by setting PIN_RESET=0. */
data = 0x0;
mask = PIN_RESET_COMPHY_BIT;
comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, data, mask);
/*
* 5. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide COMPHY
* bit rate
*/
switch (lane->submode) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
/* SGMII 1G, SerDes speed 1.25G */
speed_sel = SERDES_SPEED_1_25_G;
break;
case PHY_INTERFACE_MODE_2500BASEX:
/* 2500Base-X, SerDes speed 3.125G */
speed_sel = SERDES_SPEED_3_125_G;
break;
default:
/* Other rates are not supported */
dev_err(lane->dev,
"unsupported phy speed %d on comphy lane%d\n",
lane->submode, lane->id);
return -EINVAL;
}
data = GEN_RX_SEL_VALUE(speed_sel) | GEN_TX_SEL_VALUE(speed_sel);
mask = GEN_RX_SEL_MASK | GEN_TX_SEL_MASK;
comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, data, mask);
/*
* 6. Wait 10mS for bandgap and reference clocks to stabilize; then
* start SW programming.
*/
mdelay(10);
/* 7. Program COMPHY register PHY_MODE */
data = COMPHY_MODE_SERDES;
mask = COMPHY_MODE_MASK;
comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, data, mask);
/*
* 8. Set COMPHY register REFCLK_SEL to select the correct REFCLK
* source
*/
data = 0x0;
mask = PHY_REF_CLK_SEL;
comphy_lane_reg_set(lane, COMPHY_MISC_CTRL0, data, mask);
/*
* 9. Set correct reference clock frequency in COMPHY register
* REF_FREF_SEL.
*/
if (lane->priv->xtal_is_40m)
data = REF_FREF_SEL_SERDES_50MHZ;
else
data = REF_FREF_SEL_SERDES_25MHZ;
mask = REF_FREF_SEL_MASK;
comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, data, mask);
/*
* 10. Program COMPHY register PHY_GEN_MAX[1:0]
* This step is mentioned in the flow received from verification team.
* However the PHY_GEN_MAX value is only meaningful for other interfaces
* (not SERDES). For instance, it selects SATA speed 1.5/3/6 Gbps or
* PCIe speed 2.5/5 Gbps
*/
/*
* 11. Program COMPHY register SEL_BITS to set correct parallel data
* bus width
*/
data = DATA_WIDTH_10BIT;
mask = SEL_DATA_WIDTH_MASK;
comphy_lane_reg_set(lane, COMPHY_DIG_LOOPBACK_EN, data, mask);
/*
* 12. As long as DFE function needs to be enabled in any mode,
* COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F
* for real chip during COMPHY power on.
* The value of the DFE_UPDATE_EN already is 0x3F, because it is the
* default value after reset of the PHY.
*/
/*
* 13. Program COMPHY GEN registers.
* These registers should be programmed based on the lab testing result
* to achieve optimal performance. Please contact the CEA group to get
* the related GEN table during real chip bring-up. We only required to
* run though the entire registers programming flow defined by
* "comphy_gbe_phy_init" when the REF clock is 40 MHz. For REF clock
* 25 MHz the default values stored in PHY registers are OK.
*/
dev_dbg(lane->dev, "Running C-DPI phy init %s mode\n",
lane->submode == PHY_INTERFACE_MODE_2500BASEX ? "2G5" : "1G");
if (lane->priv->xtal_is_40m)
comphy_gbe_phy_init(lane,
lane->submode != PHY_INTERFACE_MODE_2500BASEX);
/*
* 14. Check the PHY Polarity invert bit
*/
data = 0x0;
if (lane->invert_tx)
data |= TXD_INVERT_BIT;
if (lane->invert_rx)
data |= RXD_INVERT_BIT;
mask = TXD_INVERT_BIT | RXD_INVERT_BIT;
comphy_lane_reg_set(lane, COMPHY_SYNC_PATTERN, data, mask);
/*
* 15. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1 to
* start PHY power up sequence. All the PHY register programming should
* be done before PIN_PU_PLL=1. There should be no register programming
* for normal PHY operation from this point.
*/
data = PIN_PU_PLL_BIT | PIN_PU_RX_BIT | PIN_PU_TX_BIT;
mask = data;
comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, data, mask);
/*
* 16. Wait for PHY power up sequence to finish by checking output ports
* PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1.
*/
ret = comphy_periph_reg_poll(lane, COMPHY_PHY_STAT1,
PHY_PLL_READY_TX_BIT |
PHY_PLL_READY_RX_BIT,
COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT);
if (ret) {
dev_err(lane->dev, "Failed to lock PLL for SERDES PHY %d\n",
lane->id);
return ret;
}
/*
* 17. Set COMPHY input port PIN_TX_IDLE=0
*/
comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, 0x0, PIN_TX_IDLE_BIT);
/*
* 18. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1. To
* start RX initialization. PIN_RX_INIT_DONE will be cleared to 0 by the
* PHY After RX initialization is done, PIN_RX_INIT_DONE will be set to
* 1 by COMPHY Set PIN_RX_INIT=0 after PIN_RX_INIT_DONE= 1. Please
* refer to RX initialization part for details.
*/
comphy_periph_reg_set(lane, COMPHY_PHY_CFG1,
PHY_RX_INIT_BIT, PHY_RX_INIT_BIT);
ret = comphy_periph_reg_poll(lane, COMPHY_PHY_STAT1,
PHY_PLL_READY_TX_BIT |
PHY_PLL_READY_RX_BIT,
COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT);
if (ret) {
dev_err(lane->dev, "Failed to lock PLL for SERDES PHY %d\n",
lane->id);
return ret;
}
ret = comphy_periph_reg_poll(lane, COMPHY_PHY_STAT1,
PHY_RX_INIT_DONE_BIT,
COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT);
if (ret)
dev_err(lane->dev, "Failed to init RX of SERDES PHY %d\n",
lane->id);
return ret;
}
static int
mvebu_a3700_comphy_usb3_power_on(struct mvebu_a3700_comphy_lane *lane)
{
u32 mask, data, cfg, ref_clk;
int ret;
/* Set phy seclector */
ret = mvebu_a3700_comphy_set_phy_selector(lane);
if (ret)
return ret;
/* COMPHY register reset (cleared automatically) */
comphy_lane_reg_set(lane, COMPHY_SFT_RESET, SFT_RST, SFT_RST);
/*
* 0. Set PHY OTG Control(0x5d034), bit 4, Power up OTG module The
* register belong to UTMI module, so it is set in UTMI phy driver.
*/
/*
* 1. Set PRD_TXDEEMPH (3.5db de-emph)
*/
data = PRD_TXDEEMPH0_MASK;
mask = PRD_TXDEEMPH0_MASK | PRD_TXMARGIN_MASK | PRD_TXSWING_MASK |
CFG_TX_ALIGN_POS_MASK;
comphy_lane_reg_set(lane, COMPHY_PIPE_LANE_CFG0, data, mask);
/*
* 2. Set BIT0: enable transmitter in high impedance mode
* Set BIT[3:4]: delay 2 clock cycles for HiZ off latency
* Set BIT6: Tx detect Rx at HiZ mode
* Unset BIT15: set to 0 to set USB3 De-emphasize level to -3.5db
* together with bit 0 of COMPHY_PIPE_LANE_CFG0 register
*/
data = TX_DET_RX_MODE | GEN2_TX_DATA_DLY_DEFT | TX_ELEC_IDLE_MODE_EN;
mask = PRD_TXDEEMPH1_MASK | TX_DET_RX_MODE | GEN2_TX_DATA_DLY_MASK |
TX_ELEC_IDLE_MODE_EN;
comphy_lane_reg_set(lane, COMPHY_PIPE_LANE_CFG1, data, mask);
/*
* 3. Set Spread Spectrum Clock Enabled
*/
comphy_lane_reg_set(lane, COMPHY_PIPE_LANE_CFG4,
SPREAD_SPECTRUM_CLK_EN, SPREAD_SPECTRUM_CLK_EN);
/*
* 4. Set Override Margining Controls From the MAC:
* Use margining signals from lane configuration
*/
comphy_lane_reg_set(lane, COMPHY_PIPE_TEST_MODE_CTRL,
MODE_MARGIN_OVERRIDE, 0xFFFF);
/*
* 5. Set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles
* set Mode Clock Source = PCLK is generated from REFCLK
*/
data = 0x0;
mask = MODE_CLK_SRC | BUNDLE_PERIOD_SEL | BUNDLE_PERIOD_SCALE_MASK |
BUNDLE_SAMPLE_CTRL | PLL_READY_DLY_MASK;
comphy_lane_reg_set(lane, COMPHY_PIPE_CLK_SRC_LO, data, mask);
/*
* 6. Set G2 Spread Spectrum Clock Amplitude at 4K
*/
comphy_lane_reg_set(lane, COMPHY_GEN2_SET2,
GS2_TX_SSC_AMP_4128, GS2_TX_SSC_AMP_MASK);
/*
* 7. Unset G3 Spread Spectrum Clock Amplitude
* set G3 TX and RX Register Master Current Select
*/
data = GS2_VREG_RXTX_MAS_ISET_60U;
mask = GS2_TX_SSC_AMP_MASK | GS2_VREG_RXTX_MAS_ISET_MASK |
GS2_RSVD_6_0_MASK;
comphy_lane_reg_set(lane, COMPHY_GEN3_SET2, data, mask);
/*
* 8. Check crystal jumper setting and program the Power and PLL Control
* accordingly Change RX wait
*/
if (lane->priv->xtal_is_40m) {
ref_clk = REF_FREF_SEL_PCIE_USB3_40MHZ;
cfg = CFG_PM_RXDLOZ_WAIT_12_UNIT;
} else {
ref_clk = REF_FREF_SEL_PCIE_USB3_25MHZ;
cfg = CFG_PM_RXDLOZ_WAIT_7_UNIT;
}
data = PU_IVREF_BIT | PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT |
PU_TX_INTP_BIT | PU_DFE_BIT | COMPHY_MODE_USB3 | ref_clk;
mask = PU_IVREF_BIT | PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT |
PU_TX_INTP_BIT | PU_DFE_BIT | PLL_LOCK_BIT | COMPHY_MODE_MASK |
REF_FREF_SEL_MASK;
comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, data, mask);
data = CFG_PM_RXDEN_WAIT_1_UNIT | cfg;
mask = CFG_PM_OSCCLK_WAIT_MASK | CFG_PM_RXDEN_WAIT_MASK |
CFG_PM_RXDLOZ_WAIT_MASK;
comphy_lane_reg_set(lane, COMPHY_PIPE_PWR_MGM_TIM1, data, mask);
/*
* 9. Enable idle sync
*/
comphy_lane_reg_set(lane, COMPHY_IDLE_SYNC_EN,
IDLE_SYNC_EN, IDLE_SYNC_EN);
/*
* 10. Enable the output of 500M clock
*/
comphy_lane_reg_set(lane, COMPHY_MISC_CTRL0, CLK500M_EN, CLK500M_EN);
/*
* 11. Set 20-bit data width
*/
comphy_lane_reg_set(lane, COMPHY_DIG_LOOPBACK_EN,
DATA_WIDTH_20BIT, 0xFFFF);
/*
* 12. Override Speed_PLL value and use MAC PLL
*/
data = SPEED_PLL_VALUE_16 | USE_MAX_PLL_RATE_BIT;
mask = 0xFFFF;
comphy_lane_reg_set(lane, COMPHY_KVCO_CAL_CTRL, data, mask);
/*
* 13. Check the Polarity invert bit
*/
data = 0x0;
if (lane->invert_tx)
data |= TXD_INVERT_BIT;
if (lane->invert_rx)
data |= RXD_INVERT_BIT;
mask = TXD_INVERT_BIT | RXD_INVERT_BIT;
comphy_lane_reg_set(lane, COMPHY_SYNC_PATTERN, data, mask);
/*
* 14. Set max speed generation to USB3.0 5Gbps
*/
comphy_lane_reg_set(lane, COMPHY_SYNC_MASK_GEN,
PHY_GEN_MAX_USB3_5G, PHY_GEN_MAX_MASK);
/*
* 15. Set capacitor value for FFE gain peaking to 0xF
*/
comphy_lane_reg_set(lane, COMPHY_GEN2_SET3,
GS3_FFE_CAP_SEL_VALUE, GS3_FFE_CAP_SEL_MASK);
/*
* 16. Release SW reset
*/
data = MODE_CORE_CLK_FREQ_SEL | MODE_PIPE_WIDTH_32 | MODE_REFDIV_BY_4;
mask = 0xFFFF;
comphy_lane_reg_set(lane, COMPHY_PIPE_RST_CLK_CTRL, data, mask);
/* Wait for > 55 us to allow PCLK be enabled */
udelay(PLL_SET_DELAY_US);
ret = comphy_lane_reg_poll(lane, COMPHY_PIPE_LANE_STAT1, TXDCLK_PCLK_EN,
COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT);
if (ret)
dev_err(lane->dev, "Failed to lock USB3 PLL\n");
return ret;
}
static int
mvebu_a3700_comphy_pcie_power_on(struct mvebu_a3700_comphy_lane *lane)
{
u32 mask, data, ref_clk;
int ret;
/* Configure phy selector for PCIe */
ret = mvebu_a3700_comphy_set_phy_selector(lane);
if (ret)
return ret;
/* 1. Enable max PLL. */
comphy_lane_reg_set(lane, COMPHY_PIPE_LANE_CFG1,
USE_MAX_PLL_RATE_EN, USE_MAX_PLL_RATE_EN);
/* 2. Select 20 bit SERDES interface. */
comphy_lane_reg_set(lane, COMPHY_PIPE_CLK_SRC_LO,
CFG_SEL_20B, CFG_SEL_20B);
/* 3. Force to use reg setting for PCIe mode */
comphy_lane_reg_set(lane, COMPHY_MISC_CTRL1,
SEL_BITS_PCIE_FORCE, SEL_BITS_PCIE_FORCE);
/* 4. Change RX wait */
data = CFG_PM_RXDEN_WAIT_1_UNIT | CFG_PM_RXDLOZ_WAIT_12_UNIT;
mask = CFG_PM_OSCCLK_WAIT_MASK | CFG_PM_RXDEN_WAIT_MASK |
CFG_PM_RXDLOZ_WAIT_MASK;
comphy_lane_reg_set(lane, COMPHY_PIPE_PWR_MGM_TIM1, data, mask);
/* 5. Enable idle sync */
comphy_lane_reg_set(lane, COMPHY_IDLE_SYNC_EN,
IDLE_SYNC_EN, IDLE_SYNC_EN);
/* 6. Enable the output of 100M/125M/500M clock */
data = CLK500M_EN | TXDCLK_2X_SEL | CLK100M_125M_EN;
mask = data;
comphy_lane_reg_set(lane, COMPHY_MISC_CTRL0, data, mask);
/*
* 7. Enable TX, PCIE global register, 0xd0074814, it is done in
* PCI-E driver
*/
/*
* 8. Check crystal jumper setting and program the Power and PLL
* Control accordingly
*/
if (lane->priv->xtal_is_40m)
ref_clk = REF_FREF_SEL_PCIE_USB3_40MHZ;
else
ref_clk = REF_FREF_SEL_PCIE_USB3_25MHZ;
data = PU_IVREF_BIT | PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT |
PU_TX_INTP_BIT | PU_DFE_BIT | COMPHY_MODE_PCIE | ref_clk;
mask = 0xFFFF;
comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, data, mask);
/* 9. Override Speed_PLL value and use MAC PLL */
comphy_lane_reg_set(lane, COMPHY_KVCO_CAL_CTRL,
SPEED_PLL_VALUE_16 | USE_MAX_PLL_RATE_BIT,
0xFFFF);
/* 10. Check the Polarity invert bit */
data = 0x0;
if (lane->invert_tx)
data |= TXD_INVERT_BIT;
if (lane->invert_rx)
data |= RXD_INVERT_BIT;
mask = TXD_INVERT_BIT | RXD_INVERT_BIT;
comphy_lane_reg_set(lane, COMPHY_SYNC_PATTERN, data, mask);
/* 11. Release SW reset */
data = MODE_CORE_CLK_FREQ_SEL | MODE_PIPE_WIDTH_32;
mask = data | PIPE_SOFT_RESET | MODE_REFDIV_MASK;
comphy_lane_reg_set(lane, COMPHY_PIPE_RST_CLK_CTRL, data, mask);
/* Wait for > 55 us to allow PCLK be enabled */
udelay(PLL_SET_DELAY_US);
ret = comphy_lane_reg_poll(lane, COMPHY_PIPE_LANE_STAT1, TXDCLK_PCLK_EN,
COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT);
if (ret)
dev_err(lane->dev, "Failed to lock PCIE PLL\n");
return ret;
}
static void
mvebu_a3700_comphy_sata_power_off(struct mvebu_a3700_comphy_lane *lane)
{
/* Set phy isolation mode */
comphy_lane_reg_set(lane, COMPHY_ISOLATION_CTRL,
PHY_ISOLATE_MODE, PHY_ISOLATE_MODE);
/* Power off PLL, Tx, Rx */
comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL,
0x0, PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT);
}
static void
mvebu_a3700_comphy_ethernet_power_off(struct mvebu_a3700_comphy_lane *lane)
{
u32 mask, data;
data = PIN_RESET_CORE_BIT | PIN_RESET_COMPHY_BIT | PIN_PU_IVREF_BIT |
PHY_RX_INIT_BIT;
mask = data;
comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, data, mask);
}
static void
mvebu_a3700_comphy_pcie_power_off(struct mvebu_a3700_comphy_lane *lane)
{
/* Power off PLL, Tx, Rx */
comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL,
0x0, PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT);
}
static void mvebu_a3700_comphy_usb3_power_off(struct mvebu_a3700_comphy_lane *lane)
{
/*
* The USB3 MAC sets the USB3 PHY to low state, so we do not
* need to power off USB3 PHY again.
*/
}
static bool mvebu_a3700_comphy_check_mode(int lane,
enum phy_mode mode,
int submode)
{
int i, n = ARRAY_SIZE(mvebu_a3700_comphy_modes);
/* Unused PHY mux value is 0x0 */
if (mode == PHY_MODE_INVALID)
return false;
for (i = 0; i < n; i++) {
if (mvebu_a3700_comphy_modes[i].lane == lane &&
mvebu_a3700_comphy_modes[i].mode == mode &&
mvebu_a3700_comphy_modes[i].submode == submode)
break;
}
if (i == n)
return false;
return true;
}
static int mvebu_a3700_comphy_set_mode(struct phy *phy, enum phy_mode mode,
int submode)
{
struct mvebu_a3700_comphy_lane *lane = phy_get_drvdata(phy);
if (!mvebu_a3700_comphy_check_mode(lane->id, mode, submode)) {
dev_err(lane->dev, "invalid COMPHY mode\n");
return -EINVAL;
}
/* Mode cannot be changed while the PHY is powered on */
if (phy->power_count &&
(lane->mode != mode || lane->submode != submode))
return -EBUSY;
/* Just remember the mode, ->power_on() will do the real setup */
lane->mode = mode;
lane->submode = submode;
return 0;
}
static int mvebu_a3700_comphy_power_on(struct phy *phy)
{
struct mvebu_a3700_comphy_lane *lane = phy_get_drvdata(phy);
if (!mvebu_a3700_comphy_check_mode(lane->id, lane->mode,
lane->submode)) {
dev_err(lane->dev, "invalid COMPHY mode\n");
return -EINVAL;
}
switch (lane->mode) {
case PHY_MODE_USB_HOST_SS:
dev_dbg(lane->dev, "set lane %d to USB3 host mode\n", lane->id);
return mvebu_a3700_comphy_usb3_power_on(lane);
case PHY_MODE_SATA:
dev_dbg(lane->dev, "set lane %d to SATA mode\n", lane->id);
return mvebu_a3700_comphy_sata_power_on(lane);
case PHY_MODE_ETHERNET:
dev_dbg(lane->dev, "set lane %d to Ethernet mode\n", lane->id);
return mvebu_a3700_comphy_ethernet_power_on(lane);
case PHY_MODE_PCIE:
dev_dbg(lane->dev, "set lane %d to PCIe mode\n", lane->id);
return mvebu_a3700_comphy_pcie_power_on(lane);
default:
dev_err(lane->dev, "unsupported PHY mode (%d)\n", lane->mode);
return -EOPNOTSUPP;
}
}
static int mvebu_a3700_comphy_power_off(struct phy *phy)
{
struct mvebu_a3700_comphy_lane *lane = phy_get_drvdata(phy);
switch (lane->id) {
case 0:
mvebu_a3700_comphy_usb3_power_off(lane);
mvebu_a3700_comphy_ethernet_power_off(lane);
return 0;
case 1:
mvebu_a3700_comphy_pcie_power_off(lane);
mvebu_a3700_comphy_ethernet_power_off(lane);
return 0;
case 2:
mvebu_a3700_comphy_usb3_power_off(lane);
mvebu_a3700_comphy_sata_power_off(lane);
return 0;
default:
dev_err(lane->dev, "invalid COMPHY mode\n");
return -EINVAL;
}
}
static const struct phy_ops mvebu_a3700_comphy_ops = {
.power_on = mvebu_a3700_comphy_power_on,
.power_off = mvebu_a3700_comphy_power_off,
.set_mode = mvebu_a3700_comphy_set_mode,
.owner = THIS_MODULE,
};
static struct phy *mvebu_a3700_comphy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct mvebu_a3700_comphy_lane *lane;
unsigned int port;
struct phy *phy;
phy = of_phy_simple_xlate(dev, args);
if (IS_ERR(phy))
return phy;
lane = phy_get_drvdata(phy);
port = args->args[0];
if (port != 0 && (port != 1 || lane->id != 0)) {
dev_err(lane->dev, "invalid port number %u\n", port);
return ERR_PTR(-EINVAL);
}
lane->invert_tx = args->args[1] & BIT(0);
lane->invert_rx = args->args[1] & BIT(1);
return phy;
}
static int mvebu_a3700_comphy_probe(struct platform_device *pdev)
{
struct mvebu_a3700_comphy_priv *priv;
struct phy_provider *provider;
struct device_node *child;
struct resource *res;
struct clk *clk;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
spin_lock_init(&priv->lock);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "comphy");
priv->comphy_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->comphy_regs))
return PTR_ERR(priv->comphy_regs);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"lane1_pcie_gbe");
priv->lane1_phy_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->lane1_phy_regs))
return PTR_ERR(priv->lane1_phy_regs);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"lane0_usb3_gbe");
priv->lane0_phy_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->lane0_phy_regs))
return PTR_ERR(priv->lane0_phy_regs);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"lane2_sata_usb3");
priv->lane2_phy_indirect = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->lane2_phy_indirect))
return PTR_ERR(priv->lane2_phy_indirect);
/*
* Driver needs to know if reference xtal clock is 40MHz or 25MHz.
* Old DT bindings do not have xtal clk present. So do not fail here
* and expects that default 25MHz reference clock is used.
*/
clk = clk_get(&pdev->dev, "xtal");
if (IS_ERR(clk)) {
if (PTR_ERR(clk) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_warn(&pdev->dev, "missing 'xtal' clk (%ld)\n",
PTR_ERR(clk));
} else {
ret = clk_prepare_enable(clk);
if (ret) {
dev_warn(&pdev->dev, "enabling xtal clk failed (%d)\n",
ret);
} else {
if (clk_get_rate(clk) == 40000000)
priv->xtal_is_40m = true;
clk_disable_unprepare(clk);
}
clk_put(clk);
}
dev_set_drvdata(&pdev->dev, priv);
for_each_available_child_of_node(pdev->dev.of_node, child) {
struct mvebu_a3700_comphy_lane *lane;
struct phy *phy;
int ret;
u32 lane_id;
ret = of_property_read_u32(child, "reg", &lane_id);
if (ret < 0) {
dev_err(&pdev->dev, "missing 'reg' property (%d)\n",
ret);
continue;
}
if (lane_id >= 3) {
dev_err(&pdev->dev, "invalid 'reg' property\n");
continue;
}
lane = devm_kzalloc(&pdev->dev, sizeof(*lane), GFP_KERNEL);
if (!lane) {
of_node_put(child);
return -ENOMEM;
}
phy = devm_phy_create(&pdev->dev, child,
&mvebu_a3700_comphy_ops);
if (IS_ERR(phy)) {
of_node_put(child);
return PTR_ERR(phy);
}
lane->priv = priv;
lane->dev = &pdev->dev;
lane->mode = PHY_MODE_INVALID;
lane->submode = PHY_INTERFACE_MODE_NA;
lane->id = lane_id;
lane->invert_tx = false;
lane->invert_rx = false;
phy_set_drvdata(phy, lane);
/*
* To avoid relying on the bootloader/firmware configuration,
* power off all comphys.
*/
mvebu_a3700_comphy_power_off(phy);
}
provider = devm_of_phy_provider_register(&pdev->dev,
mvebu_a3700_comphy_xlate);
return PTR_ERR_OR_ZERO(provider);
}
static const struct of_device_id mvebu_a3700_comphy_of_match_table[] = {
{ .compatible = "marvell,comphy-a3700" },
{ },
};
MODULE_DEVICE_TABLE(of, mvebu_a3700_comphy_of_match_table);
static struct platform_driver mvebu_a3700_comphy_driver = {
.probe = mvebu_a3700_comphy_probe,
.driver = {
.name = "mvebu-a3700-comphy",
.of_match_table = mvebu_a3700_comphy_of_match_table,
},
};
module_platform_driver(mvebu_a3700_comphy_driver);
MODULE_AUTHOR("Miquèl Raynal <[email protected]>");
MODULE_AUTHOR("Pali Rohár <[email protected]>");
MODULE_AUTHOR("Marek Behún <[email protected]>");
MODULE_DESCRIPTION("Common PHY driver for A3700");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/marvell/phy-mvebu-a3700-comphy.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* phy-mvebu-sata.c: SATA Phy driver for the Marvell mvebu SoCs.
*
* Copyright (C) 2013 Andrew Lunn <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/clk.h>
#include <linux/phy/phy.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
struct priv {
struct clk *clk;
void __iomem *base;
};
#define SATA_PHY_MODE_2 0x0330
#define MODE_2_FORCE_PU_TX BIT(0)
#define MODE_2_FORCE_PU_RX BIT(1)
#define MODE_2_PU_PLL BIT(2)
#define MODE_2_PU_IVREF BIT(3)
#define SATA_IF_CTRL 0x0050
#define CTRL_PHY_SHUTDOWN BIT(9)
static int phy_mvebu_sata_power_on(struct phy *phy)
{
struct priv *priv = phy_get_drvdata(phy);
u32 reg;
clk_prepare_enable(priv->clk);
/* Enable PLL and IVREF */
reg = readl(priv->base + SATA_PHY_MODE_2);
reg |= (MODE_2_FORCE_PU_TX | MODE_2_FORCE_PU_RX |
MODE_2_PU_PLL | MODE_2_PU_IVREF);
writel(reg , priv->base + SATA_PHY_MODE_2);
/* Enable PHY */
reg = readl(priv->base + SATA_IF_CTRL);
reg &= ~CTRL_PHY_SHUTDOWN;
writel(reg, priv->base + SATA_IF_CTRL);
clk_disable_unprepare(priv->clk);
return 0;
}
static int phy_mvebu_sata_power_off(struct phy *phy)
{
struct priv *priv = phy_get_drvdata(phy);
u32 reg;
clk_prepare_enable(priv->clk);
/* Disable PLL and IVREF */
reg = readl(priv->base + SATA_PHY_MODE_2);
reg &= ~(MODE_2_FORCE_PU_TX | MODE_2_FORCE_PU_RX |
MODE_2_PU_PLL | MODE_2_PU_IVREF);
writel(reg, priv->base + SATA_PHY_MODE_2);
/* Disable PHY */
reg = readl(priv->base + SATA_IF_CTRL);
reg |= CTRL_PHY_SHUTDOWN;
writel(reg, priv->base + SATA_IF_CTRL);
clk_disable_unprepare(priv->clk);
return 0;
}
static const struct phy_ops phy_mvebu_sata_ops = {
.power_on = phy_mvebu_sata_power_on,
.power_off = phy_mvebu_sata_power_off,
.owner = THIS_MODULE,
};
static int phy_mvebu_sata_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct priv *priv;
struct phy *phy;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
priv->clk = devm_clk_get(&pdev->dev, "sata");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
phy = devm_phy_create(&pdev->dev, NULL, &phy_mvebu_sata_ops);
if (IS_ERR(phy))
return PTR_ERR(phy);
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(&pdev->dev,
of_phy_simple_xlate);
if (IS_ERR(phy_provider))
return PTR_ERR(phy_provider);
/* The boot loader may of left it on. Turn it off. */
phy_mvebu_sata_power_off(phy);
return 0;
}
static const struct of_device_id phy_mvebu_sata_of_match[] = {
{ .compatible = "marvell,mvebu-sata-phy" },
{ },
};
static struct platform_driver phy_mvebu_sata_driver = {
.probe = phy_mvebu_sata_probe,
.driver = {
.name = "phy-mvebu-sata",
.of_match_table = phy_mvebu_sata_of_match,
}
};
builtin_platform_driver(phy_mvebu_sata_driver);
| linux-master | drivers/phy/marvell/phy-mvebu-sata.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* USB cluster support for Armada 375 platform.
*
* Copyright (C) 2014 Marvell
*
* Gregory CLEMENT <[email protected]>
*
* Armada 375 comes with an USB2 host and device controller and an
* USB3 controller. The USB cluster control register allows to manage
* common features of both USB controllers.
*/
#include <dt-bindings/phy/phy.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#define USB2_PHY_CONFIG_DISABLE BIT(0)
struct armada375_cluster_phy {
struct phy *phy;
void __iomem *reg;
bool use_usb3;
int phy_provided;
};
static int armada375_usb_phy_init(struct phy *phy)
{
struct armada375_cluster_phy *cluster_phy;
u32 reg;
cluster_phy = phy_get_drvdata(phy);
if (!cluster_phy)
return -ENODEV;
reg = readl(cluster_phy->reg);
if (cluster_phy->use_usb3)
reg |= USB2_PHY_CONFIG_DISABLE;
else
reg &= ~USB2_PHY_CONFIG_DISABLE;
writel(reg, cluster_phy->reg);
return 0;
}
static const struct phy_ops armada375_usb_phy_ops = {
.init = armada375_usb_phy_init,
.owner = THIS_MODULE,
};
/*
* Only one controller can use this PHY. We shouldn't have the case
* when two controllers want to use this PHY. But if this case occurs
* then we provide a phy to the first one and return an error for the
* next one. This error has also to be an error returned by
* devm_phy_optional_get() so different from ENODEV for USB2. In the
* USB3 case it still optional and we use ENODEV.
*/
static struct phy *armada375_usb_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct armada375_cluster_phy *cluster_phy = dev_get_drvdata(dev);
if (!cluster_phy)
return ERR_PTR(-ENODEV);
/*
* Either the phy had never been requested and then the first
* usb claiming it can get it, or it had already been
* requested in this case, we only allow to use it with the
* same configuration.
*/
if (WARN_ON((cluster_phy->phy_provided != PHY_NONE) &&
(cluster_phy->phy_provided != args->args[0]))) {
dev_err(dev, "This PHY has already been provided!\n");
dev_err(dev, "Check your device tree, only one controller can use it\n.");
if (args->args[0] == PHY_TYPE_USB2)
return ERR_PTR(-EBUSY);
else
return ERR_PTR(-ENODEV);
}
if (args->args[0] == PHY_TYPE_USB2)
cluster_phy->use_usb3 = false;
else if (args->args[0] == PHY_TYPE_USB3)
cluster_phy->use_usb3 = true;
else {
dev_err(dev, "Invalid PHY mode\n");
return ERR_PTR(-ENODEV);
}
/* Store which phy mode is used for next test */
cluster_phy->phy_provided = args->args[0];
return cluster_phy->phy;
}
static int armada375_usb_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy *phy;
struct phy_provider *phy_provider;
void __iomem *usb_cluster_base;
struct armada375_cluster_phy *cluster_phy;
cluster_phy = devm_kzalloc(dev, sizeof(*cluster_phy), GFP_KERNEL);
if (!cluster_phy)
return -ENOMEM;
usb_cluster_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(usb_cluster_base))
return PTR_ERR(usb_cluster_base);
phy = devm_phy_create(dev, NULL, &armada375_usb_phy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(phy);
}
cluster_phy->phy = phy;
cluster_phy->reg = usb_cluster_base;
dev_set_drvdata(dev, cluster_phy);
phy_set_drvdata(phy, cluster_phy);
phy_provider = devm_of_phy_provider_register(&pdev->dev,
armada375_usb_phy_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id of_usb_cluster_table[] = {
{ .compatible = "marvell,armada-375-usb-cluster", },
{ /* end of list */ },
};
static struct platform_driver armada375_usb_phy_driver = {
.probe = armada375_usb_phy_probe,
.driver = {
.of_match_table = of_usb_cluster_table,
.name = "armada-375-usb-cluster",
}
};
builtin_platform_driver(armada375_usb_phy_driver);
| linux-master | drivers/phy/marvell/phy-armada375-usb2.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2011 Marvell International Ltd. All rights reserved.
* Copyright (C) 2018,2019 Lubomir Rintel <[email protected]>
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/soc/mmp/cputype.h>
#define USB2_PLL_REG0 0x4
#define USB2_PLL_REG1 0x8
#define USB2_TX_REG0 0x10
#define USB2_TX_REG1 0x14
#define USB2_TX_REG2 0x18
#define USB2_RX_REG0 0x20
#define USB2_RX_REG1 0x24
#define USB2_RX_REG2 0x28
#define USB2_ANA_REG0 0x30
#define USB2_ANA_REG1 0x34
#define USB2_ANA_REG2 0x38
#define USB2_DIG_REG0 0x3C
#define USB2_DIG_REG1 0x40
#define USB2_DIG_REG2 0x44
#define USB2_DIG_REG3 0x48
#define USB2_TEST_REG0 0x4C
#define USB2_TEST_REG1 0x50
#define USB2_TEST_REG2 0x54
#define USB2_CHARGER_REG0 0x58
#define USB2_OTG_REG0 0x5C
#define USB2_PHY_MON0 0x60
#define USB2_RESETVE_REG0 0x64
#define USB2_ICID_REG0 0x78
#define USB2_ICID_REG1 0x7C
/* USB2_PLL_REG0 */
/* This is for Ax stepping */
#define USB2_PLL_FBDIV_SHIFT_MMP3 0
#define USB2_PLL_FBDIV_MASK_MMP3 (0xFF << 0)
#define USB2_PLL_REFDIV_SHIFT_MMP3 8
#define USB2_PLL_REFDIV_MASK_MMP3 (0xF << 8)
#define USB2_PLL_VDD12_SHIFT_MMP3 12
#define USB2_PLL_VDD18_SHIFT_MMP3 14
/* This is for B0 stepping */
#define USB2_PLL_FBDIV_SHIFT_MMP3_B0 0
#define USB2_PLL_REFDIV_SHIFT_MMP3_B0 9
#define USB2_PLL_VDD18_SHIFT_MMP3_B0 14
#define USB2_PLL_FBDIV_MASK_MMP3_B0 0x01FF
#define USB2_PLL_REFDIV_MASK_MMP3_B0 0x3E00
#define USB2_PLL_CAL12_SHIFT_MMP3 0
#define USB2_PLL_CALI12_MASK_MMP3 (0x3 << 0)
#define USB2_PLL_VCOCAL_START_SHIFT_MMP3 2
#define USB2_PLL_KVCO_SHIFT_MMP3 4
#define USB2_PLL_KVCO_MASK_MMP3 (0x7<<4)
#define USB2_PLL_ICP_SHIFT_MMP3 8
#define USB2_PLL_ICP_MASK_MMP3 (0x7<<8)
#define USB2_PLL_LOCK_BYPASS_SHIFT_MMP3 12
#define USB2_PLL_PU_PLL_SHIFT_MMP3 13
#define USB2_PLL_PU_PLL_MASK (0x1 << 13)
#define USB2_PLL_READY_MASK_MMP3 (0x1 << 15)
/* USB2_TX_REG0 */
#define USB2_TX_IMPCAL_VTH_SHIFT_MMP3 8
#define USB2_TX_IMPCAL_VTH_MASK_MMP3 (0x7 << 8)
#define USB2_TX_RCAL_START_SHIFT_MMP3 13
/* USB2_TX_REG1 */
#define USB2_TX_CK60_PHSEL_SHIFT_MMP3 0
#define USB2_TX_CK60_PHSEL_MASK_MMP3 (0xf << 0)
#define USB2_TX_AMP_SHIFT_MMP3 4
#define USB2_TX_AMP_MASK_MMP3 (0x7 << 4)
#define USB2_TX_VDD12_SHIFT_MMP3 8
#define USB2_TX_VDD12_MASK_MMP3 (0x3 << 8)
/* USB2_TX_REG2 */
#define USB2_TX_DRV_SLEWRATE_SHIFT 10
/* USB2_RX_REG0 */
#define USB2_RX_SQ_THRESH_SHIFT_MMP3 4
#define USB2_RX_SQ_THRESH_MASK_MMP3 (0xf << 4)
#define USB2_RX_SQ_LENGTH_SHIFT_MMP3 10
#define USB2_RX_SQ_LENGTH_MASK_MMP3 (0x3 << 10)
/* USB2_ANA_REG1*/
#define USB2_ANA_PU_ANA_SHIFT_MMP3 14
/* USB2_OTG_REG0 */
#define USB2_OTG_PU_OTG_SHIFT_MMP3 3
struct mmp3_usb_phy {
struct phy *phy;
void __iomem *base;
};
static unsigned int u2o_get(void __iomem *base, unsigned int offset)
{
return readl_relaxed(base + offset);
}
static void u2o_set(void __iomem *base, unsigned int offset,
unsigned int value)
{
u32 reg;
reg = readl_relaxed(base + offset);
reg |= value;
writel_relaxed(reg, base + offset);
readl_relaxed(base + offset);
}
static void u2o_clear(void __iomem *base, unsigned int offset,
unsigned int value)
{
u32 reg;
reg = readl_relaxed(base + offset);
reg &= ~value;
writel_relaxed(reg, base + offset);
readl_relaxed(base + offset);
}
static int mmp3_usb_phy_init(struct phy *phy)
{
struct mmp3_usb_phy *mmp3_usb_phy = phy_get_drvdata(phy);
void __iomem *base = mmp3_usb_phy->base;
if (cpu_is_mmp3_a0()) {
u2o_clear(base, USB2_PLL_REG0, (USB2_PLL_FBDIV_MASK_MMP3
| USB2_PLL_REFDIV_MASK_MMP3));
u2o_set(base, USB2_PLL_REG0,
0xd << USB2_PLL_REFDIV_SHIFT_MMP3
| 0xf0 << USB2_PLL_FBDIV_SHIFT_MMP3);
} else if (cpu_is_mmp3_b0()) {
u2o_clear(base, USB2_PLL_REG0, USB2_PLL_REFDIV_MASK_MMP3_B0
| USB2_PLL_FBDIV_MASK_MMP3_B0);
u2o_set(base, USB2_PLL_REG0,
0xd << USB2_PLL_REFDIV_SHIFT_MMP3_B0
| 0xf0 << USB2_PLL_FBDIV_SHIFT_MMP3_B0);
} else {
dev_err(&phy->dev, "unsupported silicon revision\n");
return -ENODEV;
}
u2o_clear(base, USB2_PLL_REG1, USB2_PLL_PU_PLL_MASK
| USB2_PLL_ICP_MASK_MMP3
| USB2_PLL_KVCO_MASK_MMP3
| USB2_PLL_CALI12_MASK_MMP3);
u2o_set(base, USB2_PLL_REG1, 1 << USB2_PLL_PU_PLL_SHIFT_MMP3
| 1 << USB2_PLL_LOCK_BYPASS_SHIFT_MMP3
| 3 << USB2_PLL_ICP_SHIFT_MMP3
| 3 << USB2_PLL_KVCO_SHIFT_MMP3
| 3 << USB2_PLL_CAL12_SHIFT_MMP3);
u2o_clear(base, USB2_TX_REG0, USB2_TX_IMPCAL_VTH_MASK_MMP3);
u2o_set(base, USB2_TX_REG0, 2 << USB2_TX_IMPCAL_VTH_SHIFT_MMP3);
u2o_clear(base, USB2_TX_REG1, USB2_TX_VDD12_MASK_MMP3
| USB2_TX_AMP_MASK_MMP3
| USB2_TX_CK60_PHSEL_MASK_MMP3);
u2o_set(base, USB2_TX_REG1, 3 << USB2_TX_VDD12_SHIFT_MMP3
| 4 << USB2_TX_AMP_SHIFT_MMP3
| 4 << USB2_TX_CK60_PHSEL_SHIFT_MMP3);
u2o_clear(base, USB2_TX_REG2, 3 << USB2_TX_DRV_SLEWRATE_SHIFT);
u2o_set(base, USB2_TX_REG2, 2 << USB2_TX_DRV_SLEWRATE_SHIFT);
u2o_clear(base, USB2_RX_REG0, USB2_RX_SQ_THRESH_MASK_MMP3);
u2o_set(base, USB2_RX_REG0, 0xa << USB2_RX_SQ_THRESH_SHIFT_MMP3);
u2o_set(base, USB2_ANA_REG1, 0x1 << USB2_ANA_PU_ANA_SHIFT_MMP3);
u2o_set(base, USB2_OTG_REG0, 0x1 << USB2_OTG_PU_OTG_SHIFT_MMP3);
return 0;
}
static int mmp3_usb_phy_calibrate(struct phy *phy)
{
struct mmp3_usb_phy *mmp3_usb_phy = phy_get_drvdata(phy);
void __iomem *base = mmp3_usb_phy->base;
int loops;
/*
* PLL VCO and TX Impedance Calibration Timing:
*
* _____________________________________
* PU __________|
* _____________________________
* VCOCAL START _________|
* ___
* REG_RCAL_START ________________| |________|_______
* | 200us | 400us | 40| 400us | USB PHY READY
*/
udelay(200);
u2o_set(base, USB2_PLL_REG1, 1 << USB2_PLL_VCOCAL_START_SHIFT_MMP3);
udelay(400);
u2o_set(base, USB2_TX_REG0, 1 << USB2_TX_RCAL_START_SHIFT_MMP3);
udelay(40);
u2o_clear(base, USB2_TX_REG0, 1 << USB2_TX_RCAL_START_SHIFT_MMP3);
udelay(400);
loops = 0;
while ((u2o_get(base, USB2_PLL_REG1) & USB2_PLL_READY_MASK_MMP3) == 0) {
mdelay(1);
loops++;
if (loops > 100) {
dev_err(&phy->dev, "PLL_READY not set after 100mS.\n");
return -ETIMEDOUT;
}
}
return 0;
}
static const struct phy_ops mmp3_usb_phy_ops = {
.init = mmp3_usb_phy_init,
.calibrate = mmp3_usb_phy_calibrate,
.owner = THIS_MODULE,
};
static const struct of_device_id mmp3_usb_phy_of_match[] = {
{ .compatible = "marvell,mmp3-usb-phy", },
{ },
};
MODULE_DEVICE_TABLE(of, mmp3_usb_phy_of_match);
static int mmp3_usb_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mmp3_usb_phy *mmp3_usb_phy;
struct phy_provider *provider;
mmp3_usb_phy = devm_kzalloc(dev, sizeof(*mmp3_usb_phy), GFP_KERNEL);
if (!mmp3_usb_phy)
return -ENOMEM;
mmp3_usb_phy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mmp3_usb_phy->base)) {
dev_err(dev, "failed to remap PHY regs\n");
return PTR_ERR(mmp3_usb_phy->base);
}
mmp3_usb_phy->phy = devm_phy_create(dev, NULL, &mmp3_usb_phy_ops);
if (IS_ERR(mmp3_usb_phy->phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(mmp3_usb_phy->phy);
}
phy_set_drvdata(mmp3_usb_phy->phy, mmp3_usb_phy);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(provider)) {
dev_err(dev, "failed to register PHY provider\n");
return PTR_ERR(provider);
}
return 0;
}
static struct platform_driver mmp3_usb_phy_driver = {
.probe = mmp3_usb_phy_probe,
.driver = {
.name = "mmp3-usb-phy",
.of_match_table = mmp3_usb_phy_of_match,
},
};
module_platform_driver(mmp3_usb_phy_driver);
MODULE_AUTHOR("Lubomir Rintel <[email protected]>");
MODULE_DESCRIPTION("Marvell MMP3 USB PHY Driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/marvell/phy-mmp3-usb.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Marvell
*
* Authors:
* Konstantin Porotchkin <[email protected]>
*
* Marvell CP110 UTMI PHY driver
*/
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/usb/of.h>
#include <linux/usb/otg.h>
#define UTMI_PHY_PORTS 2
/* CP110 UTMI register macro definetions */
#define SYSCON_USB_CFG_REG 0x420
#define USB_CFG_DEVICE_EN_MASK BIT(0)
#define USB_CFG_DEVICE_MUX_OFFSET 1
#define USB_CFG_DEVICE_MUX_MASK BIT(1)
#define USB_CFG_PLL_MASK BIT(25)
#define SYSCON_UTMI_CFG_REG(id) (0x440 + (id) * 4)
#define UTMI_PHY_CFG_PU_MASK BIT(5)
#define UTMI_PLL_CTRL_REG 0x0
#define PLL_REFDIV_OFFSET 0
#define PLL_REFDIV_MASK GENMASK(6, 0)
#define PLL_REFDIV_VAL 0x5
#define PLL_FBDIV_OFFSET 16
#define PLL_FBDIV_MASK GENMASK(24, 16)
#define PLL_FBDIV_VAL 0x60
#define PLL_SEL_LPFR_MASK GENMASK(29, 28)
#define PLL_RDY BIT(31)
#define UTMI_CAL_CTRL_REG 0x8
#define IMPCAL_VTH_OFFSET 8
#define IMPCAL_VTH_MASK GENMASK(10, 8)
#define IMPCAL_VTH_VAL 0x7
#define IMPCAL_DONE BIT(23)
#define PLLCAL_DONE BIT(31)
#define UTMI_TX_CH_CTRL_REG 0xC
#define DRV_EN_LS_OFFSET 12
#define DRV_EN_LS_MASK GENMASK(15, 12)
#define IMP_SEL_LS_OFFSET 16
#define IMP_SEL_LS_MASK GENMASK(19, 16)
#define TX_AMP_OFFSET 20
#define TX_AMP_MASK GENMASK(22, 20)
#define TX_AMP_VAL 0x4
#define UTMI_RX_CH_CTRL0_REG 0x14
#define SQ_DET_EN BIT(15)
#define SQ_ANA_DTC_SEL BIT(28)
#define UTMI_RX_CH_CTRL1_REG 0x18
#define SQ_AMP_CAL_OFFSET 0
#define SQ_AMP_CAL_MASK GENMASK(2, 0)
#define SQ_AMP_CAL_VAL 1
#define SQ_AMP_CAL_EN BIT(3)
#define UTMI_CTRL_STATUS0_REG 0x24
#define SUSPENDM BIT(22)
#define TEST_SEL BIT(25)
#define UTMI_CHGDTC_CTRL_REG 0x38
#define VDAT_OFFSET 8
#define VDAT_MASK GENMASK(9, 8)
#define VDAT_VAL 1
#define VSRC_OFFSET 10
#define VSRC_MASK GENMASK(11, 10)
#define VSRC_VAL 1
#define PLL_LOCK_DELAY_US 10000
#define PLL_LOCK_TIMEOUT_US 1000000
#define PORT_REGS(p) ((p)->priv->regs + (p)->id * 0x1000)
/**
* struct mvebu_cp110_utmi - PHY driver data
*
* @regs: PHY registers
* @syscon: Regmap with system controller registers
* @dev: device driver handle
* @ops: phy ops
*/
struct mvebu_cp110_utmi {
void __iomem *regs;
struct regmap *syscon;
struct device *dev;
const struct phy_ops *ops;
};
/**
* struct mvebu_cp110_utmi_port - PHY port data
*
* @priv: PHY driver data
* @id: PHY port ID
* @dr_mode: PHY connection: USB_DR_MODE_HOST or USB_DR_MODE_PERIPHERAL
*/
struct mvebu_cp110_utmi_port {
struct mvebu_cp110_utmi *priv;
u32 id;
enum usb_dr_mode dr_mode;
};
static void mvebu_cp110_utmi_port_setup(struct mvebu_cp110_utmi_port *port)
{
u32 reg;
/*
* Setup PLL.
* The reference clock is the frequency of quartz resonator
* connected to pins REFCLK_XIN and REFCLK_XOUT of the SoC.
* Register init values are matching the 40MHz default clock.
* The crystal used for all platform boards is now 25MHz.
* See the functional specification for details.
*/
reg = readl(PORT_REGS(port) + UTMI_PLL_CTRL_REG);
reg &= ~(PLL_REFDIV_MASK | PLL_FBDIV_MASK | PLL_SEL_LPFR_MASK);
reg |= (PLL_REFDIV_VAL << PLL_REFDIV_OFFSET) |
(PLL_FBDIV_VAL << PLL_FBDIV_OFFSET);
writel(reg, PORT_REGS(port) + UTMI_PLL_CTRL_REG);
/* Impedance Calibration Threshold Setting */
reg = readl(PORT_REGS(port) + UTMI_CAL_CTRL_REG);
reg &= ~IMPCAL_VTH_MASK;
reg |= IMPCAL_VTH_VAL << IMPCAL_VTH_OFFSET;
writel(reg, PORT_REGS(port) + UTMI_CAL_CTRL_REG);
/* Set LS TX driver strength coarse control */
reg = readl(PORT_REGS(port) + UTMI_TX_CH_CTRL_REG);
reg &= ~TX_AMP_MASK;
reg |= TX_AMP_VAL << TX_AMP_OFFSET;
writel(reg, PORT_REGS(port) + UTMI_TX_CH_CTRL_REG);
/* Disable SQ and enable analog squelch detect */
reg = readl(PORT_REGS(port) + UTMI_RX_CH_CTRL0_REG);
reg &= ~SQ_DET_EN;
reg |= SQ_ANA_DTC_SEL;
writel(reg, PORT_REGS(port) + UTMI_RX_CH_CTRL0_REG);
/*
* Set External squelch calibration number and
* enable the External squelch calibration
*/
reg = readl(PORT_REGS(port) + UTMI_RX_CH_CTRL1_REG);
reg &= ~SQ_AMP_CAL_MASK;
reg |= (SQ_AMP_CAL_VAL << SQ_AMP_CAL_OFFSET) | SQ_AMP_CAL_EN;
writel(reg, PORT_REGS(port) + UTMI_RX_CH_CTRL1_REG);
/*
* Set Control VDAT Reference Voltage - 0.325V and
* Control VSRC Reference Voltage - 0.6V
*/
reg = readl(PORT_REGS(port) + UTMI_CHGDTC_CTRL_REG);
reg &= ~(VDAT_MASK | VSRC_MASK);
reg |= (VDAT_VAL << VDAT_OFFSET) | (VSRC_VAL << VSRC_OFFSET);
writel(reg, PORT_REGS(port) + UTMI_CHGDTC_CTRL_REG);
}
static int mvebu_cp110_utmi_phy_power_off(struct phy *phy)
{
struct mvebu_cp110_utmi_port *port = phy_get_drvdata(phy);
struct mvebu_cp110_utmi *utmi = port->priv;
int i;
/* Power down UTMI PHY port */
regmap_clear_bits(utmi->syscon, SYSCON_UTMI_CFG_REG(port->id),
UTMI_PHY_CFG_PU_MASK);
for (i = 0; i < UTMI_PHY_PORTS; i++) {
int test = regmap_test_bits(utmi->syscon,
SYSCON_UTMI_CFG_REG(i),
UTMI_PHY_CFG_PU_MASK);
/* skip PLL shutdown if there are active UTMI PHY ports */
if (test != 0)
return 0;
}
/* PLL Power down if all UTMI PHYs are down */
regmap_clear_bits(utmi->syscon, SYSCON_USB_CFG_REG, USB_CFG_PLL_MASK);
return 0;
}
static int mvebu_cp110_utmi_phy_power_on(struct phy *phy)
{
struct mvebu_cp110_utmi_port *port = phy_get_drvdata(phy);
struct mvebu_cp110_utmi *utmi = port->priv;
struct device *dev = &phy->dev;
int ret;
u32 reg;
/* It is necessary to power off UTMI before configuration */
ret = mvebu_cp110_utmi_phy_power_off(phy);
if (ret) {
dev_err(dev, "UTMI power OFF before power ON failed\n");
return ret;
}
/*
* If UTMI port is connected to USB Device controller,
* configure the USB MUX prior to UTMI PHY initialization.
* The single USB device controller can be connected
* to UTMI0 or to UTMI1 PHY port, but not to both.
*/
if (port->dr_mode == USB_DR_MODE_PERIPHERAL) {
regmap_update_bits(utmi->syscon, SYSCON_USB_CFG_REG,
USB_CFG_DEVICE_EN_MASK | USB_CFG_DEVICE_MUX_MASK,
USB_CFG_DEVICE_EN_MASK |
(port->id << USB_CFG_DEVICE_MUX_OFFSET));
}
/* Set Test suspendm mode and enable Test UTMI select */
reg = readl(PORT_REGS(port) + UTMI_CTRL_STATUS0_REG);
reg |= SUSPENDM | TEST_SEL;
writel(reg, PORT_REGS(port) + UTMI_CTRL_STATUS0_REG);
/* Wait for UTMI power down */
mdelay(1);
/* PHY port setup first */
mvebu_cp110_utmi_port_setup(port);
/* Power UP UTMI PHY */
regmap_set_bits(utmi->syscon, SYSCON_UTMI_CFG_REG(port->id),
UTMI_PHY_CFG_PU_MASK);
/* Disable Test UTMI select */
reg = readl(PORT_REGS(port) + UTMI_CTRL_STATUS0_REG);
reg &= ~TEST_SEL;
writel(reg, PORT_REGS(port) + UTMI_CTRL_STATUS0_REG);
/* Wait for impedance calibration */
ret = readl_poll_timeout(PORT_REGS(port) + UTMI_CAL_CTRL_REG, reg,
reg & IMPCAL_DONE,
PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US);
if (ret) {
dev_err(dev, "Failed to end UTMI impedance calibration\n");
return ret;
}
/* Wait for PLL calibration */
ret = readl_poll_timeout(PORT_REGS(port) + UTMI_CAL_CTRL_REG, reg,
reg & PLLCAL_DONE,
PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US);
if (ret) {
dev_err(dev, "Failed to end UTMI PLL calibration\n");
return ret;
}
/* Wait for PLL ready */
ret = readl_poll_timeout(PORT_REGS(port) + UTMI_PLL_CTRL_REG, reg,
reg & PLL_RDY,
PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US);
if (ret) {
dev_err(dev, "PLL is not ready\n");
return ret;
}
/* PLL Power up */
regmap_set_bits(utmi->syscon, SYSCON_USB_CFG_REG, USB_CFG_PLL_MASK);
return 0;
}
static const struct phy_ops mvebu_cp110_utmi_phy_ops = {
.power_on = mvebu_cp110_utmi_phy_power_on,
.power_off = mvebu_cp110_utmi_phy_power_off,
.owner = THIS_MODULE,
};
static const struct of_device_id mvebu_cp110_utmi_of_match[] = {
{ .compatible = "marvell,cp110-utmi-phy" },
{},
};
MODULE_DEVICE_TABLE(of, mvebu_cp110_utmi_of_match);
static int mvebu_cp110_utmi_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mvebu_cp110_utmi *utmi;
struct phy_provider *provider;
struct device_node *child;
u32 usb_devices = 0;
utmi = devm_kzalloc(dev, sizeof(*utmi), GFP_KERNEL);
if (!utmi)
return -ENOMEM;
utmi->dev = dev;
/* Get system controller region */
utmi->syscon = syscon_regmap_lookup_by_phandle(dev->of_node,
"marvell,system-controller");
if (IS_ERR(utmi->syscon)) {
dev_err(dev, "Missing UTMI system controller\n");
return PTR_ERR(utmi->syscon);
}
/* Get UTMI memory region */
utmi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(utmi->regs))
return PTR_ERR(utmi->regs);
for_each_available_child_of_node(dev->of_node, child) {
struct mvebu_cp110_utmi_port *port;
struct phy *phy;
int ret;
u32 port_id;
ret = of_property_read_u32(child, "reg", &port_id);
if ((ret < 0) || (port_id >= UTMI_PHY_PORTS)) {
dev_err(dev,
"invalid 'reg' property on child %pOF\n",
child);
continue;
}
port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL);
if (!port) {
of_node_put(child);
return -ENOMEM;
}
port->dr_mode = of_usb_get_dr_mode_by_phy(child, -1);
if ((port->dr_mode != USB_DR_MODE_HOST) &&
(port->dr_mode != USB_DR_MODE_PERIPHERAL)) {
dev_err(&pdev->dev,
"Missing dual role setting of the port%d, will use HOST mode\n",
port_id);
port->dr_mode = USB_DR_MODE_HOST;
}
if (port->dr_mode == USB_DR_MODE_PERIPHERAL) {
usb_devices++;
if (usb_devices > 1) {
dev_err(dev,
"Single USB device allowed! Port%d will use HOST mode\n",
port_id);
port->dr_mode = USB_DR_MODE_HOST;
}
}
/* Retrieve PHY capabilities */
utmi->ops = &mvebu_cp110_utmi_phy_ops;
/* Instantiate the PHY */
phy = devm_phy_create(dev, child, utmi->ops);
if (IS_ERR(phy)) {
dev_err(dev, "Failed to create the UTMI PHY\n");
of_node_put(child);
return PTR_ERR(phy);
}
port->priv = utmi;
port->id = port_id;
phy_set_drvdata(phy, port);
/* Ensure the PHY is powered off */
mvebu_cp110_utmi_phy_power_off(phy);
}
dev_set_drvdata(dev, utmi);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(provider);
}
static struct platform_driver mvebu_cp110_utmi_driver = {
.probe = mvebu_cp110_utmi_phy_probe,
.driver = {
.name = "mvebu-cp110-utmi-phy",
.of_match_table = mvebu_cp110_utmi_of_match,
},
};
module_platform_driver(mvebu_cp110_utmi_driver);
MODULE_AUTHOR("Konstatin Porotchkin <[email protected]>");
MODULE_DESCRIPTION("Marvell Armada CP110 UTMI PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/marvell/phy-mvebu-cp110-utmi.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Marvell Berlin SATA PHY driver
*
* Copyright (C) 2014 Marvell Technology Group Ltd.
*
* Antoine Ténart <[email protected]>
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#define HOST_VSA_ADDR 0x0
#define HOST_VSA_DATA 0x4
#define PORT_SCR_CTL 0x2c
#define PORT_VSR_ADDR 0x78
#define PORT_VSR_DATA 0x7c
#define CONTROL_REGISTER 0x0
#define MBUS_SIZE_CONTROL 0x4
#define POWER_DOWN_PHY0 BIT(6)
#define POWER_DOWN_PHY1 BIT(14)
#define MBUS_WRITE_REQUEST_SIZE_128 (BIT(2) << 16)
#define MBUS_READ_REQUEST_SIZE_128 (BIT(2) << 19)
#define BG2_PHY_BASE 0x080
#define BG2Q_PHY_BASE 0x200
/* register 0x01 */
#define REF_FREF_SEL_25 BIT(0)
#define PHY_BERLIN_MODE_SATA (0x0 << 5)
/* register 0x02 */
#define USE_MAX_PLL_RATE BIT(12)
/* register 0x23 */
#define DATA_BIT_WIDTH_10 (0x0 << 10)
#define DATA_BIT_WIDTH_20 (0x1 << 10)
#define DATA_BIT_WIDTH_40 (0x2 << 10)
/* register 0x25 */
#define PHY_GEN_MAX_1_5 (0x0 << 10)
#define PHY_GEN_MAX_3_0 (0x1 << 10)
#define PHY_GEN_MAX_6_0 (0x2 << 10)
struct phy_berlin_desc {
struct phy *phy;
u32 power_bit;
unsigned index;
};
struct phy_berlin_priv {
void __iomem *base;
spinlock_t lock;
struct clk *clk;
struct phy_berlin_desc **phys;
unsigned nphys;
u32 phy_base;
};
static inline void phy_berlin_sata_reg_setbits(void __iomem *ctrl_reg,
u32 phy_base, u32 reg, u32 mask, u32 val)
{
u32 regval;
/* select register */
writel(phy_base + reg, ctrl_reg + PORT_VSR_ADDR);
/* set bits */
regval = readl(ctrl_reg + PORT_VSR_DATA);
regval &= ~mask;
regval |= val;
writel(regval, ctrl_reg + PORT_VSR_DATA);
}
static int phy_berlin_sata_power_on(struct phy *phy)
{
struct phy_berlin_desc *desc = phy_get_drvdata(phy);
struct phy_berlin_priv *priv = dev_get_drvdata(phy->dev.parent);
void __iomem *ctrl_reg = priv->base + 0x60 + (desc->index * 0x80);
u32 regval;
clk_prepare_enable(priv->clk);
spin_lock(&priv->lock);
/* Power on PHY */
writel(CONTROL_REGISTER, priv->base + HOST_VSA_ADDR);
regval = readl(priv->base + HOST_VSA_DATA);
regval &= ~desc->power_bit;
writel(regval, priv->base + HOST_VSA_DATA);
/* Configure MBus */
writel(MBUS_SIZE_CONTROL, priv->base + HOST_VSA_ADDR);
regval = readl(priv->base + HOST_VSA_DATA);
regval |= MBUS_WRITE_REQUEST_SIZE_128 | MBUS_READ_REQUEST_SIZE_128;
writel(regval, priv->base + HOST_VSA_DATA);
/* set PHY mode and ref freq to 25 MHz */
phy_berlin_sata_reg_setbits(ctrl_reg, priv->phy_base, 0x01,
0x00ff,
REF_FREF_SEL_25 | PHY_BERLIN_MODE_SATA);
/* set PHY up to 6 Gbps */
phy_berlin_sata_reg_setbits(ctrl_reg, priv->phy_base, 0x25,
0x0c00, PHY_GEN_MAX_6_0);
/* set 40 bits width */
phy_berlin_sata_reg_setbits(ctrl_reg, priv->phy_base, 0x23,
0x0c00, DATA_BIT_WIDTH_40);
/* use max pll rate */
phy_berlin_sata_reg_setbits(ctrl_reg, priv->phy_base, 0x02,
0x0000, USE_MAX_PLL_RATE);
/* set Gen3 controller speed */
regval = readl(ctrl_reg + PORT_SCR_CTL);
regval &= ~GENMASK(7, 4);
regval |= 0x30;
writel(regval, ctrl_reg + PORT_SCR_CTL);
spin_unlock(&priv->lock);
clk_disable_unprepare(priv->clk);
return 0;
}
static int phy_berlin_sata_power_off(struct phy *phy)
{
struct phy_berlin_desc *desc = phy_get_drvdata(phy);
struct phy_berlin_priv *priv = dev_get_drvdata(phy->dev.parent);
u32 regval;
clk_prepare_enable(priv->clk);
spin_lock(&priv->lock);
/* Power down PHY */
writel(CONTROL_REGISTER, priv->base + HOST_VSA_ADDR);
regval = readl(priv->base + HOST_VSA_DATA);
regval |= desc->power_bit;
writel(regval, priv->base + HOST_VSA_DATA);
spin_unlock(&priv->lock);
clk_disable_unprepare(priv->clk);
return 0;
}
static struct phy *phy_berlin_sata_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct phy_berlin_priv *priv = dev_get_drvdata(dev);
int i;
if (WARN_ON(args->args[0] >= priv->nphys))
return ERR_PTR(-ENODEV);
for (i = 0; i < priv->nphys; i++) {
if (priv->phys[i]->index == args->args[0])
break;
}
if (i == priv->nphys)
return ERR_PTR(-ENODEV);
return priv->phys[i]->phy;
}
static const struct phy_ops phy_berlin_sata_ops = {
.power_on = phy_berlin_sata_power_on,
.power_off = phy_berlin_sata_power_off,
.owner = THIS_MODULE,
};
static u32 phy_berlin_power_down_bits[] = {
POWER_DOWN_PHY0,
POWER_DOWN_PHY1,
};
static int phy_berlin_sata_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *child;
struct phy *phy;
struct phy_provider *phy_provider;
struct phy_berlin_priv *priv;
struct resource *res;
int ret, i = 0;
u32 phy_id;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
priv->base = devm_ioremap(dev, res->start, resource_size(res));
if (!priv->base)
return -ENOMEM;
priv->clk = devm_clk_get(dev, NULL);
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
priv->nphys = of_get_child_count(dev->of_node);
if (priv->nphys == 0)
return -ENODEV;
priv->phys = devm_kcalloc(dev, priv->nphys, sizeof(*priv->phys),
GFP_KERNEL);
if (!priv->phys)
return -ENOMEM;
if (of_device_is_compatible(dev->of_node, "marvell,berlin2-sata-phy"))
priv->phy_base = BG2_PHY_BASE;
else
priv->phy_base = BG2Q_PHY_BASE;
dev_set_drvdata(dev, priv);
spin_lock_init(&priv->lock);
for_each_available_child_of_node(dev->of_node, child) {
struct phy_berlin_desc *phy_desc;
if (of_property_read_u32(child, "reg", &phy_id)) {
dev_err(dev, "missing reg property in node %pOFn\n",
child);
ret = -EINVAL;
goto put_child;
}
if (phy_id >= ARRAY_SIZE(phy_berlin_power_down_bits)) {
dev_err(dev, "invalid reg in node %pOFn\n", child);
ret = -EINVAL;
goto put_child;
}
phy_desc = devm_kzalloc(dev, sizeof(*phy_desc), GFP_KERNEL);
if (!phy_desc) {
ret = -ENOMEM;
goto put_child;
}
phy = devm_phy_create(dev, NULL, &phy_berlin_sata_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create PHY %d\n", phy_id);
ret = PTR_ERR(phy);
goto put_child;
}
phy_desc->phy = phy;
phy_desc->power_bit = phy_berlin_power_down_bits[phy_id];
phy_desc->index = phy_id;
phy_set_drvdata(phy, phy_desc);
priv->phys[i++] = phy_desc;
/* Make sure the PHY is off */
phy_berlin_sata_power_off(phy);
}
phy_provider =
devm_of_phy_provider_register(dev, phy_berlin_sata_phy_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
put_child:
of_node_put(child);
return ret;
}
static const struct of_device_id phy_berlin_sata_of_match[] = {
{ .compatible = "marvell,berlin2-sata-phy" },
{ .compatible = "marvell,berlin2q-sata-phy" },
{ },
};
MODULE_DEVICE_TABLE(of, phy_berlin_sata_of_match);
static struct platform_driver phy_berlin_sata_driver = {
.probe = phy_berlin_sata_probe,
.driver = {
.name = "phy-berlin-sata",
.of_match_table = phy_berlin_sata_of_match,
},
};
module_platform_driver(phy_berlin_sata_driver);
MODULE_DESCRIPTION("Marvell Berlin SATA PHY driver");
MODULE_AUTHOR("Antoine Ténart <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/marvell/phy-berlin-sata.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Linaro, Ltd.
* Rob Herring <[email protected]>
*
* Based on vendor driver:
* Copyright (C) 2013 Marvell Inc.
* Author: Chao Xie <[email protected]>
*/
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
#define PHY_28NM_HSIC_CTRL 0x08
#define PHY_28NM_HSIC_IMPCAL_CAL 0x18
#define PHY_28NM_HSIC_PLL_CTRL01 0x1c
#define PHY_28NM_HSIC_PLL_CTRL2 0x20
#define PHY_28NM_HSIC_INT 0x28
#define PHY_28NM_HSIC_PLL_SELLPFR_SHIFT 26
#define PHY_28NM_HSIC_PLL_FBDIV_SHIFT 0
#define PHY_28NM_HSIC_PLL_REFDIV_SHIFT 9
#define PHY_28NM_HSIC_S2H_PU_PLL BIT(10)
#define PHY_28NM_HSIC_H2S_PLL_LOCK BIT(15)
#define PHY_28NM_HSIC_S2H_HSIC_EN BIT(7)
#define S2H_DRV_SE0_4RESUME BIT(14)
#define PHY_28NM_HSIC_H2S_IMPCAL_DONE BIT(27)
#define PHY_28NM_HSIC_CONNECT_INT BIT(1)
#define PHY_28NM_HSIC_HS_READY_INT BIT(2)
struct mv_hsic_phy {
struct phy *phy;
struct platform_device *pdev;
void __iomem *base;
struct clk *clk;
};
static int wait_for_reg(void __iomem *reg, u32 mask, u32 ms)
{
u32 val;
return readl_poll_timeout(reg, val, ((val & mask) == mask),
1000, 1000 * ms);
}
static int mv_hsic_phy_init(struct phy *phy)
{
struct mv_hsic_phy *mv_phy = phy_get_drvdata(phy);
struct platform_device *pdev = mv_phy->pdev;
void __iomem *base = mv_phy->base;
int ret;
clk_prepare_enable(mv_phy->clk);
/* Set reference clock */
writel(0x1 << PHY_28NM_HSIC_PLL_SELLPFR_SHIFT |
0xf0 << PHY_28NM_HSIC_PLL_FBDIV_SHIFT |
0xd << PHY_28NM_HSIC_PLL_REFDIV_SHIFT,
base + PHY_28NM_HSIC_PLL_CTRL01);
/* Turn on PLL */
writel(readl(base + PHY_28NM_HSIC_PLL_CTRL2) |
PHY_28NM_HSIC_S2H_PU_PLL,
base + PHY_28NM_HSIC_PLL_CTRL2);
/* Make sure PHY PLL is locked */
ret = wait_for_reg(base + PHY_28NM_HSIC_PLL_CTRL2,
PHY_28NM_HSIC_H2S_PLL_LOCK, 100);
if (ret) {
dev_err(&pdev->dev, "HSIC PHY PLL not locked after 100mS.");
clk_disable_unprepare(mv_phy->clk);
}
return ret;
}
static int mv_hsic_phy_power_on(struct phy *phy)
{
struct mv_hsic_phy *mv_phy = phy_get_drvdata(phy);
struct platform_device *pdev = mv_phy->pdev;
void __iomem *base = mv_phy->base;
u32 reg;
int ret;
reg = readl(base + PHY_28NM_HSIC_CTRL);
/* Avoid SE0 state when resume for some device will take it as reset */
reg &= ~S2H_DRV_SE0_4RESUME;
reg |= PHY_28NM_HSIC_S2H_HSIC_EN; /* Enable HSIC PHY */
writel(reg, base + PHY_28NM_HSIC_CTRL);
/*
* Calibration Timing
* ____________________________
* CAL START ___|
* ____________________
* CAL_DONE ___________|
* | 400us |
*/
/* Make sure PHY Calibration is ready */
ret = wait_for_reg(base + PHY_28NM_HSIC_IMPCAL_CAL,
PHY_28NM_HSIC_H2S_IMPCAL_DONE, 100);
if (ret) {
dev_warn(&pdev->dev, "HSIC PHY READY not set after 100mS.");
return ret;
}
/* Waiting for HSIC connect int*/
ret = wait_for_reg(base + PHY_28NM_HSIC_INT,
PHY_28NM_HSIC_CONNECT_INT, 200);
if (ret)
dev_warn(&pdev->dev, "HSIC wait for connect interrupt timeout.");
return ret;
}
static int mv_hsic_phy_power_off(struct phy *phy)
{
struct mv_hsic_phy *mv_phy = phy_get_drvdata(phy);
void __iomem *base = mv_phy->base;
writel(readl(base + PHY_28NM_HSIC_CTRL) & ~PHY_28NM_HSIC_S2H_HSIC_EN,
base + PHY_28NM_HSIC_CTRL);
return 0;
}
static int mv_hsic_phy_exit(struct phy *phy)
{
struct mv_hsic_phy *mv_phy = phy_get_drvdata(phy);
void __iomem *base = mv_phy->base;
/* Turn off PLL */
writel(readl(base + PHY_28NM_HSIC_PLL_CTRL2) &
~PHY_28NM_HSIC_S2H_PU_PLL,
base + PHY_28NM_HSIC_PLL_CTRL2);
clk_disable_unprepare(mv_phy->clk);
return 0;
}
static const struct phy_ops hsic_ops = {
.init = mv_hsic_phy_init,
.power_on = mv_hsic_phy_power_on,
.power_off = mv_hsic_phy_power_off,
.exit = mv_hsic_phy_exit,
.owner = THIS_MODULE,
};
static int mv_hsic_phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct mv_hsic_phy *mv_phy;
mv_phy = devm_kzalloc(&pdev->dev, sizeof(*mv_phy), GFP_KERNEL);
if (!mv_phy)
return -ENOMEM;
mv_phy->pdev = pdev;
mv_phy->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(mv_phy->clk)) {
dev_err(&pdev->dev, "failed to get clock.\n");
return PTR_ERR(mv_phy->clk);
}
mv_phy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mv_phy->base))
return PTR_ERR(mv_phy->base);
mv_phy->phy = devm_phy_create(&pdev->dev, pdev->dev.of_node, &hsic_ops);
if (IS_ERR(mv_phy->phy))
return PTR_ERR(mv_phy->phy);
phy_set_drvdata(mv_phy->phy, mv_phy);
phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id mv_hsic_phy_dt_match[] = {
{ .compatible = "marvell,pxa1928-hsic-phy", },
{},
};
MODULE_DEVICE_TABLE(of, mv_hsic_phy_dt_match);
static struct platform_driver mv_hsic_phy_driver = {
.probe = mv_hsic_phy_probe,
.driver = {
.name = "mv-hsic-phy",
.of_match_table = mv_hsic_phy_dt_match,
},
};
module_platform_driver(mv_hsic_phy_driver);
MODULE_AUTHOR("Rob Herring <[email protected]>");
MODULE_DESCRIPTION("Marvell HSIC phy driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/marvell/phy-pxa-28nm-hsic.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2011 Marvell International Ltd. All rights reserved.
* Copyright (C) 2018 Lubomir Rintel <[email protected]>
*/
#include <dt-bindings/phy/phy.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
/* phy regs */
#define UTMI_REVISION 0x0
#define UTMI_CTRL 0x4
#define UTMI_PLL 0x8
#define UTMI_TX 0xc
#define UTMI_RX 0x10
#define UTMI_IVREF 0x14
#define UTMI_T0 0x18
#define UTMI_T1 0x1c
#define UTMI_T2 0x20
#define UTMI_T3 0x24
#define UTMI_T4 0x28
#define UTMI_T5 0x2c
#define UTMI_RESERVE 0x30
#define UTMI_USB_INT 0x34
#define UTMI_DBG_CTL 0x38
#define UTMI_OTG_ADDON 0x3c
/* For UTMICTRL Register */
#define UTMI_CTRL_USB_CLK_EN (1 << 31)
/* pxa168 */
#define UTMI_CTRL_SUSPEND_SET1 (1 << 30)
#define UTMI_CTRL_SUSPEND_SET2 (1 << 29)
#define UTMI_CTRL_RXBUF_PDWN (1 << 24)
#define UTMI_CTRL_TXBUF_PDWN (1 << 11)
#define UTMI_CTRL_INPKT_DELAY_SHIFT 30
#define UTMI_CTRL_INPKT_DELAY_SOF_SHIFT 28
#define UTMI_CTRL_PU_REF_SHIFT 20
#define UTMI_CTRL_ARC_PULLDN_SHIFT 12
#define UTMI_CTRL_PLL_PWR_UP_SHIFT 1
#define UTMI_CTRL_PWR_UP_SHIFT 0
/* For UTMI_PLL Register */
#define UTMI_PLL_PLLCALI12_SHIFT 29
#define UTMI_PLL_PLLCALI12_MASK (0x3 << 29)
#define UTMI_PLL_PLLVDD18_SHIFT 27
#define UTMI_PLL_PLLVDD18_MASK (0x3 << 27)
#define UTMI_PLL_PLLVDD12_SHIFT 25
#define UTMI_PLL_PLLVDD12_MASK (0x3 << 25)
#define UTMI_PLL_CLK_BLK_EN_SHIFT 24
#define CLK_BLK_EN (0x1 << 24)
#define PLL_READY (0x1 << 23)
#define KVCO_EXT (0x1 << 22)
#define VCOCAL_START (0x1 << 21)
#define UTMI_PLL_KVCO_SHIFT 15
#define UTMI_PLL_KVCO_MASK (0x7 << 15)
#define UTMI_PLL_ICP_SHIFT 12
#define UTMI_PLL_ICP_MASK (0x7 << 12)
#define UTMI_PLL_FBDIV_SHIFT 4
#define UTMI_PLL_FBDIV_MASK (0xFF << 4)
#define UTMI_PLL_REFDIV_SHIFT 0
#define UTMI_PLL_REFDIV_MASK (0xF << 0)
/* For UTMI_TX Register */
#define UTMI_TX_REG_EXT_FS_RCAL_SHIFT 27
#define UTMI_TX_REG_EXT_FS_RCAL_MASK (0xf << 27)
#define UTMI_TX_REG_EXT_FS_RCAL_EN_SHIFT 26
#define UTMI_TX_REG_EXT_FS_RCAL_EN_MASK (0x1 << 26)
#define UTMI_TX_TXVDD12_SHIFT 22
#define UTMI_TX_TXVDD12_MASK (0x3 << 22)
#define UTMI_TX_CK60_PHSEL_SHIFT 17
#define UTMI_TX_CK60_PHSEL_MASK (0xf << 17)
#define UTMI_TX_IMPCAL_VTH_SHIFT 14
#define UTMI_TX_IMPCAL_VTH_MASK (0x7 << 14)
#define REG_RCAL_START (0x1 << 12)
#define UTMI_TX_LOW_VDD_EN_SHIFT 11
#define UTMI_TX_AMP_SHIFT 0
#define UTMI_TX_AMP_MASK (0x7 << 0)
/* For UTMI_RX Register */
#define UTMI_REG_SQ_LENGTH_SHIFT 15
#define UTMI_REG_SQ_LENGTH_MASK (0x3 << 15)
#define UTMI_RX_SQ_THRESH_SHIFT 4
#define UTMI_RX_SQ_THRESH_MASK (0xf << 4)
#define UTMI_OTG_ADDON_OTG_ON (1 << 0)
enum pxa_usb_phy_version {
PXA_USB_PHY_MMP2,
PXA_USB_PHY_PXA910,
PXA_USB_PHY_PXA168,
};
struct pxa_usb_phy {
struct phy *phy;
void __iomem *base;
enum pxa_usb_phy_version version;
};
/*****************************************************************************
* The registers read/write routines
*****************************************************************************/
static unsigned int u2o_get(void __iomem *base, unsigned int offset)
{
return readl_relaxed(base + offset);
}
static void u2o_set(void __iomem *base, unsigned int offset,
unsigned int value)
{
u32 reg;
reg = readl_relaxed(base + offset);
reg |= value;
writel_relaxed(reg, base + offset);
readl_relaxed(base + offset);
}
static void u2o_clear(void __iomem *base, unsigned int offset,
unsigned int value)
{
u32 reg;
reg = readl_relaxed(base + offset);
reg &= ~value;
writel_relaxed(reg, base + offset);
readl_relaxed(base + offset);
}
static void u2o_write(void __iomem *base, unsigned int offset,
unsigned int value)
{
writel_relaxed(value, base + offset);
readl_relaxed(base + offset);
}
static int pxa_usb_phy_init(struct phy *phy)
{
struct pxa_usb_phy *pxa_usb_phy = phy_get_drvdata(phy);
void __iomem *base = pxa_usb_phy->base;
int loops;
dev_info(&phy->dev, "initializing Marvell PXA USB PHY");
/* Initialize the USB PHY power */
if (pxa_usb_phy->version == PXA_USB_PHY_PXA910) {
u2o_set(base, UTMI_CTRL, (1<<UTMI_CTRL_INPKT_DELAY_SOF_SHIFT)
| (1<<UTMI_CTRL_PU_REF_SHIFT));
}
u2o_set(base, UTMI_CTRL, 1<<UTMI_CTRL_PLL_PWR_UP_SHIFT);
u2o_set(base, UTMI_CTRL, 1<<UTMI_CTRL_PWR_UP_SHIFT);
/* UTMI_PLL settings */
u2o_clear(base, UTMI_PLL, UTMI_PLL_PLLVDD18_MASK
| UTMI_PLL_PLLVDD12_MASK | UTMI_PLL_PLLCALI12_MASK
| UTMI_PLL_FBDIV_MASK | UTMI_PLL_REFDIV_MASK
| UTMI_PLL_ICP_MASK | UTMI_PLL_KVCO_MASK);
u2o_set(base, UTMI_PLL, 0xee<<UTMI_PLL_FBDIV_SHIFT
| 0xb<<UTMI_PLL_REFDIV_SHIFT | 3<<UTMI_PLL_PLLVDD18_SHIFT
| 3<<UTMI_PLL_PLLVDD12_SHIFT | 3<<UTMI_PLL_PLLCALI12_SHIFT
| 1<<UTMI_PLL_ICP_SHIFT | 3<<UTMI_PLL_KVCO_SHIFT);
/* UTMI_TX */
u2o_clear(base, UTMI_TX, UTMI_TX_REG_EXT_FS_RCAL_EN_MASK
| UTMI_TX_TXVDD12_MASK | UTMI_TX_CK60_PHSEL_MASK
| UTMI_TX_IMPCAL_VTH_MASK | UTMI_TX_REG_EXT_FS_RCAL_MASK
| UTMI_TX_AMP_MASK);
u2o_set(base, UTMI_TX, 3<<UTMI_TX_TXVDD12_SHIFT
| 4<<UTMI_TX_CK60_PHSEL_SHIFT | 4<<UTMI_TX_IMPCAL_VTH_SHIFT
| 8<<UTMI_TX_REG_EXT_FS_RCAL_SHIFT | 3<<UTMI_TX_AMP_SHIFT);
/* UTMI_RX */
u2o_clear(base, UTMI_RX, UTMI_RX_SQ_THRESH_MASK
| UTMI_REG_SQ_LENGTH_MASK);
u2o_set(base, UTMI_RX, 7<<UTMI_RX_SQ_THRESH_SHIFT
| 2<<UTMI_REG_SQ_LENGTH_SHIFT);
/* UTMI_IVREF */
if (pxa_usb_phy->version == PXA_USB_PHY_PXA168) {
/*
* fixing Microsoft Altair board interface with NEC hub issue -
* Set UTMI_IVREF from 0x4a3 to 0x4bf
*/
u2o_write(base, UTMI_IVREF, 0x4bf);
}
/* toggle VCOCAL_START bit of UTMI_PLL */
udelay(200);
u2o_set(base, UTMI_PLL, VCOCAL_START);
udelay(40);
u2o_clear(base, UTMI_PLL, VCOCAL_START);
/* toggle REG_RCAL_START bit of UTMI_TX */
udelay(400);
u2o_set(base, UTMI_TX, REG_RCAL_START);
udelay(40);
u2o_clear(base, UTMI_TX, REG_RCAL_START);
udelay(400);
/* Make sure PHY PLL is ready */
loops = 0;
while ((u2o_get(base, UTMI_PLL) & PLL_READY) == 0) {
mdelay(1);
loops++;
if (loops > 100) {
dev_warn(&phy->dev, "calibrate timeout, UTMI_PLL %x\n",
u2o_get(base, UTMI_PLL));
break;
}
}
if (pxa_usb_phy->version == PXA_USB_PHY_PXA168) {
u2o_set(base, UTMI_RESERVE, 1 << 5);
/* Turn on UTMI PHY OTG extension */
u2o_write(base, UTMI_OTG_ADDON, 1);
}
return 0;
}
static int pxa_usb_phy_exit(struct phy *phy)
{
struct pxa_usb_phy *pxa_usb_phy = phy_get_drvdata(phy);
void __iomem *base = pxa_usb_phy->base;
dev_info(&phy->dev, "deinitializing Marvell PXA USB PHY");
if (pxa_usb_phy->version == PXA_USB_PHY_PXA168)
u2o_clear(base, UTMI_OTG_ADDON, UTMI_OTG_ADDON_OTG_ON);
u2o_clear(base, UTMI_CTRL, UTMI_CTRL_RXBUF_PDWN);
u2o_clear(base, UTMI_CTRL, UTMI_CTRL_TXBUF_PDWN);
u2o_clear(base, UTMI_CTRL, UTMI_CTRL_USB_CLK_EN);
u2o_clear(base, UTMI_CTRL, 1<<UTMI_CTRL_PWR_UP_SHIFT);
u2o_clear(base, UTMI_CTRL, 1<<UTMI_CTRL_PLL_PWR_UP_SHIFT);
return 0;
}
static const struct phy_ops pxa_usb_phy_ops = {
.init = pxa_usb_phy_init,
.exit = pxa_usb_phy_exit,
.owner = THIS_MODULE,
};
static const struct of_device_id pxa_usb_phy_of_match[] = {
{
.compatible = "marvell,mmp2-usb-phy",
.data = (void *)PXA_USB_PHY_MMP2,
}, {
.compatible = "marvell,pxa910-usb-phy",
.data = (void *)PXA_USB_PHY_PXA910,
}, {
.compatible = "marvell,pxa168-usb-phy",
.data = (void *)PXA_USB_PHY_PXA168,
},
{ },
};
MODULE_DEVICE_TABLE(of, pxa_usb_phy_of_match);
static int pxa_usb_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct pxa_usb_phy *pxa_usb_phy;
struct phy_provider *provider;
const struct of_device_id *of_id;
pxa_usb_phy = devm_kzalloc(dev, sizeof(struct pxa_usb_phy), GFP_KERNEL);
if (!pxa_usb_phy)
return -ENOMEM;
of_id = of_match_node(pxa_usb_phy_of_match, dev->of_node);
if (of_id)
pxa_usb_phy->version = (uintptr_t)of_id->data;
else
pxa_usb_phy->version = PXA_USB_PHY_MMP2;
pxa_usb_phy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(pxa_usb_phy->base)) {
dev_err(dev, "failed to remap PHY regs\n");
return PTR_ERR(pxa_usb_phy->base);
}
pxa_usb_phy->phy = devm_phy_create(dev, NULL, &pxa_usb_phy_ops);
if (IS_ERR(pxa_usb_phy->phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(pxa_usb_phy->phy);
}
phy_set_drvdata(pxa_usb_phy->phy, pxa_usb_phy);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(provider)) {
dev_err(dev, "failed to register PHY provider\n");
return PTR_ERR(provider);
}
if (!dev->of_node) {
phy_create_lookup(pxa_usb_phy->phy, "usb", "mv-udc");
phy_create_lookup(pxa_usb_phy->phy, "usb", "pxa-u2oehci");
phy_create_lookup(pxa_usb_phy->phy, "usb", "mv-otg");
}
dev_info(dev, "Marvell PXA USB PHY");
return 0;
}
static struct platform_driver pxa_usb_phy_driver = {
.probe = pxa_usb_phy_probe,
.driver = {
.name = "pxa-usb-phy",
.of_match_table = pxa_usb_phy_of_match,
},
};
module_platform_driver(pxa_usb_phy_driver);
MODULE_AUTHOR("Lubomir Rintel <[email protected]>");
MODULE_DESCRIPTION("Marvell PXA USB PHY Driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/marvell/phy-pxa-usb.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Linaro, Ltd.
* Rob Herring <[email protected]>
*
* Based on vendor driver:
* Copyright (C) 2013 Marvell Inc.
* Author: Chao Xie <[email protected]>
*/
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
/* USB PXA1928 PHY mapping */
#define PHY_28NM_PLL_REG0 0x0
#define PHY_28NM_PLL_REG1 0x4
#define PHY_28NM_CAL_REG 0x8
#define PHY_28NM_TX_REG0 0x0c
#define PHY_28NM_TX_REG1 0x10
#define PHY_28NM_RX_REG0 0x14
#define PHY_28NM_RX_REG1 0x18
#define PHY_28NM_DIG_REG0 0x1c
#define PHY_28NM_DIG_REG1 0x20
#define PHY_28NM_TEST_REG0 0x24
#define PHY_28NM_TEST_REG1 0x28
#define PHY_28NM_MOC_REG 0x2c
#define PHY_28NM_PHY_RESERVE 0x30
#define PHY_28NM_OTG_REG 0x34
#define PHY_28NM_CHRG_DET 0x38
#define PHY_28NM_CTRL_REG0 0xc4
#define PHY_28NM_CTRL_REG1 0xc8
#define PHY_28NM_CTRL_REG2 0xd4
#define PHY_28NM_CTRL_REG3 0xdc
/* PHY_28NM_PLL_REG0 */
#define PHY_28NM_PLL_READY BIT(31)
#define PHY_28NM_PLL_SELLPFR_SHIFT 28
#define PHY_28NM_PLL_SELLPFR_MASK (0x3 << 28)
#define PHY_28NM_PLL_FBDIV_SHIFT 16
#define PHY_28NM_PLL_FBDIV_MASK (0x1ff << 16)
#define PHY_28NM_PLL_ICP_SHIFT 8
#define PHY_28NM_PLL_ICP_MASK (0x7 << 8)
#define PHY_28NM_PLL_REFDIV_SHIFT 0
#define PHY_28NM_PLL_REFDIV_MASK 0x7f
/* PHY_28NM_PLL_REG1 */
#define PHY_28NM_PLL_PU_BY_REG BIT(1)
#define PHY_28NM_PLL_PU_PLL BIT(0)
/* PHY_28NM_CAL_REG */
#define PHY_28NM_PLL_PLLCAL_DONE BIT(31)
#define PHY_28NM_PLL_IMPCAL_DONE BIT(23)
#define PHY_28NM_PLL_KVCO_SHIFT 16
#define PHY_28NM_PLL_KVCO_MASK (0x7 << 16)
#define PHY_28NM_PLL_CAL12_SHIFT 20
#define PHY_28NM_PLL_CAL12_MASK (0x3 << 20)
#define PHY_28NM_IMPCAL_VTH_SHIFT 8
#define PHY_28NM_IMPCAL_VTH_MASK (0x7 << 8)
#define PHY_28NM_PLLCAL_START_SHIFT 22
#define PHY_28NM_IMPCAL_START_SHIFT 13
/* PHY_28NM_TX_REG0 */
#define PHY_28NM_TX_PU_BY_REG BIT(25)
#define PHY_28NM_TX_PU_ANA BIT(24)
#define PHY_28NM_TX_AMP_SHIFT 20
#define PHY_28NM_TX_AMP_MASK (0x7 << 20)
/* PHY_28NM_RX_REG0 */
#define PHY_28NM_RX_SQ_THRESH_SHIFT 0
#define PHY_28NM_RX_SQ_THRESH_MASK (0xf << 0)
/* PHY_28NM_RX_REG1 */
#define PHY_28NM_RX_SQCAL_DONE BIT(31)
/* PHY_28NM_DIG_REG0 */
#define PHY_28NM_DIG_BITSTAFFING_ERR BIT(31)
#define PHY_28NM_DIG_SYNC_ERR BIT(30)
#define PHY_28NM_DIG_SQ_FILT_SHIFT 16
#define PHY_28NM_DIG_SQ_FILT_MASK (0x7 << 16)
#define PHY_28NM_DIG_SQ_BLK_SHIFT 12
#define PHY_28NM_DIG_SQ_BLK_MASK (0x7 << 12)
#define PHY_28NM_DIG_SYNC_NUM_SHIFT 0
#define PHY_28NM_DIG_SYNC_NUM_MASK (0x3 << 0)
#define PHY_28NM_PLL_LOCK_BYPASS BIT(7)
/* PHY_28NM_OTG_REG */
#define PHY_28NM_OTG_CONTROL_BY_PIN BIT(5)
#define PHY_28NM_OTG_PU_OTG BIT(4)
#define PHY_28NM_CHGDTC_ENABLE_SWITCH_DM_SHIFT_28 13
#define PHY_28NM_CHGDTC_ENABLE_SWITCH_DP_SHIFT_28 12
#define PHY_28NM_CHGDTC_VSRC_CHARGE_SHIFT_28 10
#define PHY_28NM_CHGDTC_VDAT_CHARGE_SHIFT_28 8
#define PHY_28NM_CHGDTC_CDP_DM_AUTO_SWITCH_SHIFT_28 7
#define PHY_28NM_CHGDTC_DP_DM_SWAP_SHIFT_28 6
#define PHY_28NM_CHGDTC_PU_CHRG_DTC_SHIFT_28 5
#define PHY_28NM_CHGDTC_PD_EN_SHIFT_28 4
#define PHY_28NM_CHGDTC_DCP_EN_SHIFT_28 3
#define PHY_28NM_CHGDTC_CDP_EN_SHIFT_28 2
#define PHY_28NM_CHGDTC_TESTMON_CHRGDTC_SHIFT_28 0
#define PHY_28NM_CTRL1_CHRG_DTC_OUT_SHIFT_28 4
#define PHY_28NM_CTRL1_VBUSDTC_OUT_SHIFT_28 2
#define PHY_28NM_CTRL3_OVERWRITE BIT(0)
#define PHY_28NM_CTRL3_VBUS_VALID BIT(4)
#define PHY_28NM_CTRL3_AVALID BIT(5)
#define PHY_28NM_CTRL3_BVALID BIT(6)
struct mv_usb2_phy {
struct phy *phy;
struct platform_device *pdev;
void __iomem *base;
struct clk *clk;
};
static int wait_for_reg(void __iomem *reg, u32 mask, u32 ms)
{
u32 val;
return readl_poll_timeout(reg, val, ((val & mask) == mask),
1000, 1000 * ms);
}
static int mv_usb2_phy_28nm_init(struct phy *phy)
{
struct mv_usb2_phy *mv_phy = phy_get_drvdata(phy);
struct platform_device *pdev = mv_phy->pdev;
void __iomem *base = mv_phy->base;
u32 reg;
int ret;
clk_prepare_enable(mv_phy->clk);
/* PHY_28NM_PLL_REG0 */
reg = readl(base + PHY_28NM_PLL_REG0) &
~(PHY_28NM_PLL_SELLPFR_MASK | PHY_28NM_PLL_FBDIV_MASK
| PHY_28NM_PLL_ICP_MASK | PHY_28NM_PLL_REFDIV_MASK);
writel(reg | (0x1 << PHY_28NM_PLL_SELLPFR_SHIFT
| 0xf0 << PHY_28NM_PLL_FBDIV_SHIFT
| 0x3 << PHY_28NM_PLL_ICP_SHIFT
| 0xd << PHY_28NM_PLL_REFDIV_SHIFT),
base + PHY_28NM_PLL_REG0);
/* PHY_28NM_PLL_REG1 */
reg = readl(base + PHY_28NM_PLL_REG1);
writel(reg | PHY_28NM_PLL_PU_PLL | PHY_28NM_PLL_PU_BY_REG,
base + PHY_28NM_PLL_REG1);
/* PHY_28NM_TX_REG0 */
reg = readl(base + PHY_28NM_TX_REG0) & ~PHY_28NM_TX_AMP_MASK;
writel(reg | PHY_28NM_TX_PU_BY_REG | 0x3 << PHY_28NM_TX_AMP_SHIFT |
PHY_28NM_TX_PU_ANA,
base + PHY_28NM_TX_REG0);
/* PHY_28NM_RX_REG0 */
reg = readl(base + PHY_28NM_RX_REG0) & ~PHY_28NM_RX_SQ_THRESH_MASK;
writel(reg | 0xa << PHY_28NM_RX_SQ_THRESH_SHIFT,
base + PHY_28NM_RX_REG0);
/* PHY_28NM_DIG_REG0 */
reg = readl(base + PHY_28NM_DIG_REG0) &
~(PHY_28NM_DIG_BITSTAFFING_ERR | PHY_28NM_DIG_SYNC_ERR |
PHY_28NM_DIG_SQ_FILT_MASK | PHY_28NM_DIG_SQ_BLK_MASK |
PHY_28NM_DIG_SYNC_NUM_MASK);
writel(reg | (0x1 << PHY_28NM_DIG_SYNC_NUM_SHIFT |
PHY_28NM_PLL_LOCK_BYPASS),
base + PHY_28NM_DIG_REG0);
/* PHY_28NM_OTG_REG */
reg = readl(base + PHY_28NM_OTG_REG) | PHY_28NM_OTG_PU_OTG;
writel(reg & ~PHY_28NM_OTG_CONTROL_BY_PIN, base + PHY_28NM_OTG_REG);
/*
* Calibration Timing
* ____________________________
* CAL START ___|
* ____________________
* CAL_DONE ___________|
* | 400us |
*/
/* Make sure PHY Calibration is ready */
ret = wait_for_reg(base + PHY_28NM_CAL_REG,
PHY_28NM_PLL_PLLCAL_DONE | PHY_28NM_PLL_IMPCAL_DONE,
100);
if (ret) {
dev_warn(&pdev->dev, "USB PHY PLL calibrate not done after 100mS.");
goto err_clk;
}
ret = wait_for_reg(base + PHY_28NM_RX_REG1,
PHY_28NM_RX_SQCAL_DONE, 100);
if (ret) {
dev_warn(&pdev->dev, "USB PHY RX SQ calibrate not done after 100mS.");
goto err_clk;
}
/* Make sure PHY PLL is ready */
ret = wait_for_reg(base + PHY_28NM_PLL_REG0, PHY_28NM_PLL_READY, 100);
if (ret) {
dev_warn(&pdev->dev, "PLL_READY not set after 100mS.");
goto err_clk;
}
return 0;
err_clk:
clk_disable_unprepare(mv_phy->clk);
return ret;
}
static int mv_usb2_phy_28nm_power_on(struct phy *phy)
{
struct mv_usb2_phy *mv_phy = phy_get_drvdata(phy);
void __iomem *base = mv_phy->base;
writel(readl(base + PHY_28NM_CTRL_REG3) |
(PHY_28NM_CTRL3_OVERWRITE | PHY_28NM_CTRL3_VBUS_VALID |
PHY_28NM_CTRL3_AVALID | PHY_28NM_CTRL3_BVALID),
base + PHY_28NM_CTRL_REG3);
return 0;
}
static int mv_usb2_phy_28nm_power_off(struct phy *phy)
{
struct mv_usb2_phy *mv_phy = phy_get_drvdata(phy);
void __iomem *base = mv_phy->base;
writel(readl(base + PHY_28NM_CTRL_REG3) |
~(PHY_28NM_CTRL3_OVERWRITE | PHY_28NM_CTRL3_VBUS_VALID
| PHY_28NM_CTRL3_AVALID | PHY_28NM_CTRL3_BVALID),
base + PHY_28NM_CTRL_REG3);
return 0;
}
static int mv_usb2_phy_28nm_exit(struct phy *phy)
{
struct mv_usb2_phy *mv_phy = phy_get_drvdata(phy);
void __iomem *base = mv_phy->base;
unsigned int val;
val = readw(base + PHY_28NM_PLL_REG1);
val &= ~PHY_28NM_PLL_PU_PLL;
writew(val, base + PHY_28NM_PLL_REG1);
/* power down PHY Analog part */
val = readw(base + PHY_28NM_TX_REG0);
val &= ~PHY_28NM_TX_PU_ANA;
writew(val, base + PHY_28NM_TX_REG0);
/* power down PHY OTG part */
val = readw(base + PHY_28NM_OTG_REG);
val &= ~PHY_28NM_OTG_PU_OTG;
writew(val, base + PHY_28NM_OTG_REG);
clk_disable_unprepare(mv_phy->clk);
return 0;
}
static const struct phy_ops usb_ops = {
.init = mv_usb2_phy_28nm_init,
.power_on = mv_usb2_phy_28nm_power_on,
.power_off = mv_usb2_phy_28nm_power_off,
.exit = mv_usb2_phy_28nm_exit,
.owner = THIS_MODULE,
};
static int mv_usb2_phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct mv_usb2_phy *mv_phy;
mv_phy = devm_kzalloc(&pdev->dev, sizeof(*mv_phy), GFP_KERNEL);
if (!mv_phy)
return -ENOMEM;
mv_phy->pdev = pdev;
mv_phy->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(mv_phy->clk)) {
dev_err(&pdev->dev, "failed to get clock.\n");
return PTR_ERR(mv_phy->clk);
}
mv_phy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mv_phy->base))
return PTR_ERR(mv_phy->base);
mv_phy->phy = devm_phy_create(&pdev->dev, pdev->dev.of_node, &usb_ops);
if (IS_ERR(mv_phy->phy))
return PTR_ERR(mv_phy->phy);
phy_set_drvdata(mv_phy->phy, mv_phy);
phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id mv_usbphy_dt_match[] = {
{ .compatible = "marvell,pxa1928-usb-phy", },
{},
};
MODULE_DEVICE_TABLE(of, mv_usbphy_dt_match);
static struct platform_driver mv_usb2_phy_driver = {
.probe = mv_usb2_phy_probe,
.driver = {
.name = "mv-usb2-phy",
.of_match_table = mv_usbphy_dt_match,
},
};
module_platform_driver(mv_usb2_phy_driver);
MODULE_AUTHOR("Rob Herring <[email protected]>");
MODULE_DESCRIPTION("Marvell USB2 phy driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/marvell/phy-pxa-28nm-usb2.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017 Marvell
*
* Antoine Tenart <[email protected]>
*/
#include <linux/arm-smccc.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
/* Relative to priv->base */
#define MVEBU_COMPHY_SERDES_CFG0(n) (0x0 + (n) * 0x1000)
#define MVEBU_COMPHY_SERDES_CFG0_PU_PLL BIT(1)
#define MVEBU_COMPHY_SERDES_CFG0_GEN_RX(n) ((n) << 3)
#define MVEBU_COMPHY_SERDES_CFG0_GEN_TX(n) ((n) << 7)
#define MVEBU_COMPHY_SERDES_CFG0_PU_RX BIT(11)
#define MVEBU_COMPHY_SERDES_CFG0_PU_TX BIT(12)
#define MVEBU_COMPHY_SERDES_CFG0_HALF_BUS BIT(14)
#define MVEBU_COMPHY_SERDES_CFG0_RXAUI_MODE BIT(15)
#define MVEBU_COMPHY_SERDES_CFG1(n) (0x4 + (n) * 0x1000)
#define MVEBU_COMPHY_SERDES_CFG1_RESET BIT(3)
#define MVEBU_COMPHY_SERDES_CFG1_RX_INIT BIT(4)
#define MVEBU_COMPHY_SERDES_CFG1_CORE_RESET BIT(5)
#define MVEBU_COMPHY_SERDES_CFG1_RF_RESET BIT(6)
#define MVEBU_COMPHY_SERDES_CFG2(n) (0x8 + (n) * 0x1000)
#define MVEBU_COMPHY_SERDES_CFG2_DFE_EN BIT(4)
#define MVEBU_COMPHY_SERDES_STATUS0(n) (0x18 + (n) * 0x1000)
#define MVEBU_COMPHY_SERDES_STATUS0_TX_PLL_RDY BIT(2)
#define MVEBU_COMPHY_SERDES_STATUS0_RX_PLL_RDY BIT(3)
#define MVEBU_COMPHY_SERDES_STATUS0_RX_INIT BIT(4)
#define MVEBU_COMPHY_PWRPLL_CTRL(n) (0x804 + (n) * 0x1000)
#define MVEBU_COMPHY_PWRPLL_CTRL_RFREQ(n) ((n) << 0)
#define MVEBU_COMPHY_PWRPLL_PHY_MODE(n) ((n) << 5)
#define MVEBU_COMPHY_IMP_CAL(n) (0x80c + (n) * 0x1000)
#define MVEBU_COMPHY_IMP_CAL_TX_EXT(n) ((n) << 10)
#define MVEBU_COMPHY_IMP_CAL_TX_EXT_EN BIT(15)
#define MVEBU_COMPHY_DFE_RES(n) (0x81c + (n) * 0x1000)
#define MVEBU_COMPHY_DFE_RES_FORCE_GEN_TBL BIT(15)
#define MVEBU_COMPHY_COEF(n) (0x828 + (n) * 0x1000)
#define MVEBU_COMPHY_COEF_DFE_EN BIT(14)
#define MVEBU_COMPHY_COEF_DFE_CTRL BIT(15)
#define MVEBU_COMPHY_GEN1_S0(n) (0x834 + (n) * 0x1000)
#define MVEBU_COMPHY_GEN1_S0_TX_AMP(n) ((n) << 1)
#define MVEBU_COMPHY_GEN1_S0_TX_EMPH(n) ((n) << 7)
#define MVEBU_COMPHY_GEN1_S1(n) (0x838 + (n) * 0x1000)
#define MVEBU_COMPHY_GEN1_S1_RX_MUL_PI(n) ((n) << 0)
#define MVEBU_COMPHY_GEN1_S1_RX_MUL_PF(n) ((n) << 3)
#define MVEBU_COMPHY_GEN1_S1_RX_MUL_FI(n) ((n) << 6)
#define MVEBU_COMPHY_GEN1_S1_RX_MUL_FF(n) ((n) << 8)
#define MVEBU_COMPHY_GEN1_S1_RX_DFE_EN BIT(10)
#define MVEBU_COMPHY_GEN1_S1_RX_DIV(n) ((n) << 11)
#define MVEBU_COMPHY_GEN1_S2(n) (0x8f4 + (n) * 0x1000)
#define MVEBU_COMPHY_GEN1_S2_TX_EMPH(n) ((n) << 0)
#define MVEBU_COMPHY_GEN1_S2_TX_EMPH_EN BIT(4)
#define MVEBU_COMPHY_LOOPBACK(n) (0x88c + (n) * 0x1000)
#define MVEBU_COMPHY_LOOPBACK_DBUS_WIDTH(n) ((n) << 1)
#define MVEBU_COMPHY_VDD_CAL0(n) (0x908 + (n) * 0x1000)
#define MVEBU_COMPHY_VDD_CAL0_CONT_MODE BIT(15)
#define MVEBU_COMPHY_EXT_SELV(n) (0x914 + (n) * 0x1000)
#define MVEBU_COMPHY_EXT_SELV_RX_SAMPL(n) ((n) << 5)
#define MVEBU_COMPHY_MISC_CTRL0(n) (0x93c + (n) * 0x1000)
#define MVEBU_COMPHY_MISC_CTRL0_ICP_FORCE BIT(5)
#define MVEBU_COMPHY_MISC_CTRL0_REFCLK_SEL BIT(10)
#define MVEBU_COMPHY_RX_CTRL1(n) (0x940 + (n) * 0x1000)
#define MVEBU_COMPHY_RX_CTRL1_RXCLK2X_SEL BIT(11)
#define MVEBU_COMPHY_RX_CTRL1_CLK8T_EN BIT(12)
#define MVEBU_COMPHY_SPEED_DIV(n) (0x954 + (n) * 0x1000)
#define MVEBU_COMPHY_SPEED_DIV_TX_FORCE BIT(7)
#define MVEBU_SP_CALIB(n) (0x96c + (n) * 0x1000)
#define MVEBU_SP_CALIB_SAMPLER(n) ((n) << 8)
#define MVEBU_SP_CALIB_SAMPLER_EN BIT(12)
#define MVEBU_COMPHY_TX_SLEW_RATE(n) (0x974 + (n) * 0x1000)
#define MVEBU_COMPHY_TX_SLEW_RATE_EMPH(n) ((n) << 5)
#define MVEBU_COMPHY_TX_SLEW_RATE_SLC(n) ((n) << 10)
#define MVEBU_COMPHY_DTL_CTRL(n) (0x984 + (n) * 0x1000)
#define MVEBU_COMPHY_DTL_CTRL_DTL_FLOOP_EN BIT(2)
#define MVEBU_COMPHY_FRAME_DETECT0(n) (0xa14 + (n) * 0x1000)
#define MVEBU_COMPHY_FRAME_DETECT0_PATN(n) ((n) << 7)
#define MVEBU_COMPHY_FRAME_DETECT3(n) (0xa20 + (n) * 0x1000)
#define MVEBU_COMPHY_FRAME_DETECT3_LOST_TIMEOUT_EN BIT(12)
#define MVEBU_COMPHY_DME(n) (0xa28 + (n) * 0x1000)
#define MVEBU_COMPHY_DME_ETH_MODE BIT(7)
#define MVEBU_COMPHY_TRAINING0(n) (0xa68 + (n) * 0x1000)
#define MVEBU_COMPHY_TRAINING0_P2P_HOLD BIT(15)
#define MVEBU_COMPHY_TRAINING5(n) (0xaa4 + (n) * 0x1000)
#define MVEBU_COMPHY_TRAINING5_RX_TIMER(n) ((n) << 0)
#define MVEBU_COMPHY_TX_TRAIN_PRESET(n) (0xb1c + (n) * 0x1000)
#define MVEBU_COMPHY_TX_TRAIN_PRESET_16B_AUTO_EN BIT(8)
#define MVEBU_COMPHY_TX_TRAIN_PRESET_PRBS11 BIT(9)
#define MVEBU_COMPHY_GEN1_S3(n) (0xc40 + (n) * 0x1000)
#define MVEBU_COMPHY_GEN1_S3_FBCK_SEL BIT(9)
#define MVEBU_COMPHY_GEN1_S4(n) (0xc44 + (n) * 0x1000)
#define MVEBU_COMPHY_GEN1_S4_DFE_RES(n) ((n) << 8)
#define MVEBU_COMPHY_TX_PRESET(n) (0xc68 + (n) * 0x1000)
#define MVEBU_COMPHY_TX_PRESET_INDEX(n) ((n) << 0)
#define MVEBU_COMPHY_GEN1_S5(n) (0xd38 + (n) * 0x1000)
#define MVEBU_COMPHY_GEN1_S5_ICP(n) ((n) << 0)
/* Relative to priv->regmap */
#define MVEBU_COMPHY_CONF1(n) (0x1000 + (n) * 0x28)
#define MVEBU_COMPHY_CONF1_PWRUP BIT(1)
#define MVEBU_COMPHY_CONF1_USB_PCIE BIT(2) /* 0: Ethernet/SATA */
#define MVEBU_COMPHY_CONF6(n) (0x1014 + (n) * 0x28)
#define MVEBU_COMPHY_CONF6_40B BIT(18)
#define MVEBU_COMPHY_SELECTOR 0x1140
#define MVEBU_COMPHY_SELECTOR_PHY(n) ((n) * 0x4)
#define MVEBU_COMPHY_PIPE_SELECTOR 0x1144
#define MVEBU_COMPHY_PIPE_SELECTOR_PIPE(n) ((n) * 0x4)
#define MVEBU_COMPHY_SD1_CTRL1 0x1148
#define MVEBU_COMPHY_SD1_CTRL1_RXAUI1_EN BIT(26)
#define MVEBU_COMPHY_SD1_CTRL1_RXAUI0_EN BIT(27)
#define MVEBU_COMPHY_LANES 6
#define MVEBU_COMPHY_PORTS 3
#define COMPHY_SIP_POWER_ON 0x82000001
#define COMPHY_SIP_POWER_OFF 0x82000002
/*
* A lane is described by the following bitfields:
* [ 1- 0]: COMPHY polarity invertion
* [ 2- 7]: COMPHY speed
* [ 5-11]: COMPHY port index
* [12-16]: COMPHY mode
* [17]: Clock source
* [18-20]: PCIe width (x1, x2, x4)
*/
#define COMPHY_FW_POL_OFFSET 0
#define COMPHY_FW_POL_MASK GENMASK(1, 0)
#define COMPHY_FW_SPEED_OFFSET 2
#define COMPHY_FW_SPEED_MASK GENMASK(7, 2)
#define COMPHY_FW_SPEED_MAX COMPHY_FW_SPEED_MASK
#define COMPHY_FW_SPEED_1250 0
#define COMPHY_FW_SPEED_3125 2
#define COMPHY_FW_SPEED_5000 3
#define COMPHY_FW_SPEED_515625 4
#define COMPHY_FW_SPEED_103125 6
#define COMPHY_FW_PORT_OFFSET 8
#define COMPHY_FW_PORT_MASK GENMASK(11, 8)
#define COMPHY_FW_MODE_OFFSET 12
#define COMPHY_FW_MODE_MASK GENMASK(16, 12)
#define COMPHY_FW_WIDTH_OFFSET 18
#define COMPHY_FW_WIDTH_MASK GENMASK(20, 18)
#define COMPHY_FW_PARAM_FULL(mode, port, speed, pol, width) \
((((pol) << COMPHY_FW_POL_OFFSET) & COMPHY_FW_POL_MASK) | \
(((mode) << COMPHY_FW_MODE_OFFSET) & COMPHY_FW_MODE_MASK) | \
(((port) << COMPHY_FW_PORT_OFFSET) & COMPHY_FW_PORT_MASK) | \
(((speed) << COMPHY_FW_SPEED_OFFSET) & COMPHY_FW_SPEED_MASK) | \
(((width) << COMPHY_FW_WIDTH_OFFSET) & COMPHY_FW_WIDTH_MASK))
#define COMPHY_FW_PARAM(mode, port) \
COMPHY_FW_PARAM_FULL(mode, port, COMPHY_FW_SPEED_MAX, 0, 0)
#define COMPHY_FW_PARAM_ETH(mode, port, speed) \
COMPHY_FW_PARAM_FULL(mode, port, speed, 0, 0)
#define COMPHY_FW_PARAM_PCIE(mode, port, width) \
COMPHY_FW_PARAM_FULL(mode, port, COMPHY_FW_SPEED_5000, 0, width)
#define COMPHY_FW_MODE_SATA 0x1
#define COMPHY_FW_MODE_SGMII 0x2 /* SGMII 1G */
#define COMPHY_FW_MODE_2500BASEX 0x3 /* 2500BASE-X */
#define COMPHY_FW_MODE_USB3H 0x4
#define COMPHY_FW_MODE_USB3D 0x5
#define COMPHY_FW_MODE_PCIE 0x6
#define COMPHY_FW_MODE_RXAUI 0x7
#define COMPHY_FW_MODE_XFI 0x8 /* SFI: 0x9 (is treated like XFI) */
struct mvebu_comphy_conf {
enum phy_mode mode;
int submode;
unsigned lane;
unsigned port;
u32 mux;
u32 fw_mode;
};
#define ETH_CONF(_lane, _port, _submode, _mux, _fw) \
{ \
.lane = _lane, \
.port = _port, \
.mode = PHY_MODE_ETHERNET, \
.submode = _submode, \
.mux = _mux, \
.fw_mode = _fw, \
}
#define GEN_CONF(_lane, _port, _mode, _fw) \
{ \
.lane = _lane, \
.port = _port, \
.mode = _mode, \
.submode = PHY_INTERFACE_MODE_NA, \
.mux = -1, \
.fw_mode = _fw, \
}
static const struct mvebu_comphy_conf mvebu_comphy_cp110_modes[] = {
/* lane 0 */
GEN_CONF(0, 0, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE),
ETH_CONF(0, 1, PHY_INTERFACE_MODE_SGMII, 0x1, COMPHY_FW_MODE_SGMII),
ETH_CONF(0, 1, PHY_INTERFACE_MODE_2500BASEX, 0x1, COMPHY_FW_MODE_2500BASEX),
GEN_CONF(0, 1, PHY_MODE_SATA, COMPHY_FW_MODE_SATA),
/* lane 1 */
GEN_CONF(1, 0, PHY_MODE_USB_HOST_SS, COMPHY_FW_MODE_USB3H),
GEN_CONF(1, 0, PHY_MODE_USB_DEVICE_SS, COMPHY_FW_MODE_USB3D),
GEN_CONF(1, 0, PHY_MODE_SATA, COMPHY_FW_MODE_SATA),
GEN_CONF(1, 0, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE),
ETH_CONF(1, 2, PHY_INTERFACE_MODE_SGMII, 0x1, COMPHY_FW_MODE_SGMII),
ETH_CONF(1, 2, PHY_INTERFACE_MODE_2500BASEX, 0x1, COMPHY_FW_MODE_2500BASEX),
/* lane 2 */
ETH_CONF(2, 0, PHY_INTERFACE_MODE_SGMII, 0x1, COMPHY_FW_MODE_SGMII),
ETH_CONF(2, 0, PHY_INTERFACE_MODE_2500BASEX, 0x1, COMPHY_FW_MODE_2500BASEX),
ETH_CONF(2, 0, PHY_INTERFACE_MODE_RXAUI, 0x1, COMPHY_FW_MODE_RXAUI),
ETH_CONF(2, 0, PHY_INTERFACE_MODE_5GBASER, 0x1, COMPHY_FW_MODE_XFI),
ETH_CONF(2, 0, PHY_INTERFACE_MODE_10GBASER, 0x1, COMPHY_FW_MODE_XFI),
GEN_CONF(2, 0, PHY_MODE_USB_HOST_SS, COMPHY_FW_MODE_USB3H),
GEN_CONF(2, 0, PHY_MODE_SATA, COMPHY_FW_MODE_SATA),
GEN_CONF(2, 0, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE),
/* lane 3 */
GEN_CONF(3, 0, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE),
ETH_CONF(3, 1, PHY_INTERFACE_MODE_SGMII, 0x2, COMPHY_FW_MODE_SGMII),
ETH_CONF(3, 1, PHY_INTERFACE_MODE_2500BASEX, 0x2, COMPHY_FW_MODE_2500BASEX),
ETH_CONF(3, 1, PHY_INTERFACE_MODE_RXAUI, 0x1, COMPHY_FW_MODE_RXAUI),
GEN_CONF(3, 1, PHY_MODE_USB_HOST_SS, COMPHY_FW_MODE_USB3H),
GEN_CONF(3, 1, PHY_MODE_SATA, COMPHY_FW_MODE_SATA),
/* lane 4 */
ETH_CONF(4, 0, PHY_INTERFACE_MODE_SGMII, 0x2, COMPHY_FW_MODE_SGMII),
ETH_CONF(4, 0, PHY_INTERFACE_MODE_2500BASEX, 0x2, COMPHY_FW_MODE_2500BASEX),
ETH_CONF(4, 0, PHY_INTERFACE_MODE_5GBASER, 0x2, COMPHY_FW_MODE_XFI),
ETH_CONF(4, 0, PHY_INTERFACE_MODE_10GBASER, 0x2, COMPHY_FW_MODE_XFI),
ETH_CONF(4, 0, PHY_INTERFACE_MODE_RXAUI, 0x2, COMPHY_FW_MODE_RXAUI),
GEN_CONF(4, 0, PHY_MODE_USB_DEVICE_SS, COMPHY_FW_MODE_USB3D),
GEN_CONF(4, 1, PHY_MODE_USB_HOST_SS, COMPHY_FW_MODE_USB3H),
GEN_CONF(4, 1, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE),
ETH_CONF(4, 1, PHY_INTERFACE_MODE_SGMII, 0x1, COMPHY_FW_MODE_SGMII),
ETH_CONF(4, 1, PHY_INTERFACE_MODE_2500BASEX, -1, COMPHY_FW_MODE_2500BASEX),
ETH_CONF(4, 1, PHY_INTERFACE_MODE_5GBASER, -1, COMPHY_FW_MODE_XFI),
ETH_CONF(4, 1, PHY_INTERFACE_MODE_10GBASER, -1, COMPHY_FW_MODE_XFI),
/* lane 5 */
ETH_CONF(5, 1, PHY_INTERFACE_MODE_RXAUI, 0x2, COMPHY_FW_MODE_RXAUI),
GEN_CONF(5, 1, PHY_MODE_SATA, COMPHY_FW_MODE_SATA),
ETH_CONF(5, 2, PHY_INTERFACE_MODE_SGMII, 0x1, COMPHY_FW_MODE_SGMII),
ETH_CONF(5, 2, PHY_INTERFACE_MODE_2500BASEX, 0x1, COMPHY_FW_MODE_2500BASEX),
GEN_CONF(5, 2, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE),
};
struct mvebu_comphy_priv {
void __iomem *base;
struct regmap *regmap;
struct device *dev;
struct clk *mg_domain_clk;
struct clk *mg_core_clk;
struct clk *axi_clk;
unsigned long cp_phys;
};
struct mvebu_comphy_lane {
struct mvebu_comphy_priv *priv;
unsigned id;
enum phy_mode mode;
int submode;
int port;
};
static int mvebu_comphy_smc(unsigned long function, unsigned long phys,
unsigned long lane, unsigned long mode)
{
struct arm_smccc_res res;
s32 ret;
arm_smccc_smc(function, phys, lane, mode, 0, 0, 0, 0, &res);
ret = res.a0;
switch (ret) {
case SMCCC_RET_SUCCESS:
return 0;
case SMCCC_RET_NOT_SUPPORTED:
return -EOPNOTSUPP;
default:
return -EINVAL;
}
}
static int mvebu_comphy_get_mode(bool fw_mode, int lane, int port,
enum phy_mode mode, int submode)
{
int i, n = ARRAY_SIZE(mvebu_comphy_cp110_modes);
/* Ignore PCIe submode: it represents the width */
bool ignore_submode = (mode == PHY_MODE_PCIE);
const struct mvebu_comphy_conf *conf;
/* Unused PHY mux value is 0x0 */
if (mode == PHY_MODE_INVALID)
return 0;
for (i = 0; i < n; i++) {
conf = &mvebu_comphy_cp110_modes[i];
if (conf->lane == lane &&
conf->port == port &&
conf->mode == mode &&
(conf->submode == submode || ignore_submode))
break;
}
if (i == n)
return -EINVAL;
if (fw_mode)
return conf->fw_mode;
else
return conf->mux;
}
static inline int mvebu_comphy_get_mux(int lane, int port,
enum phy_mode mode, int submode)
{
return mvebu_comphy_get_mode(false, lane, port, mode, submode);
}
static inline int mvebu_comphy_get_fw_mode(int lane, int port,
enum phy_mode mode, int submode)
{
return mvebu_comphy_get_mode(true, lane, port, mode, submode);
}
static int mvebu_comphy_ethernet_init_reset(struct mvebu_comphy_lane *lane)
{
struct mvebu_comphy_priv *priv = lane->priv;
u32 val;
regmap_read(priv->regmap, MVEBU_COMPHY_CONF1(lane->id), &val);
val &= ~MVEBU_COMPHY_CONF1_USB_PCIE;
val |= MVEBU_COMPHY_CONF1_PWRUP;
regmap_write(priv->regmap, MVEBU_COMPHY_CONF1(lane->id), val);
/* Select baud rates and PLLs */
val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG0(lane->id));
val &= ~(MVEBU_COMPHY_SERDES_CFG0_PU_PLL |
MVEBU_COMPHY_SERDES_CFG0_PU_RX |
MVEBU_COMPHY_SERDES_CFG0_PU_TX |
MVEBU_COMPHY_SERDES_CFG0_HALF_BUS |
MVEBU_COMPHY_SERDES_CFG0_GEN_RX(0xf) |
MVEBU_COMPHY_SERDES_CFG0_GEN_TX(0xf) |
MVEBU_COMPHY_SERDES_CFG0_RXAUI_MODE);
switch (lane->submode) {
case PHY_INTERFACE_MODE_10GBASER:
val |= MVEBU_COMPHY_SERDES_CFG0_GEN_RX(0xe) |
MVEBU_COMPHY_SERDES_CFG0_GEN_TX(0xe);
break;
case PHY_INTERFACE_MODE_RXAUI:
val |= MVEBU_COMPHY_SERDES_CFG0_GEN_RX(0xb) |
MVEBU_COMPHY_SERDES_CFG0_GEN_TX(0xb) |
MVEBU_COMPHY_SERDES_CFG0_RXAUI_MODE;
break;
case PHY_INTERFACE_MODE_2500BASEX:
val |= MVEBU_COMPHY_SERDES_CFG0_GEN_RX(0x8) |
MVEBU_COMPHY_SERDES_CFG0_GEN_TX(0x8) |
MVEBU_COMPHY_SERDES_CFG0_HALF_BUS;
break;
case PHY_INTERFACE_MODE_SGMII:
val |= MVEBU_COMPHY_SERDES_CFG0_GEN_RX(0x6) |
MVEBU_COMPHY_SERDES_CFG0_GEN_TX(0x6) |
MVEBU_COMPHY_SERDES_CFG0_HALF_BUS;
break;
default:
dev_err(priv->dev,
"unsupported comphy submode (%d) on lane %d\n",
lane->submode,
lane->id);
return -ENOTSUPP;
}
writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG0(lane->id));
if (lane->submode == PHY_INTERFACE_MODE_RXAUI) {
regmap_read(priv->regmap, MVEBU_COMPHY_SD1_CTRL1, &val);
switch (lane->id) {
case 2:
case 3:
val |= MVEBU_COMPHY_SD1_CTRL1_RXAUI0_EN;
break;
case 4:
case 5:
val |= MVEBU_COMPHY_SD1_CTRL1_RXAUI1_EN;
break;
default:
dev_err(priv->dev,
"RXAUI is not supported on comphy lane %d\n",
lane->id);
return -EINVAL;
}
regmap_write(priv->regmap, MVEBU_COMPHY_SD1_CTRL1, val);
}
/* reset */
val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
val &= ~(MVEBU_COMPHY_SERDES_CFG1_RESET |
MVEBU_COMPHY_SERDES_CFG1_CORE_RESET |
MVEBU_COMPHY_SERDES_CFG1_RF_RESET);
writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
/* de-assert reset */
val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
val |= MVEBU_COMPHY_SERDES_CFG1_RESET |
MVEBU_COMPHY_SERDES_CFG1_CORE_RESET;
writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
/* wait until clocks are ready */
mdelay(1);
/* exlicitly disable 40B, the bits isn't clear on reset */
regmap_read(priv->regmap, MVEBU_COMPHY_CONF6(lane->id), &val);
val &= ~MVEBU_COMPHY_CONF6_40B;
regmap_write(priv->regmap, MVEBU_COMPHY_CONF6(lane->id), val);
/* refclk selection */
val = readl(priv->base + MVEBU_COMPHY_MISC_CTRL0(lane->id));
val &= ~MVEBU_COMPHY_MISC_CTRL0_REFCLK_SEL;
if (lane->submode == PHY_INTERFACE_MODE_10GBASER)
val |= MVEBU_COMPHY_MISC_CTRL0_ICP_FORCE;
writel(val, priv->base + MVEBU_COMPHY_MISC_CTRL0(lane->id));
/* power and pll selection */
val = readl(priv->base + MVEBU_COMPHY_PWRPLL_CTRL(lane->id));
val &= ~(MVEBU_COMPHY_PWRPLL_CTRL_RFREQ(0x1f) |
MVEBU_COMPHY_PWRPLL_PHY_MODE(0x7));
val |= MVEBU_COMPHY_PWRPLL_CTRL_RFREQ(0x1) |
MVEBU_COMPHY_PWRPLL_PHY_MODE(0x4);
writel(val, priv->base + MVEBU_COMPHY_PWRPLL_CTRL(lane->id));
val = readl(priv->base + MVEBU_COMPHY_LOOPBACK(lane->id));
val &= ~MVEBU_COMPHY_LOOPBACK_DBUS_WIDTH(0x7);
val |= MVEBU_COMPHY_LOOPBACK_DBUS_WIDTH(0x1);
writel(val, priv->base + MVEBU_COMPHY_LOOPBACK(lane->id));
return 0;
}
static int mvebu_comphy_init_plls(struct mvebu_comphy_lane *lane)
{
struct mvebu_comphy_priv *priv = lane->priv;
u32 val;
/* SERDES external config */
val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG0(lane->id));
val |= MVEBU_COMPHY_SERDES_CFG0_PU_PLL |
MVEBU_COMPHY_SERDES_CFG0_PU_RX |
MVEBU_COMPHY_SERDES_CFG0_PU_TX;
writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG0(lane->id));
/* check rx/tx pll */
readl_poll_timeout(priv->base + MVEBU_COMPHY_SERDES_STATUS0(lane->id),
val,
val & (MVEBU_COMPHY_SERDES_STATUS0_RX_PLL_RDY |
MVEBU_COMPHY_SERDES_STATUS0_TX_PLL_RDY),
1000, 150000);
if (!(val & (MVEBU_COMPHY_SERDES_STATUS0_RX_PLL_RDY |
MVEBU_COMPHY_SERDES_STATUS0_TX_PLL_RDY)))
return -ETIMEDOUT;
/* rx init */
val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
val |= MVEBU_COMPHY_SERDES_CFG1_RX_INIT;
writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
/* check rx */
readl_poll_timeout(priv->base + MVEBU_COMPHY_SERDES_STATUS0(lane->id),
val, val & MVEBU_COMPHY_SERDES_STATUS0_RX_INIT,
1000, 10000);
if (!(val & MVEBU_COMPHY_SERDES_STATUS0_RX_INIT))
return -ETIMEDOUT;
val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
val &= ~MVEBU_COMPHY_SERDES_CFG1_RX_INIT;
writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
return 0;
}
static int mvebu_comphy_set_mode_sgmii(struct phy *phy)
{
struct mvebu_comphy_lane *lane = phy_get_drvdata(phy);
struct mvebu_comphy_priv *priv = lane->priv;
u32 val;
int err;
err = mvebu_comphy_ethernet_init_reset(lane);
if (err)
return err;
val = readl(priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id));
val &= ~MVEBU_COMPHY_RX_CTRL1_CLK8T_EN;
val |= MVEBU_COMPHY_RX_CTRL1_RXCLK2X_SEL;
writel(val, priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id));
val = readl(priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id));
val &= ~MVEBU_COMPHY_DTL_CTRL_DTL_FLOOP_EN;
writel(val, priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id));
regmap_read(priv->regmap, MVEBU_COMPHY_CONF1(lane->id), &val);
val &= ~MVEBU_COMPHY_CONF1_USB_PCIE;
val |= MVEBU_COMPHY_CONF1_PWRUP;
regmap_write(priv->regmap, MVEBU_COMPHY_CONF1(lane->id), val);
val = readl(priv->base + MVEBU_COMPHY_GEN1_S0(lane->id));
val &= ~MVEBU_COMPHY_GEN1_S0_TX_EMPH(0xf);
val |= MVEBU_COMPHY_GEN1_S0_TX_EMPH(0x1);
writel(val, priv->base + MVEBU_COMPHY_GEN1_S0(lane->id));
return mvebu_comphy_init_plls(lane);
}
static int mvebu_comphy_set_mode_rxaui(struct phy *phy)
{
struct mvebu_comphy_lane *lane = phy_get_drvdata(phy);
struct mvebu_comphy_priv *priv = lane->priv;
u32 val;
int err;
err = mvebu_comphy_ethernet_init_reset(lane);
if (err)
return err;
val = readl(priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id));
val |= MVEBU_COMPHY_RX_CTRL1_RXCLK2X_SEL |
MVEBU_COMPHY_RX_CTRL1_CLK8T_EN;
writel(val, priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id));
val = readl(priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id));
val |= MVEBU_COMPHY_DTL_CTRL_DTL_FLOOP_EN;
writel(val, priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id));
val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG2(lane->id));
val |= MVEBU_COMPHY_SERDES_CFG2_DFE_EN;
writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG2(lane->id));
val = readl(priv->base + MVEBU_COMPHY_DFE_RES(lane->id));
val |= MVEBU_COMPHY_DFE_RES_FORCE_GEN_TBL;
writel(val, priv->base + MVEBU_COMPHY_DFE_RES(lane->id));
val = readl(priv->base + MVEBU_COMPHY_GEN1_S0(lane->id));
val &= ~MVEBU_COMPHY_GEN1_S0_TX_EMPH(0xf);
val |= MVEBU_COMPHY_GEN1_S0_TX_EMPH(0xd);
writel(val, priv->base + MVEBU_COMPHY_GEN1_S0(lane->id));
val = readl(priv->base + MVEBU_COMPHY_GEN1_S1(lane->id));
val &= ~(MVEBU_COMPHY_GEN1_S1_RX_MUL_PI(0x7) |
MVEBU_COMPHY_GEN1_S1_RX_MUL_PF(0x7));
val |= MVEBU_COMPHY_GEN1_S1_RX_MUL_PI(0x1) |
MVEBU_COMPHY_GEN1_S1_RX_MUL_PF(0x1) |
MVEBU_COMPHY_GEN1_S1_RX_DFE_EN;
writel(val, priv->base + MVEBU_COMPHY_GEN1_S1(lane->id));
val = readl(priv->base + MVEBU_COMPHY_COEF(lane->id));
val &= ~(MVEBU_COMPHY_COEF_DFE_EN | MVEBU_COMPHY_COEF_DFE_CTRL);
writel(val, priv->base + MVEBU_COMPHY_COEF(lane->id));
val = readl(priv->base + MVEBU_COMPHY_GEN1_S4(lane->id));
val &= ~MVEBU_COMPHY_GEN1_S4_DFE_RES(0x3);
val |= MVEBU_COMPHY_GEN1_S4_DFE_RES(0x1);
writel(val, priv->base + MVEBU_COMPHY_GEN1_S4(lane->id));
return mvebu_comphy_init_plls(lane);
}
static int mvebu_comphy_set_mode_10gbaser(struct phy *phy)
{
struct mvebu_comphy_lane *lane = phy_get_drvdata(phy);
struct mvebu_comphy_priv *priv = lane->priv;
u32 val;
int err;
err = mvebu_comphy_ethernet_init_reset(lane);
if (err)
return err;
val = readl(priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id));
val |= MVEBU_COMPHY_RX_CTRL1_RXCLK2X_SEL |
MVEBU_COMPHY_RX_CTRL1_CLK8T_EN;
writel(val, priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id));
val = readl(priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id));
val |= MVEBU_COMPHY_DTL_CTRL_DTL_FLOOP_EN;
writel(val, priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id));
/* Speed divider */
val = readl(priv->base + MVEBU_COMPHY_SPEED_DIV(lane->id));
val |= MVEBU_COMPHY_SPEED_DIV_TX_FORCE;
writel(val, priv->base + MVEBU_COMPHY_SPEED_DIV(lane->id));
val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG2(lane->id));
val |= MVEBU_COMPHY_SERDES_CFG2_DFE_EN;
writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG2(lane->id));
/* DFE resolution */
val = readl(priv->base + MVEBU_COMPHY_DFE_RES(lane->id));
val |= MVEBU_COMPHY_DFE_RES_FORCE_GEN_TBL;
writel(val, priv->base + MVEBU_COMPHY_DFE_RES(lane->id));
val = readl(priv->base + MVEBU_COMPHY_GEN1_S0(lane->id));
val &= ~(MVEBU_COMPHY_GEN1_S0_TX_AMP(0x1f) |
MVEBU_COMPHY_GEN1_S0_TX_EMPH(0xf));
val |= MVEBU_COMPHY_GEN1_S0_TX_AMP(0x1c) |
MVEBU_COMPHY_GEN1_S0_TX_EMPH(0xe);
writel(val, priv->base + MVEBU_COMPHY_GEN1_S0(lane->id));
val = readl(priv->base + MVEBU_COMPHY_GEN1_S2(lane->id));
val &= ~MVEBU_COMPHY_GEN1_S2_TX_EMPH(0xf);
val |= MVEBU_COMPHY_GEN1_S2_TX_EMPH_EN;
writel(val, priv->base + MVEBU_COMPHY_GEN1_S2(lane->id));
val = readl(priv->base + MVEBU_COMPHY_TX_SLEW_RATE(lane->id));
val |= MVEBU_COMPHY_TX_SLEW_RATE_EMPH(0x3) |
MVEBU_COMPHY_TX_SLEW_RATE_SLC(0x3f);
writel(val, priv->base + MVEBU_COMPHY_TX_SLEW_RATE(lane->id));
/* Impedance calibration */
val = readl(priv->base + MVEBU_COMPHY_IMP_CAL(lane->id));
val &= ~MVEBU_COMPHY_IMP_CAL_TX_EXT(0x1f);
val |= MVEBU_COMPHY_IMP_CAL_TX_EXT(0xe) |
MVEBU_COMPHY_IMP_CAL_TX_EXT_EN;
writel(val, priv->base + MVEBU_COMPHY_IMP_CAL(lane->id));
val = readl(priv->base + MVEBU_COMPHY_GEN1_S5(lane->id));
val &= ~MVEBU_COMPHY_GEN1_S5_ICP(0xf);
writel(val, priv->base + MVEBU_COMPHY_GEN1_S5(lane->id));
val = readl(priv->base + MVEBU_COMPHY_GEN1_S1(lane->id));
val &= ~(MVEBU_COMPHY_GEN1_S1_RX_MUL_PI(0x7) |
MVEBU_COMPHY_GEN1_S1_RX_MUL_PF(0x7) |
MVEBU_COMPHY_GEN1_S1_RX_MUL_FI(0x3) |
MVEBU_COMPHY_GEN1_S1_RX_MUL_FF(0x3));
val |= MVEBU_COMPHY_GEN1_S1_RX_DFE_EN |
MVEBU_COMPHY_GEN1_S1_RX_MUL_PI(0x2) |
MVEBU_COMPHY_GEN1_S1_RX_MUL_PF(0x2) |
MVEBU_COMPHY_GEN1_S1_RX_MUL_FF(0x1) |
MVEBU_COMPHY_GEN1_S1_RX_DIV(0x3);
writel(val, priv->base + MVEBU_COMPHY_GEN1_S1(lane->id));
val = readl(priv->base + MVEBU_COMPHY_COEF(lane->id));
val &= ~(MVEBU_COMPHY_COEF_DFE_EN | MVEBU_COMPHY_COEF_DFE_CTRL);
writel(val, priv->base + MVEBU_COMPHY_COEF(lane->id));
val = readl(priv->base + MVEBU_COMPHY_GEN1_S4(lane->id));
val &= ~MVEBU_COMPHY_GEN1_S4_DFE_RES(0x3);
val |= MVEBU_COMPHY_GEN1_S4_DFE_RES(0x1);
writel(val, priv->base + MVEBU_COMPHY_GEN1_S4(lane->id));
val = readl(priv->base + MVEBU_COMPHY_GEN1_S3(lane->id));
val |= MVEBU_COMPHY_GEN1_S3_FBCK_SEL;
writel(val, priv->base + MVEBU_COMPHY_GEN1_S3(lane->id));
/* rx training timer */
val = readl(priv->base + MVEBU_COMPHY_TRAINING5(lane->id));
val &= ~MVEBU_COMPHY_TRAINING5_RX_TIMER(0x3ff);
val |= MVEBU_COMPHY_TRAINING5_RX_TIMER(0x13);
writel(val, priv->base + MVEBU_COMPHY_TRAINING5(lane->id));
/* tx train peak to peak hold */
val = readl(priv->base + MVEBU_COMPHY_TRAINING0(lane->id));
val |= MVEBU_COMPHY_TRAINING0_P2P_HOLD;
writel(val, priv->base + MVEBU_COMPHY_TRAINING0(lane->id));
val = readl(priv->base + MVEBU_COMPHY_TX_PRESET(lane->id));
val &= ~MVEBU_COMPHY_TX_PRESET_INDEX(0xf);
val |= MVEBU_COMPHY_TX_PRESET_INDEX(0x2); /* preset coeff */
writel(val, priv->base + MVEBU_COMPHY_TX_PRESET(lane->id));
val = readl(priv->base + MVEBU_COMPHY_FRAME_DETECT3(lane->id));
val &= ~MVEBU_COMPHY_FRAME_DETECT3_LOST_TIMEOUT_EN;
writel(val, priv->base + MVEBU_COMPHY_FRAME_DETECT3(lane->id));
val = readl(priv->base + MVEBU_COMPHY_TX_TRAIN_PRESET(lane->id));
val |= MVEBU_COMPHY_TX_TRAIN_PRESET_16B_AUTO_EN |
MVEBU_COMPHY_TX_TRAIN_PRESET_PRBS11;
writel(val, priv->base + MVEBU_COMPHY_TX_TRAIN_PRESET(lane->id));
val = readl(priv->base + MVEBU_COMPHY_FRAME_DETECT0(lane->id));
val &= ~MVEBU_COMPHY_FRAME_DETECT0_PATN(0x1ff);
val |= MVEBU_COMPHY_FRAME_DETECT0_PATN(0x88);
writel(val, priv->base + MVEBU_COMPHY_FRAME_DETECT0(lane->id));
val = readl(priv->base + MVEBU_COMPHY_DME(lane->id));
val |= MVEBU_COMPHY_DME_ETH_MODE;
writel(val, priv->base + MVEBU_COMPHY_DME(lane->id));
val = readl(priv->base + MVEBU_COMPHY_VDD_CAL0(lane->id));
val |= MVEBU_COMPHY_VDD_CAL0_CONT_MODE;
writel(val, priv->base + MVEBU_COMPHY_VDD_CAL0(lane->id));
val = readl(priv->base + MVEBU_SP_CALIB(lane->id));
val &= ~MVEBU_SP_CALIB_SAMPLER(0x3);
val |= MVEBU_SP_CALIB_SAMPLER(0x3) |
MVEBU_SP_CALIB_SAMPLER_EN;
writel(val, priv->base + MVEBU_SP_CALIB(lane->id));
val &= ~MVEBU_SP_CALIB_SAMPLER_EN;
writel(val, priv->base + MVEBU_SP_CALIB(lane->id));
/* External rx regulator */
val = readl(priv->base + MVEBU_COMPHY_EXT_SELV(lane->id));
val &= ~MVEBU_COMPHY_EXT_SELV_RX_SAMPL(0x1f);
val |= MVEBU_COMPHY_EXT_SELV_RX_SAMPL(0x1a);
writel(val, priv->base + MVEBU_COMPHY_EXT_SELV(lane->id));
return mvebu_comphy_init_plls(lane);
}
static int mvebu_comphy_power_on_legacy(struct phy *phy)
{
struct mvebu_comphy_lane *lane = phy_get_drvdata(phy);
struct mvebu_comphy_priv *priv = lane->priv;
int ret, mux;
u32 val;
mux = mvebu_comphy_get_mux(lane->id, lane->port,
lane->mode, lane->submode);
if (mux < 0)
return -ENOTSUPP;
regmap_read(priv->regmap, MVEBU_COMPHY_PIPE_SELECTOR, &val);
val &= ~(0xf << MVEBU_COMPHY_PIPE_SELECTOR_PIPE(lane->id));
regmap_write(priv->regmap, MVEBU_COMPHY_PIPE_SELECTOR, val);
regmap_read(priv->regmap, MVEBU_COMPHY_SELECTOR, &val);
val &= ~(0xf << MVEBU_COMPHY_SELECTOR_PHY(lane->id));
val |= mux << MVEBU_COMPHY_SELECTOR_PHY(lane->id);
regmap_write(priv->regmap, MVEBU_COMPHY_SELECTOR, val);
switch (lane->submode) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_2500BASEX:
ret = mvebu_comphy_set_mode_sgmii(phy);
break;
case PHY_INTERFACE_MODE_RXAUI:
ret = mvebu_comphy_set_mode_rxaui(phy);
break;
case PHY_INTERFACE_MODE_10GBASER:
ret = mvebu_comphy_set_mode_10gbaser(phy);
break;
default:
return -ENOTSUPP;
}
/* digital reset */
val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
val |= MVEBU_COMPHY_SERDES_CFG1_RF_RESET;
writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
return ret;
}
static int mvebu_comphy_power_on(struct phy *phy)
{
struct mvebu_comphy_lane *lane = phy_get_drvdata(phy);
struct mvebu_comphy_priv *priv = lane->priv;
int fw_mode, fw_speed;
u32 fw_param = 0;
int ret;
fw_mode = mvebu_comphy_get_fw_mode(lane->id, lane->port,
lane->mode, lane->submode);
if (fw_mode < 0)
goto try_legacy;
/* Try SMC flow first */
switch (lane->mode) {
case PHY_MODE_ETHERNET:
switch (lane->submode) {
case PHY_INTERFACE_MODE_RXAUI:
dev_dbg(priv->dev, "set lane %d to RXAUI mode\n",
lane->id);
fw_speed = 0;
break;
case PHY_INTERFACE_MODE_SGMII:
dev_dbg(priv->dev, "set lane %d to 1000BASE-X mode\n",
lane->id);
fw_speed = COMPHY_FW_SPEED_1250;
break;
case PHY_INTERFACE_MODE_2500BASEX:
dev_dbg(priv->dev, "set lane %d to 2500BASE-X mode\n",
lane->id);
fw_speed = COMPHY_FW_SPEED_3125;
break;
case PHY_INTERFACE_MODE_5GBASER:
dev_dbg(priv->dev, "set lane %d to 5GBASE-R mode\n",
lane->id);
fw_speed = COMPHY_FW_SPEED_515625;
break;
case PHY_INTERFACE_MODE_10GBASER:
dev_dbg(priv->dev, "set lane %d to 10GBASE-R mode\n",
lane->id);
fw_speed = COMPHY_FW_SPEED_103125;
break;
default:
dev_err(priv->dev, "unsupported Ethernet mode (%d)\n",
lane->submode);
return -ENOTSUPP;
}
fw_param = COMPHY_FW_PARAM_ETH(fw_mode, lane->port, fw_speed);
break;
case PHY_MODE_USB_HOST_SS:
case PHY_MODE_USB_DEVICE_SS:
dev_dbg(priv->dev, "set lane %d to USB3 mode\n", lane->id);
fw_param = COMPHY_FW_PARAM(fw_mode, lane->port);
break;
case PHY_MODE_SATA:
dev_dbg(priv->dev, "set lane %d to SATA mode\n", lane->id);
fw_param = COMPHY_FW_PARAM(fw_mode, lane->port);
break;
case PHY_MODE_PCIE:
dev_dbg(priv->dev, "set lane %d to PCIe mode (x%d)\n", lane->id,
lane->submode);
fw_param = COMPHY_FW_PARAM_PCIE(fw_mode, lane->port,
lane->submode);
break;
default:
dev_err(priv->dev, "unsupported PHY mode (%d)\n", lane->mode);
return -ENOTSUPP;
}
ret = mvebu_comphy_smc(COMPHY_SIP_POWER_ON, priv->cp_phys, lane->id,
fw_param);
if (!ret)
return ret;
if (ret == -EOPNOTSUPP)
dev_err(priv->dev,
"unsupported SMC call, try updating your firmware\n");
dev_warn(priv->dev,
"Firmware could not configure PHY %d with mode %d (ret: %d), trying legacy method\n",
lane->id, lane->mode, ret);
try_legacy:
/* Fallback to Linux's implementation */
return mvebu_comphy_power_on_legacy(phy);
}
static int mvebu_comphy_set_mode(struct phy *phy,
enum phy_mode mode, int submode)
{
struct mvebu_comphy_lane *lane = phy_get_drvdata(phy);
if (submode == PHY_INTERFACE_MODE_1000BASEX)
submode = PHY_INTERFACE_MODE_SGMII;
if (mvebu_comphy_get_fw_mode(lane->id, lane->port, mode, submode) < 0)
return -EINVAL;
lane->mode = mode;
lane->submode = submode;
/* PCIe submode represents the width */
if (mode == PHY_MODE_PCIE && !lane->submode)
lane->submode = 1;
return 0;
}
static int mvebu_comphy_power_off_legacy(struct phy *phy)
{
struct mvebu_comphy_lane *lane = phy_get_drvdata(phy);
struct mvebu_comphy_priv *priv = lane->priv;
u32 val;
val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
val &= ~(MVEBU_COMPHY_SERDES_CFG1_RESET |
MVEBU_COMPHY_SERDES_CFG1_CORE_RESET |
MVEBU_COMPHY_SERDES_CFG1_RF_RESET);
writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id));
regmap_read(priv->regmap, MVEBU_COMPHY_SELECTOR, &val);
val &= ~(0xf << MVEBU_COMPHY_SELECTOR_PHY(lane->id));
regmap_write(priv->regmap, MVEBU_COMPHY_SELECTOR, val);
regmap_read(priv->regmap, MVEBU_COMPHY_PIPE_SELECTOR, &val);
val &= ~(0xf << MVEBU_COMPHY_PIPE_SELECTOR_PIPE(lane->id));
regmap_write(priv->regmap, MVEBU_COMPHY_PIPE_SELECTOR, val);
return 0;
}
static int mvebu_comphy_power_off(struct phy *phy)
{
struct mvebu_comphy_lane *lane = phy_get_drvdata(phy);
struct mvebu_comphy_priv *priv = lane->priv;
int ret;
ret = mvebu_comphy_smc(COMPHY_SIP_POWER_OFF, priv->cp_phys,
lane->id, 0);
if (!ret)
return ret;
/* Fallback to Linux's implementation */
return mvebu_comphy_power_off_legacy(phy);
}
static const struct phy_ops mvebu_comphy_ops = {
.power_on = mvebu_comphy_power_on,
.power_off = mvebu_comphy_power_off,
.set_mode = mvebu_comphy_set_mode,
.owner = THIS_MODULE,
};
static struct phy *mvebu_comphy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct mvebu_comphy_lane *lane;
struct phy *phy;
if (WARN_ON(args->args[0] >= MVEBU_COMPHY_PORTS))
return ERR_PTR(-EINVAL);
phy = of_phy_simple_xlate(dev, args);
if (IS_ERR(phy))
return phy;
lane = phy_get_drvdata(phy);
lane->port = args->args[0];
return phy;
}
static int mvebu_comphy_init_clks(struct mvebu_comphy_priv *priv)
{
int ret;
priv->mg_domain_clk = devm_clk_get(priv->dev, "mg_clk");
if (IS_ERR(priv->mg_domain_clk))
return PTR_ERR(priv->mg_domain_clk);
ret = clk_prepare_enable(priv->mg_domain_clk);
if (ret < 0)
return ret;
priv->mg_core_clk = devm_clk_get(priv->dev, "mg_core_clk");
if (IS_ERR(priv->mg_core_clk)) {
ret = PTR_ERR(priv->mg_core_clk);
goto dis_mg_domain_clk;
}
ret = clk_prepare_enable(priv->mg_core_clk);
if (ret < 0)
goto dis_mg_domain_clk;
priv->axi_clk = devm_clk_get(priv->dev, "axi_clk");
if (IS_ERR(priv->axi_clk)) {
ret = PTR_ERR(priv->axi_clk);
goto dis_mg_core_clk;
}
ret = clk_prepare_enable(priv->axi_clk);
if (ret < 0)
goto dis_mg_core_clk;
return 0;
dis_mg_core_clk:
clk_disable_unprepare(priv->mg_core_clk);
dis_mg_domain_clk:
clk_disable_unprepare(priv->mg_domain_clk);
priv->mg_domain_clk = NULL;
priv->mg_core_clk = NULL;
priv->axi_clk = NULL;
return ret;
};
static void mvebu_comphy_disable_unprepare_clks(struct mvebu_comphy_priv *priv)
{
if (priv->axi_clk)
clk_disable_unprepare(priv->axi_clk);
if (priv->mg_core_clk)
clk_disable_unprepare(priv->mg_core_clk);
if (priv->mg_domain_clk)
clk_disable_unprepare(priv->mg_domain_clk);
}
static int mvebu_comphy_probe(struct platform_device *pdev)
{
struct mvebu_comphy_priv *priv;
struct phy_provider *provider;
struct device_node *child;
struct resource *res;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = &pdev->dev;
priv->regmap =
syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"marvell,system-controller");
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
/*
* Ignore error if clocks have not been initialized properly for DT
* compatibility reasons.
*/
ret = mvebu_comphy_init_clks(priv);
if (ret) {
if (ret == -EPROBE_DEFER)
return ret;
dev_warn(&pdev->dev, "cannot initialize clocks\n");
}
/*
* Hack to retrieve a physical offset relative to this CP that will be
* given to the firmware
*/
priv->cp_phys = res->start;
for_each_available_child_of_node(pdev->dev.of_node, child) {
struct mvebu_comphy_lane *lane;
struct phy *phy;
u32 val;
ret = of_property_read_u32(child, "reg", &val);
if (ret < 0) {
dev_err(&pdev->dev, "missing 'reg' property (%d)\n",
ret);
continue;
}
if (val >= MVEBU_COMPHY_LANES) {
dev_err(&pdev->dev, "invalid 'reg' property\n");
continue;
}
lane = devm_kzalloc(&pdev->dev, sizeof(*lane), GFP_KERNEL);
if (!lane) {
of_node_put(child);
ret = -ENOMEM;
goto disable_clks;
}
phy = devm_phy_create(&pdev->dev, child, &mvebu_comphy_ops);
if (IS_ERR(phy)) {
of_node_put(child);
ret = PTR_ERR(phy);
goto disable_clks;
}
lane->priv = priv;
lane->mode = PHY_MODE_INVALID;
lane->submode = PHY_INTERFACE_MODE_NA;
lane->id = val;
lane->port = -1;
phy_set_drvdata(phy, lane);
/*
* All modes are supported in this driver so we could call
* mvebu_comphy_power_off(phy) here to avoid relying on the
* bootloader/firmware configuration, but for compatibility
* reasons we cannot de-configure the COMPHY without being sure
* that the firmware is up-to-date and fully-featured.
*/
}
dev_set_drvdata(&pdev->dev, priv);
provider = devm_of_phy_provider_register(&pdev->dev,
mvebu_comphy_xlate);
return PTR_ERR_OR_ZERO(provider);
disable_clks:
mvebu_comphy_disable_unprepare_clks(priv);
return ret;
}
static const struct of_device_id mvebu_comphy_of_match_table[] = {
{ .compatible = "marvell,comphy-cp110" },
{ },
};
MODULE_DEVICE_TABLE(of, mvebu_comphy_of_match_table);
static struct platform_driver mvebu_comphy_driver = {
.probe = mvebu_comphy_probe,
.driver = {
.name = "mvebu-comphy",
.of_match_table = mvebu_comphy_of_match_table,
},
};
module_platform_driver(mvebu_comphy_driver);
MODULE_AUTHOR("Antoine Tenart <[email protected]>");
MODULE_DESCRIPTION("Common PHY driver for mvebu SoCs");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/marvell/phy-mvebu-cp110-comphy.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Russell King, Deep Blue Solutions Ltd.
*
* Partly derived from CP110 comphy driver by Antoine Tenart
* <[email protected]>
*/
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#define MAX_A38X_COMPHY 6
#define MAX_A38X_PORTS 3
#define COMPHY_CFG1 0x00
#define COMPHY_CFG1_GEN_TX(x) ((x) << 26)
#define COMPHY_CFG1_GEN_TX_MSK COMPHY_CFG1_GEN_TX(15)
#define COMPHY_CFG1_GEN_RX(x) ((x) << 22)
#define COMPHY_CFG1_GEN_RX_MSK COMPHY_CFG1_GEN_RX(15)
#define GEN_SGMII_1_25GBPS 6
#define GEN_SGMII_3_125GBPS 8
#define COMPHY_STAT1 0x18
#define COMPHY_STAT1_PLL_RDY_TX BIT(3)
#define COMPHY_STAT1_PLL_RDY_RX BIT(2)
#define COMPHY_SELECTOR 0xfc
struct a38x_comphy;
struct a38x_comphy_lane {
void __iomem *base;
struct a38x_comphy *priv;
unsigned int n;
int port;
};
struct a38x_comphy {
void __iomem *base;
void __iomem *conf;
struct device *dev;
struct a38x_comphy_lane lane[MAX_A38X_COMPHY];
};
static const u8 gbe_mux[MAX_A38X_COMPHY][MAX_A38X_PORTS] = {
{ 0, 0, 0 },
{ 4, 5, 0 },
{ 0, 4, 0 },
{ 0, 0, 4 },
{ 0, 3, 0 },
{ 0, 0, 3 },
};
static void a38x_set_conf(struct a38x_comphy_lane *lane, bool enable)
{
struct a38x_comphy *priv = lane->priv;
u32 conf;
if (priv->conf) {
conf = readl_relaxed(priv->conf);
if (enable)
conf |= BIT(lane->port);
else
conf &= ~BIT(lane->port);
writel(conf, priv->conf);
}
}
static void a38x_comphy_set_reg(struct a38x_comphy_lane *lane,
unsigned int offset, u32 mask, u32 value)
{
u32 val;
val = readl_relaxed(lane->base + offset) & ~mask;
writel(val | value, lane->base + offset);
}
static void a38x_comphy_set_speed(struct a38x_comphy_lane *lane,
unsigned int gen_tx, unsigned int gen_rx)
{
a38x_comphy_set_reg(lane, COMPHY_CFG1,
COMPHY_CFG1_GEN_TX_MSK | COMPHY_CFG1_GEN_RX_MSK,
COMPHY_CFG1_GEN_TX(gen_tx) |
COMPHY_CFG1_GEN_RX(gen_rx));
}
static int a38x_comphy_poll(struct a38x_comphy_lane *lane,
unsigned int offset, u32 mask, u32 value)
{
u32 val;
int ret;
ret = readl_relaxed_poll_timeout_atomic(lane->base + offset, val,
(val & mask) == value,
1000, 150000);
if (ret)
dev_err(lane->priv->dev,
"comphy%u: timed out waiting for status\n", lane->n);
return ret;
}
/*
* We only support changing the speed for comphys configured for GBE.
* Since that is all we do, we only poll for PLL ready status.
*/
static int a38x_comphy_set_mode(struct phy *phy, enum phy_mode mode, int sub)
{
struct a38x_comphy_lane *lane = phy_get_drvdata(phy);
unsigned int gen;
int ret;
if (mode != PHY_MODE_ETHERNET)
return -EINVAL;
switch (sub) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
gen = GEN_SGMII_1_25GBPS;
break;
case PHY_INTERFACE_MODE_2500BASEX:
gen = GEN_SGMII_3_125GBPS;
break;
default:
return -EINVAL;
}
a38x_set_conf(lane, false);
a38x_comphy_set_speed(lane, gen, gen);
ret = a38x_comphy_poll(lane, COMPHY_STAT1,
COMPHY_STAT1_PLL_RDY_TX |
COMPHY_STAT1_PLL_RDY_RX,
COMPHY_STAT1_PLL_RDY_TX |
COMPHY_STAT1_PLL_RDY_RX);
if (ret == 0)
a38x_set_conf(lane, true);
return ret;
}
static const struct phy_ops a38x_comphy_ops = {
.set_mode = a38x_comphy_set_mode,
.owner = THIS_MODULE,
};
static struct phy *a38x_comphy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct a38x_comphy_lane *lane;
struct phy *phy;
u32 val;
if (WARN_ON(args->args[0] >= MAX_A38X_PORTS))
return ERR_PTR(-EINVAL);
phy = of_phy_simple_xlate(dev, args);
if (IS_ERR(phy))
return phy;
lane = phy_get_drvdata(phy);
if (lane->port >= 0)
return ERR_PTR(-EBUSY);
lane->port = args->args[0];
val = readl_relaxed(lane->priv->base + COMPHY_SELECTOR);
val = (val >> (4 * lane->n)) & 0xf;
if (!gbe_mux[lane->n][lane->port] ||
val != gbe_mux[lane->n][lane->port]) {
dev_warn(lane->priv->dev,
"comphy%u: not configured for GBE\n", lane->n);
phy = ERR_PTR(-EINVAL);
}
return phy;
}
static int a38x_comphy_probe(struct platform_device *pdev)
{
struct phy_provider *provider;
struct device_node *child;
struct a38x_comphy *priv;
struct resource *res;
void __iomem *base;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
priv->dev = &pdev->dev;
priv->base = base;
/* Optional */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "conf");
if (res) {
priv->conf = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->conf))
return PTR_ERR(priv->conf);
}
for_each_available_child_of_node(pdev->dev.of_node, child) {
struct phy *phy;
int ret;
u32 val;
ret = of_property_read_u32(child, "reg", &val);
if (ret < 0) {
dev_err(&pdev->dev, "missing 'reg' property (%d)\n",
ret);
continue;
}
if (val >= MAX_A38X_COMPHY || priv->lane[val].base) {
dev_err(&pdev->dev, "invalid 'reg' property\n");
continue;
}
phy = devm_phy_create(&pdev->dev, child, &a38x_comphy_ops);
if (IS_ERR(phy)) {
of_node_put(child);
return PTR_ERR(phy);
}
priv->lane[val].base = base + 0x28 * val;
priv->lane[val].priv = priv;
priv->lane[val].n = val;
priv->lane[val].port = -1;
phy_set_drvdata(phy, &priv->lane[val]);
}
dev_set_drvdata(&pdev->dev, priv);
provider = devm_of_phy_provider_register(&pdev->dev, a38x_comphy_xlate);
return PTR_ERR_OR_ZERO(provider);
}
static const struct of_device_id a38x_comphy_of_match_table[] = {
{ .compatible = "marvell,armada-380-comphy" },
{ },
};
MODULE_DEVICE_TABLE(of, a38x_comphy_of_match_table);
static struct platform_driver a38x_comphy_driver = {
.probe = a38x_comphy_probe,
.driver = {
.name = "armada-38x-comphy",
.of_match_table = a38x_comphy_of_match_table,
},
};
module_platform_driver(a38x_comphy_driver);
MODULE_AUTHOR("Russell King <[email protected]>");
MODULE_DESCRIPTION("Common PHY driver for Armada 38x SoCs");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/marvell/phy-armada38x-comphy.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020 Lubomir Rintel <[email protected]>
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#define HSIC_CTRL 0x08
#define HSIC_ENABLE BIT(7)
#define PLL_BYPASS BIT(4)
static int mmp3_hsic_phy_init(struct phy *phy)
{
void __iomem *base = (void __iomem *)phy_get_drvdata(phy);
u32 hsic_ctrl;
hsic_ctrl = readl_relaxed(base + HSIC_CTRL);
hsic_ctrl |= HSIC_ENABLE;
hsic_ctrl |= PLL_BYPASS;
writel_relaxed(hsic_ctrl, base + HSIC_CTRL);
return 0;
}
static const struct phy_ops mmp3_hsic_phy_ops = {
.init = mmp3_hsic_phy_init,
.owner = THIS_MODULE,
};
static const struct of_device_id mmp3_hsic_phy_of_match[] = {
{ .compatible = "marvell,mmp3-hsic-phy", },
{ },
};
MODULE_DEVICE_TABLE(of, mmp3_hsic_phy_of_match);
static int mmp3_hsic_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *provider;
void __iomem *base;
struct phy *phy;
base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(base))
return PTR_ERR(base);
phy = devm_phy_create(dev, NULL, &mmp3_hsic_phy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, (void *)base);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(provider)) {
dev_err(dev, "failed to register PHY provider\n");
return PTR_ERR(provider);
}
return 0;
}
static struct platform_driver mmp3_hsic_phy_driver = {
.probe = mmp3_hsic_phy_probe,
.driver = {
.name = "mmp3-hsic-phy",
.of_match_table = mmp3_hsic_phy_of_match,
},
};
module_platform_driver(mmp3_hsic_phy_driver);
MODULE_AUTHOR("Lubomir Rintel <[email protected]>");
MODULE_DESCRIPTION("Marvell MMP3 USB HSIC PHY Driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/marvell/phy-mmp3-hsic.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Marvell
*
* Authors:
* Igal Liberman <[email protected]>
* Miquèl Raynal <[email protected]>
*
* Marvell A3700 UTMI PHY driver
*/
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
/* Armada 3700 UTMI PHY registers */
#define USB2_PHY_PLL_CTRL_REG0 0x0
#define PLL_REF_DIV_OFF 0
#define PLL_REF_DIV_MASK GENMASK(6, 0)
#define PLL_REF_DIV_5 5
#define PLL_FB_DIV_OFF 16
#define PLL_FB_DIV_MASK GENMASK(24, 16)
#define PLL_FB_DIV_96 96
#define PLL_SEL_LPFR_OFF 28
#define PLL_SEL_LPFR_MASK GENMASK(29, 28)
#define PLL_READY BIT(31)
#define USB2_PHY_CAL_CTRL 0x8
#define PHY_PLLCAL_DONE BIT(31)
#define PHY_IMPCAL_DONE BIT(23)
#define USB2_RX_CHAN_CTRL1 0x18
#define USB2PHY_SQCAL_DONE BIT(31)
#define USB2_PHY_OTG_CTRL 0x34
#define PHY_PU_OTG BIT(4)
#define USB2_PHY_CHRGR_DETECT 0x38
#define PHY_CDP_EN BIT(2)
#define PHY_DCP_EN BIT(3)
#define PHY_PD_EN BIT(4)
#define PHY_PU_CHRG_DTC BIT(5)
#define PHY_CDP_DM_AUTO BIT(7)
#define PHY_ENSWITCH_DP BIT(12)
#define PHY_ENSWITCH_DM BIT(13)
/* Armada 3700 USB miscellaneous registers */
#define USB2_PHY_CTRL(usb32) (usb32 ? 0x20 : 0x4)
#define RB_USB2PHY_PU BIT(0)
#define USB2_DP_PULLDN_DEV_MODE BIT(5)
#define USB2_DM_PULLDN_DEV_MODE BIT(6)
#define RB_USB2PHY_SUSPM(usb32) (usb32 ? BIT(14) : BIT(7))
#define PLL_LOCK_DELAY_US 10000
#define PLL_LOCK_TIMEOUT_US 1000000
/**
* struct mvebu_a3700_utmi_caps - PHY capabilities
*
* @usb32: Flag indicating which PHY is in use (impacts the register map):
* - The UTMI PHY wired to the USB3/USB2 controller (otg)
* - The UTMI PHY wired to the USB2 controller (host only)
* @ops: PHY operations
*/
struct mvebu_a3700_utmi_caps {
int usb32;
const struct phy_ops *ops;
};
/**
* struct mvebu_a3700_utmi - PHY driver data
*
* @regs: PHY registers
* @usb_misc: Regmap with USB miscellaneous registers including PHY ones
* @caps: PHY capabilities
* @phy: PHY handle
*/
struct mvebu_a3700_utmi {
void __iomem *regs;
struct regmap *usb_misc;
const struct mvebu_a3700_utmi_caps *caps;
struct phy *phy;
};
static int mvebu_a3700_utmi_phy_power_on(struct phy *phy)
{
struct mvebu_a3700_utmi *utmi = phy_get_drvdata(phy);
struct device *dev = &phy->dev;
int usb32 = utmi->caps->usb32;
int ret = 0;
u32 reg;
/*
* Setup PLL. 40MHz clock used to be the default, being 25MHz now.
