python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-only /* * Exynos generic interconnect provider driver * * Copyright (c) 2020 Samsung Electronics Co., Ltd. * * Authors: Artur Świgoń <[email protected]> * Sylwester Nawrocki <[email protected]> */ #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_qos.h> #include <linux/slab.h> #define EXYNOS_ICC_DEFAULT_BUS_CLK_RATIO 8 struct exynos_icc_priv { struct device *dev; /* One interconnect node per provider */ struct icc_provider provider; struct icc_node *node; struct dev_pm_qos_request qos_req; u32 bus_clk_ratio; }; static struct icc_node *exynos_icc_get_parent(struct device_node *np) { struct of_phandle_args args; struct icc_node_data *icc_node_data; struct icc_node *icc_node; int num, ret; num = of_count_phandle_with_args(np, "interconnects", "#interconnect-cells"); if (num < 1) return NULL; /* parent nodes are optional */ /* Get the interconnect target node */ ret = of_parse_phandle_with_args(np, "interconnects", "#interconnect-cells", 0, &args); if (ret < 0) return ERR_PTR(ret); icc_node_data = of_icc_get_from_provider(&args); of_node_put(args.np); if (IS_ERR(icc_node_data)) return ERR_CAST(icc_node_data); icc_node = icc_node_data->node; kfree(icc_node_data); return icc_node; } static int exynos_generic_icc_set(struct icc_node *src, struct icc_node *dst) { struct exynos_icc_priv *src_priv = src->data, *dst_priv = dst->data; s32 src_freq = max(src->avg_bw, src->peak_bw) / src_priv->bus_clk_ratio; s32 dst_freq = max(dst->avg_bw, dst->peak_bw) / dst_priv->bus_clk_ratio; int ret; ret = dev_pm_qos_update_request(&src_priv->qos_req, src_freq); if (ret < 0) { dev_err(src_priv->dev, "failed to update PM QoS of %s (src)\n", src->name); return ret; } ret = dev_pm_qos_update_request(&dst_priv->qos_req, dst_freq); if (ret < 0) { dev_err(dst_priv->dev, "failed to update PM QoS of %s (dst)\n", dst->name); return ret; } return 0; } static struct icc_node *exynos_generic_icc_xlate(struct of_phandle_args *spec, void *data) { struct exynos_icc_priv *priv = data; if (spec->np != priv->dev->parent->of_node) return ERR_PTR(-EINVAL); return priv->node; } static int exynos_generic_icc_remove(struct platform_device *pdev) { struct exynos_icc_priv *priv = platform_get_drvdata(pdev); icc_provider_deregister(&priv->provider); icc_nodes_remove(&priv->provider); return 0; } static int exynos_generic_icc_probe(struct platform_device *pdev) { struct device *bus_dev = pdev->dev.parent; struct exynos_icc_priv *priv; struct icc_provider *provider; struct icc_node *icc_node, *icc_parent_node; int ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = &pdev->dev; platform_set_drvdata(pdev, priv); provider = &priv->provider; provider->set = exynos_generic_icc_set; provider->aggregate = icc_std_aggregate; provider->xlate = exynos_generic_icc_xlate; provider->dev = bus_dev; provider->inter_set = true; provider->data = priv; icc_provider_init(provider); icc_node = icc_node_create(pdev->id); if (IS_ERR(icc_node)) return PTR_ERR(icc_node); priv->node = icc_node; icc_node->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%pOFn", bus_dev->of_node); if (of_property_read_u32(bus_dev->of_node, "samsung,data-clock-ratio", &priv->bus_clk_ratio)) priv->bus_clk_ratio = EXYNOS_ICC_DEFAULT_BUS_CLK_RATIO; icc_node->data = priv; icc_node_add(icc_node, provider); /* * Register a PM QoS request for the parent (devfreq) device. */ ret = dev_pm_qos_add_request(bus_dev, &priv->qos_req, DEV_PM_QOS_MIN_FREQUENCY, 0); if (ret < 0) goto err_node_del; icc_parent_node = exynos_icc_get_parent(bus_dev->of_node); if (IS_ERR(icc_parent_node)) { ret = PTR_ERR(icc_parent_node); goto err_pmqos_del; } if (icc_parent_node) { ret = icc_link_create(icc_node, icc_parent_node->id); if (ret < 0) goto err_pmqos_del; } ret = icc_provider_register(provider); if (ret < 0) goto err_pmqos_del; return 0; err_pmqos_del: dev_pm_qos_remove_request(&priv->qos_req); err_node_del: icc_nodes_remove(provider); return ret; } static struct platform_driver exynos_generic_icc_driver = { .driver = { .name = "exynos-generic-icc", .sync_state = icc_sync_state, }, .probe = exynos_generic_icc_probe, .remove = exynos_generic_icc_remove, }; module_platform_driver(exynos_generic_icc_driver); MODULE_DESCRIPTION("Exynos generic interconnect driver"); MODULE_AUTHOR("Artur Świgoń <[email protected]>"); MODULE_AUTHOR("Sylwester Nawrocki <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:exynos-generic-icc");
linux-master
drivers/interconnect/samsung/exynos.c
// SPDX-License-Identifier: GPL-2.0-only /* * IMG Pistachio USB PHY driver * * Copyright (C) 2015 Google, Inc. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <dt-bindings/phy/phy-pistachio-usb.h> #define USB_PHY_CONTROL1 0x04 #define USB_PHY_CONTROL1_FSEL_SHIFT 2 #define USB_PHY_CONTROL1_FSEL_MASK 0x7 #define USB_PHY_STRAP_CONTROL 0x10 #define USB_PHY_STRAP_CONTROL_REFCLK_SHIFT 4 #define USB_PHY_STRAP_CONTROL_REFCLK_MASK 0x3 #define USB_PHY_STATUS 0x14 #define USB_PHY_STATUS_RX_PHY_CLK BIT(9) #define USB_PHY_STATUS_RX_UTMI_CLK BIT(8) #define USB_PHY_STATUS_VBUS_FAULT BIT(7) struct pistachio_usb_phy { struct device *dev; struct regmap *cr_top; struct clk *phy_clk; unsigned int refclk; }; static const unsigned long fsel_rate_map[] = { 9600000, 10000000, 12000000, 19200000, 20000000, 24000000, 0, 50000000, }; static int pistachio_usb_phy_power_on(struct phy *phy) { struct pistachio_usb_phy *p_phy = phy_get_drvdata(phy); unsigned long timeout, rate; unsigned int i; int ret; ret = clk_prepare_enable(p_phy->phy_clk); if (ret < 0) { dev_err(p_phy->dev, "Failed to enable PHY clock: %d\n", ret); return ret; } regmap_update_bits(p_phy->cr_top, USB_PHY_STRAP_CONTROL, USB_PHY_STRAP_CONTROL_REFCLK_MASK << USB_PHY_STRAP_CONTROL_REFCLK_SHIFT, p_phy->refclk << USB_PHY_STRAP_CONTROL_REFCLK_SHIFT); rate = clk_get_rate(p_phy->phy_clk); if (p_phy->refclk == REFCLK_XO_CRYSTAL && rate != 12000000) { dev_err(p_phy->dev, "Unsupported rate for XO crystal: %ld\n", rate); ret = -EINVAL; goto disable_clk; } for (i = 0; i < ARRAY_SIZE(fsel_rate_map); i++) { if (rate == fsel_rate_map[i]) break; } if (i == ARRAY_SIZE(fsel_rate_map)) { dev_err(p_phy->dev, "Unsupported clock rate: %lu\n", rate); ret = -EINVAL; goto disable_clk; } regmap_update_bits(p_phy->cr_top, USB_PHY_CONTROL1, USB_PHY_CONTROL1_FSEL_MASK << USB_PHY_CONTROL1_FSEL_SHIFT, i << USB_PHY_CONTROL1_FSEL_SHIFT); timeout = jiffies + msecs_to_jiffies(200); while (time_before(jiffies, timeout)) { unsigned int val; regmap_read(p_phy->cr_top, USB_PHY_STATUS, &val); if (val & USB_PHY_STATUS_VBUS_FAULT) { dev_err(p_phy->dev, "VBUS fault detected\n"); ret = -EIO; goto disable_clk; } if ((val & USB_PHY_STATUS_RX_PHY_CLK) && (val & USB_PHY_STATUS_RX_UTMI_CLK)) return 0; usleep_range(1000, 1500); } dev_err(p_phy->dev, "Timed out waiting for PHY to power on\n"); ret = -ETIMEDOUT; disable_clk: clk_disable_unprepare(p_phy->phy_clk); return ret; } static int pistachio_usb_phy_power_off(struct phy *phy) { struct pistachio_usb_phy *p_phy = phy_get_drvdata(phy); clk_disable_unprepare(p_phy->phy_clk); return 0; } static const struct phy_ops pistachio_usb_phy_ops = { .power_on = pistachio_usb_phy_power_on, .power_off = pistachio_usb_phy_power_off, .owner = THIS_MODULE, }; static int pistachio_usb_phy_probe(struct platform_device *pdev) { struct pistachio_usb_phy *p_phy; struct phy_provider *provider; struct phy *phy; int ret; p_phy = devm_kzalloc(&pdev->dev, sizeof(*p_phy), GFP_KERNEL); if (!p_phy) return -ENOMEM; p_phy->dev = &pdev->dev; platform_set_drvdata(pdev, p_phy); p_phy->cr_top = syscon_regmap_lookup_by_phandle(p_phy->dev->of_node, "img,cr-top"); if (IS_ERR(p_phy->cr_top)) { dev_err(p_phy->dev, "Failed to get CR_TOP registers: %ld\n", PTR_ERR(p_phy->cr_top)); return PTR_ERR(p_phy->cr_top); } p_phy->phy_clk = devm_clk_get(p_phy->dev, "usb_phy"); if (IS_ERR(p_phy->phy_clk)) { dev_err(p_phy->dev, "Failed to get usb_phy clock: %ld\n", PTR_ERR(p_phy->phy_clk)); return PTR_ERR(p_phy->phy_clk); } ret = of_property_read_u32(p_phy->dev->of_node, "img,refclk", &p_phy->refclk); if (ret < 0) { dev_err(p_phy->dev, "No reference clock selector specified\n"); return ret; } phy = devm_phy_create(p_phy->dev, NULL, &pistachio_usb_phy_ops); if (IS_ERR(phy)) { dev_err(p_phy->dev, "Failed to create PHY: %ld\n", PTR_ERR(phy)); return PTR_ERR(phy); } phy_set_drvdata(phy, p_phy); provider = devm_of_phy_provider_register(p_phy->dev, of_phy_simple_xlate); if (IS_ERR(provider)) { dev_err(p_phy->dev, "Failed to register PHY provider: %ld\n", PTR_ERR(provider)); return PTR_ERR(provider); } return 0; } static const struct of_device_id pistachio_usb_phy_of_match[] = { { .compatible = "img,pistachio-usb-phy", }, { }, }; MODULE_DEVICE_TABLE(of, pistachio_usb_phy_of_match); static struct platform_driver pistachio_usb_phy_driver = { .probe = pistachio_usb_phy_probe, .driver = { .name = "pistachio-usb-phy", .of_match_table = pistachio_usb_phy_of_match, }, }; module_platform_driver(pistachio_usb_phy_driver); MODULE_AUTHOR("Andrew Bresticker <[email protected]>"); MODULE_DESCRIPTION("IMG Pistachio USB2.0 PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/phy-pistachio-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * phy-can-transceiver.c - phy driver for CAN transceivers * * Copyright (C) 2021 Texas Instruments Incorporated - https://www.ti.com * */ #include <linux/of.h> #include<linux/phy/phy.h> #include<linux/platform_device.h> #include<linux/module.h> #include<linux/gpio.h> #include<linux/gpio/consumer.h> #include <linux/mux/consumer.h> struct can_transceiver_data { u32 flags; #define CAN_TRANSCEIVER_STB_PRESENT BIT(0) #define CAN_TRANSCEIVER_EN_PRESENT BIT(1) }; struct can_transceiver_phy { struct phy *generic_phy; struct gpio_desc *standby_gpio; struct gpio_desc *enable_gpio; struct mux_state *mux_state; }; /* Power on function */ static int can_transceiver_phy_power_on(struct phy *phy) { struct can_transceiver_phy *can_transceiver_phy = phy_get_drvdata(phy); int ret; if (can_transceiver_phy->mux_state) { ret = mux_state_select(can_transceiver_phy->mux_state); if (ret) { dev_err(&phy->dev, "Failed to select CAN mux: %d\n", ret); return ret; } } if (can_transceiver_phy->standby_gpio) gpiod_set_value_cansleep(can_transceiver_phy->standby_gpio, 0); if (can_transceiver_phy->enable_gpio) gpiod_set_value_cansleep(can_transceiver_phy->enable_gpio, 1); return 0; } /* Power off function */ static int can_transceiver_phy_power_off(struct phy *phy) { struct can_transceiver_phy *can_transceiver_phy = phy_get_drvdata(phy); if (can_transceiver_phy->standby_gpio) gpiod_set_value_cansleep(can_transceiver_phy->standby_gpio, 1); if (can_transceiver_phy->enable_gpio) gpiod_set_value_cansleep(can_transceiver_phy->enable_gpio, 0); if (can_transceiver_phy->mux_state) mux_state_deselect(can_transceiver_phy->mux_state); return 0; } static const struct phy_ops can_transceiver_phy_ops = { .power_on = can_transceiver_phy_power_on, .power_off = can_transceiver_phy_power_off, .owner = THIS_MODULE, }; static const struct can_transceiver_data tcan1042_drvdata = { .flags = CAN_TRANSCEIVER_STB_PRESENT, }; static const struct can_transceiver_data tcan1043_drvdata = { .flags = CAN_TRANSCEIVER_STB_PRESENT | CAN_TRANSCEIVER_EN_PRESENT, }; static const struct of_device_id can_transceiver_phy_ids[] = { { .compatible = "ti,tcan1042", .data = &tcan1042_drvdata }, { .compatible = "ti,tcan1043", .data = &tcan1043_drvdata }, { .compatible = "nxp,tjr1443", .data = &tcan1043_drvdata }, { } }; MODULE_DEVICE_TABLE(of, can_transceiver_phy_ids); static int can_transceiver_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct device *dev = &pdev->dev; struct can_transceiver_phy *can_transceiver_phy; const struct can_transceiver_data *drvdata; const struct of_device_id *match; struct phy *phy; struct gpio_desc *standby_gpio; struct gpio_desc *enable_gpio; u32 max_bitrate = 0; int err; can_transceiver_phy = devm_kzalloc(dev, sizeof(struct can_transceiver_phy), GFP_KERNEL); if (!can_transceiver_phy) return -ENOMEM; match = of_match_node(can_transceiver_phy_ids, pdev->dev.of_node); drvdata = match->data; if (of_property_read_bool(dev->of_node, "mux-states")) { struct mux_state *mux_state; mux_state = devm_mux_state_get(dev, NULL); if (IS_ERR(mux_state)) return dev_err_probe(&pdev->dev, PTR_ERR(mux_state), "failed to get mux\n"); can_transceiver_phy->mux_state = mux_state; } phy = devm_phy_create(dev, dev->of_node, &can_transceiver_phy_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create can transceiver phy\n"); return PTR_ERR(phy); } err = device_property_read_u32(dev, "max-bitrate", &max_bitrate); if ((err != -EINVAL) && !max_bitrate) dev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit\n"); phy->attrs.max_link_rate = max_bitrate; can_transceiver_phy->generic_phy = phy; if (drvdata->flags & CAN_TRANSCEIVER_STB_PRESENT) { standby_gpio = devm_gpiod_get_optional(dev, "standby", GPIOD_OUT_HIGH); if (IS_ERR(standby_gpio)) return PTR_ERR(standby_gpio); can_transceiver_phy->standby_gpio = standby_gpio; } if (drvdata->flags & CAN_TRANSCEIVER_EN_PRESENT) { enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(enable_gpio)) return PTR_ERR(enable_gpio); can_transceiver_phy->enable_gpio = enable_gpio; } phy_set_drvdata(can_transceiver_phy->generic_phy, can_transceiver_phy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver can_transceiver_phy_driver = { .probe = can_transceiver_phy_probe, .driver = { .name = "can-transceiver-phy", .of_match_table = can_transceiver_phy_ids, }, }; module_platform_driver(can_transceiver_phy_driver); MODULE_AUTHOR("Faiz Abbas <[email protected]>"); MODULE_AUTHOR("Aswath Govindraju <[email protected]>"); MODULE_DESCRIPTION("CAN TRANSCEIVER PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/phy-can-transceiver.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel LGM USB PHY driver * * Copyright (C) 2020 Intel Corporation. */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/usb/phy.h> #include <linux/workqueue.h> #define CTRL1_OFFSET 0x14 #define SRAM_EXT_LD_DONE BIT(25) #define SRAM_INIT_DONE BIT(26) #define TCPC_OFFSET 0x1014 #define TCPC_MUX_CTL GENMASK(1, 0) #define MUX_NC 0 #define MUX_USB 1 #define MUX_DP 2 #define MUX_USBDP 3 #define TCPC_FLIPPED BIT(2) #define TCPC_LOW_POWER_EN BIT(3) #define TCPC_VALID BIT(4) #define TCPC_CONN \ (TCPC_VALID | FIELD_PREP(TCPC_MUX_CTL, MUX_USB)) #define TCPC_DISCONN \ (TCPC_VALID | FIELD_PREP(TCPC_MUX_CTL, MUX_NC) | TCPC_LOW_POWER_EN) static const char *const PHY_RESETS[] = { "phy31", "phy", }; static const char *const CTL_RESETS[] = { "apb", "ctrl", }; struct tca_apb { struct reset_control *resets[ARRAY_SIZE(PHY_RESETS)]; struct regulator *vbus; struct work_struct wk; struct usb_phy phy; bool regulator_enabled; bool phy_initialized; bool connected; }; static int get_flipped(struct tca_apb *ta, bool *flipped) { union extcon_property_value property; int ret; ret = extcon_get_property(ta->phy.edev, EXTCON_USB_HOST, EXTCON_PROP_USB_TYPEC_POLARITY, &property); if (ret) { dev_err(ta->phy.dev, "no polarity property from extcon\n"); return ret; } *flipped = property.intval; return 0; } static int phy_init(struct usb_phy *phy) { struct tca_apb *ta = container_of(phy, struct tca_apb, phy); void __iomem *ctrl1 = phy->io_priv + CTRL1_OFFSET; int val, ret, i; if (ta->phy_initialized) return 0; for (i = 0; i < ARRAY_SIZE(PHY_RESETS); i++) reset_control_deassert(ta->resets[i]); ret = readl_poll_timeout(ctrl1, val, val & SRAM_INIT_DONE, 10, 10 * 1000); if (ret) { dev_err(ta->phy.dev, "SRAM init failed, 0x%x\n", val); return ret; } writel(readl(ctrl1) | SRAM_EXT_LD_DONE, ctrl1); ta->phy_initialized = true; if (!ta->phy.edev) { writel(TCPC_CONN, ta->phy.io_priv + TCPC_OFFSET); return phy->set_vbus(phy, true); } schedule_work(&ta->wk); return ret; } static void phy_shutdown(struct usb_phy *phy) { struct tca_apb *ta = container_of(phy, struct tca_apb, phy); int i; if (!ta->phy_initialized) return; ta->phy_initialized = false; flush_work(&ta->wk); ta->phy.set_vbus(&ta->phy, false); ta->connected = false; writel(TCPC_DISCONN, ta->phy.io_priv + TCPC_OFFSET); for (i = 0; i < ARRAY_SIZE(PHY_RESETS); i++) reset_control_assert(ta->resets[i]); } static int phy_set_vbus(struct usb_phy *phy, int on) { struct tca_apb *ta = container_of(phy, struct tca_apb, phy); int ret; if (!!on == ta->regulator_enabled) return 0; if (on) ret = regulator_enable(ta->vbus); else ret = regulator_disable(ta->vbus); if (!ret) ta->regulator_enabled = on; dev_dbg(ta->phy.dev, "set vbus: %d\n", on); return ret; } static void tca_work(struct work_struct *work) { struct tca_apb *ta = container_of(work, struct tca_apb, wk); bool connected; bool flipped = false; u32 val; int ret; ret = get_flipped(ta, &flipped); if (ret) return; connected = extcon_get_state(ta->phy.edev, EXTCON_USB_HOST); if (connected == ta->connected) return; ta->connected = connected; if (connected) { val = TCPC_CONN; if (flipped) val |= TCPC_FLIPPED; dev_dbg(ta->phy.dev, "connected%s\n", flipped ? " flipped" : ""); } else { val = TCPC_DISCONN; dev_dbg(ta->phy.dev, "disconnected\n"); } writel(val, ta->phy.io_priv + TCPC_OFFSET); ret = ta->phy.set_vbus(&ta->phy, connected); if (ret) dev_err(ta->phy.dev, "failed to set VBUS\n"); } static int id_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct tca_apb *ta = container_of(nb, struct tca_apb, phy.id_nb); if (ta->phy_initialized) schedule_work(&ta->wk); return NOTIFY_DONE; } static int vbus_notifier(struct notifier_block *nb, unsigned long evnt, void *ptr) { return NOTIFY_DONE; } static int phy_probe(struct platform_device *pdev) { struct reset_control *resets[ARRAY_SIZE(CTL_RESETS)]; struct device *dev = &pdev->dev; struct usb_phy *phy; struct tca_apb *ta; int i; ta = devm_kzalloc(dev, sizeof(*ta), GFP_KERNEL); if (!ta) return -ENOMEM; platform_set_drvdata(pdev, ta); INIT_WORK(&ta->wk, tca_work); phy = &ta->phy; phy->dev = dev; phy->label = dev_name(dev); phy->type = USB_PHY_TYPE_USB3; phy->init = phy_init; phy->shutdown = phy_shutdown; phy->set_vbus = phy_set_vbus; phy->id_nb.notifier_call = id_notifier; phy->vbus_nb.notifier_call = vbus_notifier; phy->io_priv = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(phy->io_priv)) return PTR_ERR(phy->io_priv); ta->vbus = devm_regulator_get(dev, "vbus"); if (IS_ERR(ta->vbus)) return PTR_ERR(ta->vbus); for (i = 0; i < ARRAY_SIZE(CTL_RESETS); i++) { resets[i] = devm_reset_control_get_exclusive(dev, CTL_RESETS[i]); if (IS_ERR(resets[i])) { dev_err(dev, "%s reset not found\n", CTL_RESETS[i]); return PTR_ERR(resets[i]); } } for (i = 0; i < ARRAY_SIZE(PHY_RESETS); i++) { ta->resets[i] = devm_reset_control_get_exclusive(dev, PHY_RESETS[i]); if (IS_ERR(ta->resets[i])) { dev_err(dev, "%s reset not found\n", PHY_RESETS[i]); return PTR_ERR(ta->resets[i]); } } for (i = 0; i < ARRAY_SIZE(CTL_RESETS); i++) reset_control_assert(resets[i]); for (i = 0; i < ARRAY_SIZE(PHY_RESETS); i++) reset_control_assert(ta->resets[i]); /* * Out-of-band reset of the controller after PHY reset will cause * controller malfunctioning, so we should use in-band controller * reset only and leave the controller de-asserted here. */ for (i = 0; i < ARRAY_SIZE(CTL_RESETS); i++) reset_control_deassert(resets[i]); /* Need to wait at least 20us after de-assert the controller */ usleep_range(20, 100); return usb_add_phy_dev(phy); } static void phy_remove(struct platform_device *pdev) { struct tca_apb *ta = platform_get_drvdata(pdev); usb_remove_phy(&ta->phy); } static const struct of_device_id intel_usb_phy_dt_ids[] = { { .compatible = "intel,lgm-usb-phy" }, { } }; MODULE_DEVICE_TABLE(of, intel_usb_phy_dt_ids); static struct platform_driver lgm_phy_driver = { .driver = { .name = "lgm-usb-phy", .of_match_table = intel_usb_phy_dt_ids, }, .probe = phy_probe, .remove_new = phy_remove, }; module_platform_driver(lgm_phy_driver); MODULE_DESCRIPTION("Intel LGM USB PHY driver"); MODULE_AUTHOR("Li Yin <[email protected]>"); MODULE_AUTHOR("Vadivel Murugan R <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/phy-lgm-usb.c
// SPDX-License-Identifier: GPL-2.0-only /* * PHY driver for NXP LPC18xx/43xx internal USB OTG PHY * * Copyright (C) 2015 Joachim Eastwood <[email protected]> */ #include <linux/clk.h> #include <linux/err.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> /* USB OTG PHY register offset and bit in CREG */ #define LPC18XX_CREG_CREG0 0x004 #define LPC18XX_CREG_CREG0_USB0PHY BIT(5) struct lpc18xx_usb_otg_phy { struct phy *phy; struct clk *clk; struct regmap *reg; }; static int lpc18xx_usb_otg_phy_init(struct phy *phy) { struct lpc18xx_usb_otg_phy *lpc = phy_get_drvdata(phy); int ret; /* The PHY must be clocked at 480 MHz */ ret = clk_set_rate(lpc->clk, 480000000); if (ret) return ret; return clk_prepare(lpc->clk); } static int lpc18xx_usb_otg_phy_exit(struct phy *phy) { struct lpc18xx_usb_otg_phy *lpc = phy_get_drvdata(phy); clk_unprepare(lpc->clk); return 0; } static int lpc18xx_usb_otg_phy_power_on(struct phy *phy) { struct lpc18xx_usb_otg_phy *lpc = phy_get_drvdata(phy); int ret; ret = clk_enable(lpc->clk); if (ret) return ret; /* The bit in CREG is cleared to enable the PHY */ ret = regmap_update_bits(lpc->reg, LPC18XX_CREG_CREG0, LPC18XX_CREG_CREG0_USB0PHY, 0); if (ret) { clk_disable(lpc->clk); return ret; } return 0; } static int lpc18xx_usb_otg_phy_power_off(struct phy *phy) { struct lpc18xx_usb_otg_phy *lpc = phy_get_drvdata(phy); int ret; ret = regmap_update_bits(lpc->reg, LPC18XX_CREG_CREG0, LPC18XX_CREG_CREG0_USB0PHY, LPC18XX_CREG_CREG0_USB0PHY); if (ret) return ret; clk_disable(lpc->clk); return 0; } static const struct phy_ops lpc18xx_usb_otg_phy_ops = { .init = lpc18xx_usb_otg_phy_init, .exit = lpc18xx_usb_otg_phy_exit, .power_on = lpc18xx_usb_otg_phy_power_on, .power_off = lpc18xx_usb_otg_phy_power_off, .owner = THIS_MODULE, }; static int lpc18xx_usb_otg_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct lpc18xx_usb_otg_phy *lpc; lpc = devm_kzalloc(&pdev->dev, sizeof(*lpc), GFP_KERNEL); if (!lpc) return -ENOMEM; lpc->reg = syscon_node_to_regmap(pdev->dev.of_node->parent); if (IS_ERR(lpc->reg)) { dev_err(&pdev->dev, "failed to get syscon\n"); return PTR_ERR(lpc->reg); } lpc->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(lpc->clk)) { dev_err(&pdev->dev, "failed to get clock\n"); return PTR_ERR(lpc->clk); } lpc->phy = devm_phy_create(&pdev->dev, NULL, &lpc18xx_usb_otg_phy_ops); if (IS_ERR(lpc->phy)) { dev_err(&pdev->dev, "failed to create PHY\n"); return PTR_ERR(lpc->phy); } phy_set_drvdata(lpc->phy, lpc); phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id lpc18xx_usb_otg_phy_match[] = { { .compatible = "nxp,lpc1850-usb-otg-phy" }, { } }; MODULE_DEVICE_TABLE(of, lpc18xx_usb_otg_phy_match); static struct platform_driver lpc18xx_usb_otg_phy_driver = { .probe = lpc18xx_usb_otg_phy_probe, .driver = { .name = "lpc18xx-usb-otg-phy", .of_match_table = lpc18xx_usb_otg_phy_match, }, }; module_platform_driver(lpc18xx_usb_otg_phy_driver); MODULE_AUTHOR("Joachim Eastwood <[email protected]>"); MODULE_DESCRIPTION("NXP LPC18xx/43xx USB OTG PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/phy-lpc18xx-usb-otg.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * AppliedMicro X-Gene Multi-purpose PHY driver * * Copyright (c) 2014, Applied Micro Circuits Corporation * Author: Loc Ho <[email protected]> * Tuan Phan <[email protected]> * Suman Tripathi <[email protected]> * * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes. * The first PLL clock macro is used for internal reference clock. The second * PLL clock macro is used to generate the clock for the PHY. This driver * configures the first PLL CMU, the second PLL CMU, and programs the PHY to * operate according to the mode of operation. The first PLL CMU is only * required if internal clock is enabled. * * Logical Layer Out Of HW module units: * * ----------------- * | Internal | |------| * | Ref PLL CMU |----| | ------------- --------- * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes| * | | | | --------- * External Clock ------| | ------------- * |------| * * The Ref PLL CMU CSR (Configuration System Registers) is accessed * indirectly from the SDS offset at 0x2000. It is only required for * internal reference clock. * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000. * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400. * * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP, * it is located outside the PHY IP. This is the case for the PHY located * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required * to located the SDS/Ref PLL CMU module and its clock for that IP enabled. * * Currently, this driver only supports Gen3 SATA mode with external clock. */ #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/delay.h> #include <linux/phy/phy.h> #include <linux/clk.h> /* Max 2 lanes per a PHY unit */ #define MAX_LANE 2 /* Register offset inside the PHY */ #define SERDES_PLL_INDIRECT_OFFSET 0x0000 #define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000 #define SERDES_INDIRECT_OFFSET 0x0400 #define SERDES_LANE_STRIDE 0x0200 /* Some default Serdes parameters */ #define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e } #define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 } #define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa } #define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 } #define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 } #define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 } #define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 } #define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa } #define SATA_SPD_SEL_GEN3 0x7 #define SATA_SPD_SEL_GEN2 0x3 #define SATA_SPD_SEL_GEN1 0x1 #define SSC_DISABLE 0 #define SSC_ENABLE 1 #define FBDIV_VAL_50M 0x77 #define REFDIV_VAL_50M 0x1 #define FBDIV_VAL_100M 0x3B #define REFDIV_VAL_100M 0x0 /* SATA Clock/Reset CSR */ #define SATACLKENREG 0x00000000 #define SATA0_CORE_CLKEN 0x00000002 #define SATA1_CORE_CLKEN 0x00000004 #define SATASRESETREG 0x00000004 #define SATA_MEM_RESET_MASK 0x00000020 #define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5) #define SATA_SDS_RESET_MASK 0x00000004 #define SATA_CSR_RESET_MASK 0x00000001 #define SATA_CORE_RESET_MASK 0x00000002 #define SATA_PMCLK_RESET_MASK 0x00000010 #define SATA_PCLK_RESET_MASK 0x00000008 /* SDS CSR used for PHY Indirect access */ #define SATA_ENET_SDS_PCS_CTL0 0x00000000 #define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \ (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000)) #define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \ (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000)) #define SATA_ENET_SDS_CTL0 0x0000000c #define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \ (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff)) #define SATA_ENET_SDS_CTL1 0x00000010 #define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \ (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f)) #define SATA_ENET_SDS_RST_CTL 0x00000024 #define SATA_ENET_SDS_IND_CMD_REG 0x0000003c #define CFG_IND_WR_CMD_MASK 0x00000001 #define CFG_IND_RD_CMD_MASK 0x00000002 #define CFG_IND_CMD_DONE_MASK 0x00000004 #define CFG_IND_ADDR_SET(dst, src) \ (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0)) #define SATA_ENET_SDS_IND_RDATA_REG 0x00000040 #define SATA_ENET_SDS_IND_WDATA_REG 0x00000044 #define SATA_ENET_CLK_MACRO_REG 0x0000004c #define I_RESET_B_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001)) #define I_PLL_FBDIV_SET(dst, src) \ (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000)) #define I_CUSTOMEROV_SET(dst, src) \ (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80)) #define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30) #define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31) /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */ #define CMU_REG0 0x00000 #define CMU_REG0_PLL_REF_SEL_MASK 0x00002000 #define CMU_REG0_PLL_REF_SEL_SET(dst, src) \ (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000)) #define CMU_REG0_PDOWN_MASK 0x00004000 #define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \ (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0)) #define CMU_REG1 0x00002 #define CMU_REG1_PLL_CP_SET(dst, src) \ (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00)) #define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define CMU_REG1_PLL_CP_SEL_SET(dst, src) \ (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0)) #define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001 #define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) #define CMU_REG2 0x00004 #define CMU_REG2_PLL_REFDIV_SET(dst, src) \ (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) #define CMU_REG2_PLL_LFRES_SET(dst, src) \ (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e)) #define CMU_REG2_PLL_FBDIV_SET(dst, src) \ (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0)) #define CMU_REG3 0x00006 #define CMU_REG3_VCOVARSEL_SET(dst, src) \ (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f)) #define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \ (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) #define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \ (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) #define CMU_REG4 0x00008 #define CMU_REG5 0x0000a #define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \ (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) #define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \ (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e)) #define CMU_REG5_PLL_LFCAP_SET(dst, src) \ (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000)) #define CMU_REG5_PLL_RESETB_MASK 0x00000001 #define CMU_REG6 0x0000c #define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \ (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600)) #define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \ (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) #define CMU_REG7 0x0000e #define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14) #define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10) #define CMU_REG8 0x00010 #define CMU_REG9 0x00012 #define CMU_REG9_WORD_LEN_8BIT 0x000 #define CMU_REG9_WORD_LEN_10BIT 0x001 #define CMU_REG9_WORD_LEN_16BIT 0x002 #define CMU_REG9_WORD_LEN_20BIT 0x003 #define CMU_REG9_WORD_LEN_32BIT 0x004 #define CMU_REG9_WORD_LEN_40BIT 0x005 #define CMU_REG9_WORD_LEN_64BIT 0x006 #define CMU_REG9_WORD_LEN_66BIT 0x007 #define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \ (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380)) #define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \ (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070)) #define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define CMU_REG9_VBG_BYPASSB_SET(dst, src) \ (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) #define CMU_REG9_IGEN_BYPASS_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define CMU_REG10 0x00014 #define CMU_REG10_VREG_REFSEL_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) #define CMU_REG11 0x00016 #define CMU_REG12 0x00018 #define CMU_REG12_STATE_DELAY9_SET(dst, src) \ (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) #define CMU_REG13 0x0001a #define CMU_REG14 0x0001c #define CMU_REG15 0x0001e #define CMU_REG16 0x00020 #define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001 #define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002 #define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \ (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c)) #define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \ (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) #define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \ (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) #define CMU_REG17 0x00022 #define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \ (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00)) #define CMU_REG17_RESERVED_7_SET(dst, src) \ (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0)) #define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000 #define CMU_REG18 0x00024 #define CMU_REG19 0x00026 #define CMU_REG20 0x00028 #define CMU_REG21 0x0002a #define CMU_REG22 0x0002c #define CMU_REG23 0x0002e #define CMU_REG24 0x00030 #define CMU_REG25 0x00032 #define CMU_REG26 0x00034 #define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) #define CMU_REG27 0x00036 #define CMU_REG28 0x00038 #define CMU_REG29 0x0003a #define CMU_REG30 0x0003c #define CMU_REG30_LOCK_COUNT_SET(dst, src) \ (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) #define CMU_REG30_PCIE_MODE_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define CMU_REG31 0x0003e #define CMU_REG32 0x00040 #define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000 #define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \ (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) #define CMU_REG32_IREF_ADJ_SET(dst, src) \ (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180)) #define CMU_REG33 0x00042 #define CMU_REG34 0x00044 #define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \ (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f)) #define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \ (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00)) #define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \ (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) #define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \ (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000)) #define CMU_REG35 0x00046 #define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \ (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00)) #define CMU_REG36 0x00048 #define CMU_REG36_PLL_SSC_EN_SET(dst, src) \ (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010)) #define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \ (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0)) #define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \ (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) #define CMU_REG37 0x0004a #define CMU_REG38 0x0004c #define CMU_REG39 0x0004e /* PHY lane CSR accessing from SDS indirectly */ #define RXTX_REG0 0x000 #define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \ (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) #define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \ (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) #define RXTX_REG1 0x002 #define RXTX_REG1_RXACVCM_SET(dst, src) \ (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000)) #define RXTX_REG1_CTLE_EQ_SET(dst, src) \ (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80)) #define RXTX_REG1_RXVREG1_SET(dst, src) \ (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060)) #define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \ (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) #define RXTX_REG2 0x004 #define RXTX_REG2_VTT_ENA_SET(dst, src) \ (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) #define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \ (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) #define RXTX_REG2_VTT_SEL_SET(dst, src) \ (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0)) #define RXTX_REG4 0x008 #define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040 #define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \ (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) #define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \ (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) #define RXTX_REG5 0x00a #define RXTX_REG5_TX_CN1_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG5_TX_CP1_SET(dst, src) \ (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0)) #define RXTX_REG5_TX_CN2_SET(dst, src) \ (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f)) #define RXTX_REG6 0x00c #define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \ (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780)) #define RXTX_REG6_TXAMP_ENA_SET(dst, src) \ (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) #define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) #define RXTX_REG6_TX_IDLE_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define RXTX_REG7 0x00e #define RXTX_REG7_RESETB_RXD_MASK 0x00000100 #define RXTX_REG7_RESETB_RXA_MASK 0x00000080 #define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \ (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) #define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \ (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) #define RXTX_REG8 0x010 #define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \ (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000)) #define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \ (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800)) #define RXTX_REG8_SSC_ENABLE_SET(dst, src) \ (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200)) #define RXTX_REG8_SD_VREF_SET(dst, src) \ (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) #define RXTX_REG8_SD_DISABLE_SET(dst, src) \ (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) #define RXTX_REG7 0x00e #define RXTX_REG7_RESETB_RXD_SET(dst, src) \ (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) #define RXTX_REG7_RESETB_RXA_SET(dst, src) \ (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080)) #define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \ (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000)) #define RXTX_REG11 0x016 #define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG12 0x018 #define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \ (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000)) #define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \ (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) #define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002 #define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define RXTX_REG13 0x01a #define RXTX_REG14 0x01c #define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \ (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f)) #define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \ (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) #define RXTX_REG26 0x034 #define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \ (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) #define RXTX_REG26_BLWC_ENA_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define RXTX_REG21 0x02a #define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) #define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) #define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src))) #define RXTX_REG22 0x02c #define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) #define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) #define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src))) #define RXTX_REG23 0x02e #define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) #define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) #define RXTX_REG24 0x030 #define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) #define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) #define RXTX_REG27 0x036 #define RXTX_REG28 0x038 #define RXTX_REG31 0x03e #define RXTX_REG38 0x04c #define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \ (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe)) #define RXTX_REG39 0x04e #define RXTX_REG40 0x050 #define RXTX_REG41 0x052 #define RXTX_REG42 0x054 #define RXTX_REG43 0x056 #define RXTX_REG44 0x058 #define RXTX_REG45 0x05a #define RXTX_REG46 0x05c #define RXTX_REG47 0x05e #define RXTX_REG48 0x060 #define RXTX_REG49 0x062 #define RXTX_REG50 0x064 #define RXTX_REG51 0x066 #define RXTX_REG52 0x068 #define RXTX_REG53 0x06a #define RXTX_REG54 0x06c #define RXTX_REG55 0x06e #define RXTX_REG61 0x07a #define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \ (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010)) #define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \ (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0)) #define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \ (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00)) #define RXTX_REG62 0x07c #define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \ (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) #define RXTX_REG81 0x0a2 #define RXTX_REG89_MU_TH7_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG89_MU_TH8_SET(dst, src) \ (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) #define RXTX_REG89_MU_TH9_SET(dst, src) \ (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) #define RXTX_REG96 0x0c0 #define RXTX_REG96_MU_FREQ1_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG96_MU_FREQ2_SET(dst, src) \ (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) #define RXTX_REG96_MU_FREQ3_SET(dst, src) \ (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) #define RXTX_REG99 0x0c6 #define RXTX_REG99_MU_PHASE1_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG99_MU_PHASE2_SET(dst, src) \ (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) #define RXTX_REG99_MU_PHASE3_SET(dst, src) \ (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) #define RXTX_REG102 0x0cc #define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \ (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060)) #define RXTX_REG114 0x0e4 #define RXTX_REG121 0x0f2 #define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1) #define RXTX_REG125 0x0fa #define RXTX_REG125_PQ_REG_SET(dst, src) \ (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00)) #define RXTX_REG125_SIGN_PQ_SET(dst, src) \ (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) #define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \ (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080)) #define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \ (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c)) #define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define RXTX_REG127 0x0fe #define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002 #define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004 #define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \ (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) #define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) #define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) #define RXTX_REG128 0x100 #define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \ (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c)) #define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) #define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) #define RXTX_REG129 0x102 #define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) #define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) #define RXTX_REG130 0x104 #define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) #define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) #define RXTX_REG145 0x122 #define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) #define RXTX_REG145_RXES_ENA_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \ (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) #define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \ (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) #define RXTX_REG147 0x126 #define RXTX_REG148 0x128 /* Clock macro type */ enum cmu_type_t { REF_CMU = 0, /* Clock macro is the internal reference clock */ PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */ }; enum mux_type_t { MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */ MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */ }; enum clk_type_t { CLK_EXT_DIFF = 0, /* External differential */ CLK_INT_DIFF = 1, /* Internal differential */ CLK_INT_SING = 2, /* Internal single ended */ }; enum xgene_phy_mode { MODE_SATA = 0, /* List them for simple reference */ MODE_SGMII = 1, MODE_PCIE = 2, MODE_USB = 3, MODE_XFI = 4, MODE_MAX }; struct xgene_sata_override_param { u32 speed[MAX_LANE]; /* Index for override parameter per lane */ u32 txspeed[3]; /* Tx speed */ u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */ u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */ u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */ u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */ u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */ u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */ u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */ }; struct xgene_phy_ctx { struct device *dev; struct phy *phy; enum xgene_phy_mode mode; /* Mode of operation */ enum clk_type_t clk_type; /* Input clock selection */ void __iomem *sds_base; /* PHY CSR base addr */ struct clk *clk; /* Optional clock */ /* Override Serdes parameters */ struct xgene_sata_override_param sata_param; }; /* * For chip earlier than A3 version, enable this flag. * To enable, pass boot argument phy_xgene.preA3Chip=1 */ static int preA3Chip; MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)"); module_param_named(preA3Chip, preA3Chip, int, 0444); static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg, u32 indirect_data_reg, u32 addr, u32 data) { unsigned long deadline = jiffies + HZ; u32 val; u32 cmd; cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK; cmd = CFG_IND_ADDR_SET(cmd, addr); writel(data, csr_base + indirect_data_reg); readl(csr_base + indirect_data_reg); /* Force a barrier */ writel(cmd, csr_base + indirect_cmd_reg); readl(csr_base + indirect_cmd_reg); /* Force a barrier */ do { val = readl(csr_base + indirect_cmd_reg); } while (!(val & CFG_IND_CMD_DONE_MASK) && time_before(jiffies, deadline)); if (!(val & CFG_IND_CMD_DONE_MASK)) pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n", csr_base + indirect_cmd_reg, addr, data); } static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg, u32 indirect_data_reg, u32 addr, u32 *data) { unsigned long deadline = jiffies + HZ; u32 val; u32 cmd; cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK; cmd = CFG_IND_ADDR_SET(cmd, addr); writel(cmd, csr_base + indirect_cmd_reg); readl(csr_base + indirect_cmd_reg); /* Force a barrier */ do { val = readl(csr_base + indirect_cmd_reg); } while (!(val & CFG_IND_CMD_DONE_MASK) && time_before(jiffies, deadline)); *data = readl(csr_base + indirect_data_reg); if (!(val & CFG_IND_CMD_DONE_MASK)) pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n", csr_base + indirect_cmd_reg, addr, *data); } static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 data) { void __iomem *sds_base = ctx->sds_base; u32 val; if (cmu_type == REF_CMU) reg += SERDES_PLL_REF_INDIRECT_OFFSET; else reg += SERDES_PLL_INDIRECT_OFFSET; sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_WDATA_REG, reg, data); sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, &val); pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val); } static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 *data) { void __iomem *sds_base = ctx->sds_base; if (cmu_type == REF_CMU) reg += SERDES_PLL_REF_INDIRECT_OFFSET; else reg += SERDES_PLL_INDIRECT_OFFSET; sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, data); pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data); } static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 bits) { u32 val; cmu_rd(ctx, cmu_type, reg, &val); val |= bits; cmu_wr(ctx, cmu_type, reg, val); cmu_rd(ctx, cmu_type, reg, &val); val &= ~bits; cmu_wr(ctx, cmu_type, reg, val); } static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 bits) { u32 val; cmu_rd(ctx, cmu_type, reg, &val); val &= ~bits; cmu_wr(ctx, cmu_type, reg, val); } static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 bits) { u32 val; cmu_rd(ctx, cmu_type, reg, &val); val |= bits; cmu_wr(ctx, cmu_type, reg, val); } static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data) { void __iomem *sds_base = ctx->sds_base; u32 val; reg += SERDES_INDIRECT_OFFSET; reg += lane * SERDES_LANE_STRIDE; sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_WDATA_REG, reg, data); sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, &val); pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val); } static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data) { void __iomem *sds_base = ctx->sds_base; reg += SERDES_INDIRECT_OFFSET; reg += lane * SERDES_LANE_STRIDE; sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, data); pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data); } static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 bits) { u32 val; serdes_rd(ctx, lane, reg, &val); val &= ~bits; serdes_wr(ctx, lane, reg, val); } static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 bits) { u32 val; serdes_rd(ctx, lane, reg, &val); val |= bits; serdes_wr(ctx, lane, reg, val); } static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { u32 val; /* Set the reset sequence delay for TX ready assertion */ cmu_rd(ctx, cmu_type, CMU_REG12, &val); val = CMU_REG12_STATE_DELAY9_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG12, val); /* Set the programmable stage delays between various enable stages */ cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222); cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225); /* Configure clock type */ if (clk_type == CLK_EXT_DIFF) { /* Select external clock mux */ cmu_rd(ctx, cmu_type, CMU_REG0, &val); val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG0, val); /* Select CMOS as reference clock */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG1, val); dev_dbg(ctx->dev, "Set external reference clock\n"); } else if (clk_type == CLK_INT_DIFF) { /* Select internal clock mux */ cmu_rd(ctx, cmu_type, CMU_REG0, &val); val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG0, val); /* Select CMOS as reference clock */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG1, val); dev_dbg(ctx->dev, "Set internal reference clock\n"); } else if (clk_type == CLK_INT_SING) { /* * NOTE: This clock type is NOT support for controller * whose internal clock shared in the PCIe controller * * Select internal clock mux */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG1, val); /* Select CML as reference clock */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG1, val); dev_dbg(ctx->dev, "Set internal single ended reference clock\n"); } } static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { u32 val; int ref_100MHz; if (cmu_type == REF_CMU) { /* Set VCO calibration voltage threshold */ cmu_rd(ctx, cmu_type, CMU_REG34, &val); val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7); val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc); val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3); val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8); cmu_wr(ctx, cmu_type, CMU_REG34, val); } /* Set the VCO calibration counter */ cmu_rd(ctx, cmu_type, CMU_REG0, &val); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4); else val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7); cmu_wr(ctx, cmu_type, CMU_REG0, val); /* Configure PLL for calibration */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_PLL_CP_SET(val, 0x1); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5); else val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3); if (cmu_type == REF_CMU) val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); else val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG1, val); if (cmu_type != REF_CMU) cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); /* Configure the PLL for either 100MHz or 50MHz */ cmu_rd(ctx, cmu_type, CMU_REG2, &val); if (cmu_type == REF_CMU) { val = CMU_REG2_PLL_LFRES_SET(val, 0xa); ref_100MHz = 1; } else { val = CMU_REG2_PLL_LFRES_SET(val, 0x3); if (clk_type == CLK_EXT_DIFF) ref_100MHz = 0; else ref_100MHz = 1; } if (ref_100MHz) { val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M); val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M); } else { val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M); val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M); } cmu_wr(ctx, cmu_type, CMU_REG2, val); /* Configure the VCO */ cmu_rd(ctx, cmu_type, CMU_REG3, &val); if (cmu_type == REF_CMU) { val = CMU_REG3_VCOVARSEL_SET(val, 0x3); val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10); } else { val = CMU_REG3_VCOVARSEL_SET(val, 0xF); if (preA3Chip) val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15); else val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a); val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15); } cmu_wr(ctx, cmu_type, CMU_REG3, val); /* Disable force PLL lock */ cmu_rd(ctx, cmu_type, CMU_REG26, &val); val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG26, val); /* Setup PLL loop filter */ cmu_rd(ctx, cmu_type, CMU_REG5, &val); val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3); val = CMU_REG5_PLL_LFCAP_SET(val, 0x3); if (cmu_type == REF_CMU || !preA3Chip) val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7); else val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4); cmu_wr(ctx, cmu_type, CMU_REG5, val); /* Enable or disable manual calibration */ cmu_rd(ctx, cmu_type, CMU_REG6, &val); val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2); val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0); cmu_wr(ctx, cmu_type, CMU_REG6, val); /* Configure lane for 20-bits */ if (cmu_type == PHY_CMU) { cmu_rd(ctx, cmu_type, CMU_REG9, &val); val = CMU_REG9_TX_WORD_MODE_CH1_SET(val, CMU_REG9_WORD_LEN_20BIT); val = CMU_REG9_TX_WORD_MODE_CH0_SET(val, CMU_REG9_WORD_LEN_20BIT); val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1); if (!preA3Chip) { val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0); val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0); } cmu_wr(ctx, cmu_type, CMU_REG9, val); if (!preA3Chip) { cmu_rd(ctx, cmu_type, CMU_REG10, &val); val = CMU_REG10_VREG_REFSEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG10, val); } } cmu_rd(ctx, cmu_type, CMU_REG16, &val); val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1); val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4); else val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); cmu_wr(ctx, cmu_type, CMU_REG16, val); /* Configure for SATA */ cmu_rd(ctx, cmu_type, CMU_REG30, &val); val = CMU_REG30_PCIE_MODE_SET(val, 0x0); val = CMU_REG30_LOCK_COUNT_SET(val, 0x3); cmu_wr(ctx, cmu_type, CMU_REG30, val); /* Disable state machine bypass */ cmu_wr(ctx, cmu_type, CMU_REG31, 0xF); cmu_rd(ctx, cmu_type, CMU_REG32, &val); val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG32_IREF_ADJ_SET(val, 0x3); else val = CMU_REG32_IREF_ADJ_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG32, val); /* Set VCO calibration threshold */ if (cmu_type != REF_CMU && preA3Chip) cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27); else cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c); /* Set CTLE Override and override waiting from state machine */ cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F); } static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type) { u32 val; /* Set SSC modulation value */ cmu_rd(ctx, cmu_type, CMU_REG35, &val); val = CMU_REG35_PLL_SSC_MOD_SET(val, 98); cmu_wr(ctx, cmu_type, CMU_REG35, val); /* Enable SSC, set vertical step and DSM value */ cmu_rd(ctx, cmu_type, CMU_REG36, &val); val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30); val = CMU_REG36_PLL_SSC_EN_SET(val, 1); val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1); cmu_wr(ctx, cmu_type, CMU_REG36, val); /* Reset the PLL */ cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); /* Force VCO calibration to restart */ cmu_toggle1to0(ctx, cmu_type, CMU_REG32, CMU_REG32_FORCE_VCOCAL_START_MASK); } static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx) { u32 val; u32 reg; int i; int lane; for (lane = 0; lane < MAX_LANE; lane++) { serdes_wr(ctx, lane, RXTX_REG147, 0x6); /* Set boost control for quarter, half, and full rate */ serdes_rd(ctx, lane, RXTX_REG0, &val); val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10); val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10); val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10); serdes_wr(ctx, lane, RXTX_REG0, val); /* Set boost control value */ serdes_rd(ctx, lane, RXTX_REG1, &val); val = RXTX_REG1_RXACVCM_SET(val, 0x7); val = RXTX_REG1_CTLE_EQ_SET(val, ctx->sata_param.txboostgain[lane * 3 + ctx->sata_param.speed[lane]]); serdes_wr(ctx, lane, RXTX_REG1, val); /* Latch VTT value based on the termination to ground and * enable TX FIFO */ serdes_rd(ctx, lane, RXTX_REG2, &val); val = RXTX_REG2_VTT_ENA_SET(val, 0x1); val = RXTX_REG2_VTT_SEL_SET(val, 0x1); val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG2, val); /* Configure Tx for 20-bits */ serdes_rd(ctx, lane, RXTX_REG4, &val); val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); serdes_wr(ctx, lane, RXTX_REG4, val); if (!preA3Chip) { serdes_rd(ctx, lane, RXTX_REG1, &val); val = RXTX_REG1_RXVREG1_SET(val, 0x2); val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2); serdes_wr(ctx, lane, RXTX_REG1, val); } /* Set pre-emphasis first 1 and 2, and post-emphasis values */ serdes_rd(ctx, lane, RXTX_REG5, &val); val = RXTX_REG5_TX_CN1_SET(val, ctx->sata_param.txprecursor_cn1[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG5_TX_CP1_SET(val, ctx->sata_param.txpostcursor_cp1[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG5_TX_CN2_SET(val, ctx->sata_param.txprecursor_cn2[lane * 3 + ctx->sata_param.speed[lane]]); serdes_wr(ctx, lane, RXTX_REG5, val); /* Set TX amplitude value */ serdes_rd(ctx, lane, RXTX_REG6, &val); val = RXTX_REG6_TXAMP_CNTL_SET(val, ctx->sata_param.txamplitude[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1); val = RXTX_REG6_TX_IDLE_SET(val, 0x0); val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0); val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG6, val); /* Configure Rx for 20-bits */ serdes_rd(ctx, lane, RXTX_REG7, &val); val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0); val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); serdes_wr(ctx, lane, RXTX_REG7, val); /* Set CDR and LOS values and enable Rx SSC */ serdes_rd(ctx, lane, RXTX_REG8, &val); val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1); val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0); val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1); val = RXTX_REG8_SD_DISABLE_SET(val, 0x0); val = RXTX_REG8_SD_VREF_SET(val, 0x4); serdes_wr(ctx, lane, RXTX_REG8, val); /* Set phase adjust upper/lower limits */ serdes_rd(ctx, lane, RXTX_REG11, &val); val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG11, val); /* Enable Latch Off; disable SUMOS and Tx termination */ serdes_rd(ctx, lane, RXTX_REG12, &val); val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1); val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0); val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG12, val); /* Set period error latch to 512T and enable BWL */ serdes_rd(ctx, lane, RXTX_REG26, &val); val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0); val = RXTX_REG26_BLWC_ENA_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG26, val); serdes_wr(ctx, lane, RXTX_REG28, 0x0); /* Set DFE loop preset value */ serdes_wr(ctx, lane, RXTX_REG31, 0x0); /* Set Eye Monitor counter width to 12-bit */ serdes_rd(ctx, lane, RXTX_REG61, &val); val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1); val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0); val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG61, val); serdes_rd(ctx, lane, RXTX_REG62, &val); val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG62, val); /* Set