* See "PLL Settings for Typical REFCLK" table.
*/
reg = readl(utmi->regs + USB2_PHY_PLL_CTRL_REG0);
reg &= ~(PLL_REF_DIV_MASK | PLL_FB_DIV_MASK | PLL_SEL_LPFR_MASK);
reg |= (PLL_REF_DIV_5 << PLL_REF_DIV_OFF) |
(PLL_FB_DIV_96 << PLL_FB_DIV_OFF);
writel(reg, utmi->regs + USB2_PHY_PLL_CTRL_REG0);
/* Enable PHY pull up and disable USB2 suspend */
regmap_update_bits(utmi->usb_misc, USB2_PHY_CTRL(usb32),
RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU,
RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU);
if (usb32) {
/* Power up OTG module */
reg = readl(utmi->regs + USB2_PHY_OTG_CTRL);
reg |= PHY_PU_OTG;
writel(reg, utmi->regs + USB2_PHY_OTG_CTRL);
/* Disable PHY charger detection */
reg = readl(utmi->regs + USB2_PHY_CHRGR_DETECT);
reg &= ~(PHY_CDP_EN | PHY_DCP_EN | PHY_PD_EN | PHY_PU_CHRG_DTC |
PHY_CDP_DM_AUTO | PHY_ENSWITCH_DP | PHY_ENSWITCH_DM);
writel(reg, utmi->regs + USB2_PHY_CHRGR_DETECT);
/* Disable PHY DP/DM pull-down (used for device mode) */
regmap_update_bits(utmi->usb_misc, USB2_PHY_CTRL(usb32),
USB2_DP_PULLDN_DEV_MODE |
USB2_DM_PULLDN_DEV_MODE, 0);
}
/* Wait for PLL calibration */
ret = readl_poll_timeout(utmi->regs + USB2_PHY_CAL_CTRL, reg,
reg & PHY_PLLCAL_DONE,
PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US);
if (ret) {
dev_err(dev, "Failed to end USB2 PLL calibration\n");
return ret;
}
/* Wait for impedance calibration */
ret = readl_poll_timeout(utmi->regs + USB2_PHY_CAL_CTRL, reg,
reg & PHY_IMPCAL_DONE,
PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US);
if (ret) {
dev_err(dev, "Failed to end USB2 impedance calibration\n");
return ret;
}
/* Wait for squelch calibration */
ret = readl_poll_timeout(utmi->regs + USB2_RX_CHAN_CTRL1, reg,
reg & USB2PHY_SQCAL_DONE,
PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US);
if (ret) {
dev_err(dev, "Failed to end USB2 unknown calibration\n");
return ret;
}
/* Wait for PLL to be locked */
ret = readl_poll_timeout(utmi->regs + USB2_PHY_PLL_CTRL_REG0, reg,
reg & PLL_READY,
PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US);
if (ret)
dev_err(dev, "Failed to lock USB2 PLL\n");
return ret;
}
static int mvebu_a3700_utmi_phy_power_off(struct phy *phy)
{
struct mvebu_a3700_utmi *utmi = phy_get_drvdata(phy);
int usb32 = utmi->caps->usb32;
u32 reg;
/* Disable PHY pull-up and enable USB2 suspend */
reg = readl(utmi->regs + USB2_PHY_CTRL(usb32));
reg &= ~(RB_USB2PHY_PU | RB_USB2PHY_SUSPM(usb32));
writel(reg, utmi->regs + USB2_PHY_CTRL(usb32));
/* Power down OTG module */
if (usb32) {
reg = readl(utmi->regs + USB2_PHY_OTG_CTRL);
reg &= ~PHY_PU_OTG;
writel(reg, utmi->regs + USB2_PHY_OTG_CTRL);
}
return 0;
}
static const struct phy_ops mvebu_a3700_utmi_phy_ops = {
.power_on = mvebu_a3700_utmi_phy_power_on,
.power_off = mvebu_a3700_utmi_phy_power_off,
.owner = THIS_MODULE,
};
static const struct mvebu_a3700_utmi_caps mvebu_a3700_utmi_otg_phy_caps = {
.usb32 = true,
.ops = &mvebu_a3700_utmi_phy_ops,
};
static const struct mvebu_a3700_utmi_caps mvebu_a3700_utmi_host_phy_caps = {
.usb32 = false,
.ops = &mvebu_a3700_utmi_phy_ops,
};
static const struct of_device_id mvebu_a3700_utmi_of_match[] = {
{
.compatible = "marvell,a3700-utmi-otg-phy",
.data = &mvebu_a3700_utmi_otg_phy_caps,
},
{
.compatible = "marvell,a3700-utmi-host-phy",
.data = &mvebu_a3700_utmi_host_phy_caps,
},
{},
};
MODULE_DEVICE_TABLE(of, mvebu_a3700_utmi_of_match);
static int mvebu_a3700_utmi_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mvebu_a3700_utmi *utmi;
struct phy_provider *provider;
utmi = devm_kzalloc(dev, sizeof(*utmi), GFP_KERNEL);
if (!utmi)
return -ENOMEM;
/* Get UTMI memory region */
utmi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(utmi->regs))
return PTR_ERR(utmi->regs);
/* Get miscellaneous Host/PHY region */
utmi->usb_misc = syscon_regmap_lookup_by_phandle(dev->of_node,
"marvell,usb-misc-reg");
if (IS_ERR(utmi->usb_misc)) {
dev_err(dev,
"Missing USB misc purpose system controller\n");
return PTR_ERR(utmi->usb_misc);
}
/* Retrieve PHY capabilities */
utmi->caps = of_device_get_match_data(dev);
/* Instantiate the PHY */
utmi->phy = devm_phy_create(dev, NULL, utmi->caps->ops);
if (IS_ERR(utmi->phy)) {
dev_err(dev, "Failed to create the UTMI PHY\n");
return PTR_ERR(utmi->phy);
}
phy_set_drvdata(utmi->phy, utmi);
/* Ensure the PHY is powered off */
utmi->caps->ops->power_off(utmi->phy);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(provider);
}
static struct platform_driver mvebu_a3700_utmi_driver = {
.probe = mvebu_a3700_utmi_phy_probe,
.driver = {
.name = "mvebu-a3700-utmi-phy",
.of_match_table = mvebu_a3700_utmi_of_match,
},
};
module_platform_driver(mvebu_a3700_utmi_driver);
MODULE_AUTHOR("Igal Liberman <[email protected]>");
MODULE_AUTHOR("Miquel Raynal <[email protected]>");
MODULE_DESCRIPTION("Marvell EBU A3700 UTMI PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/marvell/phy-mvebu-a3700-utmi.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2020, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#define USB2_PHY_USB_PHY_UTMI_CTRL0 (0x3c)
#define SLEEPM BIT(0)
#define OPMODE_MASK GENMASK(4, 3)
#define OPMODE_NORMAL (0x00)
#define OPMODE_NONDRIVING BIT(3)
#define TERMSEL BIT(5)
#define USB2_PHY_USB_PHY_UTMI_CTRL1 (0x40)
#define XCVRSEL BIT(0)
#define USB2_PHY_USB_PHY_UTMI_CTRL5 (0x50)
#define POR BIT(1)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0 (0x54)
#define SIDDQ BIT(2)
#define RETENABLEN BIT(3)
#define FSEL_MASK GENMASK(6, 4)
#define FSEL_DEFAULT (0x3 << 4)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1 (0x58)
#define VBUSVLDEXTSEL0 BIT(4)
#define PLLBTUNE BIT(5)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2 (0x5c)
#define VREGBYPASS BIT(0)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL1 (0x60)
#define VBUSVLDEXT0 BIT(0)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL2 (0x64)
#define USB2_AUTO_RESUME BIT(0)
#define USB2_SUSPEND_N BIT(2)
#define USB2_SUSPEND_N_SEL BIT(3)
#define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0 (0x6c)
#define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1 (0x70)
#define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2 (0x74)
#define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X3 (0x78)
#define PARAM_OVRD_MASK 0xFF
#define USB2_PHY_USB_PHY_CFG0 (0x94)
#define UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN BIT(0)
#define UTMI_PHY_CMN_CTRL_OVERRIDE_EN BIT(1)
#define USB2_PHY_USB_PHY_REFCLK_CTRL (0xa0)
#define REFCLK_SEL_MASK GENMASK(1, 0)
#define REFCLK_SEL_DEFAULT (0x2 << 0)
#define HS_DISCONNECT_MASK GENMASK(2, 0)
#define SQUELCH_DETECTOR_MASK GENMASK(7, 5)
#define HS_AMPLITUDE_MASK GENMASK(3, 0)
#define PREEMPHASIS_DURATION_MASK BIT(5)
#define PREEMPHASIS_AMPLITUDE_MASK GENMASK(7, 6)
#define HS_RISE_FALL_MASK GENMASK(1, 0)
#define HS_CROSSOVER_VOLTAGE_MASK GENMASK(3, 2)
#define HS_OUTPUT_IMPEDANCE_MASK GENMASK(5, 4)
#define LS_FS_OUTPUT_IMPEDANCE_MASK GENMASK(3, 0)
static const char * const qcom_snps_hsphy_vreg_names[] = {
"vdda-pll", "vdda33", "vdda18",
};
#define SNPS_HS_NUM_VREGS ARRAY_SIZE(qcom_snps_hsphy_vreg_names)
struct override_param {
s32 value;
u8 reg_val;
};
struct override_param_map {
const char *prop_name;
const struct override_param *param_table;
u8 table_size;
u8 reg_offset;
u8 param_mask;
};
struct phy_override_seq {
bool need_update;
u8 offset;
u8 value;
u8 mask;
};
#define NUM_HSPHY_TUNING_PARAMS (9)
/**
* struct qcom_snps_hsphy - snps hs phy attributes
*
* @dev: device structure
*
* @phy: generic phy
* @base: iomapped memory space for snps hs phy
*
* @num_clks: number of clocks
* @clks: array of clocks
* @phy_reset: phy reset control
* @vregs: regulator supplies bulk data
* @phy_initialized: if PHY has been initialized correctly
* @mode: contains the current mode the PHY is in
* @update_seq_cfg: tuning parameters for phy init
*/
struct qcom_snps_hsphy {
struct device *dev;
struct phy *phy;
void __iomem *base;
int num_clks;
struct clk_bulk_data *clks;
struct reset_control *phy_reset;
struct regulator_bulk_data vregs[SNPS_HS_NUM_VREGS];
bool phy_initialized;
enum phy_mode mode;
struct phy_override_seq update_seq_cfg[NUM_HSPHY_TUNING_PARAMS];
};
static int qcom_snps_hsphy_clk_init(struct qcom_snps_hsphy *hsphy)
{
struct device *dev = hsphy->dev;
hsphy->num_clks = 2;
hsphy->clks = devm_kcalloc(dev, hsphy->num_clks, sizeof(*hsphy->clks), GFP_KERNEL);
if (!hsphy->clks)
return -ENOMEM;
/*
* TODO: Currently no device tree instantiation of the PHY is using the clock.
* This needs to be fixed in order for this code to be able to use devm_clk_bulk_get().
*/
hsphy->clks[0].id = "cfg_ahb";
hsphy->clks[0].clk = devm_clk_get_optional(dev, "cfg_ahb");
if (IS_ERR(hsphy->clks[0].clk))
return dev_err_probe(dev, PTR_ERR(hsphy->clks[0].clk),
"failed to get cfg_ahb clk\n");
hsphy->clks[1].id = "ref";
hsphy->clks[1].clk = devm_clk_get(dev, "ref");
if (IS_ERR(hsphy->clks[1].clk))
return dev_err_probe(dev, PTR_ERR(hsphy->clks[1].clk),
"failed to get ref clk\n");
return 0;
}
static inline void qcom_snps_hsphy_write_mask(void __iomem *base, u32 offset,
u32 mask, u32 val)
{
u32 reg;
reg = readl_relaxed(base + offset);
reg &= ~mask;
reg |= val & mask;
writel_relaxed(reg, base + offset);
/* Ensure above write is completed */
readl_relaxed(base + offset);
}
static int qcom_snps_hsphy_suspend(struct qcom_snps_hsphy *hsphy)
{
dev_dbg(&hsphy->phy->dev, "Suspend QCOM SNPS PHY\n");
if (hsphy->mode == PHY_MODE_USB_HOST) {
/* Enable auto-resume to meet remote wakeup timing */
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_AUTO_RESUME,
USB2_AUTO_RESUME);
usleep_range(500, 1000);
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL2,
0, USB2_AUTO_RESUME);
}
return 0;
}
static int qcom_snps_hsphy_resume(struct qcom_snps_hsphy *hsphy)
{
dev_dbg(&hsphy->phy->dev, "Resume QCOM SNPS PHY, mode\n");
return 0;
}
static int __maybe_unused qcom_snps_hsphy_runtime_suspend(struct device *dev)
{
struct qcom_snps_hsphy *hsphy = dev_get_drvdata(dev);
if (!hsphy->phy_initialized)
return 0;
return qcom_snps_hsphy_suspend(hsphy);
}
static int __maybe_unused qcom_snps_hsphy_runtime_resume(struct device *dev)
{
struct qcom_snps_hsphy *hsphy = dev_get_drvdata(dev);
if (!hsphy->phy_initialized)
return 0;
return qcom_snps_hsphy_resume(hsphy);
}
static int qcom_snps_hsphy_set_mode(struct phy *phy, enum phy_mode mode,
int submode)
{
struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy);
hsphy->mode = mode;
return 0;
}
static const struct override_param hs_disconnect_sc7280[] = {
{ -272, 0 },
{ 0, 1 },
{ 317, 2 },
{ 630, 3 },
{ 973, 4 },
{ 1332, 5 },
{ 1743, 6 },
{ 2156, 7 },
};
static const struct override_param squelch_det_threshold_sc7280[] = {
{ -2090, 7 },
{ -1560, 6 },
{ -1030, 5 },
{ -530, 4 },
{ 0, 3 },
{ 530, 2 },
{ 1060, 1 },
{ 1590, 0 },
};
static const struct override_param hs_amplitude_sc7280[] = {
{ -660, 0 },
{ -440, 1 },
{ -220, 2 },
{ 0, 3 },
{ 230, 4 },
{ 440, 5 },
{ 650, 6 },
{ 890, 7 },
{ 1110, 8 },
{ 1330, 9 },
{ 1560, 10 },
{ 1780, 11 },
{ 2000, 12 },
{ 2220, 13 },
{ 2430, 14 },
{ 2670, 15 },
};
static const struct override_param preemphasis_duration_sc7280[] = {
{ 10000, 1 },
{ 20000, 0 },
};
static const struct override_param preemphasis_amplitude_sc7280[] = {
{ 10000, 1 },
{ 20000, 2 },
{ 30000, 3 },
{ 40000, 0 },
};
static const struct override_param hs_rise_fall_time_sc7280[] = {
{ -4100, 3 },
{ 0, 2 },
{ 2810, 1 },
{ 5430, 0 },
};
static const struct override_param hs_crossover_voltage_sc7280[] = {
{ -31000, 1 },
{ 0, 3 },
{ 28000, 2 },
};
static const struct override_param hs_output_impedance_sc7280[] = {
{ -2300000, 3 },
{ 0, 2 },
{ 2600000, 1 },
{ 6100000, 0 },
};
static const struct override_param ls_fs_output_impedance_sc7280[] = {
{ -1053, 15 },
{ -557, 7 },
{ 0, 3 },
{ 612, 1 },
{ 1310, 0 },
};
static const struct override_param_map sc7280_snps_7nm_phy[] = {
{
"qcom,hs-disconnect-bp",
hs_disconnect_sc7280,
ARRAY_SIZE(hs_disconnect_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0,
HS_DISCONNECT_MASK
},
{
"qcom,squelch-detector-bp",
squelch_det_threshold_sc7280,
ARRAY_SIZE(squelch_det_threshold_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0,
SQUELCH_DETECTOR_MASK
},
{
"qcom,hs-amplitude-bp",
hs_amplitude_sc7280,
ARRAY_SIZE(hs_amplitude_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1,
HS_AMPLITUDE_MASK
},
{
"qcom,pre-emphasis-duration-bp",
preemphasis_duration_sc7280,
ARRAY_SIZE(preemphasis_duration_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1,
PREEMPHASIS_DURATION_MASK,
},
{
"qcom,pre-emphasis-amplitude-bp",
preemphasis_amplitude_sc7280,
ARRAY_SIZE(preemphasis_amplitude_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1,
PREEMPHASIS_AMPLITUDE_MASK,
},
{
"qcom,hs-rise-fall-time-bp",
hs_rise_fall_time_sc7280,
ARRAY_SIZE(hs_rise_fall_time_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2,
HS_RISE_FALL_MASK
},
{
"qcom,hs-crossover-voltage-microvolt",
hs_crossover_voltage_sc7280,
ARRAY_SIZE(hs_crossover_voltage_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2,
HS_CROSSOVER_VOLTAGE_MASK
},
{
"qcom,hs-output-impedance-micro-ohms",
hs_output_impedance_sc7280,
ARRAY_SIZE(hs_output_impedance_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2,
HS_OUTPUT_IMPEDANCE_MASK,
},
{
"qcom,ls-fs-output-impedance-bp",
ls_fs_output_impedance_sc7280,
ARRAY_SIZE(ls_fs_output_impedance_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X3,
LS_FS_OUTPUT_IMPEDANCE_MASK,
},
{},
};
static int qcom_snps_hsphy_init(struct phy *phy)
{
struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy);
int ret, i;
dev_vdbg(&phy->dev, "%s(): Initializing SNPS HS phy\n", __func__);
ret = regulator_bulk_enable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs);
if (ret)
return ret;
ret = clk_bulk_prepare_enable(hsphy->num_clks, hsphy->clks);
if (ret) {
dev_err(&phy->dev, "failed to enable clocks, %d\n", ret);
goto poweroff_phy;
}
ret = reset_control_assert(hsphy->phy_reset);
if (ret) {
dev_err(&phy->dev, "failed to assert phy_reset, %d\n", ret);
goto disable_clks;
}
usleep_range(100, 150);
ret = reset_control_deassert(hsphy->phy_reset);
if (ret) {
dev_err(&phy->dev, "failed to de-assert phy_reset, %d\n", ret);
goto disable_clks;
}
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL5,
POR, POR);
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0,
FSEL_MASK, 0);
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1,
PLLBTUNE, PLLBTUNE);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_REFCLK_CTRL,
REFCLK_SEL_DEFAULT, REFCLK_SEL_MASK);
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1,
VBUSVLDEXTSEL0, VBUSVLDEXTSEL0);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL1,
VBUSVLDEXT0, VBUSVLDEXT0);
for (i = 0; i < ARRAY_SIZE(hsphy->update_seq_cfg); i++) {
if (hsphy->update_seq_cfg[i].need_update)
qcom_snps_hsphy_write_mask(hsphy->base,
hsphy->update_seq_cfg[i].offset,
hsphy->update_seq_cfg[i].mask,
hsphy->update_seq_cfg[i].value);
}
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2,
VREGBYPASS, VREGBYPASS);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL0,
SLEEPM, SLEEPM);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0,
SIDDQ, 0);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL5,
POR, 0);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL, 0);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN, 0);
hsphy->phy_initialized = true;
return 0;
disable_clks:
clk_bulk_disable_unprepare(hsphy->num_clks, hsphy->clks);
poweroff_phy:
regulator_bulk_disable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs);
return ret;
}
static int qcom_snps_hsphy_exit(struct phy *phy)
{
struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy);
reset_control_assert(hsphy->phy_reset);
clk_bulk_disable_unprepare(hsphy->num_clks, hsphy->clks);
regulator_bulk_disable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs);
hsphy->phy_initialized = false;
return 0;
}
static const struct phy_ops qcom_snps_hsphy_gen_ops = {
.init = qcom_snps_hsphy_init,
.exit = qcom_snps_hsphy_exit,
.set_mode = qcom_snps_hsphy_set_mode,
.owner = THIS_MODULE,
};
static const struct of_device_id qcom_snps_hsphy_of_match_table[] = {
{ .compatible = "qcom,sm8150-usb-hs-phy", },
{ .compatible = "qcom,usb-snps-hs-5nm-phy", },
{
.compatible = "qcom,usb-snps-hs-7nm-phy",
.data = &sc7280_snps_7nm_phy,
},
{ .compatible = "qcom,usb-snps-femto-v2-phy", },
{ }
};
MODULE_DEVICE_TABLE(of, qcom_snps_hsphy_of_match_table);
static const struct dev_pm_ops qcom_snps_hsphy_pm_ops = {
SET_RUNTIME_PM_OPS(qcom_snps_hsphy_runtime_suspend,
qcom_snps_hsphy_runtime_resume, NULL)
};
static void qcom_snps_hsphy_override_param_update_val(
const struct override_param_map map,
s32 dt_val, struct phy_override_seq *seq_entry)
{
int i;
/*
* Param table for each param is in increasing order
* of dt values. We need to iterate over the list to
* select the entry that matches the dt value and pick
* up the corresponding register value.
*/
for (i = 0; i < map.table_size - 1; i++) {
if (map.param_table[i].value == dt_val)
break;
}
seq_entry->need_update = true;
seq_entry->offset = map.reg_offset;
seq_entry->mask = map.param_mask;
seq_entry->value = map.param_table[i].reg_val << __ffs(map.param_mask);
}
static void qcom_snps_hsphy_read_override_param_seq(struct device *dev)
{
struct device_node *node = dev->of_node;
s32 val;
int ret, i;
struct qcom_snps_hsphy *hsphy;
const struct override_param_map *cfg = of_device_get_match_data(dev);
if (!cfg)
return;
hsphy = dev_get_drvdata(dev);
for (i = 0; cfg[i].prop_name != NULL; i++) {
ret = of_property_read_s32(node, cfg[i].prop_name, &val);
if (ret)
continue;
qcom_snps_hsphy_override_param_update_val(cfg[i], val,
&hsphy->update_seq_cfg[i]);
dev_dbg(&hsphy->phy->dev, "Read param: %s dt_val: %d reg_val: 0x%x\n",
cfg[i].prop_name, val, hsphy->update_seq_cfg[i].value);
}
}
static int qcom_snps_hsphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct qcom_snps_hsphy *hsphy;
struct phy_provider *phy_provider;
struct phy *generic_phy;
int ret, i;
int num;
hsphy = devm_kzalloc(dev, sizeof(*hsphy), GFP_KERNEL);
if (!hsphy)
return -ENOMEM;
hsphy->dev = dev;
hsphy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hsphy->base))
return PTR_ERR(hsphy->base);
ret = qcom_snps_hsphy_clk_init(hsphy);
if (ret)
return dev_err_probe(dev, ret, "failed to initialize clocks\n");
hsphy->phy_reset = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(hsphy->phy_reset)) {
dev_err(dev, "failed to get phy core reset\n");
return PTR_ERR(hsphy->phy_reset);
}
num = ARRAY_SIZE(hsphy->vregs);
for (i = 0; i < num; i++)
hsphy->vregs[i].supply = qcom_snps_hsphy_vreg_names[i];
ret = devm_regulator_bulk_get(dev, num, hsphy->vregs);
if (ret)
return dev_err_probe(dev, ret,
"failed to get regulator supplies\n");
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
/*
* Prevent runtime pm from being ON by default. Users can enable
* it using power/control in sysfs.
*/
pm_runtime_forbid(dev);
generic_phy = devm_phy_create(dev, NULL, &qcom_snps_hsphy_gen_ops);
if (IS_ERR(generic_phy)) {
ret = PTR_ERR(generic_phy);
dev_err(dev, "failed to create phy, %d\n", ret);
return ret;
}
hsphy->phy = generic_phy;
dev_set_drvdata(dev, hsphy);
phy_set_drvdata(generic_phy, hsphy);
qcom_snps_hsphy_read_override_param_seq(dev);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (!IS_ERR(phy_provider))
dev_dbg(dev, "Registered Qcom-SNPS HS phy\n");
else
pm_runtime_disable(dev);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver qcom_snps_hsphy_driver = {
.probe = qcom_snps_hsphy_probe,
.driver = {
.name = "qcom-snps-hs-femto-v2-phy",
.pm = &qcom_snps_hsphy_pm_ops,
.of_match_table = qcom_snps_hsphy_of_match_table,
},
};
module_platform_driver(qcom_snps_hsphy_driver);
MODULE_DESCRIPTION("Qualcomm SNPS FEMTO USB HS PHY V2 driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-snps-femto-v2.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2014-2023, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#define USB2PHY_PORT_UTMI_CTRL1 0x40
#define USB2PHY_PORT_UTMI_CTRL2 0x44
#define UTMI_ULPI_SEL BIT(7)
#define UTMI_TEST_MUX_SEL BIT(6)
#define HS_PHY_CTRL_REG 0x10
#define UTMI_OTG_VBUS_VALID BIT(20)
#define SW_SESSVLD_SEL BIT(28)
#define USB_PHY_UTMI_CTRL0 0x3c
#define USB_PHY_UTMI_CTRL5 0x50
#define POR_EN BIT(1)
#define USB_PHY_HS_PHY_CTRL_COMMON0 0x54
#define COMMONONN BIT(7)
#define FSEL BIT(4)
#define RETENABLEN BIT(3)
#define FREQ_24MHZ (BIT(6) | BIT(4))
#define USB_PHY_HS_PHY_CTRL2 0x64
#define USB2_SUSPEND_N_SEL BIT(3)
#define USB2_SUSPEND_N BIT(2)
#define USB2_UTMI_CLK_EN BIT(1)
#define USB_PHY_CFG0 0x94
#define UTMI_PHY_OVERRIDE_EN BIT(1)
#define USB_PHY_REFCLK_CTRL 0xa0
#define CLKCORE BIT(1)
#define USB2PHY_PORT_POWERDOWN 0xa4
#define POWER_UP BIT(0)
#define POWER_DOWN 0
#define USB_PHY_FSEL_SEL 0xb8
#define FREQ_SEL BIT(0)
#define USB2PHY_USB_PHY_M31_XCFGI_1 0xbc
#define USB2_0_TX_ENABLE BIT(2)
#define USB2PHY_USB_PHY_M31_XCFGI_4 0xc8
#define HSTX_SLEW_RATE_565PS GENMASK(1, 0)
#define PLL_CHARGING_PUMP_CURRENT_35UA GENMASK(4, 3)
#define ODT_VALUE_38_02_OHM GENMASK(7, 6)
#define USB2PHY_USB_PHY_M31_XCFGI_5 0xcc
#define ODT_VALUE_45_02_OHM BIT(2)
#define HSTX_PRE_EMPHASIS_LEVEL_0_55MA BIT(0)
#define USB2PHY_USB_PHY_M31_XCFGI_11 0xe4
#define XCFG_COARSE_TUNE_NUM BIT(1)
#define XCFG_FINE_TUNE_NUM BIT(3)
struct m31_phy_regs {
u32 off;
u32 val;
u32 delay;
};
struct m31_priv_data {
bool ulpi_mode;
const struct m31_phy_regs *regs;
unsigned int nregs;
};
struct m31_phy_regs m31_ipq5332_regs[] = {
{
USB_PHY_CFG0,
UTMI_PHY_OVERRIDE_EN,
0
},
{
USB_PHY_UTMI_CTRL5,
POR_EN,
15
},
{
USB_PHY_FSEL_SEL,
FREQ_SEL,
0
},
{
USB_PHY_HS_PHY_CTRL_COMMON0,
COMMONONN | FREQ_24MHZ | RETENABLEN,
0
},
{
USB_PHY_UTMI_CTRL5,
POR_EN,
0
},
{
USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N | USB2_UTMI_CLK_EN,
0
},
{
USB2PHY_USB_PHY_M31_XCFGI_11,
XCFG_COARSE_TUNE_NUM | XCFG_FINE_TUNE_NUM,
0
},
{
USB2PHY_USB_PHY_M31_XCFGI_4,
HSTX_SLEW_RATE_565PS | PLL_CHARGING_PUMP_CURRENT_35UA | ODT_VALUE_38_02_OHM,
0
},
{
USB2PHY_USB_PHY_M31_XCFGI_1,
USB2_0_TX_ENABLE,
0
},
{
USB2PHY_USB_PHY_M31_XCFGI_5,
ODT_VALUE_45_02_OHM | HSTX_PRE_EMPHASIS_LEVEL_0_55MA,
4
},
{
USB_PHY_UTMI_CTRL5,
0x0,
0
},
{
USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N | USB2_UTMI_CLK_EN,
0
},
};
struct m31usb_phy {
struct phy *phy;
void __iomem *base;
const struct m31_phy_regs *regs;
int nregs;
struct regulator *vreg;
struct clk *clk;
struct reset_control *reset;
bool ulpi_mode;
};
static int m31usb_phy_init(struct phy *phy)
{
struct m31usb_phy *qphy = phy_get_drvdata(phy);
const struct m31_phy_regs *regs = qphy->regs;
int i, ret;
ret = regulator_enable(qphy->vreg);
if (ret) {
dev_err(&phy->dev, "failed to enable regulator, %d\n", ret);
return ret;
}
ret = clk_prepare_enable(qphy->clk);
if (ret) {
if (qphy->vreg)
regulator_disable(qphy->vreg);
dev_err(&phy->dev, "failed to enable cfg ahb clock, %d\n", ret);
return ret;
}
/* Perform phy reset */
reset_control_assert(qphy->reset);
udelay(5);
reset_control_deassert(qphy->reset);
/* configure for ULPI mode if requested */
if (qphy->ulpi_mode)
writel(0x0, qphy->base + USB2PHY_PORT_UTMI_CTRL2);
/* Enable the PHY */
writel(POWER_UP, qphy->base + USB2PHY_PORT_POWERDOWN);
/* Turn on phy ref clock */
for (i = 0; i < qphy->nregs; i++) {
writel(regs[i].val, qphy->base + regs[i].off);
if (regs[i].delay)
udelay(regs[i].delay);
}
return 0;
}
static int m31usb_phy_shutdown(struct phy *phy)
{
struct m31usb_phy *qphy = phy_get_drvdata(phy);
/* Disable the PHY */
writel_relaxed(POWER_DOWN, qphy->base + USB2PHY_PORT_POWERDOWN);
clk_disable_unprepare(qphy->clk);
regulator_disable(qphy->vreg);
return 0;
}
static const struct phy_ops m31usb_phy_gen_ops = {
.power_on = m31usb_phy_init,
.power_off = m31usb_phy_shutdown,
.owner = THIS_MODULE,
};
static int m31usb_phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
const struct m31_priv_data *data;
struct device *dev = &pdev->dev;
struct m31usb_phy *qphy;
qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL);
if (!qphy)
return -ENOMEM;
qphy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(qphy->base))
return PTR_ERR(qphy->base);
qphy->reset = devm_reset_control_get_exclusive_by_index(dev, 0);
if (IS_ERR(qphy->reset))
return PTR_ERR(qphy->reset);
qphy->clk = devm_clk_get(dev, NULL);
if (IS_ERR(qphy->clk))
return dev_err_probe(dev, PTR_ERR(qphy->clk),
"failed to get clk\n");
data = of_device_get_match_data(dev);
qphy->regs = data->regs;
qphy->nregs = data->nregs;
qphy->ulpi_mode = data->ulpi_mode;
qphy->phy = devm_phy_create(dev, NULL, &m31usb_phy_gen_ops);
if (IS_ERR(qphy->phy))
return dev_err_probe(dev, PTR_ERR(qphy->phy),
"failed to create phy\n");
qphy->vreg = devm_regulator_get(dev, "vdda-phy");
if (IS_ERR(qphy->vreg))
return dev_err_probe(dev, PTR_ERR(qphy->phy),
"failed to get vreg\n");
phy_set_drvdata(qphy->phy, qphy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (!IS_ERR(phy_provider))
dev_info(dev, "Registered M31 USB phy\n");
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct m31_priv_data m31_ipq5332_data = {
.ulpi_mode = false,
.regs = m31_ipq5332_regs,
.nregs = ARRAY_SIZE(m31_ipq5332_regs),
};
static const struct of_device_id m31usb_phy_id_table[] = {
{ .compatible = "qcom,ipq5332-usb-hsphy", .data = &m31_ipq5332_data },
{ },
};
MODULE_DEVICE_TABLE(of, m31usb_phy_id_table);
static struct platform_driver m31usb_phy_driver = {
.probe = m31usb_phy_probe,
.driver = {
.name = "qcom-m31usb-phy",
.of_match_table = m31usb_phy_id_table,
},
};
module_platform_driver(m31usb_phy_driver);
MODULE_DESCRIPTION("USB2 Qualcomm M31 HSPHY driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/qualcomm/phy-qcom-m31.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*/
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
/* PHY registers */
#define UNIPHY_PLL_REFCLK_CFG 0x000
#define UNIPHY_PLL_PWRGEN_CFG 0x014
#define UNIPHY_PLL_GLB_CFG 0x020
#define UNIPHY_PLL_SDM_CFG0 0x038
#define UNIPHY_PLL_SDM_CFG1 0x03C
#define UNIPHY_PLL_SDM_CFG2 0x040
#define UNIPHY_PLL_SDM_CFG3 0x044
#define UNIPHY_PLL_SDM_CFG4 0x048
#define UNIPHY_PLL_SSC_CFG0 0x04C
#define UNIPHY_PLL_SSC_CFG1 0x050
#define UNIPHY_PLL_SSC_CFG2 0x054
#define UNIPHY_PLL_SSC_CFG3 0x058
#define UNIPHY_PLL_LKDET_CFG0 0x05C
#define UNIPHY_PLL_LKDET_CFG1 0x060
#define UNIPHY_PLL_LKDET_CFG2 0x064
#define UNIPHY_PLL_CAL_CFG0 0x06C
#define UNIPHY_PLL_CAL_CFG8 0x08C
#define UNIPHY_PLL_CAL_CFG9 0x090
#define UNIPHY_PLL_CAL_CFG10 0x094
#define UNIPHY_PLL_CAL_CFG11 0x098
#define UNIPHY_PLL_STATUS 0x0C0
#define SATA_PHY_SER_CTRL 0x100
#define SATA_PHY_TX_DRIV_CTRL0 0x104
#define SATA_PHY_TX_DRIV_CTRL1 0x108
#define SATA_PHY_TX_IMCAL0 0x11C
#define SATA_PHY_TX_IMCAL2 0x124
#define SATA_PHY_RX_IMCAL0 0x128
#define SATA_PHY_EQUAL 0x13C
#define SATA_PHY_OOB_TERM 0x144
#define SATA_PHY_CDR_CTRL0 0x148
#define SATA_PHY_CDR_CTRL1 0x14C
#define SATA_PHY_CDR_CTRL2 0x150
#define SATA_PHY_CDR_CTRL3 0x154
#define SATA_PHY_PI_CTRL0 0x168
#define SATA_PHY_POW_DWN_CTRL0 0x180
#define SATA_PHY_POW_DWN_CTRL1 0x184
#define SATA_PHY_TX_DATA_CTRL 0x188
#define SATA_PHY_ALIGNP 0x1A4
#define SATA_PHY_TX_IMCAL_STAT 0x1E4
#define SATA_PHY_RX_IMCAL_STAT 0x1E8
#define UNIPHY_PLL_LOCK BIT(0)
#define SATA_PHY_TX_CAL BIT(0)
#define SATA_PHY_RX_CAL BIT(0)
/* default timeout set to 1 sec */
#define TIMEOUT_MS 10000
#define DELAY_INTERVAL_US 100
struct qcom_apq8064_sata_phy {
void __iomem *mmio;
struct clk *cfg_clk;
struct device *dev;
};
/* Helper function to do poll and timeout */
static int poll_timeout(void __iomem *addr, u32 mask)
{
u32 val;
return readl_relaxed_poll_timeout(addr, val, (val & mask),
DELAY_INTERVAL_US, TIMEOUT_MS * 1000);
}
static int qcom_apq8064_sata_phy_init(struct phy *generic_phy)
{
struct qcom_apq8064_sata_phy *phy = phy_get_drvdata(generic_phy);
void __iomem *base = phy->mmio;
int ret = 0;
/* SATA phy initialization */
writel_relaxed(0x01, base + SATA_PHY_SER_CTRL);
writel_relaxed(0xB1, base + SATA_PHY_POW_DWN_CTRL0);
/* Make sure the power down happens before power up */
mb();
usleep_range(10, 60);
writel_relaxed(0x01, base + SATA_PHY_POW_DWN_CTRL0);
writel_relaxed(0x3E, base + SATA_PHY_POW_DWN_CTRL1);
writel_relaxed(0x01, base + SATA_PHY_RX_IMCAL0);
writel_relaxed(0x01, base + SATA_PHY_TX_IMCAL0);
writel_relaxed(0x02, base + SATA_PHY_TX_IMCAL2);
/* Write UNIPHYPLL registers to configure PLL */
writel_relaxed(0x04, base + UNIPHY_PLL_REFCLK_CFG);
writel_relaxed(0x00, base + UNIPHY_PLL_PWRGEN_CFG);
writel_relaxed(0x0A, base + UNIPHY_PLL_CAL_CFG0);
writel_relaxed(0xF3, base + UNIPHY_PLL_CAL_CFG8);
writel_relaxed(0x01, base + UNIPHY_PLL_CAL_CFG9);
writel_relaxed(0xED, base + UNIPHY_PLL_CAL_CFG10);
writel_relaxed(0x02, base + UNIPHY_PLL_CAL_CFG11);
writel_relaxed(0x36, base + UNIPHY_PLL_SDM_CFG0);
writel_relaxed(0x0D, base + UNIPHY_PLL_SDM_CFG1);
writel_relaxed(0xA3, base + UNIPHY_PLL_SDM_CFG2);
writel_relaxed(0xF0, base + UNIPHY_PLL_SDM_CFG3);
writel_relaxed(0x00, base + UNIPHY_PLL_SDM_CFG4);
writel_relaxed(0x19, base + UNIPHY_PLL_SSC_CFG0);
writel_relaxed(0xE1, base + UNIPHY_PLL_SSC_CFG1);
writel_relaxed(0x00, base + UNIPHY_PLL_SSC_CFG2);
writel_relaxed(0x11, base + UNIPHY_PLL_SSC_CFG3);
writel_relaxed(0x04, base + UNIPHY_PLL_LKDET_CFG0);
writel_relaxed(0xFF, base + UNIPHY_PLL_LKDET_CFG1);
writel_relaxed(0x02, base + UNIPHY_PLL_GLB_CFG);
/* make sure global config LDO power down happens before power up */
mb();
writel_relaxed(0x03, base + UNIPHY_PLL_GLB_CFG);
writel_relaxed(0x05, base + UNIPHY_PLL_LKDET_CFG2);
/* PLL Lock wait */
ret = poll_timeout(base + UNIPHY_PLL_STATUS, UNIPHY_PLL_LOCK);
if (ret) {
dev_err(phy->dev, "poll timeout UNIPHY_PLL_STATUS\n");
return ret;
}
/* TX Calibration */
ret = poll_timeout(base + SATA_PHY_TX_IMCAL_STAT, SATA_PHY_TX_CAL);
if (ret) {
dev_err(phy->dev, "poll timeout SATA_PHY_TX_IMCAL_STAT\n");
return ret;
}
/* RX Calibration */
ret = poll_timeout(base + SATA_PHY_RX_IMCAL_STAT, SATA_PHY_RX_CAL);
if (ret) {
dev_err(phy->dev, "poll timeout SATA_PHY_RX_IMCAL_STAT\n");
return ret;
}
/* SATA phy calibrated succesfully, power up to functional mode */
writel_relaxed(0x3E, base + SATA_PHY_POW_DWN_CTRL1);
writel_relaxed(0x01, base + SATA_PHY_RX_IMCAL0);
writel_relaxed(0x01, base + SATA_PHY_TX_IMCAL0);
writel_relaxed(0x00, base + SATA_PHY_POW_DWN_CTRL1);
writel_relaxed(0x59, base + SATA_PHY_CDR_CTRL0);
writel_relaxed(0x04, base + SATA_PHY_CDR_CTRL1);
writel_relaxed(0x00, base + SATA_PHY_CDR_CTRL2);
writel_relaxed(0x00, base + SATA_PHY_PI_CTRL0);
writel_relaxed(0x00, base + SATA_PHY_CDR_CTRL3);
writel_relaxed(0x01, base + SATA_PHY_POW_DWN_CTRL0);
writel_relaxed(0x11, base + SATA_PHY_TX_DATA_CTRL);
writel_relaxed(0x43, base + SATA_PHY_ALIGNP);
writel_relaxed(0x04, base + SATA_PHY_OOB_TERM);
writel_relaxed(0x01, base + SATA_PHY_EQUAL);
writel_relaxed(0x09, base + SATA_PHY_TX_DRIV_CTRL0);
writel_relaxed(0x09, base + SATA_PHY_TX_DRIV_CTRL1);
return 0;
}
static int qcom_apq8064_sata_phy_exit(struct phy *generic_phy)
{
struct qcom_apq8064_sata_phy *phy = phy_get_drvdata(generic_phy);
void __iomem *base = phy->mmio;
/* Power down PHY */
writel_relaxed(0xF8, base + SATA_PHY_POW_DWN_CTRL0);
writel_relaxed(0xFE, base + SATA_PHY_POW_DWN_CTRL1);
/* Power down PLL block */
writel_relaxed(0x00, base + UNIPHY_PLL_GLB_CFG);
return 0;
}
static const struct phy_ops qcom_apq8064_sata_phy_ops = {
.init = qcom_apq8064_sata_phy_init,
.exit = qcom_apq8064_sata_phy_exit,
.owner = THIS_MODULE,
};
static int qcom_apq8064_sata_phy_probe(struct platform_device *pdev)
{
struct qcom_apq8064_sata_phy *phy;
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct phy *generic_phy;
int ret;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
phy->mmio = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(phy->mmio))
return PTR_ERR(phy->mmio);
generic_phy = devm_phy_create(dev, NULL, &qcom_apq8064_sata_phy_ops);
if (IS_ERR(generic_phy)) {
dev_err(dev, "%s: failed to create phy\n", __func__);
return PTR_ERR(generic_phy);
}
phy->dev = dev;
phy_set_drvdata(generic_phy, phy);
platform_set_drvdata(pdev, phy);
phy->cfg_clk = devm_clk_get(dev, "cfg");
if (IS_ERR(phy->cfg_clk)) {
dev_err(dev, "Failed to get sata cfg clock\n");
return PTR_ERR(phy->cfg_clk);
}
ret = clk_prepare_enable(phy->cfg_clk);
if (ret)
return ret;
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
clk_disable_unprepare(phy->cfg_clk);
dev_err(dev, "%s: failed to register phy\n", __func__);
return PTR_ERR(phy_provider);
}
return 0;
}
static void qcom_apq8064_sata_phy_remove(struct platform_device *pdev)
{
struct qcom_apq8064_sata_phy *phy = platform_get_drvdata(pdev);
clk_disable_unprepare(phy->cfg_clk);
}
static const struct of_device_id qcom_apq8064_sata_phy_of_match[] = {
{ .compatible = "qcom,apq8064-sata-phy" },
{ },
};
MODULE_DEVICE_TABLE(of, qcom_apq8064_sata_phy_of_match);
static struct platform_driver qcom_apq8064_sata_phy_driver = {
.probe = qcom_apq8064_sata_phy_probe,
.remove_new = qcom_apq8064_sata_phy_remove,
.driver = {
.name = "qcom-apq8064-sata-phy",
.of_match_table = qcom_apq8064_sata_phy_of_match,
}
};
module_platform_driver(qcom_apq8064_sata_phy_driver);
MODULE_DESCRIPTION("QCOM apq8064 SATA PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-apq8064-sata.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2016 Linaro Ltd
*/
#include <linux/module.h>
#include <linux/ulpi/driver.h>
#include <linux/ulpi/regs.h>
#include <linux/clk.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/reset.h>
#include <linux/extcon.h>
#include <linux/notifier.h>
#define ULPI_PWR_CLK_MNG_REG 0x88
# define ULPI_PWR_OTG_COMP_DISABLE BIT(0)
#define ULPI_MISC_A 0x96
# define ULPI_MISC_A_VBUSVLDEXTSEL BIT(1)
# define ULPI_MISC_A_VBUSVLDEXT BIT(0)
struct ulpi_seq {
u8 addr;
u8 val;
};
struct qcom_usb_hs_phy {
struct ulpi *ulpi;
struct phy *phy;
struct clk *ref_clk;
struct clk *sleep_clk;
struct regulator *v1p8;
struct regulator *v3p3;
struct reset_control *reset;
struct ulpi_seq *init_seq;
struct extcon_dev *vbus_edev;
struct notifier_block vbus_notify;
};
static int qcom_usb_hs_phy_set_mode(struct phy *phy,
enum phy_mode mode, int submode)
{
struct qcom_usb_hs_phy *uphy = phy_get_drvdata(phy);
u8 addr;
int ret;
if (!uphy->vbus_edev) {
u8 val = 0;
switch (mode) {
case PHY_MODE_USB_OTG:
case PHY_MODE_USB_HOST:
val |= ULPI_INT_IDGRD;
fallthrough;
case PHY_MODE_USB_DEVICE:
val |= ULPI_INT_SESS_VALID;
break;
default:
break;
}
ret = ulpi_write(uphy->ulpi, ULPI_USB_INT_EN_RISE, val);
if (ret)
return ret;
ret = ulpi_write(uphy->ulpi, ULPI_USB_INT_EN_FALL, val);
} else {
switch (mode) {
case PHY_MODE_USB_OTG:
case PHY_MODE_USB_DEVICE:
addr = ULPI_SET(ULPI_MISC_A);
break;
case PHY_MODE_USB_HOST:
addr = ULPI_CLR(ULPI_MISC_A);
break;
default:
return -EINVAL;
}
ret = ulpi_write(uphy->ulpi, ULPI_SET(ULPI_PWR_CLK_MNG_REG),
ULPI_PWR_OTG_COMP_DISABLE);
if (ret)
return ret;
ret = ulpi_write(uphy->ulpi, addr, ULPI_MISC_A_VBUSVLDEXTSEL);
}
return ret;
}
static int
qcom_usb_hs_phy_vbus_notifier(struct notifier_block *nb, unsigned long event,
void *ptr)
{
struct qcom_usb_hs_phy *uphy;
u8 addr;
uphy = container_of(nb, struct qcom_usb_hs_phy, vbus_notify);
if (event)
addr = ULPI_SET(ULPI_MISC_A);
else
addr = ULPI_CLR(ULPI_MISC_A);
return ulpi_write(uphy->ulpi, addr, ULPI_MISC_A_VBUSVLDEXT);
}
static int qcom_usb_hs_phy_power_on(struct phy *phy)
{
struct qcom_usb_hs_phy *uphy = phy_get_drvdata(phy);
struct ulpi *ulpi = uphy->ulpi;
const struct ulpi_seq *seq;
int ret, state;
ret = clk_prepare_enable(uphy->ref_clk);
if (ret)
return ret;
ret = clk_prepare_enable(uphy->sleep_clk);
if (ret)
goto err_sleep;
ret = regulator_set_load(uphy->v1p8, 50000);
if (ret < 0)
goto err_1p8;
ret = regulator_enable(uphy->v1p8);
if (ret)
goto err_1p8;
ret = regulator_set_voltage_triplet(uphy->v3p3, 3050000, 3300000,
3300000);
if (ret)
goto err_3p3;
ret = regulator_set_load(uphy->v3p3, 50000);
if (ret < 0)
goto err_3p3;
ret = regulator_enable(uphy->v3p3);
if (ret)
goto err_3p3;
for (seq = uphy->init_seq; seq->addr; seq++) {
ret = ulpi_write(ulpi, ULPI_EXT_VENDOR_SPECIFIC + seq->addr,
seq->val);
if (ret)
goto err_ulpi;
}
if (uphy->reset) {
ret = reset_control_reset(uphy->reset);
if (ret)
goto err_ulpi;
}
if (uphy->vbus_edev) {
state = extcon_get_state(uphy->vbus_edev, EXTCON_USB);
/* setup initial state */
qcom_usb_hs_phy_vbus_notifier(&uphy->vbus_notify, state,
uphy->vbus_edev);
ret = extcon_register_notifier(uphy->vbus_edev, EXTCON_USB,
&uphy->vbus_notify);
if (ret)
goto err_ulpi;
}
return 0;
err_ulpi:
regulator_disable(uphy->v3p3);
err_3p3:
regulator_disable(uphy->v1p8);
err_1p8:
clk_disable_unprepare(uphy->sleep_clk);
err_sleep:
clk_disable_unprepare(uphy->ref_clk);
return ret;
}
static int qcom_usb_hs_phy_power_off(struct phy *phy)
{
struct qcom_usb_hs_phy *uphy = phy_get_drvdata(phy);
if (uphy->vbus_edev)
extcon_unregister_notifier(uphy->vbus_edev, EXTCON_USB,
&uphy->vbus_notify);
regulator_disable(uphy->v3p3);
regulator_disable(uphy->v1p8);
clk_disable_unprepare(uphy->sleep_clk);
clk_disable_unprepare(uphy->ref_clk);
return 0;
}
static const struct phy_ops qcom_usb_hs_phy_ops = {
.power_on = qcom_usb_hs_phy_power_on,
.power_off = qcom_usb_hs_phy_power_off,
.set_mode = qcom_usb_hs_phy_set_mode,
.owner = THIS_MODULE,
};
static int qcom_usb_hs_phy_probe(struct ulpi *ulpi)
{
struct qcom_usb_hs_phy *uphy;
struct phy_provider *p;
struct clk *clk;
struct regulator *reg;
struct reset_control *reset;
int size;
int ret;
uphy = devm_kzalloc(&ulpi->dev, sizeof(*uphy), GFP_KERNEL);
if (!uphy)
return -ENOMEM;
ulpi_set_drvdata(ulpi, uphy);
uphy->ulpi = ulpi;
size = of_property_count_u8_elems(ulpi->dev.of_node, "qcom,init-seq");
if (size < 0)
size = 0;
uphy->init_seq = devm_kmalloc_array(&ulpi->dev, (size / 2) + 1,
sizeof(*uphy->init_seq), GFP_KERNEL);
if (!uphy->init_seq)
return -ENOMEM;
ret = of_property_read_u8_array(ulpi->dev.of_node, "qcom,init-seq",
(u8 *)uphy->init_seq, size);
if (ret && size)
return ret;
/* NUL terminate */
uphy->init_seq[size / 2].addr = uphy->init_seq[size / 2].val = 0;
uphy->ref_clk = clk = devm_clk_get(&ulpi->dev, "ref");
if (IS_ERR(clk))
return PTR_ERR(clk);
uphy->sleep_clk = clk = devm_clk_get(&ulpi->dev, "sleep");
if (IS_ERR(clk))
return PTR_ERR(clk);
uphy->v1p8 = reg = devm_regulator_get(&ulpi->dev, "v1p8");
if (IS_ERR(reg))
return PTR_ERR(reg);
uphy->v3p3 = reg = devm_regulator_get(&ulpi->dev, "v3p3");
if (IS_ERR(reg))
return PTR_ERR(reg);
uphy->reset = reset = devm_reset_control_get(&ulpi->dev, "por");
if (IS_ERR(reset)) {
if (PTR_ERR(reset) == -EPROBE_DEFER)
return PTR_ERR(reset);
uphy->reset = NULL;
}
uphy->phy = devm_phy_create(&ulpi->dev, ulpi->dev.of_node,
&qcom_usb_hs_phy_ops);
if (IS_ERR(uphy->phy))
return PTR_ERR(uphy->phy);
uphy->vbus_edev = extcon_get_edev_by_phandle(&ulpi->dev, 0);
if (IS_ERR(uphy->vbus_edev)) {
if (PTR_ERR(uphy->vbus_edev) != -ENODEV)
return PTR_ERR(uphy->vbus_edev);
uphy->vbus_edev = NULL;
}
uphy->vbus_notify.notifier_call = qcom_usb_hs_phy_vbus_notifier;
phy_set_drvdata(uphy->phy, uphy);
p = devm_of_phy_provider_register(&ulpi->dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(p);
}
static const struct of_device_id qcom_usb_hs_phy_match[] = {
{ .compatible = "qcom,usb-hs-phy", },
{ }
};
MODULE_DEVICE_TABLE(of, qcom_usb_hs_phy_match);
static struct ulpi_driver qcom_usb_hs_phy_driver = {
.probe = qcom_usb_hs_phy_probe,
.driver = {
.name = "qcom_usb_hs_phy",
.of_match_table = qcom_usb_hs_phy_match,
},
};
module_ulpi_driver(qcom_usb_hs_phy_driver);
MODULE_DESCRIPTION("Qualcomm USB HS phy");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-usb-hs.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2009-2018, Linux Foundation. All rights reserved.
* Copyright (c) 2018-2020, Linaro Limited
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
/* PHY register and bit definitions */
#define PHY_CTRL_COMMON0 0x078
#define SIDDQ BIT(2)
#define PHY_IRQ_CMD 0x0d0
#define PHY_INTR_MASK0 0x0d4
#define PHY_INTR_CLEAR0 0x0dc
#define DPDM_MASK 0x1e
#define DP_1_0 BIT(4)
#define DP_0_1 BIT(3)
#define DM_1_0 BIT(2)
#define DM_0_1 BIT(1)
enum hsphy_voltage {
VOL_NONE,
VOL_MIN,
VOL_MAX,
VOL_NUM,
};
enum hsphy_vreg {
VDD,
VDDA_1P8,
VDDA_3P3,
VREG_NUM,
};
struct hsphy_init_seq {
int offset;
int val;
int delay;
};
struct hsphy_data {
const struct hsphy_init_seq *init_seq;
unsigned int init_seq_num;
};
struct hsphy_priv {
void __iomem *base;
struct clk_bulk_data *clks;
int num_clks;
struct reset_control *phy_reset;
struct reset_control *por_reset;
struct regulator_bulk_data vregs[VREG_NUM];
const struct hsphy_data *data;
enum phy_mode mode;
};
static int qcom_snps_hsphy_set_mode(struct phy *phy, enum phy_mode mode,
int submode)
{
struct hsphy_priv *priv = phy_get_drvdata(phy);
priv->mode = PHY_MODE_INVALID;
if (mode > 0)
priv->mode = mode;
return 0;
}
static void qcom_snps_hsphy_enable_hv_interrupts(struct hsphy_priv *priv)
{
u32 val;
/* Clear any existing interrupts before enabling the interrupts */
val = readb(priv->base + PHY_INTR_CLEAR0);
val |= DPDM_MASK;
writeb(val, priv->base + PHY_INTR_CLEAR0);
writeb(0x0, priv->base + PHY_IRQ_CMD);
usleep_range(200, 220);
writeb(0x1, priv->base + PHY_IRQ_CMD);
/* Make sure the interrupts are cleared */
usleep_range(200, 220);
val = readb(priv->base + PHY_INTR_MASK0);
switch (priv->mode) {
case PHY_MODE_USB_HOST_HS:
case PHY_MODE_USB_HOST_FS:
case PHY_MODE_USB_DEVICE_HS:
case PHY_MODE_USB_DEVICE_FS:
val |= DP_1_0 | DM_0_1;
break;
case PHY_MODE_USB_HOST_LS:
case PHY_MODE_USB_DEVICE_LS:
val |= DP_0_1 | DM_1_0;
break;
default:
/* No device connected */
val |= DP_0_1 | DM_0_1;
break;
}
writeb(val, priv->base + PHY_INTR_MASK0);
}
static void qcom_snps_hsphy_disable_hv_interrupts(struct hsphy_priv *priv)
{
u32 val;
val = readb(priv->base + PHY_INTR_MASK0);
val &= ~DPDM_MASK;
writeb(val, priv->base + PHY_INTR_MASK0);
/* Clear any pending interrupts */
val = readb(priv->base + PHY_INTR_CLEAR0);
val |= DPDM_MASK;
writeb(val, priv->base + PHY_INTR_CLEAR0);
writeb(0x0, priv->base + PHY_IRQ_CMD);
usleep_range(200, 220);
writeb(0x1, priv->base + PHY_IRQ_CMD);
usleep_range(200, 220);
}
static void qcom_snps_hsphy_enter_retention(struct hsphy_priv *priv)
{
u32 val;
val = readb(priv->base + PHY_CTRL_COMMON0);
val |= SIDDQ;
writeb(val, priv->base + PHY_CTRL_COMMON0);
}
static void qcom_snps_hsphy_exit_retention(struct hsphy_priv *priv)
{
u32 val;
val = readb(priv->base + PHY_CTRL_COMMON0);
val &= ~SIDDQ;
writeb(val, priv->base + PHY_CTRL_COMMON0);
}
static int qcom_snps_hsphy_power_on(struct phy *phy)
{
struct hsphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = regulator_bulk_enable(VREG_NUM, priv->vregs);
if (ret)
return ret;
qcom_snps_hsphy_disable_hv_interrupts(priv);
qcom_snps_hsphy_exit_retention(priv);
return 0;
}
static int qcom_snps_hsphy_power_off(struct phy *phy)
{
struct hsphy_priv *priv = phy_get_drvdata(phy);
qcom_snps_hsphy_enter_retention(priv);
qcom_snps_hsphy_enable_hv_interrupts(priv);
regulator_bulk_disable(VREG_NUM, priv->vregs);
return 0;
}
static int qcom_snps_hsphy_reset(struct hsphy_priv *priv)
{
int ret;
ret = reset_control_assert(priv->phy_reset);
if (ret)
return ret;
usleep_range(10, 15);
ret = reset_control_deassert(priv->phy_reset);
if (ret)
return ret;
usleep_range(80, 100);
return 0;
}
static void qcom_snps_hsphy_init_sequence(struct hsphy_priv *priv)
{
const struct hsphy_data *data = priv->data;
const struct hsphy_init_seq *seq;
int i;
/* Device match data is optional. */
if (!data)
return;
seq = data->init_seq;
for (i = 0; i < data->init_seq_num; i++, seq++) {
writeb(seq->val, priv->base + seq->offset);
if (seq->delay)
usleep_range(seq->delay, seq->delay + 10);
}
}
static int qcom_snps_hsphy_por_reset(struct hsphy_priv *priv)
{
int ret;
ret = reset_control_assert(priv->por_reset);
if (ret)
return ret;
/*
* The Femto PHY is POR reset in the following scenarios.
*
* 1. After overriding the parameter registers.
* 2. Low power mode exit from PHY retention.
*
* Ensure that SIDDQ is cleared before bringing the PHY
* out of reset.
*/
qcom_snps_hsphy_exit_retention(priv);
/*
* As per databook, 10 usec delay is required between
* PHY POR assert and de-assert.
*/
usleep_range(10, 20);
ret = reset_control_deassert(priv->por_reset);
if (ret)
return ret;
/*
* As per databook, it takes 75 usec for PHY to stabilize
* after the reset.
*/
usleep_range(80, 100);
return 0;
}
static int qcom_snps_hsphy_init(struct phy *phy)
{
struct hsphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = clk_bulk_prepare_enable(priv->num_clks, priv->clks);
if (ret)
return ret;
ret = qcom_snps_hsphy_reset(priv);
if (ret)
goto disable_clocks;
qcom_snps_hsphy_init_sequence(priv);
ret = qcom_snps_hsphy_por_reset(priv);
if (ret)
goto disable_clocks;
return 0;
disable_clocks:
clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
return ret;
}
static int qcom_snps_hsphy_exit(struct phy *phy)
{
struct hsphy_priv *priv = phy_get_drvdata(phy);
clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
return 0;
}
static const struct phy_ops qcom_snps_hsphy_ops = {
.init = qcom_snps_hsphy_init,
.exit = qcom_snps_hsphy_exit,
.power_on = qcom_snps_hsphy_power_on,
.power_off = qcom_snps_hsphy_power_off,
.set_mode = qcom_snps_hsphy_set_mode,
.owner = THIS_MODULE,
};
static const char * const qcom_snps_hsphy_clks[] = {
"ref",
"ahb",
"sleep",
};
static int qcom_snps_hsphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *provider;
struct hsphy_priv *priv;
struct phy *phy;
int ret;
int i;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
priv->num_clks = ARRAY_SIZE(qcom_snps_hsphy_clks);
priv->clks = devm_kcalloc(dev, priv->num_clks, sizeof(*priv->clks),
GFP_KERNEL);
if (!priv->clks)
return -ENOMEM;
for (i = 0; i < priv->num_clks; i++)
priv->clks[i].id = qcom_snps_hsphy_clks[i];
ret = devm_clk_bulk_get(dev, priv->num_clks, priv->clks);
if (ret)
return ret;
priv->phy_reset = devm_reset_control_get_exclusive(dev, "phy");
if (IS_ERR(priv->phy_reset))
return PTR_ERR(priv->phy_reset);
priv->por_reset = devm_reset_control_get_exclusive(dev, "por");
if (IS_ERR(priv->por_reset))
return PTR_ERR(priv->por_reset);
priv->vregs[VDD].supply = "vdd";
priv->vregs[VDDA_1P8].supply = "vdda1p8";
priv->vregs[VDDA_3P3].supply = "vdda3p3";
ret = devm_regulator_bulk_get(dev, VREG_NUM, priv->vregs);
if (ret)
return ret;
/* Get device match data */
priv->data = device_get_match_data(dev);
phy = devm_phy_create(dev, dev->of_node, &qcom_snps_hsphy_ops);
if (IS_ERR(phy))
return PTR_ERR(phy);
phy_set_drvdata(phy, priv);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(provider))
return PTR_ERR(provider);
ret = regulator_set_load(priv->vregs[VDDA_1P8].consumer, 19000);
if (ret < 0)
return ret;
ret = regulator_set_load(priv->vregs[VDDA_3P3].consumer, 16000);
if (ret < 0)
goto unset_1p8_load;
return 0;
unset_1p8_load:
regulator_set_load(priv->vregs[VDDA_1P8].consumer, 0);
return ret;
}
/*
* The macro is used to define an initialization sequence. Each tuple
* is meant to program 'value' into phy register at 'offset' with 'delay'
* in us followed.
*/
#define HSPHY_INIT_CFG(o, v, d) { .offset = o, .val = v, .delay = d, }
static const struct hsphy_init_seq init_seq_femtophy[] = {
HSPHY_INIT_CFG(0xc0, 0x01, 0),
HSPHY_INIT_CFG(0xe8, 0x0d, 0),
HSPHY_INIT_CFG(0x74, 0x12, 0),
HSPHY_INIT_CFG(0x98, 0x63, 0),
HSPHY_INIT_CFG(0x9c, 0x03, 0),
HSPHY_INIT_CFG(0xa0, 0x1d, 0),
HSPHY_INIT_CFG(0xa4, 0x03, 0),
HSPHY_INIT_CFG(0x8c, 0x23, 0),
HSPHY_INIT_CFG(0x78, 0x08, 0),
HSPHY_INIT_CFG(0x7c, 0xdc, 0),
HSPHY_INIT_CFG(0x90, 0xe0, 20),
HSPHY_INIT_CFG(0x74, 0x10, 0),
HSPHY_INIT_CFG(0x90, 0x60, 0),
};
static const struct hsphy_data hsphy_data_femtophy = {
.init_seq = init_seq_femtophy,
.init_seq_num = ARRAY_SIZE(init_seq_femtophy),
};
static const struct of_device_id qcom_snps_hsphy_match[] = {
{ .compatible = "qcom,usb-hs-28nm-femtophy", .data = &hsphy_data_femtophy, },
{ },
};
MODULE_DEVICE_TABLE(of, qcom_snps_hsphy_match);
static struct platform_driver qcom_snps_hsphy_driver = {
.probe = qcom_snps_hsphy_probe,
.driver = {
.name = "qcom,usb-hs-28nm-phy",
.of_match_table = qcom_snps_hsphy_match,
},
};
module_platform_driver(qcom_snps_hsphy_driver);
MODULE_DESCRIPTION("Qualcomm 28nm Hi-Speed USB PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-usb-hs-28nm.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2023, Linaro Limited
*/
#include <linux/clk.h>
#include <linux/ethtool.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#define QSERDES_QMP_PLL 0x0
#define QSERDES_COM_BIN_VCOCAL_CMP_CODE1_MODE0 (QSERDES_QMP_PLL + 0x1ac)
#define QSERDES_COM_BIN_VCOCAL_CMP_CODE2_MODE0 (QSERDES_QMP_PLL + 0x1b0)
#define QSERDES_COM_BIN_VCOCAL_HSCLK_SEL (QSERDES_QMP_PLL + 0x1bc)
#define QSERDES_COM_CORE_CLK_EN (QSERDES_QMP_PLL + 0x174)
#define QSERDES_COM_CORECLK_DIV_MODE0 (QSERDES_QMP_PLL + 0x168)
#define QSERDES_COM_CP_CTRL_MODE0 (QSERDES_QMP_PLL + 0x74)
#define QSERDES_COM_DEC_START_MODE0 (QSERDES_QMP_PLL + 0xbc)
#define QSERDES_COM_DIV_FRAC_START1_MODE0 (QSERDES_QMP_PLL + 0xcc)
#define QSERDES_COM_DIV_FRAC_START2_MODE0 (QSERDES_QMP_PLL + 0xd0)
#define QSERDES_COM_DIV_FRAC_START3_MODE0 (QSERDES_QMP_PLL + 0xd4)
#define QSERDES_COM_HSCLK_HS_SWITCH_SEL (QSERDES_QMP_PLL + 0x15c)
#define QSERDES_COM_HSCLK_SEL (QSERDES_QMP_PLL + 0x158)
#define QSERDES_COM_LOCK_CMP1_MODE0 (QSERDES_QMP_PLL + 0xac)
#define QSERDES_COM_LOCK_CMP2_MODE0 (QSERDES_QMP_PLL + 0xb0)
#define QSERDES_COM_PLL_CCTRL_MODE0 (QSERDES_QMP_PLL + 0x84)
#define QSERDES_COM_PLL_IVCO (QSERDES_QMP_PLL + 0x58)
#define QSERDES_COM_PLL_RCTRL_MODE0 (QSERDES_QMP_PLL + 0x7c)
#define QSERDES_COM_SYSCLK_EN_SEL (QSERDES_QMP_PLL + 0x94)
#define QSERDES_COM_VCO_TUNE1_MODE0 (QSERDES_QMP_PLL + 0x110)
#define QSERDES_COM_VCO_TUNE2_MODE0 (QSERDES_QMP_PLL + 0x114)
#define QSERDES_COM_VCO_TUNE_INITVAL2 (QSERDES_QMP_PLL + 0x124)
#define QSERDES_COM_C_READY_STATUS (QSERDES_QMP_PLL + 0x178)
#define QSERDES_COM_CMN_STATUS (QSERDES_QMP_PLL + 0x140)
#define QSERDES_RX 0x600
#define QSERDES_RX_UCDR_FO_GAIN (QSERDES_RX + 0x8)
#define QSERDES_RX_UCDR_SO_GAIN (QSERDES_RX + 0x14)
#define QSERDES_RX_UCDR_FASTLOCK_FO_GAIN (QSERDES_RX + 0x30)
#define QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE (QSERDES_RX + 0x34)
#define QSERDES_RX_UCDR_FASTLOCK_COUNT_LOW (QSERDES_RX + 0x3c)
#define QSERDES_RX_UCDR_FASTLOCK_COUNT_HIGH (QSERDES_RX + 0x40)
#define QSERDES_RX_UCDR_PI_CONTROLS (QSERDES_RX + 0x44)
#define QSERDES_RX_UCDR_PI_CTRL2 (QSERDES_RX + 0x48)
#define QSERDES_RX_RX_TERM_BW (QSERDES_RX + 0x80)
#define QSERDES_RX_VGA_CAL_CNTRL2 (QSERDES_RX + 0xd8)
#define QSERDES_RX_GM_CAL (QSERDES_RX + 0xdc)
#define QSERDES_RX_RX_EQU_ADAPTOR_CNTRL1 (QSERDES_RX + 0xe8)
#define QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2 (QSERDES_RX + 0xec)
#define QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3 (QSERDES_RX + 0xf0)
#define QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4 (QSERDES_RX + 0xf4)
#define QSERDES_RX_RX_IDAC_TSETTLE_LOW (QSERDES_RX + 0xf8)
#define QSERDES_RX_RX_IDAC_TSETTLE_HIGH (QSERDES_RX + 0xfc)
#define QSERDES_RX_RX_IDAC_MEASURE_TIME (QSERDES_RX + 0x100)
#define QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1 (QSERDES_RX + 0x110)
#define QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2 (QSERDES_RX + 0x114)
#define QSERDES_RX_SIGDET_CNTRL (QSERDES_RX + 0x11c)
#define QSERDES_RX_SIGDET_DEGLITCH_CNTRL (QSERDES_RX + 0x124)
#define QSERDES_RX_RX_BAND (QSERDES_RX + 0x128)
#define QSERDES_RX_RX_MODE_00_LOW (QSERDES_RX + 0x15c)
#define QSERDES_RX_RX_MODE_00_HIGH (QSERDES_RX + 0x160)
#define QSERDES_RX_RX_MODE_00_HIGH2 (QSERDES_RX + 0x164)
#define QSERDES_RX_RX_MODE_00_HIGH3 (QSERDES_RX + 0x168)
#define QSERDES_RX_RX_MODE_00_HIGH4 (QSERDES_RX + 0x16c)
#define QSERDES_RX_RX_MODE_01_LOW (QSERDES_RX + 0x170)
#define QSERDES_RX_RX_MODE_01_HIGH (QSERDES_RX + 0x174)
#define QSERDES_RX_RX_MODE_01_HIGH2 (QSERDES_RX + 0x178)
#define QSERDES_RX_RX_MODE_01_HIGH3 (QSERDES_RX + 0x17c)
#define QSERDES_RX_RX_MODE_01_HIGH4 (QSERDES_RX + 0x180)
#define QSERDES_RX_RX_MODE_10_LOW (QSERDES_RX + 0x184)
#define QSERDES_RX_RX_MODE_10_HIGH (QSERDES_RX + 0x188)
#define QSERDES_RX_RX_MODE_10_HIGH2 (QSERDES_RX + 0x18c)
#define QSERDES_RX_RX_MODE_10_HIGH3 (QSERDES_RX + 0x190)
#define QSERDES_RX_RX_MODE_10_HIGH4 (QSERDES_RX + 0x194)
#define QSERDES_RX_DCC_CTRL1 (QSERDES_RX + 0x1a8)
#define QSERDES_TX 0x400
#define QSERDES_TX_TX_BAND (QSERDES_TX + 0x24)
#define QSERDES_TX_SLEW_CNTL (QSERDES_TX + 0x28)
#define QSERDES_TX_RES_CODE_LANE_OFFSET_TX (QSERDES_TX + 0x3c)
#define QSERDES_TX_RES_CODE_LANE_OFFSET_RX (QSERDES_TX + 0x40)
#define QSERDES_TX_LANE_MODE_1 (QSERDES_TX + 0x84)
#define QSERDES_TX_LANE_MODE_3 (QSERDES_TX + 0x8c)
#define QSERDES_TX_RCV_DETECT_LVL_2 (QSERDES_TX + 0xa4)
#define QSERDES_TX_TRAN_DRVR_EMP_EN (QSERDES_TX + 0xc0)
#define QSERDES_PCS 0xC00
#define QSERDES_PCS_PHY_START (QSERDES_PCS + 0x0)
#define QSERDES_PCS_POWER_DOWN_CONTROL (QSERDES_PCS + 0x4)
#define QSERDES_PCS_SW_RESET (QSERDES_PCS + 0x8)
#define QSERDES_PCS_LINE_RESET_TIME (QSERDES_PCS + 0xc)
#define QSERDES_PCS_TX_LARGE_AMP_DRV_LVL (QSERDES_PCS + 0x20)
#define QSERDES_PCS_TX_SMALL_AMP_DRV_LVL (QSERDES_PCS + 0x28)
#define QSERDES_PCS_TX_MID_TERM_CTRL1 (QSERDES_PCS + 0xd8)
#define QSERDES_PCS_TX_MID_TERM_CTRL2 (QSERDES_PCS + 0xdc)
#define QSERDES_PCS_SGMII_MISC_CTRL8 (QSERDES_PCS + 0x118)
#define QSERDES_PCS_PCS_READY_STATUS (QSERDES_PCS + 0x94)
#define QSERDES_COM_C_READY BIT(0)
#define QSERDES_PCS_READY BIT(0)
#define QSERDES_PCS_SGMIIPHY_READY BIT(7)
#define QSERDES_COM_C_PLL_LOCKED BIT(1)
struct qcom_dwmac_sgmii_phy_data {
struct regmap *regmap;
struct clk *refclk;
int speed;
};
static void qcom_dwmac_sgmii_phy_init_1g(struct regmap *regmap)
{
regmap_write(regmap, QSERDES_PCS_SW_RESET, 0x01);
regmap_write(regmap, QSERDES_PCS_POWER_DOWN_CONTROL, 0x01);
regmap_write(regmap, QSERDES_COM_PLL_IVCO, 0x0F);
regmap_write(regmap, QSERDES_COM_CP_CTRL_MODE0, 0x06);
regmap_write(regmap, QSERDES_COM_PLL_RCTRL_MODE0, 0x16);
regmap_write(regmap, QSERDES_COM_PLL_CCTRL_MODE0, 0x36);
regmap_write(regmap, QSERDES_COM_SYSCLK_EN_SEL, 0x1A);
regmap_write(regmap, QSERDES_COM_LOCK_CMP1_MODE0, 0x0A);
regmap_write(regmap, QSERDES_COM_LOCK_CMP2_MODE0, 0x1A);
regmap_write(regmap, QSERDES_COM_DEC_START_MODE0, 0x82);
regmap_write(regmap, QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55);
regmap_write(regmap, QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55);
regmap_write(regmap, QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03);
regmap_write(regmap, QSERDES_COM_VCO_TUNE1_MODE0, 0x24);
regmap_write(regmap, QSERDES_COM_VCO_TUNE2_MODE0, 0x02);
regmap_write(regmap, QSERDES_COM_VCO_TUNE_INITVAL2, 0x00);
regmap_write(regmap, QSERDES_COM_HSCLK_SEL, 0x04);
regmap_write(regmap, QSERDES_COM_HSCLK_HS_SWITCH_SEL, 0x00);
regmap_write(regmap, QSERDES_COM_CORECLK_DIV_MODE0, 0x0A);
regmap_write(regmap, QSERDES_COM_CORE_CLK_EN, 0x00);
regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xB9);
regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1E);
regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_HSCLK_SEL, 0x11);
regmap_write(regmap, QSERDES_TX_TX_BAND, 0x05);
regmap_write(regmap, QSERDES_TX_SLEW_CNTL, 0x0A);
regmap_write(regmap, QSERDES_TX_RES_CODE_LANE_OFFSET_TX, 0x09);
regmap_write(regmap, QSERDES_TX_RES_CODE_LANE_OFFSET_RX, 0x09);
regmap_write(regmap, QSERDES_TX_LANE_MODE_1, 0x05);
regmap_write(regmap, QSERDES_TX_LANE_MODE_3, 0x00);
regmap_write(regmap, QSERDES_TX_RCV_DETECT_LVL_2, 0x12);
regmap_write(regmap, QSERDES_TX_TRAN_DRVR_EMP_EN, 0x0C);
regmap_write(regmap, QSERDES_RX_UCDR_FO_GAIN, 0x0A);
regmap_write(regmap, QSERDES_RX_UCDR_SO_GAIN, 0x06);
regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0A);
regmap_write(regmap, QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7F);
regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_COUNT_LOW, 0x00);
regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x01);
regmap_write(regmap, QSERDES_RX_UCDR_PI_CONTROLS, 0x81);
regmap_write(regmap, QSERDES_RX_UCDR_PI_CTRL2, 0x80);
regmap_write(regmap, QSERDES_RX_RX_TERM_BW, 0x04);
regmap_write(regmap, QSERDES_RX_VGA_CAL_CNTRL2, 0x08);
regmap_write(regmap, QSERDES_RX_GM_CAL, 0x0F);
regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL1, 0x04);
regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x00);
regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4A);
regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0A);
regmap_write(regmap, QSERDES_RX_RX_IDAC_TSETTLE_LOW, 0x80);
regmap_write(regmap, QSERDES_RX_RX_IDAC_TSETTLE_HIGH, 0x01);
regmap_write(regmap, QSERDES_RX_RX_IDAC_MEASURE_TIME, 0x20);
regmap_write(regmap, QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17);
regmap_write(regmap, QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x00);
regmap_write(regmap, QSERDES_RX_SIGDET_CNTRL, 0x0F);
regmap_write(regmap, QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x1E);
regmap_write(regmap, QSERDES_RX_RX_BAND, 0x05);
regmap_write(regmap, QSERDES_RX_RX_MODE_00_LOW, 0xE0);
regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH2, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH3, 0x09);
regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH4, 0xB1);
regmap_write(regmap, QSERDES_RX_RX_MODE_01_LOW, 0xE0);
regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH2, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH3, 0x09);
regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH4, 0xB1);
regmap_write(regmap, QSERDES_RX_RX_MODE_10_LOW, 0xE0);
regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH2, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH3, 0x3B);
regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH4, 0xB7);
regmap_write(regmap, QSERDES_RX_DCC_CTRL1, 0x0C);
regmap_write(regmap, QSERDES_PCS_LINE_RESET_TIME, 0x0C);
regmap_write(regmap, QSERDES_PCS_TX_LARGE_AMP_DRV_LVL, 0x1F);
regmap_write(regmap, QSERDES_PCS_TX_SMALL_AMP_DRV_LVL, 0x03);
regmap_write(regmap, QSERDES_PCS_TX_MID_TERM_CTRL1, 0x83);
regmap_write(regmap, QSERDES_PCS_TX_MID_TERM_CTRL2, 0x08);
regmap_write(regmap, QSERDES_PCS_SGMII_MISC_CTRL8, 0x0C);
regmap_write(regmap, QSERDES_PCS_SW_RESET, 0x00);
regmap_write(regmap, QSERDES_PCS_PHY_START, 0x01);
}
static void qcom_dwmac_sgmii_phy_init_2p5g(struct regmap *regmap)
{
regmap_write(regmap, QSERDES_PCS_SW_RESET, 0x01);
regmap_write(regmap, QSERDES_PCS_POWER_DOWN_CONTROL, 0x01);
regmap_write(regmap, QSERDES_COM_PLL_IVCO, 0x0F);
regmap_write(regmap, QSERDES_COM_CP_CTRL_MODE0, 0x06);
regmap_write(regmap, QSERDES_COM_PLL_RCTRL_MODE0, 0x16);
regmap_write(regmap, QSERDES_COM_PLL_CCTRL_MODE0, 0x36);
regmap_write(regmap, QSERDES_COM_SYSCLK_EN_SEL, 0x1A);
regmap_write(regmap, QSERDES_COM_LOCK_CMP1_MODE0, 0x1A);
regmap_write(regmap, QSERDES_COM_LOCK_CMP2_MODE0, 0x41);
regmap_write(regmap, QSERDES_COM_DEC_START_MODE0, 0x7A);
regmap_write(regmap, QSERDES_COM_DIV_FRAC_START1_MODE0, 0x00);
regmap_write(regmap, QSERDES_COM_DIV_FRAC_START2_MODE0, 0x20);
regmap_write(regmap, QSERDES_COM_DIV_FRAC_START3_MODE0, 0x01);
regmap_write(regmap, QSERDES_COM_VCO_TUNE1_MODE0, 0xA1);
regmap_write(regmap, QSERDES_COM_VCO_TUNE2_MODE0, 0x02);
regmap_write(regmap, QSERDES_COM_VCO_TUNE_INITVAL2, 0x00);
regmap_write(regmap, QSERDES_COM_HSCLK_SEL, 0x03);
regmap_write(regmap, QSERDES_COM_HSCLK_HS_SWITCH_SEL, 0x00);
regmap_write(regmap, QSERDES_COM_CORECLK_DIV_MODE0, 0x05);
regmap_write(regmap, QSERDES_COM_CORE_CLK_EN, 0x00);
regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xCD);
regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1C);
regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_HSCLK_SEL, 0x11);
regmap_write(regmap, QSERDES_TX_TX_BAND, 0x04);
regmap_write(regmap, QSERDES_TX_SLEW_CNTL, 0x0A);
regmap_write(regmap, QSERDES_TX_RES_CODE_LANE_OFFSET_TX, 0x09);
regmap_write(regmap, QSERDES_TX_RES_CODE_LANE_OFFSET_RX, 0x02);
regmap_write(regmap, QSERDES_TX_LANE_MODE_1, 0x05);
regmap_write(regmap, QSERDES_TX_LANE_MODE_3, 0x00);
regmap_write(regmap, QSERDES_TX_RCV_DETECT_LVL_2, 0x12);
regmap_write(regmap, QSERDES_TX_TRAN_DRVR_EMP_EN, 0x0C);
regmap_write(regmap, QSERDES_RX_UCDR_FO_GAIN, 0x0A);
regmap_write(regmap, QSERDES_RX_UCDR_SO_GAIN, 0x06);
regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0A);
regmap_write(regmap, QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7F);
regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_COUNT_LOW, 0x00);
regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x01);
regmap_write(regmap, QSERDES_RX_UCDR_PI_CONTROLS, 0x81);
regmap_write(regmap, QSERDES_RX_UCDR_PI_CTRL2, 0x80);
regmap_write(regmap, QSERDES_RX_RX_TERM_BW, 0x00);
regmap_write(regmap, QSERDES_RX_VGA_CAL_CNTRL2, 0x08);
regmap_write(regmap, QSERDES_RX_GM_CAL, 0x0F);
regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL1, 0x04);
regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x00);
regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4A);
regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0A);
regmap_write(regmap, QSERDES_RX_RX_IDAC_TSETTLE_LOW, 0x80);
regmap_write(regmap, QSERDES_RX_RX_IDAC_TSETTLE_HIGH, 0x01);
regmap_write(regmap, QSERDES_RX_RX_IDAC_MEASURE_TIME, 0x20);
regmap_write(regmap, QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17);
regmap_write(regmap, QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x00);
regmap_write(regmap, QSERDES_RX_SIGDET_CNTRL, 0x0F);
regmap_write(regmap, QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x1E);
regmap_write(regmap, QSERDES_RX_RX_BAND, 0x18);
regmap_write(regmap, QSERDES_RX_RX_MODE_00_LOW, 0x18);
regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH2, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH3, 0x0C);
regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH4, 0xB8);
regmap_write(regmap, QSERDES_RX_RX_MODE_01_LOW, 0xE0);
regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH2, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH3, 0x09);
regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH4, 0xB1);
regmap_write(regmap, QSERDES_RX_RX_MODE_10_LOW, 0xE0);
regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH2, 0xC8);
regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH3, 0x3B);
regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH4, 0xB7);
regmap_write(regmap, QSERDES_RX_DCC_CTRL1, 0x0C);
regmap_write(regmap, QSERDES_PCS_LINE_RESET_TIME, 0x0C);
regmap_write(regmap, QSERDES_PCS_TX_LARGE_AMP_DRV_LVL, 0x1F);
regmap_write(regmap, QSERDES_PCS_TX_SMALL_AMP_DRV_LVL, 0x03);
regmap_write(regmap, QSERDES_PCS_TX_MID_TERM_CTRL1, 0x83);
regmap_write(regmap, QSERDES_PCS_TX_MID_TERM_CTRL2, 0x08);
regmap_write(regmap, QSERDES_PCS_SGMII_MISC_CTRL8, 0x8C);
regmap_write(regmap, QSERDES_PCS_SW_RESET, 0x00);
regmap_write(regmap, QSERDES_PCS_PHY_START, 0x01);
}
static inline int
qcom_dwmac_sgmii_phy_poll_status(struct regmap *regmap, unsigned int reg,
unsigned int bit)
{
unsigned int val;
return regmap_read_poll_timeout(regmap, reg, val,
val & bit, 1500, 750000);
}
static int qcom_dwmac_sgmii_phy_calibrate(struct phy *phy)
{
struct qcom_dwmac_sgmii_phy_data *data = phy_get_drvdata(phy);
struct device *dev = phy->dev.parent;
switch (data->speed) {
case SPEED_10:
case SPEED_100:
case SPEED_1000:
qcom_dwmac_sgmii_phy_init_1g(data->regmap);
break;
case SPEED_2500:
qcom_dwmac_sgmii_phy_init_2p5g(data->regmap);
break;
}
if (qcom_dwmac_sgmii_phy_poll_status(data->regmap,
QSERDES_COM_C_READY_STATUS,
QSERDES_COM_C_READY)) {
dev_err(dev, "QSERDES_COM_C_READY_STATUS timed-out");
return -ETIMEDOUT;
}
if (qcom_dwmac_sgmii_phy_poll_status(data->regmap,
QSERDES_PCS_PCS_READY_STATUS,
QSERDES_PCS_READY)) {
dev_err(dev, "PCS_READY timed-out");
return -ETIMEDOUT;
}
if (qcom_dwmac_sgmii_phy_poll_status(data->regmap,
QSERDES_PCS_PCS_READY_STATUS,
QSERDES_PCS_SGMIIPHY_READY)) {
dev_err(dev, "SGMIIPHY_READY timed-out");
return -ETIMEDOUT;
}
if (qcom_dwmac_sgmii_phy_poll_status(data->regmap,
QSERDES_COM_CMN_STATUS,
QSERDES_COM_C_PLL_LOCKED)) {
dev_err(dev, "PLL Lock Status timed-out");
return -ETIMEDOUT;
}
return 0;
}
static int qcom_dwmac_sgmii_phy_power_on(struct phy *phy)
{
struct qcom_dwmac_sgmii_phy_data *data = phy_get_drvdata(phy);
return clk_prepare_enable(data->refclk);
}
static int qcom_dwmac_sgmii_phy_power_off(struct phy *phy)
{
struct qcom_dwmac_sgmii_phy_data *data = phy_get_drvdata(phy);
regmap_write(data->regmap, QSERDES_PCS_TX_MID_TERM_CTRL2, 0x08);
regmap_write(data->regmap, QSERDES_PCS_SW_RESET, 0x01);
udelay(100);
regmap_write(data->regmap, QSERDES_PCS_SW_RESET, 0x00);
regmap_write(data->regmap, QSERDES_PCS_PHY_START, 0x01);
clk_disable_unprepare(data->refclk);
return 0;
}
static int qcom_dwmac_sgmii_phy_set_speed(struct phy *phy, int speed)
{
struct qcom_dwmac_sgmii_phy_data *data = phy_get_drvdata(phy);
if (speed != data->speed)
data->speed = speed;
return qcom_dwmac_sgmii_phy_calibrate(phy);
}
static const struct phy_ops qcom_dwmac_sgmii_phy_ops = {
.power_on = qcom_dwmac_sgmii_phy_power_on,
.power_off = qcom_dwmac_sgmii_phy_power_off,
.set_speed = qcom_dwmac_sgmii_phy_set_speed,
.calibrate = qcom_dwmac_sgmii_phy_calibrate,
.owner = THIS_MODULE,
};
static const struct regmap_config qcom_dwmac_sgmii_phy_regmap_cfg = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.use_relaxed_mmio = true,
.disable_locking = true,
};
static int qcom_dwmac_sgmii_phy_probe(struct platform_device *pdev)
{
struct qcom_dwmac_sgmii_phy_data *data;
struct device *dev = &pdev->dev;
struct phy_provider *provider;
void __iomem *base;
struct phy *phy;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->speed = SPEED_10;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
data->regmap = devm_regmap_init_mmio(dev, base,
&qcom_dwmac_sgmii_phy_regmap_cfg);
if (IS_ERR(data->regmap))
return PTR_ERR(data->regmap);
phy = devm_phy_create(dev, NULL, &qcom_dwmac_sgmii_phy_ops);
if (IS_ERR(phy))
return PTR_ERR(phy);
data->refclk = devm_clk_get(dev, "sgmi_ref");
if (IS_ERR(data->refclk))
return PTR_ERR(data->refclk);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(provider))
return PTR_ERR(provider);
phy_set_drvdata(phy, data);
return 0;
}
static const struct of_device_id qcom_dwmac_sgmii_phy_of_match[] = {
{ .compatible = "qcom,sa8775p-dwmac-sgmii-phy" },
{ },
};
MODULE_DEVICE_TABLE(of, qcom_dwmac_sgmii_phy_of_match);
static struct platform_driver qcom_dwmac_sgmii_phy_driver = {
.probe = qcom_dwmac_sgmii_phy_probe,
.driver = {
.name = "qcom-dwmac-sgmii-phy",
.of_match_table = qcom_dwmac_sgmii_phy_of_match,
}
};
module_platform_driver(qcom_dwmac_sgmii_phy_driver);
MODULE_DESCRIPTION("Qualcomm DWMAC SGMII PHY driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/qualcomm/phy-qcom-sgmii-eth.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2023, Linaro Limited
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/mod_devicetable.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#define USB_PHY_UTMI_CTRL0 (0x3c)
#define SLEEPM BIT(0)
#define OPMODE_MASK GENMASK(4, 3)
#define OPMODE_NONDRIVING BIT(3)
#define USB_PHY_UTMI_CTRL5 (0x50)
#define POR BIT(1)
#define USB_PHY_HS_PHY_CTRL_COMMON0 (0x54)
#define PHY_ENABLE BIT(0)
#define SIDDQ_SEL BIT(1)
#define SIDDQ BIT(2)
#define RETENABLEN BIT(3)
#define FSEL_MASK GENMASK(6, 4)
#define FSEL_19_2_MHZ_VAL (0x0)
#define FSEL_38_4_MHZ_VAL (0x4)
#define USB_PHY_CFG_CTRL_1 (0x58)
#define PHY_CFG_PLL_CPBIAS_CNTRL_MASK GENMASK(7, 1)
#define USB_PHY_CFG_CTRL_2 (0x5c)
#define PHY_CFG_PLL_FB_DIV_7_0_MASK GENMASK(7, 0)
#define DIV_7_0_19_2_MHZ_VAL (0x90)
#define DIV_7_0_38_4_MHZ_VAL (0xc8)
#define USB_PHY_CFG_CTRL_3 (0x60)
#define PHY_CFG_PLL_FB_DIV_11_8_MASK GENMASK(3, 0)
#define DIV_11_8_19_2_MHZ_VAL (0x1)
#define DIV_11_8_38_4_MHZ_VAL (0x0)
#define PHY_CFG_PLL_REF_DIV GENMASK(7, 4)
#define PLL_REF_DIV_VAL (0x0)
#define USB_PHY_HS_PHY_CTRL2 (0x64)
#define VBUSVLDEXT0 BIT(0)
#define USB2_SUSPEND_N BIT(2)
#define USB2_SUSPEND_N_SEL BIT(3)
#define VBUS_DET_EXT_SEL BIT(4)
#define USB_PHY_CFG_CTRL_4 (0x68)
#define PHY_CFG_PLL_GMP_CNTRL_MASK GENMASK(1, 0)
#define PHY_CFG_PLL_INT_CNTRL_MASK GENMASK(7, 2)
#define USB_PHY_CFG_CTRL_5 (0x6c)
#define PHY_CFG_PLL_PROP_CNTRL_MASK GENMASK(4, 0)
#define PHY_CFG_PLL_VREF_TUNE_MASK GENMASK(7, 6)
#define USB_PHY_CFG_CTRL_6 (0x70)
#define PHY_CFG_PLL_VCO_CNTRL_MASK GENMASK(2, 0)
#define USB_PHY_CFG_CTRL_7 (0x74)
#define USB_PHY_CFG_CTRL_8 (0x78)
#define PHY_CFG_TX_FSLS_VREF_TUNE_MASK GENMASK(1, 0)
#define PHY_CFG_TX_FSLS_VREG_BYPASS BIT(2)
#define PHY_CFG_TX_HS_VREF_TUNE_MASK GENMASK(5, 3)
#define PHY_CFG_TX_HS_XV_TUNE_MASK GENMASK(7, 6)
#define USB_PHY_CFG_CTRL_9 (0x7c)
#define PHY_CFG_TX_PREEMP_TUNE_MASK GENMASK(2, 0)
#define PHY_CFG_TX_RES_TUNE_MASK GENMASK(4, 3)
#define PHY_CFG_TX_RISE_TUNE_MASK GENMASK(6, 5)
#define PHY_CFG_RCAL_BYPASS BIT(7)
#define USB_PHY_CFG_CTRL_10 (0x80)
#define USB_PHY_CFG0 (0x94)
#define DATAPATH_CTRL_OVERRIDE_EN BIT(0)
#define CMN_CTRL_OVERRIDE_EN BIT(1)
#define UTMI_PHY_CMN_CTRL0 (0x98)
#define TESTBURNIN BIT(6)
#define USB_PHY_FSEL_SEL (0xb8)
#define FSEL_SEL BIT(0)
#define USB_PHY_APB_ACCESS_CMD (0x130)
#define RW_ACCESS BIT(0)
#define APB_START_CMD BIT(1)
#define APB_LOGIC_RESET BIT(2)
#define USB_PHY_APB_ACCESS_STATUS (0x134)
#define ACCESS_DONE BIT(0)
#define TIMED_OUT BIT(1)
#define ACCESS_ERROR BIT(2)
#define ACCESS_IN_PROGRESS BIT(3)
#define USB_PHY_APB_ADDRESS (0x138)
#define APB_REG_ADDR_MASK GENMASK(7, 0)
#define USB_PHY_APB_WRDATA_LSB (0x13c)
#define APB_REG_WRDATA_7_0_MASK GENMASK(3, 0)
#define USB_PHY_APB_WRDATA_MSB (0x140)
#define APB_REG_WRDATA_15_8_MASK GENMASK(7, 4)
#define USB_PHY_APB_RDDATA_LSB (0x144)
#define APB_REG_RDDATA_7_0_MASK GENMASK(3, 0)
#define USB_PHY_APB_RDDATA_MSB (0x148)
#define APB_REG_RDDATA_15_8_MASK GENMASK(7, 4)
static const char * const eusb2_hsphy_vreg_names[] = {
"vdd", "vdda12",
};
#define EUSB2_NUM_VREGS ARRAY_SIZE(eusb2_hsphy_vreg_names)
struct qcom_snps_eusb2_hsphy {
struct phy *phy;
void __iomem *base;
struct clk *ref_clk;
struct reset_control *phy_reset;
struct regulator_bulk_data vregs[EUSB2_NUM_VREGS];
enum phy_mode mode;
struct phy *repeater;
};
static int qcom_snps_eusb2_hsphy_set_mode(struct phy *p, enum phy_mode mode, int submode)
{
struct qcom_snps_eusb2_hsphy *phy = phy_get_drvdata(p);
phy->mode = mode;
return phy_set_mode_ext(phy->repeater, mode, submode);
}
static void qcom_snps_eusb2_hsphy_write_mask(void __iomem *base, u32 offset,
u32 mask, u32 val)
{
u32 reg;
reg = readl_relaxed(base + offset);
reg &= ~mask;
reg |= val & mask;
writel_relaxed(reg, base + offset);
/* Ensure above write is completed */
readl_relaxed(base + offset);
}
static void qcom_eusb2_default_parameters(struct qcom_snps_eusb2_hsphy *phy)
{
/* default parameters: tx pre-emphasis */
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_9,
PHY_CFG_TX_PREEMP_TUNE_MASK,
FIELD_PREP(PHY_CFG_TX_PREEMP_TUNE_MASK, 0));
/* tx rise/fall time */
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_9,
PHY_CFG_TX_RISE_TUNE_MASK,
FIELD_PREP(PHY_CFG_TX_RISE_TUNE_MASK, 0x2));
/* source impedance adjustment */
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_9,
PHY_CFG_TX_RES_TUNE_MASK,
FIELD_PREP(PHY_CFG_TX_RES_TUNE_MASK, 0x1));
/* dc voltage level adjustement */
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_8,
PHY_CFG_TX_HS_VREF_TUNE_MASK,
FIELD_PREP(PHY_CFG_TX_HS_VREF_TUNE_MASK, 0x3));
/* transmitter HS crossover adjustement */
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_8,
PHY_CFG_TX_HS_XV_TUNE_MASK,
FIELD_PREP(PHY_CFG_TX_HS_XV_TUNE_MASK, 0x0));
}
static int qcom_eusb2_ref_clk_init(struct qcom_snps_eusb2_hsphy *phy)
{
unsigned long ref_clk_freq = clk_get_rate(phy->ref_clk);
switch (ref_clk_freq) {
case 19200000:
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL_COMMON0,
FSEL_MASK,
FIELD_PREP(FSEL_MASK, FSEL_19_2_MHZ_VAL));
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_2,
PHY_CFG_PLL_FB_DIV_7_0_MASK,
DIV_7_0_19_2_MHZ_VAL);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_3,
PHY_CFG_PLL_FB_DIV_11_8_MASK,
DIV_11_8_19_2_MHZ_VAL);
break;
case 38400000:
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL_COMMON0,
FSEL_MASK,
FIELD_PREP(FSEL_MASK, FSEL_38_4_MHZ_VAL));
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_2,
PHY_CFG_PLL_FB_DIV_7_0_MASK,
DIV_7_0_38_4_MHZ_VAL);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_3,
PHY_CFG_PLL_FB_DIV_11_8_MASK,
DIV_11_8_38_4_MHZ_VAL);
break;
default:
dev_err(&phy->phy->dev, "unsupported ref_clk_freq:%lu\n", ref_clk_freq);
return -EINVAL;
}
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_3,
PHY_CFG_PLL_REF_DIV, PLL_REF_DIV_VAL);
return 0;
}
static int qcom_snps_eusb2_hsphy_init(struct phy *p)
{
struct qcom_snps_eusb2_hsphy *phy = phy_get_drvdata(p);
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(phy->vregs), phy->vregs);
if (ret)
return ret;
ret = phy_init(phy->repeater);
if (ret) {
dev_err(&p->dev, "repeater init failed. %d\n", ret);
goto disable_vreg;
}
ret = clk_prepare_enable(phy->ref_clk);
if (ret) {
dev_err(&p->dev, "failed to enable ref clock, %d\n", ret);
goto disable_vreg;
}
ret = reset_control_assert(phy->phy_reset);
if (ret) {
dev_err(&p->dev, "failed to assert phy_reset, %d\n", ret);
goto disable_ref_clk;
}
usleep_range(100, 150);
ret = reset_control_deassert(phy->phy_reset);
if (ret) {
dev_err(&p->dev, "failed to de-assert phy_reset, %d\n", ret);
goto disable_ref_clk;
}
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG0,
CMN_CTRL_OVERRIDE_EN, CMN_CTRL_OVERRIDE_EN);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_UTMI_CTRL5, POR, POR);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL_COMMON0,
PHY_ENABLE | RETENABLEN, PHY_ENABLE | RETENABLEN);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_APB_ACCESS_CMD,
APB_LOGIC_RESET, APB_LOGIC_RESET);
qcom_snps_eusb2_hsphy_write_mask(phy->base, UTMI_PHY_CMN_CTRL0, TESTBURNIN, 0);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_FSEL_SEL,
FSEL_SEL, FSEL_SEL);
/* update ref_clk related registers */
ret = qcom_eusb2_ref_clk_init(phy);
if (ret)
goto disable_ref_clk;
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_1,
PHY_CFG_PLL_CPBIAS_CNTRL_MASK,
FIELD_PREP(PHY_CFG_PLL_CPBIAS_CNTRL_MASK, 0x1));
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_4,
PHY_CFG_PLL_INT_CNTRL_MASK,
FIELD_PREP(PHY_CFG_PLL_INT_CNTRL_MASK, 0x8));
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_4,
PHY_CFG_PLL_GMP_CNTRL_MASK,
FIELD_PREP(PHY_CFG_PLL_GMP_CNTRL_MASK, 0x1));
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_5,
PHY_CFG_PLL_PROP_CNTRL_MASK,
FIELD_PREP(PHY_CFG_PLL_PROP_CNTRL_MASK, 0x10));
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_6,
PHY_CFG_PLL_VCO_CNTRL_MASK,
FIELD_PREP(PHY_CFG_PLL_VCO_CNTRL_MASK, 0x0));
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_5,
PHY_CFG_PLL_VREF_TUNE_MASK,
FIELD_PREP(PHY_CFG_PLL_VREF_TUNE_MASK, 0x1));
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL2,
VBUS_DET_EXT_SEL, VBUS_DET_EXT_SEL);
/* set default parameters */
qcom_eusb2_default_parameters(phy);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_UTMI_CTRL0, SLEEPM, SLEEPM);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL_COMMON0,
SIDDQ_SEL, SIDDQ_SEL);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL_COMMON0,
SIDDQ, 0);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_UTMI_CTRL5, POR, 0);
qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL, 0);
return 0;
disable_ref_clk:
clk_disable_unprepare(phy->ref_clk);
disable_vreg:
regulator_bulk_disable(ARRAY_SIZE(phy->vregs), phy->vregs);
return ret;
}
static int qcom_snps_eusb2_hsphy_exit(struct phy *p)
{
struct qcom_snps_eusb2_hsphy *phy = phy_get_drvdata(p);
clk_disable_unprepare(phy->ref_clk);
regulator_bulk_disable(ARRAY_SIZE(phy->vregs), phy->vregs);
phy_exit(phy->repeater);
return 0;
}
static const struct phy_ops qcom_snps_eusb2_hsphy_ops = {
.init = qcom_snps_eusb2_hsphy_init,
.exit = qcom_snps_eusb2_hsphy_exit,
.set_mode = qcom_snps_eusb2_hsphy_set_mode,
.owner = THIS_MODULE,
};
static int qcom_snps_eusb2_hsphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct qcom_snps_eusb2_hsphy *phy;
struct phy_provider *phy_provider;
struct phy *generic_phy;
int ret, i;
int num;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
phy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(phy->base))
return PTR_ERR(phy->base);
phy->phy_reset = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(phy->phy_reset))
return PTR_ERR(phy->phy_reset);
phy->ref_clk = devm_clk_get(dev, "ref");
if (IS_ERR(phy->ref_clk))
return dev_err_probe(dev, PTR_ERR(phy->ref_clk),
"failed to get ref clk\n");
num = ARRAY_SIZE(phy->vregs);
for (i = 0; i < num; i++)
phy->vregs[i].supply = eusb2_hsphy_vreg_names[i];
ret = devm_regulator_bulk_get(dev, num, phy->vregs);
if (ret)
return dev_err_probe(dev, ret,
"failed to get regulator supplies\n");
phy->repeater = devm_of_phy_get_by_index(dev, np, 0);
if (IS_ERR(phy->repeater))
return dev_err_probe(dev, PTR_ERR(phy->repeater),
"failed to get repeater\n");
generic_phy = devm_phy_create(dev, NULL, &qcom_snps_eusb2_hsphy_ops);
if (IS_ERR(generic_phy)) {
dev_err(dev, "failed to create phy %d\n", ret);
return PTR_ERR(generic_phy);
}
dev_set_drvdata(dev, phy);
phy_set_drvdata(generic_phy, phy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider))
return PTR_ERR(phy_provider);
dev_info(dev, "Registered Qcom-eUSB2 phy\n");
return 0;
}
static const struct of_device_id qcom_snps_eusb2_hsphy_of_match_table[] = {
{ .compatible = "qcom,sm8550-snps-eusb2-phy", },
{ },
};
MODULE_DEVICE_TABLE(of, qcom_snps_eusb2_hsphy_of_match_table);
static struct platform_driver qcom_snps_eusb2_hsphy_driver = {
.probe = qcom_snps_eusb2_hsphy_probe,
.driver = {
.name = "qcom-snps-eusb2-hsphy",
.of_match_table = qcom_snps_eusb2_hsphy_of_match_table,
},
};
module_platform_driver(qcom_snps_eusb2_hsphy_driver);
MODULE_DESCRIPTION("Qualcomm SNPS eUSB2 HS PHY driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/qualcomm/phy-qcom-snps-eusb2.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2014-2017, The Linux Foundation. All rights reserved.
* Copyright (c) 2019, Linaro Ltd.
*/
#include <linux/clk-provider.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <dt-bindings/phy/phy.h>
#define PCIE20_PARF_PHY_STTS 0x3c
#define PCIE2_PHY_RESET_CTRL 0x44
#define PCIE20_PARF_PHY_REFCLK_CTRL2 0xa0
#define PCIE20_PARF_PHY_REFCLK_CTRL3 0xa4
#define PCIE20_PARF_PCS_SWING_CTRL1 0x88
#define PCIE20_PARF_PCS_SWING_CTRL2 0x8c
#define PCIE20_PARF_PCS_DEEMPH1 0x74
#define PCIE20_PARF_PCS_DEEMPH2 0x78
#define PCIE20_PARF_PCS_DEEMPH3 0x7c
#define PCIE20_PARF_CONFIGBITS 0x84
#define PCIE20_PARF_PHY_CTRL3 0x94
#define PCIE20_PARF_PCS_CTRL 0x80
#define TX_AMP_VAL 120
#define PHY_RX0_EQ_GEN1_VAL 0
#define PHY_RX0_EQ_GEN2_VAL 4
#define TX_DEEMPH_GEN1_VAL 24
#define TX_DEEMPH_GEN2_3_5DB_VAL 26
#define TX_DEEMPH_GEN2_6DB_VAL 36
#define PHY_TX0_TERM_OFFST_VAL 0
struct qcom_phy {
struct device *dev;
void __iomem *base;
struct regulator_bulk_data vregs[2];
struct reset_control *phy_reset;
struct reset_control *pipe_reset;
struct clk *pipe_clk;
};
static int qcom_pcie2_phy_init(struct phy *phy)
{
struct qcom_phy *qphy = phy_get_drvdata(phy);
int ret;
ret = reset_control_deassert(qphy->phy_reset);
if (ret) {
dev_err(qphy->dev, "cannot deassert pipe reset\n");
return ret;
}
ret = regulator_bulk_enable(ARRAY_SIZE(qphy->vregs), qphy->vregs);
if (ret)
reset_control_assert(qphy->phy_reset);
return ret;
}
static int qcom_pcie2_phy_power_on(struct phy *phy)
{
struct qcom_phy *qphy = phy_get_drvdata(phy);
int ret;
u32 val;
/* Program REF_CLK source */
val = readl(qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL2);
val &= ~BIT(1);
writel(val, qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL2);
usleep_range(1000, 2000);
/* Don't use PAD for refclock */
val = readl(qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL2);
val &= ~BIT(0);
writel(val, qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL2);
/* Program SSP ENABLE */
val = readl(qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL3);
val |= BIT(0);
writel(val, qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL3);
usleep_range(1000, 2000);
/* Assert Phy SW Reset */
val = readl(qphy->base + PCIE2_PHY_RESET_CTRL);
val |= BIT(0);
writel(val, qphy->base + PCIE2_PHY_RESET_CTRL);
/* Program Tx Amplitude */
val = readl(qphy->base + PCIE20_PARF_PCS_SWING_CTRL1);
val &= ~0x7f;
val |= TX_AMP_VAL;
writel(val, qphy->base + PCIE20_PARF_PCS_SWING_CTRL1);
val = readl(qphy->base + PCIE20_PARF_PCS_SWING_CTRL2);
val &= ~0x7f;
val |= TX_AMP_VAL;
writel(val, qphy->base + PCIE20_PARF_PCS_SWING_CTRL2);
/* Program De-Emphasis */
val = readl(qphy->base + PCIE20_PARF_PCS_DEEMPH1);
val &= ~0x3f;
val |= TX_DEEMPH_GEN2_6DB_VAL;
writel(val, qphy->base + PCIE20_PARF_PCS_DEEMPH1);
val = readl(qphy->base + PCIE20_PARF_PCS_DEEMPH2);
val &= ~0x3f;
val |= TX_DEEMPH_GEN2_3_5DB_VAL;
writel(val, qphy->base + PCIE20_PARF_PCS_DEEMPH2);
val = readl(qphy->base + PCIE20_PARF_PCS_DEEMPH3);
val &= ~0x3f;
val |= TX_DEEMPH_GEN1_VAL;
writel(val, qphy->base + PCIE20_PARF_PCS_DEEMPH3);
/* Program Rx_Eq */
val = readl(qphy->base + PCIE20_PARF_CONFIGBITS);
val &= ~0x7;
val |= PHY_RX0_EQ_GEN2_VAL;
writel(val, qphy->base + PCIE20_PARF_CONFIGBITS);
/* Program Tx0_term_offset */
val = readl(qphy->base + PCIE20_PARF_PHY_CTRL3);
val &= ~0x1f;
val |= PHY_TX0_TERM_OFFST_VAL;
writel(val, qphy->base + PCIE20_PARF_PHY_CTRL3);
/* disable Tx2Rx Loopback */
val = readl(qphy->base + PCIE20_PARF_PCS_CTRL);
val &= ~BIT(1);
writel(val, qphy->base + PCIE20_PARF_PCS_CTRL);
/* De-assert Phy SW Reset */
val = readl(qphy->base + PCIE2_PHY_RESET_CTRL);
val &= ~BIT(0);
writel(val, qphy->base + PCIE2_PHY_RESET_CTRL);
usleep_range(1000, 2000);
ret = reset_control_deassert(qphy->pipe_reset);
if (ret) {
dev_err(qphy->dev, "cannot deassert pipe reset\n");
goto out;
}
clk_set_rate(qphy->pipe_clk, 250000000);
ret = clk_prepare_enable(qphy->pipe_clk);
if (ret) {
dev_err(qphy->dev, "failed to enable pipe clock\n");
goto out;
}
ret = readl_poll_timeout(qphy->base + PCIE20_PARF_PHY_STTS, val,
!(val & BIT(0)), 1000, 10);
if (ret)
dev_err(qphy->dev, "phy initialization failed\n");
out:
return ret;
}
static int qcom_pcie2_phy_power_off(struct phy *phy)
{
struct qcom_phy *qphy = phy_get_drvdata(phy);
u32 val;
val = readl(qphy->base + PCIE2_PHY_RESET_CTRL);
val |= BIT(0);
writel(val, qphy->base + PCIE2_PHY_RESET_CTRL);
clk_disable_unprepare(qphy->pipe_clk);
reset_control_assert(qphy->pipe_reset);
return 0;
}
static int qcom_pcie2_phy_exit(struct phy *phy)
{
struct qcom_phy *qphy = phy_get_drvdata(phy);
regulator_bulk_disable(ARRAY_SIZE(qphy->vregs), qphy->vregs);
reset_control_assert(qphy->phy_reset);
return 0;
}
static const struct phy_ops qcom_pcie2_ops = {
.init = qcom_pcie2_phy_init,
.power_on = qcom_pcie2_phy_power_on,
.power_off = qcom_pcie2_phy_power_off,
.exit = qcom_pcie2_phy_exit,
.owner = THIS_MODULE,
};
/*
* Register a fixed rate pipe clock.
*
* The <s>_pipe_clksrc generated by PHY goes to the GCC that gate
* controls it. The <s>_pipe_clk coming out of the GCC is requested
* by the PHY driver for its operations.
* We register the <s>_pipe_clksrc here. The gcc driver takes care
* of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk.
* Below picture shows this relationship.
*
* +---------------+
* | PHY block |<<---------------------------------------+
* | | |
* | +-------+ | +-----+ |
* I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+
* clk | +-------+ | +-----+
* +---------------+
*/
static int phy_pipe_clksrc_register(struct qcom_phy *qphy)
{
struct device_node *np = qphy->dev->of_node;
struct clk_fixed_rate *fixed;
struct clk_init_data init = { };
int ret;
ret = of_property_read_string(np, "clock-output-names", &init.name);
if (ret) {
dev_err(qphy->dev, "%s: No clock-output-names\n", np->name);
return ret;
}
fixed = devm_kzalloc(qphy->dev, sizeof(*fixed), GFP_KERNEL);
if (!fixed)
return -ENOMEM;
init.ops = &clk_fixed_rate_ops;
/* controllers using QMP phys use 250MHz pipe clock interface */
fixed->fixed_rate = 250000000;
fixed->hw.init = &init;
ret = devm_clk_hw_register(qphy->dev, &fixed->hw);
if (ret < 0)
return ret;
return devm_of_clk_add_hw_provider(qphy->dev, of_clk_hw_simple_get, &fixed->hw);
}
static int qcom_pcie2_phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct qcom_phy *qphy;
struct device *dev = &pdev->dev;
struct phy *phy;
int ret;
qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL);
if (!qphy)
return -ENOMEM;
qphy->dev = dev;
qphy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(qphy->base))
return PTR_ERR(qphy->base);
ret = phy_pipe_clksrc_register(qphy);
if (ret) {
dev_err(dev, "failed to register pipe_clk\n");
return ret;
}
qphy->vregs[0].supply = "vdda-vp";
qphy->vregs[1].supply = "vdda-vph";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(qphy->vregs), qphy->vregs);
if (ret < 0)
return ret;
qphy->pipe_clk = devm_clk_get(dev, NULL);
if (IS_ERR(qphy->pipe_clk)) {
dev_err(dev, "failed to acquire pipe clock\n");
return PTR_ERR(qphy->pipe_clk);
}
qphy->phy_reset = devm_reset_control_get_exclusive(dev, "phy");
if (IS_ERR(qphy->phy_reset)) {
dev_err(dev, "failed to acquire phy reset\n");
return PTR_ERR(qphy->phy_reset);
}
qphy->pipe_reset = devm_reset_control_get_exclusive(dev, "pipe");
if (IS_ERR(qphy->pipe_reset)) {
dev_err(dev, "failed to acquire pipe reset\n");
return PTR_ERR(qphy->pipe_reset);
}
phy = devm_phy_create(dev, dev->of_node, &qcom_pcie2_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create phy\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, qphy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider))
dev_err(dev, "failed to register phy provider\n");
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id qcom_pcie2_phy_match_table[] = {
{ .compatible = "qcom,pcie2-phy" },
{}
};
MODULE_DEVICE_TABLE(of, qcom_pcie2_phy_match_table);
static struct platform_driver qcom_pcie2_phy_driver = {
.probe = qcom_pcie2_phy_probe,
.driver = {
.name = "phy-qcom-pcie2",
.of_match_table = qcom_pcie2_phy_match_table,
},
};
module_platform_driver(qcom_pcie2_phy_driver);
MODULE_DESCRIPTION("Qualcomm PCIe PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-pcie2.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2018 John Crispin <[email protected]>
*
* Based on code from
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
*
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
struct ipq4019_usb_phy {
struct device *dev;
struct phy *phy;
void __iomem *base;
struct reset_control *por_rst;
struct reset_control *srif_rst;
};
static int ipq4019_ss_phy_power_off(struct phy *_phy)
{
struct ipq4019_usb_phy *phy = phy_get_drvdata(_phy);
reset_control_assert(phy->por_rst);
msleep(10);
return 0;
}
static int ipq4019_ss_phy_power_on(struct phy *_phy)
{
struct ipq4019_usb_phy *phy = phy_get_drvdata(_phy);
ipq4019_ss_phy_power_off(_phy);
reset_control_deassert(phy->por_rst);
return 0;
}
static const struct phy_ops ipq4019_usb_ss_phy_ops = {
.power_on = ipq4019_ss_phy_power_on,
.power_off = ipq4019_ss_phy_power_off,
};
static int ipq4019_hs_phy_power_off(struct phy *_phy)
{
struct ipq4019_usb_phy *phy = phy_get_drvdata(_phy);
reset_control_assert(phy->por_rst);
msleep(10);
reset_control_assert(phy->srif_rst);
msleep(10);
return 0;
}
static int ipq4019_hs_phy_power_on(struct phy *_phy)
{
struct ipq4019_usb_phy *phy = phy_get_drvdata(_phy);
ipq4019_hs_phy_power_off(_phy);
reset_control_deassert(phy->srif_rst);
msleep(10);
reset_control_deassert(phy->por_rst);
return 0;
}
static const struct phy_ops ipq4019_usb_hs_phy_ops = {
.power_on = ipq4019_hs_phy_power_on,
.power_off = ipq4019_hs_phy_power_off,
};
static const struct of_device_id ipq4019_usb_phy_of_match[] = {
{ .compatible = "qcom,usb-hs-ipq4019-phy", .data = &ipq4019_usb_hs_phy_ops},
{ .compatible = "qcom,usb-ss-ipq4019-phy", .data = &ipq4019_usb_ss_phy_ops},
{ },
};
MODULE_DEVICE_TABLE(of, ipq4019_usb_phy_of_match);
static int ipq4019_usb_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct ipq4019_usb_phy *phy;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
phy->dev = &pdev->dev;
phy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(phy->base)) {
dev_err(dev, "failed to remap register memory\n");
return PTR_ERR(phy->base);
}
phy->por_rst = devm_reset_control_get(phy->dev, "por_rst");
if (IS_ERR(phy->por_rst)) {
if (PTR_ERR(phy->por_rst) != -EPROBE_DEFER)
dev_err(dev, "POR reset is missing\n");
return PTR_ERR(phy->por_rst);
}
phy->srif_rst = devm_reset_control_get_optional(phy->dev, "srif_rst");
if (IS_ERR(phy->srif_rst))
return PTR_ERR(phy->srif_rst);
phy->phy = devm_phy_create(dev, NULL, of_device_get_match_data(dev));
if (IS_ERR(phy->phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(phy->phy);
}
phy_set_drvdata(phy->phy, phy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver ipq4019_usb_phy_driver = {
.probe = ipq4019_usb_phy_probe,
.driver = {
.of_match_table = ipq4019_usb_phy_of_match,
.name = "ipq4019-usb-phy",
}
};
module_platform_driver(ipq4019_usb_phy_driver);
MODULE_DESCRIPTION("QCOM/IPQ4019 USB phy driver");
MODULE_AUTHOR("John Crispin <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-ipq4019-usb.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "phy-qcom-qmp.h"
#include "phy-qcom-qmp-pcs-misc-v3.h"
#include "phy-qcom-qmp-pcs-usb-v4.h"
#include "phy-qcom-qmp-pcs-usb-v5.h"
/* QPHY_SW_RESET bit */
#define SW_RESET BIT(0)
/* QPHY_POWER_DOWN_CONTROL */
#define SW_PWRDN BIT(0)
/* QPHY_START_CONTROL bits */
#define SERDES_START BIT(0)
#define PCS_START BIT(1)
/* QPHY_PCS_STATUS bit */
#define PHYSTATUS BIT(6)
/* QPHY_V3_DP_COM_RESET_OVRD_CTRL register bits */
/* DP PHY soft reset */
#define SW_DPPHY_RESET BIT(0)
/* mux to select DP PHY reset control, 0:HW control, 1: software reset */
#define SW_DPPHY_RESET_MUX BIT(1)
/* USB3 PHY soft reset */
#define SW_USB3PHY_RESET BIT(2)
/* mux to select USB3 PHY reset control, 0:HW control, 1: software reset */
#define SW_USB3PHY_RESET_MUX BIT(3)
/* QPHY_V3_DP_COM_PHY_MODE_CTRL register bits */
#define USB3_MODE BIT(0) /* enables USB3 mode */
#define DP_MODE BIT(1) /* enables DP mode */
/* QPHY_PCS_AUTONOMOUS_MODE_CTRL register bits */
#define ARCVR_DTCT_EN BIT(0)
#define ALFPS_DTCT_EN BIT(1)
#define ARCVR_DTCT_EVENT_SEL BIT(4)
/* QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR register bits */
#define IRQ_CLEAR BIT(0)
/* QPHY_V3_PCS_MISC_CLAMP_ENABLE register bits */
#define CLAMP_EN BIT(0) /* enables i/o clamp_n */
#define PHY_INIT_COMPLETE_TIMEOUT 10000
struct qmp_phy_init_tbl {
unsigned int offset;
unsigned int val;
/*
* mask of lanes for which this register is written
* for cases when second lane needs different values
*/
u8 lane_mask;
};
#define QMP_PHY_INIT_CFG(o, v) \
{ \
.offset = o, \
.val = v, \
.lane_mask = 0xff, \
}
#define QMP_PHY_INIT_CFG_LANE(o, v, l) \
{ \
.offset = o, \
.val = v, \
.lane_mask = l, \
}
/* set of registers with offsets different per-PHY */
enum qphy_reg_layout {
/* PCS registers */
QPHY_SW_RESET,
QPHY_START_CTRL,
QPHY_PCS_STATUS,
QPHY_PCS_AUTONOMOUS_MODE_CTRL,
QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR,
QPHY_PCS_POWER_DOWN_CONTROL,
/* Keep last to ensure regs_layout arrays are properly initialized */
QPHY_LAYOUT_SIZE
};
static const unsigned int qmp_v2_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V2_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V2_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V2_PCS_USB_PCS_STATUS,
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V2_PCS_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V2_PCS_LFPS_RXTERM_IRQ_CLEAR,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V2_PCS_POWER_DOWN_CONTROL,
};
static const unsigned int qmp_v3_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V3_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V3_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V3_PCS_PCS_STATUS,
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V3_PCS_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V3_PCS_LFPS_RXTERM_IRQ_CLEAR,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V3_PCS_POWER_DOWN_CONTROL,
};
static const unsigned int qmp_v4_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V4_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V4_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V4_PCS_PCS_STATUS1,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V4_PCS_POWER_DOWN_CONTROL,
/* In PCS_USB */
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V4_PCS_USB3_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V4_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR,
};
static const unsigned int qmp_v5_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V5_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V5_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V5_PCS_PCS_STATUS1,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_POWER_DOWN_CONTROL,
/* In PCS_USB */
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V5_PCS_USB3_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V5_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR,
};
static const struct qmp_phy_init_tbl ipq9574_usb3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x06),
/* PLL and Loop filter settings */
QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x68),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x09),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x29),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a),
/* SSC settings */
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x7d),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x05),
};
static const struct qmp_phy_init_tbl ipq9574_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45),
QMP_PHY_INIT_CFG(QSERDES_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x06),
};
static const struct qmp_phy_init_tbl ipq9574_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN, 0x06),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x02),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x6c),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4c),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0xb8),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x16),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_ENABLES, 0x0c),
};
static const struct qmp_phy_init_tbl ipq9574_usb3_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0e),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x85),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0x88),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x17),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0f),
};
static const struct qmp_phy_init_tbl ipq8074_usb3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x06),
/* PLL and Loop filter settings */
QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0x15),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a),
/* SSC settings */
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0xde),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x07),
};
static const struct qmp_phy_init_tbl ipq8074_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN, 0x06),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x02),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4c),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0xb8),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x16),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_ENABLES, 0x0),
};
static const struct qmp_phy_init_tbl ipq8074_usb3_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0e),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x85),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0x88),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x17),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0f),
};
static const struct qmp_phy_init_tbl msm8996_usb3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x04),
/* PLL and Loop filter settings */
QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_CTRL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0x15),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a),
/* SSC settings */
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0xde),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x07),
};
static const struct qmp_phy_init_tbl msm8996_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45),
QMP_PHY_INIT_CFG(QSERDES_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x06),
};
static const struct qmp_phy_init_tbl msm8996_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x02),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4c),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0xbb),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_LVL, 0x18),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x16),
};
static const struct qmp_phy_init_tbl msm8996_usb3_pcs_tbl[] = {
/* FLL settings */
QMP_PHY_INIT_CFG(QPHY_V2_PCS_FLL_CNTRL2, 0x03),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_FLL_CNTRL1, 0x02),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_FLL_CNT_VAL_L, 0x09),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_FLL_CNT_VAL_H_TOL, 0x42),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_FLL_MAN_CODE, 0x85),
/* Lock Det settings */
QMP_PHY_INIT_CFG(QPHY_V2_PCS_LOCK_DETECT_CONFIG1, 0xd1),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_LOCK_DETECT_CONFIG2, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_LOCK_DETECT_CONFIG3, 0x47),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_POWER_STATE_CONFIG2, 0x08),
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_uniphy_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x15),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_CFG, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x85),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x07),
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_uniphy_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0xc6),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x06),
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_uniphy_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_RX_VGA_CAL_CNTRL2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x50),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75),
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_uniphy_pcs_tbl[] = {
/* FLL settings */
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02),
/* Lock Det settings */
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0xba),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V1, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V2, 0xb5),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V3, 0x4c),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V4, 0x64),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_LS, 0x6a),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V1, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V1, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V2, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V2, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V3, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V3, 0x1d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V4, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V4, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_LS, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_LS, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RATE_SLEW_CNTRL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_REFGEN_REQ_CONFIG2, 0x60),
};
static const struct qmp_phy_init_tbl msm8998_usb3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x15),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_CFG, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_INITVAL, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_MODE, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x85),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x07),
};
static const struct qmp_phy_init_tbl msm8998_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x00),
};
static const struct qmp_phy_init_tbl msm8998_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x43),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_ENABLES, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_VGA_CAL_CNTRL2, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x05),
};
static const struct qmp_phy_init_tbl msm8998_usb3_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V1, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V2, 0xb7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V3, 0x4e),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V4, 0x65),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_LS, 0x6b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V1, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V1, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V2, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V2, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V3, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V3, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V4, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V4, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_LS, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_LS, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RATE_SLEW_CNTRL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0x8a),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13),
};
static const struct qmp_phy_init_tbl sm8150_usb3_uniphy_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE0, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE2_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE1, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_IPTRIM, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02),
};
static const struct qmp_phy_init_tbl sm8150_usb3_uniphy_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x95),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x05),
};
static const struct qmp_phy_init_tbl sm8150_usb3_uniphy_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0xb8),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x37),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xef),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb3),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c),
};
static const struct qmp_phy_init_tbl sm8150_usb3_uniphy_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c),
};
static const struct qmp_phy_init_tbl sm8150_usb3_uniphy_pcs_usb_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
};
static const struct qmp_phy_init_tbl sm8250_usb3_uniphy_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_2, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_RX, 0x02),
};
static const struct qmp_phy_init_tbl sm8250_usb3_uniphy_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0xb8),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb4),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x7b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f),
};
static const struct qmp_phy_init_tbl sm8250_usb3_uniphy_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xa9),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21),
};
static const struct qmp_phy_init_tbl sm8250_usb3_uniphy_pcs_usb_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
};
static const struct qmp_phy_init_tbl sdx55_usb3_uniphy_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x08),
};
static const struct qmp_phy_init_tbl sdx55_usb3_uniphy_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x26),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb4),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x7b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x048),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f),
};
static const struct qmp_phy_init_tbl sdx65_usb3_uniphy_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xa5),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_2, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x21),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0b),
};
static const struct qmp_phy_init_tbl sdx65_usb3_uniphy_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0xbd),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa9),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x7b),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xe4),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x64),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN2, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_ENABLES, 0x00),
};
static const struct qmp_phy_init_tbl sm8350_usb3_uniphy_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xa5),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_2, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x21),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0e),
};
static const struct qmp_phy_init_tbl sm8350_usb3_uniphy_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0xbd),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa9),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x7b),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xe4),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x64),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN2, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_ENABLES, 0x00),
};
static const struct qmp_phy_init_tbl sm8350_usb3_uniphy_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21),
};
static const struct qmp_phy_init_tbl sm8350_usb3_uniphy_pcs_usb_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
};
static const struct qmp_phy_init_tbl qcm2290_usb3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x06),
QMP_PHY_INIT_CFG(QSERDES_COM_RESETSM_CNTRL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_RESETSM_CNTRL2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0x15),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0xde),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x07),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_INITVAL, 0x80),
QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CTRL_BY_PSM, 0x01),
};
static const struct qmp_phy_init_tbl qcm2290_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0xc6),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x00),
};
static const struct qmp_phy_init_tbl qcm2290_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_VGA_CAL_CNTRL2, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_ENABLES, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x00),
};
static const struct qmp_phy_init_tbl qcm2290_usb3_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x17),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x85),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0x88),
};
static const struct qmp_phy_init_tbl sc8280xp_usb3_uniphy_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_HSCLK_SEL, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE0, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_BUF_ENABLE, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE2_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE1, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02),
};
static const struct qmp_phy_init_tbl sc8280xp_usb3_uniphy_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xa5),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_2, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x21),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0e),
};
static const struct qmp_phy_init_tbl sc8280xp_usb3_uniphy_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0xbd),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa9),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x7b),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xe4),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x64),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN2, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_ENABLES, 0x00),
};
static const struct qmp_phy_init_tbl sc8280xp_usb3_uniphy_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG5, 0x10),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x21),
};
static const struct qmp_phy_init_tbl sa8775p_usb3_uniphy_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG1, 0xc4),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG2, 0x89),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_POWER_STATE_CONFIG1, 0x6f),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG5, 0x10),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x21),
};
struct qmp_usb_offsets {
u16 serdes;
u16 pcs;
u16 pcs_misc;
u16 pcs_usb;
u16 tx;
u16 rx;
/* for PHYs with >= 2 lanes */
u16 tx2;
u16 rx2;
};
/* struct qmp_phy_cfg - per-PHY initialization config */
struct qmp_phy_cfg {
int lanes;
const struct qmp_usb_offsets *offsets;
/* Init sequence for PHY blocks - serdes, tx, rx, pcs */
const struct qmp_phy_init_tbl *serdes_tbl;
int serdes_tbl_num;
const struct qmp_phy_init_tbl *tx_tbl;
int tx_tbl_num;
const struct qmp_phy_init_tbl *rx_tbl;
int rx_tbl_num;
const struct qmp_phy_init_tbl *pcs_tbl;
int pcs_tbl_num;
const struct qmp_phy_init_tbl *pcs_usb_tbl;
int pcs_usb_tbl_num;
/* clock ids to be requested */
const char * const *clk_list;
int num_clks;
/* resets to be requested */
const char * const *reset_list;
int num_resets;
/* regulators to be requested */
const char * const *vreg_list;
int num_vregs;
/* array of registers with different offsets */
const unsigned int *regs;
/* true, if PHY needs delay after POWER_DOWN */
bool has_pwrdn_delay;
/* Offset from PCS to PCS_USB region */
unsigned int pcs_usb_offset;
};
struct qmp_usb {
struct device *dev;
const struct qmp_phy_cfg *cfg;
void __iomem *serdes;
void __iomem *pcs;
void __iomem *pcs_misc;
void __iomem *pcs_usb;
void __iomem *tx;
void __iomem *rx;
void __iomem *tx2;
void __iomem *rx2;
struct clk *pipe_clk;
struct clk_bulk_data *clks;
struct reset_control_bulk_data *resets;
struct regulator_bulk_data *vregs;
enum phy_mode mode;
struct phy *phy;
struct clk_fixed_rate pipe_clk_fixed;
};
static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg |= val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg &= ~val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
/* list of clocks required by phy */
static const char * const msm8996_phy_clk_l[] = {
"aux", "cfg_ahb", "ref",
};
static const char * const qmp_v3_phy_clk_l[] = {
"aux", "cfg_ahb", "ref", "com_aux",
};
static const char * const qmp_v4_phy_clk_l[] = {
"aux", "ref", "com_aux",
};
static const char * const qmp_v4_ref_phy_clk_l[] = {
"aux", "ref_clk_src", "ref", "com_aux",
};
/* usb3 phy on sdx55 doesn't have com_aux clock */
static const char * const qmp_v4_sdx55_usbphy_clk_l[] = {
"aux", "cfg_ahb", "ref"
};
static const char * const qcm2290_usb3phy_clk_l[] = {
"cfg_ahb", "ref", "com_aux",
};
/* list of resets */
static const char * const msm8996_usb3phy_reset_l[] = {
"phy", "common",
};
static const char * const qcm2290_usb3phy_reset_l[] = {
"phy_phy", "phy",
};
/* list of regulators */
static const char * const qmp_phy_vreg_l[] = {
"vdda-phy", "vdda-pll",
};
static const struct qmp_usb_offsets qmp_usb_offsets_ipq9574 = {
.serdes = 0,
.pcs = 0x800,
.pcs_usb = 0x800,
.tx = 0x200,
.rx = 0x400,
};
static const struct qmp_usb_offsets qmp_usb_offsets_v3 = {
.serdes = 0,
.pcs = 0xc00,
.pcs_misc = 0xa00,
.tx = 0x200,
.rx = 0x400,
.tx2 = 0x600,
.rx2 = 0x800,
};
static const struct qmp_usb_offsets qmp_usb_offsets_v5 = {
.serdes = 0,
.pcs = 0x0200,
.pcs_usb = 0x1200,
.tx = 0x0e00,
.rx = 0x1000,
};
static const struct qmp_phy_cfg ipq8074_usb3phy_cfg = {
.lanes = 1,
.serdes_tbl = ipq8074_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(ipq8074_usb3_serdes_tbl),
.tx_tbl = msm8996_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(msm8996_usb3_tx_tbl),
.rx_tbl = ipq8074_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(ipq8074_usb3_rx_tbl),
.pcs_tbl = ipq8074_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(ipq8074_usb3_pcs_tbl),
.clk_list = msm8996_phy_clk_l,
.num_clks = ARRAY_SIZE(msm8996_phy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v3_usb3phy_regs_layout,
};
static const struct qmp_phy_cfg ipq9574_usb3phy_cfg = {
.lanes = 1,
.offsets = &qmp_usb_offsets_ipq9574,
.serdes_tbl = ipq9574_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(ipq9574_usb3_serdes_tbl),
.tx_tbl = ipq9574_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(ipq9574_usb3_tx_tbl),
.rx_tbl = ipq9574_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(ipq9574_usb3_rx_tbl),
.pcs_tbl = ipq9574_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(ipq9574_usb3_pcs_tbl),
.clk_list = msm8996_phy_clk_l,
.num_clks = ARRAY_SIZE(msm8996_phy_clk_l),
.reset_list = qcm2290_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(qcm2290_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v3_usb3phy_regs_layout,
};
static const struct qmp_phy_cfg msm8996_usb3phy_cfg = {
.lanes = 1,
.serdes_tbl = msm8996_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(msm8996_usb3_serdes_tbl),
.tx_tbl = msm8996_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(msm8996_usb3_tx_tbl),
.rx_tbl = msm8996_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(msm8996_usb3_rx_tbl),
.pcs_tbl = msm8996_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(msm8996_usb3_pcs_tbl),
.clk_list = msm8996_phy_clk_l,
.num_clks = ARRAY_SIZE(msm8996_phy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v2_usb3phy_regs_layout,
};
static const struct qmp_phy_cfg sa8775p_usb3_uniphy_cfg = {
.lanes = 1,
.offsets = &qmp_usb_offsets_v5,
.serdes_tbl = sc8280xp_usb3_uniphy_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_serdes_tbl),
.tx_tbl = sc8280xp_usb3_uniphy_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_tx_tbl),
.rx_tbl = sc8280xp_usb3_uniphy_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_rx_tbl),
.pcs_tbl = sa8775p_usb3_uniphy_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sa8775p_usb3_uniphy_pcs_tbl),
.clk_list = qmp_v4_phy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v4_phy_clk_l),
.reset_list = qcm2290_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(qcm2290_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v5_usb3phy_regs_layout,
};
static const struct qmp_phy_cfg sc8280xp_usb3_uniphy_cfg = {
.lanes = 1,
.offsets = &qmp_usb_offsets_v5,
.serdes_tbl = sc8280xp_usb3_uniphy_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_serdes_tbl),
.tx_tbl = sc8280xp_usb3_uniphy_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_tx_tbl),
.rx_tbl = sc8280xp_usb3_uniphy_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_rx_tbl),
.pcs_tbl = sc8280xp_usb3_uniphy_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_pcs_tbl),
.clk_list = qmp_v4_phy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v4_phy_clk_l),
.reset_list = qcm2290_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(qcm2290_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v5_usb3phy_regs_layout,
};
static const struct qmp_phy_cfg qmp_v3_usb3_uniphy_cfg = {
.lanes = 1,
.serdes_tbl = qmp_v3_usb3_uniphy_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_uniphy_serdes_tbl),
.tx_tbl = qmp_v3_usb3_uniphy_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_uniphy_tx_tbl),
.rx_tbl = qmp_v3_usb3_uniphy_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_uniphy_rx_tbl),
.pcs_tbl = qmp_v3_usb3_uniphy_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(qmp_v3_usb3_uniphy_pcs_tbl),
.clk_list = qmp_v3_phy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v3_phy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v3_usb3phy_regs_layout,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg msm8998_usb3phy_cfg = {
.lanes = 2,
.serdes_tbl = msm8998_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(msm8998_usb3_serdes_tbl),
.tx_tbl = msm8998_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(msm8998_usb3_tx_tbl),
.rx_tbl = msm8998_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(msm8998_usb3_rx_tbl),
.pcs_tbl = msm8998_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(msm8998_usb3_pcs_tbl),
.clk_list = msm8996_phy_clk_l,
.num_clks = ARRAY_SIZE(msm8996_phy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v3_usb3phy_regs_layout,
};
static const struct qmp_phy_cfg sm8150_usb3_uniphy_cfg = {
.lanes = 1,
.serdes_tbl = sm8150_usb3_uniphy_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_serdes_tbl),
.tx_tbl = sm8150_usb3_uniphy_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_tx_tbl),
.rx_tbl = sm8150_usb3_uniphy_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_rx_tbl),
.pcs_tbl = sm8150_usb3_uniphy_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_pcs_tbl),
.pcs_usb_tbl = sm8150_usb3_uniphy_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_pcs_usb_tbl),
.clk_list = qmp_v4_ref_phy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v4_ref_phy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v4_usb3phy_regs_layout,
.pcs_usb_offset = 0x600,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg sm8250_usb3_uniphy_cfg = {
.lanes = 1,
.serdes_tbl = sm8150_usb3_uniphy_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_serdes_tbl),
.tx_tbl = sm8250_usb3_uniphy_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_tx_tbl),
.rx_tbl = sm8250_usb3_uniphy_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_rx_tbl),
.pcs_tbl = sm8250_usb3_uniphy_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_pcs_tbl),
.pcs_usb_tbl = sm8250_usb3_uniphy_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_pcs_usb_tbl),
.clk_list = qmp_v4_ref_phy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v4_ref_phy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v4_usb3phy_regs_layout,
.pcs_usb_offset = 0x600,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg sdx55_usb3_uniphy_cfg = {
.lanes = 1,
.serdes_tbl = sm8150_usb3_uniphy_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_serdes_tbl),
.tx_tbl = sdx55_usb3_uniphy_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sdx55_usb3_uniphy_tx_tbl),
.rx_tbl = sdx55_usb3_uniphy_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sdx55_usb3_uniphy_rx_tbl),
.pcs_tbl = sm8250_usb3_uniphy_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_pcs_tbl),
.pcs_usb_tbl = sm8250_usb3_uniphy_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_pcs_usb_tbl),
.clk_list = qmp_v4_sdx55_usbphy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v4_sdx55_usbphy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v4_usb3phy_regs_layout,
.pcs_usb_offset = 0x600,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg sdx65_usb3_uniphy_cfg = {
.lanes = 1,
.serdes_tbl = sm8150_usb3_uniphy_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_serdes_tbl),
.tx_tbl = sdx65_usb3_uniphy_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sdx65_usb3_uniphy_tx_tbl),
.rx_tbl = sdx65_usb3_uniphy_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sdx65_usb3_uniphy_rx_tbl),
.pcs_tbl = sm8350_usb3_uniphy_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_pcs_tbl),
.pcs_usb_tbl = sm8350_usb3_uniphy_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_pcs_usb_tbl),
.clk_list = qmp_v4_sdx55_usbphy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v4_sdx55_usbphy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v5_usb3phy_regs_layout,
.pcs_usb_offset = 0x1000,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg sm8350_usb3_uniphy_cfg = {
.lanes = 1,
.serdes_tbl = sm8150_usb3_uniphy_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_serdes_tbl),
.tx_tbl = sm8350_usb3_uniphy_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_tx_tbl),
.rx_tbl = sm8350_usb3_uniphy_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_rx_tbl),
.pcs_tbl = sm8350_usb3_uniphy_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_pcs_tbl),
.pcs_usb_tbl = sm8350_usb3_uniphy_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_pcs_usb_tbl),
.clk_list = qmp_v4_ref_phy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v4_ref_phy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v5_usb3phy_regs_layout,
.pcs_usb_offset = 0x1000,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg qcm2290_usb3phy_cfg = {
.lanes = 2,
.offsets = &qmp_usb_offsets_v3,
.serdes_tbl = qcm2290_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(qcm2290_usb3_serdes_tbl),
.tx_tbl = qcm2290_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(qcm2290_usb3_tx_tbl),
.rx_tbl = qcm2290_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(qcm2290_usb3_rx_tbl),
.pcs_tbl = qcm2290_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(qcm2290_usb3_pcs_tbl),
.clk_list = qcm2290_usb3phy_clk_l,
.num_clks = ARRAY_SIZE(qcm2290_usb3phy_clk_l),
.reset_list = qcm2290_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(qcm2290_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v3_usb3phy_regs_layout,
};
static void qmp_usb_configure_lane(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num,
u8 lane_mask)
{
int i;
const struct qmp_phy_init_tbl *t = tbl;
if (!t)
return;
for (i = 0; i < num; i++, t++) {
if (!(t->lane_mask & lane_mask))
continue;
writel(t->val, base + t->offset);
}
}
static void qmp_usb_configure(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num)
{
qmp_usb_configure_lane(base, tbl, num, 0xff);
}
static int qmp_usb_serdes_init(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *serdes = qmp->serdes;
const struct qmp_phy_init_tbl *serdes_tbl = cfg->serdes_tbl;
int serdes_tbl_num = cfg->serdes_tbl_num;
qmp_usb_configure(serdes, serdes_tbl, serdes_tbl_num);
return 0;
}
static int qmp_usb_init(struct phy *phy)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *pcs = qmp->pcs;
int ret;
ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs);
if (ret) {
dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret);
return ret;
}
ret = reset_control_bulk_assert(cfg->num_resets, qmp->resets);
if (ret) {
dev_err(qmp->dev, "reset assert failed\n");
goto err_disable_regulators;
}
ret = reset_control_bulk_deassert(cfg->num_resets, qmp->resets);
if (ret) {
dev_err(qmp->dev, "reset deassert failed\n");
goto err_disable_regulators;
}
ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks);
if (ret)
goto err_assert_reset;
qphy_setbits(pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN);
return 0;
err_assert_reset:
reset_control_bulk_assert(cfg->num_resets, qmp->resets);
err_disable_regulators:
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
return ret;
}
static int qmp_usb_exit(struct phy *phy)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
reset_control_bulk_assert(cfg->num_resets, qmp->resets);
clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks);
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
return 0;
}
static int qmp_usb_power_on(struct phy *phy)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *tx = qmp->tx;
void __iomem *rx = qmp->rx;
void __iomem *pcs = qmp->pcs;
void __iomem *status;
unsigned int val;
int ret;
qmp_usb_serdes_init(qmp);
ret = clk_prepare_enable(qmp->pipe_clk);
if (ret) {
dev_err(qmp->dev, "pipe_clk enable failed err=%d\n", ret);
return ret;
}
/* Tx, Rx, and PCS configurations */
qmp_usb_configure_lane(tx, cfg->tx_tbl, cfg->tx_tbl_num, 1);
qmp_usb_configure_lane(rx, cfg->rx_tbl, cfg->rx_tbl_num, 1);
if (cfg->lanes >= 2) {
qmp_usb_configure_lane(qmp->tx2, cfg->tx_tbl, cfg->tx_tbl_num, 2);
qmp_usb_configure_lane(qmp->rx2, cfg->rx_tbl, cfg->rx_tbl_num, 2);
}
qmp_usb_configure(pcs, cfg->pcs_tbl, cfg->pcs_tbl_num);
if (cfg->has_pwrdn_delay)
usleep_range(10, 20);
/* Pull PHY out of reset state */
qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* start SerDes and Phy-Coding-Sublayer */
qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START);
status = pcs + cfg->regs[QPHY_PCS_STATUS];
ret = readl_poll_timeout(status, val, !(val & PHYSTATUS), 200,
PHY_INIT_COMPLETE_TIMEOUT);
if (ret) {
dev_err(qmp->dev, "phy initialization timed-out\n");
goto err_disable_pipe_clk;
}
return 0;
err_disable_pipe_clk:
clk_disable_unprepare(qmp->pipe_clk);
return ret;
}
static int qmp_usb_power_off(struct phy *phy)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
clk_disable_unprepare(qmp->pipe_clk);
/* PHY reset */
qphy_setbits(qmp->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* stop SerDes and Phy-Coding-Sublayer */
qphy_clrbits(qmp->pcs, cfg->regs[QPHY_START_CTRL],
SERDES_START | PCS_START);
/* Put PHY into POWER DOWN state: active low */
qphy_clrbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL],
SW_PWRDN);
return 0;
}
static int qmp_usb_enable(struct phy *phy)
{
int ret;
ret = qmp_usb_init(phy);
if (ret)
return ret;
ret = qmp_usb_power_on(phy);
if (ret)
qmp_usb_exit(phy);
return ret;
}
static int qmp_usb_disable(struct phy *phy)
{
int ret;
ret = qmp_usb_power_off(phy);
if (ret)
return ret;
return qmp_usb_exit(phy);
}
static int qmp_usb_set_mode(struct phy *phy, enum phy_mode mode, int submode)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
qmp->mode = mode;
return 0;
}
static const struct phy_ops qmp_usb_phy_ops = {
.init = qmp_usb_enable,
.exit = qmp_usb_disable,
.set_mode = qmp_usb_set_mode,
.owner = THIS_MODULE,
};
static void qmp_usb_enable_autonomous_mode(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs;
void __iomem *pcs_misc = qmp->pcs_misc;
u32 intr_mask;
if (qmp->mode == PHY_MODE_USB_HOST_SS ||
qmp->mode == PHY_MODE_USB_DEVICE_SS)
intr_mask = ARCVR_DTCT_EN | ALFPS_DTCT_EN;
else
intr_mask = ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL;
/* Clear any pending interrupts status */
qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
/* Writing 1 followed by 0 clears the interrupt */
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL],
ARCVR_DTCT_EN | ALFPS_DTCT_EN | ARCVR_DTCT_EVENT_SEL);
/* Enable required PHY autonomous mode interrupts */
qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], intr_mask);
/* Enable i/o clamp_n for autonomous mode */
if (pcs_misc)
qphy_clrbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN);
}
static void qmp_usb_disable_autonomous_mode(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs;
void __iomem *pcs_misc = qmp->pcs_misc;
/* Disable i/o clamp_n on resume for normal mode */
if (pcs_misc)
qphy_setbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN);
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL],
ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL | ALFPS_DTCT_EN);
qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
/* Writing 1 followed by 0 clears the interrupt */
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
}
static int __maybe_unused qmp_usb_runtime_suspend(struct device *dev)
{
struct qmp_usb *qmp = dev_get_drvdata(dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
dev_vdbg(dev, "Suspending QMP phy, mode:%d\n", qmp->mode);
if (!qmp->phy->init_count) {
dev_vdbg(dev, "PHY not initialized, bailing out\n");
return 0;
}
qmp_usb_enable_autonomous_mode(qmp);
clk_disable_unprepare(qmp->pipe_clk);
clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks);
return 0;
}
static int __maybe_unused qmp_usb_runtime_resume(struct device *dev)
{
struct qmp_usb *qmp = dev_get_drvdata(dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
int ret = 0;
dev_vdbg(dev, "Resuming QMP phy, mode:%d\n", qmp->mode);
if (!qmp->phy->init_count) {
dev_vdbg(dev, "PHY not initialized, bailing out\n");
return 0;
}
ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks);
if (ret)
return ret;
ret = clk_prepare_enable(qmp->pipe_clk);
if (ret) {
dev_err(dev, "pipe_clk enable failed, err=%d\n", ret);
clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks);
return ret;
}
qmp_usb_disable_autonomous_mode(qmp);
return 0;
}
static const struct dev_pm_ops qmp_usb_pm_ops = {
SET_RUNTIME_PM_OPS(qmp_usb_runtime_suspend,
qmp_usb_runtime_resume, NULL)
};
static int qmp_usb_vreg_init(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int num = cfg->num_vregs;
int i;
qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL);
if (!qmp->vregs)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->vregs[i].supply = cfg->vreg_list[i];
return devm_regulator_bulk_get(dev, num, qmp->vregs);
}
static int qmp_usb_reset_init(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int i;
int ret;
qmp->resets = devm_kcalloc(dev, cfg->num_resets,
sizeof(*qmp->resets), GFP_KERNEL);
if (!qmp->resets)
return -ENOMEM;
for (i = 0; i < cfg->num_resets; i++)
qmp->resets[i].id = cfg->reset_list[i];
ret = devm_reset_control_bulk_get_exclusive(dev, cfg->num_resets, qmp->resets);
if (ret)
return dev_err_probe(dev, ret, "failed to get resets\n");
return 0;
}
static int qmp_usb_clk_init(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int num = cfg->num_clks;
int i;
qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL);
if (!qmp->clks)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->clks[i].id = cfg->clk_list[i];
return devm_clk_bulk_get(dev, num, qmp->clks);
}
static void phy_clk_release_provider(void *res)
{
of_clk_del_provider(res);
}
/*
* Register a fixed rate pipe clock.
*
* The <s>_pipe_clksrc generated by PHY goes to the GCC that gate
* controls it. The <s>_pipe_clk coming out of the GCC is requested
* by the PHY driver for its operations.
* We register the <s>_pipe_clksrc here. The gcc driver takes care
* of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk.
* Below picture shows this relationship.
*
* +---------------+
* | PHY block |<<---------------------------------------+
* | | |
* | +-------+ | +-----+ |
* I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+
* clk | +-------+ | +-----+
* +---------------+
*/
static int phy_pipe_clk_register(struct qmp_usb *qmp, struct device_node *np)
{
struct clk_fixed_rate *fixed = &qmp->pipe_clk_fixed;
struct clk_init_data init = { };
int ret;
ret = of_property_read_string(np, "clock-output-names", &init.name);
if (ret) {
dev_err(qmp->dev, "%pOFn: No clock-output-names\n", np);
return ret;
}
init.ops = &clk_fixed_rate_ops;
/* controllers using QMP phys use 125MHz pipe clock interface */
fixed->fixed_rate = 125000000;
fixed->hw.init = &init;
ret = devm_clk_hw_register(qmp->dev, &fixed->hw);
if (ret)
return ret;
ret = of_clk_add_hw_provider(np, of_clk_hw_simple_get, &fixed->hw);
if (ret)
return ret;
/*
* Roll a devm action because the clock provider is the child node, but
* the child node is not actually a device.
*/
return devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, np);
}
static void __iomem *qmp_usb_iomap(struct device *dev, struct device_node *np,
int index, bool exclusive)
{
struct resource res;
if (!exclusive) {
if (of_address_to_resource(np, index, &res))
return IOMEM_ERR_PTR(-EINVAL);
return devm_ioremap(dev, res.start, resource_size(&res));
}
return devm_of_iomap(dev, np, index, NULL);
}
static int qmp_usb_parse_dt_legacy(struct qmp_usb *qmp, struct device_node *np)
{
struct platform_device *pdev = to_platform_device(qmp->dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
bool exclusive = true;
qmp->serdes = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(qmp->serdes))
return PTR_ERR(qmp->serdes);
/*
* FIXME: These bindings should be fixed to not rely on overlapping
* mappings for PCS.
*/
if (of_device_is_compatible(dev->of_node, "qcom,sdx65-qmp-usb3-uni-phy"))
exclusive = false;
if (of_device_is_compatible(dev->of_node, "qcom,sm8350-qmp-usb3-uni-phy"))
exclusive = false;
/*
* Get memory resources for the PHY:
* Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2.
* For dual lane PHYs: tx2 -> 3, rx2 -> 4, pcs_misc (optional) -> 5
* For single lane PHYs: pcs_misc (optional) -> 3.
*/
qmp->tx = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(qmp->tx))
return PTR_ERR(qmp->tx);
qmp->rx = devm_of_iomap(dev, np, 1, NULL);
if (IS_ERR(qmp->rx))
return PTR_ERR(qmp->rx);
qmp->pcs = qmp_usb_iomap(dev, np, 2, exclusive);
if (IS_ERR(qmp->pcs))
return PTR_ERR(qmp->pcs);
if (cfg->pcs_usb_offset)
qmp->pcs_usb = qmp->pcs + cfg->pcs_usb_offset;
if (cfg->lanes >= 2) {
qmp->tx2 = devm_of_iomap(dev, np, 3, NULL);
if (IS_ERR(qmp->tx2))
return PTR_ERR(qmp->tx2);
qmp->rx2 = devm_of_iomap(dev, np, 4, NULL);
if (IS_ERR(qmp->rx2))
return PTR_ERR(qmp->rx2);
qmp->pcs_misc = devm_of_iomap(dev, np, 5, NULL);
} else {
qmp->pcs_misc = devm_of_iomap(dev, np, 3, NULL);
}
if (IS_ERR(qmp->pcs_misc)) {
dev_vdbg(dev, "PHY pcs_misc-reg not used\n");
qmp->pcs_misc = NULL;
}
qmp->pipe_clk = devm_get_clk_from_child(dev, np, NULL);
if (IS_ERR(qmp->pipe_clk)) {
return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk),
"failed to get pipe clock\n");
}
return 0;
}
static int qmp_usb_parse_dt(struct qmp_usb *qmp)
{
struct platform_device *pdev = to_platform_device(qmp->dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
const struct qmp_usb_offsets *offs = cfg->offsets;
struct device *dev = qmp->dev;
void __iomem *base;
if (!offs)
return -EINVAL;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
qmp->serdes = base + offs->serdes;
qmp->pcs = base + offs->pcs;
qmp->pcs_misc = base + offs->pcs_misc;
qmp->pcs_usb = base + offs->pcs_usb;
qmp->tx = base + offs->tx;
qmp->rx = base + offs->rx;
if (cfg->lanes >= 2) {
qmp->tx2 = base + offs->tx2;
qmp->rx2 = base + offs->rx2;
}
qmp->pipe_clk = devm_clk_get(dev, "pipe");
if (IS_ERR(qmp->pipe_clk)) {
return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk),
"failed to get pipe clock\n");
}
return 0;
}
static int qmp_usb_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct device_node *np;
struct qmp_usb *qmp;
int ret;
qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL);
if (!qmp)
return -ENOMEM;
qmp->dev = dev;
qmp->cfg = of_device_get_match_data(dev);
if (!qmp->cfg)
return -EINVAL;
ret = qmp_usb_clk_init(qmp);
if (ret)
return ret;
ret = qmp_usb_reset_init(qmp);
if (ret)
return ret;
ret = qmp_usb_vreg_init(qmp);
if (ret)
return ret;
/* Check for legacy binding with child node. */
np = of_get_next_available_child(dev->of_node, NULL);
if (np) {
ret = qmp_usb_parse_dt_legacy(qmp, np);
} else {
np = of_node_get(dev->of_node);
ret = qmp_usb_parse_dt(qmp);
}
if (ret)
goto err_node_put;
pm_runtime_set_active(dev);
ret = devm_pm_runtime_enable(dev);
if (ret)
goto err_node_put;
/*
* Prevent runtime pm from being ON by default. Users can enable
* it using power/control in sysfs.
*/
pm_runtime_forbid(dev);
ret = phy_pipe_clk_register(qmp, np);
if (ret)
goto err_node_put;
qmp->phy = devm_phy_create(dev, np, &qmp_usb_phy_ops);
if (IS_ERR(qmp->phy)) {
ret = PTR_ERR(qmp->phy);
dev_err(dev, "failed to create PHY: %d\n", ret);
goto err_node_put;
}
phy_set_drvdata(qmp->phy, qmp);
of_node_put(np);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
err_node_put:
of_node_put(np);
return ret;
}
static const struct of_device_id qmp_usb_of_match_table[] = {
{
.compatible = "qcom,ipq6018-qmp-usb3-phy",
.data = &ipq8074_usb3phy_cfg,
}, {
.compatible = "qcom,ipq8074-qmp-usb3-phy",
.data = &ipq8074_usb3phy_cfg,
}, {
.compatible = "qcom,ipq9574-qmp-usb3-phy",
.data = &ipq9574_usb3phy_cfg,
}, {
.compatible = "qcom,msm8996-qmp-usb3-phy",
.data = &msm8996_usb3phy_cfg,
}, {
.compatible = "qcom,msm8998-qmp-usb3-phy",
.data = &msm8998_usb3phy_cfg,
}, {
.compatible = "qcom,qcm2290-qmp-usb3-phy",
.data = &qcm2290_usb3phy_cfg,
}, {
.compatible = "qcom,sa8775p-qmp-usb3-uni-phy",
.data = &sa8775p_usb3_uniphy_cfg,
}, {
.compatible = "qcom,sc8280xp-qmp-usb3-uni-phy",
.data = &sc8280xp_usb3_uniphy_cfg,
}, {
.compatible = "qcom,sdm845-qmp-usb3-uni-phy",
.data = &qmp_v3_usb3_uniphy_cfg,
}, {
.compatible = "qcom,sdx55-qmp-usb3-uni-phy",
.data = &sdx55_usb3_uniphy_cfg,
}, {
.compatible = "qcom,sdx65-qmp-usb3-uni-phy",
.data = &sdx65_usb3_uniphy_cfg,
}, {
.compatible = "qcom,sm6115-qmp-usb3-phy",
.data = &qcm2290_usb3phy_cfg,
}, {
.compatible = "qcom,sm8150-qmp-usb3-uni-phy",
.data = &sm8150_usb3_uniphy_cfg,
}, {
.compatible = "qcom,sm8250-qmp-usb3-uni-phy",
.data = &sm8250_usb3_uniphy_cfg,
}, {
.compatible = "qcom,sm8350-qmp-usb3-uni-phy",
.data = &sm8350_usb3_uniphy_cfg,
},
{ },
};
MODULE_DEVICE_TABLE(of, qmp_usb_of_match_table);
static struct platform_driver qmp_usb_driver = {
.probe = qmp_usb_probe,
.driver = {
.name = "qcom-qmp-usb-phy",
.pm = &qmp_usb_pm_ops,
.of_match_table = qmp_usb_of_match_table,
},
};
module_platform_driver(qmp_usb_driver);
MODULE_AUTHOR("Vivek Gautam <[email protected]>");
MODULE_DESCRIPTION("Qualcomm QMP USB PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-qmp-usb.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2023, Linaro Limited
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/regmap.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
/* eUSB2 status registers */
#define EUSB2_RPTR_STATUS 0x08
#define RPTR_OK BIT(7)
/* eUSB2 control registers */
#define EUSB2_EN_CTL1 0x46
#define EUSB2_RPTR_EN BIT(7)
#define EUSB2_FORCE_EN_5 0xe8
#define F_CLK_19P2M_EN BIT(6)
#define EUSB2_FORCE_VAL_5 0xeD
#define V_CLK_19P2M_EN BIT(6)
#define EUSB2_TUNE_IUSB2 0x51
#define EUSB2_TUNE_SQUELCH_U 0x54
#define EUSB2_TUNE_USB2_PREEM 0x57
#define QCOM_EUSB2_REPEATER_INIT_CFG(o, v) \
{ \
.offset = o, \
.val = v, \
}
struct eusb2_repeater_init_tbl {
unsigned int offset;
unsigned int val;
};
struct eusb2_repeater_cfg {
const struct eusb2_repeater_init_tbl *init_tbl;
int init_tbl_num;
const char * const *vreg_list;
int num_vregs;
};
struct eusb2_repeater {
struct device *dev;
struct regmap *regmap;
struct phy *phy;
struct regulator_bulk_data *vregs;
const struct eusb2_repeater_cfg *cfg;
u16 base;
enum phy_mode mode;
};
static const char * const pm8550b_vreg_l[] = {
"vdd18", "vdd3",
};
static const struct eusb2_repeater_init_tbl pm8550b_init_tbl[] = {
QCOM_EUSB2_REPEATER_INIT_CFG(EUSB2_TUNE_IUSB2, 0x8),
QCOM_EUSB2_REPEATER_INIT_CFG(EUSB2_TUNE_SQUELCH_U, 0x3),
QCOM_EUSB2_REPEATER_INIT_CFG(EUSB2_TUNE_USB2_PREEM, 0x5),
};
static const struct eusb2_repeater_cfg pm8550b_eusb2_cfg = {
.init_tbl = pm8550b_init_tbl,
.init_tbl_num = ARRAY_SIZE(pm8550b_init_tbl),
.vreg_list = pm8550b_vreg_l,
.num_vregs = ARRAY_SIZE(pm8550b_vreg_l),
};
static int eusb2_repeater_init_vregs(struct eusb2_repeater *rptr)
{
int num = rptr->cfg->num_vregs;
struct device *dev = rptr->dev;
int i;
rptr->vregs = devm_kcalloc(dev, num, sizeof(*rptr->vregs), GFP_KERNEL);
if (!rptr->vregs)
return -ENOMEM;
for (i = 0; i < num; i++)
rptr->vregs[i].supply = rptr->cfg->vreg_list[i];
return devm_regulator_bulk_get(dev, num, rptr->vregs);
}
static int eusb2_repeater_init(struct phy *phy)
{
struct eusb2_repeater *rptr = phy_get_drvdata(phy);
const struct eusb2_repeater_init_tbl *init_tbl = rptr->cfg->init_tbl;
int num = rptr->cfg->init_tbl_num;
u32 val;
int ret;
int i;
ret = regulator_bulk_enable(rptr->cfg->num_vregs, rptr->vregs);
if (ret)
return ret;
regmap_update_bits(rptr->regmap, rptr->base + EUSB2_EN_CTL1,
EUSB2_RPTR_EN, EUSB2_RPTR_EN);
for (i = 0; i < num; i++)
regmap_update_bits(rptr->regmap,
rptr->base + init_tbl[i].offset,
init_tbl[i].val, init_tbl[i].val);
ret = regmap_read_poll_timeout(rptr->regmap,
rptr->base + EUSB2_RPTR_STATUS, val,
val & RPTR_OK, 10, 5);
if (ret)
dev_err(rptr->dev, "initialization timed-out\n");
return ret;
}
static int eusb2_repeater_set_mode(struct phy *phy,
enum phy_mode mode, int submode)
{
struct eusb2_repeater *rptr = phy_get_drvdata(phy);
switch (mode) {
case PHY_MODE_USB_HOST:
/*
* CM.Lx is prohibited when repeater is already into Lx state as
* per eUSB 1.2 Spec. Below implement software workaround until
* PHY and controller is fixing seen observation.
*/
regmap_update_bits(rptr->regmap, rptr->base + EUSB2_FORCE_EN_5,
F_CLK_19P2M_EN, F_CLK_19P2M_EN);
regmap_update_bits(rptr->regmap, rptr->base + EUSB2_FORCE_VAL_5,
V_CLK_19P2M_EN, V_CLK_19P2M_EN);
break;
case PHY_MODE_USB_DEVICE:
/*
* In device mode clear host mode related workaround as there
* is no repeater reset available, and enable/disable of
* repeater doesn't clear previous value due to shared
* regulators (say host <-> device mode switch).
*/
regmap_update_bits(rptr->regmap, rptr->base + EUSB2_FORCE_EN_5,
F_CLK_19P2M_EN, 0);
regmap_update_bits(rptr->regmap, rptr->base + EUSB2_FORCE_VAL_5,
V_CLK_19P2M_EN, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int eusb2_repeater_exit(struct phy *phy)
{
struct eusb2_repeater *rptr = phy_get_drvdata(phy);
return regulator_bulk_disable(rptr->cfg->num_vregs, rptr->vregs);
}
static const struct phy_ops eusb2_repeater_ops = {
.init = eusb2_repeater_init,
.exit = eusb2_repeater_exit,
.set_mode = eusb2_repeater_set_mode,
.owner = THIS_MODULE,
};
static int eusb2_repeater_probe(struct platform_device *pdev)
{
struct eusb2_repeater *rptr;
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct device_node *np = dev->of_node;
u32 res;
int ret;
rptr = devm_kzalloc(dev, sizeof(*rptr), GFP_KERNEL);
if (!rptr)
return -ENOMEM;
rptr->dev = dev;
dev_set_drvdata(dev, rptr);
rptr->cfg = of_device_get_match_data(dev);
if (!rptr->cfg)
return -EINVAL;
rptr->regmap = dev_get_regmap(dev->parent, NULL);
if (!rptr->regmap)
return -ENODEV;
ret = of_property_read_u32(np, "reg", &res);
if (ret < 0)
return ret;
rptr->base = res;
ret = eusb2_repeater_init_vregs(rptr);
if (ret < 0) {
dev_err(dev, "unable to get supplies\n");
return ret;
}
rptr->phy = devm_phy_create(dev, np, &eusb2_repeater_ops);
if (IS_ERR(rptr->phy)) {
dev_err(dev, "failed to create PHY: %d\n", ret);
return PTR_ERR(rptr->phy);
}
phy_set_drvdata(rptr->phy, rptr);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider))
return PTR_ERR(phy_provider);
dev_info(dev, "Registered Qcom-eUSB2 repeater\n");
return 0;
}
static void eusb2_repeater_remove(struct platform_device *pdev)
{
struct eusb2_repeater *rptr = platform_get_drvdata(pdev);
if (!rptr)
return;
eusb2_repeater_exit(rptr->phy);
}
static const struct of_device_id eusb2_repeater_of_match_table[] = {
{
.compatible = "qcom,pm8550b-eusb2-repeater",
.data = &pm8550b_eusb2_cfg,
},
{ },
};
MODULE_DEVICE_TABLE(of, eusb2_repeater_of_match_table);
static struct platform_driver eusb2_repeater_driver = {
.probe = eusb2_repeater_probe,
.remove_new = eusb2_repeater_remove,
.driver = {
.name = "qcom-eusb2-repeater",
.of_match_table = eusb2_repeater_of_match_table,
},
};
module_platform_driver(eusb2_repeater_driver);
MODULE_DESCRIPTION("Qualcomm PMIC eUSB2 Repeater driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/qualcomm/phy-qcom-eusb2-repeater.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/bitfield.h>
/* USB QSCRATCH Hardware registers */
#define QSCRATCH_GENERAL_CFG (0x08)
#define HSUSB_PHY_CTRL_REG (0x10)
/* PHY_CTRL_REG */
#define HSUSB_CTRL_DMSEHV_CLAMP BIT(24)
#define HSUSB_CTRL_USB2_SUSPEND BIT(23)
#define HSUSB_CTRL_UTMI_CLK_EN BIT(21)
#define HSUSB_CTRL_UTMI_OTG_VBUS_VALID BIT(20)
#define HSUSB_CTRL_USE_CLKCORE BIT(18)
#define HSUSB_CTRL_DPSEHV_CLAMP BIT(17)
#define HSUSB_CTRL_COMMONONN BIT(11)
#define HSUSB_CTRL_ID_HV_CLAMP BIT(9)
#define HSUSB_CTRL_OTGSESSVLD_CLAMP BIT(8)
#define HSUSB_CTRL_CLAMP_EN BIT(7)
#define HSUSB_CTRL_RETENABLEN BIT(1)
#define HSUSB_CTRL_POR BIT(0)
/* QSCRATCH_GENERAL_CFG */
#define HSUSB_GCFG_XHCI_REV BIT(2)
/* USB QSCRATCH Hardware registers */
#define SSUSB_PHY_CTRL_REG (0x00)
#define SSUSB_PHY_PARAM_CTRL_1 (0x04)
#define SSUSB_PHY_PARAM_CTRL_2 (0x08)
#define CR_PROTOCOL_DATA_IN_REG (0x0c)
#define CR_PROTOCOL_DATA_OUT_REG (0x10)
#define CR_PROTOCOL_CAP_ADDR_REG (0x14)
#define CR_PROTOCOL_CAP_DATA_REG (0x18)
#define CR_PROTOCOL_READ_REG (0x1c)
#define CR_PROTOCOL_WRITE_REG (0x20)
/* PHY_CTRL_REG */
#define SSUSB_CTRL_REF_USE_PAD BIT(28)
#define SSUSB_CTRL_TEST_POWERDOWN BIT(27)
#define SSUSB_CTRL_LANE0_PWR_PRESENT BIT(24)
#define SSUSB_CTRL_SS_PHY_EN BIT(8)
#define SSUSB_CTRL_SS_PHY_RESET BIT(7)
/* SSPHY control registers - Does this need 0x30? */
#define SSPHY_CTRL_RX_OVRD_IN_HI(lane) (0x1006 + 0x100 * (lane))
#define SSPHY_CTRL_TX_OVRD_DRV_LO(lane) (0x1002 + 0x100 * (lane))
/* SSPHY SoC version specific values */
#define SSPHY_RX_EQ_VALUE 4 /* Override value for rx_eq */
/* Override value for transmit preemphasis */
#define SSPHY_TX_DEEMPH_3_5DB 23
/* Override value for mpll */
#define SSPHY_MPLL_VALUE 0
/* QSCRATCH PHY_PARAM_CTRL1 fields */
#define PHY_PARAM_CTRL1_TX_FULL_SWING_MASK GENMASK(26, 19)
#define PHY_PARAM_CTRL1_TX_DEEMPH_6DB_MASK GENMASK(19, 13)
#define PHY_PARAM_CTRL1_TX_DEEMPH_3_5DB_MASK GENMASK(13, 7)
#define PHY_PARAM_CTRL1_LOS_BIAS_MASK GENMASK(7, 2)
#define PHY_PARAM_CTRL1_MASK \
(PHY_PARAM_CTRL1_TX_FULL_SWING_MASK | \
PHY_PARAM_CTRL1_TX_DEEMPH_6DB_MASK | \
PHY_PARAM_CTRL1_TX_DEEMPH_3_5DB_MASK | \
PHY_PARAM_CTRL1_LOS_BIAS_MASK)
#define PHY_PARAM_CTRL1_TX_FULL_SWING(x) \
FIELD_PREP(PHY_PARAM_CTRL1_TX_FULL_SWING_MASK, (x))
#define PHY_PARAM_CTRL1_TX_DEEMPH_6DB(x) \
FIELD_PREP(PHY_PARAM_CTRL1_TX_DEEMPH_6DB_MASK, (x))
#define PHY_PARAM_CTRL1_TX_DEEMPH_3_5DB(x) \
FIELD_PREP(PHY_PARAM_CTRL1_TX_DEEMPH_3_5DB_MASK, x)
#define PHY_PARAM_CTRL1_LOS_BIAS(x) \
FIELD_PREP(PHY_PARAM_CTRL1_LOS_BIAS_MASK, (x))
/* RX OVRD IN HI bits */
#define RX_OVRD_IN_HI_RX_RESET_OVRD BIT(13)
#define RX_OVRD_IN_HI_RX_RX_RESET BIT(12)
#define RX_OVRD_IN_HI_RX_EQ_OVRD BIT(11)
#define RX_OVRD_IN_HI_RX_EQ_MASK GENMASK(10, 7)
#define RX_OVRD_IN_HI_RX_EQ(x) FIELD_PREP(RX_OVRD_IN_HI_RX_EQ_MASK, (x))
#define RX_OVRD_IN_HI_RX_EQ_EN_OVRD BIT(7)
#define RX_OVRD_IN_HI_RX_EQ_EN BIT(6)
#define RX_OVRD_IN_HI_RX_LOS_FILTER_OVRD BIT(5)
#define RX_OVRD_IN_HI_RX_LOS_FILTER_MASK GENMASK(4, 2)
#define RX_OVRD_IN_HI_RX_RATE_OVRD BIT(2)
#define RX_OVRD_IN_HI_RX_RATE_MASK GENMASK(2, 0)
/* TX OVRD DRV LO register bits */
#define TX_OVRD_DRV_LO_AMPLITUDE_MASK GENMASK(6, 0)
#define TX_OVRD_DRV_LO_PREEMPH_MASK GENMASK(13, 6)
#define TX_OVRD_DRV_LO_PREEMPH(x) ((x) << 7)
#define TX_OVRD_DRV_LO_EN BIT(14)
/* MPLL bits */
#define SSPHY_MPLL_MASK GENMASK(8, 5)
#define SSPHY_MPLL(x) ((x) << 5)
/* SS CAP register bits */
#define SS_CR_CAP_ADDR_REG BIT(0)
#define SS_CR_CAP_DATA_REG BIT(0)
#define SS_CR_READ_REG BIT(0)
#define SS_CR_WRITE_REG BIT(0)
#define LATCH_SLEEP 40
#define LATCH_TIMEOUT 100
struct usb_phy {
void __iomem *base;
struct device *dev;
struct clk *xo_clk;
struct clk *ref_clk;
u32 rx_eq;
u32 tx_deamp_3_5db;
u32 mpll;
};
struct phy_drvdata {
struct phy_ops ops;
u32 clk_rate;
};
/**
* usb_phy_write_readback() - Write register and read back masked value to
* confirm it is written
*
* @phy_dwc3: QCOM DWC3 phy context
* @offset: register offset.
* @mask: register bitmask specifying what should be updated
* @val: value to write.
*/
static inline void usb_phy_write_readback(struct usb_phy *phy_dwc3,
u32 offset,
const u32 mask, u32 val)
{
u32 write_val, tmp = readl(phy_dwc3->base + offset);
tmp &= ~mask; /* retain other bits */
write_val = tmp | val;
writel(write_val, phy_dwc3->base + offset);
/* Read back to see if val was written */
tmp = readl(phy_dwc3->base + offset);
tmp &= mask; /* clear other bits */
if (tmp != val)
dev_err(phy_dwc3->dev, "write: %x to QSCRATCH: %x FAILED\n", val, offset);
}
static int wait_for_latch(void __iomem *addr)
{
u32 val;
return readl_poll_timeout(addr, val, !val, LATCH_SLEEP, LATCH_TIMEOUT);
}
/**
* usb_ss_write_phycreg() - Write SSPHY register
*
* @phy_dwc3: QCOM DWC3 phy context
* @addr: SSPHY address to write.
* @val: value to write.
*/
static int usb_ss_write_phycreg(struct usb_phy *phy_dwc3,
u32 addr, u32 val)
{
int ret;
writel(addr, phy_dwc3->base + CR_PROTOCOL_DATA_IN_REG);
writel(SS_CR_CAP_ADDR_REG,
phy_dwc3->base + CR_PROTOCOL_CAP_ADDR_REG);
ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_CAP_ADDR_REG);
if (ret)
goto err_wait;
writel(val, phy_dwc3->base + CR_PROTOCOL_DATA_IN_REG);
writel(SS_CR_CAP_DATA_REG,
phy_dwc3->base + CR_PROTOCOL_CAP_DATA_REG);
ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_CAP_DATA_REG);
if (ret)
goto err_wait;
writel(SS_CR_WRITE_REG, phy_dwc3->base + CR_PROTOCOL_WRITE_REG);
ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_WRITE_REG);
err_wait:
if (ret)
dev_err(phy_dwc3->dev, "timeout waiting for latch\n");
return ret;
}
/**
* usb_ss_read_phycreg() - Read SSPHY register.
*
* @phy_dwc3: QCOM DWC3 phy context
* @addr: SSPHY address to read.
* @val: pointer in which read is store.
*/
static int usb_ss_read_phycreg(struct usb_phy *phy_dwc3,
u32 addr, u32 *val)
{
int ret;
writel(addr, phy_dwc3->base + CR_PROTOCOL_DATA_IN_REG);
writel(SS_CR_CAP_ADDR_REG,
phy_dwc3->base + CR_PROTOCOL_CAP_ADDR_REG);
ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_CAP_ADDR_REG);
if (ret)
goto err_wait;
/*
* Due to hardware bug, first read of SSPHY register might be
* incorrect. Hence as workaround, SW should perform SSPHY register
* read twice, but use only second read and ignore first read.
*/
writel(SS_CR_READ_REG, phy_dwc3->base + CR_PROTOCOL_READ_REG);
ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_READ_REG);
if (ret)
goto err_wait;
/* throwaway read */
readl(phy_dwc3->base + CR_PROTOCOL_DATA_OUT_REG);
writel(SS_CR_READ_REG, phy_dwc3->base + CR_PROTOCOL_READ_REG);
ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_READ_REG);
if (ret)
goto err_wait;
*val = readl(phy_dwc3->base + CR_PROTOCOL_DATA_OUT_REG);
err_wait:
return ret;
}
static int qcom_ipq806x_usb_hs_phy_init(struct phy *phy)
{
struct usb_phy *phy_dwc3 = phy_get_drvdata(phy);
int ret;
u32 val;
ret = clk_prepare_enable(phy_dwc3->xo_clk);
if (ret)
return ret;
ret = clk_prepare_enable(phy_dwc3->ref_clk);
if (ret) {
clk_disable_unprepare(phy_dwc3->xo_clk);
return ret;
}
/*
* HSPHY Initialization: Enable UTMI clock, select 19.2MHz fsel
* enable clamping, and disable RETENTION (power-on default is ENABLED)
*/
val = HSUSB_CTRL_DPSEHV_CLAMP | HSUSB_CTRL_DMSEHV_CLAMP |
HSUSB_CTRL_RETENABLEN | HSUSB_CTRL_COMMONONN |
HSUSB_CTRL_OTGSESSVLD_CLAMP | HSUSB_CTRL_ID_HV_CLAMP |
HSUSB_CTRL_UTMI_OTG_VBUS_VALID | HSUSB_CTRL_UTMI_CLK_EN |
HSUSB_CTRL_CLAMP_EN | 0x70;
/* use core clock if external reference is not present */
if (!phy_dwc3->xo_clk)
val |= HSUSB_CTRL_USE_CLKCORE;
writel(val, phy_dwc3->base + HSUSB_PHY_CTRL_REG);
usleep_range(2000, 2200);
/* Disable (bypass) VBUS and ID filters */
writel(HSUSB_GCFG_XHCI_REV, phy_dwc3->base + QSCRATCH_GENERAL_CFG);
return 0;
}
static int qcom_ipq806x_usb_hs_phy_exit(struct phy *phy)
{
struct usb_phy *phy_dwc3 = phy_get_drvdata(phy);
clk_disable_unprepare(phy_dwc3->ref_clk);
clk_disable_unprepare(phy_dwc3->xo_clk);
return 0;
}
static int qcom_ipq806x_usb_ss_phy_init(struct phy *phy)
{
struct usb_phy *phy_dwc3 = phy_get_drvdata(phy);
int ret;
u32 data;
ret = clk_prepare_enable(phy_dwc3->xo_clk);
if (ret)
return ret;
ret = clk_prepare_enable(phy_dwc3->ref_clk);
if (ret) {
clk_disable_unprepare(phy_dwc3->xo_clk);
return ret;
}
/* reset phy */
data = readl(phy_dwc3->base + SSUSB_PHY_CTRL_REG);
writel(data | SSUSB_CTRL_SS_PHY_RESET,
phy_dwc3->base + SSUSB_PHY_CTRL_REG);
usleep_range(2000, 2200);
writel(data, phy_dwc3->base + SSUSB_PHY_CTRL_REG);
/* clear REF_PAD if we don't have XO clk */
if (!phy_dwc3->xo_clk)
data &= ~SSUSB_CTRL_REF_USE_PAD;
else
data |= SSUSB_CTRL_REF_USE_PAD;
writel(data, phy_dwc3->base + SSUSB_PHY_CTRL_REG);
/* wait for ref clk to become stable, this can take up to 30ms */
msleep(30);
data |= SSUSB_CTRL_SS_PHY_EN | SSUSB_CTRL_LANE0_PWR_PRESENT;
writel(data, phy_dwc3->base + SSUSB_PHY_CTRL_REG);
/*
* WORKAROUND: There is SSPHY suspend bug due to which USB enumerates
* in HS mode instead of SS mode. Workaround it by asserting
* LANE0.TX_ALT_BLOCK.EN_ALT_BUS to enable TX to use alt bus mode
*/
ret = usb_ss_read_phycreg(phy_dwc3, 0x102D, &data);
if (ret)
goto err_phy_trans;
data |= (1 << 7);
ret = usb_ss_write_phycreg(phy_dwc3, 0x102D, data);
if (ret)
goto err_phy_trans;
ret = usb_ss_read_phycreg(phy_dwc3, 0x1010, &data);
if (ret)
goto err_phy_trans;
data &= ~0xff0;
data |= 0x20;
ret = usb_ss_write_phycreg(phy_dwc3, 0x1010, data);
if (ret)
goto err_phy_trans;
/*
* Fix RX Equalization setting as follows
* LANE0.RX_OVRD_IN_HI. RX_EQ_EN set to 0
* LANE0.RX_OVRD_IN_HI.RX_EQ_EN_OVRD set to 1
* LANE0.RX_OVRD_IN_HI.RX_EQ set based on SoC version
* LANE0.RX_OVRD_IN_HI.RX_EQ_OVRD set to 1
*/
ret = usb_ss_read_phycreg(phy_dwc3, SSPHY_CTRL_RX_OVRD_IN_HI(0), &data);
if (ret)
goto err_phy_trans;
data &= ~RX_OVRD_IN_HI_RX_EQ_EN;
data |= RX_OVRD_IN_HI_RX_EQ_EN_OVRD;
data &= ~RX_OVRD_IN_HI_RX_EQ_MASK;
data |= RX_OVRD_IN_HI_RX_EQ(phy_dwc3->rx_eq);
data |= RX_OVRD_IN_HI_RX_EQ_OVRD;
ret = usb_ss_write_phycreg(phy_dwc3,
SSPHY_CTRL_RX_OVRD_IN_HI(0), data);
if (ret)
goto err_phy_trans;
/*
* Set EQ and TX launch amplitudes as follows
* LANE0.TX_OVRD_DRV_LO.PREEMPH set based on SoC version
* LANE0.TX_OVRD_DRV_LO.AMPLITUDE set to 110
* LANE0.TX_OVRD_DRV_LO.EN set to 1.
*/
ret = usb_ss_read_phycreg(phy_dwc3,
SSPHY_CTRL_TX_OVRD_DRV_LO(0), &data);
if (ret)
goto err_phy_trans;
data &= ~TX_OVRD_DRV_LO_PREEMPH_MASK;
data |= TX_OVRD_DRV_LO_PREEMPH(phy_dwc3->tx_deamp_3_5db);
data &= ~TX_OVRD_DRV_LO_AMPLITUDE_MASK;
data |= 0x6E;
data |= TX_OVRD_DRV_LO_EN;
ret = usb_ss_write_phycreg(phy_dwc3,
SSPHY_CTRL_TX_OVRD_DRV_LO(0), data);
if (ret)
goto err_phy_trans;
data = 0;
data &= ~SSPHY_MPLL_MASK;
data |= SSPHY_MPLL(phy_dwc3->mpll);
usb_ss_write_phycreg(phy_dwc3, 0x30, data);
/*
* Set the QSCRATCH PHY_PARAM_CTRL1 parameters as follows
* TX_FULL_SWING [26:20] amplitude to 110
* TX_DEEMPH_6DB [19:14] to 32
* TX_DEEMPH_3_5DB [13:8] set based on SoC version
* LOS_BIAS [7:3] to 9
*/
data = readl(phy_dwc3->base + SSUSB_PHY_PARAM_CTRL_1);
data &= ~PHY_PARAM_CTRL1_MASK;
data |= PHY_PARAM_CTRL1_TX_FULL_SWING(0x6e) |
PHY_PARAM_CTRL1_TX_DEEMPH_6DB(0x20) |
PHY_PARAM_CTRL1_TX_DEEMPH_3_5DB(phy_dwc3->tx_deamp_3_5db) |
PHY_PARAM_CTRL1_LOS_BIAS(0x9);
usb_phy_write_readback(phy_dwc3, SSUSB_PHY_PARAM_CTRL_1,
PHY_PARAM_CTRL1_MASK, data);
err_phy_trans:
return ret;
}
static int qcom_ipq806x_usb_ss_phy_exit(struct phy *phy)
{
struct usb_phy *phy_dwc3 = phy_get_drvdata(phy);
/* Sequence to put SSPHY in low power state:
* 1. Clear REF_PHY_EN in PHY_CTRL_REG
* 2. Clear REF_USE_PAD in PHY_CTRL_REG
* 3. Set TEST_POWERED_DOWN in PHY_CTRL_REG to enable PHY retention
*/
usb_phy_write_readback(phy_dwc3, SSUSB_PHY_CTRL_REG,
SSUSB_CTRL_SS_PHY_EN, 0x0);
usb_phy_write_readback(phy_dwc3, SSUSB_PHY_CTRL_REG,
SSUSB_CTRL_REF_USE_PAD, 0x0);
usb_phy_write_readback(phy_dwc3, SSUSB_PHY_CTRL_REG,
SSUSB_CTRL_TEST_POWERDOWN, 0x0);
clk_disable_unprepare(phy_dwc3->ref_clk);
clk_disable_unprepare(phy_dwc3->xo_clk);
return 0;
}
static const struct phy_drvdata qcom_ipq806x_usb_hs_drvdata = {
.ops = {
.init = qcom_ipq806x_usb_hs_phy_init,
.exit = qcom_ipq806x_usb_hs_phy_exit,
.owner = THIS_MODULE,
},
.clk_rate = 60000000,
};
static const struct phy_drvdata qcom_ipq806x_usb_ss_drvdata = {
.ops = {
.init = qcom_ipq806x_usb_ss_phy_init,
.exit = qcom_ipq806x_usb_ss_phy_exit,
.owner = THIS_MODULE,
},
.clk_rate = 125000000,
};
static const struct of_device_id qcom_ipq806x_usb_phy_table[] = {
{ .compatible = "qcom,ipq806x-usb-phy-hs",
.data = &qcom_ipq806x_usb_hs_drvdata },
{ .compatible = "qcom,ipq806x-usb-phy-ss",
.data = &qcom_ipq806x_usb_ss_drvdata },
{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(of, qcom_ipq806x_usb_phy_table);
static int qcom_ipq806x_usb_phy_probe(struct platform_device *pdev)
{
struct resource *res;
resource_size_t size;
struct phy *generic_phy;
struct usb_phy *phy_dwc3;
const struct phy_drvdata *data;
struct phy_provider *phy_provider;
phy_dwc3 = devm_kzalloc(&pdev->dev, sizeof(*phy_dwc3), GFP_KERNEL);
if (!phy_dwc3)
return -ENOMEM;
data = of_device_get_match_data(&pdev->dev);
phy_dwc3->dev = &pdev->dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
size = resource_size(res);
phy_dwc3->base = devm_ioremap(phy_dwc3->dev, res->start, size);
if (!phy_dwc3->base) {
dev_err(phy_dwc3->dev, "failed to map reg\n");
return -ENOMEM;
}
phy_dwc3->ref_clk = devm_clk_get(phy_dwc3->dev, "ref");
if (IS_ERR(phy_dwc3->ref_clk)) {
dev_dbg(phy_dwc3->dev, "cannot get reference clock\n");
return PTR_ERR(phy_dwc3->ref_clk);
}
clk_set_rate(phy_dwc3->ref_clk, data->clk_rate);
phy_dwc3->xo_clk = devm_clk_get(phy_dwc3->dev, "xo");
if (IS_ERR(phy_dwc3->xo_clk)) {
dev_dbg(phy_dwc3->dev, "cannot get TCXO clock\n");
phy_dwc3->xo_clk = NULL;
}
/* Parse device node to probe HSIO settings */
if (device_property_read_u32(&pdev->dev, "qcom,rx-eq",
&phy_dwc3->rx_eq))
phy_dwc3->rx_eq = SSPHY_RX_EQ_VALUE;
if (device_property_read_u32(&pdev->dev, "qcom,tx-deamp_3_5db",
&phy_dwc3->tx_deamp_3_5db))
phy_dwc3->tx_deamp_3_5db = SSPHY_TX_DEEMPH_3_5DB;
if (device_property_read_u32(&pdev->dev, "qcom,mpll", &phy_dwc3->mpll))
phy_dwc3->mpll = SSPHY_MPLL_VALUE;
generic_phy = devm_phy_create(phy_dwc3->dev, pdev->dev.of_node, &data->ops);
if (IS_ERR(generic_phy))
return PTR_ERR(generic_phy);
phy_set_drvdata(generic_phy, phy_dwc3);
platform_set_drvdata(pdev, phy_dwc3);
phy_provider = devm_of_phy_provider_register(phy_dwc3->dev,
of_phy_simple_xlate);
if (IS_ERR(phy_provider))
return PTR_ERR(phy_provider);
return 0;
}
static struct platform_driver qcom_ipq806x_usb_phy_driver = {
.probe = qcom_ipq806x_usb_phy_probe,
.driver = {
.name = "qcom-ipq806x-usb-phy",
.of_match_table = qcom_ipq806x_usb_phy_table,
},
};
module_platform_driver(qcom_ipq806x_usb_phy_driver);
MODULE_ALIAS("platform:phy-qcom-ipq806x-usb");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Andy Gross <[email protected]>");
MODULE_AUTHOR("Ivan T. Ivanov <[email protected]>");
MODULE_DESCRIPTION("DesignWare USB3 QCOM PHY driver");
| linux-master | drivers/phy/qualcomm/phy-qcom-ipq806x-usb.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017, 2020, The Linux Foundation. All rights reserved.
* Copyright (c) 2021, Linaro Ltd.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <dt-bindings/phy/phy.h>
#include "phy-qcom-qmp.h"
/* EDP_PHY registers */
#define DP_PHY_CFG 0x0010
#define DP_PHY_CFG_1 0x0014
#define DP_PHY_PD_CTL 0x001c
#define DP_PHY_MODE 0x0020
#define DP_PHY_AUX_CFG0 0x0024
#define DP_PHY_AUX_CFG1 0x0028
#define DP_PHY_AUX_CFG2 0x002C
#define DP_PHY_AUX_CFG3 0x0030
#define DP_PHY_AUX_CFG4 0x0034
#define DP_PHY_AUX_CFG5 0x0038
#define DP_PHY_AUX_CFG6 0x003C
#define DP_PHY_AUX_CFG7 0x0040
#define DP_PHY_AUX_CFG8 0x0044
#define DP_PHY_AUX_CFG9 0x0048
#define DP_PHY_AUX_INTERRUPT_MASK 0x0058
#define DP_PHY_VCO_DIV 0x0074
#define DP_PHY_TX0_TX1_LANE_CTL 0x007c
#define DP_PHY_TX2_TX3_LANE_CTL 0x00a0
#define DP_PHY_STATUS 0x00e0
/* LANE_TXn registers */
#define TXn_CLKBUF_ENABLE 0x0000
#define TXn_TX_EMP_POST1_LVL 0x0004
#define TXn_TX_DRV_LVL 0x0014
#define TXn_TX_DRV_LVL_OFFSET 0x0018
#define TXn_RESET_TSYNC_EN 0x001c
#define TXn_LDO_CONFIG 0x0084
#define TXn_TX_BAND 0x0028
#define TXn_RES_CODE_LANE_OFFSET_TX0 0x0044
#define TXn_RES_CODE_LANE_OFFSET_TX1 0x0048
#define TXn_TRANSCEIVER_BIAS_EN 0x0054
#define TXn_HIGHZ_DRVR_EN 0x0058
#define TXn_TX_POL_INV 0x005c
#define TXn_LANE_MODE_1 0x0064
#define TXn_TRAN_DRVR_EMP_EN 0x0078
struct qcom_edp_cfg {
bool is_dp;
/* DP PHY swing and pre_emphasis tables */
const u8 (*swing_hbr_rbr)[4][4];
const u8 (*swing_hbr3_hbr2)[4][4];
const u8 (*pre_emphasis_hbr_rbr)[4][4];
const u8 (*pre_emphasis_hbr3_hbr2)[4][4];
};
struct qcom_edp {
struct device *dev;
const struct qcom_edp_cfg *cfg;
struct phy *phy;
void __iomem *edp;
void __iomem *tx0;
void __iomem *tx1;
void __iomem *pll;
struct clk_hw dp_link_hw;
struct clk_hw dp_pixel_hw;
struct phy_configure_opts_dp dp_opts;
struct clk_bulk_data clks[2];
struct regulator_bulk_data supplies[2];
};
static const u8 dp_swing_hbr_rbr[4][4] = {
{ 0x08, 0x0f, 0x16, 0x1f },
{ 0x11, 0x1e, 0x1f, 0xff },
{ 0x16, 0x1f, 0xff, 0xff },
{ 0x1f, 0xff, 0xff, 0xff }
};
static const u8 dp_pre_emp_hbr_rbr[4][4] = {
{ 0x00, 0x0d, 0x14, 0x1a },
{ 0x00, 0x0e, 0x15, 0xff },
{ 0x00, 0x0e, 0xff, 0xff },
{ 0x03, 0xff, 0xff, 0xff }
};
static const u8 dp_swing_hbr2_hbr3[4][4] = {
{ 0x02, 0x12, 0x16, 0x1a },
{ 0x09, 0x19, 0x1f, 0xff },
{ 0x10, 0x1f, 0xff, 0xff },
{ 0x1f, 0xff, 0xff, 0xff }
};
static const u8 dp_pre_emp_hbr2_hbr3[4][4] = {
{ 0x00, 0x0c, 0x15, 0x1b },
{ 0x02, 0x0e, 0x16, 0xff },
{ 0x02, 0x11, 0xff, 0xff },
{ 0x04, 0xff, 0xff, 0xff }
};
static const struct qcom_edp_cfg dp_phy_cfg = {
.is_dp = true,
.swing_hbr_rbr = &dp_swing_hbr_rbr,
.swing_hbr3_hbr2 = &dp_swing_hbr2_hbr3,
.pre_emphasis_hbr_rbr = &dp_pre_emp_hbr_rbr,
.pre_emphasis_hbr3_hbr2 = &dp_pre_emp_hbr2_hbr3,
};
static const u8 edp_swing_hbr_rbr[4][4] = {
{ 0x07, 0x0f, 0x16, 0x1f },
{ 0x0d, 0x16, 0x1e, 0xff },
{ 0x11, 0x1b, 0xff, 0xff },
{ 0x16, 0xff, 0xff, 0xff }
};
static const u8 edp_pre_emp_hbr_rbr[4][4] = {
{ 0x05, 0x12, 0x17, 0x1d },
{ 0x05, 0x11, 0x18, 0xff },
{ 0x06, 0x11, 0xff, 0xff },
{ 0x00, 0xff, 0xff, 0xff }
};
static const u8 edp_swing_hbr2_hbr3[4][4] = {
{ 0x0b, 0x11, 0x17, 0x1c },
{ 0x10, 0x19, 0x1f, 0xff },
{ 0x19, 0x1f, 0xff, 0xff },
{ 0x1f, 0xff, 0xff, 0xff }
};
static const u8 edp_pre_emp_hbr2_hbr3[4][4] = {
{ 0x08, 0x11, 0x17, 0x1b },
{ 0x00, 0x0c, 0x13, 0xff },
{ 0x05, 0x10, 0xff, 0xff },
{ 0x00, 0xff, 0xff, 0xff }
};
static const struct qcom_edp_cfg edp_phy_cfg = {
.is_dp = false,
.swing_hbr_rbr = &edp_swing_hbr_rbr,
.swing_hbr3_hbr2 = &edp_swing_hbr2_hbr3,
.pre_emphasis_hbr_rbr = &edp_pre_emp_hbr_rbr,
.pre_emphasis_hbr3_hbr2 = &edp_pre_emp_hbr2_hbr3,
};
static int qcom_edp_phy_init(struct phy *phy)
{
struct qcom_edp *edp = phy_get_drvdata(phy);
const struct qcom_edp_cfg *cfg = edp->cfg;
int ret;
u8 cfg8;
ret = regulator_bulk_enable(ARRAY_SIZE(edp->supplies), edp->supplies);
if (ret)
return ret;
ret = clk_bulk_prepare_enable(ARRAY_SIZE(edp->clks), edp->clks);
if (ret)
goto out_disable_supplies;
writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN |
DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN,
edp->edp + DP_PHY_PD_CTL);
/* Turn on BIAS current for PHY/PLL */
writel(0x17, edp->pll + QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN);
writel(DP_PHY_PD_CTL_PSR_PWRDN, edp->edp + DP_PHY_PD_CTL);
msleep(20);
writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN |
DP_PHY_PD_CTL_LANE_0_1_PWRDN | DP_PHY_PD_CTL_LANE_2_3_PWRDN |
DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN,
edp->edp + DP_PHY_PD_CTL);
if (cfg && cfg->is_dp)
cfg8 = 0xb7;
else
cfg8 = 0x37;
writel(0xfc, edp->edp + DP_PHY_MODE);
writel(0x00, edp->edp + DP_PHY_AUX_CFG0);
writel(0x13, edp->edp + DP_PHY_AUX_CFG1);
writel(0x24, edp->edp + DP_PHY_AUX_CFG2);
writel(0x00, edp->edp + DP_PHY_AUX_CFG3);
writel(0x0a, edp->edp + DP_PHY_AUX_CFG4);
writel(0x26, edp->edp + DP_PHY_AUX_CFG5);
writel(0x0a, edp->edp + DP_PHY_AUX_CFG6);
writel(0x03, edp->edp + DP_PHY_AUX_CFG7);
writel(cfg8, edp->edp + DP_PHY_AUX_CFG8);
writel(0x03, edp->edp + DP_PHY_AUX_CFG9);
writel(PHY_AUX_STOP_ERR_MASK | PHY_AUX_DEC_ERR_MASK |
PHY_AUX_SYNC_ERR_MASK | PHY_AUX_ALIGN_ERR_MASK |
PHY_AUX_REQ_ERR_MASK, edp->edp + DP_PHY_AUX_INTERRUPT_MASK);
msleep(20);
return 0;
out_disable_supplies:
regulator_bulk_disable(ARRAY_SIZE(edp->supplies), edp->supplies);
return ret;
}
static int qcom_edp_set_voltages(struct qcom_edp *edp, const struct phy_configure_opts_dp *dp_opts)
{
const struct qcom_edp_cfg *cfg = edp->cfg;
unsigned int v_level = 0;
unsigned int p_level = 0;
u8 ldo_config;
u8 swing;
u8 emph;
int i;
if (!cfg)
return 0;
for (i = 0; i < dp_opts->lanes; i++) {
v_level = max(v_level, dp_opts->voltage[i]);
p_level = max(p_level, dp_opts->pre[i]);
}
if (dp_opts->link_rate <= 2700) {
swing = (*cfg->swing_hbr_rbr)[v_level][p_level];
emph = (*cfg->pre_emphasis_hbr_rbr)[v_level][p_level];
} else {
swing = (*cfg->swing_hbr3_hbr2)[v_level][p_level];
emph = (*cfg->pre_emphasis_hbr3_hbr2)[v_level][p_level];
}
if (swing == 0xff || emph == 0xff)
return -EINVAL;
ldo_config = (cfg && cfg->is_dp) ? 0x1 : 0x0;
writel(ldo_config, edp->tx0 + TXn_LDO_CONFIG);
writel(swing, edp->tx0 + TXn_TX_DRV_LVL);
writel(emph, edp->tx0 + TXn_TX_EMP_POST1_LVL);
writel(ldo_config, edp->tx1 + TXn_LDO_CONFIG);
writel(swing, edp->tx1 + TXn_TX_DRV_LVL);
writel(emph, edp->tx1 + TXn_TX_EMP_POST1_LVL);
return 0;
}
static int qcom_edp_phy_configure(struct phy *phy, union phy_configure_opts *opts)
{
const struct phy_configure_opts_dp *dp_opts = &opts->dp;
struct qcom_edp *edp = phy_get_drvdata(phy);
int ret = 0;
memcpy(&edp->dp_opts, dp_opts, sizeof(*dp_opts));
if (dp_opts->set_voltages)
ret = qcom_edp_set_voltages(edp, dp_opts);
return ret;
}
static int qcom_edp_configure_ssc(const struct qcom_edp *edp)
{
const struct phy_configure_opts_dp *dp_opts = &edp->dp_opts;
u32 step1;
u32 step2;
switch (dp_opts->link_rate) {
case 1620:
case 2700:
case 8100:
step1 = 0x45;
step2 = 0x06;
break;
case 5400:
step1 = 0x5c;
step2 = 0x08;
break;
default:
/* Other link rates aren't supported */
return -EINVAL;
}
writel(0x01, edp->pll + QSERDES_V4_COM_SSC_EN_CENTER);
writel(0x00, edp->pll + QSERDES_V4_COM_SSC_ADJ_PER1);
writel(0x36, edp->pll + QSERDES_V4_COM_SSC_PER1);
writel(0x01, edp->pll + QSERDES_V4_COM_SSC_PER2);
writel(step1, edp->pll + QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0);
writel(step2, edp->pll + QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0);
return 0;
}
static int qcom_edp_configure_pll(const struct qcom_edp *edp)
{
const struct phy_configure_opts_dp *dp_opts = &edp->dp_opts;
u32 div_frac_start2_mode0;
u32 div_frac_start3_mode0;
u32 dec_start_mode0;
u32 lock_cmp1_mode0;
u32 lock_cmp2_mode0;
u32 hsclk_sel;
switch (dp_opts->link_rate) {
case 1620:
hsclk_sel = 0x5;
dec_start_mode0 = 0x69;
div_frac_start2_mode0 = 0x80;
div_frac_start3_mode0 = 0x07;
lock_cmp1_mode0 = 0x6f;
lock_cmp2_mode0 = 0x08;
break;
case 2700:
hsclk_sel = 0x3;
dec_start_mode0 = 0x69;
div_frac_start2_mode0 = 0x80;
div_frac_start3_mode0 = 0x07;
lock_cmp1_mode0 = 0x0f;
lock_cmp2_mode0 = 0x0e;
break;
case 5400:
hsclk_sel = 0x1;
dec_start_mode0 = 0x8c;
div_frac_start2_mode0 = 0x00;
div_frac_start3_mode0 = 0x0a;
lock_cmp1_mode0 = 0x1f;
lock_cmp2_mode0 = 0x1c;
break;
case 8100:
hsclk_sel = 0x0;
dec_start_mode0 = 0x69;
div_frac_start2_mode0 = 0x80;
div_frac_start3_mode0 = 0x07;
lock_cmp1_mode0 = 0x2f;
lock_cmp2_mode0 = 0x2a;
break;
default:
/* Other link rates aren't supported */
return -EINVAL;
}
writel(0x01, edp->pll + QSERDES_V4_COM_SVS_MODE_CLK_SEL);
writel(0x0b, edp->pll + QSERDES_V4_COM_SYSCLK_EN_SEL);
writel(0x02, edp->pll + QSERDES_V4_COM_SYS_CLK_CTRL);
writel(0x0c, edp->pll + QSERDES_V4_COM_CLK_ENABLE1);
writel(0x06, edp->pll + QSERDES_V4_COM_SYSCLK_BUF_ENABLE);
writel(0x30, edp->pll + QSERDES_V4_COM_CLK_SELECT);
writel(hsclk_sel, edp->pll + QSERDES_V4_COM_HSCLK_SEL);
writel(0x0f, edp->pll + QSERDES_V4_COM_PLL_IVCO);
writel(0x08, edp->pll + QSERDES_V4_COM_LOCK_CMP_EN);
writel(0x36, edp->pll + QSERDES_V4_COM_PLL_CCTRL_MODE0);
writel(0x16, edp->pll + QSERDES_V4_COM_PLL_RCTRL_MODE0);
writel(0x06, edp->pll + QSERDES_V4_COM_CP_CTRL_MODE0);
writel(dec_start_mode0, edp->pll + QSERDES_V4_COM_DEC_START_MODE0);
writel(0x00, edp->pll + QSERDES_V4_COM_DIV_FRAC_START1_MODE0);
writel(div_frac_start2_mode0, edp->pll + QSERDES_V4_COM_DIV_FRAC_START2_MODE0);
writel(div_frac_start3_mode0, edp->pll + QSERDES_V4_COM_DIV_FRAC_START3_MODE0);
writel(0x02, edp->pll + QSERDES_V4_COM_CMN_CONFIG);
writel(0x3f, edp->pll + QSERDES_V4_COM_INTEGLOOP_GAIN0_MODE0);
writel(0x00, edp->pll + QSERDES_V4_COM_INTEGLOOP_GAIN1_MODE0);
writel(0x00, edp->pll + QSERDES_V4_COM_VCO_TUNE_MAP);
writel(lock_cmp1_mode0, edp->pll + QSERDES_V4_COM_LOCK_CMP1_MODE0);
writel(lock_cmp2_mode0, edp->pll + QSERDES_V4_COM_LOCK_CMP2_MODE0);
writel(0x0a, edp->pll + QSERDES_V4_COM_BG_TIMER);
writel(0x14, edp->pll + QSERDES_V4_COM_CORECLK_DIV_MODE0);
writel(0x00, edp->pll + QSERDES_V4_COM_VCO_TUNE_CTRL);
writel(0x17, edp->pll + QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN);
writel(0x0f, edp->pll + QSERDES_V4_COM_CORE_CLK_EN);
writel(0xa0, edp->pll + QSERDES_V4_COM_VCO_TUNE1_MODE0);
writel(0x03, edp->pll + QSERDES_V4_COM_VCO_TUNE2_MODE0);
return 0;
}
static int qcom_edp_set_vco_div(const struct qcom_edp *edp, unsigned long *pixel_freq)
{
const struct phy_configure_opts_dp *dp_opts = &edp->dp_opts;
u32 vco_div;
switch (dp_opts->link_rate) {
case 1620:
vco_div = 0x1;
*pixel_freq = 1620000000UL / 2;
break;
case 2700:
vco_div = 0x1;
*pixel_freq = 2700000000UL / 2;
break;
case 5400:
vco_div = 0x2;
*pixel_freq = 5400000000UL / 4;
break;
case 8100:
vco_div = 0x0;
*pixel_freq = 8100000000UL / 6;
break;
default:
/* Other link rates aren't supported */
return -EINVAL;
}
writel(vco_div, edp->edp + DP_PHY_VCO_DIV);
return 0;
}
static int qcom_edp_phy_power_on(struct phy *phy)
{
const struct qcom_edp *edp = phy_get_drvdata(phy);
const struct qcom_edp_cfg *cfg = edp->cfg;
u32 bias0_en, drvr0_en, bias1_en, drvr1_en;
unsigned long pixel_freq;
u8 ldo_config;
int timeout;
int ret;
u32 val;
u8 cfg1;
writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN |
DP_PHY_PD_CTL_LANE_0_1_PWRDN | DP_PHY_PD_CTL_LANE_2_3_PWRDN |
DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN,
edp->edp + DP_PHY_PD_CTL);
writel(0xfc, edp->edp + DP_PHY_MODE);
timeout = readl_poll_timeout(edp->pll + QSERDES_V4_COM_CMN_STATUS,
val, val & BIT(7), 5, 200);
if (timeout)
return timeout;
ldo_config = (cfg && cfg->is_dp) ? 0x1 : 0x0;
writel(ldo_config, edp->tx0 + TXn_LDO_CONFIG);
writel(ldo_config, edp->tx1 + TXn_LDO_CONFIG);
writel(0x00, edp->tx0 + TXn_LANE_MODE_1);
writel(0x00, edp->tx1 + TXn_LANE_MODE_1);
if (edp->dp_opts.ssc) {
ret = qcom_edp_configure_ssc(edp);
if (ret)
return ret;
}
ret = qcom_edp_configure_pll(edp);
if (ret)
return ret;
/* TX Lane configuration */
writel(0x05, edp->edp + DP_PHY_TX0_TX1_LANE_CTL);
writel(0x05, edp->edp + DP_PHY_TX2_TX3_LANE_CTL);
/* TX-0 register configuration */
writel(0x03, edp->tx0 + TXn_TRANSCEIVER_BIAS_EN);
writel(0x0f, edp->tx0 + TXn_CLKBUF_ENABLE);
writel(0x03, edp->tx0 + TXn_RESET_TSYNC_EN);
writel(0x01, edp->tx0 + TXn_TRAN_DRVR_EMP_EN);
writel(0x04, edp->tx0 + TXn_TX_BAND);
/* TX-1 register configuration */
writel(0x03, edp->tx1 + TXn_TRANSCEIVER_BIAS_EN);
writel(0x0f, edp->tx1 + TXn_CLKBUF_ENABLE);
writel(0x03, edp->tx1 + TXn_RESET_TSYNC_EN);
writel(0x01, edp->tx1 + TXn_TRAN_DRVR_EMP_EN);
writel(0x04, edp->tx1 + TXn_TX_BAND);
ret = qcom_edp_set_vco_div(edp, &pixel_freq);
if (ret)
return ret;
writel(0x01, edp->edp + DP_PHY_CFG);
writel(0x05, edp->edp + DP_PHY_CFG);
writel(0x01, edp->edp + DP_PHY_CFG);
writel(0x09, edp->edp + DP_PHY_CFG);
writel(0x20, edp->pll + QSERDES_V4_COM_RESETSM_CNTRL);
timeout = readl_poll_timeout(edp->pll + QSERDES_V4_COM_C_READY_STATUS,
val, val & BIT(0), 500, 10000);
if (timeout)
return timeout;
writel(0x19, edp->edp + DP_PHY_CFG);
writel(0x1f, edp->tx0 + TXn_HIGHZ_DRVR_EN);
writel(0x04, edp->tx0 + TXn_HIGHZ_DRVR_EN);
writel(0x00, edp->tx0 + TXn_TX_POL_INV);
writel(0x1f, edp->tx1 + TXn_HIGHZ_DRVR_EN);
writel(0x04, edp->tx1 + TXn_HIGHZ_DRVR_EN);
writel(0x00, edp->tx1 + TXn_TX_POL_INV);
writel(0x10, edp->tx0 + TXn_TX_DRV_LVL_OFFSET);
writel(0x10, edp->tx1 + TXn_TX_DRV_LVL_OFFSET);
writel(0x11, edp->tx0 + TXn_RES_CODE_LANE_OFFSET_TX0);
writel(0x11, edp->tx0 + TXn_RES_CODE_LANE_OFFSET_TX1);
writel(0x11, edp->tx1 + TXn_RES_CODE_LANE_OFFSET_TX0);
writel(0x11, edp->tx1 + TXn_RES_CODE_LANE_OFFSET_TX1);
writel(0x10, edp->tx0 + TXn_TX_EMP_POST1_LVL);
writel(0x10, edp->tx1 + TXn_TX_EMP_POST1_LVL);
writel(0x1f, edp->tx0 + TXn_TX_DRV_LVL);
writel(0x1f, edp->tx1 + TXn_TX_DRV_LVL);
if (edp->dp_opts.lanes == 1) {
bias0_en = 0x01;
bias1_en = 0x00;
drvr0_en = 0x06;
drvr1_en = 0x07;
cfg1 = 0x1;
} else if (edp->dp_opts.lanes == 2) {
bias0_en = 0x03;
bias1_en = 0x00;
drvr0_en = 0x04;
drvr1_en = 0x07;
cfg1 = 0x3;
} else {
bias0_en = 0x03;
bias1_en = 0x03;
drvr0_en = 0x04;
drvr1_en = 0x04;
cfg1 = 0xf;
}
writel(drvr0_en, edp->tx0 + TXn_HIGHZ_DRVR_EN);
writel(bias0_en, edp->tx0 + TXn_TRANSCEIVER_BIAS_EN);
writel(drvr1_en, edp->tx1 + TXn_HIGHZ_DRVR_EN);
writel(bias1_en, edp->tx1 + TXn_TRANSCEIVER_BIAS_EN);
writel(cfg1, edp->edp + DP_PHY_CFG_1);
writel(0x18, edp->edp + DP_PHY_CFG);
usleep_range(100, 1000);
writel(0x19, edp->edp + DP_PHY_CFG);
ret = readl_poll_timeout(edp->edp + DP_PHY_STATUS,
val, val & BIT(1), 500, 10000);
if (ret)
return ret;
clk_set_rate(edp->dp_link_hw.clk, edp->dp_opts.link_rate * 100000);
clk_set_rate(edp->dp_pixel_hw.clk, pixel_freq);
return 0;
}
static int qcom_edp_phy_power_off(struct phy *phy)
{
const struct qcom_edp *edp = phy_get_drvdata(phy);
writel(DP_PHY_PD_CTL_PSR_PWRDN, edp->edp + DP_PHY_PD_CTL);
return 0;
}
static int qcom_edp_phy_exit(struct phy *phy)
{
struct qcom_edp *edp = phy_get_drvdata(phy);
clk_bulk_disable_unprepare(ARRAY_SIZE(edp->clks), edp->clks);
regulator_bulk_disable(ARRAY_SIZE(edp->supplies), edp->supplies);
return 0;
}
static const struct phy_ops qcom_edp_ops = {
.init = qcom_edp_phy_init,
.configure = qcom_edp_phy_configure,
.power_on = qcom_edp_phy_power_on,
.power_off = qcom_edp_phy_power_off,
.exit = qcom_edp_phy_exit,
.owner = THIS_MODULE,
};
/*
* Embedded Display Port PLL driver block diagram for branch clocks
*
* +------------------------------+
* | EDP_VCO_CLK |
* | |
* | +-------------------+ |
* | | (EDP PLL/VCO) | |
* | +---------+---------+ |
* | v |
* | +----------+-----------+ |
* | | hsclk_divsel_clk_src | |
* | +----------+-----------+ |
* +------------------------------+
* |
* +---------<---------v------------>----------+
* | |
* +--------v----------------+ |
* | edp_phy_pll_link_clk | |
* | link_clk | |
* +--------+----------------+ |
* | |
* | |
* v v
* Input to DISPCC block |
* for link clk, crypto clk |
* and interface clock |
* |
* |
* +--------<------------+-----------------+---<---+
* | | |
* +----v---------+ +--------v-----+ +--------v------+
* | vco_divided | | vco_divided | | vco_divided |
* | _clk_src | | _clk_src | | _clk_src |
* | | | | | |
* |divsel_six | | divsel_two | | divsel_four |
* +-------+------+ +-----+--------+ +--------+------+
* | | |
* v---->----------v-------------<------v
* |
* +----------+-----------------+
* | edp_phy_pll_vco_div_clk |
* +---------+------------------+
* |
* v
* Input to DISPCC block
* for EDP pixel clock
*
*/
static int qcom_edp_dp_pixel_clk_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
switch (req->rate) {
case 1620000000UL / 2:
case 2700000000UL / 2:
/* 5.4 and 8.1 GHz are same link rate as 2.7GHz, i.e. div 4 and div 6 */
return 0;
default:
return -EINVAL;
}
}
static unsigned long
qcom_edp_dp_pixel_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
const struct qcom_edp *edp = container_of(hw, struct qcom_edp, dp_pixel_hw);
const struct phy_configure_opts_dp *dp_opts = &edp->dp_opts;
switch (dp_opts->link_rate) {
case 1620:
return 1620000000UL / 2;
case 2700:
return 2700000000UL / 2;
case 5400:
return 5400000000UL / 4;
case 8100:
return 8100000000UL / 6;
default:
return 0;
}
}
static const struct clk_ops qcom_edp_dp_pixel_clk_ops = {
.determine_rate = qcom_edp_dp_pixel_clk_determine_rate,
.recalc_rate = qcom_edp_dp_pixel_clk_recalc_rate,
};
static int qcom_edp_dp_link_clk_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
switch (req->rate) {
case 162000000:
case 270000000:
case 540000000:
case 810000000:
return 0;
default:
return -EINVAL;
}
}
static unsigned long
qcom_edp_dp_link_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
const struct qcom_edp *edp = container_of(hw, struct qcom_edp, dp_link_hw);
const struct phy_configure_opts_dp *dp_opts = &edp->dp_opts;
switch (dp_opts->link_rate) {
case 1620:
case 2700:
case 5400:
case 8100:
return dp_opts->link_rate * 100000;
default:
return 0;
}
}
static const struct clk_ops qcom_edp_dp_link_clk_ops = {
.determine_rate = qcom_edp_dp_link_clk_determine_rate,
.recalc_rate = qcom_edp_dp_link_clk_recalc_rate,
};
static int qcom_edp_clks_register(struct qcom_edp *edp, struct device_node *np)
{
struct clk_hw_onecell_data *data;
struct clk_init_data init = { };
char name[64];
int ret;
data = devm_kzalloc(edp->dev, struct_size(data, hws, 2), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->num = 2;
snprintf(name, sizeof(name), "%s::link_clk", dev_name(edp->dev));
init.ops = &qcom_edp_dp_link_clk_ops;
init.name = name;
edp->dp_link_hw.init = &init;
ret = devm_clk_hw_register(edp->dev, &edp->dp_link_hw);
if (ret)
return ret;
snprintf(name, sizeof(name), "%s::vco_div_clk", dev_name(edp->dev));
init.ops = &qcom_edp_dp_pixel_clk_ops;
init.name = name;
edp->dp_pixel_hw.init = &init;
ret = devm_clk_hw_register(edp->dev, &edp->dp_pixel_hw);
if (ret)
return ret;
data->hws[0] = &edp->dp_link_hw;
data->hws[1] = &edp->dp_pixel_hw;
return devm_of_clk_add_hw_provider(edp->dev, of_clk_hw_onecell_get, data);
}
static int qcom_edp_phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct device *dev = &pdev->dev;
struct qcom_edp *edp;
int ret;
edp = devm_kzalloc(dev, sizeof(*edp), GFP_KERNEL);
if (!edp)
return -ENOMEM;
edp->dev = dev;
edp->cfg = of_device_get_match_data(&pdev->dev);
edp->edp = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(edp->edp))
return PTR_ERR(edp->edp);
edp->tx0 = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(edp->tx0))
return PTR_ERR(edp->tx0);
edp->tx1 = devm_platform_ioremap_resource(pdev, 2);
if (IS_ERR(edp->tx1))
return PTR_ERR(edp->tx1);
edp->pll = devm_platform_ioremap_resource(pdev, 3);
if (IS_ERR(edp->pll))
return PTR_ERR(edp->pll);
edp->clks[0].id = "aux";
edp->clks[1].id = "cfg_ahb";
ret = devm_clk_bulk_get(dev, ARRAY_SIZE(edp->clks), edp->clks);
if (ret)
return ret;
edp->supplies[0].supply = "vdda-phy";
edp->supplies[1].supply = "vdda-pll";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(edp->supplies), edp->supplies);
if (ret)
return ret;
ret = regulator_set_load(edp->supplies[0].consumer, 21800); /* 1.2 V vdda-phy */
if (ret) {
dev_err(dev, "failed to set load at %s\n", edp->supplies[0].supply);
return ret;
}
ret = regulator_set_load(edp->supplies[1].consumer, 36000); /* 0.9 V vdda-pll */
if (ret) {
dev_err(dev, "failed to set load at %s\n", edp->supplies[1].supply);
return ret;
}
ret = qcom_edp_clks_register(edp, pdev->dev.of_node);
if (ret)
return ret;
edp->phy = devm_phy_create(dev, pdev->dev.of_node, &qcom_edp_ops);
if (IS_ERR(edp->phy)) {
dev_err(dev, "failed to register phy\n");
return PTR_ERR(edp->phy);
}
phy_set_drvdata(edp->phy, edp);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id qcom_edp_phy_match_table[] = {
{ .compatible = "qcom,sc7280-edp-phy" },
{ .compatible = "qcom,sc8180x-edp-phy" },
{ .compatible = "qcom,sc8280xp-dp-phy", .data = &dp_phy_cfg },
{ .compatible = "qcom,sc8280xp-edp-phy", .data = &edp_phy_cfg },
{ }
};
MODULE_DEVICE_TABLE(of, qcom_edp_phy_match_table);
static struct platform_driver qcom_edp_phy_driver = {
.probe = qcom_edp_phy_probe,
.driver = {
.name = "qcom-edp-phy",
.of_match_table = qcom_edp_phy_match_table,
},
};
module_platform_driver(qcom_edp_phy_driver);
MODULE_AUTHOR("Bjorn Andersson <[email protected]>");
MODULE_DESCRIPTION("Qualcomm eDP QMP PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-edp.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "phy-qcom-qmp.h"
/* QPHY_SW_RESET bit */
#define SW_RESET BIT(0)
/* QPHY_POWER_DOWN_CONTROL */
#define SW_PWRDN BIT(0)
#define REFCLK_DRV_DSBL BIT(1)
/* QPHY_START_CONTROL bits */
#define SERDES_START BIT(0)
#define PCS_START BIT(1)
#define PLL_READY_GATE_EN BIT(3)
/* QPHY_PCS_STATUS bit */
#define PHYSTATUS BIT(6)
/* QPHY_COM_PCS_READY_STATUS bit */
#define PCS_READY BIT(0)
#define PHY_INIT_COMPLETE_TIMEOUT 10000
#define POWER_DOWN_DELAY_US_MIN 10
#define POWER_DOWN_DELAY_US_MAX 20
struct qmp_phy_init_tbl {
unsigned int offset;
unsigned int val;
/*
* mask of lanes for which this register is written
* for cases when second lane needs different values
*/
u8 lane_mask;
};
#define QMP_PHY_INIT_CFG(o, v) \
{ \
.offset = o, \
.val = v, \
.lane_mask = 0xff, \
}
#define QMP_PHY_INIT_CFG_LANE(o, v, l) \
{ \
.offset = o, \
.val = v, \
.lane_mask = l, \
}
/* set of registers with offsets different per-PHY */
enum qphy_reg_layout {
/* Common block control registers */
QPHY_COM_SW_RESET,
QPHY_COM_POWER_DOWN_CONTROL,
QPHY_COM_START_CONTROL,
QPHY_COM_PCS_READY_STATUS,
/* PCS registers */
QPHY_SW_RESET,
QPHY_START_CTRL,
QPHY_PCS_STATUS,
/* Keep last to ensure regs_layout arrays are properly initialized */
QPHY_LAYOUT_SIZE
};
static const unsigned int pciephy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_COM_SW_RESET] = 0x400,
[QPHY_COM_POWER_DOWN_CONTROL] = 0x404,
[QPHY_COM_START_CONTROL] = 0x408,
[QPHY_COM_PCS_READY_STATUS] = 0x448,
[QPHY_SW_RESET] = QPHY_V2_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V2_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V2_PCS_PCI_PCS_STATUS,
};
static const struct qmp_phy_init_tbl msm8996_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_ENABLE1, 0x10),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x33),
QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_EN, 0x42),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER2, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x09),
QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x33),
QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_BUF_ENABLE, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x19),
QMP_PHY_INIT_CFG(QSERDES_COM_RESCODE_DIV_NUM, 0x15),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_EP_DIV, 0x19),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_ENABLE1, 0x10),
QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_RESCODE_DIV_NUM, 0x40),
};
static const struct qmp_phy_init_tbl msm8996_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45),
QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x06),
};
static const struct qmp_phy_init_tbl msm8996_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_ENABLES, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x00),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_BAND, 0x18),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN_HALF, 0x04),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_LVL, 0x19),
};
static const struct qmp_phy_init_tbl msm8996_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V2_PCS_RX_IDLE_DTCT_CNTRL, 0x4c),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x00),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_LP_WAKEUP_DLY_TIME_AUXCLK, 0x01),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_PLL_LOCK_CHK_DLY_TIME, 0x05),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_ENDPOINT_REFCLK_DRIVE, 0x05),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_POWER_DOWN_CONTROL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_POWER_STATE_CONFIG4, 0x00),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_POWER_STATE_CONFIG1, 0xa3),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_TXDEEMPH_M3P5DB_V0, 0x0e),
};
/* struct qmp_phy_cfg - per-PHY initialization config */
struct qmp_phy_cfg {
/* number of PHYs provided by this block */
int num_phys;
/* Init sequence for PHY blocks - serdes, tx, rx, pcs */
const struct qmp_phy_init_tbl *serdes_tbl;
int serdes_tbl_num;
const struct qmp_phy_init_tbl *tx_tbl;
int tx_tbl_num;
const struct qmp_phy_init_tbl *rx_tbl;
int rx_tbl_num;
const struct qmp_phy_init_tbl *pcs_tbl;
int pcs_tbl_num;
/* clock ids to be requested */
const char * const *clk_list;
int num_clks;
/* resets to be requested */
const char * const *reset_list;
int num_resets;
/* regulators to be requested */
const char * const *vreg_list;
int num_vregs;
/* array of registers with different offsets */
const unsigned int *regs;
};
/**
* struct qmp_phy - per-lane phy descriptor
*
* @phy: generic phy
* @cfg: phy specific configuration
* @serdes: iomapped memory space for phy's serdes (i.e. PLL)
* @tx: iomapped memory space for lane's tx
* @rx: iomapped memory space for lane's rx
* @pcs: iomapped memory space for lane's pcs
* @pipe_clk: pipe clock
* @index: lane index
* @qmp: QMP phy to which this lane belongs
* @lane_rst: lane's reset controller
*/
struct qmp_phy {
struct phy *phy;
const struct qmp_phy_cfg *cfg;
void __iomem *serdes;
void __iomem *tx;
void __iomem *rx;
void __iomem *pcs;
struct clk *pipe_clk;
unsigned int index;
struct qcom_qmp *qmp;
struct reset_control *lane_rst;
};
/**
* struct qcom_qmp - structure holding QMP phy block attributes
*
* @dev: device
*
* @clks: array of clocks required by phy
* @resets: array of resets required by phy
* @vregs: regulator supplies bulk data
*
* @phys: array of per-lane phy descriptors
* @phy_mutex: mutex lock for PHY common block initialization
* @init_count: phy common block initialization count
*/
struct qcom_qmp {
struct device *dev;
struct clk_bulk_data *clks;
struct reset_control_bulk_data *resets;
struct regulator_bulk_data *vregs;
struct qmp_phy **phys;
struct mutex phy_mutex;
int init_count;
};
static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg |= val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg &= ~val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
/* list of clocks required by phy */
static const char * const msm8996_phy_clk_l[] = {
"aux", "cfg_ahb", "ref",
};
/* list of resets */
static const char * const msm8996_pciephy_reset_l[] = {
"phy", "common", "cfg",
};
/* list of regulators */
static const char * const qmp_phy_vreg_l[] = {
"vdda-phy", "vdda-pll",
};
static const struct qmp_phy_cfg msm8996_pciephy_cfg = {
.num_phys = 3,
.serdes_tbl = msm8996_pcie_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(msm8996_pcie_serdes_tbl),
.tx_tbl = msm8996_pcie_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(msm8996_pcie_tx_tbl),
.rx_tbl = msm8996_pcie_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(msm8996_pcie_rx_tbl),
.pcs_tbl = msm8996_pcie_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(msm8996_pcie_pcs_tbl),
.clk_list = msm8996_phy_clk_l,
.num_clks = ARRAY_SIZE(msm8996_phy_clk_l),
.reset_list = msm8996_pciephy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_regs_layout,
};
static void qmp_pcie_msm8996_configure_lane(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num,
u8 lane_mask)
{
int i;
const struct qmp_phy_init_tbl *t = tbl;
if (!t)
return;
for (i = 0; i < num; i++, t++) {
if (!(t->lane_mask & lane_mask))
continue;
writel(t->val, base + t->offset);
}
}
static void qmp_pcie_msm8996_configure(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num)
{
qmp_pcie_msm8996_configure_lane(base, tbl, num, 0xff);
}
static int qmp_pcie_msm8996_serdes_init(struct qmp_phy *qphy)
{
struct qcom_qmp *qmp = qphy->qmp;
const struct qmp_phy_cfg *cfg = qphy->cfg;
void __iomem *serdes = qphy->serdes;
const struct qmp_phy_init_tbl *serdes_tbl = cfg->serdes_tbl;
int serdes_tbl_num = cfg->serdes_tbl_num;
void __iomem *status;
unsigned int val;
int ret;
qmp_pcie_msm8996_configure(serdes, serdes_tbl, serdes_tbl_num);
qphy_clrbits(serdes, cfg->regs[QPHY_COM_SW_RESET], SW_RESET);
qphy_setbits(serdes, cfg->regs[QPHY_COM_START_CONTROL],
SERDES_START | PCS_START);
status = serdes + cfg->regs[QPHY_COM_PCS_READY_STATUS];
ret = readl_poll_timeout(status, val, (val & PCS_READY), 200,
PHY_INIT_COMPLETE_TIMEOUT);
if (ret) {
dev_err(qmp->dev,
"phy common block init timed-out\n");
return ret;
}
return 0;
}
static int qmp_pcie_msm8996_com_init(struct qmp_phy *qphy)
{
struct qcom_qmp *qmp = qphy->qmp;
const struct qmp_phy_cfg *cfg = qphy->cfg;
void __iomem *serdes = qphy->serdes;
int ret;
mutex_lock(&qmp->phy_mutex);
if (qmp->init_count++) {
mutex_unlock(&qmp->phy_mutex);
return 0;
}
ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs);
if (ret) {
dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret);
goto err_decrement_count;
}
ret = reset_control_bulk_assert(cfg->num_resets, qmp->resets);
if (ret) {
dev_err(qmp->dev, "reset assert failed\n");
goto err_disable_regulators;
}
ret = reset_control_bulk_deassert(cfg->num_resets, qmp->resets);
if (ret) {
dev_err(qmp->dev, "reset deassert failed\n");
goto err_disable_regulators;
}
ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks);
if (ret)
goto err_assert_reset;
qphy_setbits(serdes, cfg->regs[QPHY_COM_POWER_DOWN_CONTROL],
SW_PWRDN);
mutex_unlock(&qmp->phy_mutex);
return 0;
err_assert_reset:
reset_control_bulk_assert(cfg->num_resets, qmp->resets);
err_disable_regulators:
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
err_decrement_count:
qmp->init_count--;
mutex_unlock(&qmp->phy_mutex);
return ret;
}
static int qmp_pcie_msm8996_com_exit(struct qmp_phy *qphy)
{
struct qcom_qmp *qmp = qphy->qmp;
const struct qmp_phy_cfg *cfg = qphy->cfg;
void __iomem *serdes = qphy->serdes;
mutex_lock(&qmp->phy_mutex);
if (--qmp->init_count) {
mutex_unlock(&qmp->phy_mutex);
return 0;
}
qphy_setbits(serdes, cfg->regs[QPHY_COM_START_CONTROL],
SERDES_START | PCS_START);
qphy_clrbits(serdes, cfg->regs[QPHY_COM_SW_RESET],
SW_RESET);
qphy_setbits(serdes, cfg->regs[QPHY_COM_POWER_DOWN_CONTROL],
SW_PWRDN);
reset_control_bulk_assert(cfg->num_resets, qmp->resets);
clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks);
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
mutex_unlock(&qmp->phy_mutex);
return 0;
}
static int qmp_pcie_msm8996_init(struct phy *phy)
{
struct qmp_phy *qphy = phy_get_drvdata(phy);
struct qcom_qmp *qmp = qphy->qmp;
int ret;
dev_vdbg(qmp->dev, "Initializing QMP phy\n");
ret = qmp_pcie_msm8996_com_init(qphy);
if (ret)
return ret;
return 0;
}
static int qmp_pcie_msm8996_power_on(struct phy *phy)
{
struct qmp_phy *qphy = phy_get_drvdata(phy);
struct qcom_qmp *qmp = qphy->qmp;
const struct qmp_phy_cfg *cfg = qphy->cfg;
void __iomem *tx = qphy->tx;
void __iomem *rx = qphy->rx;
void __iomem *pcs = qphy->pcs;
void __iomem *status;
unsigned int val;
int ret;
qmp_pcie_msm8996_serdes_init(qphy);
ret = reset_control_deassert(qphy->lane_rst);
if (ret) {
dev_err(qmp->dev, "lane%d reset deassert failed\n",
qphy->index);
return ret;
}
ret = clk_prepare_enable(qphy->pipe_clk);
if (ret) {
dev_err(qmp->dev, "pipe_clk enable failed err=%d\n", ret);
goto err_reset_lane;
}
/* Tx, Rx, and PCS configurations */
qmp_pcie_msm8996_configure_lane(tx, cfg->tx_tbl, cfg->tx_tbl_num, 1);
qmp_pcie_msm8996_configure_lane(rx, cfg->rx_tbl, cfg->rx_tbl_num, 1);
qmp_pcie_msm8996_configure(pcs, cfg->pcs_tbl, cfg->pcs_tbl_num);
/*
* Pull out PHY from POWER DOWN state.
* This is active low enable signal to power-down PHY.
*/
qphy_setbits(pcs, QPHY_V2_PCS_POWER_DOWN_CONTROL,
SW_PWRDN | REFCLK_DRV_DSBL);
usleep_range(POWER_DOWN_DELAY_US_MIN, POWER_DOWN_DELAY_US_MAX);
/* Pull PHY out of reset state */
qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* start SerDes and Phy-Coding-Sublayer */
qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL],
PCS_START | PLL_READY_GATE_EN);
status = pcs + cfg->regs[QPHY_PCS_STATUS];
ret = readl_poll_timeout(status, val, !(val & PHYSTATUS), 200,
PHY_INIT_COMPLETE_TIMEOUT);
if (ret) {
dev_err(qmp->dev, "phy initialization timed-out\n");
goto err_disable_pipe_clk;
}
return 0;
err_disable_pipe_clk:
clk_disable_unprepare(qphy->pipe_clk);
err_reset_lane:
reset_control_assert(qphy->lane_rst);
return ret;
}
static int qmp_pcie_msm8996_power_off(struct phy *phy)
{
struct qmp_phy *qphy = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qphy->cfg;
clk_disable_unprepare(qphy->pipe_clk);
/* PHY reset */
qphy_setbits(qphy->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* stop SerDes and Phy-Coding-Sublayer */
qphy_clrbits(qphy->pcs, cfg->regs[QPHY_START_CTRL],
SERDES_START | PCS_START);
/* Put PHY into POWER DOWN state: active low */
qphy_clrbits(qphy->pcs, QPHY_V2_PCS_POWER_DOWN_CONTROL,
SW_PWRDN | REFCLK_DRV_DSBL);
return 0;
}
static int qmp_pcie_msm8996_exit(struct phy *phy)
{
struct qmp_phy *qphy = phy_get_drvdata(phy);
reset_control_assert(qphy->lane_rst);
qmp_pcie_msm8996_com_exit(qphy);
return 0;
}
static int qmp_pcie_msm8996_enable(struct phy *phy)
{
int ret;
ret = qmp_pcie_msm8996_init(phy);
if (ret)
return ret;
ret = qmp_pcie_msm8996_power_on(phy);
if (ret)
qmp_pcie_msm8996_exit(phy);
return ret;
}
static int qmp_pcie_msm8996_disable(struct phy *phy)
{
int ret;
ret = qmp_pcie_msm8996_power_off(phy);
if (ret)
return ret;
return qmp_pcie_msm8996_exit(phy);
}
static int qmp_pcie_msm8996_vreg_init(struct device *dev, const struct qmp_phy_cfg *cfg)
{
struct qcom_qmp *qmp = dev_get_drvdata(dev);
int num = cfg->num_vregs;
int i;
qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL);
if (!qmp->vregs)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->vregs[i].supply = cfg->vreg_list[i];
return devm_regulator_bulk_get(dev, num, qmp->vregs);
}
static int qmp_pcie_msm8996_reset_init(struct device *dev, const struct qmp_phy_cfg *cfg)
{
struct qcom_qmp *qmp = dev_get_drvdata(dev);
int i;
int ret;
qmp->resets = devm_kcalloc(dev, cfg->num_resets,
sizeof(*qmp->resets), GFP_KERNEL);
if (!qmp->resets)
return -ENOMEM;
for (i = 0; i < cfg->num_resets; i++)
qmp->resets[i].id = cfg->reset_list[i];
ret = devm_reset_control_bulk_get_exclusive(dev, cfg->num_resets, qmp->resets);
if (ret)
return dev_err_probe(dev, ret, "failed to get resets\n");
return 0;
}
static int qmp_pcie_msm8996_clk_init(struct device *dev, const struct qmp_phy_cfg *cfg)
{
struct qcom_qmp *qmp = dev_get_drvdata(dev);
int num = cfg->num_clks;
int i;
qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL);
if (!qmp->clks)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->clks[i].id = cfg->clk_list[i];
return devm_clk_bulk_get(dev, num, qmp->clks);
}
static void phy_clk_release_provider(void *res)
{
of_clk_del_provider(res);
}
/*
* Register a fixed rate pipe clock.
*
* The <s>_pipe_clksrc generated by PHY goes to the GCC that gate
* controls it. The <s>_pipe_clk coming out of the GCC is requested
* by the PHY driver for its operations.
* We register the <s>_pipe_clksrc here. The gcc driver takes care
* of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk.
* Below picture shows this relationship.
*
* +---------------+
* | PHY block |<<---------------------------------------+
* | | |
* | +-------+ | +-----+ |
* I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+
* clk | +-------+ | +-----+
* +---------------+
*/
static int phy_pipe_clk_register(struct qcom_qmp *qmp, struct device_node *np)
{
struct clk_fixed_rate *fixed;
struct clk_init_data init = { };
int ret;
ret = of_property_read_string(np, "clock-output-names", &init.name);
if (ret) {
dev_err(qmp->dev, "%pOFn: No clock-output-names\n", np);
return ret;
}
fixed = devm_kzalloc(qmp->dev, sizeof(*fixed), GFP_KERNEL);
if (!fixed)
return -ENOMEM;
init.ops = &clk_fixed_rate_ops;
/* controllers using QMP phys use 125MHz pipe clock interface */
fixed->fixed_rate = 125000000;
fixed->hw.init = &init;
ret = devm_clk_hw_register(qmp->dev, &fixed->hw);
if (ret)
return ret;
ret = of_clk_add_hw_provider(np, of_clk_hw_simple_get, &fixed->hw);
if (ret)
return ret;
/*
* Roll a devm action because the clock provider is the child node, but
* the child node is not actually a device.
*/
return devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, np);
}
static const struct phy_ops qmp_pcie_msm8996_ops = {
.power_on = qmp_pcie_msm8996_enable,
.power_off = qmp_pcie_msm8996_disable,
.owner = THIS_MODULE,
};
static void qcom_qmp_reset_control_put(void *data)
{
reset_control_put(data);
}
static int qmp_pcie_msm8996_create(struct device *dev, struct device_node *np, int id,
void __iomem *serdes, const struct qmp_phy_cfg *cfg)
{
struct qcom_qmp *qmp = dev_get_drvdata(dev);
struct phy *generic_phy;
struct qmp_phy *qphy;
int ret;
qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL);
if (!qphy)
return -ENOMEM;
qphy->cfg = cfg;
qphy->serdes = serdes;
/*
* Get memory resources for each PHY:
* Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2.
*/
qphy->tx = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(qphy->tx))
return PTR_ERR(qphy->tx);
qphy->rx = devm_of_iomap(dev, np, 1, NULL);
if (IS_ERR(qphy->rx))
return PTR_ERR(qphy->rx);
qphy->pcs = devm_of_iomap(dev, np, 2, NULL);
if (IS_ERR(qphy->pcs))
return PTR_ERR(qphy->pcs);
qphy->pipe_clk = devm_get_clk_from_child(dev, np, NULL);
if (IS_ERR(qphy->pipe_clk)) {
return dev_err_probe(dev, PTR_ERR(qphy->pipe_clk),
"failed to get lane%d pipe clock\n", id);
}
qphy->lane_rst = of_reset_control_get_exclusive_by_index(np, 0);
if (IS_ERR(qphy->lane_rst)) {
dev_err(dev, "failed to get lane%d reset\n", id);
return PTR_ERR(qphy->lane_rst);
}
ret = devm_add_action_or_reset(dev, qcom_qmp_reset_control_put,
qphy->lane_rst);
if (ret)
return ret;
generic_phy = devm_phy_create(dev, np, &qmp_pcie_msm8996_ops);
if (IS_ERR(generic_phy)) {
ret = PTR_ERR(generic_phy);
dev_err(dev, "failed to create qphy %d\n", ret);
return ret;
}
qphy->phy = generic_phy;
qphy->index = id;
qphy->qmp = qmp;
qmp->phys[id] = qphy;
phy_set_drvdata(generic_phy, qphy);
return 0;
}
static const struct of_device_id qmp_pcie_msm8996_of_match_table[] = {
{
.compatible = "qcom,msm8996-qmp-pcie-phy",
.data = &msm8996_pciephy_cfg,
},
{ },
};
MODULE_DEVICE_TABLE(of, qmp_pcie_msm8996_of_match_table);
static int qmp_pcie_msm8996_probe(struct platform_device *pdev)
{
struct qcom_qmp *qmp;
struct device *dev = &pdev->dev;
struct device_node *child;
struct phy_provider *phy_provider;
void __iomem *serdes;
const struct qmp_phy_cfg *cfg = NULL;
int num, id, expected_phys;
int ret;
qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL);
if (!qmp)
return -ENOMEM;
qmp->dev = dev;
dev_set_drvdata(dev, qmp);
cfg = of_device_get_match_data(dev);
if (!cfg)
return -EINVAL;
serdes = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(serdes))
return PTR_ERR(serdes);
expected_phys = cfg->num_phys;
mutex_init(&qmp->phy_mutex);
ret = qmp_pcie_msm8996_clk_init(dev, cfg);
if (ret)
return ret;
ret = qmp_pcie_msm8996_reset_init(dev, cfg);
if (ret)
return ret;
ret = qmp_pcie_msm8996_vreg_init(dev, cfg);
if (ret)
return ret;
num = of_get_available_child_count(dev->of_node);
/* do we have a rogue child node ? */
if (num > expected_phys)
return -EINVAL;
qmp->phys = devm_kcalloc(dev, num, sizeof(*qmp->phys), GFP_KERNEL);
if (!qmp->phys)
return -ENOMEM;
id = 0;
for_each_available_child_of_node(dev->of_node, child) {
/* Create per-lane phy */
ret = qmp_pcie_msm8996_create(dev, child, id, serdes, cfg);
if (ret) {
dev_err(dev, "failed to create lane%d phy, %d\n",
id, ret);
goto err_node_put;
}
/*
* Register the pipe clock provided by phy.
* See function description to see details of this pipe clock.
*/
ret = phy_pipe_clk_register(qmp, child);
if (ret) {
dev_err(qmp->dev,
"failed to register pipe clock source\n");
goto err_node_put;
}
id++;
}
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
err_node_put:
of_node_put(child);
return ret;
}
static struct platform_driver qmp_pcie_msm8996_driver = {
.probe = qmp_pcie_msm8996_probe,
.driver = {
.name = "qcom-qmp-msm8996-pcie-phy",
.of_match_table = qmp_pcie_msm8996_of_match_table,
},
};
module_platform_driver(qmp_pcie_msm8996_driver);
MODULE_AUTHOR("Vivek Gautam <[email protected]>");
MODULE_DESCRIPTION("Qualcomm QMP MSM8996 PCIe PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-qmp-pcie-msm8996.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Atheros AR71XX/9XXX USB PHY driver
*
* Copyright (C) 2015-2018 Alban Bedel <[email protected]>
*/
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
#include <linux/reset.h>
struct ath79_usb_phy {
struct reset_control *reset;
/* The suspend override logic is inverted, hence the no prefix
* to make the code a bit easier to understand.
*/
struct reset_control *no_suspend_override;
};
static int ath79_usb_phy_power_on(struct phy *phy)
{
struct ath79_usb_phy *priv = phy_get_drvdata(phy);
int err = 0;
if (priv->no_suspend_override) {
err = reset_control_assert(priv->no_suspend_override);
if (err)
return err;
}
err = reset_control_deassert(priv->reset);
if (err && priv->no_suspend_override)
reset_control_deassert(priv->no_suspend_override);
return err;
}
static int ath79_usb_phy_power_off(struct phy *phy)
{
struct ath79_usb_phy *priv = phy_get_drvdata(phy);
int err = 0;
err = reset_control_assert(priv->reset);
if (err)
return err;
if (priv->no_suspend_override) {
err = reset_control_deassert(priv->no_suspend_override);
if (err)
reset_control_deassert(priv->reset);
}
return err;
}
static const struct phy_ops ath79_usb_phy_ops = {
.power_on = ath79_usb_phy_power_on,
.power_off = ath79_usb_phy_power_off,
.owner = THIS_MODULE,
};
static int ath79_usb_phy_probe(struct platform_device *pdev)
{
struct ath79_usb_phy *priv;
struct phy *phy;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->reset = devm_reset_control_get(&pdev->dev, "phy");
if (IS_ERR(priv->reset))
return PTR_ERR(priv->reset);
priv->no_suspend_override = devm_reset_control_get_optional(
&pdev->dev, "usb-suspend-override");
if (IS_ERR(priv->no_suspend_override))
return PTR_ERR(priv->no_suspend_override);
phy = devm_phy_create(&pdev->dev, NULL, &ath79_usb_phy_ops);
if (IS_ERR(phy))
return PTR_ERR(phy);
phy_set_drvdata(phy, priv);
return PTR_ERR_OR_ZERO(devm_of_phy_provider_register(
&pdev->dev, of_phy_simple_xlate));
}
static const struct of_device_id ath79_usb_phy_of_match[] = {
{ .compatible = "qca,ar7100-usb-phy" },
{}
};
MODULE_DEVICE_TABLE(of, ath79_usb_phy_of_match);
static struct platform_driver ath79_usb_phy_driver = {
.probe = ath79_usb_phy_probe,
.driver = {
.of_match_table = ath79_usb_phy_of_match,
.name = "ath79-usb-phy",
}
};
module_platform_driver(ath79_usb_phy_driver);
MODULE_DESCRIPTION("ATH79 USB PHY driver");
MODULE_AUTHOR("Alban Bedel <[email protected]>");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/qualcomm/phy-ath79-usb.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/usb/typec.h>
#include <linux/usb/typec_mux.h>
#include <drm/drm_bridge.h>
#include <dt-bindings/phy/phy-qcom-qmp.h>
#include "phy-qcom-qmp.h"
#include "phy-qcom-qmp-pcs-misc-v3.h"
#include "phy-qcom-qmp-pcs-usb-v4.h"
#include "phy-qcom-qmp-pcs-usb-v5.h"
#include "phy-qcom-qmp-pcs-usb-v6.h"
/* QPHY_SW_RESET bit */
#define SW_RESET BIT(0)
/* QPHY_POWER_DOWN_CONTROL */
#define SW_PWRDN BIT(0)
/* QPHY_START_CONTROL bits */
#define SERDES_START BIT(0)
#define PCS_START BIT(1)
/* QPHY_PCS_STATUS bit */
#define PHYSTATUS BIT(6)
/* QPHY_V3_DP_COM_RESET_OVRD_CTRL register bits */
/* DP PHY soft reset */
#define SW_DPPHY_RESET BIT(0)
/* mux to select DP PHY reset control, 0:HW control, 1: software reset */
#define SW_DPPHY_RESET_MUX BIT(1)
/* USB3 PHY soft reset */
#define SW_USB3PHY_RESET BIT(2)
/* mux to select USB3 PHY reset control, 0:HW control, 1: software reset */
#define SW_USB3PHY_RESET_MUX BIT(3)
/* QPHY_V3_DP_COM_PHY_MODE_CTRL register bits */
#define USB3_MODE BIT(0) /* enables USB3 mode */
#define DP_MODE BIT(1) /* enables DP mode */
/* QPHY_PCS_AUTONOMOUS_MODE_CTRL register bits */
#define ARCVR_DTCT_EN BIT(0)
#define ALFPS_DTCT_EN BIT(1)
#define ARCVR_DTCT_EVENT_SEL BIT(4)
/* QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR register bits */
#define IRQ_CLEAR BIT(0)
/* QPHY_V3_PCS_MISC_CLAMP_ENABLE register bits */
#define CLAMP_EN BIT(0) /* enables i/o clamp_n */
/* QPHY_V3_DP_COM_TYPEC_CTRL register bits */
#define SW_PORTSELECT_VAL BIT(0)
#define SW_PORTSELECT_MUX BIT(1)
#define PHY_INIT_COMPLETE_TIMEOUT 10000
struct qmp_phy_init_tbl {
unsigned int offset;
unsigned int val;
/*
* mask of lanes for which this register is written
* for cases when second lane needs different values
*/
u8 lane_mask;
};
#define QMP_PHY_INIT_CFG(o, v) \
{ \
.offset = o, \
.val = v, \
.lane_mask = 0xff, \
}
#define QMP_PHY_INIT_CFG_LANE(o, v, l) \
{ \
.offset = o, \
.val = v, \
.lane_mask = l, \
}
/* set of registers with offsets different per-PHY */
enum qphy_reg_layout {
/* PCS registers */
QPHY_SW_RESET,
QPHY_START_CTRL,
QPHY_PCS_STATUS,
QPHY_PCS_AUTONOMOUS_MODE_CTRL,
QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR,
QPHY_PCS_POWER_DOWN_CONTROL,
QPHY_COM_RESETSM_CNTRL,
QPHY_COM_C_READY_STATUS,
QPHY_COM_CMN_STATUS,
QPHY_COM_BIAS_EN_CLKBUFLR_EN,
QPHY_DP_PHY_STATUS,
QPHY_TX_TX_POL_INV,
QPHY_TX_TX_DRV_LVL,
QPHY_TX_TX_EMP_POST1_LVL,
QPHY_TX_HIGHZ_DRVR_EN,
QPHY_TX_TRANSCEIVER_BIAS_EN,
/* Keep last to ensure regs_layout arrays are properly initialized */
QPHY_LAYOUT_SIZE
};
static const unsigned int qmp_v3_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V3_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V3_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V3_PCS_PCS_STATUS,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V3_PCS_POWER_DOWN_CONTROL,
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V3_PCS_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V3_PCS_LFPS_RXTERM_IRQ_CLEAR,
[QPHY_COM_RESETSM_CNTRL] = QSERDES_V3_COM_RESETSM_CNTRL,
[QPHY_COM_C_READY_STATUS] = QSERDES_V3_COM_C_READY_STATUS,
[QPHY_COM_CMN_STATUS] = QSERDES_V3_COM_CMN_STATUS,
[QPHY_COM_BIAS_EN_CLKBUFLR_EN] = QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN,
[QPHY_DP_PHY_STATUS] = QSERDES_V3_DP_PHY_STATUS,
[QPHY_TX_TX_POL_INV] = QSERDES_V3_TX_TX_POL_INV,
[QPHY_TX_TX_DRV_LVL] = QSERDES_V3_TX_TX_DRV_LVL,
[QPHY_TX_TX_EMP_POST1_LVL] = QSERDES_V3_TX_TX_EMP_POST1_LVL,
[QPHY_TX_HIGHZ_DRVR_EN] = QSERDES_V3_TX_HIGHZ_DRVR_EN,
[QPHY_TX_TRANSCEIVER_BIAS_EN] = QSERDES_V3_TX_TRANSCEIVER_BIAS_EN,
};
static const unsigned int qmp_v45_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V4_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V4_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V4_PCS_PCS_STATUS1,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V4_PCS_POWER_DOWN_CONTROL,
/* In PCS_USB */
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V4_PCS_USB3_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V4_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR,
[QPHY_COM_RESETSM_CNTRL] = QSERDES_V4_COM_RESETSM_CNTRL,
[QPHY_COM_C_READY_STATUS] = QSERDES_V4_COM_C_READY_STATUS,
[QPHY_COM_CMN_STATUS] = QSERDES_V4_COM_CMN_STATUS,
[QPHY_COM_BIAS_EN_CLKBUFLR_EN] = QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN,
[QPHY_DP_PHY_STATUS] = QSERDES_V4_DP_PHY_STATUS,
[QPHY_TX_TX_POL_INV] = QSERDES_V4_TX_TX_POL_INV,
[QPHY_TX_TX_DRV_LVL] = QSERDES_V4_TX_TX_DRV_LVL,
[QPHY_TX_TX_EMP_POST1_LVL] = QSERDES_V4_TX_TX_EMP_POST1_LVL,
[QPHY_TX_HIGHZ_DRVR_EN] = QSERDES_V4_TX_HIGHZ_DRVR_EN,
[QPHY_TX_TRANSCEIVER_BIAS_EN] = QSERDES_V4_TX_TRANSCEIVER_BIAS_EN,
};
static const unsigned int qmp_v5_5nm_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V5_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V5_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V5_PCS_PCS_STATUS1,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_POWER_DOWN_CONTROL,
/* In PCS_USB */
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V5_PCS_USB3_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V5_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR,
[QPHY_COM_RESETSM_CNTRL] = QSERDES_V5_COM_RESETSM_CNTRL,
[QPHY_COM_C_READY_STATUS] = QSERDES_V5_COM_C_READY_STATUS,
[QPHY_COM_CMN_STATUS] = QSERDES_V5_COM_CMN_STATUS,
[QPHY_COM_BIAS_EN_CLKBUFLR_EN] = QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN,
[QPHY_DP_PHY_STATUS] = QSERDES_V5_DP_PHY_STATUS,
[QPHY_TX_TX_POL_INV] = QSERDES_V5_5NM_TX_TX_POL_INV,
[QPHY_TX_TX_DRV_LVL] = QSERDES_V5_5NM_TX_TX_DRV_LVL,
[QPHY_TX_TX_EMP_POST1_LVL] = QSERDES_V5_5NM_TX_TX_EMP_POST1_LVL,
[QPHY_TX_HIGHZ_DRVR_EN] = QSERDES_V5_5NM_TX_HIGHZ_DRVR_EN,
[QPHY_TX_TRANSCEIVER_BIAS_EN] = QSERDES_V5_5NM_TX_TRANSCEIVER_BIAS_EN,
};
static const unsigned int qmp_v6_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V5_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V5_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V5_PCS_PCS_STATUS1,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_POWER_DOWN_CONTROL,
/* In PCS_USB */
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V5_PCS_USB3_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V5_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR,
[QPHY_COM_RESETSM_CNTRL] = QSERDES_V6_COM_RESETSM_CNTRL,
[QPHY_COM_C_READY_STATUS] = QSERDES_V6_COM_C_READY_STATUS,
[QPHY_COM_CMN_STATUS] = QSERDES_V6_COM_CMN_STATUS,
[QPHY_COM_BIAS_EN_CLKBUFLR_EN] = QSERDES_V6_COM_PLL_BIAS_EN_CLK_BUFLR_EN,
[QPHY_DP_PHY_STATUS] = QSERDES_V6_DP_PHY_STATUS,
[QPHY_TX_TX_POL_INV] = QSERDES_V6_TX_TX_POL_INV,
[QPHY_TX_TX_DRV_LVL] = QSERDES_V6_TX_TX_DRV_LVL,
[QPHY_TX_TX_EMP_POST1_LVL] = QSERDES_V6_TX_TX_EMP_POST1_LVL,
[QPHY_TX_HIGHZ_DRVR_EN] = QSERDES_V6_TX_HIGHZ_DRVR_EN,
[QPHY_TX_TRANSCEIVER_BIAS_EN] = QSERDES_V6_TX_TRANSCEIVER_BIAS_EN,
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x15),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_CFG, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x85),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x07),
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x06),
};
static const struct qmp_phy_init_tbl qmp_v3_dp_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x37),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_ENABLE1, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_CTRL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06),
};
static const struct qmp_phy_init_tbl qmp_v3_dp_serdes_tbl_rbr[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x69),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x6f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x00),
};
static const struct qmp_phy_init_tbl qmp_v3_dp_serdes_tbl_hbr[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x69),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x00),
};
static const struct qmp_phy_init_tbl qmp_v3_dp_serdes_tbl_hbr2[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x8c),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x00),
};
static const struct qmp_phy_init_tbl qmp_v3_dp_serdes_tbl_hbr3[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x69),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x2a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x08),
};
static const struct qmp_phy_init_tbl qmp_v3_dp_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_TX_TRANSCEIVER_BIAS_EN, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_VMODE_CTRL1, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_PRE_STALL_LDO_BOOST_EN, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_INTERFACE_SELECT, 0x3d),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_CLKBUF_ENABLE, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RESET_TSYNC_EN, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_TRAN_DRVR_EMP_EN, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_PARRATE_REC_DETECT_IDLE_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_TX_INTERFACE_MODE, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_TX_BAND, 0x4),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_TX_POL_INV, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_TX_DRV_LVL, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_TX_EMP_POST1_LVL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x07),
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75),
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_pcs_tbl[] = {
/* FLL settings */
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02),
/* Lock Det settings */
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0xba),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V1, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V2, 0xb7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V3, 0x4e),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V4, 0x65),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_LS, 0x6b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V1, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V1, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V2, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V2, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V3, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V3, 0x1d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V4, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V4, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_LS, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_LS, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RATE_SLEW_CNTRL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13),
};
static const struct qmp_phy_init_tbl sm6350_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75),
};
static const struct qmp_phy_init_tbl sm6350_usb3_pcs_tbl[] = {
/* FLL settings */
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02),
/* Lock Det settings */
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0xcc),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V1, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V2, 0xb7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V3, 0x4e),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V4, 0x65),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_LS, 0x6b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V1, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V1, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V2, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V2, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V3, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V3, 0x1d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V4, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V4, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_LS, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_LS, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RATE_SLEW_CNTRL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_DET_HIGH_COUNT_VAL, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_REFGEN_REQ_CONFIG2, 0x60),
};
static const struct qmp_phy_init_tbl sm8150_usb3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_IPTRIM, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE0, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE1, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE2_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11),
};
static const struct qmp_phy_init_tbl sm8150_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_TX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_RX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x20),
};
static const struct qmp_phy_init_tbl sm8150_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x94),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb3),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VTH_CODE, 0x10),
};
static const struct qmp_phy_init_tbl sm8150_usb3_pcs_tbl[] = {
/* Lock Det settings */
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10),
};
static const struct qmp_phy_init_tbl sm8150_usb3_pcs_usb_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
};
static const struct qmp_phy_init_tbl sm8250_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_TX, 0x60),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_RX, 0x60),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_RX, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_TX_PI_QEC_CTRL, 0x40, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_TX_PI_QEC_CTRL, 0x54, 2),
};
static const struct qmp_phy_init_tbl sm8250_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_LOW, 0xff, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_LOW, 0x7f, 2),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x7f, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xff, 2),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x97),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x7b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb4),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VTH_CODE, 0x10),
};
static const struct qmp_phy_init_tbl sm8250_usb3_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xa9),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10),
};
static const struct qmp_phy_init_tbl sm8250_usb3_pcs_usb_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
};
static const struct qmp_phy_init_tbl sm8350_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_TX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_RX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0x35),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_5, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x21),
};
static const struct qmp_phy_init_tbl sm8350_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN2, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xbb),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x7b),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xbb),
QMP_PHY_INIT_CFG_LANE(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3d, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3c, 2),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x64),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xd2),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x13),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa9),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_AUX_DATA_TCOARSE_TFINE, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VTH_CODE, 0x10),
};
static const struct qmp_phy_init_tbl sm8350_usb3_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10),
};
static const struct qmp_phy_init_tbl sm8350_usb3_pcs_usb_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RCVR_DTCT_DLY_U3_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
};
static const struct qmp_phy_init_tbl sm8550_usb3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE1, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORECLK_DIV_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE1, 0x41),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE1, 0x41),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MSB_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE1, 0x75),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE1_MODE1, 0x25),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE2_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE0, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x41),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MSB_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0x75),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE1_MODE0, 0x25),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE2_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER1, 0x62),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER2, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_BUF_ENABLE, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_EN_SEL, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_CFG, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_MAP, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORE_CLK_EN, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_CONFIG_1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_AUTO_GAIN_ADJ_CTRL_1, 0xb6),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_AUTO_GAIN_ADJ_CTRL_2, 0x4b),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_AUTO_GAIN_ADJ_CTRL_3, 0x37),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_ADDITIONAL_MISC, 0x0c),
};
static const struct qmp_phy_init_tbl sm8550_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_TX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_RX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_TX, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_RX, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_1, 0xf5),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_3, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_5, 0x5f),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_TX_PI_QEC_CTRL, 0x21, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_TX_PI_QEC_CTRL, 0x05, 2),
};
static const struct qmp_phy_init_tbl sm8550_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_FO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SO_GAIN, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_THRESH1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_GAIN1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_GAIN2, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_AUX_DATA_TCOARSE_TFINE, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_VGA_CAL_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_GM_CAL, 0x13),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_IDAC_TSETTLE_LOW, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH2, 0x9c),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH3, 0x1d),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH4, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_VTH_CODE, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIGDET_CAL_CTRL1, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIGDET_CAL_TRIM, 0x08),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_LOW, 0x3f, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH, 0xbf, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH2, 0xff, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH3, 0xdf, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH4, 0xed, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_LOW, 0xbf, 2),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH, 0xbf, 2),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH2, 0xbf, 2),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH3, 0xdf, 2),
QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH4, 0xfd, 2),
};
static const struct qmp_phy_init_tbl sm8550_usb3_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_LOCK_DETECT_CONFIG1, 0xc4),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_LOCK_DETECT_CONFIG2, 0x89),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_RX_SIGDET_LVL, 0x99),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_EQ_CONFIG5, 0x10),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_USB3_POWER_STATE_CONFIG1, 0x68),
};
static const struct qmp_phy_init_tbl sm8550_usb3_pcs_usb_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_USB3_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_USB3_RCVR_DTCT_DLY_U3_H, 0x00),
};
static const struct qmp_phy_init_tbl qmp_v4_dp_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SVS_MODE_CLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_ENABLE1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_CONFIG, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_CTRL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORE_CLK_EN, 0x1f),
};
static const struct qmp_phy_init_tbl qmp_v4_dp_serdes_tbl_rbr[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x69),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x6f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x04),
};
static const struct qmp_phy_init_tbl qmp_v4_dp_serdes_tbl_hbr[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x69),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x08),
};
static const struct qmp_phy_init_tbl qmp_v4_dp_serdes_tbl_hbr2[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x8c),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x08),
};
static const struct qmp_phy_init_tbl qmp_v4_dp_serdes_tbl_hbr3[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x69),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x2a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x08),
};
static const struct qmp_phy_init_tbl qmp_v4_dp_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_VMODE_CTRL1, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PRE_STALL_LDO_BOOST_EN, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_INTERFACE_SELECT, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_CLKBUF_ENABLE, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RESET_TSYNC_EN, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_TRAN_DRVR_EMP_EN, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PARRATE_REC_DETECT_IDLE_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_TX_INTERFACE_MODE, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_RX, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_TX_BAND, 0x4),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_TX_POL_INV, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_TX_DRV_LVL, 0x2a),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_TX_EMP_POST1_LVL, 0x20),
};
static const struct qmp_phy_init_tbl qmp_v5_dp_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SVS_MODE_CLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_ENABLE1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_CONFIG, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_CTRL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORE_CLK_EN, 0x1f),
};
static const struct qmp_phy_init_tbl qmp_v5_dp_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_VMODE_CTRL1, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PRE_STALL_LDO_BOOST_EN, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_INTERFACE_SELECT, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_CLKBUF_ENABLE, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RESET_TSYNC_EN, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_TRAN_DRVR_EMP_EN, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PARRATE_REC_DETECT_IDLE_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_TX_INTERFACE_MODE, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_TX_BAND, 0x04),
};
static const struct qmp_phy_init_tbl qmp_v5_5nm_dp_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_LANE_MODE_3, 0x51),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_TRANSCEIVER_BIAS_EN, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_VMODE_CTRL1, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_PRE_STALL_LDO_BOOST_EN, 0x0),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_INTERFACE_SELECT, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_CLKBUF_ENABLE, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_RESET_TSYNC_EN, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_TRAN_DRVR_EMP_EN, 0xf),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_PARRATE_REC_DETECT_IDLE_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_RES_CODE_LANE_OFFSET_TX, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_RES_CODE_LANE_OFFSET_RX, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_TX_BAND, 0x01),
};
static const struct qmp_phy_init_tbl qmp_v6_dp_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SVS_MODE_CLK_SEL, 0x15),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_EN_SEL, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_ENABLE1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_BUF_ENABLE, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_CONFIG_1, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CORE_CLK_DIV_MODE0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_CTRL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_BIAS_EN_CLK_BUFLR_EN, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORE_CLK_EN, 0x0f),
};
static const struct qmp_phy_init_tbl qmp_v6_dp_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_TX_VMODE_CTRL1, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_PRE_STALL_LDO_BOOST_EN, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_INTERFACE_SELECT, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_CLKBUF_ENABLE, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_RESET_TSYNC_EN, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_TRAN_DRVR_EMP_EN, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_PARRATE_REC_DETECT_IDLE_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_TX_INTERFACE_MODE, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_TX, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_RX, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_TX_BAND, 0x4),
};
static const struct qmp_phy_init_tbl qmp_v6_dp_serdes_tbl_rbr[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x37),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x71),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x0c),
};
static const struct qmp_phy_init_tbl qmp_v6_dp_serdes_tbl_hbr[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x71),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x0c),
};
static const struct qmp_phy_init_tbl qmp_v6_dp_serdes_tbl_hbr2[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x46),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x97),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x10),
};
static const struct qmp_phy_init_tbl qmp_v6_dp_serdes_tbl_hbr3[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x15),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x71),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x0c),
};
static const struct qmp_phy_init_tbl sc8280xp_usb43dp_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xfd),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0xfd),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_BUF_ENABLE, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MSB_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MSB_MODE1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE0, 0xd4),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE2_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE1, 0xd4),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE2_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x13),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x60),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_CONFIG, 0x76),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE0, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE1, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_INITVAL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAXVAL2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SVS_MODE_CLK_SEL, 0x0a),
};
static const struct qmp_phy_init_tbl sc8280xp_usb43dp_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_LANE_MODE_1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_LANE_MODE_2, 0xc2),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_LANE_MODE_3, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_RES_CODE_LANE_OFFSET_TX, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_RES_CODE_LANE_OFFSET_RX, 0x0a),
};
static const struct qmp_phy_init_tbl sc8280xp_usb43dp_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_SIGDET_ENABLES, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B0, 0xd2),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B1, 0xd2),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B2, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B3, 0x21),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B5, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B6, 0x45),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B7, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B0, 0x6b),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B1, 0x63),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B2, 0xb6),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B3, 0x23),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B4, 0x35),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B5, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B6, 0x8e),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B7, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_IVCM_CAL_CODE_OVERRIDE, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_IVCM_CAL_CTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_SUMMER_CAL_SPD_MODE, 0x1b),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_UCDR_PI_CONTROLS, 0x15),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_UCDR_SB2_GAIN2_RATE2, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_IVCM_POSTCAL_OFFSET, 0x7c),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_VGA_CAL_CNTRL1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_VGA_CAL_MAN_VAL, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_DFE_DAC_ENABLE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_DFE_3, 0x45),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_GM_CAL, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_UCDR_FO_GAIN_RATE2, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_UCDR_SO_GAIN_RATE2, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_Q_PI_INTRINSIC_BIAS_RATE32, 0x3f),
};
static const struct qmp_phy_init_tbl sc8280xp_usb43dp_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_CONFIG, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG5, 0x10),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
};
/* list of regulators */
struct qmp_regulator_data {
const char *name;
unsigned int enable_load;
};
static struct qmp_regulator_data qmp_phy_vreg_l[] = {
{ .name = "vdda-phy", .enable_load = 21800 },
{ .name = "vdda-pll", .enable_load = 36000 },
};
static const u8 qmp_dp_v3_pre_emphasis_hbr3_hbr2[4][4] = {
{ 0x00, 0x0c, 0x15, 0x1a },
{ 0x02, 0x0e, 0x16, 0xff },
{ 0x02, 0x11, 0xff, 0xff },
{ 0x04, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v3_voltage_swing_hbr3_hbr2[4][4] = {
{ 0x02, 0x12, 0x16, 0x1a },
{ 0x09, 0x19, 0x1f, 0xff },
{ 0x10, 0x1f, 0xff, 0xff },
{ 0x1f, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v3_pre_emphasis_hbr_rbr[4][4] = {
{ 0x00, 0x0c, 0x14, 0x19 },
{ 0x00, 0x0b, 0x12, 0xff },
{ 0x00, 0x0b, 0xff, 0xff },
{ 0x04, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v3_voltage_swing_hbr_rbr[4][4] = {
{ 0x08, 0x0f, 0x16, 0x1f },
{ 0x11, 0x1e, 0x1f, 0xff },
{ 0x19, 0x1f, 0xff, 0xff },
{ 0x1f, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v4_pre_emphasis_hbr3_hbr2[4][4] = {
{ 0x00, 0x0c, 0x15, 0x1b },
{ 0x02, 0x0e, 0x16, 0xff },
{ 0x02, 0x11, 0xff, 0xff },
{ 0x04, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v4_pre_emphasis_hbr_rbr[4][4] = {
{ 0x00, 0x0d, 0x14, 0x1a },
{ 0x00, 0x0e, 0x15, 0xff },
{ 0x00, 0x0d, 0xff, 0xff },
{ 0x03, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v4_voltage_swing_hbr_rbr[4][4] = {
{ 0x08, 0x0f, 0x16, 0x1f },
{ 0x11, 0x1e, 0x1f, 0xff },
{ 0x16, 0x1f, 0xff, 0xff },
{ 0x1f, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v5_pre_emphasis_hbr3_hbr2[4][4] = {
{ 0x20, 0x2c, 0x35, 0x3b },
{ 0x22, 0x2e, 0x36, 0xff },
{ 0x22, 0x31, 0xff, 0xff },
{ 0x24, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v5_voltage_swing_hbr3_hbr2[4][4] = {
{ 0x22, 0x32, 0x36, 0x3a },
{ 0x29, 0x39, 0x3f, 0xff },
{ 0x30, 0x3f, 0xff, 0xff },
{ 0x3f, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v5_pre_emphasis_hbr_rbr[4][4] = {
{ 0x20, 0x2d, 0x34, 0x3a },
{ 0x20, 0x2e, 0x35, 0xff },
{ 0x20, 0x2e, 0xff, 0xff },
{ 0x24, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v5_voltage_swing_hbr_rbr[4][4] = {
{ 0x28, 0x2f, 0x36, 0x3f },
{ 0x31, 0x3e, 0x3f, 0xff },
{ 0x36, 0x3f, 0xff, 0xff },
{ 0x3f, 0xff, 0xff, 0xff }
};
static const u8 qmp_dp_v6_pre_emphasis_hbr_rbr[4][4] = {
{ 0x20, 0x2d, 0x34, 0x3a },
{ 0x20, 0x2e, 0x35, 0xff },
{ 0x20, 0x2e, 0xff, 0xff },
{ 0x22, 0xff, 0xff, 0xff }
};
struct qmp_combo;
struct qmp_combo_offsets {
u16 com;
u16 txa;
u16 rxa;
u16 txb;
u16 rxb;
u16 usb3_serdes;
u16 usb3_pcs_misc;
u16 usb3_pcs;
u16 usb3_pcs_usb;
u16 dp_serdes;
u16 dp_txa;
u16 dp_txb;
u16 dp_dp_phy;
};
struct qmp_phy_cfg {
const struct qmp_combo_offsets *offsets;
/* Init sequence for PHY blocks - serdes, tx, rx, pcs */
const struct qmp_phy_init_tbl *serdes_tbl;
int serdes_tbl_num;
const struct qmp_phy_init_tbl *tx_tbl;
int tx_tbl_num;
const struct qmp_phy_init_tbl *rx_tbl;
int rx_tbl_num;
const struct qmp_phy_init_tbl *pcs_tbl;
int pcs_tbl_num;
const struct qmp_phy_init_tbl *pcs_usb_tbl;
int pcs_usb_tbl_num;
const struct qmp_phy_init_tbl *dp_serdes_tbl;
int dp_serdes_tbl_num;
const struct qmp_phy_init_tbl *dp_tx_tbl;
int dp_tx_tbl_num;
/* Init sequence for DP PHY block link rates */
const struct qmp_phy_init_tbl *serdes_tbl_rbr;
int serdes_tbl_rbr_num;
const struct qmp_phy_init_tbl *serdes_tbl_hbr;
int serdes_tbl_hbr_num;
const struct qmp_phy_init_tbl *serdes_tbl_hbr2;
int serdes_tbl_hbr2_num;
const struct qmp_phy_init_tbl *serdes_tbl_hbr3;
int serdes_tbl_hbr3_num;
/* DP PHY swing and pre_emphasis tables */
const u8 (*swing_hbr_rbr)[4][4];
const u8 (*swing_hbr3_hbr2)[4][4];
const u8 (*pre_emphasis_hbr_rbr)[4][4];
const u8 (*pre_emphasis_hbr3_hbr2)[4][4];
/* DP PHY callbacks */
int (*configure_dp_phy)(struct qmp_combo *qmp);
void (*configure_dp_tx)(struct qmp_combo *qmp);
int (*calibrate_dp_phy)(struct qmp_combo *qmp);
void (*dp_aux_init)(struct qmp_combo *qmp);
/* resets to be requested */
const char * const *reset_list;
int num_resets;
/* regulators to be requested */
const struct qmp_regulator_data *vreg_list;
int num_vregs;
/* array of registers with different offsets */
const unsigned int *regs;
/* true, if PHY needs delay after POWER_DOWN */
bool has_pwrdn_delay;
/* Offset from PCS to PCS_USB region */
unsigned int pcs_usb_offset;
};
struct qmp_combo {
struct device *dev;
const struct qmp_phy_cfg *cfg;
void __iomem *com;
void __iomem *serdes;
void __iomem *tx;
void __iomem *rx;
void __iomem *pcs;
void __iomem *tx2;
void __iomem *rx2;
void __iomem *pcs_misc;
void __iomem *pcs_usb;
void __iomem *dp_serdes;
void __iomem *dp_tx;
void __iomem *dp_tx2;
void __iomem *dp_dp_phy;
struct clk *pipe_clk;
struct clk_bulk_data *clks;
int num_clks;
struct reset_control_bulk_data *resets;
struct regulator_bulk_data *vregs;
struct mutex phy_mutex;
int init_count;
struct phy *usb_phy;
enum phy_mode mode;
unsigned int usb_init_count;
struct phy *dp_phy;
unsigned int dp_aux_cfg;
struct phy_configure_opts_dp dp_opts;
unsigned int dp_init_count;
struct clk_fixed_rate pipe_clk_fixed;
struct clk_hw dp_link_hw;
struct clk_hw dp_pixel_hw;
struct drm_bridge bridge;
struct typec_switch_dev *sw;
enum typec_orientation orientation;
};
static void qmp_v3_dp_aux_init(struct qmp_combo *qmp);
static void qmp_v3_configure_dp_tx(struct qmp_combo *qmp);
static int qmp_v3_configure_dp_phy(struct qmp_combo *qmp);
static int qmp_v3_calibrate_dp_phy(struct qmp_combo *qmp);
static void qmp_v4_dp_aux_init(struct qmp_combo *qmp);
static void qmp_v4_configure_dp_tx(struct qmp_combo *qmp);
static int qmp_v4_configure_dp_phy(struct qmp_combo *qmp);
static int qmp_v4_calibrate_dp_phy(struct qmp_combo *qmp);
static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg |= val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg &= ~val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
/* list of clocks required by phy */
static const char * const qmp_combo_phy_clk_l[] = {
"aux", "cfg_ahb", "ref", "com_aux",
};
/* list of resets */
static const char * const msm8996_usb3phy_reset_l[] = {
"phy", "common",
};
static const char * const sc7180_usb3phy_reset_l[] = {
"phy",
};
static const struct qmp_combo_offsets qmp_combo_offsets_v3 = {
.com = 0x0000,
.txa = 0x1200,
.rxa = 0x1400,
.txb = 0x1600,
.rxb = 0x1800,
.usb3_serdes = 0x1000,
.usb3_pcs_misc = 0x1a00,
.usb3_pcs = 0x1c00,
.usb3_pcs_usb = 0x1f00,
.dp_serdes = 0x2000,
.dp_txa = 0x2200,
.dp_txb = 0x2600,
.dp_dp_phy = 0x2a00,
};
static const struct qmp_combo_offsets qmp_combo_offsets_v5 = {
.com = 0x0000,
.txa = 0x0400,
.rxa = 0x0600,
.txb = 0x0a00,
.rxb = 0x0c00,
.usb3_serdes = 0x1000,
.usb3_pcs_misc = 0x1200,
.usb3_pcs = 0x1400,
.usb3_pcs_usb = 0x1700,
.dp_serdes = 0x2000,
.dp_dp_phy = 0x2200,
};
static const struct qmp_phy_cfg sc7180_usb3dpphy_cfg = {
.offsets = &qmp_combo_offsets_v3,
.serdes_tbl = qmp_v3_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_serdes_tbl),
.tx_tbl = qmp_v3_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_tx_tbl),
.rx_tbl = qmp_v3_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_rx_tbl),
.pcs_tbl = qmp_v3_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(qmp_v3_usb3_pcs_tbl),
.dp_serdes_tbl = qmp_v3_dp_serdes_tbl,
.dp_serdes_tbl_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl),
.dp_tx_tbl = qmp_v3_dp_tx_tbl,
.dp_tx_tbl_num = ARRAY_SIZE(qmp_v3_dp_tx_tbl),
.serdes_tbl_rbr = qmp_v3_dp_serdes_tbl_rbr,
.serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_rbr),
.serdes_tbl_hbr = qmp_v3_dp_serdes_tbl_hbr,
.serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr),
.serdes_tbl_hbr2 = qmp_v3_dp_serdes_tbl_hbr2,
.serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr2),
.serdes_tbl_hbr3 = qmp_v3_dp_serdes_tbl_hbr3,
.serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr3),
.swing_hbr_rbr = &qmp_dp_v3_voltage_swing_hbr_rbr,
.pre_emphasis_hbr_rbr = &qmp_dp_v3_pre_emphasis_hbr_rbr,
.swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2,
.pre_emphasis_hbr3_hbr2 = &qmp_dp_v3_pre_emphasis_hbr3_hbr2,
.dp_aux_init = qmp_v3_dp_aux_init,
.configure_dp_tx = qmp_v3_configure_dp_tx,
.configure_dp_phy = qmp_v3_configure_dp_phy,
.calibrate_dp_phy = qmp_v3_calibrate_dp_phy,
.reset_list = sc7180_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(sc7180_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v3_usb3phy_regs_layout,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg sdm845_usb3dpphy_cfg = {
.offsets = &qmp_combo_offsets_v3,
.serdes_tbl = qmp_v3_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_serdes_tbl),
.tx_tbl = qmp_v3_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_tx_tbl),
.rx_tbl = qmp_v3_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_rx_tbl),
.pcs_tbl = qmp_v3_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(qmp_v3_usb3_pcs_tbl),
.dp_serdes_tbl = qmp_v3_dp_serdes_tbl,
.dp_serdes_tbl_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl),
.dp_tx_tbl = qmp_v3_dp_tx_tbl,
.dp_tx_tbl_num = ARRAY_SIZE(qmp_v3_dp_tx_tbl),
.serdes_tbl_rbr = qmp_v3_dp_serdes_tbl_rbr,
.serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_rbr),
.serdes_tbl_hbr = qmp_v3_dp_serdes_tbl_hbr,
.serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr),
.serdes_tbl_hbr2 = qmp_v3_dp_serdes_tbl_hbr2,
.serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr2),
.serdes_tbl_hbr3 = qmp_v3_dp_serdes_tbl_hbr3,
.serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr3),
.swing_hbr_rbr = &qmp_dp_v3_voltage_swing_hbr_rbr,
.pre_emphasis_hbr_rbr = &qmp_dp_v3_pre_emphasis_hbr_rbr,
.swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2,
.pre_emphasis_hbr3_hbr2 = &qmp_dp_v3_pre_emphasis_hbr3_hbr2,
.dp_aux_init = qmp_v3_dp_aux_init,
.configure_dp_tx = qmp_v3_configure_dp_tx,
.configure_dp_phy = qmp_v3_configure_dp_phy,
.calibrate_dp_phy = qmp_v3_calibrate_dp_phy,
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v3_usb3phy_regs_layout,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg sc8180x_usb3dpphy_cfg = {
.offsets = &qmp_combo_offsets_v3,
.serdes_tbl = sm8150_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl),
.tx_tbl = sm8150_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sm8150_usb3_tx_tbl),
.rx_tbl = sm8150_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm8150_usb3_rx_tbl),
.pcs_tbl = sm8150_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8150_usb3_pcs_tbl),
.pcs_usb_tbl = sm8150_usb3_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8150_usb3_pcs_usb_tbl),
.dp_serdes_tbl = qmp_v4_dp_serdes_tbl,
.dp_serdes_tbl_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl),
.dp_tx_tbl = qmp_v4_dp_tx_tbl,
.dp_tx_tbl_num = ARRAY_SIZE(qmp_v4_dp_tx_tbl),
.serdes_tbl_rbr = qmp_v4_dp_serdes_tbl_rbr,
.serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_rbr),
.serdes_tbl_hbr = qmp_v4_dp_serdes_tbl_hbr,
.serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr),
.serdes_tbl_hbr2 = qmp_v4_dp_serdes_tbl_hbr2,
.serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr2),
.serdes_tbl_hbr3 = qmp_v4_dp_serdes_tbl_hbr3,
.serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr3),
.swing_hbr_rbr = &qmp_dp_v3_voltage_swing_hbr_rbr,
.pre_emphasis_hbr_rbr = &qmp_dp_v3_pre_emphasis_hbr_rbr,
.swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2,
.pre_emphasis_hbr3_hbr2 = &qmp_dp_v3_pre_emphasis_hbr3_hbr2,
.dp_aux_init = qmp_v4_dp_aux_init,
.configure_dp_tx = qmp_v4_configure_dp_tx,
.configure_dp_phy = qmp_v4_configure_dp_phy,
.calibrate_dp_phy = qmp_v4_calibrate_dp_phy,
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v45_usb3phy_regs_layout,
.pcs_usb_offset = 0x300,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg sc8280xp_usb43dpphy_cfg = {
.offsets = &qmp_combo_offsets_v5,
.serdes_tbl = sc8280xp_usb43dp_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sc8280xp_usb43dp_serdes_tbl),
.tx_tbl = sc8280xp_usb43dp_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sc8280xp_usb43dp_tx_tbl),
.rx_tbl = sc8280xp_usb43dp_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sc8280xp_usb43dp_rx_tbl),
.pcs_tbl = sc8280xp_usb43dp_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sc8280xp_usb43dp_pcs_tbl),
.dp_serdes_tbl = qmp_v5_dp_serdes_tbl,
.dp_serdes_tbl_num = ARRAY_SIZE(qmp_v5_dp_serdes_tbl),
.dp_tx_tbl = qmp_v5_5nm_dp_tx_tbl,
.dp_tx_tbl_num = ARRAY_SIZE(qmp_v5_5nm_dp_tx_tbl),
.serdes_tbl_rbr = qmp_v4_dp_serdes_tbl_rbr,
.serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_rbr),
.serdes_tbl_hbr = qmp_v4_dp_serdes_tbl_hbr,
.serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr),
.serdes_tbl_hbr2 = qmp_v4_dp_serdes_tbl_hbr2,
.serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr2),
.serdes_tbl_hbr3 = qmp_v4_dp_serdes_tbl_hbr3,
.serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr3),
.swing_hbr_rbr = &qmp_dp_v5_voltage_swing_hbr_rbr,
.pre_emphasis_hbr_rbr = &qmp_dp_v5_pre_emphasis_hbr_rbr,
.swing_hbr3_hbr2 = &qmp_dp_v5_voltage_swing_hbr3_hbr2,
.pre_emphasis_hbr3_hbr2 = &qmp_dp_v5_pre_emphasis_hbr3_hbr2,
.dp_aux_init = qmp_v4_dp_aux_init,
.configure_dp_tx = qmp_v4_configure_dp_tx,
.configure_dp_phy = qmp_v4_configure_dp_phy,
.calibrate_dp_phy = qmp_v4_calibrate_dp_phy,
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v5_5nm_usb3phy_regs_layout,
};
static const struct qmp_phy_cfg sm6350_usb3dpphy_cfg = {
.offsets = &qmp_combo_offsets_v3,
.serdes_tbl = qmp_v3_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_serdes_tbl),
.tx_tbl = qmp_v3_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_tx_tbl),
.rx_tbl = sm6350_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm6350_usb3_rx_tbl),
.pcs_tbl = sm6350_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm6350_usb3_pcs_tbl),
.dp_serdes_tbl = qmp_v3_dp_serdes_tbl,
.dp_serdes_tbl_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl),
.dp_tx_tbl = qmp_v3_dp_tx_tbl,
.dp_tx_tbl_num = ARRAY_SIZE(qmp_v3_dp_tx_tbl),
.serdes_tbl_rbr = qmp_v3_dp_serdes_tbl_rbr,
.serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_rbr),
.serdes_tbl_hbr = qmp_v3_dp_serdes_tbl_hbr,
.serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr),
.serdes_tbl_hbr2 = qmp_v3_dp_serdes_tbl_hbr2,
.serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr2),
.serdes_tbl_hbr3 = qmp_v3_dp_serdes_tbl_hbr3,
.serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr3),
.swing_hbr_rbr = &qmp_dp_v3_voltage_swing_hbr_rbr,
.pre_emphasis_hbr_rbr = &qmp_dp_v3_pre_emphasis_hbr_rbr,
.swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2,
.pre_emphasis_hbr3_hbr2 = &qmp_dp_v3_pre_emphasis_hbr3_hbr2,
.dp_aux_init = qmp_v3_dp_aux_init,
.configure_dp_tx = qmp_v3_configure_dp_tx,
.configure_dp_phy = qmp_v3_configure_dp_phy,
.calibrate_dp_phy = qmp_v3_calibrate_dp_phy,
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v3_usb3phy_regs_layout,
};
static const struct qmp_phy_cfg sm8250_usb3dpphy_cfg = {
.offsets = &qmp_combo_offsets_v3,
.serdes_tbl = sm8150_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl),
.tx_tbl = sm8250_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sm8250_usb3_tx_tbl),
.rx_tbl = sm8250_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm8250_usb3_rx_tbl),
.pcs_tbl = sm8250_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8250_usb3_pcs_tbl),
.pcs_usb_tbl = sm8250_usb3_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8250_usb3_pcs_usb_tbl),
.dp_serdes_tbl = qmp_v4_dp_serdes_tbl,
.dp_serdes_tbl_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl),
.dp_tx_tbl = qmp_v4_dp_tx_tbl,
.dp_tx_tbl_num = ARRAY_SIZE(qmp_v4_dp_tx_tbl),
.serdes_tbl_rbr = qmp_v4_dp_serdes_tbl_rbr,
.serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_rbr),
.serdes_tbl_hbr = qmp_v4_dp_serdes_tbl_hbr,
.serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr),
.serdes_tbl_hbr2 = qmp_v4_dp_serdes_tbl_hbr2,
.serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr2),
.serdes_tbl_hbr3 = qmp_v4_dp_serdes_tbl_hbr3,
.serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr3),
.swing_hbr_rbr = &qmp_dp_v3_voltage_swing_hbr_rbr,
.pre_emphasis_hbr_rbr = &qmp_dp_v3_pre_emphasis_hbr_rbr,
.swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2,
.pre_emphasis_hbr3_hbr2 = &qmp_dp_v3_pre_emphasis_hbr3_hbr2,
.dp_aux_init = qmp_v4_dp_aux_init,
.configure_dp_tx = qmp_v4_configure_dp_tx,
.configure_dp_phy = qmp_v4_configure_dp_phy,
.calibrate_dp_phy = qmp_v4_calibrate_dp_phy,
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v45_usb3phy_regs_layout,
.pcs_usb_offset = 0x300,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg sm8350_usb3dpphy_cfg = {
.offsets = &qmp_combo_offsets_v3,
.serdes_tbl = sm8150_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl),
.tx_tbl = sm8350_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sm8350_usb3_tx_tbl),
.rx_tbl = sm8350_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm8350_usb3_rx_tbl),
.pcs_tbl = sm8350_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8350_usb3_pcs_tbl),
.pcs_usb_tbl = sm8350_usb3_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8350_usb3_pcs_usb_tbl),
.dp_serdes_tbl = qmp_v4_dp_serdes_tbl,
.dp_serdes_tbl_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl),
.dp_tx_tbl = qmp_v5_dp_tx_tbl,
.dp_tx_tbl_num = ARRAY_SIZE(qmp_v5_dp_tx_tbl),
.serdes_tbl_rbr = qmp_v4_dp_serdes_tbl_rbr,
.serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_rbr),
.serdes_tbl_hbr = qmp_v4_dp_serdes_tbl_hbr,
.serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr),
.serdes_tbl_hbr2 = qmp_v4_dp_serdes_tbl_hbr2,
.serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr2),
.serdes_tbl_hbr3 = qmp_v4_dp_serdes_tbl_hbr3,
.serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr3),
.swing_hbr_rbr = &qmp_dp_v4_voltage_swing_hbr_rbr,
.pre_emphasis_hbr_rbr = &qmp_dp_v4_pre_emphasis_hbr_rbr,
.swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2,
.pre_emphasis_hbr3_hbr2 = &qmp_dp_v4_pre_emphasis_hbr3_hbr2,
.dp_aux_init = qmp_v4_dp_aux_init,
.configure_dp_tx = qmp_v4_configure_dp_tx,
.configure_dp_phy = qmp_v4_configure_dp_phy,
.calibrate_dp_phy = qmp_v4_calibrate_dp_phy,
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v45_usb3phy_regs_layout,
.has_pwrdn_delay = true,
};
static const struct qmp_phy_cfg sm8550_usb3dpphy_cfg = {
.offsets = &qmp_combo_offsets_v3,
.serdes_tbl = sm8550_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8550_usb3_serdes_tbl),
.tx_tbl = sm8550_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sm8550_usb3_tx_tbl),
.rx_tbl = sm8550_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm8550_usb3_rx_tbl),
.pcs_tbl = sm8550_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8550_usb3_pcs_tbl),
.pcs_usb_tbl = sm8550_usb3_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8550_usb3_pcs_usb_tbl),
.dp_serdes_tbl = qmp_v6_dp_serdes_tbl,
.dp_serdes_tbl_num = ARRAY_SIZE(qmp_v6_dp_serdes_tbl),
.dp_tx_tbl = qmp_v6_dp_tx_tbl,
.dp_tx_tbl_num = ARRAY_SIZE(qmp_v6_dp_tx_tbl),
.serdes_tbl_rbr = qmp_v6_dp_serdes_tbl_rbr,
.serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v6_dp_serdes_tbl_rbr),
.serdes_tbl_hbr = qmp_v6_dp_serdes_tbl_hbr,
.serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v6_dp_serdes_tbl_hbr),
.serdes_tbl_hbr2 = qmp_v6_dp_serdes_tbl_hbr2,
.serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v6_dp_serdes_tbl_hbr2),
.serdes_tbl_hbr3 = qmp_v6_dp_serdes_tbl_hbr3,
.serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v6_dp_serdes_tbl_hbr3),
.swing_hbr_rbr = &qmp_dp_v5_voltage_swing_hbr_rbr,
.pre_emphasis_hbr_rbr = &qmp_dp_v6_pre_emphasis_hbr_rbr,
.swing_hbr3_hbr2 = &qmp_dp_v5_voltage_swing_hbr3_hbr2,
.pre_emphasis_hbr3_hbr2 = &qmp_dp_v5_pre_emphasis_hbr3_hbr2,
.dp_aux_init = qmp_v4_dp_aux_init,
.configure_dp_tx = qmp_v4_configure_dp_tx,
.configure_dp_phy = qmp_v4_configure_dp_phy,
.calibrate_dp_phy = qmp_v4_calibrate_dp_phy,
.regs = qmp_v6_usb3phy_regs_layout,
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
};
static void qmp_combo_configure_lane(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num,
u8 lane_mask)
{
int i;
const struct qmp_phy_init_tbl *t = tbl;
if (!t)
return;
for (i = 0; i < num; i++, t++) {
if (!(t->lane_mask & lane_mask))
continue;
writel(t->val, base + t->offset);
}
}
static void qmp_combo_configure(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num)
{
qmp_combo_configure_lane(base, tbl, num, 0xff);
}
static int qmp_combo_dp_serdes_init(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *serdes = qmp->dp_serdes;
const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts;
qmp_combo_configure(serdes, cfg->dp_serdes_tbl, cfg->dp_serdes_tbl_num);
switch (dp_opts->link_rate) {
case 1620:
qmp_combo_configure(serdes, cfg->serdes_tbl_rbr,
cfg->serdes_tbl_rbr_num);
break;
case 2700:
qmp_combo_configure(serdes, cfg->serdes_tbl_hbr,
cfg->serdes_tbl_hbr_num);
break;
case 5400:
qmp_combo_configure(serdes, cfg->serdes_tbl_hbr2,
cfg->serdes_tbl_hbr2_num);
break;
case 8100:
qmp_combo_configure(serdes, cfg->serdes_tbl_hbr3,
cfg->serdes_tbl_hbr3_num);
break;
default:
/* Other link rates aren't supported */
return -EINVAL;
}
return 0;
}
static void qmp_v3_dp_aux_init(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN |
DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN,
qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL);
/* Turn on BIAS current for PHY/PLL */
writel(QSERDES_V3_COM_BIAS_EN | QSERDES_V3_COM_BIAS_EN_MUX |
QSERDES_V3_COM_CLKBUF_L_EN | QSERDES_V3_COM_EN_SYSCLK_TX_SEL,
qmp->dp_serdes + cfg->regs[QPHY_COM_BIAS_EN_CLKBUFLR_EN]);
writel(DP_PHY_PD_CTL_PSR_PWRDN, qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL);
writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN |
DP_PHY_PD_CTL_LANE_0_1_PWRDN |
DP_PHY_PD_CTL_LANE_2_3_PWRDN | DP_PHY_PD_CTL_PLL_PWRDN |
DP_PHY_PD_CTL_DP_CLAMP_EN,
qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL);
writel(QSERDES_V3_COM_BIAS_EN |
QSERDES_V3_COM_BIAS_EN_MUX | QSERDES_V3_COM_CLKBUF_R_EN |
QSERDES_V3_COM_CLKBUF_L_EN | QSERDES_V3_COM_EN_SYSCLK_TX_SEL |
QSERDES_V3_COM_CLKBUF_RX_DRIVE_L,
qmp->dp_serdes + cfg->regs[QPHY_COM_BIAS_EN_CLKBUFLR_EN]);
writel(0x00, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG0);
writel(0x13, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG1);
writel(0x24, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG2);
writel(0x00, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG3);
writel(0x0a, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG4);
writel(0x26, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG5);
writel(0x0a, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG6);
writel(0x03, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG7);
writel(0xbb, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG8);
writel(0x03, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG9);
qmp->dp_aux_cfg = 0;
writel(PHY_AUX_STOP_ERR_MASK | PHY_AUX_DEC_ERR_MASK |
PHY_AUX_SYNC_ERR_MASK | PHY_AUX_ALIGN_ERR_MASK |
PHY_AUX_REQ_ERR_MASK,
qmp->dp_dp_phy + QSERDES_V3_DP_PHY_AUX_INTERRUPT_MASK);
}
static int qmp_combo_configure_dp_swing(struct qmp_combo *qmp)
{
const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts;
const struct qmp_phy_cfg *cfg = qmp->cfg;
unsigned int v_level = 0, p_level = 0;
u8 voltage_swing_cfg, pre_emphasis_cfg;
int i;
for (i = 0; i < dp_opts->lanes; i++) {
v_level = max(v_level, dp_opts->voltage[i]);
p_level = max(p_level, dp_opts->pre[i]);
}
if (dp_opts->link_rate <= 2700) {
voltage_swing_cfg = (*cfg->swing_hbr_rbr)[v_level][p_level];
pre_emphasis_cfg = (*cfg->pre_emphasis_hbr_rbr)[v_level][p_level];
} else {
voltage_swing_cfg = (*cfg->swing_hbr3_hbr2)[v_level][p_level];
pre_emphasis_cfg = (*cfg->pre_emphasis_hbr3_hbr2)[v_level][p_level];
}
/* TODO: Move check to config check */
if (voltage_swing_cfg == 0xFF && pre_emphasis_cfg == 0xFF)
return -EINVAL;
/* Enable MUX to use Cursor values from these registers */
voltage_swing_cfg |= DP_PHY_TXn_TX_DRV_LVL_MUX_EN;
pre_emphasis_cfg |= DP_PHY_TXn_TX_EMP_POST1_LVL_MUX_EN;
writel(voltage_swing_cfg, qmp->dp_tx + cfg->regs[QPHY_TX_TX_DRV_LVL]);
writel(pre_emphasis_cfg, qmp->dp_tx + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]);
writel(voltage_swing_cfg, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_DRV_LVL]);
writel(pre_emphasis_cfg, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]);
return 0;
}
static void qmp_v3_configure_dp_tx(struct qmp_combo *qmp)
{
const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts;
u32 bias_en, drvr_en;
if (qmp_combo_configure_dp_swing(qmp) < 0)
return;
if (dp_opts->lanes == 1) {
bias_en = 0x3e;
drvr_en = 0x13;
} else {
bias_en = 0x3f;
drvr_en = 0x10;
}
writel(drvr_en, qmp->dp_tx + QSERDES_V3_TX_HIGHZ_DRVR_EN);
writel(bias_en, qmp->dp_tx + QSERDES_V3_TX_TRANSCEIVER_BIAS_EN);
writel(drvr_en, qmp->dp_tx2 + QSERDES_V3_TX_HIGHZ_DRVR_EN);
writel(bias_en, qmp->dp_tx2 + QSERDES_V3_TX_TRANSCEIVER_BIAS_EN);
}
static bool qmp_combo_configure_dp_mode(struct qmp_combo *qmp)
{
bool reverse = (qmp->orientation == TYPEC_ORIENTATION_REVERSE);
const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts;
u32 val;
val = DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN |
DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN;
if (dp_opts->lanes == 4 || reverse)
val |= DP_PHY_PD_CTL_LANE_0_1_PWRDN;
if (dp_opts->lanes == 4 || !reverse)
val |= DP_PHY_PD_CTL_LANE_2_3_PWRDN;
writel(val, qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL);
if (reverse)
writel(0x4c, qmp->pcs + QSERDES_DP_PHY_MODE);
else
writel(0x5c, qmp->pcs + QSERDES_DP_PHY_MODE);
return reverse;
}
static int qmp_combo_configure_dp_clocks(struct qmp_combo *qmp)
{
const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts;
u32 phy_vco_div;
unsigned long pixel_freq;
switch (dp_opts->link_rate) {
case 1620:
phy_vco_div = 0x1;
pixel_freq = 1620000000UL / 2;
break;
case 2700:
phy_vco_div = 0x1;
pixel_freq = 2700000000UL / 2;
break;
case 5400:
phy_vco_div = 0x2;
pixel_freq = 5400000000UL / 4;
break;
case 8100:
phy_vco_div = 0x0;
pixel_freq = 8100000000UL / 6;
break;
default:
/* Other link rates aren't supported */
return -EINVAL;
}
writel(phy_vco_div, qmp->dp_dp_phy + QSERDES_V4_DP_PHY_VCO_DIV);
clk_set_rate(qmp->dp_link_hw.clk, dp_opts->link_rate * 100000);
clk_set_rate(qmp->dp_pixel_hw.clk, pixel_freq);
return 0;
}
static int qmp_v3_configure_dp_phy(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
u32 status;
int ret;
qmp_combo_configure_dp_mode(qmp);
writel(0x05, qmp->dp_dp_phy + QSERDES_V3_DP_PHY_TX0_TX1_LANE_CTL);
writel(0x05, qmp->dp_dp_phy + QSERDES_V3_DP_PHY_TX2_TX3_LANE_CTL);
ret = qmp_combo_configure_dp_clocks(qmp);
if (ret)
return ret;
writel(0x04, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG2);
writel(0x01, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
writel(0x05, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
writel(0x01, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
writel(0x09, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
writel(0x20, qmp->dp_serdes + cfg->regs[QPHY_COM_RESETSM_CNTRL]);
if (readl_poll_timeout(qmp->dp_serdes + cfg->regs[QPHY_COM_C_READY_STATUS],
status,
((status & BIT(0)) > 0),
500,
10000))
return -ETIMEDOUT;
writel(0x19, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
if (readl_poll_timeout(qmp->dp_dp_phy + cfg->regs[QPHY_DP_PHY_STATUS],
status,
((status & BIT(1)) > 0),
500,
10000))
return -ETIMEDOUT;
writel(0x18, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
udelay(2000);
writel(0x19, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
return readl_poll_timeout(qmp->dp_dp_phy + cfg->regs[QPHY_DP_PHY_STATUS],
status,
((status & BIT(1)) > 0),
500,
10000);
}
/*
* We need to calibrate the aux setting here as many times
* as the caller tries
*/
static int qmp_v3_calibrate_dp_phy(struct qmp_combo *qmp)
{
static const u8 cfg1_settings[] = { 0x13, 0x23, 0x1d };
u8 val;
qmp->dp_aux_cfg++;
qmp->dp_aux_cfg %= ARRAY_SIZE(cfg1_settings);
val = cfg1_settings[qmp->dp_aux_cfg];
writel(val, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG1);
return 0;
}
static void qmp_v4_dp_aux_init(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_PSR_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN |
DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN,
qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL);
/* Turn on BIAS current for PHY/PLL */
writel(0x17, qmp->dp_serdes + cfg->regs[QPHY_COM_BIAS_EN_CLKBUFLR_EN]);
writel(0x00, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG0);
writel(0x13, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG1);
writel(0xa4, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG2);
writel(0x00, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG3);
writel(0x0a, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG4);
writel(0x26, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG5);
writel(0x0a, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG6);
writel(0x03, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG7);
writel(0xb7, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG8);
writel(0x03, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG9);
qmp->dp_aux_cfg = 0;
writel(PHY_AUX_STOP_ERR_MASK | PHY_AUX_DEC_ERR_MASK |
PHY_AUX_SYNC_ERR_MASK | PHY_AUX_ALIGN_ERR_MASK |
PHY_AUX_REQ_ERR_MASK,
qmp->dp_dp_phy + QSERDES_V4_DP_PHY_AUX_INTERRUPT_MASK);
}
static void qmp_v4_configure_dp_tx(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
/* Program default values before writing proper values */
writel(0x27, qmp->dp_tx + cfg->regs[QPHY_TX_TX_DRV_LVL]);
writel(0x27, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_DRV_LVL]);
writel(0x20, qmp->dp_tx + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]);
writel(0x20, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]);
qmp_combo_configure_dp_swing(qmp);
}
static int qmp_v456_configure_dp_phy(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
u32 status;
int ret;
writel(0x0f, qmp->dp_dp_phy + QSERDES_V4_DP_PHY_CFG_1);
qmp_combo_configure_dp_mode(qmp);
writel(0x13, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG1);
writel(0xa4, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG2);
writel(0x05, qmp->dp_dp_phy + QSERDES_V4_DP_PHY_TX0_TX1_LANE_CTL);
writel(0x05, qmp->dp_dp_phy + QSERDES_V4_DP_PHY_TX2_TX3_LANE_CTL);
ret = qmp_combo_configure_dp_clocks(qmp);
if (ret)
return ret;
writel(0x01, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
writel(0x05, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
writel(0x01, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
writel(0x09, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
writel(0x20, qmp->dp_serdes + cfg->regs[QPHY_COM_RESETSM_CNTRL]);
if (readl_poll_timeout(qmp->dp_serdes + cfg->regs[QPHY_COM_C_READY_STATUS],
status,
((status & BIT(0)) > 0),
500,
10000))
return -ETIMEDOUT;
if (readl_poll_timeout(qmp->dp_serdes + cfg->regs[QPHY_COM_CMN_STATUS],
status,
((status & BIT(0)) > 0),
500,
10000))
return -ETIMEDOUT;
if (readl_poll_timeout(qmp->dp_serdes + cfg->regs[QPHY_COM_CMN_STATUS],
status,
((status & BIT(1)) > 0),
500,
10000))
return -ETIMEDOUT;
writel(0x19, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
if (readl_poll_timeout(qmp->dp_dp_phy + cfg->regs[QPHY_DP_PHY_STATUS],
status,
((status & BIT(0)) > 0),
500,
10000))
return -ETIMEDOUT;
if (readl_poll_timeout(qmp->dp_dp_phy + cfg->regs[QPHY_DP_PHY_STATUS],
status,
((status & BIT(1)) > 0),
500,
10000))
return -ETIMEDOUT;
return 0;
}
static int qmp_v4_configure_dp_phy(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
bool reverse = (qmp->orientation == TYPEC_ORIENTATION_REVERSE);
const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts;
u32 bias0_en, drvr0_en, bias1_en, drvr1_en;
u32 status;
int ret;
ret = qmp_v456_configure_dp_phy(qmp);
if (ret < 0)
return ret;
/*
* At least for 7nm DP PHY this has to be done after enabling link
* clock.
*/
if (dp_opts->lanes == 1) {
bias0_en = reverse ? 0x3e : 0x15;
bias1_en = reverse ? 0x15 : 0x3e;
drvr0_en = reverse ? 0x13 : 0x10;
drvr1_en = reverse ? 0x10 : 0x13;
} else if (dp_opts->lanes == 2) {
bias0_en = reverse ? 0x3f : 0x15;
bias1_en = reverse ? 0x15 : 0x3f;
drvr0_en = 0x10;
drvr1_en = 0x10;
} else {
bias0_en = 0x3f;
bias1_en = 0x3f;
drvr0_en = 0x10;
drvr1_en = 0x10;
}
writel(drvr0_en, qmp->dp_tx + cfg->regs[QPHY_TX_HIGHZ_DRVR_EN]);
writel(bias0_en, qmp->dp_tx + cfg->regs[QPHY_TX_TRANSCEIVER_BIAS_EN]);
writel(drvr1_en, qmp->dp_tx2 + cfg->regs[QPHY_TX_HIGHZ_DRVR_EN]);
writel(bias1_en, qmp->dp_tx2 + cfg->regs[QPHY_TX_TRANSCEIVER_BIAS_EN]);
writel(0x18, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
udelay(2000);
writel(0x19, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG);
if (readl_poll_timeout(qmp->dp_dp_phy + cfg->regs[QPHY_DP_PHY_STATUS],
status,
((status & BIT(1)) > 0),
500,
10000))
return -ETIMEDOUT;
writel(0x0a, qmp->dp_tx + cfg->regs[QPHY_TX_TX_POL_INV]);
writel(0x0a, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_POL_INV]);
writel(0x27, qmp->dp_tx + cfg->regs[QPHY_TX_TX_DRV_LVL]);
writel(0x27, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_DRV_LVL]);
writel(0x20, qmp->dp_tx + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]);
writel(0x20, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]);
return 0;
return 0;
}
/*
* We need to calibrate the aux setting here as many times
* as the caller tries
*/
static int qmp_v4_calibrate_dp_phy(struct qmp_combo *qmp)
{
static const u8 cfg1_settings[] = { 0x20, 0x13, 0x23, 0x1d };
u8 val;
qmp->dp_aux_cfg++;
qmp->dp_aux_cfg %= ARRAY_SIZE(cfg1_settings);
val = cfg1_settings[qmp->dp_aux_cfg];
writel(val, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG1);
return 0;
}
static int qmp_combo_dp_configure(struct phy *phy, union phy_configure_opts *opts)
{
const struct phy_configure_opts_dp *dp_opts = &opts->dp;
struct qmp_combo *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
mutex_lock(&qmp->phy_mutex);
memcpy(&qmp->dp_opts, dp_opts, sizeof(*dp_opts));
if (qmp->dp_opts.set_voltages) {
cfg->configure_dp_tx(qmp);
qmp->dp_opts.set_voltages = 0;
}
mutex_unlock(&qmp->phy_mutex);
return 0;
}
static int qmp_combo_dp_calibrate(struct phy *phy)
{
struct qmp_combo *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
int ret = 0;
mutex_lock(&qmp->phy_mutex);
if (cfg->calibrate_dp_phy)
ret = cfg->calibrate_dp_phy(qmp);
mutex_unlock(&qmp->phy_mutex);
return ret;
}
static int qmp_combo_com_init(struct qmp_combo *qmp, bool force)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *com = qmp->com;
int ret;
u32 val;
if (!force && qmp->init_count++)
return 0;
ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs);
if (ret) {
dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret);
goto err_decrement_count;
}
ret = reset_control_bulk_assert(cfg->num_resets, qmp->resets);
if (ret) {
dev_err(qmp->dev, "reset assert failed\n");
goto err_disable_regulators;
}
ret = reset_control_bulk_deassert(cfg->num_resets, qmp->resets);
if (ret) {
dev_err(qmp->dev, "reset deassert failed\n");
goto err_disable_regulators;
}
ret = clk_bulk_prepare_enable(qmp->num_clks, qmp->clks);
if (ret)
goto err_assert_reset;
qphy_setbits(com, QPHY_V3_DP_COM_POWER_DOWN_CTRL, SW_PWRDN);
/* override hardware control for reset of qmp phy */
qphy_setbits(com, QPHY_V3_DP_COM_RESET_OVRD_CTRL,
SW_DPPHY_RESET_MUX | SW_DPPHY_RESET |
SW_USB3PHY_RESET_MUX | SW_USB3PHY_RESET);
/* Use software based port select and switch on typec orientation */
val = SW_PORTSELECT_MUX;
if (qmp->orientation == TYPEC_ORIENTATION_REVERSE)
val |= SW_PORTSELECT_VAL;
writel(val, com + QPHY_V3_DP_COM_TYPEC_CTRL);
writel(USB3_MODE | DP_MODE, com + QPHY_V3_DP_COM_PHY_MODE_CTRL);
/* bring both QMP USB and QMP DP PHYs PCS block out of reset */
qphy_clrbits(com, QPHY_V3_DP_COM_RESET_OVRD_CTRL,
SW_DPPHY_RESET_MUX | SW_DPPHY_RESET |
SW_USB3PHY_RESET_MUX | SW_USB3PHY_RESET);
qphy_clrbits(com, QPHY_V3_DP_COM_SWI_CTRL, 0x03);
qphy_clrbits(com, QPHY_V3_DP_COM_SW_RESET, SW_RESET);
qphy_setbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL],
SW_PWRDN);
return 0;
err_assert_reset:
reset_control_bulk_assert(cfg->num_resets, qmp->resets);
err_disable_regulators:
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
err_decrement_count:
qmp->init_count--;
return ret;
}
static int qmp_combo_com_exit(struct qmp_combo *qmp, bool force)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
if (!force && --qmp->init_count)
return 0;
reset_control_bulk_assert(cfg->num_resets, qmp->resets);
clk_bulk_disable_unprepare(qmp->num_clks, qmp->clks);
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
return 0;
}
static int qmp_combo_dp_init(struct phy *phy)
{
struct qmp_combo *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
int ret;
mutex_lock(&qmp->phy_mutex);
ret = qmp_combo_com_init(qmp, false);
if (ret)
goto out_unlock;
cfg->dp_aux_init(qmp);
qmp->dp_init_count++;
out_unlock:
mutex_unlock(&qmp->phy_mutex);
return ret;
}
static int qmp_combo_dp_exit(struct phy *phy)
{
struct qmp_combo *qmp = phy_get_drvdata(phy);
mutex_lock(&qmp->phy_mutex);
qmp_combo_com_exit(qmp, false);
qmp->dp_init_count--;
mutex_unlock(&qmp->phy_mutex);
return 0;
}
static int qmp_combo_dp_power_on(struct phy *phy)
{
struct qmp_combo *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *tx = qmp->dp_tx;
void __iomem *tx2 = qmp->dp_tx2;
mutex_lock(&qmp->phy_mutex);
qmp_combo_dp_serdes_init(qmp);
qmp_combo_configure_lane(tx, cfg->dp_tx_tbl, cfg->dp_tx_tbl_num, 1);
qmp_combo_configure_lane(tx2, cfg->dp_tx_tbl, cfg->dp_tx_tbl_num, 2);
/* Configure special DP tx tunings */
cfg->configure_dp_tx(qmp);
/* Configure link rate, swing, etc. */
cfg->configure_dp_phy(qmp);
mutex_unlock(&qmp->phy_mutex);
return 0;
}
static int qmp_combo_dp_power_off(struct phy *phy)
{
struct qmp_combo *qmp = phy_get_drvdata(phy);
mutex_lock(&qmp->phy_mutex);
/* Assert DP PHY power down */
writel(DP_PHY_PD_CTL_PSR_PWRDN, qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL);
mutex_unlock(&qmp->phy_mutex);
return 0;
}
static int qmp_combo_usb_power_on(struct phy *phy)
{
struct qmp_combo *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *serdes = qmp->serdes;
void __iomem *tx = qmp->tx;
void __iomem *rx = qmp->rx;
void __iomem *tx2 = qmp->tx2;
void __iomem *rx2 = qmp->rx2;
void __iomem *pcs = qmp->pcs;
void __iomem *status;
unsigned int val;
int ret;
qmp_combo_configure(serdes, cfg->serdes_tbl, cfg->serdes_tbl_num);
ret = clk_prepare_enable(qmp->pipe_clk);
if (ret) {
dev_err(qmp->dev, "pipe_clk enable failed err=%d\n", ret);
return ret;
}
/* Tx, Rx, and PCS configurations */
qmp_combo_configure_lane(tx, cfg->tx_tbl, cfg->tx_tbl_num, 1);
qmp_combo_configure_lane(tx2, cfg->tx_tbl, cfg->tx_tbl_num, 2);
qmp_combo_configure_lane(rx, cfg->rx_tbl, cfg->rx_tbl_num, 1);
qmp_combo_configure_lane(rx2, cfg->rx_tbl, cfg->rx_tbl_num, 2);
qmp_combo_configure(pcs, cfg->pcs_tbl, cfg->pcs_tbl_num);
if (cfg->has_pwrdn_delay)
usleep_range(10, 20);
/* Pull PHY out of reset state */
qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* start SerDes and Phy-Coding-Sublayer */
qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START);
status = pcs + cfg->regs[QPHY_PCS_STATUS];
ret = readl_poll_timeout(status, val, !(val & PHYSTATUS), 200,
PHY_INIT_COMPLETE_TIMEOUT);
if (ret) {
dev_err(qmp->dev, "phy initialization timed-out\n");
goto err_disable_pipe_clk;
}
return 0;
err_disable_pipe_clk:
clk_disable_unprepare(qmp->pipe_clk);
return ret;
}
static int qmp_combo_usb_power_off(struct phy *phy)
{
struct qmp_combo *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
clk_disable_unprepare(qmp->pipe_clk);
/* PHY reset */
qphy_setbits(qmp->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* stop SerDes and Phy-Coding-Sublayer */
qphy_clrbits(qmp->pcs, cfg->regs[QPHY_START_CTRL],
SERDES_START | PCS_START);
/* Put PHY into POWER DOWN state: active low */
qphy_clrbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL],
SW_PWRDN);
return 0;
}
static int qmp_combo_usb_init(struct phy *phy)
{
struct qmp_combo *qmp = phy_get_drvdata(phy);
int ret;
mutex_lock(&qmp->phy_mutex);
ret = qmp_combo_com_init(qmp, false);
if (ret)
goto out_unlock;
ret = qmp_combo_usb_power_on(phy);
if (ret) {
qmp_combo_com_exit(qmp, false);
goto out_unlock;
}
qmp->usb_init_count++;
out_unlock:
mutex_unlock(&qmp->phy_mutex);
return ret;
}
static int qmp_combo_usb_exit(struct phy *phy)
{
struct qmp_combo *qmp = phy_get_drvdata(phy);
int ret;
mutex_lock(&qmp->phy_mutex);
ret = qmp_combo_usb_power_off(phy);
if (ret)
goto out_unlock;
ret = qmp_combo_com_exit(qmp, false);
if (ret)
goto out_unlock;
qmp->usb_init_count--;
out_unlock:
mutex_unlock(&qmp->phy_mutex);
return ret;
}
static int qmp_combo_usb_set_mode(struct phy *phy, enum phy_mode mode, int submode)
{
struct qmp_combo *qmp = phy_get_drvdata(phy);
qmp->mode = mode;
return 0;
}
static const struct phy_ops qmp_combo_usb_phy_ops = {
.init = qmp_combo_usb_init,
.exit = qmp_combo_usb_exit,
.set_mode = qmp_combo_usb_set_mode,
.owner = THIS_MODULE,
};
static const struct phy_ops qmp_combo_dp_phy_ops = {
.init = qmp_combo_dp_init,
.configure = qmp_combo_dp_configure,
.power_on = qmp_combo_dp_power_on,
.calibrate = qmp_combo_dp_calibrate,
.power_off = qmp_combo_dp_power_off,
.exit = qmp_combo_dp_exit,
.owner = THIS_MODULE,
};
static void qmp_combo_enable_autonomous_mode(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs;
void __iomem *pcs_misc = qmp->pcs_misc;
u32 intr_mask;
if (qmp->mode == PHY_MODE_USB_HOST_SS ||
qmp->mode == PHY_MODE_USB_DEVICE_SS)
intr_mask = ARCVR_DTCT_EN | ALFPS_DTCT_EN;
else
intr_mask = ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL;
/* Clear any pending interrupts status */
qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
/* Writing 1 followed by 0 clears the interrupt */
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL],
ARCVR_DTCT_EN | ALFPS_DTCT_EN | ARCVR_DTCT_EVENT_SEL);
/* Enable required PHY autonomous mode interrupts */
qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], intr_mask);
/* Enable i/o clamp_n for autonomous mode */
if (pcs_misc)
qphy_clrbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN);
}
static void qmp_combo_disable_autonomous_mode(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs;
void __iomem *pcs_misc = qmp->pcs_misc;
/* Disable i/o clamp_n on resume for normal mode */
if (pcs_misc)
qphy_setbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN);
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL],
ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL | ALFPS_DTCT_EN);
qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
/* Writing 1 followed by 0 clears the interrupt */
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
}
static int __maybe_unused qmp_combo_runtime_suspend(struct device *dev)
{
struct qmp_combo *qmp = dev_get_drvdata(dev);
dev_vdbg(dev, "Suspending QMP phy, mode:%d\n", qmp->mode);
if (!qmp->init_count) {
dev_vdbg(dev, "PHY not initialized, bailing out\n");
return 0;
}
qmp_combo_enable_autonomous_mode(qmp);
clk_disable_unprepare(qmp->pipe_clk);
clk_bulk_disable_unprepare(qmp->num_clks, qmp->clks);
return 0;
}
static int __maybe_unused qmp_combo_runtime_resume(struct device *dev)
{
struct qmp_combo *qmp = dev_get_drvdata(dev);
int ret = 0;
dev_vdbg(dev, "Resuming QMP phy, mode:%d\n", qmp->mode);
if (!qmp->init_count) {
dev_vdbg(dev, "PHY not initialized, bailing out\n");
return 0;
}
ret = clk_bulk_prepare_enable(qmp->num_clks, qmp->clks);
if (ret)
return ret;
ret = clk_prepare_enable(qmp->pipe_clk);
if (ret) {
dev_err(dev, "pipe_clk enable failed, err=%d\n", ret);
clk_bulk_disable_unprepare(qmp->num_clks, qmp->clks);
return ret;
}
qmp_combo_disable_autonomous_mode(qmp);
return 0;
}
static const struct dev_pm_ops qmp_combo_pm_ops = {
SET_RUNTIME_PM_OPS(qmp_combo_runtime_suspend,
qmp_combo_runtime_resume, NULL)
};
static int qmp_combo_vreg_init(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int num = cfg->num_vregs;
int ret, i;
qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL);
if (!qmp->vregs)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->vregs[i].supply = cfg->vreg_list[i].name;
ret = devm_regulator_bulk_get(dev, num, qmp->vregs);
if (ret) {
dev_err(dev, "failed at devm_regulator_bulk_get\n");
return ret;
}
for (i = 0; i < num; i++) {
ret = regulator_set_load(qmp->vregs[i].consumer,
cfg->vreg_list[i].enable_load);
if (ret) {
dev_err(dev, "failed to set load at %s\n",
qmp->vregs[i].supply);
return ret;
}
}
return 0;
}
static int qmp_combo_reset_init(struct qmp_combo *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int i;
int ret;
qmp->resets = devm_kcalloc(dev, cfg->num_resets,
sizeof(*qmp->resets), GFP_KERNEL);
if (!qmp->resets)
return -ENOMEM;
for (i = 0; i < cfg->num_resets; i++)
qmp->resets[i].id = cfg->reset_list[i];
ret = devm_reset_control_bulk_get_exclusive(dev, cfg->num_resets, qmp->resets);
if (ret)
return dev_err_probe(dev, ret, "failed to get resets\n");
return 0;
}
static int qmp_combo_clk_init(struct qmp_combo *qmp)
{
struct device *dev = qmp->dev;
int num = ARRAY_SIZE(qmp_combo_phy_clk_l);
int i;
qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL);
if (!qmp->clks)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->clks[i].id = qmp_combo_phy_clk_l[i];
qmp->num_clks = num;
return devm_clk_bulk_get_optional(dev, num, qmp->clks);
}
static void phy_clk_release_provider(void *res)
{
of_clk_del_provider(res);
}
/*
* Register a fixed rate pipe clock.
*
* The <s>_pipe_clksrc generated by PHY goes to the GCC that gate
* controls it. The <s>_pipe_clk coming out of the GCC is requested
* by the PHY driver for its operations.
* We register the <s>_pipe_clksrc here. The gcc driver takes care
* of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk.
* Below picture shows this relationship.