BW select tap X for DFE loop */ for (i = 0; i < 9; i++) { reg = RXTX_REG81 + i * 2; serdes_rd(ctx, lane, reg, &val); val = RXTX_REG89_MU_TH7_SET(val, 0xe); val = RXTX_REG89_MU_TH8_SET(val, 0xe); val = RXTX_REG89_MU_TH9_SET(val, 0xe); serdes_wr(ctx, lane, reg, val); } /* Set BW select tap X for frequency adjust loop */ for (i = 0; i < 3; i++) { reg = RXTX_REG96 + i * 2; serdes_rd(ctx, lane, reg, &val); val = RXTX_REG96_MU_FREQ1_SET(val, 0x10); val = RXTX_REG96_MU_FREQ2_SET(val, 0x10); val = RXTX_REG96_MU_FREQ3_SET(val, 0x10); serdes_wr(ctx, lane, reg, val); } /* Set BW select tap X for phase adjust loop */ for (i = 0; i < 3; i++) { reg = RXTX_REG99 + i * 2; serdes_rd(ctx, lane, reg, &val); val = RXTX_REG99_MU_PHASE1_SET(val, 0x7); val = RXTX_REG99_MU_PHASE2_SET(val, 0x7); val = RXTX_REG99_MU_PHASE3_SET(val, 0x7); serdes_wr(ctx, lane, reg, val); } serdes_rd(ctx, lane, RXTX_REG102, &val); val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG102, val); serdes_wr(ctx, lane, RXTX_REG114, 0xffe0); serdes_rd(ctx, lane, RXTX_REG125, &val); val = RXTX_REG125_SIGN_PQ_SET(val, ctx->sata_param.txeyedirection[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG125_PQ_REG_SET(val, ctx->sata_param.txeyetuning[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG125, val); serdes_rd(ctx, lane, RXTX_REG127, &val); val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG127, val); serdes_rd(ctx, lane, RXTX_REG128, &val); val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3); serdes_wr(ctx, lane, RXTX_REG128, val); serdes_rd(ctx, lane, RXTX_REG145, &val); val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3); val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0); if (preA3Chip) { val = RXTX_REG145_RXES_ENA_SET(val, 0x1); val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1); } else { val = RXTX_REG145_RXES_ENA_SET(val, 0x0); val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0); } serdes_wr(ctx, lane, RXTX_REG145, val); /* * Set Rx LOS filter clock rate, sample rate, and threshold * windows */ for (i = 0; i < 4; i++) { reg = RXTX_REG148 + i * 2; serdes_wr(ctx, lane, reg, 0xFFFF); } } } static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { void __iomem *csr_serdes = ctx->sds_base; int loop; u32 val; /* Release PHY main reset */ writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL); readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ if (cmu_type != REF_CMU) { cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); /* * As per PHY design spec, the PLL reset requires a minimum * of 800us. */ usleep_range(800, 1000); cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG1, val); /* * As per PHY design spec, the PLL auto calibration requires * a minimum of 800us. */ usleep_range(800, 1000); cmu_toggle1to0(ctx, cmu_type, CMU_REG32, CMU_REG32_FORCE_VCOCAL_START_MASK); /* * As per PHY design spec, the PLL requires a minimum of * 800us to settle. */ usleep_range(800, 1000); } if (!preA3Chip) goto skip_manual_cal; /* * Configure the termination resister calibration * The serial receive pins, RXP/RXN, have TERMination resistor * that is required to be calibrated. */ cmu_rd(ctx, cmu_type, CMU_REG17, &val); val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12); val = CMU_REG17_RESERVED_7_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG17, val); cmu_toggle1to0(ctx, cmu_type, CMU_REG17, CMU_REG17_PVT_TERM_MAN_ENA_MASK); /* * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN * resistors that are required to the calibrated. * Configure the pull DOWN calibration */ cmu_rd(ctx, cmu_type, CMU_REG17, &val); val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29); val = CMU_REG17_RESERVED_7_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG17, val); cmu_toggle1to0(ctx, cmu_type, CMU_REG16, CMU_REG16_PVT_DN_MAN_ENA_MASK); /* Configure the pull UP calibration */ cmu_rd(ctx, cmu_type, CMU_REG17, &val); val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28); val = CMU_REG17_RESERVED_7_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG17, val); cmu_toggle1to0(ctx, cmu_type, CMU_REG16, CMU_REG16_PVT_UP_MAN_ENA_MASK); skip_manual_cal: /* Poll the PLL calibration completion status for at least 1 ms */ loop = 100; do { cmu_rd(ctx, cmu_type, CMU_REG7, &val); if (CMU_REG7_PLL_CALIB_DONE_RD(val)) break; /* * As per PHY design spec, PLL calibration status requires * a minimum of 10us to be updated. */ usleep_range(10, 100); } while (--loop > 0); cmu_rd(ctx, cmu_type, CMU_REG7, &val); dev_dbg(ctx->dev, "PLL calibration %s\n", CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed"); if (CMU_REG7_VCO_CAL_FAIL_RD(val)) { dev_err(ctx->dev, "PLL calibration failed due to VCO failure\n"); return -1; } dev_dbg(ctx->dev, "PLL calibration successful\n"); cmu_rd(ctx, cmu_type, CMU_REG15, &val); dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not "); return 0; } static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { u32 val; dev_dbg(ctx->dev, "Reset VCO and re-start again\n"); if (cmu_type == PHY_CMU) { cmu_rd(ctx, cmu_type, CMU_REG16, &val); val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); cmu_wr(ctx, cmu_type, CMU_REG16, val); } cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK); cmu_toggle1to0(ctx, cmu_type, CMU_REG32, CMU_REG32_FORCE_VCOCAL_START_MASK); } static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx, enum clk_type_t clk_type, int ssc_enable) { void __iomem *sds_base = ctx->sds_base; u32 val; int i; /* Configure the PHY for operation */ dev_dbg(ctx->dev, "Reset PHY\n"); /* Place PHY into reset */ writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL); val = readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ /* Release PHY lane from reset (active high) */ writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL); readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ /* Release all PHY module out of reset except PHY main reset */ writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL); readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ /* Set the operation speed */ val = readl(sds_base + SATA_ENET_SDS_CTL1); val = CFG_I_SPD_SEL_CDR_OVR1_SET(val, ctx->sata_param.txspeed[ctx->sata_param.speed[0]]); writel(val, sds_base + SATA_ENET_SDS_CTL1); dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n"); val = readl(sds_base + SATA_ENET_SDS_CTL0); val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421); writel(val, sds_base + SATA_ENET_SDS_CTL0); /* Configure the clock macro unit (CMU) clock type */ xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type); /* Configure the clock macro */ xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type); /* Enable SSC if enabled */ if (ssc_enable) xgene_phy_ssc_enable(ctx, PHY_CMU); /* Configure PHY lanes */ xgene_phy_sata_cfg_lanes(ctx); /* Set Rx/Tx 20-bit */ val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0); val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3); val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3); writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0); /* Start PLL calibration and try for three times */ i = 10; do { if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type)) break; /* If failed, toggle the VCO power signal and start again */ xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type); } while (--i > 0); /* Even on failure, allow to continue any way */ if (i <= 0) dev_err(ctx->dev, "PLL calibration failed\n"); return 0; } static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx, enum clk_type_t clk_type, int ssc_enable) { int rc; dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type); if (ctx->mode == MODE_SATA) { rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable); if (rc) return rc; } else { dev_err(ctx->dev, "Un-supported customer pin mode %d\n", ctx->mode); return -ENODEV; } return 0; } /* * Receiver Offset Calibration: * * Calibrate the receiver signal path offset in two steps - summar and * latch calibrations */ static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane) { int i; static const struct { u32 reg; u32 val; } serdes_reg[] = { {RXTX_REG38, 0x0}, {RXTX_REG39, 0xff00}, {RXTX_REG40, 0xffff}, {RXTX_REG41, 0xffff}, {RXTX_REG42, 0xffff}, {RXTX_REG43, 0xffff}, {RXTX_REG44, 0xffff}, {RXTX_REG45, 0xffff}, {RXTX_REG46, 0xffff}, {RXTX_REG47, 0xfffc}, {RXTX_REG48, 0x0}, {RXTX_REG49, 0x0}, {RXTX_REG50, 0x0}, {RXTX_REG51, 0x0}, {RXTX_REG52, 0x0}, {RXTX_REG53, 0x0}, {RXTX_REG54, 0x0}, {RXTX_REG55, 0x0}, }; /* Start SUMMER calibration */ serdes_setbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_SUM_CAL_START_MASK); /* * As per PHY design spec, the Summer calibration requires a minimum * of 100us to complete. */ usleep_range(100, 500); serdes_clrbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_SUM_CAL_START_MASK); /* * As per PHY design spec, the auto calibration requires a minimum * of 100us to complete. */ usleep_range(100, 500); /* Start latch calibration */ serdes_setbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_LAT_CAL_START_MASK); /* * As per PHY design spec, the latch calibration requires a minimum * of 100us to complete. */ usleep_range(100, 500); serdes_clrbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_LAT_CAL_START_MASK); /* Configure the PHY lane for calibration */ serdes_wr(ctx, lane, RXTX_REG28, 0x7); serdes_wr(ctx, lane, RXTX_REG31, 0x7e00); serdes_clrbits(ctx, lane, RXTX_REG4, RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK); serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK); for (i = 0; i < ARRAY_SIZE(serdes_reg); i++) serdes_wr(ctx, lane, serdes_reg[i].reg, serdes_reg[i].val); } static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane) { /* Reset digital Rx */ serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); /* As per PHY design spec, the reset requires a minimum of 100us. */ usleep_range(100, 150); serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); } static int xgene_phy_get_avg(int accum, int samples) { return (accum + (samples / 2)) / samples; } static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane) { int max_loop = 10; int avg_loop = 0; int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0; int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0; int sum_cal = 0; int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr; int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr; int sum_cal_itr; int fail_even; int fail_odd; u32 val; dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n", lane); /* Enable RX Hi-Z termination */ serdes_setbits(ctx, lane, RXTX_REG12, RXTX_REG12_RX_DET_TERM_ENABLE_MASK); /* Turn off DFE */ serdes_wr(ctx, lane, RXTX_REG28, 0x0000); /* DFE Presets to zero */ serdes_wr(ctx, lane, RXTX_REG31, 0x0000); /* * Receiver Offset Calibration: * Calibrate the receiver signal path offset in two steps - summar * and latch calibration. * Runs the "Receiver Offset Calibration multiple times to determine * the average value to use. */ while (avg_loop < max_loop) { /* Start the calibration */ xgene_phy_force_lat_summer_cal(ctx, lane); serdes_rd(ctx, lane, RXTX_REG21, &val); lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val); lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val); fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val); serdes_rd(ctx, lane, RXTX_REG22, &val); lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val); lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val); fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val); serdes_rd(ctx, lane, RXTX_REG23, &val); lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val); lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val); serdes_rd(ctx, lane, RXTX_REG24, &val); lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val); lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val); serdes_rd(ctx, lane, RXTX_REG121, &val); sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val); /* Check for failure. If passed, sum them for averaging */ if ((fail_even == 0 || fail_even == 1) && (fail_odd == 0 || fail_odd == 1)) { lat_do += lat_do_itr; lat_xo += lat_xo_itr; lat_eo += lat_eo_itr; lat_so += lat_so_itr; lat_de += lat_de_itr; lat_xe += lat_xe_itr; lat_ee += lat_ee_itr; lat_se += lat_se_itr; sum_cal += sum_cal_itr; dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop); dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n", lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr); dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n", lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr); dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr); ++avg_loop; } else { dev_err(ctx->dev, "Receiver calibration failed at %d loop\n", avg_loop); } xgene_phy_reset_rxd(ctx, lane); } /* Update latch manual calibration with average value */ serdes_rd(ctx, lane, RXTX_REG127, &val); val = RXTX_REG127_DO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_do, max_loop)); val = RXTX_REG127_XO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_xo, max_loop)); serdes_wr(ctx, lane, RXTX_REG127, val); serdes_rd(ctx, lane, RXTX_REG128, &val); val = RXTX_REG128_EO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_eo, max_loop)); val = RXTX_REG128_SO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_so, max_loop)); serdes_wr(ctx, lane, RXTX_REG128, val); serdes_rd(ctx, lane, RXTX_REG129, &val); val = RXTX_REG129_DE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_de, max_loop)); val = RXTX_REG129_XE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_xe, max_loop)); serdes_wr(ctx, lane, RXTX_REG129, val); serdes_rd(ctx, lane, RXTX_REG130, &val); val = RXTX_REG130_EE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_ee, max_loop)); val = RXTX_REG130_SE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_se, max_loop)); serdes_wr(ctx, lane, RXTX_REG130, val); /* Update SUMMER calibration with average value */ serdes_rd(ctx, lane, RXTX_REG14, &val); val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val, xgene_phy_get_avg(sum_cal, max_loop)); serdes_wr(ctx, lane, RXTX_REG14, val); dev_dbg(ctx->dev, "Average Value:\n"); dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n", xgene_phy_get_avg(lat_do, max_loop), xgene_phy_get_avg(lat_xo, max_loop), xgene_phy_get_avg(lat_eo, max_loop), xgene_phy_get_avg(lat_so, max_loop)); dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n", xgene_phy_get_avg(lat_de, max_loop), xgene_phy_get_avg(lat_xe, max_loop), xgene_phy_get_avg(lat_ee, max_loop), xgene_phy_get_avg(lat_se, max_loop)); dev_dbg(ctx->dev, "SUM 0x%x\n", xgene_phy_get_avg(sum_cal, max_loop)); serdes_rd(ctx, lane, RXTX_REG14, &val); val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG14, val); dev_dbg(ctx->dev, "Enable Manual Summer calibration\n"); serdes_rd(ctx, lane, RXTX_REG127, &val); val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1); dev_dbg(ctx->dev, "Enable Manual Latch calibration\n"); serdes_wr(ctx, lane, RXTX_REG127, val); /* Disable RX Hi-Z termination */ serdes_rd(ctx, lane, RXTX_REG12, &val); val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0); serdes_wr(ctx, lane, RXTX_REG12, val); /* Turn on DFE */ serdes_wr(ctx, lane, RXTX_REG28, 0x0007); /* Set DFE preset */ serdes_wr(ctx, lane, RXTX_REG31, 0x7e00); } static int xgene_phy_hw_init(struct phy *phy) { struct xgene_phy_ctx *ctx = phy_get_drvdata(phy); int rc; int i; rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE); if (rc) { dev_err(ctx->dev, "PHY initialize failed %d\n", rc); return rc; } /* Setup clock properly after PHY configuration */ if (!IS_ERR(ctx->clk)) { /* HW requires an toggle of the clock */ clk_prepare_enable(ctx->clk); clk_disable_unprepare(ctx->clk); clk_prepare_enable(ctx->clk); } /* Compute average value */ for (i = 0; i < MAX_LANE; i++) xgene_phy_gen_avg_val(ctx, i); dev_dbg(ctx->dev, "PHY initialized\n"); return 0; } static const struct phy_ops xgene_phy_ops = { .init = xgene_phy_hw_init, .owner = THIS_MODULE, }; static struct phy *xgene_phy_xlate(struct device *dev, struct of_phandle_args *args) { struct xgene_phy_ctx *ctx = dev_get_drvdata(dev); if (args->args_count <= 0) return ERR_PTR(-EINVAL); if (args->args[0] >= MODE_MAX) return ERR_PTR(-EINVAL); ctx->mode = args->args[0]; return ctx->phy; } static void xgene_phy_get_param(struct platform_device *pdev, const char *name, u32 *buffer, int count, u32 *default_val, u32 conv_factor) { int i; if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer, count)) { for (i = 0; i < count; i++) buffer[i] /= conv_factor; return; } /* Does not exist, load default */ for (i = 0; i < count; i++) buffer[i] = default_val[i % 3]; } static int xgene_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct xgene_phy_ctx *ctx; u32 default_spd[] = DEFAULT_SATA_SPD_SEL; u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN; u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION; u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING; u32 default_txamp[] = DEFAULT_SATA_TXAMP; u32 default_txcn1[] = DEFAULT_SATA_TXCN1; u32 default_txcn2[] = DEFAULT_SATA_TXCN2; u32 default_txcp1[] = DEFAULT_SATA_TXCP1; int i; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->dev = &pdev->dev; ctx->sds_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ctx->sds_base)) return PTR_ERR(ctx->sds_base); /* Retrieve optional clock */ ctx->clk = clk_get(&pdev->dev, NULL); /* Load override paramaters */ xgene_phy_get_param(pdev, "apm,tx-eye-tuning", ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1); xgene_phy_get_param(pdev, "apm,tx-eye-direction", ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1); xgene_phy_get_param(pdev, "apm,tx-boost-gain", ctx->sata_param.txboostgain, 6, default_txboost_gain, 1); xgene_phy_get_param(pdev, "apm,tx-amplitude", ctx->sata_param.txamplitude, 6, default_txamp, 13300); xgene_phy_get_param(pdev, "apm,tx-pre-cursor1", ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200); xgene_phy_get_param(pdev, "apm,tx-pre-cursor2", ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200); xgene_phy_get_param(pdev, "apm,tx-post-cursor", ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200); xgene_phy_get_param(pdev, "apm,tx-speed", ctx->sata_param.txspeed, 3, default_spd, 1); for (i = 0; i < MAX_LANE; i++) ctx->sata_param.speed[i] = 2; /* Default to Gen3 */ platform_set_drvdata(pdev, ctx); ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops); if (IS_ERR(ctx->phy)) { dev_dbg(&pdev->dev, "Failed to create PHY\n"); return PTR_ERR(ctx->phy); } phy_set_drvdata(ctx->phy, ctx); phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id xgene_phy_of_match[] = { {.compatible = "apm,xgene-phy",}, {}, }; MODULE_DEVICE_TABLE(of, xgene_phy_of_match); static struct platform_driver xgene_phy_driver = { .probe = xgene_phy_probe, .driver = { .name = "xgene-phy", .of_match_table = xgene_phy_of_match, }, }; module_platform_driver(xgene_phy_driver); MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver"); MODULE_AUTHOR("Loc Ho <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_VERSION("0.1");
linux-master
drivers/phy/phy-xgene.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * phy-core.c -- Generic Phy framework. * * Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com * * Author: Kishon Vijay Abraham I <[email protected]> */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/module.h> #include <linux/err.h> #include <linux/debugfs.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/idr.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> static struct class *phy_class; static struct dentry *phy_debugfs_root; static DEFINE_MUTEX(phy_provider_mutex); static LIST_HEAD(phy_provider_list); static LIST_HEAD(phys); static DEFINE_IDA(phy_ida); static void devm_phy_release(struct device *dev, void *res) { struct phy *phy = *(struct phy **)res; phy_put(dev, phy); } static void devm_phy_provider_release(struct device *dev, void *res) { struct phy_provider *phy_provider = *(struct phy_provider **)res; of_phy_provider_unregister(phy_provider); } static void devm_phy_consume(struct device *dev, void *res) { struct phy *phy = *(struct phy **)res; phy_destroy(phy); } static int devm_phy_match(struct device *dev, void *res, void *match_data) { struct phy **phy = res; return *phy == match_data; } /** * phy_create_lookup() - allocate and register PHY/device association * @phy: the phy of the association * @con_id: connection ID string on device * @dev_id: the device of the association * * Creates and registers phy_lookup entry. */ int phy_create_lookup(struct phy *phy, const char *con_id, const char *dev_id) { struct phy_lookup *pl; if (!phy || !dev_id || !con_id) return -EINVAL; pl = kzalloc(sizeof(*pl), GFP_KERNEL); if (!pl) return -ENOMEM; pl->dev_id = dev_id; pl->con_id = con_id; pl->phy = phy; mutex_lock(&phy_provider_mutex); list_add_tail(&pl->node, &phys); mutex_unlock(&phy_provider_mutex); return 0; } EXPORT_SYMBOL_GPL(phy_create_lookup); /** * phy_remove_lookup() - find and remove PHY/device association * @phy: the phy of the association * @con_id: connection ID string on device * @dev_id: the device of the association * * Finds and unregisters phy_lookup entry that was created with * phy_create_lookup(). */ void phy_remove_lookup(struct phy *phy, const char *con_id, const char *dev_id) { struct phy_lookup *pl; if (!phy || !dev_id || !con_id) return; mutex_lock(&phy_provider_mutex); list_for_each_entry(pl, &phys, node) if (pl->phy == phy && !strcmp(pl->dev_id, dev_id) && !strcmp(pl->con_id, con_id)) { list_del(&pl->node); kfree(pl); break; } mutex_unlock(&phy_provider_mutex); } EXPORT_SYMBOL_GPL(phy_remove_lookup); static struct phy *phy_find(struct device *dev, const char *con_id) { const char *dev_id = dev_name(dev); struct phy_lookup *p, *pl = NULL; mutex_lock(&phy_provider_mutex); list_for_each_entry(p, &phys, node) if (!strcmp(p->dev_id, dev_id) && !strcmp(p->con_id, con_id)) { pl = p; break; } mutex_unlock(&phy_provider_mutex); return pl ? pl->phy : ERR_PTR(-ENODEV); } static struct phy_provider *of_phy_provider_lookup(struct device_node *node) { struct phy_provider *phy_provider; struct device_node *child; list_for_each_entry(phy_provider, &phy_provider_list, list) { if (phy_provider->dev->of_node == node) return phy_provider; for_each_child_of_node(phy_provider->children, child) if (child == node) return phy_provider; } return ERR_PTR(-EPROBE_DEFER); } int phy_pm_runtime_get(struct phy *phy) { int ret; if (!phy) return 0; if (!pm_runtime_enabled(&phy->dev)) return -ENOTSUPP; ret = pm_runtime_get(&phy->dev); if (ret < 0 && ret != -EINPROGRESS) pm_runtime_put_noidle(&phy->dev); return ret; } EXPORT_SYMBOL_GPL(phy_pm_runtime_get); int phy_pm_runtime_get_sync(struct phy *phy) { int ret; if (!phy) return 0; if (!pm_runtime_enabled(&phy->dev)) return -ENOTSUPP; ret = pm_runtime_get_sync(&phy->dev); if (ret < 0) pm_runtime_put_sync(&phy->dev); return ret; } EXPORT_SYMBOL_GPL(phy_pm_runtime_get_sync); int phy_pm_runtime_put(struct phy *phy) { if (!phy) return 0; if (!pm_runtime_enabled(&phy->dev)) return -ENOTSUPP; return pm_runtime_put(&phy->dev); } EXPORT_SYMBOL_GPL(phy_pm_runtime_put); int phy_pm_runtime_put_sync(struct phy *phy) { if (!phy) return 0; if (!pm_runtime_enabled(&phy->dev)) return -ENOTSUPP; return pm_runtime_put_sync(&phy->dev); } EXPORT_SYMBOL_GPL(phy_pm_runtime_put_sync); void phy_pm_runtime_allow(struct phy *phy) { if (!phy) return; if (!pm_runtime_enabled(&phy->dev)) return; pm_runtime_allow(&phy->dev); } EXPORT_SYMBOL_GPL(phy_pm_runtime_allow); void phy_pm_runtime_forbid(struct phy *phy) { if (!phy) return; if (!pm_runtime_enabled(&phy->dev)) return; pm_runtime_forbid(&phy->dev); } EXPORT_SYMBOL_GPL(phy_pm_runtime_forbid); /** * phy_init - phy internal initialization before phy operation * @phy: the phy returned by phy_get() * * Used to allow phy's driver to perform phy internal initialization, * such as PLL block powering, clock initialization or anything that's * is required by the phy to perform the start of operation. * Must be called before phy_power_on(). * * Return: %0 if successful, a negative error code otherwise */ int phy_init(struct phy *phy) { int ret; if (!phy) return 0; ret = phy_pm_runtime_get_sync(phy); if (ret < 0 && ret != -ENOTSUPP) return ret; ret = 0; /* Override possible ret == -ENOTSUPP */ mutex_lock(&phy->mutex); if (phy->power_count > phy->init_count) dev_warn(&phy->dev, "phy_power_on was called before phy_init\n"); if (phy->init_count == 0 && phy->ops->init) { ret = phy->ops->init(phy); if (ret < 0) { dev_err(&phy->dev, "phy init failed --> %d\n", ret); goto out; } } ++phy->init_count; out: mutex_unlock(&phy->mutex); phy_pm_runtime_put(phy); return ret; } EXPORT_SYMBOL_GPL(phy_init); /** * phy_exit - Phy internal un-initialization * @phy: the phy returned by phy_get() * * Must be called after phy_power_off(). * * Return: %0 if successful, a negative error code otherwise */ int phy_exit(struct phy *phy) { int ret; if (!phy) return 0; ret = phy_pm_runtime_get_sync(phy); if (ret < 0 && ret != -ENOTSUPP) return ret; ret = 0; /* Override possible ret == -ENOTSUPP */ mutex_lock(&phy->mutex); if (phy->init_count == 1 && phy->ops->exit) { ret = phy->ops->exit(phy); if (ret < 0) { dev_err(&phy->dev, "phy exit failed --> %d\n", ret); goto out; } } --phy->init_count; out: mutex_unlock(&phy->mutex); phy_pm_runtime_put(phy); return ret; } EXPORT_SYMBOL_GPL(phy_exit); /** * phy_power_on - Enable the phy and enter proper operation * @phy: the phy returned by phy_get() * * Must be called after phy_init(). * * Return: %0 if successful, a negative error code otherwise */ int phy_power_on(struct phy *phy) { int ret = 0; if (!phy) goto out; if (phy->pwr) { ret = regulator_enable(phy->pwr); if (ret) goto out; } ret = phy_pm_runtime_get_sync(phy); if (ret < 0 && ret != -ENOTSUPP) goto err_pm_sync; ret = 0; /* Override possible ret == -ENOTSUPP */ mutex_lock(&phy->mutex); if (phy->power_count == 0 && phy->ops->power_on) { ret = phy->ops->power_on(phy); if (ret < 0) { dev_err(&phy->dev, "phy poweron failed --> %d\n", ret); goto err_pwr_on; } } ++phy->power_count; mutex_unlock(&phy->mutex); return 0; err_pwr_on: mutex_unlock(&phy->mutex); phy_pm_runtime_put_sync(phy); err_pm_sync: if (phy->pwr) regulator_disable(phy->pwr); out: return ret; } EXPORT_SYMBOL_GPL(phy_power_on); /** * phy_power_off - Disable the phy. * @phy: the phy returned by phy_get() * * Must be called before phy_exit(). * * Return: %0 if successful, a negative error code otherwise */ int phy_power_off(struct phy *phy) { int ret; if (!phy) return 0; mutex_lock(&phy->mutex); if (phy->power_count == 1 && phy->ops->power_off) { ret = phy->ops->power_off(phy); if (ret < 0) { dev_err(&phy->dev, "phy poweroff failed --> %d\n", ret); mutex_unlock(&phy->mutex); return ret; } } --phy->power_count; mutex_unlock(&phy->mutex); phy_pm_runtime_put(phy); if (phy->pwr) regulator_disable(phy->pwr); return 0; } EXPORT_SYMBOL_GPL(phy_power_off); int phy_set_mode_ext(struct phy *phy, enum phy_mode mode, int submode) { int ret; if (!phy || !phy->ops->set_mode) return 0; mutex_lock(&phy->mutex); ret = phy->ops->set_mode(phy, mode, submode); if (!ret) phy->attrs.mode = mode; mutex_unlock(&phy->mutex); return ret; } EXPORT_SYMBOL_GPL(phy_set_mode_ext); int phy_set_media(struct phy *phy, enum phy_media media) { int ret; if (!phy || !phy->ops->set_media) return 0; mutex_lock(&phy->mutex); ret = phy->ops->set_media(phy, media); mutex_unlock(&phy->mutex); return ret; } EXPORT_SYMBOL_GPL(phy_set_media); int phy_set_speed(struct phy *phy, int speed) { int ret; if (!phy || !phy->ops->set_speed) return 0; mutex_lock(&phy->mutex); ret = phy->ops->set_speed(phy, speed); mutex_unlock(&phy->mutex); return ret; } EXPORT_SYMBOL_GPL(phy_set_speed); int phy_reset(struct phy *phy) { int ret; if (!phy || !phy->ops->reset) return 0; ret = phy_pm_runtime_get_sync(phy); if (ret < 0 && ret != -ENOTSUPP) return ret; mutex_lock(&phy->mutex); ret = phy->ops->reset(phy); mutex_unlock(&phy->mutex); phy_pm_runtime_put(phy); return ret; } EXPORT_SYMBOL_GPL(phy_reset); /** * phy_calibrate() - Tunes the phy hw parameters for current configuration * @phy: the phy returned by phy_get() * * Used to calibrate phy hardware, typically by adjusting some parameters in * runtime, which are otherwise lost after host controller reset and cannot * be applied in phy_init() or phy_power_on(). * * Return: %0 if successful, a negative error code otherwise */ int phy_calibrate(struct phy *phy) { int ret; if (!phy || !phy->ops->calibrate) return 0; mutex_lock(&phy->mutex); ret = phy->ops->calibrate(phy); mutex_unlock(&phy->mutex); return ret; } EXPORT_SYMBOL_GPL(phy_calibrate); /** * phy_configure() - Changes the phy parameters * @phy: the phy returned by phy_get() * @opts: New configuration to apply * * Used to change the PHY parameters. phy_init() must have been called * on the phy. The configuration will be applied on the current phy * mode, that can be changed using phy_set_mode(). * * Return: %0 if successful, a negative error code otherwise */ int phy_configure(struct phy *phy, union phy_configure_opts *opts) { int ret; if (!phy) return -EINVAL; if (!phy->ops->configure) return -EOPNOTSUPP; mutex_lock(&phy->mutex); ret = phy->ops->configure(phy, opts); mutex_unlock(&phy->mutex); return ret; } EXPORT_SYMBOL_GPL(phy_configure); /** * phy_validate() - Checks the phy parameters * @phy: the phy returned by phy_get() * @mode: phy_mode the configuration is applicable to. * @submode: PHY submode the configuration is applicable to. * @opts: Configuration to check * * Used to check that the current set of parameters can be handled by * the phy. Implementations are free to tune the parameters passed as * arguments if needed by some implementation detail or * constraints. It will not change any actual configuration of the * PHY, so calling it as many times as deemed fit will have no side * effect. * * Return: %0 if successful, a negative error code otherwise */ int phy_validate(struct phy *phy, enum phy_mode mode, int submode, union phy_configure_opts *opts) { int ret; if (!phy) return -EINVAL; if (!phy->ops->validate) return -EOPNOTSUPP; mutex_lock(&phy->mutex); ret = phy->ops->validate(phy, mode, submode, opts); mutex_unlock(&phy->mutex); return ret; } EXPORT_SYMBOL_GPL(phy_validate); /** * _of_phy_get() - lookup and obtain a reference to a phy by phandle * @np: device_node for which to get the phy * @index: the index of the phy * * Returns the phy associated with the given phandle value, * after getting a refcount to it or -ENODEV if there is no such phy or * -EPROBE_DEFER if there is a phandle to the phy, but the device is * not yet loaded. This function uses of_xlate call back function provided * while registering the phy_provider to find the phy instance. */ static struct phy *_of_phy_get(struct device_node *np, int index) { int ret; struct phy_provider *phy_provider; struct phy *phy = NULL; struct of_phandle_args args; ret = of_parse_phandle_with_args(np, "phys", "#phy-cells", index, &args); if (ret) return ERR_PTR(-ENODEV); /* This phy type handled by the usb-phy subsystem for now */ if (of_device_is_compatible(args.np, "usb-nop-xceiv")) return ERR_PTR(-ENODEV); mutex_lock(&phy_provider_mutex); phy_provider = of_phy_provider_lookup(args.np); if (IS_ERR(phy_provider) || !try_module_get(phy_provider->owner)) { phy = ERR_PTR(-EPROBE_DEFER); goto out_unlock; } if (!of_device_is_available(args.np)) { dev_warn(phy_provider->dev, "Requested PHY is disabled\n"); phy = ERR_PTR(-ENODEV); goto out_put_module; } phy = phy_provider->of_xlate(phy_provider->dev, &args); out_put_module: module_put(phy_provider->owner); out_unlock: mutex_unlock(&phy_provider_mutex); of_node_put(args.np); return phy; } /** * of_phy_get() - lookup and obtain a reference to a phy using a device_node. * @np: device_node for which to get the phy * @con_id: name of the phy from device's point of view * * Returns the phy driver, after getting a refcount to it; or * -ENODEV if there is no such phy. The caller is responsible for * calling phy_put() to release that count. */ struct phy *of_phy_get(struct device_node *np, const char *con_id) { struct phy *phy = NULL; int index = 0; if (con_id) index = of_property_match_string(np, "phy-names", con_id); phy = _of_phy_get(np, index); if (IS_ERR(phy)) return phy; if (!try_module_get(phy->ops->owner)) return ERR_PTR(-EPROBE_DEFER); get_device(&phy->dev); return phy; } EXPORT_SYMBOL_GPL(of_phy_get); /** * of_phy_put() - release the PHY * @phy: the phy returned by of_phy_get() * * Releases a refcount the caller received from of_phy_get(). */ void of_phy_put(struct phy *phy) { if (!phy || IS_ERR(phy)) return; mutex_lock(&phy->mutex); if (phy->ops->release) phy->ops->release(phy); mutex_unlock(&phy->mutex); module_put(phy->ops->owner); put_device(&phy->dev); } EXPORT_SYMBOL_GPL(of_phy_put); /** * phy_put() - release the PHY * @dev: device that wants to release this phy * @phy: the phy returned by phy_get() * * Releases a refcount the caller received from phy_get(). */ void phy_put(struct device *dev, struct phy *phy) { device_link_remove(dev, &phy->dev); of_phy_put(phy); } EXPORT_SYMBOL_GPL(phy_put); /** * devm_phy_put() - release the PHY * @dev: device that wants to release this phy * @phy: the phy returned by devm_phy_get() * * destroys the devres associated with this phy and invokes phy_put * to release the phy. */ void devm_phy_put(struct device *dev, struct phy *phy) { int r; if (!phy) return; r = devres_destroy(dev, devm_phy_release, devm_phy_match, phy); dev_WARN_ONCE(dev, r, "couldn't find PHY resource\n"); } EXPORT_SYMBOL_GPL(devm_phy_put); /** * of_phy_simple_xlate() - returns the phy instance from phy provider * @dev: the PHY provider device * @args: of_phandle_args (not used here) * * Intended to be used by phy provider for the common case where #phy-cells is * 0. For other cases where #phy-cells is greater than '0', the phy provider * should provide a custom of_xlate function that reads the *args* and returns * the appropriate phy. */ struct phy *of_phy_simple_xlate(struct device *dev, struct of_phandle_args *args) { struct phy *phy; struct class_dev_iter iter; class_dev_iter_init(&iter, phy_class, NULL, NULL); while ((dev = class_dev_iter_next(&iter))) { phy = to_phy(dev); if (args->np != phy->dev.of_node) continue; class_dev_iter_exit(&iter); return phy; } class_dev_iter_exit(&iter); return ERR_PTR(-ENODEV); } EXPORT_SYMBOL_GPL(of_phy_simple_xlate); /** * phy_get() - lookup and obtain a reference to a phy. * @dev: device that requests this phy * @string: the phy name as given in the dt data or the name of the controller * port for non-dt case * * Returns the phy driver, after getting a refcount to it; or * -ENODEV if there is no such phy. The caller is responsible for * calling phy_put() to release that count. */ struct phy *phy_get(struct device *dev, const char *string) { int index = 0; struct phy *phy; struct device_link *link; if (dev->of_node) { if (string) index = of_property_match_string(dev->of_node, "phy-names", string); else index = 0; phy = _of_phy_get(dev->of_node, index); } else { if (string == NULL) { dev_WARN(dev, "missing string\n"); return ERR_PTR(-EINVAL); } phy = phy_find(dev, string); } if (IS_ERR(phy)) return phy; if (!try_module_get(phy->ops->owner)) return ERR_PTR(-EPROBE_DEFER); get_device(&phy->dev); link = device_link_add(dev, &phy->dev, DL_FLAG_STATELESS); if (!link) dev_dbg(dev, "failed to create device link to %s\n", dev_name(phy->dev.parent)); return phy; } EXPORT_SYMBOL_GPL(phy_get); /** * devm_phy_get() - lookup and obtain a reference to a phy. * @dev: device that requests this phy * @string: the phy name as given in the dt data or phy device name * for non-dt case * * Gets the phy using phy_get(), and associates a device with it using * devres. On driver detach, release function is invoked on the devres data, * then, devres data is freed. */ struct phy *devm_phy_get(struct device *dev, const char *string) { struct phy **ptr, *phy; ptr = devres_alloc(devm_phy_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); phy = phy_get(dev, string); if (!IS_ERR(phy)) { *ptr = phy; devres_add(dev, ptr); } else { devres_free(ptr); } return phy; } EXPORT_SYMBOL_GPL(devm_phy_get); /** * devm_phy_optional_get() - lookup and obtain a reference to an optional phy. * @dev: device that requests this phy * @string: the phy name as given in the dt data or phy device name * for non-dt case * * Gets the phy using phy_get(), and associates a device with it using * devres. On driver detach, release function is invoked on the devres * data, then, devres data is freed. This differs to devm_phy_get() in * that if the phy does not exist, it is not considered an error and * -ENODEV will not be returned. Instead the NULL phy is returned, * which can be passed to all other phy consumer calls. */ struct phy *devm_phy_optional_get(struct device *dev, const char *string) { struct phy *phy = devm_phy_get(dev, string); if (PTR_ERR(phy) == -ENODEV) phy = NULL; return phy; } EXPORT_SYMBOL_GPL(devm_phy_optional_get); /** * devm_of_phy_get() - lookup and obtain a reference to a phy. * @dev: device that requests this phy * @np: node containing the phy * @con_id: name of the phy from device's point of view * * Gets the phy using of_phy_get(), and associates a device with it using * devres. On driver detach, release function is invoked on the devres data, * then, devres data is freed. */ struct phy *devm_of_phy_get(struct device *dev, struct device_node *np, const char *con_id) { struct phy **ptr, *phy; struct device_link *link; ptr = devres_alloc(devm_phy_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); phy = of_phy_get(np, con_id); if (!IS_ERR(phy)) { *ptr = phy; devres_add(dev, ptr); } else { devres_free(ptr); return phy; } link = device_link_add(dev, &phy->dev, DL_FLAG_STATELESS); if (!link) dev_dbg(dev, "failed to create device link to %s\n", dev_name(phy->dev.parent)); return phy; } EXPORT_SYMBOL_GPL(devm_of_phy_get); /** * devm_of_phy_optional_get() - lookup and obtain a reference to an optional * phy. * @dev: device that requests this phy * @np: node containing the phy * @con_id: name of the phy from device's point of view * * Gets the phy using of_phy_get(), and associates a device with it using * devres. On driver detach, release function is invoked on the devres data, * then, devres data is freed. This differs to devm_of_phy_get() in * that if the phy does not exist, it is not considered an error and * -ENODEV will not be returned. Instead the NULL phy is returned, * which can be passed to all other phy consumer calls. */ struct phy *devm_of_phy_optional_get(struct device *dev, struct device_node *np, const char *con_id) { struct phy *phy = devm_of_phy_get(dev, np, con_id); if (PTR_ERR(phy) == -ENODEV) phy = NULL; if (IS_ERR(phy)) dev_err_probe(dev, PTR_ERR(phy), "failed to get PHY %pOF:%s", np, con_id); return phy; } EXPORT_SYMBOL_GPL(devm_of_phy_optional_get); /** * devm_of_phy_get_by_index() - lookup and obtain a reference to a phy by index. * @dev: device that requests this phy * @np: node containing the phy * @index: index of the phy * * Gets the phy using _of_phy_get(), then gets a refcount to it, * and associates a device with it using devres. On driver detach, * release function is invoked on the devres data, * then, devres data is freed. * */ struct phy *devm_of_phy_get_by_index(struct device *dev, struct device_node *np, int index) { struct phy **ptr, *phy; struct device_link *link; ptr = devres_alloc(devm_phy_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); phy = _of_phy_get(np, index); if (IS_ERR(phy)) { devres_free(ptr); return phy; } if (!try_module_get(phy->ops->owner)) { devres_free(ptr); return ERR_PTR(-EPROBE_DEFER); } get_device(&phy->dev); *ptr = phy; devres_add(dev, ptr); link = device_link_add(dev, &phy->dev, DL_FLAG_STATELESS); if (!link) dev_dbg(dev, "failed to create device link to %s\n", dev_name(phy->dev.parent)); return phy; } EXPORT_SYMBOL_GPL(devm_of_phy_get_by_index); /** * phy_create() - create a new phy * @dev: device that is creating the new phy * @node: device node of the phy * @ops: function pointers for performing phy operations * * Called to create a phy using phy framework. */ struct phy *phy_create(struct device *dev, struct device_node *node, const struct phy_ops *ops) { int ret; int id; struct phy *phy; if (WARN_ON(!dev)) return ERR_PTR(-EINVAL); phy = kzalloc(sizeof(*phy), GFP_KERNEL); if (!phy) return ERR_PTR(-ENOMEM); id = ida_simple_get(&phy_ida, 0, 0, GFP_KERNEL); if (id < 0) { dev_err(dev, "unable to get id\n"); ret = id; goto free_phy; } device_initialize(&phy->dev); mutex_init(&phy->mutex); phy->dev.class = phy_class; phy->dev.parent = dev; phy->dev.of_node = node ?: dev->of_node; phy->id = id; phy->ops = ops; ret = dev_set_name(&phy->dev, "phy-%s.%d", dev_name(dev), id); if (ret) goto put_dev; /* phy-supply */ phy->pwr = regulator_get_optional(&phy->dev, "phy"); if (IS_ERR(phy->pwr)) { ret = PTR_ERR(phy->pwr); if (ret == -EPROBE_DEFER) goto put_dev; phy->pwr = NULL; } ret = device_add(&phy->dev); if (ret) goto put_dev; if (pm_runtime_enabled(dev)) { pm_runtime_enable(&phy->dev); pm_runtime_no_callbacks(&phy->dev); } phy->debugfs = debugfs_create_dir(dev_name(&phy->dev), phy_debugfs_root); return phy; put_dev: put_device(&phy->dev); /* calls phy_release() which frees resources */ return ERR_PTR(ret); free_phy: kfree(phy); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(phy_create); /** * devm_phy_create() - create a new phy * @dev: device that is creating the new phy * @node: device node of the phy * @ops: function pointers for performing phy operations * * Creates a new PHY device adding it to the PHY class. * While at that, it also associates the device with the phy using devres. * On driver detach, release function is invoked on the devres data, * then, devres data is freed. */ struct phy *devm_phy_create(struct device *dev, struct device_node *node, const struct phy_ops *ops) { struct phy **ptr, *phy; ptr = devres_alloc(devm_phy_consume, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); phy = phy_create(dev, node, ops); if (!IS_ERR(phy)) { *ptr = phy; devres_add(dev, ptr); } else { devres_free(ptr); } return phy; } EXPORT_SYMBOL_GPL(devm_phy_create); /** * phy_destroy() - destroy the phy * @phy: the phy to be destroyed * * Called to destroy the phy. */ void phy_destroy(struct phy *phy) { pm_runtime_disable(&phy->dev); device_unregister(&phy->dev); } EXPORT_SYMBOL_GPL(phy_destroy); /** * devm_phy_destroy() - destroy the PHY * @dev: device that wants to release this phy * @phy: the phy returned by devm_phy_get() * * destroys the devres associated with this phy and invokes phy_destroy * to destroy the phy. */ void devm_phy_destroy(struct device *dev, struct phy *phy) { int r; r = devres_destroy(dev, devm_phy_consume, devm_phy_match, phy); dev_WARN_ONCE(dev, r, "couldn't find PHY resource\n"); } EXPORT_SYMBOL_GPL(devm_phy_destroy); /** * __of_phy_provider_register() - create/register phy provider with the framework * @dev: struct device of the phy provider * @children: device node containing children (if different from dev->of_node) * @owner: the module owner containing of_xlate * @of_xlate: function pointer to obtain phy instance from phy provider * * Creates struct phy_provider from dev and of_xlate function pointer. * This is used in the case of dt boot for finding the phy instance from * phy provider. * * If the PHY provider doesn't nest children directly but uses a separate * child node to contain the individual children, the @children parameter * can be used to override the default. If NULL, the default (dev->of_node) * will be used. If non-NULL, the device node must be a child (or further * descendant) of dev->of_node. Otherwise an ERR_PTR()-encoded -EINVAL * error code is returned. */ struct phy_provider *__of_phy_provider_register(struct device *dev, struct device_node *children, struct module *owner, struct phy * (*of_xlate)(struct device *dev, struct of_phandle_args *args)) { struct phy_provider *phy_provider; /* * If specified, the device node containing the children must itself * be the provider's device node or a child (or further descendant) * thereof. */ if (children) { struct device_node *parent = of_node_get(children), *next; while (parent) { if (parent == dev->of_node) break; next = of_get_parent(parent); of_node_put(parent); parent = next; } if (!parent) return ERR_PTR(-EINVAL); of_node_put(parent); } else { children = dev->of_node; } phy_provider = kzalloc(sizeof(*phy_provider), GFP_KERNEL); if (!phy_provider) return ERR_PTR(-ENOMEM); phy_provider->dev = dev; phy_provider->children = of_node_get(children); phy_provider->owner = owner; phy_provider->of_xlate = of_xlate; mutex_lock(&phy_provider_mutex); list_add_tail(&phy_provider->list, &phy_provider_list); mutex_unlock(&phy_provider_mutex); return phy_provider; } EXPORT_SYMBOL_GPL(__of_phy_provider_register); /** * __devm_of_phy_provider_register() - create/register phy provider with the * framework * @dev: struct device of the phy provider * @children: device node containing children (if different from dev->of_node) * @owner: the module owner containing of_xlate * @of_xlate: function pointer to obtain phy instance from phy provider * * Creates struct phy_provider from dev and of_xlate function pointer. * This is used in the case of dt boot for finding the phy instance from * phy provider. While at that, it also associates the device with the * phy provider using devres. On driver detach, release function is invoked * on the devres data, then, devres data is freed. */ struct phy_provider *__devm_of_phy_provider_register(struct device *dev, struct device_node *children, struct module *owner, struct phy * (*of_xlate)(struct device *dev, struct of_phandle_args *args)) { struct phy_provider **ptr, *phy_provider; ptr = devres_alloc(devm_phy_provider_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); phy_provider = __of_phy_provider_register(dev, children, owner, of_xlate); if (!IS_ERR(phy_provider)) { *ptr = phy_provider; devres_add(dev, ptr); } else { devres_free(ptr); } return phy_provider; } EXPORT_SYMBOL_GPL(__devm_of_phy_provider_register); /** * of_phy_provider_unregister() - unregister phy provider from the framework * @phy_provider: phy provider returned by of_phy_provider_register() * * Removes the phy_provider created using of_phy_provider_register(). */ void of_phy_provider_unregister(struct phy_provider *phy_provider) { if (IS_ERR(phy_provider)) return; mutex_lock(&phy_provider_mutex); list_del(&phy_provider->list); of_node_put(phy_provider->children); kfree(phy_provider); mutex_unlock(&phy_provider_mutex); } EXPORT_SYMBOL_GPL(of_phy_provider_unregister); /** * devm_of_phy_provider_unregister() - remove phy provider from the framework * @dev: struct device of the phy provider * @phy_provider: phy provider returned by of_phy_provider_register() * * destroys the devres associated with this phy provider and invokes * of_phy_provider_unregister to unregister the phy provider. */ void devm_of_phy_provider_unregister(struct device *dev, struct phy_provider *phy_provider) { int r; r = devres_destroy(dev, devm_phy_provider_release, devm_phy_match, phy_provider); dev_WARN_ONCE(dev, r, "couldn't find PHY provider device resource\n"); } EXPORT_SYMBOL_GPL(devm_of_phy_provider_unregister); /** * phy_release() - release the phy * @dev: the dev member within phy * * When the last reference to the device is removed, it is called * from the embedded kobject as release method. */ static void phy_release(struct device *dev) { struct phy *phy; phy = to_phy(dev); dev_vdbg(dev, "releasing '%s'\n", dev_name(dev)); debugfs_remove_recursive(phy->debugfs); regulator_put(phy->pwr); ida_simple_remove(&phy_ida, phy->id); kfree(phy); } static int __init phy_core_init(void) { phy_class = class_create("phy"); if (IS_ERR(phy_class)) { pr_err("failed to create phy class --> %ld\n", PTR_ERR(phy_class)); return PTR_ERR(phy_class); } phy_class->dev_release = phy_release; phy_debugfs_root = debugfs_create_dir("phy", NULL); return 0; } device_initcall(phy_core_init); static void __exit phy_core_exit(void) { debugfs_remove_recursive(phy_debugfs_root); class_destroy(phy_class); } module_exit(phy_core_exit);
linux-master
drivers/phy/phy-core.c
/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2013 NVIDIA Corporation * Copyright (C) 2018 Cadence Design Systems Inc. */ #include <linux/errno.h> #include <linux/export.h> #include <linux/kernel.h> #include <linux/time64.h> #include <linux/phy/phy.h> #include <linux/phy/phy-mipi-dphy.h> /* * Minimum D-PHY timings based on MIPI D-PHY specification. Derived * from the valid ranges specified in Section 6.9, Table 14, Page 41 * of the D-PHY specification (v1.2). */ static int phy_mipi_dphy_calc_config(unsigned long pixel_clock, unsigned int bpp, unsigned int lanes, unsigned long long hs_clk_rate, struct phy_configure_opts_mipi_dphy *cfg) { unsigned long long ui; if (!cfg) return -EINVAL; if (!hs_clk_rate) { hs_clk_rate = pixel_clock * bpp; do_div(hs_clk_rate, lanes); } ui = ALIGN(PSEC_PER_SEC, hs_clk_rate); do_div(ui, hs_clk_rate); cfg->clk_miss = 0; cfg->clk_post = 60000 + 52 * ui; cfg->clk_pre = 8; cfg->clk_prepare = 38000; cfg->clk_settle = 95000; cfg->clk_term_en = 0; cfg->clk_trail = 60000; cfg->clk_zero = 262000; cfg->d_term_en = 0; cfg->eot = 0; cfg->hs_exit = 100000; cfg->hs_prepare = 40000 + 4 * ui; cfg->hs_zero = 105000 + 6 * ui; cfg->hs_settle = 85000 + 6 * ui; cfg->hs_skip = 40000; /* * The MIPI D-PHY specification (Section 6.9, v1.2, Table 14, Page 40) * contains this formula as: * * T_HS-TRAIL = max(n * 8 * ui, 60 + n * 4 * ui) * * where n = 1 for forward-direction HS mode and n = 4 for reverse- * direction HS mode. There's only one setting and this function does * not parameterize on anything other that ui, so this code will * assumes that reverse-direction HS mode is supported and uses n = 4. */ cfg->hs_trail = max(4 * 8 * ui, 60000 + 4 * 4 * ui); cfg->init = 100; cfg->lpx = 50000; cfg->ta_get = 5 * cfg->lpx; cfg->ta_go = 4 * cfg->lpx; cfg->ta_sure = cfg->lpx; cfg->wakeup = 1000; cfg->hs_clk_rate = hs_clk_rate; cfg->lanes = lanes; return 0; } int phy_mipi_dphy_get_default_config(unsigned long pixel_clock, unsigned int bpp, unsigned int lanes, struct phy_configure_opts_mipi_dphy *cfg) { return phy_mipi_dphy_calc_config(pixel_clock, bpp, lanes, 0, cfg); } EXPORT_SYMBOL(phy_mipi_dphy_get_default_config); int phy_mipi_dphy_get_default_config_for_hsclk(unsigned long long hs_clk_rate, unsigned int lanes, struct phy_configure_opts_mipi_dphy *cfg) { if (!hs_clk_rate) return -EINVAL; return phy_mipi_dphy_calc_config(0, 0, lanes, hs_clk_rate, cfg); } EXPORT_SYMBOL(phy_mipi_dphy_get_default_config_for_hsclk); /* * Validate D-PHY configuration according to MIPI D-PHY specification * (v1.2, Section Section 6.9 "Global Operation Timing Parameters"). */ int phy_mipi_dphy_config_validate(struct phy_configure_opts_mipi_dphy *cfg) { unsigned long long ui; if (!cfg) return -EINVAL; ui = ALIGN(PSEC_PER_SEC, cfg->hs_clk_rate); do_div(ui, cfg->hs_clk_rate); if (cfg->clk_miss > 60000) return -EINVAL; if (cfg->clk_post < (60000 + 52 * ui)) return -EINVAL; if (cfg->clk_pre < 8) return -EINVAL; if (cfg->clk_prepare < 38000 || cfg->clk_prepare > 95000) return -EINVAL; if (cfg->clk_settle < 95000 || cfg->clk_settle > 300000) return -EINVAL; if (cfg->clk_term_en > 38000) return -EINVAL; if (cfg->clk_trail < 60000) return -EINVAL; if ((cfg->clk_prepare + cfg->clk_zero) < 300000) return -EINVAL; if (cfg->d_term_en > (35000 + 4 * ui)) return -EINVAL; if (cfg->eot > (105000 + 12 * ui)) return -EINVAL; if (cfg->hs_exit < 100000) return -EINVAL; if (cfg->hs_prepare < (40000 + 4 * ui) || cfg->hs_prepare > (85000 + 6 * ui)) return -EINVAL; if ((cfg->hs_prepare + cfg->hs_zero) < (145000 + 10 * ui)) return -EINVAL; if ((cfg->hs_settle < (85000 + 6 * ui)) || (cfg->hs_settle > (145000 + 10 * ui))) return -EINVAL; if (cfg->hs_skip < 40000 || cfg->hs_skip > (55000 + 4 * ui)) return -EINVAL; if (cfg->hs_trail < max(8 * ui, 60000 + 4 * ui)) return -EINVAL; if (cfg->init < 100) return -EINVAL; if (cfg->lpx < 50000) return -EINVAL; if (cfg->ta_get != (5 * cfg->lpx)) return -EINVAL; if (cfg->ta_go != (4 * cfg->lpx)) return -EINVAL; if (cfg->ta_sure < cfg->lpx || cfg->ta_sure > (2 * cfg->lpx)) return -EINVAL; if (cfg->wakeup < 1000) return -EINVAL; return 0; } EXPORT_SYMBOL(phy_mipi_dphy_config_validate);
linux-master
drivers/phy/phy-core-mipi-dphy.c