*
* +---------------+
* | PHY block |<<---------------------------------------+
* | | |
* | +-------+ | +-----+ |
* I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+
* clk | +-------+ | +-----+
* +---------------+
*/
static int phy_pipe_clk_register(struct qmp_combo *qmp, struct device_node *np)
{
struct clk_fixed_rate *fixed = &qmp->pipe_clk_fixed;
struct clk_init_data init = { };
char name[64];
snprintf(name, sizeof(name), "%s::pipe_clk", dev_name(qmp->dev));
init.name = name;
init.ops = &clk_fixed_rate_ops;
/* controllers using QMP phys use 125MHz pipe clock interface */
fixed->fixed_rate = 125000000;
fixed->hw.init = &init;
return devm_clk_hw_register(qmp->dev, &fixed->hw);
}
/*
* Display Port PLL driver block diagram for branch clocks
*
* +------------------------------+
* | DP_VCO_CLK |
* | |
* | +-------------------+ |
* | | (DP PLL/VCO) | |
* | +---------+---------+ |
* | v |
* | +----------+-----------+ |
* | | hsclk_divsel_clk_src | |
* | +----------+-----------+ |
* +------------------------------+
* |
* +---------<---------v------------>----------+
* | |
* +--------v----------------+ |
* | dp_phy_pll_link_clk | |
* | link_clk | |
* +--------+----------------+ |
* | |
* | |
* v v
* Input to DISPCC block |
* for link clk, crypto clk |
* and interface clock |
* |
* |
* +--------<------------+-----------------+---<---+
* | | |
* +----v---------+ +--------v-----+ +--------v------+
* | vco_divided | | vco_divided | | vco_divided |
* | _clk_src | | _clk_src | | _clk_src |
* | | | | | |
* |divsel_six | | divsel_two | | divsel_four |
* +-------+------+ +-----+--------+ +--------+------+
* | | |
* v---->----------v-------------<------v
* |
* +----------+-----------------+
* | dp_phy_pll_vco_div_clk |
* +---------+------------------+
* |
* v
* Input to DISPCC block
* for DP pixel clock
*
*/
static int qmp_dp_pixel_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
{
switch (req->rate) {
case 1620000000UL / 2:
case 2700000000UL / 2:
/* 5.4 and 8.1 GHz are same link rate as 2.7GHz, i.e. div 4 and div 6 */
return 0;
default:
return -EINVAL;
}
}
static unsigned long qmp_dp_pixel_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
const struct qmp_combo *qmp;
const struct phy_configure_opts_dp *dp_opts;
qmp = container_of(hw, struct qmp_combo, dp_pixel_hw);
dp_opts = &qmp->dp_opts;
switch (dp_opts->link_rate) {
case 1620:
return 1620000000UL / 2;
case 2700:
return 2700000000UL / 2;
case 5400:
return 5400000000UL / 4;
case 8100:
return 8100000000UL / 6;
default:
return 0;
}
}
static const struct clk_ops qmp_dp_pixel_clk_ops = {
.determine_rate = qmp_dp_pixel_clk_determine_rate,
.recalc_rate = qmp_dp_pixel_clk_recalc_rate,
};
static int qmp_dp_link_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
{
switch (req->rate) {
case 162000000:
case 270000000:
case 540000000:
case 810000000:
return 0;
default:
return -EINVAL;
}
}
static unsigned long qmp_dp_link_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
const struct qmp_combo *qmp;
const struct phy_configure_opts_dp *dp_opts;
qmp = container_of(hw, struct qmp_combo, dp_link_hw);
dp_opts = &qmp->dp_opts;
switch (dp_opts->link_rate) {
case 1620:
case 2700:
case 5400:
case 8100:
return dp_opts->link_rate * 100000;
default:
return 0;
}
}
static const struct clk_ops qmp_dp_link_clk_ops = {
.determine_rate = qmp_dp_link_clk_determine_rate,
.recalc_rate = qmp_dp_link_clk_recalc_rate,
};
static struct clk_hw *qmp_dp_clks_hw_get(struct of_phandle_args *clkspec, void *data)
{
struct qmp_combo *qmp = data;
unsigned int idx = clkspec->args[0];
if (idx >= 2) {
pr_err("%s: invalid index %u\n", __func__, idx);
return ERR_PTR(-EINVAL);
}
if (idx == 0)
return &qmp->dp_link_hw;
return &qmp->dp_pixel_hw;
}
static int phy_dp_clks_register(struct qmp_combo *qmp, struct device_node *np)
{
struct clk_init_data init = { };
char name[64];
int ret;
snprintf(name, sizeof(name), "%s::link_clk", dev_name(qmp->dev));
init.ops = &qmp_dp_link_clk_ops;
init.name = name;
qmp->dp_link_hw.init = &init;
ret = devm_clk_hw_register(qmp->dev, &qmp->dp_link_hw);
if (ret)
return ret;
snprintf(name, sizeof(name), "%s::vco_div_clk", dev_name(qmp->dev));
init.ops = &qmp_dp_pixel_clk_ops;
init.name = name;
qmp->dp_pixel_hw.init = &init;
ret = devm_clk_hw_register(qmp->dev, &qmp->dp_pixel_hw);
if (ret)
return ret;
return 0;
}
static struct clk_hw *qmp_combo_clk_hw_get(struct of_phandle_args *clkspec, void *data)
{
struct qmp_combo *qmp = data;
switch (clkspec->args[0]) {
case QMP_USB43DP_USB3_PIPE_CLK:
return &qmp->pipe_clk_fixed.hw;
case QMP_USB43DP_DP_LINK_CLK:
return &qmp->dp_link_hw;
case QMP_USB43DP_DP_VCO_DIV_CLK:
return &qmp->dp_pixel_hw;
}
return ERR_PTR(-EINVAL);
}
static int qmp_combo_register_clocks(struct qmp_combo *qmp, struct device_node *usb_np,
struct device_node *dp_np)
{
int ret;
ret = phy_pipe_clk_register(qmp, usb_np);
if (ret)
return ret;
ret = phy_dp_clks_register(qmp, dp_np);
if (ret)
return ret;
/*
* Register a single provider for bindings without child nodes.
*/
if (usb_np == qmp->dev->of_node)
return devm_of_clk_add_hw_provider(qmp->dev, qmp_combo_clk_hw_get, qmp);
/*
* Register multiple providers for legacy bindings with child nodes.
*/
ret = of_clk_add_hw_provider(usb_np, of_clk_hw_simple_get,
&qmp->pipe_clk_fixed.hw);
if (ret)
return ret;
/*
* Roll a devm action because the clock provider is the child node, but
* the child node is not actually a device.
*/
ret = devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, usb_np);
if (ret)
return ret;
ret = of_clk_add_hw_provider(dp_np, qmp_dp_clks_hw_get, qmp);
if (ret)
return ret;
return devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, dp_np);
}
#if IS_ENABLED(CONFIG_TYPEC)
static int qmp_combo_typec_switch_set(struct typec_switch_dev *sw,
enum typec_orientation orientation)
{
struct qmp_combo *qmp = typec_switch_get_drvdata(sw);
const struct qmp_phy_cfg *cfg = qmp->cfg;
if (orientation == qmp->orientation || orientation == TYPEC_ORIENTATION_NONE)
return 0;
mutex_lock(&qmp->phy_mutex);
qmp->orientation = orientation;
if (qmp->init_count) {
if (qmp->usb_init_count)
qmp_combo_usb_power_off(qmp->usb_phy);
qmp_combo_com_exit(qmp, true);
qmp_combo_com_init(qmp, true);
if (qmp->usb_init_count)
qmp_combo_usb_power_on(qmp->usb_phy);
if (qmp->dp_init_count)
cfg->dp_aux_init(qmp);
}
mutex_unlock(&qmp->phy_mutex);
return 0;
}
static void qmp_combo_typec_unregister(void *data)
{
struct qmp_combo *qmp = data;
typec_switch_unregister(qmp->sw);
}
static int qmp_combo_typec_switch_register(struct qmp_combo *qmp)
{
struct typec_switch_desc sw_desc = {};
struct device *dev = qmp->dev;
sw_desc.drvdata = qmp;
sw_desc.fwnode = dev->fwnode;
sw_desc.set = qmp_combo_typec_switch_set;
qmp->sw = typec_switch_register(dev, &sw_desc);
if (IS_ERR(qmp->sw)) {
dev_err(dev, "Unable to register typec switch: %pe\n", qmp->sw);
return PTR_ERR(qmp->sw);
}
return devm_add_action_or_reset(dev, qmp_combo_typec_unregister, qmp);
}
#else
static int qmp_combo_typec_switch_register(struct qmp_combo *qmp)
{
return 0;
}
#endif
#if IS_ENABLED(CONFIG_DRM)
static int qmp_combo_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct qmp_combo *qmp = container_of(bridge, struct qmp_combo, bridge);
struct drm_bridge *next_bridge;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR))
return -EINVAL;
next_bridge = devm_drm_of_get_bridge(qmp->dev, qmp->dev->of_node, 0, 0);
if (IS_ERR(next_bridge)) {
dev_err(qmp->dev, "failed to acquire drm_bridge: %pe\n", next_bridge);
return PTR_ERR(next_bridge);
}
return drm_bridge_attach(bridge->encoder, next_bridge, bridge,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
}
static const struct drm_bridge_funcs qmp_combo_bridge_funcs = {
.attach = qmp_combo_bridge_attach,
};
static int qmp_combo_dp_register_bridge(struct qmp_combo *qmp)
{
qmp->bridge.funcs = &qmp_combo_bridge_funcs;
qmp->bridge.of_node = qmp->dev->of_node;
return devm_drm_bridge_add(qmp->dev, &qmp->bridge);
}
#else
static int qmp_combo_dp_register_bridge(struct qmp_combo *qmp)
{
return 0;
}
#endif
static int qmp_combo_parse_dt_lecacy_dp(struct qmp_combo *qmp, struct device_node *np)
{
struct device *dev = qmp->dev;
/*
* Get memory resources from the DP child node:
* Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2;
* tx2 -> 3; rx2 -> 4
*
* Note that only tx/tx2 and pcs (dp_phy) are used by the DP
* implementation.
*/
qmp->dp_tx = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(qmp->dp_tx))
return PTR_ERR(qmp->dp_tx);
qmp->dp_dp_phy = devm_of_iomap(dev, np, 2, NULL);
if (IS_ERR(qmp->dp_dp_phy))
return PTR_ERR(qmp->dp_dp_phy);
qmp->dp_tx2 = devm_of_iomap(dev, np, 3, NULL);
if (IS_ERR(qmp->dp_tx2))
return PTR_ERR(qmp->dp_tx2);
return 0;
}
static int qmp_combo_parse_dt_lecacy_usb(struct qmp_combo *qmp, struct device_node *np)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
/*
* Get memory resources from the USB child node:
* Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2;
* tx2 -> 3; rx2 -> 4; pcs_misc (optional) -> 5
*/
qmp->tx = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(qmp->tx))
return PTR_ERR(qmp->tx);
qmp->rx = devm_of_iomap(dev, np, 1, NULL);
if (IS_ERR(qmp->rx))
return PTR_ERR(qmp->rx);
qmp->pcs = devm_of_iomap(dev, np, 2, NULL);
if (IS_ERR(qmp->pcs))
return PTR_ERR(qmp->pcs);
if (cfg->pcs_usb_offset)
qmp->pcs_usb = qmp->pcs + cfg->pcs_usb_offset;
qmp->tx2 = devm_of_iomap(dev, np, 3, NULL);
if (IS_ERR(qmp->tx2))
return PTR_ERR(qmp->tx2);
qmp->rx2 = devm_of_iomap(dev, np, 4, NULL);
if (IS_ERR(qmp->rx2))
return PTR_ERR(qmp->rx2);
qmp->pcs_misc = devm_of_iomap(dev, np, 5, NULL);
if (IS_ERR(qmp->pcs_misc)) {
dev_vdbg(dev, "PHY pcs_misc-reg not used\n");
qmp->pcs_misc = NULL;
}
qmp->pipe_clk = devm_get_clk_from_child(dev, np, NULL);
if (IS_ERR(qmp->pipe_clk)) {
return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk),
"failed to get pipe clock\n");
}
return 0;
}
static int qmp_combo_parse_dt_legacy(struct qmp_combo *qmp, struct device_node *usb_np,
struct device_node *dp_np)
{
struct platform_device *pdev = to_platform_device(qmp->dev);
int ret;
qmp->serdes = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(qmp->serdes))
return PTR_ERR(qmp->serdes);
qmp->com = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(qmp->com))
return PTR_ERR(qmp->com);
qmp->dp_serdes = devm_platform_ioremap_resource(pdev, 2);
if (IS_ERR(qmp->dp_serdes))
return PTR_ERR(qmp->dp_serdes);
ret = qmp_combo_parse_dt_lecacy_usb(qmp, usb_np);
if (ret)
return ret;
ret = qmp_combo_parse_dt_lecacy_dp(qmp, dp_np);
if (ret)
return ret;
ret = devm_clk_bulk_get_all(qmp->dev, &qmp->clks);
if (ret < 0)
return ret;
qmp->num_clks = ret;
return 0;
}
static int qmp_combo_parse_dt(struct qmp_combo *qmp)
{
struct platform_device *pdev = to_platform_device(qmp->dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
const struct qmp_combo_offsets *offs = cfg->offsets;
struct device *dev = qmp->dev;
void __iomem *base;
int ret;
if (!offs)
return -EINVAL;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
qmp->com = base + offs->com;
qmp->tx = base + offs->txa;
qmp->rx = base + offs->rxa;
qmp->tx2 = base + offs->txb;
qmp->rx2 = base + offs->rxb;
qmp->serdes = base + offs->usb3_serdes;
qmp->pcs_misc = base + offs->usb3_pcs_misc;
qmp->pcs = base + offs->usb3_pcs;
qmp->pcs_usb = base + offs->usb3_pcs_usb;
qmp->dp_serdes = base + offs->dp_serdes;
if (offs->dp_txa) {
qmp->dp_tx = base + offs->dp_txa;
qmp->dp_tx2 = base + offs->dp_txb;
} else {
qmp->dp_tx = base + offs->txa;
qmp->dp_tx2 = base + offs->txb;
}
qmp->dp_dp_phy = base + offs->dp_dp_phy;
ret = qmp_combo_clk_init(qmp);
if (ret)
return ret;
qmp->pipe_clk = devm_clk_get(dev, "usb3_pipe");
if (IS_ERR(qmp->pipe_clk)) {
return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk),
"failed to get usb3_pipe clock\n");
}
return 0;
}
static struct phy *qmp_combo_phy_xlate(struct device *dev, struct of_phandle_args *args)
{
struct qmp_combo *qmp = dev_get_drvdata(dev);
if (args->args_count == 0)
return ERR_PTR(-EINVAL);
switch (args->args[0]) {
case QMP_USB43DP_USB3_PHY:
return qmp->usb_phy;
case QMP_USB43DP_DP_PHY:
return qmp->dp_phy;
}
return ERR_PTR(-EINVAL);
}
static int qmp_combo_probe(struct platform_device *pdev)
{
struct qmp_combo *qmp;
struct device *dev = &pdev->dev;
struct device_node *dp_np, *usb_np;
struct phy_provider *phy_provider;
int ret;
qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL);
if (!qmp)
return -ENOMEM;
qmp->dev = dev;
qmp->orientation = TYPEC_ORIENTATION_NORMAL;
qmp->cfg = of_device_get_match_data(dev);
if (!qmp->cfg)
return -EINVAL;
mutex_init(&qmp->phy_mutex);
ret = qmp_combo_reset_init(qmp);
if (ret)
return ret;
ret = qmp_combo_vreg_init(qmp);
if (ret)
return ret;
ret = qmp_combo_typec_switch_register(qmp);
if (ret)
return ret;
ret = qmp_combo_dp_register_bridge(qmp);
if (ret)
return ret;
/* Check for legacy binding with child nodes. */
usb_np = of_get_child_by_name(dev->of_node, "usb3-phy");
if (usb_np) {
dp_np = of_get_child_by_name(dev->of_node, "dp-phy");
if (!dp_np) {
of_node_put(usb_np);
return -EINVAL;
}
ret = qmp_combo_parse_dt_legacy(qmp, usb_np, dp_np);
} else {
usb_np = of_node_get(dev->of_node);
dp_np = of_node_get(dev->of_node);
ret = qmp_combo_parse_dt(qmp);
}
if (ret)
goto err_node_put;
pm_runtime_set_active(dev);
ret = devm_pm_runtime_enable(dev);
if (ret)
goto err_node_put;
/*
* Prevent runtime pm from being ON by default. Users can enable
* it using power/control in sysfs.
*/
pm_runtime_forbid(dev);
ret = qmp_combo_register_clocks(qmp, usb_np, dp_np);
if (ret)
goto err_node_put;
qmp->usb_phy = devm_phy_create(dev, usb_np, &qmp_combo_usb_phy_ops);
if (IS_ERR(qmp->usb_phy)) {
ret = PTR_ERR(qmp->usb_phy);
dev_err(dev, "failed to create USB PHY: %d\n", ret);
goto err_node_put;
}
phy_set_drvdata(qmp->usb_phy, qmp);
qmp->dp_phy = devm_phy_create(dev, dp_np, &qmp_combo_dp_phy_ops);
if (IS_ERR(qmp->dp_phy)) {
ret = PTR_ERR(qmp->dp_phy);
dev_err(dev, "failed to create DP PHY: %d\n", ret);
goto err_node_put;
}
phy_set_drvdata(qmp->dp_phy, qmp);
dev_set_drvdata(dev, qmp);
if (usb_np == dev->of_node)
phy_provider = devm_of_phy_provider_register(dev, qmp_combo_phy_xlate);
else
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
of_node_put(usb_np);
of_node_put(dp_np);
return PTR_ERR_OR_ZERO(phy_provider);
err_node_put:
of_node_put(usb_np);
of_node_put(dp_np);
return ret;
}
static const struct of_device_id qmp_combo_of_match_table[] = {
{
.compatible = "qcom,sc7180-qmp-usb3-dp-phy",
.data = &sc7180_usb3dpphy_cfg,
},
{
.compatible = "qcom,sc7280-qmp-usb3-dp-phy",
.data = &sm8250_usb3dpphy_cfg,
},
{
.compatible = "qcom,sc8180x-qmp-usb3-dp-phy",
.data = &sc8180x_usb3dpphy_cfg,
},
{
.compatible = "qcom,sc8280xp-qmp-usb43dp-phy",
.data = &sc8280xp_usb43dpphy_cfg,
},
{
.compatible = "qcom,sdm845-qmp-usb3-dp-phy",
.data = &sdm845_usb3dpphy_cfg,
},
{
.compatible = "qcom,sm6350-qmp-usb3-dp-phy",
.data = &sm6350_usb3dpphy_cfg,
},
{
.compatible = "qcom,sm8150-qmp-usb3-dp-phy",
.data = &sc8180x_usb3dpphy_cfg,
},
{
.compatible = "qcom,sm8250-qmp-usb3-dp-phy",
.data = &sm8250_usb3dpphy_cfg,
},
{
.compatible = "qcom,sm8350-qmp-usb3-dp-phy",
.data = &sm8350_usb3dpphy_cfg,
},
{
.compatible = "qcom,sm8450-qmp-usb3-dp-phy",
.data = &sm8350_usb3dpphy_cfg,
},
{
.compatible = "qcom,sm8550-qmp-usb3-dp-phy",
.data = &sm8550_usb3dpphy_cfg,
},
{ }
};
MODULE_DEVICE_TABLE(of, qmp_combo_of_match_table);
static struct platform_driver qmp_combo_driver = {
.probe = qmp_combo_probe,
.driver = {
.name = "qcom-qmp-combo-phy",
.pm = &qmp_combo_pm_ops,
.of_match_table = qmp_combo_of_match_table,
},
};
module_platform_driver(qmp_combo_driver);
MODULE_AUTHOR("Vivek Gautam <[email protected]>");
MODULE_DESCRIPTION("Qualcomm QMP USB+DP combo PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-qmp-combo.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <ufs/unipro.h>
#include "phy-qcom-qmp.h"
#include "phy-qcom-qmp-pcs-ufs-v2.h"
#include "phy-qcom-qmp-pcs-ufs-v3.h"
#include "phy-qcom-qmp-pcs-ufs-v4.h"
#include "phy-qcom-qmp-pcs-ufs-v5.h"
#include "phy-qcom-qmp-pcs-ufs-v6.h"
#include "phy-qcom-qmp-qserdes-txrx-ufs-v6.h"
/* QPHY_SW_RESET bit */
#define SW_RESET BIT(0)
/* QPHY_POWER_DOWN_CONTROL */
#define SW_PWRDN BIT(0)
/* QPHY_START_CONTROL bits */
#define SERDES_START BIT(0)
#define PCS_START BIT(1)
/* QPHY_PCS_READY_STATUS bit */
#define PCS_READY BIT(0)
#define PHY_INIT_COMPLETE_TIMEOUT 10000
struct qmp_phy_init_tbl {
unsigned int offset;
unsigned int val;
/*
* mask of lanes for which this register is written
* for cases when second lane needs different values
*/
u8 lane_mask;
};
#define QMP_PHY_INIT_CFG(o, v) \
{ \
.offset = o, \
.val = v, \
.lane_mask = 0xff, \
}
#define QMP_PHY_INIT_CFG_LANE(o, v, l) \
{ \
.offset = o, \
.val = v, \
.lane_mask = l, \
}
/* set of registers with offsets different per-PHY */
enum qphy_reg_layout {
/* PCS registers */
QPHY_SW_RESET,
QPHY_START_CTRL,
QPHY_PCS_READY_STATUS,
QPHY_PCS_POWER_DOWN_CONTROL,
/* Keep last to ensure regs_layout arrays are properly initialized */
QPHY_LAYOUT_SIZE
};
static const unsigned int ufsphy_v2_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_START_CTRL] = QPHY_V2_PCS_UFS_PHY_START,
[QPHY_PCS_READY_STATUS] = QPHY_V2_PCS_UFS_READY_STATUS,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V2_PCS_UFS_POWER_DOWN_CONTROL,
};
static const unsigned int ufsphy_v3_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_START_CTRL] = QPHY_V3_PCS_UFS_PHY_START,
[QPHY_PCS_READY_STATUS] = QPHY_V3_PCS_UFS_READY_STATUS,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V3_PCS_UFS_POWER_DOWN_CONTROL,
};
static const unsigned int ufsphy_v4_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_START_CTRL] = QPHY_V4_PCS_UFS_PHY_START,
[QPHY_PCS_READY_STATUS] = QPHY_V4_PCS_UFS_READY_STATUS,
[QPHY_SW_RESET] = QPHY_V4_PCS_UFS_SW_RESET,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V4_PCS_UFS_POWER_DOWN_CONTROL,
};
static const unsigned int ufsphy_v5_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_START_CTRL] = QPHY_V5_PCS_UFS_PHY_START,
[QPHY_PCS_READY_STATUS] = QPHY_V5_PCS_UFS_READY_STATUS,
[QPHY_SW_RESET] = QPHY_V5_PCS_UFS_SW_RESET,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_UFS_POWER_DOWN_CONTROL,
};
static const unsigned int ufsphy_v6_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_START_CTRL] = QPHY_V6_PCS_UFS_PHY_START,
[QPHY_PCS_READY_STATUS] = QPHY_V6_PCS_UFS_READY_STATUS,
[QPHY_SW_RESET] = QPHY_V6_PCS_UFS_SW_RESET,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V6_PCS_UFS_POWER_DOWN_CONTROL,
};
static const struct qmp_phy_init_tbl msm8996_ufsphy_serdes[] = {
QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0xd7),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x06),
QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV_MODE1, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_EN, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_CTRL, 0x10),
QMP_PHY_INIT_CFG(QSERDES_COM_RESETSM_CNTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER2, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x54),
QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE1_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE2_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0xff),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE1, 0x98),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE1, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE1, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE1, 0x80),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE1_MODE1, 0xd6),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE2_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE1, 0x32),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE1, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE1, 0x00),
};
static const struct qmp_phy_init_tbl msm8996_ufsphy_tx[] = {
QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45),
QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x02),
};
static const struct qmp_phy_init_tbl msm8996_ufsphy_rx[] = {
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_LVL, 0x24),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_CNTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_INTERFACE_MODE, 0x00),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x18),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0B),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_TERM_BW, 0x5b),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN1_LSB, 0xff),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN1_MSB, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN2_LSB, 0xff),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN2_MSB, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0E),
};
static const struct qmp_phy_init_tbl sm6115_ufsphy_serdes[] = {
QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV_MODE1, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_EN, 0x01),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_CTRL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_RESETSM_CNTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER2, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x04),
QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE1_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE2_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0xff),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE1, 0x98),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE1, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE1, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE1, 0x80),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE1_MODE1, 0xd6),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE2_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE1, 0x32),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE1, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_INITVAL1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_INITVAL2, 0x00),
};
static const struct qmp_phy_init_tbl sm6115_ufsphy_hs_b_serdes[] = {
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x44),
};
static const struct qmp_phy_init_tbl sm6115_ufsphy_tx[] = {
QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45),
QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x06),
};
static const struct qmp_phy_init_tbl sm6115_ufsphy_rx[] = {
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_LVL, 0x24),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_CNTRL, 0x0F),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_INTERFACE_MODE, 0x40),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x1E),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0B),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_TERM_BW, 0x5B),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN1_LSB, 0xFF),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN1_MSB, 0x3F),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN2_LSB, 0xFF),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN2_MSB, 0x3F),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0D),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SVS_SO_GAIN_HALF, 0x04),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SVS_SO_GAIN_QUARTER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SVS_SO_GAIN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x5B),
};
static const struct qmp_phy_init_tbl sm6115_ufsphy_pcs[] = {
QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_RX_PWM_GEAR_BAND, 0x15),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_RX_SIGDET_CTRL2, 0x6d),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_TX_SMALL_AMP_DRV_LVL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_RX_MIN_STALL_NOCONFIG_TIME_CAP, 0x28),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_RX_SYM_RESYNC_CTRL, 0x03),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_TX_LARGE_AMP_POST_EMP_LVL, 0x12),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_TX_SMALL_AMP_POST_EMP_LVL, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_RX_MIN_HIBERN8_TIME, 0x9a), /* 8 us */
};
static const struct qmp_phy_init_tbl sdm845_ufsphy_serdes[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_CTRL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_INITVAL1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_INITVAL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xda),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE1, 0x98),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE1, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE1, 0xc1),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE1, 0x32),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE1, 0x0f),
};
static const struct qmp_phy_init_tbl sdm845_ufsphy_hs_b_serdes[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x44),
};
static const struct qmp_phy_init_tbl sdm845_ufsphy_tx[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x07),
};
static const struct qmp_phy_init_tbl sdm845_ufsphy_rx[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_LVL, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_INTERFACE_MODE, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_TERM_BW, 0x5b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN_HALF, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN_QUARTER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x81),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x59),
};
static const struct qmp_phy_init_tbl sdm845_ufsphy_pcs[] = {
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SIGDET_CTRL2, 0x6e),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_SMALL_AMP_DRV_LVL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SYM_RESYNC_CTRL, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_MID_TERM_CTRL1, 0x43),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SIGDET_CTRL1, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_MIN_HIBERN8_TIME, 0x9a),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_MULTI_LANE_CTRL1, 0x02),
};
static const struct qmp_phy_init_tbl sm7150_ufsphy_rx[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_LVL, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_INTERFACE_MODE, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_TERM_BW, 0x5b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN_HALF, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN_QUARTER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x5b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x81),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x59),
};
static const struct qmp_phy_init_tbl sm7150_ufsphy_pcs[] = {
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SIGDET_CTRL2, 0x6f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_SMALL_AMP_DRV_LVL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SYM_RESYNC_CTRL, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_MID_TERM_CTRL1, 0x43),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SIGDET_CTRL1, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_MIN_HIBERN8_TIME, 0xff),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_MULTI_LANE_CTRL1, 0x02),
};
static const struct qmp_phy_init_tbl sm8150_ufsphy_serdes[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0xd9),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_HS_SWITCH_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_INITVAL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xac),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x98),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x32),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xdd),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x23),
};
static const struct qmp_phy_init_tbl sm8150_ufsphy_hs_b_serdes[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x06),
};
static const struct qmp_phy_init_tbl sm8150_ufsphy_tx[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PWM_GEAR_1_DIVIDER_BAND0_1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PWM_GEAR_2_DIVIDER_BAND0_1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PWM_GEAR_3_DIVIDER_BAND0_1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PWM_GEAR_4_DIVIDER_BAND0_1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_TRAN_DRVR_EMP_EN, 0x0c),
};
static const struct qmp_phy_init_tbl sm8150_ufsphy_hs_g4_tx[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x75),
};
static const struct qmp_phy_init_tbl sm8150_ufsphy_rx[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_LVL, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_BAND, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0xf1),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_TERM_BW, 0x1b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1d),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_MEASURE_TIME, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xf6),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x3d),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xe0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb1),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_LOW, 0xe0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH2, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH3, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH4, 0xb1),
};
static const struct qmp_phy_init_tbl sm8150_ufsphy_hs_g4_rx[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x5a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CTRL2, 0x81),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_TERM_BW, 0x6f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_MEASURE_TIME, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x6c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x6d),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0x6d),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xed),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0x3c),
};
static const struct qmp_phy_init_tbl sm8150_ufsphy_pcs[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_RX_SIGDET_CTRL2, 0x6d),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_TX_SMALL_AMP_DRV_LVL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_TX_MID_TERM_CTRL1, 0x43),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_DEBUG_BUS_CLKSEL, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_RX_MIN_HIBERN8_TIME, 0xff),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_MULTI_LANE_CTRL1, 0x02),
};
static const struct qmp_phy_init_tbl sm8150_ufsphy_hs_g4_pcs[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x10),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_BIST_FIXED_PAT_CTRL, 0x0a),
};
static const struct qmp_phy_init_tbl sm8250_ufsphy_hs_g4_tx[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xe5),
};
static const struct qmp_phy_init_tbl sm8250_ufsphy_hs_g4_rx[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x5a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CTRL2, 0x81),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_TERM_BW, 0x6f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_MEASURE_TIME, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x2c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x6d),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0x6d),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xed),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0x3c),
};
static const struct qmp_phy_init_tbl sm8350_ufsphy_serdes[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0xd9),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x42),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_INITVAL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_HSCLK_SEL, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x19),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xac),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x98),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x65),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xdd),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x23),
};
static const struct qmp_phy_init_tbl sm8350_ufsphy_hs_b_serdes[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x06),
};
static const struct qmp_phy_init_tbl sm8350_ufsphy_tx[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PWM_GEAR_1_DIVIDER_BAND0_1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PWM_GEAR_2_DIVIDER_BAND0_1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PWM_GEAR_3_DIVIDER_BAND0_1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PWM_GEAR_4_DIVIDER_BAND0_1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xf5),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_TRAN_DRVR_EMP_EN, 0x0c),
};
static const struct qmp_phy_init_tbl sm8350_ufsphy_rx[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_LVL, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_BAND, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x5a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0xf1),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_TERM_BW, 0x1b),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_MEASURE_TIME, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0x6d),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x6d),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xed),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0x3c),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0xe0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xb7),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_LOW, 0xe0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH2, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH3, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH4, 0xb7),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DCC_CTRL1, 0x0c),
};
static const struct qmp_phy_init_tbl sm8350_ufsphy_pcs[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_RX_SIGDET_CTRL2, 0x6d),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_TX_SMALL_AMP_DRV_LVL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_TX_MID_TERM_CTRL1, 0x43),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_DEBUG_BUS_CLKSEL, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_RX_MIN_HIBERN8_TIME, 0xff),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_RX_SIGDET_CTRL1, 0x0e),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_MULTI_LANE_CTRL1, 0x02),
};
static const struct qmp_phy_init_tbl sm8350_ufsphy_g4_tx[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xe5),
};
static const struct qmp_phy_init_tbl sm8350_ufsphy_g4_rx[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CTRL2, 0x81),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_TERM_BW, 0x6f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_MEASURE_TIME, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_LOW, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_HIGH, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0x2d),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x6d),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x6d),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xed),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0x3c),
};
static const struct qmp_phy_init_tbl sm8350_ufsphy_g4_pcs[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_BIST_FIXED_PAT_CTRL, 0x0a),
};
static const struct qmp_phy_init_tbl sm8550_ufsphy_serdes[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_EN_SEL, 0xd9),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_CONFIG_1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_HS_SWITCH_SEL_1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_MAP, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_INITVAL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x41),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x4c),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x07),
};
static const struct qmp_phy_init_tbl sm8550_ufsphy_tx[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_TX_RES_CODE_LANE_OFFSET_TX, 0x07),
};
static const struct qmp_phy_init_tbl sm8550_ufsphy_rx[] = {
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_UCDR_FASTLOCK_FO_GAIN_RATE2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_UCDR_FASTLOCK_FO_GAIN_RATE4, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_VGA_CAL_MAN_VAL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE_0_1_B0, 0xc2),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE_0_1_B1, 0xc2),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE_0_1_B3, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE_0_1_B6, 0x60),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE2_B3, 0x9e),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE2_B6, 0x60),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE3_B3, 0x9e),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE3_B4, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE3_B5, 0x36),
QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE3_B8, 0x02),
};
static const struct qmp_phy_init_tbl sm8550_ufsphy_pcs[] = {
QMP_PHY_INIT_CFG(QPHY_V6_PCS_UFS_RX_SIGDET_CTRL2, 0x69),
QMP_PHY_INIT_CFG(QPHY_V6_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V6_PCS_UFS_TX_MID_TERM_CTRL1, 0x43),
QMP_PHY_INIT_CFG(QPHY_V6_PCS_UFS_PLL_CNTL, 0x2b),
QMP_PHY_INIT_CFG(QPHY_V6_PCS_UFS_MULTI_LANE_CTRL1, 0x02),
};
struct qmp_ufs_offsets {
u16 serdes;
u16 pcs;
u16 tx;
u16 rx;
u16 tx2;
u16 rx2;
};
struct qmp_phy_cfg_tbls {
/* Init sequence for PHY blocks - serdes, tx, rx, pcs */
const struct qmp_phy_init_tbl *serdes;
int serdes_num;
const struct qmp_phy_init_tbl *tx;
int tx_num;
const struct qmp_phy_init_tbl *rx;
int rx_num;
const struct qmp_phy_init_tbl *pcs;
int pcs_num;
};
/* struct qmp_phy_cfg - per-PHY initialization config */
struct qmp_phy_cfg {
int lanes;
const struct qmp_ufs_offsets *offsets;
/* Main init sequence for PHY blocks - serdes, tx, rx, pcs */
const struct qmp_phy_cfg_tbls tbls;
/* Additional sequence for HS Series B */
const struct qmp_phy_cfg_tbls tbls_hs_b;
/* Additional sequence for HS G4 */
const struct qmp_phy_cfg_tbls tbls_hs_g4;
/* clock ids to be requested */
const char * const *clk_list;
int num_clks;
/* regulators to be requested */
const char * const *vreg_list;
int num_vregs;
/* array of registers with different offsets */
const unsigned int *regs;
/* true, if PCS block has no separate SW_RESET register */
bool no_pcs_sw_reset;
};
struct qmp_ufs {
struct device *dev;
const struct qmp_phy_cfg *cfg;
void __iomem *serdes;
void __iomem *pcs;
void __iomem *pcs_misc;
void __iomem *tx;
void __iomem *rx;
void __iomem *tx2;
void __iomem *rx2;
struct clk_bulk_data *clks;
struct regulator_bulk_data *vregs;
struct reset_control *ufs_reset;
struct phy *phy;
u32 mode;
u32 submode;
};
static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg |= val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg &= ~val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
/* list of clocks required by phy */
static const char * const msm8996_ufs_phy_clk_l[] = {
"ref",
};
/* the primary usb3 phy on sm8250 doesn't have a ref clock */
static const char * const sm8450_ufs_phy_clk_l[] = {
"qref", "ref", "ref_aux",
};
static const char * const sdm845_ufs_phy_clk_l[] = {
"ref", "ref_aux",
};
/* list of regulators */
static const char * const qmp_phy_vreg_l[] = {
"vdda-phy", "vdda-pll",
};
static const struct qmp_ufs_offsets qmp_ufs_offsets = {
.serdes = 0,
.pcs = 0xc00,
.tx = 0x400,
.rx = 0x600,
.tx2 = 0x800,
.rx2 = 0xa00,
};
static const struct qmp_ufs_offsets qmp_ufs_offsets_v6 = {
.serdes = 0,
.pcs = 0x0400,
.tx = 0x1000,
.rx = 0x1200,
.tx2 = 0x1800,
.rx2 = 0x1a00,
};
static const struct qmp_phy_cfg msm8996_ufsphy_cfg = {
.lanes = 1,
.offsets = &qmp_ufs_offsets,
.tbls = {
.serdes = msm8996_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(msm8996_ufsphy_serdes),
.tx = msm8996_ufsphy_tx,
.tx_num = ARRAY_SIZE(msm8996_ufsphy_tx),
.rx = msm8996_ufsphy_rx,
.rx_num = ARRAY_SIZE(msm8996_ufsphy_rx),
},
.clk_list = msm8996_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(msm8996_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v2_regs_layout,
.no_pcs_sw_reset = true,
};
static const struct qmp_phy_cfg sa8775p_ufsphy_cfg = {
.lanes = 2,
.offsets = &qmp_ufs_offsets,
.tbls = {
.serdes = sm8350_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(sm8350_ufsphy_serdes),
.tx = sm8350_ufsphy_tx,
.tx_num = ARRAY_SIZE(sm8350_ufsphy_tx),
.rx = sm8350_ufsphy_rx,
.rx_num = ARRAY_SIZE(sm8350_ufsphy_rx),
.pcs = sm8350_ufsphy_pcs,
.pcs_num = ARRAY_SIZE(sm8350_ufsphy_pcs),
},
.tbls_hs_b = {
.serdes = sm8350_ufsphy_hs_b_serdes,
.serdes_num = ARRAY_SIZE(sm8350_ufsphy_hs_b_serdes),
},
.tbls_hs_g4 = {
.tx = sm8350_ufsphy_g4_tx,
.tx_num = ARRAY_SIZE(sm8350_ufsphy_g4_tx),
.rx = sm8350_ufsphy_g4_rx,
.rx_num = ARRAY_SIZE(sm8350_ufsphy_g4_rx),
.pcs = sm8350_ufsphy_g4_pcs,
.pcs_num = ARRAY_SIZE(sm8350_ufsphy_g4_pcs),
},
.clk_list = sm8450_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(sm8450_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v5_regs_layout,
};
static const struct qmp_phy_cfg sc8280xp_ufsphy_cfg = {
.lanes = 2,
.offsets = &qmp_ufs_offsets,
.tbls = {
.serdes = sm8350_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(sm8350_ufsphy_serdes),
.tx = sm8350_ufsphy_tx,
.tx_num = ARRAY_SIZE(sm8350_ufsphy_tx),
.rx = sm8350_ufsphy_rx,
.rx_num = ARRAY_SIZE(sm8350_ufsphy_rx),
.pcs = sm8350_ufsphy_pcs,
.pcs_num = ARRAY_SIZE(sm8350_ufsphy_pcs),
},
.tbls_hs_b = {
.serdes = sm8350_ufsphy_hs_b_serdes,
.serdes_num = ARRAY_SIZE(sm8350_ufsphy_hs_b_serdes),
},
.tbls_hs_g4 = {
.tx = sm8350_ufsphy_g4_tx,
.tx_num = ARRAY_SIZE(sm8350_ufsphy_g4_tx),
.rx = sm8350_ufsphy_g4_rx,
.rx_num = ARRAY_SIZE(sm8350_ufsphy_g4_rx),
.pcs = sm8350_ufsphy_g4_pcs,
.pcs_num = ARRAY_SIZE(sm8350_ufsphy_g4_pcs),
},
.clk_list = sdm845_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v5_regs_layout,
};
static const struct qmp_phy_cfg sdm845_ufsphy_cfg = {
.lanes = 2,
.offsets = &qmp_ufs_offsets,
.tbls = {
.serdes = sdm845_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(sdm845_ufsphy_serdes),
.tx = sdm845_ufsphy_tx,
.tx_num = ARRAY_SIZE(sdm845_ufsphy_tx),
.rx = sdm845_ufsphy_rx,
.rx_num = ARRAY_SIZE(sdm845_ufsphy_rx),
.pcs = sdm845_ufsphy_pcs,
.pcs_num = ARRAY_SIZE(sdm845_ufsphy_pcs),
},
.tbls_hs_b = {
.serdes = sdm845_ufsphy_hs_b_serdes,
.serdes_num = ARRAY_SIZE(sdm845_ufsphy_hs_b_serdes),
},
.clk_list = sdm845_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v3_regs_layout,
.no_pcs_sw_reset = true,
};
static const struct qmp_phy_cfg sm6115_ufsphy_cfg = {
.lanes = 1,
.offsets = &qmp_ufs_offsets,
.tbls = {
.serdes = sm6115_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(sm6115_ufsphy_serdes),
.tx = sm6115_ufsphy_tx,
.tx_num = ARRAY_SIZE(sm6115_ufsphy_tx),
.rx = sm6115_ufsphy_rx,
.rx_num = ARRAY_SIZE(sm6115_ufsphy_rx),
.pcs = sm6115_ufsphy_pcs,
.pcs_num = ARRAY_SIZE(sm6115_ufsphy_pcs),
},
.tbls_hs_b = {
.serdes = sm6115_ufsphy_hs_b_serdes,
.serdes_num = ARRAY_SIZE(sm6115_ufsphy_hs_b_serdes),
},
.clk_list = sdm845_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v2_regs_layout,
.no_pcs_sw_reset = true,
};
static const struct qmp_phy_cfg sm7150_ufsphy_cfg = {
.lanes = 1,
.offsets = &qmp_ufs_offsets,
.tbls = {
.serdes = sdm845_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(sdm845_ufsphy_serdes),
.tx = sdm845_ufsphy_tx,
.tx_num = ARRAY_SIZE(sdm845_ufsphy_tx),
.rx = sm7150_ufsphy_rx,
.rx_num = ARRAY_SIZE(sm7150_ufsphy_rx),
.pcs = sm7150_ufsphy_pcs,
.pcs_num = ARRAY_SIZE(sm7150_ufsphy_pcs),
},
.tbls_hs_b = {
.serdes = sdm845_ufsphy_hs_b_serdes,
.serdes_num = ARRAY_SIZE(sdm845_ufsphy_hs_b_serdes),
},
.clk_list = sdm845_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v3_regs_layout,
.no_pcs_sw_reset = true,
};
static const struct qmp_phy_cfg sm8150_ufsphy_cfg = {
.lanes = 2,
.offsets = &qmp_ufs_offsets,
.tbls = {
.serdes = sm8150_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(sm8150_ufsphy_serdes),
.tx = sm8150_ufsphy_tx,
.tx_num = ARRAY_SIZE(sm8150_ufsphy_tx),
.rx = sm8150_ufsphy_rx,
.rx_num = ARRAY_SIZE(sm8150_ufsphy_rx),
.pcs = sm8150_ufsphy_pcs,
.pcs_num = ARRAY_SIZE(sm8150_ufsphy_pcs),
},
.tbls_hs_b = {
.serdes = sm8150_ufsphy_hs_b_serdes,
.serdes_num = ARRAY_SIZE(sm8150_ufsphy_hs_b_serdes),
},
.tbls_hs_g4 = {
.tx = sm8150_ufsphy_hs_g4_tx,
.tx_num = ARRAY_SIZE(sm8150_ufsphy_hs_g4_tx),
.rx = sm8150_ufsphy_hs_g4_rx,
.rx_num = ARRAY_SIZE(sm8150_ufsphy_hs_g4_rx),
.pcs = sm8150_ufsphy_hs_g4_pcs,
.pcs_num = ARRAY_SIZE(sm8150_ufsphy_hs_g4_pcs),
},
.clk_list = sdm845_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v4_regs_layout,
};
static const struct qmp_phy_cfg sm8250_ufsphy_cfg = {
.lanes = 2,
.offsets = &qmp_ufs_offsets,
.tbls = {
.serdes = sm8150_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(sm8150_ufsphy_serdes),
.tx = sm8150_ufsphy_tx,
.tx_num = ARRAY_SIZE(sm8150_ufsphy_tx),
.rx = sm8150_ufsphy_rx,
.rx_num = ARRAY_SIZE(sm8150_ufsphy_rx),
.pcs = sm8150_ufsphy_pcs,
.pcs_num = ARRAY_SIZE(sm8150_ufsphy_pcs),
},
.tbls_hs_b = {
.serdes = sm8150_ufsphy_hs_b_serdes,
.serdes_num = ARRAY_SIZE(sm8150_ufsphy_hs_b_serdes),
},
.tbls_hs_g4 = {
.tx = sm8250_ufsphy_hs_g4_tx,
.tx_num = ARRAY_SIZE(sm8250_ufsphy_hs_g4_tx),
.rx = sm8250_ufsphy_hs_g4_rx,
.rx_num = ARRAY_SIZE(sm8250_ufsphy_hs_g4_rx),
.pcs = sm8150_ufsphy_hs_g4_pcs,
.pcs_num = ARRAY_SIZE(sm8150_ufsphy_hs_g4_pcs),
},
.clk_list = sdm845_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v4_regs_layout,
};
static const struct qmp_phy_cfg sm8350_ufsphy_cfg = {
.lanes = 2,
.offsets = &qmp_ufs_offsets,
.tbls = {
.serdes = sm8350_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(sm8350_ufsphy_serdes),
.tx = sm8350_ufsphy_tx,
.tx_num = ARRAY_SIZE(sm8350_ufsphy_tx),
.rx = sm8350_ufsphy_rx,
.rx_num = ARRAY_SIZE(sm8350_ufsphy_rx),
.pcs = sm8350_ufsphy_pcs,
.pcs_num = ARRAY_SIZE(sm8350_ufsphy_pcs),
},
.tbls_hs_b = {
.serdes = sm8350_ufsphy_hs_b_serdes,
.serdes_num = ARRAY_SIZE(sm8350_ufsphy_hs_b_serdes),
},
.tbls_hs_g4 = {
.tx = sm8350_ufsphy_g4_tx,
.tx_num = ARRAY_SIZE(sm8350_ufsphy_g4_tx),
.rx = sm8350_ufsphy_g4_rx,
.rx_num = ARRAY_SIZE(sm8350_ufsphy_g4_rx),
.pcs = sm8350_ufsphy_g4_pcs,
.pcs_num = ARRAY_SIZE(sm8350_ufsphy_g4_pcs),
},
.clk_list = sdm845_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v5_regs_layout,
};
static const struct qmp_phy_cfg sm8450_ufsphy_cfg = {
.lanes = 2,
.offsets = &qmp_ufs_offsets,
.tbls = {
.serdes = sm8350_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(sm8350_ufsphy_serdes),
.tx = sm8350_ufsphy_tx,
.tx_num = ARRAY_SIZE(sm8350_ufsphy_tx),
.rx = sm8350_ufsphy_rx,
.rx_num = ARRAY_SIZE(sm8350_ufsphy_rx),
.pcs = sm8350_ufsphy_pcs,
.pcs_num = ARRAY_SIZE(sm8350_ufsphy_pcs),
},
.tbls_hs_b = {
.serdes = sm8350_ufsphy_hs_b_serdes,
.serdes_num = ARRAY_SIZE(sm8350_ufsphy_hs_b_serdes),
},
.tbls_hs_g4 = {
.tx = sm8350_ufsphy_g4_tx,
.tx_num = ARRAY_SIZE(sm8350_ufsphy_g4_tx),
.rx = sm8350_ufsphy_g4_rx,
.rx_num = ARRAY_SIZE(sm8350_ufsphy_g4_rx),
.pcs = sm8350_ufsphy_g4_pcs,
.pcs_num = ARRAY_SIZE(sm8350_ufsphy_g4_pcs),
},
.clk_list = sm8450_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(sm8450_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v5_regs_layout,
};
static const struct qmp_phy_cfg sm8550_ufsphy_cfg = {
.lanes = 2,
.offsets = &qmp_ufs_offsets_v6,
.tbls = {
.serdes = sm8550_ufsphy_serdes,
.serdes_num = ARRAY_SIZE(sm8550_ufsphy_serdes),
.tx = sm8550_ufsphy_tx,
.tx_num = ARRAY_SIZE(sm8550_ufsphy_tx),
.rx = sm8550_ufsphy_rx,
.rx_num = ARRAY_SIZE(sm8550_ufsphy_rx),
.pcs = sm8550_ufsphy_pcs,
.pcs_num = ARRAY_SIZE(sm8550_ufsphy_pcs),
},
.clk_list = sdm845_ufs_phy_clk_l,
.num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = ufsphy_v6_regs_layout,
};
static void qmp_ufs_configure_lane(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num,
u8 lane_mask)
{
int i;
const struct qmp_phy_init_tbl *t = tbl;
if (!t)
return;
for (i = 0; i < num; i++, t++) {
if (!(t->lane_mask & lane_mask))
continue;
writel(t->val, base + t->offset);
}
}
static void qmp_ufs_configure(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num)
{
qmp_ufs_configure_lane(base, tbl, num, 0xff);
}
static void qmp_ufs_serdes_init(struct qmp_ufs *qmp, const struct qmp_phy_cfg_tbls *tbls)
{
void __iomem *serdes = qmp->serdes;
qmp_ufs_configure(serdes, tbls->serdes, tbls->serdes_num);
}
static void qmp_ufs_lanes_init(struct qmp_ufs *qmp, const struct qmp_phy_cfg_tbls *tbls)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *tx = qmp->tx;
void __iomem *rx = qmp->rx;
qmp_ufs_configure_lane(tx, tbls->tx, tbls->tx_num, 1);
qmp_ufs_configure_lane(rx, tbls->rx, tbls->rx_num, 1);
if (cfg->lanes >= 2) {
qmp_ufs_configure_lane(qmp->tx2, tbls->tx, tbls->tx_num, 2);
qmp_ufs_configure_lane(qmp->rx2, tbls->rx, tbls->rx_num, 2);
}
}
static void qmp_ufs_pcs_init(struct qmp_ufs *qmp, const struct qmp_phy_cfg_tbls *tbls)
{
void __iomem *pcs = qmp->pcs;
qmp_ufs_configure(pcs, tbls->pcs, tbls->pcs_num);
}
static void qmp_ufs_init_registers(struct qmp_ufs *qmp, const struct qmp_phy_cfg *cfg)
{
qmp_ufs_serdes_init(qmp, &cfg->tbls);
if (qmp->mode == PHY_MODE_UFS_HS_B)
qmp_ufs_serdes_init(qmp, &cfg->tbls_hs_b);
qmp_ufs_lanes_init(qmp, &cfg->tbls);
if (qmp->submode == UFS_HS_G4)
qmp_ufs_lanes_init(qmp, &cfg->tbls_hs_g4);
qmp_ufs_pcs_init(qmp, &cfg->tbls);
if (qmp->submode == UFS_HS_G4)
qmp_ufs_pcs_init(qmp, &cfg->tbls_hs_g4);
}
static int qmp_ufs_com_init(struct qmp_ufs *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *pcs = qmp->pcs;
int ret;
ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs);
if (ret) {
dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret);
return ret;
}
ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks);
if (ret)
goto err_disable_regulators;
qphy_setbits(pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN);
return 0;
err_disable_regulators:
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
return ret;
}
static int qmp_ufs_com_exit(struct qmp_ufs *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
reset_control_assert(qmp->ufs_reset);
clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks);
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
return 0;
}
static int qmp_ufs_init(struct phy *phy)
{
struct qmp_ufs *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
int ret;
dev_vdbg(qmp->dev, "Initializing QMP phy\n");
if (cfg->no_pcs_sw_reset) {
/*
* Get UFS reset, which is delayed until now to avoid a
* circular dependency where UFS needs its PHY, but the PHY
* needs this UFS reset.
*/
if (!qmp->ufs_reset) {
qmp->ufs_reset =
devm_reset_control_get_exclusive(qmp->dev,
"ufsphy");
if (IS_ERR(qmp->ufs_reset)) {
ret = PTR_ERR(qmp->ufs_reset);
dev_err(qmp->dev,
"failed to get UFS reset: %d\n",
ret);
qmp->ufs_reset = NULL;
return ret;
}
}
ret = reset_control_assert(qmp->ufs_reset);
if (ret)
return ret;
}
ret = qmp_ufs_com_init(qmp);
if (ret)
return ret;
return 0;
}
static int qmp_ufs_power_on(struct phy *phy)
{
struct qmp_ufs *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *pcs = qmp->pcs;
void __iomem *status;
unsigned int val;
int ret;
qmp_ufs_init_registers(qmp, cfg);
ret = reset_control_deassert(qmp->ufs_reset);
if (ret)
return ret;
/* Pull PHY out of reset state */
if (!cfg->no_pcs_sw_reset)
qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* start SerDes */
qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], SERDES_START);
status = pcs + cfg->regs[QPHY_PCS_READY_STATUS];
ret = readl_poll_timeout(status, val, (val & PCS_READY), 200,
PHY_INIT_COMPLETE_TIMEOUT);
if (ret) {
dev_err(qmp->dev, "phy initialization timed-out\n");
return ret;
}
return 0;
}
static int qmp_ufs_power_off(struct phy *phy)
{
struct qmp_ufs *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
/* PHY reset */
if (!cfg->no_pcs_sw_reset)
qphy_setbits(qmp->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* stop SerDes */
qphy_clrbits(qmp->pcs, cfg->regs[QPHY_START_CTRL], SERDES_START);
/* Put PHY into POWER DOWN state: active low */
qphy_clrbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL],
SW_PWRDN);
return 0;
}
static int qmp_ufs_exit(struct phy *phy)
{
struct qmp_ufs *qmp = phy_get_drvdata(phy);
qmp_ufs_com_exit(qmp);
return 0;
}
static int qmp_ufs_enable(struct phy *phy)
{
int ret;
ret = qmp_ufs_init(phy);
if (ret)
return ret;
ret = qmp_ufs_power_on(phy);
if (ret)
qmp_ufs_exit(phy);
return ret;
}
static int qmp_ufs_disable(struct phy *phy)
{
int ret;
ret = qmp_ufs_power_off(phy);
if (ret)
return ret;
return qmp_ufs_exit(phy);
}
static int qmp_ufs_set_mode(struct phy *phy, enum phy_mode mode, int submode)
{
struct qmp_ufs *qmp = phy_get_drvdata(phy);
qmp->mode = mode;
qmp->submode = submode;
return 0;
}
static const struct phy_ops qcom_qmp_ufs_phy_ops = {
.power_on = qmp_ufs_enable,
.power_off = qmp_ufs_disable,
.set_mode = qmp_ufs_set_mode,
.owner = THIS_MODULE,
};
static int qmp_ufs_vreg_init(struct qmp_ufs *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int num = cfg->num_vregs;
int i;
qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL);
if (!qmp->vregs)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->vregs[i].supply = cfg->vreg_list[i];
return devm_regulator_bulk_get(dev, num, qmp->vregs);
}
static int qmp_ufs_clk_init(struct qmp_ufs *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int num = cfg->num_clks;
int i;
qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL);
if (!qmp->clks)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->clks[i].id = cfg->clk_list[i];
return devm_clk_bulk_get(dev, num, qmp->clks);
}
static void qmp_ufs_clk_release_provider(void *res)
{
of_clk_del_provider(res);
}
#define UFS_SYMBOL_CLOCKS 3
static int qmp_ufs_register_clocks(struct qmp_ufs *qmp, struct device_node *np)
{
struct clk_hw_onecell_data *clk_data;
struct clk_hw *hw;
char name[64];
int ret;
clk_data = devm_kzalloc(qmp->dev,
struct_size(clk_data, hws, UFS_SYMBOL_CLOCKS),
GFP_KERNEL);
if (!clk_data)
return -ENOMEM;
clk_data->num = UFS_SYMBOL_CLOCKS;
snprintf(name, sizeof(name), "%s::rx_symbol_0", dev_name(qmp->dev));
hw = devm_clk_hw_register_fixed_rate(qmp->dev, name, NULL, 0, 0);
if (IS_ERR(hw))
return PTR_ERR(hw);
clk_data->hws[0] = hw;
snprintf(name, sizeof(name), "%s::rx_symbol_1", dev_name(qmp->dev));
hw = devm_clk_hw_register_fixed_rate(qmp->dev, name, NULL, 0, 0);
if (IS_ERR(hw))
return PTR_ERR(hw);
clk_data->hws[1] = hw;
snprintf(name, sizeof(name), "%s::tx_symbol_0", dev_name(qmp->dev));
hw = devm_clk_hw_register_fixed_rate(qmp->dev, name, NULL, 0, 0);
if (IS_ERR(hw))
return PTR_ERR(hw);
clk_data->hws[2] = hw;
ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
if (ret)
return ret;
/*
* Roll a devm action because the clock provider can be a child node.
*/
return devm_add_action_or_reset(qmp->dev, qmp_ufs_clk_release_provider, np);
}
static int qmp_ufs_parse_dt_legacy(struct qmp_ufs *qmp, struct device_node *np)
{
struct platform_device *pdev = to_platform_device(qmp->dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
qmp->serdes = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(qmp->serdes))
return PTR_ERR(qmp->serdes);
/*
* Get memory resources for the PHY:
* Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2.
* For dual lane PHYs: tx2 -> 3, rx2 -> 4, pcs_misc (optional) -> 5
* For single lane PHYs: pcs_misc (optional) -> 3.
*/
qmp->tx = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(qmp->tx))
return PTR_ERR(qmp->tx);
qmp->rx = devm_of_iomap(dev, np, 1, NULL);
if (IS_ERR(qmp->rx))
return PTR_ERR(qmp->rx);
qmp->pcs = devm_of_iomap(dev, np, 2, NULL);
if (IS_ERR(qmp->pcs))
return PTR_ERR(qmp->pcs);
if (cfg->lanes >= 2) {
qmp->tx2 = devm_of_iomap(dev, np, 3, NULL);
if (IS_ERR(qmp->tx2))
return PTR_ERR(qmp->tx2);
qmp->rx2 = devm_of_iomap(dev, np, 4, NULL);
if (IS_ERR(qmp->rx2))
return PTR_ERR(qmp->rx2);
qmp->pcs_misc = devm_of_iomap(dev, np, 5, NULL);
} else {
qmp->pcs_misc = devm_of_iomap(dev, np, 3, NULL);
}
if (IS_ERR(qmp->pcs_misc))
dev_vdbg(dev, "PHY pcs_misc-reg not used\n");
return 0;
}
static int qmp_ufs_parse_dt(struct qmp_ufs *qmp)
{
struct platform_device *pdev = to_platform_device(qmp->dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
const struct qmp_ufs_offsets *offs = cfg->offsets;
void __iomem *base;
if (!offs)
return -EINVAL;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
qmp->serdes = base + offs->serdes;
qmp->pcs = base + offs->pcs;
qmp->tx = base + offs->tx;
qmp->rx = base + offs->rx;
if (cfg->lanes >= 2) {
qmp->tx2 = base + offs->tx2;
qmp->rx2 = base + offs->rx2;
}
return 0;
}
static int qmp_ufs_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct device_node *np;
struct qmp_ufs *qmp;
int ret;
qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL);
if (!qmp)
return -ENOMEM;
qmp->dev = dev;
qmp->cfg = of_device_get_match_data(dev);
if (!qmp->cfg)
return -EINVAL;
ret = qmp_ufs_clk_init(qmp);
if (ret)
return ret;
ret = qmp_ufs_vreg_init(qmp);
if (ret)
return ret;
/* Check for legacy binding with child node. */
np = of_get_next_available_child(dev->of_node, NULL);
if (np) {
ret = qmp_ufs_parse_dt_legacy(qmp, np);
} else {
np = of_node_get(dev->of_node);
ret = qmp_ufs_parse_dt(qmp);
}
if (ret)
goto err_node_put;
ret = qmp_ufs_register_clocks(qmp, np);
if (ret)
goto err_node_put;
qmp->phy = devm_phy_create(dev, np, &qcom_qmp_ufs_phy_ops);
if (IS_ERR(qmp->phy)) {
ret = PTR_ERR(qmp->phy);
dev_err(dev, "failed to create PHY: %d\n", ret);
goto err_node_put;
}
phy_set_drvdata(qmp->phy, qmp);
of_node_put(np);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
err_node_put:
of_node_put(np);
return ret;
}
static const struct of_device_id qmp_ufs_of_match_table[] = {
{
.compatible = "qcom,msm8996-qmp-ufs-phy",
.data = &msm8996_ufsphy_cfg,
}, {
.compatible = "qcom,msm8998-qmp-ufs-phy",
.data = &sdm845_ufsphy_cfg,
}, {
.compatible = "qcom,sa8775p-qmp-ufs-phy",
.data = &sa8775p_ufsphy_cfg,
}, {
.compatible = "qcom,sc8180x-qmp-ufs-phy",
.data = &sm8150_ufsphy_cfg,
}, {
.compatible = "qcom,sc8280xp-qmp-ufs-phy",
.data = &sc8280xp_ufsphy_cfg,
}, {
.compatible = "qcom,sdm845-qmp-ufs-phy",
.data = &sdm845_ufsphy_cfg,
}, {
.compatible = "qcom,sm6115-qmp-ufs-phy",
.data = &sm6115_ufsphy_cfg,
}, {
.compatible = "qcom,sm6125-qmp-ufs-phy",
.data = &sm6115_ufsphy_cfg,
}, {
.compatible = "qcom,sm6350-qmp-ufs-phy",
.data = &sdm845_ufsphy_cfg,
}, {
.compatible = "qcom,sm7150-qmp-ufs-phy",
.data = &sm7150_ufsphy_cfg,
}, {
.compatible = "qcom,sm8150-qmp-ufs-phy",
.data = &sm8150_ufsphy_cfg,
}, {
.compatible = "qcom,sm8250-qmp-ufs-phy",
.data = &sm8250_ufsphy_cfg,
}, {
.compatible = "qcom,sm8350-qmp-ufs-phy",
.data = &sm8350_ufsphy_cfg,
}, {
.compatible = "qcom,sm8450-qmp-ufs-phy",
.data = &sm8450_ufsphy_cfg,
}, {
.compatible = "qcom,sm8550-qmp-ufs-phy",
.data = &sm8550_ufsphy_cfg,
},
{ },
};
MODULE_DEVICE_TABLE(of, qmp_ufs_of_match_table);
static struct platform_driver qmp_ufs_driver = {
.probe = qmp_ufs_probe,
.driver = {
.name = "qcom-qmp-ufs-phy",
.of_match_table = qmp_ufs_of_match_table,
},
};
module_platform_driver(qmp_ufs_driver);
MODULE_AUTHOR("Vivek Gautam <[email protected]>");
MODULE_DESCRIPTION("Qualcomm QMP UFS PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-qmp-ufs.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/phy/pcie.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "phy-qcom-qmp.h"
#include "phy-qcom-qmp-pcs-misc-v3.h"
#include "phy-qcom-qmp-pcs-pcie-v4.h"
#include "phy-qcom-qmp-pcs-pcie-v4_20.h"
#include "phy-qcom-qmp-pcs-pcie-v5.h"
#include "phy-qcom-qmp-pcs-pcie-v5_20.h"
#include "phy-qcom-qmp-pcs-pcie-v6.h"
#include "phy-qcom-qmp-pcs-pcie-v6_20.h"
#include "phy-qcom-qmp-pcie-qhp.h"
/* QPHY_SW_RESET bit */
#define SW_RESET BIT(0)
/* QPHY_POWER_DOWN_CONTROL */
#define SW_PWRDN BIT(0)
#define REFCLK_DRV_DSBL BIT(1)
/* QPHY_START_CONTROL bits */
#define SERDES_START BIT(0)
#define PCS_START BIT(1)
/* QPHY_PCS_STATUS bit */
#define PHYSTATUS BIT(6)
#define PHYSTATUS_4_20 BIT(7)
#define PHY_INIT_COMPLETE_TIMEOUT 10000
struct qmp_phy_init_tbl {
unsigned int offset;
unsigned int val;
/*
* mask of lanes for which this register is written
* for cases when second lane needs different values
*/
u8 lane_mask;
};
#define QMP_PHY_INIT_CFG(o, v) \
{ \
.offset = o, \
.val = v, \
.lane_mask = 0xff, \
}
#define QMP_PHY_INIT_CFG_LANE(o, v, l) \
{ \
.offset = o, \
.val = v, \
.lane_mask = l, \
}
/* set of registers with offsets different per-PHY */
enum qphy_reg_layout {
/* PCS registers */
QPHY_SW_RESET,
QPHY_START_CTRL,
QPHY_PCS_STATUS,
QPHY_PCS_POWER_DOWN_CONTROL,
/* Keep last to ensure regs_layout arrays are properly initialized */
QPHY_LAYOUT_SIZE
};
static const unsigned int pciephy_v2_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V2_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V2_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V2_PCS_PCI_PCS_STATUS,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V2_PCS_POWER_DOWN_CONTROL,
};
static const unsigned int pciephy_v3_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V3_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V3_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V3_PCS_PCS_STATUS,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V3_PCS_POWER_DOWN_CONTROL,
};
static const unsigned int sdm845_qhp_pciephy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = 0x00,
[QPHY_START_CTRL] = 0x08,
[QPHY_PCS_STATUS] = 0x2ac,
[QPHY_PCS_POWER_DOWN_CONTROL] = 0x04,
};
static const unsigned int pciephy_v4_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V4_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V4_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V4_PCS_PCS_STATUS1,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V4_PCS_POWER_DOWN_CONTROL,
};
static const unsigned int pciephy_v5_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V5_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V5_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V5_PCS_PCS_STATUS1,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_POWER_DOWN_CONTROL,
};
static const struct qmp_phy_init_tbl msm8998_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_TIMER1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_TIMER2, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_EP_DIV, 0x19),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x33),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BG_TIMER, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x7e),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x15),
};
static const struct qmp_phy_init_tbl msm8998_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x06),
};
static const struct qmp_phy_init_tbl msm8998_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_ENABLES, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN_HALF, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_INTERFACE_MODE, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x71),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x40),
};
static const struct qmp_phy_init_tbl msm8998_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V3_PCS_ENDPOINT_REFCLK_DRIVE, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_OSC_DTCT_ACTIONS, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x01),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_MSB, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_LSB, 0x20),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LP_WAKEUP_DLY_TIME_AUXCLK_MSB, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LP_WAKEUP_DLY_TIME_AUXCLK, 0x01),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PLL_LOCK_CHK_DLY_TIME, 0x73),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0x99),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_SIGDET_CNTRL, 0x03),
};
static const struct qmp_phy_init_tbl ipq6018_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_PER1, 0x7d),
QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_STEP_SIZE1_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_STEP_SIZE2_MODE0, 0x05),
QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_STEP_SIZE1_MODE1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_STEP_SIZE2_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_PLL_BIAS_EN_CLKBUFLR_EN, 0x18),
QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_PLL_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_PLL_SYSCLK_BUF_ENABLE, 0x07),
QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP1_MODE0, 0xd4),
QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP2_MODE0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP1_MODE1, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP2_MODE1, 0x29),
QMP_PHY_INIT_CFG(QSERDES_PLL_BG_TRIM, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_PLL_CP_CTRL_MODE0, 0x09),
QMP_PHY_INIT_CFG(QSERDES_PLL_CP_CTRL_MODE1, 0x09),
QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_CCTRL_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_CCTRL_MODE1, 0x28),
QMP_PHY_INIT_CFG(QSERDES_PLL_BIAS_EN_CTRL_BY_PSM, 0x01),
QMP_PHY_INIT_CFG(QSERDES_PLL_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_PLL_RESETSM_CNTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP_EN, 0x42),
QMP_PHY_INIT_CFG(QSERDES_PLL_DEC_START_MODE0, 0x68),
QMP_PHY_INIT_CFG(QSERDES_PLL_DEC_START_MODE1, 0x53),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START2_MODE0, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START1_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START2_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START3_MODE1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN0_MODE0, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN0_MODE1, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE1_MODE0, 0x24),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE2_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE1_MODE1, 0xb4),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE2_MODE1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_SELECT, 0x32),
QMP_PHY_INIT_CFG(QSERDES_PLL_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_PLL_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_PLL_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_PLL_SVS_MODE_CLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_PLL_CORECLK_DIV_MODE1, 0x08),
};
static const struct qmp_phy_init_tbl ipq6018_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
};
static const struct qmp_phy_init_tbl ipq6018_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x70),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x61),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x73),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_ENABLES, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xf0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0xd3),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb1),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_LOW, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH2, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH3, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH4, 0xb1),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
};
static const struct qmp_phy_init_tbl ipq6018_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_CNTRL1, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_G12S1_TXDEEMPH_M3P5DB, 0x10),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_P2U3_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_DCC_CAL_CONFIG, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x01),
};
static const struct qmp_phy_init_tbl ipq6018_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_POWER_STATE_CONFIG2, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_POWER_STATE_CONFIG4, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P1_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P2_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_EQ_CONFIG1, 0x11),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_PRE, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_POST, 0x58),
};
static const struct qmp_phy_init_tbl ipq8074_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x18),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_ENABLE1, 0x10),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0xf),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_EN, 0x1),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x0),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER2, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x6),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0xf),
QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x0),
QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x1),
QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x20),
QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV, 0xa),
QMP_PHY_INIT_CFG(QSERDES_COM_RESETSM_CNTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0xa),
QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0xa),
QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x3),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x0),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0xD),
QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0xD04),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x33),
QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x2),
QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_BUF_ENABLE, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0xb),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x0),
QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80),
QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CTRL_BY_PSM, 0x1),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x1),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x1),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x2),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x0),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x19),
QMP_PHY_INIT_CFG(QSERDES_COM_CLK_EP_DIV, 0x19),
};
static const struct qmp_phy_init_tbl ipq8074_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45),
QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x6),
QMP_PHY_INIT_CFG(QSERDES_TX_RES_CODE_LANE_OFFSET, 0x2),
QMP_PHY_INIT_CFG(QSERDES_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_TX_TX_EMP_POST1_LVL, 0x36),
QMP_PHY_INIT_CFG(QSERDES_TX_SLEW_CNTL, 0x0a),
};
static const struct qmp_phy_init_tbl ipq8074_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_ENABLES, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x1),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x0),
QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b),
QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN, 0x4),
};
static const struct qmp_phy_init_tbl ipq8074_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V2_PCS_ENDPOINT_REFCLK_DRIVE, 0x4),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_OSC_DTCT_ACTIONS, 0x0),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x40),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_MSB, 0x0),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_LSB, 0x40),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_PLL_LOCK_CHK_DLY_TIME_AUXCLK_LSB, 0x0),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_LP_WAKEUP_DLY_TIME_AUXCLK, 0x40),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_PLL_LOCK_CHK_DLY_TIME, 0x73),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_RX_SIGDET_LVL, 0x99),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_TXDEEMPH_M6DB_V0, 0x15),
QMP_PHY_INIT_CFG(QPHY_V2_PCS_TXDEEMPH_M3P5DB_V0, 0xe),
};
static const struct qmp_phy_init_tbl ipq8074_pcie_gen3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_PLL_BIAS_EN_CLKBUFLR_EN, 0x18),
QMP_PHY_INIT_CFG(QSERDES_PLL_BIAS_EN_CTRL_BY_PSM, 0x01),
QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_SELECT, 0x31),
QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_PLL_BG_TRIM, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_PLL_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP_EN, 0x42),
QMP_PHY_INIT_CFG(QSERDES_PLL_RESETSM_CNTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_PLL_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE_MAP, 0x04),
QMP_PHY_INIT_CFG(QSERDES_PLL_SVS_MODE_CLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE_TIMER1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE_TIMER2, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_PLL_CORE_CLK_EN, 0x30),
QMP_PHY_INIT_CFG(QSERDES_PLL_HSCLK_SEL, 0x21),
QMP_PHY_INIT_CFG(QSERDES_PLL_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START2_MODE0, 0x355),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START1_MODE0, 0x35555),
QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP2_MODE0, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP1_MODE0, 0x1a0a),
QMP_PHY_INIT_CFG(QSERDES_PLL_CP_CTRL_MODE0, 0xb),
QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_CCTRL_MODE0, 0x28),
QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN1_MODE0, 0x0),
QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN0_MODE0, 0x40),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE2_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE1_MODE0, 0x24),
QMP_PHY_INIT_CFG(QSERDES_PLL_SVS_MODE_CLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_PLL_CORE_CLK_EN, 0x20),
QMP_PHY_INIT_CFG(QSERDES_PLL_CORECLK_DIV, 0xa),
QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_SELECT, 0x32),
QMP_PHY_INIT_CFG(QSERDES_PLL_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_PLL_SYSCLK_BUF_ENABLE, 0x07),
QMP_PHY_INIT_CFG(QSERDES_PLL_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_PLL_BG_TIMER, 0xa),
QMP_PHY_INIT_CFG(QSERDES_PLL_HSCLK_SEL, 0x1),
QMP_PHY_INIT_CFG(QSERDES_PLL_DEC_START_MODE1, 0x68),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START3_MODE1, 0x2),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START2_MODE1, 0x2aa),
QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START1_MODE1, 0x2aaab),
QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP2_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP1_MODE1, 0x3414),
QMP_PHY_INIT_CFG(QSERDES_PLL_CP_CTRL_MODE1, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_CCTRL_MODE1, 0x28),
QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN1_MODE1, 0x0),
QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN0_MODE1, 0x40),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE2_MODE1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE1_MODE1, 0xb4),
QMP_PHY_INIT_CFG(QSERDES_PLL_SVS_MODE_CLK_SEL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_PLL_CORE_CLK_EN, 0x0),
QMP_PHY_INIT_CFG(QSERDES_PLL_CORECLK_DIV_MODE1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_EP_DIV_MODE0, 0x19),
QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_EP_DIV_MODE1, 0x28),
QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_ENABLE1, 0x90),
};
static const struct qmp_phy_init_tbl ipq8074_pcie_gen3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_HIGHZ_DRVR_EN, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x06),
};
static const struct qmp_phy_init_tbl ipq8074_pcie_gen3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_ENABLES, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0xe),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x70),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x73),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_LOW, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH2, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH3, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH4, 0xb1),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xc8),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb1),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xf0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x2),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0xd3),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x02),
};
static const struct qmp_phy_init_tbl ipq8074_pcie_gen3_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_CNTRL2, 0x83),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_CNT_VAL_L, 0x9),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_CNT_VAL_H_TOL, 0x42),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_MAN_CODE, 0x40),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_CNTRL1, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_P2U3_WAKEUP_DLY_TIME_AUXCLK_H, 0x0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_P2U3_WAKEUP_DLY_TIME_AUXCLK_L, 0x1),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_G12S1_TXDEEMPH_M3P5DB, 0x10),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_DCC_CAL_CONFIG, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x0d),
};
static const struct qmp_phy_init_tbl ipq8074_pcie_gen3_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_ACTIONS, 0x0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P1_WAKEUP_DLY_TIME_AUXCLK_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P1_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P2_WAKEUP_DLY_TIME_AUXCLK_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P2_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_EQ_CONFIG1, 0x11),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_EQ_CONFIG2, 0xb),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_POWER_STATE_CONFIG4, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_CONFIG2, 0x52),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_MODE2_CONFIG2, 0x50),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_MODE2_CONFIG4, 0x1a),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_MODE2_CONFIG5, 0x6),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
};
static const struct qmp_phy_init_tbl sdm845_qmp_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x007),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_TIMER1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_TIMER2, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_EP_DIV, 0x19),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_MODE, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x33),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BG_TIMER, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x7e),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x15),
};
static const struct qmp_phy_init_tbl sdm845_qmp_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x06),
};
static const struct qmp_phy_init_tbl sdm845_qmp_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_ENABLES, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN_HALF, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x71),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x59),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_01, 0x59),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_INTERFACE_MODE, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x71),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x40),
};
static const struct qmp_phy_init_tbl sdm845_qmp_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V3_PCS_ENDPOINT_REFCLK_DRIVE, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_OSC_DTCT_ACTIONS, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x01),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_MSB, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_LSB, 0x20),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LP_WAKEUP_DLY_TIME_AUXCLK_MSB, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LP_WAKEUP_DLY_TIME_AUXCLK, 0x01),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PLL_LOCK_CHK_DLY_TIME, 0x73),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0xbb),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_REFGEN_REQ_CONFIG1, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG4, 0x00),
};
static const struct qmp_phy_init_tbl sdm845_qmp_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V3_PCS_MISC_OSC_DTCT_CONFIG2, 0x52),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_MISC_OSC_DTCT_MODE2_CONFIG2, 0x10),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_MISC_OSC_DTCT_MODE2_CONFIG4, 0x1a),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_MISC_OSC_DTCT_MODE2_CONFIG5, 0x06),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_MISC_PCIE_INT_AUX_CLK_CONFIG1, 0x00),
};
static const struct qmp_phy_init_tbl sdm845_qhp_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SYSCLK_EN_SEL, 0x27),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_STEP_SIZE1, 0xde),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_STEP_SIZE2, 0x07),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_STEP_SIZE1_MODE1, 0x4c),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_STEP_SIZE2_MODE1, 0x06),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_BIAS_EN_CKBUFLR_EN, 0x18),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CLK_ENABLE1, 0xb0),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_LOCK_CMP1_MODE0, 0x8c),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_LOCK_CMP2_MODE0, 0x20),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_LOCK_CMP1_MODE1, 0x14),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_LOCK_CMP2_MODE1, 0x34),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_RESTRIM_CTRL2, 0x05),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_LOCK_CMP_EN, 0x42),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DEC_START_MODE1, 0x68),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START1_MODE1, 0xab),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START2_MODE1, 0xaa),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START3_MODE1, 0x02),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_INTEGLOOP_GAIN0_MODE1, 0x3f),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_VCO_TUNE_MAP, 0x10),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CLK_SELECT, 0x04),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_HSCLK_SEL1, 0x30),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CORECLK_DIV, 0x04),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CORE_CLK_EN, 0x73),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CMN_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SVS_MODE_CLK_SEL, 0x15),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CORECLK_DIV_MODE1, 0x04),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CMN_MODE, 0x01),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_VREGCLK_DIV1, 0x22),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_VREGCLK_DIV2, 0x00),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_BGV_TRIM, 0x20),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_BG_CTRL, 0x07),
};
static const struct qmp_phy_init_tbl sdm845_qhp_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DRVR_CTRL0, 0x00),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DRVR_TAP_EN, 0x0d),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_TX_BAND_MODE, 0x01),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_LANE_MODE, 0x1a),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_PARALLEL_RATE, 0x2f),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CML_CTRL_MODE0, 0x09),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CML_CTRL_MODE1, 0x09),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CML_CTRL_MODE2, 0x1b),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_PREAMP_CTRL_MODE1, 0x01),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_PREAMP_CTRL_MODE2, 0x07),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_MIXER_CTRL_MODE0, 0x31),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_MIXER_CTRL_MODE1, 0x31),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_MIXER_CTRL_MODE2, 0x03),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CTLE_THRESH_DFE, 0x02),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CGA_THRESH_DFE, 0x00),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RXENGINE_EN0, 0x12),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CTLE_TRAIN_TIME, 0x25),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CTLE_DFE_OVRLP_TIME, 0x00),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DFE_REFRESH_TIME, 0x05),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DFE_ENABLE_TIME, 0x01),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_VGA_GAIN, 0x26),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DFE_GAIN, 0x12),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_EQ_GAIN, 0x04),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_OFFSET_GAIN, 0x04),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_PRE_GAIN, 0x09),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_EQ_INTVAL, 0x15),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_EDAC_INITVAL, 0x28),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RXEQ_INITB0, 0x7f),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RXEQ_INITB1, 0x07),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RCVRDONE_THRESH1, 0x04),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RXEQ_CTRL, 0x70),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_FO_GAIN_MODE0, 0x8b),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_FO_GAIN_MODE1, 0x08),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_FO_GAIN_MODE2, 0x0a),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_SO_GAIN_MODE0, 0x03),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_SO_GAIN_MODE1, 0x04),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_SO_GAIN_MODE2, 0x04),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_SO_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_BAND, 0x02),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_RCVR_PATH1_MODE0, 0x5c),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_RCVR_PATH1_MODE1, 0x3e),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_RCVR_PATH1_MODE2, 0x3f),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_SIGDET_ENABLES, 0x01),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_SIGDET_CNTRL, 0xa0),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_SIGDET_DEGLITCH_CNTRL, 0x08),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DCC_GAIN, 0x01),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_EN_SIGNAL, 0xc3),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_PSM_RX_EN_CAL, 0x00),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_MISC_CNTRL0, 0xbc),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_TS0_TIMER, 0x7f),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DLL_HIGHDATARATE, 0x15),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DRVR_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DRVR_CTRL2, 0x0f),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_RESETCODE_OFFSET, 0x04),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_VGA_INITVAL, 0x20),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RSM_START, 0x01),
};
static const struct qmp_phy_init_tbl sdm845_qhp_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_POWER_STATE_CONFIG, 0x3f),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_PCS_TX_RX_CONFIG, 0x50),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_TXMGN_MAIN_V0_M3P5DB, 0x19),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_TXMGN_POST_V0_M3P5DB, 0x07),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_TXMGN_MAIN_V0_M6DB, 0x17),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_TXMGN_POST_V0_M6DB, 0x09),
QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_POWER_STATE_CONFIG5, 0x9f),
};
static const struct qmp_phy_init_tbl sc8180x_qmp_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_SELECT, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x42),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE0, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE2_MODE1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE1, 0xb4),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x68),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xa2),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0x4c),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_ENABLE1, 0x90),
};
static const struct qmp_phy_init_tbl sc8180x_qmp_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x5),
};
static const struct qmp_phy_init_tbl sc8180x_qmp_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_ENABLES, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL1, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x6e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x6e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x70),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x37),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_LOW, 0xd4),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH2, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH3, 0x39),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH4, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xe4),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xec),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x39),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x75),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RCLK_AUXDATA_SEL, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x03),
};
static const struct qmp_phy_init_tbl sc8180x_qmp_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_P2U3_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RATE_SLEW_CNTRL1, 0x0b),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x01),
};
static const struct qmp_phy_init_tbl sc8180x_qmp_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P1_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P2_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_INT_AUX_CLK_CONFIG1, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_PRE, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_POST, 0x58),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0x4c),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x42),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x68),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE0, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE1, 0xb4),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE2_MODE1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_SELECT, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xb9),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0x94),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_HSCLK_SEL, 0x11),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x1_pcie_rc_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_BUF_ENABLE, 0x07),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x2_pcie_rc_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x14),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x4_pcie_serdes_4ln_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x1c),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x1_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0x75),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x1d),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0c),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x1_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xd8),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa6),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_TX_ADAPT_POST_THRESH, 0xf0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH3, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0xf0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x1_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x05),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0x77),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RATE_SLEW_CNTRL1, 0x0b),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x1_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_INT_AUX_CLK_CONFIG1, 0x00),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_EQ_CONFIG2, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x2_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG_LANE(QSERDES_V5_TX_PI_QEC_CTRL, 0x02, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V5_TX_PI_QEC_CTRL, 0x04, 2),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0c),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x2_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xd8),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa6),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH3, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0xf0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x2_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x05),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0x88),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RATE_SLEW_CNTRL1, 0x0b),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG3, 0x0f),
};
static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_POWER_STATE_CONFIG2, 0x1d),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_POWER_STATE_CONFIG4, 0x07),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00),
};
static const struct qmp_phy_init_tbl sm8250_qmp_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_SELECT, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x42),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE0, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE2_MODE1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE1, 0xb4),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x68),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xa2),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0x4c),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_ENABLE1, 0x90),
};
static const struct qmp_phy_init_tbl sm8250_qmp_gen3x1_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x07),
};
static const struct qmp_phy_init_tbl sm8250_qmp_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x35),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x11),
};
static const struct qmp_phy_init_tbl sm8250_qmp_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x70),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_ENABLES, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_LOW, 0xd4),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH2, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH3, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH4, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xe4),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xec),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x3b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0x36),
};
static const struct qmp_phy_init_tbl sm8250_qmp_gen3x1_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RCLK_AUXDATA_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x30),
};
static const struct qmp_phy_init_tbl sm8250_qmp_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_P2U3_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0x77),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RATE_SLEW_CNTRL1, 0x0b),
};
static const struct qmp_phy_init_tbl sm8250_qmp_gen3x1_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x12),
};
static const struct qmp_phy_init_tbl sm8250_qmp_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P1_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P2_WAKEUP_DLY_TIME_AUXCLK_L, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P6_P7_PRE, 0x33),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_PRE, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_POST, 0x58),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
};
static const struct qmp_phy_init_tbl sm8250_qmp_gen3x1_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_INT_AUX_CLK_CONFIG1, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_EQ_CONFIG2, 0x0f),
};
static const struct qmp_phy_init_tbl sm8250_qmp_gen3x2_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x20),
};
static const struct qmp_phy_init_tbl sm8250_qmp_gen3x2_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x15),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
};
static const struct qmp_phy_init_tbl sm8250_qmp_gen3x2_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x05),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG2, 0x0f),
};
static const struct qmp_phy_init_tbl sm8250_qmp_gen3x2_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_POWER_STATE_CONFIG2, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_POWER_STATE_CONFIG4, 0x07),
};
static const struct qmp_phy_init_tbl sdx55_qmp_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x46),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_CFG, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_HS_SWITCH_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE0, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_MISC1, 0x88),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_MISC2, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_MODE, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_DC_LEVEL_CTRL, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x22),
};
static const struct qmp_phy_init_tbl sdx55_qmp_pcie_rc_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xce),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0x97),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_EP_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_EP_DIV_MODE1, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0xc3),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0xd0),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_SELECT, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xd8),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x20),
};
static const struct qmp_phy_init_tbl sdx55_qmp_pcie_ep_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BG_TIMER, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYS_CLK_CTRL, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x19),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x19),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x4b),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x50),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN0_MODE0, 0xfb),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN1_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN0_MODE1, 0xfb),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN1_MODE1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_CONFIG, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x56),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1d),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0x4b),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x1f),
};
static const struct qmp_phy_init_tbl sdx55_qmp_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_20_TX_LANE_MODE_1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_20_TX_LANE_MODE_2, 0xf6),
QMP_PHY_INIT_CFG(QSERDES_V4_20_TX_LANE_MODE_3, 0x13),
QMP_PHY_INIT_CFG(QSERDES_V4_20_TX_VMODE_CTRL1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_20_TX_PI_QEC_CTRL, 0x00),
};
static const struct qmp_phy_init_tbl sdx55_qmp_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_FO_GAIN_RATE2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_UCDR_PI_CONTROLS, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_AUX_DATA_TCOARSE_TFINE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_DFE_3, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_DFE_DAC_ENABLE1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_DFE_DAC_ENABLE2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_VGA_CAL_CNTRL2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x27),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE_0_1_B1, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE_0_1_B2, 0x5a),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE_0_1_B3, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE_0_1_B4, 0x37),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE2_B0, 0xbd),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE2_B1, 0xf9),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE2_B2, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE2_B3, 0xce),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE2_B4, 0x62),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE3_B0, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE3_B1, 0x7d),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE3_B2, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE3_B3, 0xcf),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE3_B4, 0xd6),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_PHPRE_CTRL, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_MARG_COARSE_CTRL2, 0x12),
};
static const struct qmp_phy_init_tbl sdx55_qmp_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_RX_SIGDET_LVL, 0x77),
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_EQ_CONFIG2, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_EQ_CONFIG4, 0x16),
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_EQ_CONFIG5, 0x02),
};
static const struct qmp_phy_init_tbl sdx55_qmp_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_EQ_CONFIG1, 0x17),
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_G3_RXEQEVAL_TIME, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_G4_RXEQEVAL_TIME, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_G4_EQ_CONFIG2, 0x01),
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_G4_EQ_CONFIG5, 0x02),
};
static const struct qmp_phy_init_tbl sdx55_qmp_pcie_rc_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00),
};
static const struct qmp_phy_init_tbl sdx55_qmp_pcie_ep_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_LANE1_INSIG_SW_CTRL2, 0x00),
QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_LANE1_INSIG_MX_CTRL2, 0x00),
};
static const struct qmp_phy_init_tbl sdx65_qmp_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BG_TIMER, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYS_CLK_CTRL, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x27),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x19),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x46),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_CFG, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x19),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x28),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE0, 0xfb),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN1_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE1, 0xfb),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN1_MODE1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x60),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MISC1, 0x88),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MODE, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MODE_CONTD, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_DC_LEVEL_CTRL, 0x0f),
};
static const struct qmp_phy_init_tbl sdx65_qmp_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_2, 0xf6),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_3, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_VMODE_CTRL1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_PI_QEC_CTRL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_TX, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_RX, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RCV_DETECT_LVL_2, 0x12),
};
static const struct qmp_phy_init_tbl sdx65_qmp_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_0_1, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_2, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_PRE_THRESH1, 0x3e),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_PRE_THRESH2, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH2, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_MAIN_THRESH1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_MAIN_THRESH2, 0x1d),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_CNTRL1, 0x44),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_CNTRL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x74),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_SIGDET_ENABLES, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_SIGDET_DEGLITCH_CNTRL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B0, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B1, 0xcc),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B3, 0xcc),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B4, 0x64),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B5, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B6, 0x29),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_PHPRE_CTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH4_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH5_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH6_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE3, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_PI_CONTROLS, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_2_3, 0x37),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_IDAC_SAOFFSET, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_3, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_DAC_ENABLE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_DAC_ENABLE2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_MAN_VAL, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_GM_CAL, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B0, 0xc5),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B1, 0xac),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B2, 0xb6),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B3, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B4, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B5, 0xfb),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B6, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B0, 0xc5),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B1, 0xee),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B2, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B3, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B4, 0x81),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B5, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B6, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_EN_TIMER, 0x28),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
};
static const struct qmp_phy_init_tbl sdx65_qmp_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_G3S2_PRE_GAIN, 0x2e),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG2, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG4, 0x16),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG5, 0x22),
};
static const struct qmp_phy_init_tbl sdx65_qmp_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_EQ_CONFIG1, 0x16),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_RX_MARGINING_CONFIG3, 0x28),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_OSC_DTCT_MODE2_CONFIG5, 0x08),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_EQ_CONFIG2, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_EQ_CONFIG5, 0x02),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_PRE_GAIN, 0x2e),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_LANE1_INSIG_SW_CTRL2, 0x00),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_LANE1_INSIG_MX_CTRL2, 0x00),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen3_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_SELECT, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x42),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE0, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE2_MODE1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE1, 0xb4),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_HSCLK_SEL, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x68),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xa2),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0x4c),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_ENABLE1, 0x90),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen3x1_pcie_rc_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_BUF_ENABLE, 0x07),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen3x1_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0x75),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x04),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen3_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xd8),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa6),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH3, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_TX_ADAPT_POST_THRESH, 0xf0),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen3x1_pcie_rc_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH4, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0xf0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen3_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0x77),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_RATE_SLEW_CNTRL1, 0x0b),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x05),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen3x1_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_INT_AUX_CLK_CONFIG1, 0x00),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_EQ_CONFIG2, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
};
static const struct qmp_phy_init_tbl sm8350_qmp_gen3x1_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0x75),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x1d),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0c),
};
static const struct qmp_phy_init_tbl sm8350_qmp_gen3x1_pcie_rc_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0xf0),
};
static const struct qmp_phy_init_tbl sm8350_qmp_gen3x2_pcie_rc_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f),
};
static const struct qmp_phy_init_tbl sm8350_qmp_gen3x2_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG_LANE(QSERDES_V5_TX_PI_QEC_CTRL, 0x02, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V5_TX_PI_QEC_CTRL, 0x04, 2),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x1d),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0c),
};
static const struct qmp_phy_init_tbl sm8350_qmp_gen3x2_pcie_rc_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG2, 0x0f),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x46),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_CFG, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MISC1, 0x88),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MODE, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_DC_LEVEL_CTRL, 0x0f),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_rc_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0x97),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0xd0),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_SELECT, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x20),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_2, 0xf6),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_TX, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_RX, 0x0c),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_PI_CONTROLS, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B1, 0xcc),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B3, 0xcc),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B5, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B6, 0x29),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B0, 0xc5),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B1, 0xad),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B2, 0xb6),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B3, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B4, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B5, 0xfb),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B6, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B0, 0xc7),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B1, 0xef),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B2, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B3, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B4, 0x81),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B5, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B6, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_PHPRE_CTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_0_1, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_2_3, 0x37),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_3, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH4_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH5_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH6_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE3, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_MAN_VAL, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_IDAC_SAOFFSET, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_DAC_ENABLE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_GM_CAL, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH2, 0x1f),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG4, 0x16),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG5, 0x22),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_G3S2_PRE_GAIN, 0x2e),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_RX_SIGDET_LVL, 0x99),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_EQ_CONFIG5, 0x02),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_EQ_CONFIG1, 0x16),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_RX_MARGINING_CONFIG3, 0x28),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_PRE_GAIN, 0x2e),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_rc_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_PRESET_P10_POST, 0x00),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_ep_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BG_TIMER, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYS_CLK_CTRL, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x27),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x17),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x19),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x19),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x28),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE0, 0xfb),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN1_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE1, 0xfb),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN1_MODE1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x60),
};
static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_ep_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_OSC_DTCT_MODE2_CONFIG5, 0x08),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen3x2_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER1, 0x62),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER2, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE0, 0xf8),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE1, 0x93),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYS_CLK_CTRL, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_IVCO, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x42),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE1, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE1, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x41),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_MAP, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_SELECT, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORECLK_DIV_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_CONFIG_1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_ADDITIONAL_MISC_3, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORE_CLK_EN, 0xa0),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen3x2_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_1, 0x15),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_4, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_PI_QEC_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_RX, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_TX, 0x18),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen3x2_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_GM_CAL, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_00_HIGH, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_00_HIGH2, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_00_HIGH3, 0xb7),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_00_HIGH4, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_00_LOW, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH2, 0x9c),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH3, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH4, 0x89),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_10_HIGH, 0x94),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_10_HIGH2, 0x5b),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_10_HIGH3, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_10_HIGH4, 0x89),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_TX_ADAPT_POST_THRESH, 0xf0),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_FO_GAIN, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SO_GAIN, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_THRESH1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_VGA_CAL_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIDGET_ENABLES, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_IDAC_TSETTLE_LOW, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIGDET_CAL_TRIM, 0x08),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen3x2_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V6_PCS_REFGEN_REQ_CONFIG1, 0x05),
QMP_PHY_INIT_CFG(QPHY_V6_PCS_RX_SIGDET_LVL, 0x77),
QMP_PHY_INIT_CFG(QPHY_V6_PCS_RATE_SLEW_CNTRL1, 0x0b),
QMP_PHY_INIT_CFG(QPHY_V6_PCS_EQ_CONFIG2, 0x0f),
QMP_PHY_INIT_CFG(QPHY_V6_PCS_PCS_TX_RX_CONFIG, 0x8c),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen3x2_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_PCS_PCIE_POWER_STATE_CONFIG2, 0x1d),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_PCS_PCIE_POWER_STATE_CONFIG4, 0x07),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE1, 0x26),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE1, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORECLK_DIV_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE1, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE1, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE1, 0x68),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE1, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE1, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE0, 0xf8),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CORE_CLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x41),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0xaa),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_HS_SWITCH_SEL_1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_BG_TIMER, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER1, 0x62),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER2, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_POST_DIV_MUX, 0x40),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_BIAS_EN_CLK_BUFLR_EN, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYS_CLK_CTRL, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x46),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_CFG, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_MAP, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_SELECT, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORE_CLK_EN, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_CONFIG_1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_MISC_1, 0x88),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_MODE, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_VCO_DC_LEVEL_CTRL, 0x0f),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_ln_shrd_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RXCLK_DIV2_CTRL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_Q_EN_RATES, 0xe),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_DFE_DAC_ENABLE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_TX_ADAPT_POST_THRESH1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_TX_ADAPT_POST_THRESH2, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B0, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B1, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B2, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B3, 0x9a),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B4, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B5, 0xb6),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B6, 0x64),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH1_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH1_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH2_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH2_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH3_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH3_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH4_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH5_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH6_RATE3, 0x1f),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_RES_CODE_LANE_OFFSET_TX, 0x1d),
QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_RES_CODE_LANE_OFFSET_RX, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_LANE_MODE_1, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_LANE_MODE_2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_LANE_MODE_3, 0x51),
QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_TRAN_DRVR_EMP_EN, 0x34),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_UCDR_FO_GAIN_RATE_2, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_UCDR_FO_GAIN_RATE_3, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_UCDR_PI_CONTROLS, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_UCDR_SO_ACC_DEFAULT_VAL_RATE3, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_IVCM_CAL_CTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_IVCM_POSTCAL_OFFSET, 0x7c),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_DFE_3, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_VGA_CAL_MAN_VAL, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_GM_CAL, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_EQU_ADAPTOR_CNTRL4, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_SIGDET_ENABLES, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_PHPRE_CTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_Q_PI_INTRINSIC_BIAS_RATE32, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B1, 0xb3),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B2, 0x58),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B3, 0x9a),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B4, 0x26),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B5, 0xb6),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B6, 0xee),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B0, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B1, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B2, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B3, 0xdf),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B4, 0x78),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B5, 0x76),
QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B6, 0xff),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_G3S2_PRE_GAIN, 0x2e),
QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_COM_ELECIDLE_DLY_SEL, 0x25),
QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_EQ_CONFIG4, 0x00),
QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_EQ_CONFIG5, 0x22),
QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_TX_RX_CONFIG1, 0x04),
QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_TX_RX_CONFIG2, 0x02),
};
static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_ENDPOINT_REFCLK_DRIVE, 0xc1),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_OSC_DTCT_ATCIONS, 0x00),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_EQ_CONFIG1, 0x16),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_EQ_CONFIG5, 0x02),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_G4_PRE_GAIN, 0x2e),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_RX_MARGINING_CONFIG1, 0x03),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_RX_MARGINING_CONFIG3, 0x28),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_TX_RX_CONFIG, 0xc0),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_POWER_STATE_CONFIG2, 0x1d),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_RX_MARGINING_CONFIG5, 0x0f),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_G3_FOM_EQ_CONFIG5, 0xf2),
QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_G4_FOM_EQ_CONFIG5, 0xf2),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x2_pcie_serdes_alt_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x46),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_CFG, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MISC1, 0x88),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x60),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MODE, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_DC_LEVEL_CTRL, 0x0f),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x2_pcie_rc_serdes_alt_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0x97),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0xd0),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_SELECT, 0x34),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x2_pcie_rx_alt_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_PI_CONTROLS, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B0, 0x9a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B1, 0xb0),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B2, 0x92),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B3, 0xf0),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B4, 0x42),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B5, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B6, 0x29),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B0, 0x9a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B1, 0xfb),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B2, 0x92),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B3, 0xec),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B4, 0x43),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B5, 0xdd),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B6, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B0, 0xf3),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B1, 0xf8),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B2, 0xec),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B3, 0xd6),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B4, 0x83),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B5, 0xf5),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B6, 0x5e),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_PHPRE_CTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_0_1, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_2_3, 0x37),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_3, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH4_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH5_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH6_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_Q_PI_INTRINSIC_BIAS_RATE32, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE3, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_SO_GAIN_RATE3, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_CNTRL1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_MAN_VAL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x7c),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_IDAC_SAOFFSET, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_DAC_ENABLE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_GM_CAL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH2, 0x1f),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4_pcie_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_TX, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_RX, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_2, 0xf6),
QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_3, 0x0f),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4_pcie_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_EQ_CONFIG1, 0x16),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_EQ_CONFIG5, 0x02),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_PRE_GAIN, 0x2e),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_RX_MARGINING_CONFIG3, 0x28),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4_pcie_rc_pcs_misc_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_POWER_STATE_CONFIG2, 0x1d),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x2_pcie_pcs_alt_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG4, 0x16),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG5, 0x22),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_LANE1_INSIG_SW_CTRL2, 0x00),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_LANE1_INSIG_MX_CTRL2, 0x00),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_G3S2_PRE_GAIN, 0x2e),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_RX_SIGDET_LVL, 0x66),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x4_pcie_rx_alt_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_0_1, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_2_3, 0x37),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_3, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_DAC_ENABLE1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_GM_CAL, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_PHPRE_CTRL, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x7c),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_IDAC_SAOFFSET, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE210, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH4_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH5_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH6_RATE3, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_Q_PI_INTRINSIC_BIAS_RATE32, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B0, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B1, 0xb0),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B2, 0x92),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B3, 0xf0),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B4, 0x42),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B5, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B6, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B0, 0x9a),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B1, 0xb6),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B2, 0x92),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B3, 0xf0),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B4, 0x43),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B5, 0xdd),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B6, 0x0d),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B0, 0xf3),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B1, 0xf6),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B2, 0xee),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B3, 0xd2),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B4, 0x83),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B5, 0xf9),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B6, 0x3d),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH2, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE3, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_SO_GAIN_RATE3, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_PI_CONTROLS, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_CNTRL1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_MAN_VAL, 0x08),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x4_pcie_pcs_alt_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG4, 0x16),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG5, 0x22),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_G3S2_PRE_GAIN, 0x2e),
QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_RX_SIGDET_LVL, 0x66),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x4_pcie_serdes_alt_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x46),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_CFG, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MISC1, 0x88),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x60),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_CONFIG, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MODE, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_DC_LEVEL_CTRL, 0x0f),
};
static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x4_pcie_rc_serdes_alt_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0x97),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x1c),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_ENABLE1, 0x90),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0xd0),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0x55),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_SELECT, 0x34),
};
struct qmp_pcie_offsets {
u16 serdes;
u16 pcs;
u16 pcs_misc;
u16 tx;
u16 rx;
u16 tx2;
u16 rx2;
u16 ln_shrd;
};
struct qmp_phy_cfg_tbls {
const struct qmp_phy_init_tbl *serdes;
int serdes_num;
const struct qmp_phy_init_tbl *tx;
int tx_num;
const struct qmp_phy_init_tbl *rx;
int rx_num;
const struct qmp_phy_init_tbl *pcs;
int pcs_num;
const struct qmp_phy_init_tbl *pcs_misc;
int pcs_misc_num;
const struct qmp_phy_init_tbl *ln_shrd;
int ln_shrd_num;
};
/* struct qmp_phy_cfg - per-PHY initialization config */
struct qmp_phy_cfg {
int lanes;
const struct qmp_pcie_offsets *offsets;
/* Main init sequence for PHY blocks - serdes, tx, rx, pcs */
const struct qmp_phy_cfg_tbls tbls;
/*
* Additional init sequences for PHY blocks, providing additional
* register programming. They are used for providing separate sequences
* for the Root Complex and End Point use cases.
*
* If EP mode is not supported, both tables can be left unset.
*/
const struct qmp_phy_cfg_tbls *tbls_rc;
const struct qmp_phy_cfg_tbls *tbls_ep;
const struct qmp_phy_init_tbl *serdes_4ln_tbl;
int serdes_4ln_num;
/* resets to be requested */
const char * const *reset_list;
int num_resets;
/* regulators to be requested */
const char * const *vreg_list;
int num_vregs;
/* array of registers with different offsets */
const unsigned int *regs;
unsigned int pwrdn_ctrl;
/* bit offset of PHYSTATUS in QPHY_PCS_STATUS register */
unsigned int phy_status;
bool skip_start_delay;
bool has_nocsr_reset;
/* QMP PHY pipe clock interface rate */
unsigned long pipe_clock_rate;
};
struct qmp_pcie {
struct device *dev;
const struct qmp_phy_cfg *cfg;
bool tcsr_4ln_config;
void __iomem *serdes;
void __iomem *pcs;
void __iomem *pcs_misc;
void __iomem *tx;
void __iomem *rx;
void __iomem *tx2;
void __iomem *rx2;
void __iomem *ln_shrd;
void __iomem *port_b;
struct clk_bulk_data *clks;
struct clk_bulk_data pipe_clks[2];
int num_pipe_clks;
struct reset_control_bulk_data *resets;
struct reset_control *nocsr_reset;
struct regulator_bulk_data *vregs;
struct phy *phy;
int mode;
struct clk_fixed_rate pipe_clk_fixed;
};
static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg |= val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg &= ~val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
/* list of clocks required by phy */
static const char * const qmp_pciephy_clk_l[] = {
"aux", "cfg_ahb", "ref", "refgen", "rchng", "phy_aux",
};
/* list of regulators */
static const char * const qmp_phy_vreg_l[] = {
"vdda-phy", "vdda-pll",
};
static const char * const sm8550_qmp_phy_vreg_l[] = {
"vdda-phy", "vdda-pll", "vdda-qref",
};
/* list of resets */
static const char * const ipq8074_pciephy_reset_l[] = {
"phy", "common",
};
static const char * const sdm845_pciephy_reset_l[] = {
"phy",
};
static const struct qmp_pcie_offsets qmp_pcie_offsets_qhp = {
.serdes = 0,
.pcs = 0x1800,
.tx = 0x0800,
/* no .rx for QHP */
};
static const struct qmp_pcie_offsets qmp_pcie_offsets_v2 = {
.serdes = 0,
.pcs = 0x0800,
.tx = 0x0200,
.rx = 0x0400,
};
static const struct qmp_pcie_offsets qmp_pcie_offsets_v3 = {
.serdes = 0,
.pcs = 0x0800,
.pcs_misc = 0x0600,
.tx = 0x0200,
.rx = 0x0400,
};
static const struct qmp_pcie_offsets qmp_pcie_offsets_v4x1 = {
.serdes = 0,
.pcs = 0x0800,
.pcs_misc = 0x0c00,
.tx = 0x0200,
.rx = 0x0400,
};
static const struct qmp_pcie_offsets qmp_pcie_offsets_v4x2 = {
.serdes = 0,
.pcs = 0x0a00,
.pcs_misc = 0x0e00,
.tx = 0x0200,
.rx = 0x0400,
.tx2 = 0x0600,
.rx2 = 0x0800,
};
static const struct qmp_pcie_offsets qmp_pcie_offsets_v4_20 = {
.serdes = 0x1000,
.pcs = 0x1200,
.pcs_misc = 0x1600,
.tx = 0x0000,
.rx = 0x0200,
.tx2 = 0x0800,
.rx2 = 0x0a00,
};
static const struct qmp_pcie_offsets qmp_pcie_offsets_v5 = {
.serdes = 0,
.pcs = 0x0200,
.pcs_misc = 0x0600,
.tx = 0x0e00,
.rx = 0x1000,
.tx2 = 0x1600,
.rx2 = 0x1800,
};
static const struct qmp_pcie_offsets qmp_pcie_offsets_v5_20 = {
.serdes = 0x1000,
.pcs = 0x1200,
.pcs_misc = 0x1400,
.tx = 0x0000,
.rx = 0x0200,
.tx2 = 0x0800,
.rx2 = 0x0a00,
};
static const struct qmp_pcie_offsets qmp_pcie_offsets_v5_30 = {
.serdes = 0x2000,
.pcs = 0x2200,
.pcs_misc = 0x2400,
.tx = 0x0,
.rx = 0x0200,
.tx2 = 0x3800,
.rx2 = 0x3a00,
};
static const struct qmp_pcie_offsets qmp_pcie_offsets_v6_20 = {
.serdes = 0x1000,
.pcs = 0x1200,
.pcs_misc = 0x1400,
.tx = 0x0000,
.rx = 0x0200,
.tx2 = 0x0800,
.rx2 = 0x0a00,
.ln_shrd = 0x0e00,
};
static const struct qmp_phy_cfg ipq8074_pciephy_cfg = {
.lanes = 1,
.offsets = &qmp_pcie_offsets_v2,
.tbls = {
.serdes = ipq8074_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(ipq8074_pcie_serdes_tbl),
.tx = ipq8074_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(ipq8074_pcie_tx_tbl),
.rx = ipq8074_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(ipq8074_pcie_rx_tbl),
.pcs = ipq8074_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(ipq8074_pcie_pcs_tbl),
},
.reset_list = ipq8074_pciephy_reset_l,
.num_resets = ARRAY_SIZE(ipq8074_pciephy_reset_l),
.vreg_list = NULL,
.num_vregs = 0,
.regs = pciephy_v2_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg ipq8074_pciephy_gen3_cfg = {
.lanes = 1,
.offsets = &qmp_pcie_offsets_v4x1,
.tbls = {
.serdes = ipq8074_pcie_gen3_serdes_tbl,
.serdes_num = ARRAY_SIZE(ipq8074_pcie_gen3_serdes_tbl),
.tx = ipq8074_pcie_gen3_tx_tbl,
.tx_num = ARRAY_SIZE(ipq8074_pcie_gen3_tx_tbl),
.rx = ipq8074_pcie_gen3_rx_tbl,
.rx_num = ARRAY_SIZE(ipq8074_pcie_gen3_rx_tbl),
.pcs = ipq8074_pcie_gen3_pcs_tbl,
.pcs_num = ARRAY_SIZE(ipq8074_pcie_gen3_pcs_tbl),
.pcs_misc = ipq8074_pcie_gen3_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(ipq8074_pcie_gen3_pcs_misc_tbl),
},
.reset_list = ipq8074_pciephy_reset_l,
.num_resets = ARRAY_SIZE(ipq8074_pciephy_reset_l),
.vreg_list = NULL,
.num_vregs = 0,
.regs = pciephy_v4_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
.pipe_clock_rate = 250000000,
};
static const struct qmp_phy_cfg ipq6018_pciephy_cfg = {
.lanes = 1,
.offsets = &qmp_pcie_offsets_v4x1,
.tbls = {
.serdes = ipq6018_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(ipq6018_pcie_serdes_tbl),
.tx = ipq6018_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(ipq6018_pcie_tx_tbl),
.rx = ipq6018_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(ipq6018_pcie_rx_tbl),
.pcs = ipq6018_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(ipq6018_pcie_pcs_tbl),
.pcs_misc = ipq6018_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(ipq6018_pcie_pcs_misc_tbl),
},
.reset_list = ipq8074_pciephy_reset_l,
.num_resets = ARRAY_SIZE(ipq8074_pciephy_reset_l),
.vreg_list = NULL,
.num_vregs = 0,
.regs = pciephy_v4_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sdm845_qmp_pciephy_cfg = {
.lanes = 1,
.offsets = &qmp_pcie_offsets_v3,
.tbls = {
.serdes = sdm845_qmp_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sdm845_qmp_pcie_serdes_tbl),
.tx = sdm845_qmp_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sdm845_qmp_pcie_tx_tbl),
.rx = sdm845_qmp_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sdm845_qmp_pcie_rx_tbl),
.pcs = sdm845_qmp_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sdm845_qmp_pcie_pcs_tbl),
.pcs_misc = sdm845_qmp_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sdm845_qmp_pcie_pcs_misc_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v3_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sdm845_qhp_pciephy_cfg = {
.lanes = 1,
.offsets = &qmp_pcie_offsets_qhp,
.tbls = {
.serdes = sdm845_qhp_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sdm845_qhp_pcie_serdes_tbl),
.tx = sdm845_qhp_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sdm845_qhp_pcie_tx_tbl),
.pcs = sdm845_qhp_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sdm845_qhp_pcie_pcs_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = sdm845_qhp_pciephy_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sm8250_qmp_gen3x1_pciephy_cfg = {
.lanes = 1,
.offsets = &qmp_pcie_offsets_v4x1,
.tbls = {
.serdes = sm8250_qmp_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8250_qmp_pcie_serdes_tbl),
.tx = sm8250_qmp_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sm8250_qmp_pcie_tx_tbl),
.rx = sm8250_qmp_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sm8250_qmp_pcie_rx_tbl),
.pcs = sm8250_qmp_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8250_qmp_pcie_pcs_tbl),
.pcs_misc = sm8250_qmp_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8250_qmp_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.serdes = sm8250_qmp_gen3x1_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8250_qmp_gen3x1_pcie_serdes_tbl),
.rx = sm8250_qmp_gen3x1_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sm8250_qmp_gen3x1_pcie_rx_tbl),
.pcs = sm8250_qmp_gen3x1_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8250_qmp_gen3x1_pcie_pcs_tbl),
.pcs_misc = sm8250_qmp_gen3x1_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8250_qmp_gen3x1_pcie_pcs_misc_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v4_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sm8250_qmp_gen3x2_pciephy_cfg = {
.lanes = 2,
.offsets = &qmp_pcie_offsets_v4x2,
.tbls = {
.serdes = sm8250_qmp_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8250_qmp_pcie_serdes_tbl),
.tx = sm8250_qmp_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sm8250_qmp_pcie_tx_tbl),
.rx = sm8250_qmp_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sm8250_qmp_pcie_rx_tbl),
.pcs = sm8250_qmp_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8250_qmp_pcie_pcs_tbl),
.pcs_misc = sm8250_qmp_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8250_qmp_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.tx = sm8250_qmp_gen3x2_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sm8250_qmp_gen3x2_pcie_tx_tbl),
.rx = sm8250_qmp_gen3x2_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sm8250_qmp_gen3x2_pcie_rx_tbl),
.pcs = sm8250_qmp_gen3x2_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8250_qmp_gen3x2_pcie_pcs_tbl),
.pcs_misc = sm8250_qmp_gen3x2_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8250_qmp_gen3x2_pcie_pcs_misc_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v4_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg msm8998_pciephy_cfg = {
.lanes = 1,
.offsets = &qmp_pcie_offsets_v3,
.tbls = {
.serdes = msm8998_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(msm8998_pcie_serdes_tbl),
.tx = msm8998_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(msm8998_pcie_tx_tbl),
.rx = msm8998_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(msm8998_pcie_rx_tbl),
.pcs = msm8998_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(msm8998_pcie_pcs_tbl),
},
.reset_list = ipq8074_pciephy_reset_l,
.num_resets = ARRAY_SIZE(ipq8074_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v3_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
.skip_start_delay = true,
};
static const struct qmp_phy_cfg sc8180x_pciephy_cfg = {
.lanes = 2,
.offsets = &qmp_pcie_offsets_v4x2,
.tbls = {
.serdes = sc8180x_qmp_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sc8180x_qmp_pcie_serdes_tbl),
.tx = sc8180x_qmp_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sc8180x_qmp_pcie_tx_tbl),
.rx = sc8180x_qmp_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sc8180x_qmp_pcie_rx_tbl),
.pcs = sc8180x_qmp_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sc8180x_qmp_pcie_pcs_tbl),
.pcs_misc = sc8180x_qmp_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sc8180x_qmp_pcie_pcs_misc_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v4_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sc8280xp_qmp_gen3x1_pciephy_cfg = {
.lanes = 1,
.offsets = &qmp_pcie_offsets_v5,
.tbls = {
.serdes = sc8280xp_qmp_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sc8280xp_qmp_pcie_serdes_tbl),
.tx = sc8280xp_qmp_gen3x1_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x1_pcie_tx_tbl),
.rx = sc8280xp_qmp_gen3x1_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x1_pcie_rx_tbl),
.pcs = sc8280xp_qmp_gen3x1_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sc8280xp_qmp_gen3x1_pcie_pcs_tbl),
.pcs_misc = sc8280xp_qmp_gen3x1_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sc8280xp_qmp_gen3x1_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.serdes = sc8280xp_qmp_gen3x1_pcie_rc_serdes_tbl,
.serdes_num = ARRAY_SIZE(sc8280xp_qmp_gen3x1_pcie_rc_serdes_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sc8280xp_qmp_gen3x2_pciephy_cfg = {
.lanes = 2,
.offsets = &qmp_pcie_offsets_v5,
.tbls = {
.serdes = sc8280xp_qmp_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sc8280xp_qmp_pcie_serdes_tbl),
.tx = sc8280xp_qmp_gen3x2_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_tx_tbl),
.rx = sc8280xp_qmp_gen3x2_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_rx_tbl),
.pcs = sc8280xp_qmp_gen3x2_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_pcs_tbl),
.pcs_misc = sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.serdes = sc8280xp_qmp_gen3x2_pcie_rc_serdes_tbl,
.serdes_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_rc_serdes_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sc8280xp_qmp_gen3x4_pciephy_cfg = {
.lanes = 4,
.offsets = &qmp_pcie_offsets_v5,
.tbls = {
.serdes = sc8280xp_qmp_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sc8280xp_qmp_pcie_serdes_tbl),
.tx = sc8280xp_qmp_gen3x2_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_tx_tbl),
.rx = sc8280xp_qmp_gen3x2_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_rx_tbl),
.pcs = sc8280xp_qmp_gen3x2_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_pcs_tbl),
.pcs_misc = sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.serdes = sc8280xp_qmp_gen3x2_pcie_rc_serdes_tbl,
.serdes_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_rc_serdes_tbl),
},
.serdes_4ln_tbl = sc8280xp_qmp_gen3x4_pcie_serdes_4ln_tbl,
.serdes_4ln_num = ARRAY_SIZE(sc8280xp_qmp_gen3x4_pcie_serdes_4ln_tbl),
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sdx55_qmp_pciephy_cfg = {
.lanes = 2,
.offsets = &qmp_pcie_offsets_v4_20,
.tbls = {
.serdes = sdx55_qmp_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sdx55_qmp_pcie_serdes_tbl),
.tx = sdx55_qmp_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sdx55_qmp_pcie_tx_tbl),
.rx = sdx55_qmp_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sdx55_qmp_pcie_rx_tbl),
.pcs = sdx55_qmp_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sdx55_qmp_pcie_pcs_tbl),
.pcs_misc = sdx55_qmp_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sdx55_qmp_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.serdes = sdx55_qmp_pcie_rc_serdes_tbl,
.serdes_num = ARRAY_SIZE(sdx55_qmp_pcie_rc_serdes_tbl),
.pcs_misc = sdx55_qmp_pcie_rc_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sdx55_qmp_pcie_rc_pcs_misc_tbl),
},
.tbls_ep = &(const struct qmp_phy_cfg_tbls) {
.serdes = sdx55_qmp_pcie_ep_serdes_tbl,
.serdes_num = ARRAY_SIZE(sdx55_qmp_pcie_ep_serdes_tbl),
.pcs_misc = sdx55_qmp_pcie_ep_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sdx55_qmp_pcie_ep_pcs_misc_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v4_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS_4_20,
};
static const struct qmp_phy_cfg sm8350_qmp_gen3x1_pciephy_cfg = {
.lanes = 1,
.offsets = &qmp_pcie_offsets_v5,
.tbls = {
.serdes = sm8450_qmp_gen3_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_serdes_tbl),
.tx = sm8350_qmp_gen3x1_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sm8350_qmp_gen3x1_pcie_tx_tbl),
.rx = sm8450_qmp_gen3_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_rx_tbl),
.pcs = sm8450_qmp_gen3_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_pcs_tbl),
.pcs_misc = sm8450_qmp_gen3x1_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.serdes = sm8450_qmp_gen3x1_pcie_rc_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_rc_serdes_tbl),
.rx = sm8350_qmp_gen3x1_pcie_rc_rx_tbl,
.rx_num = ARRAY_SIZE(sm8350_qmp_gen3x1_pcie_rc_rx_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sm8350_qmp_gen3x2_pciephy_cfg = {
.lanes = 2,
.offsets = &qmp_pcie_offsets_v5,
.tbls = {
.serdes = sm8450_qmp_gen3_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_serdes_tbl),
.tx = sm8350_qmp_gen3x2_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sm8350_qmp_gen3x2_pcie_tx_tbl),
.rx = sm8450_qmp_gen3_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_rx_tbl),
.pcs = sm8450_qmp_gen3_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_pcs_tbl),
.pcs_misc = sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.rx = sm8350_qmp_gen3x2_pcie_rc_rx_tbl,
.rx_num = ARRAY_SIZE(sm8350_qmp_gen3x2_pcie_rc_rx_tbl),
.pcs = sm8350_qmp_gen3x2_pcie_rc_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8350_qmp_gen3x2_pcie_rc_pcs_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sdx65_qmp_pciephy_cfg = {
.lanes = 2,
.offsets = &qmp_pcie_offsets_v6_20,
.tbls = {
.serdes = sdx65_qmp_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sdx65_qmp_pcie_serdes_tbl),
.tx = sdx65_qmp_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sdx65_qmp_pcie_tx_tbl),
.rx = sdx65_qmp_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sdx65_qmp_pcie_rx_tbl),
.pcs = sdx65_qmp_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sdx65_qmp_pcie_pcs_tbl),
.pcs_misc = sdx65_qmp_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sdx65_qmp_pcie_pcs_misc_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN,
.phy_status = PHYSTATUS_4_20,
};
static const struct qmp_phy_cfg sm8450_qmp_gen3x1_pciephy_cfg = {
.lanes = 1,
.offsets = &qmp_pcie_offsets_v5,
.tbls = {
.serdes = sm8450_qmp_gen3_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_serdes_tbl),
.tx = sm8450_qmp_gen3x1_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_tx_tbl),
.rx = sm8450_qmp_gen3_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_rx_tbl),
.pcs = sm8450_qmp_gen3_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_pcs_tbl),
.pcs_misc = sm8450_qmp_gen3x1_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.serdes = sm8450_qmp_gen3x1_pcie_rc_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_rc_serdes_tbl),
.rx = sm8450_qmp_gen3x1_pcie_rc_rx_tbl,
.rx_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_rc_rx_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sm8450_qmp_gen4x2_pciephy_cfg = {
.lanes = 2,
.offsets = &qmp_pcie_offsets_v5_20,
.tbls = {
.serdes = sm8450_qmp_gen4x2_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_serdes_tbl),
.tx = sm8450_qmp_gen4x2_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_tx_tbl),
.rx = sm8450_qmp_gen4x2_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_rx_tbl),
.pcs = sm8450_qmp_gen4x2_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_pcs_tbl),
.pcs_misc = sm8450_qmp_gen4x2_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.serdes = sm8450_qmp_gen4x2_pcie_rc_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_rc_serdes_tbl),
.pcs_misc = sm8450_qmp_gen4x2_pcie_rc_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_rc_pcs_misc_tbl),
},
.tbls_ep = &(const struct qmp_phy_cfg_tbls) {
.serdes = sm8450_qmp_gen4x2_pcie_ep_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_ep_serdes_tbl),
.pcs_misc = sm8450_qmp_gen4x2_pcie_ep_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_ep_pcs_misc_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS_4_20,
};
static const struct qmp_phy_cfg sm8550_qmp_gen3x2_pciephy_cfg = {
.lanes = 2,
.offsets = &qmp_pcie_offsets_v5,
.tbls = {
.serdes = sm8550_qmp_gen3x2_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8550_qmp_gen3x2_pcie_serdes_tbl),
.tx = sm8550_qmp_gen3x2_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sm8550_qmp_gen3x2_pcie_tx_tbl),
.rx = sm8550_qmp_gen3x2_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sm8550_qmp_gen3x2_pcie_rx_tbl),
.pcs = sm8550_qmp_gen3x2_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8550_qmp_gen3x2_pcie_pcs_tbl),
.pcs_misc = sm8550_qmp_gen3x2_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8550_qmp_gen3x2_pcie_pcs_misc_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS,
};
static const struct qmp_phy_cfg sm8550_qmp_gen4x2_pciephy_cfg = {
.lanes = 2,
.offsets = &qmp_pcie_offsets_v6_20,
.tbls = {
.serdes = sm8550_qmp_gen4x2_pcie_serdes_tbl,
.serdes_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_serdes_tbl),
.tx = sm8550_qmp_gen4x2_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_tx_tbl),
.rx = sm8550_qmp_gen4x2_pcie_rx_tbl,
.rx_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_rx_tbl),
.pcs = sm8550_qmp_gen4x2_pcie_pcs_tbl,
.pcs_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_pcs_tbl),
.pcs_misc = sm8550_qmp_gen4x2_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_pcs_misc_tbl),
.ln_shrd = sm8550_qmp_gen4x2_pcie_ln_shrd_tbl,
.ln_shrd_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_ln_shrd_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = sm8550_qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(sm8550_qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS_4_20,
.has_nocsr_reset = true,
};
static const struct qmp_phy_cfg sa8775p_qmp_gen4x2_pciephy_cfg = {
.lanes = 2,
.offsets = &qmp_pcie_offsets_v5_20,
.tbls = {
.serdes = sa8775p_qmp_gen4x2_pcie_serdes_alt_tbl,
.serdes_num = ARRAY_SIZE(sa8775p_qmp_gen4x2_pcie_serdes_alt_tbl),
.tx = sa8775p_qmp_gen4_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_tx_tbl),
.rx = sa8775p_qmp_gen4x2_pcie_rx_alt_tbl,
.rx_num = ARRAY_SIZE(sa8775p_qmp_gen4x2_pcie_rx_alt_tbl),
.pcs = sa8775p_qmp_gen4x2_pcie_pcs_alt_tbl,
.pcs_num = ARRAY_SIZE(sa8775p_qmp_gen4x2_pcie_pcs_alt_tbl),
.pcs_misc = sa8775p_qmp_gen4_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.serdes = sa8775p_qmp_gen4x2_pcie_rc_serdes_alt_tbl,
.serdes_num = ARRAY_SIZE(sa8775p_qmp_gen4x2_pcie_rc_serdes_alt_tbl),
.pcs_misc = sa8775p_qmp_gen4_pcie_rc_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_rc_pcs_misc_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS_4_20,
};
static const struct qmp_phy_cfg sa8775p_qmp_gen4x4_pciephy_cfg = {
.lanes = 4,
.offsets = &qmp_pcie_offsets_v5_30,
.tbls = {
.serdes = sa8775p_qmp_gen4x4_pcie_serdes_alt_tbl,
.serdes_num = ARRAY_SIZE(sa8775p_qmp_gen4x4_pcie_serdes_alt_tbl),
.tx = sa8775p_qmp_gen4_pcie_tx_tbl,
.tx_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_tx_tbl),
.rx = sa8775p_qmp_gen4x4_pcie_rx_alt_tbl,
.rx_num = ARRAY_SIZE(sa8775p_qmp_gen4x4_pcie_rx_alt_tbl),
.pcs = sa8775p_qmp_gen4x4_pcie_pcs_alt_tbl,
.pcs_num = ARRAY_SIZE(sa8775p_qmp_gen4x4_pcie_pcs_alt_tbl),
.pcs_misc = sa8775p_qmp_gen4_pcie_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_pcs_misc_tbl),
},
.tbls_rc = &(const struct qmp_phy_cfg_tbls) {
.serdes = sa8775p_qmp_gen4x4_pcie_rc_serdes_alt_tbl,
.serdes_num = ARRAY_SIZE(sa8775p_qmp_gen4x4_pcie_rc_serdes_alt_tbl),
.pcs_misc = sa8775p_qmp_gen4_pcie_rc_pcs_misc_tbl,
.pcs_misc_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_rc_pcs_misc_tbl),
},
.reset_list = sdm845_pciephy_reset_l,
.num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = pciephy_v5_regs_layout,
.pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL,
.phy_status = PHYSTATUS_4_20,
};
static void qmp_pcie_configure_lane(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num,
u8 lane_mask)
{
int i;
const struct qmp_phy_init_tbl *t = tbl;
if (!t)
return;
for (i = 0; i < num; i++, t++) {
if (!(t->lane_mask & lane_mask))
continue;
writel(t->val, base + t->offset);
}
}
static void qmp_pcie_configure(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num)
{
qmp_pcie_configure_lane(base, tbl, num, 0xff);
}
static void qmp_pcie_init_port_b(struct qmp_pcie *qmp, const struct qmp_phy_cfg_tbls *tbls)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
const struct qmp_pcie_offsets *offs = cfg->offsets;
void __iomem *tx3, *rx3, *tx4, *rx4;
tx3 = qmp->port_b + offs->tx;
rx3 = qmp->port_b + offs->rx;
tx4 = qmp->port_b + offs->tx2;
rx4 = qmp->port_b + offs->rx2;
qmp_pcie_configure_lane(tx3, tbls->tx, tbls->tx_num, 1);
qmp_pcie_configure_lane(rx3, tbls->rx, tbls->rx_num, 1);
qmp_pcie_configure_lane(tx4, tbls->tx, tbls->tx_num, 2);
qmp_pcie_configure_lane(rx4, tbls->rx, tbls->rx_num, 2);
}
static void qmp_pcie_init_registers(struct qmp_pcie *qmp, const struct qmp_phy_cfg_tbls *tbls)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *serdes = qmp->serdes;
void __iomem *tx = qmp->tx;
void __iomem *rx = qmp->rx;
void __iomem *tx2 = qmp->tx2;
void __iomem *rx2 = qmp->rx2;
void __iomem *pcs = qmp->pcs;
void __iomem *pcs_misc = qmp->pcs_misc;
void __iomem *ln_shrd = qmp->ln_shrd;
if (!tbls)
return;
qmp_pcie_configure(serdes, tbls->serdes, tbls->serdes_num);
qmp_pcie_configure_lane(tx, tbls->tx, tbls->tx_num, 1);
qmp_pcie_configure_lane(rx, tbls->rx, tbls->rx_num, 1);
if (cfg->lanes >= 2) {
qmp_pcie_configure_lane(tx2, tbls->tx, tbls->tx_num, 2);
qmp_pcie_configure_lane(rx2, tbls->rx, tbls->rx_num, 2);
}
qmp_pcie_configure(pcs, tbls->pcs, tbls->pcs_num);
qmp_pcie_configure(pcs_misc, tbls->pcs_misc, tbls->pcs_misc_num);
if (cfg->lanes >= 4 && qmp->tcsr_4ln_config) {
qmp_pcie_configure(serdes, cfg->serdes_4ln_tbl, cfg->serdes_4ln_num);
qmp_pcie_init_port_b(qmp, tbls);
}
qmp_pcie_configure(ln_shrd, tbls->ln_shrd, tbls->ln_shrd_num);
}
static int qmp_pcie_init(struct phy *phy)
{
struct qmp_pcie *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
int ret;
ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs);
if (ret) {
dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret);
return ret;
}
ret = reset_control_bulk_assert(cfg->num_resets, qmp->resets);
if (ret) {
dev_err(qmp->dev, "reset assert failed\n");
goto err_disable_regulators;
}
ret = reset_control_assert(qmp->nocsr_reset);
if (ret) {
dev_err(qmp->dev, "no-csr reset assert failed\n");
goto err_assert_reset;
}
usleep_range(200, 300);
ret = reset_control_bulk_deassert(cfg->num_resets, qmp->resets);
if (ret) {
dev_err(qmp->dev, "reset deassert failed\n");
goto err_assert_reset;
}
ret = clk_bulk_prepare_enable(ARRAY_SIZE(qmp_pciephy_clk_l), qmp->clks);
if (ret)
goto err_assert_reset;
return 0;
err_assert_reset:
reset_control_bulk_assert(cfg->num_resets, qmp->resets);
err_disable_regulators:
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
return ret;
}
static int qmp_pcie_exit(struct phy *phy)
{
struct qmp_pcie *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
reset_control_bulk_assert(cfg->num_resets, qmp->resets);
clk_bulk_disable_unprepare(ARRAY_SIZE(qmp_pciephy_clk_l), qmp->clks);
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
return 0;
}
static int qmp_pcie_power_on(struct phy *phy)
{
struct qmp_pcie *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
const struct qmp_phy_cfg_tbls *mode_tbls;
void __iomem *pcs = qmp->pcs;
void __iomem *status;
unsigned int mask, val;
int ret;
qphy_setbits(pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL],
cfg->pwrdn_ctrl);
if (qmp->mode == PHY_MODE_PCIE_RC)
mode_tbls = cfg->tbls_rc;
else
mode_tbls = cfg->tbls_ep;
qmp_pcie_init_registers(qmp, &cfg->tbls);
qmp_pcie_init_registers(qmp, mode_tbls);
ret = clk_bulk_prepare_enable(qmp->num_pipe_clks, qmp->pipe_clks);
if (ret)
return ret;
ret = reset_control_deassert(qmp->nocsr_reset);
if (ret) {
dev_err(qmp->dev, "no-csr reset deassert failed\n");
goto err_disable_pipe_clk;
}
/* Pull PHY out of reset state */
qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* start SerDes and Phy-Coding-Sublayer */
qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START);
if (!cfg->skip_start_delay)
usleep_range(1000, 1200);
status = pcs + cfg->regs[QPHY_PCS_STATUS];
mask = cfg->phy_status;
ret = readl_poll_timeout(status, val, !(val & mask), 200,
PHY_INIT_COMPLETE_TIMEOUT);
if (ret) {
dev_err(qmp->dev, "phy initialization timed-out\n");
goto err_disable_pipe_clk;
}
return 0;
err_disable_pipe_clk:
clk_bulk_disable_unprepare(qmp->num_pipe_clks, qmp->pipe_clks);
return ret;
}
static int qmp_pcie_power_off(struct phy *phy)
{
struct qmp_pcie *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
clk_bulk_disable_unprepare(qmp->num_pipe_clks, qmp->pipe_clks);
/* PHY reset */
qphy_setbits(qmp->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* stop SerDes and Phy-Coding-Sublayer */
qphy_clrbits(qmp->pcs, cfg->regs[QPHY_START_CTRL],
SERDES_START | PCS_START);
/* Put PHY into POWER DOWN state: active low */
qphy_clrbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL],
cfg->pwrdn_ctrl);
return 0;
}
static int qmp_pcie_enable(struct phy *phy)
{
int ret;
ret = qmp_pcie_init(phy);
if (ret)
return ret;
ret = qmp_pcie_power_on(phy);
if (ret)
qmp_pcie_exit(phy);
return ret;
}
static int qmp_pcie_disable(struct phy *phy)
{
int ret;
ret = qmp_pcie_power_off(phy);
if (ret)
return ret;
return qmp_pcie_exit(phy);
}
static int qmp_pcie_set_mode(struct phy *phy, enum phy_mode mode, int submode)
{
struct qmp_pcie *qmp = phy_get_drvdata(phy);
switch (submode) {
case PHY_MODE_PCIE_RC:
case PHY_MODE_PCIE_EP:
qmp->mode = submode;
break;
default:
dev_err(&phy->dev, "Unsupported submode %d\n", submode);
return -EINVAL;
}
return 0;
}
static const struct phy_ops qmp_pcie_phy_ops = {
.power_on = qmp_pcie_enable,
.power_off = qmp_pcie_disable,
.set_mode = qmp_pcie_set_mode,
.owner = THIS_MODULE,
};
static int qmp_pcie_vreg_init(struct qmp_pcie *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int num = cfg->num_vregs;
int i;
qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL);
if (!qmp->vregs)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->vregs[i].supply = cfg->vreg_list[i];
return devm_regulator_bulk_get(dev, num, qmp->vregs);
}
static int qmp_pcie_reset_init(struct qmp_pcie *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int i;
int ret;
qmp->resets = devm_kcalloc(dev, cfg->num_resets,
sizeof(*qmp->resets), GFP_KERNEL);
if (!qmp->resets)
return -ENOMEM;
for (i = 0; i < cfg->num_resets; i++)
qmp->resets[i].id = cfg->reset_list[i];
ret = devm_reset_control_bulk_get_exclusive(dev, cfg->num_resets, qmp->resets);
if (ret)
return dev_err_probe(dev, ret, "failed to get resets\n");
if (cfg->has_nocsr_reset) {
qmp->nocsr_reset = devm_reset_control_get_exclusive(dev, "phy_nocsr");
if (IS_ERR(qmp->nocsr_reset))
return dev_err_probe(dev, PTR_ERR(qmp->nocsr_reset),
"failed to get no-csr reset\n");
}
return 0;
}
static int qmp_pcie_clk_init(struct qmp_pcie *qmp)
{
struct device *dev = qmp->dev;
int num = ARRAY_SIZE(qmp_pciephy_clk_l);
int i;
qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL);
if (!qmp->clks)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->clks[i].id = qmp_pciephy_clk_l[i];
return devm_clk_bulk_get_optional(dev, num, qmp->clks);
}
static void phy_clk_release_provider(void *res)
{
of_clk_del_provider(res);
}
/*
* Register a fixed rate pipe clock.
*
* The <s>_pipe_clksrc generated by PHY goes to the GCC that gate
* controls it. The <s>_pipe_clk coming out of the GCC is requested
* by the PHY driver for its operations.
* We register the <s>_pipe_clksrc here. The gcc driver takes care
* of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk.
* Below picture shows this relationship.
*
* +---------------+
* | PHY block |<<---------------------------------------+
* | | |
* | +-------+ | +-----+ |
* I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+
* clk | +-------+ | +-----+
* +---------------+
*/
static int phy_pipe_clk_register(struct qmp_pcie *qmp, struct device_node *np)
{
struct clk_fixed_rate *fixed = &qmp->pipe_clk_fixed;
struct clk_init_data init = { };
int ret;
ret = of_property_read_string(np, "clock-output-names", &init.name);
if (ret) {
dev_err(qmp->dev, "%pOFn: No clock-output-names\n", np);
return ret;
}
init.ops = &clk_fixed_rate_ops;
/*
* Controllers using QMP PHY-s use 125MHz pipe clock interface
* unless other frequency is specified in the PHY config.
*/
if (qmp->cfg->pipe_clock_rate)
fixed->fixed_rate = qmp->cfg->pipe_clock_rate;
else
fixed->fixed_rate = 125000000;
fixed->hw.init = &init;
ret = devm_clk_hw_register(qmp->dev, &fixed->hw);
if (ret)
return ret;
ret = of_clk_add_hw_provider(np, of_clk_hw_simple_get, &fixed->hw);
if (ret)
return ret;
/*
* Roll a devm action because the clock provider is the child node, but
* the child node is not actually a device.
*/
return devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, np);
}
static int qmp_pcie_parse_dt_legacy(struct qmp_pcie *qmp, struct device_node *np)
{
struct platform_device *pdev = to_platform_device(qmp->dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
struct clk *clk;
qmp->serdes = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(qmp->serdes))
return PTR_ERR(qmp->serdes);
/*
* Get memory resources for the PHY:
* Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2.
* For dual lane PHYs: tx2 -> 3, rx2 -> 4, pcs_misc (optional) -> 5
* For single lane PHYs: pcs_misc (optional) -> 3.
*/
qmp->tx = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(qmp->tx))
return PTR_ERR(qmp->tx);
if (of_device_is_compatible(dev->of_node, "qcom,sdm845-qhp-pcie-phy"))
qmp->rx = qmp->tx;
else
qmp->rx = devm_of_iomap(dev, np, 1, NULL);
if (IS_ERR(qmp->rx))
return PTR_ERR(qmp->rx);
qmp->pcs = devm_of_iomap(dev, np, 2, NULL);
if (IS_ERR(qmp->pcs))
return PTR_ERR(qmp->pcs);
if (cfg->lanes >= 2) {
qmp->tx2 = devm_of_iomap(dev, np, 3, NULL);
if (IS_ERR(qmp->tx2))
return PTR_ERR(qmp->tx2);
qmp->rx2 = devm_of_iomap(dev, np, 4, NULL);
if (IS_ERR(qmp->rx2))
return PTR_ERR(qmp->rx2);
qmp->pcs_misc = devm_of_iomap(dev, np, 5, NULL);
} else {
qmp->pcs_misc = devm_of_iomap(dev, np, 3, NULL);
}
if (IS_ERR(qmp->pcs_misc) &&
of_device_is_compatible(dev->of_node, "qcom,ipq6018-qmp-pcie-phy"))
qmp->pcs_misc = qmp->pcs + 0x400;
if (IS_ERR(qmp->pcs_misc)) {
if (cfg->tbls.pcs_misc ||
(cfg->tbls_rc && cfg->tbls_rc->pcs_misc) ||
(cfg->tbls_ep && cfg->tbls_ep->pcs_misc)) {
return PTR_ERR(qmp->pcs_misc);
}
}
clk = devm_get_clk_from_child(dev, np, NULL);
if (IS_ERR(clk)) {
return dev_err_probe(dev, PTR_ERR(clk),
"failed to get pipe clock\n");
}
qmp->num_pipe_clks = 1;
qmp->pipe_clks[0].id = "pipe";
qmp->pipe_clks[0].clk = clk;
return 0;
}
static int qmp_pcie_get_4ln_config(struct qmp_pcie *qmp)
{
struct regmap *tcsr;
unsigned int args[2];
int ret;
tcsr = syscon_regmap_lookup_by_phandle_args(qmp->dev->of_node,
"qcom,4ln-config-sel",
ARRAY_SIZE(args), args);
if (IS_ERR(tcsr)) {
ret = PTR_ERR(tcsr);
if (ret == -ENOENT)
return 0;
dev_err(qmp->dev, "failed to lookup syscon: %d\n", ret);
return ret;
}
ret = regmap_test_bits(tcsr, args[0], BIT(args[1]));
if (ret < 0) {
dev_err(qmp->dev, "failed to read tcsr: %d\n", ret);
return ret;
}
qmp->tcsr_4ln_config = ret;
dev_dbg(qmp->dev, "4ln_config_sel = %d\n", qmp->tcsr_4ln_config);
return 0;
}
static int qmp_pcie_parse_dt(struct qmp_pcie *qmp)
{
struct platform_device *pdev = to_platform_device(qmp->dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
const struct qmp_pcie_offsets *offs = cfg->offsets;
struct device *dev = qmp->dev;
void __iomem *base;
int ret;
if (!offs)
return -EINVAL;
ret = qmp_pcie_get_4ln_config(qmp);
if (ret)
return ret;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
qmp->serdes = base + offs->serdes;
qmp->pcs = base + offs->pcs;
qmp->pcs_misc = base + offs->pcs_misc;
qmp->tx = base + offs->tx;
qmp->rx = base + offs->rx;
if (cfg->lanes >= 2) {
qmp->tx2 = base + offs->tx2;
qmp->rx2 = base + offs->rx2;
}
if (qmp->cfg->lanes >= 4 && qmp->tcsr_4ln_config) {
qmp->port_b = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(qmp->port_b))
return PTR_ERR(qmp->port_b);
}
if (cfg->tbls.ln_shrd)
qmp->ln_shrd = base + offs->ln_shrd;
qmp->num_pipe_clks = 2;
qmp->pipe_clks[0].id = "pipe";
qmp->pipe_clks[1].id = "pipediv2";
ret = devm_clk_bulk_get(dev, 1, qmp->pipe_clks);
if (ret)
return ret;
ret = devm_clk_bulk_get_optional(dev, qmp->num_pipe_clks - 1, qmp->pipe_clks + 1);
if (ret)
return ret;
return 0;
}
static int qmp_pcie_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct device_node *np;
struct qmp_pcie *qmp;
int ret;
qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL);
if (!qmp)
return -ENOMEM;
qmp->dev = dev;
qmp->cfg = of_device_get_match_data(dev);
if (!qmp->cfg)
return -EINVAL;
WARN_ON_ONCE(!qmp->cfg->pwrdn_ctrl);
WARN_ON_ONCE(!qmp->cfg->phy_status);
ret = qmp_pcie_clk_init(qmp);
if (ret)
return ret;
ret = qmp_pcie_reset_init(qmp);
if (ret)
return ret;
ret = qmp_pcie_vreg_init(qmp);
if (ret)
return ret;
/* Check for legacy binding with child node. */
np = of_get_next_available_child(dev->of_node, NULL);
if (np) {
ret = qmp_pcie_parse_dt_legacy(qmp, np);
} else {
np = of_node_get(dev->of_node);
ret = qmp_pcie_parse_dt(qmp);
}
if (ret)
goto err_node_put;
ret = phy_pipe_clk_register(qmp, np);
if (ret)
goto err_node_put;
qmp->mode = PHY_MODE_PCIE_RC;
qmp->phy = devm_phy_create(dev, np, &qmp_pcie_phy_ops);
if (IS_ERR(qmp->phy)) {
ret = PTR_ERR(qmp->phy);
dev_err(dev, "failed to create PHY: %d\n", ret);
goto err_node_put;
}
phy_set_drvdata(qmp->phy, qmp);
of_node_put(np);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
err_node_put:
of_node_put(np);
return ret;
}
static const struct of_device_id qmp_pcie_of_match_table[] = {
{
.compatible = "qcom,ipq6018-qmp-pcie-phy",
.data = &ipq6018_pciephy_cfg,
}, {
.compatible = "qcom,ipq8074-qmp-gen3-pcie-phy",
.data = &ipq8074_pciephy_gen3_cfg,
}, {
.compatible = "qcom,ipq8074-qmp-pcie-phy",
.data = &ipq8074_pciephy_cfg,
}, {
.compatible = "qcom,msm8998-qmp-pcie-phy",
.data = &msm8998_pciephy_cfg,
}, {
.compatible = "qcom,sa8775p-qmp-gen4x2-pcie-phy",
.data = &sa8775p_qmp_gen4x2_pciephy_cfg,
}, {
.compatible = "qcom,sa8775p-qmp-gen4x4-pcie-phy",
.data = &sa8775p_qmp_gen4x4_pciephy_cfg,
}, {
.compatible = "qcom,sc8180x-qmp-pcie-phy",
.data = &sc8180x_pciephy_cfg,
}, {
.compatible = "qcom,sc8280xp-qmp-gen3x1-pcie-phy",
.data = &sc8280xp_qmp_gen3x1_pciephy_cfg,
}, {
.compatible = "qcom,sc8280xp-qmp-gen3x2-pcie-phy",
.data = &sc8280xp_qmp_gen3x2_pciephy_cfg,
}, {
.compatible = "qcom,sc8280xp-qmp-gen3x4-pcie-phy",
.data = &sc8280xp_qmp_gen3x4_pciephy_cfg,
}, {
.compatible = "qcom,sdm845-qhp-pcie-phy",
.data = &sdm845_qhp_pciephy_cfg,
}, {
.compatible = "qcom,sdm845-qmp-pcie-phy",
.data = &sdm845_qmp_pciephy_cfg,
}, {
.compatible = "qcom,sdx55-qmp-pcie-phy",
.data = &sdx55_qmp_pciephy_cfg,
}, {
.compatible = "qcom,sdx65-qmp-gen4x2-pcie-phy",
.data = &sdx65_qmp_pciephy_cfg,
}, {
.compatible = "qcom,sm8150-qmp-gen3x1-pcie-phy",
.data = &sm8250_qmp_gen3x1_pciephy_cfg,
}, {
.compatible = "qcom,sm8150-qmp-gen3x2-pcie-phy",
.data = &sm8250_qmp_gen3x2_pciephy_cfg,
}, {
.compatible = "qcom,sm8250-qmp-gen3x1-pcie-phy",
.data = &sm8250_qmp_gen3x1_pciephy_cfg,
}, {
.compatible = "qcom,sm8250-qmp-gen3x2-pcie-phy",
.data = &sm8250_qmp_gen3x2_pciephy_cfg,
}, {
.compatible = "qcom,sm8250-qmp-modem-pcie-phy",
.data = &sm8250_qmp_gen3x2_pciephy_cfg,
}, {
.compatible = "qcom,sm8350-qmp-gen3x1-pcie-phy",
.data = &sm8350_qmp_gen3x1_pciephy_cfg,
}, {
.compatible = "qcom,sm8350-qmp-gen3x2-pcie-phy",
.data = &sm8350_qmp_gen3x2_pciephy_cfg,
}, {
.compatible = "qcom,sm8450-qmp-gen3x1-pcie-phy",
.data = &sm8450_qmp_gen3x1_pciephy_cfg,
}, {
.compatible = "qcom,sm8450-qmp-gen4x2-pcie-phy",
.data = &sm8450_qmp_gen4x2_pciephy_cfg,
}, {
.compatible = "qcom,sm8550-qmp-gen3x2-pcie-phy",
.data = &sm8550_qmp_gen3x2_pciephy_cfg,
}, {
.compatible = "qcom,sm8550-qmp-gen4x2-pcie-phy",
.data = &sm8550_qmp_gen4x2_pciephy_cfg,
},
{ },
};
MODULE_DEVICE_TABLE(of, qmp_pcie_of_match_table);
static struct platform_driver qmp_pcie_driver = {
.probe = qmp_pcie_probe,
.driver = {
.name = "qcom-qmp-pcie-phy",
.of_match_table = qmp_pcie_of_match_table,
},
};
module_platform_driver(qmp_pcie_driver);
MODULE_AUTHOR("Vivek Gautam <[email protected]>");
MODULE_DESCRIPTION("Qualcomm QMP PCIe PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-qmp-pcie.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "phy-qcom-qmp.h"
#include "phy-qcom-qmp-pcs-misc-v3.h"
#include "phy-qcom-qmp-pcs-usb-v4.h"
#include "phy-qcom-qmp-pcs-usb-v5.h"
/* QPHY_SW_RESET bit */
#define SW_RESET BIT(0)
/* QPHY_POWER_DOWN_CONTROL */
#define SW_PWRDN BIT(0)
/* QPHY_START_CONTROL bits */
#define SERDES_START BIT(0)
#define PCS_START BIT(1)
/* QPHY_PCS_STATUS bit */
#define PHYSTATUS BIT(6)
/* QPHY_V3_DP_COM_RESET_OVRD_CTRL register bits */
/* DP PHY soft reset */
#define SW_DPPHY_RESET BIT(0)
/* mux to select DP PHY reset control, 0:HW control, 1: software reset */
#define SW_DPPHY_RESET_MUX BIT(1)
/* USB3 PHY soft reset */
#define SW_USB3PHY_RESET BIT(2)
/* mux to select USB3 PHY reset control, 0:HW control, 1: software reset */
#define SW_USB3PHY_RESET_MUX BIT(3)
/* QPHY_V3_DP_COM_PHY_MODE_CTRL register bits */
#define USB3_MODE BIT(0) /* enables USB3 mode */
#define DP_MODE BIT(1) /* enables DP mode */
/* QPHY_PCS_AUTONOMOUS_MODE_CTRL register bits */
#define ARCVR_DTCT_EN BIT(0)
#define ALFPS_DTCT_EN BIT(1)
#define ARCVR_DTCT_EVENT_SEL BIT(4)
/* QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR register bits */
#define IRQ_CLEAR BIT(0)
/* QPHY_V3_PCS_MISC_CLAMP_ENABLE register bits */
#define CLAMP_EN BIT(0) /* enables i/o clamp_n */
#define PHY_INIT_COMPLETE_TIMEOUT 10000
struct qmp_phy_init_tbl {
unsigned int offset;
unsigned int val;
/*
* mask of lanes for which this register is written
* for cases when second lane needs different values
*/
u8 lane_mask;
};
#define QMP_PHY_INIT_CFG(o, v) \
{ \
.offset = o, \
.val = v, \
.lane_mask = 0xff, \
}
#define QMP_PHY_INIT_CFG_LANE(o, v, l) \
{ \
.offset = o, \
.val = v, \
.lane_mask = l, \
}
/* set of registers with offsets different per-PHY */
enum qphy_reg_layout {
/* PCS registers */
QPHY_SW_RESET,
QPHY_START_CTRL,
QPHY_PCS_STATUS,
QPHY_PCS_AUTONOMOUS_MODE_CTRL,
QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR,
QPHY_PCS_POWER_DOWN_CONTROL,
/* Keep last to ensure regs_layout arrays are properly initialized */
QPHY_LAYOUT_SIZE
};
static const unsigned int qmp_v3_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V3_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V3_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V3_PCS_PCS_STATUS,
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V3_PCS_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V3_PCS_LFPS_RXTERM_IRQ_CLEAR,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V3_PCS_POWER_DOWN_CONTROL,
};
static const unsigned int qmp_v4_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V4_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V4_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V4_PCS_PCS_STATUS1,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V4_PCS_POWER_DOWN_CONTROL,
/* In PCS_USB */
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V4_PCS_USB3_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V4_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR,
};
static const unsigned int qmp_v5_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = {
[QPHY_SW_RESET] = QPHY_V5_PCS_SW_RESET,
[QPHY_START_CTRL] = QPHY_V5_PCS_START_CONTROL,
[QPHY_PCS_STATUS] = QPHY_V5_PCS_PCS_STATUS1,
[QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_POWER_DOWN_CONTROL,
/* In PCS_USB */
[QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V5_PCS_USB3_AUTONOMOUS_MODE_CTRL,
[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V5_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR,
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x15),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_CFG, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x85),
QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x07),
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x09),
QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x06),
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75),
};
static const struct qmp_phy_init_tbl qmp_v3_usb3_pcs_tbl[] = {
/* FLL settings */
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02),
/* Lock Det settings */
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0xba),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V1, 0x9f),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V2, 0xb7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V3, 0x4e),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V4, 0x65),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_LS, 0x6b),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V1, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V1, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V2, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V2, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V3, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V3, 0x1d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V4, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V4, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_LS, 0x15),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_LS, 0x0d),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RATE_SLEW_CNTRL, 0x02),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86),
QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13),
};
static const struct qmp_phy_init_tbl sm8150_usb3_serdes_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0xde),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x07),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_IPTRIM, 0x20),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x1a),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x14),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x34),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x82),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0xab),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0xea),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE0, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE1, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE2_MODE1, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xca),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x1e),
QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11),
};
static const struct qmp_phy_init_tbl sm8150_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_TX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_RX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x20),
};
static const struct qmp_phy_init_tbl sm8150_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xbf),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x94),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x0b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb3),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VTH_CODE, 0x10),
};
static const struct qmp_phy_init_tbl sm8150_usb3_pcs_tbl[] = {
/* Lock Det settings */
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10),
};
static const struct qmp_phy_init_tbl sm8150_usb3_pcs_usb_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
};
static const struct qmp_phy_init_tbl sm8250_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_TX, 0x60),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_RX, 0x60),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x11),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_RX, 0x02),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5),
QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_TX_PI_QEC_CTRL, 0x40, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_TX_PI_QEC_CTRL, 0x54, 2),
};
static const struct qmp_phy_init_tbl sm8250_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x06),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_LOW, 0xff, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_LOW, 0x7f, 2),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x7f, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xff, 2),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x97),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x7b),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb4),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f),
QMP_PHY_INIT_CFG(QSERDES_V4_RX_VTH_CODE, 0x10),
};
static const struct qmp_phy_init_tbl sm8250_usb3_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xa9),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10),
};
static const struct qmp_phy_init_tbl sm8250_usb3_pcs_usb_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
};
static const struct qmp_phy_init_tbl sm8350_usb3_tx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_TX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_RX, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x16),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0x35),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_5, 0x3f),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_RCV_DETECT_LVL_2, 0x12),
QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x21),
};
static const struct qmp_phy_init_tbl sm8350_usb3_rx_tbl[] = {
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0x99),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN1, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN2, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL1, 0x54),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_LOW, 0xc0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_HIGH, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x0e),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xbb),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x7b),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xbb),
QMP_PHY_INIT_CFG_LANE(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3d, 1),
QMP_PHY_INIT_CFG_LANE(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3c, 2),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xdb),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x64),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x24),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xd2),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x13),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa9),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_EN_TIMER, 0x04),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_AUX_DATA_TCOARSE_TFINE, 0xa0),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_DCC_CTRL1, 0x0c),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00),
QMP_PHY_INIT_CFG(QSERDES_V5_RX_VTH_CODE, 0x10),
};
static const struct qmp_phy_init_tbl sm8350_usb3_pcs_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b),
QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10),
};
static const struct qmp_phy_init_tbl sm8350_usb3_pcs_usb_tbl[] = {
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RCVR_DTCT_DLY_U3_L, 0x40),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RCVR_DTCT_DLY_U3_H, 0x00),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8),
QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07),
};
struct qmp_usb_legacy_offsets {
u16 serdes;
u16 pcs;
u16 pcs_usb;
u16 tx;
u16 rx;
};
/* struct qmp_phy_cfg - per-PHY initialization config */
struct qmp_phy_cfg {
int lanes;
const struct qmp_usb_legacy_offsets *offsets;
/* Init sequence for PHY blocks - serdes, tx, rx, pcs */
const struct qmp_phy_init_tbl *serdes_tbl;
int serdes_tbl_num;
const struct qmp_phy_init_tbl *tx_tbl;
int tx_tbl_num;
const struct qmp_phy_init_tbl *rx_tbl;
int rx_tbl_num;
const struct qmp_phy_init_tbl *pcs_tbl;
int pcs_tbl_num;
const struct qmp_phy_init_tbl *pcs_usb_tbl;
int pcs_usb_tbl_num;
/* clock ids to be requested */
const char * const *clk_list;
int num_clks;
/* resets to be requested */
const char * const *reset_list;
int num_resets;
/* regulators to be requested */
const char * const *vreg_list;
int num_vregs;
/* array of registers with different offsets */
const unsigned int *regs;
/* Offset from PCS to PCS_USB region */
unsigned int pcs_usb_offset;
};
struct qmp_usb {
struct device *dev;
const struct qmp_phy_cfg *cfg;
void __iomem *serdes;
void __iomem *pcs;
void __iomem *pcs_misc;
void __iomem *pcs_usb;
void __iomem *tx;
void __iomem *rx;
void __iomem *tx2;
void __iomem *rx2;
void __iomem *dp_com;
struct clk *pipe_clk;
struct clk_bulk_data *clks;
struct reset_control_bulk_data *resets;
struct regulator_bulk_data *vregs;
enum phy_mode mode;
struct phy *phy;
struct clk_fixed_rate pipe_clk_fixed;
};
static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg |= val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg &= ~val;
writel(reg, base + offset);
/* ensure that above write is through */
readl(base + offset);
}
/* list of clocks required by phy */
static const char * const qmp_v3_phy_clk_l[] = {
"aux", "cfg_ahb", "ref", "com_aux",
};
static const char * const qmp_v4_ref_phy_clk_l[] = {
"aux", "ref_clk_src", "ref", "com_aux",
};
/* the primary usb3 phy on sm8250 doesn't have a ref clock */
static const char * const qmp_v4_sm8250_usbphy_clk_l[] = {
"aux", "ref_clk_src", "com_aux"
};
/* list of resets */
static const char * const msm8996_usb3phy_reset_l[] = {
"phy", "common",
};
static const char * const sc7180_usb3phy_reset_l[] = {
"phy",
};
/* list of regulators */
static const char * const qmp_phy_vreg_l[] = {
"vdda-phy", "vdda-pll",
};
static const struct qmp_phy_cfg qmp_v3_usb3phy_cfg = {
.lanes = 2,
.serdes_tbl = qmp_v3_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_serdes_tbl),
.tx_tbl = qmp_v3_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_tx_tbl),
.rx_tbl = qmp_v3_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_rx_tbl),
.pcs_tbl = qmp_v3_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(qmp_v3_usb3_pcs_tbl),
.clk_list = qmp_v3_phy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v3_phy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v3_usb3phy_regs_layout,
};
static const struct qmp_phy_cfg sc7180_usb3phy_cfg = {
.lanes = 2,
.serdes_tbl = qmp_v3_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_serdes_tbl),
.tx_tbl = qmp_v3_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_tx_tbl),
.rx_tbl = qmp_v3_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_rx_tbl),
.pcs_tbl = qmp_v3_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(qmp_v3_usb3_pcs_tbl),
.clk_list = qmp_v3_phy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v3_phy_clk_l),
.reset_list = sc7180_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(sc7180_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v3_usb3phy_regs_layout,
};
static const struct qmp_phy_cfg sm8150_usb3phy_cfg = {
.lanes = 2,
.serdes_tbl = sm8150_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl),
.tx_tbl = sm8150_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sm8150_usb3_tx_tbl),
.rx_tbl = sm8150_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm8150_usb3_rx_tbl),
.pcs_tbl = sm8150_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8150_usb3_pcs_tbl),
.pcs_usb_tbl = sm8150_usb3_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8150_usb3_pcs_usb_tbl),
.clk_list = qmp_v4_ref_phy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v4_ref_phy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v4_usb3phy_regs_layout,
.pcs_usb_offset = 0x300,
};
static const struct qmp_phy_cfg sm8250_usb3phy_cfg = {
.lanes = 2,
.serdes_tbl = sm8150_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl),
.tx_tbl = sm8250_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sm8250_usb3_tx_tbl),
.rx_tbl = sm8250_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm8250_usb3_rx_tbl),
.pcs_tbl = sm8250_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8250_usb3_pcs_tbl),
.pcs_usb_tbl = sm8250_usb3_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8250_usb3_pcs_usb_tbl),
.clk_list = qmp_v4_sm8250_usbphy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v4_sm8250_usbphy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v4_usb3phy_regs_layout,
.pcs_usb_offset = 0x300,
};
static const struct qmp_phy_cfg sm8350_usb3phy_cfg = {
.lanes = 2,
.serdes_tbl = sm8150_usb3_serdes_tbl,
.serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl),
.tx_tbl = sm8350_usb3_tx_tbl,
.tx_tbl_num = ARRAY_SIZE(sm8350_usb3_tx_tbl),
.rx_tbl = sm8350_usb3_rx_tbl,
.rx_tbl_num = ARRAY_SIZE(sm8350_usb3_rx_tbl),
.pcs_tbl = sm8350_usb3_pcs_tbl,
.pcs_tbl_num = ARRAY_SIZE(sm8350_usb3_pcs_tbl),
.pcs_usb_tbl = sm8350_usb3_pcs_usb_tbl,
.pcs_usb_tbl_num = ARRAY_SIZE(sm8350_usb3_pcs_usb_tbl),
.clk_list = qmp_v4_sm8250_usbphy_clk_l,
.num_clks = ARRAY_SIZE(qmp_v4_sm8250_usbphy_clk_l),
.reset_list = msm8996_usb3phy_reset_l,
.num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l),
.vreg_list = qmp_phy_vreg_l,
.num_vregs = ARRAY_SIZE(qmp_phy_vreg_l),
.regs = qmp_v5_usb3phy_regs_layout,
.pcs_usb_offset = 0x300,
};
static void qmp_usb_legacy_configure_lane(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num,
u8 lane_mask)
{
int i;
const struct qmp_phy_init_tbl *t = tbl;
if (!t)
return;
for (i = 0; i < num; i++, t++) {
if (!(t->lane_mask & lane_mask))
continue;
writel(t->val, base + t->offset);
}
}
static void qmp_usb_legacy_configure(void __iomem *base,
const struct qmp_phy_init_tbl tbl[],
int num)
{
qmp_usb_legacy_configure_lane(base, tbl, num, 0xff);
}
static int qmp_usb_legacy_serdes_init(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *serdes = qmp->serdes;
const struct qmp_phy_init_tbl *serdes_tbl = cfg->serdes_tbl;
int serdes_tbl_num = cfg->serdes_tbl_num;
qmp_usb_legacy_configure(serdes, serdes_tbl, serdes_tbl_num);
return 0;
}
static void qmp_usb_legacy_init_dp_com(struct phy *phy)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
void __iomem *dp_com = qmp->dp_com;
qphy_setbits(dp_com, QPHY_V3_DP_COM_POWER_DOWN_CTRL,
SW_PWRDN);
/* override hardware control for reset of qmp phy */
qphy_setbits(dp_com, QPHY_V3_DP_COM_RESET_OVRD_CTRL,
SW_DPPHY_RESET_MUX | SW_DPPHY_RESET |
SW_USB3PHY_RESET_MUX | SW_USB3PHY_RESET);
/* Default type-c orientation, i.e CC1 */
qphy_setbits(dp_com, QPHY_V3_DP_COM_TYPEC_CTRL, 0x02);
qphy_setbits(dp_com, QPHY_V3_DP_COM_PHY_MODE_CTRL,
USB3_MODE | DP_MODE);
/* bring both QMP USB and QMP DP PHYs PCS block out of reset */
qphy_clrbits(dp_com, QPHY_V3_DP_COM_RESET_OVRD_CTRL,
SW_DPPHY_RESET_MUX | SW_DPPHY_RESET |
SW_USB3PHY_RESET_MUX | SW_USB3PHY_RESET);
qphy_clrbits(dp_com, QPHY_V3_DP_COM_SWI_CTRL, 0x03);
qphy_clrbits(dp_com, QPHY_V3_DP_COM_SW_RESET, SW_RESET);
}
static int qmp_usb_legacy_init(struct phy *phy)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *pcs = qmp->pcs;
int ret;
ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs);
if (ret) {
dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret);
return ret;
}
ret = reset_control_bulk_assert(cfg->num_resets, qmp->resets);
if (ret) {
dev_err(qmp->dev, "reset assert failed\n");
goto err_disable_regulators;
}
ret = reset_control_bulk_deassert(cfg->num_resets, qmp->resets);
if (ret) {
dev_err(qmp->dev, "reset deassert failed\n");
goto err_disable_regulators;
}
ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks);
if (ret)
goto err_assert_reset;
qmp_usb_legacy_init_dp_com(phy);
qphy_setbits(pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN);
return 0;
err_assert_reset:
reset_control_bulk_assert(cfg->num_resets, qmp->resets);
err_disable_regulators:
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
return ret;
}
static int qmp_usb_legacy_exit(struct phy *phy)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
reset_control_bulk_assert(cfg->num_resets, qmp->resets);
clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks);
regulator_bulk_disable(cfg->num_vregs, qmp->vregs);
return 0;
}
static int qmp_usb_legacy_power_on(struct phy *phy)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *tx = qmp->tx;
void __iomem *rx = qmp->rx;
void __iomem *pcs = qmp->pcs;
void __iomem *status;
unsigned int val;
int ret;
qmp_usb_legacy_serdes_init(qmp);
ret = clk_prepare_enable(qmp->pipe_clk);
if (ret) {
dev_err(qmp->dev, "pipe_clk enable failed err=%d\n", ret);
return ret;
}
/* Tx, Rx, and PCS configurations */
qmp_usb_legacy_configure_lane(tx, cfg->tx_tbl, cfg->tx_tbl_num, 1);
qmp_usb_legacy_configure_lane(rx, cfg->rx_tbl, cfg->rx_tbl_num, 1);
if (cfg->lanes >= 2) {
qmp_usb_legacy_configure_lane(qmp->tx2, cfg->tx_tbl, cfg->tx_tbl_num, 2);
qmp_usb_legacy_configure_lane(qmp->rx2, cfg->rx_tbl, cfg->rx_tbl_num, 2);
}
qmp_usb_legacy_configure(pcs, cfg->pcs_tbl, cfg->pcs_tbl_num);
usleep_range(10, 20);
/* Pull PHY out of reset state */
qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* start SerDes and Phy-Coding-Sublayer */
qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START);
status = pcs + cfg->regs[QPHY_PCS_STATUS];
ret = readl_poll_timeout(status, val, !(val & PHYSTATUS), 200,
PHY_INIT_COMPLETE_TIMEOUT);
if (ret) {
dev_err(qmp->dev, "phy initialization timed-out\n");
goto err_disable_pipe_clk;
}
return 0;
err_disable_pipe_clk:
clk_disable_unprepare(qmp->pipe_clk);
return ret;
}
static int qmp_usb_legacy_power_off(struct phy *phy)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
const struct qmp_phy_cfg *cfg = qmp->cfg;
clk_disable_unprepare(qmp->pipe_clk);
/* PHY reset */
qphy_setbits(qmp->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET);
/* stop SerDes and Phy-Coding-Sublayer */
qphy_clrbits(qmp->pcs, cfg->regs[QPHY_START_CTRL],
SERDES_START | PCS_START);
/* Put PHY into POWER DOWN state: active low */
qphy_clrbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL],
SW_PWRDN);
return 0;
}
static int qmp_usb_legacy_enable(struct phy *phy)
{
int ret;
ret = qmp_usb_legacy_init(phy);
if (ret)
return ret;
ret = qmp_usb_legacy_power_on(phy);
if (ret)
qmp_usb_legacy_exit(phy);
return ret;
}
static int qmp_usb_legacy_disable(struct phy *phy)
{
int ret;
ret = qmp_usb_legacy_power_off(phy);
if (ret)
return ret;
return qmp_usb_legacy_exit(phy);
}
static int qmp_usb_legacy_set_mode(struct phy *phy, enum phy_mode mode, int submode)
{
struct qmp_usb *qmp = phy_get_drvdata(phy);
qmp->mode = mode;
return 0;
}
static const struct phy_ops qmp_usb_legacy_phy_ops = {
.init = qmp_usb_legacy_enable,
.exit = qmp_usb_legacy_disable,
.set_mode = qmp_usb_legacy_set_mode,
.owner = THIS_MODULE,
};
static void qmp_usb_legacy_enable_autonomous_mode(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs;
void __iomem *pcs_misc = qmp->pcs_misc;
u32 intr_mask;
if (qmp->mode == PHY_MODE_USB_HOST_SS ||
qmp->mode == PHY_MODE_USB_DEVICE_SS)
intr_mask = ARCVR_DTCT_EN | ALFPS_DTCT_EN;
else
intr_mask = ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL;
/* Clear any pending interrupts status */
qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
/* Writing 1 followed by 0 clears the interrupt */
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL],
ARCVR_DTCT_EN | ALFPS_DTCT_EN | ARCVR_DTCT_EVENT_SEL);
/* Enable required PHY autonomous mode interrupts */
qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], intr_mask);
/* Enable i/o clamp_n for autonomous mode */
if (pcs_misc)
qphy_clrbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN);
}
static void qmp_usb_legacy_disable_autonomous_mode(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs;
void __iomem *pcs_misc = qmp->pcs_misc;
/* Disable i/o clamp_n on resume for normal mode */
if (pcs_misc)
qphy_setbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN);
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL],
ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL | ALFPS_DTCT_EN);
qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
/* Writing 1 followed by 0 clears the interrupt */
qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR);
}
static int __maybe_unused qmp_usb_legacy_runtime_suspend(struct device *dev)
{
struct qmp_usb *qmp = dev_get_drvdata(dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
dev_vdbg(dev, "Suspending QMP phy, mode:%d\n", qmp->mode);
if (!qmp->phy->init_count) {
dev_vdbg(dev, "PHY not initialized, bailing out\n");
return 0;
}
qmp_usb_legacy_enable_autonomous_mode(qmp);
clk_disable_unprepare(qmp->pipe_clk);
clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks);
return 0;
}
static int __maybe_unused qmp_usb_legacy_runtime_resume(struct device *dev)
{
struct qmp_usb *qmp = dev_get_drvdata(dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
int ret = 0;
dev_vdbg(dev, "Resuming QMP phy, mode:%d\n", qmp->mode);
if (!qmp->phy->init_count) {
dev_vdbg(dev, "PHY not initialized, bailing out\n");
return 0;
}
ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks);
if (ret)
return ret;
ret = clk_prepare_enable(qmp->pipe_clk);
if (ret) {
dev_err(dev, "pipe_clk enable failed, err=%d\n", ret);
clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks);
return ret;
}
qmp_usb_legacy_disable_autonomous_mode(qmp);
return 0;
}
static const struct dev_pm_ops qmp_usb_legacy_pm_ops = {
SET_RUNTIME_PM_OPS(qmp_usb_legacy_runtime_suspend,
qmp_usb_legacy_runtime_resume, NULL)
};
static int qmp_usb_legacy_vreg_init(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int num = cfg->num_vregs;
int i;
qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL);
if (!qmp->vregs)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->vregs[i].supply = cfg->vreg_list[i];
return devm_regulator_bulk_get(dev, num, qmp->vregs);
}
static int qmp_usb_legacy_reset_init(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int i;
int ret;
qmp->resets = devm_kcalloc(dev, cfg->num_resets,
sizeof(*qmp->resets), GFP_KERNEL);
if (!qmp->resets)
return -ENOMEM;
for (i = 0; i < cfg->num_resets; i++)
qmp->resets[i].id = cfg->reset_list[i];
ret = devm_reset_control_bulk_get_exclusive(dev, cfg->num_resets, qmp->resets);
if (ret)
return dev_err_probe(dev, ret, "failed to get resets\n");
return 0;
}
static int qmp_usb_legacy_clk_init(struct qmp_usb *qmp)
{
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
int num = cfg->num_clks;
int i;
qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL);
if (!qmp->clks)
return -ENOMEM;
for (i = 0; i < num; i++)
qmp->clks[i].id = cfg->clk_list[i];
return devm_clk_bulk_get(dev, num, qmp->clks);
}
static void phy_clk_release_provider(void *res)
{
of_clk_del_provider(res);
}
/*
* Register a fixed rate pipe clock.
*
* The <s>_pipe_clksrc generated by PHY goes to the GCC that gate
* controls it. The <s>_pipe_clk coming out of the GCC is requested
* by the PHY driver for its operations.
* We register the <s>_pipe_clksrc here. The gcc driver takes care
* of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk.
* Below picture shows this relationship.
*
* +---------------+
* | PHY block |<<---------------------------------------+
* | | |
* | +-------+ | +-----+ |
* I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+
* clk | +-------+ | +-----+
* +---------------+
*/
static int phy_pipe_clk_register(struct qmp_usb *qmp, struct device_node *np)
{
struct clk_fixed_rate *fixed = &qmp->pipe_clk_fixed;
struct clk_init_data init = { };
int ret;
ret = of_property_read_string(np, "clock-output-names", &init.name);
if (ret) {
dev_err(qmp->dev, "%pOFn: No clock-output-names\n", np);
return ret;
}
init.ops = &clk_fixed_rate_ops;
/* controllers using QMP phys use 125MHz pipe clock interface */
fixed->fixed_rate = 125000000;
fixed->hw.init = &init;
ret = devm_clk_hw_register(qmp->dev, &fixed->hw);
if (ret)
return ret;
ret = of_clk_add_hw_provider(np, of_clk_hw_simple_get, &fixed->hw);
if (ret)
return ret;
/*
* Roll a devm action because the clock provider is the child node, but
* the child node is not actually a device.
*/
return devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, np);
}
static void __iomem *qmp_usb_legacy_iomap(struct device *dev, struct device_node *np,
int index, bool exclusive)
{
struct resource res;
if (!exclusive) {
if (of_address_to_resource(np, index, &res))
return IOMEM_ERR_PTR(-EINVAL);
return devm_ioremap(dev, res.start, resource_size(&res));
}
return devm_of_iomap(dev, np, index, NULL);
}
static int qmp_usb_legacy_parse_dt_legacy(struct qmp_usb *qmp, struct device_node *np)
{
struct platform_device *pdev = to_platform_device(qmp->dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
struct device *dev = qmp->dev;
bool exclusive = true;
qmp->serdes = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(qmp->serdes))
return PTR_ERR(qmp->serdes);
qmp->dp_com = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(qmp->dp_com))
return PTR_ERR(qmp->dp_com);
/*
* Get memory resources for the PHY:
* Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2.
* For dual lane PHYs: tx2 -> 3, rx2 -> 4, pcs_misc (optional) -> 5
* For single lane PHYs: pcs_misc (optional) -> 3.
*/
qmp->tx = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(qmp->tx))
return PTR_ERR(qmp->tx);
qmp->rx = devm_of_iomap(dev, np, 1, NULL);
if (IS_ERR(qmp->rx))
return PTR_ERR(qmp->rx);
qmp->pcs = qmp_usb_legacy_iomap(dev, np, 2, exclusive);
if (IS_ERR(qmp->pcs))
return PTR_ERR(qmp->pcs);
if (cfg->pcs_usb_offset)
qmp->pcs_usb = qmp->pcs + cfg->pcs_usb_offset;
if (cfg->lanes >= 2) {
qmp->tx2 = devm_of_iomap(dev, np, 3, NULL);
if (IS_ERR(qmp->tx2))
return PTR_ERR(qmp->tx2);
qmp->rx2 = devm_of_iomap(dev, np, 4, NULL);
if (IS_ERR(qmp->rx2))
return PTR_ERR(qmp->rx2);
qmp->pcs_misc = devm_of_iomap(dev, np, 5, NULL);
} else {
qmp->pcs_misc = devm_of_iomap(dev, np, 3, NULL);
}
if (IS_ERR(qmp->pcs_misc)) {
dev_vdbg(dev, "PHY pcs_misc-reg not used\n");
qmp->pcs_misc = NULL;
}
qmp->pipe_clk = devm_get_clk_from_child(dev, np, NULL);
if (IS_ERR(qmp->pipe_clk)) {
return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk),
"failed to get pipe clock\n");
}
return 0;
}
static int qmp_usb_legacy_parse_dt(struct qmp_usb *qmp)
{
struct platform_device *pdev = to_platform_device(qmp->dev);
const struct qmp_phy_cfg *cfg = qmp->cfg;
const struct qmp_usb_legacy_offsets *offs = cfg->offsets;
struct device *dev = qmp->dev;
void __iomem *base;
if (!offs)
return -EINVAL;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
qmp->serdes = base + offs->serdes;
qmp->pcs = base + offs->pcs;
qmp->pcs_usb = base + offs->pcs_usb;
qmp->tx = base + offs->tx;
qmp->rx = base + offs->rx;
qmp->pipe_clk = devm_clk_get(dev, "pipe");
if (IS_ERR(qmp->pipe_clk)) {
return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk),
"failed to get pipe clock\n");
}
return 0;
}
static int qmp_usb_legacy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct device_node *np;
struct qmp_usb *qmp;
int ret;
qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL);
if (!qmp)
return -ENOMEM;
qmp->dev = dev;
qmp->cfg = of_device_get_match_data(dev);
if (!qmp->cfg)
return -EINVAL;
ret = qmp_usb_legacy_clk_init(qmp);
if (ret)
return ret;
ret = qmp_usb_legacy_reset_init(qmp);
if (ret)
return ret;
ret = qmp_usb_legacy_vreg_init(qmp);
if (ret)
return ret;
/* Check for legacy binding with child node. */
np = of_get_next_available_child(dev->of_node, NULL);
if (np) {
ret = qmp_usb_legacy_parse_dt_legacy(qmp, np);
} else {
np = of_node_get(dev->of_node);
ret = qmp_usb_legacy_parse_dt(qmp);
}
if (ret)
goto err_node_put;
pm_runtime_set_active(dev);
ret = devm_pm_runtime_enable(dev);
if (ret)
goto err_node_put;
/*
* Prevent runtime pm from being ON by default. Users can enable
* it using power/control in sysfs.
*/
pm_runtime_forbid(dev);
ret = phy_pipe_clk_register(qmp, np);
if (ret)
goto err_node_put;
qmp->phy = devm_phy_create(dev, np, &qmp_usb_legacy_phy_ops);
if (IS_ERR(qmp->phy)) {
ret = PTR_ERR(qmp->phy);
dev_err(dev, "failed to create PHY: %d\n", ret);
goto err_node_put;
}
phy_set_drvdata(qmp->phy, qmp);
of_node_put(np);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
err_node_put:
of_node_put(np);
return ret;
}
static const struct of_device_id qmp_usb_legacy_of_match_table[] = {
{
.compatible = "qcom,sc7180-qmp-usb3-phy",
.data = &sc7180_usb3phy_cfg,
}, {
.compatible = "qcom,sc8180x-qmp-usb3-phy",
.data = &sm8150_usb3phy_cfg,
}, {
.compatible = "qcom,sdm845-qmp-usb3-phy",
.data = &qmp_v3_usb3phy_cfg,
}, {
.compatible = "qcom,sm8150-qmp-usb3-phy",
.data = &sm8150_usb3phy_cfg,
}, {
.compatible = "qcom,sm8250-qmp-usb3-phy",
.data = &sm8250_usb3phy_cfg,
}, {
.compatible = "qcom,sm8350-qmp-usb3-phy",
.data = &sm8350_usb3phy_cfg,
}, {
.compatible = "qcom,sm8450-qmp-usb3-phy",
.data = &sm8350_usb3phy_cfg,
},
{ },
};
MODULE_DEVICE_TABLE(of, qmp_usb_legacy_of_match_table);
static struct platform_driver qmp_usb_legacy_driver = {
.probe = qmp_usb_legacy_probe,
.driver = {
.name = "qcom-qmp-usb-legacy-phy",
.pm = &qmp_usb_legacy_pm_ops,
.of_match_table = qmp_usb_legacy_of_match_table,
},
};
module_platform_driver(qmp_usb_legacy_driver);
MODULE_AUTHOR("Vivek Gautam <[email protected]>");
MODULE_DESCRIPTION("Qualcomm QMP legacy USB+DP PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-qmp-usb-legacy.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2016 Linaro Ltd
*/
#include <linux/module.h>
#include <linux/ulpi/driver.h>
#include <linux/ulpi/regs.h>
#include <linux/phy/phy.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pinctrl/pinctrl-state.h>
#include <linux/delay.h>
#include <linux/clk.h>
#define ULPI_HSIC_CFG 0x30
#define ULPI_HSIC_IO_CAL 0x33
struct qcom_usb_hsic_phy {
struct ulpi *ulpi;
struct phy *phy;
struct pinctrl *pctl;
struct clk *phy_clk;
struct clk *cal_clk;
struct clk *cal_sleep_clk;
};
static int qcom_usb_hsic_phy_power_on(struct phy *phy)
{
struct qcom_usb_hsic_phy *uphy = phy_get_drvdata(phy);
struct ulpi *ulpi = uphy->ulpi;
struct pinctrl_state *pins_default;
int ret;
ret = clk_prepare_enable(uphy->phy_clk);
if (ret)
return ret;
ret = clk_prepare_enable(uphy->cal_clk);
if (ret)
goto err_cal;
ret = clk_prepare_enable(uphy->cal_sleep_clk);
if (ret)
goto err_sleep;
/* Set periodic calibration interval to ~2.048sec in HSIC_IO_CAL_REG */
ret = ulpi_write(ulpi, ULPI_HSIC_IO_CAL, 0xff);
if (ret)
goto err_ulpi;
/* Enable periodic IO calibration in HSIC_CFG register */
ret = ulpi_write(ulpi, ULPI_HSIC_CFG, 0xa8);
if (ret)
goto err_ulpi;
/* Configure pins for HSIC functionality */
pins_default = pinctrl_lookup_state(uphy->pctl, PINCTRL_STATE_DEFAULT);
if (IS_ERR(pins_default)) {
ret = PTR_ERR(pins_default);
goto err_ulpi;
}
ret = pinctrl_select_state(uphy->pctl, pins_default);
if (ret)
goto err_ulpi;
/* Enable HSIC mode in HSIC_CFG register */
ret = ulpi_write(ulpi, ULPI_SET(ULPI_HSIC_CFG), 0x01);
if (ret)
goto err_ulpi;
/* Disable auto-resume */
ret = ulpi_write(ulpi, ULPI_CLR(ULPI_IFC_CTRL),
ULPI_IFC_CTRL_AUTORESUME);
if (ret)
goto err_ulpi;
return ret;
err_ulpi:
clk_disable_unprepare(uphy->cal_sleep_clk);
err_sleep:
clk_disable_unprepare(uphy->cal_clk);
err_cal:
clk_disable_unprepare(uphy->phy_clk);
return ret;
}
static int qcom_usb_hsic_phy_power_off(struct phy *phy)
{
struct qcom_usb_hsic_phy *uphy = phy_get_drvdata(phy);
clk_disable_unprepare(uphy->cal_sleep_clk);
clk_disable_unprepare(uphy->cal_clk);
clk_disable_unprepare(uphy->phy_clk);
return 0;
}
static const struct phy_ops qcom_usb_hsic_phy_ops = {
.power_on = qcom_usb_hsic_phy_power_on,
.power_off = qcom_usb_hsic_phy_power_off,
.owner = THIS_MODULE,
};
static int qcom_usb_hsic_phy_probe(struct ulpi *ulpi)
{
struct qcom_usb_hsic_phy *uphy;
struct phy_provider *p;
struct clk *clk;
uphy = devm_kzalloc(&ulpi->dev, sizeof(*uphy), GFP_KERNEL);
if (!uphy)
return -ENOMEM;
ulpi_set_drvdata(ulpi, uphy);
uphy->ulpi = ulpi;
uphy->pctl = devm_pinctrl_get(&ulpi->dev);
if (IS_ERR(uphy->pctl))
return PTR_ERR(uphy->pctl);
uphy->phy_clk = clk = devm_clk_get(&ulpi->dev, "phy");
if (IS_ERR(clk))
return PTR_ERR(clk);
uphy->cal_clk = clk = devm_clk_get(&ulpi->dev, "cal");
if (IS_ERR(clk))
return PTR_ERR(clk);
uphy->cal_sleep_clk = clk = devm_clk_get(&ulpi->dev, "cal_sleep");
if (IS_ERR(clk))
return PTR_ERR(clk);
uphy->phy = devm_phy_create(&ulpi->dev, ulpi->dev.of_node,
&qcom_usb_hsic_phy_ops);
if (IS_ERR(uphy->phy))
return PTR_ERR(uphy->phy);
phy_set_drvdata(uphy->phy, uphy);
p = devm_of_phy_provider_register(&ulpi->dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(p);
}
static const struct of_device_id qcom_usb_hsic_phy_match[] = {
{ .compatible = "qcom,usb-hsic-phy", },
{ }
};
MODULE_DEVICE_TABLE(of, qcom_usb_hsic_phy_match);
static struct ulpi_driver qcom_usb_hsic_phy_driver = {
.probe = qcom_usb_hsic_phy_probe,
.driver = {
.name = "qcom_usb_hsic_phy",
.of_match_table = qcom_usb_hsic_phy_match,
},
};
module_ulpi_driver(qcom_usb_hsic_phy_driver);
MODULE_DESCRIPTION("Qualcomm USB HSIC phy");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-usb-hsic.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*/
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
struct qcom_ipq806x_sata_phy {
void __iomem *mmio;
struct clk *cfg_clk;
struct device *dev;
};
#define __set(v, a, b) (((v) << (b)) & GENMASK(a, b))
#define SATA_PHY_P0_PARAM0 0x200
#define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN3(x) __set(x, 17, 12)
#define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN3_MASK GENMASK(17, 12)
#define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN2(x) __set(x, 11, 6)
#define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN2_MASK GENMASK(11, 6)
#define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN1(x) __set(x, 5, 0)
#define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN1_MASK GENMASK(5, 0)
#define SATA_PHY_P0_PARAM1 0x204
#define SATA_PHY_P0_PARAM1_RESERVED_BITS31_21(x) __set(x, 31, 21)
#define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN3(x) __set(x, 20, 14)
#define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN3_MASK GENMASK(20, 14)
#define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN2(x) __set(x, 13, 7)
#define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN2_MASK GENMASK(13, 7)
#define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN1(x) __set(x, 6, 0)
#define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN1_MASK GENMASK(6, 0)
#define SATA_PHY_P0_PARAM2 0x208
#define SATA_PHY_P0_PARAM2_RX_EQ(x) __set(x, 20, 18)
#define SATA_PHY_P0_PARAM2_RX_EQ_MASK GENMASK(20, 18)
#define SATA_PHY_P0_PARAM3 0x20C
#define SATA_PHY_SSC_EN 0x8
#define SATA_PHY_P0_PARAM4 0x210
#define SATA_PHY_REF_SSP_EN 0x2
#define SATA_PHY_RESET 0x1
static int qcom_ipq806x_sata_phy_init(struct phy *generic_phy)
{
struct qcom_ipq806x_sata_phy *phy = phy_get_drvdata(generic_phy);
u32 reg;
/* Setting SSC_EN to 1 */
reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM3);
reg = reg | SATA_PHY_SSC_EN;
writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM3);
reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM0) &
~(SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN3_MASK |
SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN2_MASK |
SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN1_MASK);
reg |= SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN3(0xf);
writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM0);
reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM1) &
~(SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN3_MASK |
SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN2_MASK |
SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN1_MASK);
reg |= SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN3(0x55) |
SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN2(0x55) |
SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN1(0x55);
writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM1);
reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM2) &
~SATA_PHY_P0_PARAM2_RX_EQ_MASK;
reg |= SATA_PHY_P0_PARAM2_RX_EQ(0x3);
writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM2);
/* Setting PHY_RESET to 1 */
reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM4);
reg = reg | SATA_PHY_RESET;
writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM4);
/* Setting REF_SSP_EN to 1 */
reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM4);
reg = reg | SATA_PHY_REF_SSP_EN | SATA_PHY_RESET;
writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM4);
/* make sure all changes complete before we let the PHY out of reset */
mb();
/* sleep for max. 50us more to combine processor wakeups */
usleep_range(20, 20 + 50);
/* Clearing PHY_RESET to 0 */
reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM4);
reg = reg & ~SATA_PHY_RESET;
writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM4);
return 0;
}
static int qcom_ipq806x_sata_phy_exit(struct phy *generic_phy)
{
struct qcom_ipq806x_sata_phy *phy = phy_get_drvdata(generic_phy);
u32 reg;
/* Setting PHY_RESET to 1 */
reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM4);
reg = reg | SATA_PHY_RESET;
writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM4);
return 0;
}
static const struct phy_ops qcom_ipq806x_sata_phy_ops = {
.init = qcom_ipq806x_sata_phy_init,
.exit = qcom_ipq806x_sata_phy_exit,
.owner = THIS_MODULE,
};
static int qcom_ipq806x_sata_phy_probe(struct platform_device *pdev)
{
struct qcom_ipq806x_sata_phy *phy;
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct phy *generic_phy;
int ret;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
phy->mmio = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(phy->mmio))
return PTR_ERR(phy->mmio);
generic_phy = devm_phy_create(dev, NULL, &qcom_ipq806x_sata_phy_ops);
if (IS_ERR(generic_phy)) {
dev_err(dev, "%s: failed to create phy\n", __func__);
return PTR_ERR(generic_phy);
}
phy->dev = dev;
phy_set_drvdata(generic_phy, phy);
platform_set_drvdata(pdev, phy);
phy->cfg_clk = devm_clk_get(dev, "cfg");
if (IS_ERR(phy->cfg_clk)) {
dev_err(dev, "Failed to get sata cfg clock\n");
return PTR_ERR(phy->cfg_clk);
}
ret = clk_prepare_enable(phy->cfg_clk);
if (ret)
return ret;
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
clk_disable_unprepare(phy->cfg_clk);
dev_err(dev, "%s: failed to register phy\n", __func__);
return PTR_ERR(phy_provider);
}
return 0;
}
static void qcom_ipq806x_sata_phy_remove(struct platform_device *pdev)
{
struct qcom_ipq806x_sata_phy *phy = platform_get_drvdata(pdev);
clk_disable_unprepare(phy->cfg_clk);
}
static const struct of_device_id qcom_ipq806x_sata_phy_of_match[] = {
{ .compatible = "qcom,ipq806x-sata-phy" },
{ },
};
MODULE_DEVICE_TABLE(of, qcom_ipq806x_sata_phy_of_match);
static struct platform_driver qcom_ipq806x_sata_phy_driver = {
.probe = qcom_ipq806x_sata_phy_probe,
.remove_new = qcom_ipq806x_sata_phy_remove,
.driver = {
.name = "qcom-ipq806x-sata-phy",
.of_match_table = qcom_ipq806x_sata_phy_of_match,
}
};
module_platform_driver(qcom_ipq806x_sata_phy_driver);
MODULE_DESCRIPTION("QCOM IPQ806x SATA PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-ipq806x-sata.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017, 2019, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <dt-bindings/phy/phy-qcom-qusb2.h>
#define QUSB2PHY_PLL 0x0
#define QUSB2PHY_PLL_TEST 0x04
#define CLK_REF_SEL BIT(7)
#define QUSB2PHY_PLL_TUNE 0x08
#define QUSB2PHY_PLL_USER_CTL1 0x0c
#define QUSB2PHY_PLL_USER_CTL2 0x10
#define QUSB2PHY_PLL_AUTOPGM_CTL1 0x1c
#define QUSB2PHY_PLL_PWR_CTRL 0x18
/* QUSB2PHY_PLL_STATUS register bits */
#define PLL_LOCKED BIT(5)
/* QUSB2PHY_PLL_COMMON_STATUS_ONE register bits */
#define CORE_READY_STATUS BIT(0)
/* QUSB2PHY_PORT_POWERDOWN register bits */
#define CLAMP_N_EN BIT(5)
#define FREEZIO_N BIT(1)
#define POWER_DOWN BIT(0)
/* QUSB2PHY_PWR_CTRL1 register bits */
#define PWR_CTRL1_VREF_SUPPLY_TRIM BIT(5)
#define PWR_CTRL1_CLAMP_N_EN BIT(1)
#define QUSB2PHY_REFCLK_ENABLE BIT(0)
#define PHY_CLK_SCHEME_SEL BIT(0)
/* QUSB2PHY_INTR_CTRL register bits */
#define DMSE_INTR_HIGH_SEL BIT(4)
#define DPSE_INTR_HIGH_SEL BIT(3)
#define CHG_DET_INTR_EN BIT(2)
#define DMSE_INTR_EN BIT(1)
#define DPSE_INTR_EN BIT(0)
/* QUSB2PHY_PLL_CORE_INPUT_OVERRIDE register bits */
#define CORE_PLL_EN_FROM_RESET BIT(4)
#define CORE_RESET BIT(5)
#define CORE_RESET_MUX BIT(6)
/* QUSB2PHY_IMP_CTRL1 register bits */
#define IMP_RES_OFFSET_MASK GENMASK(5, 0)
#define IMP_RES_OFFSET_SHIFT 0x0
/* QUSB2PHY_PLL_BIAS_CONTROL_2 register bits */
#define BIAS_CTRL2_RES_OFFSET_MASK GENMASK(5, 0)
#define BIAS_CTRL2_RES_OFFSET_SHIFT 0x0
/* QUSB2PHY_CHG_CONTROL_2 register bits */
#define CHG_CTRL2_OFFSET_MASK GENMASK(5, 4)
#define CHG_CTRL2_OFFSET_SHIFT 0x4
/* QUSB2PHY_PORT_TUNE1 register bits */
#define HSTX_TRIM_MASK GENMASK(7, 4)
#define HSTX_TRIM_SHIFT 0x4
#define PREEMPH_WIDTH_HALF_BIT BIT(2)
#define PREEMPHASIS_EN_MASK GENMASK(1, 0)
#define PREEMPHASIS_EN_SHIFT 0x0
/* QUSB2PHY_PORT_TUNE2 register bits */
#define HSDISC_TRIM_MASK GENMASK(1, 0)
#define HSDISC_TRIM_SHIFT 0x0
#define QUSB2PHY_PLL_ANALOG_CONTROLS_TWO 0x04
#define QUSB2PHY_PLL_CLOCK_INVERTERS 0x18c
#define QUSB2PHY_PLL_CMODE 0x2c
#define QUSB2PHY_PLL_LOCK_DELAY 0x184
#define QUSB2PHY_PLL_DIGITAL_TIMERS_TWO 0xb4
#define QUSB2PHY_PLL_BIAS_CONTROL_1 0x194
#define QUSB2PHY_PLL_BIAS_CONTROL_2 0x198
#define QUSB2PHY_PWR_CTRL2 0x214
#define QUSB2PHY_IMP_CTRL1 0x220
#define QUSB2PHY_IMP_CTRL2 0x224
#define QUSB2PHY_CHG_CTRL2 0x23c
struct qusb2_phy_init_tbl {
unsigned int offset;
unsigned int val;
/*
* register part of layout ?
* if yes, then offset gives index in the reg-layout
*/
int in_layout;
};
#define QUSB2_PHY_INIT_CFG(o, v) \
{ \
.offset = o, \
.val = v, \
}
#define QUSB2_PHY_INIT_CFG_L(o, v) \
{ \
.offset = o, \
.val = v, \
.in_layout = 1, \
}
/* set of registers with offsets different per-PHY */
enum qusb2phy_reg_layout {
QUSB2PHY_PLL_CORE_INPUT_OVERRIDE,
QUSB2PHY_PLL_STATUS,
QUSB2PHY_PORT_TUNE1,
QUSB2PHY_PORT_TUNE2,
QUSB2PHY_PORT_TUNE3,
QUSB2PHY_PORT_TUNE4,
QUSB2PHY_PORT_TUNE5,
QUSB2PHY_PORT_TEST1,
QUSB2PHY_PORT_TEST2,
QUSB2PHY_PORT_POWERDOWN,
QUSB2PHY_INTR_CTRL,
};
static const struct qusb2_phy_init_tbl ipq6018_init_tbl[] = {
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL, 0x14),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE1, 0xF8),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE2, 0xB3),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE3, 0x83),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE4, 0xC0),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_TUNE, 0x30),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL1, 0x79),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL2, 0x21),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE5, 0x00),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_PWR_CTRL, 0x00),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TEST2, 0x14),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_TEST, 0x80),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_AUTOPGM_CTL1, 0x9F),
};
static const unsigned int ipq6018_regs_layout[] = {
[QUSB2PHY_PLL_STATUS] = 0x38,
[QUSB2PHY_PORT_TUNE1] = 0x80,
[QUSB2PHY_PORT_TUNE2] = 0x84,
[QUSB2PHY_PORT_TUNE3] = 0x88,
[QUSB2PHY_PORT_TUNE4] = 0x8C,
[QUSB2PHY_PORT_TUNE5] = 0x90,
[QUSB2PHY_PORT_TEST1] = 0x98,
[QUSB2PHY_PORT_TEST2] = 0x9C,
[QUSB2PHY_PORT_POWERDOWN] = 0xB4,
[QUSB2PHY_INTR_CTRL] = 0xBC,
};
static const unsigned int msm8996_regs_layout[] = {
[QUSB2PHY_PLL_STATUS] = 0x38,
[QUSB2PHY_PORT_TUNE1] = 0x80,
[QUSB2PHY_PORT_TUNE2] = 0x84,
[QUSB2PHY_PORT_TUNE3] = 0x88,
[QUSB2PHY_PORT_TUNE4] = 0x8c,
[QUSB2PHY_PORT_TUNE5] = 0x90,
[QUSB2PHY_PORT_TEST1] = 0xb8,
[QUSB2PHY_PORT_TEST2] = 0x9c,
[QUSB2PHY_PORT_POWERDOWN] = 0xb4,
[QUSB2PHY_INTR_CTRL] = 0xbc,
};
static const struct qusb2_phy_init_tbl msm8996_init_tbl[] = {
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE1, 0xf8),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE2, 0xb3),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE3, 0x83),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE4, 0xc0),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_TUNE, 0x30),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL1, 0x79),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL2, 0x21),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TEST2, 0x14),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_AUTOPGM_CTL1, 0x9f),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_PWR_CTRL, 0x00),
};
static const unsigned int msm8998_regs_layout[] = {
[QUSB2PHY_PLL_CORE_INPUT_OVERRIDE] = 0xa8,
[QUSB2PHY_PLL_STATUS] = 0x1a0,
[QUSB2PHY_PORT_TUNE1] = 0x23c,
[QUSB2PHY_PORT_TUNE2] = 0x240,
[QUSB2PHY_PORT_TUNE3] = 0x244,
[QUSB2PHY_PORT_TUNE4] = 0x248,
[QUSB2PHY_PORT_TEST1] = 0x24c,
[QUSB2PHY_PORT_TEST2] = 0x250,
[QUSB2PHY_PORT_POWERDOWN] = 0x210,
[QUSB2PHY_INTR_CTRL] = 0x22c,
};
static const struct qusb2_phy_init_tbl msm8998_init_tbl[] = {
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_ANALOG_CONTROLS_TWO, 0x13),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_CLOCK_INVERTERS, 0x7c),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_CMODE, 0x80),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_LOCK_DELAY, 0x0a),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE1, 0xa5),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE2, 0x09),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_DIGITAL_TIMERS_TWO, 0x19),
};
static const struct qusb2_phy_init_tbl sm6115_init_tbl[] = {
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE1, 0xf8),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE2, 0x53),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE3, 0x81),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE4, 0x17),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_TUNE, 0x30),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL1, 0x79),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL2, 0x21),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TEST2, 0x14),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_AUTOPGM_CTL1, 0x9f),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_PWR_CTRL, 0x00),
};
static const unsigned int qusb2_v2_regs_layout[] = {
[QUSB2PHY_PLL_CORE_INPUT_OVERRIDE] = 0xa8,
[QUSB2PHY_PLL_STATUS] = 0x1a0,
[QUSB2PHY_PORT_TUNE1] = 0x240,
[QUSB2PHY_PORT_TUNE2] = 0x244,
[QUSB2PHY_PORT_TUNE3] = 0x248,
[QUSB2PHY_PORT_TUNE4] = 0x24c,
[QUSB2PHY_PORT_TUNE5] = 0x250,
[QUSB2PHY_PORT_TEST1] = 0x254,
[QUSB2PHY_PORT_TEST2] = 0x258,
[QUSB2PHY_PORT_POWERDOWN] = 0x210,
[QUSB2PHY_INTR_CTRL] = 0x230,
};
static const struct qusb2_phy_init_tbl qusb2_v2_init_tbl[] = {
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_ANALOG_CONTROLS_TWO, 0x03),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_CLOCK_INVERTERS, 0x7c),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_CMODE, 0x80),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_LOCK_DELAY, 0x0a),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_DIGITAL_TIMERS_TWO, 0x19),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_BIAS_CONTROL_1, 0x40),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_BIAS_CONTROL_2, 0x20),
QUSB2_PHY_INIT_CFG(QUSB2PHY_PWR_CTRL2, 0x21),
QUSB2_PHY_INIT_CFG(QUSB2PHY_IMP_CTRL1, 0x0),
QUSB2_PHY_INIT_CFG(QUSB2PHY_IMP_CTRL2, 0x58),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE1, 0x30),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE2, 0x29),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE3, 0xca),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE4, 0x04),
QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE5, 0x03),
QUSB2_PHY_INIT_CFG(QUSB2PHY_CHG_CTRL2, 0x0),
};
struct qusb2_phy_cfg {
const struct qusb2_phy_init_tbl *tbl;
/* number of entries in the table */
unsigned int tbl_num;
/* offset to PHY_CLK_SCHEME register in TCSR map */
unsigned int clk_scheme_offset;
/* array of registers with different offsets */
const unsigned int *regs;
unsigned int mask_core_ready;
unsigned int disable_ctrl;
unsigned int autoresume_en;
/* true if PHY has PLL_TEST register to select clk_scheme */
bool has_pll_test;
/* true if TUNE1 register must be updated by fused value, else TUNE2 */
bool update_tune1_with_efuse;
/* true if PHY has PLL_CORE_INPUT_OVERRIDE register to reset PLL */
bool has_pll_override;
/* true if PHY default clk scheme is single-ended */
bool se_clk_scheme_default;
};
static const struct qusb2_phy_cfg msm8996_phy_cfg = {
.tbl = msm8996_init_tbl,
.tbl_num = ARRAY_SIZE(msm8996_init_tbl),
.regs = msm8996_regs_layout,
.has_pll_test = true,
.se_clk_scheme_default = true,
.disable_ctrl = (CLAMP_N_EN | FREEZIO_N | POWER_DOWN),
.mask_core_ready = PLL_LOCKED,
.autoresume_en = BIT(3),
};
static const struct qusb2_phy_cfg msm8998_phy_cfg = {
.tbl = msm8998_init_tbl,
.tbl_num = ARRAY_SIZE(msm8998_init_tbl),
.regs = msm8998_regs_layout,
.disable_ctrl = POWER_DOWN,
.mask_core_ready = CORE_READY_STATUS,
.has_pll_override = true,
.se_clk_scheme_default = true,
.autoresume_en = BIT(0),
.update_tune1_with_efuse = true,
};
static const struct qusb2_phy_cfg ipq6018_phy_cfg = {
.tbl = ipq6018_init_tbl,
.tbl_num = ARRAY_SIZE(ipq6018_init_tbl),
.regs = ipq6018_regs_layout,
.disable_ctrl = POWER_DOWN,
.mask_core_ready = PLL_LOCKED,
/* autoresume not used */
.autoresume_en = BIT(0),
};
static const struct qusb2_phy_cfg qusb2_v2_phy_cfg = {
.tbl = qusb2_v2_init_tbl,
.tbl_num = ARRAY_SIZE(qusb2_v2_init_tbl),
.regs = qusb2_v2_regs_layout,
.disable_ctrl = (PWR_CTRL1_VREF_SUPPLY_TRIM | PWR_CTRL1_CLAMP_N_EN |
POWER_DOWN),
.mask_core_ready = CORE_READY_STATUS,
.has_pll_override = true,
.se_clk_scheme_default = true,
.autoresume_en = BIT(0),
.update_tune1_with_efuse = true,
};
static const struct qusb2_phy_cfg sdm660_phy_cfg = {
.tbl = msm8996_init_tbl,
.tbl_num = ARRAY_SIZE(msm8996_init_tbl),
.regs = msm8996_regs_layout,
.has_pll_test = true,
.se_clk_scheme_default = false,
.disable_ctrl = (CLAMP_N_EN | FREEZIO_N | POWER_DOWN),
.mask_core_ready = PLL_LOCKED,
.autoresume_en = BIT(3),
};
static const struct qusb2_phy_cfg sm6115_phy_cfg = {
.tbl = sm6115_init_tbl,
.tbl_num = ARRAY_SIZE(sm6115_init_tbl),
.regs = msm8996_regs_layout,
.has_pll_test = true,
.se_clk_scheme_default = true,
.disable_ctrl = (CLAMP_N_EN | FREEZIO_N | POWER_DOWN),
.mask_core_ready = PLL_LOCKED,
.autoresume_en = BIT(3),
};
static const char * const qusb2_phy_vreg_names[] = {
"vdd", "vdda-pll", "vdda-phy-dpdm",
};
#define QUSB2_NUM_VREGS ARRAY_SIZE(qusb2_phy_vreg_names)
/* struct override_param - structure holding qusb2 v2 phy overriding param
* set override true if the device tree property exists and read and assign
* to value
*/
struct override_param {
bool override;
u8 value;
};
/*struct override_params - structure holding qusb2 v2 phy overriding params
* @imp_res_offset: rescode offset to be updated in IMP_CTRL1 register
* @hstx_trim: HSTX_TRIM to be updated in TUNE1 register
* @preemphasis: Amplitude Pre-Emphasis to be updated in TUNE1 register
* @preemphasis_width: half/full-width Pre-Emphasis updated via TUNE1
* @bias_ctrl: bias ctrl to be updated in BIAS_CONTROL_2 register
* @charge_ctrl: charge ctrl to be updated in CHG_CTRL2 register
* @hsdisc_trim: disconnect threshold to be updated in TUNE2 register
*/
struct override_params {
struct override_param imp_res_offset;
struct override_param hstx_trim;
struct override_param preemphasis;
struct override_param preemphasis_width;
struct override_param bias_ctrl;
struct override_param charge_ctrl;
struct override_param hsdisc_trim;
};
/**
* struct qusb2_phy - structure holding qusb2 phy attributes
*
* @phy: generic phy
* @base: iomapped memory space for qubs2 phy
*
* @cfg_ahb_clk: AHB2PHY interface clock
* @ref_clk: phy reference clock
* @iface_clk: phy interface clock
* @phy_reset: phy reset control
* @vregs: regulator supplies bulk data
*
* @tcsr: TCSR syscon register map
* @cell: nvmem cell containing phy tuning value
*
* @overrides: pointer to structure for all overriding tuning params
*
* @cfg: phy config data
* @has_se_clk_scheme: indicate if PHY has single-ended ref clock scheme
* @phy_initialized: indicate if PHY has been initialized
* @mode: current PHY mode
*/
struct qusb2_phy {
struct phy *phy;
void __iomem *base;
struct clk *cfg_ahb_clk;
struct clk *ref_clk;
struct clk *iface_clk;
struct reset_control *phy_reset;
struct regulator_bulk_data vregs[QUSB2_NUM_VREGS];
struct regmap *tcsr;
struct nvmem_cell *cell;
struct override_params overrides;
const struct qusb2_phy_cfg *cfg;
bool has_se_clk_scheme;
bool phy_initialized;
enum phy_mode mode;
};
static inline void qusb2_write_mask(void __iomem *base, u32 offset,
u32 val, u32 mask)
{
u32 reg;
reg = readl(base + offset);
reg &= ~mask;
reg |= val & mask;
writel(reg, base + offset);
/* Ensure above write is completed */
readl(base + offset);
}
static inline void qusb2_setbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg |= val;
writel(reg, base + offset);
/* Ensure above write is completed */
readl(base + offset);
}
static inline void qusb2_clrbits(void __iomem *base, u32 offset, u32 val)
{
u32 reg;
reg = readl(base + offset);
reg &= ~val;
writel(reg, base + offset);
/* Ensure above write is completed */
readl(base + offset);
}
static inline
void qcom_qusb2_phy_configure(void __iomem *base,
const unsigned int *regs,
const struct qusb2_phy_init_tbl tbl[], int num)
{
int i;
for (i = 0; i < num; i++) {
if (tbl[i].in_layout)
writel(tbl[i].val, base + regs[tbl[i].offset]);
else
writel(tbl[i].val, base + tbl[i].offset);
}
}
/*
* Update board specific PHY tuning override values if specified from
* device tree.
*/
static void qusb2_phy_override_phy_params(struct qusb2_phy *qphy)
{
const struct qusb2_phy_cfg *cfg = qphy->cfg;
struct override_params *or = &qphy->overrides;
if (or->imp_res_offset.override)
qusb2_write_mask(qphy->base, QUSB2PHY_IMP_CTRL1,
or->imp_res_offset.value << IMP_RES_OFFSET_SHIFT,
IMP_RES_OFFSET_MASK);
if (or->bias_ctrl.override)
qusb2_write_mask(qphy->base, QUSB2PHY_PLL_BIAS_CONTROL_2,
or->bias_ctrl.value << BIAS_CTRL2_RES_OFFSET_SHIFT,
BIAS_CTRL2_RES_OFFSET_MASK);
if (or->charge_ctrl.override)
qusb2_write_mask(qphy->base, QUSB2PHY_CHG_CTRL2,
or->charge_ctrl.value << CHG_CTRL2_OFFSET_SHIFT,
CHG_CTRL2_OFFSET_MASK);
if (or->hstx_trim.override)
qusb2_write_mask(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE1],
or->hstx_trim.value << HSTX_TRIM_SHIFT,
HSTX_TRIM_MASK);
if (or->preemphasis.override)
qusb2_write_mask(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE1],
or->preemphasis.value << PREEMPHASIS_EN_SHIFT,
PREEMPHASIS_EN_MASK);
if (or->preemphasis_width.override) {
if (or->preemphasis_width.value ==
QUSB2_V2_PREEMPHASIS_WIDTH_HALF_BIT)
qusb2_setbits(qphy->base,
cfg->regs[QUSB2PHY_PORT_TUNE1],
PREEMPH_WIDTH_HALF_BIT);
else
qusb2_clrbits(qphy->base,
cfg->regs[QUSB2PHY_PORT_TUNE1],
PREEMPH_WIDTH_HALF_BIT);
}
if (or->hsdisc_trim.override)
qusb2_write_mask(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE2],
or->hsdisc_trim.value << HSDISC_TRIM_SHIFT,
HSDISC_TRIM_MASK);
}
/*
* Fetches HS Tx tuning value from nvmem and sets the
* QUSB2PHY_PORT_TUNE1/2 register.
* For error case, skip setting the value and use the default value.
*/
static void qusb2_phy_set_tune2_param(struct qusb2_phy *qphy)
{
struct device *dev = &qphy->phy->dev;
const struct qusb2_phy_cfg *cfg = qphy->cfg;
u8 *val, hstx_trim;
/* efuse register is optional */
if (!qphy->cell)
return;
/*
* Read efuse register having TUNE2/1 parameter's high nibble.
* If efuse register shows value as 0x0 (indicating value is not
* fused), or if we fail to find a valid efuse register setting,
* then use default value for high nibble that we have already
* set while configuring the phy.
*/
val = nvmem_cell_read(qphy->cell, NULL);
if (IS_ERR(val)) {
dev_dbg(dev, "failed to read a valid hs-tx trim value\n");
return;
}
hstx_trim = val[0];
kfree(val);
if (!hstx_trim) {
dev_dbg(dev, "failed to read a valid hs-tx trim value\n");
return;
}
/* Fused TUNE1/2 value is the higher nibble only */
if (cfg->update_tune1_with_efuse)
qusb2_write_mask(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE1],
hstx_trim << HSTX_TRIM_SHIFT, HSTX_TRIM_MASK);
else
qusb2_write_mask(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE2],
hstx_trim << HSTX_TRIM_SHIFT, HSTX_TRIM_MASK);
}
static int qusb2_phy_set_mode(struct phy *phy,
enum phy_mode mode, int submode)
{
struct qusb2_phy *qphy = phy_get_drvdata(phy);
qphy->mode = mode;
return 0;
}
static int __maybe_unused qusb2_phy_runtime_suspend(struct device *dev)
{
struct qusb2_phy *qphy = dev_get_drvdata(dev);
const struct qusb2_phy_cfg *cfg = qphy->cfg;
u32 intr_mask;
dev_vdbg(dev, "Suspending QUSB2 Phy, mode:%d\n", qphy->mode);
if (!qphy->phy_initialized) {
dev_vdbg(dev, "PHY not initialized, bailing out\n");
return 0;
}
/*
* Enable DP/DM interrupts to detect line state changes based on current
* speed. In other words, enable the triggers _opposite_ of what the
* current D+/D- levels are e.g. if currently D+ high, D- low
* (HS 'J'/Suspend), configure the mask to trigger on D+ low OR D- high
*/
intr_mask = DPSE_INTR_EN | DMSE_INTR_EN;
switch (qphy->mode) {
case PHY_MODE_USB_HOST_HS:
case PHY_MODE_USB_HOST_FS:
case PHY_MODE_USB_DEVICE_HS:
case PHY_MODE_USB_DEVICE_FS:
intr_mask |= DMSE_INTR_HIGH_SEL;
break;
case PHY_MODE_USB_HOST_LS:
case PHY_MODE_USB_DEVICE_LS:
intr_mask |= DPSE_INTR_HIGH_SEL;
break;
default:
/* No device connected, enable both DP/DM high interrupt */
intr_mask |= DMSE_INTR_HIGH_SEL;
intr_mask |= DPSE_INTR_HIGH_SEL;
break;
}
writel(intr_mask, qphy->base + cfg->regs[QUSB2PHY_INTR_CTRL]);
/* hold core PLL into reset */
if (cfg->has_pll_override) {
qusb2_setbits(qphy->base,
cfg->regs[QUSB2PHY_PLL_CORE_INPUT_OVERRIDE],
CORE_PLL_EN_FROM_RESET | CORE_RESET |
CORE_RESET_MUX);
}
/* enable phy auto-resume only if device is connected on bus */
if (qphy->mode != PHY_MODE_INVALID) {
qusb2_setbits(qphy->base, cfg->regs[QUSB2PHY_PORT_TEST1],
cfg->autoresume_en);
/* Autoresume bit has to be toggled in order to enable it */
qusb2_clrbits(qphy->base, cfg->regs[QUSB2PHY_PORT_TEST1],
cfg->autoresume_en);
}
if (!qphy->has_se_clk_scheme)
clk_disable_unprepare(qphy->ref_clk);
clk_disable_unprepare(qphy->cfg_ahb_clk);
clk_disable_unprepare(qphy->iface_clk);
return 0;
}
static int __maybe_unused qusb2_phy_runtime_resume(struct device *dev)
{
struct qusb2_phy *qphy = dev_get_drvdata(dev);
const struct qusb2_phy_cfg *cfg = qphy->cfg;
int ret;
dev_vdbg(dev, "Resuming QUSB2 phy, mode:%d\n", qphy->mode);
if (!qphy->phy_initialized) {
dev_vdbg(dev, "PHY not initialized, bailing out\n");
return 0;
}
ret = clk_prepare_enable(qphy->iface_clk);
if (ret) {
dev_err(dev, "failed to enable iface_clk, %d\n", ret);
return ret;
}
ret = clk_prepare_enable(qphy->cfg_ahb_clk);
if (ret) {
dev_err(dev, "failed to enable cfg ahb clock, %d\n", ret);
goto disable_iface_clk;
}
if (!qphy->has_se_clk_scheme) {
ret = clk_prepare_enable(qphy->ref_clk);
if (ret) {
dev_err(dev, "failed to enable ref clk, %d\n", ret);
goto disable_ahb_clk;
}
}
writel(0x0, qphy->base + cfg->regs[QUSB2PHY_INTR_CTRL]);
/* bring core PLL out of reset */
if (cfg->has_pll_override) {
qusb2_clrbits(qphy->base,
cfg->regs[QUSB2PHY_PLL_CORE_INPUT_OVERRIDE],
CORE_RESET | CORE_RESET_MUX);
}
return 0;
disable_ahb_clk:
clk_disable_unprepare(qphy->cfg_ahb_clk);
disable_iface_clk:
clk_disable_unprepare(qphy->iface_clk);
return ret;
}
static int qusb2_phy_init(struct phy *phy)
{
struct qusb2_phy *qphy = phy_get_drvdata(phy);
const struct qusb2_phy_cfg *cfg = qphy->cfg;
unsigned int val = 0;
unsigned int clk_scheme;
int ret;
dev_vdbg(&phy->dev, "%s(): Initializing QUSB2 phy\n", __func__);
/* turn on regulator supplies */
ret = regulator_bulk_enable(ARRAY_SIZE(qphy->vregs), qphy->vregs);
if (ret)
return ret;
ret = clk_prepare_enable(qphy->iface_clk);
if (ret) {
dev_err(&phy->dev, "failed to enable iface_clk, %d\n", ret);
goto poweroff_phy;
}
/* enable ahb interface clock to program phy */
ret = clk_prepare_enable(qphy->cfg_ahb_clk);
if (ret) {
dev_err(&phy->dev, "failed to enable cfg ahb clock, %d\n", ret);
goto disable_iface_clk;
}
/* Perform phy reset */
ret = reset_control_assert(qphy->phy_reset);
if (ret) {
dev_err(&phy->dev, "failed to assert phy_reset, %d\n", ret);
goto disable_ahb_clk;
}
/* 100 us delay to keep PHY in reset mode */
usleep_range(100, 150);
ret = reset_control_deassert(qphy->phy_reset);
if (ret) {
dev_err(&phy->dev, "failed to de-assert phy_reset, %d\n", ret);
goto disable_ahb_clk;
}
/* Disable the PHY */
qusb2_setbits(qphy->base, cfg->regs[QUSB2PHY_PORT_POWERDOWN],
qphy->cfg->disable_ctrl);
if (cfg->has_pll_test) {
/* save reset value to override reference clock scheme later */
val = readl(qphy->base + QUSB2PHY_PLL_TEST);
}
qcom_qusb2_phy_configure(qphy->base, cfg->regs, cfg->tbl,
cfg->tbl_num);
/* Override board specific PHY tuning values */
qusb2_phy_override_phy_params(qphy);
/* Set efuse value for tuning the PHY */
qusb2_phy_set_tune2_param(qphy);
/* Enable the PHY */
qusb2_clrbits(qphy->base, cfg->regs[QUSB2PHY_PORT_POWERDOWN],
POWER_DOWN);
/* Required to get phy pll lock successfully */
usleep_range(150, 160);
/*
* Not all the SoCs have got a readable TCSR_PHY_CLK_SCHEME
* register in the TCSR so, if there's none, use the default
* value hardcoded in the configuration.
*/
qphy->has_se_clk_scheme = cfg->se_clk_scheme_default;
/*
* read TCSR_PHY_CLK_SCHEME register to check if single-ended
* clock scheme is selected. If yes, then disable differential
* ref_clk and use single-ended clock, otherwise use differential
* ref_clk only.
*/
if (qphy->tcsr) {
ret = regmap_read(qphy->tcsr, qphy->cfg->clk_scheme_offset,
&clk_scheme);
if (ret) {
dev_err(&phy->dev, "failed to read clk scheme reg\n");
goto assert_phy_reset;
}
/* is it a differential clock scheme ? */
if (!(clk_scheme & PHY_CLK_SCHEME_SEL)) {
dev_vdbg(&phy->dev, "%s(): select differential clk\n",
__func__);
qphy->has_se_clk_scheme = false;
} else {
dev_vdbg(&phy->dev, "%s(): select single-ended clk\n",
__func__);
}
}
if (!qphy->has_se_clk_scheme) {
ret = clk_prepare_enable(qphy->ref_clk);
if (ret) {
dev_err(&phy->dev, "failed to enable ref clk, %d\n",
ret);
goto assert_phy_reset;
}
}
if (cfg->has_pll_test) {
if (!qphy->has_se_clk_scheme)
val &= ~CLK_REF_SEL;
else
val |= CLK_REF_SEL;
writel(val, qphy->base + QUSB2PHY_PLL_TEST);
/* ensure above write is through */
readl(qphy->base + QUSB2PHY_PLL_TEST);
}
/* Required to get phy pll lock successfully */
usleep_range(100, 110);
val = readb(qphy->base + cfg->regs[QUSB2PHY_PLL_STATUS]);
if (!(val & cfg->mask_core_ready)) {
dev_err(&phy->dev,
"QUSB2PHY pll lock failed: status reg = %x\n", val);
ret = -EBUSY;
goto disable_ref_clk;
}
qphy->phy_initialized = true;
return 0;
disable_ref_clk:
if (!qphy->has_se_clk_scheme)
clk_disable_unprepare(qphy->ref_clk);
assert_phy_reset:
reset_control_assert(qphy->phy_reset);
disable_ahb_clk:
clk_disable_unprepare(qphy->cfg_ahb_clk);
disable_iface_clk:
clk_disable_unprepare(qphy->iface_clk);
poweroff_phy:
regulator_bulk_disable(ARRAY_SIZE(qphy->vregs), qphy->vregs);
return ret;
}
static int qusb2_phy_exit(struct phy *phy)
{
struct qusb2_phy *qphy = phy_get_drvdata(phy);
/* Disable the PHY */
qusb2_setbits(qphy->base, qphy->cfg->regs[QUSB2PHY_PORT_POWERDOWN],
qphy->cfg->disable_ctrl);
if (!qphy->has_se_clk_scheme)
clk_disable_unprepare(qphy->ref_clk);
reset_control_assert(qphy->phy_reset);
clk_disable_unprepare(qphy->cfg_ahb_clk);
clk_disable_unprepare(qphy->iface_clk);
regulator_bulk_disable(ARRAY_SIZE(qphy->vregs), qphy->vregs);
qphy->phy_initialized = false;
return 0;
}
static const struct phy_ops qusb2_phy_gen_ops = {
.init = qusb2_phy_init,
.exit = qusb2_phy_exit,
.set_mode = qusb2_phy_set_mode,
.owner = THIS_MODULE,
};
static const struct of_device_id qusb2_phy_of_match_table[] = {
{
.compatible = "qcom,ipq6018-qusb2-phy",
.data = &ipq6018_phy_cfg,
}, {
.compatible = "qcom,ipq8074-qusb2-phy",
.data = &msm8996_phy_cfg,
}, {
.compatible = "qcom,ipq9574-qusb2-phy",
.data = &ipq6018_phy_cfg,
}, {
.compatible = "qcom,msm8953-qusb2-phy",
.data = &msm8996_phy_cfg,
}, {
.compatible = "qcom,msm8996-qusb2-phy",
.data = &msm8996_phy_cfg,
}, {
.compatible = "qcom,msm8998-qusb2-phy",
.data = &msm8998_phy_cfg,
}, {
.compatible = "qcom,qcm2290-qusb2-phy",
.data = &sm6115_phy_cfg,
}, {
.compatible = "qcom,sdm660-qusb2-phy",
.data = &sdm660_phy_cfg,
}, {
.compatible = "qcom,sm4250-qusb2-phy",
.data = &sm6115_phy_cfg,
}, {
.compatible = "qcom,sm6115-qusb2-phy",
.data = &sm6115_phy_cfg,
}, {
/*
* Deprecated. Only here to support legacy device
* trees that didn't include "qcom,qusb2-v2-phy"
*/
.compatible = "qcom,sdm845-qusb2-phy",
.data = &qusb2_v2_phy_cfg,
}, {
.compatible = "qcom,qusb2-v2-phy",
.data = &qusb2_v2_phy_cfg,
},
{ },
};
MODULE_DEVICE_TABLE(of, qusb2_phy_of_match_table);
static const struct dev_pm_ops qusb2_phy_pm_ops = {
SET_RUNTIME_PM_OPS(qusb2_phy_runtime_suspend,
qusb2_phy_runtime_resume, NULL)
};
static int qusb2_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct qusb2_phy *qphy;
struct phy_provider *phy_provider;
struct phy *generic_phy;
int ret, i;
int num;
u32 value;
struct override_params *or;
qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL);
if (!qphy)
return -ENOMEM;
or = &qphy->overrides;
qphy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(qphy->base))
return PTR_ERR(qphy->base);
qphy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb");
if (IS_ERR(qphy->cfg_ahb_clk))
return dev_err_probe(dev, PTR_ERR(qphy->cfg_ahb_clk),
"failed to get cfg ahb clk\n");
qphy->ref_clk = devm_clk_get(dev, "ref");
if (IS_ERR(qphy->ref_clk))
return dev_err_probe(dev, PTR_ERR(qphy->ref_clk),
"failed to get ref clk\n");
qphy->iface_clk = devm_clk_get_optional(dev, "iface");
if (IS_ERR(qphy->iface_clk))
return PTR_ERR(qphy->iface_clk);
qphy->phy_reset = devm_reset_control_get_by_index(&pdev->dev, 0);
if (IS_ERR(qphy->phy_reset)) {
dev_err(dev, "failed to get phy core reset\n");
return PTR_ERR(qphy->phy_reset);
}
num = ARRAY_SIZE(qphy->vregs);
for (i = 0; i < num; i++)
qphy->vregs[i].supply = qusb2_phy_vreg_names[i];
ret = devm_regulator_bulk_get(dev, num, qphy->vregs);
if (ret)
return dev_err_probe(dev, ret,
"failed to get regulator supplies\n");
/* Get the specific init parameters of QMP phy */
qphy->cfg = of_device_get_match_data(dev);
qphy->tcsr = syscon_regmap_lookup_by_phandle(dev->of_node,
"qcom,tcsr-syscon");
if (IS_ERR(qphy->tcsr)) {
dev_dbg(dev, "failed to lookup TCSR regmap\n");
qphy->tcsr = NULL;
}
qphy->cell = devm_nvmem_cell_get(dev, NULL);
if (IS_ERR(qphy->cell)) {
if (PTR_ERR(qphy->cell) == -EPROBE_DEFER)
return -EPROBE_DEFER;
qphy->cell = NULL;
dev_dbg(dev, "failed to lookup tune2 hstx trim value\n");
}
if (!of_property_read_u32(dev->of_node, "qcom,imp-res-offset-value",
&value)) {
or->imp_res_offset.value = (u8)value;
or->imp_res_offset.override = true;
}
if (!of_property_read_u32(dev->of_node, "qcom,bias-ctrl-value",
&value)) {
or->bias_ctrl.value = (u8)value;
or->bias_ctrl.override = true;
}
if (!of_property_read_u32(dev->of_node, "qcom,charge-ctrl-value",
&value)) {
or->charge_ctrl.value = (u8)value;
or->charge_ctrl.override = true;
}
if (!of_property_read_u32(dev->of_node, "qcom,hstx-trim-value",
&value)) {
or->hstx_trim.value = (u8)value;
or->hstx_trim.override = true;
}
if (!of_property_read_u32(dev->of_node, "qcom,preemphasis-level",
&value)) {
or->preemphasis.value = (u8)value;
or->preemphasis.override = true;
}
if (!of_property_read_u32(dev->of_node, "qcom,preemphasis-width",
&value)) {
or->preemphasis_width.value = (u8)value;
or->preemphasis_width.override = true;
}
if (!of_property_read_u32(dev->of_node, "qcom,hsdisc-trim-value",
&value)) {
or->hsdisc_trim.value = (u8)value;
or->hsdisc_trim.override = true;
}
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
/*
* Prevent runtime pm from being ON by default. Users can enable
* it using power/control in sysfs.
*/
pm_runtime_forbid(dev);
generic_phy = devm_phy_create(dev, NULL, &qusb2_phy_gen_ops);
if (IS_ERR(generic_phy)) {
ret = PTR_ERR(generic_phy);
dev_err(dev, "failed to create phy, %d\n", ret);
pm_runtime_disable(dev);
return ret;
}
qphy->phy = generic_phy;
dev_set_drvdata(dev, qphy);
phy_set_drvdata(generic_phy, qphy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (!IS_ERR(phy_provider))
dev_info(dev, "Registered Qcom-QUSB2 phy\n");
else
pm_runtime_disable(dev);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver qusb2_phy_driver = {
.probe = qusb2_phy_probe,
.driver = {
.name = "qcom-qusb2-phy",
.pm = &qusb2_phy_pm_ops,
.of_match_table = qusb2_phy_of_match_table,
},
};
module_platform_driver(qusb2_phy_driver);
MODULE_AUTHOR("Vivek Gautam <[email protected]>");
MODULE_DESCRIPTION("Qualcomm QUSB2 PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-qusb2.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2012-2014,2017 The Linux Foundation. All rights reserved.
* Copyright (c) 2018-2020, Linaro Limited
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#define PHY_CTRL0 0x6C
#define PHY_CTRL1 0x70
#define PHY_CTRL2 0x74
#define PHY_CTRL4 0x7C
/* PHY_CTRL bits */
#define REF_PHY_EN BIT(0)
#define LANE0_PWR_ON BIT(2)
#define SWI_PCS_CLK_SEL BIT(4)
#define TST_PWR_DOWN BIT(4)
#define PHY_RESET BIT(7)
#define NUM_BULK_CLKS 3
#define NUM_BULK_REGS 2
struct ssphy_priv {
void __iomem *base;
struct device *dev;
struct reset_control *reset_com;
struct reset_control *reset_phy;
struct regulator_bulk_data regs[NUM_BULK_REGS];
struct clk_bulk_data clks[NUM_BULK_CLKS];
enum phy_mode mode;
};
static inline void qcom_ssphy_updatel(void __iomem *addr, u32 mask, u32 val)
{
writel((readl(addr) & ~mask) | val, addr);
}
static int qcom_ssphy_do_reset(struct ssphy_priv *priv)
{
int ret;
if (!priv->reset_com) {
qcom_ssphy_updatel(priv->base + PHY_CTRL1, PHY_RESET,
PHY_RESET);
usleep_range(10, 20);
qcom_ssphy_updatel(priv->base + PHY_CTRL1, PHY_RESET, 0);
} else {
ret = reset_control_assert(priv->reset_com);
if (ret) {
dev_err(priv->dev, "Failed to assert reset com\n");
return ret;
}
ret = reset_control_assert(priv->reset_phy);
if (ret) {
dev_err(priv->dev, "Failed to assert reset phy\n");
return ret;
}
usleep_range(10, 20);
ret = reset_control_deassert(priv->reset_com);
if (ret) {
dev_err(priv->dev, "Failed to deassert reset com\n");
return ret;
}
ret = reset_control_deassert(priv->reset_phy);
if (ret) {
dev_err(priv->dev, "Failed to deassert reset phy\n");
return ret;
}
}
return 0;
}
static int qcom_ssphy_power_on(struct phy *phy)
{
struct ssphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = regulator_bulk_enable(NUM_BULK_REGS, priv->regs);
if (ret)
return ret;
ret = clk_bulk_prepare_enable(NUM_BULK_CLKS, priv->clks);
if (ret)
goto err_disable_regulator;
ret = qcom_ssphy_do_reset(priv);
if (ret)
goto err_disable_clock;
writeb(SWI_PCS_CLK_SEL, priv->base + PHY_CTRL0);
qcom_ssphy_updatel(priv->base + PHY_CTRL4, LANE0_PWR_ON, LANE0_PWR_ON);
qcom_ssphy_updatel(priv->base + PHY_CTRL2, REF_PHY_EN, REF_PHY_EN);
qcom_ssphy_updatel(priv->base + PHY_CTRL4, TST_PWR_DOWN, 0);
return 0;
err_disable_clock:
clk_bulk_disable_unprepare(NUM_BULK_CLKS, priv->clks);
err_disable_regulator:
regulator_bulk_disable(NUM_BULK_REGS, priv->regs);
return ret;
}
static int qcom_ssphy_power_off(struct phy *phy)
{
struct ssphy_priv *priv = phy_get_drvdata(phy);
qcom_ssphy_updatel(priv->base + PHY_CTRL4, LANE0_PWR_ON, 0);
qcom_ssphy_updatel(priv->base + PHY_CTRL2, REF_PHY_EN, 0);
qcom_ssphy_updatel(priv->base + PHY_CTRL4, TST_PWR_DOWN, TST_PWR_DOWN);
clk_bulk_disable_unprepare(NUM_BULK_CLKS, priv->clks);
regulator_bulk_disable(NUM_BULK_REGS, priv->regs);
return 0;
}
static int qcom_ssphy_init_clock(struct ssphy_priv *priv)
{
priv->clks[0].id = "ref";
priv->clks[1].id = "ahb";
priv->clks[2].id = "pipe";
return devm_clk_bulk_get(priv->dev, NUM_BULK_CLKS, priv->clks);
}
static int qcom_ssphy_init_regulator(struct ssphy_priv *priv)
{
int ret;
priv->regs[0].supply = "vdd";
priv->regs[1].supply = "vdda1p8";
ret = devm_regulator_bulk_get(priv->dev, NUM_BULK_REGS, priv->regs);
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(priv->dev, "Failed to get regulators\n");
return ret;
}
return ret;
}
static int qcom_ssphy_init_reset(struct ssphy_priv *priv)
{
priv->reset_com = devm_reset_control_get_optional_exclusive(priv->dev, "com");
if (IS_ERR(priv->reset_com)) {
dev_err(priv->dev, "Failed to get reset control com\n");
return PTR_ERR(priv->reset_com);
}
if (priv->reset_com) {
/* if reset_com is present, reset_phy is no longer optional */
priv->reset_phy = devm_reset_control_get_exclusive(priv->dev, "phy");
if (IS_ERR(priv->reset_phy)) {
dev_err(priv->dev, "Failed to get reset control phy\n");
return PTR_ERR(priv->reset_phy);
}
}
return 0;
}
static const struct phy_ops qcom_ssphy_ops = {
.power_off = qcom_ssphy_power_off,
.power_on = qcom_ssphy_power_on,
.owner = THIS_MODULE,
};
static int qcom_ssphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *provider;
struct ssphy_priv *priv;
struct phy *phy;
int ret;
priv = devm_kzalloc(dev, sizeof(struct ssphy_priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->mode = PHY_MODE_INVALID;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
ret = qcom_ssphy_init_clock(priv);
if (ret)
return ret;
ret = qcom_ssphy_init_reset(priv);
if (ret)
return ret;
ret = qcom_ssphy_init_regulator(priv);
if (ret)
return ret;
phy = devm_phy_create(dev, dev->of_node, &qcom_ssphy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "Failed to create the SS phy\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, priv);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(provider);
}
static const struct of_device_id qcom_ssphy_match[] = {
{ .compatible = "qcom,usb-ss-28nm-phy", },
{ },
};
MODULE_DEVICE_TABLE(of, qcom_ssphy_match);
static struct platform_driver qcom_ssphy_driver = {
.probe = qcom_ssphy_probe,
.driver = {
.name = "qcom-usb-ssphy",
.of_match_table = qcom_ssphy_match,
},
};
module_platform_driver(qcom_ssphy_driver);
MODULE_DESCRIPTION("Qualcomm SuperSpeed USB PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/qualcomm/phy-qcom-usb-ss.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2018 Broadcom
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
/* we have up to 8 PAXB based RC. The 9th one is always PAXC */
#define SR_NR_PCIE_PHYS 9
#define SR_PAXC_PHY_IDX (SR_NR_PCIE_PHYS - 1)
#define PCIE_PIPEMUX_CFG_OFFSET 0x10c
#define PCIE_PIPEMUX_SELECT_STRAP 0xf
#define CDRU_STRAP_DATA_LSW_OFFSET 0x5c
#define PCIE_PIPEMUX_SHIFT 19
#define PCIE_PIPEMUX_MASK 0xf
#define MHB_MEM_PW_PAXC_OFFSET 0x1c0
#define MHB_PWR_ARR_POWERON 0x8
#define MHB_PWR_ARR_POWEROK 0x4
#define MHB_PWR_POWERON 0x2
#define MHB_PWR_POWEROK 0x1
#define MHB_PWR_STATUS_MASK (MHB_PWR_ARR_POWERON | \
MHB_PWR_ARR_POWEROK | \
MHB_PWR_POWERON | \
MHB_PWR_POWEROK)
struct sr_pcie_phy_core;
/**
* struct sr_pcie_phy - Stingray PCIe PHY
*
* @core: pointer to the Stingray PCIe PHY core control
* @index: PHY index
* @phy: pointer to the kernel PHY device
*/
struct sr_pcie_phy {
struct sr_pcie_phy_core *core;
unsigned int index;
struct phy *phy;
};
/**
* struct sr_pcie_phy_core - Stingray PCIe PHY core control
*
* @dev: pointer to device
* @base: base register of PCIe SS
* @cdru: regmap to the CDRU device
* @mhb: regmap to the MHB device
* @pipemux: pipemuex strap
* @phys: array of PCIe PHYs
*/
struct sr_pcie_phy_core {
struct device *dev;
void __iomem *base;
struct regmap *cdru;
struct regmap *mhb;
u32 pipemux;
struct sr_pcie_phy phys[SR_NR_PCIE_PHYS];
};
/*
* PCIe PIPEMUX lookup table
*
* Each array index represents a PIPEMUX strap setting
* The array element represents a bitmap where a set bit means the PCIe
* core and associated serdes has been enabled as RC and is available for use
*/
static const u8 pipemux_table[] = {
/* PIPEMUX = 0, EP 1x16 */
0x00,
/* PIPEMUX = 1, EP 1x8 + RC 1x8, core 7 */
0x80,
/* PIPEMUX = 2, EP 4x4 */
0x00,
/* PIPEMUX = 3, RC 2x8, cores 0, 7 */
0x81,
/* PIPEMUX = 4, RC 4x4, cores 0, 1, 6, 7 */
0xc3,
/* PIPEMUX = 5, RC 8x2, all 8 cores */
0xff,
/* PIPEMUX = 6, RC 3x4 + 2x2, cores 0, 2, 3, 6, 7 */
0xcd,
/* PIPEMUX = 7, RC 1x4 + 6x2, cores 0, 2, 3, 4, 5, 6, 7 */
0xfd,
/* PIPEMUX = 8, EP 1x8 + RC 4x2, cores 4, 5, 6, 7 */
0xf0,
/* PIPEMUX = 9, EP 1x8 + RC 2x4, cores 6, 7 */
0xc0,
/* PIPEMUX = 10, EP 2x4 + RC 2x4, cores 1, 6 */
0x42,
/* PIPEMUX = 11, EP 2x4 + RC 4x2, cores 2, 3, 4, 5 */
0x3c,
/* PIPEMUX = 12, EP 1x4 + RC 6x2, cores 2, 3, 4, 5, 6, 7 */
0xfc,
/* PIPEMUX = 13, RC 2x4 + RC 1x4 + 2x2, cores 2, 3, 6 */
0x4c,
};
/*
* Return true if the strap setting is valid
*/
static bool pipemux_strap_is_valid(u32 pipemux)
{
return !!(pipemux < ARRAY_SIZE(pipemux_table));
}
/*
* Read the PCIe PIPEMUX from strap
*/
static u32 pipemux_strap_read(struct sr_pcie_phy_core *core)
{
u32 pipemux;
/*
* Read PIPEMUX configuration register to determine the pipemux setting
*
* In the case when the value indicates using HW strap, fall back to
* use HW strap
*/
pipemux = readl(core->base + PCIE_PIPEMUX_CFG_OFFSET);
pipemux &= PCIE_PIPEMUX_MASK;
if (pipemux == PCIE_PIPEMUX_SELECT_STRAP) {
regmap_read(core->cdru, CDRU_STRAP_DATA_LSW_OFFSET, &pipemux);
pipemux >>= PCIE_PIPEMUX_SHIFT;
pipemux &= PCIE_PIPEMUX_MASK;
}
return pipemux;
}
/*
* Given a PIPEMUX strap and PCIe core index, this function returns true if the
* PCIe core needs to be enabled
*/
static bool pcie_core_is_for_rc(struct sr_pcie_phy *phy)
{
struct sr_pcie_phy_core *core = phy->core;
unsigned int core_idx = phy->index;
return !!((pipemux_table[core->pipemux] >> core_idx) & 0x1);
}
static int sr_pcie_phy_init(struct phy *p)
{
struct sr_pcie_phy *phy = phy_get_drvdata(p);
/*
* Check whether this PHY is for root complex or not. If yes, return
* zero so the host driver can proceed to enumeration. If not, return
* an error and that will force the host driver to bail out
*/
if (pcie_core_is_for_rc(phy))
return 0;
return -ENODEV;
}
static int sr_paxc_phy_init(struct phy *p)
{
struct sr_pcie_phy *phy = phy_get_drvdata(p);
struct sr_pcie_phy_core *core = phy->core;
unsigned int core_idx = phy->index;
u32 val;
if (core_idx != SR_PAXC_PHY_IDX)
return -EINVAL;
regmap_read(core->mhb, MHB_MEM_PW_PAXC_OFFSET, &val);
if ((val & MHB_PWR_STATUS_MASK) != MHB_PWR_STATUS_MASK) {
dev_err(core->dev, "PAXC is not powered up\n");
return -ENODEV;
}
return 0;
}
static const struct phy_ops sr_pcie_phy_ops = {
.init = sr_pcie_phy_init,
.owner = THIS_MODULE,
};
static const struct phy_ops sr_paxc_phy_ops = {
.init = sr_paxc_phy_init,
.owner = THIS_MODULE,
};
static struct phy *sr_pcie_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct sr_pcie_phy_core *core;
int phy_idx;
core = dev_get_drvdata(dev);
if (!core)
return ERR_PTR(-EINVAL);
phy_idx = args->args[0];
if (WARN_ON(phy_idx >= SR_NR_PCIE_PHYS))
return ERR_PTR(-ENODEV);
return core->phys[phy_idx].phy;
}
static int sr_pcie_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct sr_pcie_phy_core *core;
struct phy_provider *provider;
unsigned int phy_idx = 0;
core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
if (!core)
return -ENOMEM;
core->dev = dev;
core->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(core->base))
return PTR_ERR(core->base);
core->cdru = syscon_regmap_lookup_by_phandle(node, "brcm,sr-cdru");
if (IS_ERR(core->cdru)) {
dev_err(core->dev, "unable to find CDRU device\n");
return PTR_ERR(core->cdru);
}
core->mhb = syscon_regmap_lookup_by_phandle(node, "brcm,sr-mhb");
if (IS_ERR(core->mhb)) {
dev_err(core->dev, "unable to find MHB device\n");
return PTR_ERR(core->mhb);
}
/* read the PCIe PIPEMUX strap setting */
core->pipemux = pipemux_strap_read(core);
if (!pipemux_strap_is_valid(core->pipemux)) {
dev_err(core->dev, "invalid PCIe PIPEMUX strap %u\n",
core->pipemux);
return -EIO;
}
for (phy_idx = 0; phy_idx < SR_NR_PCIE_PHYS; phy_idx++) {
struct sr_pcie_phy *p = &core->phys[phy_idx];
const struct phy_ops *ops;
if (phy_idx == SR_PAXC_PHY_IDX)
ops = &sr_paxc_phy_ops;
else
ops = &sr_pcie_phy_ops;
p->phy = devm_phy_create(dev, NULL, ops);
if (IS_ERR(p->phy)) {
dev_err(dev, "failed to create PCIe PHY\n");
return PTR_ERR(p->phy);
}
p->core = core;
p->index = phy_idx;
phy_set_drvdata(p->phy, p);
}
dev_set_drvdata(dev, core);
provider = devm_of_phy_provider_register(dev, sr_pcie_phy_xlate);
if (IS_ERR(provider)) {
dev_err(dev, "failed to register PHY provider\n");
return PTR_ERR(provider);
}
dev_info(dev, "Stingray PCIe PHY driver initialized\n");
return 0;
}
static const struct of_device_id sr_pcie_phy_match_table[] = {
{ .compatible = "brcm,sr-pcie-phy" },
{ }
};
MODULE_DEVICE_TABLE(of, sr_pcie_phy_match_table);
static struct platform_driver sr_pcie_phy_driver = {
.driver = {
.name = "sr-pcie-phy",
.of_match_table = sr_pcie_phy_match_table,
},
.probe = sr_pcie_phy_probe,
};
module_platform_driver(sr_pcie_phy_driver);
MODULE_AUTHOR("Ray Jui <[email protected]>");
MODULE_DESCRIPTION("Broadcom Stingray PCIe PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/broadcom/phy-bcm-sr-pcie.c |
// SPDX-License-Identifier: GPL-2.0-only
// Copyright (C) 2015 Broadcom Corporation
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#define PCIE_CFG_OFFSET 0x00
#define PCIE1_PHY_IDDQ_SHIFT 10
#define PCIE0_PHY_IDDQ_SHIFT 2
enum cygnus_pcie_phy_id {
CYGNUS_PHY_PCIE0 = 0,
CYGNUS_PHY_PCIE1,
MAX_NUM_PHYS,
};
struct cygnus_pcie_phy_core;
/**
* struct cygnus_pcie_phy - Cygnus PCIe PHY device
* @core: pointer to the Cygnus PCIe PHY core control
* @id: internal ID to identify the Cygnus PCIe PHY
* @phy: pointer to the kernel PHY device
*/
struct cygnus_pcie_phy {
struct cygnus_pcie_phy_core *core;
enum cygnus_pcie_phy_id id;
struct phy *phy;
};
/**
* struct cygnus_pcie_phy_core - Cygnus PCIe PHY core control
* @dev: pointer to device
* @base: base register
* @lock: mutex to protect access to individual PHYs
* @phys: pointer to Cygnus PHY device
*/
struct cygnus_pcie_phy_core {
struct device *dev;
void __iomem *base;
struct mutex lock;
struct cygnus_pcie_phy phys[MAX_NUM_PHYS];
};
static int cygnus_pcie_power_config(struct cygnus_pcie_phy *phy, bool enable)
{
struct cygnus_pcie_phy_core *core = phy->core;
unsigned shift;
u32 val;
mutex_lock(&core->lock);
switch (phy->id) {
case CYGNUS_PHY_PCIE0:
shift = PCIE0_PHY_IDDQ_SHIFT;
break;
case CYGNUS_PHY_PCIE1:
shift = PCIE1_PHY_IDDQ_SHIFT;
break;
default:
mutex_unlock(&core->lock);
dev_err(core->dev, "PCIe PHY %d invalid\n", phy->id);
return -EINVAL;
}
if (enable) {
val = readl(core->base + PCIE_CFG_OFFSET);
val &= ~BIT(shift);
writel(val, core->base + PCIE_CFG_OFFSET);
/*
* Wait 50 ms for the PCIe Serdes to stabilize after the analog
* front end is brought up
*/
msleep(50);
} else {
val = readl(core->base + PCIE_CFG_OFFSET);
val |= BIT(shift);
writel(val, core->base + PCIE_CFG_OFFSET);
}
mutex_unlock(&core->lock);
dev_dbg(core->dev, "PCIe PHY %d %s\n", phy->id,
enable ? "enabled" : "disabled");
return 0;
}
static int cygnus_pcie_phy_power_on(struct phy *p)
{
struct cygnus_pcie_phy *phy = phy_get_drvdata(p);
return cygnus_pcie_power_config(phy, true);
}
static int cygnus_pcie_phy_power_off(struct phy *p)
{
struct cygnus_pcie_phy *phy = phy_get_drvdata(p);
return cygnus_pcie_power_config(phy, false);
}
static const struct phy_ops cygnus_pcie_phy_ops = {
.power_on = cygnus_pcie_phy_power_on,
.power_off = cygnus_pcie_phy_power_off,
.owner = THIS_MODULE,
};
static int cygnus_pcie_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node, *child;
struct cygnus_pcie_phy_core *core;
struct phy_provider *provider;
unsigned cnt = 0;
int ret;
if (of_get_child_count(node) == 0) {
dev_err(dev, "PHY no child node\n");
return -ENODEV;
}
core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
if (!core)
return -ENOMEM;
core->dev = dev;
core->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(core->base))
return PTR_ERR(core->base);
mutex_init(&core->lock);
for_each_available_child_of_node(node, child) {
unsigned int id;
struct cygnus_pcie_phy *p;
if (of_property_read_u32(child, "reg", &id)) {
dev_err(dev, "missing reg property for %pOFn\n",
child);
ret = -EINVAL;
goto put_child;
}
if (id >= MAX_NUM_PHYS) {
dev_err(dev, "invalid PHY id: %u\n", id);
ret = -EINVAL;
goto put_child;
}
if (core->phys[id].phy) {
dev_err(dev, "duplicated PHY id: %u\n", id);
ret = -EINVAL;
goto put_child;
}
p = &core->phys[id];
p->phy = devm_phy_create(dev, child, &cygnus_pcie_phy_ops);
if (IS_ERR(p->phy)) {
dev_err(dev, "failed to create PHY\n");
ret = PTR_ERR(p->phy);
goto put_child;
}
p->core = core;
p->id = id;
phy_set_drvdata(p->phy, p);
cnt++;
}
dev_set_drvdata(dev, core);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(provider)) {
dev_err(dev, "failed to register PHY provider\n");
return PTR_ERR(provider);
}
dev_dbg(dev, "registered %u PCIe PHY(s)\n", cnt);
return 0;
put_child:
of_node_put(child);
return ret;
}
static const struct of_device_id cygnus_pcie_phy_match_table[] = {
{ .compatible = "brcm,cygnus-pcie-phy" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, cygnus_pcie_phy_match_table);
static struct platform_driver cygnus_pcie_phy_driver = {
.driver = {
.name = "cygnus-pcie-phy",
.of_match_table = cygnus_pcie_phy_match_table,
},
.probe = cygnus_pcie_phy_probe,
};
module_platform_driver(cygnus_pcie_phy_driver);
MODULE_AUTHOR("Ray Jui <[email protected]>");
MODULE_DESCRIPTION("Broadcom Cygnus PCIe PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/broadcom/phy-bcm-cygnus-pcie.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* phy-bcm-kona-usb2.c - Broadcom Kona USB2 Phy Driver
*
* Copyright (C) 2013 Linaro Limited
* Matt Porter <[email protected]>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#define OTGCTL (0)
#define OTGCTL_OTGSTAT2 BIT(31)
#define OTGCTL_OTGSTAT1 BIT(30)
#define OTGCTL_PRST_N_SW BIT(11)
#define OTGCTL_HRESET_N BIT(10)
#define OTGCTL_UTMI_LINE_STATE1 BIT(9)
#define OTGCTL_UTMI_LINE_STATE0 BIT(8)
#define P1CTL (8)
#define P1CTL_SOFT_RESET BIT(1)
#define P1CTL_NON_DRIVING BIT(0)
struct bcm_kona_usb {
void __iomem *regs;
};
static void bcm_kona_usb_phy_power(struct bcm_kona_usb *phy, int on)
{
u32 val;
val = readl(phy->regs + OTGCTL);
if (on) {
/* Configure and power PHY */
val &= ~(OTGCTL_OTGSTAT2 | OTGCTL_OTGSTAT1 |
OTGCTL_UTMI_LINE_STATE1 | OTGCTL_UTMI_LINE_STATE0);
val |= OTGCTL_PRST_N_SW | OTGCTL_HRESET_N;
} else {
val &= ~(OTGCTL_PRST_N_SW | OTGCTL_HRESET_N);
}
writel(val, phy->regs + OTGCTL);
}
static int bcm_kona_usb_phy_init(struct phy *gphy)
{
struct bcm_kona_usb *phy = phy_get_drvdata(gphy);
u32 val;
/* Soft reset PHY */
val = readl(phy->regs + P1CTL);
val &= ~P1CTL_NON_DRIVING;
val |= P1CTL_SOFT_RESET;
writel(val, phy->regs + P1CTL);
writel(val & ~P1CTL_SOFT_RESET, phy->regs + P1CTL);
/* Reset needs to be asserted for 2ms */
mdelay(2);
writel(val | P1CTL_SOFT_RESET, phy->regs + P1CTL);
return 0;
}
static int bcm_kona_usb_phy_power_on(struct phy *gphy)
{
struct bcm_kona_usb *phy = phy_get_drvdata(gphy);
bcm_kona_usb_phy_power(phy, 1);
return 0;
}
static int bcm_kona_usb_phy_power_off(struct phy *gphy)
{
struct bcm_kona_usb *phy = phy_get_drvdata(gphy);
bcm_kona_usb_phy_power(phy, 0);
return 0;
}
static const struct phy_ops ops = {
.init = bcm_kona_usb_phy_init,
.power_on = bcm_kona_usb_phy_power_on,
.power_off = bcm_kona_usb_phy_power_off,
.owner = THIS_MODULE,
};
static int bcm_kona_usb2_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct bcm_kona_usb *phy;
struct phy *gphy;
struct phy_provider *phy_provider;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
phy->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(phy->regs))
return PTR_ERR(phy->regs);
platform_set_drvdata(pdev, phy);
gphy = devm_phy_create(dev, NULL, &ops);
if (IS_ERR(gphy))
return PTR_ERR(gphy);
/* The Kona PHY supports an 8-bit wide UTMI interface */
phy_set_bus_width(gphy, 8);
phy_set_drvdata(gphy, phy);
phy_provider = devm_of_phy_provider_register(dev,
of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id bcm_kona_usb2_dt_ids[] = {
{ .compatible = "brcm,kona-usb2-phy" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm_kona_usb2_dt_ids);
static struct platform_driver bcm_kona_usb2_driver = {
.probe = bcm_kona_usb2_probe,
.driver = {
.name = "bcm-kona-usb2",
.of_match_table = bcm_kona_usb2_dt_ids,
},
};
module_platform_driver(bcm_kona_usb2_driver);
MODULE_ALIAS("platform:bcm-kona-usb2");
MODULE_AUTHOR("Matt Porter <[email protected]>");
MODULE_DESCRIPTION("BCM Kona USB 2.0 PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/broadcom/phy-bcm-kona-usb2.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Broadcom Northstar USB 2.0 PHY Driver
*
* Copyright (C) 2016 Rafał Miłecki <[email protected]>
*/
#include <linux/bcma/bcma.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
struct bcm_ns_usb2 {
struct device *dev;
struct clk *ref_clk;
struct phy *phy;
struct regmap *clkset;
void __iomem *base;
/* Deprecated binding */
void __iomem *dmu;
};
static int bcm_ns_usb2_phy_init(struct phy *phy)
{
struct bcm_ns_usb2 *usb2 = phy_get_drvdata(phy);
struct device *dev = usb2->dev;
u32 ref_clk_rate, usb2ctl, usb_pll_ndiv, usb_pll_pdiv;
int err = 0;
err = clk_prepare_enable(usb2->ref_clk);
if (err < 0) {
dev_err(dev, "Failed to prepare ref clock: %d\n", err);
goto err_out;
}
ref_clk_rate = clk_get_rate(usb2->ref_clk);
if (!ref_clk_rate) {
dev_err(dev, "Failed to get ref clock rate\n");
err = -EINVAL;
goto err_clk_off;
}
if (usb2->base)
usb2ctl = readl(usb2->base);
else
usb2ctl = readl(usb2->dmu + BCMA_DMU_CRU_USB2_CONTROL);
if (usb2ctl & BCMA_DMU_CRU_USB2_CONTROL_USB_PLL_PDIV_MASK) {
usb_pll_pdiv = usb2ctl;
usb_pll_pdiv &= BCMA_DMU_CRU_USB2_CONTROL_USB_PLL_PDIV_MASK;
usb_pll_pdiv >>= BCMA_DMU_CRU_USB2_CONTROL_USB_PLL_PDIV_SHIFT;
} else {
usb_pll_pdiv = 1 << 3;
}
/* Calculate ndiv based on a solid 1920 MHz that is for USB2 PHY */
usb_pll_ndiv = (1920000000 * usb_pll_pdiv) / ref_clk_rate;
/* Unlock DMU PLL settings with some magic value */
if (usb2->clkset)
regmap_write(usb2->clkset, 0, 0x0000ea68);
else
writel(0x0000ea68, usb2->dmu + BCMA_DMU_CRU_CLKSET_KEY);
/* Write USB 2.0 PLL control setting */
usb2ctl &= ~BCMA_DMU_CRU_USB2_CONTROL_USB_PLL_NDIV_MASK;
usb2ctl |= usb_pll_ndiv << BCMA_DMU_CRU_USB2_CONTROL_USB_PLL_NDIV_SHIFT;
if (usb2->base)
writel(usb2ctl, usb2->base);
else
writel(usb2ctl, usb2->dmu + BCMA_DMU_CRU_USB2_CONTROL);
/* Lock DMU PLL settings */
if (usb2->clkset)
regmap_write(usb2->clkset, 0, 0x00000000);
else
writel(0x00000000, usb2->dmu + BCMA_DMU_CRU_CLKSET_KEY);
err_clk_off:
clk_disable_unprepare(usb2->ref_clk);
err_out:
return err;
}
static const struct phy_ops ops = {
.init = bcm_ns_usb2_phy_init,
.owner = THIS_MODULE,
};
static int bcm_ns_usb2_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct bcm_ns_usb2 *usb2;
struct phy_provider *phy_provider;
usb2 = devm_kzalloc(&pdev->dev, sizeof(*usb2), GFP_KERNEL);
if (!usb2)
return -ENOMEM;
usb2->dev = dev;
if (of_property_present(dev->of_node, "brcm,syscon-clkset")) {
usb2->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(usb2->base)) {
dev_err(dev, "Failed to map control reg\n");
return PTR_ERR(usb2->base);
}
usb2->clkset = syscon_regmap_lookup_by_phandle(dev->of_node,
"brcm,syscon-clkset");
if (IS_ERR(usb2->clkset)) {
dev_err(dev, "Failed to lookup clkset regmap\n");
return PTR_ERR(usb2->clkset);
}
} else {
usb2->dmu = devm_platform_ioremap_resource_byname(pdev, "dmu");
if (IS_ERR(usb2->dmu)) {
dev_err(dev, "Failed to map DMU regs\n");
return PTR_ERR(usb2->dmu);
}
dev_warn(dev, "using deprecated DT binding\n");
}
usb2->ref_clk = devm_clk_get(dev, "phy-ref-clk");
if (IS_ERR(usb2->ref_clk)) {
dev_err_probe(dev, PTR_ERR(usb2->ref_clk), "failed to get ref clk\n");
return PTR_ERR(usb2->ref_clk);
}
usb2->phy = devm_phy_create(dev, NULL, &ops);
if (IS_ERR(usb2->phy))
return PTR_ERR(usb2->phy);
phy_set_drvdata(usb2->phy, usb2);
platform_set_drvdata(pdev, usb2);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id bcm_ns_usb2_id_table[] = {
{ .compatible = "brcm,ns-usb2-phy", },
{},
};
MODULE_DEVICE_TABLE(of, bcm_ns_usb2_id_table);
static struct platform_driver bcm_ns_usb2_driver = {
.probe = bcm_ns_usb2_probe,
.driver = {
.name = "bcm_ns_usb2",
.of_match_table = bcm_ns_usb2_id_table,
},
};
module_platform_driver(bcm_ns_usb2_driver);
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/broadcom/phy-bcm-ns-usb2.c |
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Broadcom */
/*
* This module contains USB PHY initialization for power up and S3 resume
* for newer Synopsys based USB hardware first used on the bcm7216.
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/soc/brcmstb/brcmstb.h>
#include "phy-brcm-usb-init.h"
#define PHY_LOCK_TIMEOUT_MS 200
/* Register definitions for syscon piarbctl registers */
#define PIARBCTL_CAM 0x00
#define PIARBCTL_SPLITTER 0x04
#define PIARBCTL_MISC 0x08
#define PIARBCTL_MISC_SATA_PRIORITY_MASK GENMASK(3, 0)
#define PIARBCTL_MISC_CAM0_MEM_PAGE_MASK GENMASK(7, 4)
#define PIARBCTL_MISC_CAM1_MEM_PAGE_MASK GENMASK(11, 8)
#define PIARBCTL_MISC_USB_MEM_PAGE_MASK GENMASK(15, 12)
#define PIARBCTL_MISC_USB_PRIORITY_MASK GENMASK(19, 16)
#define PIARBCTL_MISC_USB_4G_SDRAM_MASK BIT(29)
#define PIARBCTL_MISC_USB_SELECT_MASK BIT(30)
#define PIARBCTL_MISC_SECURE_MASK BIT(31)
#define PIARBCTL_MISC_USB_ONLY_MASK \
(PIARBCTL_MISC_USB_SELECT_MASK | \
PIARBCTL_MISC_USB_4G_SDRAM_MASK | \
PIARBCTL_MISC_USB_PRIORITY_MASK | \
PIARBCTL_MISC_USB_MEM_PAGE_MASK)
/* Register definitions for the USB CTRL block */
#define USB_CTRL_SETUP 0x00
#define USB_CTRL_SETUP_IOC_MASK BIT(4)
#define USB_CTRL_SETUP_IPP_MASK BIT(5)
#define USB_CTRL_SETUP_SOFT_SHUTDOWN_MASK BIT(9)
#define USB_CTRL_SETUP_SCB1_EN_MASK BIT(14)
#define USB_CTRL_SETUP_SCB2_EN_MASK BIT(15)
#define USB_CTRL_SETUP_tca_drv_sel_MASK BIT(24)
#define USB_CTRL_SETUP_STRAP_IPP_SEL_MASK BIT(25)
#define USB_CTRL_USB_PM 0x04
#define USB_CTRL_USB_PM_XHC_S2_CLK_SWITCH_EN_MASK BIT(3)
#define USB_CTRL_USB_PM_XHC_PME_EN_MASK BIT(4)
#define USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK BIT(22)
#define USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK BIT(23)
#define USB_CTRL_USB_PM_SOFT_RESET_MASK BIT(30)
#define USB_CTRL_USB_PM_USB_PWRDN_MASK BIT(31)
#define USB_CTRL_USB_PM_STATUS 0x08
#define USB_CTRL_USB_DEVICE_CTL1 0x10
#define USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK GENMASK(1, 0)
#define USB_CTRL_TEST_PORT_CTL 0x30
#define USB_CTRL_TEST_PORT_CTL_TPOUT_SEL_MASK GENMASK(7, 0)
#define USB_CTRL_TEST_PORT_CTL_TPOUT_SEL_PME_GEN_MASK 0x0000002e
#define USB_CTRL_TP_DIAG1 0x34
#define USB_CTLR_TP_DIAG1_wake_MASK BIT(1)
#define USB_CTRL_CTLR_CSHCR 0x50
#define USB_CTRL_CTLR_CSHCR_ctl_pme_en_MASK BIT(18)
#define USB_CTRL_P0_U2PHY_CFG1 0x68
#define USB_CTRL_P0_U2PHY_CFG1_COMMONONN_MASK BIT(10)
/* Register definitions for the USB_PHY block in 7211b0 */
#define USB_PHY_PLL_CTL 0x00
#define USB_PHY_PLL_CTL_PLL_SUSPEND_MASK BIT(27)
#define USB_PHY_PLL_CTL_PLL_RESETB_MASK BIT(30)
#define USB_PHY_PLL_LDO_CTL 0x08
#define USB_PHY_PLL_LDO_CTL_AFE_BG_PWRDWNB_MASK BIT(0)
#define USB_PHY_PLL_LDO_CTL_AFE_LDO_PWRDWNB_MASK BIT(1)
#define USB_PHY_PLL_LDO_CTL_AFE_CORERDY_MASK BIT(2)
#define USB_PHY_UTMI_CTL_1 0x04
#define USB_PHY_UTMI_CTL_1_PHY_MODE_MASK GENMASK(3, 2)
#define USB_PHY_UTMI_CTL_1_PHY_MODE_SHIFT 2
#define USB_PHY_UTMI_CTL_1_POWER_UP_FSM_EN_MASK BIT(11)
#define USB_PHY_IDDQ 0x1c
#define USB_PHY_IDDQ_phy_iddq_MASK BIT(0)
#define USB_PHY_STATUS 0x20
#define USB_PHY_STATUS_pll_lock_MASK BIT(0)
/* Register definitions for the MDIO registers in the DWC2 block of
* the 7211b0.
* NOTE: The PHY's MDIO registers are only accessible through the
* legacy DesignWare USB controller even though it's not being used.
*/
#define USB_GMDIOCSR 0
#define USB_GMDIOGEN 4
/* Register definitions for the BDC EC block in 7211b0 */
#define BDC_EC_AXIRDA 0x0c
#define BDC_EC_AXIRDA_RTS_MASK GENMASK(31, 28)
#define BDC_EC_AXIRDA_RTS_SHIFT 28
#define USB_XHCI_GBL_GUSB2PHYCFG 0x100
#define USB_XHCI_GBL_GUSB2PHYCFG_U2_FREECLK_EXISTS_MASK BIT(30)
static void usb_mdio_write_7211b0(struct brcm_usb_init_params *params,
uint8_t addr, uint16_t data)
{
void __iomem *usb_mdio = params->regs[BRCM_REGS_USB_MDIO];
addr &= 0x1f; /* 5-bit address */
brcm_usb_writel(0xffffffff, usb_mdio + USB_GMDIOGEN);
while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31))
;
brcm_usb_writel(0x59020000 | (addr << 18) | data,
usb_mdio + USB_GMDIOGEN);
while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31))
;
brcm_usb_writel(0x00000000, usb_mdio + USB_GMDIOGEN);
while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31))
;
}
static uint16_t __maybe_unused usb_mdio_read_7211b0(
struct brcm_usb_init_params *params, uint8_t addr)
{
void __iomem *usb_mdio = params->regs[BRCM_REGS_USB_MDIO];
addr &= 0x1f; /* 5-bit address */
brcm_usb_writel(0xffffffff, usb_mdio + USB_GMDIOGEN);
while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31))
;
brcm_usb_writel(0x69020000 | (addr << 18), usb_mdio + USB_GMDIOGEN);
while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31))
;
brcm_usb_writel(0x00000000, usb_mdio + USB_GMDIOGEN);
while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31))
;
return brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & 0xffff;
}
static void usb2_eye_fix_7211b0(struct brcm_usb_init_params *params)
{
/* select bank */
usb_mdio_write_7211b0(params, 0x1f, 0x80a0);
/* Set the eye */
usb_mdio_write_7211b0(params, 0x0a, 0xc6a0);
}
static void xhci_soft_reset(struct brcm_usb_init_params *params,
int on_off)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
void __iomem *xhci_gbl = params->regs[BRCM_REGS_XHCI_GBL];
/* Assert reset */
if (on_off) {
USB_CTRL_UNSET(ctrl, USB_PM, XHC_SOFT_RESETB);
/* De-assert reset */
} else {
USB_CTRL_SET(ctrl, USB_PM, XHC_SOFT_RESETB);
/* Required for COMMONONN to be set */
USB_XHCI_GBL_UNSET(xhci_gbl, GUSB2PHYCFG, U2_FREECLK_EXISTS);
}
}
static void usb_init_ipp(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
u32 reg;
u32 orig_reg;
pr_debug("%s\n", __func__);
orig_reg = reg = brcm_usb_readl(USB_CTRL_REG(ctrl, SETUP));
if (params->ipp != 2)
/* override ipp strap pin (if it exits) */
reg &= ~(USB_CTRL_MASK(SETUP, STRAP_IPP_SEL));
/* Override the default OC and PP polarity */
reg &= ~(USB_CTRL_MASK(SETUP, IPP) | USB_CTRL_MASK(SETUP, IOC));
if (params->ioc)
reg |= USB_CTRL_MASK(SETUP, IOC);
if (params->ipp == 1)
reg |= USB_CTRL_MASK(SETUP, IPP);
brcm_usb_writel(reg, USB_CTRL_REG(ctrl, SETUP));
/*
* If we're changing IPP, make sure power is off long enough
* to turn off any connected devices.
*/
if ((reg ^ orig_reg) & USB_CTRL_MASK(SETUP, IPP))
msleep(50);
}
static void syscon_piarbctl_init(struct regmap *rmap)
{
/* Switch from legacy USB OTG controller to new STB USB controller */
regmap_update_bits(rmap, PIARBCTL_MISC, PIARBCTL_MISC_USB_ONLY_MASK,
PIARBCTL_MISC_USB_SELECT_MASK |
PIARBCTL_MISC_USB_4G_SDRAM_MASK);
}
static void usb_init_common(struct brcm_usb_init_params *params)
{
u32 reg;
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
pr_debug("%s\n", __func__);
if (USB_CTRL_MASK(USB_DEVICE_CTL1, PORT_MODE)) {
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1));
reg &= ~USB_CTRL_MASK(USB_DEVICE_CTL1, PORT_MODE);
reg |= params->port_mode;
brcm_usb_writel(reg, USB_CTRL_REG(ctrl, USB_DEVICE_CTL1));
}
switch (params->supported_port_modes) {
case USB_CTLR_MODE_HOST:
USB_CTRL_UNSET(ctrl, USB_PM, BDC_SOFT_RESETB);
break;
default:
USB_CTRL_UNSET(ctrl, USB_PM, BDC_SOFT_RESETB);
USB_CTRL_SET(ctrl, USB_PM, BDC_SOFT_RESETB);
break;
}
}
static void usb_wake_enable_7211b0(struct brcm_usb_init_params *params,
bool enable)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
if (enable)
USB_CTRL_SET(ctrl, CTLR_CSHCR, ctl_pme_en);
else
USB_CTRL_UNSET(ctrl, CTLR_CSHCR, ctl_pme_en);
}
static void usb_wake_enable_7216(struct brcm_usb_init_params *params,
bool enable)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
if (enable)
USB_CTRL_SET(ctrl, USB_PM, XHC_PME_EN);
else
USB_CTRL_UNSET(ctrl, USB_PM, XHC_PME_EN);
}
static void usb_init_common_7211b0(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
void __iomem *usb_phy = params->regs[BRCM_REGS_USB_PHY];
void __iomem *bdc_ec = params->regs[BRCM_REGS_BDC_EC];
int timeout_ms = PHY_LOCK_TIMEOUT_MS;
u32 reg;
if (params->syscon_piarbctl)
syscon_piarbctl_init(params->syscon_piarbctl);
USB_CTRL_UNSET(ctrl, USB_PM, USB_PWRDN);
usb_wake_enable_7211b0(params, false);
if (!params->wake_enabled) {
/* undo possible suspend settings */
brcm_usb_writel(0, usb_phy + USB_PHY_IDDQ);
reg = brcm_usb_readl(usb_phy + USB_PHY_PLL_CTL);
reg |= USB_PHY_PLL_CTL_PLL_RESETB_MASK;
brcm_usb_writel(reg, usb_phy + USB_PHY_PLL_CTL);
/* temporarily enable FSM so PHY comes up properly */
reg = brcm_usb_readl(usb_phy + USB_PHY_UTMI_CTL_1);
reg |= USB_PHY_UTMI_CTL_1_POWER_UP_FSM_EN_MASK;
brcm_usb_writel(reg, usb_phy + USB_PHY_UTMI_CTL_1);
}
/* Disable PLL auto suspend */
reg = brcm_usb_readl(usb_phy + USB_PHY_PLL_CTL);
reg |= USB_PHY_PLL_CTL_PLL_SUSPEND_MASK;
brcm_usb_writel(reg, usb_phy + USB_PHY_PLL_CTL);
/* Init the PHY */
reg = USB_PHY_PLL_LDO_CTL_AFE_CORERDY_MASK |
USB_PHY_PLL_LDO_CTL_AFE_LDO_PWRDWNB_MASK |
USB_PHY_PLL_LDO_CTL_AFE_BG_PWRDWNB_MASK;
brcm_usb_writel(reg, usb_phy + USB_PHY_PLL_LDO_CTL);
/* wait for lock */
while (timeout_ms-- > 0) {
reg = brcm_usb_readl(usb_phy + USB_PHY_STATUS);
if (reg & USB_PHY_STATUS_pll_lock_MASK)
break;
usleep_range(1000, 2000);
}
/* Set the PHY_MODE */
reg = brcm_usb_readl(usb_phy + USB_PHY_UTMI_CTL_1);
reg &= ~USB_PHY_UTMI_CTL_1_PHY_MODE_MASK;
reg |= params->supported_port_modes << USB_PHY_UTMI_CTL_1_PHY_MODE_SHIFT;
brcm_usb_writel(reg, usb_phy + USB_PHY_UTMI_CTL_1);
usb_init_common(params);
/*
* The BDC controller will get occasional failures with
* the default "Read Transaction Size" of 6 (1024 bytes).
* Set it to 4 (256 bytes).
*/
if ((params->supported_port_modes != USB_CTLR_MODE_HOST) && bdc_ec) {
reg = brcm_usb_readl(bdc_ec + BDC_EC_AXIRDA);
reg &= ~BDC_EC_AXIRDA_RTS_MASK;
reg |= (0x4 << BDC_EC_AXIRDA_RTS_SHIFT);
brcm_usb_writel(reg, bdc_ec + BDC_EC_AXIRDA);
}
/*
* Disable FSM, otherwise the PHY will auto suspend when no
* device is connected and will be reset on resume.
*/
reg = brcm_usb_readl(usb_phy + USB_PHY_UTMI_CTL_1);
reg &= ~USB_PHY_UTMI_CTL_1_POWER_UP_FSM_EN_MASK;
brcm_usb_writel(reg, usb_phy + USB_PHY_UTMI_CTL_1);
usb2_eye_fix_7211b0(params);
}
static void usb_init_common_7216(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
USB_CTRL_UNSET(ctrl, USB_PM, XHC_S2_CLK_SWITCH_EN);
USB_CTRL_UNSET(ctrl, USB_PM, USB_PWRDN);
/* 1 millisecond - for USB clocks to settle down */
usleep_range(1000, 2000);
/* Disable PHY when port is suspended */
USB_CTRL_SET(ctrl, P0_U2PHY_CFG1, COMMONONN);
usb_wake_enable_7216(params, false);
usb_init_common(params);
}
static void usb_init_xhci(struct brcm_usb_init_params *params)
{
pr_debug("%s\n", __func__);
xhci_soft_reset(params, 0);
}
static void usb_uninit_common_7216(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
pr_debug("%s\n", __func__);
if (params->wake_enabled) {
/* Switch to using slower clock during suspend to save power */
USB_CTRL_SET(ctrl, USB_PM, XHC_S2_CLK_SWITCH_EN);
usb_wake_enable_7216(params, true);
} else {
USB_CTRL_SET(ctrl, USB_PM, USB_PWRDN);
}
}
static void usb_uninit_common_7211b0(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
void __iomem *usb_phy = params->regs[BRCM_REGS_USB_PHY];
u32 reg;
pr_debug("%s\n", __func__);
if (params->wake_enabled) {
USB_CTRL_SET(ctrl, TEST_PORT_CTL, TPOUT_SEL_PME_GEN);
usb_wake_enable_7211b0(params, true);
} else {
USB_CTRL_SET(ctrl, USB_PM, USB_PWRDN);
brcm_usb_writel(0, usb_phy + USB_PHY_PLL_LDO_CTL);
reg = brcm_usb_readl(usb_phy + USB_PHY_PLL_CTL);
reg &= ~USB_PHY_PLL_CTL_PLL_RESETB_MASK;
brcm_usb_writel(reg, usb_phy + USB_PHY_PLL_CTL);
brcm_usb_writel(USB_PHY_IDDQ_phy_iddq_MASK,
usb_phy + USB_PHY_IDDQ);
}
}
static void usb_uninit_xhci(struct brcm_usb_init_params *params)
{
pr_debug("%s\n", __func__);
if (!params->wake_enabled)
xhci_soft_reset(params, 1);
}
static int usb_get_dual_select(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
u32 reg = 0;
pr_debug("%s\n", __func__);
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1));
reg &= USB_CTRL_MASK(USB_DEVICE_CTL1, PORT_MODE);
return reg;
}
static void usb_set_dual_select(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
u32 reg;
pr_debug("%s\n", __func__);
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1));
reg &= ~USB_CTRL_MASK(USB_DEVICE_CTL1, PORT_MODE);
reg |= params->port_mode;
brcm_usb_writel(reg, USB_CTRL_REG(ctrl, USB_DEVICE_CTL1));
}
static const struct brcm_usb_init_ops bcm7216_ops = {
.init_ipp = usb_init_ipp,
.init_common = usb_init_common_7216,
.init_xhci = usb_init_xhci,
.uninit_common = usb_uninit_common_7216,
.uninit_xhci = usb_uninit_xhci,
.get_dual_select = usb_get_dual_select,
.set_dual_select = usb_set_dual_select,
};
static const struct brcm_usb_init_ops bcm7211b0_ops = {
.init_ipp = usb_init_ipp,
.init_common = usb_init_common_7211b0,
.init_xhci = usb_init_xhci,
.uninit_common = usb_uninit_common_7211b0,
.uninit_xhci = usb_uninit_xhci,
.get_dual_select = usb_get_dual_select,
.set_dual_select = usb_set_dual_select,
};
void brcm_usb_dvr_init_7216(struct brcm_usb_init_params *params)
{
pr_debug("%s\n", __func__);
params->family_name = "7216";
params->ops = &bcm7216_ops;
}
void brcm_usb_dvr_init_7211b0(struct brcm_usb_init_params *params)
{
pr_debug("%s\n", __func__);
params->family_name = "7211";
params->ops = &bcm7211b0_ops;
}
| linux-master | drivers/phy/broadcom/phy-brcm-usb-init-synopsys.c |
// SPDX-License-Identifier: GPL-2.0-only
// Copyright (C) 2016 Broadcom
#include <linux/device.h>
#include <linux/module.h>
#include <linux/of_mdio.h>
#include <linux/mdio.h>
#include <linux/phy.h>
#include <linux/phy/phy.h>
#define BLK_ADDR_REG_OFFSET 0x1f
#define PLL_AFE1_100MHZ_BLK 0x2100
#define PLL_CLK_AMP_OFFSET 0x03
#define PLL_CLK_AMP_2P05V 0x2b18
static int ns2_pci_phy_init(struct phy *p)
{
struct mdio_device *mdiodev = phy_get_drvdata(p);
int rc;
/* select the AFE 100MHz block page */
rc = mdiodev_write(mdiodev, BLK_ADDR_REG_OFFSET, PLL_AFE1_100MHZ_BLK);
if (rc)
goto err;
/* set the 100 MHz reference clock amplitude to 2.05 v */
rc = mdiodev_write(mdiodev, PLL_CLK_AMP_OFFSET, PLL_CLK_AMP_2P05V);
if (rc)
goto err;
return 0;
err:
dev_err(&mdiodev->dev, "Error %d writing to phy\n", rc);
return rc;
}
static const struct phy_ops ns2_pci_phy_ops = {
.init = ns2_pci_phy_init,
.owner = THIS_MODULE,
};
static int ns2_pci_phy_probe(struct mdio_device *mdiodev)
{
struct device *dev = &mdiodev->dev;
struct phy_provider *provider;
struct phy *phy;
phy = devm_phy_create(dev, dev->of_node, &ns2_pci_phy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create Phy\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, mdiodev);
provider = devm_of_phy_provider_register(&phy->dev,
of_phy_simple_xlate);
if (IS_ERR(provider)) {
dev_err(dev, "failed to register Phy provider\n");
return PTR_ERR(provider);
}
dev_info(dev, "%s PHY registered\n", dev_name(dev));
return 0;
}
static const struct of_device_id ns2_pci_phy_of_match[] = {
{ .compatible = "brcm,ns2-pcie-phy", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, ns2_pci_phy_of_match);
static struct mdio_driver ns2_pci_phy_driver = {
.mdiodrv = {
.driver = {
.name = "phy-bcm-ns2-pci",
.of_match_table = ns2_pci_phy_of_match,
},
},
.probe = ns2_pci_phy_probe,
};
mdio_module_driver(ns2_pci_phy_driver);
MODULE_AUTHOR("Broadcom");
MODULE_DESCRIPTION("Broadcom Northstar2 PCI Phy driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:phy-bcm-ns2-pci");
| linux-master | drivers/phy/broadcom/phy-bcm-ns2-pcie.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* phy-brcm-usb.c - Broadcom USB Phy Driver
*
* Copyright (C) 2015-2017 Broadcom
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/soc/brcmstb/brcmstb.h>
#include <dt-bindings/phy/phy.h>
#include <linux/mfd/syscon.h>
#include <linux/suspend.h>
#include "phy-brcm-usb-init.h"
static DEFINE_MUTEX(sysfs_lock);
enum brcm_usb_phy_id {
BRCM_USB_PHY_2_0 = 0,
BRCM_USB_PHY_3_0,
BRCM_USB_PHY_ID_MAX
};
struct value_to_name_map {
int value;
const char *name;
};
struct match_chip_info {
void (*init_func)(struct brcm_usb_init_params *params);
u8 required_regs[BRCM_REGS_MAX + 1];
u8 optional_reg;
};
static const struct value_to_name_map brcm_dr_mode_to_name[] = {
{ USB_CTLR_MODE_HOST, "host" },
{ USB_CTLR_MODE_DEVICE, "peripheral" },
{ USB_CTLR_MODE_DRD, "drd" },
{ USB_CTLR_MODE_TYPEC_PD, "typec-pd" }
};
static const struct value_to_name_map brcm_dual_mode_to_name[] = {
{ 0, "host" },
{ 1, "device" },
{ 2, "auto" },
};
struct brcm_usb_phy {
struct phy *phy;
unsigned int id;
bool inited;
};
struct brcm_usb_phy_data {
struct brcm_usb_init_params ini;
bool has_eohci;
bool has_xhci;
struct clk *usb_20_clk;
struct clk *usb_30_clk;
struct clk *suspend_clk;
struct mutex mutex; /* serialize phy init */
int init_count;
int wake_irq;
struct brcm_usb_phy phys[BRCM_USB_PHY_ID_MAX];
struct notifier_block pm_notifier;
bool pm_active;
};
static s8 *node_reg_names[BRCM_REGS_MAX] = {
"crtl", "xhci_ec", "xhci_gbl", "usb_phy", "usb_mdio", "bdc_ec"
};
static int brcm_pm_notifier(struct notifier_block *notifier,
unsigned long pm_event,
void *unused)
{
struct brcm_usb_phy_data *priv =
container_of(notifier, struct brcm_usb_phy_data, pm_notifier);
switch (pm_event) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
priv->pm_active = true;
break;
case PM_POST_RESTORE:
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
priv->pm_active = false;
break;
}
return NOTIFY_DONE;
}
static irqreturn_t brcm_usb_phy_wake_isr(int irq, void *dev_id)
{
struct device *dev = dev_id;
pm_wakeup_event(dev, 0);
return IRQ_HANDLED;
}
static int brcm_usb_phy_init(struct phy *gphy)
{
struct brcm_usb_phy *phy = phy_get_drvdata(gphy);
struct brcm_usb_phy_data *priv =
container_of(phy, struct brcm_usb_phy_data, phys[phy->id]);
if (priv->pm_active)
return 0;
/*
* Use a lock to make sure a second caller waits until
* the base phy is inited before using it.
*/
mutex_lock(&priv->mutex);
if (priv->init_count++ == 0) {
clk_prepare_enable(priv->usb_20_clk);
clk_prepare_enable(priv->usb_30_clk);
clk_prepare_enable(priv->suspend_clk);
brcm_usb_init_common(&priv->ini);
}
mutex_unlock(&priv->mutex);
if (phy->id == BRCM_USB_PHY_2_0)
brcm_usb_init_eohci(&priv->ini);
else if (phy->id == BRCM_USB_PHY_3_0)
brcm_usb_init_xhci(&priv->ini);
phy->inited = true;
dev_dbg(&gphy->dev, "INIT, id: %d, total: %d\n", phy->id,
priv->init_count);
return 0;
}
static int brcm_usb_phy_exit(struct phy *gphy)
{
struct brcm_usb_phy *phy = phy_get_drvdata(gphy);
struct brcm_usb_phy_data *priv =
container_of(phy, struct brcm_usb_phy_data, phys[phy->id]);
if (priv->pm_active)
return 0;
dev_dbg(&gphy->dev, "EXIT\n");
if (phy->id == BRCM_USB_PHY_2_0)
brcm_usb_uninit_eohci(&priv->ini);
if (phy->id == BRCM_USB_PHY_3_0)
brcm_usb_uninit_xhci(&priv->ini);
/* If both xhci and eohci are gone, reset everything else */
mutex_lock(&priv->mutex);
if (--priv->init_count == 0) {
brcm_usb_uninit_common(&priv->ini);
clk_disable_unprepare(priv->usb_20_clk);
clk_disable_unprepare(priv->usb_30_clk);
clk_disable_unprepare(priv->suspend_clk);
}
mutex_unlock(&priv->mutex);
phy->inited = false;
return 0;
}
static const struct phy_ops brcm_usb_phy_ops = {
.init = brcm_usb_phy_init,
.exit = brcm_usb_phy_exit,
.owner = THIS_MODULE,
};
static struct phy *brcm_usb_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct brcm_usb_phy_data *data = dev_get_drvdata(dev);
/*
* values 0 and 1 are for backward compatibility with
* device tree nodes from older bootloaders.
*/
switch (args->args[0]) {
case 0:
case PHY_TYPE_USB2:
if (data->phys[BRCM_USB_PHY_2_0].phy)
return data->phys[BRCM_USB_PHY_2_0].phy;
dev_warn(dev, "Error, 2.0 Phy not found\n");
break;
case 1:
case PHY_TYPE_USB3:
if (data->phys[BRCM_USB_PHY_3_0].phy)
return data->phys[BRCM_USB_PHY_3_0].phy;
dev_warn(dev, "Error, 3.0 Phy not found\n");
break;
}
return ERR_PTR(-ENODEV);
}
static int name_to_value(const struct value_to_name_map *table, int count,
const char *name, int *value)
{
int x;
*value = 0;
for (x = 0; x < count; x++) {
if (sysfs_streq(name, table[x].name)) {
*value = x;
return 0;
}
}
return -EINVAL;
}
static const char *value_to_name(const struct value_to_name_map *table, int count,
int value)
{
if (value >= count)
return "unknown";
return table[value].name;
}
static ssize_t dr_mode_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct brcm_usb_phy_data *priv = dev_get_drvdata(dev);
return sprintf(buf, "%s\n",
value_to_name(&brcm_dr_mode_to_name[0],
ARRAY_SIZE(brcm_dr_mode_to_name),
priv->ini.supported_port_modes));
}
static DEVICE_ATTR_RO(dr_mode);
static ssize_t dual_select_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct brcm_usb_phy_data *priv = dev_get_drvdata(dev);
int value;
int res;
mutex_lock(&sysfs_lock);
res = name_to_value(&brcm_dual_mode_to_name[0],
ARRAY_SIZE(brcm_dual_mode_to_name), buf, &value);
if (!res) {
priv->ini.port_mode = value;
brcm_usb_set_dual_select(&priv->ini);
res = len;
}
mutex_unlock(&sysfs_lock);
return res;
}
static ssize_t dual_select_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct brcm_usb_phy_data *priv = dev_get_drvdata(dev);
int value;
mutex_lock(&sysfs_lock);
value = brcm_usb_get_dual_select(&priv->ini);
mutex_unlock(&sysfs_lock);
return sprintf(buf, "%s\n",
value_to_name(&brcm_dual_mode_to_name[0],
ARRAY_SIZE(brcm_dual_mode_to_name),
value));
}
static DEVICE_ATTR_RW(dual_select);
static struct attribute *brcm_usb_phy_attrs[] = {
&dev_attr_dr_mode.attr,
&dev_attr_dual_select.attr,
NULL
};
static const struct attribute_group brcm_usb_phy_group = {
.attrs = brcm_usb_phy_attrs,
};
static const struct match_chip_info chip_info_4908 = {
.init_func = &brcm_usb_dvr_init_4908,
.required_regs = {
BRCM_REGS_CTRL,
BRCM_REGS_XHCI_EC,
-1,
},
};
static const struct match_chip_info chip_info_7216 = {
.init_func = &brcm_usb_dvr_init_7216,
.required_regs = {
BRCM_REGS_CTRL,
BRCM_REGS_XHCI_EC,
BRCM_REGS_XHCI_GBL,
-1,
},
};
static const struct match_chip_info chip_info_7211b0 = {
.init_func = &brcm_usb_dvr_init_7211b0,
.required_regs = {
BRCM_REGS_CTRL,
BRCM_REGS_XHCI_EC,
BRCM_REGS_XHCI_GBL,
BRCM_REGS_USB_PHY,
BRCM_REGS_USB_MDIO,
-1,
},
.optional_reg = BRCM_REGS_BDC_EC,
};
static const struct match_chip_info chip_info_7445 = {
.init_func = &brcm_usb_dvr_init_7445,
.required_regs = {
BRCM_REGS_CTRL,
BRCM_REGS_XHCI_EC,
-1,
},
};
static const struct of_device_id brcm_usb_dt_ids[] = {
{
.compatible = "brcm,bcm4908-usb-phy",
.data = &chip_info_4908,
},
{
.compatible = "brcm,bcm7216-usb-phy",
.data = &chip_info_7216,
},
{
.compatible = "brcm,bcm7211-usb-phy",
.data = &chip_info_7211b0,
},
{
.compatible = "brcm,brcmstb-usb-phy",
.data = &chip_info_7445,
},
{ /* sentinel */ }
};
static int brcm_usb_get_regs(struct platform_device *pdev,
enum brcmusb_reg_sel regs,
struct brcm_usb_init_params *ini,
bool optional)
{
struct resource *res;
/* Older DT nodes have ctrl and optional xhci_ec by index only */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
node_reg_names[regs]);
if (res == NULL) {
if (regs == BRCM_REGS_CTRL) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
} else if (regs == BRCM_REGS_XHCI_EC) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
/* XHCI_EC registers are optional */
if (res == NULL)
return 0;
}
if (res == NULL) {
if (optional) {
dev_dbg(&pdev->dev,
"Optional reg %s not found\n",
node_reg_names[regs]);
return 0;
}
dev_err(&pdev->dev, "can't get %s base addr\n",
node_reg_names[regs]);
return 1;
}
}
ini->regs[regs] = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ini->regs[regs])) {
dev_err(&pdev->dev, "can't map %s register space\n",
node_reg_names[regs]);
return 1;
}
return 0;
}
static int brcm_usb_phy_dvr_init(struct platform_device *pdev,
struct brcm_usb_phy_data *priv,
struct device_node *dn)
{
struct device *dev = &pdev->dev;
struct phy *gphy = NULL;
int err;
priv->usb_20_clk = of_clk_get_by_name(dn, "sw_usb");
if (IS_ERR(priv->usb_20_clk)) {
if (PTR_ERR(priv->usb_20_clk) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_info(dev, "Clock not found in Device Tree\n");
priv->usb_20_clk = NULL;
}
err = clk_prepare_enable(priv->usb_20_clk);
if (err)
return err;
if (priv->has_eohci) {
gphy = devm_phy_create(dev, NULL, &brcm_usb_phy_ops);
if (IS_ERR(gphy)) {
dev_err(dev, "failed to create EHCI/OHCI PHY\n");
return PTR_ERR(gphy);
}
priv->phys[BRCM_USB_PHY_2_0].phy = gphy;
priv->phys[BRCM_USB_PHY_2_0].id = BRCM_USB_PHY_2_0;
phy_set_drvdata(gphy, &priv->phys[BRCM_USB_PHY_2_0]);
}
if (priv->has_xhci) {
gphy = devm_phy_create(dev, NULL, &brcm_usb_phy_ops);
if (IS_ERR(gphy)) {
dev_err(dev, "failed to create XHCI PHY\n");
return PTR_ERR(gphy);
}
priv->phys[BRCM_USB_PHY_3_0].phy = gphy;
priv->phys[BRCM_USB_PHY_3_0].id = BRCM_USB_PHY_3_0;
phy_set_drvdata(gphy, &priv->phys[BRCM_USB_PHY_3_0]);
priv->usb_30_clk = of_clk_get_by_name(dn, "sw_usb3");
if (IS_ERR(priv->usb_30_clk)) {
if (PTR_ERR(priv->usb_30_clk) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_info(dev,
"USB3.0 clock not found in Device Tree\n");
priv->usb_30_clk = NULL;
}
err = clk_prepare_enable(priv->usb_30_clk);
if (err)
return err;
}
priv->suspend_clk = clk_get(dev, "usb0_freerun");
if (IS_ERR(priv->suspend_clk)) {
if (PTR_ERR(priv->suspend_clk) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_err(dev, "Suspend Clock not found in Device Tree\n");
priv->suspend_clk = NULL;
}
priv->wake_irq = platform_get_irq_byname_optional(pdev, "wake");
if (priv->wake_irq < 0)
priv->wake_irq = platform_get_irq_byname_optional(pdev, "wakeup");
if (priv->wake_irq >= 0) {
err = devm_request_irq(dev, priv->wake_irq,
brcm_usb_phy_wake_isr, 0,
dev_name(dev), dev);
if (err < 0)
return err;
device_set_wakeup_capable(dev, 1);
} else {
dev_info(dev,
"Wake interrupt missing, system wake not supported\n");
}
return 0;
}
static int brcm_usb_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct brcm_usb_phy_data *priv;
struct phy_provider *phy_provider;
struct device_node *dn = pdev->dev.of_node;
int err;
const char *mode;
const struct match_chip_info *info;
struct regmap *rmap;
int x;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
platform_set_drvdata(pdev, priv);
priv->ini.family_id = brcmstb_get_family_id();
priv->ini.product_id = brcmstb_get_product_id();
info = of_device_get_match_data(&pdev->dev);
if (!info)
return -ENOENT;
info->init_func(&priv->ini);
dev_dbg(dev, "Best mapping table is for %s\n",
priv->ini.family_name);
of_property_read_u32(dn, "brcm,ipp", &priv->ini.ipp);
of_property_read_u32(dn, "brcm,ioc", &priv->ini.ioc);
priv->ini.supported_port_modes = USB_CTLR_MODE_HOST;
err = of_property_read_string(dn, "dr_mode", &mode);
if (err == 0) {
name_to_value(&brcm_dr_mode_to_name[0],
ARRAY_SIZE(brcm_dr_mode_to_name),
mode, &priv->ini.supported_port_modes);
}
/* Default port_mode to supported port_modes */
priv->ini.port_mode = priv->ini.supported_port_modes;
if (of_property_read_bool(dn, "brcm,has-xhci"))
priv->has_xhci = true;
if (of_property_read_bool(dn, "brcm,has-eohci"))
priv->has_eohci = true;
for (x = 0; x < BRCM_REGS_MAX; x++) {
if (info->required_regs[x] >= BRCM_REGS_MAX)
break;
err = brcm_usb_get_regs(pdev, info->required_regs[x],
&priv->ini, false);
if (err)
return -EINVAL;
}
if (info->optional_reg) {
err = brcm_usb_get_regs(pdev, info->optional_reg,
&priv->ini, true);
if (err)
return -EINVAL;
}
err = brcm_usb_phy_dvr_init(pdev, priv, dn);
if (err)
return err;
priv->pm_notifier.notifier_call = brcm_pm_notifier;
register_pm_notifier(&priv->pm_notifier);
mutex_init(&priv->mutex);
/* make sure invert settings are correct */
brcm_usb_init_ipp(&priv->ini);
/*
* Create sysfs entries for mode.
* Remove "dual_select" attribute if not in dual mode
*/
if (priv->ini.supported_port_modes != USB_CTLR_MODE_DRD)
brcm_usb_phy_attrs[1] = NULL;
err = sysfs_create_group(&dev->kobj, &brcm_usb_phy_group);
if (err)
dev_warn(dev, "Error creating sysfs attributes\n");
/* Get piarbctl syscon if it exists */
rmap = syscon_regmap_lookup_by_phandle(dev->of_node,
"syscon-piarbctl");
if (IS_ERR(rmap))
rmap = syscon_regmap_lookup_by_phandle(dev->of_node,
"brcm,syscon-piarbctl");
if (!IS_ERR(rmap))
priv->ini.syscon_piarbctl = rmap;
/* start with everything off */
if (priv->has_xhci)
brcm_usb_uninit_xhci(&priv->ini);
if (priv->has_eohci)
brcm_usb_uninit_eohci(&priv->ini);
brcm_usb_uninit_common(&priv->ini);
clk_disable_unprepare(priv->usb_20_clk);
clk_disable_unprepare(priv->usb_30_clk);
phy_provider = devm_of_phy_provider_register(dev, brcm_usb_phy_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static void brcm_usb_phy_remove(struct platform_device *pdev)
{
struct brcm_usb_phy_data *priv = dev_get_drvdata(&pdev->dev);
sysfs_remove_group(&pdev->dev.kobj, &brcm_usb_phy_group);
unregister_pm_notifier(&priv->pm_notifier);
}
#ifdef CONFIG_PM_SLEEP
static int brcm_usb_phy_suspend(struct device *dev)
{
struct brcm_usb_phy_data *priv = dev_get_drvdata(dev);
if (priv->init_count) {
dev_dbg(dev, "SUSPEND\n");
priv->ini.wake_enabled = device_may_wakeup(dev);
if (priv->phys[BRCM_USB_PHY_3_0].inited)
brcm_usb_uninit_xhci(&priv->ini);
if (priv->phys[BRCM_USB_PHY_2_0].inited)
brcm_usb_uninit_eohci(&priv->ini);
brcm_usb_uninit_common(&priv->ini);
/*
* Handle the clocks unless needed for wake. This has
* to work for both older XHCI->3.0-clks, EOHCI->2.0-clks
* and newer XHCI->2.0-clks/3.0-clks.
*/
if (!priv->ini.wake_enabled) {
if (priv->phys[BRCM_USB_PHY_3_0].inited)
clk_disable_unprepare(priv->usb_30_clk);
if (priv->phys[BRCM_USB_PHY_2_0].inited ||
!priv->has_eohci)
clk_disable_unprepare(priv->usb_20_clk);
}
if (priv->wake_irq >= 0)
enable_irq_wake(priv->wake_irq);
}
return 0;
}
static int brcm_usb_phy_resume(struct device *dev)
{
struct brcm_usb_phy_data *priv = dev_get_drvdata(dev);
if (!priv->ini.wake_enabled) {
clk_prepare_enable(priv->usb_20_clk);
clk_prepare_enable(priv->usb_30_clk);
}
brcm_usb_init_ipp(&priv->ini);
/*
* Initialize anything that was previously initialized.
* Uninitialize anything that wasn't previously initialized.
*/
if (priv->init_count) {
dev_dbg(dev, "RESUME\n");
if (priv->wake_irq >= 0)
disable_irq_wake(priv->wake_irq);
brcm_usb_init_common(&priv->ini);
if (priv->phys[BRCM_USB_PHY_2_0].inited) {
brcm_usb_init_eohci(&priv->ini);
} else if (priv->has_eohci) {
brcm_usb_uninit_eohci(&priv->ini);
clk_disable_unprepare(priv->usb_20_clk);
}
if (priv->phys[BRCM_USB_PHY_3_0].inited) {
brcm_usb_init_xhci(&priv->ini);
} else if (priv->has_xhci) {
brcm_usb_uninit_xhci(&priv->ini);
clk_disable_unprepare(priv->usb_30_clk);
if (!priv->has_eohci)
clk_disable_unprepare(priv->usb_20_clk);
}
} else {
if (priv->has_xhci)
brcm_usb_uninit_xhci(&priv->ini);
if (priv->has_eohci)
brcm_usb_uninit_eohci(&priv->ini);
brcm_usb_uninit_common(&priv->ini);
clk_disable_unprepare(priv->usb_20_clk);
clk_disable_unprepare(priv->usb_30_clk);
}
priv->ini.wake_enabled = false;
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops brcm_usb_phy_pm_ops = {
SET_LATE_SYSTEM_SLEEP_PM_OPS(brcm_usb_phy_suspend, brcm_usb_phy_resume)
};
MODULE_DEVICE_TABLE(of, brcm_usb_dt_ids);
static struct platform_driver brcm_usb_driver = {
.probe = brcm_usb_phy_probe,
.remove_new = brcm_usb_phy_remove,
.driver = {
.name = "brcmstb-usb-phy",
.pm = &brcm_usb_phy_pm_ops,
.of_match_table = brcm_usb_dt_ids,
},
};
module_platform_driver(brcm_usb_driver);
MODULE_ALIAS("platform:brcmstb-usb-phy");
MODULE_AUTHOR("Al Cooper <[email protected]>");
MODULE_DESCRIPTION("BRCM USB PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/broadcom/phy-brcm-usb.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* phy-brcm-usb-init.c - Broadcom USB Phy chip specific init functions
*
* Copyright (C) 2014-2017 Broadcom
*/
/*
* This module contains USB PHY initialization for power up and S3 resume
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/soc/brcmstb/brcmstb.h>
#include "phy-brcm-usb-init.h"
#define PHY_PORTS 2
#define PHY_PORT_SELECT_0 0
#define PHY_PORT_SELECT_1 0x1000
/* Register definitions for the USB CTRL block */
#define USB_CTRL_SETUP 0x00
#define USB_CTRL_SETUP_BABO_MASK BIT(0)
#define USB_CTRL_SETUP_FNHW_MASK BIT(1)
#define USB_CTRL_SETUP_FNBO_MASK BIT(2)
#define USB_CTRL_SETUP_WABO_MASK BIT(3)
#define USB_CTRL_SETUP_IOC_MASK BIT(4)
#define USB_CTRL_SETUP_IPP_MASK BIT(5)
#define USB_CTRL_SETUP_SCB_CLIENT_SWAP_MASK BIT(13) /* option */
#define USB_CTRL_SETUP_SCB1_EN_MASK BIT(14) /* option */
#define USB_CTRL_SETUP_SCB2_EN_MASK BIT(15) /* option */
#define USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK BIT(17) /* option */
#define USB_CTRL_SETUP_SS_EHCI64BIT_EN_VAR_MASK BIT(16) /* option */
#define USB_CTRL_SETUP_STRAP_IPP_SEL_MASK BIT(25) /* option */
#define USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK BIT(26) /* option */
#define USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK BIT(27) /* opt */
#define USB_CTRL_SETUP_OC_DISABLE_PORT0_MASK BIT(28)
#define USB_CTRL_SETUP_OC_DISABLE_PORT1_MASK BIT(29)
#define USB_CTRL_SETUP_OC_DISABLE_MASK GENMASK(29, 28) /* option */
#define USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK BIT(30)
#define USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK BIT(31)
#define USB_CTRL_SETUP_OC3_DISABLE_MASK GENMASK(31, 30) /* option */
#define USB_CTRL_PLL_CTL 0x04
#define USB_CTRL_PLL_CTL_PLL_SUSPEND_EN_MASK BIT(27)
#define USB_CTRL_PLL_CTL_PLL_RESETB_MASK BIT(30)
#define USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK BIT(31) /* option */
#define USB_CTRL_EBRIDGE 0x0c
#define USB_CTRL_EBRIDGE_EBR_SCB_SIZE_MASK GENMASK(11, 7) /* option */
#define USB_CTRL_EBRIDGE_ESTOP_SCB_REQ_MASK BIT(17) /* option */
#define USB_CTRL_OBRIDGE 0x10
#define USB_CTRL_OBRIDGE_LS_KEEP_ALIVE_MASK BIT(27)
#define USB_CTRL_MDIO 0x14
#define USB_CTRL_MDIO2 0x18
#define USB_CTRL_UTMI_CTL_1 0x2c
#define USB_CTRL_UTMI_CTL_1_POWER_UP_FSM_EN_MASK BIT(11)
#define USB_CTRL_UTMI_CTL_1_POWER_UP_FSM_EN_P1_MASK BIT(27)
#define USB_CTRL_USB_PM 0x34
#define USB_CTRL_USB_PM_RMTWKUP_EN_MASK BIT(0)
#define USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK GENMASK(21, 20) /* option */
#define USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK BIT(22) /* option */
#define USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK BIT(23) /* option */
#define USB_CTRL_USB_PM_USB20_HC_RESETB_MASK GENMASK(29, 28) /* option */
#define USB_CTRL_USB_PM_XHC_SOFT_RESETB_VAR_MASK BIT(30) /* option */
#define USB_CTRL_USB_PM_SOFT_RESET_MASK BIT(30) /* option */
#define USB_CTRL_USB_PM_USB_PWRDN_MASK BIT(31) /* option */
#define USB_CTRL_USB_PM_STATUS 0x38
#define USB_CTRL_USB30_CTL1 0x60
#define USB_CTRL_USB30_CTL1_PHY3_PLL_SEQ_START_MASK BIT(4)
#define USB_CTRL_USB30_CTL1_PHY3_RESETB_MASK BIT(16)
#define USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK BIT(17) /* option */
#define USB_CTRL_USB30_CTL1_USB3_IOC_MASK BIT(28) /* option */
#define USB_CTRL_USB30_CTL1_USB3_IPP_MASK BIT(29) /* option */
#define USB_CTRL_USB30_PCTL 0x70
#define USB_CTRL_USB30_PCTL_PHY3_SOFT_RESETB_MASK BIT(1)
#define USB_CTRL_USB30_PCTL_PHY3_IDDQ_OVERRIDE_MASK BIT(15)
#define USB_CTRL_USB30_PCTL_PHY3_SOFT_RESETB_P1_MASK BIT(17)
#define USB_CTRL_USB_DEVICE_CTL1 0x90
#define USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK GENMASK(1, 0) /* option */
/* Register definitions for the XHCI EC block */
#define USB_XHCI_EC_IRAADR 0x658
#define USB_XHCI_EC_IRADAT 0x65c
enum brcm_family_type {
BRCM_FAMILY_3390A0,
BRCM_FAMILY_4908,
BRCM_FAMILY_7250B0,
BRCM_FAMILY_7271A0,
BRCM_FAMILY_7364A0,
BRCM_FAMILY_7366C0,
BRCM_FAMILY_74371A0,
BRCM_FAMILY_7439B0,
BRCM_FAMILY_7445D0,
BRCM_FAMILY_7260A0,
BRCM_FAMILY_7278A0,
BRCM_FAMILY_COUNT,
};
#define USB_BRCM_FAMILY(chip) \
[BRCM_FAMILY_##chip] = __stringify(chip)
static const char *family_names[BRCM_FAMILY_COUNT] = {
USB_BRCM_FAMILY(3390A0),
USB_BRCM_FAMILY(4908),
USB_BRCM_FAMILY(7250B0),
USB_BRCM_FAMILY(7271A0),
USB_BRCM_FAMILY(7364A0),
USB_BRCM_FAMILY(7366C0),
USB_BRCM_FAMILY(74371A0),
USB_BRCM_FAMILY(7439B0),
USB_BRCM_FAMILY(7445D0),
USB_BRCM_FAMILY(7260A0),
USB_BRCM_FAMILY(7278A0),
};
enum {
USB_CTRL_SETUP_SCB1_EN_SELECTOR,
USB_CTRL_SETUP_SCB2_EN_SELECTOR,
USB_CTRL_SETUP_SS_EHCI64BIT_EN_SELECTOR,
USB_CTRL_SETUP_STRAP_IPP_SEL_SELECTOR,
USB_CTRL_SETUP_OC3_DISABLE_PORT0_SELECTOR,
USB_CTRL_SETUP_OC3_DISABLE_PORT1_SELECTOR,
USB_CTRL_SETUP_OC3_DISABLE_SELECTOR,
USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_SELECTOR,
USB_CTRL_USB_PM_BDC_SOFT_RESETB_SELECTOR,
USB_CTRL_USB_PM_XHC_SOFT_RESETB_SELECTOR,
USB_CTRL_USB_PM_USB_PWRDN_SELECTOR,
USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_SELECTOR,
USB_CTRL_USB30_CTL1_USB3_IOC_SELECTOR,
USB_CTRL_USB30_CTL1_USB3_IPP_SELECTOR,
USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_SELECTOR,
USB_CTRL_USB_PM_SOFT_RESET_SELECTOR,
USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_SELECTOR,
USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_SELECTOR,
USB_CTRL_USB_PM_USB20_HC_RESETB_SELECTOR,
USB_CTRL_SETUP_ENDIAN_SELECTOR,
USB_CTRL_SELECTOR_COUNT,
};
#define USB_CTRL_MASK_FAMILY(params, reg, field) \
(params->usb_reg_bits_map[USB_CTRL_##reg##_##field##_SELECTOR])
#define USB_CTRL_SET_FAMILY(params, reg, field) \
usb_ctrl_set_family(params, USB_CTRL_##reg, \
USB_CTRL_##reg##_##field##_SELECTOR)
#define USB_CTRL_UNSET_FAMILY(params, reg, field) \
usb_ctrl_unset_family(params, USB_CTRL_##reg, \
USB_CTRL_##reg##_##field##_SELECTOR)
#define MDIO_USB2 0
#define MDIO_USB3 BIT(31)
#define USB_CTRL_SETUP_ENDIAN_BITS ( \
USB_CTRL_MASK(SETUP, BABO) | \
USB_CTRL_MASK(SETUP, FNHW) | \
USB_CTRL_MASK(SETUP, FNBO) | \
USB_CTRL_MASK(SETUP, WABO))
#ifdef __LITTLE_ENDIAN
#define ENDIAN_SETTINGS ( \
USB_CTRL_MASK(SETUP, BABO) | \
USB_CTRL_MASK(SETUP, FNHW))
#else
#define ENDIAN_SETTINGS ( \
USB_CTRL_MASK(SETUP, FNHW) | \
USB_CTRL_MASK(SETUP, FNBO) | \
USB_CTRL_MASK(SETUP, WABO))
#endif
struct id_to_type {
u32 id;
int type;
};
static const struct id_to_type id_to_type_table[] = {
{ 0x33900000, BRCM_FAMILY_3390A0 },
{ 0x72500010, BRCM_FAMILY_7250B0 },
{ 0x72600000, BRCM_FAMILY_7260A0 },
{ 0x72550000, BRCM_FAMILY_7260A0 },
{ 0x72680000, BRCM_FAMILY_7271A0 },
{ 0x72710000, BRCM_FAMILY_7271A0 },
{ 0x73640000, BRCM_FAMILY_7364A0 },
{ 0x73660020, BRCM_FAMILY_7366C0 },
{ 0x07437100, BRCM_FAMILY_74371A0 },
{ 0x74390010, BRCM_FAMILY_7439B0 },
{ 0x74450030, BRCM_FAMILY_7445D0 },
{ 0x72780000, BRCM_FAMILY_7278A0 },
{ 0, BRCM_FAMILY_7271A0 }, /* default */
};
static const u32
usb_reg_bits_map_table[BRCM_FAMILY_COUNT][USB_CTRL_SELECTOR_COUNT] = {
/* 3390B0 */
[BRCM_FAMILY_3390A0] = {
USB_CTRL_SETUP_SCB1_EN_MASK,
USB_CTRL_SETUP_SCB2_EN_MASK,
USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK,
USB_CTRL_SETUP_STRAP_IPP_SEL_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK,
USB_CTRL_SETUP_OC3_DISABLE_MASK,
0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */
0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */
USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK,
USB_CTRL_USB_PM_USB_PWRDN_MASK,
0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */
USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK,
0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */
0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */
0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */
USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK,
ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */
},
/* 4908 */
[BRCM_FAMILY_4908] = {
0, /* USB_CTRL_SETUP_SCB1_EN_MASK */
0, /* USB_CTRL_SETUP_SCB2_EN_MASK */
0, /* USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK */
0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */
0, /* USB_CTRL_SETUP_OC3_DISABLE_MASK */
0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */
0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */
USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK,
USB_CTRL_USB_PM_USB_PWRDN_MASK,
0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */
0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */
0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */
0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */
0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */
0, /* USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK */
0, /* USB_CTRL_SETUP ENDIAN bits */
},
/* 7250b0 */
[BRCM_FAMILY_7250B0] = {
USB_CTRL_SETUP_SCB1_EN_MASK,
USB_CTRL_SETUP_SCB2_EN_MASK,
USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK,
0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */
USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK,
USB_CTRL_SETUP_OC3_DISABLE_MASK,
USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK,
0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */
USB_CTRL_USB_PM_XHC_SOFT_RESETB_VAR_MASK,
0, /* USB_CTRL_USB_PM_USB_PWRDN_MASK */
0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */
0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */
0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */
0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */
0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */
USB_CTRL_USB_PM_USB20_HC_RESETB_MASK,
ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */
},
/* 7271a0 */
[BRCM_FAMILY_7271A0] = {
0, /* USB_CTRL_SETUP_SCB1_EN_MASK */
0, /* USB_CTRL_SETUP_SCB2_EN_MASK */
USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK,
USB_CTRL_SETUP_STRAP_IPP_SEL_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK,
USB_CTRL_SETUP_OC3_DISABLE_MASK,
0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */
USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK,
USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK,
USB_CTRL_USB_PM_USB_PWRDN_MASK,
0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */
USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK,
USB_CTRL_USB_PM_SOFT_RESET_MASK,
USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK,
USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK,
USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK,
ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */
},
/* 7364a0 */
[BRCM_FAMILY_7364A0] = {
USB_CTRL_SETUP_SCB1_EN_MASK,
USB_CTRL_SETUP_SCB2_EN_MASK,
USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK,
0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */
USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK,
USB_CTRL_SETUP_OC3_DISABLE_MASK,
USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK,
0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */
USB_CTRL_USB_PM_XHC_SOFT_RESETB_VAR_MASK,
0, /* USB_CTRL_USB_PM_USB_PWRDN_MASK */
0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */
0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */
0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */
0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */
0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */
USB_CTRL_USB_PM_USB20_HC_RESETB_MASK,
ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */
},
/* 7366c0 */
[BRCM_FAMILY_7366C0] = {
USB_CTRL_SETUP_SCB1_EN_MASK,
USB_CTRL_SETUP_SCB2_EN_MASK,
USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK,
0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */
USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK,
USB_CTRL_SETUP_OC3_DISABLE_MASK,
0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */
0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */
USB_CTRL_USB_PM_XHC_SOFT_RESETB_VAR_MASK,
USB_CTRL_USB_PM_USB_PWRDN_MASK,
0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */
0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */
0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */
0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */
0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */
USB_CTRL_USB_PM_USB20_HC_RESETB_MASK,
ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */
},
/* 74371A0 */
[BRCM_FAMILY_74371A0] = {
USB_CTRL_SETUP_SCB1_EN_MASK,
USB_CTRL_SETUP_SCB2_EN_MASK,
USB_CTRL_SETUP_SS_EHCI64BIT_EN_VAR_MASK,
0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */
0, /* USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK */
0, /* USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK */
0, /* USB_CTRL_SETUP_OC3_DISABLE_MASK */
USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK,
0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB_PM_USB_PWRDN_MASK */
USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK,
USB_CTRL_USB30_CTL1_USB3_IOC_MASK,
USB_CTRL_USB30_CTL1_USB3_IPP_MASK,
0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */
0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */
0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */
0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */
0, /* USB_CTRL_USB_PM_USB20_HC_RESETB_MASK */
ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */
},
/* 7439B0 */
[BRCM_FAMILY_7439B0] = {
USB_CTRL_SETUP_SCB1_EN_MASK,
USB_CTRL_SETUP_SCB2_EN_MASK,
USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK,
USB_CTRL_SETUP_STRAP_IPP_SEL_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK,
USB_CTRL_SETUP_OC3_DISABLE_MASK,
0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */
USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK,
USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK,
USB_CTRL_USB_PM_USB_PWRDN_MASK,
0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */
USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK,
0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */
0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */
0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */
USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK,
ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */
},
/* 7445d0 */
[BRCM_FAMILY_7445D0] = {
USB_CTRL_SETUP_SCB1_EN_MASK,
USB_CTRL_SETUP_SCB2_EN_MASK,
USB_CTRL_SETUP_SS_EHCI64BIT_EN_VAR_MASK,
0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */
USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK,
USB_CTRL_SETUP_OC3_DISABLE_MASK,
USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK,
0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB_PM_USB_PWRDN_MASK */
USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK,
0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */
0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */
0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */
0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */
0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */
USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK,
ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */
},
/* 7260a0 */
[BRCM_FAMILY_7260A0] = {
0, /* USB_CTRL_SETUP_SCB1_EN_MASK */
0, /* USB_CTRL_SETUP_SCB2_EN_MASK */
USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK,
USB_CTRL_SETUP_STRAP_IPP_SEL_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK,
USB_CTRL_SETUP_OC3_DISABLE_MASK,
0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */
USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK,
USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK,
USB_CTRL_USB_PM_USB_PWRDN_MASK,
0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */
USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK,
USB_CTRL_USB_PM_SOFT_RESET_MASK,
USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK,
USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK,
USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK,
ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */
},
/* 7278a0 */
[BRCM_FAMILY_7278A0] = {
0, /* USB_CTRL_SETUP_SCB1_EN_MASK */
0, /* USB_CTRL_SETUP_SCB2_EN_MASK */
0, /*USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK */
USB_CTRL_SETUP_STRAP_IPP_SEL_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK,
USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK,
USB_CTRL_SETUP_OC3_DISABLE_MASK,
0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */
USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK,
USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK,
USB_CTRL_USB_PM_USB_PWRDN_MASK,
0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */
0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */
USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK,
USB_CTRL_USB_PM_SOFT_RESET_MASK,
0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */
0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */
0, /* USB_CTRL_USB_PM_USB20_HC_RESETB_MASK */
0, /* USB_CTRL_SETUP ENDIAN bits */
},
};
static inline
void usb_ctrl_unset_family(struct brcm_usb_init_params *params,
u32 reg_offset, u32 field)
{
u32 mask;
mask = params->usb_reg_bits_map[field];
brcm_usb_ctrl_unset(params->regs[BRCM_REGS_CTRL] + reg_offset, mask);
};
static inline
void usb_ctrl_set_family(struct brcm_usb_init_params *params,
u32 reg_offset, u32 field)
{
u32 mask;
mask = params->usb_reg_bits_map[field];
brcm_usb_ctrl_set(params->regs[BRCM_REGS_CTRL] + reg_offset, mask);
};
static u32 brcmusb_usb_mdio_read(void __iomem *ctrl_base, u32 reg, int mode)
{
u32 data;
data = (reg << 16) | mode;
brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO));
data |= (1 << 24);
brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO));
data &= ~(1 << 24);
/* wait for the 60MHz parallel to serial shifter */
usleep_range(10, 20);
brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO));
/* wait for the 60MHz parallel to serial shifter */
usleep_range(10, 20);
return brcm_usb_readl(USB_CTRL_REG(ctrl_base, MDIO2)) & 0xffff;
}
static void brcmusb_usb_mdio_write(void __iomem *ctrl_base, u32 reg,
u32 val, int mode)
{
u32 data;
data = (reg << 16) | val | mode;
brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO));
data |= (1 << 25);
brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO));
data &= ~(1 << 25);
/* wait for the 60MHz parallel to serial shifter */
usleep_range(10, 20);
brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO));
/* wait for the 60MHz parallel to serial shifter */
usleep_range(10, 20);
}
static void brcmusb_usb_phy_ldo_fix(void __iomem *ctrl_base)
{
/* first disable FSM but also leave it that way */
/* to allow normal suspend/resume */
USB_CTRL_UNSET(ctrl_base, UTMI_CTL_1, POWER_UP_FSM_EN);
USB_CTRL_UNSET(ctrl_base, UTMI_CTL_1, POWER_UP_FSM_EN_P1);
/* reset USB 2.0 PLL */
USB_CTRL_UNSET(ctrl_base, PLL_CTL, PLL_RESETB);
/* PLL reset period */
udelay(1);
USB_CTRL_SET(ctrl_base, PLL_CTL, PLL_RESETB);
/* Give PLL enough time to lock */
usleep_range(1000, 2000);
}
static void brcmusb_usb2_eye_fix(void __iomem *ctrl_base)
{
/* Increase USB 2.0 TX level to meet spec requirement */
brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x80a0, MDIO_USB2);
brcmusb_usb_mdio_write(ctrl_base, 0x0a, 0xc6a0, MDIO_USB2);
}
static void brcmusb_usb3_pll_fix(void __iomem *ctrl_base)
{
/* Set correct window for PLL lock detect */
brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x8000, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x07, 0x1503, MDIO_USB3);
}
static void brcmusb_usb3_enable_pipe_reset(void __iomem *ctrl_base)
{
u32 val;
/* Re-enable USB 3.0 pipe reset */
brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x8000, MDIO_USB3);
val = brcmusb_usb_mdio_read(ctrl_base, 0x0f, MDIO_USB3) | 0x200;
brcmusb_usb_mdio_write(ctrl_base, 0x0f, val, MDIO_USB3);
}
static void brcmusb_usb3_enable_sigdet(void __iomem *ctrl_base)
{
u32 val, ofs;
int ii;
ofs = 0;
for (ii = 0; ii < PHY_PORTS; ++ii) {
/* Set correct default for sigdet */
brcmusb_usb_mdio_write(ctrl_base, 0x1f, (0x8080 + ofs),
MDIO_USB3);
val = brcmusb_usb_mdio_read(ctrl_base, 0x05, MDIO_USB3);
val = (val & ~0x800f) | 0x800d;
brcmusb_usb_mdio_write(ctrl_base, 0x05, val, MDIO_USB3);
ofs = PHY_PORT_SELECT_1;
}
}
static void brcmusb_usb3_enable_skip_align(void __iomem *ctrl_base)
{
u32 val, ofs;
int ii;
ofs = 0;
for (ii = 0; ii < PHY_PORTS; ++ii) {
/* Set correct default for SKIP align */
brcmusb_usb_mdio_write(ctrl_base, 0x1f, (0x8060 + ofs),
MDIO_USB3);
val = brcmusb_usb_mdio_read(ctrl_base, 0x01, MDIO_USB3) | 0x200;
brcmusb_usb_mdio_write(ctrl_base, 0x01, val, MDIO_USB3);
ofs = PHY_PORT_SELECT_1;
}
}
static void brcmusb_usb3_unfreeze_aeq(void __iomem *ctrl_base)
{
u32 val, ofs;
int ii;
ofs = 0;
for (ii = 0; ii < PHY_PORTS; ++ii) {
/* Let EQ freeze after TSEQ */
brcmusb_usb_mdio_write(ctrl_base, 0x1f, (0x80e0 + ofs),
MDIO_USB3);
val = brcmusb_usb_mdio_read(ctrl_base, 0x01, MDIO_USB3);
val &= ~0x0008;
brcmusb_usb_mdio_write(ctrl_base, 0x01, val, MDIO_USB3);
ofs = PHY_PORT_SELECT_1;
}
}
static void brcmusb_usb3_pll_54mhz(struct brcm_usb_init_params *params)
{
u32 ofs;
int ii;
void __iomem *ctrl_base = params->regs[BRCM_REGS_CTRL];
/*
* On newer B53 based SoC's, the reference clock for the
* 3.0 PLL has been changed from 50MHz to 54MHz so the
* PLL needs to be reprogrammed.
* See SWLINUX-4006.
*
* On the 7364C0, the reference clock for the
* 3.0 PLL has been changed from 50MHz to 54MHz to
* work around a MOCA issue.
* See SWLINUX-4169.
*/
switch (params->selected_family) {
case BRCM_FAMILY_3390A0:
case BRCM_FAMILY_4908:
case BRCM_FAMILY_7250B0:
case BRCM_FAMILY_7366C0:
case BRCM_FAMILY_74371A0:
case BRCM_FAMILY_7439B0:
case BRCM_FAMILY_7445D0:
case BRCM_FAMILY_7260A0:
return;
case BRCM_FAMILY_7364A0:
if (BRCM_REV(params->family_id) < 0x20)
return;
break;
}
/* set USB 3.0 PLL to accept 54Mhz reference clock */
USB_CTRL_UNSET(ctrl_base, USB30_CTL1, PHY3_PLL_SEQ_START);
brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x8000, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x10, 0x5784, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x11, 0x01d0, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x12, 0x1DE8, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x13, 0xAA80, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x14, 0x8826, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x15, 0x0044, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x16, 0x8000, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x17, 0x0851, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x18, 0x0000, MDIO_USB3);
/* both ports */
ofs = 0;
for (ii = 0; ii < PHY_PORTS; ++ii) {
brcmusb_usb_mdio_write(ctrl_base, 0x1f, (0x8040 + ofs),
MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x03, 0x0090, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x04, 0x0134, MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x1f, (0x8020 + ofs),
MDIO_USB3);
brcmusb_usb_mdio_write(ctrl_base, 0x01, 0x00e2, MDIO_USB3);
ofs = PHY_PORT_SELECT_1;
}
/* restart PLL sequence */
USB_CTRL_SET(ctrl_base, USB30_CTL1, PHY3_PLL_SEQ_START);
/* Give PLL enough time to lock */
usleep_range(1000, 2000);
}
static void brcmusb_usb3_ssc_enable(void __iomem *ctrl_base)
{
u32 val;
/* Enable USB 3.0 TX spread spectrum */
brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x8040, MDIO_USB3);
val = brcmusb_usb_mdio_read(ctrl_base, 0x01, MDIO_USB3) | 0xf;
brcmusb_usb_mdio_write(ctrl_base, 0x01, val, MDIO_USB3);
/* Currently, USB 3.0 SSC is enabled via port 0 MDIO registers,
* which should have been adequate. However, due to a bug in the
* USB 3.0 PHY, it must be enabled via both ports (HWUSB3DVT-26).
*/
brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x9040, MDIO_USB3);
val = brcmusb_usb_mdio_read(ctrl_base, 0x01, MDIO_USB3) | 0xf;
brcmusb_usb_mdio_write(ctrl_base, 0x01, val, MDIO_USB3);
}
static void brcmusb_usb3_phy_workarounds(struct brcm_usb_init_params *params)
{
void __iomem *ctrl_base = params->regs[BRCM_REGS_CTRL];
brcmusb_usb3_pll_fix(ctrl_base);
brcmusb_usb3_pll_54mhz(params);
brcmusb_usb3_ssc_enable(ctrl_base);
brcmusb_usb3_enable_pipe_reset(ctrl_base);
brcmusb_usb3_enable_sigdet(ctrl_base);
brcmusb_usb3_enable_skip_align(ctrl_base);
brcmusb_usb3_unfreeze_aeq(ctrl_base);
}
static void brcmusb_memc_fix(struct brcm_usb_init_params *params)
{
u32 prid;
if (params->selected_family != BRCM_FAMILY_7445D0)
return;
/*
* This is a workaround for HW7445-1869 where a DMA write ends up
* doing a read pre-fetch after the end of the DMA buffer. This
* causes a problem when the DMA buffer is at the end of physical
* memory, causing the pre-fetch read to access non-existent memory,
* and the chip bondout has MEMC2 disabled. When the pre-fetch read
* tries to use the disabled MEMC2, it hangs the bus. The workaround
* is to disable MEMC2 access in the usb controller which avoids
* the hang.
*/
prid = params->product_id & 0xfffff000;
switch (prid) {
case 0x72520000:
case 0x74480000:
case 0x74490000:
case 0x07252000:
case 0x07448000:
case 0x07449000:
USB_CTRL_UNSET_FAMILY(params, SETUP, SCB2_EN);
}
}
static void brcmusb_usb3_otp_fix(struct brcm_usb_init_params *params)
{
void __iomem *xhci_ec_base = params->regs[BRCM_REGS_XHCI_EC];
u32 val;
if (params->family_id != 0x74371000 || !xhci_ec_base)
return;
brcm_usb_writel(0xa20c, USB_XHCI_EC_REG(xhci_ec_base, IRAADR));
val = brcm_usb_readl(USB_XHCI_EC_REG(xhci_ec_base, IRADAT));
/* set cfg_pick_ss_lock */
val |= (1 << 27);
brcm_usb_writel(val, USB_XHCI_EC_REG(xhci_ec_base, IRADAT));
/* Reset USB 3.0 PHY for workaround to take effect */
USB_CTRL_UNSET(params->regs[BRCM_REGS_CTRL], USB30_CTL1, PHY3_RESETB);
USB_CTRL_SET(params->regs[BRCM_REGS_CTRL], USB30_CTL1, PHY3_RESETB);
}
static void brcmusb_xhci_soft_reset(struct brcm_usb_init_params *params,
int on_off)
{
/* Assert reset */
if (on_off) {
if (USB_CTRL_MASK_FAMILY(params, USB_PM, XHC_SOFT_RESETB))
USB_CTRL_UNSET_FAMILY(params, USB_PM, XHC_SOFT_RESETB);
else
USB_CTRL_UNSET_FAMILY(params,
USB30_CTL1, XHC_SOFT_RESETB);
} else { /* De-assert reset */
if (USB_CTRL_MASK_FAMILY(params, USB_PM, XHC_SOFT_RESETB))
USB_CTRL_SET_FAMILY(params, USB_PM, XHC_SOFT_RESETB);
else
USB_CTRL_SET_FAMILY(params, USB30_CTL1,
XHC_SOFT_RESETB);
}
}
/*
* Return the best map table family. The order is:
* - exact match of chip and major rev
* - exact match of chip and closest older major rev
* - default chip/rev.