// SPDX-License-Identifier: GPL-2.0 /* * phy-rtk-usb2.c RTK usb2.0 PHY driver * * Copyright (C) 2023 Realtek Semiconductor Corporation * */ #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_address.h> #include <linux/uaccess.h> #include <linux/debugfs.h> #include <linux/nvmem-consumer.h> #include <linux/regmap.h> #include <linux/sys_soc.h> #include <linux/mfd/syscon.h> #include <linux/phy/phy.h> #include <linux/usb.h> #include <linux/usb/phy.h> #include <linux/usb/hcd.h> /* GUSB2PHYACCn register */ #define PHY_NEW_REG_REQ BIT(25) #define PHY_VSTS_BUSY BIT(23) #define PHY_VCTRL_SHIFT 8 #define PHY_REG_DATA_MASK 0xff #define GET_LOW_NIBBLE(addr) ((addr) & 0x0f) #define GET_HIGH_NIBBLE(addr) (((addr) & 0xf0) >> 4) #define EFUS_USB_DC_CAL_RATE 2 #define EFUS_USB_DC_CAL_MAX 7 #define EFUS_USB_DC_DIS_RATE 1 #define EFUS_USB_DC_DIS_MAX 7 #define MAX_PHY_DATA_SIZE 20 #define OFFEST_PHY_READ 0x20 #define MAX_USB_PHY_NUM 4 #define MAX_USB_PHY_PAGE0_DATA_SIZE 16 #define MAX_USB_PHY_PAGE1_DATA_SIZE 16 #define MAX_USB_PHY_PAGE2_DATA_SIZE 8 #define SET_PAGE_OFFSET 0xf4 #define SET_PAGE_0 0x9b #define SET_PAGE_1 0xbb #define SET_PAGE_2 0xdb #define PAGE_START 0xe0 #define PAGE0_0XE4 0xe4 #define PAGE0_0XE6 0xe6 #define PAGE0_0XE7 0xe7 #define PAGE1_0XE0 0xe0 #define PAGE1_0XE2 0xe2 #define SENSITIVITY_CTRL (BIT(4) | BIT(5) | BIT(6)) #define ENABLE_AUTO_SENSITIVITY_CALIBRATION BIT(2) #define DEFAULT_DC_DRIVING_VALUE (0x8) #define DEFAULT_DC_DISCONNECTION_VALUE (0x6) #define HS_CLK_SELECT BIT(6) struct phy_reg { void __iomem *reg_wrap_vstatus; void __iomem *reg_gusb2phyacc0; int vstatus_index; }; struct phy_data { u8 addr; u8 data; }; struct phy_cfg { int page0_size; struct phy_data page0[MAX_USB_PHY_PAGE0_DATA_SIZE]; int page1_size; struct phy_data page1[MAX_USB_PHY_PAGE1_DATA_SIZE]; int page2_size; struct phy_data page2[MAX_USB_PHY_PAGE2_DATA_SIZE]; int num_phy; bool check_efuse; int check_efuse_version; #define CHECK_EFUSE_V1 1 #define CHECK_EFUSE_V2 2 int efuse_dc_driving_rate; int efuse_dc_disconnect_rate; int dc_driving_mask; int dc_disconnect_mask; bool usb_dc_disconnect_at_page0; int driving_updated_for_dev_dis; bool do_toggle; bool do_toggle_driving; bool use_default_parameter; bool is_double_sensitivity_mode; }; struct phy_parameter { struct phy_reg phy_reg; /* Get from efuse */ s8 efuse_usb_dc_cal; s8 efuse_usb_dc_dis; /* Get from dts */ bool inverse_hstx_sync_clock; u32 driving_level; s32 driving_level_compensate; s32 disconnection_compensate; }; struct rtk_phy { struct usb_phy phy; struct device *dev; struct phy_cfg *phy_cfg; int num_phy; struct phy_parameter *phy_parameter; struct dentry *debug_dir; }; /* mapping 0xE0 to 0 ... 0xE7 to 7, 0xF0 to 8 ,,, 0xF7 to 15 */ static inline int page_addr_to_array_index(u8 addr) { return (int)((((addr) - PAGE_START) & 0x7) + ((((addr) - PAGE_START) & 0x10) >> 1)); } static inline u8 array_index_to_page_addr(int index) { return ((((index) + PAGE_START) & 0x7) + ((((index) & 0x8) << 1) + PAGE_START)); } #define PHY_IO_TIMEOUT_USEC (50000) #define PHY_IO_DELAY_US (100) static inline int utmi_wait_register(void __iomem *reg, u32 mask, u32 result) { int ret; unsigned int val; ret = read_poll_timeout(readl, val, ((val & mask) == result), PHY_IO_DELAY_US, PHY_IO_TIMEOUT_USEC, false, reg); if (ret) { pr_err("%s can't program USB phy\n", __func__); return -ETIMEDOUT; } return 0; } static char rtk_phy_read(struct phy_reg *phy_reg, char addr) { void __iomem *reg_gusb2phyacc0 = phy_reg->reg_gusb2phyacc0; unsigned int val; int ret = 0; addr -= OFFEST_PHY_READ; /* polling until VBusy == 0 */ ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0); if (ret) return (char)ret; /* VCtrl = low nibble of addr, and set PHY_NEW_REG_REQ */ val = PHY_NEW_REG_REQ | (GET_LOW_NIBBLE(addr) << PHY_VCTRL_SHIFT); writel(val, reg_gusb2phyacc0); ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0); if (ret) return (char)ret; /* VCtrl = high nibble of addr, and set PHY_NEW_REG_REQ */ val = PHY_NEW_REG_REQ | (GET_HIGH_NIBBLE(addr) << PHY_VCTRL_SHIFT); writel(val, reg_gusb2phyacc0); ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0); if (ret) return (char)ret; val = readl(reg_gusb2phyacc0); return (char)(val & PHY_REG_DATA_MASK); } static int rtk_phy_write(struct phy_reg *phy_reg, char addr, char data) { unsigned int val; void __iomem *reg_wrap_vstatus = phy_reg->reg_wrap_vstatus; void __iomem *reg_gusb2phyacc0 = phy_reg->reg_gusb2phyacc0; int shift_bits = phy_reg->vstatus_index * 8; int ret = 0; /* write data to VStatusOut2 (data output to phy) */ writel((u32)data << shift_bits, reg_wrap_vstatus); ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0); if (ret) return ret; /* VCtrl = low nibble of addr, set PHY_NEW_REG_REQ */ val = PHY_NEW_REG_REQ | (GET_LOW_NIBBLE(addr) << PHY_VCTRL_SHIFT); writel(val, reg_gusb2phyacc0); ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0); if (ret) return ret; /* VCtrl = high nibble of addr, set PHY_NEW_REG_REQ */ val = PHY_NEW_REG_REQ | (GET_HIGH_NIBBLE(addr) << PHY_VCTRL_SHIFT); writel(val, reg_gusb2phyacc0); ret = utmi_wait_register(reg_gusb2phyacc0, PHY_VSTS_BUSY, 0); if (ret) return ret; return 0; } static int rtk_phy_set_page(struct phy_reg *phy_reg, int page) { switch (page) { case 0: return rtk_phy_write(phy_reg, SET_PAGE_OFFSET, SET_PAGE_0); case 1: return rtk_phy_write(phy_reg, SET_PAGE_OFFSET, SET_PAGE_1); case 2: return rtk_phy_write(phy_reg, SET_PAGE_OFFSET, SET_PAGE_2); default: pr_err("%s error page=%d\n", __func__, page); } return -EINVAL; } static u8 __updated_dc_disconnect_level_page0_0xe4(struct phy_cfg *phy_cfg, struct phy_parameter *phy_parameter, u8 data) { u8 ret; s32 val; s32 dc_disconnect_mask = phy_cfg->dc_disconnect_mask; int offset = 4; val = (s32)((data >> offset) & dc_disconnect_mask) + phy_parameter->efuse_usb_dc_dis + phy_parameter->disconnection_compensate; if (val > dc_disconnect_mask) val = dc_disconnect_mask; else if (val < 0) val = 0; ret = (data & (~(dc_disconnect_mask << offset))) | (val & dc_disconnect_mask) << offset; return ret; } /* updated disconnect level at page0 */ static void update_dc_disconnect_level_at_page0(struct rtk_phy *rtk_phy, struct phy_parameter *phy_parameter, bool update) { struct phy_cfg *phy_cfg; struct phy_reg *phy_reg; struct phy_data *phy_data_page; struct phy_data *phy_data; u8 addr, data; int offset = 4; s32 dc_disconnect_mask; int i; phy_cfg = rtk_phy->phy_cfg; phy_reg = &phy_parameter->phy_reg; /* Set page 0 */ phy_data_page = phy_cfg->page0; rtk_phy_set_page(phy_reg, 0); i = page_addr_to_array_index(PAGE0_0XE4); phy_data = phy_data_page + i; if (!phy_data->addr) { phy_data->addr = PAGE0_0XE4; phy_data->data = rtk_phy_read(phy_reg, PAGE0_0XE4); } addr = phy_data->addr; data = phy_data->data; dc_disconnect_mask = phy_cfg->dc_disconnect_mask; if (update) data = __updated_dc_disconnect_level_page0_0xe4(phy_cfg, phy_parameter, data); else data = (data & ~(dc_disconnect_mask << offset)) | (DEFAULT_DC_DISCONNECTION_VALUE << offset); if (rtk_phy_write(phy_reg, addr, data)) dev_err(rtk_phy->dev, "%s: Error to set page1 parameter addr=0x%x value=0x%x\n", __func__, addr, data); } static u8 __updated_dc_disconnect_level_page1_0xe2(struct phy_cfg *phy_cfg, struct phy_parameter *phy_parameter, u8 data) { u8 ret; s32 val; s32 dc_disconnect_mask = phy_cfg->dc_disconnect_mask; if (phy_cfg->check_efuse_version == CHECK_EFUSE_V1) { val = (s32)(data & dc_disconnect_mask) + phy_parameter->efuse_usb_dc_dis + phy_parameter->disconnection_compensate; } else { /* for CHECK_EFUSE_V2 or no efuse */ if (phy_parameter->efuse_usb_dc_dis) val = (s32)(phy_parameter->efuse_usb_dc_dis + phy_parameter->disconnection_compensate); else val = (s32)((data & dc_disconnect_mask) + phy_parameter->disconnection_compensate); } if (val > dc_disconnect_mask) val = dc_disconnect_mask; else if (val < 0) val = 0; ret = (data & (~dc_disconnect_mask)) | (val & dc_disconnect_mask); return ret; } /* updated disconnect level at page1 */ static void update_dc_disconnect_level_at_page1(struct rtk_phy *rtk_phy, struct phy_parameter *phy_parameter, bool update) { struct phy_cfg *phy_cfg; struct phy_data *phy_data_page; struct phy_data *phy_data; struct phy_reg *phy_reg; u8 addr, data; s32 dc_disconnect_mask; int i; phy_cfg = rtk_phy->phy_cfg; phy_reg = &phy_parameter->phy_reg; /* Set page 1 */ phy_data_page = phy_cfg->page1; rtk_phy_set_page(phy_reg, 1); i = page_addr_to_array_index(PAGE1_0XE2); phy_data = phy_data_page + i; if (!phy_data->addr) { phy_data->addr = PAGE1_0XE2; phy_data->data = rtk_phy_read(phy_reg, PAGE1_0XE2); } addr = phy_data->addr; data = phy_data->data; dc_disconnect_mask = phy_cfg->dc_disconnect_mask; if (update) data = __updated_dc_disconnect_level_page1_0xe2(phy_cfg, phy_parameter, data); else data = (data & ~dc_disconnect_mask) | DEFAULT_DC_DISCONNECTION_VALUE; if (rtk_phy_write(phy_reg, addr, data)) dev_err(rtk_phy->dev, "%s: Error to set page1 parameter addr=0x%x value=0x%x\n", __func__, addr, data); } static void update_dc_disconnect_level(struct rtk_phy *rtk_phy, struct phy_parameter *phy_parameter, bool update) { struct phy_cfg *phy_cfg = rtk_phy->phy_cfg; if (phy_cfg->usb_dc_disconnect_at_page0) update_dc_disconnect_level_at_page0(rtk_phy, phy_parameter, update); else update_dc_disconnect_level_at_page1(rtk_phy, phy_parameter, update); } static u8 __update_dc_driving_page0_0xe4(struct phy_cfg *phy_cfg, struct phy_parameter *phy_parameter, u8 data) { s32 driving_level_compensate = phy_parameter->driving_level_compensate; s32 dc_driving_mask = phy_cfg->dc_driving_mask; s32 val; u8 ret; if (phy_cfg->check_efuse_version == CHECK_EFUSE_V1) { val = (s32)(data & dc_driving_mask) + driving_level_compensate + phy_parameter->efuse_usb_dc_cal; } else { /* for CHECK_EFUSE_V2 or no efuse */ if (phy_parameter->efuse_usb_dc_cal) val = (s32)((phy_parameter->efuse_usb_dc_cal & dc_driving_mask) + driving_level_compensate); else val = (s32)(data & dc_driving_mask); } if (val > dc_driving_mask) val = dc_driving_mask; else if (val < 0) val = 0; ret = (data & (~dc_driving_mask)) | (val & dc_driving_mask); return ret; } static void update_dc_driving_level(struct rtk_phy *rtk_phy, struct phy_parameter *phy_parameter) { struct phy_cfg *phy_cfg; struct phy_reg *phy_reg; phy_reg = &phy_parameter->phy_reg; phy_cfg = rtk_phy->phy_cfg; if (!phy_cfg->page0[4].addr) { rtk_phy_set_page(phy_reg, 0); phy_cfg->page0[4].addr = PAGE0_0XE4; phy_cfg->page0[4].data = rtk_phy_read(phy_reg, PAGE0_0XE4); } if (phy_parameter->driving_level != DEFAULT_DC_DRIVING_VALUE) { u32 dc_driving_mask; u8 driving_level; u8 data; data = phy_cfg->page0[4].data; dc_driving_mask = phy_cfg->dc_driving_mask; driving_level = data & dc_driving_mask; dev_dbg(rtk_phy->dev, "%s driving_level=%d => dts driving_level=%d\n", __func__, driving_level, phy_parameter->driving_level); phy_cfg->page0[4].data = (data & (~dc_driving_mask)) | (phy_parameter->driving_level & dc_driving_mask); } phy_cfg->page0[4].data = __update_dc_driving_page0_0xe4(phy_cfg, phy_parameter, phy_cfg->page0[4].data); } static void update_hs_clk_select(struct rtk_phy *rtk_phy, struct phy_parameter *phy_parameter) { struct phy_cfg *phy_cfg; struct phy_reg *phy_reg; phy_cfg = rtk_phy->phy_cfg; phy_reg = &phy_parameter->phy_reg; if (phy_parameter->inverse_hstx_sync_clock) { if (!phy_cfg->page0[6].addr) { rtk_phy_set_page(phy_reg, 0); phy_cfg->page0[6].addr = PAGE0_0XE6; phy_cfg->page0[6].data = rtk_phy_read(phy_reg, PAGE0_0XE6); } phy_cfg->page0[6].data = phy_cfg->page0[6].data | HS_CLK_SELECT; } } static void do_rtk_phy_toggle(struct rtk_phy *rtk_phy, int index, bool connect) { struct phy_parameter *phy_parameter; struct phy_cfg *phy_cfg; struct phy_reg *phy_reg; struct phy_data *phy_data_page; u8 addr, data; int i; phy_cfg = rtk_phy->phy_cfg; phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index]; phy_reg = &phy_parameter->phy_reg; if (!phy_cfg->do_toggle) goto out; if (phy_cfg->is_double_sensitivity_mode) goto do_toggle_driving; /* Set page 0 */ rtk_phy_set_page(phy_reg, 0); addr = PAGE0_0XE7; data = rtk_phy_read(phy_reg, addr); if (connect) rtk_phy_write(phy_reg, addr, data & (~SENSITIVITY_CTRL)); else rtk_phy_write(phy_reg, addr, data | (SENSITIVITY_CTRL)); do_toggle_driving: if (!phy_cfg->do_toggle_driving) goto do_toggle; /* Page 0 addr 0xE4 driving capability */ /* Set page 0 */ phy_data_page = phy_cfg->page0; rtk_phy_set_page(phy_reg, 0); i = page_addr_to_array_index(PAGE0_0XE4); addr = phy_data_page[i].addr; data = phy_data_page[i].data; if (connect) { rtk_phy_write(phy_reg, addr, data); } else { u8 value; s32 tmp; s32 driving_updated = phy_cfg->driving_updated_for_dev_dis; s32 dc_driving_mask = phy_cfg->dc_driving_mask; tmp = (s32)(data & dc_driving_mask) + driving_updated; if (tmp > dc_driving_mask) tmp = dc_driving_mask; else if (tmp < 0) tmp = 0; value = (data & (~dc_driving_mask)) | (tmp & dc_driving_mask); rtk_phy_write(phy_reg, addr, value); } do_toggle: /* restore dc disconnect level before toggle */ update_dc_disconnect_level(rtk_phy, phy_parameter, false); /* Set page 1 */ rtk_phy_set_page(phy_reg, 1); addr = PAGE1_0XE0; data = rtk_phy_read(phy_reg, addr); rtk_phy_write(phy_reg, addr, data & (~ENABLE_AUTO_SENSITIVITY_CALIBRATION)); mdelay(1); rtk_phy_write(phy_reg, addr, data | (ENABLE_AUTO_SENSITIVITY_CALIBRATION)); /* update dc disconnect level after toggle */ update_dc_disconnect_level(rtk_phy, phy_parameter, true); out: return; } static int do_rtk_phy_init(struct rtk_phy *rtk_phy, int index) { struct phy_parameter *phy_parameter; struct phy_cfg *phy_cfg; struct phy_data *phy_data_page; struct phy_reg *phy_reg; int i; phy_cfg = rtk_phy->phy_cfg; phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index]; phy_reg = &phy_parameter->phy_reg; if (phy_cfg->use_default_parameter) { dev_dbg(rtk_phy->dev, "%s phy#%d use default parameter\n", __func__, index); goto do_toggle; } /* Set page 0 */ phy_data_page = phy_cfg->page0; rtk_phy_set_page(phy_reg, 0); for (i = 0; i < phy_cfg->page0_size; i++) { struct phy_data *phy_data = phy_data_page + i; u8 addr = phy_data->addr; u8 data = phy_data->data; if (!addr) continue; if (rtk_phy_write(phy_reg, addr, data)) { dev_err(rtk_phy->dev, "%s: Error to set page0 parameter addr=0x%x value=0x%x\n", __func__, addr, data); return -EINVAL; } } /* Set page 1 */ phy_data_page = phy_cfg->page1; rtk_phy_set_page(phy_reg, 1); for (i = 0; i < phy_cfg->page1_size; i++) { struct phy_data *phy_data = phy_data_page + i; u8 addr = phy_data->addr; u8 data = phy_data->data; if (!addr) continue; if (rtk_phy_write(phy_reg, addr, data)) { dev_err(rtk_phy->dev, "%s: Error to set page1 parameter addr=0x%x value=0x%x\n", __func__, addr, data); return -EINVAL; } } if (phy_cfg->page2_size == 0) goto do_toggle; /* Set page 2 */ phy_data_page = phy_cfg->page2; rtk_phy_set_page(phy_reg, 2); for (i = 0; i < phy_cfg->page2_size; i++) { struct phy_data *phy_data = phy_data_page + i; u8 addr = phy_data->addr; u8 data = phy_data->data; if (!addr) continue; if (rtk_phy_write(phy_reg, addr, data)) { dev_err(rtk_phy->dev, "%s: Error to set page2 parameter addr=0x%x value=0x%x\n", __func__, addr, data); return -EINVAL; } } do_toggle: do_rtk_phy_toggle(rtk_phy, index, false); return 0; } static int rtk_phy_init(struct phy *phy) { struct rtk_phy *rtk_phy = phy_get_drvdata(phy); unsigned long phy_init_time = jiffies; int i, ret = 0; if (!rtk_phy) return -EINVAL; for (i = 0; i < rtk_phy->num_phy; i++) ret = do_rtk_phy_init(rtk_phy, i); dev_dbg(rtk_phy->dev, "Initialized RTK USB 2.0 PHY (take %dms)\n", jiffies_to_msecs(jiffies - phy_init_time)); return ret; } static int rtk_phy_exit(struct phy *phy) { return 0; } static const struct phy_ops ops = { .init = rtk_phy_init, .exit = rtk_phy_exit, .owner = THIS_MODULE, }; static void rtk_phy_toggle(struct usb_phy *usb2_phy, bool connect, int port) { int index = port; struct rtk_phy *rtk_phy = NULL; rtk_phy = dev_get_drvdata(usb2_phy->dev); if (index > rtk_phy->num_phy) { dev_err(rtk_phy->dev, "%s: The port=%d is not in usb phy (num_phy=%d)\n", __func__, index, rtk_phy->num_phy); return; } do_rtk_phy_toggle(rtk_phy, index, connect); } static int rtk_phy_notify_port_status(struct usb_phy *x, int port, u16 portstatus, u16 portchange) { bool connect = false; pr_debug("%s port=%d portstatus=0x%x portchange=0x%x\n", __func__, port, (int)portstatus, (int)portchange); if (portstatus & USB_PORT_STAT_CONNECTION) connect = true; if (portchange & USB_PORT_STAT_C_CONNECTION) rtk_phy_toggle(x, connect, port); return 0; } #ifdef CONFIG_DEBUG_FS static struct dentry *create_phy_debug_root(void) { struct dentry *phy_debug_root; phy_debug_root = debugfs_lookup("phy", usb_debug_root); if (!phy_debug_root) phy_debug_root = debugfs_create_dir("phy", usb_debug_root); return phy_debug_root; } static int rtk_usb2_parameter_show(struct seq_file *s, void *unused) { struct rtk_phy *rtk_phy = s->private; struct phy_cfg *phy_cfg; int i, index; phy_cfg = rtk_phy->phy_cfg; seq_puts(s, "Property:\n"); seq_printf(s, " check_efuse: %s\n", phy_cfg->check_efuse ? "Enable" : "Disable"); seq_printf(s, " check_efuse_version: %d\n", phy_cfg->check_efuse_version); seq_printf(s, " efuse_dc_driving_rate: %d\n", phy_cfg->efuse_dc_driving_rate); seq_printf(s, " dc_driving_mask: 0x%x\n", phy_cfg->dc_driving_mask); seq_printf(s, " efuse_dc_disconnect_rate: %d\n", phy_cfg->efuse_dc_disconnect_rate); seq_printf(s, " dc_disconnect_mask: 0x%x\n", phy_cfg->dc_disconnect_mask); seq_printf(s, " usb_dc_disconnect_at_page0: %s\n", phy_cfg->usb_dc_disconnect_at_page0 ? "true" : "false"); seq_printf(s, " do_toggle: %s\n", phy_cfg->do_toggle ? "Enable" : "Disable"); seq_printf(s, " do_toggle_driving: %s\n", phy_cfg->do_toggle_driving ? "Enable" : "Disable"); seq_printf(s, " driving_updated_for_dev_dis: 0x%x\n", phy_cfg->driving_updated_for_dev_dis); seq_printf(s, " use_default_parameter: %s\n", phy_cfg->use_default_parameter ? "Enable" : "Disable"); seq_printf(s, " is_double_sensitivity_mode: %s\n", phy_cfg->is_double_sensitivity_mode ? "Enable" : "Disable"); for (index = 0; index < rtk_phy->num_phy; index++) { struct phy_parameter *phy_parameter; struct phy_reg *phy_reg; struct phy_data *phy_data_page; phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index]; phy_reg = &phy_parameter->phy_reg; seq_printf(s, "PHY %d:\n", index); seq_puts(s, "Page 0:\n"); /* Set page 0 */ phy_data_page = phy_cfg->page0; rtk_phy_set_page(phy_reg, 0); for (i = 0; i < phy_cfg->page0_size; i++) { struct phy_data *phy_data = phy_data_page + i; u8 addr = array_index_to_page_addr(i); u8 data = phy_data->data; u8 value = rtk_phy_read(phy_reg, addr); if (phy_data->addr) seq_printf(s, " Page 0: addr=0x%x data=0x%02x ==> read value=0x%02x\n", addr, data, value); else seq_printf(s, " Page 0: addr=0x%x data=none ==> read value=0x%02x\n", addr, value); } seq_puts(s, "Page 1:\n"); /* Set page 1 */ phy_data_page = phy_cfg->page1; rtk_phy_set_page(phy_reg, 1); for (i = 0; i < phy_cfg->page1_size; i++) { struct phy_data *phy_data = phy_data_page + i; u8 addr = array_index_to_page_addr(i); u8 data = phy_data->data; u8 value = rtk_phy_read(phy_reg, addr); if (phy_data->addr) seq_printf(s, " Page 1: addr=0x%x data=0x%02x ==> read value=0x%02x\n", addr, data, value); else seq_printf(s, " Page 1: addr=0x%x data=none ==> read value=0x%02x\n", addr, value); } if (phy_cfg->page2_size == 0) goto out; seq_puts(s, "Page 2:\n"); /* Set page 2 */ phy_data_page = phy_cfg->page2; rtk_phy_set_page(phy_reg, 2); for (i = 0; i < phy_cfg->page2_size; i++) { struct phy_data *phy_data = phy_data_page + i; u8 addr = array_index_to_page_addr(i); u8 data = phy_data->data; u8 value = rtk_phy_read(phy_reg, addr); if (phy_data->addr) seq_printf(s, " Page 2: addr=0x%x data=0x%02x ==> read value=0x%02x\n", addr, data, value); else seq_printf(s, " Page 2: addr=0x%x data=none ==> read value=0x%02x\n", addr, value); } out: seq_puts(s, "PHY Property:\n"); seq_printf(s, " efuse_usb_dc_cal: %d\n", (int)phy_parameter->efuse_usb_dc_cal); seq_printf(s, " efuse_usb_dc_dis: %d\n", (int)phy_parameter->efuse_usb_dc_dis); seq_printf(s, " inverse_hstx_sync_clock: %s\n", phy_parameter->inverse_hstx_sync_clock ? "Enable" : "Disable"); seq_printf(s, " driving_level: %d\n", phy_parameter->driving_level); seq_printf(s, " driving_level_compensate: %d\n", phy_parameter->driving_level_compensate); seq_printf(s, " disconnection_compensate: %d\n", phy_parameter->disconnection_compensate); } return 0; } DEFINE_SHOW_ATTRIBUTE(rtk_usb2_parameter); static inline void create_debug_files(struct rtk_phy *rtk_phy) { struct dentry *phy_debug_root = NULL; phy_debug_root = create_phy_debug_root(); if (!phy_debug_root) return; rtk_phy->debug_dir = debugfs_create_dir(dev_name(rtk_phy->dev), phy_debug_root); if (!rtk_phy->debug_dir) return; if (!debugfs_create_file("parameter", 0444, rtk_phy->debug_dir, rtk_phy, &rtk_usb2_parameter_fops)) goto file_error; return; file_error: debugfs_remove_recursive(rtk_phy->debug_dir); } static inline void remove_debug_files(struct rtk_phy *rtk_phy) { debugfs_remove_recursive(rtk_phy->debug_dir); } #else static inline void create_debug_files(struct rtk_phy *rtk_phy) { } static inline void remove_debug_files(struct rtk_phy *rtk_phy) { } #endif /* CONFIG_DEBUG_FS */ static int get_phy_data_by_efuse(struct rtk_phy *rtk_phy, struct phy_parameter *phy_parameter, int index) { struct phy_cfg *phy_cfg = rtk_phy->phy_cfg; u8 value = 0; struct nvmem_cell *cell; struct soc_device_attribute rtk_soc_groot[] = { { .family = "Realtek Groot",}, { /* empty */ } }; if (!phy_cfg->check_efuse) goto out; /* Read efuse for usb dc cal */ cell = nvmem_cell_get(rtk_phy->dev, "usb-dc-cal"); if (IS_ERR(cell)) { dev_dbg(rtk_phy->dev, "%s no usb-dc-cal: %ld\n", __func__, PTR_ERR(cell)); } else { unsigned char *buf; size_t buf_size; buf = nvmem_cell_read(cell, &buf_size); if (!IS_ERR(buf)) { value = buf[0] & phy_cfg->dc_driving_mask; kfree(buf); } nvmem_cell_put(cell); } if (phy_cfg->check_efuse_version == CHECK_EFUSE_V1) { int rate = phy_cfg->efuse_dc_driving_rate; if (value <= EFUS_USB_DC_CAL_MAX) phy_parameter->efuse_usb_dc_cal = (int8_t)(value * rate); else phy_parameter->efuse_usb_dc_cal = -(int8_t) ((EFUS_USB_DC_CAL_MAX & value) * rate); if (soc_device_match(rtk_soc_groot)) { dev_dbg(rtk_phy->dev, "For groot IC we need a workaround to adjust efuse_usb_dc_cal\n"); /* We don't multiple dc_cal_rate=2 for positive dc cal compensate */ if (value <= EFUS_USB_DC_CAL_MAX) phy_parameter->efuse_usb_dc_cal = (int8_t)(value); /* We set max dc cal compensate is 0x8 if otp is 0x7 */ if (value == 0x7) phy_parameter->efuse_usb_dc_cal = (int8_t)(value + 1); } } else { /* for CHECK_EFUSE_V2 */ phy_parameter->efuse_usb_dc_cal = value & phy_cfg->dc_driving_mask; } /* Read efuse for usb dc disconnect level */ value = 0; cell = nvmem_cell_get(rtk_phy->dev, "usb-dc-dis"); if (IS_ERR(cell)) { dev_dbg(rtk_phy->dev, "%s no usb-dc-dis: %ld\n", __func__, PTR_ERR(cell)); } else { unsigned char *buf; size_t buf_size; buf = nvmem_cell_read(cell, &buf_size); if (!IS_ERR(buf)) { value = buf[0] & phy_cfg->dc_disconnect_mask; kfree(buf); } nvmem_cell_put(cell); } if (phy_cfg->check_efuse_version == CHECK_EFUSE_V1) { int rate = phy_cfg->efuse_dc_disconnect_rate; if (value <= EFUS_USB_DC_DIS_MAX) phy_parameter->efuse_usb_dc_dis = (int8_t)(value * rate); else phy_parameter->efuse_usb_dc_dis = -(int8_t) ((EFUS_USB_DC_DIS_MAX & value) * rate); } else { /* for CHECK_EFUSE_V2 */ phy_parameter->efuse_usb_dc_dis = value & phy_cfg->dc_disconnect_mask; } out: return 0; } static int parse_phy_data(struct rtk_phy *rtk_phy) { struct device *dev = rtk_phy->dev; struct device_node *np = dev->of_node; struct phy_parameter *phy_parameter; int ret = 0; int index; rtk_phy->phy_parameter = devm_kzalloc(dev, sizeof(struct phy_parameter) * rtk_phy->num_phy, GFP_KERNEL); if (!rtk_phy->phy_parameter) return -ENOMEM; for (index = 0; index < rtk_phy->num_phy; index++) { phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index]; phy_parameter->phy_reg.reg_wrap_vstatus = of_iomap(np, 0); phy_parameter->phy_reg.reg_gusb2phyacc0 = of_iomap(np, 1) + index; phy_parameter->phy_reg.vstatus_index = index; if (of_property_read_bool(np, "realtek,inverse-hstx-sync-clock")) phy_parameter->inverse_hstx_sync_clock = true; else phy_parameter->inverse_hstx_sync_clock = false; if (of_property_read_u32_index(np, "realtek,driving-level", index, &phy_parameter->driving_level)) phy_parameter->driving_level = DEFAULT_DC_DRIVING_VALUE; if (of_property_read_u32_index(np, "realtek,driving-level-compensate", index, &phy_parameter->driving_level_compensate)) phy_parameter->driving_level_compensate = 0; if (of_property_read_u32_index(np, "realtek,disconnection-compensate", index, &phy_parameter->disconnection_compensate)) phy_parameter->disconnection_compensate = 0; get_phy_data_by_efuse(rtk_phy, phy_parameter, index); update_dc_driving_level(rtk_phy, phy_parameter); update_hs_clk_select(rtk_phy, phy_parameter); } return ret; } static int rtk_usb2phy_probe(struct platform_device *pdev) { struct rtk_phy *rtk_phy; struct device *dev = &pdev->dev; struct phy *generic_phy; struct phy_provider *phy_provider; const struct phy_cfg *phy_cfg; int ret = 0; phy_cfg = of_device_get_match_data(dev); if (!phy_cfg) { dev_err(dev, "phy config are not assigned!\n"); return -EINVAL; } rtk_phy = devm_kzalloc(dev, sizeof(*rtk_phy), GFP_KERNEL); if (!rtk_phy) return -ENOMEM; rtk_phy->dev = &pdev->dev; rtk_phy->phy.dev = rtk_phy->dev; rtk_phy->phy.label = "rtk-usb2phy"; rtk_phy->phy.notify_port_status = rtk_phy_notify_port_status; rtk_phy->phy_cfg = devm_kzalloc(dev, sizeof(*phy_cfg), GFP_KERNEL); memcpy(rtk_phy->phy_cfg, phy_cfg, sizeof(*phy_cfg)); rtk_phy->num_phy = phy_cfg->num_phy; ret = parse_phy_data(rtk_phy); if (ret) goto err; platform_set_drvdata(pdev, rtk_phy); generic_phy = devm_phy_create(rtk_phy->dev, NULL, &ops); if (IS_ERR(generic_phy)) return PTR_ERR(generic_phy); phy_set_drvdata(generic_phy, rtk_phy); phy_provider = devm_of_phy_provider_register(rtk_phy->dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) return PTR_ERR(phy_provider); ret = usb_add_phy_dev(&rtk_phy->phy); if (ret) goto err; create_debug_files(rtk_phy); err: return ret; } static void rtk_usb2phy_remove(struct platform_device *pdev) { struct rtk_phy *rtk_phy = platform_get_drvdata(pdev); remove_debug_files(rtk_phy); usb_remove_phy(&rtk_phy->phy); } static const struct phy_cfg rtd1295_phy_cfg = { .page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE, .page0 = { [0] = {0xe0, 0x90}, [3] = {0xe3, 0x3a}, [4] = {0xe4, 0x68}, [6] = {0xe6, 0x91}, [13] = {0xf5, 0x81}, [15] = {0xf7, 0x02}, }, .page1_size = 8, .page1 = { /* default parameter */ }, .page2_size = 0, .page2 = { /* no parameter */ }, .num_phy = 1, .check_efuse = false, .check_efuse_version = CHECK_EFUSE_V1, .efuse_dc_driving_rate = 1, .dc_driving_mask = 0xf, .efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE, .dc_disconnect_mask = 0xf, .usb_dc_disconnect_at_page0 = true, .do_toggle = true, .do_toggle_driving = false, .driving_updated_for_dev_dis = 0xf, .use_default_parameter = false, .is_double_sensitivity_mode = false, }; static const struct phy_cfg rtd1395_phy_cfg = { .page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE, .page0 = { [4] = {0xe4, 0xac}, [13] = {0xf5, 0x00}, [15] = {0xf7, 0x02}, }, .page1_size = 8, .page1 = { /* default parameter */ }, .page2_size = 0, .page2 = { /* no parameter */ }, .num_phy = 1, .check_efuse = false, .check_efuse_version = CHECK_EFUSE_V1, .efuse_dc_driving_rate = 1, .dc_driving_mask = 0xf, .efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE, .dc_disconnect_mask = 0xf, .usb_dc_disconnect_at_page0 = true, .do_toggle = true, .do_toggle_driving = false, .driving_updated_for_dev_dis = 0xf, .use_default_parameter = false, .is_double_sensitivity_mode = false, }; static const struct phy_cfg rtd1395_phy_cfg_2port = { .page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE, .page0 = { [4] = {0xe4, 0xac}, [13] = {0xf5, 0x00}, [15] = {0xf7, 0x02}, }, .page1_size = 8, .page1 = { /* default parameter */ }, .page2_size = 0, .page2 = { /* no parameter */ }, .num_phy = 2, .check_efuse = false, .check_efuse_version = CHECK_EFUSE_V1, .efuse_dc_driving_rate = 1, .dc_driving_mask = 0xf, .efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE, .dc_disconnect_mask = 0xf, .usb_dc_disconnect_at_page0 = true, .do_toggle = true, .do_toggle_driving = false, .driving_updated_for_dev_dis = 0xf, .use_default_parameter = false, .is_double_sensitivity_mode = false, }; static const struct phy_cfg rtd1619_phy_cfg = { .page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE, .page0 = { [4] = {0xe4, 0x68}, }, .page1_size = 8, .page1 = { /* default parameter */ }, .page2_size = 0, .page2 = { /* no parameter */ }, .num_phy = 1, .check_efuse = true, .check_efuse_version = CHECK_EFUSE_V1, .efuse_dc_driving_rate = 1, .dc_driving_mask = 0xf, .efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE, .dc_disconnect_mask = 0xf, .usb_dc_disconnect_at_page0 = true, .do_toggle = true, .do_toggle_driving = false, .driving_updated_for_dev_dis = 0xf, .use_default_parameter = false, .is_double_sensitivity_mode = false, }; static const struct phy_cfg rtd1319_phy_cfg = { .page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE, .page0 = { [0] = {0xe0, 0x18}, [4] = {0xe4, 0x6a}, [7] = {0xe7, 0x71}, [13] = {0xf5, 0x15}, [15] = {0xf7, 0x32}, }, .page1_size = 8, .page1 = { [3] = {0xe3, 0x44}, }, .page2_size = MAX_USB_PHY_PAGE2_DATA_SIZE, .page2 = { [0] = {0xe0, 0x01}, }, .num_phy = 1, .check_efuse = true, .check_efuse_version = CHECK_EFUSE_V1, .efuse_dc_driving_rate = 1, .dc_driving_mask = 0xf, .efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE, .dc_disconnect_mask = 0xf, .usb_dc_disconnect_at_page0 = true, .do_toggle = true, .do_toggle_driving = true, .driving_updated_for_dev_dis = 0xf, .use_default_parameter = false, .is_double_sensitivity_mode = true, }; static const struct phy_cfg rtd1312c_phy_cfg = { .page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE, .page0 = { [0] = {0xe0, 0x14}, [4] = {0xe4, 0x67}, [5] = {0xe5, 0x55}, }, .page1_size = 8, .page1 = { [3] = {0xe3, 0x23}, [6] = {0xe6, 0x58}, }, .page2_size = MAX_USB_PHY_PAGE2_DATA_SIZE, .page2 = { /* default parameter */ }, .num_phy = 1, .check_efuse = true, .check_efuse_version = CHECK_EFUSE_V1, .efuse_dc_driving_rate = 1, .dc_driving_mask = 0xf, .efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE, .dc_disconnect_mask = 0xf, .usb_dc_disconnect_at_page0 = true, .do_toggle = true, .do_toggle_driving = true, .driving_updated_for_dev_dis = 0xf, .use_default_parameter = false, .is_double_sensitivity_mode = true, }; static const struct phy_cfg rtd1619b_phy_cfg = { .page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE, .page0 = { [0] = {0xe0, 0xa3}, [4] = {0xe4, 0x88}, [5] = {0xe5, 0x4f}, [6] = {0xe6, 0x02}, }, .page1_size = 8, .page1 = { [3] = {0xe3, 0x64}, }, .page2_size = MAX_USB_PHY_PAGE2_DATA_SIZE, .page2 = { [7] = {0xe7, 0x45}, }, .num_phy = 1, .check_efuse = true, .check_efuse_version = CHECK_EFUSE_V1, .efuse_dc_driving_rate = EFUS_USB_DC_CAL_RATE, .dc_driving_mask = 0x1f, .efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE, .dc_disconnect_mask = 0xf, .usb_dc_disconnect_at_page0 = false, .do_toggle = true, .do_toggle_driving = true, .driving_updated_for_dev_dis = 0x8, .use_default_parameter = false, .is_double_sensitivity_mode = true, }; static const struct phy_cfg rtd1319d_phy_cfg = { .page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE, .page0 = { [0] = {0xe0, 0xa3}, [4] = {0xe4, 0x8e}, [5] = {0xe5, 0x4f}, [6] = {0xe6, 0x02}, }, .page1_size = MAX_USB_PHY_PAGE1_DATA_SIZE, .page1 = { [14] = {0xf5, 0x1}, }, .page2_size = MAX_USB_PHY_PAGE2_DATA_SIZE, .page2 = { [7] = {0xe7, 0x44}, }, .check_efuse = true, .num_phy = 1, .check_efuse_version = CHECK_EFUSE_V1, .efuse_dc_driving_rate = EFUS_USB_DC_CAL_RATE, .dc_driving_mask = 0x1f, .efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE, .dc_disconnect_mask = 0xf, .usb_dc_disconnect_at_page0 = false, .do_toggle = true, .do_toggle_driving = false, .driving_updated_for_dev_dis = 0x8, .use_default_parameter = false, .is_double_sensitivity_mode = true, }; static const struct phy_cfg rtd1315e_phy_cfg = { .page0_size = MAX_USB_PHY_PAGE0_DATA_SIZE, .page0 = { [0] = {0xe0, 0xa3}, [4] = {0xe4, 0x8c}, [5] = {0xe5, 0x4f}, [6] = {0xe6, 0x02}, }, .page1_size = MAX_USB_PHY_PAGE1_DATA_SIZE, .page1 = { [3] = {0xe3, 0x7f}, [14] = {0xf5, 0x01}, }, .page2_size = MAX_USB_PHY_PAGE2_DATA_SIZE, .page2 = { [7] = {0xe7, 0x44}, }, .num_phy = 1, .check_efuse = true, .check_efuse_version = CHECK_EFUSE_V2, .efuse_dc_driving_rate = EFUS_USB_DC_CAL_RATE, .dc_driving_mask = 0x1f, .efuse_dc_disconnect_rate = EFUS_USB_DC_DIS_RATE, .dc_disconnect_mask = 0xf, .usb_dc_disconnect_at_page0 = false, .do_toggle = true, .do_toggle_driving = false, .driving_updated_for_dev_dis = 0x8, .use_default_parameter = false, .is_double_sensitivity_mode = true, }; static const struct of_device_id usbphy_rtk_dt_match[] = { { .compatible = "realtek,rtd1295-usb2phy", .data = &rtd1295_phy_cfg }, { .compatible = "realtek,rtd1312c-usb2phy", .data = &rtd1312c_phy_cfg }, { .compatible = "realtek,rtd1315e-usb2phy", .data = &rtd1315e_phy_cfg }, { .compatible = "realtek,rtd1319-usb2phy", .data = &rtd1319_phy_cfg }, { .compatible = "realtek,rtd1319d-usb2phy", .data = &rtd1319d_phy_cfg }, { .compatible = "realtek,rtd1395-usb2phy", .data = &rtd1395_phy_cfg }, { .compatible = "realtek,rtd1395-usb2phy-2port", .data = &rtd1395_phy_cfg_2port }, { .compatible = "realtek,rtd1619-usb2phy", .data = &rtd1619_phy_cfg }, { .compatible = "realtek,rtd1619b-usb2phy", .data = &rtd1619b_phy_cfg }, {}, }; MODULE_DEVICE_TABLE(of, usbphy_rtk_dt_match); static struct platform_driver rtk_usb2phy_driver = { .probe = rtk_usb2phy_probe, .remove_new = rtk_usb2phy_remove, .driver = { .name = "rtk-usb2phy", .of_match_table = usbphy_rtk_dt_match, }, }; module_platform_driver(rtk_usb2phy_driver); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform: rtk-usb2phy"); MODULE_AUTHOR("Stanley Chang <[email protected]>"); MODULE_DESCRIPTION("Realtek usb 2.0 phy driver");
linux-master
drivers/phy/realtek/phy-rtk-usb2.c
// SPDX-License-Identifier: GPL-2.0 /* * phy-rtk-usb3.c RTK usb3.0 phy driver * * copyright (c) 2023 realtek semiconductor corporation * */ #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_address.h> #include <linux/uaccess.h> #include <linux/debugfs.h> #include <linux/nvmem-consumer.h> #include <linux/regmap.h> #include <linux/sys_soc.h> #include <linux/mfd/syscon.h> #include <linux/phy/phy.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/usb/phy.h> #define USB_MDIO_CTRL_PHY_BUSY BIT(7) #define USB_MDIO_CTRL_PHY_WRITE BIT(0) #define USB_MDIO_CTRL_PHY_ADDR_SHIFT 8 #define USB_MDIO_CTRL_PHY_DATA_SHIFT 16 #define MAX_USB_PHY_DATA_SIZE 0x30 #define PHY_ADDR_0X09 0x09 #define PHY_ADDR_0X0B 0x0b #define PHY_ADDR_0X0D 0x0d #define PHY_ADDR_0X10 0x10 #define PHY_ADDR_0X1F 0x1f #define PHY_ADDR_0X20 0x20 #define PHY_ADDR_0X21 0x21 #define PHY_ADDR_0X30 0x30 #define REG_0X09_FORCE_CALIBRATION BIT(9) #define REG_0X0B_RX_OFFSET_RANGE_MASK 0xc #define REG_0X0D_RX_DEBUG_TEST_EN BIT(6) #define REG_0X10_DEBUG_MODE_SETTING 0x3c0 #define REG_0X10_DEBUG_MODE_SETTING_MASK 0x3f8 #define REG_0X1F_RX_OFFSET_CODE_MASK 0x1e #define USB_U3_TX_LFPS_SWING_TRIM_SHIFT 4 #define USB_U3_TX_LFPS_SWING_TRIM_MASK 0xf #define AMPLITUDE_CONTROL_COARSE_MASK 0xff #define AMPLITUDE_CONTROL_FINE_MASK 0xffff #define AMPLITUDE_CONTROL_COARSE_DEFAULT 0xff #define AMPLITUDE_CONTROL_FINE_DEFAULT 0xffff #define PHY_ADDR_MAP_ARRAY_INDEX(addr) (addr) #define ARRAY_INDEX_MAP_PHY_ADDR(index) (index) struct phy_reg { void __iomem *reg_mdio_ctl; }; struct phy_data { u8 addr; u16 data; }; struct phy_cfg { int param_size; struct phy_data param[MAX_USB_PHY_DATA_SIZE]; bool check_efuse; bool do_toggle; bool do_toggle_once; bool use_default_parameter; bool check_rx_front_end_offset; }; struct phy_parameter { struct phy_reg phy_reg; /* Get from efuse */ u8 efuse_usb_u3_tx_lfps_swing_trim; /* Get from dts */ u32 amplitude_control_coarse; u32 amplitude_control_fine; }; struct rtk_phy { struct usb_phy phy; struct device *dev; struct phy_cfg *phy_cfg; int num_phy; struct phy_parameter *phy_parameter; struct dentry *debug_dir; }; #define PHY_IO_TIMEOUT_USEC (50000) #define PHY_IO_DELAY_US (100) static inline int utmi_wait_register(void __iomem *reg, u32 mask, u32 result) { int ret; unsigned int val; ret = read_poll_timeout(readl, val, ((val & mask) == result), PHY_IO_DELAY_US, PHY_IO_TIMEOUT_USEC, false, reg); if (ret) { pr_err("%s can't program USB phy\n", __func__); return -ETIMEDOUT; } return 0; } static int rtk_phy3_wait_vbusy(struct phy_reg *phy_reg) { return utmi_wait_register(phy_reg->reg_mdio_ctl, USB_MDIO_CTRL_PHY_BUSY, 0); } static u16 rtk_phy_read(struct phy_reg *phy_reg, char addr) { unsigned int tmp; u32 value; tmp = (addr << USB_MDIO_CTRL_PHY_ADDR_SHIFT); writel(tmp, phy_reg->reg_mdio_ctl); rtk_phy3_wait_vbusy(phy_reg); value = readl(phy_reg->reg_mdio_ctl); value = value >> USB_MDIO_CTRL_PHY_DATA_SHIFT; return (u16)value; } static int rtk_phy_write(struct phy_reg *phy_reg, char addr, u16 data) { unsigned int val; val = USB_MDIO_CTRL_PHY_WRITE | (addr << USB_MDIO_CTRL_PHY_ADDR_SHIFT) | (data << USB_MDIO_CTRL_PHY_DATA_SHIFT); writel(val, phy_reg->reg_mdio_ctl); rtk_phy3_wait_vbusy(phy_reg); return 0; } static void do_rtk_usb3_phy_toggle(struct rtk_phy *rtk_phy, int index, bool connect) { struct phy_cfg *phy_cfg = rtk_phy->phy_cfg; struct phy_reg *phy_reg; struct phy_parameter *phy_parameter; struct phy_data *phy_data; u8 addr; u16 data; int i; phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index]; phy_reg = &phy_parameter->phy_reg; if (!phy_cfg->do_toggle) return; i = PHY_ADDR_MAP_ARRAY_INDEX(PHY_ADDR_0X09); phy_data = phy_cfg->param + i; addr = phy_data->addr; data = phy_data->data; if (!addr && !data) { addr = PHY_ADDR_0X09; data = rtk_phy_read(phy_reg, addr); phy_data->addr = addr; phy_data->data = data; } rtk_phy_write(phy_reg, addr, data & (~REG_0X09_FORCE_CALIBRATION)); mdelay(1); rtk_phy_write(phy_reg, addr, data | REG_0X09_FORCE_CALIBRATION); } static int do_rtk_phy_init(struct rtk_phy *rtk_phy, int index) { struct phy_cfg *phy_cfg; struct phy_reg *phy_reg; struct phy_parameter *phy_parameter; int i = 0; phy_cfg = rtk_phy->phy_cfg; phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index]; phy_reg = &phy_parameter->phy_reg; if (phy_cfg->use_default_parameter) goto do_toggle; for (i = 0; i < phy_cfg->param_size; i++) { struct phy_data *phy_data = phy_cfg->param + i; u8 addr = phy_data->addr; u16 data = phy_data->data; if (!addr && !data) continue; rtk_phy_write(phy_reg, addr, data); } do_toggle: if (phy_cfg->do_toggle_once) phy_cfg->do_toggle = true; do_rtk_usb3_phy_toggle(rtk_phy, index, false); if (phy_cfg->do_toggle_once) { u16 check_value = 0; int count = 10; u16 value_0x0d, value_0x10; /* Enable Debug mode by set 0x0D and 0x10 */ value_0x0d = rtk_phy_read(phy_reg, PHY_ADDR_0X0D); value_0x10 = rtk_phy_read(phy_reg, PHY_ADDR_0X10); rtk_phy_write(phy_reg, PHY_ADDR_0X0D, value_0x0d | REG_0X0D_RX_DEBUG_TEST_EN); rtk_phy_write(phy_reg, PHY_ADDR_0X10, (value_0x10 & ~REG_0X10_DEBUG_MODE_SETTING_MASK) | REG_0X10_DEBUG_MODE_SETTING); check_value = rtk_phy_read(phy_reg, PHY_ADDR_0X30); while (!(check_value & BIT(15))) { check_value = rtk_phy_read(phy_reg, PHY_ADDR_0X30); mdelay(1); if (count-- < 0) break; } if (!(check_value & BIT(15))) dev_info(rtk_phy->dev, "toggle fail addr=0x%02x, data=0x%04x\n", PHY_ADDR_0X30, check_value); /* Disable Debug mode by set 0x0D and 0x10 to default*/ rtk_phy_write(phy_reg, PHY_ADDR_0X0D, value_0x0d); rtk_phy_write(phy_reg, PHY_ADDR_0X10, value_0x10); phy_cfg->do_toggle = false; } if (phy_cfg->check_rx_front_end_offset) { u16 rx_offset_code, rx_offset_range; u16 code_mask = REG_0X1F_RX_OFFSET_CODE_MASK; u16 range_mask = REG_0X0B_RX_OFFSET_RANGE_MASK; bool do_update = false; rx_offset_code = rtk_phy_read(phy_reg, PHY_ADDR_0X1F); if (((rx_offset_code & code_mask) == 0x0) || ((rx_offset_code & code_mask) == code_mask)) do_update = true; rx_offset_range = rtk_phy_read(phy_reg, PHY_ADDR_0X0B); if (((rx_offset_range & range_mask) == range_mask) && do_update) { dev_warn(rtk_phy->dev, "Don't update rx_offset_range (rx_offset_code=0x%x, rx_offset_range=0x%x)\n", rx_offset_code, rx_offset_range); do_update = false; } if (do_update) { u16 tmp1, tmp2; tmp1 = rx_offset_range & (~range_mask); tmp2 = rx_offset_range & range_mask; tmp2 += (1 << 2); rx_offset_range = tmp1 | (tmp2 & range_mask); rtk_phy_write(phy_reg, PHY_ADDR_0X0B, rx_offset_range); goto do_toggle; } } return 0; } static int rtk_phy_init(struct phy *phy) { struct rtk_phy *rtk_phy = phy_get_drvdata(phy); int ret = 0; int i; unsigned long phy_init_time = jiffies; for (i = 0; i < rtk_phy->num_phy; i++) ret = do_rtk_phy_init(rtk_phy, i); dev_dbg(rtk_phy->dev, "Initialized RTK USB 3.0 PHY (take %dms)\n", jiffies_to_msecs(jiffies - phy_init_time)); return ret; } static int rtk_phy_exit(struct phy *phy) { return 0; } static const struct phy_ops ops = { .init = rtk_phy_init, .exit = rtk_phy_exit, .owner = THIS_MODULE, }; static void rtk_phy_toggle(struct usb_phy *usb3_phy, bool connect, int port) { int index = port; struct rtk_phy *rtk_phy = NULL; rtk_phy = dev_get_drvdata(usb3_phy->dev); if (index > rtk_phy->num_phy) { dev_err(rtk_phy->dev, "%s: The port=%d is not in usb phy (num_phy=%d)\n", __func__, index, rtk_phy->num_phy); return; } do_rtk_usb3_phy_toggle(rtk_phy, index, connect); } static int rtk_phy_notify_port_status(struct usb_phy *x, int port, u16 portstatus, u16 portchange) { bool connect = false; pr_debug("%s port=%d portstatus=0x%x portchange=0x%x\n", __func__, port, (int)portstatus, (int)portchange); if (portstatus & USB_PORT_STAT_CONNECTION) connect = true; if (portchange & USB_PORT_STAT_C_CONNECTION) rtk_phy_toggle(x, connect, port); return 0; } #ifdef CONFIG_DEBUG_FS static struct dentry *create_phy_debug_root(void) { struct dentry *phy_debug_root; phy_debug_root = debugfs_lookup("phy", usb_debug_root); if (!phy_debug_root) phy_debug_root = debugfs_create_dir("phy", usb_debug_root); return phy_debug_root; } static int rtk_usb3_parameter_show(struct seq_file *s, void *unused) { struct rtk_phy *rtk_phy = s->private; struct phy_cfg *phy_cfg; int i, index; phy_cfg = rtk_phy->phy_cfg; seq_puts(s, "Property:\n"); seq_printf(s, " check_efuse: %s\n", phy_cfg->check_efuse ? "Enable" : "Disable"); seq_printf(s, " do_toggle: %s\n", phy_cfg->do_toggle ? "Enable" : "Disable"); seq_printf(s, " do_toggle_once: %s\n", phy_cfg->do_toggle_once ? "Enable" : "Disable"); seq_printf(s, " use_default_parameter: %s\n", phy_cfg->use_default_parameter ? "Enable" : "Disable"); for (index = 0; index < rtk_phy->num_phy; index++) { struct phy_reg *phy_reg; struct phy_parameter *phy_parameter; phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index]; phy_reg = &phy_parameter->phy_reg; seq_printf(s, "PHY %d:\n", index); for (i = 0; i < phy_cfg->param_size; i++) { struct phy_data *phy_data = phy_cfg->param + i; u8 addr = ARRAY_INDEX_MAP_PHY_ADDR(i); u16 data = phy_data->data; if (!phy_data->addr && !data) seq_printf(s, " addr = 0x%02x, data = none ==> read value = 0x%04x\n", addr, rtk_phy_read(phy_reg, addr)); else seq_printf(s, " addr = 0x%02x, data = 0x%04x ==> read value = 0x%04x\n", addr, data, rtk_phy_read(phy_reg, addr)); } seq_puts(s, "PHY Property:\n"); seq_printf(s, " efuse_usb_u3_tx_lfps_swing_trim: 0x%x\n", (int)phy_parameter->efuse_usb_u3_tx_lfps_swing_trim); seq_printf(s, " amplitude_control_coarse: 0x%x\n", (int)phy_parameter->amplitude_control_coarse); seq_printf(s, " amplitude_control_fine: 0x%x\n", (int)phy_parameter->amplitude_control_fine); } return 0; } DEFINE_SHOW_ATTRIBUTE(rtk_usb3_parameter); static inline void create_debug_files(struct rtk_phy *rtk_phy) { struct dentry *phy_debug_root = NULL; phy_debug_root = create_phy_debug_root(); if (!phy_debug_root) return; rtk_phy->debug_dir = debugfs_create_dir(dev_name(rtk_phy->dev), phy_debug_root); if (!rtk_phy->debug_dir) return; if (!debugfs_create_file("parameter", 0444, rtk_phy->debug_dir, rtk_phy, &rtk_usb3_parameter_fops)) goto file_error; return; file_error: debugfs_remove_recursive(rtk_phy->debug_dir); } static inline void remove_debug_files(struct rtk_phy *rtk_phy) { debugfs_remove_recursive(rtk_phy->debug_dir); } #else static inline void create_debug_files(struct rtk_phy *rtk_phy) { } static inline void remove_debug_files(struct rtk_phy *rtk_phy) { } #endif /* CONFIG_DEBUG_FS */ static int get_phy_data_by_efuse(struct rtk_phy *rtk_phy, struct phy_parameter *phy_parameter, int index) { struct phy_cfg *phy_cfg = rtk_phy->phy_cfg; u8 value = 0; struct nvmem_cell *cell; if (!phy_cfg->check_efuse) goto out; cell = nvmem_cell_get(rtk_phy->dev, "usb_u3_tx_lfps_swing_trim"); if (IS_ERR(cell)) { dev_dbg(rtk_phy->dev, "%s no usb_u3_tx_lfps_swing_trim: %ld\n", __func__, PTR_ERR(cell)); } else { unsigned char *buf; size_t buf_size; buf = nvmem_cell_read(cell, &buf_size); if (!IS_ERR(buf)) { value = buf[0] & USB_U3_TX_LFPS_SWING_TRIM_MASK; kfree(buf); } nvmem_cell_put(cell); } if (value > 0 && value < 0x8) phy_parameter->efuse_usb_u3_tx_lfps_swing_trim = 0x8; else phy_parameter->efuse_usb_u3_tx_lfps_swing_trim = (u8)value; out: return 0; } static void update_amplitude_control_value(struct rtk_phy *rtk_phy, struct phy_parameter *phy_parameter) { struct phy_cfg *phy_cfg; struct phy_reg *phy_reg; phy_reg = &phy_parameter->phy_reg; phy_cfg = rtk_phy->phy_cfg; if (phy_parameter->amplitude_control_coarse != AMPLITUDE_CONTROL_COARSE_DEFAULT) { u16 val_mask = AMPLITUDE_CONTROL_COARSE_MASK; u16 data; if (!phy_cfg->param[PHY_ADDR_0X20].addr && !phy_cfg->param[PHY_ADDR_0X20].data) { phy_cfg->param[PHY_ADDR_0X20].addr = PHY_ADDR_0X20; data = rtk_phy_read(phy_reg, PHY_ADDR_0X20); } else { data = phy_cfg->param[PHY_ADDR_0X20].data; } data &= (~val_mask); data |= (phy_parameter->amplitude_control_coarse & val_mask); phy_cfg->param[PHY_ADDR_0X20].data = data; } if (phy_parameter->efuse_usb_u3_tx_lfps_swing_trim) { u8 efuse_val = phy_parameter->efuse_usb_u3_tx_lfps_swing_trim; u16 val_mask = USB_U3_TX_LFPS_SWING_TRIM_MASK; int val_shift = USB_U3_TX_LFPS_SWING_TRIM_SHIFT; u16 data; if (!phy_cfg->param[PHY_ADDR_0X20].addr && !phy_cfg->param[PHY_ADDR_0X20].data) { phy_cfg->param[PHY_ADDR_0X20].addr = PHY_ADDR_0X20; data = rtk_phy_read(phy_reg, PHY_ADDR_0X20); } else { data = phy_cfg->param[PHY_ADDR_0X20].data; } data &= ~(val_mask << val_shift); data |= ((efuse_val & val_mask) << val_shift); phy_cfg->param[PHY_ADDR_0X20].data = data; } if (phy_parameter->amplitude_control_fine != AMPLITUDE_CONTROL_FINE_DEFAULT) { u16 val_mask = AMPLITUDE_CONTROL_FINE_MASK; if (!phy_cfg->param[PHY_ADDR_0X21].addr && !phy_cfg->param[PHY_ADDR_0X21].data) phy_cfg->param[PHY_ADDR_0X21].addr = PHY_ADDR_0X21; phy_cfg->param[PHY_ADDR_0X21].data = phy_parameter->amplitude_control_fine & val_mask; } } static int parse_phy_data(struct rtk_phy *rtk_phy) { struct device *dev = rtk_phy->dev; struct phy_parameter *phy_parameter; int ret = 0; int index; rtk_phy->phy_parameter = devm_kzalloc(dev, sizeof(struct phy_parameter) * rtk_phy->num_phy, GFP_KERNEL); if (!rtk_phy->phy_parameter) return -ENOMEM; for (index = 0; index < rtk_phy->num_phy; index++) { phy_parameter = &((struct phy_parameter *)rtk_phy->phy_parameter)[index]; phy_parameter->phy_reg.reg_mdio_ctl = of_iomap(dev->of_node, 0) + index; /* Amplitude control address 0x20 bit 0 to bit 7 */ if (of_property_read_u32(dev->of_node, "realtek,amplitude-control-coarse-tuning", &phy_parameter->amplitude_control_coarse)) phy_parameter->amplitude_control_coarse = AMPLITUDE_CONTROL_COARSE_DEFAULT; /* Amplitude control address 0x21 bit 0 to bit 16 */ if (of_property_read_u32(dev->of_node, "realtek,amplitude-control-fine-tuning", &phy_parameter->amplitude_control_fine)) phy_parameter->amplitude_control_fine = AMPLITUDE_CONTROL_FINE_DEFAULT; get_phy_data_by_efuse(rtk_phy, phy_parameter, index); update_amplitude_control_value(rtk_phy, phy_parameter); } return ret; } static int rtk_usb3phy_probe(struct platform_device *pdev) { struct rtk_phy *rtk_phy; struct device *dev = &pdev->dev; struct phy *generic_phy; struct phy_provider *phy_provider; const struct phy_cfg *phy_cfg; int ret; phy_cfg = of_device_get_match_data(dev); if (!phy_cfg) { dev_err(dev, "phy config are not assigned!\n"); return -EINVAL; } rtk_phy = devm_kzalloc(dev, sizeof(*rtk_phy), GFP_KERNEL); if (!rtk_phy) return -ENOMEM; rtk_phy->dev = &pdev->dev; rtk_phy->phy.dev = rtk_phy->dev; rtk_phy->phy.label = "rtk-usb3phy"; rtk_phy->phy.notify_port_status = rtk_phy_notify_port_status; rtk_phy->phy_cfg = devm_kzalloc(dev, sizeof(*phy_cfg), GFP_KERNEL); memcpy(rtk_phy->phy_cfg, phy_cfg, sizeof(*phy_cfg)); rtk_phy->num_phy = 1; ret = parse_phy_data(rtk_phy); if (ret) goto err; platform_set_drvdata(pdev, rtk_phy); generic_phy = devm_phy_create(rtk_phy->dev, NULL, &ops); if (IS_ERR(generic_phy)) return PTR_ERR(generic_phy); phy_set_drvdata(generic_phy, rtk_phy); phy_provider = devm_of_phy_provider_register(rtk_phy->dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) return PTR_ERR(phy_provider); ret = usb_add_phy_dev(&rtk_phy->phy); if (ret) goto err; create_debug_files(rtk_phy); err: return ret; } static void rtk_usb3phy_remove(struct platform_device *pdev) { struct rtk_phy *rtk_phy = platform_get_drvdata(pdev); remove_debug_files(rtk_phy); usb_remove_phy(&rtk_phy->phy); } static const struct phy_cfg rtd1295_phy_cfg = { .param_size = MAX_USB_PHY_DATA_SIZE, .param = { [0] = {0x01, 0x4008}, [1] = {0x01, 0xe046}, [2] = {0x02, 0x6046}, [3] = {0x03, 0x2779}, [4] = {0x04, 0x72f5}, [5] = {0x05, 0x2ad3}, [6] = {0x06, 0x000e}, [7] = {0x07, 0x2e00}, [8] = {0x08, 0x3591}, [9] = {0x09, 0x525c}, [10] = {0x0a, 0xa600}, [11] = {0x0b, 0xa904}, [12] = {0x0c, 0xc000}, [13] = {0x0d, 0xef1c}, [14] = {0x0e, 0x2000}, [15] = {0x0f, 0x0000}, [16] = {0x10, 0x000c}, [17] = {0x11, 0x4c00}, [18] = {0x12, 0xfc00}, [19] = {0x13, 0x0c81}, [20] = {0x14, 0xde01}, [21] = {0x15, 0x0000}, [22] = {0x16, 0x0000}, [23] = {0x17, 0x0000}, [24] = {0x18, 0x0000}, [25] = {0x19, 0x4004}, [26] = {0x1a, 0x1260}, [27] = {0x1b, 0xff00}, [28] = {0x1c, 0xcb00}, [29] = {0x1d, 0xa03f}, [30] = {0x1e, 0xc2e0}, [31] = {0x1f, 0x2807}, [32] = {0x20, 0x947a}, [33] = {0x21, 0x88aa}, [34] = {0x22, 0x0057}, [35] = {0x23, 0xab66}, [36] = {0x24, 0x0800}, [37] = {0x25, 0x0000}, [38] = {0x26, 0x040a}, [39] = {0x27, 0x01d6}, [40] = {0x28, 0xf8c2}, [41] = {0x29, 0x3080}, [42] = {0x2a, 0x3082}, [43] = {0x2b, 0x2078}, [44] = {0x2c, 0xffff}, [45] = {0x2d, 0xffff}, [46] = {0x2e, 0x0000}, [47] = {0x2f, 0x0040}, }, .check_efuse = false, .do_toggle = true, .do_toggle_once = false, .use_default_parameter = false, .check_rx_front_end_offset = false, }; static const struct phy_cfg rtd1619_phy_cfg = { .param_size = MAX_USB_PHY_DATA_SIZE, .param = { [8] = {0x08, 0x3591}, [38] = {0x26, 0x840b}, [40] = {0x28, 0xf842}, }, .check_efuse = false, .do_toggle = true, .do_toggle_once = false, .use_default_parameter = false, .check_rx_front_end_offset = false, }; static const struct phy_cfg rtd1319_phy_cfg = { .param_size = MAX_USB_PHY_DATA_SIZE, .param = { [1] = {0x01, 0xac86}, [6] = {0x06, 0x0003}, [9] = {0x09, 0x924c}, [10] = {0x0a, 0xa608}, [11] = {0x0b, 0xb905}, [14] = {0x0e, 0x2010}, [32] = {0x20, 0x705a}, [33] = {0x21, 0xf645}, [34] = {0x22, 0x0013}, [35] = {0x23, 0xcb66}, [41] = {0x29, 0xff00}, }, .check_efuse = true, .do_toggle = true, .do_toggle_once = false, .use_default_parameter = false, .check_rx_front_end_offset = false, }; static const struct phy_cfg rtd1619b_phy_cfg = { .param_size = MAX_USB_PHY_DATA_SIZE, .param = { [1] = {0x01, 0xac8c}, [6] = {0x06, 0x0017}, [9] = {0x09, 0x724c}, [10] = {0x0a, 0xb610}, [11] = {0x0b, 0xb90d}, [13] = {0x0d, 0xef2a}, [15] = {0x0f, 0x9050}, [16] = {0x10, 0x000c}, [32] = {0x20, 0x70ff}, [34] = {0x22, 0x0013}, [35] = {0x23, 0xdb66}, [38] = {0x26, 0x8609}, [41] = {0x29, 0xff13}, [42] = {0x2a, 0x3070}, }, .check_efuse = true, .do_toggle = false, .do_toggle_once = true, .use_default_parameter = false, .check_rx_front_end_offset = false, }; static const struct phy_cfg rtd1319d_phy_cfg = { .param_size = MAX_USB_PHY_DATA_SIZE, .param = { [1] = {0x01, 0xac89}, [4] = {0x04, 0xf2f5}, [6] = {0x06, 0x0017}, [9] = {0x09, 0x424c}, [10] = {0x0a, 0x9610}, [11] = {0x0b, 0x9901}, [12] = {0x0c, 0xf000}, [13] = {0x0d, 0xef2a}, [14] = {0x0e, 0x1000}, [15] = {0x0f, 0x9050}, [32] = {0x20, 0x7077}, [35] = {0x23, 0x0b62}, [37] = {0x25, 0x10ec}, [42] = {0x2a, 0x3070}, }, .check_efuse = true, .do_toggle = false, .do_toggle_once = true, .use_default_parameter = false, .check_rx_front_end_offset = true, }; static const struct of_device_id usbphy_rtk_dt_match[] = { { .compatible = "realtek,rtd1295-usb3phy", .data = &rtd1295_phy_cfg }, { .compatible = "realtek,rtd1319-usb3phy", .data = &rtd1319_phy_cfg }, { .compatible = "realtek,rtd1319d-usb3phy", .data = &rtd1319d_phy_cfg }, { .compatible = "realtek,rtd1619-usb3phy", .data = &rtd1619_phy_cfg }, { .compatible = "realtek,rtd1619b-usb3phy", .data = &rtd1619b_phy_cfg }, {}, }; MODULE_DEVICE_TABLE(of, usbphy_rtk_dt_match); static struct platform_driver rtk_usb3phy_driver = { .probe = rtk_usb3phy_probe, .remove_new = rtk_usb3phy_remove, .driver = { .name = "rtk-usb3phy", .of_match_table = usbphy_rtk_dt_match, }, }; module_platform_driver(rtk_usb3phy_driver); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform: rtk-usb3phy"); MODULE_AUTHOR("Stanley Chang <[email protected]>"); MODULE_DESCRIPTION("Realtek usb 3.0 phy driver");
linux-master
drivers/phy/realtek/phy-rtk-usb3.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay USB PHY driver * Copyright (C) 2020 Intel Corporation */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> /* USS (USB Subsystem) clock control registers */ #define USS_CPR_CLK_EN 0x00 #define USS_CPR_CLK_SET 0x04 #define USS_CPR_CLK_CLR 0x08 #define USS_CPR_RST_EN 0x10 #define USS_CPR_RST_SET 0x14 #define USS_CPR_RST_CLR 0x18 /* USS clock/reset bit fields */ #define USS_CPR_PHY_TST BIT(6) #define USS_CPR_LOW_JIT BIT(5) #define USS_CPR_CORE BIT(4) #define USS_CPR_SUSPEND BIT(3) #define USS_CPR_ALT_REF BIT(2) #define USS_CPR_REF BIT(1) #define USS_CPR_SYS BIT(0) #define USS_CPR_MASK GENMASK(6, 0) /* USS APB slave registers */ #define USS_USB_CTRL_CFG0 0x10 #define VCC_RESET_N_MASK BIT(31) #define USS_USB_PHY_CFG0 0x30 #define POR_MASK BIT(15) #define PHY_RESET_MASK BIT(14) #define PHY_REF_USE_PAD_MASK BIT(5) #define USS_USB_PHY_CFG6 0x64 #define PHY0_SRAM_EXT_LD_DONE_MASK BIT(23) #define USS_USB_PARALLEL_IF_CTRL 0xa0 #define USB_PHY_CR_PARA_SEL_MASK BIT(2) #define USS_USB_TSET_SIGNALS_AND_GLOB 0xac #define USB_PHY_CR_PARA_CLK_EN_MASK BIT(7) #define USS_USB_STATUS_REG 0xb8 #define PHY0_SRAM_INIT_DONE_MASK BIT(3) #define USS_USB_TIEOFFS_CONSTANTS_REG1 0xc0 #define IDDQ_ENABLE_MASK BIT(10) struct keembay_usb_phy { struct device *dev; struct regmap *regmap_cpr; struct regmap *regmap_slv; }; static const struct regmap_config keembay_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = USS_USB_TIEOFFS_CONSTANTS_REG1, }; static int keembay_usb_clocks_on(struct keembay_usb_phy *priv) { int ret; ret = regmap_update_bits(priv->regmap_cpr, USS_CPR_CLK_SET, USS_CPR_MASK, USS_CPR_MASK); if (ret) { dev_err(priv->dev, "error clock set: %d\n", ret); return ret; } ret = regmap_update_bits(priv->regmap_cpr, USS_CPR_RST_SET, USS_CPR_MASK, USS_CPR_MASK); if (ret) { dev_err(priv->dev, "error reset set: %d\n", ret); return ret; } ret = regmap_update_bits(priv->regmap_slv, USS_USB_TIEOFFS_CONSTANTS_REG1, IDDQ_ENABLE_MASK, FIELD_PREP(IDDQ_ENABLE_MASK, 0)); if (ret) { dev_err(priv->dev, "error iddq disable: %d\n", ret); return ret; } /* Wait 30us to ensure all analog blocks are powered up. */ usleep_range(30, 60); ret = regmap_update_bits(priv->regmap_slv, USS_USB_PHY_CFG0, PHY_REF_USE_PAD_MASK, FIELD_PREP(PHY_REF_USE_PAD_MASK, 1)); if (ret) dev_err(priv->dev, "error ref clock select: %d\n", ret); return ret; } static int keembay_usb_core_off(struct keembay_usb_phy *priv) { int ret; ret = regmap_update_bits(priv->regmap_slv, USS_USB_CTRL_CFG0, VCC_RESET_N_MASK, FIELD_PREP(VCC_RESET_N_MASK, 0)); if (ret) dev_err(priv->dev, "error core reset: %d\n", ret); return ret; } static int keembay_usb_core_on(struct keembay_usb_phy *priv) { int ret; ret = regmap_update_bits(priv->regmap_slv, USS_USB_CTRL_CFG0, VCC_RESET_N_MASK, FIELD_PREP(VCC_RESET_N_MASK, 1)); if (ret) dev_err(priv->dev, "error core on: %d\n", ret); return ret; } static int keembay_usb_phys_on(struct keembay_usb_phy *priv) { int ret; ret = regmap_update_bits(priv->regmap_slv, USS_USB_PHY_CFG0, POR_MASK | PHY_RESET_MASK, FIELD_PREP(POR_MASK | PHY_RESET_MASK, 0)); if (ret) dev_err(priv->dev, "error phys on: %d\n", ret); return ret; } static int keembay_usb_phy_init(struct phy *phy) { struct keembay_usb_phy *priv = phy_get_drvdata(phy); u32 val; int ret; ret = keembay_usb_core_off(priv); if (ret) return ret; /* * According to Keem Bay datasheet, wait minimum 20us after clock * enable before bringing PHYs out of reset. */ usleep_range(20, 40); ret = keembay_usb_phys_on(priv); if (ret) return ret; ret = regmap_update_bits(priv->regmap_slv, USS_USB_TSET_SIGNALS_AND_GLOB, USB_PHY_CR_PARA_CLK_EN_MASK, FIELD_PREP(USB_PHY_CR_PARA_CLK_EN_MASK, 0)); if (ret) { dev_err(priv->dev, "error cr clock disable: %d\n", ret); return ret; } /* * According to Keem Bay datasheet, wait 2us after disabling the * clock into the USB 3.x parallel interface. */ udelay(2); ret = regmap_update_bits(priv->regmap_slv, USS_USB_PARALLEL_IF_CTRL, USB_PHY_CR_PARA_SEL_MASK, FIELD_PREP(USB_PHY_CR_PARA_SEL_MASK, 1)); if (ret) { dev_err(priv->dev, "error cr select: %d\n", ret); return ret; } ret = regmap_update_bits(priv->regmap_slv, USS_USB_TSET_SIGNALS_AND_GLOB, USB_PHY_CR_PARA_CLK_EN_MASK, FIELD_PREP(USB_PHY_CR_PARA_CLK_EN_MASK, 1)); if (ret) { dev_err(priv->dev, "error cr clock enable: %d\n", ret); return ret; } ret = regmap_read_poll_timeout(priv->regmap_slv, USS_USB_STATUS_REG, val, val & PHY0_SRAM_INIT_DONE_MASK, USEC_PER_MSEC, 10 * USEC_PER_MSEC); if (ret) { dev_err(priv->dev, "SRAM init not done: %d\n", ret); return ret; } ret = regmap_update_bits(priv->regmap_slv, USS_USB_PHY_CFG6, PHY0_SRAM_EXT_LD_DONE_MASK, FIELD_PREP(PHY0_SRAM_EXT_LD_DONE_MASK, 1)); if (ret) { dev_err(priv->dev, "error SRAM init done set: %d\n", ret); return ret; } /* * According to Keem Bay datasheet, wait 20us after setting the * SRAM load done bit, before releasing the controller reset. */ usleep_range(20, 40); return keembay_usb_core_on(priv); } static const struct phy_ops ops = { .init = keembay_usb_phy_init, .owner = THIS_MODULE, }; static int keembay_usb_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct keembay_usb_phy *priv; struct phy *generic_phy; struct phy_provider *phy_provider; void __iomem *base; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; base = devm_platform_ioremap_resource_byname(pdev, "cpr-apb-base"); if (IS_ERR(base)) return PTR_ERR(base); priv->regmap_cpr = devm_regmap_init_mmio(dev, base, &keembay_regmap_config); if (IS_ERR(priv->regmap_cpr)) return PTR_ERR(priv->regmap_cpr); base = devm_platform_ioremap_resource_byname(pdev, "slv-apb-base"); if (IS_ERR(base)) return PTR_ERR(base); priv->regmap_slv = devm_regmap_init_mmio(dev, base, &keembay_regmap_config); if (IS_ERR(priv->regmap_slv)) return PTR_ERR(priv->regmap_slv); generic_phy = devm_phy_create(dev, dev->of_node, &ops); if (IS_ERR(generic_phy)) return dev_err_probe(dev, PTR_ERR(generic_phy), "failed to create PHY\n"); phy_set_drvdata(generic_phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) return dev_err_probe(dev, PTR_ERR(phy_provider), "failed to register phy provider\n"); /* Setup USB subsystem clocks */ ret = keembay_usb_clocks_on(priv); if (ret) return ret; /* and turn on the DWC3 core, prior to DWC3 driver init. */ return keembay_usb_core_on(priv); } static const struct of_device_id keembay_usb_phy_dt_ids[] = { { .compatible = "intel,keembay-usb-phy" }, {} }; MODULE_DEVICE_TABLE(of, keembay_usb_phy_dt_ids); static struct platform_driver keembay_usb_phy_driver = { .probe = keembay_usb_phy_probe, .driver = { .name = "keembay-usb-phy", .of_match_table = keembay_usb_phy_dt_ids, }, }; module_platform_driver(keembay_usb_phy_driver); MODULE_AUTHOR("Wan Ahmad Zainie <[email protected]>"); MODULE_DESCRIPTION("Intel Keem Bay USB PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/intel/phy-intel-keembay-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Combo-PHY driver * * Copyright (C) 2019-2020 Intel Corporation. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/reset.h> #include <dt-bindings/phy/phy.h> #define PCIE_PHY_GEN_CTRL 0x00 #define PCIE_PHY_CLK_PAD BIT(17) #define PAD_DIS_CFG 0x174 #define PCS_XF_ATE_OVRD_IN_2 0x3008 #define ADAPT_REQ_MSK GENMASK(5, 4) #define PCS_XF_RX_ADAPT_ACK 0x3010 #define RX_ADAPT_ACK_BIT BIT(0) #define CR_ADDR(addr, lane) (((addr) + (lane) * 0x100) << 2) #define REG_COMBO_MODE(x) ((x) * 0x200) #define REG_CLK_DISABLE(x) ((x) * 0x200 + 0x124) #define COMBO_PHY_ID(x) ((x)->parent->id) #define PHY_ID(x) ((x)->id) #define CLK_100MHZ 100000000 #define CLK_156_25MHZ 156250000 static const unsigned long intel_iphy_clk_rates[] = { CLK_100MHZ, CLK_156_25MHZ, CLK_100MHZ, }; enum { PHY_0, PHY_1, PHY_MAX_NUM }; /* * Clock Register bit fields to enable clocks * for ComboPhy according to the mode. */ enum intel_phy_mode { PHY_PCIE_MODE = 0, PHY_XPCS_MODE, PHY_SATA_MODE, }; /* ComboPhy mode Register values */ enum intel_combo_mode { PCIE0_PCIE1_MODE = 0, PCIE_DL_MODE, RXAUI_MODE, XPCS0_XPCS1_MODE, SATA0_SATA1_MODE, }; enum aggregated_mode { PHY_SL_MODE, PHY_DL_MODE, }; struct intel_combo_phy; struct intel_cbphy_iphy { struct phy *phy; struct intel_combo_phy *parent; struct reset_control *app_rst; u32 id; }; struct intel_combo_phy { struct device *dev; struct clk *core_clk; unsigned long clk_rate; void __iomem *app_base; void __iomem *cr_base; struct regmap *syscfg; struct regmap *hsiocfg; u32 id; u32 bid; struct reset_control *phy_rst; struct reset_control *core_rst; struct intel_cbphy_iphy iphy[PHY_MAX_NUM]; enum intel_phy_mode phy_mode; enum aggregated_mode aggr_mode; u32 init_cnt; struct mutex lock; }; static int intel_cbphy_iphy_enable(struct intel_cbphy_iphy *iphy, bool set) { struct intel_combo_phy *cbphy = iphy->parent; u32 mask = BIT(cbphy->phy_mode * 2 + iphy->id); u32 val; /* Register: 0 is enable, 1 is disable */ val = set ? 0 : mask; return regmap_update_bits(cbphy->hsiocfg, REG_CLK_DISABLE(cbphy->bid), mask, val); } static int intel_cbphy_pcie_refclk_cfg(struct intel_cbphy_iphy *iphy, bool set) { struct intel_combo_phy *cbphy = iphy->parent; u32 mask = BIT(cbphy->id * 2 + iphy->id); u32 val; /* Register: 0 is enable, 1 is disable */ val = set ? 0 : mask; return regmap_update_bits(cbphy->syscfg, PAD_DIS_CFG, mask, val); } static inline void combo_phy_w32_off_mask(void __iomem *base, unsigned int reg, u32 mask, u32 val) { u32 reg_val; reg_val = readl(base + reg); reg_val &= ~mask; reg_val |= val; writel(reg_val, base + reg); } static int intel_cbphy_iphy_cfg(struct intel_cbphy_iphy *iphy, int (*phy_cfg)(struct intel_cbphy_iphy *)) { struct intel_combo_phy *cbphy = iphy->parent; int ret; ret = phy_cfg(iphy); if (ret) return ret; if (cbphy->aggr_mode != PHY_DL_MODE) return 0; return phy_cfg(&cbphy->iphy[PHY_1]); } static int intel_cbphy_pcie_en_pad_refclk(struct intel_cbphy_iphy *iphy) { struct intel_combo_phy *cbphy = iphy->parent; int ret; ret = intel_cbphy_pcie_refclk_cfg(iphy, true); if (ret) { dev_err(cbphy->dev, "Failed to enable PCIe pad refclk\n"); return ret; } if (cbphy->init_cnt) return 0; combo_phy_w32_off_mask(cbphy->app_base, PCIE_PHY_GEN_CTRL, PCIE_PHY_CLK_PAD, FIELD_PREP(PCIE_PHY_CLK_PAD, 0)); /* Delay for stable clock PLL */ usleep_range(50, 100); return 0; } static int intel_cbphy_pcie_dis_pad_refclk(struct intel_cbphy_iphy *iphy) { struct intel_combo_phy *cbphy = iphy->parent; int ret; ret = intel_cbphy_pcie_refclk_cfg(iphy, false); if (ret) { dev_err(cbphy->dev, "Failed to disable PCIe pad refclk\n"); return ret; } if (cbphy->init_cnt) return 0; combo_phy_w32_off_mask(cbphy->app_base, PCIE_PHY_GEN_CTRL, PCIE_PHY_CLK_PAD, FIELD_PREP(PCIE_PHY_CLK_PAD, 1)); return 0; } static int intel_cbphy_set_mode(struct intel_combo_phy *cbphy) { enum intel_combo_mode cb_mode; enum aggregated_mode aggr = cbphy->aggr_mode; struct device *dev = cbphy->dev; enum intel_phy_mode mode; int ret; mode = cbphy->phy_mode; switch (mode) { case PHY_PCIE_MODE: cb_mode = (aggr == PHY_DL_MODE) ? PCIE_DL_MODE : PCIE0_PCIE1_MODE; break; case PHY_XPCS_MODE: cb_mode = (aggr == PHY_DL_MODE) ? RXAUI_MODE : XPCS0_XPCS1_MODE; break; case PHY_SATA_MODE: if (aggr == PHY_DL_MODE) { dev_err(dev, "Mode:%u not support dual lane!\n", mode); return -EINVAL; } cb_mode = SATA0_SATA1_MODE; break; default: return -EINVAL; } ret = regmap_write(cbphy->hsiocfg, REG_COMBO_MODE(cbphy->bid), cb_mode); if (ret) dev_err(dev, "Failed to set ComboPhy mode: %d\n", ret); return ret; } static void intel_cbphy_rst_assert(struct intel_combo_phy *cbphy) { reset_control_assert(cbphy->core_rst); reset_control_assert(cbphy->phy_rst); } static void intel_cbphy_rst_deassert(struct intel_combo_phy *cbphy) { reset_control_deassert(cbphy->core_rst); reset_control_deassert(cbphy->phy_rst); /* Delay to ensure reset process is done */ usleep_range(10, 20); } static int intel_cbphy_iphy_power_on(struct intel_cbphy_iphy *iphy) { struct intel_combo_phy *cbphy = iphy->parent; int ret; if (!cbphy->init_cnt) { ret = clk_prepare_enable(cbphy->core_clk); if (ret) { dev_err(cbphy->dev, "Clock enable failed!\n"); return ret; } ret = clk_set_rate(cbphy->core_clk, cbphy->clk_rate); if (ret) { dev_err(cbphy->dev, "Clock freq set to %lu failed!\n", cbphy->clk_rate); goto clk_err; } intel_cbphy_rst_assert(cbphy); intel_cbphy_rst_deassert(cbphy); ret = intel_cbphy_set_mode(cbphy); if (ret) goto clk_err; } ret = intel_cbphy_iphy_enable(iphy, true); if (ret) { dev_err(cbphy->dev, "Failed enabling PHY core\n"); goto clk_err; } ret = reset_control_deassert(iphy->app_rst); if (ret) { dev_err(cbphy->dev, "PHY(%u:%u) reset deassert failed!\n", COMBO_PHY_ID(iphy), PHY_ID(iphy)); goto clk_err; } /* Delay to ensure reset process is done */ udelay(1); return 0; clk_err: clk_disable_unprepare(cbphy->core_clk); return ret; } static int intel_cbphy_iphy_power_off(struct intel_cbphy_iphy *iphy) { struct intel_combo_phy *cbphy = iphy->parent; int ret; ret = reset_control_assert(iphy->app_rst); if (ret) { dev_err(cbphy->dev, "PHY(%u:%u) reset assert failed!\n", COMBO_PHY_ID(iphy), PHY_ID(iphy)); return ret; } ret = intel_cbphy_iphy_enable(iphy, false); if (ret) { dev_err(cbphy->dev, "Failed disabling PHY core\n"); return ret; } if (cbphy->init_cnt) return 0; clk_disable_unprepare(cbphy->core_clk); intel_cbphy_rst_assert(cbphy); return 0; } static int intel_cbphy_init(struct phy *phy) { struct intel_cbphy_iphy *iphy = phy_get_drvdata(phy); struct intel_combo_phy *cbphy = iphy->parent; int ret; mutex_lock(&cbphy->lock); ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_iphy_power_on); if (ret) goto err; if (cbphy->phy_mode == PHY_PCIE_MODE) { ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_pcie_en_pad_refclk); if (ret) goto err; } cbphy->init_cnt++; err: mutex_unlock(&cbphy->lock); return ret; } static int intel_cbphy_exit(struct phy *phy) { struct intel_cbphy_iphy *iphy = phy_get_drvdata(phy); struct intel_combo_phy *cbphy = iphy->parent; int ret; mutex_lock(&cbphy->lock); cbphy->init_cnt--; if (cbphy->phy_mode == PHY_PCIE_MODE) { ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_pcie_dis_pad_refclk); if (ret) goto err; } ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_iphy_power_off); err: mutex_unlock(&cbphy->lock); return ret; } static int intel_cbphy_calibrate(struct phy *phy) { struct intel_cbphy_iphy *iphy = phy_get_drvdata(phy); struct intel_combo_phy *cbphy = iphy->parent; void __iomem *cr_base = cbphy->cr_base; int val, ret, id; if (cbphy->phy_mode != PHY_XPCS_MODE) return 0; id = PHY_ID(iphy); /* trigger auto RX adaptation */ combo_phy_w32_off_mask(cr_base, CR_ADDR(PCS_XF_ATE_OVRD_IN_2, id), ADAPT_REQ_MSK, FIELD_PREP(ADAPT_REQ_MSK, 3)); /* Wait RX adaptation to finish */ ret = readl_poll_timeout(cr_base + CR_ADDR(PCS_XF_RX_ADAPT_ACK, id), val, val & RX_ADAPT_ACK_BIT, 10, 5000); if (ret) dev_err(cbphy->dev, "RX Adaptation failed!\n"); else dev_dbg(cbphy->dev, "RX Adaptation success!\n"); /* Stop RX adaptation */ combo_phy_w32_off_mask(cr_base, CR_ADDR(PCS_XF_ATE_OVRD_IN_2, id), ADAPT_REQ_MSK, FIELD_PREP(ADAPT_REQ_MSK, 0)); return ret; } static int intel_cbphy_fwnode_parse(struct intel_combo_phy *cbphy) { struct device *dev = cbphy->dev; struct platform_device *pdev = to_platform_device(dev); struct fwnode_handle *fwnode = dev_fwnode(dev); struct fwnode_reference_args ref; int ret; u32 val; cbphy->core_clk = devm_clk_get(dev, NULL); if (IS_ERR(cbphy->core_clk)) return dev_err_probe(dev, PTR_ERR(cbphy->core_clk), "Get clk failed!\n"); cbphy->core_rst = devm_reset_control_get_optional(dev, "core"); if (IS_ERR(cbphy->core_rst)) return dev_err_probe(dev, PTR_ERR(cbphy->core_rst), "Get core reset control err!\n"); cbphy->phy_rst = devm_reset_control_get_optional(dev, "phy"); if (IS_ERR(cbphy->phy_rst)) return dev_err_probe(dev, PTR_ERR(cbphy->phy_rst), "Get PHY reset control err!\n"); cbphy->iphy[0].app_rst = devm_reset_control_get_optional(dev, "iphy0"); if (IS_ERR(cbphy->iphy[0].app_rst)) return dev_err_probe(dev, PTR_ERR(cbphy->iphy[0].app_rst), "Get phy0 reset control err!\n"); cbphy->iphy[1].app_rst = devm_reset_control_get_optional(dev, "iphy1"); if (IS_ERR(cbphy->iphy[1].app_rst)) return dev_err_probe(dev, PTR_ERR(cbphy->iphy[1].app_rst), "Get phy1 reset control err!\n"); cbphy->app_base = devm_platform_ioremap_resource_byname(pdev, "app"); if (IS_ERR(cbphy->app_base)) return PTR_ERR(cbphy->app_base); cbphy->cr_base = devm_platform_ioremap_resource_byname(pdev, "core"); if (IS_ERR(cbphy->cr_base)) return PTR_ERR(cbphy->cr_base); /* * syscfg and hsiocfg variables stores the handle of the registers set * in which ComboPhy subsystem specific registers are subset. Using * Register map framework to access the registers set. */ ret = fwnode_property_get_reference_args(fwnode, "intel,syscfg", NULL, 1, 0, &ref); if (ret < 0) return ret; cbphy->id = ref.args[0]; cbphy->syscfg = device_node_to_regmap(to_of_node(ref.fwnode)); fwnode_handle_put(ref.fwnode); ret = fwnode_property_get_reference_args(fwnode, "intel,hsio", NULL, 1, 0, &ref); if (ret < 0) return ret; cbphy->bid = ref.args[0]; cbphy->hsiocfg = device_node_to_regmap(to_of_node(ref.fwnode)); fwnode_handle_put(ref.fwnode); ret = fwnode_property_read_u32_array(fwnode, "intel,phy-mode", &val, 1); if (ret) return ret; switch (val) { case PHY_TYPE_PCIE: cbphy->phy_mode = PHY_PCIE_MODE; break; case PHY_TYPE_SATA: cbphy->phy_mode = PHY_SATA_MODE; break; case PHY_TYPE_XPCS: cbphy->phy_mode = PHY_XPCS_MODE; break; default: dev_err(dev, "Invalid PHY mode: %u\n", val); return -EINVAL; } cbphy->clk_rate = intel_iphy_clk_rates[cbphy->phy_mode]; if (fwnode_property_present(fwnode, "intel,aggregation")) cbphy->aggr_mode = PHY_DL_MODE; else cbphy->aggr_mode = PHY_SL_MODE; return 0; } static const struct phy_ops intel_cbphy_ops = { .init = intel_cbphy_init, .exit = intel_cbphy_exit, .calibrate = intel_cbphy_calibrate, .owner = THIS_MODULE, }; static struct phy *intel_cbphy_xlate(struct device *dev, struct of_phandle_args *args) { struct intel_combo_phy *cbphy = dev_get_drvdata(dev); u32 iphy_id; if (args->args_count < 1) { dev_err(dev, "Invalid number of arguments\n"); return ERR_PTR(-EINVAL); } iphy_id = args->args[0]; if (iphy_id >= PHY_MAX_NUM) { dev_err(dev, "Invalid phy instance %d\n", iphy_id); return ERR_PTR(-EINVAL); } if (cbphy->aggr_mode == PHY_DL_MODE && iphy_id == PHY_1) { dev_err(dev, "Invalid. ComboPhy is in Dual lane mode %d\n", iphy_id); return ERR_PTR(-EINVAL); } return cbphy->iphy[iphy_id].phy; } static int intel_cbphy_create(struct intel_combo_phy *cbphy) { struct phy_provider *phy_provider; struct device *dev = cbphy->dev; struct intel_cbphy_iphy *iphy; int i; for (i = 0; i < PHY_MAX_NUM; i++) { iphy = &cbphy->iphy[i]; iphy->parent = cbphy; iphy->id = i; /* In dual lane mode skip phy creation for the second phy */ if (cbphy->aggr_mode == PHY_DL_MODE && iphy->id == PHY_1) continue; iphy->phy = devm_phy_create(dev, NULL, &intel_cbphy_ops); if (IS_ERR(iphy->phy)) { dev_err(dev, "PHY[%u:%u]: create PHY instance failed!\n", COMBO_PHY_ID(iphy), PHY_ID(iphy)); return PTR_ERR(iphy->phy); } phy_set_drvdata(iphy->phy, iphy); } dev_set_drvdata(dev, cbphy); phy_provider = devm_of_phy_provider_register(dev, intel_cbphy_xlate); if (IS_ERR(phy_provider)) dev_err(dev, "Register PHY provider failed!\n"); return PTR_ERR_OR_ZERO(phy_provider); } static int intel_cbphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct intel_combo_phy *cbphy; int ret; cbphy = devm_kzalloc(dev, sizeof(*cbphy), GFP_KERNEL); if (!cbphy) return -ENOMEM; cbphy->dev = dev; cbphy->init_cnt = 0; mutex_init(&cbphy->lock); ret = intel_cbphy_fwnode_parse(cbphy); if (ret) return ret; platform_set_drvdata(pdev, cbphy); return intel_cbphy_create(cbphy); } static void intel_cbphy_remove(struct platform_device *pdev) { struct intel_combo_phy *cbphy = platform_get_drvdata(pdev); intel_cbphy_rst_assert(cbphy); clk_disable_unprepare(cbphy->core_clk); } static const struct of_device_id of_intel_cbphy_match[] = { { .compatible = "intel,combo-phy" }, { .compatible = "intel,combophy-lgm" }, {} }; static struct platform_driver intel_cbphy_driver = { .probe = intel_cbphy_probe, .remove_new = intel_cbphy_remove, .driver = { .name = "intel-combo-phy", .of_match_table = of_intel_cbphy_match, } }; module_platform_driver(intel_cbphy_driver); MODULE_DESCRIPTION("Intel Combo-phy driver");