* NOTE: The minor rev is always ignored.
*/
static enum brcm_family_type get_family_type(
struct brcm_usb_init_params *params)
{
int last_type = -1;
u32 last_family = 0;
u32 family_no_major;
unsigned int x;
u32 family;
family = params->family_id & 0xfffffff0;
family_no_major = params->family_id & 0xffffff00;
for (x = 0; id_to_type_table[x].id; x++) {
if (family == id_to_type_table[x].id)
return id_to_type_table[x].type;
if (family_no_major == (id_to_type_table[x].id & 0xffffff00))
if (family > id_to_type_table[x].id &&
last_family < id_to_type_table[x].id) {
last_family = id_to_type_table[x].id;
last_type = id_to_type_table[x].type;
}
}
/* If no match, return the default family */
if (last_type == -1)
return id_to_type_table[x].type;
return last_type;
}
static void usb_init_ipp(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
u32 reg;
u32 orig_reg;
/* Starting with the 7445d0, there are no longer separate 3.0
* versions of IOC and IPP.
*/
if (USB_CTRL_MASK_FAMILY(params, USB30_CTL1, USB3_IOC)) {
if (params->ioc)
USB_CTRL_SET_FAMILY(params, USB30_CTL1, USB3_IOC);
if (params->ipp == 1)
USB_CTRL_SET_FAMILY(params, USB30_CTL1, USB3_IPP);
}
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, SETUP));
orig_reg = reg;
if (USB_CTRL_MASK_FAMILY(params, SETUP, STRAP_CC_DRD_MODE_ENABLE_SEL))
/* Never use the strap, it's going away. */
reg &= ~(USB_CTRL_MASK_FAMILY(params,
SETUP,
STRAP_CC_DRD_MODE_ENABLE_SEL));
if (USB_CTRL_MASK_FAMILY(params, SETUP, STRAP_IPP_SEL))
/* override ipp strap pin (if it exits) */
if (params->ipp != 2)
reg &= ~(USB_CTRL_MASK_FAMILY(params, SETUP,
STRAP_IPP_SEL));
/* Override the default OC and PP polarity */
reg &= ~(USB_CTRL_MASK(SETUP, IPP) | USB_CTRL_MASK(SETUP, IOC));
if (params->ioc)
reg |= USB_CTRL_MASK(SETUP, IOC);
if (params->ipp == 1)
reg |= USB_CTRL_MASK(SETUP, IPP);
brcm_usb_writel(reg, USB_CTRL_REG(ctrl, SETUP));
/*
* If we're changing IPP, make sure power is off long enough
* to turn off any connected devices.
*/
if ((reg ^ orig_reg) & USB_CTRL_MASK(SETUP, IPP))
msleep(50);
}
static void usb_wake_enable(struct brcm_usb_init_params *params,
bool enable)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
if (enable)
USB_CTRL_SET(ctrl, USB_PM, RMTWKUP_EN);
else
USB_CTRL_UNSET(ctrl, USB_PM, RMTWKUP_EN);
}
static void usb_init_common(struct brcm_usb_init_params *params)
{
u32 reg;
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
/* Clear any pending wake conditions */
usb_wake_enable(params, false);
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_PM_STATUS));
brcm_usb_writel(reg, USB_CTRL_REG(ctrl, USB_PM_STATUS));
/* Take USB out of power down */
if (USB_CTRL_MASK_FAMILY(params, PLL_CTL, PLL_IDDQ_PWRDN)) {
USB_CTRL_UNSET_FAMILY(params, PLL_CTL, PLL_IDDQ_PWRDN);
/* 1 millisecond - for USB clocks to settle down */
usleep_range(1000, 2000);
}
if (USB_CTRL_MASK_FAMILY(params, USB_PM, USB_PWRDN)) {
USB_CTRL_UNSET_FAMILY(params, USB_PM, USB_PWRDN);
/* 1 millisecond - for USB clocks to settle down */
usleep_range(1000, 2000);
}
if (params->selected_family != BRCM_FAMILY_74371A0 &&
(BRCM_ID(params->family_id) != 0x7364))
/*
* HW7439-637: 7439a0 and its derivatives do not have large
* enough descriptor storage for this.
*/
USB_CTRL_SET_FAMILY(params, SETUP, SS_EHCI64BIT_EN);
/* Block auto PLL suspend by USB2 PHY (Sasi) */
USB_CTRL_SET(ctrl, PLL_CTL, PLL_SUSPEND_EN);
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, SETUP));
if (params->selected_family == BRCM_FAMILY_7364A0)
/* Suppress overcurrent indication from USB30 ports for A0 */
reg |= USB_CTRL_MASK_FAMILY(params, SETUP, OC3_DISABLE);
brcmusb_usb_phy_ldo_fix(ctrl);
brcmusb_usb2_eye_fix(ctrl);
/*
* Make sure the second and third memory controller
* interfaces are enabled if they exist.
*/
if (USB_CTRL_MASK_FAMILY(params, SETUP, SCB1_EN))
reg |= USB_CTRL_MASK_FAMILY(params, SETUP, SCB1_EN);
if (USB_CTRL_MASK_FAMILY(params, SETUP, SCB2_EN))
reg |= USB_CTRL_MASK_FAMILY(params, SETUP, SCB2_EN);
brcm_usb_writel(reg, USB_CTRL_REG(ctrl, SETUP));
brcmusb_memc_fix(params);
/* Workaround for false positive OC for 7439b2 in DRD/Device mode */
if ((params->family_id == 0x74390012) &&
(params->supported_port_modes != USB_CTLR_MODE_HOST)) {
USB_CTRL_SET(ctrl, SETUP, OC_DISABLE_PORT1);
USB_CTRL_SET_FAMILY(params, SETUP, OC3_DISABLE_PORT1);
}
if (USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1, PORT_MODE)) {
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1));
reg &= ~USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1,
PORT_MODE);
reg |= params->port_mode;
brcm_usb_writel(reg, USB_CTRL_REG(ctrl, USB_DEVICE_CTL1));
}
if (USB_CTRL_MASK_FAMILY(params, USB_PM, BDC_SOFT_RESETB)) {
switch (params->supported_port_modes) {
case USB_CTLR_MODE_HOST:
USB_CTRL_UNSET_FAMILY(params, USB_PM, BDC_SOFT_RESETB);
break;
default:
USB_CTRL_UNSET_FAMILY(params, USB_PM, BDC_SOFT_RESETB);
USB_CTRL_SET_FAMILY(params, USB_PM, BDC_SOFT_RESETB);
break;
}
}
if (USB_CTRL_MASK_FAMILY(params, SETUP, CC_DRD_MODE_ENABLE)) {
if (params->supported_port_modes == USB_CTLR_MODE_TYPEC_PD)
USB_CTRL_SET_FAMILY(params, SETUP, CC_DRD_MODE_ENABLE);
else
USB_CTRL_UNSET_FAMILY(params, SETUP,
CC_DRD_MODE_ENABLE);
}
}
static void usb_init_eohci(struct brcm_usb_init_params *params)
{
u32 reg;
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
if (USB_CTRL_MASK_FAMILY(params, USB_PM, USB20_HC_RESETB))
USB_CTRL_SET_FAMILY(params, USB_PM, USB20_HC_RESETB);
if (params->selected_family == BRCM_FAMILY_7366C0)
/*
* Don't enable this so the memory controller doesn't read
* into memory holes. NOTE: This bit is low true on 7366C0.
*/
USB_CTRL_SET(ctrl, EBRIDGE, ESTOP_SCB_REQ);
/* Setup the endian bits */
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, SETUP));
reg &= ~USB_CTRL_SETUP_ENDIAN_BITS;
reg |= USB_CTRL_MASK_FAMILY(params, SETUP, ENDIAN);
brcm_usb_writel(reg, USB_CTRL_REG(ctrl, SETUP));
if (params->selected_family == BRCM_FAMILY_7271A0)
/* Enable LS keep alive fix for certain keyboards */
USB_CTRL_SET(ctrl, OBRIDGE, LS_KEEP_ALIVE);
if (params->family_id == 0x72550000) {
/*
* Make the burst size 512 bytes to fix a hardware bug
* on the 7255a0. See HW7255-24.
*/
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, EBRIDGE));
reg &= ~USB_CTRL_MASK(EBRIDGE, EBR_SCB_SIZE);
reg |= 0x800;
brcm_usb_writel(reg, USB_CTRL_REG(ctrl, EBRIDGE));
}
}
static void usb_init_xhci(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
USB_CTRL_UNSET(ctrl, USB30_PCTL, PHY3_IDDQ_OVERRIDE);
/* 1 millisecond - for USB clocks to settle down */
usleep_range(1000, 2000);
if (BRCM_ID(params->family_id) == 0x7366) {
/*
* The PHY3_SOFT_RESETB bits default to the wrong state.
*/
USB_CTRL_SET(ctrl, USB30_PCTL, PHY3_SOFT_RESETB);
USB_CTRL_SET(ctrl, USB30_PCTL, PHY3_SOFT_RESETB_P1);
}
/*
* Kick start USB3 PHY
* Make sure it's low to insure a rising edge.
*/
USB_CTRL_UNSET(ctrl, USB30_CTL1, PHY3_PLL_SEQ_START);
USB_CTRL_SET(ctrl, USB30_CTL1, PHY3_PLL_SEQ_START);
brcmusb_usb3_phy_workarounds(params);
brcmusb_xhci_soft_reset(params, 0);
brcmusb_usb3_otp_fix(params);
}
static void usb_uninit_common(struct brcm_usb_init_params *params)
{
if (USB_CTRL_MASK_FAMILY(params, USB_PM, USB_PWRDN))
USB_CTRL_SET_FAMILY(params, USB_PM, USB_PWRDN);
if (USB_CTRL_MASK_FAMILY(params, PLL_CTL, PLL_IDDQ_PWRDN))
USB_CTRL_SET_FAMILY(params, PLL_CTL, PLL_IDDQ_PWRDN);
if (params->wake_enabled)
usb_wake_enable(params, true);
}
static void usb_uninit_eohci(struct brcm_usb_init_params *params)
{
}
static void usb_uninit_xhci(struct brcm_usb_init_params *params)
{
brcmusb_xhci_soft_reset(params, 1);
USB_CTRL_SET(params->regs[BRCM_REGS_CTRL], USB30_PCTL,
PHY3_IDDQ_OVERRIDE);
}
static int usb_get_dual_select(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
u32 reg = 0;
pr_debug("%s\n", __func__);
if (USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1, PORT_MODE)) {
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1));
reg &= USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1,
PORT_MODE);
}
return reg;
}
static void usb_set_dual_select(struct brcm_usb_init_params *params)
{
void __iomem *ctrl = params->regs[BRCM_REGS_CTRL];
u32 reg;
pr_debug("%s\n", __func__);
if (USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1, PORT_MODE)) {
reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1));
reg &= ~USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1,
PORT_MODE);
reg |= params->port_mode;
brcm_usb_writel(reg, USB_CTRL_REG(ctrl, USB_DEVICE_CTL1));
}
}
static const struct brcm_usb_init_ops bcm7445_ops = {
.init_ipp = usb_init_ipp,
.init_common = usb_init_common,
.init_eohci = usb_init_eohci,
.init_xhci = usb_init_xhci,
.uninit_common = usb_uninit_common,
.uninit_eohci = usb_uninit_eohci,
.uninit_xhci = usb_uninit_xhci,
.get_dual_select = usb_get_dual_select,
.set_dual_select = usb_set_dual_select,
};
void brcm_usb_dvr_init_4908(struct brcm_usb_init_params *params)
{
int fam;
fam = BRCM_FAMILY_4908;
params->selected_family = fam;
params->usb_reg_bits_map =
&usb_reg_bits_map_table[fam][0];
params->family_name = family_names[fam];
params->ops = &bcm7445_ops;
}
void brcm_usb_dvr_init_7445(struct brcm_usb_init_params *params)
{
int fam;
pr_debug("%s\n", __func__);
fam = get_family_type(params);
params->selected_family = fam;
params->usb_reg_bits_map =
&usb_reg_bits_map_table[fam][0];
params->family_name = family_names[fam];
params->ops = &bcm7445_ops;
}
| linux-master | drivers/phy/broadcom/phy-brcm-usb-init.c |
// SPDX-License-Identifier: GPL-2.0-only
// Copyright (C) 2017 Broadcom
#include <linux/delay.h>
#include <linux/extcon-provider.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#define ICFG_DRD_AFE 0x0
#define ICFG_MISC_STAT 0x18
#define ICFG_DRD_P0CTL 0x1C
#define ICFG_STRAP_CTRL 0x20
#define ICFG_FSM_CTRL 0x24
#define ICFG_DEV_BIT BIT(2)
#define IDM_RST_BIT BIT(0)
#define AFE_CORERDY_VDDC BIT(18)
#define PHY_PLL_RESETB BIT(15)
#define PHY_RESETB BIT(14)
#define PHY_PLL_LOCK BIT(0)
#define DRD_DEV_MODE BIT(20)
#define OHCI_OVRCUR_POL BIT(11)
#define ICFG_OFF_MODE BIT(6)
#define PLL_LOCK_RETRY 1000
#define EVT_DEVICE 0
#define EVT_HOST 1
#define DRD_HOST_MODE (BIT(2) | BIT(3))
#define DRD_DEVICE_MODE (BIT(4) | BIT(5))
#define DRD_HOST_VAL 0x803
#define DRD_DEV_VAL 0x807
#define GPIO_DELAY 20
struct ns2_phy_data;
struct ns2_phy_driver {
void __iomem *icfgdrd_regs;
void __iomem *idmdrd_rst_ctrl;
void __iomem *crmu_usb2_ctrl;
void __iomem *usb2h_strap_reg;
struct ns2_phy_data *data;
struct extcon_dev *edev;
struct gpio_desc *vbus_gpiod;
struct gpio_desc *id_gpiod;
int id_irq;
int vbus_irq;
unsigned long debounce_jiffies;
struct delayed_work wq_extcon;
};
struct ns2_phy_data {
struct ns2_phy_driver *driver;
struct phy *phy;
int new_state;
};
static const unsigned int usb_extcon_cable[] = {
EXTCON_USB,
EXTCON_USB_HOST,
EXTCON_NONE,
};
static inline int pll_lock_stat(u32 usb_reg, int reg_mask,
struct ns2_phy_driver *driver)
{
u32 val;
return readl_poll_timeout_atomic(driver->icfgdrd_regs + usb_reg,
val, (val & reg_mask), 1,
PLL_LOCK_RETRY);
}
static int ns2_drd_phy_init(struct phy *phy)
{
struct ns2_phy_data *data = phy_get_drvdata(phy);
struct ns2_phy_driver *driver = data->driver;
u32 val;
val = readl(driver->icfgdrd_regs + ICFG_FSM_CTRL);
if (data->new_state == EVT_HOST) {
val &= ~DRD_DEVICE_MODE;
val |= DRD_HOST_MODE;
} else {
val &= ~DRD_HOST_MODE;
val |= DRD_DEVICE_MODE;
}
writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL);
return 0;
}
static int ns2_drd_phy_poweroff(struct phy *phy)
{
struct ns2_phy_data *data = phy_get_drvdata(phy);
struct ns2_phy_driver *driver = data->driver;
u32 val;
val = readl(driver->crmu_usb2_ctrl);
val &= ~AFE_CORERDY_VDDC;
writel(val, driver->crmu_usb2_ctrl);
val = readl(driver->crmu_usb2_ctrl);
val &= ~DRD_DEV_MODE;
writel(val, driver->crmu_usb2_ctrl);
/* Disable Host and Device Mode */
val = readl(driver->icfgdrd_regs + ICFG_FSM_CTRL);
val &= ~(DRD_HOST_MODE | DRD_DEVICE_MODE | ICFG_OFF_MODE);
writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL);
return 0;
}
static int ns2_drd_phy_poweron(struct phy *phy)
{
struct ns2_phy_data *data = phy_get_drvdata(phy);
struct ns2_phy_driver *driver = data->driver;
u32 extcon_event = data->new_state;
int ret;
u32 val;
if (extcon_event == EVT_DEVICE) {
writel(DRD_DEV_VAL, driver->icfgdrd_regs + ICFG_DRD_P0CTL);
val = readl(driver->idmdrd_rst_ctrl);
val &= ~IDM_RST_BIT;
writel(val, driver->idmdrd_rst_ctrl);
val = readl(driver->crmu_usb2_ctrl);
val |= (AFE_CORERDY_VDDC | DRD_DEV_MODE);
writel(val, driver->crmu_usb2_ctrl);
/* Bring PHY and PHY_PLL out of Reset */
val = readl(driver->crmu_usb2_ctrl);
val |= (PHY_PLL_RESETB | PHY_RESETB);
writel(val, driver->crmu_usb2_ctrl);
ret = pll_lock_stat(ICFG_MISC_STAT, PHY_PLL_LOCK, driver);
if (ret < 0) {
dev_err(&phy->dev, "Phy PLL lock failed\n");
return ret;
}
} else {
writel(DRD_HOST_VAL, driver->icfgdrd_regs + ICFG_DRD_P0CTL);
val = readl(driver->crmu_usb2_ctrl);
val |= AFE_CORERDY_VDDC;
writel(val, driver->crmu_usb2_ctrl);
ret = pll_lock_stat(ICFG_MISC_STAT, PHY_PLL_LOCK, driver);
if (ret < 0) {
dev_err(&phy->dev, "Phy PLL lock failed\n");
return ret;
}
val = readl(driver->idmdrd_rst_ctrl);
val &= ~IDM_RST_BIT;
writel(val, driver->idmdrd_rst_ctrl);
/* port over current Polarity */
val = readl(driver->usb2h_strap_reg);
val |= OHCI_OVRCUR_POL;
writel(val, driver->usb2h_strap_reg);
}
return 0;
}
static void connect_change(struct ns2_phy_driver *driver)
{
u32 extcon_event;
u32 val;
extcon_event = driver->data->new_state;
val = readl(driver->icfgdrd_regs + ICFG_FSM_CTRL);
switch (extcon_event) {
case EVT_DEVICE:
val &= ~(DRD_HOST_MODE | DRD_DEVICE_MODE);
writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL);
val = (val & ~DRD_HOST_MODE) | DRD_DEVICE_MODE;
writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL);
val = readl(driver->icfgdrd_regs + ICFG_DRD_P0CTL);
val |= ICFG_DEV_BIT;
writel(val, driver->icfgdrd_regs + ICFG_DRD_P0CTL);
break;
case EVT_HOST:
val &= ~(DRD_HOST_MODE | DRD_DEVICE_MODE);
writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL);
val = (val & ~DRD_DEVICE_MODE) | DRD_HOST_MODE;
writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL);
val = readl(driver->usb2h_strap_reg);
val |= OHCI_OVRCUR_POL;
writel(val, driver->usb2h_strap_reg);
val = readl(driver->icfgdrd_regs + ICFG_DRD_P0CTL);
val &= ~ICFG_DEV_BIT;
writel(val, driver->icfgdrd_regs + ICFG_DRD_P0CTL);
break;
default:
pr_err("Invalid extcon event\n");
break;
}
}
static void extcon_work(struct work_struct *work)
{
struct ns2_phy_driver *driver;
int vbus;
int id;
driver = container_of(to_delayed_work(work),
struct ns2_phy_driver, wq_extcon);
id = gpiod_get_value_cansleep(driver->id_gpiod);
vbus = gpiod_get_value_cansleep(driver->vbus_gpiod);
if (!id && vbus) { /* Host connected */
extcon_set_state_sync(driver->edev, EXTCON_USB_HOST, true);
pr_debug("Host cable connected\n");
driver->data->new_state = EVT_HOST;
connect_change(driver);
} else if (id && !vbus) { /* Disconnected */
extcon_set_state_sync(driver->edev, EXTCON_USB_HOST, false);
extcon_set_state_sync(driver->edev, EXTCON_USB, false);
pr_debug("Cable disconnected\n");
} else if (id && vbus) { /* Device connected */
extcon_set_state_sync(driver->edev, EXTCON_USB, true);
pr_debug("Device cable connected\n");
driver->data->new_state = EVT_DEVICE;
connect_change(driver);
}
}
static irqreturn_t gpio_irq_handler(int irq, void *dev_id)
{
struct ns2_phy_driver *driver = dev_id;
queue_delayed_work(system_power_efficient_wq, &driver->wq_extcon,
driver->debounce_jiffies);
return IRQ_HANDLED;
}
static const struct phy_ops ops = {
.init = ns2_drd_phy_init,
.power_on = ns2_drd_phy_poweron,
.power_off = ns2_drd_phy_poweroff,
.owner = THIS_MODULE,
};
static const struct of_device_id ns2_drd_phy_dt_ids[] = {
{ .compatible = "brcm,ns2-drd-phy", },
{ }
};
MODULE_DEVICE_TABLE(of, ns2_drd_phy_dt_ids);
static int ns2_drd_phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct device *dev = &pdev->dev;
struct ns2_phy_driver *driver;
struct ns2_phy_data *data;
int ret;
u32 val;
driver = devm_kzalloc(dev, sizeof(struct ns2_phy_driver),
GFP_KERNEL);
if (!driver)
return -ENOMEM;
driver->data = devm_kzalloc(dev, sizeof(struct ns2_phy_data),
GFP_KERNEL);
if (!driver->data)
return -ENOMEM;
driver->icfgdrd_regs = devm_platform_ioremap_resource_byname(pdev, "icfg");
if (IS_ERR(driver->icfgdrd_regs))
return PTR_ERR(driver->icfgdrd_regs);
driver->idmdrd_rst_ctrl = devm_platform_ioremap_resource_byname(pdev, "rst-ctrl");
if (IS_ERR(driver->idmdrd_rst_ctrl))
return PTR_ERR(driver->idmdrd_rst_ctrl);
driver->crmu_usb2_ctrl = devm_platform_ioremap_resource_byname(pdev, "crmu-ctrl");
if (IS_ERR(driver->crmu_usb2_ctrl))
return PTR_ERR(driver->crmu_usb2_ctrl);
driver->usb2h_strap_reg = devm_platform_ioremap_resource_byname(pdev, "usb2-strap");
if (IS_ERR(driver->usb2h_strap_reg))
return PTR_ERR(driver->usb2h_strap_reg);
/* create extcon */
driver->id_gpiod = devm_gpiod_get(&pdev->dev, "id", GPIOD_IN);
if (IS_ERR(driver->id_gpiod)) {
dev_err(dev, "failed to get ID GPIO\n");
return PTR_ERR(driver->id_gpiod);
}
driver->vbus_gpiod = devm_gpiod_get(&pdev->dev, "vbus", GPIOD_IN);
if (IS_ERR(driver->vbus_gpiod)) {
dev_err(dev, "failed to get VBUS GPIO\n");
return PTR_ERR(driver->vbus_gpiod);
}
driver->edev = devm_extcon_dev_allocate(dev, usb_extcon_cable);
if (IS_ERR(driver->edev)) {
dev_err(dev, "failed to allocate extcon device\n");
return -ENOMEM;
}
ret = devm_extcon_dev_register(dev, driver->edev);
if (ret < 0) {
dev_err(dev, "failed to register extcon device\n");
return ret;
}
ret = gpiod_set_debounce(driver->id_gpiod, GPIO_DELAY * 1000);
if (ret < 0)
driver->debounce_jiffies = msecs_to_jiffies(GPIO_DELAY);
INIT_DELAYED_WORK(&driver->wq_extcon, extcon_work);
driver->id_irq = gpiod_to_irq(driver->id_gpiod);
if (driver->id_irq < 0) {
dev_err(dev, "failed to get ID IRQ\n");
return driver->id_irq;
}
driver->vbus_irq = gpiod_to_irq(driver->vbus_gpiod);
if (driver->vbus_irq < 0) {
dev_err(dev, "failed to get ID IRQ\n");
return driver->vbus_irq;
}
ret = devm_request_irq(dev, driver->id_irq, gpio_irq_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"usb_id", driver);
if (ret < 0) {
dev_err(dev, "failed to request handler for ID IRQ\n");
return ret;
}
ret = devm_request_irq(dev, driver->vbus_irq, gpio_irq_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"usb_vbus", driver);
if (ret < 0) {
dev_err(dev, "failed to request handler for VBUS IRQ\n");
return ret;
}
dev_set_drvdata(dev, driver);
/* Shutdown all ports. They can be powered up as required */
val = readl(driver->crmu_usb2_ctrl);
val &= ~(AFE_CORERDY_VDDC | PHY_RESETB);
writel(val, driver->crmu_usb2_ctrl);
data = driver->data;
data->phy = devm_phy_create(dev, dev->of_node, &ops);
if (IS_ERR(data->phy)) {
dev_err(dev, "Failed to create usb drd phy\n");
return PTR_ERR(data->phy);
}
data->driver = driver;
phy_set_drvdata(data->phy, data);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
dev_err(dev, "Failed to register as phy provider\n");
return PTR_ERR(phy_provider);
}
platform_set_drvdata(pdev, driver);
dev_info(dev, "Registered NS2 DRD Phy device\n");
queue_delayed_work(system_power_efficient_wq, &driver->wq_extcon,
driver->debounce_jiffies);
return 0;
}
static struct platform_driver ns2_drd_phy_driver = {
.probe = ns2_drd_phy_probe,
.driver = {
.name = "bcm-ns2-usbphy",
.of_match_table = of_match_ptr(ns2_drd_phy_dt_ids),
},
};
module_platform_driver(ns2_drd_phy_driver);
MODULE_ALIAS("platform:bcm-ns2-drd-phy");
MODULE_AUTHOR("Broadcom");
MODULE_DESCRIPTION("Broadcom NS2 USB2 PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/broadcom/phy-bcm-ns2-usbdrd.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Broadcom SATA3 AHCI Controller PHY Driver
*
* Copyright (C) 2016 Broadcom
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#define SATA_PCB_BANK_OFFSET 0x23c
#define SATA_PCB_REG_OFFSET(ofs) ((ofs) * 4)
#define MAX_PORTS 2
/* Register offset between PHYs in PCB space */
#define SATA_PCB_REG_28NM_SPACE_SIZE 0x1000
/* The older SATA PHY registers duplicated per port registers within the map,
* rather than having a separate map per port.
*/
#define SATA_PCB_REG_40NM_SPACE_SIZE 0x10
/* Register offset between PHYs in PHY control space */
#define SATA_PHY_CTRL_REG_28NM_SPACE_SIZE 0x8
enum brcm_sata_phy_version {
BRCM_SATA_PHY_STB_16NM,
BRCM_SATA_PHY_STB_28NM,
BRCM_SATA_PHY_STB_40NM,
BRCM_SATA_PHY_IPROC_NS2,
BRCM_SATA_PHY_IPROC_NSP,
BRCM_SATA_PHY_IPROC_SR,
BRCM_SATA_PHY_DSL_28NM,
};
enum brcm_sata_phy_rxaeq_mode {
RXAEQ_MODE_OFF = 0,
RXAEQ_MODE_AUTO,
RXAEQ_MODE_MANUAL,
};
static enum brcm_sata_phy_rxaeq_mode rxaeq_to_val(const char *m)
{
if (!strcmp(m, "auto"))
return RXAEQ_MODE_AUTO;
else if (!strcmp(m, "manual"))
return RXAEQ_MODE_MANUAL;
else
return RXAEQ_MODE_OFF;
}
struct brcm_sata_port {
int portnum;
struct phy *phy;
struct brcm_sata_phy *phy_priv;
bool ssc_en;
enum brcm_sata_phy_rxaeq_mode rxaeq_mode;
u32 rxaeq_val;
u32 tx_amplitude_val;
};
struct brcm_sata_phy {
struct device *dev;
void __iomem *phy_base;
void __iomem *ctrl_base;
enum brcm_sata_phy_version version;
struct brcm_sata_port phys[MAX_PORTS];
};
enum sata_phy_regs {
BLOCK0_REG_BANK = 0x000,
BLOCK0_XGXSSTATUS = 0x81,
BLOCK0_XGXSSTATUS_PLL_LOCK = BIT(12),
BLOCK0_SPARE = 0x8d,
BLOCK0_SPARE_OOB_CLK_SEL_MASK = 0x3,
BLOCK0_SPARE_OOB_CLK_SEL_REFBY2 = 0x1,
BLOCK1_REG_BANK = 0x10,
BLOCK1_TEST_TX = 0x83,
BLOCK1_TEST_TX_AMP_SHIFT = 12,
PLL_REG_BANK_0 = 0x050,
PLL_REG_BANK_0_PLLCONTROL_0 = 0x81,
PLLCONTROL_0_FREQ_DET_RESTART = BIT(13),
PLLCONTROL_0_FREQ_MONITOR = BIT(12),
PLLCONTROL_0_SEQ_START = BIT(15),
PLL_CAP_CHARGE_TIME = 0x83,
PLL_VCO_CAL_THRESH = 0x84,
PLL_CAP_CONTROL = 0x85,
PLL_FREQ_DET_TIME = 0x86,
PLL_ACTRL2 = 0x8b,
PLL_ACTRL2_SELDIV_MASK = 0x1f,
PLL_ACTRL2_SELDIV_SHIFT = 9,
PLL_ACTRL6 = 0x86,
PLL1_REG_BANK = 0x060,
PLL1_ACTRL2 = 0x82,
PLL1_ACTRL3 = 0x83,
PLL1_ACTRL4 = 0x84,
PLL1_ACTRL5 = 0x85,
PLL1_ACTRL6 = 0x86,
PLL1_ACTRL7 = 0x87,
PLL1_ACTRL8 = 0x88,
TX_REG_BANK = 0x070,
TX_ACTRL0 = 0x80,
TX_ACTRL0_TXPOL_FLIP = BIT(6),
TX_ACTRL5 = 0x85,
TX_ACTRL5_SSC_EN = BIT(11),
AEQRX_REG_BANK_0 = 0xd0,
AEQ_CONTROL1 = 0x81,
AEQ_CONTROL1_ENABLE = BIT(2),
AEQ_CONTROL1_FREEZE = BIT(3),
AEQ_FRC_EQ = 0x83,
AEQ_FRC_EQ_FORCE = BIT(0),
AEQ_FRC_EQ_FORCE_VAL = BIT(1),
AEQ_RFZ_FRC_VAL = BIT(8),
AEQRX_REG_BANK_1 = 0xe0,
AEQRX_SLCAL0_CTRL0 = 0x82,
AEQRX_SLCAL1_CTRL0 = 0x86,
OOB_REG_BANK = 0x150,
OOB1_REG_BANK = 0x160,
OOB_CTRL1 = 0x80,
OOB_CTRL1_BURST_MAX_MASK = 0xf,
OOB_CTRL1_BURST_MAX_SHIFT = 12,
OOB_CTRL1_BURST_MIN_MASK = 0xf,
OOB_CTRL1_BURST_MIN_SHIFT = 8,
OOB_CTRL1_WAKE_IDLE_MAX_MASK = 0xf,
OOB_CTRL1_WAKE_IDLE_MAX_SHIFT = 4,
OOB_CTRL1_WAKE_IDLE_MIN_MASK = 0xf,
OOB_CTRL1_WAKE_IDLE_MIN_SHIFT = 0,
OOB_CTRL2 = 0x81,
OOB_CTRL2_SEL_ENA_SHIFT = 15,
OOB_CTRL2_SEL_ENA_RC_SHIFT = 14,
OOB_CTRL2_RESET_IDLE_MAX_MASK = 0x3f,
OOB_CTRL2_RESET_IDLE_MAX_SHIFT = 8,
OOB_CTRL2_BURST_CNT_MASK = 0x3,
OOB_CTRL2_BURST_CNT_SHIFT = 6,
OOB_CTRL2_RESET_IDLE_MIN_MASK = 0x3f,
OOB_CTRL2_RESET_IDLE_MIN_SHIFT = 0,
TXPMD_REG_BANK = 0x1a0,
TXPMD_CONTROL1 = 0x81,
TXPMD_CONTROL1_TX_SSC_EN_FRC = BIT(0),
TXPMD_CONTROL1_TX_SSC_EN_FRC_VAL = BIT(1),
TXPMD_TX_FREQ_CTRL_CONTROL1 = 0x82,
TXPMD_TX_FREQ_CTRL_CONTROL2 = 0x83,
TXPMD_TX_FREQ_CTRL_CONTROL2_FMIN_MASK = 0x3ff,
TXPMD_TX_FREQ_CTRL_CONTROL3 = 0x84,
TXPMD_TX_FREQ_CTRL_CONTROL3_FMAX_MASK = 0x3ff,
RXPMD_REG_BANK = 0x1c0,
RXPMD_RX_CDR_CONTROL1 = 0x81,
RXPMD_RX_PPM_VAL_MASK = 0x1ff,
RXPMD_RXPMD_EN_FRC = BIT(12),
RXPMD_RXPMD_EN_FRC_VAL = BIT(13),
RXPMD_RX_CDR_CDR_PROP_BW = 0x82,
RXPMD_G_CDR_PROP_BW_MASK = 0x7,
RXPMD_G1_CDR_PROP_BW_SHIFT = 0,
RXPMD_G2_CDR_PROP_BW_SHIFT = 3,
RXPMD_G3_CDR_PROB_BW_SHIFT = 6,
RXPMD_RX_CDR_CDR_ACQ_INTEG_BW = 0x83,
RXPMD_G_CDR_ACQ_INT_BW_MASK = 0x7,
RXPMD_G1_CDR_ACQ_INT_BW_SHIFT = 0,
RXPMD_G2_CDR_ACQ_INT_BW_SHIFT = 3,
RXPMD_G3_CDR_ACQ_INT_BW_SHIFT = 6,
RXPMD_RX_CDR_CDR_LOCK_INTEG_BW = 0x84,
RXPMD_G_CDR_LOCK_INT_BW_MASK = 0x7,
RXPMD_G1_CDR_LOCK_INT_BW_SHIFT = 0,
RXPMD_G2_CDR_LOCK_INT_BW_SHIFT = 3,
RXPMD_G3_CDR_LOCK_INT_BW_SHIFT = 6,
RXPMD_RX_FREQ_MON_CONTROL1 = 0x87,
RXPMD_MON_CORRECT_EN = BIT(8),
RXPMD_MON_MARGIN_VAL_MASK = 0xff,
};
enum sata_phy_ctrl_regs {
PHY_CTRL_1 = 0x0,
PHY_CTRL_1_RESET = BIT(0),
};
static inline void __iomem *brcm_sata_ctrl_base(struct brcm_sata_port *port)
{
struct brcm_sata_phy *priv = port->phy_priv;
u32 size = 0;
switch (priv->version) {
case BRCM_SATA_PHY_IPROC_NS2:
size = SATA_PHY_CTRL_REG_28NM_SPACE_SIZE;
break;
default:
dev_err(priv->dev, "invalid phy version\n");
break;
}
return priv->ctrl_base + (port->portnum * size);
}
static void brcm_sata_phy_wr(struct brcm_sata_port *port, u32 bank,
u32 ofs, u32 msk, u32 value)
{
struct brcm_sata_phy *priv = port->phy_priv;
void __iomem *pcb_base = priv->phy_base;
u32 tmp;
if (priv->version == BRCM_SATA_PHY_STB_40NM)
bank += (port->portnum * SATA_PCB_REG_40NM_SPACE_SIZE);
else
pcb_base += (port->portnum * SATA_PCB_REG_28NM_SPACE_SIZE);
writel(bank, pcb_base + SATA_PCB_BANK_OFFSET);
tmp = readl(pcb_base + SATA_PCB_REG_OFFSET(ofs));
tmp = (tmp & msk) | value;
writel(tmp, pcb_base + SATA_PCB_REG_OFFSET(ofs));
}
static u32 brcm_sata_phy_rd(struct brcm_sata_port *port, u32 bank, u32 ofs)
{
struct brcm_sata_phy *priv = port->phy_priv;
void __iomem *pcb_base = priv->phy_base;
if (priv->version == BRCM_SATA_PHY_STB_40NM)
bank += (port->portnum * SATA_PCB_REG_40NM_SPACE_SIZE);
else
pcb_base += (port->portnum * SATA_PCB_REG_28NM_SPACE_SIZE);
writel(bank, pcb_base + SATA_PCB_BANK_OFFSET);
return readl(pcb_base + SATA_PCB_REG_OFFSET(ofs));
}
/* These defaults were characterized by H/W group */
#define STB_FMIN_VAL_DEFAULT 0x3df
#define STB_FMAX_VAL_DEFAULT 0x3df
#define STB_FMAX_VAL_SSC 0x83
static void brcm_stb_sata_ssc_init(struct brcm_sata_port *port)
{
struct brcm_sata_phy *priv = port->phy_priv;
u32 tmp;
/* override the TX spread spectrum setting */
tmp = TXPMD_CONTROL1_TX_SSC_EN_FRC_VAL | TXPMD_CONTROL1_TX_SSC_EN_FRC;
brcm_sata_phy_wr(port, TXPMD_REG_BANK, TXPMD_CONTROL1, ~tmp, tmp);
/* set fixed min freq */
brcm_sata_phy_wr(port, TXPMD_REG_BANK, TXPMD_TX_FREQ_CTRL_CONTROL2,
~TXPMD_TX_FREQ_CTRL_CONTROL2_FMIN_MASK,
STB_FMIN_VAL_DEFAULT);
/* set fixed max freq depending on SSC config */
if (port->ssc_en) {
dev_info(priv->dev, "enabling SSC on port%d\n", port->portnum);
tmp = STB_FMAX_VAL_SSC;
} else {
tmp = STB_FMAX_VAL_DEFAULT;
}
brcm_sata_phy_wr(port, TXPMD_REG_BANK, TXPMD_TX_FREQ_CTRL_CONTROL3,
~TXPMD_TX_FREQ_CTRL_CONTROL3_FMAX_MASK, tmp);
}
#define AEQ_FRC_EQ_VAL_SHIFT 2
#define AEQ_FRC_EQ_VAL_MASK 0x3f
static int brcm_stb_sata_rxaeq_init(struct brcm_sata_port *port)
{
u32 tmp = 0, reg = 0;
switch (port->rxaeq_mode) {
case RXAEQ_MODE_OFF:
return 0;
case RXAEQ_MODE_AUTO:
reg = AEQ_CONTROL1;
tmp = AEQ_CONTROL1_ENABLE | AEQ_CONTROL1_FREEZE;
break;
case RXAEQ_MODE_MANUAL:
reg = AEQ_FRC_EQ;
tmp = AEQ_FRC_EQ_FORCE | AEQ_FRC_EQ_FORCE_VAL;
if (port->rxaeq_val > AEQ_FRC_EQ_VAL_MASK)
return -EINVAL;
tmp |= port->rxaeq_val << AEQ_FRC_EQ_VAL_SHIFT;
break;
}
brcm_sata_phy_wr(port, AEQRX_REG_BANK_0, reg, ~tmp, tmp);
brcm_sata_phy_wr(port, AEQRX_REG_BANK_1, reg, ~tmp, tmp);
return 0;
}
static int brcm_stb_sata_init(struct brcm_sata_port *port)
{
brcm_stb_sata_ssc_init(port);
return brcm_stb_sata_rxaeq_init(port);
}
static int brcm_stb_sata_16nm_ssc_init(struct brcm_sata_port *port)
{
u32 tmp, value;
/* Reduce CP tail current to 1/16th of its default value */
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL6, 0, 0x141);
/* Turn off CP tail current boost */
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL8, 0, 0xc006);
/* Set a specific AEQ equalizer value */
tmp = AEQ_FRC_EQ_FORCE_VAL | AEQ_FRC_EQ_FORCE;
brcm_sata_phy_wr(port, AEQRX_REG_BANK_0, AEQ_FRC_EQ,
~(tmp | AEQ_RFZ_FRC_VAL |
AEQ_FRC_EQ_VAL_MASK << AEQ_FRC_EQ_VAL_SHIFT),
tmp | 32 << AEQ_FRC_EQ_VAL_SHIFT);
/* Set RX PPM val center frequency */
if (port->ssc_en)
value = 0x52;
else
value = 0;
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CONTROL1,
~RXPMD_RX_PPM_VAL_MASK, value);
/* Set proportional loop bandwith Gen1/2/3 */
tmp = RXPMD_G_CDR_PROP_BW_MASK << RXPMD_G1_CDR_PROP_BW_SHIFT |
RXPMD_G_CDR_PROP_BW_MASK << RXPMD_G2_CDR_PROP_BW_SHIFT |
RXPMD_G_CDR_PROP_BW_MASK << RXPMD_G3_CDR_PROB_BW_SHIFT;
if (port->ssc_en)
value = 2 << RXPMD_G1_CDR_PROP_BW_SHIFT |
2 << RXPMD_G2_CDR_PROP_BW_SHIFT |
2 << RXPMD_G3_CDR_PROB_BW_SHIFT;
else
value = 1 << RXPMD_G1_CDR_PROP_BW_SHIFT |
1 << RXPMD_G2_CDR_PROP_BW_SHIFT |
1 << RXPMD_G3_CDR_PROB_BW_SHIFT;
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CDR_PROP_BW, ~tmp,
value);
/* Set CDR integral loop acquisition bandwidth for Gen1/2/3 */
tmp = RXPMD_G_CDR_ACQ_INT_BW_MASK << RXPMD_G1_CDR_ACQ_INT_BW_SHIFT |
RXPMD_G_CDR_ACQ_INT_BW_MASK << RXPMD_G2_CDR_ACQ_INT_BW_SHIFT |
RXPMD_G_CDR_ACQ_INT_BW_MASK << RXPMD_G3_CDR_ACQ_INT_BW_SHIFT;
if (port->ssc_en)
value = 1 << RXPMD_G1_CDR_ACQ_INT_BW_SHIFT |
1 << RXPMD_G2_CDR_ACQ_INT_BW_SHIFT |
1 << RXPMD_G3_CDR_ACQ_INT_BW_SHIFT;
else
value = 0;
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CDR_ACQ_INTEG_BW,
~tmp, value);
/* Set CDR integral loop locking bandwidth to 1 for Gen 1/2/3 */
tmp = RXPMD_G_CDR_LOCK_INT_BW_MASK << RXPMD_G1_CDR_LOCK_INT_BW_SHIFT |
RXPMD_G_CDR_LOCK_INT_BW_MASK << RXPMD_G2_CDR_LOCK_INT_BW_SHIFT |
RXPMD_G_CDR_LOCK_INT_BW_MASK << RXPMD_G3_CDR_LOCK_INT_BW_SHIFT;
if (port->ssc_en)
value = 1 << RXPMD_G1_CDR_LOCK_INT_BW_SHIFT |
1 << RXPMD_G2_CDR_LOCK_INT_BW_SHIFT |
1 << RXPMD_G3_CDR_LOCK_INT_BW_SHIFT;
else
value = 0;
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CDR_LOCK_INTEG_BW,
~tmp, value);
/* Set no guard band and clamp CDR */
tmp = RXPMD_MON_CORRECT_EN | RXPMD_MON_MARGIN_VAL_MASK;
if (port->ssc_en)
value = 0x51;
else
value = 0;
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_FREQ_MON_CONTROL1,
~tmp, RXPMD_MON_CORRECT_EN | value);
tmp = GENMASK(15, 12);
switch (port->tx_amplitude_val) {
case 400:
value = BIT(12) | BIT(13);
break;
case 500:
value = BIT(13);
break;
case 600:
value = BIT(12);
break;
case 800:
value = 0;
break;
default:
value = tmp;
break;
}
if (value != tmp)
brcm_sata_phy_wr(port, BLOCK1_REG_BANK, BLOCK1_TEST_TX, ~tmp,
value);
/* Turn on/off SSC */
brcm_sata_phy_wr(port, TX_REG_BANK, TX_ACTRL5, ~TX_ACTRL5_SSC_EN,
port->ssc_en ? TX_ACTRL5_SSC_EN : 0);
return 0;
}
static int brcm_stb_sata_16nm_init(struct brcm_sata_port *port)
{
return brcm_stb_sata_16nm_ssc_init(port);
}
/* NS2 SATA PLL1 defaults were characterized by H/W group */
#define NS2_PLL1_ACTRL2_MAGIC 0x1df8
#define NS2_PLL1_ACTRL3_MAGIC 0x2b00
#define NS2_PLL1_ACTRL4_MAGIC 0x8824
static int brcm_ns2_sata_init(struct brcm_sata_port *port)
{
int try;
unsigned int val;
void __iomem *ctrl_base = brcm_sata_ctrl_base(port);
struct device *dev = port->phy_priv->dev;
/* Configure OOB control */
val = 0x0;
val |= (0xc << OOB_CTRL1_BURST_MAX_SHIFT);
val |= (0x4 << OOB_CTRL1_BURST_MIN_SHIFT);
val |= (0x9 << OOB_CTRL1_WAKE_IDLE_MAX_SHIFT);
val |= (0x3 << OOB_CTRL1_WAKE_IDLE_MIN_SHIFT);
brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL1, 0x0, val);
val = 0x0;
val |= (0x1b << OOB_CTRL2_RESET_IDLE_MAX_SHIFT);
val |= (0x2 << OOB_CTRL2_BURST_CNT_SHIFT);
val |= (0x9 << OOB_CTRL2_RESET_IDLE_MIN_SHIFT);
brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL2, 0x0, val);
/* Configure PHY PLL register bank 1 */
val = NS2_PLL1_ACTRL2_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL2, 0x0, val);
val = NS2_PLL1_ACTRL3_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL3, 0x0, val);
val = NS2_PLL1_ACTRL4_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL4, 0x0, val);
/* Configure PHY BLOCK0 register bank */
/* Set oob_clk_sel to refclk/2 */
brcm_sata_phy_wr(port, BLOCK0_REG_BANK, BLOCK0_SPARE,
~BLOCK0_SPARE_OOB_CLK_SEL_MASK,
BLOCK0_SPARE_OOB_CLK_SEL_REFBY2);
/* Strobe PHY reset using PHY control register */
writel(PHY_CTRL_1_RESET, ctrl_base + PHY_CTRL_1);
mdelay(1);
writel(0x0, ctrl_base + PHY_CTRL_1);
mdelay(1);
/* Wait for PHY PLL lock by polling pll_lock bit */
try = 50;
while (try) {
val = brcm_sata_phy_rd(port, BLOCK0_REG_BANK,
BLOCK0_XGXSSTATUS);
if (val & BLOCK0_XGXSSTATUS_PLL_LOCK)
break;
msleep(20);
try--;
}
if (!try) {
/* PLL did not lock; give up */
dev_err(dev, "port%d PLL did not lock\n", port->portnum);
return -ETIMEDOUT;
}
dev_dbg(dev, "port%d initialized\n", port->portnum);
return 0;
}
static int brcm_nsp_sata_init(struct brcm_sata_port *port)
{
struct device *dev = port->phy_priv->dev;
unsigned int oob_bank;
unsigned int val, try;
/* Configure OOB control */
if (port->portnum == 0)
oob_bank = OOB_REG_BANK;
else if (port->portnum == 1)
oob_bank = OOB1_REG_BANK;
else
return -EINVAL;
val = 0x0;
val |= (0x0f << OOB_CTRL1_BURST_MAX_SHIFT);
val |= (0x06 << OOB_CTRL1_BURST_MIN_SHIFT);
val |= (0x0f << OOB_CTRL1_WAKE_IDLE_MAX_SHIFT);
val |= (0x06 << OOB_CTRL1_WAKE_IDLE_MIN_SHIFT);
brcm_sata_phy_wr(port, oob_bank, OOB_CTRL1, 0x0, val);
val = 0x0;
val |= (0x2e << OOB_CTRL2_RESET_IDLE_MAX_SHIFT);
val |= (0x02 << OOB_CTRL2_BURST_CNT_SHIFT);
val |= (0x16 << OOB_CTRL2_RESET_IDLE_MIN_SHIFT);
brcm_sata_phy_wr(port, oob_bank, OOB_CTRL2, 0x0, val);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_ACTRL2,
~(PLL_ACTRL2_SELDIV_MASK << PLL_ACTRL2_SELDIV_SHIFT),
0x0c << PLL_ACTRL2_SELDIV_SHIFT);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_CAP_CONTROL,
0xff0, 0x4f0);
val = PLLCONTROL_0_FREQ_DET_RESTART | PLLCONTROL_0_FREQ_MONITOR;
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0,
~val, val);
val = PLLCONTROL_0_SEQ_START;
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0,
~val, 0);
mdelay(10);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0,
~val, val);
/* Wait for pll_seq_done bit */
try = 50;
while (--try) {
val = brcm_sata_phy_rd(port, BLOCK0_REG_BANK,
BLOCK0_XGXSSTATUS);
if (val & BLOCK0_XGXSSTATUS_PLL_LOCK)
break;
msleep(20);
}
if (!try) {
/* PLL did not lock; give up */
dev_err(dev, "port%d PLL did not lock\n", port->portnum);
return -ETIMEDOUT;
}
dev_dbg(dev, "port%d initialized\n", port->portnum);
return 0;
}
/* SR PHY PLL0 registers */
#define SR_PLL0_ACTRL6_MAGIC 0xa
/* SR PHY PLL1 registers */
#define SR_PLL1_ACTRL2_MAGIC 0x32
#define SR_PLL1_ACTRL3_MAGIC 0x2
#define SR_PLL1_ACTRL4_MAGIC 0x3e8
static int brcm_sr_sata_init(struct brcm_sata_port *port)
{
struct device *dev = port->phy_priv->dev;
unsigned int val, try;
/* Configure PHY PLL register bank 1 */
val = SR_PLL1_ACTRL2_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL2, 0x0, val);
val = SR_PLL1_ACTRL3_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL3, 0x0, val);
val = SR_PLL1_ACTRL4_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL4, 0x0, val);
/* Configure PHY PLL register bank 0 */
val = SR_PLL0_ACTRL6_MAGIC;
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_ACTRL6, 0x0, val);
/* Wait for PHY PLL lock by polling pll_lock bit */
try = 50;
do {
val = brcm_sata_phy_rd(port, BLOCK0_REG_BANK,
BLOCK0_XGXSSTATUS);
if (val & BLOCK0_XGXSSTATUS_PLL_LOCK)
break;
msleep(20);
try--;
} while (try);
if ((val & BLOCK0_XGXSSTATUS_PLL_LOCK) == 0) {
/* PLL did not lock; give up */
dev_err(dev, "port%d PLL did not lock\n", port->portnum);
return -ETIMEDOUT;
}
/* Invert Tx polarity */
brcm_sata_phy_wr(port, TX_REG_BANK, TX_ACTRL0,
~TX_ACTRL0_TXPOL_FLIP, TX_ACTRL0_TXPOL_FLIP);
/* Configure OOB control to handle 100MHz reference clock */
val = ((0xc << OOB_CTRL1_BURST_MAX_SHIFT) |
(0x4 << OOB_CTRL1_BURST_MIN_SHIFT) |
(0x8 << OOB_CTRL1_WAKE_IDLE_MAX_SHIFT) |
(0x3 << OOB_CTRL1_WAKE_IDLE_MIN_SHIFT));
brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL1, 0x0, val);
val = ((0x1b << OOB_CTRL2_RESET_IDLE_MAX_SHIFT) |
(0x2 << OOB_CTRL2_BURST_CNT_SHIFT) |
(0x9 << OOB_CTRL2_RESET_IDLE_MIN_SHIFT));
brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL2, 0x0, val);
return 0;
}
static int brcm_dsl_sata_init(struct brcm_sata_port *port)
{
struct device *dev = port->phy_priv->dev;
unsigned int try;
u32 tmp;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL7, 0, 0x873);
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL6, 0, 0xc000);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0,
0, 0x3089);
usleep_range(1000, 2000);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0,
0, 0x3088);
usleep_range(1000, 2000);
brcm_sata_phy_wr(port, AEQRX_REG_BANK_1, AEQRX_SLCAL0_CTRL0,
0, 0x3000);
brcm_sata_phy_wr(port, AEQRX_REG_BANK_1, AEQRX_SLCAL1_CTRL0,
0, 0x3000);
usleep_range(1000, 2000);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_CAP_CHARGE_TIME, 0, 0x32);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_VCO_CAL_THRESH, 0, 0xa);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_FREQ_DET_TIME, 0, 0x64);
usleep_range(1000, 2000);
/* Acquire PLL lock */
try = 50;
while (try) {
tmp = brcm_sata_phy_rd(port, BLOCK0_REG_BANK,
BLOCK0_XGXSSTATUS);
if (tmp & BLOCK0_XGXSSTATUS_PLL_LOCK)
break;
msleep(20);
try--;
}
if (!try) {
/* PLL did not lock; give up */
dev_err(dev, "port%d PLL did not lock\n", port->portnum);
return -ETIMEDOUT;
}
dev_dbg(dev, "port%d initialized\n", port->portnum);
return 0;
}
static int brcm_sata_phy_init(struct phy *phy)
{
int rc;
struct brcm_sata_port *port = phy_get_drvdata(phy);
switch (port->phy_priv->version) {
case BRCM_SATA_PHY_STB_16NM:
rc = brcm_stb_sata_16nm_init(port);
break;
case BRCM_SATA_PHY_STB_28NM:
case BRCM_SATA_PHY_STB_40NM:
rc = brcm_stb_sata_init(port);
break;
case BRCM_SATA_PHY_IPROC_NS2:
rc = brcm_ns2_sata_init(port);
break;
case BRCM_SATA_PHY_IPROC_NSP:
rc = brcm_nsp_sata_init(port);
break;
case BRCM_SATA_PHY_IPROC_SR:
rc = brcm_sr_sata_init(port);
break;
case BRCM_SATA_PHY_DSL_28NM:
rc = brcm_dsl_sata_init(port);
break;
default:
rc = -ENODEV;
}
return rc;
}
static void brcm_stb_sata_calibrate(struct brcm_sata_port *port)
{
u32 tmp = BIT(8);
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_FREQ_MON_CONTROL1,
~tmp, tmp);
}
static int brcm_sata_phy_calibrate(struct phy *phy)
{
struct brcm_sata_port *port = phy_get_drvdata(phy);
int rc = -EOPNOTSUPP;
switch (port->phy_priv->version) {
case BRCM_SATA_PHY_STB_28NM:
case BRCM_SATA_PHY_STB_40NM:
brcm_stb_sata_calibrate(port);
rc = 0;
break;
default:
break;
}
return rc;
}
static const struct phy_ops phy_ops = {
.init = brcm_sata_phy_init,
.calibrate = brcm_sata_phy_calibrate,
.owner = THIS_MODULE,
};
static const struct of_device_id brcm_sata_phy_of_match[] = {
{ .compatible = "brcm,bcm7216-sata-phy",
.data = (void *)BRCM_SATA_PHY_STB_16NM },
{ .compatible = "brcm,bcm7445-sata-phy",
.data = (void *)BRCM_SATA_PHY_STB_28NM },
{ .compatible = "brcm,bcm7425-sata-phy",
.data = (void *)BRCM_SATA_PHY_STB_40NM },
{ .compatible = "brcm,iproc-ns2-sata-phy",
.data = (void *)BRCM_SATA_PHY_IPROC_NS2 },
{ .compatible = "brcm,iproc-nsp-sata-phy",
.data = (void *)BRCM_SATA_PHY_IPROC_NSP },
{ .compatible = "brcm,iproc-sr-sata-phy",
.data = (void *)BRCM_SATA_PHY_IPROC_SR },
{ .compatible = "brcm,bcm63138-sata-phy",
.data = (void *)BRCM_SATA_PHY_DSL_28NM },
{},
};
MODULE_DEVICE_TABLE(of, brcm_sata_phy_of_match);
static int brcm_sata_phy_probe(struct platform_device *pdev)
{
const char *rxaeq_mode;
struct device *dev = &pdev->dev;
struct device_node *dn = dev->of_node, *child;
const struct of_device_id *of_id;
struct brcm_sata_phy *priv;
struct phy_provider *provider;
int ret, count = 0;
if (of_get_child_count(dn) == 0)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
dev_set_drvdata(dev, priv);
priv->dev = dev;
priv->phy_base = devm_platform_ioremap_resource_byname(pdev, "phy");
if (IS_ERR(priv->phy_base))
return PTR_ERR(priv->phy_base);
of_id = of_match_node(brcm_sata_phy_of_match, dn);
if (of_id)
priv->version = (uintptr_t)of_id->data;
else
priv->version = BRCM_SATA_PHY_STB_28NM;
if (priv->version == BRCM_SATA_PHY_IPROC_NS2) {
priv->ctrl_base = devm_platform_ioremap_resource_byname(pdev, "phy-ctrl");
if (IS_ERR(priv->ctrl_base))
return PTR_ERR(priv->ctrl_base);
}
for_each_available_child_of_node(dn, child) {
unsigned int id;
struct brcm_sata_port *port;
if (of_property_read_u32(child, "reg", &id)) {
dev_err(dev, "missing reg property in node %pOFn\n",
child);
ret = -EINVAL;
goto put_child;
}
if (id >= MAX_PORTS) {
dev_err(dev, "invalid reg: %u\n", id);
ret = -EINVAL;
goto put_child;
}
if (priv->phys[id].phy) {
dev_err(dev, "already registered port %u\n", id);
ret = -EINVAL;
goto put_child;
}
port = &priv->phys[id];
port->portnum = id;
port->phy_priv = priv;
port->phy = devm_phy_create(dev, child, &phy_ops);
port->rxaeq_mode = RXAEQ_MODE_OFF;
if (!of_property_read_string(child, "brcm,rxaeq-mode",
&rxaeq_mode))
port->rxaeq_mode = rxaeq_to_val(rxaeq_mode);
if (port->rxaeq_mode == RXAEQ_MODE_MANUAL)
of_property_read_u32(child, "brcm,rxaeq-value",
&port->rxaeq_val);
of_property_read_u32(child, "brcm,tx-amplitude-millivolt",
&port->tx_amplitude_val);
port->ssc_en = of_property_read_bool(child, "brcm,enable-ssc");
if (IS_ERR(port->phy)) {
dev_err(dev, "failed to create PHY\n");
ret = PTR_ERR(port->phy);
goto put_child;
}
phy_set_drvdata(port->phy, port);
count++;
}
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(provider)) {
dev_err(dev, "could not register PHY provider\n");
return PTR_ERR(provider);
}
dev_info(dev, "registered %d port(s)\n", count);
return 0;
put_child:
of_node_put(child);
return ret;
}
static struct platform_driver brcm_sata_phy_driver = {
.probe = brcm_sata_phy_probe,
.driver = {
.of_match_table = brcm_sata_phy_of_match,
.name = "brcm-sata-phy",
}
};
module_platform_driver(brcm_sata_phy_driver);
MODULE_DESCRIPTION("Broadcom SATA PHY driver");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Marc Carino");
MODULE_AUTHOR("Brian Norris");
MODULE_ALIAS("platform:phy-brcm-sata");
| linux-master | drivers/phy/broadcom/phy-brcm-sata.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2018 Broadcom
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
enum bcm_usb_phy_version {
BCM_SR_USB_COMBO_PHY,
BCM_SR_USB_HS_PHY,
};
enum bcm_usb_phy_reg {
PLL_CTRL,
PHY_CTRL,
PHY_PLL_CTRL,
};
/* USB PHY registers */
static const u8 bcm_usb_combo_phy_ss[] = {
[PLL_CTRL] = 0x18,
[PHY_CTRL] = 0x14,
};
static const u8 bcm_usb_combo_phy_hs[] = {
[PLL_CTRL] = 0x0c,
[PHY_CTRL] = 0x10,
};
static const u8 bcm_usb_hs_phy[] = {
[PLL_CTRL] = 0x8,
[PHY_CTRL] = 0xc,
};
enum pll_ctrl_bits {
PLL_RESETB,
SSPLL_SUSPEND_EN,
PLL_SEQ_START,
PLL_LOCK,
};
static const u8 u3pll_ctrl[] = {
[PLL_RESETB] = 0,
[SSPLL_SUSPEND_EN] = 1,
[PLL_SEQ_START] = 2,
[PLL_LOCK] = 3,
};
#define HSPLL_PDIV_MASK 0xF
#define HSPLL_PDIV_VAL 0x1
static const u8 u2pll_ctrl[] = {
[PLL_RESETB] = 5,
[PLL_LOCK] = 6,
};
enum bcm_usb_phy_ctrl_bits {
CORERDY,
PHY_RESETB,
PHY_PCTL,
};
#define PHY_PCTL_MASK 0xffff
#define SSPHY_PCTL_VAL 0x0006
static const u8 u3phy_ctrl[] = {
[PHY_RESETB] = 1,
[PHY_PCTL] = 2,
};
static const u8 u2phy_ctrl[] = {
[CORERDY] = 0,
[PHY_RESETB] = 5,
[PHY_PCTL] = 6,
};
struct bcm_usb_phy_cfg {
uint32_t type;
uint32_t version;
void __iomem *regs;
struct phy *phy;
const u8 *offset;
};
#define PLL_LOCK_RETRY_COUNT 1000
enum bcm_usb_phy_type {
USB_HS_PHY,
USB_SS_PHY,
};
#define NUM_BCM_SR_USB_COMBO_PHYS 2
static inline void bcm_usb_reg32_clrbits(void __iomem *addr, uint32_t clear)
{
writel(readl(addr) & ~clear, addr);
}
static inline void bcm_usb_reg32_setbits(void __iomem *addr, uint32_t set)
{
writel(readl(addr) | set, addr);
}
static int bcm_usb_pll_lock_check(void __iomem *addr, u32 bit)
{
u32 data;
int ret;
ret = readl_poll_timeout_atomic(addr, data, (data & bit), 1,
PLL_LOCK_RETRY_COUNT);
if (ret)
pr_err("%s: FAIL\n", __func__);
return ret;
}
static int bcm_usb_ss_phy_init(struct bcm_usb_phy_cfg *phy_cfg)
{
int ret = 0;
void __iomem *regs = phy_cfg->regs;
const u8 *offset;
u32 rd_data;
offset = phy_cfg->offset;
/* Set pctl with mode and soft reset */
rd_data = readl(regs + offset[PHY_CTRL]);
rd_data &= ~(PHY_PCTL_MASK << u3phy_ctrl[PHY_PCTL]);
rd_data |= (SSPHY_PCTL_VAL << u3phy_ctrl[PHY_PCTL]);
writel(rd_data, regs + offset[PHY_CTRL]);
bcm_usb_reg32_clrbits(regs + offset[PLL_CTRL],
BIT(u3pll_ctrl[SSPLL_SUSPEND_EN]));
bcm_usb_reg32_setbits(regs + offset[PLL_CTRL],
BIT(u3pll_ctrl[PLL_SEQ_START]));
bcm_usb_reg32_setbits(regs + offset[PLL_CTRL],
BIT(u3pll_ctrl[PLL_RESETB]));
/* Maximum timeout for PLL reset done */
msleep(30);
ret = bcm_usb_pll_lock_check(regs + offset[PLL_CTRL],
BIT(u3pll_ctrl[PLL_LOCK]));
return ret;
}
static int bcm_usb_hs_phy_init(struct bcm_usb_phy_cfg *phy_cfg)
{
int ret = 0;
void __iomem *regs = phy_cfg->regs;
const u8 *offset;
offset = phy_cfg->offset;
bcm_usb_reg32_clrbits(regs + offset[PLL_CTRL],
BIT(u2pll_ctrl[PLL_RESETB]));
bcm_usb_reg32_setbits(regs + offset[PLL_CTRL],
BIT(u2pll_ctrl[PLL_RESETB]));
ret = bcm_usb_pll_lock_check(regs + offset[PLL_CTRL],
BIT(u2pll_ctrl[PLL_LOCK]));
return ret;
}
static int bcm_usb_phy_reset(struct phy *phy)
{
struct bcm_usb_phy_cfg *phy_cfg = phy_get_drvdata(phy);
void __iomem *regs = phy_cfg->regs;
const u8 *offset;
offset = phy_cfg->offset;
if (phy_cfg->type == USB_HS_PHY) {
bcm_usb_reg32_clrbits(regs + offset[PHY_CTRL],
BIT(u2phy_ctrl[CORERDY]));
bcm_usb_reg32_setbits(regs + offset[PHY_CTRL],
BIT(u2phy_ctrl[CORERDY]));
}
return 0;
}
static int bcm_usb_phy_init(struct phy *phy)
{
struct bcm_usb_phy_cfg *phy_cfg = phy_get_drvdata(phy);
int ret = -EINVAL;
if (phy_cfg->type == USB_SS_PHY)
ret = bcm_usb_ss_phy_init(phy_cfg);
else if (phy_cfg->type == USB_HS_PHY)
ret = bcm_usb_hs_phy_init(phy_cfg);
return ret;
}
static const struct phy_ops sr_phy_ops = {
.init = bcm_usb_phy_init,
.reset = bcm_usb_phy_reset,
.owner = THIS_MODULE,
};
static struct phy *bcm_usb_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct bcm_usb_phy_cfg *phy_cfg;
int phy_idx;
phy_cfg = dev_get_drvdata(dev);
if (!phy_cfg)
return ERR_PTR(-EINVAL);
if (phy_cfg->version == BCM_SR_USB_COMBO_PHY) {
phy_idx = args->args[0];
if (WARN_ON(phy_idx > 1))
return ERR_PTR(-ENODEV);
return phy_cfg[phy_idx].phy;
} else
return phy_cfg->phy;
}
static int bcm_usb_phy_create(struct device *dev, struct device_node *node,
void __iomem *regs, uint32_t version)
{
struct bcm_usb_phy_cfg *phy_cfg;
int idx;
if (version == BCM_SR_USB_COMBO_PHY) {
phy_cfg = devm_kzalloc(dev, NUM_BCM_SR_USB_COMBO_PHYS *
sizeof(struct bcm_usb_phy_cfg),
GFP_KERNEL);
if (!phy_cfg)
return -ENOMEM;
for (idx = 0; idx < NUM_BCM_SR_USB_COMBO_PHYS; idx++) {
phy_cfg[idx].regs = regs;
phy_cfg[idx].version = version;
if (idx == 0) {
phy_cfg[idx].offset = bcm_usb_combo_phy_hs;
phy_cfg[idx].type = USB_HS_PHY;
} else {
phy_cfg[idx].offset = bcm_usb_combo_phy_ss;
phy_cfg[idx].type = USB_SS_PHY;
}
phy_cfg[idx].phy = devm_phy_create(dev, node,
&sr_phy_ops);
if (IS_ERR(phy_cfg[idx].phy))
return PTR_ERR(phy_cfg[idx].phy);
phy_set_drvdata(phy_cfg[idx].phy, &phy_cfg[idx]);
}
} else if (version == BCM_SR_USB_HS_PHY) {
phy_cfg = devm_kzalloc(dev, sizeof(struct bcm_usb_phy_cfg),
GFP_KERNEL);
if (!phy_cfg)
return -ENOMEM;
phy_cfg->regs = regs;
phy_cfg->version = version;
phy_cfg->offset = bcm_usb_hs_phy;
phy_cfg->type = USB_HS_PHY;
phy_cfg->phy = devm_phy_create(dev, node, &sr_phy_ops);
if (IS_ERR(phy_cfg->phy))
return PTR_ERR(phy_cfg->phy);
phy_set_drvdata(phy_cfg->phy, phy_cfg);
} else
return -ENODEV;
dev_set_drvdata(dev, phy_cfg);
return 0;
}
static const struct of_device_id bcm_usb_phy_of_match[] = {
{
.compatible = "brcm,sr-usb-combo-phy",
.data = (void *)BCM_SR_USB_COMBO_PHY,
},
{
.compatible = "brcm,sr-usb-hs-phy",
.data = (void *)BCM_SR_USB_HS_PHY,
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, bcm_usb_phy_of_match);
static int bcm_usb_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *dn = dev->of_node;
const struct of_device_id *of_id;
void __iomem *regs;
int ret;
enum bcm_usb_phy_version version;
struct phy_provider *phy_provider;
regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(regs))
return PTR_ERR(regs);
of_id = of_match_node(bcm_usb_phy_of_match, dn);
if (of_id)
version = (uintptr_t)of_id->data;
else
return -ENODEV;
ret = bcm_usb_phy_create(dev, dn, regs, version);
if (ret)
return ret;
phy_provider = devm_of_phy_provider_register(dev, bcm_usb_phy_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver bcm_usb_phy_driver = {
.driver = {
.name = "phy-bcm-sr-usb",
.of_match_table = bcm_usb_phy_of_match,
},
.probe = bcm_usb_phy_probe,
};
module_platform_driver(bcm_usb_phy_driver);
MODULE_AUTHOR("Broadcom");
MODULE_DESCRIPTION("Broadcom stingray USB Phy driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/broadcom/phy-bcm-sr-usb.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* BCM6328 USBH PHY Controller Driver
*
* Copyright (C) 2020 Álvaro Fernández Rojas <[email protected]>
* Copyright (C) 2015 Simon Arlott
*
* Derived from bcm963xx_4.12L.06B_consumer/kernel/linux/arch/mips/bcm963xx/setup.c:
* Copyright (C) 2002 Broadcom Corporation
*
* Derived from OpenWrt patches:
* Copyright (C) 2013 Jonas Gorski <[email protected]>
* Copyright (C) 2013 Florian Fainelli <[email protected]>
* Copyright (C) 2008 Maxime Bizon <[email protected]>
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
/* USBH control register offsets */
enum usbh_regs {
USBH_BRT_CONTROL1 = 0,
USBH_BRT_CONTROL2,
USBH_BRT_STATUS1,
USBH_BRT_STATUS2,
USBH_UTMI_CONTROL1,
#define USBH_UC1_DEV_MODE_SEL BIT(0)
USBH_TEST_PORT_CONTROL,
USBH_PLL_CONTROL1,
#define USBH_PLLC_REFCLKSEL_SHIFT 0
#define USBH_PLLC_REFCLKSEL_MASK (0x3 << USBH_PLLC_REFCLKSEL_SHIFT)
#define USBH_PLLC_CLKSEL_SHIFT 2
#define USBH_PLLC_CLKSEL_MASK (0x3 << USBH_PLLC_CLKSEL_MASK)
#define USBH_PLLC_XTAL_PWRDWNB BIT(4)
#define USBH_PLLC_PLL_PWRDWNB BIT(5)
#define USBH_PLLC_PLL_CALEN BIT(6)
#define USBH_PLLC_PHYPLL_BYP BIT(7)
#define USBH_PLLC_PLL_RESET BIT(8)
#define USBH_PLLC_PLL_IDDQ_PWRDN BIT(9)
#define USBH_PLLC_PLL_PWRDN_DELAY BIT(10)
#define USBH_6318_PLLC_PLL_SUSPEND_EN BIT(27)
#define USBH_6318_PLLC_PHYPLL_BYP BIT(29)
#define USBH_6318_PLLC_PLL_RESET BIT(30)
#define USBH_6318_PLLC_PLL_IDDQ_PWRDN BIT(31)
USBH_SWAP_CONTROL,
#define USBH_SC_OHCI_DATA_SWAP BIT(0)
#define USBH_SC_OHCI_ENDIAN_SWAP BIT(1)
#define USBH_SC_OHCI_LOGICAL_ADDR_EN BIT(2)
#define USBH_SC_EHCI_DATA_SWAP BIT(3)
#define USBH_SC_EHCI_ENDIAN_SWAP BIT(4)
#define USBH_SC_EHCI_LOGICAL_ADDR_EN BIT(5)
#define USBH_SC_USB_DEVICE_SEL BIT(6)
USBH_GENERIC_CONTROL,
#define USBH_GC_PLL_SUSPEND_EN BIT(1)
USBH_FRAME_ADJUST_VALUE,
USBH_SETUP,
#define USBH_S_IOC BIT(4)
#define USBH_S_IPP BIT(5)
USBH_MDIO,
USBH_MDIO32,
USBH_USB_SIM_CONTROL,
#define USBH_USC_LADDR_SEL BIT(5)
__USBH_ENUM_SIZE
};
struct bcm63xx_usbh_phy_variant {
/* Registers */
long regs[__USBH_ENUM_SIZE];
/* PLLC bits to set/clear for power on */
u32 power_pllc_clr;
u32 power_pllc_set;
/* Setup bits to set/clear for power on */
u32 setup_clr;
u32 setup_set;
/* Swap Control bits to set */
u32 swapctl_dev_set;
/* Test Port Control value to set if non-zero */
u32 tpc_val;
/* USB Sim Control bits to set */
u32 usc_set;
/* UTMI Control 1 bits to set */
u32 utmictl1_dev_set;
};
struct bcm63xx_usbh_phy {
void __iomem *base;
struct clk *usbh_clk;
struct clk *usb_ref_clk;
struct reset_control *reset;
const struct bcm63xx_usbh_phy_variant *variant;
bool device_mode;
};
static const struct bcm63xx_usbh_phy_variant usbh_bcm6318 = {
.regs = {
[USBH_BRT_CONTROL1] = -1,
[USBH_BRT_CONTROL2] = -1,
[USBH_BRT_STATUS1] = -1,
[USBH_BRT_STATUS2] = -1,
[USBH_UTMI_CONTROL1] = 0x2c,
[USBH_TEST_PORT_CONTROL] = 0x1c,
[USBH_PLL_CONTROL1] = 0x04,
[USBH_SWAP_CONTROL] = 0x0c,
[USBH_GENERIC_CONTROL] = -1,
[USBH_FRAME_ADJUST_VALUE] = 0x08,
[USBH_SETUP] = 0x00,
[USBH_MDIO] = 0x14,
[USBH_MDIO32] = 0x18,
[USBH_USB_SIM_CONTROL] = 0x20,
},
.power_pllc_clr = USBH_6318_PLLC_PLL_IDDQ_PWRDN,
.power_pllc_set = USBH_6318_PLLC_PLL_SUSPEND_EN,
.setup_set = USBH_S_IOC,
.swapctl_dev_set = USBH_SC_USB_DEVICE_SEL,
.usc_set = USBH_USC_LADDR_SEL,
.utmictl1_dev_set = USBH_UC1_DEV_MODE_SEL,
};
static const struct bcm63xx_usbh_phy_variant usbh_bcm6328 = {
.regs = {
[USBH_BRT_CONTROL1] = 0x00,
[USBH_BRT_CONTROL2] = 0x04,
[USBH_BRT_STATUS1] = 0x08,
[USBH_BRT_STATUS2] = 0x0c,
[USBH_UTMI_CONTROL1] = 0x10,
[USBH_TEST_PORT_CONTROL] = 0x14,
[USBH_PLL_CONTROL1] = 0x18,
[USBH_SWAP_CONTROL] = 0x1c,
[USBH_GENERIC_CONTROL] = 0x20,
[USBH_FRAME_ADJUST_VALUE] = 0x24,
[USBH_SETUP] = 0x28,
[USBH_MDIO] = 0x2c,
[USBH_MDIO32] = 0x30,
[USBH_USB_SIM_CONTROL] = 0x34,
},
.setup_set = USBH_S_IOC,
.swapctl_dev_set = USBH_SC_USB_DEVICE_SEL,
.utmictl1_dev_set = USBH_UC1_DEV_MODE_SEL,
};
static const struct bcm63xx_usbh_phy_variant usbh_bcm6358 = {
.regs = {
[USBH_BRT_CONTROL1] = -1,
[USBH_BRT_CONTROL2] = -1,
[USBH_BRT_STATUS1] = -1,
[USBH_BRT_STATUS2] = -1,
[USBH_UTMI_CONTROL1] = -1,
[USBH_TEST_PORT_CONTROL] = 0x24,
[USBH_PLL_CONTROL1] = -1,
[USBH_SWAP_CONTROL] = 0x00,
[USBH_GENERIC_CONTROL] = -1,
[USBH_FRAME_ADJUST_VALUE] = -1,
[USBH_SETUP] = -1,
[USBH_MDIO] = -1,
[USBH_MDIO32] = -1,
[USBH_USB_SIM_CONTROL] = -1,
},
/*
* The magic value comes for the original vendor BSP
* and is needed for USB to work. Datasheet does not
* help, so the magic value is used as-is.
*/
.tpc_val = 0x1c0020,
};
static const struct bcm63xx_usbh_phy_variant usbh_bcm6368 = {
.regs = {
[USBH_BRT_CONTROL1] = 0x00,
[USBH_BRT_CONTROL2] = 0x04,
[USBH_BRT_STATUS1] = 0x08,
[USBH_BRT_STATUS2] = 0x0c,
[USBH_UTMI_CONTROL1] = 0x10,
[USBH_TEST_PORT_CONTROL] = 0x14,
[USBH_PLL_CONTROL1] = 0x18,
[USBH_SWAP_CONTROL] = 0x1c,
[USBH_GENERIC_CONTROL] = -1,
[USBH_FRAME_ADJUST_VALUE] = 0x24,
[USBH_SETUP] = 0x28,
[USBH_MDIO] = 0x2c,
[USBH_MDIO32] = 0x30,
[USBH_USB_SIM_CONTROL] = 0x34,
},
.power_pllc_clr = USBH_PLLC_PLL_IDDQ_PWRDN | USBH_PLLC_PLL_PWRDN_DELAY,
.setup_set = USBH_S_IOC,
.swapctl_dev_set = USBH_SC_USB_DEVICE_SEL,
.utmictl1_dev_set = USBH_UC1_DEV_MODE_SEL,
};
static const struct bcm63xx_usbh_phy_variant usbh_bcm63268 = {
.regs = {
[USBH_BRT_CONTROL1] = 0x00,
[USBH_BRT_CONTROL2] = 0x04,
[USBH_BRT_STATUS1] = 0x08,
[USBH_BRT_STATUS2] = 0x0c,
[USBH_UTMI_CONTROL1] = 0x10,
[USBH_TEST_PORT_CONTROL] = 0x14,
[USBH_PLL_CONTROL1] = 0x18,
[USBH_SWAP_CONTROL] = 0x1c,
[USBH_GENERIC_CONTROL] = 0x20,
[USBH_FRAME_ADJUST_VALUE] = 0x24,
[USBH_SETUP] = 0x28,
[USBH_MDIO] = 0x2c,
[USBH_MDIO32] = 0x30,
[USBH_USB_SIM_CONTROL] = 0x34,
},
.power_pllc_clr = USBH_PLLC_PLL_IDDQ_PWRDN | USBH_PLLC_PLL_PWRDN_DELAY,
.setup_clr = USBH_S_IPP,
.setup_set = USBH_S_IOC,
.swapctl_dev_set = USBH_SC_USB_DEVICE_SEL,
.utmictl1_dev_set = USBH_UC1_DEV_MODE_SEL,
};
static inline bool usbh_has_reg(struct bcm63xx_usbh_phy *usbh, int reg)
{
return (usbh->variant->regs[reg] >= 0);
}
static inline u32 usbh_readl(struct bcm63xx_usbh_phy *usbh, int reg)
{
return __raw_readl(usbh->base + usbh->variant->regs[reg]);
}
static inline void usbh_writel(struct bcm63xx_usbh_phy *usbh, int reg,
u32 value)
{
__raw_writel(value, usbh->base + usbh->variant->regs[reg]);
}
static int bcm63xx_usbh_phy_init(struct phy *phy)
{
struct bcm63xx_usbh_phy *usbh = phy_get_drvdata(phy);
int ret;
ret = clk_prepare_enable(usbh->usbh_clk);
if (ret) {
dev_err(&phy->dev, "unable to enable usbh clock: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(usbh->usb_ref_clk);
if (ret) {
dev_err(&phy->dev, "unable to enable usb_ref clock: %d\n", ret);
clk_disable_unprepare(usbh->usbh_clk);
return ret;
}
ret = reset_control_reset(usbh->reset);
if (ret) {
dev_err(&phy->dev, "unable to reset device: %d\n", ret);
clk_disable_unprepare(usbh->usb_ref_clk);
clk_disable_unprepare(usbh->usbh_clk);
return ret;
}
/* Configure to work in native CPU endian */
if (usbh_has_reg(usbh, USBH_SWAP_CONTROL)) {
u32 val = usbh_readl(usbh, USBH_SWAP_CONTROL);
val |= USBH_SC_EHCI_DATA_SWAP;
val &= ~USBH_SC_EHCI_ENDIAN_SWAP;
val |= USBH_SC_OHCI_DATA_SWAP;
val &= ~USBH_SC_OHCI_ENDIAN_SWAP;
if (usbh->device_mode && usbh->variant->swapctl_dev_set)
val |= usbh->variant->swapctl_dev_set;
usbh_writel(usbh, USBH_SWAP_CONTROL, val);
}
if (usbh_has_reg(usbh, USBH_SETUP)) {
u32 val = usbh_readl(usbh, USBH_SETUP);
val |= usbh->variant->setup_set;
val &= ~usbh->variant->setup_clr;
usbh_writel(usbh, USBH_SETUP, val);
}
if (usbh_has_reg(usbh, USBH_USB_SIM_CONTROL)) {
u32 val = usbh_readl(usbh, USBH_USB_SIM_CONTROL);
val |= usbh->variant->usc_set;
usbh_writel(usbh, USBH_USB_SIM_CONTROL, val);
}
if (usbh->variant->tpc_val &&
usbh_has_reg(usbh, USBH_TEST_PORT_CONTROL))
usbh_writel(usbh, USBH_TEST_PORT_CONTROL,
usbh->variant->tpc_val);
if (usbh->device_mode &&
usbh_has_reg(usbh, USBH_UTMI_CONTROL1) &&
usbh->variant->utmictl1_dev_set) {
u32 val = usbh_readl(usbh, USBH_UTMI_CONTROL1);
val |= usbh->variant->utmictl1_dev_set;
usbh_writel(usbh, USBH_UTMI_CONTROL1, val);
}
return 0;
}
static int bcm63xx_usbh_phy_power_on(struct phy *phy)
{
struct bcm63xx_usbh_phy *usbh = phy_get_drvdata(phy);
if (usbh_has_reg(usbh, USBH_PLL_CONTROL1)) {
u32 val = usbh_readl(usbh, USBH_PLL_CONTROL1);
val |= usbh->variant->power_pllc_set;
val &= ~usbh->variant->power_pllc_clr;
usbh_writel(usbh, USBH_PLL_CONTROL1, val);
}
return 0;
}
static int bcm63xx_usbh_phy_power_off(struct phy *phy)
{
struct bcm63xx_usbh_phy *usbh = phy_get_drvdata(phy);
if (usbh_has_reg(usbh, USBH_PLL_CONTROL1)) {
u32 val = usbh_readl(usbh, USBH_PLL_CONTROL1);
val &= ~usbh->variant->power_pllc_set;
val |= usbh->variant->power_pllc_clr;
usbh_writel(usbh, USBH_PLL_CONTROL1, val);
}
return 0;
}
static int bcm63xx_usbh_phy_exit(struct phy *phy)
{
struct bcm63xx_usbh_phy *usbh = phy_get_drvdata(phy);
clk_disable_unprepare(usbh->usbh_clk);
clk_disable_unprepare(usbh->usb_ref_clk);
return 0;
}
static const struct phy_ops bcm63xx_usbh_phy_ops = {
.exit = bcm63xx_usbh_phy_exit,
.init = bcm63xx_usbh_phy_init,
.power_off = bcm63xx_usbh_phy_power_off,
.power_on = bcm63xx_usbh_phy_power_on,
.owner = THIS_MODULE,
};
static struct phy *bcm63xx_usbh_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct bcm63xx_usbh_phy *usbh = dev_get_drvdata(dev);
usbh->device_mode = !!args->args[0];
return of_phy_simple_xlate(dev, args);
}
static int __init bcm63xx_usbh_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct bcm63xx_usbh_phy *usbh;
const struct bcm63xx_usbh_phy_variant *variant;
struct phy *phy;
struct phy_provider *phy_provider;
usbh = devm_kzalloc(dev, sizeof(*usbh), GFP_KERNEL);
if (!usbh)
return -ENOMEM;
variant = device_get_match_data(dev);
if (!variant)
return -EINVAL;
usbh->variant = variant;
usbh->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(usbh->base))
return PTR_ERR(usbh->base);
usbh->reset = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(usbh->reset)) {
if (PTR_ERR(usbh->reset) != -EPROBE_DEFER)
dev_err(dev, "failed to get reset\n");
return PTR_ERR(usbh->reset);
}
usbh->usbh_clk = devm_clk_get_optional(dev, "usbh");
if (IS_ERR(usbh->usbh_clk))
return PTR_ERR(usbh->usbh_clk);
usbh->usb_ref_clk = devm_clk_get_optional(dev, "usb_ref");
if (IS_ERR(usbh->usb_ref_clk))
return PTR_ERR(usbh->usb_ref_clk);
phy = devm_phy_create(dev, NULL, &bcm63xx_usbh_phy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(phy);
}
platform_set_drvdata(pdev, usbh);
phy_set_drvdata(phy, usbh);
phy_provider = devm_of_phy_provider_register(dev,
bcm63xx_usbh_phy_xlate);
if (IS_ERR(phy_provider)) {
dev_err(dev, "failed to register PHY provider\n");
return PTR_ERR(phy_provider);
}
dev_dbg(dev, "Registered BCM63xx USB PHY driver\n");
return 0;
}
static const struct of_device_id bcm63xx_usbh_phy_ids[] __initconst = {
{ .compatible = "brcm,bcm6318-usbh-phy", .data = &usbh_bcm6318 },
{ .compatible = "brcm,bcm6328-usbh-phy", .data = &usbh_bcm6328 },
{ .compatible = "brcm,bcm6358-usbh-phy", .data = &usbh_bcm6358 },
{ .compatible = "brcm,bcm6362-usbh-phy", .data = &usbh_bcm6368 },
{ .compatible = "brcm,bcm6368-usbh-phy", .data = &usbh_bcm6368 },
{ .compatible = "brcm,bcm63268-usbh-phy", .data = &usbh_bcm63268 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm63xx_usbh_phy_ids);
static struct platform_driver bcm63xx_usbh_phy_driver __refdata = {
.driver = {
.name = "bcm63xx-usbh-phy",
.of_match_table = bcm63xx_usbh_phy_ids,
},
.probe = bcm63xx_usbh_phy_probe,
};
module_platform_driver(bcm63xx_usbh_phy_driver);
MODULE_DESCRIPTION("BCM63xx USBH PHY driver");
MODULE_AUTHOR("Álvaro Fernández Rojas <[email protected]>");
MODULE_AUTHOR("Simon Arlott");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/broadcom/phy-bcm63xx-usbh.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Broadcom Northstar USB 3.0 PHY Driver
*
* Copyright (C) 2016 Rafał Miłecki <[email protected]>
* Copyright (C) 2016 Broadcom
*
* All magic values used for initialization (and related comments) were obtained
* from Broadcom's SDK:
* Copyright (c) Broadcom Corp, 2012
*/
#include <linux/bcma/bcma.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
#include <linux/slab.h>
#define BCM_NS_USB3_PHY_BASE_ADDR_REG 0x1f
#define BCM_NS_USB3_PHY_PLL30_BLOCK 0x8000
#define BCM_NS_USB3_PHY_TX_PMD_BLOCK 0x8040
#define BCM_NS_USB3_PHY_PIPE_BLOCK 0x8060
/* Registers of PLL30 block */
#define BCM_NS_USB3_PLL_CONTROL 0x01
#define BCM_NS_USB3_PLLA_CONTROL0 0x0a
#define BCM_NS_USB3_PLLA_CONTROL1 0x0b
/* Registers of TX PMD block */
#define BCM_NS_USB3_TX_PMD_CONTROL1 0x01
/* Registers of PIPE block */
#define BCM_NS_USB3_LFPS_CMP 0x02
#define BCM_NS_USB3_LFPS_DEGLITCH 0x03
enum bcm_ns_family {
BCM_NS_UNKNOWN,
BCM_NS_AX,
BCM_NS_BX,
};
struct bcm_ns_usb3 {
struct device *dev;
enum bcm_ns_family family;
void __iomem *dmp;
struct mdio_device *mdiodev;
struct phy *phy;
};
static const struct of_device_id bcm_ns_usb3_id_table[] = {
{
.compatible = "brcm,ns-ax-usb3-phy",
.data = (int *)BCM_NS_AX,
},
{
.compatible = "brcm,ns-bx-usb3-phy",
.data = (int *)BCM_NS_BX,
},
{},
};
static int bcm_ns_usb3_mdio_phy_write(struct bcm_ns_usb3 *usb3, u16 reg,
u16 value);
static int bcm_ns_usb3_phy_init_ns_bx(struct bcm_ns_usb3 *usb3)
{
int err;
/* USB3 PLL Block */
err = bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG,
BCM_NS_USB3_PHY_PLL30_BLOCK);
if (err < 0)
return err;
/* Assert Ana_Pllseq start */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLL_CONTROL, 0x1000);
/* Assert CML Divider ratio to 26 */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLLA_CONTROL0, 0x6400);
/* Asserting PLL Reset */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLLA_CONTROL1, 0xc000);
/* Deaaserting PLL Reset */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLLA_CONTROL1, 0x8000);
/* Deasserting USB3 system reset */
writel(0, usb3->dmp + BCMA_RESET_CTL);
/* PLL frequency monitor enable */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLL_CONTROL, 0x9000);
/* PIPE Block */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG,
BCM_NS_USB3_PHY_PIPE_BLOCK);
/* CMPMAX & CMPMINTH setting */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_LFPS_CMP, 0xf30d);
/* DEGLITCH MIN & MAX setting */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_LFPS_DEGLITCH, 0x6302);
/* TXPMD block */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG,
BCM_NS_USB3_PHY_TX_PMD_BLOCK);
/* Enabling SSC */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_TX_PMD_CONTROL1, 0x1003);
return 0;
}
static int bcm_ns_usb3_phy_init_ns_ax(struct bcm_ns_usb3 *usb3)
{
int err;
/* PLL30 block */
err = bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG,
BCM_NS_USB3_PHY_PLL30_BLOCK);
if (err < 0)
return err;
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLLA_CONTROL0, 0x6400);
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG, 0x80e0);
bcm_ns_usb3_mdio_phy_write(usb3, 0x02, 0x009c);
/* Enable SSC */
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG,
BCM_NS_USB3_PHY_TX_PMD_BLOCK);
bcm_ns_usb3_mdio_phy_write(usb3, 0x02, 0x21d3);
bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_TX_PMD_CONTROL1, 0x1003);
/* Deasserting USB3 system reset */
writel(0, usb3->dmp + BCMA_RESET_CTL);
return 0;
}
static int bcm_ns_usb3_phy_init(struct phy *phy)
{
struct bcm_ns_usb3 *usb3 = phy_get_drvdata(phy);
int err;
/* Perform USB3 system soft reset */
writel(BCMA_RESET_CTL_RESET, usb3->dmp + BCMA_RESET_CTL);
switch (usb3->family) {
case BCM_NS_AX:
err = bcm_ns_usb3_phy_init_ns_ax(usb3);
break;
case BCM_NS_BX:
err = bcm_ns_usb3_phy_init_ns_bx(usb3);
break;
default:
WARN_ON(1);
err = -ENOTSUPP;
}
return err;
}
static const struct phy_ops ops = {
.init = bcm_ns_usb3_phy_init,
.owner = THIS_MODULE,
};
/**************************************************
* MDIO driver code
**************************************************/
static int bcm_ns_usb3_mdio_phy_write(struct bcm_ns_usb3 *usb3, u16 reg,
u16 value)
{
struct mdio_device *mdiodev = usb3->mdiodev;
return mdiodev_write(mdiodev, reg, value);
}
static int bcm_ns_usb3_mdio_probe(struct mdio_device *mdiodev)
{
struct device *dev = &mdiodev->dev;
const struct of_device_id *of_id;
struct phy_provider *phy_provider;
struct device_node *syscon_np;
struct bcm_ns_usb3 *usb3;
struct resource res;
int err;
usb3 = devm_kzalloc(dev, sizeof(*usb3), GFP_KERNEL);
if (!usb3)
return -ENOMEM;
usb3->dev = dev;
usb3->mdiodev = mdiodev;
of_id = of_match_device(bcm_ns_usb3_id_table, dev);
if (!of_id)
return -EINVAL;
usb3->family = (uintptr_t)of_id->data;
syscon_np = of_parse_phandle(dev->of_node, "usb3-dmp-syscon", 0);
err = of_address_to_resource(syscon_np, 0, &res);
of_node_put(syscon_np);
if (err)
return err;
usb3->dmp = devm_ioremap_resource(dev, &res);
if (IS_ERR(usb3->dmp))
return PTR_ERR(usb3->dmp);
usb3->phy = devm_phy_create(dev, NULL, &ops);
if (IS_ERR(usb3->phy)) {
dev_err(dev, "Failed to create PHY\n");
return PTR_ERR(usb3->phy);
}
phy_set_drvdata(usb3->phy, usb3);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct mdio_driver bcm_ns_usb3_mdio_driver = {
.mdiodrv = {
.driver = {
.name = "bcm_ns_mdio_usb3",
.of_match_table = bcm_ns_usb3_id_table,
},
},
.probe = bcm_ns_usb3_mdio_probe,
};
mdio_module_driver(bcm_ns_usb3_mdio_driver);
MODULE_LICENSE("GPL v2");
MODULE_DEVICE_TABLE(of, bcm_ns_usb3_id_table);
| linux-master | drivers/phy/broadcom/phy-bcm-ns-usb3.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Rockchip PCIE3.0 phy driver
*
* Copyright (C) 2022 Rockchip Electronics Co., Ltd.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/pcie.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
/* Register for RK3568 */
#define GRF_PCIE30PHY_CON1 0x4
#define GRF_PCIE30PHY_CON6 0x18
#define GRF_PCIE30PHY_CON9 0x24
#define GRF_PCIE30PHY_DA_OCM (BIT(15) | BIT(31))
#define GRF_PCIE30PHY_STATUS0 0x80
#define GRF_PCIE30PHY_WR_EN (0xf << 16)
#define SRAM_INIT_DONE(reg) (reg & BIT(14))
#define RK3568_BIFURCATION_LANE_0_1 BIT(0)
/* Register for RK3588 */
#define PHP_GRF_PCIESEL_CON 0x100
#define RK3588_PCIE3PHY_GRF_CMN_CON0 0x0
#define RK3588_PCIE3PHY_GRF_PHY0_STATUS1 0x904
#define RK3588_PCIE3PHY_GRF_PHY1_STATUS1 0xa04
#define RK3588_SRAM_INIT_DONE(reg) (reg & BIT(0))
#define RK3588_BIFURCATION_LANE_0_1 BIT(0)
#define RK3588_BIFURCATION_LANE_2_3 BIT(1)
#define RK3588_LANE_AGGREGATION BIT(2)
struct rockchip_p3phy_ops;
struct rockchip_p3phy_priv {
const struct rockchip_p3phy_ops *ops;
void __iomem *mmio;
/* mode: RC, EP */
int mode;
/* pcie30_phymode: Aggregation, Bifurcation */
int pcie30_phymode;
struct regmap *phy_grf;
struct regmap *pipe_grf;
struct reset_control *p30phy;
struct phy *phy;
struct clk_bulk_data *clks;
int num_clks;
int num_lanes;
u32 lanes[4];
};
struct rockchip_p3phy_ops {
int (*phy_init)(struct rockchip_p3phy_priv *priv);
};
static int rockchip_p3phy_set_mode(struct phy *phy, enum phy_mode mode, int submode)
{
struct rockchip_p3phy_priv *priv = phy_get_drvdata(phy);
/* Actually We don't care EP/RC mode, but just record it */
switch (submode) {
case PHY_MODE_PCIE_RC:
priv->mode = PHY_MODE_PCIE_RC;
break;
case PHY_MODE_PCIE_EP:
priv->mode = PHY_MODE_PCIE_EP;
break;
default:
dev_err(&phy->dev, "%s, invalid mode\n", __func__);
return -EINVAL;
}
return 0;
}
static int rockchip_p3phy_rk3568_init(struct rockchip_p3phy_priv *priv)
{
struct phy *phy = priv->phy;
bool bifurcation = false;
int ret;
u32 reg;
/* Deassert PCIe PMA output clamp mode */
regmap_write(priv->phy_grf, GRF_PCIE30PHY_CON9, GRF_PCIE30PHY_DA_OCM);
for (int i = 0; i < priv->num_lanes; i++) {
dev_info(&phy->dev, "lane number %d, val %d\n", i, priv->lanes[i]);
if (priv->lanes[i] > 1)
bifurcation = true;
}
/* Set bifurcation if needed, and it doesn't care RC/EP */
if (bifurcation) {
dev_info(&phy->dev, "bifurcation enabled\n");
regmap_write(priv->phy_grf, GRF_PCIE30PHY_CON6,
GRF_PCIE30PHY_WR_EN | RK3568_BIFURCATION_LANE_0_1);
regmap_write(priv->phy_grf, GRF_PCIE30PHY_CON1,
GRF_PCIE30PHY_DA_OCM);
} else {
dev_dbg(&phy->dev, "bifurcation disabled\n");
regmap_write(priv->phy_grf, GRF_PCIE30PHY_CON6,
GRF_PCIE30PHY_WR_EN & ~RK3568_BIFURCATION_LANE_0_1);
}
reset_control_deassert(priv->p30phy);
ret = regmap_read_poll_timeout(priv->phy_grf,
GRF_PCIE30PHY_STATUS0,
reg, SRAM_INIT_DONE(reg),
0, 500);
if (ret)
dev_err(&priv->phy->dev, "%s: lock failed 0x%x, check input refclk and power supply\n",
__func__, reg);
return ret;
}
static const struct rockchip_p3phy_ops rk3568_ops = {
.phy_init = rockchip_p3phy_rk3568_init,
};
static int rockchip_p3phy_rk3588_init(struct rockchip_p3phy_priv *priv)
{
u32 reg = 0;
u8 mode = 0;
int ret;
/* Deassert PCIe PMA output clamp mode */
regmap_write(priv->phy_grf, RK3588_PCIE3PHY_GRF_CMN_CON0, BIT(8) | BIT(24));
/* Set bifurcation if needed */
for (int i = 0; i < priv->num_lanes; i++) {
if (!priv->lanes[i])
mode |= (BIT(i) << 3);
if (priv->lanes[i] > 1)
mode |= (BIT(i) >> 1);
}
if (!mode)
reg = RK3588_LANE_AGGREGATION;
else {
if (mode & (BIT(0) | BIT(1)))
reg |= RK3588_BIFURCATION_LANE_0_1;
if (mode & (BIT(2) | BIT(3)))
reg |= RK3588_BIFURCATION_LANE_2_3;
}
regmap_write(priv->phy_grf, RK3588_PCIE3PHY_GRF_CMN_CON0, (0x7<<16) | reg);
/* Set pcie1ln_sel in PHP_GRF_PCIESEL_CON */
if (!IS_ERR(priv->pipe_grf)) {
reg = (mode & (BIT(6) | BIT(7))) >> 6;
if (reg)
regmap_write(priv->pipe_grf, PHP_GRF_PCIESEL_CON,
(reg << 16) | reg);
}
reset_control_deassert(priv->p30phy);
ret = regmap_read_poll_timeout(priv->phy_grf,
RK3588_PCIE3PHY_GRF_PHY0_STATUS1,
reg, RK3588_SRAM_INIT_DONE(reg),
0, 500);
ret |= regmap_read_poll_timeout(priv->phy_grf,
RK3588_PCIE3PHY_GRF_PHY1_STATUS1,
reg, RK3588_SRAM_INIT_DONE(reg),
0, 500);
if (ret)
dev_err(&priv->phy->dev, "lock failed 0x%x, check input refclk and power supply\n",
reg);
return ret;
}
static const struct rockchip_p3phy_ops rk3588_ops = {
.phy_init = rockchip_p3phy_rk3588_init,
};
static int rochchip_p3phy_init(struct phy *phy)
{
struct rockchip_p3phy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = clk_bulk_prepare_enable(priv->num_clks, priv->clks);
if (ret) {
dev_err(&priv->phy->dev, "failed to enable PCIe bulk clks %d\n", ret);
return ret;
}
reset_control_assert(priv->p30phy);
udelay(1);
if (priv->ops->phy_init) {
ret = priv->ops->phy_init(priv);
if (ret)
clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
}
return ret;
}
static int rochchip_p3phy_exit(struct phy *phy)
{
struct rockchip_p3phy_priv *priv = phy_get_drvdata(phy);
clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
reset_control_assert(priv->p30phy);
return 0;
}
static const struct phy_ops rochchip_p3phy_ops = {
.init = rochchip_p3phy_init,
.exit = rochchip_p3phy_exit,
.set_mode = rockchip_p3phy_set_mode,
.owner = THIS_MODULE,
};
static int rockchip_p3phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct device *dev = &pdev->dev;
struct rockchip_p3phy_priv *priv;
struct device_node *np = dev->of_node;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(priv->mmio)) {
ret = PTR_ERR(priv->mmio);
return ret;
}
priv->ops = of_device_get_match_data(&pdev->dev);
if (!priv->ops) {
dev_err(dev, "no of match data provided\n");
return -EINVAL;
}
priv->phy_grf = syscon_regmap_lookup_by_phandle(np, "rockchip,phy-grf");
if (IS_ERR(priv->phy_grf)) {
dev_err(dev, "failed to find rockchip,phy_grf regmap\n");
return PTR_ERR(priv->phy_grf);
}
if (of_device_is_compatible(np, "rockchip,rk3588-pcie3-phy")) {
priv->pipe_grf =
syscon_regmap_lookup_by_phandle(dev->of_node,
"rockchip,pipe-grf");
if (IS_ERR(priv->pipe_grf))
dev_info(dev, "failed to find rockchip,pipe_grf regmap\n");
} else {
priv->pipe_grf = NULL;
}
priv->num_lanes = of_property_read_variable_u32_array(dev->of_node, "data-lanes",
priv->lanes, 2,
ARRAY_SIZE(priv->lanes));
/* if no data-lanes assume aggregation */
if (priv->num_lanes == -EINVAL) {
dev_dbg(dev, "no data-lanes property found\n");
priv->num_lanes = 1;
priv->lanes[0] = 1;
} else if (priv->num_lanes < 0) {
dev_err(dev, "failed to read data-lanes property %d\n", priv->num_lanes);
return priv->num_lanes;
}
priv->phy = devm_phy_create(dev, NULL, &rochchip_p3phy_ops);
if (IS_ERR(priv->phy)) {
dev_err(dev, "failed to create combphy\n");
return PTR_ERR(priv->phy);
}
priv->p30phy = devm_reset_control_get_optional_exclusive(dev, "phy");
if (IS_ERR(priv->p30phy)) {
return dev_err_probe(dev, PTR_ERR(priv->p30phy),
"failed to get phy reset control\n");
}
if (!priv->p30phy)
dev_info(dev, "no phy reset control specified\n");
priv->num_clks = devm_clk_bulk_get_all(dev, &priv->clks);
if (priv->num_clks < 1)
return -ENODEV;
dev_set_drvdata(dev, priv);
phy_set_drvdata(priv->phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id rockchip_p3phy_of_match[] = {
{ .compatible = "rockchip,rk3568-pcie3-phy", .data = &rk3568_ops },
{ .compatible = "rockchip,rk3588-pcie3-phy", .data = &rk3588_ops },
{ },
};
MODULE_DEVICE_TABLE(of, rockchip_p3phy_of_match);
static struct platform_driver rockchip_p3phy_driver = {
.probe = rockchip_p3phy_probe,
.driver = {
.name = "rockchip-snps-pcie3-phy",
.of_match_table = rockchip_p3phy_of_match,
},
};
module_platform_driver(rockchip_p3phy_driver);
MODULE_DESCRIPTION("Rockchip Synopsys PCIe 3.0 PHY driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/rockchip/phy-rockchip-snps-pcie3.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Rockchip MIPI RX Innosilicon DPHY driver
*
* Copyright (C) 2021 Fuzhou Rockchip Electronics Co., Ltd.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-mipi-dphy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
/* GRF */
#define RK1808_GRF_PD_VI_CON_OFFSET 0x0430
#define RK3326_GRF_PD_VI_CON_OFFSET 0x0430
#define RK3368_GRF_SOC_CON6_OFFSET 0x0418
#define RK3568_GRF_VI_CON0 0x0340
#define RK3568_GRF_VI_CON1 0x0344
/* PHY */
#define CSIDPHY_CTRL_LANE_ENABLE 0x00
#define CSIDPHY_CTRL_LANE_ENABLE_CK BIT(6)
#define CSIDPHY_CTRL_LANE_ENABLE_MASK GENMASK(5, 2)
#define CSIDPHY_CTRL_LANE_ENABLE_UNDEFINED BIT(0)
/* not present on all variants */
#define CSIDPHY_CTRL_PWRCTL 0x04
#define CSIDPHY_CTRL_PWRCTL_UNDEFINED GENMASK(7, 5)
#define CSIDPHY_CTRL_PWRCTL_SYNCRST BIT(2)
#define CSIDPHY_CTRL_PWRCTL_LDO_PD BIT(1)
#define CSIDPHY_CTRL_PWRCTL_PLL_PD BIT(0)
#define CSIDPHY_CTRL_DIG_RST 0x80
#define CSIDPHY_CTRL_DIG_RST_UNDEFINED 0x1e
#define CSIDPHY_CTRL_DIG_RST_RESET BIT(0)
/* offset after ths_settle_offset */
#define CSIDPHY_CLK_THS_SETTLE 0
#define CSIDPHY_LANE_THS_SETTLE(n) (((n) + 1) * 0x80)
#define CSIDPHY_THS_SETTLE_MASK GENMASK(6, 0)
/* offset after calib_offset */
#define CSIDPHY_CLK_CALIB_EN 0
#define CSIDPHY_LANE_CALIB_EN(n) (((n) + 1) * 0x80)
#define CSIDPHY_CALIB_EN BIT(7)
/* Configure the count time of the THS-SETTLE by protocol. */
#define RK1808_CSIDPHY_CLK_WR_THS_SETTLE 0x160
#define RK3326_CSIDPHY_CLK_WR_THS_SETTLE 0x100
#define RK3368_CSIDPHY_CLK_WR_THS_SETTLE 0x100
#define RK3568_CSIDPHY_CLK_WR_THS_SETTLE 0x160
/* Calibration reception enable */
#define RK1808_CSIDPHY_CLK_CALIB_EN 0x168
#define RK3568_CSIDPHY_CLK_CALIB_EN 0x168
/*
* The higher 16-bit of this register is used for write protection
* only if BIT(x + 16) set to 1 the BIT(x) can be written.
*/
#define HIWORD_UPDATE(val, mask, shift) \
((val) << (shift) | (mask) << ((shift) + 16))
#define HZ_TO_MHZ(freq) div_u64(freq, 1000 * 1000)
enum dphy_reg_id {
/* rk1808 & rk3326 */
GRF_DPHY_CSIPHY_FORCERXMODE,
GRF_DPHY_CSIPHY_CLKLANE_EN,
GRF_DPHY_CSIPHY_DATALANE_EN,
};
struct dphy_reg {
u32 offset;
u32 mask;
u32 shift;
};
#define PHY_REG(_offset, _width, _shift) \
{ .offset = _offset, .mask = BIT(_width) - 1, .shift = _shift, }
static const struct dphy_reg rk1808_grf_dphy_regs[] = {
[GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK1808_GRF_PD_VI_CON_OFFSET, 4, 0),
[GRF_DPHY_CSIPHY_CLKLANE_EN] = PHY_REG(RK1808_GRF_PD_VI_CON_OFFSET, 1, 8),
[GRF_DPHY_CSIPHY_DATALANE_EN] = PHY_REG(RK1808_GRF_PD_VI_CON_OFFSET, 4, 4),
};
static const struct dphy_reg rk3326_grf_dphy_regs[] = {
[GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK3326_GRF_PD_VI_CON_OFFSET, 4, 0),
[GRF_DPHY_CSIPHY_CLKLANE_EN] = PHY_REG(RK3326_GRF_PD_VI_CON_OFFSET, 1, 8),
[GRF_DPHY_CSIPHY_DATALANE_EN] = PHY_REG(RK3326_GRF_PD_VI_CON_OFFSET, 4, 4),
};
static const struct dphy_reg rk3368_grf_dphy_regs[] = {
[GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK3368_GRF_SOC_CON6_OFFSET, 4, 8),
};
static const struct dphy_reg rk3568_grf_dphy_regs[] = {
[GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK3568_GRF_VI_CON0, 4, 0),
[GRF_DPHY_CSIPHY_DATALANE_EN] = PHY_REG(RK3568_GRF_VI_CON0, 4, 4),
[GRF_DPHY_CSIPHY_CLKLANE_EN] = PHY_REG(RK3568_GRF_VI_CON0, 1, 8),
};
struct hsfreq_range {
u32 range_h;
u8 cfg_bit;
};
struct dphy_drv_data {
int pwrctl_offset;
int ths_settle_offset;
int calib_offset;
const struct hsfreq_range *hsfreq_ranges;
int num_hsfreq_ranges;
const struct dphy_reg *grf_regs;
};
struct rockchip_inno_csidphy {
struct device *dev;
void __iomem *phy_base;
struct clk *pclk;
struct regmap *grf;
struct reset_control *rst;
const struct dphy_drv_data *drv_data;
struct phy_configure_opts_mipi_dphy config;
u8 hsfreq;
};
static inline void write_grf_reg(struct rockchip_inno_csidphy *priv,
int index, u8 value)
{
const struct dphy_drv_data *drv_data = priv->drv_data;
const struct dphy_reg *reg = &drv_data->grf_regs[index];
if (reg->offset)
regmap_write(priv->grf, reg->offset,
HIWORD_UPDATE(value, reg->mask, reg->shift));
}
/* These tables must be sorted by .range_h ascending. */
static const struct hsfreq_range rk1808_mipidphy_hsfreq_ranges[] = {
{ 109, 0x02}, { 149, 0x03}, { 199, 0x06}, { 249, 0x06},
{ 299, 0x06}, { 399, 0x08}, { 499, 0x0b}, { 599, 0x0e},
{ 699, 0x10}, { 799, 0x12}, { 999, 0x16}, {1199, 0x1e},
{1399, 0x23}, {1599, 0x2d}, {1799, 0x32}, {1999, 0x37},
{2199, 0x3c}, {2399, 0x41}, {2499, 0x46}
};
static const struct hsfreq_range rk3326_mipidphy_hsfreq_ranges[] = {
{ 109, 0x00}, { 149, 0x01}, { 199, 0x02}, { 249, 0x03},
{ 299, 0x04}, { 399, 0x05}, { 499, 0x06}, { 599, 0x07},
{ 699, 0x08}, { 799, 0x09}, { 899, 0x0a}, {1099, 0x0b},
{1249, 0x0c}, {1349, 0x0d}, {1500, 0x0e}
};
static const struct hsfreq_range rk3368_mipidphy_hsfreq_ranges[] = {
{ 109, 0x00}, { 149, 0x01}, { 199, 0x02}, { 249, 0x03},
{ 299, 0x04}, { 399, 0x05}, { 499, 0x06}, { 599, 0x07},
{ 699, 0x08}, { 799, 0x09}, { 899, 0x0a}, {1099, 0x0b},
{1249, 0x0c}, {1349, 0x0d}, {1500, 0x0e}
};
static void rockchip_inno_csidphy_ths_settle(struct rockchip_inno_csidphy *priv,
int hsfreq, int offset)
{
const struct dphy_drv_data *drv_data = priv->drv_data;
u32 val;
val = readl(priv->phy_base + drv_data->ths_settle_offset + offset);
val &= ~CSIDPHY_THS_SETTLE_MASK;
val |= hsfreq;
writel(val, priv->phy_base + drv_data->ths_settle_offset + offset);
}
static int rockchip_inno_csidphy_configure(struct phy *phy,
union phy_configure_opts *opts)
{
struct rockchip_inno_csidphy *priv = phy_get_drvdata(phy);
const struct dphy_drv_data *drv_data = priv->drv_data;
struct phy_configure_opts_mipi_dphy *config = &opts->mipi_dphy;
unsigned int hsfreq = 0;
unsigned int i;
u64 data_rate_mbps;
int ret;
/* pass with phy_mipi_dphy_get_default_config (with pixel rate?) */
ret = phy_mipi_dphy_config_validate(config);
if (ret)
return ret;
data_rate_mbps = HZ_TO_MHZ(config->hs_clk_rate);
dev_dbg(priv->dev, "lanes %d - data_rate_mbps %llu\n",
config->lanes, data_rate_mbps);
for (i = 0; i < drv_data->num_hsfreq_ranges; i++) {
if (drv_data->hsfreq_ranges[i].range_h >= data_rate_mbps) {
hsfreq = drv_data->hsfreq_ranges[i].cfg_bit;
break;
}
}
if (!hsfreq)
return -EINVAL;
priv->hsfreq = hsfreq;
priv->config = *config;
return 0;
}
static int rockchip_inno_csidphy_power_on(struct phy *phy)
{
struct rockchip_inno_csidphy *priv = phy_get_drvdata(phy);
const struct dphy_drv_data *drv_data = priv->drv_data;
u64 data_rate_mbps = HZ_TO_MHZ(priv->config.hs_clk_rate);
u32 val;
int ret, i;
ret = clk_enable(priv->pclk);
if (ret < 0)
return ret;
ret = pm_runtime_resume_and_get(priv->dev);
if (ret < 0) {
clk_disable(priv->pclk);
return ret;
}
/* phy start */
if (drv_data->pwrctl_offset >= 0)
writel(CSIDPHY_CTRL_PWRCTL_UNDEFINED |
CSIDPHY_CTRL_PWRCTL_SYNCRST,
priv->phy_base + drv_data->pwrctl_offset);
/* set data lane num and enable clock lane */
val = FIELD_PREP(CSIDPHY_CTRL_LANE_ENABLE_MASK, GENMASK(priv->config.lanes - 1, 0)) |
FIELD_PREP(CSIDPHY_CTRL_LANE_ENABLE_CK, 1) |
FIELD_PREP(CSIDPHY_CTRL_LANE_ENABLE_UNDEFINED, 1);
writel(val, priv->phy_base + CSIDPHY_CTRL_LANE_ENABLE);
/* Reset dphy analog part */
if (drv_data->pwrctl_offset >= 0)
writel(CSIDPHY_CTRL_PWRCTL_UNDEFINED,
priv->phy_base + drv_data->pwrctl_offset);
usleep_range(500, 1000);
/* Reset dphy digital part */
writel(CSIDPHY_CTRL_DIG_RST_UNDEFINED,
priv->phy_base + CSIDPHY_CTRL_DIG_RST);
writel(CSIDPHY_CTRL_DIG_RST_UNDEFINED + CSIDPHY_CTRL_DIG_RST_RESET,
priv->phy_base + CSIDPHY_CTRL_DIG_RST);
/* not into receive mode/wait stopstate */
write_grf_reg(priv, GRF_DPHY_CSIPHY_FORCERXMODE, 0x0);
/* enable calibration */
if (data_rate_mbps > 1500 && drv_data->calib_offset >= 0) {
writel(CSIDPHY_CALIB_EN,
priv->phy_base + drv_data->calib_offset +
CSIDPHY_CLK_CALIB_EN);
for (i = 0; i < priv->config.lanes; i++)
writel(CSIDPHY_CALIB_EN,
priv->phy_base + drv_data->calib_offset +
CSIDPHY_LANE_CALIB_EN(i));
}
rockchip_inno_csidphy_ths_settle(priv, priv->hsfreq,
CSIDPHY_CLK_THS_SETTLE);
for (i = 0; i < priv->config.lanes; i++)
rockchip_inno_csidphy_ths_settle(priv, priv->hsfreq,
CSIDPHY_LANE_THS_SETTLE(i));
write_grf_reg(priv, GRF_DPHY_CSIPHY_CLKLANE_EN, 0x1);
write_grf_reg(priv, GRF_DPHY_CSIPHY_DATALANE_EN,
GENMASK(priv->config.lanes - 1, 0));
return 0;
}
static int rockchip_inno_csidphy_power_off(struct phy *phy)
{
struct rockchip_inno_csidphy *priv = phy_get_drvdata(phy);
const struct dphy_drv_data *drv_data = priv->drv_data;
/* disable all lanes */
writel(CSIDPHY_CTRL_LANE_ENABLE_UNDEFINED,
priv->phy_base + CSIDPHY_CTRL_LANE_ENABLE);
/* disable pll and ldo */
if (drv_data->pwrctl_offset >= 0)
writel(CSIDPHY_CTRL_PWRCTL_UNDEFINED |
CSIDPHY_CTRL_PWRCTL_LDO_PD |
CSIDPHY_CTRL_PWRCTL_PLL_PD,
priv->phy_base + drv_data->pwrctl_offset);
usleep_range(500, 1000);
pm_runtime_put(priv->dev);
clk_disable(priv->pclk);
return 0;
}
static int rockchip_inno_csidphy_init(struct phy *phy)
{
struct rockchip_inno_csidphy *priv = phy_get_drvdata(phy);
return clk_prepare(priv->pclk);
}
static int rockchip_inno_csidphy_exit(struct phy *phy)
{
struct rockchip_inno_csidphy *priv = phy_get_drvdata(phy);
clk_unprepare(priv->pclk);
return 0;
}
static const struct phy_ops rockchip_inno_csidphy_ops = {
.power_on = rockchip_inno_csidphy_power_on,
.power_off = rockchip_inno_csidphy_power_off,
.init = rockchip_inno_csidphy_init,
.exit = rockchip_inno_csidphy_exit,
.configure = rockchip_inno_csidphy_configure,
.owner = THIS_MODULE,
};
static const struct dphy_drv_data rk1808_mipidphy_drv_data = {
.pwrctl_offset = -1,
.ths_settle_offset = RK1808_CSIDPHY_CLK_WR_THS_SETTLE,
.calib_offset = RK1808_CSIDPHY_CLK_CALIB_EN,
.hsfreq_ranges = rk1808_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk1808_mipidphy_hsfreq_ranges),
.grf_regs = rk1808_grf_dphy_regs,
};
static const struct dphy_drv_data rk3326_mipidphy_drv_data = {
.pwrctl_offset = CSIDPHY_CTRL_PWRCTL,
.ths_settle_offset = RK3326_CSIDPHY_CLK_WR_THS_SETTLE,
.calib_offset = -1,
.hsfreq_ranges = rk3326_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk3326_mipidphy_hsfreq_ranges),
.grf_regs = rk3326_grf_dphy_regs,
};
static const struct dphy_drv_data rk3368_mipidphy_drv_data = {
.pwrctl_offset = CSIDPHY_CTRL_PWRCTL,
.ths_settle_offset = RK3368_CSIDPHY_CLK_WR_THS_SETTLE,
.calib_offset = -1,
.hsfreq_ranges = rk3368_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk3368_mipidphy_hsfreq_ranges),
.grf_regs = rk3368_grf_dphy_regs,
};
static const struct dphy_drv_data rk3568_mipidphy_drv_data = {
.pwrctl_offset = -1,
.ths_settle_offset = RK3568_CSIDPHY_CLK_WR_THS_SETTLE,
.calib_offset = RK3568_CSIDPHY_CLK_CALIB_EN,
.hsfreq_ranges = rk1808_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk1808_mipidphy_hsfreq_ranges),
.grf_regs = rk3568_grf_dphy_regs,
};
static const struct of_device_id rockchip_inno_csidphy_match_id[] = {
{
.compatible = "rockchip,px30-csi-dphy",
.data = &rk3326_mipidphy_drv_data,
},
{
.compatible = "rockchip,rk1808-csi-dphy",
.data = &rk1808_mipidphy_drv_data,
},
{
.compatible = "rockchip,rk3326-csi-dphy",
.data = &rk3326_mipidphy_drv_data,
},
{
.compatible = "rockchip,rk3368-csi-dphy",
.data = &rk3368_mipidphy_drv_data,
},
{
.compatible = "rockchip,rk3568-csi-dphy",
.data = &rk3568_mipidphy_drv_data,
},
{}
};
MODULE_DEVICE_TABLE(of, rockchip_inno_csidphy_match_id);
static int rockchip_inno_csidphy_probe(struct platform_device *pdev)
{
struct rockchip_inno_csidphy *priv;
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct phy *phy;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
platform_set_drvdata(pdev, priv);
priv->drv_data = of_device_get_match_data(dev);
if (!priv->drv_data) {
dev_err(dev, "Can't find device data\n");
return -ENODEV;
}
priv->grf = syscon_regmap_lookup_by_phandle(dev->of_node,
"rockchip,grf");
if (IS_ERR(priv->grf)) {
dev_err(dev, "Can't find GRF syscon\n");
return PTR_ERR(priv->grf);
}
priv->phy_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->phy_base))
return PTR_ERR(priv->phy_base);
priv->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(priv->pclk)) {
dev_err(dev, "failed to get pclk\n");
return PTR_ERR(priv->pclk);
}
priv->rst = devm_reset_control_get(dev, "apb");
if (IS_ERR(priv->rst)) {
dev_err(dev, "failed to get system reset control\n");
return PTR_ERR(priv->rst);
}
phy = devm_phy_create(dev, NULL, &rockchip_inno_csidphy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create phy\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
dev_err(dev, "failed to register phy provider\n");
return PTR_ERR(phy_provider);
}
pm_runtime_enable(dev);
return 0;
}
static void rockchip_inno_csidphy_remove(struct platform_device *pdev)
{
struct rockchip_inno_csidphy *priv = platform_get_drvdata(pdev);
pm_runtime_disable(priv->dev);
}
static struct platform_driver rockchip_inno_csidphy_driver = {
.driver = {
.name = "rockchip-inno-csidphy",
.of_match_table = rockchip_inno_csidphy_match_id,
},
.probe = rockchip_inno_csidphy_probe,
.remove_new = rockchip_inno_csidphy_remove,
};
module_platform_driver(rockchip_inno_csidphy_driver);
MODULE_AUTHOR("Heiko Stuebner <[email protected]>");
MODULE_DESCRIPTION("Rockchip MIPI Innosilicon CSI-DPHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/rockchip/phy-rockchip-inno-csidphy.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Rockchip USB2.0 PHY with Innosilicon IP block driver
*
* Copyright (C) 2016 Fuzhou Rockchip Electronics Co., Ltd
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/extcon-provider.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/gpio/consumer.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/mfd/syscon.h>
#include <linux/usb/of.h>
#include <linux/usb/otg.h>
#define BIT_WRITEABLE_SHIFT 16
#define SCHEDULE_DELAY (60 * HZ)
#define OTG_SCHEDULE_DELAY (2 * HZ)
struct rockchip_usb2phy;
enum rockchip_usb2phy_port_id {
USB2PHY_PORT_OTG,
USB2PHY_PORT_HOST,
USB2PHY_NUM_PORTS,
};
enum rockchip_usb2phy_host_state {
PHY_STATE_HS_ONLINE = 0,
PHY_STATE_DISCONNECT = 1,
PHY_STATE_CONNECT = 2,
PHY_STATE_FS_LS_ONLINE = 4,
};
/**
* enum usb_chg_state - Different states involved in USB charger detection.
* @USB_CHG_STATE_UNDEFINED: USB charger is not connected or detection
* process is not yet started.
* @USB_CHG_STATE_WAIT_FOR_DCD: Waiting for Data pins contact.
* @USB_CHG_STATE_DCD_DONE: Data pin contact is detected.
* @USB_CHG_STATE_PRIMARY_DONE: Primary detection is completed (Detects
* between SDP and DCP/CDP).
* @USB_CHG_STATE_SECONDARY_DONE: Secondary detection is completed (Detects
* between DCP and CDP).
* @USB_CHG_STATE_DETECTED: USB charger type is determined.
*/
enum usb_chg_state {
USB_CHG_STATE_UNDEFINED = 0,
USB_CHG_STATE_WAIT_FOR_DCD,
USB_CHG_STATE_DCD_DONE,
USB_CHG_STATE_PRIMARY_DONE,
USB_CHG_STATE_SECONDARY_DONE,
USB_CHG_STATE_DETECTED,
};
static const unsigned int rockchip_usb2phy_extcon_cable[] = {
EXTCON_USB,
EXTCON_USB_HOST,
EXTCON_CHG_USB_SDP,
EXTCON_CHG_USB_CDP,
EXTCON_CHG_USB_DCP,
EXTCON_CHG_USB_SLOW,
EXTCON_NONE,
};
struct usb2phy_reg {
unsigned int offset;
unsigned int bitend;
unsigned int bitstart;
unsigned int disable;
unsigned int enable;
};
/**
* struct rockchip_chg_det_reg - usb charger detect registers
* @cp_det: charging port detected successfully.
* @dcp_det: dedicated charging port detected successfully.
* @dp_det: assert data pin connect successfully.
* @idm_sink_en: open dm sink curren.
* @idp_sink_en: open dp sink current.
* @idp_src_en: open dm source current.
* @rdm_pdwn_en: open dm pull down resistor.
* @vdm_src_en: open dm voltage source.
* @vdp_src_en: open dp voltage source.
* @opmode: utmi operational mode.
*/
struct rockchip_chg_det_reg {
struct usb2phy_reg cp_det;
struct usb2phy_reg dcp_det;
struct usb2phy_reg dp_det;
struct usb2phy_reg idm_sink_en;
struct usb2phy_reg idp_sink_en;
struct usb2phy_reg idp_src_en;
struct usb2phy_reg rdm_pdwn_en;
struct usb2phy_reg vdm_src_en;
struct usb2phy_reg vdp_src_en;
struct usb2phy_reg opmode;
};
/**
* struct rockchip_usb2phy_port_cfg - usb-phy port configuration.
* @phy_sus: phy suspend register.
* @bvalid_det_en: vbus valid rise detection enable register.
* @bvalid_det_st: vbus valid rise detection status register.
* @bvalid_det_clr: vbus valid rise detection clear register.
* @disfall_en: host disconnect fall edge detection enable.
* @disfall_st: host disconnect fall edge detection state.
* @disfall_clr: host disconnect fall edge detection clear.
* @disrise_en: host disconnect rise edge detection enable.
* @disrise_st: host disconnect rise edge detection state.
* @disrise_clr: host disconnect rise edge detection clear.
* @id_det_en: id detection enable register.
* @id_det_st: id detection state register.
* @id_det_clr: id detection clear register.
* @ls_det_en: linestate detection enable register.
* @ls_det_st: linestate detection state register.
* @ls_det_clr: linestate detection clear register.
* @utmi_avalid: utmi vbus avalid status register.
* @utmi_bvalid: utmi vbus bvalid status register.
* @utmi_id: utmi id state register.
* @utmi_ls: utmi linestate state register.
* @utmi_hstdet: utmi host disconnect register.
*/
struct rockchip_usb2phy_port_cfg {
struct usb2phy_reg phy_sus;
struct usb2phy_reg bvalid_det_en;
struct usb2phy_reg bvalid_det_st;
struct usb2phy_reg bvalid_det_clr;
struct usb2phy_reg disfall_en;
struct usb2phy_reg disfall_st;
struct usb2phy_reg disfall_clr;
struct usb2phy_reg disrise_en;
struct usb2phy_reg disrise_st;
struct usb2phy_reg disrise_clr;
struct usb2phy_reg id_det_en;
struct usb2phy_reg id_det_st;
struct usb2phy_reg id_det_clr;
struct usb2phy_reg ls_det_en;
struct usb2phy_reg ls_det_st;
struct usb2phy_reg ls_det_clr;
struct usb2phy_reg utmi_avalid;
struct usb2phy_reg utmi_bvalid;
struct usb2phy_reg utmi_id;
struct usb2phy_reg utmi_ls;
struct usb2phy_reg utmi_hstdet;
};
/**
* struct rockchip_usb2phy_cfg - usb-phy configuration.
* @reg: the address offset of grf for usb-phy config.
* @num_ports: specify how many ports that the phy has.
* @phy_tuning: phy default parameters tuning.
* @clkout_ctl: keep on/turn off output clk of phy.
* @port_cfgs: usb-phy port configurations.
* @chg_det: charger detection registers.
*/
struct rockchip_usb2phy_cfg {
unsigned int reg;
unsigned int num_ports;
int (*phy_tuning)(struct rockchip_usb2phy *rphy);
struct usb2phy_reg clkout_ctl;
const struct rockchip_usb2phy_port_cfg port_cfgs[USB2PHY_NUM_PORTS];
const struct rockchip_chg_det_reg chg_det;
};
/**
* struct rockchip_usb2phy_port - usb-phy port data.
* @phy: generic phy.
* @port_id: flag for otg port or host port.
* @suspended: phy suspended flag.
* @vbus_attached: otg device vbus status.
* @host_disconnect: usb host disconnect status.
* @bvalid_irq: IRQ number assigned for vbus valid rise detection.
* @id_irq: IRQ number assigned for ID pin detection.
* @ls_irq: IRQ number assigned for linestate detection.
* @otg_mux_irq: IRQ number which multiplex otg-id/otg-bvalid/linestate
* irqs to one irq in otg-port.
* @mutex: for register updating in sm_work.
* @chg_work: charge detect work.
* @otg_sm_work: OTG state machine work.
* @sm_work: HOST state machine work.
* @port_cfg: port register configuration, assigned by driver data.
* @event_nb: hold event notification callback.
* @state: define OTG enumeration states before device reset.
* @mode: the dr_mode of the controller.
*/
struct rockchip_usb2phy_port {
struct phy *phy;
unsigned int port_id;
bool suspended;
bool vbus_attached;
bool host_disconnect;
int bvalid_irq;
int id_irq;
int ls_irq;
int otg_mux_irq;
struct mutex mutex;
struct delayed_work chg_work;
struct delayed_work otg_sm_work;
struct delayed_work sm_work;
const struct rockchip_usb2phy_port_cfg *port_cfg;
struct notifier_block event_nb;
enum usb_otg_state state;
enum usb_dr_mode mode;
};
/**
* struct rockchip_usb2phy - usb2.0 phy driver data.
* @dev: pointer to device.
* @grf: General Register Files regmap.
* @usbgrf: USB General Register Files regmap.
* @clk: clock struct of phy input clk.
* @clk480m: clock struct of phy output clk.
* @clk480m_hw: clock struct of phy output clk management.
* @phy_reset: phy reset control.
* @chg_state: states involved in USB charger detection.
* @chg_type: USB charger types.
* @dcd_retries: The retry count used to track Data contact
* detection process.
* @edev: extcon device for notification registration
* @irq: muxed interrupt for single irq configuration
* @phy_cfg: phy register configuration, assigned by driver data.
* @ports: phy port instance.
*/
struct rockchip_usb2phy {
struct device *dev;
struct regmap *grf;
struct regmap *usbgrf;
struct clk *clk;
struct clk *clk480m;
struct clk_hw clk480m_hw;
struct reset_control *phy_reset;
enum usb_chg_state chg_state;
enum power_supply_type chg_type;
u8 dcd_retries;
struct extcon_dev *edev;
int irq;
const struct rockchip_usb2phy_cfg *phy_cfg;
struct rockchip_usb2phy_port ports[USB2PHY_NUM_PORTS];
};
static inline struct regmap *get_reg_base(struct rockchip_usb2phy *rphy)
{
return rphy->usbgrf == NULL ? rphy->grf : rphy->usbgrf;
}
static inline int property_enable(struct regmap *base,
const struct usb2phy_reg *reg, bool en)
{
unsigned int val, mask, tmp;
tmp = en ? reg->enable : reg->disable;
mask = GENMASK(reg->bitend, reg->bitstart);
val = (tmp << reg->bitstart) | (mask << BIT_WRITEABLE_SHIFT);
return regmap_write(base, reg->offset, val);
}
static inline bool property_enabled(struct regmap *base,
const struct usb2phy_reg *reg)
{
int ret;
unsigned int tmp, orig;
unsigned int mask = GENMASK(reg->bitend, reg->bitstart);
ret = regmap_read(base, reg->offset, &orig);
if (ret)
return false;
tmp = (orig & mask) >> reg->bitstart;
return tmp != reg->disable;
}
static int rockchip_usb2phy_reset(struct rockchip_usb2phy *rphy)
{
int ret;
ret = reset_control_assert(rphy->phy_reset);
if (ret)
return ret;
udelay(10);
ret = reset_control_deassert(rphy->phy_reset);
if (ret)
return ret;
usleep_range(100, 200);
return 0;
}
static int rockchip_usb2phy_clk480m_prepare(struct clk_hw *hw)
{
struct rockchip_usb2phy *rphy =
container_of(hw, struct rockchip_usb2phy, clk480m_hw);
struct regmap *base = get_reg_base(rphy);
int ret;
/* turn on 480m clk output if it is off */
if (!property_enabled(base, &rphy->phy_cfg->clkout_ctl)) {
ret = property_enable(base, &rphy->phy_cfg->clkout_ctl, true);
if (ret)
return ret;
/* waiting for the clk become stable */
usleep_range(1200, 1300);
}
return 0;
}
static void rockchip_usb2phy_clk480m_unprepare(struct clk_hw *hw)
{
struct rockchip_usb2phy *rphy =
container_of(hw, struct rockchip_usb2phy, clk480m_hw);
struct regmap *base = get_reg_base(rphy);
/* turn off 480m clk output */
property_enable(base, &rphy->phy_cfg->clkout_ctl, false);
}
static int rockchip_usb2phy_clk480m_prepared(struct clk_hw *hw)
{
struct rockchip_usb2phy *rphy =
container_of(hw, struct rockchip_usb2phy, clk480m_hw);
struct regmap *base = get_reg_base(rphy);
return property_enabled(base, &rphy->phy_cfg->clkout_ctl);
}
static unsigned long
rockchip_usb2phy_clk480m_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return 480000000;
}
static const struct clk_ops rockchip_usb2phy_clkout_ops = {
.prepare = rockchip_usb2phy_clk480m_prepare,
.unprepare = rockchip_usb2phy_clk480m_unprepare,
.is_prepared = rockchip_usb2phy_clk480m_prepared,
.recalc_rate = rockchip_usb2phy_clk480m_recalc_rate,
};
static void rockchip_usb2phy_clk480m_unregister(void *data)
{
struct rockchip_usb2phy *rphy = data;
of_clk_del_provider(rphy->dev->of_node);
clk_unregister(rphy->clk480m);
}
static int
rockchip_usb2phy_clk480m_register(struct rockchip_usb2phy *rphy)
{
struct device_node *node = rphy->dev->of_node;
struct clk_init_data init;
const char *clk_name;
int ret = 0;
init.flags = 0;
init.name = "clk_usbphy_480m";
init.ops = &rockchip_usb2phy_clkout_ops;
/* optional override of the clockname */
of_property_read_string(node, "clock-output-names", &init.name);
if (rphy->clk) {
clk_name = __clk_get_name(rphy->clk);
init.parent_names = &clk_name;
init.num_parents = 1;
} else {
init.parent_names = NULL;
init.num_parents = 0;
}
rphy->clk480m_hw.init = &init;
/* register the clock */
rphy->clk480m = clk_register(rphy->dev, &rphy->clk480m_hw);
if (IS_ERR(rphy->clk480m)) {
ret = PTR_ERR(rphy->clk480m);
goto err_ret;
}
ret = of_clk_add_provider(node, of_clk_src_simple_get, rphy->clk480m);
if (ret < 0)
goto err_clk_provider;
return devm_add_action_or_reset(rphy->dev, rockchip_usb2phy_clk480m_unregister, rphy);
err_clk_provider:
clk_unregister(rphy->clk480m);
err_ret:
return ret;
}
static int rockchip_usb2phy_extcon_register(struct rockchip_usb2phy *rphy)
{
int ret;
struct device_node *node = rphy->dev->of_node;
struct extcon_dev *edev;
if (of_property_read_bool(node, "extcon")) {
edev = extcon_get_edev_by_phandle(rphy->dev, 0);
if (IS_ERR(edev)) {
if (PTR_ERR(edev) != -EPROBE_DEFER)
dev_err(rphy->dev, "Invalid or missing extcon\n");
return PTR_ERR(edev);
}
} else {
/* Initialize extcon device */
edev = devm_extcon_dev_allocate(rphy->dev,
rockchip_usb2phy_extcon_cable);
if (IS_ERR(edev))
return -ENOMEM;
ret = devm_extcon_dev_register(rphy->dev, edev);
if (ret) {
dev_err(rphy->dev, "failed to register extcon device\n");
return ret;
}
}
rphy->edev = edev;
return 0;
}
static int rockchip_usb2phy_enable_host_disc_irq(struct rockchip_usb2phy *rphy,
struct rockchip_usb2phy_port *rport,
bool en)
{
int ret;
ret = property_enable(rphy->grf, &rport->port_cfg->disfall_clr, true);
if (ret)
return ret;
ret = property_enable(rphy->grf, &rport->port_cfg->disfall_en, en);
if (ret)
return ret;
ret = property_enable(rphy->grf, &rport->port_cfg->disrise_clr, true);
if (ret)
return ret;
return property_enable(rphy->grf, &rport->port_cfg->disrise_en, en);
}
static int rockchip_usb2phy_init(struct phy *phy)
{
struct rockchip_usb2phy_port *rport = phy_get_drvdata(phy);
struct rockchip_usb2phy *rphy = dev_get_drvdata(phy->dev.parent);
int ret = 0;
mutex_lock(&rport->mutex);
if (rport->port_id == USB2PHY_PORT_OTG) {
if (rport->mode != USB_DR_MODE_HOST &&
rport->mode != USB_DR_MODE_UNKNOWN) {
/* clear bvalid status and enable bvalid detect irq */
ret = property_enable(rphy->grf,
&rport->port_cfg->bvalid_det_clr,
true);
if (ret)
goto out;
ret = property_enable(rphy->grf,
&rport->port_cfg->bvalid_det_en,
true);
if (ret)
goto out;
/* clear id status and enable id detect irq */
ret = property_enable(rphy->grf,
&rport->port_cfg->id_det_clr,
true);
if (ret)
goto out;
ret = property_enable(rphy->grf,
&rport->port_cfg->id_det_en,
true);
if (ret)
goto out;
schedule_delayed_work(&rport->otg_sm_work,
OTG_SCHEDULE_DELAY * 3);
} else {
/* If OTG works in host only mode, do nothing. */
dev_dbg(&rport->phy->dev, "mode %d\n", rport->mode);
}
} else if (rport->port_id == USB2PHY_PORT_HOST) {
if (rport->port_cfg->disfall_en.offset) {
rport->host_disconnect = true;
ret = rockchip_usb2phy_enable_host_disc_irq(rphy, rport, true);
if (ret) {
dev_err(rphy->dev, "failed to enable disconnect irq\n");
goto out;
}
}
/* clear linestate and enable linestate detect irq */
ret = property_enable(rphy->grf,
&rport->port_cfg->ls_det_clr, true);
if (ret)
goto out;
ret = property_enable(rphy->grf,
&rport->port_cfg->ls_det_en, true);
if (ret)
goto out;
schedule_delayed_work(&rport->sm_work, SCHEDULE_DELAY);
}
out:
mutex_unlock(&rport->mutex);
return ret;
}
static int rockchip_usb2phy_power_on(struct phy *phy)
{
struct rockchip_usb2phy_port *rport = phy_get_drvdata(phy);
struct rockchip_usb2phy *rphy = dev_get_drvdata(phy->dev.parent);
struct regmap *base = get_reg_base(rphy);
int ret;
dev_dbg(&rport->phy->dev, "port power on\n");
if (!rport->suspended)
return 0;
ret = clk_prepare_enable(rphy->clk480m);
if (ret)
return ret;
ret = property_enable(base, &rport->port_cfg->phy_sus, false);
if (ret) {
clk_disable_unprepare(rphy->clk480m);
return ret;
}
/*
* For rk3588, it needs to reset phy when exit from
* suspend mode with common_on_n 1'b1(aka REFCLK_LOGIC,
* Bias, and PLL blocks are powered down) for lower
* power consumption. If you don't want to reset phy,
* please keep the common_on_n 1'b0 to set these blocks
* remain powered.
*/
ret = rockchip_usb2phy_reset(rphy);
if (ret)
return ret;
/* waiting for the utmi_clk to become stable */
usleep_range(1500, 2000);
rport->suspended = false;
return 0;
}
static int rockchip_usb2phy_power_off(struct phy *phy)
{
struct rockchip_usb2phy_port *rport = phy_get_drvdata(phy);
struct rockchip_usb2phy *rphy = dev_get_drvdata(phy->dev.parent);
struct regmap *base = get_reg_base(rphy);
int ret;
dev_dbg(&rport->phy->dev, "port power off\n");
if (rport->suspended)
return 0;
ret = property_enable(base, &rport->port_cfg->phy_sus, true);
if (ret)
return ret;
rport->suspended = true;
clk_disable_unprepare(rphy->clk480m);
return 0;
}
static int rockchip_usb2phy_exit(struct phy *phy)
{
struct rockchip_usb2phy_port *rport = phy_get_drvdata(phy);
if (rport->port_id == USB2PHY_PORT_OTG &&
rport->mode != USB_DR_MODE_HOST &&
rport->mode != USB_DR_MODE_UNKNOWN) {
cancel_delayed_work_sync(&rport->otg_sm_work);
cancel_delayed_work_sync(&rport->chg_work);
} else if (rport->port_id == USB2PHY_PORT_HOST)
cancel_delayed_work_sync(&rport->sm_work);
return 0;
}
static const struct phy_ops rockchip_usb2phy_ops = {
.init = rockchip_usb2phy_init,
.exit = rockchip_usb2phy_exit,
.power_on = rockchip_usb2phy_power_on,
.power_off = rockchip_usb2phy_power_off,
.owner = THIS_MODULE,
};
static void rockchip_usb2phy_otg_sm_work(struct work_struct *work)
{
struct rockchip_usb2phy_port *rport =
container_of(work, struct rockchip_usb2phy_port,
otg_sm_work.work);
struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent);
static unsigned int cable;
unsigned long delay;
bool vbus_attach, sch_work, notify_charger;
vbus_attach = property_enabled(rphy->grf,
&rport->port_cfg->utmi_bvalid);
sch_work = false;
notify_charger = false;
delay = OTG_SCHEDULE_DELAY;
dev_dbg(&rport->phy->dev, "%s otg sm work\n",
usb_otg_state_string(rport->state));
switch (rport->state) {
case OTG_STATE_UNDEFINED:
rport->state = OTG_STATE_B_IDLE;
if (!vbus_attach)
rockchip_usb2phy_power_off(rport->phy);
fallthrough;
case OTG_STATE_B_IDLE:
if (extcon_get_state(rphy->edev, EXTCON_USB_HOST) > 0) {
dev_dbg(&rport->phy->dev, "usb otg host connect\n");
rport->state = OTG_STATE_A_HOST;
rockchip_usb2phy_power_on(rport->phy);
return;
} else if (vbus_attach) {
dev_dbg(&rport->phy->dev, "vbus_attach\n");
switch (rphy->chg_state) {
case USB_CHG_STATE_UNDEFINED:
schedule_delayed_work(&rport->chg_work, 0);
return;
case USB_CHG_STATE_DETECTED:
switch (rphy->chg_type) {
case POWER_SUPPLY_TYPE_USB:
dev_dbg(&rport->phy->dev, "sdp cable is connected\n");
rockchip_usb2phy_power_on(rport->phy);
rport->state = OTG_STATE_B_PERIPHERAL;
notify_charger = true;
sch_work = true;
cable = EXTCON_CHG_USB_SDP;
break;
case POWER_SUPPLY_TYPE_USB_DCP:
dev_dbg(&rport->phy->dev, "dcp cable is connected\n");
rockchip_usb2phy_power_off(rport->phy);
notify_charger = true;
sch_work = true;
cable = EXTCON_CHG_USB_DCP;
break;
case POWER_SUPPLY_TYPE_USB_CDP:
dev_dbg(&rport->phy->dev, "cdp cable is connected\n");
rockchip_usb2phy_power_on(rport->phy);
rport->state = OTG_STATE_B_PERIPHERAL;
notify_charger = true;
sch_work = true;
cable = EXTCON_CHG_USB_CDP;
break;
default:
break;
}
break;
default:
break;
}
} else {
notify_charger = true;
rphy->chg_state = USB_CHG_STATE_UNDEFINED;
rphy->chg_type = POWER_SUPPLY_TYPE_UNKNOWN;
}
if (rport->vbus_attached != vbus_attach) {
rport->vbus_attached = vbus_attach;
if (notify_charger && rphy->edev) {
extcon_set_state_sync(rphy->edev,
cable, vbus_attach);
if (cable == EXTCON_CHG_USB_SDP)
extcon_set_state_sync(rphy->edev,
EXTCON_USB,
vbus_attach);
}
}
break;
case OTG_STATE_B_PERIPHERAL:
if (!vbus_attach) {
dev_dbg(&rport->phy->dev, "usb disconnect\n");
rphy->chg_state = USB_CHG_STATE_UNDEFINED;
rphy->chg_type = POWER_SUPPLY_TYPE_UNKNOWN;
rport->state = OTG_STATE_B_IDLE;
delay = 0;
rockchip_usb2phy_power_off(rport->phy);
}
sch_work = true;
break;
case OTG_STATE_A_HOST:
if (extcon_get_state(rphy->edev, EXTCON_USB_HOST) == 0) {
dev_dbg(&rport->phy->dev, "usb otg host disconnect\n");
rport->state = OTG_STATE_B_IDLE;
rockchip_usb2phy_power_off(rport->phy);
}
break;
default:
break;
}
if (sch_work)
schedule_delayed_work(&rport->otg_sm_work, delay);
}
static const char *chg_to_string(enum power_supply_type chg_type)
{
switch (chg_type) {
case POWER_SUPPLY_TYPE_USB:
return "USB_SDP_CHARGER";
case POWER_SUPPLY_TYPE_USB_DCP:
return "USB_DCP_CHARGER";
case POWER_SUPPLY_TYPE_USB_CDP:
return "USB_CDP_CHARGER";
default:
return "INVALID_CHARGER";
}
}
static void rockchip_chg_enable_dcd(struct rockchip_usb2phy *rphy,
bool en)
{
struct regmap *base = get_reg_base(rphy);
property_enable(base, &rphy->phy_cfg->chg_det.rdm_pdwn_en, en);
property_enable(base, &rphy->phy_cfg->chg_det.idp_src_en, en);
}
static void rockchip_chg_enable_primary_det(struct rockchip_usb2phy *rphy,
bool en)
{
struct regmap *base = get_reg_base(rphy);
property_enable(base, &rphy->phy_cfg->chg_det.vdp_src_en, en);
property_enable(base, &rphy->phy_cfg->chg_det.idm_sink_en, en);
}
static void rockchip_chg_enable_secondary_det(struct rockchip_usb2phy *rphy,
bool en)
{
struct regmap *base = get_reg_base(rphy);
property_enable(base, &rphy->phy_cfg->chg_det.vdm_src_en, en);
property_enable(base, &rphy->phy_cfg->chg_det.idp_sink_en, en);
}
#define CHG_DCD_POLL_TIME (100 * HZ / 1000)
#define CHG_DCD_MAX_RETRIES 6
#define CHG_PRIMARY_DET_TIME (40 * HZ / 1000)
#define CHG_SECONDARY_DET_TIME (40 * HZ / 1000)
static void rockchip_chg_detect_work(struct work_struct *work)
{
struct rockchip_usb2phy_port *rport =
container_of(work, struct rockchip_usb2phy_port, chg_work.work);
struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent);
struct regmap *base = get_reg_base(rphy);
bool is_dcd, tmout, vout;
unsigned long delay;
dev_dbg(&rport->phy->dev, "chg detection work state = %d\n",
rphy->chg_state);
switch (rphy->chg_state) {
case USB_CHG_STATE_UNDEFINED:
if (!rport->suspended)
rockchip_usb2phy_power_off(rport->phy);
/* put the controller in non-driving mode */
property_enable(base, &rphy->phy_cfg->chg_det.opmode, false);
/* Start DCD processing stage 1 */
rockchip_chg_enable_dcd(rphy, true);
rphy->chg_state = USB_CHG_STATE_WAIT_FOR_DCD;
rphy->dcd_retries = 0;
delay = CHG_DCD_POLL_TIME;
break;
case USB_CHG_STATE_WAIT_FOR_DCD:
/* get data contact detection status */
is_dcd = property_enabled(rphy->grf,
&rphy->phy_cfg->chg_det.dp_det);
tmout = ++rphy->dcd_retries == CHG_DCD_MAX_RETRIES;
/* stage 2 */
if (is_dcd || tmout) {
/* stage 4 */
/* Turn off DCD circuitry */
rockchip_chg_enable_dcd(rphy, false);
/* Voltage Source on DP, Probe on DM */
rockchip_chg_enable_primary_det(rphy, true);
delay = CHG_PRIMARY_DET_TIME;
rphy->chg_state = USB_CHG_STATE_DCD_DONE;
} else {
/* stage 3 */
delay = CHG_DCD_POLL_TIME;
}
break;
case USB_CHG_STATE_DCD_DONE:
vout = property_enabled(rphy->grf,
&rphy->phy_cfg->chg_det.cp_det);
rockchip_chg_enable_primary_det(rphy, false);
if (vout) {
/* Voltage Source on DM, Probe on DP */
rockchip_chg_enable_secondary_det(rphy, true);
delay = CHG_SECONDARY_DET_TIME;
rphy->chg_state = USB_CHG_STATE_PRIMARY_DONE;
} else {
if (rphy->dcd_retries == CHG_DCD_MAX_RETRIES) {
/* floating charger found */
rphy->chg_type = POWER_SUPPLY_TYPE_USB_DCP;
rphy->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
} else {
rphy->chg_type = POWER_SUPPLY_TYPE_USB;
rphy->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
}
}
break;
case USB_CHG_STATE_PRIMARY_DONE:
vout = property_enabled(rphy->grf,
&rphy->phy_cfg->chg_det.dcp_det);
/* Turn off voltage source */
rockchip_chg_enable_secondary_det(rphy, false);
if (vout)
rphy->chg_type = POWER_SUPPLY_TYPE_USB_DCP;
else
rphy->chg_type = POWER_SUPPLY_TYPE_USB_CDP;
fallthrough;
case USB_CHG_STATE_SECONDARY_DONE:
rphy->chg_state = USB_CHG_STATE_DETECTED;
fallthrough;
case USB_CHG_STATE_DETECTED:
/* put the controller in normal mode */
property_enable(base, &rphy->phy_cfg->chg_det.opmode, true);
rockchip_usb2phy_otg_sm_work(&rport->otg_sm_work.work);
dev_dbg(&rport->phy->dev, "charger = %s\n",
chg_to_string(rphy->chg_type));
return;
default:
return;
}
schedule_delayed_work(&rport->chg_work, delay);
}
/*
* The function manage host-phy port state and suspend/resume phy port
* to save power.
*
* we rely on utmi_linestate and utmi_hostdisconnect to identify whether
* devices is disconnect or not. Besides, we do not need care it is FS/LS
* disconnected or HS disconnected, actually, we just only need get the
* device is disconnected at last through rearm the delayed work,
* to suspend the phy port in _PHY_STATE_DISCONNECT_ case.
*
* NOTE: It may invoke *phy_powr_off or *phy_power_on which will invoke
* some clk related APIs, so do not invoke it from interrupt context directly.
*/
static void rockchip_usb2phy_sm_work(struct work_struct *work)
{
struct rockchip_usb2phy_port *rport =
container_of(work, struct rockchip_usb2phy_port, sm_work.work);
struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent);
unsigned int sh, ul, uhd, state;
unsigned int ul_mask, uhd_mask;
int ret;
mutex_lock(&rport->mutex);
ret = regmap_read(rphy->grf, rport->port_cfg->utmi_ls.offset, &ul);
if (ret < 0)
goto next_schedule;
ul_mask = GENMASK(rport->port_cfg->utmi_ls.bitend,
rport->port_cfg->utmi_ls.bitstart);
if (rport->port_cfg->utmi_hstdet.offset) {
ret = regmap_read(rphy->grf, rport->port_cfg->utmi_hstdet.offset, &uhd);
if (ret < 0)
goto next_schedule;
uhd_mask = GENMASK(rport->port_cfg->utmi_hstdet.bitend,
rport->port_cfg->utmi_hstdet.bitstart);
sh = rport->port_cfg->utmi_hstdet.bitend -
rport->port_cfg->utmi_hstdet.bitstart + 1;
/* stitch on utmi_ls and utmi_hstdet as phy state */
state = ((uhd & uhd_mask) >> rport->port_cfg->utmi_hstdet.bitstart) |
(((ul & ul_mask) >> rport->port_cfg->utmi_ls.bitstart) << sh);
} else {
state = ((ul & ul_mask) >> rport->port_cfg->utmi_ls.bitstart) << 1 |
rport->host_disconnect;
}
switch (state) {
case PHY_STATE_HS_ONLINE:
dev_dbg(&rport->phy->dev, "HS online\n");
break;
case PHY_STATE_FS_LS_ONLINE:
/*
* For FS/LS device, the online state share with connect state
* from utmi_ls and utmi_hstdet register, so we distinguish
* them via suspended flag.
*
* Plus, there are two cases, one is D- Line pull-up, and D+
* line pull-down, the state is 4; another is D+ line pull-up,
* and D- line pull-down, the state is 2.
*/
if (!rport->suspended) {
/* D- line pull-up, D+ line pull-down */
dev_dbg(&rport->phy->dev, "FS/LS online\n");
break;
}
fallthrough;
case PHY_STATE_CONNECT:
if (rport->suspended) {
dev_dbg(&rport->phy->dev, "Connected\n");
rockchip_usb2phy_power_on(rport->phy);
rport->suspended = false;
} else {
/* D+ line pull-up, D- line pull-down */
dev_dbg(&rport->phy->dev, "FS/LS online\n");
}
break;
case PHY_STATE_DISCONNECT:
if (!rport->suspended) {
dev_dbg(&rport->phy->dev, "Disconnected\n");
rockchip_usb2phy_power_off(rport->phy);
rport->suspended = true;
}
/*
* activate the linestate detection to get the next device
* plug-in irq.
*/
property_enable(rphy->grf, &rport->port_cfg->ls_det_clr, true);
property_enable(rphy->grf, &rport->port_cfg->ls_det_en, true);
/*
* we don't need to rearm the delayed work when the phy port
* is suspended.
*/
mutex_unlock(&rport->mutex);
return;
default:
dev_dbg(&rport->phy->dev, "unknown phy state\n");
break;
}
next_schedule:
mutex_unlock(&rport->mutex);
schedule_delayed_work(&rport->sm_work, SCHEDULE_DELAY);
}
static irqreturn_t rockchip_usb2phy_linestate_irq(int irq, void *data)
{
struct rockchip_usb2phy_port *rport = data;
struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent);
if (!property_enabled(rphy->grf, &rport->port_cfg->ls_det_st))
return IRQ_NONE;
mutex_lock(&rport->mutex);
/* disable linestate detect irq and clear its status */
property_enable(rphy->grf, &rport->port_cfg->ls_det_en, false);
property_enable(rphy->grf, &rport->port_cfg->ls_det_clr, true);
mutex_unlock(&rport->mutex);
/*
* In this case for host phy port, a new device is plugged in,
* meanwhile, if the phy port is suspended, we need rearm the work to
* resume it and mange its states; otherwise, we do nothing about that.
*/
if (rport->suspended && rport->port_id == USB2PHY_PORT_HOST)
rockchip_usb2phy_sm_work(&rport->sm_work.work);
return IRQ_HANDLED;
}
static irqreturn_t rockchip_usb2phy_bvalid_irq(int irq, void *data)
{
struct rockchip_usb2phy_port *rport = data;
struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent);
if (!property_enabled(rphy->grf, &rport->port_cfg->bvalid_det_st))
return IRQ_NONE;
/* clear bvalid detect irq pending status */
property_enable(rphy->grf, &rport->port_cfg->bvalid_det_clr, true);
rockchip_usb2phy_otg_sm_work(&rport->otg_sm_work.work);
return IRQ_HANDLED;
}
static irqreturn_t rockchip_usb2phy_id_irq(int irq, void *data)
{
struct rockchip_usb2phy_port *rport = data;
struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent);
bool id;
if (!property_enabled(rphy->grf, &rport->port_cfg->id_det_st))
return IRQ_NONE;
/* clear id detect irq pending status */
property_enable(rphy->grf, &rport->port_cfg->id_det_clr, true);
id = property_enabled(rphy->grf, &rport->port_cfg->utmi_id);
extcon_set_state_sync(rphy->edev, EXTCON_USB_HOST, !id);
return IRQ_HANDLED;
}
static irqreturn_t rockchip_usb2phy_otg_mux_irq(int irq, void *data)
{
irqreturn_t ret = IRQ_NONE;
ret |= rockchip_usb2phy_bvalid_irq(irq, data);
ret |= rockchip_usb2phy_id_irq(irq, data);
return ret;
}
static irqreturn_t rockchip_usb2phy_host_disc_irq(int irq, void *data)
{
struct rockchip_usb2phy_port *rport = data;
struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent);
if (!property_enabled(rphy->grf, &rport->port_cfg->disfall_st) &&
!property_enabled(rphy->grf, &rport->port_cfg->disrise_st))
return IRQ_NONE;
mutex_lock(&rport->mutex);
/* clear disconnect fall or rise detect irq pending status */
if (property_enabled(rphy->grf, &rport->port_cfg->disfall_st)) {
property_enable(rphy->grf, &rport->port_cfg->disfall_clr, true);
rport->host_disconnect = false;
} else if (property_enabled(rphy->grf, &rport->port_cfg->disrise_st)) {
property_enable(rphy->grf, &rport->port_cfg->disrise_clr, true);
rport->host_disconnect = true;
}
mutex_unlock(&rport->mutex);
return IRQ_HANDLED;
}
static irqreturn_t rockchip_usb2phy_irq(int irq, void *data)
{
struct rockchip_usb2phy *rphy = data;
struct rockchip_usb2phy_port *rport;
irqreturn_t ret = IRQ_NONE;
unsigned int index;
for (index = 0; index < rphy->phy_cfg->num_ports; index++) {
rport = &rphy->ports[index];
if (!rport->phy)
continue;
if (rport->port_id == USB2PHY_PORT_HOST &&
rport->port_cfg->disfall_en.offset)
ret |= rockchip_usb2phy_host_disc_irq(irq, rport);
switch (rport->port_id) {
case USB2PHY_PORT_OTG:
if (rport->mode != USB_DR_MODE_HOST &&
rport->mode != USB_DR_MODE_UNKNOWN)
ret |= rockchip_usb2phy_otg_mux_irq(irq, rport);
break;
case USB2PHY_PORT_HOST:
ret |= rockchip_usb2phy_linestate_irq(irq, rport);
break;
}
}
return ret;
}
static int rockchip_usb2phy_port_irq_init(struct rockchip_usb2phy *rphy,
struct rockchip_usb2phy_port *rport,
struct device_node *child_np)
{
int ret;
/*
* If the usb2 phy used combined irq for otg and host port,
* don't need to init otg and host port irq separately.
*/
if (rphy->irq > 0)
return 0;
switch (rport->port_id) {
case USB2PHY_PORT_HOST:
rport->ls_irq = of_irq_get_byname(child_np, "linestate");
if (rport->ls_irq < 0) {
dev_err(rphy->dev, "no linestate irq provided\n");
return rport->ls_irq;
}
ret = devm_request_threaded_irq(rphy->dev, rport->ls_irq, NULL,
rockchip_usb2phy_linestate_irq,
IRQF_ONESHOT,
"rockchip_usb2phy", rport);
if (ret) {
dev_err(rphy->dev, "failed to request linestate irq handle\n");
return ret;
}
break;
case USB2PHY_PORT_OTG:
/*
* Some SoCs use one interrupt with otg-id/otg-bvalid/linestate
* interrupts muxed together, so probe the otg-mux interrupt first,
* if not found, then look for the regular interrupts one by one.
*/
rport->otg_mux_irq = of_irq_get_byname(child_np, "otg-mux");
if (rport->otg_mux_irq > 0) {
ret = devm_request_threaded_irq(rphy->dev, rport->otg_mux_irq,
NULL,
rockchip_usb2phy_otg_mux_irq,
IRQF_ONESHOT,
"rockchip_usb2phy_otg",
rport);
if (ret) {
dev_err(rphy->dev,
"failed to request otg-mux irq handle\n");
return ret;
}
} else {
rport->bvalid_irq = of_irq_get_byname(child_np, "otg-bvalid");
if (rport->bvalid_irq < 0) {
dev_err(rphy->dev, "no vbus valid irq provided\n");
ret = rport->bvalid_irq;
return ret;
}
ret = devm_request_threaded_irq(rphy->dev, rport->bvalid_irq,
NULL,
rockchip_usb2phy_bvalid_irq,
IRQF_ONESHOT,
"rockchip_usb2phy_bvalid",
rport);
if (ret) {
dev_err(rphy->dev,
"failed to request otg-bvalid irq handle\n");
return ret;
}
rport->id_irq = of_irq_get_byname(child_np, "otg-id");
if (rport->id_irq < 0) {
dev_err(rphy->dev, "no otg-id irq provided\n");
ret = rport->id_irq;
return ret;
}
ret = devm_request_threaded_irq(rphy->dev, rport->id_irq,
NULL,
rockchip_usb2phy_id_irq,
IRQF_ONESHOT,
"rockchip_usb2phy_id",
rport);
if (ret) {
dev_err(rphy->dev,
"failed to request otg-id irq handle\n");
return ret;
}
}
break;
default:
return -EINVAL;
}
return 0;
}
static int rockchip_usb2phy_host_port_init(struct rockchip_usb2phy *rphy,
struct rockchip_usb2phy_port *rport,
struct device_node *child_np)
{
int ret;
rport->port_id = USB2PHY_PORT_HOST;
rport->port_cfg = &rphy->phy_cfg->port_cfgs[USB2PHY_PORT_HOST];
rport->suspended = true;
mutex_init(&rport->mutex);
INIT_DELAYED_WORK(&rport->sm_work, rockchip_usb2phy_sm_work);
ret = rockchip_usb2phy_port_irq_init(rphy, rport, child_np);
if (ret) {
dev_err(rphy->dev, "failed to setup host irq\n");
return ret;
}
return 0;
}
static int rockchip_otg_event(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct rockchip_usb2phy_port *rport =
container_of(nb, struct rockchip_usb2phy_port, event_nb);
schedule_delayed_work(&rport->otg_sm_work, OTG_SCHEDULE_DELAY);
return NOTIFY_DONE;
}
static int rockchip_usb2phy_otg_port_init(struct rockchip_usb2phy *rphy,
struct rockchip_usb2phy_port *rport,
struct device_node *child_np)
{
int ret, id;
rport->port_id = USB2PHY_PORT_OTG;
rport->port_cfg = &rphy->phy_cfg->port_cfgs[USB2PHY_PORT_OTG];
rport->state = OTG_STATE_UNDEFINED;
/*
* set suspended flag to true, but actually don't
* put phy in suspend mode, it aims to enable usb
* phy and clock in power_on() called by usb controller
* driver during probe.
*/
rport->suspended = true;
rport->vbus_attached = false;
mutex_init(&rport->mutex);
rport->mode = of_usb_get_dr_mode_by_phy(child_np, -1);
if (rport->mode == USB_DR_MODE_HOST ||
rport->mode == USB_DR_MODE_UNKNOWN) {
ret = 0;
goto out;
}
INIT_DELAYED_WORK(&rport->chg_work, rockchip_chg_detect_work);
INIT_DELAYED_WORK(&rport->otg_sm_work, rockchip_usb2phy_otg_sm_work);
ret = rockchip_usb2phy_port_irq_init(rphy, rport, child_np);
if (ret) {
dev_err(rphy->dev, "failed to init irq for host port\n");
goto out;
}
if (!IS_ERR(rphy->edev)) {
rport->event_nb.notifier_call = rockchip_otg_event;
ret = devm_extcon_register_notifier(rphy->dev, rphy->edev,
EXTCON_USB_HOST, &rport->event_nb);
if (ret) {
dev_err(rphy->dev, "register USB HOST notifier failed\n");
goto out;
}
if (!of_property_read_bool(rphy->dev->of_node, "extcon")) {
/* do initial sync of usb state */
id = property_enabled(rphy->grf, &rport->port_cfg->utmi_id);
extcon_set_state_sync(rphy->edev, EXTCON_USB_HOST, !id);
}
}
out:
return ret;
}
static int rockchip_usb2phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct device_node *child_np;
struct phy_provider *provider;
struct rockchip_usb2phy *rphy;
const struct rockchip_usb2phy_cfg *phy_cfgs;
unsigned int reg;
int index, ret;
rphy = devm_kzalloc(dev, sizeof(*rphy), GFP_KERNEL);
if (!rphy)
return -ENOMEM;
if (!dev->parent || !dev->parent->of_node) {
rphy->grf = syscon_regmap_lookup_by_phandle(np, "rockchip,usbgrf");
if (IS_ERR(rphy->grf)) {
dev_err(dev, "failed to locate usbgrf\n");
return PTR_ERR(rphy->grf);
}
}
else {
rphy->grf = syscon_node_to_regmap(dev->parent->of_node);
if (IS_ERR(rphy->grf))
return PTR_ERR(rphy->grf);
}
if (of_device_is_compatible(np, "rockchip,rv1108-usb2phy")) {
rphy->usbgrf =
syscon_regmap_lookup_by_phandle(dev->of_node,
"rockchip,usbgrf");
if (IS_ERR(rphy->usbgrf))
return PTR_ERR(rphy->usbgrf);
} else {
rphy->usbgrf = NULL;
}
if (of_property_read_u32_index(np, "reg", 0, ®)) {
dev_err(dev, "the reg property is not assigned in %pOFn node\n",
np);
return -EINVAL;
}
/* support address_cells=2 */
if (of_property_count_u32_elems(np, "reg") > 2 && reg == 0) {
if (of_property_read_u32_index(np, "reg", 1, ®)) {
dev_err(dev, "the reg property is not assigned in %pOFn node\n",
np);
return -EINVAL;
}
}
rphy->dev = dev;
phy_cfgs = device_get_match_data(dev);
rphy->chg_state = USB_CHG_STATE_UNDEFINED;
rphy->chg_type = POWER_SUPPLY_TYPE_UNKNOWN;
rphy->irq = platform_get_irq_optional(pdev, 0);
platform_set_drvdata(pdev, rphy);
if (!phy_cfgs)
return dev_err_probe(dev, -EINVAL, "phy configs are not assigned!\n");
ret = rockchip_usb2phy_extcon_register(rphy);
if (ret)
return ret;
/* find out a proper config which can be matched with dt. */
index = 0;
do {
if (phy_cfgs[index].reg == reg) {
rphy->phy_cfg = &phy_cfgs[index];
break;
}
++index;
} while (phy_cfgs[index].reg);
if (!rphy->phy_cfg) {
dev_err(dev, "could not find phy config for reg=0x%08x\n", reg);
return -EINVAL;
}
rphy->phy_reset = devm_reset_control_get_optional(dev, "phy");
if (IS_ERR(rphy->phy_reset))
return PTR_ERR(rphy->phy_reset);
rphy->clk = devm_clk_get_optional_enabled(dev, "phyclk");
if (IS_ERR(rphy->clk)) {
return dev_err_probe(&pdev->dev, PTR_ERR(rphy->clk),
"failed to get phyclk\n");
}
ret = rockchip_usb2phy_clk480m_register(rphy);
if (ret) {
dev_err(dev, "failed to register 480m output clock\n");
return ret;
}
if (rphy->phy_cfg->phy_tuning) {
ret = rphy->phy_cfg->phy_tuning(rphy);
if (ret)
return ret;
}
index = 0;
for_each_available_child_of_node(np, child_np) {
struct rockchip_usb2phy_port *rport = &rphy->ports[index];
struct phy *phy;
/* This driver aims to support both otg-port and host-port */
if (!of_node_name_eq(child_np, "host-port") &&
!of_node_name_eq(child_np, "otg-port"))
goto next_child;
phy = devm_phy_create(dev, child_np, &rockchip_usb2phy_ops);
if (IS_ERR(phy)) {
dev_err_probe(dev, PTR_ERR(phy), "failed to create phy\n");
ret = PTR_ERR(phy);
goto put_child;
}
rport->phy = phy;
phy_set_drvdata(rport->phy, rport);
/* initialize otg/host port separately */
if (of_node_name_eq(child_np, "host-port")) {
ret = rockchip_usb2phy_host_port_init(rphy, rport,
child_np);
if (ret)
goto put_child;
} else {
ret = rockchip_usb2phy_otg_port_init(rphy, rport,
child_np);
if (ret)
goto put_child;
}
next_child:
/* to prevent out of boundary */
if (++index >= rphy->phy_cfg->num_ports) {
of_node_put(child_np);
break;
}
}
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (rphy->irq > 0) {
ret = devm_request_threaded_irq(rphy->dev, rphy->irq, NULL,
rockchip_usb2phy_irq,
IRQF_ONESHOT,
"rockchip_usb2phy",
rphy);
if (ret) {
dev_err(rphy->dev,
"failed to request usb2phy irq handle\n");
goto put_child;
}
}
return PTR_ERR_OR_ZERO(provider);
put_child:
of_node_put(child_np);
return ret;
}
static int rk3588_usb2phy_tuning(struct rockchip_usb2phy *rphy)
{
int ret;
bool usb3otg = false;
/*
* utmi_termselect = 1'b1 (en FS terminations)
* utmi_xcvrselect = 2'b01 (FS transceiver)
*/
int suspend_cfg = 0x14;
if (rphy->phy_cfg->reg == 0x0000 || rphy->phy_cfg->reg == 0x4000) {
/* USB2 config for USB3_0 and USB3_1 */
suspend_cfg |= 0x01; /* utmi_opmode = 2'b01 (no-driving) */
usb3otg = true;
} else if (rphy->phy_cfg->reg == 0x8000 || rphy->phy_cfg->reg == 0xc000) {
/* USB2 config for USB2_0 and USB2_1 */
suspend_cfg |= 0x00; /* utmi_opmode = 2'b00 (normal) */
} else {
return -EINVAL;
}
/* Deassert SIDDQ to power on analog block */
ret = regmap_write(rphy->grf, 0x0008, GENMASK(29, 29) | 0x0000);
if (ret)
return ret;
/* Do reset after exit IDDQ mode */
ret = rockchip_usb2phy_reset(rphy);
if (ret)
return ret;
/* suspend configuration */
ret |= regmap_write(rphy->grf, 0x000c, GENMASK(20, 16) | suspend_cfg);
/* HS DC Voltage Level Adjustment 4'b1001 : +5.89% */
ret |= regmap_write(rphy->grf, 0x0004, GENMASK(27, 24) | 0x0900);
/* HS Transmitter Pre-Emphasis Current Control 2'b10 : 2x */
ret |= regmap_write(rphy->grf, 0x0008, GENMASK(20, 19) | 0x0010);
if (!usb3otg)
return ret;
/* Pullup iddig pin for USB3_0 OTG mode */
ret |= regmap_write(rphy->grf, 0x0010, GENMASK(17, 16) | 0x0003);
return ret;
}
static const struct rockchip_usb2phy_cfg rk3228_phy_cfgs[] = {
{
.reg = 0x760,
.num_ports = 2,
.clkout_ctl = { 0x0768, 4, 4, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0x0760, 15, 0, 0, 0x1d1 },
.bvalid_det_en = { 0x0680, 3, 3, 0, 1 },
.bvalid_det_st = { 0x0690, 3, 3, 0, 1 },
.bvalid_det_clr = { 0x06a0, 3, 3, 0, 1 },
.id_det_en = { 0x0680, 6, 5, 0, 3 },
.id_det_st = { 0x0690, 6, 5, 0, 3 },
.id_det_clr = { 0x06a0, 6, 5, 0, 3 },
.ls_det_en = { 0x0680, 2, 2, 0, 1 },
.ls_det_st = { 0x0690, 2, 2, 0, 1 },
.ls_det_clr = { 0x06a0, 2, 2, 0, 1 },
.utmi_bvalid = { 0x0480, 4, 4, 0, 1 },
.utmi_id = { 0x0480, 1, 1, 0, 1 },
.utmi_ls = { 0x0480, 3, 2, 0, 1 },
},
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0x0764, 15, 0, 0, 0x1d1 },
.ls_det_en = { 0x0680, 4, 4, 0, 1 },
.ls_det_st = { 0x0690, 4, 4, 0, 1 },
.ls_det_clr = { 0x06a0, 4, 4, 0, 1 }
}
},
.chg_det = {
.opmode = { 0x0760, 3, 0, 5, 1 },
.cp_det = { 0x0884, 4, 4, 0, 1 },
.dcp_det = { 0x0884, 3, 3, 0, 1 },
.dp_det = { 0x0884, 5, 5, 0, 1 },
.idm_sink_en = { 0x0768, 8, 8, 0, 1 },
.idp_sink_en = { 0x0768, 7, 7, 0, 1 },
.idp_src_en = { 0x0768, 9, 9, 0, 1 },
.rdm_pdwn_en = { 0x0768, 10, 10, 0, 1 },
.vdm_src_en = { 0x0768, 12, 12, 0, 1 },
.vdp_src_en = { 0x0768, 11, 11, 0, 1 },
},
},
{
.reg = 0x800,
.num_ports = 2,
.clkout_ctl = { 0x0808, 4, 4, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0x800, 15, 0, 0, 0x1d1 },
.ls_det_en = { 0x0684, 0, 0, 0, 1 },
.ls_det_st = { 0x0694, 0, 0, 0, 1 },
.ls_det_clr = { 0x06a4, 0, 0, 0, 1 }
},
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0x804, 15, 0, 0, 0x1d1 },
.ls_det_en = { 0x0684, 1, 1, 0, 1 },
.ls_det_st = { 0x0694, 1, 1, 0, 1 },
.ls_det_clr = { 0x06a4, 1, 1, 0, 1 }
}
},
},
{ /* sentinel */ }
};
static const struct rockchip_usb2phy_cfg rk3308_phy_cfgs[] = {
{
.reg = 0x100,
.num_ports = 2,
.clkout_ctl = { 0x108, 4, 4, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0x0100, 8, 0, 0, 0x1d1 },
.bvalid_det_en = { 0x3020, 3, 2, 0, 3 },
.bvalid_det_st = { 0x3024, 3, 2, 0, 3 },
.bvalid_det_clr = { 0x3028, 3, 2, 0, 3 },
.id_det_en = { 0x3020, 5, 4, 0, 3 },
.id_det_st = { 0x3024, 5, 4, 0, 3 },
.id_det_clr = { 0x3028, 5, 4, 0, 3 },
.ls_det_en = { 0x3020, 0, 0, 0, 1 },
.ls_det_st = { 0x3024, 0, 0, 0, 1 },
.ls_det_clr = { 0x3028, 0, 0, 0, 1 },
.utmi_avalid = { 0x0120, 10, 10, 0, 1 },
.utmi_bvalid = { 0x0120, 9, 9, 0, 1 },
.utmi_id = { 0x0120, 6, 6, 0, 1 },
.utmi_ls = { 0x0120, 5, 4, 0, 1 },
},
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0x0104, 8, 0, 0, 0x1d1 },
.ls_det_en = { 0x3020, 1, 1, 0, 1 },
.ls_det_st = { 0x3024, 1, 1, 0, 1 },
.ls_det_clr = { 0x3028, 1, 1, 0, 1 },
.utmi_ls = { 0x0120, 17, 16, 0, 1 },
.utmi_hstdet = { 0x0120, 19, 19, 0, 1 }
}
},
.chg_det = {
.opmode = { 0x0100, 3, 0, 5, 1 },
.cp_det = { 0x0120, 24, 24, 0, 1 },
.dcp_det = { 0x0120, 23, 23, 0, 1 },
.dp_det = { 0x0120, 25, 25, 0, 1 },
.idm_sink_en = { 0x0108, 8, 8, 0, 1 },
.idp_sink_en = { 0x0108, 7, 7, 0, 1 },
.idp_src_en = { 0x0108, 9, 9, 0, 1 },
.rdm_pdwn_en = { 0x0108, 10, 10, 0, 1 },
.vdm_src_en = { 0x0108, 12, 12, 0, 1 },
.vdp_src_en = { 0x0108, 11, 11, 0, 1 },
},
},
{ /* sentinel */ }
};
static const struct rockchip_usb2phy_cfg rk3328_phy_cfgs[] = {
{
.reg = 0x100,
.num_ports = 2,
.clkout_ctl = { 0x108, 4, 4, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0x0100, 15, 0, 0, 0x1d1 },
.bvalid_det_en = { 0x0110, 3, 2, 0, 3 },
.bvalid_det_st = { 0x0114, 3, 2, 0, 3 },
.bvalid_det_clr = { 0x0118, 3, 2, 0, 3 },
.id_det_en = { 0x0110, 5, 4, 0, 3 },
.id_det_st = { 0x0114, 5, 4, 0, 3 },
.id_det_clr = { 0x0118, 5, 4, 0, 3 },
.ls_det_en = { 0x0110, 0, 0, 0, 1 },
.ls_det_st = { 0x0114, 0, 0, 0, 1 },
.ls_det_clr = { 0x0118, 0, 0, 0, 1 },
.utmi_avalid = { 0x0120, 10, 10, 0, 1 },
.utmi_bvalid = { 0x0120, 9, 9, 0, 1 },
.utmi_id = { 0x0120, 6, 6, 0, 1 },
.utmi_ls = { 0x0120, 5, 4, 0, 1 },
},
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0x104, 15, 0, 0, 0x1d1 },
.ls_det_en = { 0x110, 1, 1, 0, 1 },
.ls_det_st = { 0x114, 1, 1, 0, 1 },
.ls_det_clr = { 0x118, 1, 1, 0, 1 },
.utmi_ls = { 0x120, 17, 16, 0, 1 },
.utmi_hstdet = { 0x120, 19, 19, 0, 1 }
}
},
.chg_det = {
.opmode = { 0x0100, 3, 0, 5, 1 },
.cp_det = { 0x0120, 24, 24, 0, 1 },
.dcp_det = { 0x0120, 23, 23, 0, 1 },
.dp_det = { 0x0120, 25, 25, 0, 1 },
.idm_sink_en = { 0x0108, 8, 8, 0, 1 },
.idp_sink_en = { 0x0108, 7, 7, 0, 1 },
.idp_src_en = { 0x0108, 9, 9, 0, 1 },
.rdm_pdwn_en = { 0x0108, 10, 10, 0, 1 },
.vdm_src_en = { 0x0108, 12, 12, 0, 1 },
.vdp_src_en = { 0x0108, 11, 11, 0, 1 },
},
},
{ /* sentinel */ }
};
static const struct rockchip_usb2phy_cfg rk3366_phy_cfgs[] = {
{
.reg = 0x700,
.num_ports = 2,
.clkout_ctl = { 0x0724, 15, 15, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0x0728, 15, 0, 0, 0x1d1 },
.ls_det_en = { 0x0680, 4, 4, 0, 1 },
.ls_det_st = { 0x0690, 4, 4, 0, 1 },
.ls_det_clr = { 0x06a0, 4, 4, 0, 1 },
.utmi_ls = { 0x049c, 14, 13, 0, 1 },
.utmi_hstdet = { 0x049c, 12, 12, 0, 1 }
}
},
},
{ /* sentinel */ }
};
static const struct rockchip_usb2phy_cfg rk3399_phy_cfgs[] = {
{
.reg = 0xe450,
.num_ports = 2,
.clkout_ctl = { 0xe450, 4, 4, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0xe454, 1, 0, 2, 1 },
.bvalid_det_en = { 0xe3c0, 3, 3, 0, 1 },
.bvalid_det_st = { 0xe3e0, 3, 3, 0, 1 },
.bvalid_det_clr = { 0xe3d0, 3, 3, 0, 1 },
.id_det_en = { 0xe3c0, 5, 4, 0, 3 },
.id_det_st = { 0xe3e0, 5, 4, 0, 3 },
.id_det_clr = { 0xe3d0, 5, 4, 0, 3 },
.utmi_avalid = { 0xe2ac, 7, 7, 0, 1 },
.utmi_bvalid = { 0xe2ac, 12, 12, 0, 1 },
.utmi_id = { 0xe2ac, 8, 8, 0, 1 },
},
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0xe458, 1, 0, 0x2, 0x1 },
.ls_det_en = { 0xe3c0, 6, 6, 0, 1 },
.ls_det_st = { 0xe3e0, 6, 6, 0, 1 },
.ls_det_clr = { 0xe3d0, 6, 6, 0, 1 },
.utmi_ls = { 0xe2ac, 22, 21, 0, 1 },
.utmi_hstdet = { 0xe2ac, 23, 23, 0, 1 }
}
},
.chg_det = {
.opmode = { 0xe454, 3, 0, 5, 1 },
.cp_det = { 0xe2ac, 2, 2, 0, 1 },
.dcp_det = { 0xe2ac, 1, 1, 0, 1 },
.dp_det = { 0xe2ac, 0, 0, 0, 1 },
.idm_sink_en = { 0xe450, 8, 8, 0, 1 },
.idp_sink_en = { 0xe450, 7, 7, 0, 1 },
.idp_src_en = { 0xe450, 9, 9, 0, 1 },
.rdm_pdwn_en = { 0xe450, 10, 10, 0, 1 },
.vdm_src_en = { 0xe450, 12, 12, 0, 1 },
.vdp_src_en = { 0xe450, 11, 11, 0, 1 },
},
},
{
.reg = 0xe460,
.num_ports = 2,
.clkout_ctl = { 0xe460, 4, 4, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0xe464, 1, 0, 2, 1 },
.bvalid_det_en = { 0xe3c0, 8, 8, 0, 1 },
.bvalid_det_st = { 0xe3e0, 8, 8, 0, 1 },
.bvalid_det_clr = { 0xe3d0, 8, 8, 0, 1 },
.id_det_en = { 0xe3c0, 10, 9, 0, 3 },
.id_det_st = { 0xe3e0, 10, 9, 0, 3 },
.id_det_clr = { 0xe3d0, 10, 9, 0, 3 },
.utmi_avalid = { 0xe2ac, 10, 10, 0, 1 },
.utmi_bvalid = { 0xe2ac, 16, 16, 0, 1 },
.utmi_id = { 0xe2ac, 11, 11, 0, 1 },
},
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0xe468, 1, 0, 0x2, 0x1 },
.ls_det_en = { 0xe3c0, 11, 11, 0, 1 },
.ls_det_st = { 0xe3e0, 11, 11, 0, 1 },
.ls_det_clr = { 0xe3d0, 11, 11, 0, 1 },
.utmi_ls = { 0xe2ac, 26, 25, 0, 1 },
.utmi_hstdet = { 0xe2ac, 27, 27, 0, 1 }
}
},
},
{ /* sentinel */ }
};
static const struct rockchip_usb2phy_cfg rk3568_phy_cfgs[] = {
{
.reg = 0xfe8a0000,
.num_ports = 2,
.clkout_ctl = { 0x0008, 4, 4, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0x0000, 8, 0, 0, 0x1d1 },
.bvalid_det_en = { 0x0080, 3, 2, 0, 3 },
.bvalid_det_st = { 0x0084, 3, 2, 0, 3 },
.bvalid_det_clr = { 0x0088, 3, 2, 0, 3 },
.id_det_en = { 0x0080, 5, 4, 0, 3 },
.id_det_st = { 0x0084, 5, 4, 0, 3 },
.id_det_clr = { 0x0088, 5, 4, 0, 3 },
.utmi_avalid = { 0x00c0, 10, 10, 0, 1 },
.utmi_bvalid = { 0x00c0, 9, 9, 0, 1 },
.utmi_id = { 0x00c0, 6, 6, 0, 1 },
},
[USB2PHY_PORT_HOST] = {
/* Select suspend control from controller */
.phy_sus = { 0x0004, 8, 0, 0x1d2, 0x1d2 },
.ls_det_en = { 0x0080, 1, 1, 0, 1 },
.ls_det_st = { 0x0084, 1, 1, 0, 1 },
.ls_det_clr = { 0x0088, 1, 1, 0, 1 },
.utmi_ls = { 0x00c0, 17, 16, 0, 1 },
.utmi_hstdet = { 0x00c0, 19, 19, 0, 1 }
}
},
.chg_det = {
.opmode = { 0x0000, 3, 0, 5, 1 },
.cp_det = { 0x00c0, 24, 24, 0, 1 },
.dcp_det = { 0x00c0, 23, 23, 0, 1 },
.dp_det = { 0x00c0, 25, 25, 0, 1 },
.idm_sink_en = { 0x0008, 8, 8, 0, 1 },
.idp_sink_en = { 0x0008, 7, 7, 0, 1 },
.idp_src_en = { 0x0008, 9, 9, 0, 1 },
.rdm_pdwn_en = { 0x0008, 10, 10, 0, 1 },
.vdm_src_en = { 0x0008, 12, 12, 0, 1 },
.vdp_src_en = { 0x0008, 11, 11, 0, 1 },
},
},
{
.reg = 0xfe8b0000,
.num_ports = 2,
.clkout_ctl = { 0x0008, 4, 4, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0x0000, 8, 0, 0x1d2, 0x1d1 },
.ls_det_en = { 0x0080, 0, 0, 0, 1 },
.ls_det_st = { 0x0084, 0, 0, 0, 1 },
.ls_det_clr = { 0x0088, 0, 0, 0, 1 },
.utmi_ls = { 0x00c0, 5, 4, 0, 1 },
.utmi_hstdet = { 0x00c0, 7, 7, 0, 1 }
},
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0x0004, 8, 0, 0x1d2, 0x1d1 },
.ls_det_en = { 0x0080, 1, 1, 0, 1 },
.ls_det_st = { 0x0084, 1, 1, 0, 1 },
.ls_det_clr = { 0x0088, 1, 1, 0, 1 },
.utmi_ls = { 0x00c0, 17, 16, 0, 1 },
.utmi_hstdet = { 0x00c0, 19, 19, 0, 1 }
}
},
},
{ /* sentinel */ }
};
static const struct rockchip_usb2phy_cfg rk3588_phy_cfgs[] = {
{
.reg = 0x0000,
.num_ports = 1,
.phy_tuning = rk3588_usb2phy_tuning,
.clkout_ctl = { 0x0000, 0, 0, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0x000c, 11, 11, 0, 1 },
.bvalid_det_en = { 0x0080, 1, 1, 0, 1 },
.bvalid_det_st = { 0x0084, 1, 1, 0, 1 },
.bvalid_det_clr = { 0x0088, 1, 1, 0, 1 },
.ls_det_en = { 0x0080, 0, 0, 0, 1 },
.ls_det_st = { 0x0084, 0, 0, 0, 1 },
.ls_det_clr = { 0x0088, 0, 0, 0, 1 },
.disfall_en = { 0x0080, 6, 6, 0, 1 },
.disfall_st = { 0x0084, 6, 6, 0, 1 },
.disfall_clr = { 0x0088, 6, 6, 0, 1 },
.disrise_en = { 0x0080, 5, 5, 0, 1 },
.disrise_st = { 0x0084, 5, 5, 0, 1 },
.disrise_clr = { 0x0088, 5, 5, 0, 1 },
.utmi_avalid = { 0x00c0, 7, 7, 0, 1 },
.utmi_bvalid = { 0x00c0, 6, 6, 0, 1 },
.utmi_ls = { 0x00c0, 10, 9, 0, 1 },
}
},
.chg_det = {
.cp_det = { 0x00c0, 0, 0, 0, 1 },
.dcp_det = { 0x00c0, 0, 0, 0, 1 },
.dp_det = { 0x00c0, 1, 1, 1, 0 },
.idm_sink_en = { 0x0008, 5, 5, 1, 0 },
.idp_sink_en = { 0x0008, 5, 5, 0, 1 },
.idp_src_en = { 0x0008, 14, 14, 0, 1 },
.rdm_pdwn_en = { 0x0008, 14, 14, 0, 1 },
.vdm_src_en = { 0x0008, 7, 6, 0, 3 },
.vdp_src_en = { 0x0008, 7, 6, 0, 3 },
},
},
{
.reg = 0x4000,
.num_ports = 1,
.phy_tuning = rk3588_usb2phy_tuning,
.clkout_ctl = { 0x0000, 0, 0, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0x000c, 11, 11, 0, 1 },
.bvalid_det_en = { 0x0080, 1, 1, 0, 1 },
.bvalid_det_st = { 0x0084, 1, 1, 0, 1 },
.bvalid_det_clr = { 0x0088, 1, 1, 0, 1 },
.ls_det_en = { 0x0080, 0, 0, 0, 1 },
.ls_det_st = { 0x0084, 0, 0, 0, 1 },
.ls_det_clr = { 0x0088, 0, 0, 0, 1 },
.disfall_en = { 0x0080, 6, 6, 0, 1 },
.disfall_st = { 0x0084, 6, 6, 0, 1 },
.disfall_clr = { 0x0088, 6, 6, 0, 1 },
.disrise_en = { 0x0080, 5, 5, 0, 1 },
.disrise_st = { 0x0084, 5, 5, 0, 1 },
.disrise_clr = { 0x0088, 5, 5, 0, 1 },
.utmi_avalid = { 0x00c0, 7, 7, 0, 1 },
.utmi_bvalid = { 0x00c0, 6, 6, 0, 1 },
.utmi_ls = { 0x00c0, 10, 9, 0, 1 },
}
},
.chg_det = {
.cp_det = { 0x00c0, 0, 0, 0, 1 },
.dcp_det = { 0x00c0, 0, 0, 0, 1 },
.dp_det = { 0x00c0, 1, 1, 1, 0 },
.idm_sink_en = { 0x0008, 5, 5, 1, 0 },
.idp_sink_en = { 0x0008, 5, 5, 0, 1 },
.idp_src_en = { 0x0008, 14, 14, 0, 1 },
.rdm_pdwn_en = { 0x0008, 14, 14, 0, 1 },
.vdm_src_en = { 0x0008, 7, 6, 0, 3 },
.vdp_src_en = { 0x0008, 7, 6, 0, 3 },
},
},
{
.reg = 0x8000,
.num_ports = 1,
.phy_tuning = rk3588_usb2phy_tuning,
.clkout_ctl = { 0x0000, 0, 0, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0x0008, 2, 2, 0, 1 },
.ls_det_en = { 0x0080, 0, 0, 0, 1 },
.ls_det_st = { 0x0084, 0, 0, 0, 1 },
.ls_det_clr = { 0x0088, 0, 0, 0, 1 },
.disfall_en = { 0x0080, 6, 6, 0, 1 },
.disfall_st = { 0x0084, 6, 6, 0, 1 },
.disfall_clr = { 0x0088, 6, 6, 0, 1 },
.disrise_en = { 0x0080, 5, 5, 0, 1 },
.disrise_st = { 0x0084, 5, 5, 0, 1 },
.disrise_clr = { 0x0088, 5, 5, 0, 1 },
.utmi_ls = { 0x00c0, 10, 9, 0, 1 },
}
},
},
{
.reg = 0xc000,
.num_ports = 1,
.phy_tuning = rk3588_usb2phy_tuning,
.clkout_ctl = { 0x0000, 0, 0, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0x0008, 2, 2, 0, 1 },
.ls_det_en = { 0x0080, 0, 0, 0, 1 },
.ls_det_st = { 0x0084, 0, 0, 0, 1 },
.ls_det_clr = { 0x0088, 0, 0, 0, 1 },
.disfall_en = { 0x0080, 6, 6, 0, 1 },
.disfall_st = { 0x0084, 6, 6, 0, 1 },
.disfall_clr = { 0x0088, 6, 6, 0, 1 },
.disrise_en = { 0x0080, 5, 5, 0, 1 },
.disrise_st = { 0x0084, 5, 5, 0, 1 },
.disrise_clr = { 0x0088, 5, 5, 0, 1 },
.utmi_ls = { 0x00c0, 10, 9, 0, 1 },
}
},
},
{ /* sentinel */ }
};
static const struct rockchip_usb2phy_cfg rv1108_phy_cfgs[] = {
{
.reg = 0x100,
.num_ports = 2,
.clkout_ctl = { 0x108, 4, 4, 1, 0 },
.port_cfgs = {
[USB2PHY_PORT_OTG] = {
.phy_sus = { 0x0100, 15, 0, 0, 0x1d1 },
.bvalid_det_en = { 0x0680, 3, 3, 0, 1 },
.bvalid_det_st = { 0x0690, 3, 3, 0, 1 },
.bvalid_det_clr = { 0x06a0, 3, 3, 0, 1 },
.ls_det_en = { 0x0680, 2, 2, 0, 1 },
.ls_det_st = { 0x0690, 2, 2, 0, 1 },
.ls_det_clr = { 0x06a0, 2, 2, 0, 1 },
.utmi_bvalid = { 0x0804, 10, 10, 0, 1 },
.utmi_ls = { 0x0804, 13, 12, 0, 1 },
},
[USB2PHY_PORT_HOST] = {
.phy_sus = { 0x0104, 15, 0, 0, 0x1d1 },
.ls_det_en = { 0x0680, 4, 4, 0, 1 },
.ls_det_st = { 0x0690, 4, 4, 0, 1 },
.ls_det_clr = { 0x06a0, 4, 4, 0, 1 },
.utmi_ls = { 0x0804, 9, 8, 0, 1 },
.utmi_hstdet = { 0x0804, 7, 7, 0, 1 }
}
},
.chg_det = {
.opmode = { 0x0100, 3, 0, 5, 1 },
.cp_det = { 0x0804, 1, 1, 0, 1 },
.dcp_det = { 0x0804, 0, 0, 0, 1 },
.dp_det = { 0x0804, 2, 2, 0, 1 },
.idm_sink_en = { 0x0108, 8, 8, 0, 1 },
.idp_sink_en = { 0x0108, 7, 7, 0, 1 },
.idp_src_en = { 0x0108, 9, 9, 0, 1 },
.rdm_pdwn_en = { 0x0108, 10, 10, 0, 1 },
.vdm_src_en = { 0x0108, 12, 12, 0, 1 },
.vdp_src_en = { 0x0108, 11, 11, 0, 1 },
},
},
{ /* sentinel */ }
};
static const struct of_device_id rockchip_usb2phy_dt_match[] = {
{ .compatible = "rockchip,px30-usb2phy", .data = &rk3328_phy_cfgs },
{ .compatible = "rockchip,rk3228-usb2phy", .data = &rk3228_phy_cfgs },
{ .compatible = "rockchip,rk3308-usb2phy", .data = &rk3308_phy_cfgs },
{ .compatible = "rockchip,rk3328-usb2phy", .data = &rk3328_phy_cfgs },
{ .compatible = "rockchip,rk3366-usb2phy", .data = &rk3366_phy_cfgs },
{ .compatible = "rockchip,rk3399-usb2phy", .data = &rk3399_phy_cfgs },
{ .compatible = "rockchip,rk3568-usb2phy", .data = &rk3568_phy_cfgs },
{ .compatible = "rockchip,rk3588-usb2phy", .data = &rk3588_phy_cfgs },
{ .compatible = "rockchip,rv1108-usb2phy", .data = &rv1108_phy_cfgs },
{}
};
MODULE_DEVICE_TABLE(of, rockchip_usb2phy_dt_match);
static struct platform_driver rockchip_usb2phy_driver = {
.probe = rockchip_usb2phy_probe,
.driver = {
.name = "rockchip-usb2phy",
.of_match_table = rockchip_usb2phy_dt_match,
},
};
module_platform_driver(rockchip_usb2phy_driver);
MODULE_AUTHOR("Frank Wang <[email protected]>");
MODULE_DESCRIPTION("Rockchip USB2.0 PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/rockchip/phy-rockchip-inno-usb2.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2017 Rockchip Electronics Co. Ltd.
*
* Author: Zheng Yang <[email protected]>
* Heiko Stuebner <[email protected]>
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/phy/phy.h>
#include <linux/slab.h>
#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
/* REG: 0x00 */
#define RK3228_PRE_PLL_REFCLK_SEL_PCLK BIT(0)
/* REG: 0x01 */
#define RK3228_BYPASS_RXSENSE_EN BIT(2)
#define RK3228_BYPASS_PWRON_EN BIT(1)
#define RK3228_BYPASS_PLLPD_EN BIT(0)
/* REG: 0x02 */
#define RK3228_BYPASS_PDATA_EN BIT(4)
#define RK3228_PDATAEN_DISABLE BIT(0)
/* REG: 0x03 */
#define RK3228_BYPASS_AUTO_TERM_RES_CAL BIT(7)
#define RK3228_AUTO_TERM_RES_CAL_SPEED_14_8(x) UPDATE(x, 6, 0)
/* REG: 0x04 */
#define RK3228_AUTO_TERM_RES_CAL_SPEED_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xaa */
#define RK3228_POST_PLL_CTRL_MANUAL BIT(0)
/* REG: 0xe0 */
#define RK3228_POST_PLL_POWER_DOWN BIT(5)
#define RK3228_PRE_PLL_POWER_DOWN BIT(4)
#define RK3228_RXSENSE_CLK_CH_ENABLE BIT(3)
#define RK3228_RXSENSE_DATA_CH2_ENABLE BIT(2)
#define RK3228_RXSENSE_DATA_CH1_ENABLE BIT(1)
#define RK3228_RXSENSE_DATA_CH0_ENABLE BIT(0)
/* REG: 0xe1 */
#define RK3228_BANDGAP_ENABLE BIT(4)
#define RK3228_TMDS_DRIVER_ENABLE GENMASK(3, 0)
/* REG: 0xe2 */
#define RK3228_PRE_PLL_FB_DIV_8_MASK BIT(7)
#define RK3228_PRE_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7)
#define RK3228_PCLK_VCO_DIV_5_MASK BIT(5)
#define RK3228_PCLK_VCO_DIV_5(x) UPDATE(x, 5, 5)
#define RK3228_PRE_PLL_PRE_DIV_MASK GENMASK(4, 0)
#define RK3228_PRE_PLL_PRE_DIV(x) UPDATE(x, 4, 0)
/* REG: 0xe3 */
#define RK3228_PRE_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xe4 */
#define RK3228_PRE_PLL_PCLK_DIV_B_MASK GENMASK(6, 5)
#define RK3228_PRE_PLL_PCLK_DIV_B_SHIFT 5
#define RK3228_PRE_PLL_PCLK_DIV_B(x) UPDATE(x, 6, 5)
#define RK3228_PRE_PLL_PCLK_DIV_A_MASK GENMASK(4, 0)
#define RK3228_PRE_PLL_PCLK_DIV_A(x) UPDATE(x, 4, 0)
/* REG: 0xe5 */
#define RK3228_PRE_PLL_PCLK_DIV_C_MASK GENMASK(6, 5)
#define RK3228_PRE_PLL_PCLK_DIV_C(x) UPDATE(x, 6, 5)
#define RK3228_PRE_PLL_PCLK_DIV_D_MASK GENMASK(4, 0)
#define RK3228_PRE_PLL_PCLK_DIV_D(x) UPDATE(x, 4, 0)
/* REG: 0xe6 */
#define RK3228_PRE_PLL_TMDSCLK_DIV_C_MASK GENMASK(5, 4)
#define RK3228_PRE_PLL_TMDSCLK_DIV_C(x) UPDATE(x, 5, 4)
#define RK3228_PRE_PLL_TMDSCLK_DIV_A_MASK GENMASK(3, 2)
#define RK3228_PRE_PLL_TMDSCLK_DIV_A(x) UPDATE(x, 3, 2)
#define RK3228_PRE_PLL_TMDSCLK_DIV_B_MASK GENMASK(1, 0)
#define RK3228_PRE_PLL_TMDSCLK_DIV_B(x) UPDATE(x, 1, 0)
/* REG: 0xe8 */
#define RK3228_PRE_PLL_LOCK_STATUS BIT(0)
/* REG: 0xe9 */
#define RK3228_POST_PLL_POST_DIV_ENABLE UPDATE(3, 7, 6)
#define RK3228_POST_PLL_PRE_DIV_MASK GENMASK(4, 0)
#define RK3228_POST_PLL_PRE_DIV(x) UPDATE(x, 4, 0)
/* REG: 0xea */
#define RK3228_POST_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xeb */
#define RK3228_POST_PLL_FB_DIV_8_MASK BIT(7)
#define RK3228_POST_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7)
#define RK3228_POST_PLL_POST_DIV_MASK GENMASK(5, 4)
#define RK3228_POST_PLL_POST_DIV(x) UPDATE(x, 5, 4)
#define RK3228_POST_PLL_LOCK_STATUS BIT(0)
/* REG: 0xee */
#define RK3228_TMDS_CH_TA_ENABLE GENMASK(7, 4)
/* REG: 0xef */
#define RK3228_TMDS_CLK_CH_TA(x) UPDATE(x, 7, 6)
#define RK3228_TMDS_DATA_CH2_TA(x) UPDATE(x, 5, 4)
#define RK3228_TMDS_DATA_CH1_TA(x) UPDATE(x, 3, 2)
#define RK3228_TMDS_DATA_CH0_TA(x) UPDATE(x, 1, 0)
/* REG: 0xf0 */
#define RK3228_TMDS_DATA_CH2_PRE_EMPHASIS_MASK GENMASK(5, 4)
#define RK3228_TMDS_DATA_CH2_PRE_EMPHASIS(x) UPDATE(x, 5, 4)
#define RK3228_TMDS_DATA_CH1_PRE_EMPHASIS_MASK GENMASK(3, 2)
#define RK3228_TMDS_DATA_CH1_PRE_EMPHASIS(x) UPDATE(x, 3, 2)
#define RK3228_TMDS_DATA_CH0_PRE_EMPHASIS_MASK GENMASK(1, 0)
#define RK3228_TMDS_DATA_CH0_PRE_EMPHASIS(x) UPDATE(x, 1, 0)
/* REG: 0xf1 */
#define RK3228_TMDS_CLK_CH_OUTPUT_SWING(x) UPDATE(x, 7, 4)
#define RK3228_TMDS_DATA_CH2_OUTPUT_SWING(x) UPDATE(x, 3, 0)
/* REG: 0xf2 */
#define RK3228_TMDS_DATA_CH1_OUTPUT_SWING(x) UPDATE(x, 7, 4)
#define RK3228_TMDS_DATA_CH0_OUTPUT_SWING(x) UPDATE(x, 3, 0)
/* REG: 0x01 */
#define RK3328_BYPASS_RXSENSE_EN BIT(2)
#define RK3328_BYPASS_POWERON_EN BIT(1)
#define RK3328_BYPASS_PLLPD_EN BIT(0)
/* REG: 0x02 */
#define RK3328_INT_POL_HIGH BIT(7)
#define RK3328_BYPASS_PDATA_EN BIT(4)
#define RK3328_PDATA_EN BIT(0)
/* REG:0x05 */
#define RK3328_INT_TMDS_CLK(x) UPDATE(x, 7, 4)
#define RK3328_INT_TMDS_D2(x) UPDATE(x, 3, 0)
/* REG:0x07 */
#define RK3328_INT_TMDS_D1(x) UPDATE(x, 7, 4)
#define RK3328_INT_TMDS_D0(x) UPDATE(x, 3, 0)
/* for all RK3328_INT_TMDS_*, ESD_DET as defined in 0xc8-0xcb */
#define RK3328_INT_AGND_LOW_PULSE_LOCKED BIT(3)
#define RK3328_INT_RXSENSE_LOW_PULSE_LOCKED BIT(2)
#define RK3328_INT_VSS_AGND_ESD_DET BIT(1)
#define RK3328_INT_AGND_VSS_ESD_DET BIT(0)
/* REG: 0xa0 */
#define RK3328_PCLK_VCO_DIV_5_MASK BIT(1)
#define RK3328_PCLK_VCO_DIV_5(x) UPDATE(x, 1, 1)
#define RK3328_PRE_PLL_POWER_DOWN BIT(0)
/* REG: 0xa1 */
#define RK3328_PRE_PLL_PRE_DIV_MASK GENMASK(5, 0)
#define RK3328_PRE_PLL_PRE_DIV(x) UPDATE(x, 5, 0)
/* REG: 0xa2 */
/* unset means center spread */
#define RK3328_SPREAD_SPECTRUM_MOD_DOWN BIT(7)
#define RK3328_SPREAD_SPECTRUM_MOD_DISABLE BIT(6)
#define RK3328_PRE_PLL_FRAC_DIV_DISABLE UPDATE(3, 5, 4)
#define RK3328_PRE_PLL_FB_DIV_11_8_MASK GENMASK(3, 0)
#define RK3328_PRE_PLL_FB_DIV_11_8(x) UPDATE((x) >> 8, 3, 0)
/* REG: 0xa3 */
#define RK3328_PRE_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xa4*/
#define RK3328_PRE_PLL_TMDSCLK_DIV_C_MASK GENMASK(1, 0)
#define RK3328_PRE_PLL_TMDSCLK_DIV_C(x) UPDATE(x, 1, 0)
#define RK3328_PRE_PLL_TMDSCLK_DIV_B_MASK GENMASK(3, 2)
#define RK3328_PRE_PLL_TMDSCLK_DIV_B(x) UPDATE(x, 3, 2)
#define RK3328_PRE_PLL_TMDSCLK_DIV_A_MASK GENMASK(5, 4)
#define RK3328_PRE_PLL_TMDSCLK_DIV_A(x) UPDATE(x, 5, 4)
/* REG: 0xa5 */
#define RK3328_PRE_PLL_PCLK_DIV_B_SHIFT 5
#define RK3328_PRE_PLL_PCLK_DIV_B_MASK GENMASK(6, 5)
#define RK3328_PRE_PLL_PCLK_DIV_B(x) UPDATE(x, 6, 5)
#define RK3328_PRE_PLL_PCLK_DIV_A_MASK GENMASK(4, 0)
#define RK3328_PRE_PLL_PCLK_DIV_A(x) UPDATE(x, 4, 0)
/* REG: 0xa6 */
#define RK3328_PRE_PLL_PCLK_DIV_C_SHIFT 5
#define RK3328_PRE_PLL_PCLK_DIV_C_MASK GENMASK(6, 5)
#define RK3328_PRE_PLL_PCLK_DIV_C(x) UPDATE(x, 6, 5)
#define RK3328_PRE_PLL_PCLK_DIV_D_MASK GENMASK(4, 0)
#define RK3328_PRE_PLL_PCLK_DIV_D(x) UPDATE(x, 4, 0)
/* REG: 0xa9 */
#define RK3328_PRE_PLL_LOCK_STATUS BIT(0)
/* REG: 0xaa */
#define RK3328_POST_PLL_POST_DIV_ENABLE GENMASK(3, 2)
#define RK3328_POST_PLL_REFCLK_SEL_TMDS BIT(1)
#define RK3328_POST_PLL_POWER_DOWN BIT(0)
/* REG:0xab */
#define RK3328_POST_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7)
#define RK3328_POST_PLL_PRE_DIV(x) UPDATE(x, 4, 0)
/* REG: 0xac */
#define RK3328_POST_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xad */
#define RK3328_POST_PLL_POST_DIV_MASK GENMASK(1, 0)
#define RK3328_POST_PLL_POST_DIV_2 0x0
#define RK3328_POST_PLL_POST_DIV_4 0x1
#define RK3328_POST_PLL_POST_DIV_8 0x3
/* REG: 0xaf */
#define RK3328_POST_PLL_LOCK_STATUS BIT(0)
/* REG: 0xb0 */
#define RK3328_BANDGAP_ENABLE BIT(2)
/* REG: 0xb2 */
#define RK3328_TMDS_CLK_DRIVER_EN BIT(3)
#define RK3328_TMDS_D2_DRIVER_EN BIT(2)
#define RK3328_TMDS_D1_DRIVER_EN BIT(1)
#define RK3328_TMDS_D0_DRIVER_EN BIT(0)
#define RK3328_TMDS_DRIVER_ENABLE (RK3328_TMDS_CLK_DRIVER_EN | \
RK3328_TMDS_D2_DRIVER_EN | \
RK3328_TMDS_D1_DRIVER_EN | \
RK3328_TMDS_D0_DRIVER_EN)
/* REG:0xc5 */
#define RK3328_BYPASS_TERM_RESISTOR_CALIB BIT(7)
#define RK3328_TERM_RESISTOR_CALIB_SPEED_14_8(x) UPDATE((x) >> 8, 6, 0)
/* REG:0xc6 */
#define RK3328_TERM_RESISTOR_CALIB_SPEED_7_0(x) UPDATE(x, 7, 0)
/* REG:0xc7 */
#define RK3328_TERM_RESISTOR_50 UPDATE(0, 2, 1)
#define RK3328_TERM_RESISTOR_62_5 UPDATE(1, 2, 1)
#define RK3328_TERM_RESISTOR_75 UPDATE(2, 2, 1)
#define RK3328_TERM_RESISTOR_100 UPDATE(3, 2, 1)
/* REG 0xc8 - 0xcb */
#define RK3328_ESD_DETECT_MASK GENMASK(7, 6)
#define RK3328_ESD_DETECT_340MV (0x0 << 6)
#define RK3328_ESD_DETECT_280MV (0x1 << 6)
#define RK3328_ESD_DETECT_260MV (0x2 << 6)
#define RK3328_ESD_DETECT_240MV (0x3 << 6)
/* resistors can be used in parallel */
#define RK3328_TMDS_TERM_RESIST_MASK GENMASK(5, 0)
#define RK3328_TMDS_TERM_RESIST_75 BIT(5)
#define RK3328_TMDS_TERM_RESIST_150 BIT(4)
#define RK3328_TMDS_TERM_RESIST_300 BIT(3)
#define RK3328_TMDS_TERM_RESIST_600 BIT(2)
#define RK3328_TMDS_TERM_RESIST_1000 BIT(1)
#define RK3328_TMDS_TERM_RESIST_2000 BIT(0)
/* REG: 0xd1 */
#define RK3328_PRE_PLL_FRAC_DIV_23_16(x) UPDATE((x) >> 16, 7, 0)
/* REG: 0xd2 */
#define RK3328_PRE_PLL_FRAC_DIV_15_8(x) UPDATE((x) >> 8, 7, 0)
/* REG: 0xd3 */
#define RK3328_PRE_PLL_FRAC_DIV_7_0(x) UPDATE(x, 7, 0)
struct inno_hdmi_phy_drv_data;
struct inno_hdmi_phy {
struct device *dev;
struct regmap *regmap;
int irq;
struct phy *phy;
struct clk *sysclk;
struct clk *refoclk;
struct clk *refpclk;
/* platform data */
const struct inno_hdmi_phy_drv_data *plat_data;
int chip_version;
/* clk provider */
struct clk_hw hw;
struct clk *phyclk;
unsigned long pixclock;
unsigned long tmdsclock;
};
struct pre_pll_config {
unsigned long pixclock;
unsigned long tmdsclock;
u8 prediv;
u16 fbdiv;
u8 tmds_div_a;
u8 tmds_div_b;
u8 tmds_div_c;
u8 pclk_div_a;
u8 pclk_div_b;
u8 pclk_div_c;
u8 pclk_div_d;
u8 vco_div_5_en;
u32 fracdiv;
};
struct post_pll_config {
unsigned long tmdsclock;
u8 prediv;
u16 fbdiv;
u8 postdiv;
u8 version;
};
struct phy_config {
unsigned long tmdsclock;
u8 regs[14];
};
struct inno_hdmi_phy_ops {
int (*init)(struct inno_hdmi_phy *inno);
int (*power_on)(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg);
void (*power_off)(struct inno_hdmi_phy *inno);
};
struct inno_hdmi_phy_drv_data {
const struct inno_hdmi_phy_ops *ops;
const struct clk_ops *clk_ops;
const struct phy_config *phy_cfg_table;
};
static const struct pre_pll_config pre_pll_cfg_table[] = {
{ 25175000, 25175000, 3, 125, 3, 1, 1, 1, 3, 3, 4, 0, 0xe00000},
{ 25175000, 31468750, 1, 41, 0, 3, 3, 1, 3, 3, 4, 0, 0xf5554f},
{ 27000000, 27000000, 1, 36, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 27000000, 33750000, 1, 45, 0, 3, 3, 1, 3, 3, 4, 0, 0x0},
{ 31500000, 31500000, 1, 42, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 31500000, 39375000, 1, 105, 1, 3, 3, 10, 0, 3, 4, 0, 0x0},
{ 33750000, 33750000, 1, 45, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 33750000, 42187500, 1, 169, 2, 3, 3, 15, 0, 3, 4, 0, 0x0},
{ 35500000, 35500000, 1, 71, 2, 2, 2, 6, 0, 3, 4, 0, 0x0},
{ 35500000, 44375000, 1, 74, 3, 1, 1, 25, 0, 1, 1, 0, 0x0},
{ 36000000, 36000000, 1, 36, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{ 36000000, 45000000, 1, 45, 2, 1, 1, 15, 0, 1, 1, 0, 0x0},
{ 40000000, 40000000, 1, 40, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{ 40000000, 50000000, 1, 50, 2, 1, 1, 15, 0, 1, 1, 0, 0x0},
{ 49500000, 49500000, 1, 66, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 49500000, 61875000, 1, 165, 1, 3, 3, 10, 0, 3, 4, 0, 0x0},
{ 50000000, 50000000, 1, 50, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{ 50000000, 62500000, 1, 125, 2, 2, 2, 15, 0, 2, 2, 0, 0x0},
{ 54000000, 54000000, 1, 36, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{ 54000000, 67500000, 1, 45, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{ 56250000, 56250000, 1, 75, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 56250000, 70312500, 1, 117, 3, 1, 1, 25, 0, 1, 1, 0, 0x0},
{ 59341000, 59341000, 1, 118, 2, 2, 2, 6, 0, 3, 4, 0, 0xae978d},
{ 59341000, 74176250, 2, 148, 2, 1, 1, 15, 0, 1, 1, 0, 0x5a3d70},
{ 59400000, 59400000, 1, 99, 3, 1, 1, 1, 3, 3, 4, 0, 0x0},
{ 59400000, 74250000, 1, 99, 0, 3, 3, 1, 3, 3, 4, 0, 0x0},
{ 65000000, 65000000, 1, 65, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{ 65000000, 81250000, 3, 325, 0, 3, 3, 1, 3, 3, 4, 0, 0x0},
{ 68250000, 68250000, 1, 91, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 68250000, 85312500, 1, 142, 3, 1, 1, 25, 0, 1, 1, 0, 0x0},
{ 71000000, 71000000, 1, 71, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{ 71000000, 88750000, 3, 355, 0, 3, 3, 1, 3, 3, 4, 0, 0x0},
{ 72000000, 72000000, 1, 36, 2, 0, 0, 1, 1, 2, 2, 0, 0x0},
{ 72000000, 90000000, 1, 60, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{ 73250000, 73250000, 3, 293, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 73250000, 91562500, 1, 61, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{ 74176000, 74176000, 1, 37, 2, 0, 0, 1, 1, 2, 2, 0, 0x16872b},
{ 74176000, 92720000, 2, 185, 2, 1, 1, 15, 0, 1, 1, 0, 0x70a3d7},
{ 74250000, 74250000, 1, 99, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 74250000, 92812500, 4, 495, 0, 3, 3, 1, 3, 3, 4, 0, 0x0},
{ 75000000, 75000000, 1, 50, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{ 75000000, 93750000, 1, 125, 0, 3, 3, 1, 3, 3, 4, 0, 0x0},
{ 78750000, 78750000, 1, 105, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 78750000, 98437500, 1, 164, 3, 1, 1, 25, 0, 1, 1, 0, 0x0},
{ 79500000, 79500000, 1, 53, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{ 79500000, 99375000, 1, 199, 2, 2, 2, 15, 0, 2, 2, 0, 0x0},
{ 83500000, 83500000, 2, 167, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{ 83500000, 104375000, 1, 104, 2, 1, 1, 15, 0, 1, 1, 0, 0x600000},
{ 85500000, 85500000, 1, 57, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{ 85500000, 106875000, 1, 178, 3, 1, 1, 25, 0, 1, 1, 0, 0x0},
{ 85750000, 85750000, 3, 343, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 85750000, 107187500, 1, 143, 0, 3, 3, 1, 3, 3, 4, 0, 0x0},
{ 88750000, 88750000, 3, 355, 0, 3, 3, 1, 2, 3, 4, 0, 0x0},
{ 88750000, 110937500, 1, 110, 2, 1, 1, 15, 0, 1, 1, 0, 0xf00000},
{ 94500000, 94500000, 1, 63, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{ 94500000, 118125000, 1, 197, 3, 1, 1, 25, 0, 1, 1, 0, 0x0},
{101000000, 101000000, 1, 101, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{101000000, 126250000, 1, 42, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{102250000, 102250000, 4, 409, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{102250000, 127812500, 1, 128, 2, 1, 1, 15, 0, 1, 1, 0, 0x0},
{106500000, 106500000, 1, 71, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{106500000, 133125000, 1, 133, 2, 1, 1, 15, 0, 1, 1, 0, 0x0},
{108000000, 108000000, 1, 36, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{108000000, 135000000, 1, 45, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{115500000, 115500000, 1, 77, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{115500000, 144375000, 1, 48, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{117500000, 117500000, 2, 235, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{117500000, 146875000, 1, 49, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{119000000, 119000000, 1, 119, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{119000000, 148750000, 3, 148, 0, 1, 1, 1, 3, 1, 1, 0, 0xc00000},
{121750000, 121750000, 4, 487, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{121750000, 152187500, 1, 203, 0, 3, 3, 1, 3, 3, 4, 0, 0x0},
{122500000, 122500000, 2, 245, 2, 1, 1, 1, 1, 3, 4, 0, 0x0},
{122500000, 153125000, 1, 51, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{135000000, 135000000, 1, 45, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{135000000, 168750000, 1, 169, 2, 1, 1, 15, 0, 1, 1, 0, 0x0},
{136750000, 136750000, 1, 68, 2, 0, 0, 1, 1, 2, 2, 0, 0x600000},
{136750000, 170937500, 1, 113, 0, 2, 2, 1, 3, 2, 2, 0, 0xf5554f},
{140250000, 140250000, 2, 187, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{140250000, 175312500, 1, 117, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{146250000, 146250000, 2, 195, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{146250000, 182812500, 1, 61, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{148250000, 148250000, 3, 222, 2, 0, 0, 1, 1, 2, 2, 0, 0x600000},
{148250000, 185312500, 1, 123, 0, 2, 2, 1, 3, 2, 2, 0, 0x8aaab0},
{148352000, 148352000, 2, 148, 2, 0, 0, 1, 1, 2, 2, 0, 0x5a1cac},
{148352000, 185440000, 3, 185, 0, 1, 1, 1, 3, 1, 1, 0, 0x70a3d7},
{148500000, 148500000, 1, 99, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{148500000, 185625000, 4, 495, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{154000000, 154000000, 1, 77, 2, 0, 0, 1, 1, 2, 2, 0, 0x0},
{154000000, 192500000, 1, 64, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{156000000, 156000000, 1, 52, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{156000000, 195000000, 1, 65, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{156750000, 156750000, 2, 209, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{156750000, 195937500, 1, 196, 2, 1, 1, 15, 0, 1, 1, 0, 0x0},
{157000000, 157000000, 2, 157, 2, 0, 0, 1, 1, 2, 2, 0, 0x0},
{157000000, 196250000, 1, 131, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{157500000, 157500000, 1, 105, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{157500000, 196875000, 1, 197, 2, 1, 1, 15, 0, 1, 1, 0, 0x0},
{162000000, 162000000, 1, 54, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{162000000, 202500000, 2, 135, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{175500000, 175500000, 1, 117, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{175500000, 219375000, 1, 73, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{179500000, 179500000, 3, 359, 0, 2, 2, 1, 0, 3, 4, 0, 0x0},
{179500000, 224375000, 1, 75, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{182750000, 182750000, 1, 91, 2, 0, 0, 1, 1, 2, 2, 0, 0x600000},
{182750000, 228437500, 1, 152, 0, 2, 2, 1, 3, 2, 2, 0, 0x4aaab0},
{182750000, 228437500, 1, 152, 0, 2, 2, 1, 3, 2, 2, 0, 0x4aaab0},
{187000000, 187000000, 2, 187, 2, 0, 0, 1, 1, 2, 2, 0, 0x0},
{187000000, 233750000, 1, 39, 0, 0, 0, 1, 3, 0, 0, 1, 0x0},
{187250000, 187250000, 3, 280, 2, 0, 0, 1, 1, 2, 2, 0, 0xe00000},
{187250000, 234062500, 1, 156, 0, 2, 2, 1, 3, 2, 2, 0, 0xaaab0},
{189000000, 189000000, 1, 63, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{189000000, 236250000, 1, 79, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{193250000, 193250000, 3, 289, 2, 0, 0, 1, 1, 2, 2, 0, 0xe00000},
{193250000, 241562500, 1, 161, 0, 2, 2, 1, 3, 2, 2, 0, 0xaaab0},
{202500000, 202500000, 2, 135, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{202500000, 253125000, 1, 169, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{204750000, 204750000, 4, 273, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{204750000, 255937500, 1, 171, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{208000000, 208000000, 1, 104, 2, 0, 0, 1, 1, 2, 2, 0, 0x0},
{208000000, 260000000, 1, 173, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{214750000, 214750000, 1, 107, 2, 0, 0, 1, 1, 2, 2, 0, 0x600000},
{214750000, 268437500, 1, 178, 0, 2, 2, 1, 3, 2, 2, 0, 0xf5554f},
{218250000, 218250000, 4, 291, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{218250000, 272812500, 1, 91, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{229500000, 229500000, 2, 153, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{229500000, 286875000, 1, 191, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{234000000, 234000000, 1, 39, 0, 0, 0, 1, 0, 1, 1, 0, 0x0},
{234000000, 292500000, 1, 195, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{241500000, 241500000, 2, 161, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{241500000, 301875000, 1, 201, 0, 2, 2, 1, 3, 2, 2, 0, 0x0},
{245250000, 245250000, 4, 327, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{245250000, 306562500, 1, 51, 0, 0, 0, 1, 3, 0, 0, 1, 0x0},
{245500000, 245500000, 4, 491, 2, 0, 0, 1, 1, 2, 2, 0, 0x0},
{245500000, 306875000, 1, 51, 0, 0, 0, 1, 3, 0, 0, 1, 0x0},
{261000000, 261000000, 1, 87, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{261000000, 326250000, 1, 109, 0, 1, 1, 1, 3, 1, 1, 0, 0x0},
{268250000, 268250000, 9, 402, 0, 0, 0, 1, 0, 1, 1, 0, 0x600000},
{268250000, 335312500, 1, 111, 0, 1, 1, 1, 3, 1, 1, 0, 0xc5554f},
{268500000, 268500000, 2, 179, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{268500000, 335625000, 1, 56, 0, 0, 0, 1, 3, 0, 0, 1, 0x0},
{281250000, 281250000, 4, 375, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{281250000, 351562500, 1, 117, 0, 3, 1, 1, 3, 1, 1, 0, 0x0},
{288000000, 288000000, 1, 48, 0, 0, 0, 1, 0, 1, 1, 0, 0x0},
{288000000, 360000000, 1, 60, 0, 2, 0, 1, 3, 0, 0, 1, 0x0},
{296703000, 296703000, 1, 49, 0, 0, 0, 1, 0, 1, 1, 0, 0x7353f7},
{296703000, 370878750, 1, 123, 0, 3, 1, 1, 3, 1, 1, 0, 0xa051eb},
{297000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{297000000, 371250000, 4, 495, 0, 3, 1, 1, 3, 1, 1, 0, 0x0},
{312250000, 312250000, 9, 468, 0, 0, 0, 1, 0, 1, 1, 0, 0x600000},
{312250000, 390312500, 1, 130, 0, 3, 1, 1, 3, 1, 1, 0, 0x1aaab0},
{317000000, 317000000, 3, 317, 0, 1, 1, 1, 0, 2, 2, 0, 0x0},
{317000000, 396250000, 1, 66, 0, 2, 0, 1, 3, 0, 0, 1, 0x0},
{319750000, 319750000, 3, 159, 0, 0, 0, 1, 0, 1, 1, 0, 0xe00000},
{319750000, 399687500, 3, 199, 0, 2, 0, 1, 3, 0, 0, 1, 0xd80000},
{333250000, 333250000, 9, 499, 0, 0, 0, 1, 0, 1, 1, 0, 0xe00000},
{333250000, 416562500, 1, 138, 0, 3, 1, 1, 3, 1, 1, 0, 0xdaaab0},
{348500000, 348500000, 9, 522, 0, 2, 0, 1, 0, 1, 1, 0, 0xc00000},
{348500000, 435625000, 1, 145, 0, 3, 1, 1, 3, 1, 1, 0, 0x35554f},
{356500000, 356500000, 9, 534, 0, 2, 0, 1, 0, 1, 1, 0, 0xc00000},
{356500000, 445625000, 1, 148, 0, 3, 1, 1, 3, 1, 1, 0, 0x8aaab0},
{380500000, 380500000, 9, 570, 0, 2, 0, 1, 0, 1, 1, 0, 0xc00000},
{380500000, 475625000, 1, 158, 0, 3, 1, 1, 3, 1, 1, 0, 0x8aaab0},
{443250000, 443250000, 1, 73, 0, 2, 0, 1, 0, 1, 1, 0, 0xe00000},
{443250000, 554062500, 1, 92, 0, 2, 0, 1, 3, 0, 0, 1, 0x580000},
{505250000, 505250000, 9, 757, 0, 2, 0, 1, 0, 1, 1, 0, 0xe00000},
{552750000, 552750000, 3, 276, 0, 2, 0, 1, 0, 1, 1, 0, 0x600000},
{593407000, 296703500, 3, 296, 0, 1, 1, 1, 0, 1, 1, 0, 0xb41893},
{593407000, 370879375, 4, 494, 0, 3, 1, 1, 3, 0, 0, 1, 0x817e4a},
{593407000, 593407000, 3, 296, 0, 2, 0, 1, 0, 1, 1, 0, 0xb41893},
{594000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 1, 1, 0, 0x0},
{594000000, 371250000, 4, 495, 0, 3, 1, 1, 3, 0, 0, 1, 0x0},
{594000000, 594000000, 1, 99, 0, 2, 0, 1, 0, 1, 1, 0, 0x0},
{ /* sentinel */ }
};
static const struct post_pll_config post_pll_cfg_table[] = {
{33750000, 1, 40, 8, 1},
{33750000, 1, 80, 8, 2},
{74250000, 1, 40, 8, 1},
{74250000, 18, 80, 8, 2},
{148500000, 2, 40, 4, 3},
{297000000, 4, 40, 2, 3},
{594000000, 8, 40, 1, 3},
{ /* sentinel */ }
};
/* phy tuning values for an undocumented set of registers */
static const struct phy_config rk3228_phy_cfg[] = {
{ 165000000, {
0xaa, 0x00, 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
340000000, {
0xaa, 0x15, 0x6a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
594000000, {
0xaa, 0x15, 0x7a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, { /* sentinel */ },
};
/* phy tuning values for an undocumented set of registers */
static const struct phy_config rk3328_phy_cfg[] = {
{ 165000000, {
0x07, 0x0a, 0x0a, 0x0a, 0x00, 0x00, 0x08, 0x08, 0x08,
0x00, 0xac, 0xcc, 0xcc, 0xcc,
},
}, {
340000000, {
0x0b, 0x0d, 0x0d, 0x0d, 0x07, 0x15, 0x08, 0x08, 0x08,
0x3f, 0xac, 0xcc, 0xcd, 0xdd,
},
}, {
594000000, {
0x10, 0x1a, 0x1a, 0x1a, 0x07, 0x15, 0x08, 0x08, 0x08,
0x00, 0xac, 0xcc, 0xcc, 0xcc,
},
}, { /* sentinel */ },
};
static inline struct inno_hdmi_phy *to_inno_hdmi_phy(struct clk_hw *hw)
{
return container_of(hw, struct inno_hdmi_phy, hw);
}
/*
* The register description of the IP block does not use any distinct names
* but instead the databook simply numbers the registers in one-increments.
* As the registers are obviously 32bit sized, the inno_* functions
* translate the databook register names to the actual registers addresses.
*/
static inline void inno_write(struct inno_hdmi_phy *inno, u32 reg, u8 val)
{
regmap_write(inno->regmap, reg * 4, val);
}
static inline u8 inno_read(struct inno_hdmi_phy *inno, u32 reg)
{
u32 val;
regmap_read(inno->regmap, reg * 4, &val);
return val;
}
static inline void inno_update_bits(struct inno_hdmi_phy *inno, u8 reg,
u8 mask, u8 val)
{
regmap_update_bits(inno->regmap, reg * 4, mask, val);
}
#define inno_poll(inno, reg, val, cond, sleep_us, timeout_us) \
regmap_read_poll_timeout((inno)->regmap, (reg) * 4, val, cond, \
sleep_us, timeout_us)
static unsigned long inno_hdmi_phy_get_tmdsclk(struct inno_hdmi_phy *inno,
unsigned long rate)
{
int bus_width = phy_get_bus_width(inno->phy);
switch (bus_width) {
case 4:
case 5:
case 6:
case 10:
case 12:
case 16:
return (u64)rate * bus_width / 8;
default:
return rate;
}
}
static irqreturn_t inno_hdmi_phy_rk3328_hardirq(int irq, void *dev_id)
{
struct inno_hdmi_phy *inno = dev_id;
int intr_stat1, intr_stat2, intr_stat3;
intr_stat1 = inno_read(inno, 0x04);
intr_stat2 = inno_read(inno, 0x06);
intr_stat3 = inno_read(inno, 0x08);
if (intr_stat1)
inno_write(inno, 0x04, intr_stat1);
if (intr_stat2)
inno_write(inno, 0x06, intr_stat2);
if (intr_stat3)
inno_write(inno, 0x08, intr_stat3);
if (intr_stat1 || intr_stat2 || intr_stat3)
return IRQ_WAKE_THREAD;
return IRQ_HANDLED;
}
static irqreturn_t inno_hdmi_phy_rk3328_irq(int irq, void *dev_id)
{
struct inno_hdmi_phy *inno = dev_id;
inno_update_bits(inno, 0x02, RK3328_PDATA_EN, 0);
usleep_range(10, 20);
inno_update_bits(inno, 0x02, RK3328_PDATA_EN, RK3328_PDATA_EN);
return IRQ_HANDLED;
}
static int inno_hdmi_phy_power_on(struct phy *phy)
{
struct inno_hdmi_phy *inno = phy_get_drvdata(phy);
const struct post_pll_config *cfg = post_pll_cfg_table;
const struct phy_config *phy_cfg = inno->plat_data->phy_cfg_table;
unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno,
inno->pixclock);
int ret;
if (!tmdsclock) {
dev_err(inno->dev, "TMDS clock is zero!\n");
return -EINVAL;
}
if (!inno->plat_data->ops->power_on)
return -EINVAL;
for (; cfg->tmdsclock != 0; cfg++)
if (tmdsclock <= cfg->tmdsclock &&
cfg->version & inno->chip_version)
break;
for (; phy_cfg->tmdsclock != 0; phy_cfg++)
if (tmdsclock <= phy_cfg->tmdsclock)
break;
if (cfg->tmdsclock == 0 || phy_cfg->tmdsclock == 0)
return -EINVAL;
dev_dbg(inno->dev, "Inno HDMI PHY Power On\n");
inno->plat_data->clk_ops->set_rate(&inno->hw, inno->pixclock, 24000000);
ret = clk_prepare_enable(inno->phyclk);
if (ret)
return ret;
ret = inno->plat_data->ops->power_on(inno, cfg, phy_cfg);
if (ret) {
clk_disable_unprepare(inno->phyclk);
return ret;
}
return 0;
}
static int inno_hdmi_phy_power_off(struct phy *phy)
{
struct inno_hdmi_phy *inno = phy_get_drvdata(phy);
if (!inno->plat_data->ops->power_off)
return -EINVAL;
inno->plat_data->ops->power_off(inno);
clk_disable_unprepare(inno->phyclk);
inno->tmdsclock = 0;
dev_dbg(inno->dev, "Inno HDMI PHY Power Off\n");
return 0;
}
static const struct phy_ops inno_hdmi_phy_ops = {
.owner = THIS_MODULE,
.power_on = inno_hdmi_phy_power_on,
.power_off = inno_hdmi_phy_power_off,
};
static const
struct pre_pll_config *inno_hdmi_phy_get_pre_pll_cfg(struct inno_hdmi_phy *inno,
unsigned long rate)
{
const struct pre_pll_config *cfg = pre_pll_cfg_table;
unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate);
for (; cfg->pixclock != 0; cfg++)
if (cfg->pixclock == rate && cfg->tmdsclock == tmdsclock)
break;
if (cfg->pixclock == 0)
return ERR_PTR(-EINVAL);
return cfg;
}
static int inno_hdmi_phy_rk3228_clk_is_prepared(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
u8 status;
status = inno_read(inno, 0xe0) & RK3228_PRE_PLL_POWER_DOWN;
return status ? 0 : 1;
}
static int inno_hdmi_phy_rk3228_clk_prepare(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, 0);
return 0;
}
static void inno_hdmi_phy_rk3228_clk_unprepare(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN,
RK3228_PRE_PLL_POWER_DOWN);
}
static
unsigned long inno_hdmi_phy_rk3228_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
u8 nd, no_a, no_b, no_d;
u64 vco;
u16 nf;
nd = inno_read(inno, 0xe2) & RK3228_PRE_PLL_PRE_DIV_MASK;
nf = (inno_read(inno, 0xe2) & RK3228_PRE_PLL_FB_DIV_8_MASK) << 1;
nf |= inno_read(inno, 0xe3);
vco = parent_rate * nf;
if (inno_read(inno, 0xe2) & RK3228_PCLK_VCO_DIV_5_MASK) {
do_div(vco, nd * 5);
} else {
no_a = inno_read(inno, 0xe4) & RK3228_PRE_PLL_PCLK_DIV_A_MASK;
if (!no_a)
no_a = 1;
no_b = inno_read(inno, 0xe4) & RK3228_PRE_PLL_PCLK_DIV_B_MASK;
no_b >>= RK3228_PRE_PLL_PCLK_DIV_B_SHIFT;
no_b += 2;
no_d = inno_read(inno, 0xe5) & RK3228_PRE_PLL_PCLK_DIV_D_MASK;
do_div(vco, (nd * (no_a == 1 ? no_b : no_a) * no_d * 2));
}
inno->pixclock = vco;
dev_dbg(inno->dev, "%s rate %lu\n", __func__, inno->pixclock);
return vco;
}
static long inno_hdmi_phy_rk3228_clk_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
const struct pre_pll_config *cfg = pre_pll_cfg_table;
rate = (rate / 1000) * 1000;
for (; cfg->pixclock != 0; cfg++)
if (cfg->pixclock == rate && !cfg->fracdiv)
break;
if (cfg->pixclock == 0)
return -EINVAL;
return cfg->pixclock;
}
static int inno_hdmi_phy_rk3228_clk_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
const struct pre_pll_config *cfg;
unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate);
u32 v;
int ret;
dev_dbg(inno->dev, "%s rate %lu tmdsclk %lu\n",
__func__, rate, tmdsclock);
if (inno->pixclock == rate && inno->tmdsclock == tmdsclock)
return 0;
cfg = inno_hdmi_phy_get_pre_pll_cfg(inno, rate);
if (IS_ERR(cfg))
return PTR_ERR(cfg);
/* Power down PRE-PLL */
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN,
RK3228_PRE_PLL_POWER_DOWN);
inno_update_bits(inno, 0xe2, RK3228_PRE_PLL_FB_DIV_8_MASK |
RK3228_PCLK_VCO_DIV_5_MASK |
RK3228_PRE_PLL_PRE_DIV_MASK,
RK3228_PRE_PLL_FB_DIV_8(cfg->fbdiv) |
RK3228_PCLK_VCO_DIV_5(cfg->vco_div_5_en) |
RK3228_PRE_PLL_PRE_DIV(cfg->prediv));
inno_write(inno, 0xe3, RK3228_PRE_PLL_FB_DIV_7_0(cfg->fbdiv));
inno_update_bits(inno, 0xe4, RK3228_PRE_PLL_PCLK_DIV_B_MASK |
RK3228_PRE_PLL_PCLK_DIV_A_MASK,
RK3228_PRE_PLL_PCLK_DIV_B(cfg->pclk_div_b) |
RK3228_PRE_PLL_PCLK_DIV_A(cfg->pclk_div_a));
inno_update_bits(inno, 0xe5, RK3228_PRE_PLL_PCLK_DIV_C_MASK |
RK3228_PRE_PLL_PCLK_DIV_D_MASK,
RK3228_PRE_PLL_PCLK_DIV_C(cfg->pclk_div_c) |
RK3228_PRE_PLL_PCLK_DIV_D(cfg->pclk_div_d));
inno_update_bits(inno, 0xe6, RK3228_PRE_PLL_TMDSCLK_DIV_C_MASK |
RK3228_PRE_PLL_TMDSCLK_DIV_A_MASK |
RK3228_PRE_PLL_TMDSCLK_DIV_B_MASK,
RK3228_PRE_PLL_TMDSCLK_DIV_C(cfg->tmds_div_c) |
RK3228_PRE_PLL_TMDSCLK_DIV_A(cfg->tmds_div_a) |
RK3228_PRE_PLL_TMDSCLK_DIV_B(cfg->tmds_div_b));
/* Power up PRE-PLL */
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, 0);
/* Wait for Pre-PLL lock */
ret = inno_poll(inno, 0xe8, v, v & RK3228_PRE_PLL_LOCK_STATUS,
100, 100000);
if (ret) {
dev_err(inno->dev, "Pre-PLL locking failed\n");
return ret;
}
inno->pixclock = rate;
inno->tmdsclock = tmdsclock;
return 0;
}
static const struct clk_ops inno_hdmi_phy_rk3228_clk_ops = {
.prepare = inno_hdmi_phy_rk3228_clk_prepare,
.unprepare = inno_hdmi_phy_rk3228_clk_unprepare,
.is_prepared = inno_hdmi_phy_rk3228_clk_is_prepared,
.recalc_rate = inno_hdmi_phy_rk3228_clk_recalc_rate,
.round_rate = inno_hdmi_phy_rk3228_clk_round_rate,
.set_rate = inno_hdmi_phy_rk3228_clk_set_rate,
};
static int inno_hdmi_phy_rk3328_clk_is_prepared(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
u8 status;
status = inno_read(inno, 0xa0) & RK3328_PRE_PLL_POWER_DOWN;
return status ? 0 : 1;
}
static int inno_hdmi_phy_rk3328_clk_prepare(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, 0);
return 0;
}
static void inno_hdmi_phy_rk3328_clk_unprepare(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN,
RK3328_PRE_PLL_POWER_DOWN);
}
static
unsigned long inno_hdmi_phy_rk3328_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
unsigned long frac;
u8 nd, no_a, no_b, no_d;
u64 vco;
u16 nf;
nd = inno_read(inno, 0xa1) & RK3328_PRE_PLL_PRE_DIV_MASK;
nf = ((inno_read(inno, 0xa2) & RK3328_PRE_PLL_FB_DIV_11_8_MASK) << 8);
nf |= inno_read(inno, 0xa3);
vco = parent_rate * nf;
if (!(inno_read(inno, 0xa2) & RK3328_PRE_PLL_FRAC_DIV_DISABLE)) {
frac = inno_read(inno, 0xd3) |
(inno_read(inno, 0xd2) << 8) |
(inno_read(inno, 0xd1) << 16);
vco += DIV_ROUND_CLOSEST(parent_rate * frac, (1 << 24));
}
if (inno_read(inno, 0xa0) & RK3328_PCLK_VCO_DIV_5_MASK) {
do_div(vco, nd * 5);
} else {
no_a = inno_read(inno, 0xa5) & RK3328_PRE_PLL_PCLK_DIV_A_MASK;
no_b = inno_read(inno, 0xa5) & RK3328_PRE_PLL_PCLK_DIV_B_MASK;
no_b >>= RK3328_PRE_PLL_PCLK_DIV_B_SHIFT;
no_b += 2;
no_d = inno_read(inno, 0xa6) & RK3328_PRE_PLL_PCLK_DIV_D_MASK;
do_div(vco, (nd * (no_a == 1 ? no_b : no_a) * no_d * 2));
}
inno->pixclock = DIV_ROUND_CLOSEST((unsigned long)vco, 1000) * 1000;
dev_dbg(inno->dev, "%s rate %lu vco %llu\n",
__func__, inno->pixclock, vco);
return inno->pixclock;
}
static long inno_hdmi_phy_rk3328_clk_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
const struct pre_pll_config *cfg = pre_pll_cfg_table;
rate = (rate / 1000) * 1000;
for (; cfg->pixclock != 0; cfg++)
if (cfg->pixclock == rate)
break;
if (cfg->pixclock == 0)
return -EINVAL;
return cfg->pixclock;
}
static int inno_hdmi_phy_rk3328_clk_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
const struct pre_pll_config *cfg;
unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate);
u32 val;
int ret;
dev_dbg(inno->dev, "%s rate %lu tmdsclk %lu\n",
__func__, rate, tmdsclock);
if (inno->pixclock == rate && inno->tmdsclock == tmdsclock)
return 0;
cfg = inno_hdmi_phy_get_pre_pll_cfg(inno, rate);
if (IS_ERR(cfg))
return PTR_ERR(cfg);
inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN,
RK3328_PRE_PLL_POWER_DOWN);
/* Configure pre-pll */
inno_update_bits(inno, 0xa0, RK3328_PCLK_VCO_DIV_5_MASK,
RK3328_PCLK_VCO_DIV_5(cfg->vco_div_5_en));
inno_write(inno, 0xa1, RK3328_PRE_PLL_PRE_DIV(cfg->prediv));
val = RK3328_SPREAD_SPECTRUM_MOD_DISABLE;
if (!cfg->fracdiv)
val |= RK3328_PRE_PLL_FRAC_DIV_DISABLE;
inno_write(inno, 0xa2, RK3328_PRE_PLL_FB_DIV_11_8(cfg->fbdiv) | val);
inno_write(inno, 0xa3, RK3328_PRE_PLL_FB_DIV_7_0(cfg->fbdiv));
inno_write(inno, 0xa5, RK3328_PRE_PLL_PCLK_DIV_A(cfg->pclk_div_a) |
RK3328_PRE_PLL_PCLK_DIV_B(cfg->pclk_div_b));
inno_write(inno, 0xa6, RK3328_PRE_PLL_PCLK_DIV_C(cfg->pclk_div_c) |
RK3328_PRE_PLL_PCLK_DIV_D(cfg->pclk_div_d));
inno_write(inno, 0xa4, RK3328_PRE_PLL_TMDSCLK_DIV_C(cfg->tmds_div_c) |
RK3328_PRE_PLL_TMDSCLK_DIV_A(cfg->tmds_div_a) |
RK3328_PRE_PLL_TMDSCLK_DIV_B(cfg->tmds_div_b));
inno_write(inno, 0xd3, RK3328_PRE_PLL_FRAC_DIV_7_0(cfg->fracdiv));
inno_write(inno, 0xd2, RK3328_PRE_PLL_FRAC_DIV_15_8(cfg->fracdiv));
inno_write(inno, 0xd1, RK3328_PRE_PLL_FRAC_DIV_23_16(cfg->fracdiv));
inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, 0);
/* Wait for Pre-PLL lock */
ret = inno_poll(inno, 0xa9, val, val & RK3328_PRE_PLL_LOCK_STATUS,
1000, 10000);
if (ret) {
dev_err(inno->dev, "Pre-PLL locking failed\n");
return ret;
}
inno->pixclock = rate;
inno->tmdsclock = tmdsclock;
return 0;
}
static const struct clk_ops inno_hdmi_phy_rk3328_clk_ops = {
.prepare = inno_hdmi_phy_rk3328_clk_prepare,
.unprepare = inno_hdmi_phy_rk3328_clk_unprepare,
.is_prepared = inno_hdmi_phy_rk3328_clk_is_prepared,
.recalc_rate = inno_hdmi_phy_rk3328_clk_recalc_rate,
.round_rate = inno_hdmi_phy_rk3328_clk_round_rate,
.set_rate = inno_hdmi_phy_rk3328_clk_set_rate,
};
static int inno_hdmi_phy_clk_register(struct inno_hdmi_phy *inno)
{
struct device *dev = inno->dev;
struct device_node *np = dev->of_node;
struct clk_init_data init;
const char *parent_name;
int ret;
parent_name = __clk_get_name(inno->refoclk);
init.parent_names = &parent_name;
init.num_parents = 1;
init.flags = 0;
init.name = "pin_hd20_pclk";
init.ops = inno->plat_data->clk_ops;
/* optional override of the clock name */
of_property_read_string(np, "clock-output-names", &init.name);
inno->hw.init = &init;
inno->phyclk = devm_clk_register(dev, &inno->hw);
if (IS_ERR(inno->phyclk)) {
ret = PTR_ERR(inno->phyclk);
dev_err(dev, "failed to register clock: %d\n", ret);
return ret;
}
ret = of_clk_add_provider(np, of_clk_src_simple_get, inno->phyclk);
if (ret) {
dev_err(dev, "failed to register clock provider: %d\n", ret);
return ret;
}
return 0;
}
static int inno_hdmi_phy_rk3228_init(struct inno_hdmi_phy *inno)
{
/*
* Use phy internal register control
* rxsense/poweron/pllpd/pdataen signal.
*/
inno_write(inno, 0x01, RK3228_BYPASS_RXSENSE_EN |
RK3228_BYPASS_PWRON_EN |
RK3228_BYPASS_PLLPD_EN);
inno_update_bits(inno, 0x02, RK3228_BYPASS_PDATA_EN,
RK3228_BYPASS_PDATA_EN);
/* manual power down post-PLL */
inno_update_bits(inno, 0xaa, RK3228_POST_PLL_CTRL_MANUAL,
RK3228_POST_PLL_CTRL_MANUAL);
inno->chip_version = 1;
return 0;
}
static int
inno_hdmi_phy_rk3228_power_on(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg)
{
int ret;
u32 v;
inno_update_bits(inno, 0x02, RK3228_PDATAEN_DISABLE,
RK3228_PDATAEN_DISABLE);
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN |
RK3228_POST_PLL_POWER_DOWN,
RK3228_PRE_PLL_POWER_DOWN |
RK3228_POST_PLL_POWER_DOWN);
/* Post-PLL update */
inno_update_bits(inno, 0xe9, RK3228_POST_PLL_PRE_DIV_MASK,
RK3228_POST_PLL_PRE_DIV(cfg->prediv));
inno_update_bits(inno, 0xeb, RK3228_POST_PLL_FB_DIV_8_MASK,
RK3228_POST_PLL_FB_DIV_8(cfg->fbdiv));
inno_write(inno, 0xea, RK3228_POST_PLL_FB_DIV_7_0(cfg->fbdiv));
if (cfg->postdiv == 1) {
inno_update_bits(inno, 0xe9, RK3228_POST_PLL_POST_DIV_ENABLE,
0);
} else {
int div = cfg->postdiv / 2 - 1;
inno_update_bits(inno, 0xe9, RK3228_POST_PLL_POST_DIV_ENABLE,
RK3228_POST_PLL_POST_DIV_ENABLE);
inno_update_bits(inno, 0xeb, RK3228_POST_PLL_POST_DIV_MASK,
RK3228_POST_PLL_POST_DIV(div));
}
for (v = 0; v < 4; v++)
inno_write(inno, 0xef + v, phy_cfg->regs[v]);
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN |
RK3228_POST_PLL_POWER_DOWN, 0);
inno_update_bits(inno, 0xe1, RK3228_BANDGAP_ENABLE,
RK3228_BANDGAP_ENABLE);
inno_update_bits(inno, 0xe1, RK3228_TMDS_DRIVER_ENABLE,
RK3228_TMDS_DRIVER_ENABLE);
/* Wait for post PLL lock */
ret = inno_poll(inno, 0xeb, v, v & RK3228_POST_PLL_LOCK_STATUS,
100, 100000);
if (ret) {
dev_err(inno->dev, "Post-PLL locking failed\n");
return ret;
}
if (cfg->tmdsclock > 340000000)
msleep(100);
inno_update_bits(inno, 0x02, RK3228_PDATAEN_DISABLE, 0);
return 0;
}
static void inno_hdmi_phy_rk3228_power_off(struct inno_hdmi_phy *inno)
{
inno_update_bits(inno, 0xe1, RK3228_TMDS_DRIVER_ENABLE, 0);
inno_update_bits(inno, 0xe1, RK3228_BANDGAP_ENABLE, 0);
inno_update_bits(inno, 0xe0, RK3228_POST_PLL_POWER_DOWN,
RK3228_POST_PLL_POWER_DOWN);
}
static const struct inno_hdmi_phy_ops rk3228_hdmi_phy_ops = {
.init = inno_hdmi_phy_rk3228_init,
.power_on = inno_hdmi_phy_rk3228_power_on,
.power_off = inno_hdmi_phy_rk3228_power_off,
};
static int inno_hdmi_phy_rk3328_init(struct inno_hdmi_phy *inno)
{
struct nvmem_cell *cell;
unsigned char *efuse_buf;
size_t len;
/*
* Use phy internal register control
* rxsense/poweron/pllpd/pdataen signal.
*/
inno_write(inno, 0x01, RK3328_BYPASS_RXSENSE_EN |
RK3328_BYPASS_POWERON_EN |
RK3328_BYPASS_PLLPD_EN);
inno_write(inno, 0x02, RK3328_INT_POL_HIGH | RK3328_BYPASS_PDATA_EN |
RK3328_PDATA_EN);
/* Disable phy irq */
inno_write(inno, 0x05, 0);
inno_write(inno, 0x07, 0);
/* try to read the chip-version */
inno->chip_version = 1;
cell = nvmem_cell_get(inno->dev, "cpu-version");
if (IS_ERR(cell)) {
if (PTR_ERR(cell) == -EPROBE_DEFER)
return -EPROBE_DEFER;
return 0;
}
efuse_buf = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(efuse_buf))
return 0;
if (len == 1)
inno->chip_version = efuse_buf[0] + 1;
kfree(efuse_buf);
return 0;
}
static int
inno_hdmi_phy_rk3328_power_on(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg)
{
int ret;
u32 v;
inno_update_bits(inno, 0x02, RK3328_PDATA_EN, 0);
inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN,
RK3328_POST_PLL_POWER_DOWN);
inno_write(inno, 0xac, RK3328_POST_PLL_FB_DIV_7_0(cfg->fbdiv));
if (cfg->postdiv == 1) {
inno_write(inno, 0xab, RK3328_POST_PLL_FB_DIV_8(cfg->fbdiv) |
RK3328_POST_PLL_PRE_DIV(cfg->prediv));
inno_write(inno, 0xaa, RK3328_POST_PLL_REFCLK_SEL_TMDS |
RK3328_POST_PLL_POWER_DOWN);
} else {
v = (cfg->postdiv / 2) - 1;
v &= RK3328_POST_PLL_POST_DIV_MASK;
inno_write(inno, 0xad, v);
inno_write(inno, 0xab, RK3328_POST_PLL_FB_DIV_8(cfg->fbdiv) |
RK3328_POST_PLL_PRE_DIV(cfg->prediv));
inno_write(inno, 0xaa, RK3328_POST_PLL_POST_DIV_ENABLE |
RK3328_POST_PLL_REFCLK_SEL_TMDS |
RK3328_POST_PLL_POWER_DOWN);
}
for (v = 0; v < 14; v++)
inno_write(inno, 0xb5 + v, phy_cfg->regs[v]);
/* set ESD detection threshold for TMDS CLK, D2, D1 and D0 */
for (v = 0; v < 4; v++)
inno_update_bits(inno, 0xc8 + v, RK3328_ESD_DETECT_MASK,
RK3328_ESD_DETECT_340MV);
if (phy_cfg->tmdsclock > 340000000) {
/* Set termination resistor to 100ohm */
v = clk_get_rate(inno->sysclk) / 100000;
inno_write(inno, 0xc5, RK3328_TERM_RESISTOR_CALIB_SPEED_14_8(v)
| RK3328_BYPASS_TERM_RESISTOR_CALIB);
inno_write(inno, 0xc6, RK3328_TERM_RESISTOR_CALIB_SPEED_7_0(v));
inno_write(inno, 0xc7, RK3328_TERM_RESISTOR_100);
inno_update_bits(inno, 0xc5,
RK3328_BYPASS_TERM_RESISTOR_CALIB, 0);
} else {
inno_write(inno, 0xc5, RK3328_BYPASS_TERM_RESISTOR_CALIB);
/* clk termination resistor is 50ohm (parallel resistors) */
if (phy_cfg->tmdsclock > 165000000)
inno_update_bits(inno, 0xc8,
RK3328_TMDS_TERM_RESIST_MASK,
RK3328_TMDS_TERM_RESIST_75 |
RK3328_TMDS_TERM_RESIST_150);
/* data termination resistor for D2, D1 and D0 is 150ohm */
for (v = 0; v < 3; v++)
inno_update_bits(inno, 0xc9 + v,
RK3328_TMDS_TERM_RESIST_MASK,
RK3328_TMDS_TERM_RESIST_150);
}
inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN, 0);
inno_update_bits(inno, 0xb0, RK3328_BANDGAP_ENABLE,
RK3328_BANDGAP_ENABLE);
inno_update_bits(inno, 0xb2, RK3328_TMDS_DRIVER_ENABLE,
RK3328_TMDS_DRIVER_ENABLE);
/* Wait for post PLL lock */
ret = inno_poll(inno, 0xaf, v, v & RK3328_POST_PLL_LOCK_STATUS,
1000, 10000);
if (ret) {
dev_err(inno->dev, "Post-PLL locking failed\n");
return ret;
}
if (phy_cfg->tmdsclock > 340000000)
msleep(100);
inno_update_bits(inno, 0x02, RK3328_PDATA_EN, RK3328_PDATA_EN);
/* Enable PHY IRQ */
inno_write(inno, 0x05, RK3328_INT_TMDS_CLK(RK3328_INT_VSS_AGND_ESD_DET)
| RK3328_INT_TMDS_D2(RK3328_INT_VSS_AGND_ESD_DET));
inno_write(inno, 0x07, RK3328_INT_TMDS_D1(RK3328_INT_VSS_AGND_ESD_DET)
| RK3328_INT_TMDS_D0(RK3328_INT_VSS_AGND_ESD_DET));
return 0;
}
static void inno_hdmi_phy_rk3328_power_off(struct inno_hdmi_phy *inno)
{
inno_update_bits(inno, 0xb2, RK3328_TMDS_DRIVER_ENABLE, 0);
inno_update_bits(inno, 0xb0, RK3328_BANDGAP_ENABLE, 0);
inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN,
RK3328_POST_PLL_POWER_DOWN);
/* Disable PHY IRQ */
inno_write(inno, 0x05, 0);
inno_write(inno, 0x07, 0);
}
static const struct inno_hdmi_phy_ops rk3328_hdmi_phy_ops = {
.init = inno_hdmi_phy_rk3328_init,
.power_on = inno_hdmi_phy_rk3328_power_on,
.power_off = inno_hdmi_phy_rk3328_power_off,
};
static const struct inno_hdmi_phy_drv_data rk3228_hdmi_phy_drv_data = {
.ops = &rk3228_hdmi_phy_ops,
.clk_ops = &inno_hdmi_phy_rk3228_clk_ops,
.phy_cfg_table = rk3228_phy_cfg,
};
static const struct inno_hdmi_phy_drv_data rk3328_hdmi_phy_drv_data = {
.ops = &rk3328_hdmi_phy_ops,
.clk_ops = &inno_hdmi_phy_rk3328_clk_ops,
.phy_cfg_table = rk3328_phy_cfg,
};
static const struct regmap_config inno_hdmi_phy_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x400,
};
static void inno_hdmi_phy_action(void *data)
{
struct inno_hdmi_phy *inno = data;
clk_disable_unprepare(inno->refpclk);
clk_disable_unprepare(inno->sysclk);
}
static int inno_hdmi_phy_probe(struct platform_device *pdev)
{
struct inno_hdmi_phy *inno;
struct phy_provider *phy_provider;
void __iomem *regs;
int ret;
inno = devm_kzalloc(&pdev->dev, sizeof(*inno), GFP_KERNEL);
if (!inno)
return -ENOMEM;
inno->dev = &pdev->dev;
inno->plat_data = of_device_get_match_data(inno->dev);
if (!inno->plat_data || !inno->plat_data->ops)
return -EINVAL;
regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(regs))
return PTR_ERR(regs);
inno->sysclk = devm_clk_get(inno->dev, "sysclk");
if (IS_ERR(inno->sysclk)) {
ret = PTR_ERR(inno->sysclk);
dev_err(inno->dev, "failed to get sysclk: %d\n", ret);
return ret;
}
inno->refpclk = devm_clk_get(inno->dev, "refpclk");
if (IS_ERR(inno->refpclk)) {
ret = PTR_ERR(inno->refpclk);
dev_err(inno->dev, "failed to get ref clock: %d\n", ret);
return ret;
}
inno->refoclk = devm_clk_get(inno->dev, "refoclk");
if (IS_ERR(inno->refoclk)) {
ret = PTR_ERR(inno->refoclk);
dev_err(inno->dev, "failed to get oscillator-ref clock: %d\n",
ret);
return ret;
}
ret = clk_prepare_enable(inno->sysclk);
if (ret) {
dev_err(inno->dev, "Cannot enable inno phy sysclk: %d\n", ret);
return ret;
}
/*
* Refpclk needs to be on, on at least the rk3328 for still
* unknown reasons.
*/
ret = clk_prepare_enable(inno->refpclk);
if (ret) {
dev_err(inno->dev, "failed to enable refpclk\n");
clk_disable_unprepare(inno->sysclk);
return ret;
}
ret = devm_add_action_or_reset(inno->dev, inno_hdmi_phy_action,
inno);
if (ret)
return ret;
inno->regmap = devm_regmap_init_mmio(inno->dev, regs,
&inno_hdmi_phy_regmap_config);
if (IS_ERR(inno->regmap))
return PTR_ERR(inno->regmap);
/* only the newer rk3328 hdmiphy has an interrupt */
inno->irq = platform_get_irq(pdev, 0);
if (inno->irq > 0) {
ret = devm_request_threaded_irq(inno->dev, inno->irq,
inno_hdmi_phy_rk3328_hardirq,
inno_hdmi_phy_rk3328_irq,
IRQF_SHARED,
dev_name(inno->dev), inno);
if (ret)
return ret;
}
inno->phy = devm_phy_create(inno->dev, NULL, &inno_hdmi_phy_ops);
if (IS_ERR(inno->phy)) {
dev_err(inno->dev, "failed to create HDMI PHY\n");
return PTR_ERR(inno->phy);
}
phy_set_drvdata(inno->phy, inno);
phy_set_bus_width(inno->phy, 8);
if (inno->plat_data->ops->init) {
ret = inno->plat_data->ops->init(inno);
if (ret)
return ret;
}
ret = inno_hdmi_phy_clk_register(inno);
if (ret)
return ret;
phy_provider = devm_of_phy_provider_register(inno->dev,
of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static void inno_hdmi_phy_remove(struct platform_device *pdev)
{
of_clk_del_provider(pdev->dev.of_node);
}
static const struct of_device_id inno_hdmi_phy_of_match[] = {
{
.compatible = "rockchip,rk3228-hdmi-phy",
.data = &rk3228_hdmi_phy_drv_data
}, {
.compatible = "rockchip,rk3328-hdmi-phy",
.data = &rk3328_hdmi_phy_drv_data
}, { /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, inno_hdmi_phy_of_match);
static struct platform_driver inno_hdmi_phy_driver = {
.probe = inno_hdmi_phy_probe,
.remove_new = inno_hdmi_phy_remove,
.driver = {
.name = "inno-hdmi-phy",
.of_match_table = inno_hdmi_phy_of_match,
},
};
module_platform_driver(inno_hdmi_phy_driver);
MODULE_AUTHOR("Zheng Yang <[email protected]>");
MODULE_DESCRIPTION("Innosilion HDMI 2.0 Transmitter PHY Driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/rockchip/phy-rockchip-inno-hdmi.c |
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Rockchip MIPI Synopsys DPHY RX0 driver
*
* Copyright (C) 2019 Collabora, Ltd.
*
* Based on:
*
* drivers/media/platform/rockchip/isp1/mipi_dphy_sy.c
* in https://chromium.googlesource.com/chromiumos/third_party/kernel,
* chromeos-4.4 branch.
*
* Copyright (C) 2017 Fuzhou Rockchip Electronics Co., Ltd.
* Jacob Chen <[email protected]>
* Shunqian Zheng <[email protected]>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-mipi-dphy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#define RK3399_GRF_SOC_CON9 0x6224
#define RK3399_GRF_SOC_CON21 0x6254
#define RK3399_GRF_SOC_CON22 0x6258
#define RK3399_GRF_SOC_CON23 0x625c
#define RK3399_GRF_SOC_CON24 0x6260
#define RK3399_GRF_SOC_CON25 0x6264
#define RK3399_GRF_SOC_STATUS1 0xe2a4
#define CLOCK_LANE_HS_RX_CONTROL 0x34
#define LANE0_HS_RX_CONTROL 0x44
#define LANE1_HS_RX_CONTROL 0x54
#define LANE2_HS_RX_CONTROL 0x84
#define LANE3_HS_RX_CONTROL 0x94
#define LANES_THS_SETTLE_CONTROL 0x75
#define THS_SETTLE_COUNTER_THRESHOLD 0x04
struct hsfreq_range {
u16 range_h;
u8 cfg_bit;
};
static const struct hsfreq_range rk3399_mipidphy_hsfreq_ranges[] = {
{ 89, 0x00 }, { 99, 0x10 }, { 109, 0x20 }, { 129, 0x01 },
{ 139, 0x11 }, { 149, 0x21 }, { 169, 0x02 }, { 179, 0x12 },
{ 199, 0x22 }, { 219, 0x03 }, { 239, 0x13 }, { 249, 0x23 },
{ 269, 0x04 }, { 299, 0x14 }, { 329, 0x05 }, { 359, 0x15 },
{ 399, 0x25 }, { 449, 0x06 }, { 499, 0x16 }, { 549, 0x07 },
{ 599, 0x17 }, { 649, 0x08 }, { 699, 0x18 }, { 749, 0x09 },
{ 799, 0x19 }, { 849, 0x29 }, { 899, 0x39 }, { 949, 0x0a },
{ 999, 0x1a }, { 1049, 0x2a }, { 1099, 0x3a }, { 1149, 0x0b },
{ 1199, 0x1b }, { 1249, 0x2b }, { 1299, 0x3b }, { 1349, 0x0c },
{ 1399, 0x1c }, { 1449, 0x2c }, { 1500, 0x3c }
};
static const char * const rk3399_mipidphy_clks[] = {
"dphy-ref",
"dphy-cfg",
"grf",
};
enum dphy_reg_id {
GRF_DPHY_RX0_TURNDISABLE = 0,
GRF_DPHY_RX0_FORCERXMODE,
GRF_DPHY_RX0_FORCETXSTOPMODE,
GRF_DPHY_RX0_ENABLE,
GRF_DPHY_RX0_TESTCLR,
GRF_DPHY_RX0_TESTCLK,
GRF_DPHY_RX0_TESTEN,
GRF_DPHY_RX0_TESTDIN,
GRF_DPHY_RX0_TURNREQUEST,
GRF_DPHY_RX0_TESTDOUT,
GRF_DPHY_TX0_TURNDISABLE,
GRF_DPHY_TX0_FORCERXMODE,
GRF_DPHY_TX0_FORCETXSTOPMODE,
GRF_DPHY_TX0_TURNREQUEST,
GRF_DPHY_TX1RX1_TURNDISABLE,
GRF_DPHY_TX1RX1_FORCERXMODE,
GRF_DPHY_TX1RX1_FORCETXSTOPMODE,
GRF_DPHY_TX1RX1_ENABLE,
GRF_DPHY_TX1RX1_MASTERSLAVEZ,
GRF_DPHY_TX1RX1_BASEDIR,
GRF_DPHY_TX1RX1_ENABLECLK,
GRF_DPHY_TX1RX1_TURNREQUEST,
GRF_DPHY_RX1_SRC_SEL,
/* rk3288 only */
GRF_CON_DISABLE_ISP,
GRF_CON_ISP_DPHY_SEL,
GRF_DSI_CSI_TESTBUS_SEL,
GRF_DVP_V18SEL,
/* below is for rk3399 only */
GRF_DPHY_RX0_CLK_INV_SEL,
GRF_DPHY_RX1_CLK_INV_SEL,
};
struct dphy_reg {
u16 offset;
u8 mask;
u8 shift;
};
#define PHY_REG(_offset, _width, _shift) \
{ .offset = _offset, .mask = BIT(_width) - 1, .shift = _shift, }
static const struct dphy_reg rk3399_grf_dphy_regs[] = {
[GRF_DPHY_RX0_TURNREQUEST] = PHY_REG(RK3399_GRF_SOC_CON9, 4, 0),
[GRF_DPHY_RX0_CLK_INV_SEL] = PHY_REG(RK3399_GRF_SOC_CON9, 1, 10),
[GRF_DPHY_RX1_CLK_INV_SEL] = PHY_REG(RK3399_GRF_SOC_CON9, 1, 11),
[GRF_DPHY_RX0_ENABLE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 0),
[GRF_DPHY_RX0_FORCERXMODE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 4),
[GRF_DPHY_RX0_FORCETXSTOPMODE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 8),
[GRF_DPHY_RX0_TURNDISABLE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 12),
[GRF_DPHY_TX0_FORCERXMODE] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 0),
[GRF_DPHY_TX0_FORCETXSTOPMODE] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 4),
[GRF_DPHY_TX0_TURNDISABLE] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 8),
[GRF_DPHY_TX0_TURNREQUEST] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 12),
[GRF_DPHY_TX1RX1_ENABLE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 0),
[GRF_DPHY_TX1RX1_FORCERXMODE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 4),
[GRF_DPHY_TX1RX1_FORCETXSTOPMODE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 8),
[GRF_DPHY_TX1RX1_TURNDISABLE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 12),
[GRF_DPHY_TX1RX1_TURNREQUEST] = PHY_REG(RK3399_GRF_SOC_CON24, 4, 0),
[GRF_DPHY_RX1_SRC_SEL] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 4),
[GRF_DPHY_TX1RX1_BASEDIR] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 5),
[GRF_DPHY_TX1RX1_ENABLECLK] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 6),
[GRF_DPHY_TX1RX1_MASTERSLAVEZ] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 7),
[GRF_DPHY_RX0_TESTDIN] = PHY_REG(RK3399_GRF_SOC_CON25, 8, 0),
[GRF_DPHY_RX0_TESTEN] = PHY_REG(RK3399_GRF_SOC_CON25, 1, 8),
[GRF_DPHY_RX0_TESTCLK] = PHY_REG(RK3399_GRF_SOC_CON25, 1, 9),
[GRF_DPHY_RX0_TESTCLR] = PHY_REG(RK3399_GRF_SOC_CON25, 1, 10),
[GRF_DPHY_RX0_TESTDOUT] = PHY_REG(RK3399_GRF_SOC_STATUS1, 8, 0),
};
struct rk_dphy_drv_data {
const char * const *clks;
unsigned int num_clks;
const struct hsfreq_range *hsfreq_ranges;
unsigned int num_hsfreq_ranges;
const struct dphy_reg *regs;
};
struct rk_dphy {
struct device *dev;
struct regmap *grf;
struct clk_bulk_data *clks;
const struct rk_dphy_drv_data *drv_data;
struct phy_configure_opts_mipi_dphy config;
u8 hsfreq;
};
static inline void rk_dphy_write_grf(struct rk_dphy *priv,
unsigned int index, u8 value)
{
const struct dphy_reg *reg = &priv->drv_data->regs[index];
/* Update high word */
unsigned int val = (value << reg->shift) |
(reg->mask << (reg->shift + 16));
if (WARN_ON(!reg->offset))
return;
regmap_write(priv->grf, reg->offset, val);
}
static void rk_dphy_write(struct rk_dphy *priv, u8 test_code, u8 test_data)
{
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTDIN, test_code);
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTEN, 1);
/*
* With the falling edge on TESTCLK, the TESTDIN[7:0] signal content
* is latched internally as the current test code. Test data is
* programmed internally by rising edge on TESTCLK.
* This code assumes that TESTCLK is already 1.
*/
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTCLK, 0);
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTEN, 0);
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTDIN, test_data);
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTCLK, 1);
}
static void rk_dphy_enable(struct rk_dphy *priv)
{
rk_dphy_write_grf(priv, GRF_DPHY_RX0_FORCERXMODE, 0);
rk_dphy_write_grf(priv, GRF_DPHY_RX0_FORCETXSTOPMODE, 0);
/* Disable lane turn around, which is ignored in receive mode */
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TURNREQUEST, 0);
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TURNDISABLE, 0xf);
rk_dphy_write_grf(priv, GRF_DPHY_RX0_ENABLE,
GENMASK(priv->config.lanes - 1, 0));
/* dphy start */
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTCLK, 1);
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTCLR, 1);
usleep_range(100, 150);
rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTCLR, 0);
usleep_range(100, 150);
/* set clock lane */
/* HS hsfreq_range & lane 0 settle bypass */
rk_dphy_write(priv, CLOCK_LANE_HS_RX_CONTROL, 0);
/* HS RX Control of lane0 */
rk_dphy_write(priv, LANE0_HS_RX_CONTROL, priv->hsfreq << 1);
/* HS RX Control of lane1 */
rk_dphy_write(priv, LANE1_HS_RX_CONTROL, priv->hsfreq << 1);
/* HS RX Control of lane2 */
rk_dphy_write(priv, LANE2_HS_RX_CONTROL, priv->hsfreq << 1);
/* HS RX Control of lane3 */
rk_dphy_write(priv, LANE3_HS_RX_CONTROL, priv->hsfreq << 1);
/* HS RX Data Lanes Settle State Time Control */
rk_dphy_write(priv, LANES_THS_SETTLE_CONTROL,
THS_SETTLE_COUNTER_THRESHOLD);
/* Normal operation */
rk_dphy_write(priv, 0x0, 0);
}
static int rk_dphy_configure(struct phy *phy, union phy_configure_opts *opts)
{
struct rk_dphy *priv = phy_get_drvdata(phy);
const struct rk_dphy_drv_data *drv_data = priv->drv_data;
struct phy_configure_opts_mipi_dphy *config = &opts->mipi_dphy;
unsigned int hsfreq = 0;
unsigned int i;
u64 data_rate_mbps;
int ret;
/* pass with phy_mipi_dphy_get_default_config (with pixel rate?) */
ret = phy_mipi_dphy_config_validate(config);
if (ret)
return ret;
data_rate_mbps = div_u64(config->hs_clk_rate, 1000 * 1000);
dev_dbg(priv->dev, "lanes %d - data_rate_mbps %llu\n",
config->lanes, data_rate_mbps);
for (i = 0; i < drv_data->num_hsfreq_ranges; i++) {
if (drv_data->hsfreq_ranges[i].range_h >= data_rate_mbps) {
hsfreq = drv_data->hsfreq_ranges[i].cfg_bit;
break;
}
}
if (!hsfreq)
return -EINVAL;
priv->hsfreq = hsfreq;
priv->config = *config;
return 0;
}
static int rk_dphy_power_on(struct phy *phy)
{
struct rk_dphy *priv = phy_get_drvdata(phy);
int ret;
ret = clk_bulk_enable(priv->drv_data->num_clks, priv->clks);
if (ret)
return ret;
rk_dphy_enable(priv);
return 0;
}
static int rk_dphy_power_off(struct phy *phy)
{
struct rk_dphy *priv = phy_get_drvdata(phy);
rk_dphy_write_grf(priv, GRF_DPHY_RX0_ENABLE, 0);
clk_bulk_disable(priv->drv_data->num_clks, priv->clks);
return 0;
}
static int rk_dphy_init(struct phy *phy)
{
struct rk_dphy *priv = phy_get_drvdata(phy);
return clk_bulk_prepare(priv->drv_data->num_clks, priv->clks);
}
static int rk_dphy_exit(struct phy *phy)
{
struct rk_dphy *priv = phy_get_drvdata(phy);
clk_bulk_unprepare(priv->drv_data->num_clks, priv->clks);
return 0;
}
static const struct phy_ops rk_dphy_ops = {
.power_on = rk_dphy_power_on,
.power_off = rk_dphy_power_off,
.init = rk_dphy_init,
.exit = rk_dphy_exit,
.configure = rk_dphy_configure,
.owner = THIS_MODULE,
};
static const struct rk_dphy_drv_data rk3399_mipidphy_drv_data = {
.clks = rk3399_mipidphy_clks,
.num_clks = ARRAY_SIZE(rk3399_mipidphy_clks),
.hsfreq_ranges = rk3399_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk3399_mipidphy_hsfreq_ranges),
.regs = rk3399_grf_dphy_regs,
};
static const struct of_device_id rk_dphy_dt_ids[] = {
{
.compatible = "rockchip,rk3399-mipi-dphy-rx0",
.data = &rk3399_mipidphy_drv_data,
},
{}
};
MODULE_DEVICE_TABLE(of, rk_dphy_dt_ids);
static int rk_dphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
const struct rk_dphy_drv_data *drv_data;
struct phy_provider *phy_provider;
struct rk_dphy *priv;
struct phy *phy;
unsigned int i;
int ret;
if (!dev->parent || !dev->parent->of_node)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->grf = syscon_node_to_regmap(dev->parent->of_node);
if (IS_ERR(priv->grf)) {
dev_err(dev, "Can't find GRF syscon\n");
return -ENODEV;
}
drv_data = of_device_get_match_data(dev);
priv->drv_data = drv_data;
priv->clks = devm_kcalloc(&pdev->dev, drv_data->num_clks,
sizeof(*priv->clks), GFP_KERNEL);
if (!priv->clks)
return -ENOMEM;
for (i = 0; i < drv_data->num_clks; i++)
priv->clks[i].id = drv_data->clks[i];
ret = devm_clk_bulk_get(&pdev->dev, drv_data->num_clks, priv->clks);
if (ret)
return ret;
phy = devm_phy_create(dev, np, &rk_dphy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create phy\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver rk_dphy_driver = {
.probe = rk_dphy_probe,
.driver = {
.name = "rockchip-mipi-dphy-rx0",
.of_match_table = rk_dphy_dt_ids,
},
};
module_platform_driver(rk_dphy_driver);
MODULE_AUTHOR("Ezequiel Garcia <[email protected]>");
MODULE_DESCRIPTION("Rockchip MIPI Synopsys DPHY RX0 driver");
MODULE_LICENSE("Dual MIT/GPL");
| linux-master | drivers/phy/rockchip/phy-rockchip-dphy-rx0.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Rockchip usb PHY driver
*
* Copyright (C) 2014 Yunzhi Li <[email protected]>
* Copyright (C) 2014 ROCKCHIP, Inc.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/delay.h>
static int enable_usb_uart;
#define HIWORD_UPDATE(val, mask) \
((val) | (mask) << 16)
#define UOC_CON0 0x00
#define UOC_CON0_SIDDQ BIT(13)
#define UOC_CON0_DISABLE BIT(4)
#define UOC_CON0_COMMON_ON_N BIT(0)
#define UOC_CON2 0x08
#define UOC_CON2_SOFT_CON_SEL BIT(2)
#define UOC_CON3 0x0c
/* bits present on rk3188 and rk3288 phys */
#define UOC_CON3_UTMI_TERMSEL_FULLSPEED BIT(5)
#define UOC_CON3_UTMI_XCVRSEELCT_FSTRANSC (1 << 3)
#define UOC_CON3_UTMI_XCVRSEELCT_MASK (3 << 3)
#define UOC_CON3_UTMI_OPMODE_NODRIVING (1 << 1)
#define UOC_CON3_UTMI_OPMODE_MASK (3 << 1)
#define UOC_CON3_UTMI_SUSPENDN BIT(0)
struct rockchip_usb_phys {
int reg;
const char *pll_name;
};
struct rockchip_usb_phy_base;
struct rockchip_usb_phy_pdata {
struct rockchip_usb_phys *phys;
int (*init_usb_uart)(struct regmap *grf,
const struct rockchip_usb_phy_pdata *pdata);
int usb_uart_phy;
};
struct rockchip_usb_phy_base {
struct device *dev;
struct regmap *reg_base;
const struct rockchip_usb_phy_pdata *pdata;
};
struct rockchip_usb_phy {
struct rockchip_usb_phy_base *base;
struct device_node *np;
unsigned int reg_offset;
struct clk *clk;
struct clk *clk480m;
struct clk_hw clk480m_hw;
struct phy *phy;
bool uart_enabled;
struct reset_control *reset;
struct regulator *vbus;
};
static int rockchip_usb_phy_power(struct rockchip_usb_phy *phy,
bool siddq)
{
u32 val = HIWORD_UPDATE(siddq ? UOC_CON0_SIDDQ : 0, UOC_CON0_SIDDQ);
return regmap_write(phy->base->reg_base, phy->reg_offset, val);
}
static unsigned long rockchip_usb_phy480m_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return 480000000;
}
static void rockchip_usb_phy480m_disable(struct clk_hw *hw)
{
struct rockchip_usb_phy *phy = container_of(hw,
struct rockchip_usb_phy,
clk480m_hw);
if (phy->vbus)
regulator_disable(phy->vbus);
/* Power down usb phy analog blocks by set siddq 1 */
rockchip_usb_phy_power(phy, 1);
}
static int rockchip_usb_phy480m_enable(struct clk_hw *hw)
{
struct rockchip_usb_phy *phy = container_of(hw,
struct rockchip_usb_phy,
clk480m_hw);
/* Power up usb phy analog blocks by set siddq 0 */
return rockchip_usb_phy_power(phy, 0);
}
static int rockchip_usb_phy480m_is_enabled(struct clk_hw *hw)
{
struct rockchip_usb_phy *phy = container_of(hw,
struct rockchip_usb_phy,
clk480m_hw);
int ret;
u32 val;
ret = regmap_read(phy->base->reg_base, phy->reg_offset, &val);
if (ret < 0)
return ret;
return (val & UOC_CON0_SIDDQ) ? 0 : 1;
}
static const struct clk_ops rockchip_usb_phy480m_ops = {
.enable = rockchip_usb_phy480m_enable,
.disable = rockchip_usb_phy480m_disable,
.is_enabled = rockchip_usb_phy480m_is_enabled,
.recalc_rate = rockchip_usb_phy480m_recalc_rate,
};
static int rockchip_usb_phy_power_off(struct phy *_phy)
{
struct rockchip_usb_phy *phy = phy_get_drvdata(_phy);
if (phy->uart_enabled)
return -EBUSY;
clk_disable_unprepare(phy->clk480m);
return 0;
}
static int rockchip_usb_phy_power_on(struct phy *_phy)
{
struct rockchip_usb_phy *phy = phy_get_drvdata(_phy);
if (phy->uart_enabled)
return -EBUSY;
if (phy->vbus) {
int ret;
ret = regulator_enable(phy->vbus);
if (ret)
return ret;
}
return clk_prepare_enable(phy->clk480m);
}
static int rockchip_usb_phy_reset(struct phy *_phy)
{
struct rockchip_usb_phy *phy = phy_get_drvdata(_phy);
if (phy->reset) {
reset_control_assert(phy->reset);
udelay(10);
reset_control_deassert(phy->reset);
}
return 0;
}
static const struct phy_ops ops = {
.power_on = rockchip_usb_phy_power_on,
.power_off = rockchip_usb_phy_power_off,
.reset = rockchip_usb_phy_reset,
.owner = THIS_MODULE,
};
static void rockchip_usb_phy_action(void *data)
{
struct rockchip_usb_phy *rk_phy = data;
if (!rk_phy->uart_enabled) {
of_clk_del_provider(rk_phy->np);
clk_unregister(rk_phy->clk480m);
}
if (rk_phy->clk)
clk_put(rk_phy->clk);
}
static int rockchip_usb_phy_init(struct rockchip_usb_phy_base *base,
struct device_node *child)
{
struct rockchip_usb_phy *rk_phy;
unsigned int reg_offset;
const char *clk_name;
struct clk_init_data init;
int err, i;
rk_phy = devm_kzalloc(base->dev, sizeof(*rk_phy), GFP_KERNEL);
if (!rk_phy)
return -ENOMEM;
rk_phy->base = base;
rk_phy->np = child;
if (of_property_read_u32(child, "reg", ®_offset)) {
dev_err(base->dev, "missing reg property in node %pOFn\n",
child);
return -EINVAL;
}
rk_phy->reset = of_reset_control_get(child, "phy-reset");
if (IS_ERR(rk_phy->reset))
rk_phy->reset = NULL;
rk_phy->reg_offset = reg_offset;
rk_phy->clk = of_clk_get_by_name(child, "phyclk");
if (IS_ERR(rk_phy->clk))
rk_phy->clk = NULL;
i = 0;
init.name = NULL;
while (base->pdata->phys[i].reg) {
if (base->pdata->phys[i].reg == reg_offset) {
init.name = base->pdata->phys[i].pll_name;
break;
}
i++;
}
if (!init.name) {
dev_err(base->dev, "phy data not found\n");
return -EINVAL;
}
if (enable_usb_uart && base->pdata->usb_uart_phy == i) {
dev_dbg(base->dev, "phy%d used as uart output\n", i);
rk_phy->uart_enabled = true;
} else {
if (rk_phy->clk) {
clk_name = __clk_get_name(rk_phy->clk);
init.flags = 0;
init.parent_names = &clk_name;
init.num_parents = 1;
} else {
init.flags = 0;
init.parent_names = NULL;
init.num_parents = 0;
}
init.ops = &rockchip_usb_phy480m_ops;
rk_phy->clk480m_hw.init = &init;
rk_phy->clk480m = clk_register(base->dev, &rk_phy->clk480m_hw);
if (IS_ERR(rk_phy->clk480m)) {
err = PTR_ERR(rk_phy->clk480m);
goto err_clk;
}
err = of_clk_add_provider(child, of_clk_src_simple_get,
rk_phy->clk480m);
if (err < 0)
goto err_clk_prov;
}
err = devm_add_action_or_reset(base->dev, rockchip_usb_phy_action,
rk_phy);
if (err)
return err;
rk_phy->phy = devm_phy_create(base->dev, child, &ops);
if (IS_ERR(rk_phy->phy)) {
dev_err(base->dev, "failed to create PHY\n");
return PTR_ERR(rk_phy->phy);
}
phy_set_drvdata(rk_phy->phy, rk_phy);
rk_phy->vbus = devm_regulator_get_optional(&rk_phy->phy->dev, "vbus");
if (IS_ERR(rk_phy->vbus)) {
if (PTR_ERR(rk_phy->vbus) == -EPROBE_DEFER)
return PTR_ERR(rk_phy->vbus);
rk_phy->vbus = NULL;
}
/*
* When acting as uart-pipe, just keep clock on otherwise
* only power up usb phy when it use, so disable it when init
*/
if (rk_phy->uart_enabled)
return clk_prepare_enable(rk_phy->clk);
else
return rockchip_usb_phy_power(rk_phy, 1);
err_clk_prov:
if (!rk_phy->uart_enabled)
clk_unregister(rk_phy->clk480m);
err_clk:
if (rk_phy->clk)
clk_put(rk_phy->clk);
return err;
}
static const struct rockchip_usb_phy_pdata rk3066a_pdata = {
.phys = (struct rockchip_usb_phys[]){
{ .reg = 0x17c, .pll_name = "sclk_otgphy0_480m" },
{ .reg = 0x188, .pll_name = "sclk_otgphy1_480m" },
{ /* sentinel */ }
},
};
static int __init rockchip_init_usb_uart_common(struct regmap *grf,
const struct rockchip_usb_phy_pdata *pdata)
{
int regoffs = pdata->phys[pdata->usb_uart_phy].reg;
int ret;
u32 val;
/*
* COMMON_ON and DISABLE settings are described in the TRM,
* but were not present in the original code.
* Also disable the analog phy components to save power.
*/
val = HIWORD_UPDATE(UOC_CON0_COMMON_ON_N
| UOC_CON0_DISABLE
| UOC_CON0_SIDDQ,
UOC_CON0_COMMON_ON_N
| UOC_CON0_DISABLE
| UOC_CON0_SIDDQ);
ret = regmap_write(grf, regoffs + UOC_CON0, val);
if (ret)
return ret;
val = HIWORD_UPDATE(UOC_CON2_SOFT_CON_SEL,
UOC_CON2_SOFT_CON_SEL);
ret = regmap_write(grf, regoffs + UOC_CON2, val);
if (ret)
return ret;
val = HIWORD_UPDATE(UOC_CON3_UTMI_OPMODE_NODRIVING
| UOC_CON3_UTMI_XCVRSEELCT_FSTRANSC
| UOC_CON3_UTMI_TERMSEL_FULLSPEED,
UOC_CON3_UTMI_SUSPENDN
| UOC_CON3_UTMI_OPMODE_MASK
| UOC_CON3_UTMI_XCVRSEELCT_MASK
| UOC_CON3_UTMI_TERMSEL_FULLSPEED);
ret = regmap_write(grf, UOC_CON3, val);
if (ret)
return ret;
return 0;
}
#define RK3188_UOC0_CON0 0x10c
#define RK3188_UOC0_CON0_BYPASSSEL BIT(9)
#define RK3188_UOC0_CON0_BYPASSDMEN BIT(8)
/*
* Enable the bypass of uart2 data through the otg usb phy.
* See description of rk3288-variant for details.
*/
static int __init rk3188_init_usb_uart(struct regmap *grf,
const struct rockchip_usb_phy_pdata *pdata)
{
u32 val;
int ret;
ret = rockchip_init_usb_uart_common(grf, pdata);
if (ret)
return ret;
val = HIWORD_UPDATE(RK3188_UOC0_CON0_BYPASSSEL
| RK3188_UOC0_CON0_BYPASSDMEN,
RK3188_UOC0_CON0_BYPASSSEL
| RK3188_UOC0_CON0_BYPASSDMEN);
ret = regmap_write(grf, RK3188_UOC0_CON0, val);
if (ret)
return ret;
return 0;
}
static const struct rockchip_usb_phy_pdata rk3188_pdata = {
.phys = (struct rockchip_usb_phys[]){
{ .reg = 0x10c, .pll_name = "sclk_otgphy0_480m" },
{ .reg = 0x11c, .pll_name = "sclk_otgphy1_480m" },
{ /* sentinel */ }
},
.init_usb_uart = rk3188_init_usb_uart,
.usb_uart_phy = 0,
};
#define RK3288_UOC0_CON3 0x32c
#define RK3288_UOC0_CON3_BYPASSDMEN BIT(6)
#define RK3288_UOC0_CON3_BYPASSSEL BIT(7)
/*
* Enable the bypass of uart2 data through the otg usb phy.
* Original description in the TRM.
* 1. Disable the OTG block by setting OTGDISABLE0 to 1’b1.
* 2. Disable the pull-up resistance on the D+ line by setting
* OPMODE0[1:0] to 2’b01.
* 3. To ensure that the XO, Bias, and PLL blocks are powered down in Suspend
* mode, set COMMONONN to 1’b1.
* 4. Place the USB PHY in Suspend mode by setting SUSPENDM0 to 1’b0.
* 5. Set BYPASSSEL0 to 1’b1.
* 6. To transmit data, controls BYPASSDMEN0, and BYPASSDMDATA0.
* To receive data, monitor FSVPLUS0.
*
* The actual code in the vendor kernel does some things differently.
*/
static int __init rk3288_init_usb_uart(struct regmap *grf,
const struct rockchip_usb_phy_pdata *pdata)
{
u32 val;
int ret;
ret = rockchip_init_usb_uart_common(grf, pdata);
if (ret)
return ret;
val = HIWORD_UPDATE(RK3288_UOC0_CON3_BYPASSSEL
| RK3288_UOC0_CON3_BYPASSDMEN,
RK3288_UOC0_CON3_BYPASSSEL
| RK3288_UOC0_CON3_BYPASSDMEN);
ret = regmap_write(grf, RK3288_UOC0_CON3, val);
if (ret)
return ret;
return 0;
}
static const struct rockchip_usb_phy_pdata rk3288_pdata = {
.phys = (struct rockchip_usb_phys[]){
{ .reg = 0x320, .pll_name = "sclk_otgphy0_480m" },
{ .reg = 0x334, .pll_name = "sclk_otgphy1_480m" },
{ .reg = 0x348, .pll_name = "sclk_otgphy2_480m" },
{ /* sentinel */ }
},
.init_usb_uart = rk3288_init_usb_uart,
.usb_uart_phy = 0,
};
static int rockchip_usb_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rockchip_usb_phy_base *phy_base;
struct phy_provider *phy_provider;
const struct of_device_id *match;
struct device_node *child;
int err;
phy_base = devm_kzalloc(dev, sizeof(*phy_base), GFP_KERNEL);
if (!phy_base)
return -ENOMEM;
match = of_match_device(dev->driver->of_match_table, dev);
if (!match || !match->data) {
dev_err(dev, "missing phy data\n");
return -EINVAL;
}
phy_base->pdata = match->data;
phy_base->dev = dev;
phy_base->reg_base = ERR_PTR(-ENODEV);
if (dev->parent && dev->parent->of_node)
phy_base->reg_base = syscon_node_to_regmap(
dev->parent->of_node);
if (IS_ERR(phy_base->reg_base))
phy_base->reg_base = syscon_regmap_lookup_by_phandle(
dev->of_node, "rockchip,grf");
if (IS_ERR(phy_base->reg_base)) {
dev_err(&pdev->dev, "Missing rockchip,grf property\n");
return PTR_ERR(phy_base->reg_base);
}
for_each_available_child_of_node(dev->of_node, child) {
err = rockchip_usb_phy_init(phy_base, child);
if (err) {
of_node_put(child);
return err;
}
}
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id rockchip_usb_phy_dt_ids[] = {
{ .compatible = "rockchip,rk3066a-usb-phy", .data = &rk3066a_pdata },
{ .compatible = "rockchip,rk3188-usb-phy", .data = &rk3188_pdata },
{ .compatible = "rockchip,rk3288-usb-phy", .data = &rk3288_pdata },
{}
};
MODULE_DEVICE_TABLE(of, rockchip_usb_phy_dt_ids);
static struct platform_driver rockchip_usb_driver = {
.probe = rockchip_usb_phy_probe,
.driver = {
.name = "rockchip-usb-phy",
.of_match_table = rockchip_usb_phy_dt_ids,
},
};
module_platform_driver(rockchip_usb_driver);
#ifndef MODULE
static int __init rockchip_init_usb_uart(void)
{
const struct of_device_id *match;
const struct rockchip_usb_phy_pdata *data;
struct device_node *np;
struct regmap *grf;
int ret;
if (!enable_usb_uart)
return 0;
np = of_find_matching_node_and_match(NULL, rockchip_usb_phy_dt_ids,
&match);
if (!np) {
pr_err("%s: failed to find usbphy node\n", __func__);
return -ENOTSUPP;
}
pr_debug("%s: using settings for %s\n", __func__, match->compatible);
data = match->data;
if (!data->init_usb_uart) {
pr_err("%s: usb-uart not available on %s\n",
__func__, match->compatible);
return -ENOTSUPP;
}
grf = ERR_PTR(-ENODEV);
if (np->parent)
grf = syscon_node_to_regmap(np->parent);
if (IS_ERR(grf))
grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
if (IS_ERR(grf)) {
pr_err("%s: Missing rockchip,grf property, %lu\n",
__func__, PTR_ERR(grf));
return PTR_ERR(grf);
}
ret = data->init_usb_uart(grf, data);
if (ret) {
pr_err("%s: could not init usb_uart, %d\n", __func__, ret);
enable_usb_uart = 0;
return ret;
}
return 0;
}
early_initcall(rockchip_init_usb_uart);
static int __init rockchip_usb_uart(char *buf)
{
enable_usb_uart = true;
return 0;
}
early_param("rockchip.usb_uart", rockchip_usb_uart);
#endif
MODULE_AUTHOR("Yunzhi Li <[email protected]>");
MODULE_DESCRIPTION("Rockchip USB 2.0 PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/rockchip/phy-rockchip-usb.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Rockchip PIPE USB3.0 PCIE SATA Combo Phy driver
*
* Copyright (C) 2021 Rockchip Electronics Co., Ltd.
*/
#include <dt-bindings/phy/phy.h>
#include <linux/clk.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/units.h>
#define BIT_WRITEABLE_SHIFT 16
#define REF_CLOCK_24MHz (24 * HZ_PER_MHZ)
#define REF_CLOCK_25MHz (25 * HZ_PER_MHZ)
#define REF_CLOCK_100MHz (100 * HZ_PER_MHZ)
/* COMBO PHY REG */
#define PHYREG6 0x14
#define PHYREG6_PLL_DIV_MASK GENMASK(7, 6)
#define PHYREG6_PLL_DIV_SHIFT 6
#define PHYREG6_PLL_DIV_2 1
#define PHYREG7 0x18
#define PHYREG7_TX_RTERM_MASK GENMASK(7, 4)
#define PHYREG7_TX_RTERM_SHIFT 4
#define PHYREG7_TX_RTERM_50OHM 8
#define PHYREG7_RX_RTERM_MASK GENMASK(3, 0)
#define PHYREG7_RX_RTERM_SHIFT 0
#define PHYREG7_RX_RTERM_44OHM 15
#define PHYREG8 0x1C
#define PHYREG8_SSC_EN BIT(4)
#define PHYREG11 0x28
#define PHYREG11_SU_TRIM_0_7 0xF0
#define PHYREG12 0x2C
#define PHYREG12_PLL_LPF_ADJ_VALUE 4
#define PHYREG13 0x30
#define PHYREG13_RESISTER_MASK GENMASK(5, 4)
#define PHYREG13_RESISTER_SHIFT 0x4
#define PHYREG13_RESISTER_HIGH_Z 3
#define PHYREG13_CKRCV_AMP0 BIT(7)
#define PHYREG14 0x34
#define PHYREG14_CKRCV_AMP1 BIT(0)
#define PHYREG15 0x38
#define PHYREG15_CTLE_EN BIT(0)
#define PHYREG15_SSC_CNT_MASK GENMASK(7, 6)
#define PHYREG15_SSC_CNT_SHIFT 6
#define PHYREG15_SSC_CNT_VALUE 1
#define PHYREG16 0x3C
#define PHYREG16_SSC_CNT_VALUE 0x5f
#define PHYREG18 0x44
#define PHYREG18_PLL_LOOP 0x32
#define PHYREG27 0x6C
#define PHYREG27_RX_TRIM_RK3588 0x4C
#define PHYREG32 0x7C
#define PHYREG32_SSC_MASK GENMASK(7, 4)
#define PHYREG32_SSC_DIR_SHIFT 4
#define PHYREG32_SSC_UPWARD 0
#define PHYREG32_SSC_DOWNWARD 1
#define PHYREG32_SSC_OFFSET_SHIFT 6
#define PHYREG32_SSC_OFFSET_500PPM 1
#define PHYREG33 0x80
#define PHYREG33_PLL_KVCO_MASK GENMASK(4, 2)
#define PHYREG33_PLL_KVCO_SHIFT 2
#define PHYREG33_PLL_KVCO_VALUE 2
struct rockchip_combphy_priv;
struct combphy_reg {
u16 offset;
u16 bitend;
u16 bitstart;
u16 disable;
u16 enable;
};
struct rockchip_combphy_grfcfg {
struct combphy_reg pcie_mode_set;
struct combphy_reg usb_mode_set;
struct combphy_reg sgmii_mode_set;
struct combphy_reg qsgmii_mode_set;
struct combphy_reg pipe_rxterm_set;
struct combphy_reg pipe_txelec_set;
struct combphy_reg pipe_txcomp_set;
struct combphy_reg pipe_clk_25m;
struct combphy_reg pipe_clk_100m;
struct combphy_reg pipe_phymode_sel;
struct combphy_reg pipe_rate_sel;
struct combphy_reg pipe_rxterm_sel;
struct combphy_reg pipe_txelec_sel;
struct combphy_reg pipe_txcomp_sel;
struct combphy_reg pipe_clk_ext;
struct combphy_reg pipe_sel_usb;
struct combphy_reg pipe_sel_qsgmii;
struct combphy_reg pipe_phy_status;
struct combphy_reg con0_for_pcie;
struct combphy_reg con1_for_pcie;
struct combphy_reg con2_for_pcie;
struct combphy_reg con3_for_pcie;
struct combphy_reg con0_for_sata;
struct combphy_reg con1_for_sata;
struct combphy_reg con2_for_sata;
struct combphy_reg con3_for_sata;
struct combphy_reg pipe_con0_for_sata;
struct combphy_reg pipe_con1_for_sata;
struct combphy_reg pipe_xpcs_phy_ready;
struct combphy_reg pipe_pcie1l0_sel;
struct combphy_reg pipe_pcie1l1_sel;
};
struct rockchip_combphy_cfg {
const struct rockchip_combphy_grfcfg *grfcfg;
int (*combphy_cfg)(struct rockchip_combphy_priv *priv);
};
struct rockchip_combphy_priv {
u8 type;
void __iomem *mmio;
int num_clks;
struct clk_bulk_data *clks;
struct device *dev;
struct regmap *pipe_grf;
struct regmap *phy_grf;
struct phy *phy;
struct reset_control *phy_rst;
const struct rockchip_combphy_cfg *cfg;
bool enable_ssc;
bool ext_refclk;
struct clk *refclk;
};
static void rockchip_combphy_updatel(struct rockchip_combphy_priv *priv,
int mask, int val, int reg)
{
unsigned int temp;
temp = readl(priv->mmio + reg);
temp = (temp & ~(mask)) | val;
writel(temp, priv->mmio + reg);
}
static int rockchip_combphy_param_write(struct regmap *base,
const struct combphy_reg *reg, bool en)
{
u32 val, mask, tmp;
tmp = en ? reg->enable : reg->disable;
mask = GENMASK(reg->bitend, reg->bitstart);
val = (tmp << reg->bitstart) | (mask << BIT_WRITEABLE_SHIFT);
return regmap_write(base, reg->offset, val);
}
static u32 rockchip_combphy_is_ready(struct rockchip_combphy_priv *priv)
{
const struct rockchip_combphy_grfcfg *cfg = priv->cfg->grfcfg;
u32 mask, val;
mask = GENMASK(cfg->pipe_phy_status.bitend,
cfg->pipe_phy_status.bitstart);
regmap_read(priv->phy_grf, cfg->pipe_phy_status.offset, &val);
val = (val & mask) >> cfg->pipe_phy_status.bitstart;
return val;
}
static int rockchip_combphy_init(struct phy *phy)
{
struct rockchip_combphy_priv *priv = phy_get_drvdata(phy);
const struct rockchip_combphy_grfcfg *cfg = priv->cfg->grfcfg;
u32 val;
int ret;
ret = clk_bulk_prepare_enable(priv->num_clks, priv->clks);
if (ret) {
dev_err(priv->dev, "failed to enable clks\n");
return ret;
}
switch (priv->type) {
case PHY_TYPE_PCIE:
case PHY_TYPE_USB3:
case PHY_TYPE_SATA:
case PHY_TYPE_SGMII:
case PHY_TYPE_QSGMII:
if (priv->cfg->combphy_cfg)
ret = priv->cfg->combphy_cfg(priv);
break;
default:
dev_err(priv->dev, "incompatible PHY type\n");
ret = -EINVAL;
break;
}
if (ret) {
dev_err(priv->dev, "failed to init phy for phy type %x\n", priv->type);
goto err_clk;
}
ret = reset_control_deassert(priv->phy_rst);
if (ret)
goto err_clk;
if (priv->type == PHY_TYPE_USB3) {
ret = readx_poll_timeout_atomic(rockchip_combphy_is_ready,
priv, val,
val == cfg->pipe_phy_status.enable,
10, 1000);
if (ret)
dev_warn(priv->dev, "wait phy status ready timeout\n");
}
return 0;
err_clk:
clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
return ret;
}
static int rockchip_combphy_exit(struct phy *phy)
{
struct rockchip_combphy_priv *priv = phy_get_drvdata(phy);
clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
reset_control_assert(priv->phy_rst);
return 0;
}
static const struct phy_ops rochchip_combphy_ops = {
.init = rockchip_combphy_init,
.exit = rockchip_combphy_exit,
.owner = THIS_MODULE,
};
static struct phy *rockchip_combphy_xlate(struct device *dev, struct of_phandle_args *args)
{
struct rockchip_combphy_priv *priv = dev_get_drvdata(dev);
if (args->args_count != 1) {
dev_err(dev, "invalid number of arguments\n");
return ERR_PTR(-EINVAL);
}
if (priv->type != PHY_NONE && priv->type != args->args[0])
dev_warn(dev, "phy type select %d overwriting type %d\n",
args->args[0], priv->type);
priv->type = args->args[0];
return priv->phy;
}
static int rockchip_combphy_parse_dt(struct device *dev, struct rockchip_combphy_priv *priv)
{
int i;
priv->num_clks = devm_clk_bulk_get_all(dev, &priv->clks);
if (priv->num_clks < 1)
return -EINVAL;
priv->refclk = NULL;
for (i = 0; i < priv->num_clks; i++) {
if (!strncmp(priv->clks[i].id, "ref", 3)) {
priv->refclk = priv->clks[i].clk;
break;
}
}
if (!priv->refclk) {
dev_err(dev, "no refclk found\n");
return -EINVAL;
}
priv->pipe_grf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,pipe-grf");
if (IS_ERR(priv->pipe_grf)) {
dev_err(dev, "failed to find peri_ctrl pipe-grf regmap\n");
return PTR_ERR(priv->pipe_grf);
}
priv->phy_grf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,pipe-phy-grf");
if (IS_ERR(priv->phy_grf)) {
dev_err(dev, "failed to find peri_ctrl pipe-phy-grf regmap\n");
return PTR_ERR(priv->phy_grf);
}
priv->enable_ssc = device_property_present(dev, "rockchip,enable-ssc");
priv->ext_refclk = device_property_present(dev, "rockchip,ext-refclk");
priv->phy_rst = devm_reset_control_array_get_exclusive(dev);
if (IS_ERR(priv->phy_rst))
return dev_err_probe(dev, PTR_ERR(priv->phy_rst), "failed to get phy reset\n");
return 0;
}
static int rockchip_combphy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct device *dev = &pdev->dev;
struct rockchip_combphy_priv *priv;
const struct rockchip_combphy_cfg *phy_cfg;
struct resource *res;
int ret;
phy_cfg = of_device_get_match_data(dev);
if (!phy_cfg) {
dev_err(dev, "no OF match data provided\n");
return -EINVAL;
}
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(priv->mmio)) {
ret = PTR_ERR(priv->mmio);
return ret;
}
priv->dev = dev;
priv->type = PHY_NONE;
priv->cfg = phy_cfg;
ret = rockchip_combphy_parse_dt(dev, priv);
if (ret)
return ret;
ret = reset_control_assert(priv->phy_rst);
if (ret) {
dev_err(dev, "failed to reset phy\n");
return ret;
}
priv->phy = devm_phy_create(dev, NULL, &rochchip_combphy_ops);
if (IS_ERR(priv->phy)) {
dev_err(dev, "failed to create combphy\n");
return PTR_ERR(priv->phy);
}
dev_set_drvdata(dev, priv);
phy_set_drvdata(priv->phy, priv);
phy_provider = devm_of_phy_provider_register(dev, rockchip_combphy_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static int rk3568_combphy_cfg(struct rockchip_combphy_priv *priv)
{
const struct rockchip_combphy_grfcfg *cfg = priv->cfg->grfcfg;
unsigned long rate;
u32 val;
switch (priv->type) {
case PHY_TYPE_PCIE:
/* Set SSC downward spread spectrum. */
rockchip_combphy_updatel(priv, PHYREG32_SSC_MASK,
PHYREG32_SSC_DOWNWARD << PHYREG32_SSC_DIR_SHIFT,
PHYREG32);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con0_for_pcie, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con1_for_pcie, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con2_for_pcie, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con3_for_pcie, true);
break;
case PHY_TYPE_USB3:
/* Set SSC downward spread spectrum. */
rockchip_combphy_updatel(priv, PHYREG32_SSC_MASK,
PHYREG32_SSC_DOWNWARD << PHYREG32_SSC_DIR_SHIFT,
PHYREG32);
/* Enable adaptive CTLE for USB3.0 Rx. */
val = readl(priv->mmio + PHYREG15);
val |= PHYREG15_CTLE_EN;
writel(val, priv->mmio + PHYREG15);
/* Set PLL KVCO fine tuning signals. */
rockchip_combphy_updatel(priv, PHYREG33_PLL_KVCO_MASK,
PHYREG33_PLL_KVCO_VALUE << PHYREG33_PLL_KVCO_SHIFT,
PHYREG33);
/* Enable controlling random jitter. */
writel(PHYREG12_PLL_LPF_ADJ_VALUE, priv->mmio + PHYREG12);
/* Set PLL input clock divider 1/2. */
rockchip_combphy_updatel(priv, PHYREG6_PLL_DIV_MASK,
PHYREG6_PLL_DIV_2 << PHYREG6_PLL_DIV_SHIFT,
PHYREG6);
writel(PHYREG18_PLL_LOOP, priv->mmio + PHYREG18);
writel(PHYREG11_SU_TRIM_0_7, priv->mmio + PHYREG11);
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_sel_usb, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_txcomp_sel, false);
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_txelec_sel, false);
rockchip_combphy_param_write(priv->phy_grf, &cfg->usb_mode_set, true);
break;
case PHY_TYPE_SATA:
/* Enable adaptive CTLE for SATA Rx. */
val = readl(priv->mmio + PHYREG15);
val |= PHYREG15_CTLE_EN;
writel(val, priv->mmio + PHYREG15);
/*
* Set tx_rterm=50ohm and rx_rterm=44ohm for SATA.
* 0: 60ohm, 8: 50ohm 15: 44ohm (by step abort 1ohm)
*/
val = PHYREG7_TX_RTERM_50OHM << PHYREG7_TX_RTERM_SHIFT;
val |= PHYREG7_RX_RTERM_44OHM << PHYREG7_RX_RTERM_SHIFT;
writel(val, priv->mmio + PHYREG7);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con0_for_sata, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con1_for_sata, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con2_for_sata, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con3_for_sata, true);
rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_con0_for_sata, true);
break;
case PHY_TYPE_SGMII:
rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_xpcs_phy_ready, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_phymode_sel, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_sel_qsgmii, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->sgmii_mode_set, true);
break;
case PHY_TYPE_QSGMII:
rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_xpcs_phy_ready, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_phymode_sel, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_rate_sel, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_sel_qsgmii, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->qsgmii_mode_set, true);
break;
default:
dev_err(priv->dev, "incompatible PHY type\n");
return -EINVAL;
}
rate = clk_get_rate(priv->refclk);
switch (rate) {
case REF_CLOCK_24MHz:
if (priv->type == PHY_TYPE_USB3 || priv->type == PHY_TYPE_SATA) {
/* Set ssc_cnt[9:0]=0101111101 & 31.5KHz. */
val = PHYREG15_SSC_CNT_VALUE << PHYREG15_SSC_CNT_SHIFT;
rockchip_combphy_updatel(priv, PHYREG15_SSC_CNT_MASK,
val, PHYREG15);
writel(PHYREG16_SSC_CNT_VALUE, priv->mmio + PHYREG16);
}
break;
case REF_CLOCK_25MHz:
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_25m, true);
break;
case REF_CLOCK_100MHz:
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_100m, true);
if (priv->type == PHY_TYPE_PCIE) {
/* PLL KVCO fine tuning. */
val = PHYREG33_PLL_KVCO_VALUE << PHYREG33_PLL_KVCO_SHIFT;
rockchip_combphy_updatel(priv, PHYREG33_PLL_KVCO_MASK,
val, PHYREG33);
/* Enable controlling random jitter. */
writel(PHYREG12_PLL_LPF_ADJ_VALUE, priv->mmio + PHYREG12);
val = PHYREG6_PLL_DIV_2 << PHYREG6_PLL_DIV_SHIFT;
rockchip_combphy_updatel(priv, PHYREG6_PLL_DIV_MASK,
val, PHYREG6);
writel(PHYREG18_PLL_LOOP, priv->mmio + PHYREG18);
writel(PHYREG11_SU_TRIM_0_7, priv->mmio + PHYREG11);
} else if (priv->type == PHY_TYPE_SATA) {
/* downward spread spectrum +500ppm */
val = PHYREG32_SSC_DOWNWARD << PHYREG32_SSC_DIR_SHIFT;
val |= PHYREG32_SSC_OFFSET_500PPM << PHYREG32_SSC_OFFSET_SHIFT;
rockchip_combphy_updatel(priv, PHYREG32_SSC_MASK, val, PHYREG32);
}
break;
default:
dev_err(priv->dev, "unsupported rate: %lu\n", rate);
return -EINVAL;
}
if (priv->ext_refclk) {
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_ext, true);
if (priv->type == PHY_TYPE_PCIE && rate == REF_CLOCK_100MHz) {
val = PHYREG13_RESISTER_HIGH_Z << PHYREG13_RESISTER_SHIFT;
val |= PHYREG13_CKRCV_AMP0;
rockchip_combphy_updatel(priv, PHYREG13_RESISTER_MASK, val, PHYREG13);
val = readl(priv->mmio + PHYREG14);
val |= PHYREG14_CKRCV_AMP1;
writel(val, priv->mmio + PHYREG14);
}
}
if (priv->enable_ssc) {
val = readl(priv->mmio + PHYREG8);
val |= PHYREG8_SSC_EN;
writel(val, priv->mmio + PHYREG8);
}
return 0;
}
static const struct rockchip_combphy_grfcfg rk3568_combphy_grfcfgs = {
/* pipe-phy-grf */
.pcie_mode_set = { 0x0000, 5, 0, 0x00, 0x11 },
.usb_mode_set = { 0x0000, 5, 0, 0x00, 0x04 },
.sgmii_mode_set = { 0x0000, 5, 0, 0x00, 0x01 },
.qsgmii_mode_set = { 0x0000, 5, 0, 0x00, 0x21 },
.pipe_rxterm_set = { 0x0000, 12, 12, 0x00, 0x01 },
.pipe_txelec_set = { 0x0004, 1, 1, 0x00, 0x01 },
.pipe_txcomp_set = { 0x0004, 4, 4, 0x00, 0x01 },
.pipe_clk_25m = { 0x0004, 14, 13, 0x00, 0x01 },
.pipe_clk_100m = { 0x0004, 14, 13, 0x00, 0x02 },
.pipe_phymode_sel = { 0x0008, 1, 1, 0x00, 0x01 },
.pipe_rate_sel = { 0x0008, 2, 2, 0x00, 0x01 },
.pipe_rxterm_sel = { 0x0008, 8, 8, 0x00, 0x01 },
.pipe_txelec_sel = { 0x0008, 12, 12, 0x00, 0x01 },
.pipe_txcomp_sel = { 0x0008, 15, 15, 0x00, 0x01 },
.pipe_clk_ext = { 0x000c, 9, 8, 0x02, 0x01 },
.pipe_sel_usb = { 0x000c, 14, 13, 0x00, 0x01 },
.pipe_sel_qsgmii = { 0x000c, 15, 13, 0x00, 0x07 },
.pipe_phy_status = { 0x0034, 6, 6, 0x01, 0x00 },
.con0_for_pcie = { 0x0000, 15, 0, 0x00, 0x1000 },
.con1_for_pcie = { 0x0004, 15, 0, 0x00, 0x0000 },
.con2_for_pcie = { 0x0008, 15, 0, 0x00, 0x0101 },
.con3_for_pcie = { 0x000c, 15, 0, 0x00, 0x0200 },
.con0_for_sata = { 0x0000, 15, 0, 0x00, 0x0119 },
.con1_for_sata = { 0x0004, 15, 0, 0x00, 0x0040 },
.con2_for_sata = { 0x0008, 15, 0, 0x00, 0x80c3 },
.con3_for_sata = { 0x000c, 15, 0, 0x00, 0x4407 },
/* pipe-grf */
.pipe_con0_for_sata = { 0x0000, 15, 0, 0x00, 0x2220 },
.pipe_xpcs_phy_ready = { 0x0040, 2, 2, 0x00, 0x01 },
};
static const struct rockchip_combphy_cfg rk3568_combphy_cfgs = {
.grfcfg = &rk3568_combphy_grfcfgs,
.combphy_cfg = rk3568_combphy_cfg,
};
static int rk3588_combphy_cfg(struct rockchip_combphy_priv *priv)
{
const struct rockchip_combphy_grfcfg *cfg = priv->cfg->grfcfg;
unsigned long rate;
u32 val;
switch (priv->type) {
case PHY_TYPE_PCIE:
rockchip_combphy_param_write(priv->phy_grf, &cfg->con0_for_pcie, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con1_for_pcie, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con2_for_pcie, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con3_for_pcie, true);
rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_pcie1l0_sel, true);
rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_pcie1l1_sel, true);
break;
case PHY_TYPE_USB3:
/* Set SSC downward spread spectrum */
rockchip_combphy_updatel(priv, PHYREG32_SSC_MASK,
PHYREG32_SSC_DOWNWARD << PHYREG32_SSC_DIR_SHIFT,
PHYREG32);
/* Enable adaptive CTLE for USB3.0 Rx. */
val = readl(priv->mmio + PHYREG15);
val |= PHYREG15_CTLE_EN;
writel(val, priv->mmio + PHYREG15);
/* Set PLL KVCO fine tuning signals. */
rockchip_combphy_updatel(priv, PHYREG33_PLL_KVCO_MASK,
PHYREG33_PLL_KVCO_VALUE << PHYREG33_PLL_KVCO_SHIFT,
PHYREG33);
/* Enable controlling random jitter. */
writel(PHYREG12_PLL_LPF_ADJ_VALUE, priv->mmio + PHYREG12);
/* Set PLL input clock divider 1/2. */
rockchip_combphy_updatel(priv, PHYREG6_PLL_DIV_MASK,
PHYREG6_PLL_DIV_2 << PHYREG6_PLL_DIV_SHIFT,
PHYREG6);
writel(PHYREG18_PLL_LOOP, priv->mmio + PHYREG18);
writel(PHYREG11_SU_TRIM_0_7, priv->mmio + PHYREG11);
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_txcomp_sel, false);
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_txelec_sel, false);
rockchip_combphy_param_write(priv->phy_grf, &cfg->usb_mode_set, true);
break;
case PHY_TYPE_SATA:
/* Enable adaptive CTLE for SATA Rx. */
val = readl(priv->mmio + PHYREG15);
val |= PHYREG15_CTLE_EN;
writel(val, priv->mmio + PHYREG15);
/*
* Set tx_rterm=50ohm and rx_rterm=44ohm for SATA.
* 0: 60ohm, 8: 50ohm 15: 44ohm (by step abort 1ohm)
*/
val = PHYREG7_TX_RTERM_50OHM << PHYREG7_TX_RTERM_SHIFT;
val |= PHYREG7_RX_RTERM_44OHM << PHYREG7_RX_RTERM_SHIFT;
writel(val, priv->mmio + PHYREG7);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con0_for_sata, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con1_for_sata, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con2_for_sata, true);
rockchip_combphy_param_write(priv->phy_grf, &cfg->con3_for_sata, true);
rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_con0_for_sata, true);
rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_con1_for_sata, true);
break;
case PHY_TYPE_SGMII:
case PHY_TYPE_QSGMII:
default:
dev_err(priv->dev, "incompatible PHY type\n");
return -EINVAL;
}
rate = clk_get_rate(priv->refclk);
switch (rate) {
case REF_CLOCK_24MHz:
if (priv->type == PHY_TYPE_USB3 || priv->type == PHY_TYPE_SATA) {
/* Set ssc_cnt[9:0]=0101111101 & 31.5KHz. */
val = PHYREG15_SSC_CNT_VALUE << PHYREG15_SSC_CNT_SHIFT;
rockchip_combphy_updatel(priv, PHYREG15_SSC_CNT_MASK,
val, PHYREG15);
writel(PHYREG16_SSC_CNT_VALUE, priv->mmio + PHYREG16);
}
break;
case REF_CLOCK_25MHz:
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_25m, true);
break;
case REF_CLOCK_100MHz:
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_100m, true);
if (priv->type == PHY_TYPE_PCIE) {
/* PLL KVCO fine tuning. */
val = 4 << PHYREG33_PLL_KVCO_SHIFT;
rockchip_combphy_updatel(priv, PHYREG33_PLL_KVCO_MASK,
val, PHYREG33);
/* Enable controlling random jitter. */
writel(PHYREG12_PLL_LPF_ADJ_VALUE, priv->mmio + PHYREG12);
/* Set up rx_trim: PLL LPF C1 85pf R1 1.25kohm */
writel(PHYREG27_RX_TRIM_RK3588, priv->mmio + PHYREG27);
/* Set up su_trim: */
writel(PHYREG11_SU_TRIM_0_7, priv->mmio + PHYREG11);
} else if (priv->type == PHY_TYPE_SATA) {
/* downward spread spectrum +500ppm */
val = PHYREG32_SSC_DOWNWARD << PHYREG32_SSC_DIR_SHIFT;
val |= PHYREG32_SSC_OFFSET_500PPM << PHYREG32_SSC_OFFSET_SHIFT;
rockchip_combphy_updatel(priv, PHYREG32_SSC_MASK, val, PHYREG32);
}
break;
default:
dev_err(priv->dev, "Unsupported rate: %lu\n", rate);
return -EINVAL;
}
if (priv->ext_refclk) {
rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_ext, true);
if (priv->type == PHY_TYPE_PCIE && rate == REF_CLOCK_100MHz) {
val = PHYREG13_RESISTER_HIGH_Z << PHYREG13_RESISTER_SHIFT;
val |= PHYREG13_CKRCV_AMP0;
rockchip_combphy_updatel(priv, PHYREG13_RESISTER_MASK, val, PHYREG13);
val = readl(priv->mmio + PHYREG14);
val |= PHYREG14_CKRCV_AMP1;
writel(val, priv->mmio + PHYREG14);
}
}
if (priv->enable_ssc) {
val = readl(priv->mmio + PHYREG8);
val |= PHYREG8_SSC_EN;
writel(val, priv->mmio + PHYREG8);
}
return 0;
}
static const struct rockchip_combphy_grfcfg rk3588_combphy_grfcfgs = {
/* pipe-phy-grf */
.pcie_mode_set = { 0x0000, 5, 0, 0x00, 0x11 },
.usb_mode_set = { 0x0000, 5, 0, 0x00, 0x04 },
.pipe_rxterm_set = { 0x0000, 12, 12, 0x00, 0x01 },
.pipe_txelec_set = { 0x0004, 1, 1, 0x00, 0x01 },
.pipe_txcomp_set = { 0x0004, 4, 4, 0x00, 0x01 },
.pipe_clk_25m = { 0x0004, 14, 13, 0x00, 0x01 },
.pipe_clk_100m = { 0x0004, 14, 13, 0x00, 0x02 },
.pipe_rxterm_sel = { 0x0008, 8, 8, 0x00, 0x01 },
.pipe_txelec_sel = { 0x0008, 12, 12, 0x00, 0x01 },
.pipe_txcomp_sel = { 0x0008, 15, 15, 0x00, 0x01 },
.pipe_clk_ext = { 0x000c, 9, 8, 0x02, 0x01 },
.pipe_phy_status = { 0x0034, 6, 6, 0x01, 0x00 },
.con0_for_pcie = { 0x0000, 15, 0, 0x00, 0x1000 },
.con1_for_pcie = { 0x0004, 15, 0, 0x00, 0x0000 },
.con2_for_pcie = { 0x0008, 15, 0, 0x00, 0x0101 },
.con3_for_pcie = { 0x000c, 15, 0, 0x00, 0x0200 },
.con0_for_sata = { 0x0000, 15, 0, 0x00, 0x0129 },
.con1_for_sata = { 0x0004, 15, 0, 0x00, 0x0000 },
.con2_for_sata = { 0x0008, 15, 0, 0x00, 0x80c1 },
.con3_for_sata = { 0x000c, 15, 0, 0x00, 0x0407 },
/* pipe-grf */
.pipe_con0_for_sata = { 0x0000, 11, 5, 0x00, 0x22 },
.pipe_con1_for_sata = { 0x0000, 2, 0, 0x00, 0x2 },
.pipe_pcie1l0_sel = { 0x0100, 0, 0, 0x01, 0x0 },
.pipe_pcie1l1_sel = { 0x0100, 1, 1, 0x01, 0x0 },
};
static const struct rockchip_combphy_cfg rk3588_combphy_cfgs = {
.grfcfg = &rk3588_combphy_grfcfgs,
.combphy_cfg = rk3588_combphy_cfg,
};
static const struct of_device_id rockchip_combphy_of_match[] = {
{
.compatible = "rockchip,rk3568-naneng-combphy",
.data = &rk3568_combphy_cfgs,
},
{
.compatible = "rockchip,rk3588-naneng-combphy",
.data = &rk3588_combphy_cfgs,
},
{ },
};
MODULE_DEVICE_TABLE(of, rockchip_combphy_of_match);
static struct platform_driver rockchip_combphy_driver = {
.probe = rockchip_combphy_probe,
.driver = {
.name = "rockchip-naneng-combphy",
.of_match_table = rockchip_combphy_of_match,
},
};
module_platform_driver(rockchip_combphy_driver);
MODULE_DESCRIPTION("Rockchip NANENG COMBPHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/rockchip/phy-rockchip-naneng-combphy.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
* Author: Chris Zhong <[email protected]>
* Kever Yang <[email protected]>
*
* The ROCKCHIP Type-C PHY has two PLL clocks. The first PLL clock
* is used for USB3, the second PLL clock is used for DP. This Type-C PHY has
* 3 working modes: USB3 only mode, DP only mode, and USB3+DP mode.
* At USB3 only mode, both PLL clocks need to be initialized, this allows the
* PHY to switch mode between USB3 and USB3+DP, without disconnecting the USB
* device.
* In The DP only mode, only the DP PLL needs to be powered on, and the 4 lanes
* are all used for DP.
*
* This driver gets extcon cable state and property, then decides which mode to
* select:
*
* 1. USB3 only mode:
* EXTCON_USB or EXTCON_USB_HOST state is true, and
* EXTCON_PROP_USB_SS property is true.
* EXTCON_DISP_DP state is false.
*
* 2. DP only mode:
* EXTCON_DISP_DP state is true, and
* EXTCON_PROP_USB_SS property is false.
* If EXTCON_USB_HOST state is true, it is DP + USB2 mode, since the USB2 phy
* is a separate phy, so this case is still DP only mode.
*
* 3. USB3+DP mode:
* EXTCON_USB_HOST and EXTCON_DISP_DP are both true, and
* EXTCON_PROP_USB_SS property is true.
*
* This Type-C PHY driver supports normal and flip orientation. The orientation
* is reported by the EXTCON_PROP_USB_TYPEC_POLARITY property: true is flip
* orientation, false is normal orientation.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/extcon.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/mfd/syscon.h>
#include <linux/phy/phy.h>
#define CMN_SSM_BANDGAP (0x21 << 2)
#define CMN_SSM_BIAS (0x22 << 2)
#define CMN_PLLSM0_PLLEN (0x29 << 2)
#define CMN_PLLSM0_PLLPRE (0x2a << 2)
#define CMN_PLLSM0_PLLVREF (0x2b << 2)
#define CMN_PLLSM0_PLLLOCK (0x2c << 2)
#define CMN_PLLSM1_PLLEN (0x31 << 2)
#define CMN_PLLSM1_PLLPRE (0x32 << 2)
#define CMN_PLLSM1_PLLVREF (0x33 << 2)
#define CMN_PLLSM1_PLLLOCK (0x34 << 2)
#define CMN_PLLSM1_USER_DEF_CTRL (0x37 << 2)
#define CMN_ICAL_OVRD (0xc1 << 2)
#define CMN_PLL0_VCOCAL_OVRD (0x83 << 2)
#define CMN_PLL0_VCOCAL_INIT (0x84 << 2)
#define CMN_PLL0_VCOCAL_ITER (0x85 << 2)
#define CMN_PLL0_LOCK_REFCNT_START (0x90 << 2)
#define CMN_PLL0_LOCK_PLLCNT_START (0x92 << 2)
#define CMN_PLL0_LOCK_PLLCNT_THR (0x93 << 2)
#define CMN_PLL0_INTDIV (0x94 << 2)
#define CMN_PLL0_FRACDIV (0x95 << 2)
#define CMN_PLL0_HIGH_THR (0x96 << 2)
#define CMN_PLL0_DSM_DIAG (0x97 << 2)
#define CMN_PLL0_SS_CTRL1 (0x98 << 2)
#define CMN_PLL0_SS_CTRL2 (0x99 << 2)
#define CMN_PLL1_VCOCAL_START (0xa1 << 2)
#define CMN_PLL1_VCOCAL_OVRD (0xa3 << 2)
#define CMN_PLL1_VCOCAL_INIT (0xa4 << 2)
#define CMN_PLL1_VCOCAL_ITER (0xa5 << 2)
#define CMN_PLL1_LOCK_REFCNT_START (0xb0 << 2)
#define CMN_PLL1_LOCK_PLLCNT_START (0xb2 << 2)
#define CMN_PLL1_LOCK_PLLCNT_THR (0xb3 << 2)
#define CMN_PLL1_INTDIV (0xb4 << 2)
#define CMN_PLL1_FRACDIV (0xb5 << 2)
#define CMN_PLL1_HIGH_THR (0xb6 << 2)
#define CMN_PLL1_DSM_DIAG (0xb7 << 2)
#define CMN_PLL1_SS_CTRL1 (0xb8 << 2)
#define CMN_PLL1_SS_CTRL2 (0xb9 << 2)
#define CMN_RXCAL_OVRD (0xd1 << 2)
#define CMN_TXPUCAL_CTRL (0xe0 << 2)
#define CMN_TXPUCAL_OVRD (0xe1 << 2)
#define CMN_TXPDCAL_CTRL (0xf0 << 2)
#define CMN_TXPDCAL_OVRD (0xf1 << 2)
/* For CMN_TXPUCAL_CTRL, CMN_TXPDCAL_CTRL */
#define CMN_TXPXCAL_START BIT(15)
#define CMN_TXPXCAL_DONE BIT(14)
#define CMN_TXPXCAL_NO_RESPONSE BIT(13)
#define CMN_TXPXCAL_CURRENT_RESPONSE BIT(12)
#define CMN_TXPU_ADJ_CTRL (0x108 << 2)
#define CMN_TXPD_ADJ_CTRL (0x10c << 2)
/*
* For CMN_TXPUCAL_CTRL, CMN_TXPDCAL_CTRL,
* CMN_TXPU_ADJ_CTRL, CMN_TXPDCAL_CTRL
*
* NOTE: some of these registers are documented to be 2's complement
* signed numbers, but then documented to be always positive. Weird.