linux-master
drivers/phy/intel/phy-intel-lgm-combo.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay eMMC PHY driver * Copyright (C) 2020 Intel Corporation */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> /* eMMC/SD/SDIO core/phy configuration registers */ #define PHY_CFG_0 0x24 #define SEL_DLY_TXCLK_MASK BIT(29) #define OTAP_DLY_ENA_MASK BIT(27) #define OTAP_DLY_SEL_MASK GENMASK(26, 23) #define DLL_EN_MASK BIT(10) #define PWR_DOWN_MASK BIT(0) #define PHY_CFG_2 0x2c #define SEL_FREQ_MASK GENMASK(12, 10) #define PHY_STAT 0x40 #define CAL_DONE_MASK BIT(6) #define IS_CALDONE(x) ((x) & CAL_DONE_MASK) #define DLL_RDY_MASK BIT(5) #define IS_DLLRDY(x) ((x) & DLL_RDY_MASK) /* From ACS_eMMC51_16nFFC_RO1100_Userguide_v1p0.pdf p17 */ #define FREQSEL_200M_170M 0x0 #define FREQSEL_170M_140M 0x1 #define FREQSEL_140M_110M 0x2 #define FREQSEL_110M_80M 0x3 #define FREQSEL_80M_50M 0x4 struct keembay_emmc_phy { struct regmap *syscfg; struct clk *emmcclk; }; static const struct regmap_config keembay_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, }; static int keembay_emmc_phy_power(struct phy *phy, bool on_off) { struct keembay_emmc_phy *priv = phy_get_drvdata(phy); unsigned int caldone; unsigned int dllrdy; unsigned int freqsel; unsigned int mhz; int ret; /* * Keep phyctrl_pdb and phyctrl_endll low to allow * initialization of CALIO state M/C DFFs */ ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, PWR_DOWN_MASK, FIELD_PREP(PWR_DOWN_MASK, 0)); if (ret) { dev_err(&phy->dev, "CALIO power down bar failed: %d\n", ret); return ret; } ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, DLL_EN_MASK, FIELD_PREP(DLL_EN_MASK, 0)); if (ret) { dev_err(&phy->dev, "turn off the dll failed: %d\n", ret); return ret; } /* Already finish power off above */ if (!on_off) return 0; mhz = DIV_ROUND_CLOSEST(clk_get_rate(priv->emmcclk), 1000000); if (mhz <= 200 && mhz >= 170) freqsel = FREQSEL_200M_170M; else if (mhz <= 170 && mhz >= 140) freqsel = FREQSEL_170M_140M; else if (mhz <= 140 && mhz >= 110) freqsel = FREQSEL_140M_110M; else if (mhz <= 110 && mhz >= 80) freqsel = FREQSEL_110M_80M; else if (mhz <= 80 && mhz >= 50) freqsel = FREQSEL_80M_50M; else freqsel = 0x0; /* Check for EMMC clock rate*/ if (mhz > 175) dev_warn(&phy->dev, "Unsupported rate: %d MHz\n", mhz); /* * According to the user manual, calpad calibration * cycle takes more than 2us without the minimal recommended * value, so we may need a little margin here */ udelay(5); ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, PWR_DOWN_MASK, FIELD_PREP(PWR_DOWN_MASK, 1)); if (ret) { dev_err(&phy->dev, "CALIO power down bar failed: %d\n", ret); return ret; } /* * According to the user manual, it asks driver to wait 5us for * calpad busy trimming. However it is documented that this value is * PVT(A.K.A. process, voltage and temperature) relevant, so some * failure cases are found which indicates we should be more tolerant * to calpad busy trimming. */ ret = regmap_read_poll_timeout(priv->syscfg, PHY_STAT, caldone, IS_CALDONE(caldone), 0, 50); if (ret) { dev_err(&phy->dev, "caldone failed, ret=%d\n", ret); return ret; } /* Set the frequency of the DLL operation */ ret = regmap_update_bits(priv->syscfg, PHY_CFG_2, SEL_FREQ_MASK, FIELD_PREP(SEL_FREQ_MASK, freqsel)); if (ret) { dev_err(&phy->dev, "set the frequency of dll failed:%d\n", ret); return ret; } /* Turn on the DLL */ ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, DLL_EN_MASK, FIELD_PREP(DLL_EN_MASK, 1)); if (ret) { dev_err(&phy->dev, "turn on the dll failed: %d\n", ret); return ret; } /* * We turned on the DLL even though the rate was 0 because we the * clock might be turned on later. ...but we can't wait for the DLL * to lock when the rate is 0 because it will never lock with no * input clock. * * Technically we should be checking the lock later when the clock * is turned on, but for now we won't. */ if (mhz == 0) return 0; /* * After enabling analog DLL circuits docs say that we need 10.2 us if * our source clock is at 50 MHz and that lock time scales linearly * with clock speed. If we are powering on the PHY and the card clock * is super slow (like 100kHz) this could take as long as 5.1 ms as * per the math: 10.2 us * (50000000 Hz / 100000 Hz) => 5.1 ms * hopefully we won't be running at 100 kHz, but we should still make * sure we wait long enough. * * NOTE: There appear to be corner cases where the DLL seems to take * extra long to lock for reasons that aren't understood. In some * extreme cases we've seen it take up to over 10ms (!). We'll be * generous and give it 50ms. */ ret = regmap_read_poll_timeout(priv->syscfg, PHY_STAT, dllrdy, IS_DLLRDY(dllrdy), 0, 50 * USEC_PER_MSEC); if (ret) dev_err(&phy->dev, "dllrdy failed, ret=%d\n", ret); return ret; } static int keembay_emmc_phy_init(struct phy *phy) { struct keembay_emmc_phy *priv = phy_get_drvdata(phy); /* * We purposely get the clock here and not in probe to avoid the * circular dependency problem. We expect: * - PHY driver to probe * - SDHCI driver to start probe * - SDHCI driver to register it's clock * - SDHCI driver to get the PHY * - SDHCI driver to init the PHY * * The clock is optional, so upon any error just return it like * any other error to user. */ priv->emmcclk = clk_get_optional(&phy->dev, "emmcclk"); return PTR_ERR_OR_ZERO(priv->emmcclk); } static int keembay_emmc_phy_exit(struct phy *phy) { struct keembay_emmc_phy *priv = phy_get_drvdata(phy); clk_put(priv->emmcclk); return 0; }; static int keembay_emmc_phy_power_on(struct phy *phy) { struct keembay_emmc_phy *priv = phy_get_drvdata(phy); int ret; /* Delay chain based txclk: enable */ ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, SEL_DLY_TXCLK_MASK, FIELD_PREP(SEL_DLY_TXCLK_MASK, 1)); if (ret) { dev_err(&phy->dev, "ERROR: delay chain txclk set: %d\n", ret); return ret; } /* Output tap delay: enable */ ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, OTAP_DLY_ENA_MASK, FIELD_PREP(OTAP_DLY_ENA_MASK, 1)); if (ret) { dev_err(&phy->dev, "ERROR: output tap delay set: %d\n", ret); return ret; } /* Output tap delay */ ret = regmap_update_bits(priv->syscfg, PHY_CFG_0, OTAP_DLY_SEL_MASK, FIELD_PREP(OTAP_DLY_SEL_MASK, 2)); if (ret) { dev_err(&phy->dev, "ERROR: output tap delay select: %d\n", ret); return ret; } /* Power up eMMC phy analog blocks */ return keembay_emmc_phy_power(phy, true); } static int keembay_emmc_phy_power_off(struct phy *phy) { /* Power down eMMC phy analog blocks */ return keembay_emmc_phy_power(phy, false); } static const struct phy_ops ops = { .init = keembay_emmc_phy_init, .exit = keembay_emmc_phy_exit, .power_on = keembay_emmc_phy_power_on, .power_off = keembay_emmc_phy_power_off, .owner = THIS_MODULE, }; static int keembay_emmc_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct keembay_emmc_phy *priv; struct phy *generic_phy; struct phy_provider *phy_provider; void __iomem *base; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); priv->syscfg = devm_regmap_init_mmio(dev, base, &keembay_regmap_config); if (IS_ERR(priv->syscfg)) return PTR_ERR(priv->syscfg); generic_phy = devm_phy_create(dev, np, &ops); if (IS_ERR(generic_phy)) return dev_err_probe(dev, PTR_ERR(generic_phy), "failed to create PHY\n"); phy_set_drvdata(generic_phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id keembay_emmc_phy_dt_ids[] = { { .compatible = "intel,keembay-emmc-phy" }, {} }; MODULE_DEVICE_TABLE(of, keembay_emmc_phy_dt_ids); static struct platform_driver keembay_emmc_phy_driver = { .probe = keembay_emmc_phy_probe, .driver = { .name = "keembay-emmc-phy", .of_match_table = keembay_emmc_phy_dt_ids, }, }; module_platform_driver(keembay_emmc_phy_driver); MODULE_AUTHOR("Wan Ahmad Zainie <[email protected]>"); MODULE_DESCRIPTION("Intel Keem Bay eMMC PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/intel/phy-intel-keembay-emmc.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel eMMC PHY driver * Copyright (C) 2019 Intel, Corp. */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> /* eMMC phy register definitions */ #define EMMC_PHYCTRL0_REG 0xa8 #define DR_TY_MASK GENMASK(30, 28) #define DR_TY_SHIFT(x) (((x) << 28) & DR_TY_MASK) #define OTAPDLYENA BIT(14) #define OTAPDLYSEL_MASK GENMASK(13, 10) #define OTAPDLYSEL_SHIFT(x) (((x) << 10) & OTAPDLYSEL_MASK) #define EMMC_PHYCTRL1_REG 0xac #define PDB_MASK BIT(0) #define PDB_SHIFT(x) (((x) << 0) & PDB_MASK) #define ENDLL_MASK BIT(7) #define ENDLL_SHIFT(x) (((x) << 7) & ENDLL_MASK) #define EMMC_PHYCTRL2_REG 0xb0 #define FRQSEL_25M 0 #define FRQSEL_50M 1 #define FRQSEL_100M 2 #define FRQSEL_150M 3 #define FRQSEL_MASK GENMASK(24, 22) #define FRQSEL_SHIFT(x) (((x) << 22) & FRQSEL_MASK) #define EMMC_PHYSTAT_REG 0xbc #define CALDONE_MASK BIT(9) #define DLLRDY_MASK BIT(8) #define IS_CALDONE(x) ((x) & CALDONE_MASK) #define IS_DLLRDY(x) ((x) & DLLRDY_MASK) struct intel_emmc_phy { struct regmap *syscfg; struct clk *emmcclk; }; static int intel_emmc_phy_power(struct phy *phy, bool on_off) { struct intel_emmc_phy *priv = phy_get_drvdata(phy); unsigned int caldone; unsigned int dllrdy; unsigned int freqsel; unsigned long rate; int ret, quot; /* * Keep phyctrl_pdb and phyctrl_endll low to allow * initialization of CALIO state M/C DFFs */ ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL1_REG, PDB_MASK, PDB_SHIFT(0)); if (ret) { dev_err(&phy->dev, "CALIO power down bar failed: %d\n", ret); return ret; } /* Already finish power_off above */ if (!on_off) return 0; rate = clk_get_rate(priv->emmcclk); quot = DIV_ROUND_CLOSEST(rate, 50000000); if (quot > FRQSEL_150M) dev_warn(&phy->dev, "Unsupported rate: %lu\n", rate); freqsel = clamp_t(int, quot, FRQSEL_25M, FRQSEL_150M); /* * According to the user manual, calpad calibration * cycle takes more than 2us without the minimal recommended * value, so we may need a little margin here */ udelay(5); ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL1_REG, PDB_MASK, PDB_SHIFT(1)); if (ret) { dev_err(&phy->dev, "CALIO power down bar failed: %d\n", ret); return ret; } /* * According to the user manual, it asks driver to wait 5us for * calpad busy trimming. However it is documented that this value is * PVT(A.K.A process,voltage and temperature) relevant, so some * failure cases are found which indicates we should be more tolerant * to calpad busy trimming. */ ret = regmap_read_poll_timeout(priv->syscfg, EMMC_PHYSTAT_REG, caldone, IS_CALDONE(caldone), 0, 50); if (ret) { dev_err(&phy->dev, "caldone failed, ret=%d\n", ret); return ret; } /* Set the frequency of the DLL operation */ ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL2_REG, FRQSEL_MASK, FRQSEL_SHIFT(freqsel)); if (ret) { dev_err(&phy->dev, "set the frequency of dll failed:%d\n", ret); return ret; } /* Turn on the DLL */ ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL1_REG, ENDLL_MASK, ENDLL_SHIFT(1)); if (ret) { dev_err(&phy->dev, "turn on the dll failed: %d\n", ret); return ret; } /* * After enabling analog DLL circuits docs say that we need 10.2 us if * our source clock is at 50 MHz and that lock time scales linearly * with clock speed. If we are powering on the PHY and the card clock * is super slow (like 100 kHZ) this could take as long as 5.1 ms as * per the math: 10.2 us * (50000000 Hz / 100000 Hz) => 5.1 ms * Hopefully we won't be running at 100 kHz, but we should still make * sure we wait long enough. * * NOTE: There appear to be corner cases where the DLL seems to take * extra long to lock for reasons that aren't understood. In some * extreme cases we've seen it take up to over 10ms (!). We'll be * generous and give it 50ms. */ ret = regmap_read_poll_timeout(priv->syscfg, EMMC_PHYSTAT_REG, dllrdy, IS_DLLRDY(dllrdy), 0, 50 * USEC_PER_MSEC); if (ret) { dev_err(&phy->dev, "dllrdy failed. ret=%d\n", ret); return ret; } return 0; } static int intel_emmc_phy_init(struct phy *phy) { struct intel_emmc_phy *priv = phy_get_drvdata(phy); /* * We purposely get the clock here and not in probe to avoid the * circular dependency problem. We expect: * - PHY driver to probe * - SDHCI driver to start probe * - SDHCI driver to register it's clock * - SDHCI driver to get the PHY * - SDHCI driver to init the PHY * * The clock is optional, so upon any error just return it like * any other error to user. * */ priv->emmcclk = clk_get_optional(&phy->dev, "emmcclk"); if (IS_ERR(priv->emmcclk)) { dev_err(&phy->dev, "ERROR: getting emmcclk\n"); return PTR_ERR(priv->emmcclk); } return 0; } static int intel_emmc_phy_exit(struct phy *phy) { struct intel_emmc_phy *priv = phy_get_drvdata(phy); clk_put(priv->emmcclk); return 0; } static int intel_emmc_phy_power_on(struct phy *phy) { struct intel_emmc_phy *priv = phy_get_drvdata(phy); int ret; /* Drive impedance: 50 Ohm */ ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL0_REG, DR_TY_MASK, DR_TY_SHIFT(6)); if (ret) { dev_err(&phy->dev, "ERROR set drive-impednce-50ohm: %d\n", ret); return ret; } /* Output tap delay: disable */ ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL0_REG, OTAPDLYENA, 0); if (ret) { dev_err(&phy->dev, "ERROR Set output tap delay : %d\n", ret); return ret; } /* Output tap delay */ ret = regmap_update_bits(priv->syscfg, EMMC_PHYCTRL0_REG, OTAPDLYSEL_MASK, OTAPDLYSEL_SHIFT(4)); if (ret) { dev_err(&phy->dev, "ERROR: output tap dly select: %d\n", ret); return ret; } /* Power up eMMC phy analog blocks */ return intel_emmc_phy_power(phy, true); } static int intel_emmc_phy_power_off(struct phy *phy) { /* Power down eMMC phy analog blocks */ return intel_emmc_phy_power(phy, false); } static const struct phy_ops ops = { .init = intel_emmc_phy_init, .exit = intel_emmc_phy_exit, .power_on = intel_emmc_phy_power_on, .power_off = intel_emmc_phy_power_off, .owner = THIS_MODULE, }; static int intel_emmc_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct intel_emmc_phy *priv; struct phy *generic_phy; struct phy_provider *phy_provider; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; /* Get eMMC phy (accessed via chiptop) regmap */ priv->syscfg = syscon_regmap_lookup_by_phandle(np, "intel,syscon"); if (IS_ERR(priv->syscfg)) { dev_err(dev, "failed to find syscon\n"); return PTR_ERR(priv->syscfg); } generic_phy = devm_phy_create(dev, np, &ops); if (IS_ERR(generic_phy)) { dev_err(dev, "failed to create PHY\n"); return PTR_ERR(generic_phy); } phy_set_drvdata(generic_phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id intel_emmc_phy_dt_ids[] = { { .compatible = "intel,lgm-emmc-phy" }, {} }; MODULE_DEVICE_TABLE(of, intel_emmc_phy_dt_ids); static struct platform_driver intel_emmc_driver = { .probe = intel_emmc_phy_probe, .driver = { .name = "intel-emmc-phy", .of_match_table = intel_emmc_phy_dt_ids, }, }; module_platform_driver(intel_emmc_driver); MODULE_AUTHOR("Peter Harliman Liem <[email protected]>"); MODULE_DESCRIPTION("Intel eMMC PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/intel/phy-intel-lgm-emmc.c
// SPDX-License-Identifier: GPL-2.0 /* * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT. * * Copyright (C) 2018-2020 Xilinx Inc. * * Author: Anurag Kumar Vulisha <[email protected]> * Author: Subbaraya Sundeep <[email protected]> * Author: Laurent Pinchart <[email protected]> * * This driver is tested for USB, SGMII, SATA and Display Port currently. * PCIe should also work but that is experimental as of now. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <dt-bindings/phy/phy.h> /* * Lane Registers */ /* TX De-emphasis parameters */ #define L0_TX_ANA_TM_18 0x0048 #define L0_TX_ANA_TM_118 0x01d8 #define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0) /* DN Resistor calibration code parameters */ #define L0_TXPMA_ST_3 0x0b0c #define L0_DN_CALIB_CODE 0x3f /* PMA control parameters */ #define L0_TXPMD_TM_45 0x0cb4 #define L0_TXPMD_TM_48 0x0cc0 #define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0) #define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1) #define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2) #define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3) #define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4) #define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5) /* PCS control parameters */ #define L0_TM_DIG_6 0x106c #define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f #define L0_TX_DIG_61 0x00f4 #define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f /* PLL Test Mode register parameters */ #define L0_TM_PLL_DIG_37 0x2094 #define L0_TM_COARSE_CODE_LIMIT 0x10 /* PLL SSC step size offsets */ #define L0_PLL_SS_STEPS_0_LSB 0x2368 #define L0_PLL_SS_STEPS_1_MSB 0x236c #define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370 #define L0_PLL_SS_STEP_SIZE_1 0x2374 #define L0_PLL_SS_STEP_SIZE_2 0x2378 #define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c #define L0_PLL_STATUS_READ_1 0x23e4 /* SSC step size parameters */ #define STEP_SIZE_0_MASK 0xff #define STEP_SIZE_1_MASK 0xff #define STEP_SIZE_2_MASK 0xff #define STEP_SIZE_3_MASK 0x3 #define STEP_SIZE_SHIFT 8 #define FORCE_STEP_SIZE 0x10 #define FORCE_STEPS 0x20 #define STEPS_0_MASK 0xff #define STEPS_1_MASK 0x07 /* Reference clock selection parameters */ #define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4) #define L0_REF_CLK_SEL_MASK 0x8f /* Calibration digital logic parameters */ #define L3_TM_CALIB_DIG19 0xec4c #define L3_CALIB_DONE_STATUS 0xef14 #define L3_TM_CALIB_DIG18 0xec48 #define L3_TM_CALIB_DIG19_NSW 0x07 #define L3_TM_CALIB_DIG18_NSW 0xe0 #define L3_TM_OVERRIDE_NSW_CODE 0x20 #define L3_CALIB_DONE 0x02 #define L3_NSW_SHIFT 5 #define L3_NSW_PIPE_SHIFT 4 #define L3_NSW_CALIB_SHIFT 3 #define PHY_REG_OFFSET 0x4000 /* * Global Registers */ /* Refclk selection parameters */ #define PLL_REF_SEL(n) (0x10000 + (n) * 4) #define PLL_FREQ_MASK 0x1f #define PLL_STATUS_LOCKED 0x10 /* Inter Connect Matrix parameters */ #define ICM_CFG0 0x10010 #define ICM_CFG1 0x10014 #define ICM_CFG0_L0_MASK 0x07 #define ICM_CFG0_L1_MASK 0x70 #define ICM_CFG1_L2_MASK 0x07 #define ICM_CFG2_L3_MASK 0x70 #define ICM_CFG_SHIFT 4 /* Inter Connect Matrix allowed protocols */ #define ICM_PROTOCOL_PD 0x0 #define ICM_PROTOCOL_PCIE 0x1 #define ICM_PROTOCOL_SATA 0x2 #define ICM_PROTOCOL_USB 0x3 #define ICM_PROTOCOL_DP 0x4 #define ICM_PROTOCOL_SGMII 0x5 /* Test Mode common reset control parameters */ #define TM_CMN_RST 0x10018 #define TM_CMN_RST_EN 0x1 #define TM_CMN_RST_SET 0x2 #define TM_CMN_RST_MASK 0x3 /* Bus width parameters */ #define TX_PROT_BUS_WIDTH 0x10040 #define RX_PROT_BUS_WIDTH 0x10044 #define PROT_BUS_WIDTH_10 0x0 #define PROT_BUS_WIDTH_20 0x1 #define PROT_BUS_WIDTH_40 0x2 #define PROT_BUS_WIDTH_SHIFT(n) ((n) * 2) #define PROT_BUS_WIDTH_MASK(n) GENMASK((n) * 2 + 1, (n) * 2) /* Number of GT lanes */ #define NUM_LANES 4 /* SIOU SATA control register */ #define SATA_CONTROL_OFFSET 0x0100 /* Total number of controllers */ #define CONTROLLERS_PER_LANE 5 /* Protocol Type parameters */ #define XPSGTR_TYPE_USB0 0 /* USB controller 0 */ #define XPSGTR_TYPE_USB1 1 /* USB controller 1 */ #define XPSGTR_TYPE_SATA_0 2 /* SATA controller lane 0 */ #define XPSGTR_TYPE_SATA_1 3 /* SATA controller lane 1 */ #define XPSGTR_TYPE_PCIE_0 4 /* PCIe controller lane 0 */ #define XPSGTR_TYPE_PCIE_1 5 /* PCIe controller lane 1 */ #define XPSGTR_TYPE_PCIE_2 6 /* PCIe controller lane 2 */ #define XPSGTR_TYPE_PCIE_3 7 /* PCIe controller lane 3 */ #define XPSGTR_TYPE_DP_0 8 /* Display Port controller lane 0 */ #define XPSGTR_TYPE_DP_1 9 /* Display Port controller lane 1 */ #define XPSGTR_TYPE_SGMII0 10 /* Ethernet SGMII controller 0 */ #define XPSGTR_TYPE_SGMII1 11 /* Ethernet SGMII controller 1 */ #define XPSGTR_TYPE_SGMII2 12 /* Ethernet SGMII controller 2 */ #define XPSGTR_TYPE_SGMII3 13 /* Ethernet SGMII controller 3 */ /* Timeout values */ #define TIMEOUT_US 1000 struct xpsgtr_dev; /** * struct xpsgtr_ssc - structure to hold SSC settings for a lane * @refclk_rate: PLL reference clock frequency * @pll_ref_clk: value to be written to register for corresponding ref clk rate * @steps: number of steps of SSC (Spread Spectrum Clock) * @step_size: step size of each step */ struct xpsgtr_ssc { u32 refclk_rate; u8 pll_ref_clk; u32 steps; u32 step_size; }; /** * struct xpsgtr_phy - representation of a lane * @phy: pointer to the kernel PHY device * @type: controller which uses this lane * @lane: lane number * @protocol: protocol in which the lane operates * @skip_phy_init: skip phy_init() if true * @dev: pointer to the xpsgtr_dev instance * @refclk: reference clock index */ struct xpsgtr_phy { struct phy *phy; u8 type; u8 lane; u8 protocol; bool skip_phy_init; struct xpsgtr_dev *dev; unsigned int refclk; }; /** * struct xpsgtr_dev - representation of a ZynMP GT device * @dev: pointer to device * @serdes: serdes base address * @siou: siou base address * @gtr_mutex: mutex for locking * @phys: PHY lanes * @refclk_sscs: spread spectrum settings for the reference clocks * @clk: reference clocks * @tx_term_fix: fix for GT issue * @saved_icm_cfg0: stored value of ICM CFG0 register * @saved_icm_cfg1: stored value of ICM CFG1 register */ struct xpsgtr_dev { struct device *dev; void __iomem *serdes; void __iomem *siou; struct mutex gtr_mutex; /* mutex for locking */ struct xpsgtr_phy phys[NUM_LANES]; const struct xpsgtr_ssc *refclk_sscs[NUM_LANES]; struct clk *clk[NUM_LANES]; bool tx_term_fix; unsigned int saved_icm_cfg0; unsigned int saved_icm_cfg1; }; /* * Configuration Data */ /* lookup table to hold all settings needed for a ref clock frequency */ static const struct xpsgtr_ssc ssc_lookup[] = { { 19200000, 0x05, 608, 264020 }, { 20000000, 0x06, 634, 243454 }, { 24000000, 0x07, 760, 168973 }, { 26000000, 0x08, 824, 143860 }, { 27000000, 0x09, 856, 86551 }, { 38400000, 0x0a, 1218, 65896 }, { 40000000, 0x0b, 634, 243454 }, { 52000000, 0x0c, 824, 143860 }, { 100000000, 0x0d, 1058, 87533 }, { 108000000, 0x0e, 856, 86551 }, { 125000000, 0x0f, 992, 119497 }, { 135000000, 0x10, 1070, 55393 }, { 150000000, 0x11, 792, 187091 } }; /* * I/O Accessors */ static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg) { return readl(gtr_dev->serdes + reg); } static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value) { writel(value, gtr_dev->serdes + reg); } static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg, u32 clr, u32 set) { u32 value = xpsgtr_read(gtr_dev, reg); value &= ~clr; value |= set; xpsgtr_write(gtr_dev, reg, value); } static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg) { void __iomem *addr = gtr_phy->dev->serdes + gtr_phy->lane * PHY_REG_OFFSET + reg; return readl(addr); } static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy, u32 reg, u32 value) { void __iomem *addr = gtr_phy->dev->serdes + gtr_phy->lane * PHY_REG_OFFSET + reg; writel(value, addr); } static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy, u32 reg, u32 clr, u32 set) { void __iomem *addr = gtr_phy->dev->serdes + gtr_phy->lane * PHY_REG_OFFSET + reg; writel((readl(addr) & ~clr) | set, addr); } /* * Hardware Configuration */ /* Wait for the PLL to lock (with a timeout). */ static int xpsgtr_wait_pll_lock(struct phy *phy) { struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); struct xpsgtr_dev *gtr_dev = gtr_phy->dev; unsigned int timeout = TIMEOUT_US; int ret; dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n"); while (1) { u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1); if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) { ret = 0; break; } if (--timeout == 0) { ret = -ETIMEDOUT; break; } udelay(1); } if (ret == -ETIMEDOUT) dev_err(gtr_dev->dev, "lane %u (type %u, protocol %u): PLL lock timeout\n", gtr_phy->lane, gtr_phy->type, gtr_phy->protocol); return ret; } /* Configure PLL and spread-sprectrum clock. */ static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy) { const struct xpsgtr_ssc *ssc; u32 step_size; ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk]; step_size = ssc->step_size; xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane), PLL_FREQ_MASK, ssc->pll_ref_clk); /* Enable lane clock sharing, if required */ if (gtr_phy->refclk != gtr_phy->lane) { /* Lane3 Ref Clock Selection Register */ xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane), L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk); } /* SSC step size [7:0] */ xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB, STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK); /* SSC step size [15:8] */ step_size >>= STEP_SIZE_SHIFT; xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1, STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK); /* SSC step size [23:16] */ step_size >>= STEP_SIZE_SHIFT; xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2, STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK); /* SSC steps [7:0] */ xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB, STEPS_0_MASK, ssc->steps & STEPS_0_MASK); /* SSC steps [10:8] */ xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB, STEPS_1_MASK, (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK); /* SSC step size [24:25] */ step_size >>= STEP_SIZE_SHIFT; xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB, STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) | FORCE_STEP_SIZE | FORCE_STEPS); } /* Configure the lane protocol. */ static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy) { struct xpsgtr_dev *gtr_dev = gtr_phy->dev; u8 protocol = gtr_phy->protocol; switch (gtr_phy->lane) { case 0: xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol); break; case 1: xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK, protocol << ICM_CFG_SHIFT); break; case 2: xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol); break; case 3: xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK, protocol << ICM_CFG_SHIFT); break; default: /* We already checked 0 <= lane <= 3 */ break; } } /* Bypass (de)scrambler and 8b/10b decoder and encoder. */ static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy) { xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER); xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER); } /* DP-specific initialization. */ static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy) { xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45, L0_TXPMD_TM_45_OVER_DP_MAIN | L0_TXPMD_TM_45_ENABLE_DP_MAIN | L0_TXPMD_TM_45_OVER_DP_POST1 | L0_TXPMD_TM_45_OVER_DP_POST2 | L0_TXPMD_TM_45_ENABLE_DP_POST2); xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118, L0_TX_ANA_TM_118_FORCE_17_0); } /* SATA-specific initialization. */ static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy) { struct xpsgtr_dev *gtr_dev = gtr_phy->dev; xpsgtr_bypass_scrambler_8b10b(gtr_phy); writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET); } /* SGMII-specific initialization. */ static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy) { struct xpsgtr_dev *gtr_dev = gtr_phy->dev; u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane); u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane); /* Set SGMII protocol TX and RX bus width to 10 bits. */ xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val); xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val); xpsgtr_bypass_scrambler_8b10b(gtr_phy); } /* Configure TX de-emphasis and margining for DP. */ static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre, unsigned int voltage) { static const u8 voltage_swing[4][4] = { { 0x2a, 0x27, 0x24, 0x20 }, { 0x27, 0x23, 0x20, 0xff }, { 0x24, 0x20, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff } }; static const u8 pre_emphasis[4][4] = { { 0x02, 0x02, 0x02, 0x02 }, { 0x01, 0x01, 0x01, 0xff }, { 0x00, 0x00, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff } }; xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]); xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]); } /* * PHY Operations */ static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy) { /* * As USB may save the snapshot of the states during hibernation, doing * phy_init() will put the USB controller into reset, resulting in the * losing of the saved snapshot. So try to avoid phy_init() for USB * except when gtr_phy->skip_phy_init is false (this happens when FPD is * shutdown during suspend or when gt lane is changed from current one) */ if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init) return false; else return true; } /* * There is a functional issue in the GT. The TX termination resistance can be * out of spec due to a issue in the calibration logic. This is the workaround * to fix it, required for XCZU9EG silicon. */ static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy) { struct xpsgtr_dev *gtr_dev = gtr_phy->dev; u32 timeout = TIMEOUT_US; u32 nsw; /* Enabling Test Mode control for CMN Rest */ xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); /* Set Test Mode reset */ xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00); xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE); /* * As a part of work around sequence for PMOS calibration fix, * we need to configure any lane ICM_CFG to valid protocol. This * will deassert the CMN_Resetn signal. */ xpsgtr_lane_set_protocol(gtr_phy); /* Clear Test Mode reset */ xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); dev_dbg(gtr_dev->dev, "calibrating...\n"); do { u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS); if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE) break; if (!--timeout) { dev_err(gtr_dev->dev, "calibration time out\n"); return -ETIMEDOUT; } udelay(1); } while (timeout > 0); dev_dbg(gtr_dev->dev, "calibration done\n"); /* Reading NMOS Register Code */ nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE; /* Set Test Mode reset */ xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); /* Writing NMOS register values back [5:3] */ xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT); /* Writing NMOS register value [2:0] */ xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) | (1 << L3_NSW_PIPE_SHIFT)); /* Clear Test Mode reset */ xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); return 0; } static int xpsgtr_phy_init(struct phy *phy) { struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); struct xpsgtr_dev *gtr_dev = gtr_phy->dev; int ret = 0; mutex_lock(&gtr_dev->gtr_mutex); /* Configure and enable the clock when peripheral phy_init call */ if (clk_prepare_enable(gtr_dev->clk[gtr_phy->lane])) goto out; /* Skip initialization if not required. */ if (!xpsgtr_phy_init_required(gtr_phy)) goto out; if (gtr_dev->tx_term_fix) { ret = xpsgtr_phy_tx_term_fix(gtr_phy); if (ret < 0) goto out; gtr_dev->tx_term_fix = false; } /* Enable coarse code saturation limiting logic. */ xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT); /* * Configure the PLL, the lane protocol, and perform protocol-specific * initialization. */ xpsgtr_configure_pll(gtr_phy); xpsgtr_lane_set_protocol(gtr_phy); switch (gtr_phy->protocol) { case ICM_PROTOCOL_DP: xpsgtr_phy_init_dp(gtr_phy); break; case ICM_PROTOCOL_SATA: xpsgtr_phy_init_sata(gtr_phy); break; case ICM_PROTOCOL_SGMII: xpsgtr_phy_init_sgmii(gtr_phy); break; } out: mutex_unlock(&gtr_dev->gtr_mutex); return ret; } static int xpsgtr_phy_exit(struct phy *phy) { struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); struct xpsgtr_dev *gtr_dev = gtr_phy->dev; gtr_phy->skip_phy_init = false; /* Ensure that disable clock only, which configure for lane */ clk_disable_unprepare(gtr_dev->clk[gtr_phy->lane]); return 0; } static int xpsgtr_phy_power_on(struct phy *phy) { struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); int ret = 0; /* Skip initialization if not required. */ if (!xpsgtr_phy_init_required(gtr_phy)) return ret; /* * Wait for the PLL to lock. For DP, only wait on DP0 to avoid * cumulating waits for both lanes. The user is expected to initialize * lane 0 last. */ if (gtr_phy->protocol != ICM_PROTOCOL_DP || gtr_phy->type == XPSGTR_TYPE_DP_0) ret = xpsgtr_wait_pll_lock(phy); return ret; } static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts) { struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); if (gtr_phy->protocol != ICM_PROTOCOL_DP) return 0; xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]); return 0; } static const struct phy_ops xpsgtr_phyops = { .init = xpsgtr_phy_init, .exit = xpsgtr_phy_exit, .power_on = xpsgtr_phy_power_on, .configure = xpsgtr_phy_configure, .owner = THIS_MODULE, }; /* * OF Xlate Support */ /* Set the lane type and protocol based on the PHY type and instance number. */ static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type, unsigned int phy_instance) { unsigned int num_phy_types; const int *phy_types; switch (phy_type) { case PHY_TYPE_SATA: { static const int types[] = { XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_SATA_1, }; phy_types = types; num_phy_types = ARRAY_SIZE(types); gtr_phy->protocol = ICM_PROTOCOL_SATA; break; } case PHY_TYPE_USB3: { static const int types[] = { XPSGTR_TYPE_USB0, XPSGTR_TYPE_USB1, }; phy_types = types; num_phy_types = ARRAY_SIZE(types); gtr_phy->protocol = ICM_PROTOCOL_USB; break; } case PHY_TYPE_DP: { static const int types[] = { XPSGTR_TYPE_DP_0, XPSGTR_TYPE_DP_1, }; phy_types = types; num_phy_types = ARRAY_SIZE(types); gtr_phy->protocol = ICM_PROTOCOL_DP; break; } case PHY_TYPE_PCIE: { static const int types[] = { XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_PCIE_3, }; phy_types = types; num_phy_types = ARRAY_SIZE(types); gtr_phy->protocol = ICM_PROTOCOL_PCIE; break; } case PHY_TYPE_SGMII: { static const int types[] = { XPSGTR_TYPE_SGMII0, XPSGTR_TYPE_SGMII1, XPSGTR_TYPE_SGMII2, XPSGTR_TYPE_SGMII3, }; phy_types = types; num_phy_types = ARRAY_SIZE(types); gtr_phy->protocol = ICM_PROTOCOL_SGMII; break; } default: return -EINVAL; } if (phy_instance >= num_phy_types) return -EINVAL; gtr_phy->type = phy_types[phy_instance]; return 0; } /* * Valid combinations of controllers and lanes (Interconnect Matrix). */ static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = { { XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0, XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 }, { XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0, XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 }, { XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0, XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 }, { XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1, XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 } }; /* Translate OF phandle and args to PHY instance. */ static struct phy *xpsgtr_xlate(struct device *dev, struct of_phandle_args *args) { struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); struct xpsgtr_phy *gtr_phy; unsigned int phy_instance; unsigned int phy_lane; unsigned int phy_type; unsigned int refclk; unsigned int i; int ret; if (args->args_count != 4) { dev_err(dev, "Invalid number of cells in 'phy' property\n"); return ERR_PTR(-EINVAL); } /* * Get the PHY parameters from the OF arguments and derive the lane * type. */ phy_lane = args->args[0]; if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) { dev_err(dev, "Invalid lane number %u\n", phy_lane); return ERR_PTR(-ENODEV); } gtr_phy = &gtr_dev->phys[phy_lane]; phy_type = args->args[1]; phy_instance = args->args[2]; ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance); if (ret < 0) { dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n"); return ERR_PTR(ret); } refclk = args->args[3]; if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) || !gtr_dev->refclk_sscs[refclk]) { dev_err(dev, "Invalid reference clock number %u\n", refclk); return ERR_PTR(-EINVAL); } gtr_phy->refclk = refclk; /* * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type * is allowed to operate on the lane. */ for (i = 0; i < CONTROLLERS_PER_LANE; i++) { if (icm_matrix[phy_lane][i] == gtr_phy->type) return gtr_phy->phy; } return ERR_PTR(-EINVAL); } /* * Power Management */ static int xpsgtr_runtime_suspend(struct device *dev) { struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); /* Save the snapshot ICM_CFG registers. */ gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); return 0; } static int xpsgtr_runtime_resume(struct device *dev) { struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); unsigned int icm_cfg0, icm_cfg1; unsigned int i; bool skip_phy_init; icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); /* Return if no GT lanes got configured before suspend. */ if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1) return 0; /* Check if the ICM configurations changed after suspend. */ if (icm_cfg0 == gtr_dev->saved_icm_cfg0 && icm_cfg1 == gtr_dev->saved_icm_cfg1) skip_phy_init = true; else skip_phy_init = false; /* Update the skip_phy_init for all gtr_phy instances. */ for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++) gtr_dev->phys[i].skip_phy_init = skip_phy_init; return 0; } static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend, xpsgtr_runtime_resume, NULL); /* * Probe & Platform Driver */ static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev) { unsigned int refclk; for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) { unsigned long rate; unsigned int i; struct clk *clk; char name[8]; snprintf(name, sizeof(name), "ref%u", refclk); clk = devm_clk_get_optional(gtr_dev->dev, name); if (IS_ERR(clk)) { return dev_err_probe(gtr_dev->dev, PTR_ERR(clk), "Failed to get ref clock %u\n", refclk); } if (!clk) continue; gtr_dev->clk[refclk] = clk; /* * Get the spread spectrum (SSC) settings for the reference * clock rate. */ rate = clk_get_rate(clk); for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) { /* Allow an error of 100 ppm */ unsigned long error = ssc_lookup[i].refclk_rate / 10000; if (abs(rate - ssc_lookup[i].refclk_rate) < error) { gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i]; break; } } if (i == ARRAY_SIZE(ssc_lookup)) { dev_err(gtr_dev->dev, "Invalid rate %lu for reference clock %u\n", rate, refclk); return -EINVAL; } } return 0; } static int xpsgtr_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct xpsgtr_dev *gtr_dev; struct phy_provider *provider; unsigned int port; int ret; gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL); if (!gtr_dev) return -ENOMEM; gtr_dev->dev = &pdev->dev; platform_set_drvdata(pdev, gtr_dev); mutex_init(&gtr_dev->gtr_mutex); if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr")) gtr_dev->tx_term_fix = of_property_read_bool(np, "xlnx,tx-termination-fix"); /* Acquire resources. */ gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes"); if (IS_ERR(gtr_dev->serdes)) return PTR_ERR(gtr_dev->serdes); gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou"); if (IS_ERR(gtr_dev->siou)) return PTR_ERR(gtr_dev->siou); ret = xpsgtr_get_ref_clocks(gtr_dev); if (ret) return ret; /* Create PHYs. */ for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) { struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port]; struct phy *phy; gtr_phy->lane = port; gtr_phy->dev = gtr_dev; phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops); if (IS_ERR(phy)) { dev_err(&pdev->dev, "failed to create PHY\n"); return PTR_ERR(phy); } gtr_phy->phy = phy; phy_set_drvdata(phy, gtr_phy); } /* Register the PHY provider. */ provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate); if (IS_ERR(provider)) { dev_err(&pdev->dev, "registering provider failed\n"); return PTR_ERR(provider); } pm_runtime_set_active(gtr_dev->dev); pm_runtime_enable(gtr_dev->dev); ret = pm_runtime_resume_and_get(gtr_dev->dev); if (ret < 0) { pm_runtime_disable(gtr_dev->dev); return ret; } return 0; } static int xpsgtr_remove(struct platform_device *pdev) { struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev); pm_runtime_disable(gtr_dev->dev); pm_runtime_put_noidle(gtr_dev->dev); pm_runtime_set_suspended(gtr_dev->dev); return 0; } static const struct of_device_id xpsgtr_of_match[] = { { .compatible = "xlnx,zynqmp-psgtr", }, { .compatible = "xlnx,zynqmp-psgtr-v1.1", }, {}, }; MODULE_DEVICE_TABLE(of, xpsgtr_of_match); static struct platform_driver xpsgtr_driver = { .probe = xpsgtr_probe, .remove = xpsgtr_remove, .driver = { .name = "xilinx-psgtr", .of_match_table = xpsgtr_of_match, .pm = pm_ptr(&xpsgtr_pm_ops), }, }; module_platform_driver(xpsgtr_driver); MODULE_AUTHOR("Xilinx Inc."); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");
linux-master
drivers/phy/xilinx/phy-zynqmp.c
// SPDX-License-Identifier: GPL-2.0 /* * phy-uniphier-usb3ss.c - SS-PHY driver for Socionext UniPhier USB3 controller * Copyright 2015-2018 Socionext Inc. * Author: * Kunihiko Hayashi <[email protected]> * Contributors: * Motoya Tanigawa <[email protected]> * Masami Hiramatsu <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #define SSPHY_TESTI 0x0 #define TESTI_DAT_MASK GENMASK(13, 6) #define TESTI_ADR_MASK GENMASK(5, 1) #define TESTI_WR_EN BIT(0) #define SSPHY_TESTO 0x4 #define TESTO_DAT_MASK GENMASK(7, 0) #define PHY_F(regno, msb, lsb) { (regno), (msb), (lsb) } #define CDR_CPD_TRIM PHY_F(7, 3, 0) /* RxPLL charge pump current */ #define CDR_CPF_TRIM PHY_F(8, 3, 0) /* RxPLL charge pump current 2 */ #define TX_PLL_TRIM PHY_F(9, 3, 0) /* TxPLL charge pump current */ #define BGAP_TRIM PHY_F(11, 3, 0) /* Bandgap voltage */ #define CDR_TRIM PHY_F(13, 6, 5) /* Clock Data Recovery setting */ #define VCO_CTRL PHY_F(26, 7, 4) /* VCO control */ #define VCOPLL_CTRL PHY_F(27, 2, 0) /* TxPLL VCO tuning */ #define VCOPLL_CM PHY_F(28, 1, 0) /* TxPLL voltage */ #define MAX_PHY_PARAMS 7 struct uniphier_u3ssphy_param { struct { int reg_no; int msb; int lsb; } field; u8 value; }; struct uniphier_u3ssphy_priv { struct device *dev; void __iomem *base; struct clk *clk, *clk_ext, *clk_parent, *clk_parent_gio; struct reset_control *rst, *rst_parent, *rst_parent_gio; struct regulator *vbus; const struct uniphier_u3ssphy_soc_data *data; }; struct uniphier_u3ssphy_soc_data { bool is_legacy; int nparams; const struct uniphier_u3ssphy_param param[MAX_PHY_PARAMS]; }; static void uniphier_u3ssphy_testio_write(struct uniphier_u3ssphy_priv *priv, u32 data) { /* need to read TESTO twice after accessing TESTI */ writel(data, priv->base + SSPHY_TESTI); readl(priv->base + SSPHY_TESTO); readl(priv->base + SSPHY_TESTO); } static void uniphier_u3ssphy_set_param(struct uniphier_u3ssphy_priv *priv, const struct uniphier_u3ssphy_param *p) { u32 val; u8 field_mask = GENMASK(p->field.msb, p->field.lsb); u8 data; /* read previous data */ val = FIELD_PREP(TESTI_DAT_MASK, 1); val |= FIELD_PREP(TESTI_ADR_MASK, p->field.reg_no); uniphier_u3ssphy_testio_write(priv, val); val = readl(priv->base + SSPHY_TESTO) & TESTO_DAT_MASK; /* update value */ val &= ~field_mask; data = field_mask & (p->value << p->field.lsb); val = FIELD_PREP(TESTI_DAT_MASK, data | val); val |= FIELD_PREP(TESTI_ADR_MASK, p->field.reg_no); uniphier_u3ssphy_testio_write(priv, val); uniphier_u3ssphy_testio_write(priv, val | TESTI_WR_EN); uniphier_u3ssphy_testio_write(priv, val); /* read current data as dummy */ val = FIELD_PREP(TESTI_DAT_MASK, 1); val |= FIELD_PREP(TESTI_ADR_MASK, p->field.reg_no); uniphier_u3ssphy_testio_write(priv, val); readl(priv->base + SSPHY_TESTO); } static int uniphier_u3ssphy_power_on(struct phy *phy) { struct uniphier_u3ssphy_priv *priv = phy_get_drvdata(phy); int ret; ret = clk_prepare_enable(priv->clk_ext); if (ret) return ret; ret = clk_prepare_enable(priv->clk); if (ret) goto out_clk_ext_disable; ret = reset_control_deassert(priv->rst); if (ret) goto out_clk_disable; if (priv->vbus) { ret = regulator_enable(priv->vbus); if (ret) goto out_rst_assert; } return 0; out_rst_assert: reset_control_assert(priv->rst); out_clk_disable: clk_disable_unprepare(priv->clk); out_clk_ext_disable: clk_disable_unprepare(priv->clk_ext); return ret; } static int uniphier_u3ssphy_power_off(struct phy *phy) { struct uniphier_u3ssphy_priv *priv = phy_get_drvdata(phy); if (priv->vbus) regulator_disable(priv->vbus); reset_control_assert(priv->rst); clk_disable_unprepare(priv->clk); clk_disable_unprepare(priv->clk_ext); return 0; } static int uniphier_u3ssphy_init(struct phy *phy) { struct uniphier_u3ssphy_priv *priv = phy_get_drvdata(phy); int i, ret; ret = clk_prepare_enable(priv->clk_parent); if (ret) return ret; ret = clk_prepare_enable(priv->clk_parent_gio); if (ret) goto out_clk_disable; ret = reset_control_deassert(priv->rst_parent); if (ret) goto out_clk_gio_disable; ret = reset_control_deassert(priv->rst_parent_gio); if (ret) goto out_rst_assert; if (priv->data->is_legacy) return 0; for (i = 0; i < priv->data->nparams; i++) uniphier_u3ssphy_set_param(priv, &priv->data->param[i]); return 0; out_rst_assert: reset_control_assert(priv->rst_parent); out_clk_gio_disable: clk_disable_unprepare(priv->clk_parent_gio); out_clk_disable: clk_disable_unprepare(priv->clk_parent); return ret; } static int uniphier_u3ssphy_exit(struct phy *phy) { struct uniphier_u3ssphy_priv *priv = phy_get_drvdata(phy); reset_control_assert(priv->rst_parent_gio); reset_control_assert(priv->rst_parent); clk_disable_unprepare(priv->clk_parent_gio); clk_disable_unprepare(priv->clk_parent); return 0; } static const struct phy_ops uniphier_u3ssphy_ops = { .init = uniphier_u3ssphy_init, .exit = uniphier_u3ssphy_exit, .power_on = uniphier_u3ssphy_power_on, .power_off = uniphier_u3ssphy_power_off, .owner = THIS_MODULE, }; static int uniphier_u3ssphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct uniphier_u3ssphy_priv *priv; struct phy_provider *phy_provider; struct phy *phy; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->data = of_device_get_match_data(dev); if (WARN_ON(!priv->data || priv->data->nparams > MAX_PHY_PARAMS)) return -EINVAL; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); if (!priv->data->is_legacy) { priv->clk = devm_clk_get(dev, "phy"); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); priv->clk_ext = devm_clk_get_optional(dev, "phy-ext"); if (IS_ERR(priv->clk_ext)) return PTR_ERR(priv->clk_ext); priv->rst = devm_reset_control_get_shared(dev, "phy"); if (IS_ERR(priv->rst)) return PTR_ERR(priv->rst); } else { priv->clk_parent_gio = devm_clk_get(dev, "gio"); if (IS_ERR(priv->clk_parent_gio)) return PTR_ERR(priv->clk_parent_gio); priv->rst_parent_gio = devm_reset_control_get_shared(dev, "gio"); if (IS_ERR(priv->rst_parent_gio)) return PTR_ERR(priv->rst_parent_gio); } priv->clk_parent = devm_clk_get(dev, "link"); if (IS_ERR(priv->clk_parent)) return PTR_ERR(priv->clk_parent); priv->rst_parent = devm_reset_control_get_shared(dev, "link"); if (IS_ERR(priv->rst_parent)) return PTR_ERR(priv->rst_parent); priv->vbus = devm_regulator_get_optional(dev, "vbus"); if (IS_ERR(priv->vbus)) { if (PTR_ERR(priv->vbus) == -EPROBE_DEFER) return PTR_ERR(priv->vbus); priv->vbus = NULL; } phy = devm_phy_create(dev, dev->of_node, &uniphier_u3ssphy_ops); if (IS_ERR(phy)) return PTR_ERR(phy); phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct uniphier_u3ssphy_soc_data uniphier_pro4_data = { .is_legacy = true, }; static const struct uniphier_u3ssphy_soc_data uniphier_pxs2_data = { .is_legacy = false, .nparams = 7, .param = { { CDR_CPD_TRIM, 10 }, { CDR_CPF_TRIM, 3 }, { TX_PLL_TRIM, 5 }, { BGAP_TRIM, 9 }, { CDR_TRIM, 2 }, { VCOPLL_CTRL, 7 }, { VCOPLL_CM, 1 }, }, }; static const struct uniphier_u3ssphy_soc_data uniphier_ld20_data = { .is_legacy = false, .nparams = 3, .param = { { CDR_CPD_TRIM, 6 }, { CDR_TRIM, 2 }, { VCO_CTRL, 5 }, }, }; static const struct of_device_id uniphier_u3ssphy_match[] = { { .compatible = "socionext,uniphier-pro4-usb3-ssphy", .data = &uniphier_pro4_data, }, { .compatible = "socionext,uniphier-pro5-usb3-ssphy", .data = &uniphier_pro4_data, }, { .compatible = "socionext,uniphier-pxs2-usb3-ssphy", .data = &uniphier_pxs2_data, }, { .compatible = "socionext,uniphier-ld20-usb3-ssphy", .data = &uniphier_ld20_data, }, { .compatible = "socionext,uniphier-pxs3-usb3-ssphy", .data = &uniphier_ld20_data, }, { .compatible = "socionext,uniphier-nx1-usb3-ssphy", .data = &uniphier_ld20_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, uniphier_u3ssphy_match); static struct platform_driver uniphier_u3ssphy_driver = { .probe = uniphier_u3ssphy_probe, .driver = { .name = "uniphier-usb3-ssphy", .of_match_table = uniphier_u3ssphy_match, }, }; module_platform_driver(uniphier_u3ssphy_driver); MODULE_AUTHOR("Kunihiko Hayashi <[email protected]>"); MODULE_DESCRIPTION("UniPhier SS-PHY driver for USB3 controller"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/socionext/phy-uniphier-usb3ss.c
// SPDX-License-Identifier: GPL-2.0 /* * phy-uniphier-pcie.c - PHY driver for UniPhier PCIe controller * Copyright 2018, Socionext Inc. * Author: Kunihiko Hayashi <[email protected]> */ #include <linux/bitops.h> #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/resource.h> /* PHY */ #define PCL_PHY_CLKCTRL 0x0000 #define PORT_SEL_MASK GENMASK(11, 9) #define PORT_SEL_1 FIELD_PREP(PORT_SEL_MASK, 1) #define PCL_PHY_TEST_I 0x2000 #define TESTI_DAT_MASK GENMASK(13, 6) #define TESTI_ADR_MASK GENMASK(5, 1) #define TESTI_WR_EN BIT(0) #define TESTIO_PHY_SHIFT 16 #define PCL_PHY_TEST_O 0x2004 #define TESTO_DAT_MASK GENMASK(7, 0) #define PCL_PHY_RESET 0x200c #define PCL_PHY_RESET_N_MNMODE BIT(8) /* =1:manual */ #define PCL_PHY_RESET_N BIT(0) /* =1:deasssert */ /* SG */ #define SG_USBPCIESEL 0x590 #define SG_USBPCIESEL_PCIE BIT(0) /* SC */ #define SC_US3SRCSEL 0x2244 #define SC_US3SRCSEL_2LANE GENMASK(9, 8) #define PCL_PHY_R00 0 #define RX_EQ_ADJ_EN BIT(3) /* enable for EQ adjustment */ #define PCL_PHY_R06 6 #define RX_EQ_ADJ GENMASK(5, 0) /* EQ adjustment value */ #define RX_EQ_ADJ_VAL 0 #define PCL_PHY_R26 26 #define VCO_CTRL GENMASK(7, 4) /* Tx VCO adjustment value */ #define VCO_CTRL_INIT_VAL 5 #define PCL_PHY_R28 28 #define VCOPLL_CLMP GENMASK(3, 2) /* Tx VCOPLL clamp mode */ #define VCOPLL_CLMP_VAL 0 struct uniphier_pciephy_priv { void __iomem *base; struct device *dev; struct clk *clk, *clk_gio; struct reset_control *rst, *rst_gio; const struct uniphier_pciephy_soc_data *data; }; struct uniphier_pciephy_soc_data { bool is_legacy; bool is_dual_phy; void (*set_phymode)(struct regmap *regmap); }; static void uniphier_pciephy_testio_write(struct uniphier_pciephy_priv *priv, int id, u32 data) { if (id) data <<= TESTIO_PHY_SHIFT; /* need to read TESTO twice after accessing TESTI */ writel(data, priv->base + PCL_PHY_TEST_I); readl(priv->base + PCL_PHY_TEST_O); readl(priv->base + PCL_PHY_TEST_O); } static u32 uniphier_pciephy_testio_read(struct uniphier_pciephy_priv *priv, int id) { u32 val = readl(priv->base + PCL_PHY_TEST_O); if (id) val >>= TESTIO_PHY_SHIFT; return val & TESTO_DAT_MASK; } static void uniphier_pciephy_set_param(struct uniphier_pciephy_priv *priv, int id, u32 reg, u32 mask, u32 param) { u32 val; /* read previous data */ val = FIELD_PREP(TESTI_DAT_MASK, 1); val |= FIELD_PREP(TESTI_ADR_MASK, reg); uniphier_pciephy_testio_write(priv, id, val); val = uniphier_pciephy_testio_read(priv, id); /* update value */ val &= ~mask; val |= mask & param; val = FIELD_PREP(TESTI_DAT_MASK, val); val |= FIELD_PREP(TESTI_ADR_MASK, reg); uniphier_pciephy_testio_write(priv, id, val); uniphier_pciephy_testio_write(priv, id, val | TESTI_WR_EN); uniphier_pciephy_testio_write(priv, id, val); /* read current data as dummy */ val = FIELD_PREP(TESTI_DAT_MASK, 1); val |= FIELD_PREP(TESTI_ADR_MASK, reg); uniphier_pciephy_testio_write(priv, id, val); uniphier_pciephy_testio_read(priv, id); } static void uniphier_pciephy_assert(struct uniphier_pciephy_priv *priv) { u32 val; val = readl(priv->base + PCL_PHY_RESET); val &= ~PCL_PHY_RESET_N; val |= PCL_PHY_RESET_N_MNMODE; writel(val, priv->base + PCL_PHY_RESET); } static void uniphier_pciephy_deassert(struct uniphier_pciephy_priv *priv) { u32 val; val = readl(priv->base + PCL_PHY_RESET); val |= PCL_PHY_RESET_N_MNMODE | PCL_PHY_RESET_N; writel(val, priv->base + PCL_PHY_RESET); } static int uniphier_pciephy_init(struct phy *phy) { struct uniphier_pciephy_priv *priv = phy_get_drvdata(phy); u32 val; int ret, id; ret = clk_prepare_enable(priv->clk); if (ret) return ret; ret = clk_prepare_enable(priv->clk_gio); if (ret) goto out_clk_disable; ret = reset_control_deassert(priv->rst); if (ret) goto out_clk_gio_disable; ret = reset_control_deassert(priv->rst_gio); if (ret) goto out_rst_assert; /* support only 1 port */ val = readl(priv->base + PCL_PHY_CLKCTRL); val &= ~PORT_SEL_MASK; val |= PORT_SEL_1; writel(val, priv->base + PCL_PHY_CLKCTRL); /* legacy controller doesn't have phy_reset and parameters */ if (priv->data->is_legacy) return 0; for (id = 0; id < (priv->data->is_dual_phy ? 2 : 1); id++) { uniphier_pciephy_set_param(priv, id, PCL_PHY_R00, RX_EQ_ADJ_EN, RX_EQ_ADJ_EN); uniphier_pciephy_set_param(priv, id, PCL_PHY_R06, RX_EQ_ADJ, FIELD_PREP(RX_EQ_ADJ, RX_EQ_ADJ_VAL)); uniphier_pciephy_set_param(priv, id, PCL_PHY_R26, VCO_CTRL, FIELD_PREP(VCO_CTRL, VCO_CTRL_INIT_VAL)); uniphier_pciephy_set_param(priv, id, PCL_PHY_R28, VCOPLL_CLMP, FIELD_PREP(VCOPLL_CLMP, VCOPLL_CLMP_VAL)); } usleep_range(1, 10); uniphier_pciephy_deassert(priv); usleep_range(1, 10); return 0; out_rst_assert: reset_control_assert(priv->rst); out_clk_gio_disable: clk_disable_unprepare(priv->clk_gio); out_clk_disable: clk_disable_unprepare(priv->clk); return ret; } static int uniphier_pciephy_exit(struct phy *phy) { struct uniphier_pciephy_priv *priv = phy_get_drvdata(phy); if (!priv->data->is_legacy) uniphier_pciephy_assert(priv); reset_control_assert(priv->rst_gio); reset_control_assert(priv->rst); clk_disable_unprepare(priv->clk_gio); clk_disable_unprepare(priv->clk); return 0; } static const struct phy_ops uniphier_pciephy_ops = { .init = uniphier_pciephy_init, .exit = uniphier_pciephy_exit, .owner = THIS_MODULE, }; static int uniphier_pciephy_probe(struct platform_device *pdev) { struct uniphier_pciephy_priv *priv; struct phy_provider *phy_provider; struct device *dev = &pdev->dev; struct regmap *regmap; struct phy *phy; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->data = of_device_get_match_data(dev); if (WARN_ON(!priv->data)) return -EINVAL; priv->dev = dev; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); if (priv->data->is_legacy) { priv->clk_gio = devm_clk_get(dev, "gio"); if (IS_ERR(priv->clk_gio)) return PTR_ERR(priv->clk_gio); priv->rst_gio = devm_reset_control_get_shared(dev, "gio"); if (IS_ERR(priv->rst_gio)) return PTR_ERR(priv->rst_gio); priv->clk = devm_clk_get(dev, "link"); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); priv->rst = devm_reset_control_get_shared(dev, "link"); if (IS_ERR(priv->rst)) return PTR_ERR(priv->rst); } else { priv->clk = devm_clk_get(dev, NULL); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); priv->rst = devm_reset_control_get_shared(dev, NULL); if (IS_ERR(priv->rst)) return PTR_ERR(priv->rst); } phy = devm_phy_create(dev, dev->of_node, &uniphier_pciephy_ops); if (IS_ERR(phy)) return PTR_ERR(phy); regmap = syscon_regmap_lookup_by_phandle(dev->of_node, "socionext,syscon"); if (!IS_ERR(regmap) && priv->data->set_phymode) priv->data->set_phymode(regmap); phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static void uniphier_pciephy_ld20_setmode(struct regmap *regmap) { regmap_update_bits(regmap, SG_USBPCIESEL, SG_USBPCIESEL_PCIE, SG_USBPCIESEL_PCIE); } static void uniphier_pciephy_nx1_setmode(struct regmap *regmap) { regmap_update_bits(regmap, SC_US3SRCSEL, SC_US3SRCSEL_2LANE, SC_US3SRCSEL_2LANE); } static const struct uniphier_pciephy_soc_data uniphier_pro5_data = { .is_legacy = true, }; static const struct uniphier_pciephy_soc_data uniphier_ld20_data = { .is_legacy = false, .is_dual_phy = false, .set_phymode = uniphier_pciephy_ld20_setmode, }; static const struct uniphier_pciephy_soc_data uniphier_pxs3_data = { .is_legacy = false, .is_dual_phy = false, }; static const struct uniphier_pciephy_soc_data uniphier_nx1_data = { .is_legacy = false, .is_dual_phy = true, .set_phymode = uniphier_pciephy_nx1_setmode, }; static const struct of_device_id uniphier_pciephy_match[] = { { .compatible = "socionext,uniphier-pro5-pcie-phy", .data = &uniphier_pro5_data, }, { .compatible = "socionext,uniphier-ld20-pcie-phy", .data = &uniphier_ld20_data, }, { .compatible = "socionext,uniphier-pxs3-pcie-phy", .data = &uniphier_pxs3_data, }, { .compatible = "socionext,uniphier-nx1-pcie-phy", .data = &uniphier_nx1_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, uniphier_pciephy_match); static struct platform_driver uniphier_pciephy_driver = { .probe = uniphier_pciephy_probe, .driver = { .name = "uniphier-pcie-phy", .of_match_table = uniphier_pciephy_match, }, }; module_platform_driver(uniphier_pciephy_driver); MODULE_AUTHOR("Kunihiko Hayashi <[email protected]>"); MODULE_DESCRIPTION("UniPhier PHY driver for PCIe controller"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/socionext/phy-uniphier-pcie.c