* In such a case, using CMN_CALIB_CODE_POS() avoids the unnecessary
* sign extension.
*/
#define CMN_CALIB_CODE_WIDTH 7
#define CMN_CALIB_CODE_OFFSET 0
#define CMN_CALIB_CODE_MASK GENMASK(CMN_CALIB_CODE_WIDTH, 0)
#define CMN_CALIB_CODE(x) \
sign_extend32((x) >> CMN_CALIB_CODE_OFFSET, CMN_CALIB_CODE_WIDTH)
#define CMN_CALIB_CODE_POS_MASK GENMASK(CMN_CALIB_CODE_WIDTH - 1, 0)
#define CMN_CALIB_CODE_POS(x) \
(((x) >> CMN_CALIB_CODE_OFFSET) & CMN_CALIB_CODE_POS_MASK)
#define CMN_DIAG_PLL0_FBH_OVRD (0x1c0 << 2)
#define CMN_DIAG_PLL0_FBL_OVRD (0x1c1 << 2)
#define CMN_DIAG_PLL0_OVRD (0x1c2 << 2)
#define CMN_DIAG_PLL0_V2I_TUNE (0x1c5 << 2)
#define CMN_DIAG_PLL0_CP_TUNE (0x1c6 << 2)
#define CMN_DIAG_PLL0_LF_PROG (0x1c7 << 2)
#define CMN_DIAG_PLL1_FBH_OVRD (0x1d0 << 2)
#define CMN_DIAG_PLL1_FBL_OVRD (0x1d1 << 2)
#define CMN_DIAG_PLL1_OVRD (0x1d2 << 2)
#define CMN_DIAG_PLL1_V2I_TUNE (0x1d5 << 2)
#define CMN_DIAG_PLL1_CP_TUNE (0x1d6 << 2)
#define CMN_DIAG_PLL1_LF_PROG (0x1d7 << 2)
#define CMN_DIAG_PLL1_PTATIS_TUNE1 (0x1d8 << 2)
#define CMN_DIAG_PLL1_PTATIS_TUNE2 (0x1d9 << 2)
#define CMN_DIAG_PLL1_INCLK_CTRL (0x1da << 2)
#define CMN_DIAG_HSCLK_SEL (0x1e0 << 2)
#define XCVR_PSM_RCTRL(n) ((0x4001 | ((n) << 9)) << 2)
#define XCVR_PSM_CAL_TMR(n) ((0x4002 | ((n) << 9)) << 2)
#define XCVR_PSM_A0IN_TMR(n) ((0x4003 | ((n) << 9)) << 2)
#define TX_TXCC_CAL_SCLR_MULT(n) ((0x4047 | ((n) << 9)) << 2)
#define TX_TXCC_CPOST_MULT_00(n) ((0x404c | ((n) << 9)) << 2)
#define TX_TXCC_CPOST_MULT_01(n) ((0x404d | ((n) << 9)) << 2)
#define TX_TXCC_CPOST_MULT_10(n) ((0x404e | ((n) << 9)) << 2)
#define TX_TXCC_CPOST_MULT_11(n) ((0x404f | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_000(n) ((0x4050 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_001(n) ((0x4051 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_010(n) ((0x4052 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_011(n) ((0x4053 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_100(n) ((0x4054 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_101(n) ((0x4055 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_110(n) ((0x4056 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_111(n) ((0x4057 | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_000(n) ((0x4058 | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_001(n) ((0x4059 | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_010(n) ((0x405a | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_011(n) ((0x405b | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_100(n) ((0x405c | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_101(n) ((0x405d | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_110(n) ((0x405e | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_111(n) ((0x405f | ((n) << 9)) << 2)
#define XCVR_DIAG_PLLDRC_CTRL(n) ((0x40e0 | ((n) << 9)) << 2)
#define XCVR_DIAG_BIDI_CTRL(n) ((0x40e8 | ((n) << 9)) << 2)
#define XCVR_DIAG_LANE_FCM_EN_MGN(n) ((0x40f2 | ((n) << 9)) << 2)
#define TX_PSC_A0(n) ((0x4100 | ((n) << 9)) << 2)
#define TX_PSC_A1(n) ((0x4101 | ((n) << 9)) << 2)
#define TX_PSC_A2(n) ((0x4102 | ((n) << 9)) << 2)
#define TX_PSC_A3(n) ((0x4103 | ((n) << 9)) << 2)
#define TX_RCVDET_CTRL(n) ((0x4120 | ((n) << 9)) << 2)
#define TX_RCVDET_EN_TMR(n) ((0x4122 | ((n) << 9)) << 2)
#define TX_RCVDET_ST_TMR(n) ((0x4123 | ((n) << 9)) << 2)
#define TX_DIAG_TX_DRV(n) ((0x41e1 | ((n) << 9)) << 2)
#define TX_DIAG_BGREF_PREDRV_DELAY (0x41e7 << 2)
/* Use this for "n" in macros like "_MULT_XXX" to target the aux channel */
#define AUX_CH_LANE 8
#define TX_ANA_CTRL_REG_1 (0x5020 << 2)
#define TXDA_DP_AUX_EN BIT(15)
#define AUXDA_SE_EN BIT(14)
#define TXDA_CAL_LATCH_EN BIT(13)
#define AUXDA_POLARITY BIT(12)
#define TXDA_DRV_POWER_ISOLATION_EN BIT(11)
#define TXDA_DRV_POWER_EN_PH_2_N BIT(10)
#define TXDA_DRV_POWER_EN_PH_1_N BIT(9)
#define TXDA_BGREF_EN BIT(8)
#define TXDA_DRV_LDO_EN BIT(7)
#define TXDA_DECAP_EN_DEL BIT(6)
#define TXDA_DECAP_EN BIT(5)
#define TXDA_UPHY_SUPPLY_EN_DEL BIT(4)
#define TXDA_UPHY_SUPPLY_EN BIT(3)
#define TXDA_LOW_LEAKAGE_EN BIT(2)
#define TXDA_DRV_IDLE_LOWI_EN BIT(1)
#define TXDA_DRV_CMN_MODE_EN BIT(0)
#define TX_ANA_CTRL_REG_2 (0x5021 << 2)
#define AUXDA_DEBOUNCING_CLK BIT(15)
#define TXDA_LPBK_RECOVERED_CLK_EN BIT(14)
#define TXDA_LPBK_ISI_GEN_EN BIT(13)
#define TXDA_LPBK_SERIAL_EN BIT(12)
#define TXDA_LPBK_LINE_EN BIT(11)
#define TXDA_DRV_LDO_REDC_SINKIQ BIT(10)
#define XCVR_DECAP_EN_DEL BIT(9)
#define XCVR_DECAP_EN BIT(8)
#define TXDA_MPHY_ENABLE_HS_NT BIT(7)
#define TXDA_MPHY_SA_MODE BIT(6)
#define TXDA_DRV_LDO_RBYR_FB_EN BIT(5)
#define TXDA_DRV_RST_PULL_DOWN BIT(4)
#define TXDA_DRV_LDO_BG_FB_EN BIT(3)
#define TXDA_DRV_LDO_BG_REF_EN BIT(2)
#define TXDA_DRV_PREDRV_EN_DEL BIT(1)
#define TXDA_DRV_PREDRV_EN BIT(0)
#define TXDA_COEFF_CALC_CTRL (0x5022 << 2)
#define TX_HIGH_Z BIT(6)
#define TX_VMARGIN_OFFSET 3
#define TX_VMARGIN_MASK 0x7
#define LOW_POWER_SWING_EN BIT(2)
#define TX_FCM_DRV_MAIN_EN BIT(1)
#define TX_FCM_FULL_MARGIN BIT(0)
#define TX_DIG_CTRL_REG_2 (0x5024 << 2)
#define TX_HIGH_Z_TM_EN BIT(15)
#define TX_RESCAL_CODE_OFFSET 0
#define TX_RESCAL_CODE_MASK 0x3f
#define TXDA_CYA_AUXDA_CYA (0x5025 << 2)
#define TX_ANA_CTRL_REG_3 (0x5026 << 2)
#define TX_ANA_CTRL_REG_4 (0x5027 << 2)
#define TX_ANA_CTRL_REG_5 (0x5029 << 2)
#define RX_PSC_A0(n) ((0x8000 | ((n) << 9)) << 2)
#define RX_PSC_A1(n) ((0x8001 | ((n) << 9)) << 2)
#define RX_PSC_A2(n) ((0x8002 | ((n) << 9)) << 2)
#define RX_PSC_A3(n) ((0x8003 | ((n) << 9)) << 2)
#define RX_PSC_CAL(n) ((0x8006 | ((n) << 9)) << 2)
#define RX_PSC_RDY(n) ((0x8007 | ((n) << 9)) << 2)
#define RX_IQPI_ILL_CAL_OVRD (0x8023 << 2)
#define RX_EPI_ILL_CAL_OVRD (0x8033 << 2)
#define RX_SDCAL0_OVRD (0x8041 << 2)
#define RX_SDCAL1_OVRD (0x8049 << 2)
#define RX_SLC_INIT (0x806d << 2)
#define RX_SLC_RUN (0x806e << 2)
#define RX_CDRLF_CNFG2 (0x8081 << 2)
#define RX_SIGDET_HL_FILT_TMR(n) ((0x8090 | ((n) << 9)) << 2)
#define RX_SLC_IOP0_OVRD (0x8101 << 2)
#define RX_SLC_IOP1_OVRD (0x8105 << 2)
#define RX_SLC_QOP0_OVRD (0x8109 << 2)
#define RX_SLC_QOP1_OVRD (0x810d << 2)
#define RX_SLC_EOP0_OVRD (0x8111 << 2)
#define RX_SLC_EOP1_OVRD (0x8115 << 2)
#define RX_SLC_ION0_OVRD (0x8119 << 2)
#define RX_SLC_ION1_OVRD (0x811d << 2)
#define RX_SLC_QON0_OVRD (0x8121 << 2)
#define RX_SLC_QON1_OVRD (0x8125 << 2)
#define RX_SLC_EON0_OVRD (0x8129 << 2)
#define RX_SLC_EON1_OVRD (0x812d << 2)
#define RX_SLC_IEP0_OVRD (0x8131 << 2)
#define RX_SLC_IEP1_OVRD (0x8135 << 2)
#define RX_SLC_QEP0_OVRD (0x8139 << 2)
#define RX_SLC_QEP1_OVRD (0x813d << 2)
#define RX_SLC_EEP0_OVRD (0x8141 << 2)
#define RX_SLC_EEP1_OVRD (0x8145 << 2)
#define RX_SLC_IEN0_OVRD (0x8149 << 2)
#define RX_SLC_IEN1_OVRD (0x814d << 2)
#define RX_SLC_QEN0_OVRD (0x8151 << 2)
#define RX_SLC_QEN1_OVRD (0x8155 << 2)
#define RX_SLC_EEN0_OVRD (0x8159 << 2)
#define RX_SLC_EEN1_OVRD (0x815d << 2)
#define RX_REE_CTRL_DATA_MASK(n) ((0x81bb | ((n) << 9)) << 2)
#define RX_DIAG_SIGDET_TUNE(n) ((0x81dc | ((n) << 9)) << 2)
#define RX_DIAG_SC2C_DELAY (0x81e1 << 2)
#define PMA_LANE_CFG (0xc000 << 2)
#define PIPE_CMN_CTRL1 (0xc001 << 2)
#define PIPE_CMN_CTRL2 (0xc002 << 2)
#define PIPE_COM_LOCK_CFG1 (0xc003 << 2)
#define PIPE_COM_LOCK_CFG2 (0xc004 << 2)
#define PIPE_RCV_DET_INH (0xc005 << 2)
#define DP_MODE_CTL (0xc008 << 2)
#define DP_CLK_CTL (0xc009 << 2)
#define STS (0xc00F << 2)
#define PHY_ISO_CMN_CTRL (0xc010 << 2)
#define PHY_DP_TX_CTL (0xc408 << 2)
#define PMA_CMN_CTRL1 (0xc800 << 2)
#define PHY_PMA_ISO_CMN_CTRL (0xc810 << 2)
#define PHY_ISOLATION_CTRL (0xc81f << 2)
#define PHY_PMA_ISO_XCVR_CTRL(n) ((0xcc11 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_LINK_MODE(n) ((0xcc12 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_PWRST_CTRL(n) ((0xcc13 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_TX_DATA_LO(n) ((0xcc14 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_TX_DATA_HI(n) ((0xcc15 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_RX_DATA_LO(n) ((0xcc16 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_RX_DATA_HI(n) ((0xcc17 | ((n) << 6)) << 2)
#define TX_BIST_CTRL(n) ((0x4140 | ((n) << 9)) << 2)
#define TX_BIST_UDDWR(n) ((0x4141 | ((n) << 9)) << 2)
/*
* Selects which PLL clock will be driven on the analog high speed
* clock 0: PLL 0 div 1
* clock 1: PLL 1 div 2
*/
#define CLK_PLL_CONFIG 0X30
#define CLK_PLL_MASK 0x33
#define CMN_READY BIT(0)
#define DP_PLL_CLOCK_ENABLE BIT(2)
#define DP_PLL_ENABLE BIT(0)
#define DP_PLL_DATA_RATE_RBR ((2 << 12) | (4 << 8))
#define DP_PLL_DATA_RATE_HBR ((2 << 12) | (4 << 8))
#define DP_PLL_DATA_RATE_HBR2 ((1 << 12) | (2 << 8))
#define DP_MODE_A0 BIT(4)
#define DP_MODE_A2 BIT(6)
#define DP_MODE_ENTER_A0 0xc101
#define DP_MODE_ENTER_A2 0xc104
#define PHY_MODE_SET_TIMEOUT 100000
#define PIN_ASSIGN_C_E 0x51d9
#define PIN_ASSIGN_D_F 0x5100
#define MODE_DISCONNECT 0
#define MODE_UFP_USB BIT(0)
#define MODE_DFP_USB BIT(1)
#define MODE_DFP_DP BIT(2)
struct usb3phy_reg {
u32 offset;
u32 enable_bit;
u32 write_enable;
};
/**
* struct rockchip_usb3phy_port_cfg - usb3-phy port configuration.
* @reg: the base address for usb3-phy config.
* @typec_conn_dir: the register of type-c connector direction.
* @usb3tousb2_en: the register of type-c force usb2 to usb2 enable.
* @external_psm: the register of type-c phy external psm clock.
* @pipe_status: the register of type-c phy pipe status.
* @usb3_host_disable: the register of type-c usb3 host disable.
* @usb3_host_port: the register of type-c usb3 host port.
* @uphy_dp_sel: the register of type-c phy DP select control.
*/
struct rockchip_usb3phy_port_cfg {
unsigned int reg;
struct usb3phy_reg typec_conn_dir;
struct usb3phy_reg usb3tousb2_en;
struct usb3phy_reg external_psm;
struct usb3phy_reg pipe_status;
struct usb3phy_reg usb3_host_disable;
struct usb3phy_reg usb3_host_port;
struct usb3phy_reg uphy_dp_sel;
};
struct rockchip_typec_phy {
struct device *dev;
void __iomem *base;
struct extcon_dev *extcon;
struct regmap *grf_regs;
struct clk *clk_core;
struct clk *clk_ref;
struct reset_control *uphy_rst;
struct reset_control *pipe_rst;
struct reset_control *tcphy_rst;
const struct rockchip_usb3phy_port_cfg *port_cfgs;
/* mutex to protect access to individual PHYs */
struct mutex lock;
bool flip;
u8 mode;
};
struct phy_reg {
u16 value;
u32 addr;
};
static struct phy_reg usb3_pll_cfg[] = {
{ 0xf0, CMN_PLL0_VCOCAL_INIT },
{ 0x18, CMN_PLL0_VCOCAL_ITER },
{ 0xd0, CMN_PLL0_INTDIV },
{ 0x4a4a, CMN_PLL0_FRACDIV },
{ 0x34, CMN_PLL0_HIGH_THR },
{ 0x1ee, CMN_PLL0_SS_CTRL1 },
{ 0x7f03, CMN_PLL0_SS_CTRL2 },
{ 0x20, CMN_PLL0_DSM_DIAG },
{ 0, CMN_DIAG_PLL0_OVRD },
{ 0, CMN_DIAG_PLL0_FBH_OVRD },
{ 0, CMN_DIAG_PLL0_FBL_OVRD },
{ 0x7, CMN_DIAG_PLL0_V2I_TUNE },
{ 0x45, CMN_DIAG_PLL0_CP_TUNE },
{ 0x8, CMN_DIAG_PLL0_LF_PROG },
};
static struct phy_reg dp_pll_cfg[] = {
{ 0xf0, CMN_PLL1_VCOCAL_INIT },
{ 0x18, CMN_PLL1_VCOCAL_ITER },
{ 0x30b9, CMN_PLL1_VCOCAL_START },
{ 0x21c, CMN_PLL1_INTDIV },
{ 0, CMN_PLL1_FRACDIV },
{ 0x5, CMN_PLL1_HIGH_THR },
{ 0x35, CMN_PLL1_SS_CTRL1 },
{ 0x7f1e, CMN_PLL1_SS_CTRL2 },
{ 0x20, CMN_PLL1_DSM_DIAG },
{ 0, CMN_PLLSM1_USER_DEF_CTRL },
{ 0, CMN_DIAG_PLL1_OVRD },
{ 0, CMN_DIAG_PLL1_FBH_OVRD },
{ 0, CMN_DIAG_PLL1_FBL_OVRD },
{ 0x6, CMN_DIAG_PLL1_V2I_TUNE },
{ 0x45, CMN_DIAG_PLL1_CP_TUNE },
{ 0x8, CMN_DIAG_PLL1_LF_PROG },
{ 0x100, CMN_DIAG_PLL1_PTATIS_TUNE1 },
{ 0x7, CMN_DIAG_PLL1_PTATIS_TUNE2 },
{ 0x4, CMN_DIAG_PLL1_INCLK_CTRL },
};
static const struct rockchip_usb3phy_port_cfg rk3399_usb3phy_port_cfgs[] = {
{
.reg = 0xff7c0000,
.typec_conn_dir = { 0xe580, 0, 16 },
.usb3tousb2_en = { 0xe580, 3, 19 },
.external_psm = { 0xe588, 14, 30 },
.pipe_status = { 0xe5c0, 0, 0 },
.usb3_host_disable = { 0x2434, 0, 16 },
.usb3_host_port = { 0x2434, 12, 28 },
.uphy_dp_sel = { 0x6268, 19, 19 },
},
{
.reg = 0xff800000,
.typec_conn_dir = { 0xe58c, 0, 16 },
.usb3tousb2_en = { 0xe58c, 3, 19 },
.external_psm = { 0xe594, 14, 30 },
.pipe_status = { 0xe5c0, 16, 16 },
.usb3_host_disable = { 0x2444, 0, 16 },
.usb3_host_port = { 0x2444, 12, 28 },
.uphy_dp_sel = { 0x6268, 3, 19 },
},
{ /* sentinel */ }
};
static void tcphy_cfg_24m(struct rockchip_typec_phy *tcphy)
{
u32 i, rdata;
/*
* cmn_ref_clk_sel = 3, select the 24Mhz for clk parent
* cmn_psm_clk_dig_div = 2, set the clk division to 2
*/
writel(0x830, tcphy->base + PMA_CMN_CTRL1);
for (i = 0; i < 4; i++) {
/*
* The following PHY configuration assumes a 24 MHz reference
* clock.
*/
writel(0x90, tcphy->base + XCVR_DIAG_LANE_FCM_EN_MGN(i));
writel(0x960, tcphy->base + TX_RCVDET_EN_TMR(i));
writel(0x30, tcphy->base + TX_RCVDET_ST_TMR(i));
}
rdata = readl(tcphy->base + CMN_DIAG_HSCLK_SEL);
rdata &= ~CLK_PLL_MASK;
rdata |= CLK_PLL_CONFIG;
writel(rdata, tcphy->base + CMN_DIAG_HSCLK_SEL);
}
static void tcphy_cfg_usb3_pll(struct rockchip_typec_phy *tcphy)
{
u32 i;
/* load the configuration of PLL0 */
for (i = 0; i < ARRAY_SIZE(usb3_pll_cfg); i++)
writel(usb3_pll_cfg[i].value,
tcphy->base + usb3_pll_cfg[i].addr);
}
static void tcphy_cfg_dp_pll(struct rockchip_typec_phy *tcphy)
{
u32 i;
/* set the default mode to RBR */
writel(DP_PLL_CLOCK_ENABLE | DP_PLL_ENABLE | DP_PLL_DATA_RATE_RBR,
tcphy->base + DP_CLK_CTL);
/* load the configuration of PLL1 */
for (i = 0; i < ARRAY_SIZE(dp_pll_cfg); i++)
writel(dp_pll_cfg[i].value, tcphy->base + dp_pll_cfg[i].addr);
}
static void tcphy_tx_usb3_cfg_lane(struct rockchip_typec_phy *tcphy, u32 lane)
{
writel(0x7799, tcphy->base + TX_PSC_A0(lane));
writel(0x7798, tcphy->base + TX_PSC_A1(lane));
writel(0x5098, tcphy->base + TX_PSC_A2(lane));
writel(0x5098, tcphy->base + TX_PSC_A3(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_000(lane));
writel(0xbf, tcphy->base + XCVR_DIAG_BIDI_CTRL(lane));
}
static void tcphy_rx_usb3_cfg_lane(struct rockchip_typec_phy *tcphy, u32 lane)
{
writel(0xa6fd, tcphy->base + RX_PSC_A0(lane));
writel(0xa6fd, tcphy->base + RX_PSC_A1(lane));
writel(0xa410, tcphy->base + RX_PSC_A2(lane));
writel(0x2410, tcphy->base + RX_PSC_A3(lane));
writel(0x23ff, tcphy->base + RX_PSC_CAL(lane));
writel(0x13, tcphy->base + RX_SIGDET_HL_FILT_TMR(lane));
writel(0x03e7, tcphy->base + RX_REE_CTRL_DATA_MASK(lane));
writel(0x1004, tcphy->base + RX_DIAG_SIGDET_TUNE(lane));
writel(0x2010, tcphy->base + RX_PSC_RDY(lane));
writel(0xfb, tcphy->base + XCVR_DIAG_BIDI_CTRL(lane));
}
static void tcphy_dp_cfg_lane(struct rockchip_typec_phy *tcphy, u32 lane)
{
u16 rdata;
writel(0xbefc, tcphy->base + XCVR_PSM_RCTRL(lane));
writel(0x6799, tcphy->base + TX_PSC_A0(lane));
writel(0x6798, tcphy->base + TX_PSC_A1(lane));
writel(0x98, tcphy->base + TX_PSC_A2(lane));
writel(0x98, tcphy->base + TX_PSC_A3(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_000(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_001(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_010(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_011(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_100(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_101(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_110(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_111(lane));
writel(0, tcphy->base + TX_TXCC_CPOST_MULT_10(lane));
writel(0, tcphy->base + TX_TXCC_CPOST_MULT_01(lane));
writel(0, tcphy->base + TX_TXCC_CPOST_MULT_00(lane));
writel(0, tcphy->base + TX_TXCC_CPOST_MULT_11(lane));
writel(0x128, tcphy->base + TX_TXCC_CAL_SCLR_MULT(lane));
writel(0x400, tcphy->base + TX_DIAG_TX_DRV(lane));
rdata = readl(tcphy->base + XCVR_DIAG_PLLDRC_CTRL(lane));
rdata = (rdata & 0x8fff) | 0x6000;
writel(rdata, tcphy->base + XCVR_DIAG_PLLDRC_CTRL(lane));
}
static inline int property_enable(struct rockchip_typec_phy *tcphy,
const struct usb3phy_reg *reg, bool en)
{
u32 mask = 1 << reg->write_enable;
u32 val = en << reg->enable_bit;
return regmap_write(tcphy->grf_regs, reg->offset, val | mask);
}
static void tcphy_dp_aux_set_flip(struct rockchip_typec_phy *tcphy)
{
u16 tx_ana_ctrl_reg_1;
/*
* Select the polarity of the xcvr:
* 1, Reverses the polarity (If TYPEC, Pulls ups aux_p and pull
* down aux_m)
* 0, Normal polarity (if TYPEC, pulls up aux_m and pulls down
* aux_p)
*/
tx_ana_ctrl_reg_1 = readl(tcphy->base + TX_ANA_CTRL_REG_1);
if (!tcphy->flip)
tx_ana_ctrl_reg_1 |= AUXDA_POLARITY;
else
tx_ana_ctrl_reg_1 &= ~AUXDA_POLARITY;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
}
static void tcphy_dp_aux_calibration(struct rockchip_typec_phy *tcphy)
{
u16 val;
u16 tx_ana_ctrl_reg_1;
u16 tx_ana_ctrl_reg_2;
s32 pu_calib_code, pd_calib_code;
s32 pu_adj, pd_adj;
u16 calib;
/*
* Calculate calibration code as per docs: use an average of the
* pull down and pull up. Then add in adjustments.
*/
val = readl(tcphy->base + CMN_TXPUCAL_CTRL);
pu_calib_code = CMN_CALIB_CODE_POS(val);
val = readl(tcphy->base + CMN_TXPDCAL_CTRL);
pd_calib_code = CMN_CALIB_CODE_POS(val);
val = readl(tcphy->base + CMN_TXPU_ADJ_CTRL);
pu_adj = CMN_CALIB_CODE(val);
val = readl(tcphy->base + CMN_TXPD_ADJ_CTRL);
pd_adj = CMN_CALIB_CODE(val);
calib = (pu_calib_code + pd_calib_code) / 2 + pu_adj + pd_adj;
/* disable txda_cal_latch_en for rewrite the calibration values */
tx_ana_ctrl_reg_1 = readl(tcphy->base + TX_ANA_CTRL_REG_1);
tx_ana_ctrl_reg_1 &= ~TXDA_CAL_LATCH_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
/* write the calibration, then delay 10 ms as sample in docs */
val = readl(tcphy->base + TX_DIG_CTRL_REG_2);
val &= ~(TX_RESCAL_CODE_MASK << TX_RESCAL_CODE_OFFSET);
val |= calib << TX_RESCAL_CODE_OFFSET;
writel(val, tcphy->base + TX_DIG_CTRL_REG_2);
usleep_range(10000, 10050);
/*
* Enable signal for latch that sample and holds calibration values.
* Activate this signal for 1 clock cycle to sample new calibration
* values.
*/
tx_ana_ctrl_reg_1 |= TXDA_CAL_LATCH_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
usleep_range(150, 200);
/* set TX Voltage Level and TX Deemphasis to 0 */
writel(0, tcphy->base + PHY_DP_TX_CTL);
/* re-enable decap */
tx_ana_ctrl_reg_2 = XCVR_DECAP_EN;
writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2);
udelay(1);
tx_ana_ctrl_reg_2 |= XCVR_DECAP_EN_DEL;
writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2);
writel(0, tcphy->base + TX_ANA_CTRL_REG_3);
tx_ana_ctrl_reg_1 |= TXDA_UPHY_SUPPLY_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
udelay(1);
tx_ana_ctrl_reg_1 |= TXDA_UPHY_SUPPLY_EN_DEL;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
writel(0, tcphy->base + TX_ANA_CTRL_REG_5);
/*
* Programs txda_drv_ldo_prog[15:0], Sets driver LDO
* voltage 16'h1001 for DP-AUX-TX and RX
*/
writel(0x1001, tcphy->base + TX_ANA_CTRL_REG_4);
/* re-enables Bandgap reference for LDO */
tx_ana_ctrl_reg_1 |= TXDA_DRV_LDO_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
udelay(5);
tx_ana_ctrl_reg_1 |= TXDA_BGREF_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
/*
* re-enables the transmitter pre-driver, driver data selection MUX,
* and receiver detect circuits.
*/
tx_ana_ctrl_reg_2 |= TXDA_DRV_PREDRV_EN;
writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2);
udelay(1);
tx_ana_ctrl_reg_2 |= TXDA_DRV_PREDRV_EN_DEL;
writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2);
/*
* Do all the undocumented magic:
* - Turn on TXDA_DP_AUX_EN, whatever that is, even though sample
* never shows this going on.
* - Turn on TXDA_DECAP_EN (and TXDA_DECAP_EN_DEL) even though
* docs say for aux it's always 0.
* - Turn off the LDO and BGREF, which we just spent time turning
* on above (???).
*
* Without this magic, things seem worse.
*/
tx_ana_ctrl_reg_1 |= TXDA_DP_AUX_EN;
tx_ana_ctrl_reg_1 |= TXDA_DECAP_EN;
tx_ana_ctrl_reg_1 &= ~TXDA_DRV_LDO_EN;
tx_ana_ctrl_reg_1 &= ~TXDA_BGREF_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
udelay(1);
tx_ana_ctrl_reg_1 |= TXDA_DECAP_EN_DEL;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
/*
* Undo the work we did to set the LDO voltage.
* This doesn't seem to help nor hurt, but it kinda goes with the
* undocumented magic above.
*/
writel(0, tcphy->base + TX_ANA_CTRL_REG_4);
/* Don't set voltage swing to 400 mV peak to peak (differential) */
writel(0, tcphy->base + TXDA_COEFF_CALC_CTRL);
/* Init TXDA_CYA_AUXDA_CYA for unknown magic reasons */
writel(0, tcphy->base + TXDA_CYA_AUXDA_CYA);
/*
* More undocumented magic, presumably the goal of which is to
* make the "auxda_source_aux_oen" be ignored and instead to decide
* about "high impedance state" based on what software puts in the
* register TXDA_COEFF_CALC_CTRL (see TX_HIGH_Z). Since we only
* program that register once and we don't set the bit TX_HIGH_Z,
* presumably the goal here is that we should never put the analog
* driver in high impedance state.
*/
val = readl(tcphy->base + TX_DIG_CTRL_REG_2);
val |= TX_HIGH_Z_TM_EN;
writel(val, tcphy->base + TX_DIG_CTRL_REG_2);
}
static int tcphy_phy_init(struct rockchip_typec_phy *tcphy, u8 mode)
{
const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs;
int ret, i;
u32 val;
ret = clk_prepare_enable(tcphy->clk_core);
if (ret) {
dev_err(tcphy->dev, "Failed to prepare_enable core clock\n");
return ret;
}
ret = clk_prepare_enable(tcphy->clk_ref);
if (ret) {
dev_err(tcphy->dev, "Failed to prepare_enable ref clock\n");
goto err_clk_core;
}
reset_control_deassert(tcphy->tcphy_rst);
property_enable(tcphy, &cfg->typec_conn_dir, tcphy->flip);
tcphy_dp_aux_set_flip(tcphy);
tcphy_cfg_24m(tcphy);
if (mode == MODE_DFP_DP) {
tcphy_cfg_dp_pll(tcphy);
for (i = 0; i < 4; i++)
tcphy_dp_cfg_lane(tcphy, i);
writel(PIN_ASSIGN_C_E, tcphy->base + PMA_LANE_CFG);
} else {
tcphy_cfg_usb3_pll(tcphy);
tcphy_cfg_dp_pll(tcphy);
if (tcphy->flip) {
tcphy_tx_usb3_cfg_lane(tcphy, 3);
tcphy_rx_usb3_cfg_lane(tcphy, 2);
tcphy_dp_cfg_lane(tcphy, 0);
tcphy_dp_cfg_lane(tcphy, 1);
} else {
tcphy_tx_usb3_cfg_lane(tcphy, 0);
tcphy_rx_usb3_cfg_lane(tcphy, 1);
tcphy_dp_cfg_lane(tcphy, 2);
tcphy_dp_cfg_lane(tcphy, 3);
}
writel(PIN_ASSIGN_D_F, tcphy->base + PMA_LANE_CFG);
}
writel(DP_MODE_ENTER_A2, tcphy->base + DP_MODE_CTL);
reset_control_deassert(tcphy->uphy_rst);
ret = readx_poll_timeout(readl, tcphy->base + PMA_CMN_CTRL1,
val, val & CMN_READY, 10,
PHY_MODE_SET_TIMEOUT);
if (ret < 0) {
dev_err(tcphy->dev, "wait pma ready timeout\n");
ret = -ETIMEDOUT;
goto err_wait_pma;
}
reset_control_deassert(tcphy->pipe_rst);
return 0;
err_wait_pma:
reset_control_assert(tcphy->uphy_rst);
reset_control_assert(tcphy->tcphy_rst);
clk_disable_unprepare(tcphy->clk_ref);
err_clk_core:
clk_disable_unprepare(tcphy->clk_core);
return ret;
}
static void tcphy_phy_deinit(struct rockchip_typec_phy *tcphy)
{
reset_control_assert(tcphy->tcphy_rst);
reset_control_assert(tcphy->uphy_rst);
reset_control_assert(tcphy->pipe_rst);
clk_disable_unprepare(tcphy->clk_core);
clk_disable_unprepare(tcphy->clk_ref);
}
static int tcphy_get_mode(struct rockchip_typec_phy *tcphy)
{
struct extcon_dev *edev = tcphy->extcon;
union extcon_property_value property;
unsigned int id;
u8 mode;
int ret, ufp, dp;
if (!edev)
return MODE_DFP_USB;
ufp = extcon_get_state(edev, EXTCON_USB);
dp = extcon_get_state(edev, EXTCON_DISP_DP);
mode = MODE_DFP_USB;
id = EXTCON_USB_HOST;
if (ufp > 0) {
mode = MODE_UFP_USB;
id = EXTCON_USB;
} else if (dp > 0) {
mode = MODE_DFP_DP;
id = EXTCON_DISP_DP;
ret = extcon_get_property(edev, id, EXTCON_PROP_USB_SS,
&property);
if (ret) {
dev_err(tcphy->dev, "get superspeed property failed\n");
return ret;
}
if (property.intval)
mode |= MODE_DFP_USB;
}
ret = extcon_get_property(edev, id, EXTCON_PROP_USB_TYPEC_POLARITY,
&property);
if (ret) {
dev_err(tcphy->dev, "get polarity property failed\n");
return ret;
}
tcphy->flip = property.intval ? 1 : 0;
return mode;
}
static int tcphy_cfg_usb3_to_usb2_only(struct rockchip_typec_phy *tcphy,
bool value)
{
const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs;
property_enable(tcphy, &cfg->usb3tousb2_en, value);
property_enable(tcphy, &cfg->usb3_host_disable, value);
property_enable(tcphy, &cfg->usb3_host_port, !value);
return 0;
}
static int rockchip_usb3_phy_power_on(struct phy *phy)
{
struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy);
const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs;
const struct usb3phy_reg *reg = &cfg->pipe_status;
int timeout, new_mode, ret = 0;
u32 val;
mutex_lock(&tcphy->lock);
new_mode = tcphy_get_mode(tcphy);
if (new_mode < 0) {
ret = new_mode;
goto unlock_ret;
}
/* DP-only mode; fall back to USB2 */
if (!(new_mode & (MODE_DFP_USB | MODE_UFP_USB))) {
tcphy_cfg_usb3_to_usb2_only(tcphy, true);
goto unlock_ret;
}
if (tcphy->mode == new_mode)
goto unlock_ret;
if (tcphy->mode == MODE_DISCONNECT) {
ret = tcphy_phy_init(tcphy, new_mode);
if (ret)
goto unlock_ret;
}
/* wait TCPHY for pipe ready */
for (timeout = 0; timeout < 100; timeout++) {
regmap_read(tcphy->grf_regs, reg->offset, &val);
if (!(val & BIT(reg->enable_bit))) {
tcphy->mode |= new_mode & (MODE_DFP_USB | MODE_UFP_USB);
/* enable usb3 host */
tcphy_cfg_usb3_to_usb2_only(tcphy, false);
goto unlock_ret;
}
usleep_range(10, 20);
}
if (tcphy->mode == MODE_DISCONNECT)
tcphy_phy_deinit(tcphy);
ret = -ETIMEDOUT;
unlock_ret:
mutex_unlock(&tcphy->lock);
return ret;
}
static int rockchip_usb3_phy_power_off(struct phy *phy)
{
struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy);
mutex_lock(&tcphy->lock);
tcphy_cfg_usb3_to_usb2_only(tcphy, false);
if (tcphy->mode == MODE_DISCONNECT)
goto unlock;
tcphy->mode &= ~(MODE_UFP_USB | MODE_DFP_USB);
if (tcphy->mode == MODE_DISCONNECT)
tcphy_phy_deinit(tcphy);
unlock:
mutex_unlock(&tcphy->lock);
return 0;
}
static const struct phy_ops rockchip_usb3_phy_ops = {
.power_on = rockchip_usb3_phy_power_on,
.power_off = rockchip_usb3_phy_power_off,
.owner = THIS_MODULE,
};
static int rockchip_dp_phy_power_on(struct phy *phy)
{
struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy);
const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs;
int new_mode, ret = 0;
u32 val;
mutex_lock(&tcphy->lock);
new_mode = tcphy_get_mode(tcphy);
if (new_mode < 0) {
ret = new_mode;
goto unlock_ret;
}
if (!(new_mode & MODE_DFP_DP)) {
ret = -ENODEV;
goto unlock_ret;
}
if (tcphy->mode == new_mode)
goto unlock_ret;
/*
* If the PHY has been power on, but the mode is not DP only mode,
* re-init the PHY for setting all of 4 lanes to DP.
*/
if (new_mode == MODE_DFP_DP && tcphy->mode != MODE_DISCONNECT) {
tcphy_phy_deinit(tcphy);
ret = tcphy_phy_init(tcphy, new_mode);
} else if (tcphy->mode == MODE_DISCONNECT) {
ret = tcphy_phy_init(tcphy, new_mode);
}
if (ret)
goto unlock_ret;
property_enable(tcphy, &cfg->uphy_dp_sel, 1);
ret = readx_poll_timeout(readl, tcphy->base + DP_MODE_CTL,
val, val & DP_MODE_A2, 1000,
PHY_MODE_SET_TIMEOUT);
if (ret < 0) {
dev_err(tcphy->dev, "failed to wait TCPHY enter A2\n");
goto power_on_finish;
}
tcphy_dp_aux_calibration(tcphy);
writel(DP_MODE_ENTER_A0, tcphy->base + DP_MODE_CTL);
ret = readx_poll_timeout(readl, tcphy->base + DP_MODE_CTL,
val, val & DP_MODE_A0, 1000,
PHY_MODE_SET_TIMEOUT);
if (ret < 0) {
writel(DP_MODE_ENTER_A2, tcphy->base + DP_MODE_CTL);
dev_err(tcphy->dev, "failed to wait TCPHY enter A0\n");
goto power_on_finish;
}
tcphy->mode |= MODE_DFP_DP;
power_on_finish:
if (tcphy->mode == MODE_DISCONNECT)
tcphy_phy_deinit(tcphy);
unlock_ret:
mutex_unlock(&tcphy->lock);
return ret;
}
static int rockchip_dp_phy_power_off(struct phy *phy)
{
struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy);
mutex_lock(&tcphy->lock);
if (tcphy->mode == MODE_DISCONNECT)
goto unlock;
tcphy->mode &= ~MODE_DFP_DP;
writel(DP_MODE_ENTER_A2, tcphy->base + DP_MODE_CTL);
if (tcphy->mode == MODE_DISCONNECT)
tcphy_phy_deinit(tcphy);
unlock:
mutex_unlock(&tcphy->lock);
return 0;
}
static const struct phy_ops rockchip_dp_phy_ops = {
.power_on = rockchip_dp_phy_power_on,
.power_off = rockchip_dp_phy_power_off,
.owner = THIS_MODULE,
};
static int tcphy_parse_dt(struct rockchip_typec_phy *tcphy,
struct device *dev)
{
tcphy->grf_regs = syscon_regmap_lookup_by_phandle(dev->of_node,
"rockchip,grf");
if (IS_ERR(tcphy->grf_regs)) {
dev_err(dev, "could not find grf dt node\n");
return PTR_ERR(tcphy->grf_regs);
}
tcphy->clk_core = devm_clk_get(dev, "tcpdcore");
if (IS_ERR(tcphy->clk_core)) {
dev_err(dev, "could not get uphy core clock\n");
return PTR_ERR(tcphy->clk_core);
}
tcphy->clk_ref = devm_clk_get(dev, "tcpdphy-ref");
if (IS_ERR(tcphy->clk_ref)) {
dev_err(dev, "could not get uphy ref clock\n");
return PTR_ERR(tcphy->clk_ref);
}
tcphy->uphy_rst = devm_reset_control_get(dev, "uphy");
if (IS_ERR(tcphy->uphy_rst)) {
dev_err(dev, "no uphy_rst reset control found\n");
return PTR_ERR(tcphy->uphy_rst);
}
tcphy->pipe_rst = devm_reset_control_get(dev, "uphy-pipe");
if (IS_ERR(tcphy->pipe_rst)) {
dev_err(dev, "no pipe_rst reset control found\n");
return PTR_ERR(tcphy->pipe_rst);
}
tcphy->tcphy_rst = devm_reset_control_get(dev, "uphy-tcphy");
if (IS_ERR(tcphy->tcphy_rst)) {
dev_err(dev, "no tcphy_rst reset control found\n");
return PTR_ERR(tcphy->tcphy_rst);
}
return 0;
}
static void typec_phy_pre_init(struct rockchip_typec_phy *tcphy)
{
const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs;
reset_control_assert(tcphy->tcphy_rst);
reset_control_assert(tcphy->uphy_rst);
reset_control_assert(tcphy->pipe_rst);
/* select external psm clock */
property_enable(tcphy, &cfg->external_psm, 1);
property_enable(tcphy, &cfg->usb3tousb2_en, 0);
tcphy->mode = MODE_DISCONNECT;
}
static int rockchip_typec_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct device_node *child_np;
struct rockchip_typec_phy *tcphy;
struct phy_provider *phy_provider;
struct resource *res;
const struct rockchip_usb3phy_port_cfg *phy_cfgs;
int index, ret;
tcphy = devm_kzalloc(dev, sizeof(*tcphy), GFP_KERNEL);
if (!tcphy)
return -ENOMEM;
phy_cfgs = of_device_get_match_data(dev);
if (!phy_cfgs) {
dev_err(dev, "phy configs are not assigned!\n");
return -EINVAL;
}
tcphy->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(tcphy->base))
return PTR_ERR(tcphy->base);
/* find out a proper config which can be matched with dt. */
index = 0;
while (phy_cfgs[index].reg) {
if (phy_cfgs[index].reg == res->start) {
tcphy->port_cfgs = &phy_cfgs[index];
break;
}
++index;
}
if (!tcphy->port_cfgs) {
dev_err(dev, "no phy-config can be matched with %pOFn node\n",
np);
return -EINVAL;
}
ret = tcphy_parse_dt(tcphy, dev);
if (ret)
return ret;
tcphy->dev = dev;
platform_set_drvdata(pdev, tcphy);
mutex_init(&tcphy->lock);
typec_phy_pre_init(tcphy);
tcphy->extcon = extcon_get_edev_by_phandle(dev, 0);
if (IS_ERR(tcphy->extcon)) {
if (PTR_ERR(tcphy->extcon) == -ENODEV) {
tcphy->extcon = NULL;
} else {
if (PTR_ERR(tcphy->extcon) != -EPROBE_DEFER)
dev_err(dev, "Invalid or missing extcon\n");
return PTR_ERR(tcphy->extcon);
}
}
pm_runtime_enable(dev);
for_each_available_child_of_node(np, child_np) {
struct phy *phy;
if (of_node_name_eq(child_np, "dp-port"))
phy = devm_phy_create(dev, child_np,
&rockchip_dp_phy_ops);
else if (of_node_name_eq(child_np, "usb3-port"))
phy = devm_phy_create(dev, child_np,
&rockchip_usb3_phy_ops);
else
continue;
if (IS_ERR(phy)) {
dev_err(dev, "failed to create phy: %pOFn\n",
child_np);
pm_runtime_disable(dev);
of_node_put(child_np);
return PTR_ERR(phy);
}
phy_set_drvdata(phy, tcphy);
}
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
dev_err(dev, "Failed to register phy provider\n");
pm_runtime_disable(dev);
return PTR_ERR(phy_provider);
}
return 0;
}
static void rockchip_typec_phy_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
}
static const struct of_device_id rockchip_typec_phy_dt_ids[] = {
{
.compatible = "rockchip,rk3399-typec-phy",
.data = &rk3399_usb3phy_port_cfgs
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rockchip_typec_phy_dt_ids);
static struct platform_driver rockchip_typec_phy_driver = {
.probe = rockchip_typec_phy_probe,
.remove_new = rockchip_typec_phy_remove,
.driver = {
.name = "rockchip-typec-phy",
.of_match_table = rockchip_typec_phy_dt_ids,
},
};
module_platform_driver(rockchip_typec_phy_driver);
MODULE_AUTHOR("Chris Zhong <[email protected]>");
MODULE_AUTHOR("Kever Yang <[email protected]>");
MODULE_DESCRIPTION("Rockchip USB TYPE-C PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/rockchip/phy-rockchip-typec.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Rockchip DP PHY driver
*
* Copyright (C) 2016 FuZhou Rockchip Co., Ltd.
* Author: Yakir Yang <ykk@@rock-chips.com>
*/
#include <linux/clk.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#define GRF_SOC_CON12 0x0274
#define GRF_EDP_REF_CLK_SEL_INTER_HIWORD_MASK BIT(20)
#define GRF_EDP_REF_CLK_SEL_INTER BIT(4)
#define GRF_EDP_PHY_SIDDQ_HIWORD_MASK BIT(21)
#define GRF_EDP_PHY_SIDDQ_ON 0
#define GRF_EDP_PHY_SIDDQ_OFF BIT(5)
struct rockchip_dp_phy {
struct device *dev;
struct regmap *grf;
struct clk *phy_24m;
};
static int rockchip_set_phy_state(struct phy *phy, bool enable)
{
struct rockchip_dp_phy *dp = phy_get_drvdata(phy);
int ret;
if (enable) {
ret = regmap_write(dp->grf, GRF_SOC_CON12,
GRF_EDP_PHY_SIDDQ_HIWORD_MASK |
GRF_EDP_PHY_SIDDQ_ON);
if (ret < 0) {
dev_err(dp->dev, "Can't enable PHY power %d\n", ret);
return ret;
}
ret = clk_prepare_enable(dp->phy_24m);
} else {
clk_disable_unprepare(dp->phy_24m);
ret = regmap_write(dp->grf, GRF_SOC_CON12,
GRF_EDP_PHY_SIDDQ_HIWORD_MASK |
GRF_EDP_PHY_SIDDQ_OFF);
}
return ret;
}
static int rockchip_dp_phy_power_on(struct phy *phy)
{
return rockchip_set_phy_state(phy, true);
}
static int rockchip_dp_phy_power_off(struct phy *phy)
{
return rockchip_set_phy_state(phy, false);
}
static const struct phy_ops rockchip_dp_phy_ops = {
.power_on = rockchip_dp_phy_power_on,
.power_off = rockchip_dp_phy_power_off,
.owner = THIS_MODULE,
};
static int rockchip_dp_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct phy_provider *phy_provider;
struct rockchip_dp_phy *dp;
struct phy *phy;
int ret;
if (!np)
return -ENODEV;
if (!dev->parent || !dev->parent->of_node)
return -ENODEV;
dp = devm_kzalloc(dev, sizeof(*dp), GFP_KERNEL);
if (!dp)
return -ENOMEM;
dp->dev = dev;
dp->phy_24m = devm_clk_get(dev, "24m");
if (IS_ERR(dp->phy_24m)) {
dev_err(dev, "cannot get clock 24m\n");
return PTR_ERR(dp->phy_24m);
}
ret = clk_set_rate(dp->phy_24m, 24000000);
if (ret < 0) {
dev_err(dp->dev, "cannot set clock phy_24m %d\n", ret);
return ret;
}
dp->grf = syscon_node_to_regmap(dev->parent->of_node);
if (IS_ERR(dp->grf)) {
dev_err(dev, "rk3288-dp needs the General Register Files syscon\n");
return PTR_ERR(dp->grf);
}
ret = regmap_write(dp->grf, GRF_SOC_CON12, GRF_EDP_REF_CLK_SEL_INTER |
GRF_EDP_REF_CLK_SEL_INTER_HIWORD_MASK);
if (ret != 0) {
dev_err(dp->dev, "Could not config GRF edp ref clk: %d\n", ret);
return ret;
}
phy = devm_phy_create(dev, np, &rockchip_dp_phy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create phy\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, dp);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id rockchip_dp_phy_dt_ids[] = {
{ .compatible = "rockchip,rk3288-dp-phy" },
{}
};
MODULE_DEVICE_TABLE(of, rockchip_dp_phy_dt_ids);
static struct platform_driver rockchip_dp_phy_driver = {
.probe = rockchip_dp_phy_probe,
.driver = {
.name = "rockchip-dp-phy",
.of_match_table = rockchip_dp_phy_dt_ids,
},
};
module_platform_driver(rockchip_dp_phy_driver);
MODULE_AUTHOR("Yakir Yang <[email protected]>");
MODULE_DESCRIPTION("Rockchip DP PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/rockchip/phy-rockchip-dp.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018 Rockchip Electronics Co. Ltd.
*
* Author: Wyon Bi <[email protected]>
*/
#include <linux/bits.h>
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/time64.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-mipi-dphy.h>
#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
/*
* The offset address[7:0] is distributed two parts, one from the bit7 to bit5
* is the first address, the other from the bit4 to bit0 is the second address.
* when you configure the registers, you must set both of them. The Clock Lane
* and Data Lane use the same registers with the same second address, but the
* first address is different.
*/
#define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
#define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
#define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
SECOND_ADDRESS(second))
/* Analog Register Part: reg00 */
#define BANDGAP_POWER_MASK BIT(7)
#define BANDGAP_POWER_DOWN BIT(7)
#define BANDGAP_POWER_ON 0
#define LANE_EN_MASK GENMASK(6, 2)
#define LANE_EN_CK BIT(6)
#define LANE_EN_3 BIT(5)
#define LANE_EN_2 BIT(4)
#define LANE_EN_1 BIT(3)
#define LANE_EN_0 BIT(2)
#define POWER_WORK_MASK GENMASK(1, 0)
#define POWER_WORK_ENABLE UPDATE(1, 1, 0)
#define POWER_WORK_DISABLE UPDATE(2, 1, 0)
/* Analog Register Part: reg01 */
#define REG_SYNCRST_MASK BIT(2)
#define REG_SYNCRST_RESET BIT(2)
#define REG_SYNCRST_NORMAL 0
#define REG_LDOPD_MASK BIT(1)
#define REG_LDOPD_POWER_DOWN BIT(1)
#define REG_LDOPD_POWER_ON 0
#define REG_PLLPD_MASK BIT(0)
#define REG_PLLPD_POWER_DOWN BIT(0)
#define REG_PLLPD_POWER_ON 0
/* Analog Register Part: reg03 */
#define REG_FBDIV_HI_MASK BIT(5)
#define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
#define REG_PREDIV_MASK GENMASK(4, 0)
#define REG_PREDIV(x) UPDATE(x, 4, 0)
/* Analog Register Part: reg04 */
#define REG_FBDIV_LO_MASK GENMASK(7, 0)
#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
/* Analog Register Part: reg05 */
#define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
#define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
#define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
#define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg06 */
#define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
#define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
#define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
#define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg07 */
#define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
#define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
#define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
#define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg08 */
#define PLL_POST_DIV_ENABLE_MASK BIT(5)
#define PLL_POST_DIV_ENABLE BIT(5)
#define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
#define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
#define SAMPLE_CLOCK_DIRECTION_FORWARD 0
#define LOWFRE_EN_MASK BIT(5)
#define PLL_OUTPUT_FREQUENCY_DIV_BY_1 0
#define PLL_OUTPUT_FREQUENCY_DIV_BY_2 1
/* Analog Register Part: reg0b */
#define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
#define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
#define VOD_MIN_RANGE 0x1
#define VOD_MID_RANGE 0x3
#define VOD_BIG_RANGE 0x7
#define VOD_MAX_RANGE 0xf
/* Analog Register Part: reg1E */
#define PLL_MODE_SEL_MASK GENMASK(6, 5)
#define PLL_MODE_SEL_LVDS_MODE 0
#define PLL_MODE_SEL_MIPI_MODE BIT(5)
/* Digital Register Part: reg00 */
#define REG_DIG_RSTN_MASK BIT(0)
#define REG_DIG_RSTN_NORMAL BIT(0)
#define REG_DIG_RSTN_RESET 0
/* Digital Register Part: reg01 */
#define INVERT_TXCLKESC_MASK BIT(1)
#define INVERT_TXCLKESC_ENABLE BIT(1)
#define INVERT_TXCLKESC_DISABLE 0
#define INVERT_TXBYTECLKHS_MASK BIT(0)
#define INVERT_TXBYTECLKHS_ENABLE BIT(0)
#define INVERT_TXBYTECLKHS_DISABLE 0
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
#define T_LPX_CNT_MASK GENMASK(5, 0)
#define T_LPX_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
#define T_HS_ZERO_CNT_HI_MASK BIT(7)
#define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7)
#define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
#define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
#define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0)
#define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
#define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
#define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
#define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0)
#define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
#define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0)
#define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
#define LPDT_TX_PPI_SYNC_MASK BIT(2)
#define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
#define LPDT_TX_PPI_SYNC_DISABLE 0
#define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
#define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
#define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
#define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
#define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
#define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
#define T_CLK_POST_CNT_HI_MASK GENMASK(7, 6)
#define T_CLK_POST_CNT_HI(x) UPDATE(x, 7, 6)
#define T_TA_GO_CNT_MASK GENMASK(5, 0)
#define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
#define T_HS_EXIT_CNT_HI_MASK BIT(6)
#define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6)
#define T_TA_SURE_CNT_MASK GENMASK(5, 0)
#define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
#define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
#define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
/* LVDS Register Part: reg00 */
#define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
/* LVDS Register Part: reg01 */
#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
#define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
#define LVDS_DIGITAL_INTERNAL_DISABLE 0
/* LVDS Register Part: reg03 */
#define MODE_ENABLE_MASK GENMASK(2, 0)
#define TTL_MODE_ENABLE BIT(2)
#define LVDS_MODE_ENABLE BIT(1)
#define MIPI_MODE_ENABLE BIT(0)
/* LVDS Register Part: reg0b */
#define LVDS_LANE_EN_MASK GENMASK(7, 3)
#define LVDS_DATA_LANE0_EN BIT(7)
#define LVDS_DATA_LANE1_EN BIT(6)
#define LVDS_DATA_LANE2_EN BIT(5)
#define LVDS_DATA_LANE3_EN BIT(4)
#define LVDS_CLK_LANE_EN BIT(3)
#define LVDS_PLL_POWER_MASK BIT(2)
#define LVDS_PLL_POWER_OFF BIT(2)
#define LVDS_PLL_POWER_ON 0
#define LVDS_BANDGAP_POWER_MASK BIT(0)
#define LVDS_BANDGAP_POWER_DOWN BIT(0)
#define LVDS_BANDGAP_POWER_ON 0
#define DSI_PHY_RSTZ 0xa0
#define PHY_ENABLECLK BIT(2)
#define DSI_PHY_STATUS 0xb0
#define PHY_LOCK BIT(0)
enum phy_max_rate {
MAX_1GHZ,
MAX_2_5GHZ,
};
struct inno_video_phy_plat_data {
const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
const unsigned int num_timings;
enum phy_max_rate max_rate;
};
struct inno_dsidphy {
struct device *dev;
struct clk *ref_clk;
struct clk *pclk_phy;
struct clk *pclk_host;
const struct inno_video_phy_plat_data *pdata;
void __iomem *phy_base;
void __iomem *host_base;
struct reset_control *rst;
enum phy_mode mode;
struct phy_configure_opts_mipi_dphy dphy_cfg;
struct clk *pll_clk;
struct {
struct clk_hw hw;
u8 prediv;
u16 fbdiv;
unsigned long rate;
} pll;
};
enum {
REGISTER_PART_ANALOG,
REGISTER_PART_DIGITAL,
REGISTER_PART_CLOCK_LANE,
REGISTER_PART_DATA0_LANE,
REGISTER_PART_DATA1_LANE,
REGISTER_PART_DATA2_LANE,
REGISTER_PART_DATA3_LANE,
REGISTER_PART_LVDS,
};
struct inno_mipi_dphy_timing {
unsigned long rate;
u8 lpx;
u8 hs_prepare;
u8 clk_lane_hs_zero;
u8 data_lane_hs_zero;
u8 hs_trail;
};
static const
struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
{ 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
{ 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
{ 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
{ 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
{ 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
{ 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
{ 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
{ 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
{ 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
{ 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
{1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
};
static const
struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
{ 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
{ 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
{ 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
{ 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
{ 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
{ 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
{ 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
{ 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
{ 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
{ 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
{1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
{1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
{1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
{1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
{1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
{2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
{2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
{2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
{2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
};
static void phy_update_bits(struct inno_dsidphy *inno,
u8 first, u8 second, u8 mask, u8 val)
{
u32 reg = PHY_REG(first, second) << 2;
unsigned int tmp, orig;
orig = readl(inno->phy_base + reg);
tmp = orig & ~mask;
tmp |= val & mask;
writel(tmp, inno->phy_base + reg);
}
static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
unsigned long rate)
{
unsigned long prate = clk_get_rate(inno->ref_clk);
unsigned long best_freq = 0;
unsigned long fref, fout;
u8 min_prediv, max_prediv;
u8 _prediv, best_prediv = 1;
u16 _fbdiv, best_fbdiv = 1;
u32 min_delta = UINT_MAX;
/*
* The PLL output frequency can be calculated using a simple formula:
* PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
* PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
*/
fref = prate / 2;
if (rate > 1000000000UL)
fout = 1000000000UL;
else
fout = rate;
/* 5Mhz < Fref / prediv < 40MHz */
min_prediv = DIV_ROUND_UP(fref, 40000000);
max_prediv = fref / 5000000;
for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
u64 tmp;
u32 delta;
tmp = (u64)fout * _prediv;
do_div(tmp, fref);
_fbdiv = tmp;
/*
* The possible settings of feedback divider are
* 12, 13, 14, 16, ~ 511
*/
if (_fbdiv == 15)
continue;
if (_fbdiv < 12 || _fbdiv > 511)
continue;
tmp = (u64)_fbdiv * fref;
do_div(tmp, _prediv);
delta = abs(fout - tmp);
if (!delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
best_freq = tmp;
break;
} else if (delta < min_delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
best_freq = tmp;
min_delta = delta;
}
}
if (best_freq) {
inno->pll.prediv = best_prediv;
inno->pll.fbdiv = best_fbdiv;
inno->pll.rate = best_freq;
}
return best_freq;
}
static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
{
struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
const struct inno_mipi_dphy_timing *timings;
u32 t_txbyteclkhs, t_txclkesc;
u32 txbyteclkhs, txclkesc, esc_clk_div;
u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
unsigned int i;
timings = inno->pdata->inno_mipi_dphy_timing_table;
inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
/* Select MIPI mode */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
/* Configure PLL */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
if (inno->pdata->max_rate == MAX_2_5GHZ) {
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
CLOCK_LANE_VOD_RANGE_SET_MASK,
CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
}
/* Enable PLL and LDO */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
/* Reset analog */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_SYNCRST_MASK, REG_SYNCRST_RESET);
udelay(1);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
/* Reset digital */
phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
udelay(1);
phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
txbyteclkhs = inno->pll.rate / 8;
t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
txclkesc = txbyteclkhs / esc_clk_div;
t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
/*
* The value of counter for HS Ths-exit
* Ths-exit = Tpin_txbyteclkhs * value
*/
hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
/*
* The value of counter for HS Tclk-post
* Tclk-post = Tpin_txbyteclkhs * value
*/
clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
/*
* The value of counter for HS Tclk-pre
* Tclk-pre = Tpin_txbyteclkhs * value
*/
clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
/*
* The value of counter for HS Tta-go
* Tta-go for turnaround
* Tta-go = Ttxclkesc * value
*/
ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
/*
* The value of counter for HS Tta-sure
* Tta-sure for turnaround
* Tta-sure = Ttxclkesc * value
*/
ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
/*
* The value of counter for HS Tta-wait
* Tta-wait for turnaround
* Tta-wait = Ttxclkesc * value
*/
ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
for (i = 0; i < inno->pdata->num_timings; i++)
if (inno->pll.rate <= timings[i].rate)
break;
if (i == inno->pdata->num_timings)
--i;
/*
* The value of counter for HS Tlpx Time
* Tlpx = Tpin_txbyteclkhs * (2 + value)
*/
if (inno->pdata->max_rate == MAX_1GHZ) {
lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
if (lpx >= 2)
lpx -= 2;
} else
lpx = timings[i].lpx;
hs_prepare = timings[i].hs_prepare;
hs_trail = timings[i].hs_trail;
clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
data_lane_hs_zero = timings[i].data_lane_hs_zero;
wakeup = 0x3ff;
for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
if (i == REGISTER_PART_CLOCK_LANE)
hs_zero = clk_lane_hs_zero;
else
hs_zero = data_lane_hs_zero;
phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
T_LPX_CNT(lpx));
phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
T_HS_PREPARE_CNT(hs_prepare));
if (inno->pdata->max_rate == MAX_2_5GHZ)
phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
T_HS_ZERO_CNT_HI(hs_zero >> 6));
phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
T_HS_ZERO_CNT_LO(hs_zero));
phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
T_HS_TRAIL_CNT(hs_trail));
if (inno->pdata->max_rate == MAX_2_5GHZ)
phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
T_HS_EXIT_CNT_HI(hs_exit >> 5));
phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
T_HS_EXIT_CNT_LO(hs_exit));
if (inno->pdata->max_rate == MAX_2_5GHZ)
phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
T_CLK_POST_CNT_HI(clk_post >> 4));
phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
T_CLK_POST_CNT_LO(clk_post));
phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
T_CLK_PRE_CNT(clk_pre));
phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
T_WAKEUP_CNT_HI(wakeup >> 8));
phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
T_WAKEUP_CNT_LO(wakeup));
phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
T_TA_GO_CNT(ta_go));
phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
T_TA_SURE_CNT(ta_sure));
phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
T_TA_WAIT_CNT(ta_wait));
}
/* Enable all lanes on analog part */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
LANE_EN_1 | LANE_EN_0);
}
static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
{
u8 prediv = 2;
u16 fbdiv = 28;
/* Sample clock reverse direction */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
SAMPLE_CLOCK_DIRECTION_REVERSE |
PLL_OUTPUT_FREQUENCY_DIV_BY_1);
/* Select LVDS mode */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
/* Configure PLL */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_PREDIV_MASK, REG_PREDIV(prediv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
/* Enable PLL and Bandgap */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
msleep(20);
/* Select PLL mode */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
/* Reset LVDS digital logic */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
LVDS_DIGITAL_INTERNAL_RESET_MASK,
LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
udelay(1);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
LVDS_DIGITAL_INTERNAL_RESET_MASK,
LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
/* Enable LVDS digital logic */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
LVDS_DIGITAL_INTERNAL_ENABLE);
/* Enable LVDS analog driver */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
}
static int inno_dsidphy_power_on(struct phy *phy)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
clk_prepare_enable(inno->pclk_phy);
clk_prepare_enable(inno->ref_clk);
pm_runtime_get_sync(inno->dev);
/* Bandgap power on */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
/* Enable power work */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
POWER_WORK_MASK, POWER_WORK_ENABLE);
switch (inno->mode) {
case PHY_MODE_MIPI_DPHY:
inno_dsidphy_mipi_mode_enable(inno);
break;
case PHY_MODE_LVDS:
inno_dsidphy_lvds_mode_enable(inno);
break;
default:
return -EINVAL;
}
return 0;
}
static int inno_dsidphy_power_off(struct phy *phy)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
POWER_WORK_MASK, POWER_WORK_DISABLE);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
LVDS_DIGITAL_INTERNAL_DISABLE);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
pm_runtime_put(inno->dev);
clk_disable_unprepare(inno->ref_clk);
clk_disable_unprepare(inno->pclk_phy);
return 0;
}
static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
int submode)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
switch (mode) {
case PHY_MODE_MIPI_DPHY:
case PHY_MODE_LVDS:
inno->mode = mode;
break;
default:
return -EINVAL;
}
return 0;
}
static int inno_dsidphy_configure(struct phy *phy,
union phy_configure_opts *opts)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
int ret;
if (inno->mode != PHY_MODE_MIPI_DPHY)
return -EINVAL;
ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
if (ret)
return ret;
memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
return 0;
}
static const struct phy_ops inno_dsidphy_ops = {
.configure = inno_dsidphy_configure,
.set_mode = inno_dsidphy_set_mode,
.power_on = inno_dsidphy_power_on,
.power_off = inno_dsidphy_power_off,
.owner = THIS_MODULE,
};
static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
.max_rate = MAX_1GHZ,
};
static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
.max_rate = MAX_2_5GHZ,
};
static int inno_dsidphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct inno_dsidphy *inno;
struct phy_provider *phy_provider;
struct phy *phy;
int ret;
inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
if (!inno)
return -ENOMEM;
inno->dev = dev;
inno->pdata = of_device_get_match_data(inno->dev);
platform_set_drvdata(pdev, inno);
inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(inno->phy_base))
return PTR_ERR(inno->phy_base);
inno->ref_clk = devm_clk_get(dev, "ref");
if (IS_ERR(inno->ref_clk)) {
ret = PTR_ERR(inno->ref_clk);
dev_err(dev, "failed to get ref clock: %d\n", ret);
return ret;
}
inno->pclk_phy = devm_clk_get(dev, "pclk");
if (IS_ERR(inno->pclk_phy)) {
ret = PTR_ERR(inno->pclk_phy);
dev_err(dev, "failed to get phy pclk: %d\n", ret);
return ret;
}
inno->rst = devm_reset_control_get(dev, "apb");
if (IS_ERR(inno->rst)) {
ret = PTR_ERR(inno->rst);
dev_err(dev, "failed to get system reset control: %d\n", ret);
return ret;
}
phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
if (IS_ERR(phy)) {
ret = PTR_ERR(phy);
dev_err(dev, "failed to create phy: %d\n", ret);
return ret;
}
phy_set_drvdata(phy, inno);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
ret = PTR_ERR(phy_provider);
dev_err(dev, "failed to register phy provider: %d\n", ret);
return ret;
}
pm_runtime_enable(dev);
return 0;
}
static void inno_dsidphy_remove(struct platform_device *pdev)
{
struct inno_dsidphy *inno = platform_get_drvdata(pdev);
pm_runtime_disable(inno->dev);
}
static const struct of_device_id inno_dsidphy_of_match[] = {
{
.compatible = "rockchip,px30-dsi-dphy",
.data = &max_1ghz_video_phy_plat_data,
}, {
.compatible = "rockchip,rk3128-dsi-dphy",
.data = &max_1ghz_video_phy_plat_data,
}, {
.compatible = "rockchip,rk3368-dsi-dphy",
.data = &max_1ghz_video_phy_plat_data,
}, {
.compatible = "rockchip,rk3568-dsi-dphy",
.data = &max_2_5ghz_video_phy_plat_data,
}, {
.compatible = "rockchip,rv1126-dsi-dphy",
.data = &max_2_5ghz_video_phy_plat_data,
},
{}
};
MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
static struct platform_driver inno_dsidphy_driver = {
.driver = {
.name = "inno-dsidphy",
.of_match_table = of_match_ptr(inno_dsidphy_of_match),
},
.probe = inno_dsidphy_probe,
.remove_new = inno_dsidphy_remove,
};
module_platform_driver(inno_dsidphy_driver);
MODULE_AUTHOR("Wyon Bi <[email protected]>");
MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/rockchip/phy-rockchip-inno-dsidphy.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Rockchip emmc PHY driver
*
* Copyright (C) 2016 Shawn Lin <[email protected]>
* Copyright (C) 2016 ROCKCHIP, Inc.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
/*
* The higher 16-bit of this register is used for write protection
* only if BIT(x + 16) set to 1 the BIT(x) can be written.
*/
#define HIWORD_UPDATE(val, mask, shift) \
((val) << (shift) | (mask) << ((shift) + 16))
/* Register definition */
#define GRF_EMMCPHY_CON0 0x0
#define GRF_EMMCPHY_CON1 0x4
#define GRF_EMMCPHY_CON2 0x8
#define GRF_EMMCPHY_CON3 0xc
#define GRF_EMMCPHY_CON4 0x10
#define GRF_EMMCPHY_CON5 0x14
#define GRF_EMMCPHY_CON6 0x18
#define GRF_EMMCPHY_STATUS 0x20
#define PHYCTRL_PDB_MASK 0x1
#define PHYCTRL_PDB_SHIFT 0x0
#define PHYCTRL_PDB_PWR_ON 0x1
#define PHYCTRL_PDB_PWR_OFF 0x0
#define PHYCTRL_ENDLL_MASK 0x1
#define PHYCTRL_ENDLL_SHIFT 0x1
#define PHYCTRL_ENDLL_ENABLE 0x1
#define PHYCTRL_ENDLL_DISABLE 0x0
#define PHYCTRL_CALDONE_MASK 0x1
#define PHYCTRL_CALDONE_SHIFT 0x6
#define PHYCTRL_CALDONE_DONE 0x1
#define PHYCTRL_CALDONE_GOING 0x0
#define PHYCTRL_DLLRDY_MASK 0x1
#define PHYCTRL_DLLRDY_SHIFT 0x5
#define PHYCTRL_DLLRDY_DONE 0x1
#define PHYCTRL_DLLRDY_GOING 0x0
#define PHYCTRL_FREQSEL_200M 0x0
#define PHYCTRL_FREQSEL_50M 0x1
#define PHYCTRL_FREQSEL_100M 0x2
#define PHYCTRL_FREQSEL_150M 0x3
#define PHYCTRL_FREQSEL_MASK 0x3
#define PHYCTRL_FREQSEL_SHIFT 0xc
#define PHYCTRL_DR_MASK 0x7
#define PHYCTRL_DR_SHIFT 0x4
#define PHYCTRL_DR_50OHM 0x0
#define PHYCTRL_DR_33OHM 0x1
#define PHYCTRL_DR_66OHM 0x2
#define PHYCTRL_DR_100OHM 0x3
#define PHYCTRL_DR_40OHM 0x4
#define PHYCTRL_OTAPDLYENA 0x1
#define PHYCTRL_OTAPDLYENA_MASK 0x1
#define PHYCTRL_OTAPDLYENA_SHIFT 0xb
#define PHYCTRL_OTAPDLYSEL_DEFAULT 0x4
#define PHYCTRL_OTAPDLYSEL_MAXVALUE 0xf
#define PHYCTRL_OTAPDLYSEL_MASK 0xf
#define PHYCTRL_OTAPDLYSEL_SHIFT 0x7
#define PHYCTRL_REN_STRB_DISABLE 0x0
#define PHYCTRL_REN_STRB_ENABLE 0x1
#define PHYCTRL_REN_STRB_MASK 0x1
#define PHYCTRL_REN_STRB_SHIFT 0x9
#define PHYCTRL_IS_CALDONE(x) \
((((x) >> PHYCTRL_CALDONE_SHIFT) & \
PHYCTRL_CALDONE_MASK) == PHYCTRL_CALDONE_DONE)
#define PHYCTRL_IS_DLLRDY(x) \
((((x) >> PHYCTRL_DLLRDY_SHIFT) & \
PHYCTRL_DLLRDY_MASK) == PHYCTRL_DLLRDY_DONE)
struct rockchip_emmc_phy {
unsigned int reg_offset;
struct regmap *reg_base;
struct clk *emmcclk;
unsigned int drive_impedance;
unsigned int enable_strobe_pulldown;
unsigned int output_tapdelay_select;
};
static int rockchip_emmc_phy_power(struct phy *phy, bool on_off)
{
struct rockchip_emmc_phy *rk_phy = phy_get_drvdata(phy);
unsigned int caldone;
unsigned int dllrdy;
unsigned int freqsel = PHYCTRL_FREQSEL_200M;
unsigned long rate;
int ret;
/*
* Keep phyctrl_pdb and phyctrl_endll low to allow
* initialization of CALIO state M/C DFFs
*/
regmap_write(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_CON6,
HIWORD_UPDATE(PHYCTRL_PDB_PWR_OFF,
PHYCTRL_PDB_MASK,
PHYCTRL_PDB_SHIFT));
regmap_write(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_CON6,
HIWORD_UPDATE(PHYCTRL_ENDLL_DISABLE,
PHYCTRL_ENDLL_MASK,
PHYCTRL_ENDLL_SHIFT));
/* Already finish power_off above */
if (on_off == PHYCTRL_PDB_PWR_OFF)
return 0;
rate = clk_get_rate(rk_phy->emmcclk);
if (rate != 0) {
unsigned long ideal_rate;
unsigned long diff;
switch (rate) {
case 1 ... 74999999:
ideal_rate = 50000000;
freqsel = PHYCTRL_FREQSEL_50M;
break;
case 75000000 ... 124999999:
ideal_rate = 100000000;
freqsel = PHYCTRL_FREQSEL_100M;
break;
case 125000000 ... 174999999:
ideal_rate = 150000000;
freqsel = PHYCTRL_FREQSEL_150M;
break;
default:
ideal_rate = 200000000;
break;
}
diff = (rate > ideal_rate) ?
rate - ideal_rate : ideal_rate - rate;
/*
* In order for tuning delays to be accurate we need to be
* pretty spot on for the DLL range, so warn if we're too
* far off. Also warn if we're above the 200 MHz max. Don't
* warn for really slow rates since we won't be tuning then.
*/
if ((rate > 50000000 && diff > 15000000) || (rate > 200000000))
dev_warn(&phy->dev, "Unsupported rate: %lu\n", rate);
}
/*
* According to the user manual, calpad calibration
* cycle takes more than 2us without the minimal recommended
* value, so we may need a little margin here
*/
udelay(3);
regmap_write(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_CON6,
HIWORD_UPDATE(PHYCTRL_PDB_PWR_ON,
PHYCTRL_PDB_MASK,
PHYCTRL_PDB_SHIFT));
/*
* According to the user manual, it asks driver to wait 5us for
* calpad busy trimming. However it is documented that this value is
* PVT(A.K.A process,voltage and temperature) relevant, so some
* failure cases are found which indicates we should be more tolerant
* to calpad busy trimming.
*/
ret = regmap_read_poll_timeout(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_STATUS,
caldone, PHYCTRL_IS_CALDONE(caldone),
0, 50);
if (ret) {
pr_err("%s: caldone failed, ret=%d\n", __func__, ret);
return ret;
}
/* Set the frequency of the DLL operation */
regmap_write(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_CON0,
HIWORD_UPDATE(freqsel, PHYCTRL_FREQSEL_MASK,
PHYCTRL_FREQSEL_SHIFT));
/* Turn on the DLL */
regmap_write(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_CON6,
HIWORD_UPDATE(PHYCTRL_ENDLL_ENABLE,
PHYCTRL_ENDLL_MASK,
PHYCTRL_ENDLL_SHIFT));
/*
* We turned on the DLL even though the rate was 0 because we the
* clock might be turned on later. ...but we can't wait for the DLL
* to lock when the rate is 0 because it will never lock with no
* input clock.
*
* Technically we should be checking the lock later when the clock
* is turned on, but for now we won't.
*/
if (rate == 0)
return 0;
/*
* After enabling analog DLL circuits docs say that we need 10.2 us if
* our source clock is at 50 MHz and that lock time scales linearly
* with clock speed. If we are powering on the PHY and the card clock
* is super slow (like 100 kHZ) this could take as long as 5.1 ms as
* per the math: 10.2 us * (50000000 Hz / 100000 Hz) => 5.1 ms
* Hopefully we won't be running at 100 kHz, but we should still make
* sure we wait long enough.
*
* NOTE: There appear to be corner cases where the DLL seems to take
* extra long to lock for reasons that aren't understood. In some
* extreme cases we've seen it take up to over 10ms (!). We'll be
* generous and give it 50ms.
*/
ret = regmap_read_poll_timeout(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_STATUS,
dllrdy, PHYCTRL_IS_DLLRDY(dllrdy),
0, 50 * USEC_PER_MSEC);
if (ret) {
pr_err("%s: dllrdy failed. ret=%d\n", __func__, ret);
return ret;
}
return 0;
}
static int rockchip_emmc_phy_init(struct phy *phy)
{
struct rockchip_emmc_phy *rk_phy = phy_get_drvdata(phy);
int ret = 0;
/*
* We purposely get the clock here and not in probe to avoid the
* circular dependency problem. We expect:
* - PHY driver to probe
* - SDHCI driver to start probe
* - SDHCI driver to register it's clock
* - SDHCI driver to get the PHY
* - SDHCI driver to init the PHY
*
* The clock is optional, using clk_get_optional() to get the clock
* and do error processing if the return value != NULL
*
* NOTE: we don't do anything special for EPROBE_DEFER here. Given the
* above expected use case, EPROBE_DEFER isn't sensible to expect, so
* it's just like any other error.
*/
rk_phy->emmcclk = clk_get_optional(&phy->dev, "emmcclk");
if (IS_ERR(rk_phy->emmcclk)) {
ret = PTR_ERR(rk_phy->emmcclk);
dev_err(&phy->dev, "Error getting emmcclk: %d\n", ret);
rk_phy->emmcclk = NULL;
}
return ret;
}
static int rockchip_emmc_phy_exit(struct phy *phy)
{
struct rockchip_emmc_phy *rk_phy = phy_get_drvdata(phy);
clk_put(rk_phy->emmcclk);
return 0;
}
static int rockchip_emmc_phy_power_off(struct phy *phy)
{
/* Power down emmc phy analog blocks */
return rockchip_emmc_phy_power(phy, PHYCTRL_PDB_PWR_OFF);
}
static int rockchip_emmc_phy_power_on(struct phy *phy)
{
struct rockchip_emmc_phy *rk_phy = phy_get_drvdata(phy);
/* Drive impedance: from DTS */
regmap_write(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_CON6,
HIWORD_UPDATE(rk_phy->drive_impedance,
PHYCTRL_DR_MASK,
PHYCTRL_DR_SHIFT));
/* Output tap delay: enable */
regmap_write(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_CON0,
HIWORD_UPDATE(PHYCTRL_OTAPDLYENA,
PHYCTRL_OTAPDLYENA_MASK,
PHYCTRL_OTAPDLYENA_SHIFT));
/* Output tap delay */
regmap_write(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_CON0,
HIWORD_UPDATE(rk_phy->output_tapdelay_select,
PHYCTRL_OTAPDLYSEL_MASK,
PHYCTRL_OTAPDLYSEL_SHIFT));
/* Internal pull-down for strobe line */
regmap_write(rk_phy->reg_base,
rk_phy->reg_offset + GRF_EMMCPHY_CON2,
HIWORD_UPDATE(rk_phy->enable_strobe_pulldown,
PHYCTRL_REN_STRB_MASK,
PHYCTRL_REN_STRB_SHIFT));
/* Power up emmc phy analog blocks */
return rockchip_emmc_phy_power(phy, PHYCTRL_PDB_PWR_ON);
}
static const struct phy_ops ops = {
.init = rockchip_emmc_phy_init,
.exit = rockchip_emmc_phy_exit,
.power_on = rockchip_emmc_phy_power_on,
.power_off = rockchip_emmc_phy_power_off,
.owner = THIS_MODULE,
};
static u32 convert_drive_impedance_ohm(struct platform_device *pdev, u32 dr_ohm)
{
switch (dr_ohm) {
case 100:
return PHYCTRL_DR_100OHM;
case 66:
return PHYCTRL_DR_66OHM;
case 50:
return PHYCTRL_DR_50OHM;
case 40:
return PHYCTRL_DR_40OHM;
case 33:
return PHYCTRL_DR_33OHM;
}
dev_warn(&pdev->dev, "Invalid value %u for drive-impedance-ohm.\n",
dr_ohm);
return PHYCTRL_DR_50OHM;
}
static int rockchip_emmc_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rockchip_emmc_phy *rk_phy;
struct phy *generic_phy;
struct phy_provider *phy_provider;
struct regmap *grf;
unsigned int reg_offset;
u32 val;
if (!dev->parent || !dev->parent->of_node)
return -ENODEV;
grf = syscon_node_to_regmap(dev->parent->of_node);
if (IS_ERR(grf)) {
dev_err(dev, "Missing rockchip,grf property\n");
return PTR_ERR(grf);
}
rk_phy = devm_kzalloc(dev, sizeof(*rk_phy), GFP_KERNEL);
if (!rk_phy)
return -ENOMEM;
if (of_property_read_u32(dev->of_node, "reg", ®_offset)) {
dev_err(dev, "missing reg property in node %pOFn\n",
dev->of_node);
return -EINVAL;
}
rk_phy->reg_offset = reg_offset;
rk_phy->reg_base = grf;
rk_phy->drive_impedance = PHYCTRL_DR_50OHM;
rk_phy->enable_strobe_pulldown = PHYCTRL_REN_STRB_DISABLE;
rk_phy->output_tapdelay_select = PHYCTRL_OTAPDLYSEL_DEFAULT;
if (!of_property_read_u32(dev->of_node, "drive-impedance-ohm", &val))
rk_phy->drive_impedance = convert_drive_impedance_ohm(pdev, val);
if (of_property_read_bool(dev->of_node, "rockchip,enable-strobe-pulldown"))
rk_phy->enable_strobe_pulldown = PHYCTRL_REN_STRB_ENABLE;
if (!of_property_read_u32(dev->of_node, "rockchip,output-tapdelay-select", &val)) {
if (val <= PHYCTRL_OTAPDLYSEL_MAXVALUE)
rk_phy->output_tapdelay_select = val;
else
dev_err(dev, "output-tapdelay-select exceeds limit, apply default\n");
}
generic_phy = devm_phy_create(dev, dev->of_node, &ops);
if (IS_ERR(generic_phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(generic_phy);
}
phy_set_drvdata(generic_phy, rk_phy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id rockchip_emmc_phy_dt_ids[] = {
{ .compatible = "rockchip,rk3399-emmc-phy" },
{}
};
MODULE_DEVICE_TABLE(of, rockchip_emmc_phy_dt_ids);
static struct platform_driver rockchip_emmc_driver = {
.probe = rockchip_emmc_phy_probe,
.driver = {
.name = "rockchip-emmc-phy",
.of_match_table = rockchip_emmc_phy_dt_ids,
},
};
module_platform_driver(rockchip_emmc_driver);
MODULE_AUTHOR("Shawn Lin <[email protected]>");
MODULE_DESCRIPTION("Rockchip EMMC PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/rockchip/phy-rockchip-emmc.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Rockchip PCIe PHY driver
*
* Copyright (C) 2016 Shawn Lin <[email protected]>
* Copyright (C) 2016 ROCKCHIP, Inc.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
/*
* The higher 16-bit of this register is used for write protection
* only if BIT(x + 16) set to 1 the BIT(x) can be written.
*/
#define HIWORD_UPDATE(val, mask, shift) \
((val) << (shift) | (mask) << ((shift) + 16))
#define PHY_MAX_LANE_NUM 4
#define PHY_CFG_DATA_SHIFT 7
#define PHY_CFG_ADDR_SHIFT 1
#define PHY_CFG_DATA_MASK 0xf
#define PHY_CFG_ADDR_MASK 0x3f
#define PHY_CFG_RD_MASK 0x3ff
#define PHY_CFG_WR_ENABLE 1
#define PHY_CFG_WR_DISABLE 1
#define PHY_CFG_WR_SHIFT 0
#define PHY_CFG_WR_MASK 1
#define PHY_CFG_PLL_LOCK 0x10
#define PHY_CFG_CLK_TEST 0x10
#define PHY_CFG_CLK_SCC 0x12
#define PHY_CFG_SEPE_RATE BIT(3)
#define PHY_CFG_PLL_100M BIT(3)
#define PHY_PLL_LOCKED BIT(9)
#define PHY_PLL_OUTPUT BIT(10)
#define PHY_LANE_A_STATUS 0x30
#define PHY_LANE_B_STATUS 0x31
#define PHY_LANE_C_STATUS 0x32
#define PHY_LANE_D_STATUS 0x33
#define PHY_LANE_RX_DET_SHIFT 11
#define PHY_LANE_RX_DET_TH 0x1
#define PHY_LANE_IDLE_OFF 0x1
#define PHY_LANE_IDLE_MASK 0x1
#define PHY_LANE_IDLE_A_SHIFT 3
#define PHY_LANE_IDLE_B_SHIFT 4
#define PHY_LANE_IDLE_C_SHIFT 5
#define PHY_LANE_IDLE_D_SHIFT 6
struct rockchip_pcie_data {
unsigned int pcie_conf;
unsigned int pcie_status;
unsigned int pcie_laneoff;
};
struct rockchip_pcie_phy {
struct rockchip_pcie_data *phy_data;
struct regmap *reg_base;
struct phy_pcie_instance {
struct phy *phy;
u32 index;
} phys[PHY_MAX_LANE_NUM];
struct mutex pcie_mutex;
struct reset_control *phy_rst;
struct clk *clk_pciephy_ref;
int pwr_cnt;
int init_cnt;
};
static struct rockchip_pcie_phy *to_pcie_phy(struct phy_pcie_instance *inst)
{
return container_of(inst, struct rockchip_pcie_phy,
phys[inst->index]);
}
static struct phy *rockchip_pcie_phy_of_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct rockchip_pcie_phy *rk_phy = dev_get_drvdata(dev);
if (args->args_count == 0)
return rk_phy->phys[0].phy;
if (WARN_ON(args->args[0] >= PHY_MAX_LANE_NUM))
return ERR_PTR(-ENODEV);
return rk_phy->phys[args->args[0]].phy;
}
static inline void phy_wr_cfg(struct rockchip_pcie_phy *rk_phy,
u32 addr, u32 data)
{
regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_conf,
HIWORD_UPDATE(data,
PHY_CFG_DATA_MASK,
PHY_CFG_DATA_SHIFT) |
HIWORD_UPDATE(addr,
PHY_CFG_ADDR_MASK,
PHY_CFG_ADDR_SHIFT));
udelay(1);
regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_conf,
HIWORD_UPDATE(PHY_CFG_WR_ENABLE,
PHY_CFG_WR_MASK,
PHY_CFG_WR_SHIFT));
udelay(1);
regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_conf,
HIWORD_UPDATE(PHY_CFG_WR_DISABLE,
PHY_CFG_WR_MASK,
PHY_CFG_WR_SHIFT));
}
static int rockchip_pcie_phy_power_off(struct phy *phy)
{
struct phy_pcie_instance *inst = phy_get_drvdata(phy);
struct rockchip_pcie_phy *rk_phy = to_pcie_phy(inst);
int err = 0;
mutex_lock(&rk_phy->pcie_mutex);
regmap_write(rk_phy->reg_base,
rk_phy->phy_data->pcie_laneoff,
HIWORD_UPDATE(PHY_LANE_IDLE_OFF,
PHY_LANE_IDLE_MASK,
PHY_LANE_IDLE_A_SHIFT + inst->index));
if (--rk_phy->pwr_cnt)
goto err_out;
err = reset_control_assert(rk_phy->phy_rst);
if (err) {
dev_err(&phy->dev, "assert phy_rst err %d\n", err);
goto err_restore;
}
err_out:
mutex_unlock(&rk_phy->pcie_mutex);
return 0;
err_restore:
rk_phy->pwr_cnt++;
regmap_write(rk_phy->reg_base,
rk_phy->phy_data->pcie_laneoff,
HIWORD_UPDATE(!PHY_LANE_IDLE_OFF,
PHY_LANE_IDLE_MASK,
PHY_LANE_IDLE_A_SHIFT + inst->index));
mutex_unlock(&rk_phy->pcie_mutex);
return err;
}
static int rockchip_pcie_phy_power_on(struct phy *phy)
{
struct phy_pcie_instance *inst = phy_get_drvdata(phy);
struct rockchip_pcie_phy *rk_phy = to_pcie_phy(inst);
int err = 0;
u32 status;
unsigned long timeout;
mutex_lock(&rk_phy->pcie_mutex);
if (rk_phy->pwr_cnt++)
goto err_out;
err = reset_control_deassert(rk_phy->phy_rst);
if (err) {
dev_err(&phy->dev, "deassert phy_rst err %d\n", err);
goto err_pwr_cnt;
}
regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_conf,
HIWORD_UPDATE(PHY_CFG_PLL_LOCK,
PHY_CFG_ADDR_MASK,
PHY_CFG_ADDR_SHIFT));
regmap_write(rk_phy->reg_base,
rk_phy->phy_data->pcie_laneoff,
HIWORD_UPDATE(!PHY_LANE_IDLE_OFF,
PHY_LANE_IDLE_MASK,
PHY_LANE_IDLE_A_SHIFT + inst->index));
/*
* No documented timeout value for phy operation below,
* so we make it large enough here. And we use loop-break
* method which should not be harmful.
*/
timeout = jiffies + msecs_to_jiffies(1000);
err = -EINVAL;
while (time_before(jiffies, timeout)) {
regmap_read(rk_phy->reg_base,
rk_phy->phy_data->pcie_status,
&status);
if (status & PHY_PLL_LOCKED) {
dev_dbg(&phy->dev, "pll locked!\n");
err = 0;
break;
}
msleep(20);
}
if (err) {
dev_err(&phy->dev, "pll lock timeout!\n");
goto err_pll_lock;
}
phy_wr_cfg(rk_phy, PHY_CFG_CLK_TEST, PHY_CFG_SEPE_RATE);
phy_wr_cfg(rk_phy, PHY_CFG_CLK_SCC, PHY_CFG_PLL_100M);
err = -ETIMEDOUT;
while (time_before(jiffies, timeout)) {
regmap_read(rk_phy->reg_base,
rk_phy->phy_data->pcie_status,
&status);
if (!(status & PHY_PLL_OUTPUT)) {
dev_dbg(&phy->dev, "pll output enable done!\n");
err = 0;
break;
}
msleep(20);
}
if (err) {
dev_err(&phy->dev, "pll output enable timeout!\n");
goto err_pll_lock;
}
regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_conf,
HIWORD_UPDATE(PHY_CFG_PLL_LOCK,
PHY_CFG_ADDR_MASK,
PHY_CFG_ADDR_SHIFT));
err = -EINVAL;
while (time_before(jiffies, timeout)) {
regmap_read(rk_phy->reg_base,
rk_phy->phy_data->pcie_status,
&status);
if (status & PHY_PLL_LOCKED) {
dev_dbg(&phy->dev, "pll relocked!\n");
err = 0;
break;
}
msleep(20);
}
if (err) {
dev_err(&phy->dev, "pll relock timeout!\n");
goto err_pll_lock;
}
err_out:
mutex_unlock(&rk_phy->pcie_mutex);
return 0;
err_pll_lock:
reset_control_assert(rk_phy->phy_rst);
err_pwr_cnt:
rk_phy->pwr_cnt--;
mutex_unlock(&rk_phy->pcie_mutex);
return err;
}
static int rockchip_pcie_phy_init(struct phy *phy)
{
struct phy_pcie_instance *inst = phy_get_drvdata(phy);
struct rockchip_pcie_phy *rk_phy = to_pcie_phy(inst);
int err = 0;
mutex_lock(&rk_phy->pcie_mutex);
if (rk_phy->init_cnt++)
goto err_out;
err = clk_prepare_enable(rk_phy->clk_pciephy_ref);
if (err) {
dev_err(&phy->dev, "Fail to enable pcie ref clock.\n");
goto err_refclk;
}
err = reset_control_assert(rk_phy->phy_rst);
if (err) {
dev_err(&phy->dev, "assert phy_rst err %d\n", err);
goto err_reset;
}
err_out:
mutex_unlock(&rk_phy->pcie_mutex);
return 0;
err_reset:
clk_disable_unprepare(rk_phy->clk_pciephy_ref);
err_refclk:
rk_phy->init_cnt--;
mutex_unlock(&rk_phy->pcie_mutex);
return err;
}
static int rockchip_pcie_phy_exit(struct phy *phy)
{
struct phy_pcie_instance *inst = phy_get_drvdata(phy);
struct rockchip_pcie_phy *rk_phy = to_pcie_phy(inst);
mutex_lock(&rk_phy->pcie_mutex);
if (--rk_phy->init_cnt)
goto err_init_cnt;
clk_disable_unprepare(rk_phy->clk_pciephy_ref);
err_init_cnt:
mutex_unlock(&rk_phy->pcie_mutex);
return 0;
}
static const struct phy_ops ops = {
.init = rockchip_pcie_phy_init,
.exit = rockchip_pcie_phy_exit,
.power_on = rockchip_pcie_phy_power_on,
.power_off = rockchip_pcie_phy_power_off,
.owner = THIS_MODULE,
};
static const struct rockchip_pcie_data rk3399_pcie_data = {
.pcie_conf = 0xe220,
.pcie_status = 0xe2a4,
.pcie_laneoff = 0xe214,
};
static const struct of_device_id rockchip_pcie_phy_dt_ids[] = {
{
.compatible = "rockchip,rk3399-pcie-phy",
.data = &rk3399_pcie_data,
},
{}
};
MODULE_DEVICE_TABLE(of, rockchip_pcie_phy_dt_ids);
static int rockchip_pcie_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rockchip_pcie_phy *rk_phy;
struct phy_provider *phy_provider;
struct regmap *grf;
const struct of_device_id *of_id;
int i;
u32 phy_num;
grf = syscon_node_to_regmap(dev->parent->of_node);
if (IS_ERR(grf)) {
dev_err(dev, "Cannot find GRF syscon\n");
return PTR_ERR(grf);
}
rk_phy = devm_kzalloc(dev, sizeof(*rk_phy), GFP_KERNEL);
if (!rk_phy)
return -ENOMEM;
of_id = of_match_device(rockchip_pcie_phy_dt_ids, &pdev->dev);
if (!of_id)
return -EINVAL;
rk_phy->phy_data = (struct rockchip_pcie_data *)of_id->data;
rk_phy->reg_base = grf;
mutex_init(&rk_phy->pcie_mutex);
rk_phy->phy_rst = devm_reset_control_get(dev, "phy");
if (IS_ERR(rk_phy->phy_rst)) {
if (PTR_ERR(rk_phy->phy_rst) != -EPROBE_DEFER)
dev_err(dev,
"missing phy property for reset controller\n");
return PTR_ERR(rk_phy->phy_rst);
}
rk_phy->clk_pciephy_ref = devm_clk_get(dev, "refclk");
if (IS_ERR(rk_phy->clk_pciephy_ref)) {
dev_err(dev, "refclk not found.\n");
return PTR_ERR(rk_phy->clk_pciephy_ref);
}
/* parse #phy-cells to see if it's legacy PHY model */
if (of_property_read_u32(dev->of_node, "#phy-cells", &phy_num))
return -ENOENT;
phy_num = (phy_num == 0) ? 1 : PHY_MAX_LANE_NUM;
dev_dbg(dev, "phy number is %d\n", phy_num);
for (i = 0; i < phy_num; i++) {
rk_phy->phys[i].phy = devm_phy_create(dev, dev->of_node, &ops);
if (IS_ERR(rk_phy->phys[i].phy)) {
dev_err(dev, "failed to create PHY%d\n", i);
return PTR_ERR(rk_phy->phys[i].phy);
}
rk_phy->phys[i].index = i;
phy_set_drvdata(rk_phy->phys[i].phy, &rk_phy->phys[i]);
}
platform_set_drvdata(pdev, rk_phy);
phy_provider = devm_of_phy_provider_register(dev,
rockchip_pcie_phy_of_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver rockchip_pcie_driver = {
.probe = rockchip_pcie_phy_probe,
.driver = {
.name = "rockchip-pcie-phy",
.of_match_table = rockchip_pcie_phy_dt_ids,
},
};
module_platform_driver(rockchip_pcie_driver);
MODULE_AUTHOR("Shawn Lin <[email protected]>");
MODULE_DESCRIPTION("Rockchip PCIe PHY driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/phy/rockchip/phy-rockchip-pcie.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* StarFive JH7110 PCIe 2.0 PHY driver
*
* Copyright (C) 2023 StarFive Technology Co., Ltd.
* Author: Minda Chen <[email protected]>
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mfd/syscon.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#define PCIE_KVCO_LEVEL_OFF 0x28
#define PCIE_USB3_PHY_PLL_CTL_OFF 0x7c
#define PCIE_KVCO_TUNE_SIGNAL_OFF 0x80
#define PCIE_USB3_PHY_ENABLE BIT(4)
#define PHY_KVCO_FINE_TUNE_LEVEL 0x91
#define PHY_KVCO_FINE_TUNE_SIGNALS 0xc
#define USB_PDRSTN_SPLIT BIT(17)
#define PCIE_PHY_MODE BIT(20)
#define PCIE_PHY_MODE_MASK GENMASK(21, 20)
#define PCIE_USB3_BUS_WIDTH_MASK GENMASK(3, 2)
#define PCIE_USB3_BUS_WIDTH BIT(3)
#define PCIE_USB3_RATE_MASK GENMASK(6, 5)
#define PCIE_USB3_RX_STANDBY_MASK BIT(7)
#define PCIE_USB3_PHY_ENABLE BIT(4)
struct jh7110_pcie_phy {
struct phy *phy;
struct regmap *stg_syscon;
struct regmap *sys_syscon;
void __iomem *regs;
u32 sys_phy_connect;
u32 stg_pcie_mode;
u32 stg_pcie_usb;
enum phy_mode mode;
};
static int phy_usb3_mode_set(struct jh7110_pcie_phy *data)
{
if (!data->stg_syscon || !data->sys_syscon) {
dev_err(&data->phy->dev, "doesn't support usb3 mode\n");
return -EINVAL;
}
regmap_update_bits(data->stg_syscon, data->stg_pcie_mode,
PCIE_PHY_MODE_MASK, PCIE_PHY_MODE);
regmap_update_bits(data->stg_syscon, data->stg_pcie_usb,
PCIE_USB3_BUS_WIDTH_MASK, 0);
regmap_update_bits(data->stg_syscon, data->stg_pcie_usb,
PCIE_USB3_PHY_ENABLE, PCIE_USB3_PHY_ENABLE);
/* Connect usb 3.0 phy mode */
regmap_update_bits(data->sys_syscon, data->sys_phy_connect,
USB_PDRSTN_SPLIT, 0);
/* Configuare spread-spectrum mode: down-spread-spectrum */
writel(PCIE_USB3_PHY_ENABLE, data->regs + PCIE_USB3_PHY_PLL_CTL_OFF);
return 0;
}
static void phy_pcie_mode_set(struct jh7110_pcie_phy *data)
{
u32 val;
/* default is PCIe mode */
if (!data->stg_syscon || !data->sys_syscon)
return;
regmap_update_bits(data->stg_syscon, data->stg_pcie_mode,
PCIE_PHY_MODE_MASK, 0);
regmap_update_bits(data->stg_syscon, data->stg_pcie_usb,
PCIE_USB3_BUS_WIDTH_MASK,
PCIE_USB3_BUS_WIDTH);
regmap_update_bits(data->stg_syscon, data->stg_pcie_usb,
PCIE_USB3_PHY_ENABLE, 0);
regmap_update_bits(data->sys_syscon, data->sys_phy_connect,
USB_PDRSTN_SPLIT, 0);
val = readl(data->regs + PCIE_USB3_PHY_PLL_CTL_OFF);
val &= ~PCIE_USB3_PHY_ENABLE;
writel(val, data->regs + PCIE_USB3_PHY_PLL_CTL_OFF);
}
static void phy_kvco_gain_set(struct jh7110_pcie_phy *phy)
{
/* PCIe Multi-PHY PLL KVCO Gain fine tune settings: */
writel(PHY_KVCO_FINE_TUNE_LEVEL, phy->regs + PCIE_KVCO_LEVEL_OFF);
writel(PHY_KVCO_FINE_TUNE_SIGNALS, phy->regs + PCIE_KVCO_TUNE_SIGNAL_OFF);
}
static int jh7110_pcie_phy_set_mode(struct phy *_phy,
enum phy_mode mode, int submode)
{
struct jh7110_pcie_phy *phy = phy_get_drvdata(_phy);
int ret;
if (mode == phy->mode)
return 0;
switch (mode) {
case PHY_MODE_USB_HOST:
case PHY_MODE_USB_DEVICE:
case PHY_MODE_USB_OTG:
ret = phy_usb3_mode_set(phy);
if (ret)
return ret;
break;
case PHY_MODE_PCIE:
phy_pcie_mode_set(phy);
break;
default:
return -EINVAL;
}
dev_dbg(&_phy->dev, "Changing phy mode to %d\n", mode);
phy->mode = mode;
return 0;
}
static const struct phy_ops jh7110_pcie_phy_ops = {
.set_mode = jh7110_pcie_phy_set_mode,
.owner = THIS_MODULE,
};
static int jh7110_pcie_phy_probe(struct platform_device *pdev)
{
struct jh7110_pcie_phy *phy;
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
u32 args[2];
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
phy->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(phy->regs))
return PTR_ERR(phy->regs);
phy->phy = devm_phy_create(dev, NULL, &jh7110_pcie_phy_ops);
if (IS_ERR(phy->phy))
return dev_err_probe(dev, PTR_ERR(phy->phy),
"Failed to map phy base\n");
phy->sys_syscon =
syscon_regmap_lookup_by_phandle_args(pdev->dev.of_node,
"starfive,sys-syscon",
1, args);
if (!IS_ERR_OR_NULL(phy->sys_syscon))
phy->sys_phy_connect = args[0];
else
phy->sys_syscon = NULL;
phy->stg_syscon =
syscon_regmap_lookup_by_phandle_args(pdev->dev.of_node,
"starfive,stg-syscon",
2, args);
if (!IS_ERR_OR_NULL(phy->stg_syscon)) {
phy->stg_pcie_mode = args[0];
phy->stg_pcie_usb = args[1];
} else {
phy->stg_syscon = NULL;
}
phy_kvco_gain_set(phy);
phy_set_drvdata(phy->phy, phy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id jh7110_pcie_phy_of_match[] = {
{ .compatible = "starfive,jh7110-pcie-phy" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, jh7110_pcie_phy_of_match);
static struct platform_driver jh7110_pcie_phy_driver = {
.probe = jh7110_pcie_phy_probe,
.driver = {
.of_match_table = jh7110_pcie_phy_of_match,
.name = "jh7110-pcie-phy",
}
};
module_platform_driver(jh7110_pcie_phy_driver);
MODULE_DESCRIPTION("StarFive JH7110 PCIe 2.0 PHY driver");
MODULE_AUTHOR("Minda Chen <[email protected]>");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/starfive/phy-jh7110-pcie.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* StarFive JH7110 USB 2.0 PHY driver
*
* Copyright (C) 2023 StarFive Technology Co., Ltd.
* Author: Minda Chen <[email protected]>
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/usb/of.h>
#define USB_125M_CLK_RATE 125000000
#define USB_LS_KEEPALIVE_OFF 0x4
#define USB_LS_KEEPALIVE_ENABLE BIT(4)
struct jh7110_usb2_phy {
struct phy *phy;
void __iomem *regs;
struct clk *usb_125m_clk;
struct clk *app_125m;
enum phy_mode mode;
};
static void usb2_set_ls_keepalive(struct jh7110_usb2_phy *phy, bool set)
{
unsigned int val;
/* Host mode enable the LS speed keep-alive signal */
val = readl(phy->regs + USB_LS_KEEPALIVE_OFF);
if (set)
val |= USB_LS_KEEPALIVE_ENABLE;
else
val &= ~USB_LS_KEEPALIVE_ENABLE;
writel(val, phy->regs + USB_LS_KEEPALIVE_OFF);
}
static int usb2_phy_set_mode(struct phy *_phy,
enum phy_mode mode, int submode)
{
struct jh7110_usb2_phy *phy = phy_get_drvdata(_phy);
switch (mode) {
case PHY_MODE_USB_HOST:
case PHY_MODE_USB_DEVICE:
case PHY_MODE_USB_OTG:
break;
default:
return -EINVAL;
}
if (mode != phy->mode) {
dev_dbg(&_phy->dev, "Changing phy to %d\n", mode);
phy->mode = mode;
usb2_set_ls_keepalive(phy, (mode != PHY_MODE_USB_DEVICE));
}
return 0;
}
static int jh7110_usb2_phy_init(struct phy *_phy)
{
struct jh7110_usb2_phy *phy = phy_get_drvdata(_phy);
int ret;
ret = clk_set_rate(phy->usb_125m_clk, USB_125M_CLK_RATE);
if (ret)
return ret;
ret = clk_prepare_enable(phy->app_125m);
if (ret)
return ret;
return 0;
}
static int jh7110_usb2_phy_exit(struct phy *_phy)
{
struct jh7110_usb2_phy *phy = phy_get_drvdata(_phy);
clk_disable_unprepare(phy->app_125m);
return 0;
}
static const struct phy_ops jh7110_usb2_phy_ops = {
.init = jh7110_usb2_phy_init,
.exit = jh7110_usb2_phy_exit,
.set_mode = usb2_phy_set_mode,
.owner = THIS_MODULE,
};
static int jh7110_usb_phy_probe(struct platform_device *pdev)
{
struct jh7110_usb2_phy *phy;
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
phy->usb_125m_clk = devm_clk_get(dev, "125m");
if (IS_ERR(phy->usb_125m_clk))
return dev_err_probe(dev, PTR_ERR(phy->usb_125m_clk),
"Failed to get 125m clock\n");
phy->app_125m = devm_clk_get(dev, "app_125m");
if (IS_ERR(phy->app_125m))
return dev_err_probe(dev, PTR_ERR(phy->app_125m),
"Failed to get app 125m clock\n");
phy->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(phy->regs))
return dev_err_probe(dev, PTR_ERR(phy->regs),
"Failed to map phy base\n");
phy->phy = devm_phy_create(dev, NULL, &jh7110_usb2_phy_ops);
if (IS_ERR(phy->phy))
return dev_err_probe(dev, PTR_ERR(phy->phy),
"Failed to create phy\n");
phy_set_drvdata(phy->phy, phy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id jh7110_usb_phy_of_match[] = {
{ .compatible = "starfive,jh7110-usb-phy" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, jh7110_usb_phy_of_match);
static struct platform_driver jh7110_usb_phy_driver = {
.probe = jh7110_usb_phy_probe,
.driver = {
.of_match_table = jh7110_usb_phy_of_match,
.name = "jh7110-usb-phy",
}
};
module_platform_driver(jh7110_usb_phy_driver);
MODULE_DESCRIPTION("StarFive JH7110 USB 2.0 PHY driver");
MODULE_AUTHOR("Minda Chen <[email protected]>");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/starfive/phy-jh7110-usb.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* StarFive JH7110 DPHY RX driver
*
* Copyright (C) 2023 StarFive Technology Co., Ltd.
* Author: Jack Zhu <[email protected]>
* Author: Changhuang Liang <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#define STF_DPHY_APBCFGSAIF_SYSCFG(x) (x)
#define STF_DPHY_ENABLE_CLK BIT(6)
#define STF_DPHY_ENABLE_CLK1 BIT(7)
#define STF_DPHY_ENABLE_LAN0 BIT(8)
#define STF_DPHY_ENABLE_LAN1 BIT(9)
#define STF_DPHY_ENABLE_LAN2 BIT(10)
#define STF_DPHY_ENABLE_LAN3 BIT(11)
#define STF_DPHY_LANE_SWAP_CLK GENMASK(22, 20)
#define STF_DPHY_LANE_SWAP_CLK1 GENMASK(25, 23)
#define STF_DPHY_LANE_SWAP_LAN0 GENMASK(28, 26)
#define STF_DPHY_LANE_SWAP_LAN1 GENMASK(31, 29)
#define STF_DPHY_LANE_SWAP_LAN2 GENMASK(2, 0)
#define STF_DPHY_LANE_SWAP_LAN3 GENMASK(5, 3)
#define STF_DPHY_PLL_CLK_SEL GENMASK(21, 12)
#define STF_DPHY_PRECOUNTER_IN_CLK GENMASK(29, 22)
#define STF_DPHY_PRECOUNTER_IN_CLK1 GENMASK(7, 0)
#define STF_DPHY_PRECOUNTER_IN_LAN0 GENMASK(15, 8)
#define STF_DPHY_PRECOUNTER_IN_LAN1 GENMASK(23, 16)
#define STF_DPHY_PRECOUNTER_IN_LAN2 GENMASK(31, 24)
#define STF_DPHY_PRECOUNTER_IN_LAN3 GENMASK(7, 0)
#define STF_DPHY_RX_1C2C_SEL BIT(8)
#define STF_MAP_LANES_NUM 6
struct regval {
u32 addr;
u32 val;
};
struct stf_dphy_info {
/**
* @maps:
*
* Physical lanes and logic lanes mapping table.
*
* The default order is:
* [clk lane0, data lane 0, data lane 1, data lane 2, date lane 3, clk lane 1]
*/
u8 maps[STF_MAP_LANES_NUM];
};
struct stf_dphy {
struct device *dev;
void __iomem *regs;
struct clk *cfg_clk;
struct clk *ref_clk;
struct clk *tx_clk;
struct reset_control *rstc;
struct regulator *mipi_0p9;
struct phy *phy;
const struct stf_dphy_info *info;
};
static int stf_dphy_configure(struct phy *phy, union phy_configure_opts *opts)
{
struct stf_dphy *dphy = phy_get_drvdata(phy);
const struct stf_dphy_info *info = dphy->info;
writel(FIELD_PREP(STF_DPHY_ENABLE_CLK, 1) |
FIELD_PREP(STF_DPHY_ENABLE_CLK1, 1) |
FIELD_PREP(STF_DPHY_ENABLE_LAN0, 1) |
FIELD_PREP(STF_DPHY_ENABLE_LAN1, 1) |
FIELD_PREP(STF_DPHY_ENABLE_LAN2, 1) |
FIELD_PREP(STF_DPHY_ENABLE_LAN3, 1) |
FIELD_PREP(STF_DPHY_LANE_SWAP_CLK, info->maps[0]) |
FIELD_PREP(STF_DPHY_LANE_SWAP_CLK1, info->maps[5]) |
FIELD_PREP(STF_DPHY_LANE_SWAP_LAN0, info->maps[1]) |
FIELD_PREP(STF_DPHY_LANE_SWAP_LAN1, info->maps[2]),
dphy->regs + STF_DPHY_APBCFGSAIF_SYSCFG(188));
writel(FIELD_PREP(STF_DPHY_LANE_SWAP_LAN2, info->maps[3]) |
FIELD_PREP(STF_DPHY_LANE_SWAP_LAN3, info->maps[4]) |
FIELD_PREP(STF_DPHY_PRECOUNTER_IN_CLK, 8),
dphy->regs + STF_DPHY_APBCFGSAIF_SYSCFG(192));
writel(FIELD_PREP(STF_DPHY_PRECOUNTER_IN_CLK1, 8) |
FIELD_PREP(STF_DPHY_PRECOUNTER_IN_LAN0, 7) |
FIELD_PREP(STF_DPHY_PRECOUNTER_IN_LAN1, 7) |
FIELD_PREP(STF_DPHY_PRECOUNTER_IN_LAN2, 7),
dphy->regs + STF_DPHY_APBCFGSAIF_SYSCFG(196));
writel(FIELD_PREP(STF_DPHY_PRECOUNTER_IN_LAN3, 7),
dphy->regs + STF_DPHY_APBCFGSAIF_SYSCFG(200));
return 0;
}
static int stf_dphy_power_on(struct phy *phy)
{
struct stf_dphy *dphy = phy_get_drvdata(phy);
int ret;
ret = pm_runtime_resume_and_get(dphy->dev);
if (ret < 0)
return ret;
ret = regulator_enable(dphy->mipi_0p9);
if (ret) {
pm_runtime_put(dphy->dev);
return ret;
}
clk_set_rate(dphy->cfg_clk, 99000000);
clk_set_rate(dphy->ref_clk, 49500000);
clk_set_rate(dphy->tx_clk, 19800000);
reset_control_deassert(dphy->rstc);
return 0;
}
static int stf_dphy_power_off(struct phy *phy)
{
struct stf_dphy *dphy = phy_get_drvdata(phy);
reset_control_assert(dphy->rstc);
regulator_disable(dphy->mipi_0p9);
pm_runtime_put_sync(dphy->dev);
return 0;
}
static const struct phy_ops stf_dphy_ops = {
.configure = stf_dphy_configure,
.power_on = stf_dphy_power_on,
.power_off = stf_dphy_power_off,
};
static int stf_dphy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct stf_dphy *dphy;
dphy = devm_kzalloc(&pdev->dev, sizeof(*dphy), GFP_KERNEL);
if (!dphy)
return -ENOMEM;
dphy->info = of_device_get_match_data(&pdev->dev);
dev_set_drvdata(&pdev->dev, dphy);
dphy->dev = &pdev->dev;
dphy->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dphy->regs))
return PTR_ERR(dphy->regs);
dphy->cfg_clk = devm_clk_get(&pdev->dev, "cfg");
if (IS_ERR(dphy->cfg_clk))
return PTR_ERR(dphy->cfg_clk);
dphy->ref_clk = devm_clk_get(&pdev->dev, "ref");
if (IS_ERR(dphy->ref_clk))
return PTR_ERR(dphy->ref_clk);
dphy->tx_clk = devm_clk_get(&pdev->dev, "tx");
if (IS_ERR(dphy->tx_clk))
return PTR_ERR(dphy->tx_clk);
dphy->rstc = devm_reset_control_array_get_exclusive(&pdev->dev);
if (IS_ERR(dphy->rstc))
return PTR_ERR(dphy->rstc);
dphy->mipi_0p9 = devm_regulator_get(&pdev->dev, "mipi_0p9");
if (IS_ERR(dphy->mipi_0p9))
return PTR_ERR(dphy->mipi_0p9);
dphy->phy = devm_phy_create(&pdev->dev, NULL, &stf_dphy_ops);
if (IS_ERR(dphy->phy)) {
dev_err(&pdev->dev, "Failed to create PHY\n");
return PTR_ERR(dphy->phy);
}
pm_runtime_enable(&pdev->dev);
phy_set_drvdata(dphy->phy, dphy);
phy_provider = devm_of_phy_provider_register(&pdev->dev,
of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct stf_dphy_info starfive_dphy_info = {
.maps = {4, 0, 1, 2, 3, 5},
};
static const struct of_device_id stf_dphy_dt_ids[] = {
{
.compatible = "starfive,jh7110-dphy-rx",
.data = &starfive_dphy_info,
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, stf_dphy_dt_ids);
static struct platform_driver stf_dphy_driver = {
.probe = stf_dphy_probe,
.driver = {
.name = "starfive-dphy-rx",
.of_match_table = stf_dphy_dt_ids,
},
};
module_platform_driver(stf_dphy_driver);
MODULE_AUTHOR("Jack Zhu <[email protected]>");
MODULE_AUTHOR("Changhuang Liang <[email protected]>");
MODULE_DESCRIPTION("StarFive JH7110 DPHY RX driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/phy/starfive/phy-jh7110-dphy-rx.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Samsung SoC USB 1.1/2.0 PHY driver
*
* Copyright (C) 2013 Samsung Electronics Co., Ltd.
* Author: Kamil Debski <[email protected]>
*/
#include <linux/clk.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include "phy-samsung-usb2.h"
static int samsung_usb2_phy_power_on(struct phy *phy)
{
struct samsung_usb2_phy_instance *inst = phy_get_drvdata(phy);
struct samsung_usb2_phy_driver *drv = inst->drv;
int ret;
dev_dbg(drv->dev, "Request to power_on \"%s\" usb phy\n",
inst->cfg->label);
if (drv->vbus) {
ret = regulator_enable(drv->vbus);
if (ret)
goto err_regulator;
}
ret = clk_prepare_enable(drv->clk);
if (ret)
goto err_main_clk;
ret = clk_prepare_enable(drv->ref_clk);
if (ret)
goto err_instance_clk;
if (inst->cfg->power_on) {
spin_lock(&drv->lock);
ret = inst->cfg->power_on(inst);
spin_unlock(&drv->lock);
if (ret)
goto err_power_on;
}
return 0;
err_power_on:
clk_disable_unprepare(drv->ref_clk);
err_instance_clk:
clk_disable_unprepare(drv->clk);
err_main_clk:
if (drv->vbus)
regulator_disable(drv->vbus);
err_regulator:
return ret;
}
static int samsung_usb2_phy_power_off(struct phy *phy)
{
struct samsung_usb2_phy_instance *inst = phy_get_drvdata(phy);
struct samsung_usb2_phy_driver *drv = inst->drv;
int ret = 0;
dev_dbg(drv->dev, "Request to power_off \"%s\" usb phy\n",
inst->cfg->label);
if (inst->cfg->power_off) {
spin_lock(&drv->lock);
ret = inst->cfg->power_off(inst);
spin_unlock(&drv->lock);
if (ret)
return ret;
}
clk_disable_unprepare(drv->ref_clk);
clk_disable_unprepare(drv->clk);
if (drv->vbus)
ret = regulator_disable(drv->vbus);
return ret;
}
static const struct phy_ops samsung_usb2_phy_ops = {
.power_on = samsung_usb2_phy_power_on,
.power_off = samsung_usb2_phy_power_off,
.owner = THIS_MODULE,
};
static struct phy *samsung_usb2_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct samsung_usb2_phy_driver *drv;
drv = dev_get_drvdata(dev);
if (!drv)
return ERR_PTR(-EINVAL);
if (WARN_ON(args->args[0] >= drv->cfg->num_phys))
return ERR_PTR(-ENODEV);
return drv->instances[args->args[0]].phy;
}
static const struct of_device_id samsung_usb2_phy_of_match[] = {
#ifdef CONFIG_PHY_EXYNOS4X12_USB2
{
.compatible = "samsung,exynos3250-usb2-phy",
.data = &exynos3250_usb2_phy_config,
},
#endif
#ifdef CONFIG_PHY_EXYNOS4210_USB2
{
.compatible = "samsung,exynos4210-usb2-phy",
.data = &exynos4210_usb2_phy_config,
},
#endif
#ifdef CONFIG_PHY_EXYNOS4X12_USB2
{
.compatible = "samsung,exynos4x12-usb2-phy",
.data = &exynos4x12_usb2_phy_config,
},
#endif
#ifdef CONFIG_PHY_EXYNOS5250_USB2
{
.compatible = "samsung,exynos5250-usb2-phy",
.data = &exynos5250_usb2_phy_config,
},
{
.compatible = "samsung,exynos5420-usb2-phy",
.data = &exynos5420_usb2_phy_config,
},
#endif
#ifdef CONFIG_PHY_S5PV210_USB2
{
.compatible = "samsung,s5pv210-usb2-phy",
.data = &s5pv210_usb2_phy_config,
},
#endif
{ },
};
MODULE_DEVICE_TABLE(of, samsung_usb2_phy_of_match);
static int samsung_usb2_phy_probe(struct platform_device *pdev)
{
const struct samsung_usb2_phy_config *cfg;
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct samsung_usb2_phy_driver *drv;
int i, ret;
if (!pdev->dev.of_node) {
dev_err(dev, "This driver is required to be instantiated from device tree\n");
return -EINVAL;
}
cfg = of_device_get_match_data(dev);
if (!cfg)
return -EINVAL;
drv = devm_kzalloc(dev, struct_size(drv, instances, cfg->num_phys),
GFP_KERNEL);
if (!drv)
return -ENOMEM;
dev_set_drvdata(dev, drv);
spin_lock_init(&drv->lock);
drv->cfg = cfg;
drv->dev = dev;
drv->reg_phy = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(drv->reg_phy)) {
dev_err(dev, "Failed to map register memory (phy)\n");
return PTR_ERR(drv->reg_phy);
}
drv->reg_pmu = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"samsung,pmureg-phandle");
if (IS_ERR(drv->reg_pmu)) {
dev_err(dev, "Failed to map PMU registers (via syscon)\n");
return PTR_ERR(drv->reg_pmu);
}
if (drv->cfg->has_mode_switch) {
drv->reg_sys = syscon_regmap_lookup_by_phandle(
pdev->dev.of_node, "samsung,sysreg-phandle");
if (IS_ERR(drv->reg_sys)) {
dev_err(dev, "Failed to map system registers (via syscon)\n");
return PTR_ERR(drv->reg_sys);
}
}
drv->clk = devm_clk_get(dev, "phy");
if (IS_ERR(drv->clk)) {
dev_err(dev, "Failed to get clock of phy controller\n");
return PTR_ERR(drv->clk);
}
drv->ref_clk = devm_clk_get(dev, "ref");
if (IS_ERR(drv->ref_clk)) {
dev_err(dev, "Failed to get reference clock for the phy controller\n");
return PTR_ERR(drv->ref_clk);
}
drv->ref_rate = clk_get_rate(drv->ref_clk);
if (drv->cfg->rate_to_clk) {
ret = drv->cfg->rate_to_clk(drv->ref_rate, &drv->ref_reg_val);
if (ret)
return ret;
}
drv->vbus = devm_regulator_get(dev, "vbus");
if (IS_ERR(drv->vbus)) {
ret = PTR_ERR(drv->vbus);
if (ret == -EPROBE_DEFER)
return ret;
drv->vbus = NULL;
}
for (i = 0; i < drv->cfg->num_phys; i++) {
char *label = drv->cfg->phys[i].label;
struct samsung_usb2_phy_instance *p = &drv->instances[i];
dev_dbg(dev, "Creating phy \"%s\"\n", label);
p->phy = devm_phy_create(dev, NULL, &samsung_usb2_phy_ops);
if (IS_ERR(p->phy)) {
dev_err(drv->dev, "Failed to create usb2_phy \"%s\"\n",
label);
return PTR_ERR(p->phy);
}
p->cfg = &drv->cfg->phys[i];
p->drv = drv;
phy_set_bus_width(p->phy, 8);
phy_set_drvdata(p->phy, p);
}
phy_provider = devm_of_phy_provider_register(dev,
samsung_usb2_phy_xlate);
if (IS_ERR(phy_provider)) {
dev_err(drv->dev, "Failed to register phy provider\n");
return PTR_ERR(phy_provider);
}
return 0;
}
static struct platform_driver samsung_usb2_phy_driver = {
.probe = samsung_usb2_phy_probe,
.driver = {
.of_match_table = samsung_usb2_phy_of_match,
.name = "samsung-usb2-phy",
.suppress_bind_attrs = true,
}
};
module_platform_driver(samsung_usb2_phy_driver);
MODULE_DESCRIPTION("Samsung S5P/Exynos SoC USB PHY driver");
MODULE_AUTHOR("Kamil Debski <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:samsung-usb2-phy");
| linux-master | drivers/phy/samsung/phy-samsung-usb2.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Samsung SoC USB 1.1/2.0 PHY driver - S5PV210 support
*
* Copyright (C) 2013 Samsung Electronics Co., Ltd.
* Authors: Kamil Debski <[email protected]>
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/phy/phy.h>
#include "phy-samsung-usb2.h"
/* Exynos USB PHY registers */
/* PHY power control */
#define S5PV210_UPHYPWR 0x0
#define S5PV210_UPHYPWR_PHY0_SUSPEND BIT(0)
#define S5PV210_UPHYPWR_PHY0_PWR BIT(3)
#define S5PV210_UPHYPWR_PHY0_OTG_PWR BIT(4)
#define S5PV210_UPHYPWR_PHY0 ( \
S5PV210_UPHYPWR_PHY0_SUSPEND | \
S5PV210_UPHYPWR_PHY0_PWR | \
S5PV210_UPHYPWR_PHY0_OTG_PWR)
#define S5PV210_UPHYPWR_PHY1_SUSPEND BIT(6)
#define S5PV210_UPHYPWR_PHY1_PWR BIT(7)
#define S5PV210_UPHYPWR_PHY1 ( \
S5PV210_UPHYPWR_PHY1_SUSPEND | \
S5PV210_UPHYPWR_PHY1_PWR)
/* PHY clock control */
#define S5PV210_UPHYCLK 0x4
#define S5PV210_UPHYCLK_PHYFSEL_MASK (0x3 << 0)
#define S5PV210_UPHYCLK_PHYFSEL_48MHZ (0x0 << 0)
#define S5PV210_UPHYCLK_PHYFSEL_24MHZ (0x3 << 0)
#define S5PV210_UPHYCLK_PHYFSEL_12MHZ (0x2 << 0)
#define S5PV210_UPHYCLK_PHY0_ID_PULLUP BIT(2)
#define S5PV210_UPHYCLK_PHY0_COMMON_ON BIT(4)
#define S5PV210_UPHYCLK_PHY1_COMMON_ON BIT(7)
/* PHY reset control */
#define S5PV210_UPHYRST 0x8
#define S5PV210_URSTCON_PHY0 BIT(0)
#define S5PV210_URSTCON_OTG_HLINK BIT(1)
#define S5PV210_URSTCON_OTG_PHYLINK BIT(2)
#define S5PV210_URSTCON_PHY1_ALL BIT(3)
#define S5PV210_URSTCON_HOST_LINK_ALL BIT(4)
/* Isolation, configured in the power management unit */
#define S5PV210_USB_ISOL_OFFSET 0x680c
#define S5PV210_USB_ISOL_DEVICE BIT(0)
#define S5PV210_USB_ISOL_HOST BIT(1)
enum s5pv210_phy_id {
S5PV210_DEVICE,
S5PV210_HOST,
S5PV210_NUM_PHYS,
};
/*
* s5pv210_rate_to_clk() converts the supplied clock rate to the value that
* can be written to the phy register.
*/
static int s5pv210_rate_to_clk(unsigned long rate, u32 *reg)
{
switch (rate) {
case 12 * MHZ:
*reg = S5PV210_UPHYCLK_PHYFSEL_12MHZ;
break;
case 24 * MHZ:
*reg = S5PV210_UPHYCLK_PHYFSEL_24MHZ;
break;
case 48 * MHZ:
*reg = S5PV210_UPHYCLK_PHYFSEL_48MHZ;
break;
default:
return -EINVAL;
}
return 0;
}
static void s5pv210_isol(struct samsung_usb2_phy_instance *inst, bool on)
{
struct samsung_usb2_phy_driver *drv = inst->drv;
u32 mask;
switch (inst->cfg->id) {
case S5PV210_DEVICE:
mask = S5PV210_USB_ISOL_DEVICE;
break;
case S5PV210_HOST:
mask = S5PV210_USB_ISOL_HOST;
break;
default:
return;
}
regmap_update_bits(drv->reg_pmu, S5PV210_USB_ISOL_OFFSET,
mask, on ? 0 : mask);
}
static void s5pv210_phy_pwr(struct samsung_usb2_phy_instance *inst, bool on)
{
struct samsung_usb2_phy_driver *drv = inst->drv;
u32 rstbits = 0;
u32 phypwr = 0;
u32 rst;
u32 pwr;
switch (inst->cfg->id) {
case S5PV210_DEVICE:
phypwr = S5PV210_UPHYPWR_PHY0;
rstbits = S5PV210_URSTCON_PHY0;
break;
case S5PV210_HOST:
phypwr = S5PV210_UPHYPWR_PHY1;
rstbits = S5PV210_URSTCON_PHY1_ALL |
S5PV210_URSTCON_HOST_LINK_ALL;
break;
}
if (on) {
writel(drv->ref_reg_val, drv->reg_phy + S5PV210_UPHYCLK);
pwr = readl(drv->reg_phy + S5PV210_UPHYPWR);
pwr &= ~phypwr;
writel(pwr, drv->reg_phy + S5PV210_UPHYPWR);
rst = readl(drv->reg_phy + S5PV210_UPHYRST);
rst |= rstbits;
writel(rst, drv->reg_phy + S5PV210_UPHYRST);
udelay(10);
rst &= ~rstbits;
writel(rst, drv->reg_phy + S5PV210_UPHYRST);
/* The following delay is necessary for the reset sequence to be
* completed
*/
udelay(80);
} else {
pwr = readl(drv->reg_phy + S5PV210_UPHYPWR);
pwr |= phypwr;
writel(pwr, drv->reg_phy + S5PV210_UPHYPWR);
}
}
static int s5pv210_power_on(struct samsung_usb2_phy_instance *inst)
{
s5pv210_isol(inst, 0);
s5pv210_phy_pwr(inst, 1);
return 0;
}
static int s5pv210_power_off(struct samsung_usb2_phy_instance *inst)
{
s5pv210_phy_pwr(inst, 0);
s5pv210_isol(inst, 1);
return 0;
}
static const struct samsung_usb2_common_phy s5pv210_phys[S5PV210_NUM_PHYS] = {
[S5PV210_DEVICE] = {
.label = "device",
.id = S5PV210_DEVICE,
.power_on = s5pv210_power_on,
.power_off = s5pv210_power_off,
},
[S5PV210_HOST] = {
.label = "host",
.id = S5PV210_HOST,
.power_on = s5pv210_power_on,
.power_off = s5pv210_power_off,
},
};
const struct samsung_usb2_phy_config s5pv210_usb2_phy_config = {
.num_phys = ARRAY_SIZE(s5pv210_phys),
.phys = s5pv210_phys,
.rate_to_clk = s5pv210_rate_to_clk,
};
| linux-master | drivers/phy/samsung/phy-s5pv210-usb2.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Samsung SoC USB 1.1/2.0 PHY driver - Exynos 4x12 support
*
* Copyright (C) 2013 Samsung Electronics Co., Ltd.
* Author: Kamil Debski <[email protected]>
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/phy/phy.h>
#include <linux/regmap.h>
#include "phy-samsung-usb2.h"
/* Exynos USB PHY registers */
/* PHY power control */
#define EXYNOS_4x12_UPHYPWR 0x0
#define EXYNOS_4x12_UPHYPWR_PHY0_SUSPEND BIT(0)
#define EXYNOS_4x12_UPHYPWR_PHY0_PWR BIT(3)
#define EXYNOS_4x12_UPHYPWR_PHY0_OTG_PWR BIT(4)
#define EXYNOS_4x12_UPHYPWR_PHY0_SLEEP BIT(5)
#define EXYNOS_4x12_UPHYPWR_PHY0 ( \
EXYNOS_4x12_UPHYPWR_PHY0_SUSPEND | \
EXYNOS_4x12_UPHYPWR_PHY0_PWR | \
EXYNOS_4x12_UPHYPWR_PHY0_OTG_PWR | \
EXYNOS_4x12_UPHYPWR_PHY0_SLEEP)
#define EXYNOS_4x12_UPHYPWR_PHY1_SUSPEND BIT(6)
#define EXYNOS_4x12_UPHYPWR_PHY1_PWR BIT(7)
#define EXYNOS_4x12_UPHYPWR_PHY1_SLEEP BIT(8)
#define EXYNOS_4x12_UPHYPWR_PHY1 ( \
EXYNOS_4x12_UPHYPWR_PHY1_SUSPEND | \
EXYNOS_4x12_UPHYPWR_PHY1_PWR | \
EXYNOS_4x12_UPHYPWR_PHY1_SLEEP)
#define EXYNOS_4x12_UPHYPWR_HSIC0_SUSPEND BIT(9)
#define EXYNOS_4x12_UPHYPWR_HSIC0_PWR BIT(10)
#define EXYNOS_4x12_UPHYPWR_HSIC0_SLEEP BIT(11)
#define EXYNOS_4x12_UPHYPWR_HSIC0 ( \
EXYNOS_4x12_UPHYPWR_HSIC0_SUSPEND | \
EXYNOS_4x12_UPHYPWR_HSIC0_PWR | \
EXYNOS_4x12_UPHYPWR_HSIC0_SLEEP)
#define EXYNOS_4x12_UPHYPWR_HSIC1_SUSPEND BIT(12)
#define EXYNOS_4x12_UPHYPWR_HSIC1_PWR BIT(13)
#define EXYNOS_4x12_UPHYPWR_HSIC1_SLEEP BIT(14)
#define EXYNOS_4x12_UPHYPWR_HSIC1 ( \
EXYNOS_4x12_UPHYPWR_HSIC1_SUSPEND | \
EXYNOS_4x12_UPHYPWR_HSIC1_PWR | \
EXYNOS_4x12_UPHYPWR_HSIC1_SLEEP)
/* PHY clock control */
#define EXYNOS_4x12_UPHYCLK 0x4
#define EXYNOS_4x12_UPHYCLK_PHYFSEL_MASK (0x7 << 0)
#define EXYNOS_4x12_UPHYCLK_PHYFSEL_OFFSET 0
#define EXYNOS_4x12_UPHYCLK_PHYFSEL_9MHZ6 (0x0 << 0)
#define EXYNOS_4x12_UPHYCLK_PHYFSEL_10MHZ (0x1 << 0)
#define EXYNOS_4x12_UPHYCLK_PHYFSEL_12MHZ (0x2 << 0)
#define EXYNOS_4x12_UPHYCLK_PHYFSEL_19MHZ2 (0x3 << 0)
#define EXYNOS_4x12_UPHYCLK_PHYFSEL_20MHZ (0x4 << 0)
#define EXYNOS_4x12_UPHYCLK_PHYFSEL_24MHZ (0x5 << 0)
#define EXYNOS_4x12_UPHYCLK_PHYFSEL_50MHZ (0x7 << 0)
#define EXYNOS_3250_UPHYCLK_REFCLKSEL (0x2 << 8)
#define EXYNOS_4x12_UPHYCLK_PHY0_ID_PULLUP BIT(3)
#define EXYNOS_4x12_UPHYCLK_PHY0_COMMON_ON BIT(4)
#define EXYNOS_4x12_UPHYCLK_PHY1_COMMON_ON BIT(7)
#define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_MASK (0x7f << 10)
#define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_OFFSET 10
#define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_12MHZ (0x24 << 10)
#define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_15MHZ (0x1c << 10)
#define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_16MHZ (0x1a << 10)
#define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_19MHZ2 (0x15 << 10)
#define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_20MHZ (0x14 << 10)
/* PHY reset control */
#define EXYNOS_4x12_UPHYRST 0x8
#define EXYNOS_4x12_URSTCON_PHY0 BIT(0)
#define EXYNOS_4x12_URSTCON_OTG_HLINK BIT(1)
#define EXYNOS_4x12_URSTCON_OTG_PHYLINK BIT(2)
#define EXYNOS_4x12_URSTCON_HOST_PHY BIT(3)
/* The following bit defines are presented in the
* order taken from the Exynos4412 reference manual.
*
* During experiments with the hardware and debugging
* it was determined that the hardware behaves contrary
* to the manual.
*
* The following bit values were chaned accordingly to the
* results of real hardware experiments.
*/
#define EXYNOS_4x12_URSTCON_PHY1 BIT(4)
#define EXYNOS_4x12_URSTCON_HSIC0 BIT(6)
#define EXYNOS_4x12_URSTCON_HSIC1 BIT(5)
#define EXYNOS_4x12_URSTCON_HOST_LINK_ALL BIT(7)
#define EXYNOS_4x12_URSTCON_HOST_LINK_P0 BIT(10)
#define EXYNOS_4x12_URSTCON_HOST_LINK_P1 BIT(9)
#define EXYNOS_4x12_URSTCON_HOST_LINK_P2 BIT(8)
/* Isolation, configured in the power management unit */
#define EXYNOS_4x12_USB_ISOL_OFFSET 0x704
#define EXYNOS_4x12_USB_ISOL_OTG BIT(0)
#define EXYNOS_4x12_USB_ISOL_HSIC0_OFFSET 0x708
#define EXYNOS_4x12_USB_ISOL_HSIC0 BIT(0)
#define EXYNOS_4x12_USB_ISOL_HSIC1_OFFSET 0x70c
#define EXYNOS_4x12_USB_ISOL_HSIC1 BIT(0)
/* Mode switching SUB Device <-> Host */
#define EXYNOS_4x12_MODE_SWITCH_OFFSET 0x21c
#define EXYNOS_4x12_MODE_SWITCH_MASK 1
#define EXYNOS_4x12_MODE_SWITCH_DEVICE 0
#define EXYNOS_4x12_MODE_SWITCH_HOST 1
enum exynos4x12_phy_id {
EXYNOS4x12_DEVICE,
EXYNOS4x12_HOST,
EXYNOS4x12_HSIC0,
EXYNOS4x12_HSIC1,
EXYNOS4x12_NUM_PHYS,
};
/*
* exynos4x12_rate_to_clk() converts the supplied clock rate to the value that
* can be written to the phy register.
*/
static int exynos4x12_rate_to_clk(unsigned long rate, u32 *reg)
{
/* EXYNOS_4x12_UPHYCLK_PHYFSEL_MASK */
switch (rate) {
case 9600 * KHZ:
*reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_9MHZ6;
break;
case 10 * MHZ:
*reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_10MHZ;
break;
case 12 * MHZ:
*reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_12MHZ;
break;
case 19200 * KHZ:
*reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_19MHZ2;
break;
case 20 * MHZ:
*reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_20MHZ;
break;
case 24 * MHZ:
*reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_24MHZ;
break;
case 50 * MHZ:
*reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_50MHZ;
break;
default:
return -EINVAL;
}
return 0;
}
static void exynos4x12_isol(struct samsung_usb2_phy_instance *inst, bool on)
{
struct samsung_usb2_phy_driver *drv = inst->drv;
u32 offset;
u32 mask;
switch (inst->cfg->id) {
case EXYNOS4x12_DEVICE:
case EXYNOS4x12_HOST:
offset = EXYNOS_4x12_USB_ISOL_OFFSET;
mask = EXYNOS_4x12_USB_ISOL_OTG;
break;
case EXYNOS4x12_HSIC0:
offset = EXYNOS_4x12_USB_ISOL_HSIC0_OFFSET;
mask = EXYNOS_4x12_USB_ISOL_HSIC0;
break;
case EXYNOS4x12_HSIC1:
offset = EXYNOS_4x12_USB_ISOL_HSIC1_OFFSET;
mask = EXYNOS_4x12_USB_ISOL_HSIC1;
break;
default:
return;
}
regmap_update_bits(drv->reg_pmu, offset, mask, on ? 0 : mask);
}
static void exynos4x12_setup_clk(struct samsung_usb2_phy_instance *inst)
{
struct samsung_usb2_phy_driver *drv = inst->drv;
u32 clk;
clk = readl(drv->reg_phy + EXYNOS_4x12_UPHYCLK);
clk &= ~EXYNOS_4x12_UPHYCLK_PHYFSEL_MASK;
if (drv->cfg->has_refclk_sel)
clk = EXYNOS_3250_UPHYCLK_REFCLKSEL;
clk |= drv->ref_reg_val << EXYNOS_4x12_UPHYCLK_PHYFSEL_OFFSET;
clk |= EXYNOS_4x12_UPHYCLK_PHY1_COMMON_ON;
writel(clk, drv->reg_phy + EXYNOS_4x12_UPHYCLK);
}
static void exynos4x12_phy_pwr(struct samsung_usb2_phy_instance *inst, bool on)
{
struct samsung_usb2_phy_driver *drv = inst->drv;
u32 rstbits = 0;
u32 phypwr = 0;
u32 rst;
u32 pwr;
switch (inst->cfg->id) {
case EXYNOS4x12_DEVICE:
phypwr = EXYNOS_4x12_UPHYPWR_PHY0;
rstbits = EXYNOS_4x12_URSTCON_PHY0;
break;
case EXYNOS4x12_HOST:
phypwr = EXYNOS_4x12_UPHYPWR_PHY1;
rstbits = EXYNOS_4x12_URSTCON_HOST_PHY |
EXYNOS_4x12_URSTCON_PHY1 |
EXYNOS_4x12_URSTCON_HOST_LINK_P0;
break;
case EXYNOS4x12_HSIC0:
phypwr = EXYNOS_4x12_UPHYPWR_HSIC0;
rstbits = EXYNOS_4x12_URSTCON_HSIC0 |
EXYNOS_4x12_URSTCON_HOST_LINK_P1;
break;
case EXYNOS4x12_HSIC1:
phypwr = EXYNOS_4x12_UPHYPWR_HSIC1;
rstbits = EXYNOS_4x12_URSTCON_HSIC1 |
EXYNOS_4x12_URSTCON_HOST_LINK_P1;
break;
}
if (on) {
pwr = readl(drv->reg_phy + EXYNOS_4x12_UPHYPWR);
pwr &= ~phypwr;
writel(pwr, drv->reg_phy + EXYNOS_4x12_UPHYPWR);
rst = readl(drv->reg_phy + EXYNOS_4x12_UPHYRST);
rst |= rstbits;
writel(rst, drv->reg_phy + EXYNOS_4x12_UPHYRST);
udelay(10);
rst &= ~rstbits;
writel(rst, drv->reg_phy + EXYNOS_4x12_UPHYRST);
/* The following delay is necessary for the reset sequence to be
* completed */
udelay(80);
} else {
pwr = readl(drv->reg_phy + EXYNOS_4x12_UPHYPWR);
pwr |= phypwr;
writel(pwr, drv->reg_phy + EXYNOS_4x12_UPHYPWR);
}
}
static void exynos4x12_power_on_int(struct samsung_usb2_phy_instance *inst)
{
if (inst->int_cnt++ > 0)
return;
exynos4x12_setup_clk(inst);
exynos4x12_isol(inst, 0);
exynos4x12_phy_pwr(inst, 1);
}
static int exynos4x12_power_on(struct samsung_usb2_phy_instance *inst)
{
struct samsung_usb2_phy_driver *drv = inst->drv;
if (inst->ext_cnt++ > 0)
return 0;
if (inst->cfg->id == EXYNOS4x12_HOST) {
regmap_update_bits(drv->reg_sys, EXYNOS_4x12_MODE_SWITCH_OFFSET,
EXYNOS_4x12_MODE_SWITCH_MASK,
EXYNOS_4x12_MODE_SWITCH_HOST);
exynos4x12_power_on_int(&drv->instances[EXYNOS4x12_DEVICE]);
}
if (inst->cfg->id == EXYNOS4x12_DEVICE && drv->cfg->has_mode_switch)
regmap_update_bits(drv->reg_sys, EXYNOS_4x12_MODE_SWITCH_OFFSET,
EXYNOS_4x12_MODE_SWITCH_MASK,
EXYNOS_4x12_MODE_SWITCH_DEVICE);
if (inst->cfg->id == EXYNOS4x12_HSIC0 ||
inst->cfg->id == EXYNOS4x12_HSIC1) {
exynos4x12_power_on_int(&drv->instances[EXYNOS4x12_DEVICE]);
exynos4x12_power_on_int(&drv->instances[EXYNOS4x12_HOST]);
}
exynos4x12_power_on_int(inst);
return 0;
}
static void exynos4x12_power_off_int(struct samsung_usb2_phy_instance *inst)
{
if (inst->int_cnt-- > 1)
return;
exynos4x12_isol(inst, 1);
exynos4x12_phy_pwr(inst, 0);
}
static int exynos4x12_power_off(struct samsung_usb2_phy_instance *inst)
{
struct samsung_usb2_phy_driver *drv = inst->drv;
if (inst->ext_cnt-- > 1)
return 0;
if (inst->cfg->id == EXYNOS4x12_DEVICE && drv->cfg->has_mode_switch)
regmap_update_bits(drv->reg_sys, EXYNOS_4x12_MODE_SWITCH_OFFSET,
EXYNOS_4x12_MODE_SWITCH_MASK,
EXYNOS_4x12_MODE_SWITCH_HOST);
if (inst->cfg->id == EXYNOS4x12_HOST)
exynos4x12_power_off_int(&drv->instances[EXYNOS4x12_DEVICE]);
if (inst->cfg->id == EXYNOS4x12_HSIC0 ||
inst->cfg->id == EXYNOS4x12_HSIC1) {
exynos4x12_power_off_int(&drv->instances[EXYNOS4x12_DEVICE]);
exynos4x12_power_off_int(&drv->instances[EXYNOS4x12_HOST]);
}
exynos4x12_power_off_int(inst);
return 0;
}
static const struct samsung_usb2_common_phy exynos4x12_phys[] = {
{
.label = "device",
.id = EXYNOS4x12_DEVICE,
.power_on = exynos4x12_power_on,
.power_off = exynos4x12_power_off,
},
{
.label = "host",
.id = EXYNOS4x12_HOST,
.power_on = exynos4x12_power_on,
.power_off = exynos4x12_power_off,
},
{
.label = "hsic0",
.id = EXYNOS4x12_HSIC0,
.power_on = exynos4x12_power_on,
.power_off = exynos4x12_power_off,
},
{
.label = "hsic1",
.id = EXYNOS4x12_HSIC1,
.power_on = exynos4x12_power_on,
.power_off = exynos4x12_power_off,
},
};
const struct samsung_usb2_phy_config exynos3250_usb2_phy_config = {
.has_refclk_sel = 1,
.num_phys = 1,
.phys = exynos4x12_phys,
.rate_to_clk = exynos4x12_rate_to_clk,
};
const struct samsung_usb2_phy_config exynos4x12_usb2_phy_config = {
.has_mode_switch = 1,
.num_phys = EXYNOS4x12_NUM_PHYS,
.phys = exynos4x12_phys,
.rate_to_clk = exynos4x12_rate_to_clk,
};
| linux-master | drivers/phy/samsung/phy-exynos4x12-usb2.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Samsung SoC USB 1.1/2.0 PHY driver - Exynos 4210 support
*
* Copyright (C) 2013 Samsung Electronics Co., Ltd.
* Author: Kamil Debski <[email protected]>
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/phy/phy.h>
#include <linux/regmap.h>
#include "phy-samsung-usb2.h"
/* Exynos USB PHY registers */
/* PHY power control */
#define EXYNOS_4210_UPHYPWR 0x0
#define EXYNOS_4210_UPHYPWR_PHY0_SUSPEND BIT(0)
#define EXYNOS_4210_UPHYPWR_PHY0_PWR BIT(3)
#define EXYNOS_4210_UPHYPWR_PHY0_OTG_PWR BIT(4)
#define EXYNOS_4210_UPHYPWR_PHY0_SLEEP BIT(5)
#define EXYNOS_4210_UPHYPWR_PHY0 ( \
EXYNOS_4210_UPHYPWR_PHY0_SUSPEND | \
EXYNOS_4210_UPHYPWR_PHY0_PWR | \
EXYNOS_4210_UPHYPWR_PHY0_OTG_PWR | \
EXYNOS_4210_UPHYPWR_PHY0_SLEEP)
#define EXYNOS_4210_UPHYPWR_PHY1_SUSPEND BIT(6)
#define EXYNOS_4210_UPHYPWR_PHY1_PWR BIT(7)
#define EXYNOS_4210_UPHYPWR_PHY1_SLEEP BIT(8)
#define EXYNOS_4210_UPHYPWR_PHY1 ( \
EXYNOS_4210_UPHYPWR_PHY1_SUSPEND | \
EXYNOS_4210_UPHYPWR_PHY1_PWR | \
EXYNOS_4210_UPHYPWR_PHY1_SLEEP)
#define EXYNOS_4210_UPHYPWR_HSIC0_SUSPEND BIT(9)
#define EXYNOS_4210_UPHYPWR_HSIC0_SLEEP BIT(10)
#define EXYNOS_4210_UPHYPWR_HSIC0 ( \
EXYNOS_4210_UPHYPWR_HSIC0_SUSPEND | \
EXYNOS_4210_UPHYPWR_HSIC0_SLEEP)
#define EXYNOS_4210_UPHYPWR_HSIC1_SUSPEND BIT(11)
#define EXYNOS_4210_UPHYPWR_HSIC1_SLEEP BIT(12)
#define EXYNOS_4210_UPHYPWR_HSIC1 ( \
EXYNOS_4210_UPHYPWR_HSIC1_SUSPEND | \
EXYNOS_4210_UPHYPWR_HSIC1_SLEEP)
/* PHY clock control */
#define EXYNOS_4210_UPHYCLK 0x4
#define EXYNOS_4210_UPHYCLK_PHYFSEL_MASK (0x3 << 0)
#define EXYNOS_4210_UPHYCLK_PHYFSEL_OFFSET 0
#define EXYNOS_4210_UPHYCLK_PHYFSEL_48MHZ (0x0 << 0)
#define EXYNOS_4210_UPHYCLK_PHYFSEL_24MHZ (0x3 << 0)
#define EXYNOS_4210_UPHYCLK_PHYFSEL_12MHZ (0x2 << 0)
#define EXYNOS_4210_UPHYCLK_PHY0_ID_PULLUP BIT(2)
#define EXYNOS_4210_UPHYCLK_PHY0_COMMON_ON BIT(4)
#define EXYNOS_4210_UPHYCLK_PHY1_COMMON_ON BIT(7)
/* PHY reset control */
#define EXYNOS_4210_UPHYRST 0x8
#define EXYNOS_4210_URSTCON_PHY0 BIT(0)
#define EXYNOS_4210_URSTCON_OTG_HLINK BIT(1)
#define EXYNOS_4210_URSTCON_OTG_PHYLINK BIT(2)
#define EXYNOS_4210_URSTCON_PHY1_ALL BIT(3)
#define EXYNOS_4210_URSTCON_PHY1_P0 BIT(4)
#define EXYNOS_4210_URSTCON_PHY1_P1P2 BIT(5)
#define EXYNOS_4210_URSTCON_HOST_LINK_ALL BIT(6)
#define EXYNOS_4210_URSTCON_HOST_LINK_P0 BIT(7)
#define EXYNOS_4210_URSTCON_HOST_LINK_P1 BIT(8)
#define EXYNOS_4210_URSTCON_HOST_LINK_P2 BIT(9)
/* Isolation, configured in the power management unit */
#define EXYNOS_4210_USB_ISOL_DEVICE_OFFSET 0x704
#define EXYNOS_4210_USB_ISOL_DEVICE BIT(0)
#define EXYNOS_4210_USB_ISOL_HOST_OFFSET 0x708
#define EXYNOS_4210_USB_ISOL_HOST BIT(0)
/* USBYPHY1 Floating prevention */
#define EXYNOS_4210_UPHY1CON 0x34
#define EXYNOS_4210_UPHY1CON_FLOAT_PREVENTION 0x1
/* Mode switching SUB Device <-> Host */
#define EXYNOS_4210_MODE_SWITCH_OFFSET 0x21c
#define EXYNOS_4210_MODE_SWITCH_MASK 1
#define EXYNOS_4210_MODE_SWITCH_DEVICE 0
#define EXYNOS_4210_MODE_SWITCH_HOST 1
enum exynos4210_phy_id {
EXYNOS4210_DEVICE,
EXYNOS4210_HOST,
EXYNOS4210_HSIC0,
EXYNOS4210_HSIC1,
EXYNOS4210_NUM_PHYS,
};
/*
* exynos4210_rate_to_clk() converts the supplied clock rate to the value that
* can be written to the phy register.
*/
static int exynos4210_rate_to_clk(unsigned long rate, u32 *reg)
{
switch (rate) {
case 12 * MHZ:
*reg = EXYNOS_4210_UPHYCLK_PHYFSEL_12MHZ;
break;
case 24 * MHZ:
*reg = EXYNOS_4210_UPHYCLK_PHYFSEL_24MHZ;
break;
case 48 * MHZ:
*reg = EXYNOS_4210_UPHYCLK_PHYFSEL_48MHZ;
break;
default:
return -EINVAL;
}
return 0;
}
static void exynos4210_isol(struct samsung_usb2_phy_instance *inst, bool on)
{
struct samsung_usb2_phy_driver *drv = inst->drv;
u32 offset;
u32 mask;
switch (inst->cfg->id) {
case EXYNOS4210_DEVICE:
offset = EXYNOS_4210_USB_ISOL_DEVICE_OFFSET;
mask = EXYNOS_4210_USB_ISOL_DEVICE;
break;
case EXYNOS4210_HOST:
offset = EXYNOS_4210_USB_ISOL_HOST_OFFSET;
mask = EXYNOS_4210_USB_ISOL_HOST;
break;
default:
return;
}
regmap_update_bits(drv->reg_pmu, offset, mask, on ? 0 : mask);
}
static void exynos4210_phy_pwr(struct samsung_usb2_phy_instance *inst, bool on)
{
struct samsung_usb2_phy_driver *drv = inst->drv;
u32 rstbits = 0;
u32 phypwr = 0;
u32 rst;
u32 pwr;
u32 clk;
switch (inst->cfg->id) {
case EXYNOS4210_DEVICE:
phypwr = EXYNOS_4210_UPHYPWR_PHY0;
rstbits = EXYNOS_4210_URSTCON_PHY0;
break;
case EXYNOS4210_HOST:
phypwr = EXYNOS_4210_UPHYPWR_PHY1;
rstbits = EXYNOS_4210_URSTCON_PHY1_ALL |
EXYNOS_4210_URSTCON_PHY1_P0 |
EXYNOS_4210_URSTCON_PHY1_P1P2 |
EXYNOS_4210_URSTCON_HOST_LINK_ALL |
EXYNOS_4210_URSTCON_HOST_LINK_P0;
writel(on, drv->reg_phy + EXYNOS_4210_UPHY1CON);
break;
case EXYNOS4210_HSIC0:
phypwr = EXYNOS_4210_UPHYPWR_HSIC0;
rstbits = EXYNOS_4210_URSTCON_PHY1_P1P2 |
EXYNOS_4210_URSTCON_HOST_LINK_P1;
break;
case EXYNOS4210_HSIC1:
phypwr = EXYNOS_4210_UPHYPWR_HSIC1;
rstbits = EXYNOS_4210_URSTCON_PHY1_P1P2 |
EXYNOS_4210_URSTCON_HOST_LINK_P2;
break;
}
if (on) {
clk = readl(drv->reg_phy + EXYNOS_4210_UPHYCLK);
clk &= ~EXYNOS_4210_UPHYCLK_PHYFSEL_MASK;
clk |= drv->ref_reg_val << EXYNOS_4210_UPHYCLK_PHYFSEL_OFFSET;
writel(clk, drv->reg_phy + EXYNOS_4210_UPHYCLK);
pwr = readl(drv->reg_phy + EXYNOS_4210_UPHYPWR);
pwr &= ~phypwr;
writel(pwr, drv->reg_phy + EXYNOS_4210_UPHYPWR);
rst = readl(drv->reg_phy + EXYNOS_4210_UPHYRST);
rst |= rstbits;
writel(rst, drv->reg_phy + EXYNOS_4210_UPHYRST);
udelay(10);
rst &= ~rstbits;
writel(rst, drv->reg_phy + EXYNOS_4210_UPHYRST);
/* The following delay is necessary for the reset sequence to be
* completed */
udelay(80);
} else {
pwr = readl(drv->reg_phy + EXYNOS_4210_UPHYPWR);
pwr |= phypwr;
writel(pwr, drv->reg_phy + EXYNOS_4210_UPHYPWR);
}
}
static int exynos4210_power_on(struct samsung_usb2_phy_instance *inst)
{
/* Order of initialisation is important - first power then isolation */
exynos4210_phy_pwr(inst, 1);
exynos4210_isol(inst, 0);
return 0;
}
static int exynos4210_power_off(struct samsung_usb2_phy_instance *inst)
{
exynos4210_isol(inst, 1);
exynos4210_phy_pwr(inst, 0);
return 0;
}
static const struct samsung_usb2_common_phy exynos4210_phys[] = {
{
.label = "device",
.id = EXYNOS4210_DEVICE,
.power_on = exynos4210_power_on,
.power_off = exynos4210_power_off,
},
{
.label = "host",
.id = EXYNOS4210_HOST,
.power_on = exynos4210_power_on,
.power_off = exynos4210_power_off,
},
{
.label = "hsic0",
.id = EXYNOS4210_HSIC0,
.power_on = exynos4210_power_on,
.power_off = exynos4210_power_off,
},
{
.label = "hsic1",
.id = EXYNOS4210_HSIC1,
.power_on = exynos4210_power_on,
.power_off = exynos4210_power_off,
},
};
const struct samsung_usb2_phy_config exynos4210_usb2_phy_config = {
.has_mode_switch = 0,
.num_phys = EXYNOS4210_NUM_PHYS,
.phys = exynos4210_phys,
.rate_to_clk = exynos4210_rate_to_clk,
};
| linux-master | drivers/phy/samsung/phy-exynos4210-usb2.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* UFS PHY driver data for Samsung EXYNOSAUTO v9 SoC
*
* Copyright (C) 2021 Samsung Electronics Co., Ltd.
*/
#include "phy-samsung-ufs.h"
#define EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL 0x728
#define EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL_MASK 0x1
#define EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL_EN BIT(0)
#define EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CDR_LOCK_STATUS 0x5e
#define PHY_TRSV_REG_CFG_AUTOV9(o, v, d) \
PHY_TRSV_REG_CFG_OFFSET(o, v, d, 0x50)
/* Calibration for phy initialization */
static const struct samsung_ufs_phy_cfg exynosautov9_pre_init_cfg[] = {
PHY_COMN_REG_CFG(0x023, 0x80, PWR_MODE_ANY),
PHY_COMN_REG_CFG(0x01d, 0x10, PWR_MODE_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x044, 0xb5, PWR_MODE_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x04d, 0x43, PWR_MODE_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x05b, 0x20, PWR_MODE_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x05e, 0xc0, PWR_MODE_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x038, 0x12, PWR_MODE_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x059, 0x58, PWR_MODE_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x06c, 0x18, PWR_MODE_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x06d, 0x02, PWR_MODE_ANY),
PHY_COMN_REG_CFG(0x023, 0xc0, PWR_MODE_ANY),
PHY_COMN_REG_CFG(0x023, 0x00, PWR_MODE_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x042, 0x5d, PWR_MODE_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x043, 0x80, PWR_MODE_ANY),
END_UFS_PHY_CFG,
};
/* Calibration for HS mode series A/B */
static const struct samsung_ufs_phy_cfg exynosautov9_pre_pwr_hs_cfg[] = {
PHY_TRSV_REG_CFG_AUTOV9(0x032, 0xbc, PWR_MODE_HS_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x03c, 0x7f, PWR_MODE_HS_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x048, 0xc0, PWR_MODE_HS_ANY),
PHY_TRSV_REG_CFG_AUTOV9(0x04a, 0x00, PWR_MODE_HS_G3_SER_B),
PHY_TRSV_REG_CFG_AUTOV9(0x04b, 0x10, PWR_MODE_HS_G1_SER_B |
PWR_MODE_HS_G3_SER_B),
PHY_TRSV_REG_CFG_AUTOV9(0x04d, 0x63, PWR_MODE_HS_G3_SER_B),
END_UFS_PHY_CFG,
};
static const struct samsung_ufs_phy_cfg *exynosautov9_ufs_phy_cfgs[CFG_TAG_MAX] = {
[CFG_PRE_INIT] = exynosautov9_pre_init_cfg,
[CFG_PRE_PWR_HS] = exynosautov9_pre_pwr_hs_cfg,
};
static const char * const exynosautov9_ufs_phy_clks[] = {
"ref_clk",
};
const struct samsung_ufs_phy_drvdata exynosautov9_ufs_phy = {
.cfgs = exynosautov9_ufs_phy_cfgs,
.isol = {
.offset = EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL,
.mask = EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL_MASK,
.en = EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL_EN,
},
.clk_list = exynosautov9_ufs_phy_clks,
.num_clks = ARRAY_SIZE(exynosautov9_ufs_phy_clks),
.cdr_lock_status_offset = EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CDR_LOCK_STATUS,
};
| linux-master | drivers/phy/samsung/phy-exynosautov9-ufs.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* UFS PHY driver data for FSD SoC
*
* Copyright (C) 2022 Samsung Electronics Co., Ltd.
*
*/
#include "phy-samsung-ufs.h"
#define FSD_EMBEDDED_COMBO_PHY_CTRL 0x724
#define FSD_EMBEDDED_COMBO_PHY_CTRL_MASK 0x1
#define FSD_EMBEDDED_COMBO_PHY_CTRL_EN BIT(0)
#define FSD_EMBEDDED_COMBO_PHY_CDR_LOCK_STATUS 0x6e
static const struct samsung_ufs_phy_cfg fsd_pre_init_cfg[] = {
PHY_COMN_REG_CFG(0x00f, 0xfa, PWR_MODE_ANY),
PHY_COMN_REG_CFG(0x010, 0x82, PWR_MODE_ANY),
PHY_COMN_REG_CFG(0x011, 0x1e, PWR_MODE_ANY),
PHY_COMN_REG_CFG(0x017, 0x94, PWR_MODE_ANY),
PHY_TRSV_REG_CFG(0x035, 0x58, PWR_MODE_ANY),
PHY_TRSV_REG_CFG(0x036, 0x32, PWR_MODE_ANY),
PHY_TRSV_REG_CFG(0x037, 0x40, PWR_MODE_ANY),
PHY_TRSV_REG_CFG(0x03b, 0x83, PWR_MODE_ANY),
PHY_TRSV_REG_CFG(0x042, 0x88, PWR_MODE_ANY),
PHY_TRSV_REG_CFG(0x043, 0xa6, PWR_MODE_ANY),
PHY_TRSV_REG_CFG(0x048, 0x74, PWR_MODE_ANY),
PHY_TRSV_REG_CFG(0x04c, 0x5b, PWR_MODE_ANY),
PHY_TRSV_REG_CFG(0x04d, 0x83, PWR_MODE_ANY),
PHY_TRSV_REG_CFG(0x05c, 0x14, PWR_MODE_ANY),
END_UFS_PHY_CFG
};
/* Calibration for HS mode series A/B */
static const struct samsung_ufs_phy_cfg fsd_pre_pwr_hs_cfg[] = {
END_UFS_PHY_CFG
};
/* Calibration for HS mode series A/B atfer PMC */
static const struct samsung_ufs_phy_cfg fsd_post_pwr_hs_cfg[] = {
END_UFS_PHY_CFG
};
static const struct samsung_ufs_phy_cfg *fsd_ufs_phy_cfgs[CFG_TAG_MAX] = {
[CFG_PRE_INIT] = fsd_pre_init_cfg,
[CFG_PRE_PWR_HS] = fsd_pre_pwr_hs_cfg,
[CFG_POST_PWR_HS] = fsd_post_pwr_hs_cfg,
};
static const char * const fsd_ufs_phy_clks[] = {
"ref_clk",
};
const struct samsung_ufs_phy_drvdata fsd_ufs_phy = {
.cfgs = fsd_ufs_phy_cfgs,
.isol = {
.offset = FSD_EMBEDDED_COMBO_PHY_CTRL,
.mask = FSD_EMBEDDED_COMBO_PHY_CTRL_MASK,
.en = FSD_EMBEDDED_COMBO_PHY_CTRL_EN,
},
.clk_list = fsd_ufs_phy_clks,
.num_clks = ARRAY_SIZE(fsd_ufs_phy_clks),
.cdr_lock_status_offset = FSD_EMBEDDED_COMBO_PHY_CDR_LOCK_STATUS,
};
| linux-master | drivers/phy/samsung/phy-fsd-ufs.c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.