// SPDX-License-Identifier: GPL-2.0 /* * phy-uniphier-ahci.c - PHY driver for UniPhier AHCI controller * Copyright 2016-2020, Socionext Inc. * Author: Kunihiko Hayashi <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/reset.h> struct uniphier_ahciphy_priv { struct device *dev; void __iomem *base; struct clk *clk, *clk_parent, *clk_parent_gio; struct reset_control *rst, *rst_parent, *rst_parent_gio; struct reset_control *rst_pm, *rst_tx, *rst_rx; const struct uniphier_ahciphy_soc_data *data; }; struct uniphier_ahciphy_soc_data { int (*init)(struct uniphier_ahciphy_priv *priv); int (*power_on)(struct uniphier_ahciphy_priv *priv); int (*power_off)(struct uniphier_ahciphy_priv *priv); bool is_legacy; bool is_ready_high; bool is_phy_clk; }; /* for Pro4 */ #define CKCTRL0 0x0 #define CKCTRL0_CK_OFF BIT(9) #define CKCTRL0_NCY_MASK GENMASK(8, 4) #define CKCTRL0_NCY5_MASK GENMASK(3, 2) #define CKCTRL0_PRESCALE_MASK GENMASK(1, 0) #define CKCTRL1 0x4 #define CKCTRL1_LOS_LVL_MASK GENMASK(20, 16) #define CKCTRL1_TX_LVL_MASK GENMASK(12, 8) #define RXTXCTRL 0x8 #define RXTXCTRL_RX_EQ_VALL_MASK GENMASK(31, 29) #define RXTXCTRL_RX_DPLL_MODE_MASK GENMASK(28, 26) #define RXTXCTRL_TX_ATTEN_MASK GENMASK(14, 12) #define RXTXCTRL_TX_BOOST_MASK GENMASK(11, 8) #define RXTXCTRL_TX_EDGERATE_MASK GENMASK(3, 2) #define RXTXCTRL_TX_CKO_EN BIT(0) #define RSTPWR 0x30 #define RSTPWR_RX_EN_VAL BIT(18) /* for PXs2/PXs3 */ #define CKCTRL 0x0 #define CKCTRL_P0_READY BIT(15) #define CKCTRL_P0_RESET BIT(10) #define CKCTRL_REF_SSP_EN BIT(9) #define TXCTRL0 0x4 #define TXCTRL0_AMP_G3_MASK GENMASK(22, 16) #define TXCTRL0_AMP_G2_MASK GENMASK(14, 8) #define TXCTRL0_AMP_G1_MASK GENMASK(6, 0) #define TXCTRL1 0x8 #define TXCTRL1_DEEMPH_G3_MASK GENMASK(21, 16) #define TXCTRL1_DEEMPH_G2_MASK GENMASK(13, 8) #define TXCTRL1_DEEMPH_G1_MASK GENMASK(5, 0) #define RXCTRL 0xc #define RXCTRL_LOS_LVL_MASK GENMASK(20, 16) #define RXCTRL_LOS_BIAS_MASK GENMASK(10, 8) #define RXCTRL_RX_EQ_MASK GENMASK(2, 0) static int uniphier_ahciphy_pro4_init(struct uniphier_ahciphy_priv *priv) { u32 val; /* set phy MPLL parameters */ val = readl(priv->base + CKCTRL0); val &= ~CKCTRL0_NCY_MASK; val |= FIELD_PREP(CKCTRL0_NCY_MASK, 0x6); val &= ~CKCTRL0_NCY5_MASK; val |= FIELD_PREP(CKCTRL0_NCY5_MASK, 0x2); val &= ~CKCTRL0_PRESCALE_MASK; val |= FIELD_PREP(CKCTRL0_PRESCALE_MASK, 0x1); writel(val, priv->base + CKCTRL0); /* setup phy control parameters */ val = readl(priv->base + CKCTRL1); val &= ~CKCTRL1_LOS_LVL_MASK; val |= FIELD_PREP(CKCTRL1_LOS_LVL_MASK, 0x10); val &= ~CKCTRL1_TX_LVL_MASK; val |= FIELD_PREP(CKCTRL1_TX_LVL_MASK, 0x06); writel(val, priv->base + CKCTRL1); val = readl(priv->base + RXTXCTRL); val &= ~RXTXCTRL_RX_EQ_VALL_MASK; val |= FIELD_PREP(RXTXCTRL_RX_EQ_VALL_MASK, 0x6); val &= ~RXTXCTRL_RX_DPLL_MODE_MASK; val |= FIELD_PREP(RXTXCTRL_RX_DPLL_MODE_MASK, 0x3); val &= ~RXTXCTRL_TX_ATTEN_MASK; val |= FIELD_PREP(RXTXCTRL_TX_ATTEN_MASK, 0x3); val &= ~RXTXCTRL_TX_BOOST_MASK; val |= FIELD_PREP(RXTXCTRL_TX_BOOST_MASK, 0x5); val &= ~RXTXCTRL_TX_EDGERATE_MASK; val |= FIELD_PREP(RXTXCTRL_TX_EDGERATE_MASK, 0x0); writel(val, priv->base + RXTXCTRL); return 0; } static int uniphier_ahciphy_pro4_power_on(struct uniphier_ahciphy_priv *priv) { u32 val; int ret; /* enable reference clock for phy */ val = readl(priv->base + CKCTRL0); val &= ~CKCTRL0_CK_OFF; writel(val, priv->base + CKCTRL0); /* enable TX clock */ val = readl(priv->base + RXTXCTRL); val |= RXTXCTRL_TX_CKO_EN; writel(val, priv->base + RXTXCTRL); /* wait until RX is ready */ ret = readl_poll_timeout(priv->base + RSTPWR, val, !(val & RSTPWR_RX_EN_VAL), 200, 2000); if (ret) { dev_err(priv->dev, "Failed to check whether Rx is ready\n"); goto out_disable_clock; } /* release all reset */ ret = reset_control_deassert(priv->rst_pm); if (ret) { dev_err(priv->dev, "Failed to release PM reset\n"); goto out_disable_clock; } ret = reset_control_deassert(priv->rst_tx); if (ret) { dev_err(priv->dev, "Failed to release Tx reset\n"); goto out_reset_pm_assert; } ret = reset_control_deassert(priv->rst_rx); if (ret) { dev_err(priv->dev, "Failed to release Rx reset\n"); goto out_reset_tx_assert; } return 0; out_reset_tx_assert: reset_control_assert(priv->rst_tx); out_reset_pm_assert: reset_control_assert(priv->rst_pm); out_disable_clock: /* disable TX clock */ val = readl(priv->base + RXTXCTRL); val &= ~RXTXCTRL_TX_CKO_EN; writel(val, priv->base + RXTXCTRL); /* disable reference clock for phy */ val = readl(priv->base + CKCTRL0); val |= CKCTRL0_CK_OFF; writel(val, priv->base + CKCTRL0); return ret; } static int uniphier_ahciphy_pro4_power_off(struct uniphier_ahciphy_priv *priv) { u32 val; reset_control_assert(priv->rst_rx); reset_control_assert(priv->rst_tx); reset_control_assert(priv->rst_pm); /* disable TX clock */ val = readl(priv->base + RXTXCTRL); val &= ~RXTXCTRL_TX_CKO_EN; writel(val, priv->base + RXTXCTRL); /* disable reference clock for phy */ val = readl(priv->base + CKCTRL0); val |= CKCTRL0_CK_OFF; writel(val, priv->base + CKCTRL0); return 0; } static void uniphier_ahciphy_pxs2_enable(struct uniphier_ahciphy_priv *priv, bool enable) { u32 val; val = readl(priv->base + CKCTRL); if (enable) { val |= CKCTRL_REF_SSP_EN; writel(val, priv->base + CKCTRL); val &= ~CKCTRL_P0_RESET; writel(val, priv->base + CKCTRL); } else { val |= CKCTRL_P0_RESET; writel(val, priv->base + CKCTRL); val &= ~CKCTRL_REF_SSP_EN; writel(val, priv->base + CKCTRL); } } static int uniphier_ahciphy_pxs2_power_on(struct uniphier_ahciphy_priv *priv) { int ret; u32 val; uniphier_ahciphy_pxs2_enable(priv, true); /* wait until PLL is ready */ if (priv->data->is_ready_high) ret = readl_poll_timeout(priv->base + CKCTRL, val, (val & CKCTRL_P0_READY), 200, 400); else ret = readl_poll_timeout(priv->base + CKCTRL, val, !(val & CKCTRL_P0_READY), 200, 400); if (ret) { dev_err(priv->dev, "Failed to check whether PHY PLL is ready\n"); uniphier_ahciphy_pxs2_enable(priv, false); } return ret; } static int uniphier_ahciphy_pxs2_power_off(struct uniphier_ahciphy_priv *priv) { uniphier_ahciphy_pxs2_enable(priv, false); return 0; } static int uniphier_ahciphy_pxs3_init(struct uniphier_ahciphy_priv *priv) { int i; u32 val; /* setup port parameter */ val = readl(priv->base + TXCTRL0); val &= ~TXCTRL0_AMP_G3_MASK; val |= FIELD_PREP(TXCTRL0_AMP_G3_MASK, 0x73); val &= ~TXCTRL0_AMP_G2_MASK; val |= FIELD_PREP(TXCTRL0_AMP_G2_MASK, 0x46); val &= ~TXCTRL0_AMP_G1_MASK; val |= FIELD_PREP(TXCTRL0_AMP_G1_MASK, 0x42); writel(val, priv->base + TXCTRL0); val = readl(priv->base + TXCTRL1); val &= ~TXCTRL1_DEEMPH_G3_MASK; val |= FIELD_PREP(TXCTRL1_DEEMPH_G3_MASK, 0x23); val &= ~TXCTRL1_DEEMPH_G2_MASK; val |= FIELD_PREP(TXCTRL1_DEEMPH_G2_MASK, 0x05); val &= ~TXCTRL1_DEEMPH_G1_MASK; val |= FIELD_PREP(TXCTRL1_DEEMPH_G1_MASK, 0x05); val = readl(priv->base + RXCTRL); val &= ~RXCTRL_LOS_LVL_MASK; val |= FIELD_PREP(RXCTRL_LOS_LVL_MASK, 0x9); val &= ~RXCTRL_LOS_BIAS_MASK; val |= FIELD_PREP(RXCTRL_LOS_BIAS_MASK, 0x2); val &= ~RXCTRL_RX_EQ_MASK; val |= FIELD_PREP(RXCTRL_RX_EQ_MASK, 0x1); /* dummy read 25 times to make a wait time for the phy to stabilize */ for (i = 0; i < 25; i++) readl(priv->base + CKCTRL); return 0; } static int uniphier_ahciphy_init(struct phy *phy) { struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy); int ret; ret = clk_prepare_enable(priv->clk_parent_gio); if (ret) return ret; ret = clk_prepare_enable(priv->clk_parent); if (ret) goto out_clk_gio_disable; ret = reset_control_deassert(priv->rst_parent_gio); if (ret) goto out_clk_disable; ret = reset_control_deassert(priv->rst_parent); if (ret) goto out_rst_gio_assert; if (priv->data->init) { ret = priv->data->init(priv); if (ret) goto out_rst_assert; } return 0; out_rst_assert: reset_control_assert(priv->rst_parent); out_rst_gio_assert: reset_control_assert(priv->rst_parent_gio); out_clk_disable: clk_disable_unprepare(priv->clk_parent); out_clk_gio_disable: clk_disable_unprepare(priv->clk_parent_gio); return ret; } static int uniphier_ahciphy_exit(struct phy *phy) { struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy); reset_control_assert(priv->rst_parent); reset_control_assert(priv->rst_parent_gio); clk_disable_unprepare(priv->clk_parent); clk_disable_unprepare(priv->clk_parent_gio); return 0; } static int uniphier_ahciphy_power_on(struct phy *phy) { struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy); int ret = 0; ret = clk_prepare_enable(priv->clk); if (ret) return ret; ret = reset_control_deassert(priv->rst); if (ret) goto out_clk_disable; if (priv->data->power_on) { ret = priv->data->power_on(priv); if (ret) goto out_reset_assert; } return 0; out_reset_assert: reset_control_assert(priv->rst); out_clk_disable: clk_disable_unprepare(priv->clk); return ret; } static int uniphier_ahciphy_power_off(struct phy *phy) { struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy); int ret = 0; if (priv->data->power_off) ret = priv->data->power_off(priv); reset_control_assert(priv->rst); clk_disable_unprepare(priv->clk); return ret; } static const struct phy_ops uniphier_ahciphy_ops = { .init = uniphier_ahciphy_init, .exit = uniphier_ahciphy_exit, .power_on = uniphier_ahciphy_power_on, .power_off = uniphier_ahciphy_power_off, .owner = THIS_MODULE, }; static int uniphier_ahciphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct uniphier_ahciphy_priv *priv; struct phy *phy; struct phy_provider *phy_provider; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->data = of_device_get_match_data(dev); if (WARN_ON(!priv->data)) return -EINVAL; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); priv->clk_parent = devm_clk_get(dev, "link"); if (IS_ERR(priv->clk_parent)) return PTR_ERR(priv->clk_parent); if (priv->data->is_phy_clk) { priv->clk = devm_clk_get(dev, "phy"); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); } priv->rst_parent = devm_reset_control_get_shared(dev, "link"); if (IS_ERR(priv->rst_parent)) return PTR_ERR(priv->rst_parent); priv->rst = devm_reset_control_get_shared(dev, "phy"); if (IS_ERR(priv->rst)) return PTR_ERR(priv->rst); if (priv->data->is_legacy) { priv->clk_parent_gio = devm_clk_get(dev, "gio"); if (IS_ERR(priv->clk_parent_gio)) return PTR_ERR(priv->clk_parent_gio); priv->rst_parent_gio = devm_reset_control_get_shared(dev, "gio"); if (IS_ERR(priv->rst_parent_gio)) return PTR_ERR(priv->rst_parent_gio); priv->rst_pm = devm_reset_control_get_shared(dev, "pm"); if (IS_ERR(priv->rst_pm)) return PTR_ERR(priv->rst_pm); priv->rst_tx = devm_reset_control_get_shared(dev, "tx"); if (IS_ERR(priv->rst_tx)) return PTR_ERR(priv->rst_tx); priv->rst_rx = devm_reset_control_get_shared(dev, "rx"); if (IS_ERR(priv->rst_rx)) return PTR_ERR(priv->rst_rx); } phy = devm_phy_create(dev, dev->of_node, &uniphier_ahciphy_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create phy\n"); return PTR_ERR(phy); } phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) return PTR_ERR(phy_provider); return 0; } static const struct uniphier_ahciphy_soc_data uniphier_pro4_data = { .init = uniphier_ahciphy_pro4_init, .power_on = uniphier_ahciphy_pro4_power_on, .power_off = uniphier_ahciphy_pro4_power_off, .is_legacy = true, .is_phy_clk = false, }; static const struct uniphier_ahciphy_soc_data uniphier_pxs2_data = { .power_on = uniphier_ahciphy_pxs2_power_on, .power_off = uniphier_ahciphy_pxs2_power_off, .is_legacy = false, .is_ready_high = false, .is_phy_clk = false, }; static const struct uniphier_ahciphy_soc_data uniphier_pxs3_data = { .init = uniphier_ahciphy_pxs3_init, .power_on = uniphier_ahciphy_pxs2_power_on, .power_off = uniphier_ahciphy_pxs2_power_off, .is_legacy = false, .is_ready_high = true, .is_phy_clk = true, }; static const struct of_device_id uniphier_ahciphy_match[] = { { .compatible = "socionext,uniphier-pro4-ahci-phy", .data = &uniphier_pro4_data, }, { .compatible = "socionext,uniphier-pxs2-ahci-phy", .data = &uniphier_pxs2_data, }, { .compatible = "socionext,uniphier-pxs3-ahci-phy", .data = &uniphier_pxs3_data, }, { /* Sentinel */ }, }; MODULE_DEVICE_TABLE(of, uniphier_ahciphy_match); static struct platform_driver uniphier_ahciphy_driver = { .probe = uniphier_ahciphy_probe, .driver = { .name = "uniphier-ahci-phy", .of_match_table = uniphier_ahciphy_match, }, }; module_platform_driver(uniphier_ahciphy_driver); MODULE_AUTHOR("Kunihiko Hayashi <[email protected]>"); MODULE_DESCRIPTION("UniPhier PHY driver for AHCI controller"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/socionext/phy-uniphier-ahci.c
// SPDX-License-Identifier: GPL-2.0 /* * phy-uniphier-usb2.c - PHY driver for UniPhier USB2 controller * Copyright 2015-2018 Socionext Inc. * Author: * Kunihiko Hayashi <[email protected]> */ #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #define SG_USBPHY1CTRL 0x500 #define SG_USBPHY1CTRL2 0x504 #define SG_USBPHY2CTRL 0x508 #define SG_USBPHY2CTRL2 0x50c /* LD11 */ #define SG_USBPHY12PLL 0x50c /* Pro4 */ #define SG_USBPHY3CTRL 0x510 #define SG_USBPHY3CTRL2 0x514 #define SG_USBPHY4CTRL 0x518 /* Pro4 */ #define SG_USBPHY4CTRL2 0x51c /* Pro4 */ #define SG_USBPHY34PLL 0x51c /* Pro4 */ struct uniphier_u2phy_param { u32 offset; u32 value; }; struct uniphier_u2phy_soc_data { struct uniphier_u2phy_param config0; struct uniphier_u2phy_param config1; }; struct uniphier_u2phy_priv { struct regmap *regmap; struct phy *phy; struct regulator *vbus; const struct uniphier_u2phy_soc_data *data; struct uniphier_u2phy_priv *next; }; static int uniphier_u2phy_power_on(struct phy *phy) { struct uniphier_u2phy_priv *priv = phy_get_drvdata(phy); int ret = 0; if (priv->vbus) ret = regulator_enable(priv->vbus); return ret; } static int uniphier_u2phy_power_off(struct phy *phy) { struct uniphier_u2phy_priv *priv = phy_get_drvdata(phy); if (priv->vbus) regulator_disable(priv->vbus); return 0; } static int uniphier_u2phy_init(struct phy *phy) { struct uniphier_u2phy_priv *priv = phy_get_drvdata(phy); if (!priv->data) return 0; regmap_write(priv->regmap, priv->data->config0.offset, priv->data->config0.value); regmap_write(priv->regmap, priv->data->config1.offset, priv->data->config1.value); return 0; } static struct phy *uniphier_u2phy_xlate(struct device *dev, struct of_phandle_args *args) { struct uniphier_u2phy_priv *priv = dev_get_drvdata(dev); while (priv && args->np != priv->phy->dev.of_node) priv = priv->next; if (!priv) { dev_err(dev, "Failed to find appropriate phy\n"); return ERR_PTR(-EINVAL); } return priv->phy; } static const struct phy_ops uniphier_u2phy_ops = { .init = uniphier_u2phy_init, .power_on = uniphier_u2phy_power_on, .power_off = uniphier_u2phy_power_off, .owner = THIS_MODULE, }; static int uniphier_u2phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *parent, *child; struct uniphier_u2phy_priv *priv = NULL, *next = NULL; struct phy_provider *phy_provider; struct regmap *regmap; const struct uniphier_u2phy_soc_data *data; int ret, data_idx, ndatas; data = of_device_get_match_data(dev); if (WARN_ON(!data)) return -EINVAL; /* get number of data */ for (ndatas = 0; data[ndatas].config0.offset; ndatas++) ; parent = of_get_parent(dev->of_node); regmap = syscon_node_to_regmap(parent); of_node_put(parent); if (IS_ERR(regmap)) { dev_err(dev, "Failed to get regmap\n"); return PTR_ERR(regmap); } for_each_child_of_node(dev->of_node, child) { priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) { ret = -ENOMEM; goto out_put_child; } priv->regmap = regmap; priv->vbus = devm_regulator_get_optional(dev, "vbus"); if (IS_ERR(priv->vbus)) { if (PTR_ERR(priv->vbus) == -EPROBE_DEFER) { ret = PTR_ERR(priv->vbus); goto out_put_child; } priv->vbus = NULL; } priv->phy = devm_phy_create(dev, child, &uniphier_u2phy_ops); if (IS_ERR(priv->phy)) { dev_err(dev, "Failed to create phy\n"); ret = PTR_ERR(priv->phy); goto out_put_child; } ret = of_property_read_u32(child, "reg", &data_idx); if (ret) { dev_err(dev, "Failed to get reg property\n"); goto out_put_child; } if (data_idx < ndatas) priv->data = &data[data_idx]; else dev_warn(dev, "No phy configuration: %s\n", child->full_name); phy_set_drvdata(priv->phy, priv); priv->next = next; next = priv; } dev_set_drvdata(dev, priv); phy_provider = devm_of_phy_provider_register(dev, uniphier_u2phy_xlate); return PTR_ERR_OR_ZERO(phy_provider); out_put_child: of_node_put(child); return ret; } static const struct uniphier_u2phy_soc_data uniphier_pro4_data[] = { { .config0 = { SG_USBPHY1CTRL, 0x05142400 }, .config1 = { SG_USBPHY12PLL, 0x00010010 }, }, { .config0 = { SG_USBPHY2CTRL, 0x05142400 }, .config1 = { SG_USBPHY12PLL, 0x00010010 }, }, { .config0 = { SG_USBPHY3CTRL, 0x05142400 }, .config1 = { SG_USBPHY34PLL, 0x00010010 }, }, { .config0 = { SG_USBPHY4CTRL, 0x05142400 }, .config1 = { SG_USBPHY34PLL, 0x00010010 }, }, { /* sentinel */ } }; static const struct uniphier_u2phy_soc_data uniphier_ld11_data[] = { { .config0 = { SG_USBPHY1CTRL, 0x82280000 }, .config1 = { SG_USBPHY1CTRL2, 0x00000106 }, }, { .config0 = { SG_USBPHY2CTRL, 0x82280000 }, .config1 = { SG_USBPHY2CTRL2, 0x00000106 }, }, { .config0 = { SG_USBPHY3CTRL, 0x82280000 }, .config1 = { SG_USBPHY3CTRL2, 0x00000106 }, }, { /* sentinel */ } }; static const struct of_device_id uniphier_u2phy_match[] = { { .compatible = "socionext,uniphier-pro4-usb2-phy", .data = &uniphier_pro4_data, }, { .compatible = "socionext,uniphier-ld11-usb2-phy", .data = &uniphier_ld11_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, uniphier_u2phy_match); static struct platform_driver uniphier_u2phy_driver = { .probe = uniphier_u2phy_probe, .driver = { .name = "uniphier-usb2-phy", .of_match_table = uniphier_u2phy_match, }, }; module_platform_driver(uniphier_u2phy_driver); MODULE_AUTHOR("Kunihiko Hayashi <[email protected]>"); MODULE_DESCRIPTION("UniPhier PHY driver for USB2 controller"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/socionext/phy-uniphier-usb2.c
// SPDX-License-Identifier: GPL-2.0 /* * phy-uniphier-usb3hs.c - HS-PHY driver for Socionext UniPhier USB3 controller * Copyright 2015-2018 Socionext Inc. * Author: * Kunihiko Hayashi <[email protected]> * Contributors: * Motoya Tanigawa <[email protected]> * Masami Hiramatsu <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #define HSPHY_CFG0 0x0 #define HSPHY_CFG0_HS_I_MASK GENMASK(31, 28) #define HSPHY_CFG0_HSDISC_MASK GENMASK(27, 26) #define HSPHY_CFG0_SWING_MASK GENMASK(17, 16) #define HSPHY_CFG0_SEL_T_MASK GENMASK(15, 12) #define HSPHY_CFG0_RTERM_MASK GENMASK(7, 6) #define HSPHY_CFG0_TRIMMASK (HSPHY_CFG0_HS_I_MASK \ | HSPHY_CFG0_SEL_T_MASK \ | HSPHY_CFG0_RTERM_MASK) #define HSPHY_CFG1 0x4 #define HSPHY_CFG1_DAT_EN BIT(29) #define HSPHY_CFG1_ADR_EN BIT(28) #define HSPHY_CFG1_ADR_MASK GENMASK(27, 16) #define HSPHY_CFG1_DAT_MASK GENMASK(23, 16) #define PHY_F(regno, msb, lsb) { (regno), (msb), (lsb) } #define RX_CHK_SYNC PHY_F(0, 5, 5) /* RX sync mode */ #define RX_SYNC_SEL PHY_F(1, 1, 0) /* RX sync length */ #define LS_SLEW PHY_F(10, 6, 6) /* LS mode slew rate */ #define FS_LS_DRV PHY_F(10, 5, 5) /* FS/LS slew rate */ #define MAX_PHY_PARAMS 4 struct uniphier_u3hsphy_param { struct { int reg_no; int msb; int lsb; } field; u8 value; }; struct uniphier_u3hsphy_trim_param { unsigned int rterm; unsigned int sel_t; unsigned int hs_i; }; #define trim_param_is_valid(p) ((p)->rterm || (p)->sel_t || (p)->hs_i) struct uniphier_u3hsphy_priv { struct device *dev; void __iomem *base; struct clk *clk, *clk_parent, *clk_ext, *clk_parent_gio; struct reset_control *rst, *rst_parent, *rst_parent_gio; struct regulator *vbus; const struct uniphier_u3hsphy_soc_data *data; }; struct uniphier_u3hsphy_soc_data { bool is_legacy; int nparams; const struct uniphier_u3hsphy_param param[MAX_PHY_PARAMS]; u32 config0; u32 config1; void (*trim_func)(struct uniphier_u3hsphy_priv *priv, u32 *pconfig, struct uniphier_u3hsphy_trim_param *pt); }; static void uniphier_u3hsphy_trim_ld20(struct uniphier_u3hsphy_priv *priv, u32 *pconfig, struct uniphier_u3hsphy_trim_param *pt) { *pconfig &= ~HSPHY_CFG0_RTERM_MASK; *pconfig |= FIELD_PREP(HSPHY_CFG0_RTERM_MASK, pt->rterm); *pconfig &= ~HSPHY_CFG0_SEL_T_MASK; *pconfig |= FIELD_PREP(HSPHY_CFG0_SEL_T_MASK, pt->sel_t); *pconfig &= ~HSPHY_CFG0_HS_I_MASK; *pconfig |= FIELD_PREP(HSPHY_CFG0_HS_I_MASK, pt->hs_i); } static int uniphier_u3hsphy_get_nvparam(struct uniphier_u3hsphy_priv *priv, const char *name, unsigned int *val) { struct nvmem_cell *cell; u8 *buf; cell = devm_nvmem_cell_get(priv->dev, name); if (IS_ERR(cell)) return PTR_ERR(cell); buf = nvmem_cell_read(cell, NULL); if (IS_ERR(buf)) return PTR_ERR(buf); *val = *buf; kfree(buf); return 0; } static int uniphier_u3hsphy_get_nvparams(struct uniphier_u3hsphy_priv *priv, struct uniphier_u3hsphy_trim_param *pt) { int ret; ret = uniphier_u3hsphy_get_nvparam(priv, "rterm", &pt->rterm); if (ret) return ret; ret = uniphier_u3hsphy_get_nvparam(priv, "sel_t", &pt->sel_t); if (ret) return ret; ret = uniphier_u3hsphy_get_nvparam(priv, "hs_i", &pt->hs_i); if (ret) return ret; return 0; } static int uniphier_u3hsphy_update_config(struct uniphier_u3hsphy_priv *priv, u32 *pconfig) { struct uniphier_u3hsphy_trim_param trim; int ret, trimmed = 0; if (priv->data->trim_func) { ret = uniphier_u3hsphy_get_nvparams(priv, &trim); if (ret == -EPROBE_DEFER) return ret; /* * call trim_func only when trimming parameters that aren't * all-zero can be acquired. All-zero parameters mean nothing * has been written to nvmem. */ if (!ret && trim_param_is_valid(&trim)) { priv->data->trim_func(priv, pconfig, &trim); trimmed = 1; } else { dev_dbg(priv->dev, "can't get parameter from nvmem\n"); } } /* use default parameters without trimming values */ if (!trimmed) { *pconfig &= ~HSPHY_CFG0_HSDISC_MASK; *pconfig |= FIELD_PREP(HSPHY_CFG0_HSDISC_MASK, 3); } return 0; } static void uniphier_u3hsphy_set_param(struct uniphier_u3hsphy_priv *priv, const struct uniphier_u3hsphy_param *p) { u32 val; u32 field_mask = GENMASK(p->field.msb, p->field.lsb); u8 data; val = readl(priv->base + HSPHY_CFG1); val &= ~HSPHY_CFG1_ADR_MASK; val |= FIELD_PREP(HSPHY_CFG1_ADR_MASK, p->field.reg_no) | HSPHY_CFG1_ADR_EN; writel(val, priv->base + HSPHY_CFG1); val = readl(priv->base + HSPHY_CFG1); val &= ~HSPHY_CFG1_ADR_EN; writel(val, priv->base + HSPHY_CFG1); val = readl(priv->base + HSPHY_CFG1); val &= ~FIELD_PREP(HSPHY_CFG1_DAT_MASK, field_mask); data = field_mask & (p->value << p->field.lsb); val |= FIELD_PREP(HSPHY_CFG1_DAT_MASK, data) | HSPHY_CFG1_DAT_EN; writel(val, priv->base + HSPHY_CFG1); val = readl(priv->base + HSPHY_CFG1); val &= ~HSPHY_CFG1_DAT_EN; writel(val, priv->base + HSPHY_CFG1); } static int uniphier_u3hsphy_power_on(struct phy *phy) { struct uniphier_u3hsphy_priv *priv = phy_get_drvdata(phy); int ret; ret = clk_prepare_enable(priv->clk_ext); if (ret) return ret; ret = clk_prepare_enable(priv->clk); if (ret) goto out_clk_ext_disable; ret = reset_control_deassert(priv->rst); if (ret) goto out_clk_disable; if (priv->vbus) { ret = regulator_enable(priv->vbus); if (ret) goto out_rst_assert; } return 0; out_rst_assert: reset_control_assert(priv->rst); out_clk_disable: clk_disable_unprepare(priv->clk); out_clk_ext_disable: clk_disable_unprepare(priv->clk_ext); return ret; } static int uniphier_u3hsphy_power_off(struct phy *phy) { struct uniphier_u3hsphy_priv *priv = phy_get_drvdata(phy); if (priv->vbus) regulator_disable(priv->vbus); reset_control_assert(priv->rst); clk_disable_unprepare(priv->clk); clk_disable_unprepare(priv->clk_ext); return 0; } static int uniphier_u3hsphy_init(struct phy *phy) { struct uniphier_u3hsphy_priv *priv = phy_get_drvdata(phy); u32 config0, config1; int i, ret; ret = clk_prepare_enable(priv->clk_parent); if (ret) return ret; ret = clk_prepare_enable(priv->clk_parent_gio); if (ret) goto out_clk_disable; ret = reset_control_deassert(priv->rst_parent); if (ret) goto out_clk_gio_disable; ret = reset_control_deassert(priv->rst_parent_gio); if (ret) goto out_rst_assert; if ((priv->data->is_legacy) || (!priv->data->config0 && !priv->data->config1)) return 0; config0 = priv->data->config0; config1 = priv->data->config1; ret = uniphier_u3hsphy_update_config(priv, &config0); if (ret) goto out_rst_assert; writel(config0, priv->base + HSPHY_CFG0); writel(config1, priv->base + HSPHY_CFG1); for (i = 0; i < priv->data->nparams; i++) uniphier_u3hsphy_set_param(priv, &priv->data->param[i]); return 0; out_rst_assert: reset_control_assert(priv->rst_parent); out_clk_gio_disable: clk_disable_unprepare(priv->clk_parent_gio); out_clk_disable: clk_disable_unprepare(priv->clk_parent); return ret; } static int uniphier_u3hsphy_exit(struct phy *phy) { struct uniphier_u3hsphy_priv *priv = phy_get_drvdata(phy); reset_control_assert(priv->rst_parent_gio); reset_control_assert(priv->rst_parent); clk_disable_unprepare(priv->clk_parent_gio); clk_disable_unprepare(priv->clk_parent); return 0; } static const struct phy_ops uniphier_u3hsphy_ops = { .init = uniphier_u3hsphy_init, .exit = uniphier_u3hsphy_exit, .power_on = uniphier_u3hsphy_power_on, .power_off = uniphier_u3hsphy_power_off, .owner = THIS_MODULE, }; static int uniphier_u3hsphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct uniphier_u3hsphy_priv *priv; struct phy_provider *phy_provider; struct phy *phy; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->data = of_device_get_match_data(dev); if (WARN_ON(!priv->data || priv->data->nparams > MAX_PHY_PARAMS)) return -EINVAL; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); if (!priv->data->is_legacy) { priv->clk = devm_clk_get(dev, "phy"); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); priv->clk_ext = devm_clk_get_optional(dev, "phy-ext"); if (IS_ERR(priv->clk_ext)) return PTR_ERR(priv->clk_ext); priv->rst = devm_reset_control_get_shared(dev, "phy"); if (IS_ERR(priv->rst)) return PTR_ERR(priv->rst); } else { priv->clk_parent_gio = devm_clk_get(dev, "gio"); if (IS_ERR(priv->clk_parent_gio)) return PTR_ERR(priv->clk_parent_gio); priv->rst_parent_gio = devm_reset_control_get_shared(dev, "gio"); if (IS_ERR(priv->rst_parent_gio)) return PTR_ERR(priv->rst_parent_gio); } priv->clk_parent = devm_clk_get(dev, "link"); if (IS_ERR(priv->clk_parent)) return PTR_ERR(priv->clk_parent); priv->rst_parent = devm_reset_control_get_shared(dev, "link"); if (IS_ERR(priv->rst_parent)) return PTR_ERR(priv->rst_parent); priv->vbus = devm_regulator_get_optional(dev, "vbus"); if (IS_ERR(priv->vbus)) { if (PTR_ERR(priv->vbus) == -EPROBE_DEFER) return PTR_ERR(priv->vbus); priv->vbus = NULL; } phy = devm_phy_create(dev, dev->of_node, &uniphier_u3hsphy_ops); if (IS_ERR(phy)) return PTR_ERR(phy); phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct uniphier_u3hsphy_soc_data uniphier_pro5_data = { .is_legacy = true, .nparams = 0, }; static const struct uniphier_u3hsphy_soc_data uniphier_pxs2_data = { .is_legacy = false, .nparams = 2, .param = { { RX_CHK_SYNC, 1 }, { RX_SYNC_SEL, 1 }, }, }; static const struct uniphier_u3hsphy_soc_data uniphier_ld20_data = { .is_legacy = false, .nparams = 4, .param = { { RX_CHK_SYNC, 1 }, { RX_SYNC_SEL, 1 }, { LS_SLEW, 1 }, { FS_LS_DRV, 1 }, }, .trim_func = uniphier_u3hsphy_trim_ld20, .config0 = 0x92316680, .config1 = 0x00000106, }; static const struct uniphier_u3hsphy_soc_data uniphier_pxs3_data = { .is_legacy = false, .nparams = 2, .param = { { RX_CHK_SYNC, 1 }, { RX_SYNC_SEL, 1 }, }, .trim_func = uniphier_u3hsphy_trim_ld20, .config0 = 0x92316680, .config1 = 0x00000106, }; static const struct of_device_id uniphier_u3hsphy_match[] = { { .compatible = "socionext,uniphier-pro5-usb3-hsphy", .data = &uniphier_pro5_data, }, { .compatible = "socionext,uniphier-pxs2-usb3-hsphy", .data = &uniphier_pxs2_data, }, { .compatible = "socionext,uniphier-ld20-usb3-hsphy", .data = &uniphier_ld20_data, }, { .compatible = "socionext,uniphier-pxs3-usb3-hsphy", .data = &uniphier_pxs3_data, }, { .compatible = "socionext,uniphier-nx1-usb3-hsphy", .data = &uniphier_pxs3_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, uniphier_u3hsphy_match); static struct platform_driver uniphier_u3hsphy_driver = { .probe = uniphier_u3hsphy_probe, .driver = { .name = "uniphier-usb3-hsphy", .of_match_table = uniphier_u3hsphy_match, }, }; module_platform_driver(uniphier_u3hsphy_driver); MODULE_AUTHOR("Kunihiko Hayashi <[email protected]>"); MODULE_DESCRIPTION("UniPhier HS-PHY driver for USB3 controller"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/socionext/phy-uniphier-usb3hs.c
// SPDX-License-Identifier: GPL-2.0-only /* * Meson GXL and GXM USB2 PHY driver * * Copyright (C) 2017 Martin Blumenstingl <[email protected]> */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> /* bits [31:27] are read-only */ #define U2P_R0 0x0 #define U2P_R0_BYPASS_SEL BIT(0) #define U2P_R0_BYPASS_DM_EN BIT(1) #define U2P_R0_BYPASS_DP_EN BIT(2) #define U2P_R0_TXBITSTUFF_ENH BIT(3) #define U2P_R0_TXBITSTUFF_EN BIT(4) #define U2P_R0_DM_PULLDOWN BIT(5) #define U2P_R0_DP_PULLDOWN BIT(6) #define U2P_R0_DP_VBUS_VLD_EXT_SEL BIT(7) #define U2P_R0_DP_VBUS_VLD_EXT BIT(8) #define U2P_R0_ADP_PRB_EN BIT(9) #define U2P_R0_ADP_DISCHARGE BIT(10) #define U2P_R0_ADP_CHARGE BIT(11) #define U2P_R0_DRV_VBUS BIT(12) #define U2P_R0_ID_PULLUP BIT(13) #define U2P_R0_LOOPBACK_EN_B BIT(14) #define U2P_R0_OTG_DISABLE BIT(15) #define U2P_R0_COMMON_ONN BIT(16) #define U2P_R0_FSEL_MASK GENMASK(19, 17) #define U2P_R0_REF_CLK_SEL_MASK GENMASK(21, 20) #define U2P_R0_POWER_ON_RESET BIT(22) #define U2P_R0_V_ATE_TEST_EN_B_MASK GENMASK(24, 23) #define U2P_R0_ID_SET_ID_DQ BIT(25) #define U2P_R0_ATE_RESET BIT(26) #define U2P_R0_FSV_MINUS BIT(27) #define U2P_R0_FSV_PLUS BIT(28) #define U2P_R0_BYPASS_DM_DATA BIT(29) #define U2P_R0_BYPASS_DP_DATA BIT(30) #define U2P_R1 0x4 #define U2P_R1_BURN_IN_TEST BIT(0) #define U2P_R1_ACA_ENABLE BIT(1) #define U2P_R1_DCD_ENABLE BIT(2) #define U2P_R1_VDAT_SRC_EN_B BIT(3) #define U2P_R1_VDAT_DET_EN_B BIT(4) #define U2P_R1_CHARGES_SEL BIT(5) #define U2P_R1_TX_PREEMP_PULSE_TUNE BIT(6) #define U2P_R1_TX_PREEMP_AMP_TUNE_MASK GENMASK(8, 7) #define U2P_R1_TX_RES_TUNE_MASK GENMASK(10, 9) #define U2P_R1_TX_RISE_TUNE_MASK GENMASK(12, 11) #define U2P_R1_TX_VREF_TUNE_MASK GENMASK(16, 13) #define U2P_R1_TX_FSLS_TUNE_MASK GENMASK(20, 17) #define U2P_R1_TX_HSXV_TUNE_MASK GENMASK(22, 21) #define U2P_R1_OTG_TUNE_MASK GENMASK(25, 23) #define U2P_R1_SQRX_TUNE_MASK GENMASK(28, 26) #define U2P_R1_COMP_DIS_TUNE_MASK GENMASK(31, 29) /* bits [31:14] are read-only */ #define U2P_R2 0x8 #define U2P_R2_TESTDATA_IN_MASK GENMASK(7, 0) #define U2P_R2_TESTADDR_MASK GENMASK(11, 8) #define U2P_R2_TESTDATA_OUT_SEL BIT(12) #define U2P_R2_TESTCLK BIT(13) #define U2P_R2_TESTDATA_OUT_MASK GENMASK(17, 14) #define U2P_R2_ACA_PIN_RANGE_C BIT(18) #define U2P_R2_ACA_PIN_RANGE_B BIT(19) #define U2P_R2_ACA_PIN_RANGE_A BIT(20) #define U2P_R2_ACA_PIN_GND BIT(21) #define U2P_R2_ACA_PIN_FLOAT BIT(22) #define U2P_R2_CHARGE_DETECT BIT(23) #define U2P_R2_DEVICE_SESSION_VALID BIT(24) #define U2P_R2_ADP_PROBE BIT(25) #define U2P_R2_ADP_SENSE BIT(26) #define U2P_R2_SESSION_END BIT(27) #define U2P_R2_VBUS_VALID BIT(28) #define U2P_R2_B_VALID BIT(29) #define U2P_R2_A_VALID BIT(30) #define U2P_R2_ID_DIG BIT(31) #define U2P_R3 0xc #define RESET_COMPLETE_TIME 500 struct phy_meson_gxl_usb2_priv { struct regmap *regmap; enum phy_mode mode; int is_enabled; struct clk *clk; struct reset_control *reset; }; static const struct regmap_config phy_meson_gxl_usb2_regmap_conf = { .reg_bits = 8, .val_bits = 32, .reg_stride = 4, .max_register = U2P_R3, }; static int phy_meson_gxl_usb2_init(struct phy *phy) { struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy); int ret; ret = reset_control_reset(priv->reset); if (ret) return ret; ret = clk_prepare_enable(priv->clk); if (ret) { reset_control_rearm(priv->reset); return ret; } return 0; } static int phy_meson_gxl_usb2_exit(struct phy *phy) { struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy); clk_disable_unprepare(priv->clk); reset_control_rearm(priv->reset); return 0; } static int phy_meson_gxl_usb2_reset(struct phy *phy) { struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy); if (priv->is_enabled) { /* reset the PHY and wait until settings are stabilized */ regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_POWER_ON_RESET, U2P_R0_POWER_ON_RESET); udelay(RESET_COMPLETE_TIME); regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_POWER_ON_RESET, 0); udelay(RESET_COMPLETE_TIME); } return 0; } static int phy_meson_gxl_usb2_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy); switch (mode) { case PHY_MODE_USB_HOST: case PHY_MODE_USB_OTG: regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_DM_PULLDOWN, U2P_R0_DM_PULLDOWN); regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_DP_PULLDOWN, U2P_R0_DP_PULLDOWN); regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_ID_PULLUP, U2P_R0_ID_PULLUP); break; case PHY_MODE_USB_DEVICE: regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_DM_PULLDOWN, 0); regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_DP_PULLDOWN, 0); regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_ID_PULLUP, U2P_R0_ID_PULLUP); break; default: return -EINVAL; } phy_meson_gxl_usb2_reset(phy); priv->mode = mode; return 0; } static int phy_meson_gxl_usb2_power_off(struct phy *phy) { struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy); priv->is_enabled = 0; /* power off the PHY by putting it into reset mode */ regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_POWER_ON_RESET, U2P_R0_POWER_ON_RESET); return 0; } static int phy_meson_gxl_usb2_power_on(struct phy *phy) { struct phy_meson_gxl_usb2_priv *priv = phy_get_drvdata(phy); int ret; priv->is_enabled = 1; /* power on the PHY by taking it out of reset mode */ regmap_update_bits(priv->regmap, U2P_R0, U2P_R0_POWER_ON_RESET, 0); ret = phy_meson_gxl_usb2_set_mode(phy, priv->mode, 0); if (ret) { phy_meson_gxl_usb2_power_off(phy); dev_err(&phy->dev, "Failed to initialize PHY with mode %d\n", priv->mode); return ret; } return 0; } static const struct phy_ops phy_meson_gxl_usb2_ops = { .init = phy_meson_gxl_usb2_init, .exit = phy_meson_gxl_usb2_exit, .power_on = phy_meson_gxl_usb2_power_on, .power_off = phy_meson_gxl_usb2_power_off, .set_mode = phy_meson_gxl_usb2_set_mode, .reset = phy_meson_gxl_usb2_reset, .owner = THIS_MODULE, }; static int phy_meson_gxl_usb2_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct phy_meson_gxl_usb2_priv *priv; struct phy *phy; void __iomem *base; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; platform_set_drvdata(pdev, priv); base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); /* start in host mode */ priv->mode = PHY_MODE_USB_HOST; priv->regmap = devm_regmap_init_mmio(dev, base, &phy_meson_gxl_usb2_regmap_conf); if (IS_ERR(priv->regmap)) return PTR_ERR(priv->regmap); priv->clk = devm_clk_get_optional(dev, "phy"); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); priv->reset = devm_reset_control_get_optional_shared(dev, "phy"); if (IS_ERR(priv->reset)) return PTR_ERR(priv->reset); phy = devm_phy_create(dev, NULL, &phy_meson_gxl_usb2_ops); if (IS_ERR(phy)) { ret = PTR_ERR(phy); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to create PHY\n"); return ret; } phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id phy_meson_gxl_usb2_of_match[] = { { .compatible = "amlogic,meson-gxl-usb2-phy", }, { }, }; MODULE_DEVICE_TABLE(of, phy_meson_gxl_usb2_of_match); static struct platform_driver phy_meson_gxl_usb2_driver = { .probe = phy_meson_gxl_usb2_probe, .driver = { .name = "phy-meson-gxl-usb2", .of_match_table = phy_meson_gxl_usb2_of_match, }, }; module_platform_driver(phy_meson_gxl_usb2_driver); MODULE_AUTHOR("Martin Blumenstingl <[email protected]>"); MODULE_DESCRIPTION("Meson GXL and GXM USB2 PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/amlogic/phy-meson-gxl-usb2.c
// SPDX-License-Identifier: GPL-2.0 /* * Meson G12A MIPI DSI Analog PHY * * Copyright (C) 2018 Amlogic, Inc. All rights reserved * Copyright (C) 2022 BayLibre, SAS * Author: Neil Armstrong <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/module.h> #include <linux/phy/phy.h> #include <linux/regmap.h> #include <linux/delay.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/platform_device.h> #include <dt-bindings/phy/phy.h> #define HHI_MIPI_CNTL0 0x00 #define HHI_MIPI_CNTL0_DIF_REF_CTL1 GENMASK(31, 16) #define HHI_MIPI_CNTL0_DIF_REF_CTL0 GENMASK(15, 0) #define HHI_MIPI_CNTL1 0x04 #define HHI_MIPI_CNTL1_BANDGAP BIT(16) #define HHI_MIPI_CNTL2_DIF_REF_CTL2 GENMASK(15, 0) #define HHI_MIPI_CNTL2 0x08 #define HHI_MIPI_CNTL2_DIF_TX_CTL1 GENMASK(31, 16) #define HHI_MIPI_CNTL2_CH_EN GENMASK(15, 11) #define HHI_MIPI_CNTL2_DIF_TX_CTL0 GENMASK(10, 0) #define DSI_LANE_0 BIT(4) #define DSI_LANE_1 BIT(3) #define DSI_LANE_CLK BIT(2) #define DSI_LANE_2 BIT(1) #define DSI_LANE_3 BIT(0) struct phy_g12a_mipi_dphy_analog_priv { struct phy *phy; struct regmap *regmap; struct phy_configure_opts_mipi_dphy config; }; static int phy_g12a_mipi_dphy_analog_configure(struct phy *phy, union phy_configure_opts *opts) { struct phy_g12a_mipi_dphy_analog_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy); if (ret) return ret; memcpy(&priv->config, opts, sizeof(priv->config)); return 0; } static int phy_g12a_mipi_dphy_analog_power_on(struct phy *phy) { struct phy_g12a_mipi_dphy_analog_priv *priv = phy_get_drvdata(phy); unsigned int reg; regmap_write(priv->regmap, HHI_MIPI_CNTL0, FIELD_PREP(HHI_MIPI_CNTL0_DIF_REF_CTL0, 0x8) | FIELD_PREP(HHI_MIPI_CNTL0_DIF_REF_CTL1, 0xa487)); regmap_write(priv->regmap, HHI_MIPI_CNTL1, FIELD_PREP(HHI_MIPI_CNTL2_DIF_REF_CTL2, 0x2e) | HHI_MIPI_CNTL1_BANDGAP); regmap_write(priv->regmap, HHI_MIPI_CNTL2, FIELD_PREP(HHI_MIPI_CNTL2_DIF_TX_CTL0, 0x45a) | FIELD_PREP(HHI_MIPI_CNTL2_DIF_TX_CTL1, 0x2680)); reg = DSI_LANE_CLK; switch (priv->config.lanes) { case 4: reg |= DSI_LANE_3; fallthrough; case 3: reg |= DSI_LANE_2; fallthrough; case 2: reg |= DSI_LANE_1; fallthrough; case 1: reg |= DSI_LANE_0; break; default: reg = 0; } regmap_update_bits(priv->regmap, HHI_MIPI_CNTL2, HHI_MIPI_CNTL2_CH_EN, FIELD_PREP(HHI_MIPI_CNTL2_CH_EN, reg)); return 0; } static int phy_g12a_mipi_dphy_analog_power_off(struct phy *phy) { struct phy_g12a_mipi_dphy_analog_priv *priv = phy_get_drvdata(phy); regmap_write(priv->regmap, HHI_MIPI_CNTL0, 0); regmap_write(priv->regmap, HHI_MIPI_CNTL1, 0); regmap_write(priv->regmap, HHI_MIPI_CNTL2, 0); return 0; } static const struct phy_ops phy_g12a_mipi_dphy_analog_ops = { .configure = phy_g12a_mipi_dphy_analog_configure, .power_on = phy_g12a_mipi_dphy_analog_power_on, .power_off = phy_g12a_mipi_dphy_analog_power_off, .owner = THIS_MODULE, }; static int phy_g12a_mipi_dphy_analog_probe(struct platform_device *pdev) { struct phy_provider *phy; struct device *dev = &pdev->dev; struct phy_g12a_mipi_dphy_analog_priv *priv; struct device_node *np = dev->of_node, *parent_np; struct regmap *map; priv = devm_kmalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; /* Get the hhi system controller node */ parent_np = of_get_parent(np); map = syscon_node_to_regmap(parent_np); of_node_put(parent_np); if (IS_ERR(map)) return dev_err_probe(dev, PTR_ERR(map), "failed to get HHI regmap\n"); priv->regmap = map; priv->phy = devm_phy_create(dev, np, &phy_g12a_mipi_dphy_analog_ops); if (IS_ERR(priv->phy)) return dev_err_probe(dev, PTR_ERR(priv->phy), "failed to create PHY\n"); phy_set_drvdata(priv->phy, priv); dev_set_drvdata(dev, priv); phy = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy); } static const struct of_device_id phy_g12a_mipi_dphy_analog_of_match[] = { { .compatible = "amlogic,g12a-mipi-dphy-analog", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, phy_g12a_mipi_dphy_analog_of_match); static struct platform_driver phy_g12a_mipi_dphy_analog_driver = { .probe = phy_g12a_mipi_dphy_analog_probe, .driver = { .name = "phy-meson-g12a-mipi-dphy-analog", .of_match_table = phy_g12a_mipi_dphy_analog_of_match, }, }; module_platform_driver(phy_g12a_mipi_dphy_analog_driver); MODULE_AUTHOR("Neil Armstrong <[email protected]>"); MODULE_DESCRIPTION("Meson G12A MIPI Analog D-PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/amlogic/phy-meson-g12a-mipi-dphy-analog.c
// SPDX-License-Identifier: GPL-2.0 /* * Amlogic G12A USB3 + PCIE Combo PHY driver * * Copyright (C) 2017 Amlogic, Inc. All rights reserved * Copyright (C) 2019 BayLibre, SAS * Author: Neil Armstrong <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/platform_device.h> #include <dt-bindings/phy/phy.h> #define PHY_R0 0x00 #define PHY_R0_PCIE_POWER_STATE GENMASK(4, 0) #define PHY_R0_PCIE_USB3_SWITCH GENMASK(6, 5) #define PHY_R1 0x04 #define PHY_R1_PHY_TX1_TERM_OFFSET GENMASK(4, 0) #define PHY_R1_PHY_TX0_TERM_OFFSET GENMASK(9, 5) #define PHY_R1_PHY_RX1_EQ GENMASK(12, 10) #define PHY_R1_PHY_RX0_EQ GENMASK(15, 13) #define PHY_R1_PHY_LOS_LEVEL GENMASK(20, 16) #define PHY_R1_PHY_LOS_BIAS GENMASK(23, 21) #define PHY_R1_PHY_REF_CLKDIV2 BIT(24) #define PHY_R1_PHY_MPLL_MULTIPLIER GENMASK(31, 25) #define PHY_R2 0x08 #define PHY_R2_PCS_TX_DEEMPH_GEN2_6DB GENMASK(5, 0) #define PHY_R2_PCS_TX_DEEMPH_GEN2_3P5DB GENMASK(11, 6) #define PHY_R2_PCS_TX_DEEMPH_GEN1 GENMASK(17, 12) #define PHY_R2_PHY_TX_VBOOST_LVL GENMASK(20, 18) #define PHY_R4 0x10 #define PHY_R4_PHY_CR_WRITE BIT(0) #define PHY_R4_PHY_CR_READ BIT(1) #define PHY_R4_PHY_CR_DATA_IN GENMASK(17, 2) #define PHY_R4_PHY_CR_CAP_DATA BIT(18) #define PHY_R4_PHY_CR_CAP_ADDR BIT(19) #define PHY_R5 0x14 #define PHY_R5_PHY_CR_DATA_OUT GENMASK(15, 0) #define PHY_R5_PHY_CR_ACK BIT(16) #define PHY_R5_PHY_BS_OUT BIT(17) #define PCIE_RESET_DELAY 500 struct phy_g12a_usb3_pcie_priv { struct regmap *regmap; struct regmap *regmap_cr; struct clk *clk_ref; struct reset_control *reset; struct phy *phy; unsigned int mode; }; static const struct regmap_config phy_g12a_usb3_pcie_regmap_conf = { .reg_bits = 8, .val_bits = 32, .reg_stride = 4, .max_register = PHY_R5, }; static int phy_g12a_usb3_pcie_cr_bus_addr(struct phy_g12a_usb3_pcie_priv *priv, unsigned int addr) { unsigned int val, reg; int ret; reg = FIELD_PREP(PHY_R4_PHY_CR_DATA_IN, addr); regmap_write(priv->regmap, PHY_R4, reg); regmap_write(priv->regmap, PHY_R4, reg); regmap_write(priv->regmap, PHY_R4, reg | PHY_R4_PHY_CR_CAP_ADDR); ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val, (val & PHY_R5_PHY_CR_ACK), 5, 1000); if (ret) return ret; regmap_write(priv->regmap, PHY_R4, reg); ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val, !(val & PHY_R5_PHY_CR_ACK), 5, 1000); if (ret) return ret; return 0; } static int phy_g12a_usb3_pcie_cr_bus_read(void *context, unsigned int addr, unsigned int *data) { struct phy_g12a_usb3_pcie_priv *priv = context; unsigned int val; int ret; ret = phy_g12a_usb3_pcie_cr_bus_addr(priv, addr); if (ret) return ret; regmap_write(priv->regmap, PHY_R4, 0); regmap_write(priv->regmap, PHY_R4, PHY_R4_PHY_CR_READ); ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val, (val & PHY_R5_PHY_CR_ACK), 5, 1000); if (ret) return ret; *data = FIELD_GET(PHY_R5_PHY_CR_DATA_OUT, val); regmap_write(priv->regmap, PHY_R4, 0); ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val, !(val & PHY_R5_PHY_CR_ACK), 5, 1000); if (ret) return ret; return 0; } static int phy_g12a_usb3_pcie_cr_bus_write(void *context, unsigned int addr, unsigned int data) { struct phy_g12a_usb3_pcie_priv *priv = context; unsigned int val, reg; int ret; ret = phy_g12a_usb3_pcie_cr_bus_addr(priv, addr); if (ret) return ret; reg = FIELD_PREP(PHY_R4_PHY_CR_DATA_IN, data); regmap_write(priv->regmap, PHY_R4, reg); regmap_write(priv->regmap, PHY_R4, reg); regmap_write(priv->regmap, PHY_R4, reg | PHY_R4_PHY_CR_CAP_DATA); ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val, (val & PHY_R5_PHY_CR_ACK), 5, 1000); if (ret) return ret; regmap_write(priv->regmap, PHY_R4, reg); ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val, (val & PHY_R5_PHY_CR_ACK) == 0, 5, 1000); if (ret) return ret; regmap_write(priv->regmap, PHY_R4, reg); regmap_write(priv->regmap, PHY_R4, reg | PHY_R4_PHY_CR_WRITE); ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val, (val & PHY_R5_PHY_CR_ACK), 5, 1000); if (ret) return ret; regmap_write(priv->regmap, PHY_R4, reg); ret = regmap_read_poll_timeout(priv->regmap, PHY_R5, val, (val & PHY_R5_PHY_CR_ACK) == 0, 5, 1000); if (ret) return ret; return 0; } static const struct regmap_config phy_g12a_usb3_pcie_cr_regmap_conf = { .reg_bits = 16, .val_bits = 16, .reg_read = phy_g12a_usb3_pcie_cr_bus_read, .reg_write = phy_g12a_usb3_pcie_cr_bus_write, .max_register = 0xffff, .disable_locking = true, }; static int phy_g12a_usb3_init(struct phy *phy) { struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy); int data, ret; ret = reset_control_reset(priv->reset); if (ret) return ret; /* Switch PHY to USB3 */ /* TODO figure out how to handle when PCIe was set in the bootloader */ regmap_update_bits(priv->regmap, PHY_R0, PHY_R0_PCIE_USB3_SWITCH, PHY_R0_PCIE_USB3_SWITCH); /* * WORKAROUND: There is SSPHY suspend bug due to * which USB enumerates * in HS mode instead of SS mode. Workaround it by asserting * LANE0.TX_ALT_BLOCK.EN_ALT_BUS to enable TX to use alt bus * mode */ ret = regmap_update_bits(priv->regmap_cr, 0x102d, BIT(7), BIT(7)); if (ret) return ret; ret = regmap_update_bits(priv->regmap_cr, 0x1010, 0xff0, 20); if (ret) return ret; /* * Fix RX Equalization setting as follows * LANE0.RX_OVRD_IN_HI. RX_EQ_EN set to 0 * LANE0.RX_OVRD_IN_HI.RX_EQ_EN_OVRD set to 1 * LANE0.RX_OVRD_IN_HI.RX_EQ set to 3 * LANE0.RX_OVRD_IN_HI.RX_EQ_OVRD set to 1 */ ret = regmap_read(priv->regmap_cr, 0x1006, &data); if (ret) return ret; data &= ~BIT(6); data |= BIT(7); data &= ~(0x7 << 8); data |= (0x3 << 8); data |= (1 << 11); ret = regmap_write(priv->regmap_cr, 0x1006, data); if (ret) return ret; /* * Set EQ and TX launch amplitudes as follows * LANE0.TX_OVRD_DRV_LO.PREEMPH set to 22 * LANE0.TX_OVRD_DRV_LO.AMPLITUDE set to 127 * LANE0.TX_OVRD_DRV_LO.EN set to 1. */ ret = regmap_read(priv->regmap_cr, 0x1002, &data); if (ret) return ret; data &= ~0x3f80; data |= (0x16 << 7); data &= ~0x7f; data |= (0x7f | BIT(14)); ret = regmap_write(priv->regmap_cr, 0x1002, data); if (ret) return ret; /* MPLL_LOOP_CTL.PROP_CNTRL = 8 */ ret = regmap_update_bits(priv->regmap_cr, 0x30, 0xf << 4, 8 << 4); if (ret) return ret; regmap_update_bits(priv->regmap, PHY_R2, PHY_R2_PHY_TX_VBOOST_LVL, FIELD_PREP(PHY_R2_PHY_TX_VBOOST_LVL, 0x4)); regmap_update_bits(priv->regmap, PHY_R1, PHY_R1_PHY_LOS_BIAS | PHY_R1_PHY_LOS_LEVEL, FIELD_PREP(PHY_R1_PHY_LOS_BIAS, 4) | FIELD_PREP(PHY_R1_PHY_LOS_LEVEL, 9)); return 0; } static int phy_g12a_usb3_pcie_power_on(struct phy *phy) { struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy); if (priv->mode == PHY_TYPE_USB3) return 0; regmap_update_bits(priv->regmap, PHY_R0, PHY_R0_PCIE_POWER_STATE, FIELD_PREP(PHY_R0_PCIE_POWER_STATE, 0x1c)); return 0; } static int phy_g12a_usb3_pcie_power_off(struct phy *phy) { struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy); if (priv->mode == PHY_TYPE_USB3) return 0; regmap_update_bits(priv->regmap, PHY_R0, PHY_R0_PCIE_POWER_STATE, FIELD_PREP(PHY_R0_PCIE_POWER_STATE, 0x1d)); return 0; } static int phy_g12a_usb3_pcie_reset(struct phy *phy) { struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy); int ret; if (priv->mode == PHY_TYPE_USB3) return 0; ret = reset_control_assert(priv->reset); if (ret) return ret; udelay(PCIE_RESET_DELAY); ret = reset_control_deassert(priv->reset); if (ret) return ret; udelay(PCIE_RESET_DELAY); return 0; } static int phy_g12a_usb3_pcie_init(struct phy *phy) { struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy); if (priv->mode == PHY_TYPE_USB3) return phy_g12a_usb3_init(phy); return 0; } static int phy_g12a_usb3_pcie_exit(struct phy *phy) { struct phy_g12a_usb3_pcie_priv *priv = phy_get_drvdata(phy); if (priv->mode == PHY_TYPE_USB3) return reset_control_reset(priv->reset); return 0; } static struct phy *phy_g12a_usb3_pcie_xlate(struct device *dev, struct of_phandle_args *args) { struct phy_g12a_usb3_pcie_priv *priv = dev_get_drvdata(dev); unsigned int mode; if (args->args_count < 1) { dev_err(dev, "invalid number of arguments\n"); return ERR_PTR(-EINVAL); } mode = args->args[0]; if (mode != PHY_TYPE_USB3 && mode != PHY_TYPE_PCIE) { dev_err(dev, "invalid phy mode select argument\n"); return ERR_PTR(-EINVAL); } priv->mode = mode; return priv->phy; } static const struct phy_ops phy_g12a_usb3_pcie_ops = { .init = phy_g12a_usb3_pcie_init, .exit = phy_g12a_usb3_pcie_exit, .power_on = phy_g12a_usb3_pcie_power_on, .power_off = phy_g12a_usb3_pcie_power_off, .reset = phy_g12a_usb3_pcie_reset, .owner = THIS_MODULE, }; static int phy_g12a_usb3_pcie_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct phy_g12a_usb3_pcie_priv *priv; struct phy_provider *phy_provider; void __iomem *base; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); priv->regmap = devm_regmap_init_mmio(dev, base, &phy_g12a_usb3_pcie_regmap_conf); if (IS_ERR(priv->regmap)) return PTR_ERR(priv->regmap); priv->regmap_cr = devm_regmap_init(dev, NULL, priv, &phy_g12a_usb3_pcie_cr_regmap_conf); if (IS_ERR(priv->regmap_cr)) return PTR_ERR(priv->regmap_cr); priv->clk_ref = devm_clk_get_enabled(dev, "ref_clk"); if (IS_ERR(priv->clk_ref)) return PTR_ERR(priv->clk_ref); priv->reset = devm_reset_control_array_get_exclusive(dev); if (IS_ERR(priv->reset)) return PTR_ERR(priv->reset); priv->phy = devm_phy_create(dev, np, &phy_g12a_usb3_pcie_ops); if (IS_ERR(priv->phy)) return dev_err_probe(dev, PTR_ERR(priv->phy), "failed to create PHY\n"); phy_set_drvdata(priv->phy, priv); dev_set_drvdata(dev, priv); phy_provider = devm_of_phy_provider_register(dev, phy_g12a_usb3_pcie_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id phy_g12a_usb3_pcie_of_match[] = { { .compatible = "amlogic,g12a-usb3-pcie-phy", }, { }, }; MODULE_DEVICE_TABLE(of, phy_g12a_usb3_pcie_of_match); static struct platform_driver phy_g12a_usb3_pcie_driver = { .probe = phy_g12a_usb3_pcie_probe, .driver = { .name = "phy-g12a-usb3-pcie", .of_match_table = phy_g12a_usb3_pcie_of_match, }, }; module_platform_driver(phy_g12a_usb3_pcie_driver); MODULE_AUTHOR("Neil Armstrong <[email protected]>"); MODULE_DESCRIPTION("Amlogic G12A USB3 + PCIE Combo PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/amlogic/phy-meson-g12a-usb3-pcie.c
// SPDX-License-Identifier: GPL-2.0+ /* * Meson8, Meson8b and Meson8m2 HDMI TX PHY. * * Copyright (C) 2021 Martin Blumenstingl <[email protected]> */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regmap.h> /* * Unfortunately there is no detailed documentation available for the * HHI_HDMI_PHY_CNTL0 register. CTL0 and CTL1 is all we know about. * Magic register values in the driver below are taken from the vendor * BSP / kernel. */ #define HHI_HDMI_PHY_CNTL0 0x3a0 #define HHI_HDMI_PHY_CNTL0_HDMI_CTL1 GENMASK(31, 16) #define HHI_HDMI_PHY_CNTL0_HDMI_CTL0 GENMASK(15, 0) #define HHI_HDMI_PHY_CNTL1 0x3a4 #define HHI_HDMI_PHY_CNTL1_CLOCK_ENABLE BIT(1) #define HHI_HDMI_PHY_CNTL1_SOFT_RESET BIT(0) #define HHI_HDMI_PHY_CNTL2 0x3a8 struct phy_meson8_hdmi_tx_priv { struct regmap *hhi; struct clk *tmds_clk; }; static int phy_meson8_hdmi_tx_init(struct phy *phy) { struct phy_meson8_hdmi_tx_priv *priv = phy_get_drvdata(phy); return clk_prepare_enable(priv->tmds_clk); } static int phy_meson8_hdmi_tx_exit(struct phy *phy) { struct phy_meson8_hdmi_tx_priv *priv = phy_get_drvdata(phy); clk_disable_unprepare(priv->tmds_clk); return 0; } static int phy_meson8_hdmi_tx_power_on(struct phy *phy) { struct phy_meson8_hdmi_tx_priv *priv = phy_get_drvdata(phy); unsigned int i; u16 hdmi_ctl0; if (clk_get_rate(priv->tmds_clk) >= 2970UL * 1000 * 1000) hdmi_ctl0 = 0x1e8b; else hdmi_ctl0 = 0x4d0b; regmap_write(priv->hhi, HHI_HDMI_PHY_CNTL0, FIELD_PREP(HHI_HDMI_PHY_CNTL0_HDMI_CTL1, 0x08c3) | FIELD_PREP(HHI_HDMI_PHY_CNTL0_HDMI_CTL0, hdmi_ctl0)); regmap_write(priv->hhi, HHI_HDMI_PHY_CNTL1, 0x0); /* Reset three times, just like the vendor driver does */ for (i = 0; i < 3; i++) { regmap_write(priv->hhi, HHI_HDMI_PHY_CNTL1, HHI_HDMI_PHY_CNTL1_CLOCK_ENABLE | HHI_HDMI_PHY_CNTL1_SOFT_RESET); usleep_range(1000, 2000); regmap_write(priv->hhi, HHI_HDMI_PHY_CNTL1, HHI_HDMI_PHY_CNTL1_CLOCK_ENABLE); usleep_range(1000, 2000); } return 0; } static int phy_meson8_hdmi_tx_power_off(struct phy *phy) { struct phy_meson8_hdmi_tx_priv *priv = phy_get_drvdata(phy); regmap_write(priv->hhi, HHI_HDMI_PHY_CNTL0, FIELD_PREP(HHI_HDMI_PHY_CNTL0_HDMI_CTL1, 0x0841) | FIELD_PREP(HHI_HDMI_PHY_CNTL0_HDMI_CTL0, 0x8d00)); return 0; } static const struct phy_ops phy_meson8_hdmi_tx_ops = { .init = phy_meson8_hdmi_tx_init, .exit = phy_meson8_hdmi_tx_exit, .power_on = phy_meson8_hdmi_tx_power_on, .power_off = phy_meson8_hdmi_tx_power_off, .owner = THIS_MODULE, }; static int phy_meson8_hdmi_tx_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct phy_meson8_hdmi_tx_priv *priv; struct phy_provider *phy_provider; struct resource *res; struct phy *phy; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->hhi = syscon_node_to_regmap(np->parent); if (IS_ERR(priv->hhi)) return PTR_ERR(priv->hhi); priv->tmds_clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(priv->tmds_clk)) return PTR_ERR(priv->tmds_clk); phy = devm_phy_create(&pdev->dev, np, &phy_meson8_hdmi_tx_ops); if (IS_ERR(phy)) return PTR_ERR(phy); phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id phy_meson8_hdmi_tx_of_match[] = { { .compatible = "amlogic,meson8-hdmi-tx-phy" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, phy_meson8_hdmi_tx_of_match); static struct platform_driver phy_meson8_hdmi_tx_driver = { .probe = phy_meson8_hdmi_tx_probe, .driver = { .name = "phy-meson8-hdmi-tx", .of_match_table = phy_meson8_hdmi_tx_of_match, }, }; module_platform_driver(phy_meson8_hdmi_tx_driver); MODULE_AUTHOR("Martin Blumenstingl <[email protected]>"); MODULE_DESCRIPTION("Meson8, Meson8b and Meson8m2 HDMI TX PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/amlogic/phy-meson8-hdmi-tx.c
// SPDX-License-Identifier: GPL-2.0 /* * Meson AXG MIPI DPHY driver * * Copyright (C) 2018 Amlogic, Inc. All rights reserved * Copyright (C) 2020 BayLibre, SAS * Author: Neil Armstrong <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> /* [31] soft reset for the phy. * 1: reset. 0: dessert the reset. * [30] clock lane soft reset. * [29] data byte lane 3 soft reset. * [28] data byte lane 2 soft reset. * [27] data byte lane 1 soft reset. * [26] data byte lane 0 soft reset. * [25] mipi dsi pll clock selection. * 1: clock from fixed 850Mhz clock source. 0: from VID2 PLL. * [12] mipi HSbyteclk enable. * [11] mipi divider clk selection. * 1: select the mipi DDRCLKHS from clock divider. * 0: from PLL clock. * [10] mipi clock divider control. * 1: /4. 0: /2. * [9] mipi divider output enable. * [8] mipi divider counter enable. * [7] PLL clock enable. * [5] LPDT data endian. * 1 = transfer the high bit first. 0 : transfer the low bit first. * [4] HS data endian. * [3] force data byte lane in stop mode. * [2] force data byte lane 0 in receiver mode. * [1] write 1 to sync the txclkesc input. the internal logic have to * use txclkesc to decide Txvalid and Txready. * [0] enalbe the MIPI DPHY TxDDRClk. */ #define MIPI_DSI_PHY_CTRL 0x0 /* [31] clk lane tx_hs_en control selection. * 1: from register. 0: use clk lane state machine. * [30] register bit for clock lane tx_hs_en. * [29] clk lane tx_lp_en contrl selection. * 1: from register. 0: from clk lane state machine. * [28] register bit for clock lane tx_lp_en. * [27] chan0 tx_hs_en control selection. * 1: from register. 0: from chan0 state machine. * [26] register bit for chan0 tx_hs_en. * [25] chan0 tx_lp_en control selection. * 1: from register. 0: from chan0 state machine. * [24] register bit from chan0 tx_lp_en. * [23] chan0 rx_lp_en control selection. * 1: from register. 0: from chan0 state machine. * [22] register bit from chan0 rx_lp_en. * [21] chan0 contention detection enable control selection. * 1: from register. 0: from chan0 state machine. * [20] register bit from chan0 contention dectection enable. * [19] chan1 tx_hs_en control selection. * 1: from register. 0: from chan0 state machine. * [18] register bit for chan1 tx_hs_en. * [17] chan1 tx_lp_en control selection. * 1: from register. 0: from chan0 state machine. * [16] register bit from chan1 tx_lp_en. * [15] chan2 tx_hs_en control selection. * 1: from register. 0: from chan0 state machine. * [14] register bit for chan2 tx_hs_en. * [13] chan2 tx_lp_en control selection. * 1: from register. 0: from chan0 state machine. * [12] register bit from chan2 tx_lp_en. * [11] chan3 tx_hs_en control selection. * 1: from register. 0: from chan0 state machine. * [10] register bit for chan3 tx_hs_en. * [9] chan3 tx_lp_en control selection. * 1: from register. 0: from chan0 state machine. * [8] register bit from chan3 tx_lp_en. * [4] clk chan power down. this bit is also used as the power down * of the whole MIPI_DSI_PHY. * [3] chan3 power down. * [2] chan2 power down. * [1] chan1 power down. * [0] chan0 power down. */ #define MIPI_DSI_CHAN_CTRL 0x4 /* [24] rx turn watch dog triggered. * [23] rx esc watchdog triggered. * [22] mbias ready. * [21] txclkesc synced and ready. * [20:17] clk lane state. {mbias_ready, tx_stop, tx_ulps, tx_hs_active} * [16:13] chan3 state{0, tx_stop, tx_ulps, tx_hs_active} * [12:9] chan2 state.{0, tx_stop, tx_ulps, tx_hs_active} * [8:5] chan1 state. {0, tx_stop, tx_ulps, tx_hs_active} * [4:0] chan0 state. {TX_STOP, tx_ULPS, hs_active, direction, rxulpsesc} */ #define MIPI_DSI_CHAN_STS 0x8 /* [31:24] TCLK_PREPARE. * [23:16] TCLK_ZERO. * [15:8] TCLK_POST. * [7:0] TCLK_TRAIL. */ #define MIPI_DSI_CLK_TIM 0xc /* [31:24] THS_PREPARE. * [23:16] THS_ZERO. * [15:8] THS_TRAIL. * [7:0] THS_EXIT. */ #define MIPI_DSI_HS_TIM 0x10 /* [31:24] tTA_GET. * [23:16] tTA_GO. * [15:8] tTA_SURE. * [7:0] tLPX. */ #define MIPI_DSI_LP_TIM 0x14 /* wait time to MIPI DIS analog ready. */ #define MIPI_DSI_ANA_UP_TIM 0x18 /* TINIT. */ #define MIPI_DSI_INIT_TIM 0x1c /* TWAKEUP. */ #define MIPI_DSI_WAKEUP_TIM 0x20 /* when in RxULPS check state, after the logic enable the analog, * how long we should wait to check the lP state . */ #define MIPI_DSI_LPOK_TIM 0x24 /* Watchdog for RX low power state no finished. */ #define MIPI_DSI_LP_WCHDOG 0x28 /* tMBIAS, after send power up signals to analog, * how long we should wait for analog powered up. */ #define MIPI_DSI_ANA_CTRL 0x2c /* [31:8] reserved for future. * [7:0] tCLK_PRE. */ #define MIPI_DSI_CLK_TIM1 0x30 /* watchdog for turn around waiting time. */ #define MIPI_DSI_TURN_WCHDOG 0x34 /* When in RxULPS state, how frequency we should to check * if the TX side out of ULPS state. */ #define MIPI_DSI_ULPS_CHECK 0x38 #define MIPI_DSI_TEST_CTRL0 0x3c #define MIPI_DSI_TEST_CTRL1 0x40 struct phy_meson_axg_mipi_dphy_priv { struct device *dev; struct regmap *regmap; struct clk *clk; struct reset_control *reset; struct phy *analog; struct phy_configure_opts_mipi_dphy config; }; static const struct regmap_config phy_meson_axg_mipi_dphy_regmap_conf = { .reg_bits = 8, .val_bits = 32, .reg_stride = 4, .max_register = MIPI_DSI_TEST_CTRL1, }; static int phy_meson_axg_mipi_dphy_init(struct phy *phy) { struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_init(priv->analog); if (ret) return ret; ret = reset_control_reset(priv->reset); if (ret) return ret; return 0; } static int phy_meson_axg_mipi_dphy_configure(struct phy *phy, union phy_configure_opts *opts) { struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy); if (ret) return ret; ret = phy_configure(priv->analog, opts); if (ret) return ret; memcpy(&priv->config, opts, sizeof(priv->config)); return 0; } static int phy_meson_axg_mipi_dphy_power_on(struct phy *phy) { struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy); int ret; unsigned long temp; ret = phy_power_on(priv->analog); if (ret) return ret; /* enable phy clock */ regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL, 0x1); regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(0) | /* enable the DSI PLL clock . */ BIT(7) | /* enable pll clock which connected to DDR clock path */ BIT(8)); /* enable the clock divider counter */ /* enable the divider clock out */ regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(9), BIT(9)); /* enable the byte clock generation. */ regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(12), BIT(12)); regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31), BIT(31)); regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31), 0); /* Calculate lanebyteclk period in ps */ temp = (1000000 * 100) / (priv->config.hs_clk_rate / 1000); temp = temp * 8 * 10; regmap_write(priv->regmap, MIPI_DSI_CLK_TIM, DIV_ROUND_UP(priv->config.clk_trail, temp) | (DIV_ROUND_UP(priv->config.clk_post + priv->config.hs_trail, temp) << 8) | (DIV_ROUND_UP(priv->config.clk_zero, temp) << 16) | (DIV_ROUND_UP(priv->config.clk_prepare, temp) << 24)); regmap_write(priv->regmap, MIPI_DSI_CLK_TIM1, DIV_ROUND_UP(priv->config.clk_pre, BITS_PER_BYTE)); regmap_write(priv->regmap, MIPI_DSI_HS_TIM, DIV_ROUND_UP(priv->config.hs_exit, temp) | (DIV_ROUND_UP(priv->config.hs_trail, temp) << 8) | (DIV_ROUND_UP(priv->config.hs_zero, temp) << 16) | (DIV_ROUND_UP(priv->config.hs_prepare, temp) << 24)); regmap_write(priv->regmap, MIPI_DSI_LP_TIM, DIV_ROUND_UP(priv->config.lpx, temp) | (DIV_ROUND_UP(priv->config.ta_sure, temp) << 8) | (DIV_ROUND_UP(priv->config.ta_go, temp) << 16) | (DIV_ROUND_UP(priv->config.ta_get, temp) << 24)); regmap_write(priv->regmap, MIPI_DSI_ANA_UP_TIM, 0x0100); regmap_write(priv->regmap, MIPI_DSI_INIT_TIM, DIV_ROUND_UP(priv->config.init * NSEC_PER_MSEC, temp)); regmap_write(priv->regmap, MIPI_DSI_WAKEUP_TIM, DIV_ROUND_UP(priv->config.wakeup * NSEC_PER_MSEC, temp)); regmap_write(priv->regmap, MIPI_DSI_LPOK_TIM, 0x7C); regmap_write(priv->regmap, MIPI_DSI_ULPS_CHECK, 0x927C); regmap_write(priv->regmap, MIPI_DSI_LP_WCHDOG, 0x1000); regmap_write(priv->regmap, MIPI_DSI_TURN_WCHDOG, 0x1000); /* Powerup the analog circuit */ switch (priv->config.lanes) { case 1: regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xe); break; case 2: regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xc); break; case 3: regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0x8); break; case 4: default: regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0); break; } /* Trigger a sync active for esc_clk */ regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(1), BIT(1)); return 0; } static int phy_meson_axg_mipi_dphy_power_off(struct phy *phy) { struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy); regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xf); regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31)); phy_power_off(priv->analog); return 0; } static int phy_meson_axg_mipi_dphy_exit(struct phy *phy) { struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_exit(priv->analog); if (ret) return ret; return reset_control_reset(priv->reset); } static const struct phy_ops phy_meson_axg_mipi_dphy_ops = { .configure = phy_meson_axg_mipi_dphy_configure, .init = phy_meson_axg_mipi_dphy_init, .exit = phy_meson_axg_mipi_dphy_exit, .power_on = phy_meson_axg_mipi_dphy_power_on, .power_off = phy_meson_axg_mipi_dphy_power_off, .owner = THIS_MODULE, }; static int phy_meson_axg_mipi_dphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct phy_meson_axg_mipi_dphy_priv *priv; struct phy *phy; void __iomem *base; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; platform_set_drvdata(pdev, priv); base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); priv->regmap = devm_regmap_init_mmio(dev, base, &phy_meson_axg_mipi_dphy_regmap_conf); if (IS_ERR(priv->regmap)) return PTR_ERR(priv->regmap); priv->clk = devm_clk_get(dev, "pclk"); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); priv->reset = devm_reset_control_get(dev, "phy"); if (IS_ERR(priv->reset)) return PTR_ERR(priv->reset); priv->analog = devm_phy_get(dev, "analog"); if (IS_ERR(priv->analog)) return PTR_ERR(priv->analog); ret = clk_prepare_enable(priv->clk); if (ret) return ret; ret = reset_control_deassert(priv->reset); if (ret) return ret; phy = devm_phy_create(dev, NULL, &phy_meson_axg_mipi_dphy_ops); if (IS_ERR(phy)) { ret = PTR_ERR(phy); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to create PHY\n"); return ret; } phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id phy_meson_axg_mipi_dphy_of_match[] = { { .compatible = "amlogic,axg-mipi-dphy", }, { }, }; MODULE_DEVICE_TABLE(of, phy_meson_axg_mipi_dphy_of_match); static struct platform_driver phy_meson_axg_mipi_dphy_driver = { .probe = phy_meson_axg_mipi_dphy_probe, .driver = { .name = "phy-meson-axg-mipi-dphy", .of_match_table = phy_meson_axg_mipi_dphy_of_match, }, }; module_platform_driver(phy_meson_axg_mipi_dphy_driver); MODULE_AUTHOR("Neil Armstrong <[email protected]>"); MODULE_DESCRIPTION("Meson AXG MIPI DPHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/amlogic/phy-meson-axg-mipi-dphy.c
// SPDX-License-Identifier: GPL-2.0 /* * Amlogic AXG PCIE PHY driver * * Copyright (C) 2020 Remi Pommarel <[email protected]> */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/phy/phy.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/platform_device.h> #include <linux/bitfield.h> #include <dt-bindings/phy/phy.h> #define MESON_PCIE_REG0 0x00 #define MESON_PCIE_COMMON_CLK BIT(4) #define MESON_PCIE_PORT_SEL GENMASK(3, 2) #define MESON_PCIE_CLK BIT(1) #define MESON_PCIE_POWERDOWN BIT(0) #define MESON_PCIE_TWO_X1 FIELD_PREP(MESON_PCIE_PORT_SEL, 0x3) #define MESON_PCIE_COMMON_REF_CLK FIELD_PREP(MESON_PCIE_COMMON_CLK, 0x1) #define MESON_PCIE_PHY_INIT (MESON_PCIE_TWO_X1 | \ MESON_PCIE_COMMON_REF_CLK) #define MESON_PCIE_RESET_DELAY 500 struct phy_axg_pcie_priv { struct phy *phy; struct phy *analog; struct regmap *regmap; struct reset_control *reset; }; static const struct regmap_config phy_axg_pcie_regmap_conf = { .reg_bits = 8, .val_bits = 32, .reg_stride = 4, .max_register = MESON_PCIE_REG0, }; static int phy_axg_pcie_power_on(struct phy *phy) { struct phy_axg_pcie_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_power_on(priv->analog); if (ret != 0) return ret; regmap_update_bits(priv->regmap, MESON_PCIE_REG0, MESON_PCIE_POWERDOWN, 0); return 0; } static int phy_axg_pcie_power_off(struct phy *phy) { struct phy_axg_pcie_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_power_off(priv->analog); if (ret != 0) return ret; regmap_update_bits(priv->regmap, MESON_PCIE_REG0, MESON_PCIE_POWERDOWN, 1); return 0; } static int phy_axg_pcie_init(struct phy *phy) { struct phy_axg_pcie_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_init(priv->analog); if (ret != 0) return ret; regmap_write(priv->regmap, MESON_PCIE_REG0, MESON_PCIE_PHY_INIT); return reset_control_reset(priv->reset); } static int phy_axg_pcie_exit(struct phy *phy) { struct phy_axg_pcie_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_exit(priv->analog); if (ret != 0) return ret; return reset_control_reset(priv->reset); } static int phy_axg_pcie_reset(struct phy *phy) { struct phy_axg_pcie_priv *priv = phy_get_drvdata(phy); int ret = 0; ret = phy_reset(priv->analog); if (ret != 0) goto out; ret = reset_control_assert(priv->reset); if (ret != 0) goto out; udelay(MESON_PCIE_RESET_DELAY); ret = reset_control_deassert(priv->reset); if (ret != 0) goto out; udelay(MESON_PCIE_RESET_DELAY); out: return ret; } static const struct phy_ops phy_axg_pcie_ops = { .init = phy_axg_pcie_init, .exit = phy_axg_pcie_exit, .power_on = phy_axg_pcie_power_on, .power_off = phy_axg_pcie_power_off, .reset = phy_axg_pcie_reset, .owner = THIS_MODULE, }; static int phy_axg_pcie_probe(struct platform_device *pdev) { struct phy_provider *pphy; struct device *dev = &pdev->dev; struct phy_axg_pcie_priv *priv; struct device_node *np = dev->of_node; void __iomem *base; int ret; priv = devm_kmalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->phy = devm_phy_create(dev, np, &phy_axg_pcie_ops); if (IS_ERR(priv->phy)) { ret = PTR_ERR(priv->phy); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to create PHY\n"); return ret; } base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); priv->regmap = devm_regmap_init_mmio(dev, base, &phy_axg_pcie_regmap_conf); if (IS_ERR(priv->regmap)) return PTR_ERR(priv->regmap); priv->reset = devm_reset_control_array_get_exclusive(dev); if (IS_ERR(priv->reset)) return PTR_ERR(priv->reset); priv->analog = devm_phy_get(dev, "analog"); if (IS_ERR(priv->analog)) return PTR_ERR(priv->analog); phy_set_drvdata(priv->phy, priv); dev_set_drvdata(dev, priv); pphy = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(pphy); } static const struct of_device_id phy_axg_pcie_of_match[] = { { .compatible = "amlogic,axg-pcie-phy", }, { }, }; MODULE_DEVICE_TABLE(of, phy_axg_pcie_of_match); static struct platform_driver phy_axg_pcie_driver = { .probe = phy_axg_pcie_probe, .driver = { .name = "phy-axg-pcie", .of_match_table = phy_axg_pcie_of_match, }, }; module_platform_driver(phy_axg_pcie_driver); MODULE_AUTHOR("Remi Pommarel <[email protected]>"); MODULE_DESCRIPTION("Amlogic AXG PCIE PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/amlogic/phy-meson-axg-pcie.c
// SPDX-License-Identifier: GPL-2.0 /* * Amlogic AXG MIPI + PCIE analog PHY driver * * Copyright (C) 2019 Remi Pommarel <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/module.h> #include <linux/phy/phy.h> #include <linux/regmap.h> #include <linux/delay.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/platform_device.h> #include <dt-bindings/phy/phy.h> #define HHI_MIPI_CNTL0 0x00 #define HHI_MIPI_CNTL0_COMMON_BLOCK GENMASK(31, 28) #define HHI_MIPI_CNTL0_ENABLE BIT(29) #define HHI_MIPI_CNTL0_BANDGAP BIT(26) #define HHI_MIPI_CNTL0_DIF_REF_CTL1 GENMASK(25, 16) #define HHI_MIPI_CNTL0_DIF_REF_CTL0 GENMASK(15, 0) #define HHI_MIPI_CNTL1 0x04 #define HHI_MIPI_CNTL1_CH0_CML_PDR_EN BIT(12) #define HHI_MIPI_CNTL1_LP_ABILITY GENMASK(5, 4) #define HHI_MIPI_CNTL1_LP_RESISTER BIT(3) #define HHI_MIPI_CNTL1_INPUT_SETTING BIT(2) #define HHI_MIPI_CNTL1_INPUT_SEL BIT(1) #define HHI_MIPI_CNTL1_PRBS7_EN BIT(0) #define HHI_MIPI_CNTL2 0x08 #define HHI_MIPI_CNTL2_CH_PU GENMASK(31, 25) #define HHI_MIPI_CNTL2_CH_CTL GENMASK(24, 19) #define HHI_MIPI_CNTL2_CH0_DIGDR_EN BIT(18) #define HHI_MIPI_CNTL2_CH_DIGDR_EN BIT(17) #define HHI_MIPI_CNTL2_LPULPS_EN BIT(16) #define HHI_MIPI_CNTL2_CH_EN GENMASK(15, 11) #define HHI_MIPI_CNTL2_CH0_LP_CTL GENMASK(10, 1) #define DSI_LANE_0 BIT(4) #define DSI_LANE_1 BIT(3) #define DSI_LANE_CLK BIT(2) #define DSI_LANE_2 BIT(1) #define DSI_LANE_3 BIT(0) struct phy_axg_mipi_pcie_analog_priv { struct phy *phy; struct regmap *regmap; bool dsi_configured; bool dsi_enabled; bool powered; struct phy_configure_opts_mipi_dphy config; }; static void phy_bandgap_enable(struct phy_axg_mipi_pcie_analog_priv *priv) { regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, HHI_MIPI_CNTL0_BANDGAP, HHI_MIPI_CNTL0_BANDGAP); regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, HHI_MIPI_CNTL0_ENABLE, HHI_MIPI_CNTL0_ENABLE); } static void phy_bandgap_disable(struct phy_axg_mipi_pcie_analog_priv *priv) { regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, HHI_MIPI_CNTL0_BANDGAP, 0); regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, HHI_MIPI_CNTL0_ENABLE, 0); } static void phy_dsi_analog_enable(struct phy_axg_mipi_pcie_analog_priv *priv) { u32 reg; regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, HHI_MIPI_CNTL0_DIF_REF_CTL1, FIELD_PREP(HHI_MIPI_CNTL0_DIF_REF_CTL1, 0x1b8)); regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, BIT(31), BIT(31)); regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, HHI_MIPI_CNTL0_DIF_REF_CTL0, FIELD_PREP(HHI_MIPI_CNTL0_DIF_REF_CTL0, 0x8)); regmap_write(priv->regmap, HHI_MIPI_CNTL1, 0x001e); regmap_write(priv->regmap, HHI_MIPI_CNTL2, (0x26e0 << 16) | (0x459 << 0)); reg = DSI_LANE_CLK; switch (priv->config.lanes) { case 4: reg |= DSI_LANE_3; fallthrough; case 3: reg |= DSI_LANE_2; fallthrough; case 2: reg |= DSI_LANE_1; fallthrough; case 1: reg |= DSI_LANE_0; break; default: reg = 0; } regmap_update_bits(priv->regmap, HHI_MIPI_CNTL2, HHI_MIPI_CNTL2_CH_EN, FIELD_PREP(HHI_MIPI_CNTL2_CH_EN, reg)); priv->dsi_enabled = true; } static void phy_dsi_analog_disable(struct phy_axg_mipi_pcie_analog_priv *priv) { regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, HHI_MIPI_CNTL0_DIF_REF_CTL1, FIELD_PREP(HHI_MIPI_CNTL0_DIF_REF_CTL1, 0)); regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, BIT(31), 0); regmap_update_bits(priv->regmap, HHI_MIPI_CNTL0, HHI_MIPI_CNTL0_DIF_REF_CTL1, 0); regmap_write(priv->regmap, HHI_MIPI_CNTL1, 0x6); regmap_write(priv->regmap, HHI_MIPI_CNTL2, 0x00200000); priv->dsi_enabled = false; } static int phy_axg_mipi_pcie_analog_configure(struct phy *phy, union phy_configure_opts *opts) { struct phy_axg_mipi_pcie_analog_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy); if (ret) return ret; memcpy(&priv->config, opts, sizeof(priv->config)); priv->dsi_configured = true; /* If PHY was already powered on, setup the DSI analog part */ if (priv->powered) { /* If reconfiguring, disable & reconfigure */ if (priv->dsi_enabled) phy_dsi_analog_disable(priv); usleep_range(100, 200); phy_dsi_analog_enable(priv); } return 0; } static int phy_axg_mipi_pcie_analog_power_on(struct phy *phy) { struct phy_axg_mipi_pcie_analog_priv *priv = phy_get_drvdata(phy); phy_bandgap_enable(priv); if (priv->dsi_configured) phy_dsi_analog_enable(priv); priv->powered = true; return 0; } static int phy_axg_mipi_pcie_analog_power_off(struct phy *phy) { struct phy_axg_mipi_pcie_analog_priv *priv = phy_get_drvdata(phy); phy_bandgap_disable(priv); if (priv->dsi_enabled) phy_dsi_analog_disable(priv); priv->powered = false; return 0; } static const struct phy_ops phy_axg_mipi_pcie_analog_ops = { .configure = phy_axg_mipi_pcie_analog_configure, .power_on = phy_axg_mipi_pcie_analog_power_on, .power_off = phy_axg_mipi_pcie_analog_power_off, .owner = THIS_MODULE, }; static int phy_axg_mipi_pcie_analog_probe(struct platform_device *pdev) { struct phy_provider *phy; struct device *dev = &pdev->dev; struct phy_axg_mipi_pcie_analog_priv *priv; struct device_node *np = dev->of_node, *parent_np; struct regmap *map; int ret; priv = devm_kmalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; /* Get the hhi system controller node */ parent_np = of_get_parent(dev->of_node); map = syscon_node_to_regmap(parent_np); of_node_put(parent_np); if (IS_ERR(map)) { dev_err(dev, "failed to get HHI regmap\n"); return PTR_ERR(map); } priv->regmap = map; priv->phy = devm_phy_create(dev, np, &phy_axg_mipi_pcie_analog_ops); if (IS_ERR(priv->phy)) { ret = PTR_ERR(priv->phy); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to create PHY\n"); return ret; } phy_set_drvdata(priv->phy, priv); dev_set_drvdata(dev, priv); phy = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy); } static const struct of_device_id phy_axg_mipi_pcie_analog_of_match[] = { { .compatible = "amlogic,axg-mipi-pcie-analog-phy", }, { }, }; MODULE_DEVICE_TABLE(of, phy_axg_mipi_pcie_analog_of_match); static struct platform_driver phy_axg_mipi_pcie_analog_driver = { .probe = phy_axg_mipi_pcie_analog_probe, .driver = { .name = "phy-axg-mipi-pcie-analog", .of_match_table = phy_axg_mipi_pcie_analog_of_match, }, }; module_platform_driver(phy_axg_mipi_pcie_analog_driver); MODULE_AUTHOR("Remi Pommarel <[email protected]>"); MODULE_DESCRIPTION("Amlogic AXG MIPI + PCIE analog PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/amlogic/phy-meson-axg-mipi-pcie-analog.c
// SPDX-License-Identifier: GPL-2.0-only /* * Meson8, Meson8b and GXBB USB2 PHY driver * * Copyright (C) 2016 Martin Blumenstingl <[email protected]> */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/usb/of.h> #define REG_CONFIG 0x00 #define REG_CONFIG_CLK_EN BIT(0) #define REG_CONFIG_CLK_SEL_MASK GENMASK(3, 1) #define REG_CONFIG_CLK_DIV_MASK GENMASK(10, 4) #define REG_CONFIG_CLK_32k_ALTSEL BIT(15) #define REG_CONFIG_TEST_TRIG BIT(31) #define REG_CTRL 0x04 #define REG_CTRL_SOFT_PRST BIT(0) #define REG_CTRL_SOFT_HRESET BIT(1) #define REG_CTRL_SS_SCALEDOWN_MODE_MASK GENMASK(3, 2) #define REG_CTRL_CLK_DET_RST BIT(4) #define REG_CTRL_INTR_SEL BIT(5) #define REG_CTRL_CLK_DETECTED BIT(8) #define REG_CTRL_SOF_SENT_RCVD_TGL BIT(9) #define REG_CTRL_SOF_TOGGLE_OUT BIT(10) #define REG_CTRL_POWER_ON_RESET BIT(15) #define REG_CTRL_SLEEPM BIT(16) #define REG_CTRL_TX_BITSTUFF_ENN_H BIT(17) #define REG_CTRL_TX_BITSTUFF_ENN BIT(18) #define REG_CTRL_COMMON_ON BIT(19) #define REG_CTRL_REF_CLK_SEL_MASK GENMASK(21, 20) #define REG_CTRL_REF_CLK_SEL_SHIFT 20 #define REG_CTRL_FSEL_MASK GENMASK(24, 22) #define REG_CTRL_FSEL_SHIFT 22 #define REG_CTRL_PORT_RESET BIT(25) #define REG_CTRL_THREAD_ID_MASK GENMASK(31, 26) #define REG_ENDP_INTR 0x08 /* bits [31:26], [24:21] and [15:3] seem to be read-only */ #define REG_ADP_BC 0x0c #define REG_ADP_BC_VBUS_VLD_EXT_SEL BIT(0) #define REG_ADP_BC_VBUS_VLD_EXT BIT(1) #define REG_ADP_BC_OTG_DISABLE BIT(2) #define REG_ADP_BC_ID_PULLUP BIT(3) #define REG_ADP_BC_DRV_VBUS BIT(4) #define REG_ADP_BC_ADP_PRB_EN BIT(5) #define REG_ADP_BC_ADP_DISCHARGE BIT(6) #define REG_ADP_BC_ADP_CHARGE BIT(7) #define REG_ADP_BC_SESS_END BIT(8) #define REG_ADP_BC_DEVICE_SESS_VLD BIT(9) #define REG_ADP_BC_B_VALID BIT(10) #define REG_ADP_BC_A_VALID BIT(11) #define REG_ADP_BC_ID_DIG BIT(12) #define REG_ADP_BC_VBUS_VALID BIT(13) #define REG_ADP_BC_ADP_PROBE BIT(14) #define REG_ADP_BC_ADP_SENSE BIT(15) #define REG_ADP_BC_ACA_ENABLE BIT(16) #define REG_ADP_BC_DCD_ENABLE BIT(17) #define REG_ADP_BC_VDAT_DET_EN_B BIT(18) #define REG_ADP_BC_VDAT_SRC_EN_B BIT(19) #define REG_ADP_BC_CHARGE_SEL BIT(20) #define REG_ADP_BC_CHARGE_DETECT BIT(21) #define REG_ADP_BC_ACA_PIN_RANGE_C BIT(22) #define REG_ADP_BC_ACA_PIN_RANGE_B BIT(23) #define REG_ADP_BC_ACA_PIN_RANGE_A BIT(24) #define REG_ADP_BC_ACA_PIN_GND BIT(25) #define REG_ADP_BC_ACA_PIN_FLOAT BIT(26) #define REG_DBG_UART 0x10 #define REG_DBG_UART_BYPASS_SEL BIT(0) #define REG_DBG_UART_BYPASS_DM_EN BIT(1) #define REG_DBG_UART_BYPASS_DP_EN BIT(2) #define REG_DBG_UART_BYPASS_DM_DATA BIT(3) #define REG_DBG_UART_BYPASS_DP_DATA BIT(4) #define REG_DBG_UART_FSV_MINUS BIT(5) #define REG_DBG_UART_FSV_PLUS BIT(6) #define REG_DBG_UART_FSV_BURN_IN_TEST BIT(7) #define REG_DBG_UART_LOOPBACK_EN_B BIT(8) #define REG_DBG_UART_SET_IDDQ BIT(9) #define REG_DBG_UART_ATE_RESET BIT(10) #define REG_TEST 0x14 #define REG_TEST_DATA_IN_MASK GENMASK(3, 0) #define REG_TEST_EN_MASK GENMASK(7, 4) #define REG_TEST_ADDR_MASK GENMASK(11, 8) #define REG_TEST_DATA_OUT_SEL BIT(12) #define REG_TEST_CLK BIT(13) #define REG_TEST_VA_TEST_EN_B_MASK GENMASK(15, 14) #define REG_TEST_DATA_OUT_MASK GENMASK(19, 16) #define REG_TEST_DISABLE_ID_PULLUP BIT(20) #define REG_TUNE 0x18 #define REG_TUNE_TX_RES_TUNE_MASK GENMASK(1, 0) #define REG_TUNE_TX_HSXV_TUNE_MASK GENMASK(3, 2) #define REG_TUNE_TX_VREF_TUNE_MASK GENMASK(7, 4) #define REG_TUNE_TX_RISE_TUNE_MASK GENMASK(9, 8) #define REG_TUNE_TX_PREEMP_PULSE_TUNE BIT(10) #define REG_TUNE_TX_PREEMP_AMP_TUNE_MASK GENMASK(12, 11) #define REG_TUNE_TX_FSLS_TUNE_MASK GENMASK(16, 13) #define REG_TUNE_SQRX_TUNE_MASK GENMASK(19, 17) #define REG_TUNE_OTG_TUNE GENMASK(22, 20) #define REG_TUNE_COMP_DIS_TUNE GENMASK(25, 23) #define REG_TUNE_HOST_DM_PULLDOWN BIT(26) #define REG_TUNE_HOST_DP_PULLDOWN BIT(27) #define RESET_COMPLETE_TIME 500 #define ACA_ENABLE_COMPLETE_TIME 50 struct phy_meson8b_usb2_match_data { bool host_enable_aca; }; struct phy_meson8b_usb2_priv { struct regmap *regmap; enum usb_dr_mode dr_mode; struct clk *clk_usb_general; struct clk *clk_usb; struct reset_control *reset; const struct phy_meson8b_usb2_match_data *match; }; static const struct regmap_config phy_meson8b_usb2_regmap_conf = { .reg_bits = 8, .val_bits = 32, .reg_stride = 4, .max_register = REG_TUNE, }; static int phy_meson8b_usb2_power_on(struct phy *phy) { struct phy_meson8b_usb2_priv *priv = phy_get_drvdata(phy); u32 reg; int ret; if (!IS_ERR_OR_NULL(priv->reset)) { ret = reset_control_reset(priv->reset); if (ret) { dev_err(&phy->dev, "Failed to trigger USB reset\n"); return ret; } } ret = clk_prepare_enable(priv->clk_usb_general); if (ret) { dev_err(&phy->dev, "Failed to enable USB general clock\n"); reset_control_rearm(priv->reset); return ret; } ret = clk_prepare_enable(priv->clk_usb); if (ret) { dev_err(&phy->dev, "Failed to enable USB DDR clock\n"); clk_disable_unprepare(priv->clk_usb_general); reset_control_rearm(priv->reset); return ret; } regmap_update_bits(priv->regmap, REG_CONFIG, REG_CONFIG_CLK_32k_ALTSEL, REG_CONFIG_CLK_32k_ALTSEL); regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_REF_CLK_SEL_MASK, 0x2 << REG_CTRL_REF_CLK_SEL_SHIFT); regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_FSEL_MASK, 0x5 << REG_CTRL_FSEL_SHIFT); /* reset the PHY */ regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_POWER_ON_RESET, REG_CTRL_POWER_ON_RESET); udelay(RESET_COMPLETE_TIME); regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_POWER_ON_RESET, 0); udelay(RESET_COMPLETE_TIME); regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_SOF_TOGGLE_OUT, REG_CTRL_SOF_TOGGLE_OUT); if (priv->dr_mode == USB_DR_MODE_HOST) { regmap_update_bits(priv->regmap, REG_DBG_UART, REG_DBG_UART_SET_IDDQ, 0); if (priv->match->host_enable_aca) { regmap_update_bits(priv->regmap, REG_ADP_BC, REG_ADP_BC_ACA_ENABLE, REG_ADP_BC_ACA_ENABLE); udelay(ACA_ENABLE_COMPLETE_TIME); regmap_read(priv->regmap, REG_ADP_BC, &reg); if (reg & REG_ADP_BC_ACA_PIN_FLOAT) { dev_warn(&phy->dev, "USB ID detect failed!\n"); clk_disable_unprepare(priv->clk_usb); clk_disable_unprepare(priv->clk_usb_general); reset_control_rearm(priv->reset); return -EINVAL; } } } return 0; } static int phy_meson8b_usb2_power_off(struct phy *phy) { struct phy_meson8b_usb2_priv *priv = phy_get_drvdata(phy); if (priv->dr_mode == USB_DR_MODE_HOST) regmap_update_bits(priv->regmap, REG_DBG_UART, REG_DBG_UART_SET_IDDQ, REG_DBG_UART_SET_IDDQ); clk_disable_unprepare(priv->clk_usb); clk_disable_unprepare(priv->clk_usb_general); reset_control_rearm(priv->reset); /* power off the PHY by putting it into reset mode */ regmap_update_bits(priv->regmap, REG_CTRL, REG_CTRL_POWER_ON_RESET, REG_CTRL_POWER_ON_RESET); return 0; } static const struct phy_ops phy_meson8b_usb2_ops = { .power_on = phy_meson8b_usb2_power_on, .power_off = phy_meson8b_usb2_power_off, .owner = THIS_MODULE, }; static int phy_meson8b_usb2_probe(struct platform_device *pdev) { struct phy_meson8b_usb2_priv *priv; struct phy *phy; struct phy_provider *phy_provider; void __iomem *base; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); priv->match = device_get_match_data(&pdev->dev); if (!priv->match) return -ENODEV; priv->regmap = devm_regmap_init_mmio(&pdev->dev, base, &phy_meson8b_usb2_regmap_conf); if (IS_ERR(priv->regmap)) return PTR_ERR(priv->regmap); priv->clk_usb_general = devm_clk_get(&pdev->dev, "usb_general"); if (IS_ERR(priv->clk_usb_general)) return PTR_ERR(priv->clk_usb_general); priv->clk_usb = devm_clk_get(&pdev->dev, "usb"); if (IS_ERR(priv->clk_usb)) return PTR_ERR(priv->clk_usb); priv->reset = devm_reset_control_get_optional_shared(&pdev->dev, NULL); if (IS_ERR(priv->reset)) return dev_err_probe(&pdev->dev, PTR_ERR(priv->reset), "Failed to get the reset line"); priv->dr_mode = of_usb_get_dr_mode_by_phy(pdev->dev.of_node, -1); if (priv->dr_mode == USB_DR_MODE_UNKNOWN) { dev_err(&pdev->dev, "missing dual role configuration of the controller\n"); return -EINVAL; } phy = devm_phy_create(&pdev->dev, NULL, &phy_meson8b_usb2_ops); if (IS_ERR(phy)) { return dev_err_probe(&pdev->dev, PTR_ERR(phy), "failed to create PHY\n"); } phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct phy_meson8b_usb2_match_data phy_meson8_usb2_match_data = { .host_enable_aca = false, }; static const struct phy_meson8b_usb2_match_data phy_meson8b_usb2_match_data = { .host_enable_aca = true, }; static const struct of_device_id phy_meson8b_usb2_of_match[] = { { .compatible = "amlogic,meson8-usb2-phy", .data = &phy_meson8_usb2_match_data }, { .compatible = "amlogic,meson8b-usb2-phy", .data = &phy_meson8b_usb2_match_data }, { .compatible = "amlogic,meson8m2-usb2-phy", .data = &phy_meson8b_usb2_match_data }, { .compatible = "amlogic,meson-gxbb-usb2-phy", .data = &phy_meson8b_usb2_match_data }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, phy_meson8b_usb2_of_match); static struct platform_driver phy_meson8b_usb2_driver = { .probe = phy_meson8b_usb2_probe, .driver = { .name = "phy-meson-usb2", .of_match_table = phy_meson8b_usb2_of_match, }, }; module_platform_driver(phy_meson8b_usb2_driver); MODULE_AUTHOR("Martin Blumenstingl <[email protected]>"); MODULE_DESCRIPTION("Meson8, Meson8b, Meson8m2 and GXBB USB2 PHY driver"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/amlogic/phy-meson8b-usb2.c
// SPDX-License-Identifier: GPL-2.0 /* * Meson G12A USB2 PHY driver * * Copyright (C) 2017 Martin Blumenstingl <[email protected]> * Copyright (C) 2017 Amlogic, Inc. All rights reserved * Copyright (C) 2019 BayLibre, SAS * Author: Neil Armstrong <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #define PHY_CTRL_R0 0x0 #define PHY_CTRL_R1 0x4 #define PHY_CTRL_R2 0x8 #define PHY_CTRL_R3 0xc #define PHY_CTRL_R3_SQUELCH_REF GENMASK(1, 0) #define PHY_CTRL_R3_HSDIC_REF GENMASK(3, 2) #define PHY_CTRL_R3_DISC_THRESH GENMASK(7, 4) #define PHY_CTRL_R4 0x10 #define PHY_CTRL_R4_CALIB_CODE_7_0 GENMASK(7, 0) #define PHY_CTRL_R4_CALIB_CODE_15_8 GENMASK(15, 8) #define PHY_CTRL_R4_CALIB_CODE_23_16 GENMASK(23, 16) #define PHY_CTRL_R4_I_C2L_CAL_EN BIT(24) #define PHY_CTRL_R4_I_C2L_CAL_RESET_N BIT(25) #define PHY_CTRL_R4_I_C2L_CAL_DONE BIT(26) #define PHY_CTRL_R4_TEST_BYPASS_MODE_EN BIT(27) #define PHY_CTRL_R4_I_C2L_BIAS_TRIM_1_0 GENMASK(29, 28) #define PHY_CTRL_R4_I_C2L_BIAS_TRIM_3_2 GENMASK(31, 30) #define PHY_CTRL_R5 0x14 #define PHY_CTRL_R6 0x18 #define PHY_CTRL_R7 0x1c #define PHY_CTRL_R8 0x20 #define PHY_CTRL_R9 0x24 #define PHY_CTRL_R10 0x28 #define PHY_CTRL_R11 0x2c #define PHY_CTRL_R12 0x30 #define PHY_CTRL_R13 0x34 #define PHY_CTRL_R13_CUSTOM_PATTERN_19 GENMASK(7, 0) #define PHY_CTRL_R13_LOAD_STAT BIT(14) #define PHY_CTRL_R13_UPDATE_PMA_SIGNALS BIT(15) #define PHY_CTRL_R13_MIN_COUNT_FOR_SYNC_DET GENMASK(20, 16) #define PHY_CTRL_R13_CLEAR_HOLD_HS_DISCONNECT BIT(21) #define PHY_CTRL_R13_BYPASS_HOST_DISCONNECT_VAL BIT(22) #define PHY_CTRL_R13_BYPASS_HOST_DISCONNECT_EN BIT(23) #define PHY_CTRL_R13_I_C2L_HS_EN BIT(24) #define PHY_CTRL_R13_I_C2L_FS_EN BIT(25) #define PHY_CTRL_R13_I_C2L_LS_EN BIT(26) #define PHY_CTRL_R13_I_C2L_HS_OE BIT(27) #define PHY_CTRL_R13_I_C2L_FS_OE BIT(28) #define PHY_CTRL_R13_I_C2L_HS_RX_EN BIT(29) #define PHY_CTRL_R13_I_C2L_FSLS_RX_EN BIT(30) #define PHY_CTRL_R14 0x38 #define PHY_CTRL_R14_I_RDP_EN BIT(0) #define PHY_CTRL_R14_I_RPU_SW1_EN BIT(1) #define PHY_CTRL_R14_I_RPU_SW2_EN GENMASK(3, 2) #define PHY_CTRL_R14_PG_RSTN BIT(4) #define PHY_CTRL_R14_I_C2L_DATA_16_8 BIT(5) #define PHY_CTRL_R14_I_C2L_ASSERT_SINGLE_EN_ZERO BIT(6) #define PHY_CTRL_R14_BYPASS_CTRL_7_0 GENMASK(15, 8) #define PHY_CTRL_R14_BYPASS_CTRL_15_8 GENMASK(23, 16) #define PHY_CTRL_R15 0x3c #define PHY_CTRL_R16 0x40 #define PHY_CTRL_R16_MPLL_M GENMASK(8, 0) #define PHY_CTRL_R16_MPLL_N GENMASK(14, 10) #define PHY_CTRL_R16_MPLL_TDC_MODE BIT(20) #define PHY_CTRL_R16_MPLL_SDM_EN BIT(21) #define PHY_CTRL_R16_MPLL_LOAD BIT(22) #define PHY_CTRL_R16_MPLL_DCO_SDM_EN BIT(23) #define PHY_CTRL_R16_MPLL_LOCK_LONG GENMASK(25, 24) #define PHY_CTRL_R16_MPLL_LOCK_F BIT(26) #define PHY_CTRL_R16_MPLL_FAST_LOCK BIT(27) #define PHY_CTRL_R16_MPLL_EN BIT(28) #define PHY_CTRL_R16_MPLL_RESET BIT(29) #define PHY_CTRL_R16_MPLL_LOCK BIT(30) #define PHY_CTRL_R16_MPLL_LOCK_DIG BIT(31) #define PHY_CTRL_R17 0x44 #define PHY_CTRL_R17_MPLL_FRAC_IN GENMASK(13, 0) #define PHY_CTRL_R17_MPLL_FIX_EN BIT(16) #define PHY_CTRL_R17_MPLL_LAMBDA1 GENMASK(19, 17) #define PHY_CTRL_R17_MPLL_LAMBDA0 GENMASK(22, 20) #define PHY_CTRL_R17_MPLL_FILTER_MODE BIT(23) #define PHY_CTRL_R17_MPLL_FILTER_PVT2 GENMASK(27, 24) #define PHY_CTRL_R17_MPLL_FILTER_PVT1 GENMASK(31, 28) #define PHY_CTRL_R18 0x48 #define PHY_CTRL_R18_MPLL_LKW_SEL GENMASK(1, 0) #define PHY_CTRL_R18_MPLL_LK_W GENMASK(5, 2) #define PHY_CTRL_R18_MPLL_LK_S GENMASK(11, 6) #define PHY_CTRL_R18_MPLL_DCO_M_EN BIT(12) #define PHY_CTRL_R18_MPLL_DCO_CLK_SEL BIT(13) #define PHY_CTRL_R18_MPLL_PFD_GAIN GENMASK(15, 14) #define PHY_CTRL_R18_MPLL_ROU GENMASK(18, 16) #define PHY_CTRL_R18_MPLL_DATA_SEL GENMASK(21, 19) #define PHY_CTRL_R18_MPLL_BIAS_ADJ GENMASK(23, 22) #define PHY_CTRL_R18_MPLL_BB_MODE GENMASK(25, 24) #define PHY_CTRL_R18_MPLL_ALPHA GENMASK(28, 26) #define PHY_CTRL_R18_MPLL_ADJ_LDO GENMASK(30, 29) #define PHY_CTRL_R18_MPLL_ACG_RANGE BIT(31) #define PHY_CTRL_R19 0x4c #define PHY_CTRL_R20 0x50 #define PHY_CTRL_R20_USB2_IDDET_EN BIT(0) #define PHY_CTRL_R20_USB2_OTG_VBUS_TRIM_2_0 GENMASK(3, 1) #define PHY_CTRL_R20_USB2_OTG_VBUSDET_EN BIT(4) #define PHY_CTRL_R20_USB2_AMON_EN BIT(5) #define PHY_CTRL_R20_USB2_CAL_CODE_R5 BIT(6) #define PHY_CTRL_R20_BYPASS_OTG_DET BIT(7) #define PHY_CTRL_R20_USB2_DMON_EN BIT(8) #define PHY_CTRL_R20_USB2_DMON_SEL_3_0 GENMASK(12, 9) #define PHY_CTRL_R20_USB2_EDGE_DRV_EN BIT(13) #define PHY_CTRL_R20_USB2_EDGE_DRV_TRIM_1_0 GENMASK(15, 14) #define PHY_CTRL_R20_USB2_BGR_ADJ_4_0 GENMASK(20, 16) #define PHY_CTRL_R20_USB2_BGR_START BIT(21) #define PHY_CTRL_R20_USB2_BGR_VREF_4_0 GENMASK(28, 24) #define PHY_CTRL_R20_USB2_BGR_DBG_1_0 GENMASK(30, 29) #define PHY_CTRL_R20_BYPASS_CAL_DONE_R5 BIT(31) #define PHY_CTRL_R21 0x54 #define PHY_CTRL_R21_USB2_BGR_FORCE BIT(0) #define PHY_CTRL_R21_USB2_CAL_ACK_EN BIT(1) #define PHY_CTRL_R21_USB2_OTG_ACA_EN BIT(2) #define PHY_CTRL_R21_USB2_TX_STRG_PD BIT(3) #define PHY_CTRL_R21_USB2_OTG_ACA_TRIM_1_0 GENMASK(5, 4) #define PHY_CTRL_R21_BYPASS_UTMI_CNTR GENMASK(15, 6) #define PHY_CTRL_R21_BYPASS_UTMI_REG GENMASK(25, 20) #define PHY_CTRL_R22 0x58 #define PHY_CTRL_R23 0x5c #define RESET_COMPLETE_TIME 1000 #define PLL_RESET_COMPLETE_TIME 100 enum meson_soc_id { MESON_SOC_G12A = 0, MESON_SOC_A1, }; struct phy_meson_g12a_usb2_priv { struct device *dev; struct regmap *regmap; struct clk *clk; struct reset_control *reset; int soc_id; }; static const struct regmap_config phy_meson_g12a_usb2_regmap_conf = { .reg_bits = 8, .val_bits = 32, .reg_stride = 4, .max_register = PHY_CTRL_R23, }; static int phy_meson_g12a_usb2_init(struct phy *phy) { struct phy_meson_g12a_usb2_priv *priv = phy_get_drvdata(phy); int ret; unsigned int value; ret = clk_prepare_enable(priv->clk); if (ret) return ret; ret = reset_control_reset(priv->reset); if (ret) { clk_disable_unprepare(priv->clk); return ret; } udelay(RESET_COMPLETE_TIME); /* usb2_otg_aca_en == 0 */ regmap_update_bits(priv->regmap, PHY_CTRL_R21, PHY_CTRL_R21_USB2_OTG_ACA_EN, 0); /* PLL Setup : 24MHz * 20 / 1 = 480MHz */ regmap_write(priv->regmap, PHY_CTRL_R16, FIELD_PREP(PHY_CTRL_R16_MPLL_M, 20) | FIELD_PREP(PHY_CTRL_R16_MPLL_N, 1) | PHY_CTRL_R16_MPLL_LOAD | FIELD_PREP(PHY_CTRL_R16_MPLL_LOCK_LONG, 1) | PHY_CTRL_R16_MPLL_FAST_LOCK | PHY_CTRL_R16_MPLL_EN | PHY_CTRL_R16_MPLL_RESET); regmap_write(priv->regmap, PHY_CTRL_R17, FIELD_PREP(PHY_CTRL_R17_MPLL_FRAC_IN, 0) | FIELD_PREP(PHY_CTRL_R17_MPLL_LAMBDA1, 7) | FIELD_PREP(PHY_CTRL_R17_MPLL_LAMBDA0, 7) | FIELD_PREP(PHY_CTRL_R17_MPLL_FILTER_PVT2, 2) | FIELD_PREP(PHY_CTRL_R17_MPLL_FILTER_PVT1, 9)); value = FIELD_PREP(PHY_CTRL_R18_MPLL_LKW_SEL, 1) | FIELD_PREP(PHY_CTRL_R18_MPLL_LK_W, 9) | FIELD_PREP(PHY_CTRL_R18_MPLL_LK_S, 0x27) | FIELD_PREP(PHY_CTRL_R18_MPLL_PFD_GAIN, 1) | FIELD_PREP(PHY_CTRL_R18_MPLL_ROU, 7) | FIELD_PREP(PHY_CTRL_R18_MPLL_DATA_SEL, 3) | FIELD_PREP(PHY_CTRL_R18_MPLL_BIAS_ADJ, 1) | FIELD_PREP(PHY_CTRL_R18_MPLL_BB_MODE, 0) | FIELD_PREP(PHY_CTRL_R18_MPLL_ALPHA, 3) | FIELD_PREP(PHY_CTRL_R18_MPLL_ADJ_LDO, 1) | PHY_CTRL_R18_MPLL_ACG_RANGE; if (priv->soc_id == MESON_SOC_A1) value |= PHY_CTRL_R18_MPLL_DCO_CLK_SEL; regmap_write(priv->regmap, PHY_CTRL_R18, value); udelay(PLL_RESET_COMPLETE_TIME); /* UnReset PLL */ regmap_write(priv->regmap, PHY_CTRL_R16, FIELD_PREP(PHY_CTRL_R16_MPLL_M, 20) | FIELD_PREP(PHY_CTRL_R16_MPLL_N, 1) | PHY_CTRL_R16_MPLL_LOAD | FIELD_PREP(PHY_CTRL_R16_MPLL_LOCK_LONG, 1) | PHY_CTRL_R16_MPLL_FAST_LOCK | PHY_CTRL_R16_MPLL_EN); /* PHY Tuning */ regmap_write(priv->regmap, PHY_CTRL_R20, FIELD_PREP(PHY_CTRL_R20_USB2_OTG_VBUS_TRIM_2_0, 4) | PHY_CTRL_R20_USB2_OTG_VBUSDET_EN | FIELD_PREP(PHY_CTRL_R20_USB2_DMON_SEL_3_0, 15) | PHY_CTRL_R20_USB2_EDGE_DRV_EN | FIELD_PREP(PHY_CTRL_R20_USB2_EDGE_DRV_TRIM_1_0, 3) | FIELD_PREP(PHY_CTRL_R20_USB2_BGR_ADJ_4_0, 0) | FIELD_PREP(PHY_CTRL_R20_USB2_BGR_VREF_4_0, 0) | FIELD_PREP(PHY_CTRL_R20_USB2_BGR_DBG_1_0, 0)); if (priv->soc_id == MESON_SOC_G12A) regmap_write(priv->regmap, PHY_CTRL_R4, FIELD_PREP(PHY_CTRL_R4_CALIB_CODE_7_0, 0xf) | FIELD_PREP(PHY_CTRL_R4_CALIB_CODE_15_8, 0xf) | FIELD_PREP(PHY_CTRL_R4_CALIB_CODE_23_16, 0xf) | PHY_CTRL_R4_TEST_BYPASS_MODE_EN | FIELD_PREP(PHY_CTRL_R4_I_C2L_BIAS_TRIM_1_0, 0) | FIELD_PREP(PHY_CTRL_R4_I_C2L_BIAS_TRIM_3_2, 0)); else if (priv->soc_id == MESON_SOC_A1) { regmap_write(priv->regmap, PHY_CTRL_R21, PHY_CTRL_R21_USB2_CAL_ACK_EN | PHY_CTRL_R21_USB2_TX_STRG_PD | FIELD_PREP(PHY_CTRL_R21_USB2_OTG_ACA_TRIM_1_0, 2)); /* Analog Settings */ regmap_write(priv->regmap, PHY_CTRL_R13, FIELD_PREP(PHY_CTRL_R13_MIN_COUNT_FOR_SYNC_DET, 7)); } /* Tuning Disconnect Threshold */ regmap_write(priv->regmap, PHY_CTRL_R3, FIELD_PREP(PHY_CTRL_R3_SQUELCH_REF, 0) | FIELD_PREP(PHY_CTRL_R3_HSDIC_REF, 1) | FIELD_PREP(PHY_CTRL_R3_DISC_THRESH, 3)); if (priv->soc_id == MESON_SOC_G12A) { /* Analog Settings */ regmap_write(priv->regmap, PHY_CTRL_R14, 0); regmap_write(priv->regmap, PHY_CTRL_R13, PHY_CTRL_R13_UPDATE_PMA_SIGNALS | FIELD_PREP(PHY_CTRL_R13_MIN_COUNT_FOR_SYNC_DET, 7)); } return 0; } static int phy_meson_g12a_usb2_exit(struct phy *phy) { struct phy_meson_g12a_usb2_priv *priv = phy_get_drvdata(phy); int ret; ret = reset_control_reset(priv->reset); if (!ret) clk_disable_unprepare(priv->clk); return ret; } /* set_mode is not needed, mode setting is handled via the UTMI bus */ static const struct phy_ops phy_meson_g12a_usb2_ops = { .init = phy_meson_g12a_usb2_init, .exit = phy_meson_g12a_usb2_exit, .owner = THIS_MODULE, }; static int phy_meson_g12a_usb2_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct phy_meson_g12a_usb2_priv *priv; struct phy *phy; void __iomem *base; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; platform_set_drvdata(pdev, priv); base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); priv->soc_id = (uintptr_t)of_device_get_match_data(&pdev->dev); priv->regmap = devm_regmap_init_mmio(dev, base, &phy_meson_g12a_usb2_regmap_conf); if (IS_ERR(priv->regmap)) return PTR_ERR(priv->regmap); priv->clk = devm_clk_get(dev, "xtal"); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); priv->reset = devm_reset_control_get(dev, "phy"); if (IS_ERR(priv->reset)) return PTR_ERR(priv->reset); ret = reset_control_deassert(priv->reset); if (ret) return ret; phy = devm_phy_create(dev, NULL, &phy_meson_g12a_usb2_ops); if (IS_ERR(phy)) { ret = PTR_ERR(phy); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to create PHY\n"); return ret; } phy_set_bus_width(phy, 8); phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id phy_meson_g12a_usb2_of_match[] = { { .compatible = "amlogic,g12a-usb2-phy", .data = (void *)MESON_SOC_G12A, }, { .compatible = "amlogic,a1-usb2-phy", .data = (void *)MESON_SOC_A1, }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, phy_meson_g12a_usb2_of_match); static struct platform_driver phy_meson_g12a_usb2_driver = { .probe = phy_meson_g12a_usb2_probe, .driver = { .name = "phy-meson-g12a-usb2", .of_match_table = phy_meson_g12a_usb2_of_match, }, }; module_platform_driver(phy_meson_g12a_usb2_driver); MODULE_AUTHOR("Martin Blumenstingl <[email protected]>"); MODULE_AUTHOR("Neil Armstrong <[email protected]>"); MODULE_DESCRIPTION("Meson G12A USB2 PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/amlogic/phy-meson-g12a-usb2.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2014 Marvell Technology Group Ltd. * * Antoine Tenart <[email protected]> * Jisheng Zhang <[email protected]> */ #include <linux/io.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/reset.h> #define USB_PHY_PLL 0x04 #define USB_PHY_PLL_CONTROL 0x08 #define USB_PHY_TX_CTRL0 0x10 #define USB_PHY_TX_CTRL1 0x14 #define USB_PHY_TX_CTRL2 0x18 #define USB_PHY_RX_CTRL 0x20 #define USB_PHY_ANALOG 0x34 /* USB_PHY_PLL */ #define CLK_REF_DIV(x) ((x) << 4) #define FEEDBACK_CLK_DIV(x) ((x) << 8) /* USB_PHY_PLL_CONTROL */ #define CLK_STABLE BIT(0) #define PLL_CTRL_PIN BIT(1) #define PLL_CTRL_REG BIT(2) #define PLL_ON BIT(3) #define PHASE_OFF_TOL_125 (0x0 << 5) #define PHASE_OFF_TOL_250 BIT(5) #define KVC0_CALIB (0x0 << 9) #define KVC0_REG_CTRL BIT(9) #define KVC0_HIGH (0x0 << 10) #define KVC0_LOW (0x3 << 10) #define CLK_BLK_EN BIT(13) /* USB_PHY_TX_CTRL0 */ #define EXT_HS_RCAL_EN BIT(3) #define EXT_FS_RCAL_EN BIT(4) #define IMPCAL_VTH_DIV(x) ((x) << 5) #define EXT_RS_RCAL_DIV(x) ((x) << 8) #define EXT_FS_RCAL_DIV(x) ((x) << 12) /* USB_PHY_TX_CTRL1 */ #define TX_VDD15_14 (0x0 << 4) #define TX_VDD15_15 BIT(4) #define TX_VDD15_16 (0x2 << 4) #define TX_VDD15_17 (0x3 << 4) #define TX_VDD12_VDD (0x0 << 6) #define TX_VDD12_11 BIT(6) #define TX_VDD12_12 (0x2 << 6) #define TX_VDD12_13 (0x3 << 6) #define LOW_VDD_EN BIT(8) #define TX_OUT_AMP(x) ((x) << 9) /* USB_PHY_TX_CTRL2 */ #define TX_CHAN_CTRL_REG(x) ((x) << 0) #define DRV_SLEWRATE(x) ((x) << 4) #define IMP_CAL_FS_HS_DLY_0 (0x0 << 6) #define IMP_CAL_FS_HS_DLY_1 BIT(6) #define IMP_CAL_FS_HS_DLY_2 (0x2 << 6) #define IMP_CAL_FS_HS_DLY_3 (0x3 << 6) #define FS_DRV_EN_MASK(x) ((x) << 8) #define HS_DRV_EN_MASK(x) ((x) << 12) /* USB_PHY_RX_CTRL */ #define PHASE_FREEZE_DLY_2_CL (0x0 << 0) #define PHASE_FREEZE_DLY_4_CL BIT(0) #define ACK_LENGTH_8_CL (0x0 << 2) #define ACK_LENGTH_12_CL BIT(2) #define ACK_LENGTH_16_CL (0x2 << 2) #define ACK_LENGTH_20_CL (0x3 << 2) #define SQ_LENGTH_3 (0x0 << 4) #define SQ_LENGTH_6 BIT(4) #define SQ_LENGTH_9 (0x2 << 4) #define SQ_LENGTH_12 (0x3 << 4) #define DISCON_THRESHOLD_260 (0x0 << 6) #define DISCON_THRESHOLD_270 BIT(6) #define DISCON_THRESHOLD_280 (0x2 << 6) #define DISCON_THRESHOLD_290 (0x3 << 6) #define SQ_THRESHOLD(x) ((x) << 8) #define LPF_COEF(x) ((x) << 12) #define INTPL_CUR_10 (0x0 << 14) #define INTPL_CUR_20 BIT(14) #define INTPL_CUR_30 (0x2 << 14) #define INTPL_CUR_40 (0x3 << 14) /* USB_PHY_ANALOG */ #define ANA_PWR_UP BIT(1) #define ANA_PWR_DOWN BIT(2) #define V2I_VCO_RATIO(x) ((x) << 7) #define R_ROTATE_90 (0x0 << 10) #define R_ROTATE_0 BIT(10) #define MODE_TEST_EN BIT(11) #define ANA_TEST_DC_CTRL(x) ((x) << 12) static const u32 phy_berlin_pll_dividers[] = { /* Berlin 2 */ CLK_REF_DIV(0x6) | FEEDBACK_CLK_DIV(0x55), /* Berlin 2CD/Q */ CLK_REF_DIV(0xc) | FEEDBACK_CLK_DIV(0x54), }; struct phy_berlin_usb_priv { void __iomem *base; struct reset_control *rst_ctrl; u32 pll_divider; }; static int phy_berlin_usb_power_on(struct phy *phy) { struct phy_berlin_usb_priv *priv = phy_get_drvdata(phy); reset_control_reset(priv->rst_ctrl); writel(priv->pll_divider, priv->base + USB_PHY_PLL); writel(CLK_STABLE | PLL_CTRL_REG | PHASE_OFF_TOL_250 | KVC0_REG_CTRL | CLK_BLK_EN, priv->base + USB_PHY_PLL_CONTROL); writel(V2I_VCO_RATIO(0x5) | R_ROTATE_0 | ANA_TEST_DC_CTRL(0x5), priv->base + USB_PHY_ANALOG); writel(PHASE_FREEZE_DLY_4_CL | ACK_LENGTH_16_CL | SQ_LENGTH_12 | DISCON_THRESHOLD_270 | SQ_THRESHOLD(0xa) | LPF_COEF(0x2) | INTPL_CUR_30, priv->base + USB_PHY_RX_CTRL); writel(TX_VDD12_13 | TX_OUT_AMP(0x3), priv->base + USB_PHY_TX_CTRL1); writel(EXT_HS_RCAL_EN | IMPCAL_VTH_DIV(0x3) | EXT_RS_RCAL_DIV(0x4), priv->base + USB_PHY_TX_CTRL0); writel(EXT_HS_RCAL_EN | IMPCAL_VTH_DIV(0x3) | EXT_RS_RCAL_DIV(0x4) | EXT_FS_RCAL_DIV(0x2), priv->base + USB_PHY_TX_CTRL0); writel(EXT_HS_RCAL_EN | IMPCAL_VTH_DIV(0x3) | EXT_RS_RCAL_DIV(0x4), priv->base + USB_PHY_TX_CTRL0); writel(TX_CHAN_CTRL_REG(0xf) | DRV_SLEWRATE(0x3) | IMP_CAL_FS_HS_DLY_3 | FS_DRV_EN_MASK(0xd), priv->base + USB_PHY_TX_CTRL2); return 0; } static const struct phy_ops phy_berlin_usb_ops = { .power_on = phy_berlin_usb_power_on, .owner = THIS_MODULE, }; static const struct of_device_id phy_berlin_usb_of_match[] = { { .compatible = "marvell,berlin2-usb-phy", .data = &phy_berlin_pll_dividers[0], }, { .compatible = "marvell,berlin2cd-usb-phy", .data = &phy_berlin_pll_dividers[1], }, { }, }; MODULE_DEVICE_TABLE(of, phy_berlin_usb_of_match); static int phy_berlin_usb_probe(struct platform_device *pdev) { const struct of_device_id *match = of_match_device(phy_berlin_usb_of_match, &pdev->dev); struct phy_berlin_usb_priv *priv; struct phy *phy; struct phy_provider *phy_provider; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); priv->rst_ctrl = devm_reset_control_get(&pdev->dev, NULL); if (IS_ERR(priv->rst_ctrl)) return PTR_ERR(priv->rst_ctrl); priv->pll_divider = *((u32 *)match->data); phy = devm_phy_create(&pdev->dev, NULL, &phy_berlin_usb_ops); if (IS_ERR(phy)) { dev_err(&pdev->dev, "failed to create PHY\n"); return PTR_ERR(phy); } phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver phy_berlin_usb_driver = { .probe = phy_berlin_usb_probe, .driver = { .name = "phy-berlin-usb", .of_match_table = phy_berlin_usb_of_match, }, }; module_platform_driver(phy_berlin_usb_driver); MODULE_AUTHOR("Antoine Tenart <[email protected]>"); MODULE_DESCRIPTION("Marvell Berlin PHY driver for USB"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/marvell/phy-berlin-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Marvell * * Authors: * Evan Wang <[email protected]> * Miquèl Raynal <[email protected]> * Pali Rohár <[email protected]> * Marek Behún <[email protected]> * * Structure inspired from phy-mvebu-cp110-comphy.c written by Antoine Tenart. * Comphy code from ARM Trusted Firmware ported by Pali Rohár <[email protected]> * and Marek Behún <[email protected]>. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #define PLL_SET_DELAY_US 600 #define COMPHY_PLL_SLEEP 1000 #define COMPHY_PLL_TIMEOUT 150000 /* Comphy lane2 indirect access register offset */ #define COMPHY_LANE2_INDIR_ADDR 0x0 #define COMPHY_LANE2_INDIR_DATA 0x4 /* SATA and USB3 PHY offset compared to SATA PHY */ #define COMPHY_LANE2_REGS_BASE 0x200 /* * When accessing common PHY lane registers directly, we need to shift by 1, * since the registers are 16-bit. */ #define COMPHY_LANE_REG_DIRECT(reg) (((reg) & 0x7FF) << 1) /* COMPHY registers */ #define COMPHY_POWER_PLL_CTRL 0x01 #define PU_IVREF_BIT BIT(15) #define PU_PLL_BIT BIT(14) #define PU_RX_BIT BIT(13) #define PU_TX_BIT BIT(12) #define PU_TX_INTP_BIT BIT(11) #define PU_DFE_BIT BIT(10) #define RESET_DTL_RX_BIT BIT(9) #define PLL_LOCK_BIT BIT(8) #define REF_FREF_SEL_MASK GENMASK(4, 0) #define REF_FREF_SEL_SERDES_25MHZ FIELD_PREP(REF_FREF_SEL_MASK, 0x1) #define REF_FREF_SEL_SERDES_40MHZ FIELD_PREP(REF_FREF_SEL_MASK, 0x3) #define REF_FREF_SEL_SERDES_50MHZ FIELD_PREP(REF_FREF_SEL_MASK, 0x4) #define REF_FREF_SEL_PCIE_USB3_25MHZ FIELD_PREP(REF_FREF_SEL_MASK, 0x2) #define REF_FREF_SEL_PCIE_USB3_40MHZ FIELD_PREP(REF_FREF_SEL_MASK, 0x3) #define COMPHY_MODE_MASK GENMASK(7, 5) #define COMPHY_MODE_SATA FIELD_PREP(COMPHY_MODE_MASK, 0x0) #define COMPHY_MODE_PCIE FIELD_PREP(COMPHY_MODE_MASK, 0x3) #define COMPHY_MODE_SERDES FIELD_PREP(COMPHY_MODE_MASK, 0x4) #define COMPHY_MODE_USB3 FIELD_PREP(COMPHY_MODE_MASK, 0x5) #define COMPHY_KVCO_CAL_CTRL 0x02 #define USE_MAX_PLL_RATE_BIT BIT(12) #define SPEED_PLL_MASK GENMASK(7, 2) #define SPEED_PLL_VALUE_16 FIELD_PREP(SPEED_PLL_MASK, 0x10) #define COMPHY_DIG_LOOPBACK_EN 0x23 #define SEL_DATA_WIDTH_MASK GENMASK(11, 10) #define DATA_WIDTH_10BIT FIELD_PREP(SEL_DATA_WIDTH_MASK, 0x0) #define DATA_WIDTH_20BIT FIELD_PREP(SEL_DATA_WIDTH_MASK, 0x1) #define DATA_WIDTH_40BIT FIELD_PREP(SEL_DATA_WIDTH_MASK, 0x2) #define PLL_READY_TX_BIT BIT(4) #define COMPHY_SYNC_PATTERN 0x24 #define TXD_INVERT_BIT BIT(10) #define RXD_INVERT_BIT BIT(11) #define COMPHY_SYNC_MASK_GEN 0x25 #define PHY_GEN_MAX_MASK GENMASK(11, 10) #define PHY_GEN_MAX_USB3_5G FIELD_PREP(PHY_GEN_MAX_MASK, 0x1) #define COMPHY_ISOLATION_CTRL 0x26 #define PHY_ISOLATE_MODE BIT(15) #define COMPHY_GEN2_SET2 0x3e #define GS2_TX_SSC_AMP_MASK GENMASK(15, 9) #define GS2_TX_SSC_AMP_4128 FIELD_PREP(GS2_TX_SSC_AMP_MASK, 0x20) #define GS2_VREG_RXTX_MAS_ISET_MASK GENMASK(8, 7) #define GS2_VREG_RXTX_MAS_ISET_60U FIELD_PREP(GS2_VREG_RXTX_MAS_ISET_MASK,\ 0x0) #define GS2_VREG_RXTX_MAS_ISET_80U FIELD_PREP(GS2_VREG_RXTX_MAS_ISET_MASK,\ 0x1) #define GS2_VREG_RXTX_MAS_ISET_100U FIELD_PREP(GS2_VREG_RXTX_MAS_ISET_MASK,\ 0x2) #define GS2_VREG_RXTX_MAS_ISET_120U FIELD_PREP(GS2_VREG_RXTX_MAS_ISET_MASK,\ 0x3) #define GS2_RSVD_6_0_MASK GENMASK(6, 0) #define COMPHY_GEN3_SET2 0x3f #define COMPHY_IDLE_SYNC_EN 0x48 #define IDLE_SYNC_EN BIT(12) #define COMPHY_MISC_CTRL0 0x4F #define CLK100M_125M_EN BIT(4) #define TXDCLK_2X_SEL BIT(6) #define CLK500M_EN BIT(7) #define PHY_REF_CLK_SEL BIT(10) #define COMPHY_SFT_RESET 0x52 #define SFT_RST BIT(9) #define SFT_RST_NO_REG BIT(10) #define COMPHY_MISC_CTRL1 0x73 #define SEL_BITS_PCIE_FORCE BIT(15) #define COMPHY_GEN2_SET3 0x112 #define GS3_FFE_CAP_SEL_MASK GENMASK(3, 0) #define GS3_FFE_CAP_SEL_VALUE FIELD_PREP(GS3_FFE_CAP_SEL_MASK, 0xF) /* PIPE registers */ #define COMPHY_PIPE_LANE_CFG0 0x180 #define PRD_TXDEEMPH0_MASK BIT(0) #define PRD_TXMARGIN_MASK GENMASK(3, 1) #define PRD_TXSWING_MASK BIT(4) #define CFG_TX_ALIGN_POS_MASK GENMASK(8, 5) #define COMPHY_PIPE_LANE_CFG1 0x181 #define PRD_TXDEEMPH1_MASK BIT(15) #define USE_MAX_PLL_RATE_EN BIT(9) #define TX_DET_RX_MODE BIT(6) #define GEN2_TX_DATA_DLY_MASK GENMASK(4, 3) #define GEN2_TX_DATA_DLY_DEFT FIELD_PREP(GEN2_TX_DATA_DLY_MASK, 2) #define TX_ELEC_IDLE_MODE_EN BIT(0) #define COMPHY_PIPE_LANE_STAT1 0x183 #define TXDCLK_PCLK_EN BIT(0) #define COMPHY_PIPE_LANE_CFG4 0x188 #define SPREAD_SPECTRUM_CLK_EN BIT(7) #define COMPHY_PIPE_RST_CLK_CTRL 0x1C1 #define PIPE_SOFT_RESET BIT(0) #define PIPE_REG_RESET BIT(1) #define MODE_CORE_CLK_FREQ_SEL BIT(9) #define MODE_PIPE_WIDTH_32 BIT(3) #define MODE_REFDIV_MASK GENMASK(5, 4) #define MODE_REFDIV_BY_4 FIELD_PREP(MODE_REFDIV_MASK, 0x2) #define COMPHY_PIPE_TEST_MODE_CTRL 0x1C2 #define MODE_MARGIN_OVERRIDE BIT(2) #define COMPHY_PIPE_CLK_SRC_LO 0x1C3 #define MODE_CLK_SRC BIT(0) #define BUNDLE_PERIOD_SEL BIT(1) #define BUNDLE_PERIOD_SCALE_MASK GENMASK(3, 2) #define BUNDLE_SAMPLE_CTRL BIT(4) #define PLL_READY_DLY_MASK GENMASK(7, 5) #define CFG_SEL_20B BIT(15) #define COMPHY_PIPE_PWR_MGM_TIM1 0x1D0 #define CFG_PM_OSCCLK_WAIT_MASK GENMASK(15, 12) #define CFG_PM_RXDEN_WAIT_MASK GENMASK(11, 8) #define CFG_PM_RXDEN_WAIT_1_UNIT FIELD_PREP(CFG_PM_RXDEN_WAIT_MASK, 0x1) #define CFG_PM_RXDLOZ_WAIT_MASK GENMASK(7, 0) #define CFG_PM_RXDLOZ_WAIT_7_UNIT FIELD_PREP(CFG_PM_RXDLOZ_WAIT_MASK, 0x7) #define CFG_PM_RXDLOZ_WAIT_12_UNIT FIELD_PREP(CFG_PM_RXDLOZ_WAIT_MASK, 0xC) /* * This register is not from PHY lane register space. It only exists in the * indirect register space, before the actual PHY lane 2 registers. So the * offset is absolute, not relative to COMPHY_LANE2_REGS_BASE. * It is used only for SATA PHY initialization. */ #define COMPHY_RESERVED_REG 0x0E #define PHYCTRL_FRM_PIN_BIT BIT(13) /* South Bridge PHY Configuration Registers */ #define COMPHY_PHY_REG(lane, reg) (((1 - (lane)) * 0x28) + ((reg) & 0x3f)) /* * lane0: USB3/GbE1 PHY Configuration 1 * lane1: PCIe/GbE0 PHY Configuration 1 * (used only by SGMII code) */ #define COMPHY_PHY_CFG1 0x0 #define PIN_PU_IVREF_BIT BIT(1) #define PIN_RESET_CORE_BIT BIT(11) #define PIN_RESET_COMPHY_BIT BIT(12) #define PIN_PU_PLL_BIT BIT(16) #define PIN_PU_RX_BIT BIT(17) #define PIN_PU_TX_BIT BIT(18) #define PIN_TX_IDLE_BIT BIT(19) #define GEN_RX_SEL_MASK GENMASK(25, 22) #define GEN_RX_SEL_VALUE(val) FIELD_PREP(GEN_RX_SEL_MASK, (val)) #define GEN_TX_SEL_MASK GENMASK(29, 26) #define GEN_TX_SEL_VALUE(val) FIELD_PREP(GEN_TX_SEL_MASK, (val)) #define SERDES_SPEED_1_25_G 0x6 #define SERDES_SPEED_3_125_G 0x8 #define PHY_RX_INIT_BIT BIT(30) /* * lane0: USB3/GbE1 PHY Status 1 * lane1: PCIe/GbE0 PHY Status 1 * (used only by SGMII code) */ #define COMPHY_PHY_STAT1 0x18 #define PHY_RX_INIT_DONE_BIT BIT(0) #define PHY_PLL_READY_RX_BIT BIT(2) #define PHY_PLL_READY_TX_BIT BIT(3) /* PHY Selector */ #define COMPHY_SELECTOR_PHY_REG 0xFC /* bit0: 0: Lane1 is GbE0; 1: Lane1 is PCIe */ #define COMPHY_SELECTOR_PCIE_GBE0_SEL_BIT BIT(0) /* bit4: 0: Lane0 is GbE1; 1: Lane0 is USB3 */ #define COMPHY_SELECTOR_USB3_GBE1_SEL_BIT BIT(4) /* bit8: 0: Lane0 is USB3 instead of GbE1, Lane2 is SATA; 1: Lane2 is USB3 */ #define COMPHY_SELECTOR_USB3_PHY_SEL_BIT BIT(8) struct mvebu_a3700_comphy_conf { unsigned int lane; enum phy_mode mode; int submode; }; #define MVEBU_A3700_COMPHY_CONF(_lane, _mode, _smode) \ { \ .lane = _lane, \ .mode = _mode, \ .submode = _smode, \ } #define MVEBU_A3700_COMPHY_CONF_GEN(_lane, _mode) \ MVEBU_A3700_COMPHY_CONF(_lane, _mode, PHY_INTERFACE_MODE_NA) #define MVEBU_A3700_COMPHY_CONF_ETH(_lane, _smode) \ MVEBU_A3700_COMPHY_CONF(_lane, PHY_MODE_ETHERNET, _smode) static const struct mvebu_a3700_comphy_conf mvebu_a3700_comphy_modes[] = { /* lane 0 */ MVEBU_A3700_COMPHY_CONF_GEN(0, PHY_MODE_USB_HOST_SS), MVEBU_A3700_COMPHY_CONF_ETH(0, PHY_INTERFACE_MODE_SGMII), MVEBU_A3700_COMPHY_CONF_ETH(0, PHY_INTERFACE_MODE_1000BASEX), MVEBU_A3700_COMPHY_CONF_ETH(0, PHY_INTERFACE_MODE_2500BASEX), /* lane 1 */ MVEBU_A3700_COMPHY_CONF_GEN(1, PHY_MODE_PCIE), MVEBU_A3700_COMPHY_CONF_ETH(1, PHY_INTERFACE_MODE_SGMII), MVEBU_A3700_COMPHY_CONF_ETH(1, PHY_INTERFACE_MODE_1000BASEX), MVEBU_A3700_COMPHY_CONF_ETH(1, PHY_INTERFACE_MODE_2500BASEX), /* lane 2 */ MVEBU_A3700_COMPHY_CONF_GEN(2, PHY_MODE_SATA), MVEBU_A3700_COMPHY_CONF_GEN(2, PHY_MODE_USB_HOST_SS), }; struct mvebu_a3700_comphy_priv { void __iomem *comphy_regs; void __iomem *lane0_phy_regs; /* USB3 and GbE1 */ void __iomem *lane1_phy_regs; /* PCIe and GbE0 */ void __iomem *lane2_phy_indirect; /* SATA and USB3 */ spinlock_t lock; /* for PHY selector access */ bool xtal_is_40m; }; struct mvebu_a3700_comphy_lane { struct mvebu_a3700_comphy_priv *priv; struct device *dev; unsigned int id; enum phy_mode mode; int submode; bool invert_tx; bool invert_rx; }; struct gbe_phy_init_data_fix { u16 addr; u16 value; }; /* Changes to 40M1G25 mode data required for running 40M3G125 init mode */ static struct gbe_phy_init_data_fix gbe_phy_init_fix[] = { { 0x005, 0x07CC }, { 0x015, 0x0000 }, { 0x01B, 0x0000 }, { 0x01D, 0x0000 }, { 0x01E, 0x0000 }, { 0x01F, 0x0000 }, { 0x020, 0x0000 }, { 0x021, 0x0030 }, { 0x026, 0x0888 }, { 0x04D, 0x0152 }, { 0x04F, 0xA020 }, { 0x050, 0x07CC }, { 0x053, 0xE9CA }, { 0x055, 0xBD97 }, { 0x071, 0x3015 }, { 0x076, 0x03AA }, { 0x07C, 0x0FDF }, { 0x0C2, 0x3030 }, { 0x0C3, 0x8000 }, { 0x0E2, 0x5550 }, { 0x0E3, 0x12A4 }, { 0x0E4, 0x7D00 }, { 0x0E6, 0x0C83 }, { 0x101, 0xFCC0 }, { 0x104, 0x0C10 } }; /* 40M1G25 mode init data */ static u16 gbe_phy_init[512] = { /* 0 1 2 3 4 5 6 7 */ /*-----------------------------------------------------------*/ /* 8 9 A B C D E F */ 0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26, /* 00 */ 0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52, /* 08 */ 0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000, /* 10 */ 0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF, /* 18 */ 0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000, /* 20 */ 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, /* 28 */ 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */ 0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100, /* 38 */ 0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00, /* 40 */ 0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A, /* 48 */ 0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001, /* 50 */ 0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF, /* 58 */ 0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000, /* 60 */ 0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002, /* 68 */ 0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780, /* 70 */ 0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000, /* 78 */ 0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000, /* 80 */ 0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210, /* 88 */ 0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F, /* 90 */ 0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651, /* 98 */ 0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000, /* A0 */ 0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* A8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* B0 */ 0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000, /* B8 */ 0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003, /* C0 */ 0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000, /* C8 */ 0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00, /* D0 */ 0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000, /* D8 */ 0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541, /* E0 */ 0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200, /* E8 */ 0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000, /* F0 */ 0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000, /* F8 */ 0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000, /*100 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*108 */ 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000, /*110 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*118 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*120 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*128 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*130 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*138 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*140 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*148 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*150 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*158 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*160 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*168 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*170 */ 0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000, /*178 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*180 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*188 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*190 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*198 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1F0 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 /*1F8 */ }; static inline void comphy_reg_set(void __iomem *addr, u32 data, u32 mask) { u32 val; val = readl(addr); val = (val & ~mask) | (data & mask); writel(val, addr); } static inline void comphy_reg_set16(void __iomem *addr, u16 data, u16 mask) { u16 val; val = readw(addr); val = (val & ~mask) | (data & mask); writew(val, addr); } /* Used for accessing lane 2 registers (SATA/USB3 PHY) */ static void comphy_set_indirect(struct mvebu_a3700_comphy_priv *priv, u32 offset, u16 data, u16 mask) { writel(offset, priv->lane2_phy_indirect + COMPHY_LANE2_INDIR_ADDR); comphy_reg_set(priv->lane2_phy_indirect + COMPHY_LANE2_INDIR_DATA, data, mask); } static void comphy_lane_reg_set(struct mvebu_a3700_comphy_lane *lane, u16 reg, u16 data, u16 mask) { if (lane->id == 2) { /* lane 2 PHY registers are accessed indirectly */ comphy_set_indirect(lane->priv, reg + COMPHY_LANE2_REGS_BASE, data, mask); } else { void __iomem *base = lane->id == 1 ? lane->priv->lane1_phy_regs : lane->priv->lane0_phy_regs; comphy_reg_set16(base + COMPHY_LANE_REG_DIRECT(reg), data, mask); } } static int comphy_lane_reg_poll(struct mvebu_a3700_comphy_lane *lane, u16 reg, u16 bits, ulong sleep_us, ulong timeout_us) { int ret; if (lane->id == 2) { u32 data; /* lane 2 PHY registers are accessed indirectly */ writel(reg + COMPHY_LANE2_REGS_BASE, lane->priv->lane2_phy_indirect + COMPHY_LANE2_INDIR_ADDR); ret = readl_poll_timeout(lane->priv->lane2_phy_indirect + COMPHY_LANE2_INDIR_DATA, data, (data & bits) == bits, sleep_us, timeout_us); } else { void __iomem *base = lane->id == 1 ? lane->priv->lane1_phy_regs : lane->priv->lane0_phy_regs; u16 data; ret = readw_poll_timeout(base + COMPHY_LANE_REG_DIRECT(reg), data, (data & bits) == bits, sleep_us, timeout_us); } return ret; } static void comphy_periph_reg_set(struct mvebu_a3700_comphy_lane *lane, u8 reg, u32 data, u32 mask) { comphy_reg_set(lane->priv->comphy_regs + COMPHY_PHY_REG(lane->id, reg), data, mask); } static int comphy_periph_reg_poll(struct mvebu_a3700_comphy_lane *lane, u8 reg, u32 bits, ulong sleep_us, ulong timeout_us) { u32 data; return readl_poll_timeout(lane->priv->comphy_regs + COMPHY_PHY_REG(lane->id, reg), data, (data & bits) == bits, sleep_us, timeout_us); } /* PHY selector configures with corresponding modes */ static int mvebu_a3700_comphy_set_phy_selector(struct mvebu_a3700_comphy_lane *lane) { u32 old, new, clr = 0, set = 0; unsigned long flags; switch (lane->mode) { case PHY_MODE_SATA: /* SATA must be in Lane2 */ if (lane->id == 2) clr = COMPHY_SELECTOR_USB3_PHY_SEL_BIT; else goto error; break; case PHY_MODE_ETHERNET: if (lane->id == 0) clr = COMPHY_SELECTOR_USB3_GBE1_SEL_BIT; else if (lane->id == 1) clr = COMPHY_SELECTOR_PCIE_GBE0_SEL_BIT; else goto error; break; case PHY_MODE_USB_HOST_SS: if (lane->id == 2) set = COMPHY_SELECTOR_USB3_PHY_SEL_BIT; else if (lane->id == 0) set = COMPHY_SELECTOR_USB3_GBE1_SEL_BIT; else goto error; break; case PHY_MODE_PCIE: /* PCIE must be in Lane1 */ if (lane->id == 1) set = COMPHY_SELECTOR_PCIE_GBE0_SEL_BIT; else goto error; break; default: goto error; } spin_lock_irqsave(&lane->priv->lock, flags); old = readl(lane->priv->comphy_regs + COMPHY_SELECTOR_PHY_REG); new = (old & ~clr) | set; writel(new, lane->priv->comphy_regs + COMPHY_SELECTOR_PHY_REG); spin_unlock_irqrestore(&lane->priv->lock, flags); dev_dbg(lane->dev, "COMPHY[%d] mode[%d] changed PHY selector 0x%08x -> 0x%08x\n", lane->id, lane->mode, old, new); return 0; error: dev_err(lane->dev, "COMPHY[%d] mode[%d] is invalid\n", lane->id, lane->mode); return -EINVAL; } static int mvebu_a3700_comphy_sata_power_on(struct mvebu_a3700_comphy_lane *lane) { u32 mask, data, ref_clk; int ret; /* Configure phy selector for SATA */ ret = mvebu_a3700_comphy_set_phy_selector(lane); if (ret) return ret; /* Clear phy isolation mode to make it work in normal mode */ comphy_lane_reg_set(lane, COMPHY_ISOLATION_CTRL, 0x0, PHY_ISOLATE_MODE); /* 0. Check the Polarity invert bits */ data = 0x0; if (lane->invert_tx) data |= TXD_INVERT_BIT; if (lane->invert_rx) data |= RXD_INVERT_BIT; mask = TXD_INVERT_BIT | RXD_INVERT_BIT; comphy_lane_reg_set(lane, COMPHY_SYNC_PATTERN, data, mask); /* 1. Select 40-bit data width */ comphy_lane_reg_set(lane, COMPHY_DIG_LOOPBACK_EN, DATA_WIDTH_40BIT, SEL_DATA_WIDTH_MASK); /* 2. Select reference clock(25M) and PHY mode (SATA) */ if (lane->priv->xtal_is_40m) ref_clk = REF_FREF_SEL_SERDES_40MHZ; else ref_clk = REF_FREF_SEL_SERDES_25MHZ; data = ref_clk | COMPHY_MODE_SATA; mask = REF_FREF_SEL_MASK | COMPHY_MODE_MASK; comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, data, mask); /* 3. Use maximum PLL rate (no power save) */ comphy_lane_reg_set(lane, COMPHY_KVCO_CAL_CTRL, USE_MAX_PLL_RATE_BIT, USE_MAX_PLL_RATE_BIT); /* 4. Reset reserved bit */ comphy_set_indirect(lane->priv, COMPHY_RESERVED_REG, 0x0, PHYCTRL_FRM_PIN_BIT); /* 5. Set vendor-specific configuration (It is done in sata driver) */ /* XXX: in U-Boot below sequence was executed in this place, in Linux * not. Now it is done only in U-Boot before this comphy * initialization - tests shows that it works ok, but in case of any * future problem it is left for reference. * reg_set(MVEBU_REGS_BASE + 0xe00a0, 0, 0xffffffff); * reg_set(MVEBU_REGS_BASE + 0xe00a4, BIT(6), BIT(6)); */ /* Wait for > 55 us to allow PLL be enabled */ udelay(PLL_SET_DELAY_US); /* Polling status */ ret = comphy_lane_reg_poll(lane, COMPHY_DIG_LOOPBACK_EN, PLL_READY_TX_BIT, COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT); if (ret) dev_err(lane->dev, "Failed to lock SATA PLL\n"); return ret; } static void comphy_gbe_phy_init(struct mvebu_a3700_comphy_lane *lane, bool is_1gbps) { int addr, fix_idx; u16 val; fix_idx = 0; for (addr = 0; addr < 512; addr++) { /* * All PHY register values are defined in full for 3.125Gbps * SERDES speed. The values required for 1.25 Gbps are almost * the same and only few registers should be "fixed" in * comparison to 3.125 Gbps values. These register values are * stored in "gbe_phy_init_fix" array. */ if (!is_1gbps && gbe_phy_init_fix[fix_idx].addr == addr) { /* Use new value */ val = gbe_phy_init_fix[fix_idx].value; if (fix_idx < ARRAY_SIZE(gbe_phy_init_fix)) fix_idx++; } else { val = gbe_phy_init[addr]; } comphy_lane_reg_set(lane, addr, val, 0xFFFF); } } static int mvebu_a3700_comphy_ethernet_power_on(struct mvebu_a3700_comphy_lane *lane) { u32 mask, data, speed_sel; int ret; /* Set selector */ ret = mvebu_a3700_comphy_set_phy_selector(lane); if (ret) return ret; /* * 1. Reset PHY by setting PHY input port PIN_RESET=1. * 2. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep * PHY TXP/TXN output to idle state during PHY initialization * 3. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0. */ data = PIN_PU_IVREF_BIT | PIN_TX_IDLE_BIT | PIN_RESET_COMPHY_BIT; mask = data | PIN_RESET_CORE_BIT | PIN_PU_PLL_BIT | PIN_PU_RX_BIT | PIN_PU_TX_BIT | PHY_RX_INIT_BIT; comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, data, mask); /* 4. Release reset to the PHY by setting PIN_RESET=0. */ data = 0x0; mask = PIN_RESET_COMPHY_BIT; comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, data, mask); /* * 5. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide COMPHY * bit rate */ switch (lane->submode) { case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_1000BASEX: /* SGMII 1G, SerDes speed 1.25G */ speed_sel = SERDES_SPEED_1_25_G; break; case PHY_INTERFACE_MODE_2500BASEX: /* 2500Base-X, SerDes speed 3.125G */ speed_sel = SERDES_SPEED_3_125_G; break; default: /* Other rates are not supported */ dev_err(lane->dev, "unsupported phy speed %d on comphy lane%d\n", lane->submode, lane->id); return -EINVAL; } data = GEN_RX_SEL_VALUE(speed_sel) | GEN_TX_SEL_VALUE(speed_sel); mask = GEN_RX_SEL_MASK | GEN_TX_SEL_MASK; comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, data, mask); /* * 6. Wait 10mS for bandgap and reference clocks to stabilize; then * start SW programming. */ mdelay(10); /* 7. Program COMPHY register PHY_MODE */ data = COMPHY_MODE_SERDES; mask = COMPHY_MODE_MASK; comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, data, mask); /* * 8. Set COMPHY register REFCLK_SEL to select the correct REFCLK * source */ data = 0x0; mask = PHY_REF_CLK_SEL; comphy_lane_reg_set(lane, COMPHY_MISC_CTRL0, data, mask); /* * 9. Set correct reference clock frequency in COMPHY register * REF_FREF_SEL. */ if (lane->priv->xtal_is_40m) data = REF_FREF_SEL_SERDES_50MHZ; else data = REF_FREF_SEL_SERDES_25MHZ; mask = REF_FREF_SEL_MASK; comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, data, mask); /* * 10. Program COMPHY register PHY_GEN_MAX[1:0] * This step is mentioned in the flow received from verification team. * However the PHY_GEN_MAX value is only meaningful for other interfaces * (not SERDES). For instance, it selects SATA speed 1.5/3/6 Gbps or * PCIe speed 2.5/5 Gbps */ /* * 11. Program COMPHY register SEL_BITS to set correct parallel data * bus width */ data = DATA_WIDTH_10BIT; mask = SEL_DATA_WIDTH_MASK; comphy_lane_reg_set(lane, COMPHY_DIG_LOOPBACK_EN, data, mask); /* * 12. As long as DFE function needs to be enabled in any mode, * COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F * for real chip during COMPHY power on. * The value of the DFE_UPDATE_EN already is 0x3F, because it is the * default value after reset of the PHY. */ /* * 13. Program COMPHY GEN registers. * These registers should be programmed based on the lab testing result * to achieve optimal performance. Please contact the CEA group to get * the related GEN table during real chip bring-up. We only required to * run though the entire registers programming flow defined by * "comphy_gbe_phy_init" when the REF clock is 40 MHz. For REF clock * 25 MHz the default values stored in PHY registers are OK. */ dev_dbg(lane->dev, "Running C-DPI phy init %s mode\n", lane->submode == PHY_INTERFACE_MODE_2500BASEX ? "2G5" : "1G"); if (lane->priv->xtal_is_40m) comphy_gbe_phy_init(lane, lane->submode != PHY_INTERFACE_MODE_2500BASEX); /* * 14. Check the PHY Polarity invert bit */ data = 0x0; if (lane->invert_tx) data |= TXD_INVERT_BIT; if (lane->invert_rx) data |= RXD_INVERT_BIT; mask = TXD_INVERT_BIT | RXD_INVERT_BIT; comphy_lane_reg_set(lane, COMPHY_SYNC_PATTERN, data, mask); /* * 15. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1 to * start PHY power up sequence. All the PHY register programming should * be done before PIN_PU_PLL=1. There should be no register programming * for normal PHY operation from this point. */ data = PIN_PU_PLL_BIT | PIN_PU_RX_BIT | PIN_PU_TX_BIT; mask = data; comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, data, mask); /* * 16. Wait for PHY power up sequence to finish by checking output ports * PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1. */ ret = comphy_periph_reg_poll(lane, COMPHY_PHY_STAT1, PHY_PLL_READY_TX_BIT | PHY_PLL_READY_RX_BIT, COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT); if (ret) { dev_err(lane->dev, "Failed to lock PLL for SERDES PHY %d\n", lane->id); return ret; } /* * 17. Set COMPHY input port PIN_TX_IDLE=0 */ comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, 0x0, PIN_TX_IDLE_BIT); /* * 18. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1. To * start RX initialization. PIN_RX_INIT_DONE will be cleared to 0 by the * PHY After RX initialization is done, PIN_RX_INIT_DONE will be set to * 1 by COMPHY Set PIN_RX_INIT=0 after PIN_RX_INIT_DONE= 1. Please * refer to RX initialization part for details. */ comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, PHY_RX_INIT_BIT, PHY_RX_INIT_BIT); ret = comphy_periph_reg_poll(lane, COMPHY_PHY_STAT1, PHY_PLL_READY_TX_BIT | PHY_PLL_READY_RX_BIT, COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT); if (ret) { dev_err(lane->dev, "Failed to lock PLL for SERDES PHY %d\n", lane->id); return ret; } ret = comphy_periph_reg_poll(lane, COMPHY_PHY_STAT1, PHY_RX_INIT_DONE_BIT, COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT); if (ret) dev_err(lane->dev, "Failed to init RX of SERDES PHY %d\n", lane->id); return ret; } static int mvebu_a3700_comphy_usb3_power_on(struct mvebu_a3700_comphy_lane *lane) { u32 mask, data, cfg, ref_clk; int ret; /* Set phy seclector */ ret = mvebu_a3700_comphy_set_phy_selector(lane); if (ret) return ret; /* COMPHY register reset (cleared automatically) */ comphy_lane_reg_set(lane, COMPHY_SFT_RESET, SFT_RST, SFT_RST); /* * 0. Set PHY OTG Control(0x5d034), bit 4, Power up OTG module The * register belong to UTMI module, so it is set in UTMI phy driver. */ /* * 1. Set PRD_TXDEEMPH (3.5db de-emph) */ data = PRD_TXDEEMPH0_MASK; mask = PRD_TXDEEMPH0_MASK | PRD_TXMARGIN_MASK | PRD_TXSWING_MASK | CFG_TX_ALIGN_POS_MASK; comphy_lane_reg_set(lane, COMPHY_PIPE_LANE_CFG0, data, mask); /* * 2. Set BIT0: enable transmitter in high impedance mode * Set BIT[3:4]: delay 2 clock cycles for HiZ off latency * Set BIT6: Tx detect Rx at HiZ mode * Unset BIT15: set to 0 to set USB3 De-emphasize level to -3.5db * together with bit 0 of COMPHY_PIPE_LANE_CFG0 register */ data = TX_DET_RX_MODE | GEN2_TX_DATA_DLY_DEFT | TX_ELEC_IDLE_MODE_EN; mask = PRD_TXDEEMPH1_MASK | TX_DET_RX_MODE | GEN2_TX_DATA_DLY_MASK | TX_ELEC_IDLE_MODE_EN; comphy_lane_reg_set(lane, COMPHY_PIPE_LANE_CFG1, data, mask); /* * 3. Set Spread Spectrum Clock Enabled */ comphy_lane_reg_set(lane, COMPHY_PIPE_LANE_CFG4, SPREAD_SPECTRUM_CLK_EN, SPREAD_SPECTRUM_CLK_EN); /* * 4. Set Override Margining Controls From the MAC: * Use margining signals from lane configuration */ comphy_lane_reg_set(lane, COMPHY_PIPE_TEST_MODE_CTRL, MODE_MARGIN_OVERRIDE, 0xFFFF); /* * 5. Set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles * set Mode Clock Source = PCLK is generated from REFCLK */ data = 0x0; mask = MODE_CLK_SRC | BUNDLE_PERIOD_SEL | BUNDLE_PERIOD_SCALE_MASK | BUNDLE_SAMPLE_CTRL | PLL_READY_DLY_MASK; comphy_lane_reg_set(lane, COMPHY_PIPE_CLK_SRC_LO, data, mask); /* * 6. Set G2 Spread Spectrum Clock Amplitude at 4K */ comphy_lane_reg_set(lane, COMPHY_GEN2_SET2, GS2_TX_SSC_AMP_4128, GS2_TX_SSC_AMP_MASK); /* * 7. Unset G3 Spread Spectrum Clock Amplitude * set G3 TX and RX Register Master Current Select */ data = GS2_VREG_RXTX_MAS_ISET_60U; mask = GS2_TX_SSC_AMP_MASK | GS2_VREG_RXTX_MAS_ISET_MASK | GS2_RSVD_6_0_MASK; comphy_lane_reg_set(lane, COMPHY_GEN3_SET2, data, mask); /* * 8. Check crystal jumper setting and program the Power and PLL Control * accordingly Change RX wait */ if (lane->priv->xtal_is_40m) { ref_clk = REF_FREF_SEL_PCIE_USB3_40MHZ; cfg = CFG_PM_RXDLOZ_WAIT_12_UNIT; } else { ref_clk = REF_FREF_SEL_PCIE_USB3_25MHZ; cfg = CFG_PM_RXDLOZ_WAIT_7_UNIT; } data = PU_IVREF_BIT | PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT | PU_TX_INTP_BIT | PU_DFE_BIT | COMPHY_MODE_USB3 | ref_clk; mask = PU_IVREF_BIT | PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT | PU_TX_INTP_BIT | PU_DFE_BIT | PLL_LOCK_BIT | COMPHY_MODE_MASK | REF_FREF_SEL_MASK; comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, data, mask); data = CFG_PM_RXDEN_WAIT_1_UNIT | cfg; mask = CFG_PM_OSCCLK_WAIT_MASK | CFG_PM_RXDEN_WAIT_MASK | CFG_PM_RXDLOZ_WAIT_MASK; comphy_lane_reg_set(lane, COMPHY_PIPE_PWR_MGM_TIM1, data, mask); /* * 9. Enable idle sync */ comphy_lane_reg_set(lane, COMPHY_IDLE_SYNC_EN, IDLE_SYNC_EN, IDLE_SYNC_EN); /* * 10. Enable the output of 500M clock */ comphy_lane_reg_set(lane, COMPHY_MISC_CTRL0, CLK500M_EN, CLK500M_EN); /* * 11. Set 20-bit data width */ comphy_lane_reg_set(lane, COMPHY_DIG_LOOPBACK_EN, DATA_WIDTH_20BIT, 0xFFFF); /* * 12. Override Speed_PLL value and use MAC PLL */ data = SPEED_PLL_VALUE_16 | USE_MAX_PLL_RATE_BIT; mask = 0xFFFF; comphy_lane_reg_set(lane, COMPHY_KVCO_CAL_CTRL, data, mask); /* * 13. Check the Polarity invert bit */ data = 0x0; if (lane->invert_tx) data |= TXD_INVERT_BIT; if (lane->invert_rx) data |= RXD_INVERT_BIT; mask = TXD_INVERT_BIT | RXD_INVERT_BIT; comphy_lane_reg_set(lane, COMPHY_SYNC_PATTERN, data, mask); /* * 14. Set max speed generation to USB3.0 5Gbps */ comphy_lane_reg_set(lane, COMPHY_SYNC_MASK_GEN, PHY_GEN_MAX_USB3_5G, PHY_GEN_MAX_MASK); /* * 15. Set capacitor value for FFE gain peaking to 0xF */ comphy_lane_reg_set(lane, COMPHY_GEN2_SET3, GS3_FFE_CAP_SEL_VALUE, GS3_FFE_CAP_SEL_MASK); /* * 16. Release SW reset */ data = MODE_CORE_CLK_FREQ_SEL | MODE_PIPE_WIDTH_32 | MODE_REFDIV_BY_4; mask = 0xFFFF; comphy_lane_reg_set(lane, COMPHY_PIPE_RST_CLK_CTRL, data, mask); /* Wait for > 55 us to allow PCLK be enabled */ udelay(PLL_SET_DELAY_US); ret = comphy_lane_reg_poll(lane, COMPHY_PIPE_LANE_STAT1, TXDCLK_PCLK_EN, COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT); if (ret) dev_err(lane->dev, "Failed to lock USB3 PLL\n"); return ret; } static int mvebu_a3700_comphy_pcie_power_on(struct mvebu_a3700_comphy_lane *lane) { u32 mask, data, ref_clk; int ret; /* Configure phy selector for PCIe */ ret = mvebu_a3700_comphy_set_phy_selector(lane); if (ret) return ret; /* 1. Enable max PLL. */ comphy_lane_reg_set(lane, COMPHY_PIPE_LANE_CFG1, USE_MAX_PLL_RATE_EN, USE_MAX_PLL_RATE_EN); /* 2. Select 20 bit SERDES interface. */ comphy_lane_reg_set(lane, COMPHY_PIPE_CLK_SRC_LO, CFG_SEL_20B, CFG_SEL_20B); /* 3. Force to use reg setting for PCIe mode */ comphy_lane_reg_set(lane, COMPHY_MISC_CTRL1, SEL_BITS_PCIE_FORCE, SEL_BITS_PCIE_FORCE); /* 4. Change RX wait */ data = CFG_PM_RXDEN_WAIT_1_UNIT | CFG_PM_RXDLOZ_WAIT_12_UNIT; mask = CFG_PM_OSCCLK_WAIT_MASK | CFG_PM_RXDEN_WAIT_MASK | CFG_PM_RXDLOZ_WAIT_MASK; comphy_lane_reg_set(lane, COMPHY_PIPE_PWR_MGM_TIM1, data, mask); /* 5. Enable idle sync */ comphy_lane_reg_set(lane, COMPHY_IDLE_SYNC_EN, IDLE_SYNC_EN, IDLE_SYNC_EN); /* 6. Enable the output of 100M/125M/500M clock */ data = CLK500M_EN | TXDCLK_2X_SEL | CLK100M_125M_EN; mask = data; comphy_lane_reg_set(lane, COMPHY_MISC_CTRL0, data, mask); /* * 7. Enable TX, PCIE global register, 0xd0074814, it is done in * PCI-E driver */ /* * 8. Check crystal jumper setting and program the Power and PLL * Control accordingly */ if (lane->priv->xtal_is_40m) ref_clk = REF_FREF_SEL_PCIE_USB3_40MHZ; else ref_clk = REF_FREF_SEL_PCIE_USB3_25MHZ; data = PU_IVREF_BIT | PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT | PU_TX_INTP_BIT | PU_DFE_BIT | COMPHY_MODE_PCIE | ref_clk; mask = 0xFFFF; comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, data, mask); /* 9. Override Speed_PLL value and use MAC PLL */ comphy_lane_reg_set(lane, COMPHY_KVCO_CAL_CTRL, SPEED_PLL_VALUE_16 | USE_MAX_PLL_RATE_BIT, 0xFFFF); /* 10. Check the Polarity invert bit */ data = 0x0; if (lane->invert_tx) data |= TXD_INVERT_BIT; if (lane->invert_rx) data |= RXD_INVERT_BIT; mask = TXD_INVERT_BIT | RXD_INVERT_BIT; comphy_lane_reg_set(lane, COMPHY_SYNC_PATTERN, data, mask); /* 11. Release SW reset */ data = MODE_CORE_CLK_FREQ_SEL | MODE_PIPE_WIDTH_32; mask = data | PIPE_SOFT_RESET | MODE_REFDIV_MASK; comphy_lane_reg_set(lane, COMPHY_PIPE_RST_CLK_CTRL, data, mask); /* Wait for > 55 us to allow PCLK be enabled */ udelay(PLL_SET_DELAY_US); ret = comphy_lane_reg_poll(lane, COMPHY_PIPE_LANE_STAT1, TXDCLK_PCLK_EN, COMPHY_PLL_SLEEP, COMPHY_PLL_TIMEOUT); if (ret) dev_err(lane->dev, "Failed to lock PCIE PLL\n"); return ret; } static void mvebu_a3700_comphy_sata_power_off(struct mvebu_a3700_comphy_lane *lane) { /* Set phy isolation mode */ comphy_lane_reg_set(lane, COMPHY_ISOLATION_CTRL, PHY_ISOLATE_MODE, PHY_ISOLATE_MODE); /* Power off PLL, Tx, Rx */ comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, 0x0, PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT); } static void mvebu_a3700_comphy_ethernet_power_off(struct mvebu_a3700_comphy_lane *lane) { u32 mask, data; data = PIN_RESET_CORE_BIT | PIN_RESET_COMPHY_BIT | PIN_PU_IVREF_BIT | PHY_RX_INIT_BIT; mask = data; comphy_periph_reg_set(lane, COMPHY_PHY_CFG1, data, mask); } static void mvebu_a3700_comphy_pcie_power_off(struct mvebu_a3700_comphy_lane *lane) { /* Power off PLL, Tx, Rx */ comphy_lane_reg_set(lane, COMPHY_POWER_PLL_CTRL, 0x0, PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT); } static void mvebu_a3700_comphy_usb3_power_off(struct mvebu_a3700_comphy_lane *lane) { /* * The USB3 MAC sets the USB3 PHY to low state, so we do not * need to power off USB3 PHY again. */ } static bool mvebu_a3700_comphy_check_mode(int lane, enum phy_mode mode, int submode) { int i, n = ARRAY_SIZE(mvebu_a3700_comphy_modes); /* Unused PHY mux value is 0x0 */ if (mode == PHY_MODE_INVALID) return false; for (i = 0; i < n; i++) { if (mvebu_a3700_comphy_modes[i].lane == lane && mvebu_a3700_comphy_modes[i].mode == mode && mvebu_a3700_comphy_modes[i].submode == submode) break; } if (i == n) return false; return true; } static int mvebu_a3700_comphy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct mvebu_a3700_comphy_lane *lane = phy_get_drvdata(phy); if (!mvebu_a3700_comphy_check_mode(lane->id, mode, submode)) { dev_err(lane->dev, "invalid COMPHY mode\n"); return -EINVAL; } /* Mode cannot be changed while the PHY is powered on */ if (phy->power_count && (lane->mode != mode || lane->submode != submode)) return -EBUSY; /* Just remember the mode, ->power_on() will do the real setup */ lane->mode = mode; lane->submode = submode; return 0; } static int mvebu_a3700_comphy_power_on(struct phy *phy) { struct mvebu_a3700_comphy_lane *lane = phy_get_drvdata(phy); if (!mvebu_a3700_comphy_check_mode(lane->id, lane->mode, lane->submode)) { dev_err(lane->dev, "invalid COMPHY mode\n"); return -EINVAL; } switch (lane->mode) { case PHY_MODE_USB_HOST_SS: dev_dbg(lane->dev, "set lane %d to USB3 host mode\n", lane->id); return mvebu_a3700_comphy_usb3_power_on(lane); case PHY_MODE_SATA: dev_dbg(lane->dev, "set lane %d to SATA mode\n", lane->id); return mvebu_a3700_comphy_sata_power_on(lane); case PHY_MODE_ETHERNET: dev_dbg(lane->dev, "set lane %d to Ethernet mode\n", lane->id); return mvebu_a3700_comphy_ethernet_power_on(lane); case PHY_MODE_PCIE: dev_dbg(lane->dev, "set lane %d to PCIe mode\n", lane->id); return mvebu_a3700_comphy_pcie_power_on(lane); default: dev_err(lane->dev, "unsupported PHY mode (%d)\n", lane->mode); return -EOPNOTSUPP; } } static int mvebu_a3700_comphy_power_off(struct phy *phy) { struct mvebu_a3700_comphy_lane *lane = phy_get_drvdata(phy); switch (lane->id) { case 0: mvebu_a3700_comphy_usb3_power_off(lane); mvebu_a3700_comphy_ethernet_power_off(lane); return 0; case 1: mvebu_a3700_comphy_pcie_power_off(lane); mvebu_a3700_comphy_ethernet_power_off(lane); return 0; case 2: mvebu_a3700_comphy_usb3_power_off(lane); mvebu_a3700_comphy_sata_power_off(lane); return 0; default: dev_err(lane->dev, "invalid COMPHY mode\n"); return -EINVAL; } } static const struct phy_ops mvebu_a3700_comphy_ops = { .power_on = mvebu_a3700_comphy_power_on, .power_off = mvebu_a3700_comphy_power_off, .set_mode = mvebu_a3700_comphy_set_mode, .owner = THIS_MODULE, }; static struct phy *mvebu_a3700_comphy_xlate(struct device *dev, struct of_phandle_args *args) { struct mvebu_a3700_comphy_lane *lane; unsigned int port; struct phy *phy; phy = of_phy_simple_xlate(dev, args); if (IS_ERR(phy)) return phy; lane = phy_get_drvdata(phy); port = args->args[0]; if (port != 0 && (port != 1 || lane->id != 0)) { dev_err(lane->dev, "invalid port number %u\n", port); return ERR_PTR(-EINVAL); } lane->invert_tx = args->args[1] & BIT(0); lane->invert_rx = args->args[1] & BIT(1); return phy; } static int mvebu_a3700_comphy_probe(struct platform_device *pdev) { struct mvebu_a3700_comphy_priv *priv; struct phy_provider *provider; struct device_node *child; struct resource *res; struct clk *clk; int ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; spin_lock_init(&priv->lock); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "comphy"); priv->comphy_regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(priv->comphy_regs)) return PTR_ERR(priv->comphy_regs); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lane1_pcie_gbe"); priv->lane1_phy_regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(priv->lane1_phy_regs)) return PTR_ERR(priv->lane1_phy_regs); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lane0_usb3_gbe"); priv->lane0_phy_regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(priv->lane0_phy_regs)) return PTR_ERR(priv->lane0_phy_regs); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lane2_sata_usb3"); priv->lane2_phy_indirect = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(priv->lane2_phy_indirect)) return PTR_ERR(priv->lane2_phy_indirect); /* * Driver needs to know if reference xtal clock is 40MHz or 25MHz. * Old DT bindings do not have xtal clk present. So do not fail here * and expects that default 25MHz reference clock is used. */ clk = clk_get(&pdev->dev, "xtal"); if (IS_ERR(clk)) { if (PTR_ERR(clk) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_warn(&pdev->dev, "missing 'xtal' clk (%ld)\n", PTR_ERR(clk)); } else { ret = clk_prepare_enable(clk); if (ret) { dev_warn(&pdev->dev, "enabling xtal clk failed (%d)\n", ret); } else { if (clk_get_rate(clk) == 40000000) priv->xtal_is_40m = true; clk_disable_unprepare(clk); } clk_put(clk); } dev_set_drvdata(&pdev->dev, priv); for_each_available_child_of_node(pdev->dev.of_node, child) { struct mvebu_a3700_comphy_lane *lane; struct phy *phy; int ret; u32 lane_id; ret = of_property_read_u32(child, "reg", &lane_id); if (ret < 0) { dev_err(&pdev->dev, "missing 'reg' property (%d)\n", ret); continue; } if (lane_id >= 3) { dev_err(&pdev->dev, "invalid 'reg' property\n"); continue; } lane = devm_kzalloc(&pdev->dev, sizeof(*lane), GFP_KERNEL); if (!lane) { of_node_put(child); return -ENOMEM; } phy = devm_phy_create(&pdev->dev, child, &mvebu_a3700_comphy_ops); if (IS_ERR(phy)) { of_node_put(child); return PTR_ERR(phy); } lane->priv = priv; lane->dev = &pdev->dev; lane->mode = PHY_MODE_INVALID; lane->submode = PHY_INTERFACE_MODE_NA; lane->id = lane_id; lane->invert_tx = false; lane->invert_rx = false; phy_set_drvdata(phy, lane); /* * To avoid relying on the bootloader/firmware configuration, * power off all comphys. */ mvebu_a3700_comphy_power_off(phy); } provider = devm_of_phy_provider_register(&pdev->dev, mvebu_a3700_comphy_xlate); return PTR_ERR_OR_ZERO(provider); } static const struct of_device_id mvebu_a3700_comphy_of_match_table[] = { { .compatible = "marvell,comphy-a3700" }, { }, }; MODULE_DEVICE_TABLE(of, mvebu_a3700_comphy_of_match_table); static struct platform_driver mvebu_a3700_comphy_driver = { .probe = mvebu_a3700_comphy_probe, .driver = { .name = "mvebu-a3700-comphy", .of_match_table = mvebu_a3700_comphy_of_match_table, }, }; module_platform_driver(mvebu_a3700_comphy_driver); MODULE_AUTHOR("Miquèl Raynal <[email protected]>"); MODULE_AUTHOR("Pali Rohár <[email protected]>"); MODULE_AUTHOR("Marek Behún <[email protected]>"); MODULE_DESCRIPTION("Common PHY driver for A3700"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/marvell/phy-mvebu-a3700-comphy.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * phy-mvebu-sata.c: SATA Phy driver for the Marvell mvebu SoCs. * * Copyright (C) 2013 Andrew Lunn <[email protected]> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/clk.h> #include <linux/phy/phy.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> struct priv { struct clk *clk; void __iomem *base; }; #define SATA_PHY_MODE_2 0x0330 #define MODE_2_FORCE_PU_TX BIT(0) #define MODE_2_FORCE_PU_RX BIT(1) #define MODE_2_PU_PLL BIT(2) #define MODE_2_PU_IVREF BIT(3) #define SATA_IF_CTRL 0x0050 #define CTRL_PHY_SHUTDOWN BIT(9) static int phy_mvebu_sata_power_on(struct phy *phy) { struct priv *priv = phy_get_drvdata(phy); u32 reg; clk_prepare_enable(priv->clk); /* Enable PLL and IVREF */ reg = readl(priv->base + SATA_PHY_MODE_2); reg |= (MODE_2_FORCE_PU_TX | MODE_2_FORCE_PU_RX | MODE_2_PU_PLL | MODE_2_PU_IVREF); writel(reg , priv->base + SATA_PHY_MODE_2); /* Enable PHY */ reg = readl(priv->base + SATA_IF_CTRL); reg &= ~CTRL_PHY_SHUTDOWN; writel(reg, priv->base + SATA_IF_CTRL); clk_disable_unprepare(priv->clk); return 0; } static int phy_mvebu_sata_power_off(struct phy *phy) { struct priv *priv = phy_get_drvdata(phy); u32 reg; clk_prepare_enable(priv->clk); /* Disable PLL and IVREF */ reg = readl(priv->base + SATA_PHY_MODE_2); reg &= ~(MODE_2_FORCE_PU_TX | MODE_2_FORCE_PU_RX | MODE_2_PU_PLL | MODE_2_PU_IVREF); writel(reg, priv->base + SATA_PHY_MODE_2); /* Disable PHY */ reg = readl(priv->base + SATA_IF_CTRL); reg |= CTRL_PHY_SHUTDOWN; writel(reg, priv->base + SATA_IF_CTRL); clk_disable_unprepare(priv->clk); return 0; } static const struct phy_ops phy_mvebu_sata_ops = { .power_on = phy_mvebu_sata_power_on, .power_off = phy_mvebu_sata_power_off, .owner = THIS_MODULE, }; static int phy_mvebu_sata_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct priv *priv; struct phy *phy; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); priv->clk = devm_clk_get(&pdev->dev, "sata"); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); phy = devm_phy_create(&pdev->dev, NULL, &phy_mvebu_sata_ops); if (IS_ERR(phy)) return PTR_ERR(phy); phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) return PTR_ERR(phy_provider); /* The boot loader may of left it on. Turn it off. */ phy_mvebu_sata_power_off(phy); return 0; } static const struct of_device_id phy_mvebu_sata_of_match[] = { { .compatible = "marvell,mvebu-sata-phy" }, { }, }; static struct platform_driver phy_mvebu_sata_driver = { .probe = phy_mvebu_sata_probe, .driver = { .name = "phy-mvebu-sata", .of_match_table = phy_mvebu_sata_of_match, } }; builtin_platform_driver(phy_mvebu_sata_driver);
linux-master
drivers/phy/marvell/phy-mvebu-sata.c
// SPDX-License-Identifier: GPL-2.0+ /* * USB cluster support for Armada 375 platform. * * Copyright (C) 2014 Marvell * * Gregory CLEMENT <[email protected]> * * Armada 375 comes with an USB2 host and device controller and an * USB3 controller. The USB cluster control register allows to manage * common features of both USB controllers. */ #include <dt-bindings/phy/phy.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #define USB2_PHY_CONFIG_DISABLE BIT(0) struct armada375_cluster_phy { struct phy *phy; void __iomem *reg; bool use_usb3; int phy_provided; }; static int armada375_usb_phy_init(struct phy *phy) { struct armada375_cluster_phy *cluster_phy; u32 reg; cluster_phy = phy_get_drvdata(phy); if (!cluster_phy) return -ENODEV; reg = readl(cluster_phy->reg); if (cluster_phy->use_usb3) reg |= USB2_PHY_CONFIG_DISABLE; else reg &= ~USB2_PHY_CONFIG_DISABLE; writel(reg, cluster_phy->reg); return 0; } static const struct phy_ops armada375_usb_phy_ops = { .init = armada375_usb_phy_init, .owner = THIS_MODULE, }; /* * Only one controller can use this PHY. We shouldn't have the case * when two controllers want to use this PHY. But if this case occurs * then we provide a phy to the first one and return an error for the * next one. This error has also to be an error returned by * devm_phy_optional_get() so different from ENODEV for USB2. In the * USB3 case it still optional and we use ENODEV. */ static struct phy *armada375_usb_phy_xlate(struct device *dev, struct of_phandle_args *args) { struct armada375_cluster_phy *cluster_phy = dev_get_drvdata(dev); if (!cluster_phy) return ERR_PTR(-ENODEV); /* * Either the phy had never been requested and then the first * usb claiming it can get it, or it had already been * requested in this case, we only allow to use it with the * same configuration. */ if (WARN_ON((cluster_phy->phy_provided != PHY_NONE) && (cluster_phy->phy_provided != args->args[0]))) { dev_err(dev, "This PHY has already been provided!\n"); dev_err(dev, "Check your device tree, only one controller can use it\n."); if (args->args[0] == PHY_TYPE_USB2) return ERR_PTR(-EBUSY); else return ERR_PTR(-ENODEV); } if (args->args[0] == PHY_TYPE_USB2) cluster_phy->use_usb3 = false; else if (args->args[0] == PHY_TYPE_USB3) cluster_phy->use_usb3 = true; else { dev_err(dev, "Invalid PHY mode\n"); return ERR_PTR(-ENODEV); } /* Store which phy mode is used for next test */ cluster_phy->phy_provided = args->args[0]; return cluster_phy->phy; } static int armada375_usb_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy *phy; struct phy_provider *phy_provider; void __iomem *usb_cluster_base; struct armada375_cluster_phy *cluster_phy; cluster_phy = devm_kzalloc(dev, sizeof(*cluster_phy), GFP_KERNEL); if (!cluster_phy) return -ENOMEM; usb_cluster_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(usb_cluster_base)) return PTR_ERR(usb_cluster_base); phy = devm_phy_create(dev, NULL, &armada375_usb_phy_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create PHY\n"); return PTR_ERR(phy); } cluster_phy->phy = phy; cluster_phy->reg = usb_cluster_base; dev_set_drvdata(dev, cluster_phy); phy_set_drvdata(phy, cluster_phy); phy_provider = devm_of_phy_provider_register(&pdev->dev, armada375_usb_phy_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id of_usb_cluster_table[] = { { .compatible = "marvell,armada-375-usb-cluster", }, { /* end of list */ }, }; static struct platform_driver armada375_usb_phy_driver = { .probe = armada375_usb_phy_probe, .driver = { .of_match_table = of_usb_cluster_table, .name = "armada-375-usb-cluster", } }; builtin_platform_driver(armada375_usb_phy_driver);
linux-master
drivers/phy/marvell/phy-armada375-usb2.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2011 Marvell International Ltd. All rights reserved. * Copyright (C) 2018,2019 Lubomir Rintel <[email protected]> */ #include <linux/delay.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/soc/mmp/cputype.h> #define USB2_PLL_REG0 0x4 #define USB2_PLL_REG1 0x8 #define USB2_TX_REG0 0x10 #define USB2_TX_REG1 0x14 #define USB2_TX_REG2 0x18 #define USB2_RX_REG0 0x20 #define USB2_RX_REG1 0x24 #define USB2_RX_REG2 0x28 #define USB2_ANA_REG0 0x30 #define USB2_ANA_REG1 0x34 #define USB2_ANA_REG2 0x38 #define USB2_DIG_REG0 0x3C #define USB2_DIG_REG1 0x40 #define USB2_DIG_REG2 0x44 #define USB2_DIG_REG3 0x48 #define USB2_TEST_REG0 0x4C #define USB2_TEST_REG1 0x50 #define USB2_TEST_REG2 0x54 #define USB2_CHARGER_REG0 0x58 #define USB2_OTG_REG0 0x5C #define USB2_PHY_MON0 0x60 #define USB2_RESETVE_REG0 0x64 #define USB2_ICID_REG0 0x78 #define USB2_ICID_REG1 0x7C /* USB2_PLL_REG0 */ /* This is for Ax stepping */ #define USB2_PLL_FBDIV_SHIFT_MMP3 0 #define USB2_PLL_FBDIV_MASK_MMP3 (0xFF << 0) #define USB2_PLL_REFDIV_SHIFT_MMP3 8 #define USB2_PLL_REFDIV_MASK_MMP3 (0xF << 8) #define USB2_PLL_VDD12_SHIFT_MMP3 12 #define USB2_PLL_VDD18_SHIFT_MMP3 14 /* This is for B0 stepping */ #define USB2_PLL_FBDIV_SHIFT_MMP3_B0 0 #define USB2_PLL_REFDIV_SHIFT_MMP3_B0 9 #define USB2_PLL_VDD18_SHIFT_MMP3_B0 14 #define USB2_PLL_FBDIV_MASK_MMP3_B0 0x01FF #define USB2_PLL_REFDIV_MASK_MMP3_B0 0x3E00 #define USB2_PLL_CAL12_SHIFT_MMP3 0 #define USB2_PLL_CALI12_MASK_MMP3 (0x3 << 0) #define USB2_PLL_VCOCAL_START_SHIFT_MMP3 2 #define USB2_PLL_KVCO_SHIFT_MMP3 4 #define USB2_PLL_KVCO_MASK_MMP3 (0x7<<4) #define USB2_PLL_ICP_SHIFT_MMP3 8 #define USB2_PLL_ICP_MASK_MMP3 (0x7<<8) #define USB2_PLL_LOCK_BYPASS_SHIFT_MMP3 12 #define USB2_PLL_PU_PLL_SHIFT_MMP3 13 #define USB2_PLL_PU_PLL_MASK (0x1 << 13) #define USB2_PLL_READY_MASK_MMP3 (0x1 << 15) /* USB2_TX_REG0 */ #define USB2_TX_IMPCAL_VTH_SHIFT_MMP3 8 #define USB2_TX_IMPCAL_VTH_MASK_MMP3 (0x7 << 8) #define USB2_TX_RCAL_START_SHIFT_MMP3 13 /* USB2_TX_REG1 */ #define USB2_TX_CK60_PHSEL_SHIFT_MMP3 0 #define USB2_TX_CK60_PHSEL_MASK_MMP3 (0xf << 0) #define USB2_TX_AMP_SHIFT_MMP3 4 #define USB2_TX_AMP_MASK_MMP3 (0x7 << 4) #define USB2_TX_VDD12_SHIFT_MMP3 8 #define USB2_TX_VDD12_MASK_MMP3 (0x3 << 8) /* USB2_TX_REG2 */ #define USB2_TX_DRV_SLEWRATE_SHIFT 10 /* USB2_RX_REG0 */ #define USB2_RX_SQ_THRESH_SHIFT_MMP3 4 #define USB2_RX_SQ_THRESH_MASK_MMP3 (0xf << 4) #define USB2_RX_SQ_LENGTH_SHIFT_MMP3 10 #define USB2_RX_SQ_LENGTH_MASK_MMP3 (0x3 << 10) /* USB2_ANA_REG1*/ #define USB2_ANA_PU_ANA_SHIFT_MMP3 14 /* USB2_OTG_REG0 */ #define USB2_OTG_PU_OTG_SHIFT_MMP3 3 struct mmp3_usb_phy { struct phy *phy; void __iomem *base; }; static unsigned int u2o_get(void __iomem *base, unsigned int offset) { return readl_relaxed(base + offset); } static void u2o_set(void __iomem *base, unsigned int offset, unsigned int value) { u32 reg; reg = readl_relaxed(base + offset); reg |= value; writel_relaxed(reg, base + offset); readl_relaxed(base + offset); } static void u2o_clear(void __iomem *base, unsigned int offset, unsigned int value) { u32 reg; reg = readl_relaxed(base + offset); reg &= ~value; writel_relaxed(reg, base + offset); readl_relaxed(base + offset); } static int mmp3_usb_phy_init(struct phy *phy) { struct mmp3_usb_phy *mmp3_usb_phy = phy_get_drvdata(phy); void __iomem *base = mmp3_usb_phy->base; if (cpu_is_mmp3_a0()) { u2o_clear(base, USB2_PLL_REG0, (USB2_PLL_FBDIV_MASK_MMP3 | USB2_PLL_REFDIV_MASK_MMP3)); u2o_set(base, USB2_PLL_REG0, 0xd << USB2_PLL_REFDIV_SHIFT_MMP3 | 0xf0 << USB2_PLL_FBDIV_SHIFT_MMP3); } else if (cpu_is_mmp3_b0()) { u2o_clear(base, USB2_PLL_REG0, USB2_PLL_REFDIV_MASK_MMP3_B0 | USB2_PLL_FBDIV_MASK_MMP3_B0); u2o_set(base, USB2_PLL_REG0, 0xd << USB2_PLL_REFDIV_SHIFT_MMP3_B0 | 0xf0 << USB2_PLL_FBDIV_SHIFT_MMP3_B0); } else { dev_err(&phy->dev, "unsupported silicon revision\n"); return -ENODEV; } u2o_clear(base, USB2_PLL_REG1, USB2_PLL_PU_PLL_MASK | USB2_PLL_ICP_MASK_MMP3 | USB2_PLL_KVCO_MASK_MMP3 | USB2_PLL_CALI12_MASK_MMP3); u2o_set(base, USB2_PLL_REG1, 1 << USB2_PLL_PU_PLL_SHIFT_MMP3 | 1 << USB2_PLL_LOCK_BYPASS_SHIFT_MMP3 | 3 << USB2_PLL_ICP_SHIFT_MMP3 | 3 << USB2_PLL_KVCO_SHIFT_MMP3 | 3 << USB2_PLL_CAL12_SHIFT_MMP3); u2o_clear(base, USB2_TX_REG0, USB2_TX_IMPCAL_VTH_MASK_MMP3); u2o_set(base, USB2_TX_REG0, 2 << USB2_TX_IMPCAL_VTH_SHIFT_MMP3); u2o_clear(base, USB2_TX_REG1, USB2_TX_VDD12_MASK_MMP3 | USB2_TX_AMP_MASK_MMP3 | USB2_TX_CK60_PHSEL_MASK_MMP3); u2o_set(base, USB2_TX_REG1, 3 << USB2_TX_VDD12_SHIFT_MMP3 | 4 << USB2_TX_AMP_SHIFT_MMP3 | 4 << USB2_TX_CK60_PHSEL_SHIFT_MMP3); u2o_clear(base, USB2_TX_REG2, 3 << USB2_TX_DRV_SLEWRATE_SHIFT); u2o_set(base, USB2_TX_REG2, 2 << USB2_TX_DRV_SLEWRATE_SHIFT); u2o_clear(base, USB2_RX_REG0, USB2_RX_SQ_THRESH_MASK_MMP3); u2o_set(base, USB2_RX_REG0, 0xa << USB2_RX_SQ_THRESH_SHIFT_MMP3); u2o_set(base, USB2_ANA_REG1, 0x1 << USB2_ANA_PU_ANA_SHIFT_MMP3); u2o_set(base, USB2_OTG_REG0, 0x1 << USB2_OTG_PU_OTG_SHIFT_MMP3); return 0; } static int mmp3_usb_phy_calibrate(struct phy *phy) { struct mmp3_usb_phy *mmp3_usb_phy = phy_get_drvdata(phy); void __iomem *base = mmp3_usb_phy->base; int loops; /* * PLL VCO and TX Impedance Calibration Timing: * * _____________________________________ * PU __________| * _____________________________ * VCOCAL START _________| * ___ * REG_RCAL_START ________________| |________|_______ * | 200us | 400us | 40| 400us | USB PHY READY */ udelay(200); u2o_set(base, USB2_PLL_REG1, 1 << USB2_PLL_VCOCAL_START_SHIFT_MMP3); udelay(400); u2o_set(base, USB2_TX_REG0, 1 << USB2_TX_RCAL_START_SHIFT_MMP3); udelay(40); u2o_clear(base, USB2_TX_REG0, 1 << USB2_TX_RCAL_START_SHIFT_MMP3); udelay(400); loops = 0; while ((u2o_get(base, USB2_PLL_REG1) & USB2_PLL_READY_MASK_MMP3) == 0) { mdelay(1); loops++; if (loops > 100) { dev_err(&phy->dev, "PLL_READY not set after 100mS.\n"); return -ETIMEDOUT; } } return 0; } static const struct phy_ops mmp3_usb_phy_ops = { .init = mmp3_usb_phy_init, .calibrate = mmp3_usb_phy_calibrate, .owner = THIS_MODULE, }; static const struct of_device_id mmp3_usb_phy_of_match[] = { { .compatible = "marvell,mmp3-usb-phy", }, { }, }; MODULE_DEVICE_TABLE(of, mmp3_usb_phy_of_match); static int mmp3_usb_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mmp3_usb_phy *mmp3_usb_phy; struct phy_provider *provider; mmp3_usb_phy = devm_kzalloc(dev, sizeof(*mmp3_usb_phy), GFP_KERNEL); if (!mmp3_usb_phy) return -ENOMEM; mmp3_usb_phy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mmp3_usb_phy->base)) { dev_err(dev, "failed to remap PHY regs\n"); return PTR_ERR(mmp3_usb_phy->base); } mmp3_usb_phy->phy = devm_phy_create(dev, NULL, &mmp3_usb_phy_ops); if (IS_ERR(mmp3_usb_phy->phy)) { dev_err(dev, "failed to create PHY\n"); return PTR_ERR(mmp3_usb_phy->phy); } phy_set_drvdata(mmp3_usb_phy->phy, mmp3_usb_phy); provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(provider)) { dev_err(dev, "failed to register PHY provider\n"); return PTR_ERR(provider); } return 0; } static struct platform_driver mmp3_usb_phy_driver = { .probe = mmp3_usb_phy_probe, .driver = { .name = "mmp3-usb-phy", .of_match_table = mmp3_usb_phy_of_match, }, }; module_platform_driver(mmp3_usb_phy_driver); MODULE_AUTHOR("Lubomir Rintel <[email protected]>"); MODULE_DESCRIPTION("Marvell MMP3 USB PHY Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/marvell/phy-mmp3-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2021 Marvell * * Authors: * Konstantin Porotchkin <[email protected]> * * Marvell CP110 UTMI PHY driver */ #include <linux/io.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/usb/of.h> #include <linux/usb/otg.h> #define UTMI_PHY_PORTS 2 /* CP110 UTMI register macro definetions */ #define SYSCON_USB_CFG_REG 0x420 #define USB_CFG_DEVICE_EN_MASK BIT(0) #define USB_CFG_DEVICE_MUX_OFFSET 1 #define USB_CFG_DEVICE_MUX_MASK BIT(1) #define USB_CFG_PLL_MASK BIT(25) #define SYSCON_UTMI_CFG_REG(id) (0x440 + (id) * 4) #define UTMI_PHY_CFG_PU_MASK BIT(5) #define UTMI_PLL_CTRL_REG 0x0 #define PLL_REFDIV_OFFSET 0 #define PLL_REFDIV_MASK GENMASK(6, 0) #define PLL_REFDIV_VAL 0x5 #define PLL_FBDIV_OFFSET 16 #define PLL_FBDIV_MASK GENMASK(24, 16) #define PLL_FBDIV_VAL 0x60 #define PLL_SEL_LPFR_MASK GENMASK(29, 28) #define PLL_RDY BIT(31) #define UTMI_CAL_CTRL_REG 0x8 #define IMPCAL_VTH_OFFSET 8 #define IMPCAL_VTH_MASK GENMASK(10, 8) #define IMPCAL_VTH_VAL 0x7 #define IMPCAL_DONE BIT(23) #define PLLCAL_DONE BIT(31) #define UTMI_TX_CH_CTRL_REG 0xC #define DRV_EN_LS_OFFSET 12 #define DRV_EN_LS_MASK GENMASK(15, 12) #define IMP_SEL_LS_OFFSET 16 #define IMP_SEL_LS_MASK GENMASK(19, 16) #define TX_AMP_OFFSET 20 #define TX_AMP_MASK GENMASK(22, 20) #define TX_AMP_VAL 0x4 #define UTMI_RX_CH_CTRL0_REG 0x14 #define SQ_DET_EN BIT(15) #define SQ_ANA_DTC_SEL BIT(28) #define UTMI_RX_CH_CTRL1_REG 0x18 #define SQ_AMP_CAL_OFFSET 0 #define SQ_AMP_CAL_MASK GENMASK(2, 0) #define SQ_AMP_CAL_VAL 1 #define SQ_AMP_CAL_EN BIT(3) #define UTMI_CTRL_STATUS0_REG 0x24 #define SUSPENDM BIT(22) #define TEST_SEL BIT(25) #define UTMI_CHGDTC_CTRL_REG 0x38 #define VDAT_OFFSET 8 #define VDAT_MASK GENMASK(9, 8) #define VDAT_VAL 1 #define VSRC_OFFSET 10 #define VSRC_MASK GENMASK(11, 10) #define VSRC_VAL 1 #define PLL_LOCK_DELAY_US 10000 #define PLL_LOCK_TIMEOUT_US 1000000 #define PORT_REGS(p) ((p)->priv->regs + (p)->id * 0x1000) /** * struct mvebu_cp110_utmi - PHY driver data * * @regs: PHY registers * @syscon: Regmap with system controller registers * @dev: device driver handle * @ops: phy ops */ struct mvebu_cp110_utmi { void __iomem *regs; struct regmap *syscon; struct device *dev; const struct phy_ops *ops; }; /** * struct mvebu_cp110_utmi_port - PHY port data * * @priv: PHY driver data * @id: PHY port ID * @dr_mode: PHY connection: USB_DR_MODE_HOST or USB_DR_MODE_PERIPHERAL */ struct mvebu_cp110_utmi_port { struct mvebu_cp110_utmi *priv; u32 id; enum usb_dr_mode dr_mode; }; static void mvebu_cp110_utmi_port_setup(struct mvebu_cp110_utmi_port *port) { u32 reg; /* * Setup PLL. * The reference clock is the frequency of quartz resonator * connected to pins REFCLK_XIN and REFCLK_XOUT of the SoC. * Register init values are matching the 40MHz default clock. * The crystal used for all platform boards is now 25MHz. * See the functional specification for details. */ reg = readl(PORT_REGS(port) + UTMI_PLL_CTRL_REG); reg &= ~(PLL_REFDIV_MASK | PLL_FBDIV_MASK | PLL_SEL_LPFR_MASK); reg |= (PLL_REFDIV_VAL << PLL_REFDIV_OFFSET) | (PLL_FBDIV_VAL << PLL_FBDIV_OFFSET); writel(reg, PORT_REGS(port) + UTMI_PLL_CTRL_REG); /* Impedance Calibration Threshold Setting */ reg = readl(PORT_REGS(port) + UTMI_CAL_CTRL_REG); reg &= ~IMPCAL_VTH_MASK; reg |= IMPCAL_VTH_VAL << IMPCAL_VTH_OFFSET; writel(reg, PORT_REGS(port) + UTMI_CAL_CTRL_REG); /* Set LS TX driver strength coarse control */ reg = readl(PORT_REGS(port) + UTMI_TX_CH_CTRL_REG); reg &= ~TX_AMP_MASK; reg |= TX_AMP_VAL << TX_AMP_OFFSET; writel(reg, PORT_REGS(port) + UTMI_TX_CH_CTRL_REG); /* Disable SQ and enable analog squelch detect */ reg = readl(PORT_REGS(port) + UTMI_RX_CH_CTRL0_REG); reg &= ~SQ_DET_EN; reg |= SQ_ANA_DTC_SEL; writel(reg, PORT_REGS(port) + UTMI_RX_CH_CTRL0_REG); /* * Set External squelch calibration number and * enable the External squelch calibration */ reg = readl(PORT_REGS(port) + UTMI_RX_CH_CTRL1_REG); reg &= ~SQ_AMP_CAL_MASK; reg |= (SQ_AMP_CAL_VAL << SQ_AMP_CAL_OFFSET) | SQ_AMP_CAL_EN; writel(reg, PORT_REGS(port) + UTMI_RX_CH_CTRL1_REG); /* * Set Control VDAT Reference Voltage - 0.325V and * Control VSRC Reference Voltage - 0.6V */ reg = readl(PORT_REGS(port) + UTMI_CHGDTC_CTRL_REG); reg &= ~(VDAT_MASK | VSRC_MASK); reg |= (VDAT_VAL << VDAT_OFFSET) | (VSRC_VAL << VSRC_OFFSET); writel(reg, PORT_REGS(port) + UTMI_CHGDTC_CTRL_REG); } static int mvebu_cp110_utmi_phy_power_off(struct phy *phy) { struct mvebu_cp110_utmi_port *port = phy_get_drvdata(phy); struct mvebu_cp110_utmi *utmi = port->priv; int i; /* Power down UTMI PHY port */ regmap_clear_bits(utmi->syscon, SYSCON_UTMI_CFG_REG(port->id), UTMI_PHY_CFG_PU_MASK); for (i = 0; i < UTMI_PHY_PORTS; i++) { int test = regmap_test_bits(utmi->syscon, SYSCON_UTMI_CFG_REG(i), UTMI_PHY_CFG_PU_MASK); /* skip PLL shutdown if there are active UTMI PHY ports */ if (test != 0) return 0; } /* PLL Power down if all UTMI PHYs are down */ regmap_clear_bits(utmi->syscon, SYSCON_USB_CFG_REG, USB_CFG_PLL_MASK); return 0; } static int mvebu_cp110_utmi_phy_power_on(struct phy *phy) { struct mvebu_cp110_utmi_port *port = phy_get_drvdata(phy); struct mvebu_cp110_utmi *utmi = port->priv; struct device *dev = &phy->dev; int ret; u32 reg; /* It is necessary to power off UTMI before configuration */ ret = mvebu_cp110_utmi_phy_power_off(phy); if (ret) { dev_err(dev, "UTMI power OFF before power ON failed\n"); return ret; } /* * If UTMI port is connected to USB Device controller, * configure the USB MUX prior to UTMI PHY initialization. * The single USB device controller can be connected * to UTMI0 or to UTMI1 PHY port, but not to both. */ if (port->dr_mode == USB_DR_MODE_PERIPHERAL) { regmap_update_bits(utmi->syscon, SYSCON_USB_CFG_REG, USB_CFG_DEVICE_EN_MASK | USB_CFG_DEVICE_MUX_MASK, USB_CFG_DEVICE_EN_MASK | (port->id << USB_CFG_DEVICE_MUX_OFFSET)); } /* Set Test suspendm mode and enable Test UTMI select */ reg = readl(PORT_REGS(port) + UTMI_CTRL_STATUS0_REG); reg |= SUSPENDM | TEST_SEL; writel(reg, PORT_REGS(port) + UTMI_CTRL_STATUS0_REG); /* Wait for UTMI power down */ mdelay(1); /* PHY port setup first */ mvebu_cp110_utmi_port_setup(port); /* Power UP UTMI PHY */ regmap_set_bits(utmi->syscon, SYSCON_UTMI_CFG_REG(port->id), UTMI_PHY_CFG_PU_MASK); /* Disable Test UTMI select */ reg = readl(PORT_REGS(port) + UTMI_CTRL_STATUS0_REG); reg &= ~TEST_SEL; writel(reg, PORT_REGS(port) + UTMI_CTRL_STATUS0_REG); /* Wait for impedance calibration */ ret = readl_poll_timeout(PORT_REGS(port) + UTMI_CAL_CTRL_REG, reg, reg & IMPCAL_DONE, PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US); if (ret) { dev_err(dev, "Failed to end UTMI impedance calibration\n"); return ret; } /* Wait for PLL calibration */ ret = readl_poll_timeout(PORT_REGS(port) + UTMI_CAL_CTRL_REG, reg, reg & PLLCAL_DONE, PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US); if (ret) { dev_err(dev, "Failed to end UTMI PLL calibration\n"); return ret; } /* Wait for PLL ready */ ret = readl_poll_timeout(PORT_REGS(port) + UTMI_PLL_CTRL_REG, reg, reg & PLL_RDY, PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US); if (ret) { dev_err(dev, "PLL is not ready\n"); return ret; } /* PLL Power up */ regmap_set_bits(utmi->syscon, SYSCON_USB_CFG_REG, USB_CFG_PLL_MASK); return 0; } static const struct phy_ops mvebu_cp110_utmi_phy_ops = { .power_on = mvebu_cp110_utmi_phy_power_on, .power_off = mvebu_cp110_utmi_phy_power_off, .owner = THIS_MODULE, }; static const struct of_device_id mvebu_cp110_utmi_of_match[] = { { .compatible = "marvell,cp110-utmi-phy" }, {}, }; MODULE_DEVICE_TABLE(of, mvebu_cp110_utmi_of_match); static int mvebu_cp110_utmi_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mvebu_cp110_utmi *utmi; struct phy_provider *provider; struct device_node *child; u32 usb_devices = 0; utmi = devm_kzalloc(dev, sizeof(*utmi), GFP_KERNEL); if (!utmi) return -ENOMEM; utmi->dev = dev; /* Get system controller region */ utmi->syscon = syscon_regmap_lookup_by_phandle(dev->of_node, "marvell,system-controller"); if (IS_ERR(utmi->syscon)) { dev_err(dev, "Missing UTMI system controller\n"); return PTR_ERR(utmi->syscon); } /* Get UTMI memory region */ utmi->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(utmi->regs)) return PTR_ERR(utmi->regs); for_each_available_child_of_node(dev->of_node, child) { struct mvebu_cp110_utmi_port *port; struct phy *phy; int ret; u32 port_id; ret = of_property_read_u32(child, "reg", &port_id); if ((ret < 0) || (port_id >= UTMI_PHY_PORTS)) { dev_err(dev, "invalid 'reg' property on child %pOF\n", child); continue; } port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL); if (!port) { of_node_put(child); return -ENOMEM; } port->dr_mode = of_usb_get_dr_mode_by_phy(child, -1); if ((port->dr_mode != USB_DR_MODE_HOST) && (port->dr_mode != USB_DR_MODE_PERIPHERAL)) { dev_err(&pdev->dev, "Missing dual role setting of the port%d, will use HOST mode\n", port_id); port->dr_mode = USB_DR_MODE_HOST; } if (port->dr_mode == USB_DR_MODE_PERIPHERAL) { usb_devices++; if (usb_devices > 1) { dev_err(dev, "Single USB device allowed! Port%d will use HOST mode\n", port_id); port->dr_mode = USB_DR_MODE_HOST; } } /* Retrieve PHY capabilities */ utmi->ops = &mvebu_cp110_utmi_phy_ops; /* Instantiate the PHY */ phy = devm_phy_create(dev, child, utmi->ops); if (IS_ERR(phy)) { dev_err(dev, "Failed to create the UTMI PHY\n"); of_node_put(child); return PTR_ERR(phy); } port->priv = utmi; port->id = port_id; phy_set_drvdata(phy, port); /* Ensure the PHY is powered off */ mvebu_cp110_utmi_phy_power_off(phy); } dev_set_drvdata(dev, utmi); provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(provider); } static struct platform_driver mvebu_cp110_utmi_driver = { .probe = mvebu_cp110_utmi_phy_probe, .driver = { .name = "mvebu-cp110-utmi-phy", .of_match_table = mvebu_cp110_utmi_of_match, }, }; module_platform_driver(mvebu_cp110_utmi_driver); MODULE_AUTHOR("Konstatin Porotchkin <[email protected]>"); MODULE_DESCRIPTION("Marvell Armada CP110 UTMI PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/marvell/phy-mvebu-cp110-utmi.c
// SPDX-License-Identifier: GPL-2.0 /* * Marvell Berlin SATA PHY driver * * Copyright (C) 2014 Marvell Technology Group Ltd. * * Antoine Ténart <[email protected]> */ #include <linux/clk.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/io.h> #include <linux/platform_device.h> #define HOST_VSA_ADDR 0x0 #define HOST_VSA_DATA 0x4 #define PORT_SCR_CTL 0x2c #define PORT_VSR_ADDR 0x78 #define PORT_VSR_DATA 0x7c #define CONTROL_REGISTER 0x0 #define MBUS_SIZE_CONTROL 0x4 #define POWER_DOWN_PHY0 BIT(6) #define POWER_DOWN_PHY1 BIT(14) #define MBUS_WRITE_REQUEST_SIZE_128 (BIT(2) << 16) #define MBUS_READ_REQUEST_SIZE_128 (BIT(2) << 19) #define BG2_PHY_BASE 0x080 #define BG2Q_PHY_BASE 0x200 /* register 0x01 */ #define REF_FREF_SEL_25 BIT(0) #define PHY_BERLIN_MODE_SATA (0x0 << 5) /* register 0x02 */ #define USE_MAX_PLL_RATE BIT(12) /* register 0x23 */ #define DATA_BIT_WIDTH_10 (0x0 << 10) #define DATA_BIT_WIDTH_20 (0x1 << 10) #define DATA_BIT_WIDTH_40 (0x2 << 10) /* register 0x25 */ #define PHY_GEN_MAX_1_5 (0x0 << 10) #define PHY_GEN_MAX_3_0 (0x1 << 10) #define PHY_GEN_MAX_6_0 (0x2 << 10) struct phy_berlin_desc { struct phy *phy; u32 power_bit; unsigned index; }; struct phy_berlin_priv { void __iomem *base; spinlock_t lock; struct clk *clk; struct phy_berlin_desc **phys; unsigned nphys; u32 phy_base; }; static inline void phy_berlin_sata_reg_setbits(void __iomem *ctrl_reg, u32 phy_base, u32 reg, u32 mask, u32 val) { u32 regval; /* select register */ writel(phy_base + reg, ctrl_reg + PORT_VSR_ADDR); /* set bits */ regval = readl(ctrl_reg + PORT_VSR_DATA); regval &= ~mask; regval |= val; writel(regval, ctrl_reg + PORT_VSR_DATA); } static int phy_berlin_sata_power_on(struct phy *phy) { struct phy_berlin_desc *desc = phy_get_drvdata(phy); struct phy_berlin_priv *priv = dev_get_drvdata(phy->dev.parent); void __iomem *ctrl_reg = priv->base + 0x60 + (desc->index * 0x80); u32 regval; clk_prepare_enable(priv->clk); spin_lock(&priv->lock); /* Power on PHY */ writel(CONTROL_REGISTER, priv->base + HOST_VSA_ADDR); regval = readl(priv->base + HOST_VSA_DATA); regval &= ~desc->power_bit; writel(regval, priv->base + HOST_VSA_DATA); /* Configure MBus */ writel(MBUS_SIZE_CONTROL, priv->base + HOST_VSA_ADDR); regval = readl(priv->base + HOST_VSA_DATA); regval |= MBUS_WRITE_REQUEST_SIZE_128 | MBUS_READ_REQUEST_SIZE_128; writel(regval, priv->base + HOST_VSA_DATA); /* set PHY mode and ref freq to 25 MHz */ phy_berlin_sata_reg_setbits(ctrl_reg, priv->phy_base, 0x01, 0x00ff, REF_FREF_SEL_25 | PHY_BERLIN_MODE_SATA); /* set PHY up to 6 Gbps */ phy_berlin_sata_reg_setbits(ctrl_reg, priv->phy_base, 0x25, 0x0c00, PHY_GEN_MAX_6_0); /* set 40 bits width */ phy_berlin_sata_reg_setbits(ctrl_reg, priv->phy_base, 0x23, 0x0c00, DATA_BIT_WIDTH_40); /* use max pll rate */ phy_berlin_sata_reg_setbits(ctrl_reg, priv->phy_base, 0x02, 0x0000, USE_MAX_PLL_RATE); /* set Gen3 controller speed */ regval = readl(ctrl_reg + PORT_SCR_CTL); regval &= ~GENMASK(7, 4); regval |= 0x30; writel(regval, ctrl_reg + PORT_SCR_CTL); spin_unlock(&priv->lock); clk_disable_unprepare(priv->clk); return 0; } static int phy_berlin_sata_power_off(struct phy *phy) { struct phy_berlin_desc *desc = phy_get_drvdata(phy); struct phy_berlin_priv *priv = dev_get_drvdata(phy->dev.parent); u32 regval; clk_prepare_enable(priv->clk); spin_lock(&priv->lock); /* Power down PHY */ writel(CONTROL_REGISTER, priv->base + HOST_VSA_ADDR); regval = readl(priv->base + HOST_VSA_DATA); regval |= desc->power_bit; writel(regval, priv->base + HOST_VSA_DATA); spin_unlock(&priv->lock); clk_disable_unprepare(priv->clk); return 0; } static struct phy *phy_berlin_sata_phy_xlate(struct device *dev, struct of_phandle_args *args) { struct phy_berlin_priv *priv = dev_get_drvdata(dev); int i; if (WARN_ON(args->args[0] >= priv->nphys)) return ERR_PTR(-ENODEV); for (i = 0; i < priv->nphys; i++) { if (priv->phys[i]->index == args->args[0]) break; } if (i == priv->nphys) return ERR_PTR(-ENODEV); return priv->phys[i]->phy; } static const struct phy_ops phy_berlin_sata_ops = { .power_on = phy_berlin_sata_power_on, .power_off = phy_berlin_sata_power_off, .owner = THIS_MODULE, }; static u32 phy_berlin_power_down_bits[] = { POWER_DOWN_PHY0, POWER_DOWN_PHY1, }; static int phy_berlin_sata_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *child; struct phy *phy; struct phy_provider *phy_provider; struct phy_berlin_priv *priv; struct resource *res; int ret, i = 0; u32 phy_id; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; priv->base = devm_ioremap(dev, res->start, resource_size(res)); if (!priv->base) return -ENOMEM; priv->clk = devm_clk_get(dev, NULL); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); priv->nphys = of_get_child_count(dev->of_node); if (priv->nphys == 0) return -ENODEV; priv->phys = devm_kcalloc(dev, priv->nphys, sizeof(*priv->phys), GFP_KERNEL); if (!priv->phys) return -ENOMEM; if (of_device_is_compatible(dev->of_node, "marvell,berlin2-sata-phy")) priv->phy_base = BG2_PHY_BASE; else priv->phy_base = BG2Q_PHY_BASE; dev_set_drvdata(dev, priv); spin_lock_init(&priv->lock); for_each_available_child_of_node(dev->of_node, child) { struct phy_berlin_desc *phy_desc; if (of_property_read_u32(child, "reg", &phy_id)) { dev_err(dev, "missing reg property in node %pOFn\n", child); ret = -EINVAL; goto put_child; } if (phy_id >= ARRAY_SIZE(phy_berlin_power_down_bits)) { dev_err(dev, "invalid reg in node %pOFn\n", child); ret = -EINVAL; goto put_child; } phy_desc = devm_kzalloc(dev, sizeof(*phy_desc), GFP_KERNEL); if (!phy_desc) { ret = -ENOMEM; goto put_child; } phy = devm_phy_create(dev, NULL, &phy_berlin_sata_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create PHY %d\n", phy_id); ret = PTR_ERR(phy); goto put_child; } phy_desc->phy = phy; phy_desc->power_bit = phy_berlin_power_down_bits[phy_id]; phy_desc->index = phy_id; phy_set_drvdata(phy, phy_desc); priv->phys[i++] = phy_desc; /* Make sure the PHY is off */ phy_berlin_sata_power_off(phy); } phy_provider = devm_of_phy_provider_register(dev, phy_berlin_sata_phy_xlate); return PTR_ERR_OR_ZERO(phy_provider); put_child: of_node_put(child); return ret; } static const struct of_device_id phy_berlin_sata_of_match[] = { { .compatible = "marvell,berlin2-sata-phy" }, { .compatible = "marvell,berlin2q-sata-phy" }, { }, }; MODULE_DEVICE_TABLE(of, phy_berlin_sata_of_match); static struct platform_driver phy_berlin_sata_driver = { .probe = phy_berlin_sata_probe, .driver = { .name = "phy-berlin-sata", .of_match_table = phy_berlin_sata_of_match, }, }; module_platform_driver(phy_berlin_sata_driver); MODULE_DESCRIPTION("Marvell Berlin SATA PHY driver"); MODULE_AUTHOR("Antoine Ténart <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/marvell/phy-berlin-sata.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Linaro, Ltd. * Rob Herring <[email protected]> * * Based on vendor driver: * Copyright (C) 2013 Marvell Inc. * Author: Chao Xie <[email protected]> */ #include <linux/delay.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/phy/phy.h> #define PHY_28NM_HSIC_CTRL 0x08 #define PHY_28NM_HSIC_IMPCAL_CAL 0x18 #define PHY_28NM_HSIC_PLL_CTRL01 0x1c #define PHY_28NM_HSIC_PLL_CTRL2 0x20 #define PHY_28NM_HSIC_INT 0x28 #define PHY_28NM_HSIC_PLL_SELLPFR_SHIFT 26 #define PHY_28NM_HSIC_PLL_FBDIV_SHIFT 0 #define PHY_28NM_HSIC_PLL_REFDIV_SHIFT 9 #define PHY_28NM_HSIC_S2H_PU_PLL BIT(10) #define PHY_28NM_HSIC_H2S_PLL_LOCK BIT(15) #define PHY_28NM_HSIC_S2H_HSIC_EN BIT(7) #define S2H_DRV_SE0_4RESUME BIT(14) #define PHY_28NM_HSIC_H2S_IMPCAL_DONE BIT(27) #define PHY_28NM_HSIC_CONNECT_INT BIT(1) #define PHY_28NM_HSIC_HS_READY_INT BIT(2) struct mv_hsic_phy { struct phy *phy; struct platform_device *pdev; void __iomem *base; struct clk *clk; }; static int wait_for_reg(void __iomem *reg, u32 mask, u32 ms) { u32 val; return readl_poll_timeout(reg, val, ((val & mask) == mask), 1000, 1000 * ms); } static int mv_hsic_phy_init(struct phy *phy) { struct mv_hsic_phy *mv_phy = phy_get_drvdata(phy); struct platform_device *pdev = mv_phy->pdev; void __iomem *base = mv_phy->base; int ret; clk_prepare_enable(mv_phy->clk); /* Set reference clock */ writel(0x1 << PHY_28NM_HSIC_PLL_SELLPFR_SHIFT | 0xf0 << PHY_28NM_HSIC_PLL_FBDIV_SHIFT | 0xd << PHY_28NM_HSIC_PLL_REFDIV_SHIFT, base + PHY_28NM_HSIC_PLL_CTRL01); /* Turn on PLL */ writel(readl(base + PHY_28NM_HSIC_PLL_CTRL2) | PHY_28NM_HSIC_S2H_PU_PLL, base + PHY_28NM_HSIC_PLL_CTRL2); /* Make sure PHY PLL is locked */ ret = wait_for_reg(base + PHY_28NM_HSIC_PLL_CTRL2, PHY_28NM_HSIC_H2S_PLL_LOCK, 100); if (ret) { dev_err(&pdev->dev, "HSIC PHY PLL not locked after 100mS."); clk_disable_unprepare(mv_phy->clk); } return ret; } static int mv_hsic_phy_power_on(struct phy *phy) { struct mv_hsic_phy *mv_phy = phy_get_drvdata(phy); struct platform_device *pdev = mv_phy->pdev; void __iomem *base = mv_phy->base; u32 reg; int ret; reg = readl(base + PHY_28NM_HSIC_CTRL); /* Avoid SE0 state when resume for some device will take it as reset */ reg &= ~S2H_DRV_SE0_4RESUME; reg |= PHY_28NM_HSIC_S2H_HSIC_EN; /* Enable HSIC PHY */ writel(reg, base + PHY_28NM_HSIC_CTRL); /* * Calibration Timing * ____________________________ * CAL START ___| * ____________________ * CAL_DONE ___________| * | 400us | */ /* Make sure PHY Calibration is ready */ ret = wait_for_reg(base + PHY_28NM_HSIC_IMPCAL_CAL, PHY_28NM_HSIC_H2S_IMPCAL_DONE, 100); if (ret) { dev_warn(&pdev->dev, "HSIC PHY READY not set after 100mS."); return ret; } /* Waiting for HSIC connect int*/ ret = wait_for_reg(base + PHY_28NM_HSIC_INT, PHY_28NM_HSIC_CONNECT_INT, 200); if (ret) dev_warn(&pdev->dev, "HSIC wait for connect interrupt timeout."); return ret; } static int mv_hsic_phy_power_off(struct phy *phy) { struct mv_hsic_phy *mv_phy = phy_get_drvdata(phy); void __iomem *base = mv_phy->base; writel(readl(base + PHY_28NM_HSIC_CTRL) & ~PHY_28NM_HSIC_S2H_HSIC_EN, base + PHY_28NM_HSIC_CTRL); return 0; } static int mv_hsic_phy_exit(struct phy *phy) { struct mv_hsic_phy *mv_phy = phy_get_drvdata(phy); void __iomem *base = mv_phy->base; /* Turn off PLL */ writel(readl(base + PHY_28NM_HSIC_PLL_CTRL2) & ~PHY_28NM_HSIC_S2H_PU_PLL, base + PHY_28NM_HSIC_PLL_CTRL2); clk_disable_unprepare(mv_phy->clk); return 0; } static const struct phy_ops hsic_ops = { .init = mv_hsic_phy_init, .power_on = mv_hsic_phy_power_on, .power_off = mv_hsic_phy_power_off, .exit = mv_hsic_phy_exit, .owner = THIS_MODULE, }; static int mv_hsic_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct mv_hsic_phy *mv_phy; mv_phy = devm_kzalloc(&pdev->dev, sizeof(*mv_phy), GFP_KERNEL); if (!mv_phy) return -ENOMEM; mv_phy->pdev = pdev; mv_phy->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(mv_phy->clk)) { dev_err(&pdev->dev, "failed to get clock.\n"); return PTR_ERR(mv_phy->clk); } mv_phy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mv_phy->base)) return PTR_ERR(mv_phy->base); mv_phy->phy = devm_phy_create(&pdev->dev, pdev->dev.of_node, &hsic_ops); if (IS_ERR(mv_phy->phy)) return PTR_ERR(mv_phy->phy); phy_set_drvdata(mv_phy->phy, mv_phy); phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id mv_hsic_phy_dt_match[] = { { .compatible = "marvell,pxa1928-hsic-phy", }, {}, }; MODULE_DEVICE_TABLE(of, mv_hsic_phy_dt_match); static struct platform_driver mv_hsic_phy_driver = { .probe = mv_hsic_phy_probe, .driver = { .name = "mv-hsic-phy", .of_match_table = mv_hsic_phy_dt_match, }, }; module_platform_driver(mv_hsic_phy_driver); MODULE_AUTHOR("Rob Herring <[email protected]>"); MODULE_DESCRIPTION("Marvell HSIC phy driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/marvell/phy-pxa-28nm-hsic.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2011 Marvell International Ltd. All rights reserved. * Copyright (C) 2018 Lubomir Rintel <[email protected]> */ #include <dt-bindings/phy/phy.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> /* phy regs */ #define UTMI_REVISION 0x0 #define UTMI_CTRL 0x4 #define UTMI_PLL 0x8 #define UTMI_TX 0xc #define UTMI_RX 0x10 #define UTMI_IVREF 0x14 #define UTMI_T0 0x18 #define UTMI_T1 0x1c #define UTMI_T2 0x20 #define UTMI_T3 0x24 #define UTMI_T4 0x28 #define UTMI_T5 0x2c #define UTMI_RESERVE 0x30 #define UTMI_USB_INT 0x34 #define UTMI_DBG_CTL 0x38 #define UTMI_OTG_ADDON 0x3c /* For UTMICTRL Register */ #define UTMI_CTRL_USB_CLK_EN (1 << 31) /* pxa168 */ #define UTMI_CTRL_SUSPEND_SET1 (1 << 30) #define UTMI_CTRL_SUSPEND_SET2 (1 << 29) #define UTMI_CTRL_RXBUF_PDWN (1 << 24) #define UTMI_CTRL_TXBUF_PDWN (1 << 11) #define UTMI_CTRL_INPKT_DELAY_SHIFT 30 #define UTMI_CTRL_INPKT_DELAY_SOF_SHIFT 28 #define UTMI_CTRL_PU_REF_SHIFT 20 #define UTMI_CTRL_ARC_PULLDN_SHIFT 12 #define UTMI_CTRL_PLL_PWR_UP_SHIFT 1 #define UTMI_CTRL_PWR_UP_SHIFT 0 /* For UTMI_PLL Register */ #define UTMI_PLL_PLLCALI12_SHIFT 29 #define UTMI_PLL_PLLCALI12_MASK (0x3 << 29) #define UTMI_PLL_PLLVDD18_SHIFT 27 #define UTMI_PLL_PLLVDD18_MASK (0x3 << 27) #define UTMI_PLL_PLLVDD12_SHIFT 25 #define UTMI_PLL_PLLVDD12_MASK (0x3 << 25) #define UTMI_PLL_CLK_BLK_EN_SHIFT 24 #define CLK_BLK_EN (0x1 << 24) #define PLL_READY (0x1 << 23) #define KVCO_EXT (0x1 << 22) #define VCOCAL_START (0x1 << 21) #define UTMI_PLL_KVCO_SHIFT 15 #define UTMI_PLL_KVCO_MASK (0x7 << 15) #define UTMI_PLL_ICP_SHIFT 12 #define UTMI_PLL_ICP_MASK (0x7 << 12) #define UTMI_PLL_FBDIV_SHIFT 4 #define UTMI_PLL_FBDIV_MASK (0xFF << 4) #define UTMI_PLL_REFDIV_SHIFT 0 #define UTMI_PLL_REFDIV_MASK (0xF << 0) /* For UTMI_TX Register */ #define UTMI_TX_REG_EXT_FS_RCAL_SHIFT 27 #define UTMI_TX_REG_EXT_FS_RCAL_MASK (0xf << 27) #define UTMI_TX_REG_EXT_FS_RCAL_EN_SHIFT 26 #define UTMI_TX_REG_EXT_FS_RCAL_EN_MASK (0x1 << 26) #define UTMI_TX_TXVDD12_SHIFT 22 #define UTMI_TX_TXVDD12_MASK (0x3 << 22) #define UTMI_TX_CK60_PHSEL_SHIFT 17 #define UTMI_TX_CK60_PHSEL_MASK (0xf << 17) #define UTMI_TX_IMPCAL_VTH_SHIFT 14 #define UTMI_TX_IMPCAL_VTH_MASK (0x7 << 14) #define REG_RCAL_START (0x1 << 12) #define UTMI_TX_LOW_VDD_EN_SHIFT 11 #define UTMI_TX_AMP_SHIFT 0 #define UTMI_TX_AMP_MASK (0x7 << 0) /* For UTMI_RX Register */ #define UTMI_REG_SQ_LENGTH_SHIFT 15 #define UTMI_REG_SQ_LENGTH_MASK (0x3 << 15) #define UTMI_RX_SQ_THRESH_SHIFT 4 #define UTMI_RX_SQ_THRESH_MASK (0xf << 4) #define UTMI_OTG_ADDON_OTG_ON (1 << 0) enum pxa_usb_phy_version { PXA_USB_PHY_MMP2, PXA_USB_PHY_PXA910, PXA_USB_PHY_PXA168, }; struct pxa_usb_phy { struct phy *phy; void __iomem *base; enum pxa_usb_phy_version version; }; /***************************************************************************** * The registers read/write routines *****************************************************************************/ static unsigned int u2o_get(void __iomem *base, unsigned int offset) { return readl_relaxed(base + offset); } static void u2o_set(void __iomem *base, unsigned int offset, unsigned int value) { u32 reg; reg = readl_relaxed(base + offset); reg |= value; writel_relaxed(reg, base + offset); readl_relaxed(base + offset); } static void u2o_clear(void __iomem *base, unsigned int offset, unsigned int value) { u32 reg; reg = readl_relaxed(base + offset); reg &= ~value; writel_relaxed(reg, base + offset); readl_relaxed(base + offset); } static void u2o_write(void __iomem *base, unsigned int offset, unsigned int value) { writel_relaxed(value, base + offset); readl_relaxed(base + offset); } static int pxa_usb_phy_init(struct phy *phy) { struct pxa_usb_phy *pxa_usb_phy = phy_get_drvdata(phy); void __iomem *base = pxa_usb_phy->base; int loops; dev_info(&phy->dev, "initializing Marvell PXA USB PHY"); /* Initialize the USB PHY power */ if (pxa_usb_phy->version == PXA_USB_PHY_PXA910) { u2o_set(base, UTMI_CTRL, (1<<UTMI_CTRL_INPKT_DELAY_SOF_SHIFT) | (1<<UTMI_CTRL_PU_REF_SHIFT)); } u2o_set(base, UTMI_CTRL, 1<<UTMI_CTRL_PLL_PWR_UP_SHIFT); u2o_set(base, UTMI_CTRL, 1<<UTMI_CTRL_PWR_UP_SHIFT); /* UTMI_PLL settings */ u2o_clear(base, UTMI_PLL, UTMI_PLL_PLLVDD18_MASK | UTMI_PLL_PLLVDD12_MASK | UTMI_PLL_PLLCALI12_MASK | UTMI_PLL_FBDIV_MASK | UTMI_PLL_REFDIV_MASK | UTMI_PLL_ICP_MASK | UTMI_PLL_KVCO_MASK); u2o_set(base, UTMI_PLL, 0xee<<UTMI_PLL_FBDIV_SHIFT | 0xb<<UTMI_PLL_REFDIV_SHIFT | 3<<UTMI_PLL_PLLVDD18_SHIFT | 3<<UTMI_PLL_PLLVDD12_SHIFT | 3<<UTMI_PLL_PLLCALI12_SHIFT | 1<<UTMI_PLL_ICP_SHIFT | 3<<UTMI_PLL_KVCO_SHIFT); /* UTMI_TX */ u2o_clear(base, UTMI_TX, UTMI_TX_REG_EXT_FS_RCAL_EN_MASK | UTMI_TX_TXVDD12_MASK | UTMI_TX_CK60_PHSEL_MASK | UTMI_TX_IMPCAL_VTH_MASK | UTMI_TX_REG_EXT_FS_RCAL_MASK | UTMI_TX_AMP_MASK); u2o_set(base, UTMI_TX, 3<<UTMI_TX_TXVDD12_SHIFT | 4<<UTMI_TX_CK60_PHSEL_SHIFT | 4<<UTMI_TX_IMPCAL_VTH_SHIFT | 8<<UTMI_TX_REG_EXT_FS_RCAL_SHIFT | 3<<UTMI_TX_AMP_SHIFT); /* UTMI_RX */ u2o_clear(base, UTMI_RX, UTMI_RX_SQ_THRESH_MASK | UTMI_REG_SQ_LENGTH_MASK); u2o_set(base, UTMI_RX, 7<<UTMI_RX_SQ_THRESH_SHIFT | 2<<UTMI_REG_SQ_LENGTH_SHIFT); /* UTMI_IVREF */ if (pxa_usb_phy->version == PXA_USB_PHY_PXA168) { /* * fixing Microsoft Altair board interface with NEC hub issue - * Set UTMI_IVREF from 0x4a3 to 0x4bf */ u2o_write(base, UTMI_IVREF, 0x4bf); } /* toggle VCOCAL_START bit of UTMI_PLL */ udelay(200); u2o_set(base, UTMI_PLL, VCOCAL_START); udelay(40); u2o_clear(base, UTMI_PLL, VCOCAL_START); /* toggle REG_RCAL_START bit of UTMI_TX */ udelay(400); u2o_set(base, UTMI_TX, REG_RCAL_START); udelay(40); u2o_clear(base, UTMI_TX, REG_RCAL_START); udelay(400); /* Make sure PHY PLL is ready */ loops = 0; while ((u2o_get(base, UTMI_PLL) & PLL_READY) == 0) { mdelay(1); loops++; if (loops > 100) { dev_warn(&phy->dev, "calibrate timeout, UTMI_PLL %x\n", u2o_get(base, UTMI_PLL)); break; } } if (pxa_usb_phy->version == PXA_USB_PHY_PXA168) { u2o_set(base, UTMI_RESERVE, 1 << 5); /* Turn on UTMI PHY OTG extension */ u2o_write(base, UTMI_OTG_ADDON, 1); } return 0; } static int pxa_usb_phy_exit(struct phy *phy) { struct pxa_usb_phy *pxa_usb_phy = phy_get_drvdata(phy); void __iomem *base = pxa_usb_phy->base; dev_info(&phy->dev, "deinitializing Marvell PXA USB PHY"); if (pxa_usb_phy->version == PXA_USB_PHY_PXA168) u2o_clear(base, UTMI_OTG_ADDON, UTMI_OTG_ADDON_OTG_ON); u2o_clear(base, UTMI_CTRL, UTMI_CTRL_RXBUF_PDWN); u2o_clear(base, UTMI_CTRL, UTMI_CTRL_TXBUF_PDWN); u2o_clear(base, UTMI_CTRL, UTMI_CTRL_USB_CLK_EN); u2o_clear(base, UTMI_CTRL, 1<<UTMI_CTRL_PWR_UP_SHIFT); u2o_clear(base, UTMI_CTRL, 1<<UTMI_CTRL_PLL_PWR_UP_SHIFT); return 0; } static const struct phy_ops pxa_usb_phy_ops = { .init = pxa_usb_phy_init, .exit = pxa_usb_phy_exit, .owner = THIS_MODULE, }; static const struct of_device_id pxa_usb_phy_of_match[] = { { .compatible = "marvell,mmp2-usb-phy", .data = (void *)PXA_USB_PHY_MMP2, }, { .compatible = "marvell,pxa910-usb-phy", .data = (void *)PXA_USB_PHY_PXA910, }, { .compatible = "marvell,pxa168-usb-phy", .data = (void *)PXA_USB_PHY_PXA168, }, { }, }; MODULE_DEVICE_TABLE(of, pxa_usb_phy_of_match); static int pxa_usb_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct pxa_usb_phy *pxa_usb_phy; struct phy_provider *provider; const struct of_device_id *of_id; pxa_usb_phy = devm_kzalloc(dev, sizeof(struct pxa_usb_phy), GFP_KERNEL); if (!pxa_usb_phy) return -ENOMEM; of_id = of_match_node(pxa_usb_phy_of_match, dev->of_node); if (of_id) pxa_usb_phy->version = (uintptr_t)of_id->data; else pxa_usb_phy->version = PXA_USB_PHY_MMP2; pxa_usb_phy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pxa_usb_phy->base)) { dev_err(dev, "failed to remap PHY regs\n"); return PTR_ERR(pxa_usb_phy->base); } pxa_usb_phy->phy = devm_phy_create(dev, NULL, &pxa_usb_phy_ops); if (IS_ERR(pxa_usb_phy->phy)) { dev_err(dev, "failed to create PHY\n"); return PTR_ERR(pxa_usb_phy->phy); } phy_set_drvdata(pxa_usb_phy->phy, pxa_usb_phy); provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(provider)) { dev_err(dev, "failed to register PHY provider\n"); return PTR_ERR(provider); } if (!dev->of_node) { phy_create_lookup(pxa_usb_phy->phy, "usb", "mv-udc"); phy_create_lookup(pxa_usb_phy->phy, "usb", "pxa-u2oehci"); phy_create_lookup(pxa_usb_phy->phy, "usb", "mv-otg"); } dev_info(dev, "Marvell PXA USB PHY"); return 0; } static struct platform_driver pxa_usb_phy_driver = { .probe = pxa_usb_phy_probe, .driver = { .name = "pxa-usb-phy", .of_match_table = pxa_usb_phy_of_match, }, }; module_platform_driver(pxa_usb_phy_driver); MODULE_AUTHOR("Lubomir Rintel <[email protected]>"); MODULE_DESCRIPTION("Marvell PXA USB PHY Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/marvell/phy-pxa-usb.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Linaro, Ltd. * Rob Herring <[email protected]> * * Based on vendor driver: * Copyright (C) 2013 Marvell Inc. * Author: Chao Xie <[email protected]> */ #include <linux/delay.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/phy/phy.h> /* USB PXA1928 PHY mapping */ #define PHY_28NM_PLL_REG0 0x0 #define PHY_28NM_PLL_REG1 0x4 #define PHY_28NM_CAL_REG 0x8 #define PHY_28NM_TX_REG0 0x0c #define PHY_28NM_TX_REG1 0x10 #define PHY_28NM_RX_REG0 0x14 #define PHY_28NM_RX_REG1 0x18 #define PHY_28NM_DIG_REG0 0x1c #define PHY_28NM_DIG_REG1 0x20 #define PHY_28NM_TEST_REG0 0x24 #define PHY_28NM_TEST_REG1 0x28 #define PHY_28NM_MOC_REG 0x2c #define PHY_28NM_PHY_RESERVE 0x30 #define PHY_28NM_OTG_REG 0x34 #define PHY_28NM_CHRG_DET 0x38 #define PHY_28NM_CTRL_REG0 0xc4 #define PHY_28NM_CTRL_REG1 0xc8 #define PHY_28NM_CTRL_REG2 0xd4 #define PHY_28NM_CTRL_REG3 0xdc /* PHY_28NM_PLL_REG0 */ #define PHY_28NM_PLL_READY BIT(31) #define PHY_28NM_PLL_SELLPFR_SHIFT 28 #define PHY_28NM_PLL_SELLPFR_MASK (0x3 << 28) #define PHY_28NM_PLL_FBDIV_SHIFT 16 #define PHY_28NM_PLL_FBDIV_MASK (0x1ff << 16) #define PHY_28NM_PLL_ICP_SHIFT 8 #define PHY_28NM_PLL_ICP_MASK (0x7 << 8) #define PHY_28NM_PLL_REFDIV_SHIFT 0 #define PHY_28NM_PLL_REFDIV_MASK 0x7f /* PHY_28NM_PLL_REG1 */ #define PHY_28NM_PLL_PU_BY_REG BIT(1) #define PHY_28NM_PLL_PU_PLL BIT(0) /* PHY_28NM_CAL_REG */ #define PHY_28NM_PLL_PLLCAL_DONE BIT(31) #define PHY_28NM_PLL_IMPCAL_DONE BIT(23) #define PHY_28NM_PLL_KVCO_SHIFT 16 #define PHY_28NM_PLL_KVCO_MASK (0x7 << 16) #define PHY_28NM_PLL_CAL12_SHIFT 20 #define PHY_28NM_PLL_CAL12_MASK (0x3 << 20) #define PHY_28NM_IMPCAL_VTH_SHIFT 8 #define PHY_28NM_IMPCAL_VTH_MASK (0x7 << 8) #define PHY_28NM_PLLCAL_START_SHIFT 22 #define PHY_28NM_IMPCAL_START_SHIFT 13 /* PHY_28NM_TX_REG0 */ #define PHY_28NM_TX_PU_BY_REG BIT(25) #define PHY_28NM_TX_PU_ANA BIT(24) #define PHY_28NM_TX_AMP_SHIFT 20 #define PHY_28NM_TX_AMP_MASK (0x7 << 20) /* PHY_28NM_RX_REG0 */ #define PHY_28NM_RX_SQ_THRESH_SHIFT 0 #define PHY_28NM_RX_SQ_THRESH_MASK (0xf << 0) /* PHY_28NM_RX_REG1 */ #define PHY_28NM_RX_SQCAL_DONE BIT(31) /* PHY_28NM_DIG_REG0 */ #define PHY_28NM_DIG_BITSTAFFING_ERR BIT(31) #define PHY_28NM_DIG_SYNC_ERR BIT(30) #define PHY_28NM_DIG_SQ_FILT_SHIFT 16 #define PHY_28NM_DIG_SQ_FILT_MASK (0x7 << 16) #define PHY_28NM_DIG_SQ_BLK_SHIFT 12 #define PHY_28NM_DIG_SQ_BLK_MASK (0x7 << 12) #define PHY_28NM_DIG_SYNC_NUM_SHIFT 0 #define PHY_28NM_DIG_SYNC_NUM_MASK (0x3 << 0) #define PHY_28NM_PLL_LOCK_BYPASS BIT(7) /* PHY_28NM_OTG_REG */ #define PHY_28NM_OTG_CONTROL_BY_PIN BIT(5) #define PHY_28NM_OTG_PU_OTG BIT(4) #define PHY_28NM_CHGDTC_ENABLE_SWITCH_DM_SHIFT_28 13 #define PHY_28NM_CHGDTC_ENABLE_SWITCH_DP_SHIFT_28 12 #define PHY_28NM_CHGDTC_VSRC_CHARGE_SHIFT_28 10 #define PHY_28NM_CHGDTC_VDAT_CHARGE_SHIFT_28 8 #define PHY_28NM_CHGDTC_CDP_DM_AUTO_SWITCH_SHIFT_28 7 #define PHY_28NM_CHGDTC_DP_DM_SWAP_SHIFT_28 6 #define PHY_28NM_CHGDTC_PU_CHRG_DTC_SHIFT_28 5 #define PHY_28NM_CHGDTC_PD_EN_SHIFT_28 4 #define PHY_28NM_CHGDTC_DCP_EN_SHIFT_28 3 #define PHY_28NM_CHGDTC_CDP_EN_SHIFT_28 2 #define PHY_28NM_CHGDTC_TESTMON_CHRGDTC_SHIFT_28 0 #define PHY_28NM_CTRL1_CHRG_DTC_OUT_SHIFT_28 4 #define PHY_28NM_CTRL1_VBUSDTC_OUT_SHIFT_28 2 #define PHY_28NM_CTRL3_OVERWRITE BIT(0) #define PHY_28NM_CTRL3_VBUS_VALID BIT(4) #define PHY_28NM_CTRL3_AVALID BIT(5) #define PHY_28NM_CTRL3_BVALID BIT(6) struct mv_usb2_phy { struct phy *phy; struct platform_device *pdev; void __iomem *base; struct clk *clk; }; static int wait_for_reg(void __iomem *reg, u32 mask, u32 ms) { u32 val; return readl_poll_timeout(reg, val, ((val & mask) == mask), 1000, 1000 * ms); } static int mv_usb2_phy_28nm_init(struct phy *phy) { struct mv_usb2_phy *mv_phy = phy_get_drvdata(phy); struct platform_device *pdev = mv_phy->pdev; void __iomem *base = mv_phy->base; u32 reg; int ret; clk_prepare_enable(mv_phy->clk); /* PHY_28NM_PLL_REG0 */ reg = readl(base + PHY_28NM_PLL_REG0) & ~(PHY_28NM_PLL_SELLPFR_MASK | PHY_28NM_PLL_FBDIV_MASK | PHY_28NM_PLL_ICP_MASK | PHY_28NM_PLL_REFDIV_MASK); writel(reg | (0x1 << PHY_28NM_PLL_SELLPFR_SHIFT | 0xf0 << PHY_28NM_PLL_FBDIV_SHIFT | 0x3 << PHY_28NM_PLL_ICP_SHIFT | 0xd << PHY_28NM_PLL_REFDIV_SHIFT), base + PHY_28NM_PLL_REG0); /* PHY_28NM_PLL_REG1 */ reg = readl(base + PHY_28NM_PLL_REG1); writel(reg | PHY_28NM_PLL_PU_PLL | PHY_28NM_PLL_PU_BY_REG, base + PHY_28NM_PLL_REG1); /* PHY_28NM_TX_REG0 */ reg = readl(base + PHY_28NM_TX_REG0) & ~PHY_28NM_TX_AMP_MASK; writel(reg | PHY_28NM_TX_PU_BY_REG | 0x3 << PHY_28NM_TX_AMP_SHIFT | PHY_28NM_TX_PU_ANA, base + PHY_28NM_TX_REG0); /* PHY_28NM_RX_REG0 */ reg = readl(base + PHY_28NM_RX_REG0) & ~PHY_28NM_RX_SQ_THRESH_MASK; writel(reg | 0xa << PHY_28NM_RX_SQ_THRESH_SHIFT, base + PHY_28NM_RX_REG0); /* PHY_28NM_DIG_REG0 */ reg = readl(base + PHY_28NM_DIG_REG0) & ~(PHY_28NM_DIG_BITSTAFFING_ERR | PHY_28NM_DIG_SYNC_ERR | PHY_28NM_DIG_SQ_FILT_MASK | PHY_28NM_DIG_SQ_BLK_MASK | PHY_28NM_DIG_SYNC_NUM_MASK); writel(reg | (0x1 << PHY_28NM_DIG_SYNC_NUM_SHIFT | PHY_28NM_PLL_LOCK_BYPASS), base + PHY_28NM_DIG_REG0); /* PHY_28NM_OTG_REG */ reg = readl(base + PHY_28NM_OTG_REG) | PHY_28NM_OTG_PU_OTG; writel(reg & ~PHY_28NM_OTG_CONTROL_BY_PIN, base + PHY_28NM_OTG_REG); /* * Calibration Timing * ____________________________ * CAL START ___| * ____________________ * CAL_DONE ___________| * | 400us | */ /* Make sure PHY Calibration is ready */ ret = wait_for_reg(base + PHY_28NM_CAL_REG, PHY_28NM_PLL_PLLCAL_DONE | PHY_28NM_PLL_IMPCAL_DONE, 100); if (ret) { dev_warn(&pdev->dev, "USB PHY PLL calibrate not done after 100mS."); goto err_clk; } ret = wait_for_reg(base + PHY_28NM_RX_REG1, PHY_28NM_RX_SQCAL_DONE, 100); if (ret) { dev_warn(&pdev->dev, "USB PHY RX SQ calibrate not done after 100mS."); goto err_clk; } /* Make sure PHY PLL is ready */ ret = wait_for_reg(base + PHY_28NM_PLL_REG0, PHY_28NM_PLL_READY, 100); if (ret) { dev_warn(&pdev->dev, "PLL_READY not set after 100mS."); goto err_clk; } return 0; err_clk: clk_disable_unprepare(mv_phy->clk); return ret; } static int mv_usb2_phy_28nm_power_on(struct phy *phy) { struct mv_usb2_phy *mv_phy = phy_get_drvdata(phy); void __iomem *base = mv_phy->base; writel(readl(base + PHY_28NM_CTRL_REG3) | (PHY_28NM_CTRL3_OVERWRITE | PHY_28NM_CTRL3_VBUS_VALID | PHY_28NM_CTRL3_AVALID | PHY_28NM_CTRL3_BVALID), base + PHY_28NM_CTRL_REG3); return 0; } static int mv_usb2_phy_28nm_power_off(struct phy *phy) { struct mv_usb2_phy *mv_phy = phy_get_drvdata(phy); void __iomem *base = mv_phy->base; writel(readl(base + PHY_28NM_CTRL_REG3) | ~(PHY_28NM_CTRL3_OVERWRITE | PHY_28NM_CTRL3_VBUS_VALID | PHY_28NM_CTRL3_AVALID | PHY_28NM_CTRL3_BVALID), base + PHY_28NM_CTRL_REG3); return 0; } static int mv_usb2_phy_28nm_exit(struct phy *phy) { struct mv_usb2_phy *mv_phy = phy_get_drvdata(phy); void __iomem *base = mv_phy->base; unsigned int val; val = readw(base + PHY_28NM_PLL_REG1); val &= ~PHY_28NM_PLL_PU_PLL; writew(val, base + PHY_28NM_PLL_REG1); /* power down PHY Analog part */ val = readw(base + PHY_28NM_TX_REG0); val &= ~PHY_28NM_TX_PU_ANA; writew(val, base + PHY_28NM_TX_REG0); /* power down PHY OTG part */ val = readw(base + PHY_28NM_OTG_REG); val &= ~PHY_28NM_OTG_PU_OTG; writew(val, base + PHY_28NM_OTG_REG); clk_disable_unprepare(mv_phy->clk); return 0; } static const struct phy_ops usb_ops = { .init = mv_usb2_phy_28nm_init, .power_on = mv_usb2_phy_28nm_power_on, .power_off = mv_usb2_phy_28nm_power_off, .exit = mv_usb2_phy_28nm_exit, .owner = THIS_MODULE, }; static int mv_usb2_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct mv_usb2_phy *mv_phy; mv_phy = devm_kzalloc(&pdev->dev, sizeof(*mv_phy), GFP_KERNEL); if (!mv_phy) return -ENOMEM; mv_phy->pdev = pdev; mv_phy->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(mv_phy->clk)) { dev_err(&pdev->dev, "failed to get clock.\n"); return PTR_ERR(mv_phy->clk); } mv_phy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mv_phy->base)) return PTR_ERR(mv_phy->base); mv_phy->phy = devm_phy_create(&pdev->dev, pdev->dev.of_node, &usb_ops); if (IS_ERR(mv_phy->phy)) return PTR_ERR(mv_phy->phy); phy_set_drvdata(mv_phy->phy, mv_phy); phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id mv_usbphy_dt_match[] = { { .compatible = "marvell,pxa1928-usb-phy", }, {}, }; MODULE_DEVICE_TABLE(of, mv_usbphy_dt_match); static struct platform_driver mv_usb2_phy_driver = { .probe = mv_usb2_phy_probe, .driver = { .name = "mv-usb2-phy", .of_match_table = mv_usbphy_dt_match, }, }; module_platform_driver(mv_usb2_phy_driver); MODULE_AUTHOR("Rob Herring <[email protected]>"); MODULE_DESCRIPTION("Marvell USB2 phy driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/marvell/phy-pxa-28nm-usb2.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 Marvell * * Antoine Tenart <[email protected]> */ #include <linux/arm-smccc.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> /* Relative to priv->base */ #define MVEBU_COMPHY_SERDES_CFG0(n) (0x0 + (n) * 0x1000) #define MVEBU_COMPHY_SERDES_CFG0_PU_PLL BIT(1) #define MVEBU_COMPHY_SERDES_CFG0_GEN_RX(n) ((n) << 3) #define MVEBU_COMPHY_SERDES_CFG0_GEN_TX(n) ((n) << 7) #define MVEBU_COMPHY_SERDES_CFG0_PU_RX BIT(11) #define MVEBU_COMPHY_SERDES_CFG0_PU_TX BIT(12) #define MVEBU_COMPHY_SERDES_CFG0_HALF_BUS BIT(14) #define MVEBU_COMPHY_SERDES_CFG0_RXAUI_MODE BIT(15) #define MVEBU_COMPHY_SERDES_CFG1(n) (0x4 + (n) * 0x1000) #define MVEBU_COMPHY_SERDES_CFG1_RESET BIT(3) #define MVEBU_COMPHY_SERDES_CFG1_RX_INIT BIT(4) #define MVEBU_COMPHY_SERDES_CFG1_CORE_RESET BIT(5) #define MVEBU_COMPHY_SERDES_CFG1_RF_RESET BIT(6) #define MVEBU_COMPHY_SERDES_CFG2(n) (0x8 + (n) * 0x1000) #define MVEBU_COMPHY_SERDES_CFG2_DFE_EN BIT(4) #define MVEBU_COMPHY_SERDES_STATUS0(n) (0x18 + (n) * 0x1000) #define MVEBU_COMPHY_SERDES_STATUS0_TX_PLL_RDY BIT(2) #define MVEBU_COMPHY_SERDES_STATUS0_RX_PLL_RDY BIT(3) #define MVEBU_COMPHY_SERDES_STATUS0_RX_INIT BIT(4) #define MVEBU_COMPHY_PWRPLL_CTRL(n) (0x804 + (n) * 0x1000) #define MVEBU_COMPHY_PWRPLL_CTRL_RFREQ(n) ((n) << 0) #define MVEBU_COMPHY_PWRPLL_PHY_MODE(n) ((n) << 5) #define MVEBU_COMPHY_IMP_CAL(n) (0x80c + (n) * 0x1000) #define MVEBU_COMPHY_IMP_CAL_TX_EXT(n) ((n) << 10) #define MVEBU_COMPHY_IMP_CAL_TX_EXT_EN BIT(15) #define MVEBU_COMPHY_DFE_RES(n) (0x81c + (n) * 0x1000) #define MVEBU_COMPHY_DFE_RES_FORCE_GEN_TBL BIT(15) #define MVEBU_COMPHY_COEF(n) (0x828 + (n) * 0x1000) #define MVEBU_COMPHY_COEF_DFE_EN BIT(14) #define MVEBU_COMPHY_COEF_DFE_CTRL BIT(15) #define MVEBU_COMPHY_GEN1_S0(n) (0x834 + (n) * 0x1000) #define MVEBU_COMPHY_GEN1_S0_TX_AMP(n) ((n) << 1) #define MVEBU_COMPHY_GEN1_S0_TX_EMPH(n) ((n) << 7) #define MVEBU_COMPHY_GEN1_S1(n) (0x838 + (n) * 0x1000) #define MVEBU_COMPHY_GEN1_S1_RX_MUL_PI(n) ((n) << 0) #define MVEBU_COMPHY_GEN1_S1_RX_MUL_PF(n) ((n) << 3) #define MVEBU_COMPHY_GEN1_S1_RX_MUL_FI(n) ((n) << 6) #define MVEBU_COMPHY_GEN1_S1_RX_MUL_FF(n) ((n) << 8) #define MVEBU_COMPHY_GEN1_S1_RX_DFE_EN BIT(10) #define MVEBU_COMPHY_GEN1_S1_RX_DIV(n) ((n) << 11) #define MVEBU_COMPHY_GEN1_S2(n) (0x8f4 + (n) * 0x1000) #define MVEBU_COMPHY_GEN1_S2_TX_EMPH(n) ((n) << 0) #define MVEBU_COMPHY_GEN1_S2_TX_EMPH_EN BIT(4) #define MVEBU_COMPHY_LOOPBACK(n) (0x88c + (n) * 0x1000) #define MVEBU_COMPHY_LOOPBACK_DBUS_WIDTH(n) ((n) << 1) #define MVEBU_COMPHY_VDD_CAL0(n) (0x908 + (n) * 0x1000) #define MVEBU_COMPHY_VDD_CAL0_CONT_MODE BIT(15) #define MVEBU_COMPHY_EXT_SELV(n) (0x914 + (n) * 0x1000) #define MVEBU_COMPHY_EXT_SELV_RX_SAMPL(n) ((n) << 5) #define MVEBU_COMPHY_MISC_CTRL0(n) (0x93c + (n) * 0x1000) #define MVEBU_COMPHY_MISC_CTRL0_ICP_FORCE BIT(5) #define MVEBU_COMPHY_MISC_CTRL0_REFCLK_SEL BIT(10) #define MVEBU_COMPHY_RX_CTRL1(n) (0x940 + (n) * 0x1000) #define MVEBU_COMPHY_RX_CTRL1_RXCLK2X_SEL BIT(11) #define MVEBU_COMPHY_RX_CTRL1_CLK8T_EN BIT(12) #define MVEBU_COMPHY_SPEED_DIV(n) (0x954 + (n) * 0x1000) #define MVEBU_COMPHY_SPEED_DIV_TX_FORCE BIT(7) #define MVEBU_SP_CALIB(n) (0x96c + (n) * 0x1000) #define MVEBU_SP_CALIB_SAMPLER(n) ((n) << 8) #define MVEBU_SP_CALIB_SAMPLER_EN BIT(12) #define MVEBU_COMPHY_TX_SLEW_RATE(n) (0x974 + (n) * 0x1000) #define MVEBU_COMPHY_TX_SLEW_RATE_EMPH(n) ((n) << 5) #define MVEBU_COMPHY_TX_SLEW_RATE_SLC(n) ((n) << 10) #define MVEBU_COMPHY_DTL_CTRL(n) (0x984 + (n) * 0x1000) #define MVEBU_COMPHY_DTL_CTRL_DTL_FLOOP_EN BIT(2) #define MVEBU_COMPHY_FRAME_DETECT0(n) (0xa14 + (n) * 0x1000) #define MVEBU_COMPHY_FRAME_DETECT0_PATN(n) ((n) << 7) #define MVEBU_COMPHY_FRAME_DETECT3(n) (0xa20 + (n) * 0x1000) #define MVEBU_COMPHY_FRAME_DETECT3_LOST_TIMEOUT_EN BIT(12) #define MVEBU_COMPHY_DME(n) (0xa28 + (n) * 0x1000) #define MVEBU_COMPHY_DME_ETH_MODE BIT(7) #define MVEBU_COMPHY_TRAINING0(n) (0xa68 + (n) * 0x1000) #define MVEBU_COMPHY_TRAINING0_P2P_HOLD BIT(15) #define MVEBU_COMPHY_TRAINING5(n) (0xaa4 + (n) * 0x1000) #define MVEBU_COMPHY_TRAINING5_RX_TIMER(n) ((n) << 0) #define MVEBU_COMPHY_TX_TRAIN_PRESET(n) (0xb1c + (n) * 0x1000) #define MVEBU_COMPHY_TX_TRAIN_PRESET_16B_AUTO_EN BIT(8) #define MVEBU_COMPHY_TX_TRAIN_PRESET_PRBS11 BIT(9) #define MVEBU_COMPHY_GEN1_S3(n) (0xc40 + (n) * 0x1000) #define MVEBU_COMPHY_GEN1_S3_FBCK_SEL BIT(9) #define MVEBU_COMPHY_GEN1_S4(n) (0xc44 + (n) * 0x1000) #define MVEBU_COMPHY_GEN1_S4_DFE_RES(n) ((n) << 8) #define MVEBU_COMPHY_TX_PRESET(n) (0xc68 + (n) * 0x1000) #define MVEBU_COMPHY_TX_PRESET_INDEX(n) ((n) << 0) #define MVEBU_COMPHY_GEN1_S5(n) (0xd38 + (n) * 0x1000) #define MVEBU_COMPHY_GEN1_S5_ICP(n) ((n) << 0) /* Relative to priv->regmap */ #define MVEBU_COMPHY_CONF1(n) (0x1000 + (n) * 0x28) #define MVEBU_COMPHY_CONF1_PWRUP BIT(1) #define MVEBU_COMPHY_CONF1_USB_PCIE BIT(2) /* 0: Ethernet/SATA */ #define MVEBU_COMPHY_CONF6(n) (0x1014 + (n) * 0x28) #define MVEBU_COMPHY_CONF6_40B BIT(18) #define MVEBU_COMPHY_SELECTOR 0x1140 #define MVEBU_COMPHY_SELECTOR_PHY(n) ((n) * 0x4) #define MVEBU_COMPHY_PIPE_SELECTOR 0x1144 #define MVEBU_COMPHY_PIPE_SELECTOR_PIPE(n) ((n) * 0x4) #define MVEBU_COMPHY_SD1_CTRL1 0x1148 #define MVEBU_COMPHY_SD1_CTRL1_RXAUI1_EN BIT(26) #define MVEBU_COMPHY_SD1_CTRL1_RXAUI0_EN BIT(27) #define MVEBU_COMPHY_LANES 6 #define MVEBU_COMPHY_PORTS 3 #define COMPHY_SIP_POWER_ON 0x82000001 #define COMPHY_SIP_POWER_OFF 0x82000002 /* * A lane is described by the following bitfields: * [ 1- 0]: COMPHY polarity invertion * [ 2- 7]: COMPHY speed * [ 5-11]: COMPHY port index * [12-16]: COMPHY mode * [17]: Clock source * [18-20]: PCIe width (x1, x2, x4) */ #define COMPHY_FW_POL_OFFSET 0 #define COMPHY_FW_POL_MASK GENMASK(1, 0) #define COMPHY_FW_SPEED_OFFSET 2 #define COMPHY_FW_SPEED_MASK GENMASK(7, 2) #define COMPHY_FW_SPEED_MAX COMPHY_FW_SPEED_MASK #define COMPHY_FW_SPEED_1250 0 #define COMPHY_FW_SPEED_3125 2 #define COMPHY_FW_SPEED_5000 3 #define COMPHY_FW_SPEED_515625 4 #define COMPHY_FW_SPEED_103125 6 #define COMPHY_FW_PORT_OFFSET 8 #define COMPHY_FW_PORT_MASK GENMASK(11, 8) #define COMPHY_FW_MODE_OFFSET 12 #define COMPHY_FW_MODE_MASK GENMASK(16, 12) #define COMPHY_FW_WIDTH_OFFSET 18 #define COMPHY_FW_WIDTH_MASK GENMASK(20, 18) #define COMPHY_FW_PARAM_FULL(mode, port, speed, pol, width) \ ((((pol) << COMPHY_FW_POL_OFFSET) & COMPHY_FW_POL_MASK) | \ (((mode) << COMPHY_FW_MODE_OFFSET) & COMPHY_FW_MODE_MASK) | \ (((port) << COMPHY_FW_PORT_OFFSET) & COMPHY_FW_PORT_MASK) | \ (((speed) << COMPHY_FW_SPEED_OFFSET) & COMPHY_FW_SPEED_MASK) | \ (((width) << COMPHY_FW_WIDTH_OFFSET) & COMPHY_FW_WIDTH_MASK)) #define COMPHY_FW_PARAM(mode, port) \ COMPHY_FW_PARAM_FULL(mode, port, COMPHY_FW_SPEED_MAX, 0, 0) #define COMPHY_FW_PARAM_ETH(mode, port, speed) \ COMPHY_FW_PARAM_FULL(mode, port, speed, 0, 0) #define COMPHY_FW_PARAM_PCIE(mode, port, width) \ COMPHY_FW_PARAM_FULL(mode, port, COMPHY_FW_SPEED_5000, 0, width) #define COMPHY_FW_MODE_SATA 0x1 #define COMPHY_FW_MODE_SGMII 0x2 /* SGMII 1G */ #define COMPHY_FW_MODE_2500BASEX 0x3 /* 2500BASE-X */ #define COMPHY_FW_MODE_USB3H 0x4 #define COMPHY_FW_MODE_USB3D 0x5 #define COMPHY_FW_MODE_PCIE 0x6 #define COMPHY_FW_MODE_RXAUI 0x7 #define COMPHY_FW_MODE_XFI 0x8 /* SFI: 0x9 (is treated like XFI) */ struct mvebu_comphy_conf { enum phy_mode mode; int submode; unsigned lane; unsigned port; u32 mux; u32 fw_mode; }; #define ETH_CONF(_lane, _port, _submode, _mux, _fw) \ { \ .lane = _lane, \ .port = _port, \ .mode = PHY_MODE_ETHERNET, \ .submode = _submode, \ .mux = _mux, \ .fw_mode = _fw, \ } #define GEN_CONF(_lane, _port, _mode, _fw) \ { \ .lane = _lane, \ .port = _port, \ .mode = _mode, \ .submode = PHY_INTERFACE_MODE_NA, \ .mux = -1, \ .fw_mode = _fw, \ } static const struct mvebu_comphy_conf mvebu_comphy_cp110_modes[] = { /* lane 0 */ GEN_CONF(0, 0, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE), ETH_CONF(0, 1, PHY_INTERFACE_MODE_SGMII, 0x1, COMPHY_FW_MODE_SGMII), ETH_CONF(0, 1, PHY_INTERFACE_MODE_2500BASEX, 0x1, COMPHY_FW_MODE_2500BASEX), GEN_CONF(0, 1, PHY_MODE_SATA, COMPHY_FW_MODE_SATA), /* lane 1 */ GEN_CONF(1, 0, PHY_MODE_USB_HOST_SS, COMPHY_FW_MODE_USB3H), GEN_CONF(1, 0, PHY_MODE_USB_DEVICE_SS, COMPHY_FW_MODE_USB3D), GEN_CONF(1, 0, PHY_MODE_SATA, COMPHY_FW_MODE_SATA), GEN_CONF(1, 0, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE), ETH_CONF(1, 2, PHY_INTERFACE_MODE_SGMII, 0x1, COMPHY_FW_MODE_SGMII), ETH_CONF(1, 2, PHY_INTERFACE_MODE_2500BASEX, 0x1, COMPHY_FW_MODE_2500BASEX), /* lane 2 */ ETH_CONF(2, 0, PHY_INTERFACE_MODE_SGMII, 0x1, COMPHY_FW_MODE_SGMII), ETH_CONF(2, 0, PHY_INTERFACE_MODE_2500BASEX, 0x1, COMPHY_FW_MODE_2500BASEX), ETH_CONF(2, 0, PHY_INTERFACE_MODE_RXAUI, 0x1, COMPHY_FW_MODE_RXAUI), ETH_CONF(2, 0, PHY_INTERFACE_MODE_5GBASER, 0x1, COMPHY_FW_MODE_XFI), ETH_CONF(2, 0, PHY_INTERFACE_MODE_10GBASER, 0x1, COMPHY_FW_MODE_XFI), GEN_CONF(2, 0, PHY_MODE_USB_HOST_SS, COMPHY_FW_MODE_USB3H), GEN_CONF(2, 0, PHY_MODE_SATA, COMPHY_FW_MODE_SATA), GEN_CONF(2, 0, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE), /* lane 3 */ GEN_CONF(3, 0, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE), ETH_CONF(3, 1, PHY_INTERFACE_MODE_SGMII, 0x2, COMPHY_FW_MODE_SGMII), ETH_CONF(3, 1, PHY_INTERFACE_MODE_2500BASEX, 0x2, COMPHY_FW_MODE_2500BASEX), ETH_CONF(3, 1, PHY_INTERFACE_MODE_RXAUI, 0x1, COMPHY_FW_MODE_RXAUI), GEN_CONF(3, 1, PHY_MODE_USB_HOST_SS, COMPHY_FW_MODE_USB3H), GEN_CONF(3, 1, PHY_MODE_SATA, COMPHY_FW_MODE_SATA), /* lane 4 */ ETH_CONF(4, 0, PHY_INTERFACE_MODE_SGMII, 0x2, COMPHY_FW_MODE_SGMII), ETH_CONF(4, 0, PHY_INTERFACE_MODE_2500BASEX, 0x2, COMPHY_FW_MODE_2500BASEX), ETH_CONF(4, 0, PHY_INTERFACE_MODE_5GBASER, 0x2, COMPHY_FW_MODE_XFI), ETH_CONF(4, 0, PHY_INTERFACE_MODE_10GBASER, 0x2, COMPHY_FW_MODE_XFI), ETH_CONF(4, 0, PHY_INTERFACE_MODE_RXAUI, 0x2, COMPHY_FW_MODE_RXAUI), GEN_CONF(4, 0, PHY_MODE_USB_DEVICE_SS, COMPHY_FW_MODE_USB3D), GEN_CONF(4, 1, PHY_MODE_USB_HOST_SS, COMPHY_FW_MODE_USB3H), GEN_CONF(4, 1, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE), ETH_CONF(4, 1, PHY_INTERFACE_MODE_SGMII, 0x1, COMPHY_FW_MODE_SGMII), ETH_CONF(4, 1, PHY_INTERFACE_MODE_2500BASEX, -1, COMPHY_FW_MODE_2500BASEX), ETH_CONF(4, 1, PHY_INTERFACE_MODE_5GBASER, -1, COMPHY_FW_MODE_XFI), ETH_CONF(4, 1, PHY_INTERFACE_MODE_10GBASER, -1, COMPHY_FW_MODE_XFI), /* lane 5 */ ETH_CONF(5, 1, PHY_INTERFACE_MODE_RXAUI, 0x2, COMPHY_FW_MODE_RXAUI), GEN_CONF(5, 1, PHY_MODE_SATA, COMPHY_FW_MODE_SATA), ETH_CONF(5, 2, PHY_INTERFACE_MODE_SGMII, 0x1, COMPHY_FW_MODE_SGMII), ETH_CONF(5, 2, PHY_INTERFACE_MODE_2500BASEX, 0x1, COMPHY_FW_MODE_2500BASEX), GEN_CONF(5, 2, PHY_MODE_PCIE, COMPHY_FW_MODE_PCIE), }; struct mvebu_comphy_priv { void __iomem *base; struct regmap *regmap; struct device *dev; struct clk *mg_domain_clk; struct clk *mg_core_clk; struct clk *axi_clk; unsigned long cp_phys; }; struct mvebu_comphy_lane { struct mvebu_comphy_priv *priv; unsigned id; enum phy_mode mode; int submode; int port; }; static int mvebu_comphy_smc(unsigned long function, unsigned long phys, unsigned long lane, unsigned long mode) { struct arm_smccc_res res; s32 ret; arm_smccc_smc(function, phys, lane, mode, 0, 0, 0, 0, &res); ret = res.a0; switch (ret) { case SMCCC_RET_SUCCESS: return 0; case SMCCC_RET_NOT_SUPPORTED: return -EOPNOTSUPP; default: return -EINVAL; } } static int mvebu_comphy_get_mode(bool fw_mode, int lane, int port, enum phy_mode mode, int submode) { int i, n = ARRAY_SIZE(mvebu_comphy_cp110_modes); /* Ignore PCIe submode: it represents the width */ bool ignore_submode = (mode == PHY_MODE_PCIE); const struct mvebu_comphy_conf *conf; /* Unused PHY mux value is 0x0 */ if (mode == PHY_MODE_INVALID) return 0; for (i = 0; i < n; i++) { conf = &mvebu_comphy_cp110_modes[i]; if (conf->lane == lane && conf->port == port && conf->mode == mode && (conf->submode == submode || ignore_submode)) break; } if (i == n) return -EINVAL; if (fw_mode) return conf->fw_mode; else return conf->mux; } static inline int mvebu_comphy_get_mux(int lane, int port, enum phy_mode mode, int submode) { return mvebu_comphy_get_mode(false, lane, port, mode, submode); } static inline int mvebu_comphy_get_fw_mode(int lane, int port, enum phy_mode mode, int submode) { return mvebu_comphy_get_mode(true, lane, port, mode, submode); } static int mvebu_comphy_ethernet_init_reset(struct mvebu_comphy_lane *lane) { struct mvebu_comphy_priv *priv = lane->priv; u32 val; regmap_read(priv->regmap, MVEBU_COMPHY_CONF1(lane->id), &val); val &= ~MVEBU_COMPHY_CONF1_USB_PCIE; val |= MVEBU_COMPHY_CONF1_PWRUP; regmap_write(priv->regmap, MVEBU_COMPHY_CONF1(lane->id), val); /* Select baud rates and PLLs */ val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG0(lane->id)); val &= ~(MVEBU_COMPHY_SERDES_CFG0_PU_PLL | MVEBU_COMPHY_SERDES_CFG0_PU_RX | MVEBU_COMPHY_SERDES_CFG0_PU_TX | MVEBU_COMPHY_SERDES_CFG0_HALF_BUS | MVEBU_COMPHY_SERDES_CFG0_GEN_RX(0xf) | MVEBU_COMPHY_SERDES_CFG0_GEN_TX(0xf) | MVEBU_COMPHY_SERDES_CFG0_RXAUI_MODE); switch (lane->submode) { case PHY_INTERFACE_MODE_10GBASER: val |= MVEBU_COMPHY_SERDES_CFG0_GEN_RX(0xe) | MVEBU_COMPHY_SERDES_CFG0_GEN_TX(0xe); break; case PHY_INTERFACE_MODE_RXAUI: val |= MVEBU_COMPHY_SERDES_CFG0_GEN_RX(0xb) | MVEBU_COMPHY_SERDES_CFG0_GEN_TX(0xb) | MVEBU_COMPHY_SERDES_CFG0_RXAUI_MODE; break; case PHY_INTERFACE_MODE_2500BASEX: val |= MVEBU_COMPHY_SERDES_CFG0_GEN_RX(0x8) | MVEBU_COMPHY_SERDES_CFG0_GEN_TX(0x8) | MVEBU_COMPHY_SERDES_CFG0_HALF_BUS; break; case PHY_INTERFACE_MODE_SGMII: val |= MVEBU_COMPHY_SERDES_CFG0_GEN_RX(0x6) | MVEBU_COMPHY_SERDES_CFG0_GEN_TX(0x6) | MVEBU_COMPHY_SERDES_CFG0_HALF_BUS; break; default: dev_err(priv->dev, "unsupported comphy submode (%d) on lane %d\n", lane->submode, lane->id); return -ENOTSUPP; } writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG0(lane->id)); if (lane->submode == PHY_INTERFACE_MODE_RXAUI) { regmap_read(priv->regmap, MVEBU_COMPHY_SD1_CTRL1, &val); switch (lane->id) { case 2: case 3: val |= MVEBU_COMPHY_SD1_CTRL1_RXAUI0_EN; break; case 4: case 5: val |= MVEBU_COMPHY_SD1_CTRL1_RXAUI1_EN; break; default: dev_err(priv->dev, "RXAUI is not supported on comphy lane %d\n", lane->id); return -EINVAL; } regmap_write(priv->regmap, MVEBU_COMPHY_SD1_CTRL1, val); } /* reset */ val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); val &= ~(MVEBU_COMPHY_SERDES_CFG1_RESET | MVEBU_COMPHY_SERDES_CFG1_CORE_RESET | MVEBU_COMPHY_SERDES_CFG1_RF_RESET); writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); /* de-assert reset */ val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); val |= MVEBU_COMPHY_SERDES_CFG1_RESET | MVEBU_COMPHY_SERDES_CFG1_CORE_RESET; writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); /* wait until clocks are ready */ mdelay(1); /* exlicitly disable 40B, the bits isn't clear on reset */ regmap_read(priv->regmap, MVEBU_COMPHY_CONF6(lane->id), &val); val &= ~MVEBU_COMPHY_CONF6_40B; regmap_write(priv->regmap, MVEBU_COMPHY_CONF6(lane->id), val); /* refclk selection */ val = readl(priv->base + MVEBU_COMPHY_MISC_CTRL0(lane->id)); val &= ~MVEBU_COMPHY_MISC_CTRL0_REFCLK_SEL; if (lane->submode == PHY_INTERFACE_MODE_10GBASER) val |= MVEBU_COMPHY_MISC_CTRL0_ICP_FORCE; writel(val, priv->base + MVEBU_COMPHY_MISC_CTRL0(lane->id)); /* power and pll selection */ val = readl(priv->base + MVEBU_COMPHY_PWRPLL_CTRL(lane->id)); val &= ~(MVEBU_COMPHY_PWRPLL_CTRL_RFREQ(0x1f) | MVEBU_COMPHY_PWRPLL_PHY_MODE(0x7)); val |= MVEBU_COMPHY_PWRPLL_CTRL_RFREQ(0x1) | MVEBU_COMPHY_PWRPLL_PHY_MODE(0x4); writel(val, priv->base + MVEBU_COMPHY_PWRPLL_CTRL(lane->id)); val = readl(priv->base + MVEBU_COMPHY_LOOPBACK(lane->id)); val &= ~MVEBU_COMPHY_LOOPBACK_DBUS_WIDTH(0x7); val |= MVEBU_COMPHY_LOOPBACK_DBUS_WIDTH(0x1); writel(val, priv->base + MVEBU_COMPHY_LOOPBACK(lane->id)); return 0; } static int mvebu_comphy_init_plls(struct mvebu_comphy_lane *lane) { struct mvebu_comphy_priv *priv = lane->priv; u32 val; /* SERDES external config */ val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG0(lane->id)); val |= MVEBU_COMPHY_SERDES_CFG0_PU_PLL | MVEBU_COMPHY_SERDES_CFG0_PU_RX | MVEBU_COMPHY_SERDES_CFG0_PU_TX; writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG0(lane->id)); /* check rx/tx pll */ readl_poll_timeout(priv->base + MVEBU_COMPHY_SERDES_STATUS0(lane->id), val, val & (MVEBU_COMPHY_SERDES_STATUS0_RX_PLL_RDY | MVEBU_COMPHY_SERDES_STATUS0_TX_PLL_RDY), 1000, 150000); if (!(val & (MVEBU_COMPHY_SERDES_STATUS0_RX_PLL_RDY | MVEBU_COMPHY_SERDES_STATUS0_TX_PLL_RDY))) return -ETIMEDOUT; /* rx init */ val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); val |= MVEBU_COMPHY_SERDES_CFG1_RX_INIT; writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); /* check rx */ readl_poll_timeout(priv->base + MVEBU_COMPHY_SERDES_STATUS0(lane->id), val, val & MVEBU_COMPHY_SERDES_STATUS0_RX_INIT, 1000, 10000); if (!(val & MVEBU_COMPHY_SERDES_STATUS0_RX_INIT)) return -ETIMEDOUT; val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); val &= ~MVEBU_COMPHY_SERDES_CFG1_RX_INIT; writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); return 0; } static int mvebu_comphy_set_mode_sgmii(struct phy *phy) { struct mvebu_comphy_lane *lane = phy_get_drvdata(phy); struct mvebu_comphy_priv *priv = lane->priv; u32 val; int err; err = mvebu_comphy_ethernet_init_reset(lane); if (err) return err; val = readl(priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id)); val &= ~MVEBU_COMPHY_RX_CTRL1_CLK8T_EN; val |= MVEBU_COMPHY_RX_CTRL1_RXCLK2X_SEL; writel(val, priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id)); val = readl(priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id)); val &= ~MVEBU_COMPHY_DTL_CTRL_DTL_FLOOP_EN; writel(val, priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id)); regmap_read(priv->regmap, MVEBU_COMPHY_CONF1(lane->id), &val); val &= ~MVEBU_COMPHY_CONF1_USB_PCIE; val |= MVEBU_COMPHY_CONF1_PWRUP; regmap_write(priv->regmap, MVEBU_COMPHY_CONF1(lane->id), val); val = readl(priv->base + MVEBU_COMPHY_GEN1_S0(lane->id)); val &= ~MVEBU_COMPHY_GEN1_S0_TX_EMPH(0xf); val |= MVEBU_COMPHY_GEN1_S0_TX_EMPH(0x1); writel(val, priv->base + MVEBU_COMPHY_GEN1_S0(lane->id)); return mvebu_comphy_init_plls(lane); } static int mvebu_comphy_set_mode_rxaui(struct phy *phy) { struct mvebu_comphy_lane *lane = phy_get_drvdata(phy); struct mvebu_comphy_priv *priv = lane->priv; u32 val; int err; err = mvebu_comphy_ethernet_init_reset(lane); if (err) return err; val = readl(priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id)); val |= MVEBU_COMPHY_RX_CTRL1_RXCLK2X_SEL | MVEBU_COMPHY_RX_CTRL1_CLK8T_EN; writel(val, priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id)); val = readl(priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id)); val |= MVEBU_COMPHY_DTL_CTRL_DTL_FLOOP_EN; writel(val, priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id)); val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG2(lane->id)); val |= MVEBU_COMPHY_SERDES_CFG2_DFE_EN; writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG2(lane->id)); val = readl(priv->base + MVEBU_COMPHY_DFE_RES(lane->id)); val |= MVEBU_COMPHY_DFE_RES_FORCE_GEN_TBL; writel(val, priv->base + MVEBU_COMPHY_DFE_RES(lane->id)); val = readl(priv->base + MVEBU_COMPHY_GEN1_S0(lane->id)); val &= ~MVEBU_COMPHY_GEN1_S0_TX_EMPH(0xf); val |= MVEBU_COMPHY_GEN1_S0_TX_EMPH(0xd); writel(val, priv->base + MVEBU_COMPHY_GEN1_S0(lane->id)); val = readl(priv->base + MVEBU_COMPHY_GEN1_S1(lane->id)); val &= ~(MVEBU_COMPHY_GEN1_S1_RX_MUL_PI(0x7) | MVEBU_COMPHY_GEN1_S1_RX_MUL_PF(0x7)); val |= MVEBU_COMPHY_GEN1_S1_RX_MUL_PI(0x1) | MVEBU_COMPHY_GEN1_S1_RX_MUL_PF(0x1) | MVEBU_COMPHY_GEN1_S1_RX_DFE_EN; writel(val, priv->base + MVEBU_COMPHY_GEN1_S1(lane->id)); val = readl(priv->base + MVEBU_COMPHY_COEF(lane->id)); val &= ~(MVEBU_COMPHY_COEF_DFE_EN | MVEBU_COMPHY_COEF_DFE_CTRL); writel(val, priv->base + MVEBU_COMPHY_COEF(lane->id)); val = readl(priv->base + MVEBU_COMPHY_GEN1_S4(lane->id)); val &= ~MVEBU_COMPHY_GEN1_S4_DFE_RES(0x3); val |= MVEBU_COMPHY_GEN1_S4_DFE_RES(0x1); writel(val, priv->base + MVEBU_COMPHY_GEN1_S4(lane->id)); return mvebu_comphy_init_plls(lane); } static int mvebu_comphy_set_mode_10gbaser(struct phy *phy) { struct mvebu_comphy_lane *lane = phy_get_drvdata(phy); struct mvebu_comphy_priv *priv = lane->priv; u32 val; int err; err = mvebu_comphy_ethernet_init_reset(lane); if (err) return err; val = readl(priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id)); val |= MVEBU_COMPHY_RX_CTRL1_RXCLK2X_SEL | MVEBU_COMPHY_RX_CTRL1_CLK8T_EN; writel(val, priv->base + MVEBU_COMPHY_RX_CTRL1(lane->id)); val = readl(priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id)); val |= MVEBU_COMPHY_DTL_CTRL_DTL_FLOOP_EN; writel(val, priv->base + MVEBU_COMPHY_DTL_CTRL(lane->id)); /* Speed divider */ val = readl(priv->base + MVEBU_COMPHY_SPEED_DIV(lane->id)); val |= MVEBU_COMPHY_SPEED_DIV_TX_FORCE; writel(val, priv->base + MVEBU_COMPHY_SPEED_DIV(lane->id)); val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG2(lane->id)); val |= MVEBU_COMPHY_SERDES_CFG2_DFE_EN; writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG2(lane->id)); /* DFE resolution */ val = readl(priv->base + MVEBU_COMPHY_DFE_RES(lane->id)); val |= MVEBU_COMPHY_DFE_RES_FORCE_GEN_TBL; writel(val, priv->base + MVEBU_COMPHY_DFE_RES(lane->id)); val = readl(priv->base + MVEBU_COMPHY_GEN1_S0(lane->id)); val &= ~(MVEBU_COMPHY_GEN1_S0_TX_AMP(0x1f) | MVEBU_COMPHY_GEN1_S0_TX_EMPH(0xf)); val |= MVEBU_COMPHY_GEN1_S0_TX_AMP(0x1c) | MVEBU_COMPHY_GEN1_S0_TX_EMPH(0xe); writel(val, priv->base + MVEBU_COMPHY_GEN1_S0(lane->id)); val = readl(priv->base + MVEBU_COMPHY_GEN1_S2(lane->id)); val &= ~MVEBU_COMPHY_GEN1_S2_TX_EMPH(0xf); val |= MVEBU_COMPHY_GEN1_S2_TX_EMPH_EN; writel(val, priv->base + MVEBU_COMPHY_GEN1_S2(lane->id)); val = readl(priv->base + MVEBU_COMPHY_TX_SLEW_RATE(lane->id)); val |= MVEBU_COMPHY_TX_SLEW_RATE_EMPH(0x3) | MVEBU_COMPHY_TX_SLEW_RATE_SLC(0x3f); writel(val, priv->base + MVEBU_COMPHY_TX_SLEW_RATE(lane->id)); /* Impedance calibration */ val = readl(priv->base + MVEBU_COMPHY_IMP_CAL(lane->id)); val &= ~MVEBU_COMPHY_IMP_CAL_TX_EXT(0x1f); val |= MVEBU_COMPHY_IMP_CAL_TX_EXT(0xe) | MVEBU_COMPHY_IMP_CAL_TX_EXT_EN; writel(val, priv->base + MVEBU_COMPHY_IMP_CAL(lane->id)); val = readl(priv->base + MVEBU_COMPHY_GEN1_S5(lane->id)); val &= ~MVEBU_COMPHY_GEN1_S5_ICP(0xf); writel(val, priv->base + MVEBU_COMPHY_GEN1_S5(lane->id)); val = readl(priv->base + MVEBU_COMPHY_GEN1_S1(lane->id)); val &= ~(MVEBU_COMPHY_GEN1_S1_RX_MUL_PI(0x7) | MVEBU_COMPHY_GEN1_S1_RX_MUL_PF(0x7) | MVEBU_COMPHY_GEN1_S1_RX_MUL_FI(0x3) | MVEBU_COMPHY_GEN1_S1_RX_MUL_FF(0x3)); val |= MVEBU_COMPHY_GEN1_S1_RX_DFE_EN | MVEBU_COMPHY_GEN1_S1_RX_MUL_PI(0x2) | MVEBU_COMPHY_GEN1_S1_RX_MUL_PF(0x2) | MVEBU_COMPHY_GEN1_S1_RX_MUL_FF(0x1) | MVEBU_COMPHY_GEN1_S1_RX_DIV(0x3); writel(val, priv->base + MVEBU_COMPHY_GEN1_S1(lane->id)); val = readl(priv->base + MVEBU_COMPHY_COEF(lane->id)); val &= ~(MVEBU_COMPHY_COEF_DFE_EN | MVEBU_COMPHY_COEF_DFE_CTRL); writel(val, priv->base + MVEBU_COMPHY_COEF(lane->id)); val = readl(priv->base + MVEBU_COMPHY_GEN1_S4(lane->id)); val &= ~MVEBU_COMPHY_GEN1_S4_DFE_RES(0x3); val |= MVEBU_COMPHY_GEN1_S4_DFE_RES(0x1); writel(val, priv->base + MVEBU_COMPHY_GEN1_S4(lane->id)); val = readl(priv->base + MVEBU_COMPHY_GEN1_S3(lane->id)); val |= MVEBU_COMPHY_GEN1_S3_FBCK_SEL; writel(val, priv->base + MVEBU_COMPHY_GEN1_S3(lane->id)); /* rx training timer */ val = readl(priv->base + MVEBU_COMPHY_TRAINING5(lane->id)); val &= ~MVEBU_COMPHY_TRAINING5_RX_TIMER(0x3ff); val |= MVEBU_COMPHY_TRAINING5_RX_TIMER(0x13); writel(val, priv->base + MVEBU_COMPHY_TRAINING5(lane->id)); /* tx train peak to peak hold */ val = readl(priv->base + MVEBU_COMPHY_TRAINING0(lane->id)); val |= MVEBU_COMPHY_TRAINING0_P2P_HOLD; writel(val, priv->base + MVEBU_COMPHY_TRAINING0(lane->id)); val = readl(priv->base + MVEBU_COMPHY_TX_PRESET(lane->id)); val &= ~MVEBU_COMPHY_TX_PRESET_INDEX(0xf); val |= MVEBU_COMPHY_TX_PRESET_INDEX(0x2); /* preset coeff */ writel(val, priv->base + MVEBU_COMPHY_TX_PRESET(lane->id)); val = readl(priv->base + MVEBU_COMPHY_FRAME_DETECT3(lane->id)); val &= ~MVEBU_COMPHY_FRAME_DETECT3_LOST_TIMEOUT_EN; writel(val, priv->base + MVEBU_COMPHY_FRAME_DETECT3(lane->id)); val = readl(priv->base + MVEBU_COMPHY_TX_TRAIN_PRESET(lane->id)); val |= MVEBU_COMPHY_TX_TRAIN_PRESET_16B_AUTO_EN | MVEBU_COMPHY_TX_TRAIN_PRESET_PRBS11; writel(val, priv->base + MVEBU_COMPHY_TX_TRAIN_PRESET(lane->id)); val = readl(priv->base + MVEBU_COMPHY_FRAME_DETECT0(lane->id)); val &= ~MVEBU_COMPHY_FRAME_DETECT0_PATN(0x1ff); val |= MVEBU_COMPHY_FRAME_DETECT0_PATN(0x88); writel(val, priv->base + MVEBU_COMPHY_FRAME_DETECT0(lane->id)); val = readl(priv->base + MVEBU_COMPHY_DME(lane->id)); val |= MVEBU_COMPHY_DME_ETH_MODE; writel(val, priv->base + MVEBU_COMPHY_DME(lane->id)); val = readl(priv->base + MVEBU_COMPHY_VDD_CAL0(lane->id)); val |= MVEBU_COMPHY_VDD_CAL0_CONT_MODE; writel(val, priv->base + MVEBU_COMPHY_VDD_CAL0(lane->id)); val = readl(priv->base + MVEBU_SP_CALIB(lane->id)); val &= ~MVEBU_SP_CALIB_SAMPLER(0x3); val |= MVEBU_SP_CALIB_SAMPLER(0x3) | MVEBU_SP_CALIB_SAMPLER_EN; writel(val, priv->base + MVEBU_SP_CALIB(lane->id)); val &= ~MVEBU_SP_CALIB_SAMPLER_EN; writel(val, priv->base + MVEBU_SP_CALIB(lane->id)); /* External rx regulator */ val = readl(priv->base + MVEBU_COMPHY_EXT_SELV(lane->id)); val &= ~MVEBU_COMPHY_EXT_SELV_RX_SAMPL(0x1f); val |= MVEBU_COMPHY_EXT_SELV_RX_SAMPL(0x1a); writel(val, priv->base + MVEBU_COMPHY_EXT_SELV(lane->id)); return mvebu_comphy_init_plls(lane); } static int mvebu_comphy_power_on_legacy(struct phy *phy) { struct mvebu_comphy_lane *lane = phy_get_drvdata(phy); struct mvebu_comphy_priv *priv = lane->priv; int ret, mux; u32 val; mux = mvebu_comphy_get_mux(lane->id, lane->port, lane->mode, lane->submode); if (mux < 0) return -ENOTSUPP; regmap_read(priv->regmap, MVEBU_COMPHY_PIPE_SELECTOR, &val); val &= ~(0xf << MVEBU_COMPHY_PIPE_SELECTOR_PIPE(lane->id)); regmap_write(priv->regmap, MVEBU_COMPHY_PIPE_SELECTOR, val); regmap_read(priv->regmap, MVEBU_COMPHY_SELECTOR, &val); val &= ~(0xf << MVEBU_COMPHY_SELECTOR_PHY(lane->id)); val |= mux << MVEBU_COMPHY_SELECTOR_PHY(lane->id); regmap_write(priv->regmap, MVEBU_COMPHY_SELECTOR, val); switch (lane->submode) { case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_2500BASEX: ret = mvebu_comphy_set_mode_sgmii(phy); break; case PHY_INTERFACE_MODE_RXAUI: ret = mvebu_comphy_set_mode_rxaui(phy); break; case PHY_INTERFACE_MODE_10GBASER: ret = mvebu_comphy_set_mode_10gbaser(phy); break; default: return -ENOTSUPP; } /* digital reset */ val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); val |= MVEBU_COMPHY_SERDES_CFG1_RF_RESET; writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); return ret; } static int mvebu_comphy_power_on(struct phy *phy) { struct mvebu_comphy_lane *lane = phy_get_drvdata(phy); struct mvebu_comphy_priv *priv = lane->priv; int fw_mode, fw_speed; u32 fw_param = 0; int ret; fw_mode = mvebu_comphy_get_fw_mode(lane->id, lane->port, lane->mode, lane->submode); if (fw_mode < 0) goto try_legacy; /* Try SMC flow first */ switch (lane->mode) { case PHY_MODE_ETHERNET: switch (lane->submode) { case PHY_INTERFACE_MODE_RXAUI: dev_dbg(priv->dev, "set lane %d to RXAUI mode\n", lane->id); fw_speed = 0; break; case PHY_INTERFACE_MODE_SGMII: dev_dbg(priv->dev, "set lane %d to 1000BASE-X mode\n", lane->id); fw_speed = COMPHY_FW_SPEED_1250; break; case PHY_INTERFACE_MODE_2500BASEX: dev_dbg(priv->dev, "set lane %d to 2500BASE-X mode\n", lane->id); fw_speed = COMPHY_FW_SPEED_3125; break; case PHY_INTERFACE_MODE_5GBASER: dev_dbg(priv->dev, "set lane %d to 5GBASE-R mode\n", lane->id); fw_speed = COMPHY_FW_SPEED_515625; break; case PHY_INTERFACE_MODE_10GBASER: dev_dbg(priv->dev, "set lane %d to 10GBASE-R mode\n", lane->id); fw_speed = COMPHY_FW_SPEED_103125; break; default: dev_err(priv->dev, "unsupported Ethernet mode (%d)\n", lane->submode); return -ENOTSUPP; } fw_param = COMPHY_FW_PARAM_ETH(fw_mode, lane->port, fw_speed); break; case PHY_MODE_USB_HOST_SS: case PHY_MODE_USB_DEVICE_SS: dev_dbg(priv->dev, "set lane %d to USB3 mode\n", lane->id); fw_param = COMPHY_FW_PARAM(fw_mode, lane->port); break; case PHY_MODE_SATA: dev_dbg(priv->dev, "set lane %d to SATA mode\n", lane->id); fw_param = COMPHY_FW_PARAM(fw_mode, lane->port); break; case PHY_MODE_PCIE: dev_dbg(priv->dev, "set lane %d to PCIe mode (x%d)\n", lane->id, lane->submode); fw_param = COMPHY_FW_PARAM_PCIE(fw_mode, lane->port, lane->submode); break; default: dev_err(priv->dev, "unsupported PHY mode (%d)\n", lane->mode); return -ENOTSUPP; } ret = mvebu_comphy_smc(COMPHY_SIP_POWER_ON, priv->cp_phys, lane->id, fw_param); if (!ret) return ret; if (ret == -EOPNOTSUPP) dev_err(priv->dev, "unsupported SMC call, try updating your firmware\n"); dev_warn(priv->dev, "Firmware could not configure PHY %d with mode %d (ret: %d), trying legacy method\n", lane->id, lane->mode, ret); try_legacy: /* Fallback to Linux's implementation */ return mvebu_comphy_power_on_legacy(phy); } static int mvebu_comphy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct mvebu_comphy_lane *lane = phy_get_drvdata(phy); if (submode == PHY_INTERFACE_MODE_1000BASEX) submode = PHY_INTERFACE_MODE_SGMII; if (mvebu_comphy_get_fw_mode(lane->id, lane->port, mode, submode) < 0) return -EINVAL; lane->mode = mode; lane->submode = submode; /* PCIe submode represents the width */ if (mode == PHY_MODE_PCIE && !lane->submode) lane->submode = 1; return 0; } static int mvebu_comphy_power_off_legacy(struct phy *phy) { struct mvebu_comphy_lane *lane = phy_get_drvdata(phy); struct mvebu_comphy_priv *priv = lane->priv; u32 val; val = readl(priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); val &= ~(MVEBU_COMPHY_SERDES_CFG1_RESET | MVEBU_COMPHY_SERDES_CFG1_CORE_RESET | MVEBU_COMPHY_SERDES_CFG1_RF_RESET); writel(val, priv->base + MVEBU_COMPHY_SERDES_CFG1(lane->id)); regmap_read(priv->regmap, MVEBU_COMPHY_SELECTOR, &val); val &= ~(0xf << MVEBU_COMPHY_SELECTOR_PHY(lane->id)); regmap_write(priv->regmap, MVEBU_COMPHY_SELECTOR, val); regmap_read(priv->regmap, MVEBU_COMPHY_PIPE_SELECTOR, &val); val &= ~(0xf << MVEBU_COMPHY_PIPE_SELECTOR_PIPE(lane->id)); regmap_write(priv->regmap, MVEBU_COMPHY_PIPE_SELECTOR, val); return 0; } static int mvebu_comphy_power_off(struct phy *phy) { struct mvebu_comphy_lane *lane = phy_get_drvdata(phy); struct mvebu_comphy_priv *priv = lane->priv; int ret; ret = mvebu_comphy_smc(COMPHY_SIP_POWER_OFF, priv->cp_phys, lane->id, 0); if (!ret) return ret; /* Fallback to Linux's implementation */ return mvebu_comphy_power_off_legacy(phy); } static const struct phy_ops mvebu_comphy_ops = { .power_on = mvebu_comphy_power_on, .power_off = mvebu_comphy_power_off, .set_mode = mvebu_comphy_set_mode, .owner = THIS_MODULE, }; static struct phy *mvebu_comphy_xlate(struct device *dev, struct of_phandle_args *args) { struct mvebu_comphy_lane *lane; struct phy *phy; if (WARN_ON(args->args[0] >= MVEBU_COMPHY_PORTS)) return ERR_PTR(-EINVAL); phy = of_phy_simple_xlate(dev, args); if (IS_ERR(phy)) return phy; lane = phy_get_drvdata(phy); lane->port = args->args[0]; return phy; } static int mvebu_comphy_init_clks(struct mvebu_comphy_priv *priv) { int ret; priv->mg_domain_clk = devm_clk_get(priv->dev, "mg_clk"); if (IS_ERR(priv->mg_domain_clk)) return PTR_ERR(priv->mg_domain_clk); ret = clk_prepare_enable(priv->mg_domain_clk); if (ret < 0) return ret; priv->mg_core_clk = devm_clk_get(priv->dev, "mg_core_clk"); if (IS_ERR(priv->mg_core_clk)) { ret = PTR_ERR(priv->mg_core_clk); goto dis_mg_domain_clk; } ret = clk_prepare_enable(priv->mg_core_clk); if (ret < 0) goto dis_mg_domain_clk; priv->axi_clk = devm_clk_get(priv->dev, "axi_clk"); if (IS_ERR(priv->axi_clk)) { ret = PTR_ERR(priv->axi_clk); goto dis_mg_core_clk; } ret = clk_prepare_enable(priv->axi_clk); if (ret < 0) goto dis_mg_core_clk; return 0; dis_mg_core_clk: clk_disable_unprepare(priv->mg_core_clk); dis_mg_domain_clk: clk_disable_unprepare(priv->mg_domain_clk); priv->mg_domain_clk = NULL; priv->mg_core_clk = NULL; priv->axi_clk = NULL; return ret; }; static void mvebu_comphy_disable_unprepare_clks(struct mvebu_comphy_priv *priv) { if (priv->axi_clk) clk_disable_unprepare(priv->axi_clk); if (priv->mg_core_clk) clk_disable_unprepare(priv->mg_core_clk); if (priv->mg_domain_clk) clk_disable_unprepare(priv->mg_domain_clk); } static int mvebu_comphy_probe(struct platform_device *pdev) { struct mvebu_comphy_priv *priv; struct phy_provider *provider; struct device_node *child; struct resource *res; int ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = &pdev->dev; priv->regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "marvell,system-controller"); if (IS_ERR(priv->regmap)) return PTR_ERR(priv->regmap); priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); /* * Ignore error if clocks have not been initialized properly for DT * compatibility reasons. */ ret = mvebu_comphy_init_clks(priv); if (ret) { if (ret == -EPROBE_DEFER) return ret; dev_warn(&pdev->dev, "cannot initialize clocks\n"); } /* * Hack to retrieve a physical offset relative to this CP that will be * given to the firmware */ priv->cp_phys = res->start; for_each_available_child_of_node(pdev->dev.of_node, child) { struct mvebu_comphy_lane *lane; struct phy *phy; u32 val; ret = of_property_read_u32(child, "reg", &val); if (ret < 0) { dev_err(&pdev->dev, "missing 'reg' property (%d)\n", ret); continue; } if (val >= MVEBU_COMPHY_LANES) { dev_err(&pdev->dev, "invalid 'reg' property\n"); continue; } lane = devm_kzalloc(&pdev->dev, sizeof(*lane), GFP_KERNEL); if (!lane) { of_node_put(child); ret = -ENOMEM; goto disable_clks; } phy = devm_phy_create(&pdev->dev, child, &mvebu_comphy_ops); if (IS_ERR(phy)) { of_node_put(child); ret = PTR_ERR(phy); goto disable_clks; } lane->priv = priv; lane->mode = PHY_MODE_INVALID; lane->submode = PHY_INTERFACE_MODE_NA; lane->id = val; lane->port = -1; phy_set_drvdata(phy, lane); /* * All modes are supported in this driver so we could call * mvebu_comphy_power_off(phy) here to avoid relying on the * bootloader/firmware configuration, but for compatibility * reasons we cannot de-configure the COMPHY without being sure * that the firmware is up-to-date and fully-featured. */ } dev_set_drvdata(&pdev->dev, priv); provider = devm_of_phy_provider_register(&pdev->dev, mvebu_comphy_xlate); return PTR_ERR_OR_ZERO(provider); disable_clks: mvebu_comphy_disable_unprepare_clks(priv); return ret; } static const struct of_device_id mvebu_comphy_of_match_table[] = { { .compatible = "marvell,comphy-cp110" }, { }, }; MODULE_DEVICE_TABLE(of, mvebu_comphy_of_match_table); static struct platform_driver mvebu_comphy_driver = { .probe = mvebu_comphy_probe, .driver = { .name = "mvebu-comphy", .of_match_table = mvebu_comphy_of_match_table, }, }; module_platform_driver(mvebu_comphy_driver); MODULE_AUTHOR("Antoine Tenart <[email protected]>"); MODULE_DESCRIPTION("Common PHY driver for mvebu SoCs"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/marvell/phy-mvebu-cp110-comphy.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Russell King, Deep Blue Solutions Ltd. * * Partly derived from CP110 comphy driver by Antoine Tenart * <[email protected]> */ #include <linux/delay.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/phy.h> #include <linux/platform_device.h> #define MAX_A38X_COMPHY 6 #define MAX_A38X_PORTS 3 #define COMPHY_CFG1 0x00 #define COMPHY_CFG1_GEN_TX(x) ((x) << 26) #define COMPHY_CFG1_GEN_TX_MSK COMPHY_CFG1_GEN_TX(15) #define COMPHY_CFG1_GEN_RX(x) ((x) << 22) #define COMPHY_CFG1_GEN_RX_MSK COMPHY_CFG1_GEN_RX(15) #define GEN_SGMII_1_25GBPS 6 #define GEN_SGMII_3_125GBPS 8 #define COMPHY_STAT1 0x18 #define COMPHY_STAT1_PLL_RDY_TX BIT(3) #define COMPHY_STAT1_PLL_RDY_RX BIT(2) #define COMPHY_SELECTOR 0xfc struct a38x_comphy; struct a38x_comphy_lane { void __iomem *base; struct a38x_comphy *priv; unsigned int n; int port; }; struct a38x_comphy { void __iomem *base; void __iomem *conf; struct device *dev; struct a38x_comphy_lane lane[MAX_A38X_COMPHY]; }; static const u8 gbe_mux[MAX_A38X_COMPHY][MAX_A38X_PORTS] = { { 0, 0, 0 }, { 4, 5, 0 }, { 0, 4, 0 }, { 0, 0, 4 }, { 0, 3, 0 }, { 0, 0, 3 }, }; static void a38x_set_conf(struct a38x_comphy_lane *lane, bool enable) { struct a38x_comphy *priv = lane->priv; u32 conf; if (priv->conf) { conf = readl_relaxed(priv->conf); if (enable) conf |= BIT(lane->port); else conf &= ~BIT(lane->port); writel(conf, priv->conf); } } static void a38x_comphy_set_reg(struct a38x_comphy_lane *lane, unsigned int offset, u32 mask, u32 value) { u32 val; val = readl_relaxed(lane->base + offset) & ~mask; writel(val | value, lane->base + offset); } static void a38x_comphy_set_speed(struct a38x_comphy_lane *lane, unsigned int gen_tx, unsigned int gen_rx) { a38x_comphy_set_reg(lane, COMPHY_CFG1, COMPHY_CFG1_GEN_TX_MSK | COMPHY_CFG1_GEN_RX_MSK, COMPHY_CFG1_GEN_TX(gen_tx) | COMPHY_CFG1_GEN_RX(gen_rx)); } static int a38x_comphy_poll(struct a38x_comphy_lane *lane, unsigned int offset, u32 mask, u32 value) { u32 val; int ret; ret = readl_relaxed_poll_timeout_atomic(lane->base + offset, val, (val & mask) == value, 1000, 150000); if (ret) dev_err(lane->priv->dev, "comphy%u: timed out waiting for status\n", lane->n); return ret; } /* * We only support changing the speed for comphys configured for GBE. * Since that is all we do, we only poll for PLL ready status. */ static int a38x_comphy_set_mode(struct phy *phy, enum phy_mode mode, int sub) { struct a38x_comphy_lane *lane = phy_get_drvdata(phy); unsigned int gen; int ret; if (mode != PHY_MODE_ETHERNET) return -EINVAL; switch (sub) { case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_1000BASEX: gen = GEN_SGMII_1_25GBPS; break; case PHY_INTERFACE_MODE_2500BASEX: gen = GEN_SGMII_3_125GBPS; break; default: return -EINVAL; } a38x_set_conf(lane, false); a38x_comphy_set_speed(lane, gen, gen); ret = a38x_comphy_poll(lane, COMPHY_STAT1, COMPHY_STAT1_PLL_RDY_TX | COMPHY_STAT1_PLL_RDY_RX, COMPHY_STAT1_PLL_RDY_TX | COMPHY_STAT1_PLL_RDY_RX); if (ret == 0) a38x_set_conf(lane, true); return ret; } static const struct phy_ops a38x_comphy_ops = { .set_mode = a38x_comphy_set_mode, .owner = THIS_MODULE, }; static struct phy *a38x_comphy_xlate(struct device *dev, struct of_phandle_args *args) { struct a38x_comphy_lane *lane; struct phy *phy; u32 val; if (WARN_ON(args->args[0] >= MAX_A38X_PORTS)) return ERR_PTR(-EINVAL); phy = of_phy_simple_xlate(dev, args); if (IS_ERR(phy)) return phy; lane = phy_get_drvdata(phy); if (lane->port >= 0) return ERR_PTR(-EBUSY); lane->port = args->args[0]; val = readl_relaxed(lane->priv->base + COMPHY_SELECTOR); val = (val >> (4 * lane->n)) & 0xf; if (!gbe_mux[lane->n][lane->port] || val != gbe_mux[lane->n][lane->port]) { dev_warn(lane->priv->dev, "comphy%u: not configured for GBE\n", lane->n); phy = ERR_PTR(-EINVAL); } return phy; } static int a38x_comphy_probe(struct platform_device *pdev) { struct phy_provider *provider; struct device_node *child; struct a38x_comphy *priv; struct resource *res; void __iomem *base; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); priv->dev = &pdev->dev; priv->base = base; /* Optional */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "conf"); if (res) { priv->conf = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(priv->conf)) return PTR_ERR(priv->conf); } for_each_available_child_of_node(pdev->dev.of_node, child) { struct phy *phy; int ret; u32 val; ret = of_property_read_u32(child, "reg", &val); if (ret < 0) { dev_err(&pdev->dev, "missing 'reg' property (%d)\n", ret); continue; } if (val >= MAX_A38X_COMPHY || priv->lane[val].base) { dev_err(&pdev->dev, "invalid 'reg' property\n"); continue; } phy = devm_phy_create(&pdev->dev, child, &a38x_comphy_ops); if (IS_ERR(phy)) { of_node_put(child); return PTR_ERR(phy); } priv->lane[val].base = base + 0x28 * val; priv->lane[val].priv = priv; priv->lane[val].n = val; priv->lane[val].port = -1; phy_set_drvdata(phy, &priv->lane[val]); } dev_set_drvdata(&pdev->dev, priv); provider = devm_of_phy_provider_register(&pdev->dev, a38x_comphy_xlate); return PTR_ERR_OR_ZERO(provider); } static const struct of_device_id a38x_comphy_of_match_table[] = { { .compatible = "marvell,armada-380-comphy" }, { }, }; MODULE_DEVICE_TABLE(of, a38x_comphy_of_match_table); static struct platform_driver a38x_comphy_driver = { .probe = a38x_comphy_probe, .driver = { .name = "armada-38x-comphy", .of_match_table = a38x_comphy_of_match_table, }, }; module_platform_driver(a38x_comphy_driver); MODULE_AUTHOR("Russell King <[email protected]>"); MODULE_DESCRIPTION("Common PHY driver for Armada 38x SoCs"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/marvell/phy-armada38x-comphy.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2020 Lubomir Rintel <[email protected]> */ #include <linux/delay.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #define HSIC_CTRL 0x08 #define HSIC_ENABLE BIT(7) #define PLL_BYPASS BIT(4) static int mmp3_hsic_phy_init(struct phy *phy) { void __iomem *base = (void __iomem *)phy_get_drvdata(phy); u32 hsic_ctrl; hsic_ctrl = readl_relaxed(base + HSIC_CTRL); hsic_ctrl |= HSIC_ENABLE; hsic_ctrl |= PLL_BYPASS; writel_relaxed(hsic_ctrl, base + HSIC_CTRL); return 0; } static const struct phy_ops mmp3_hsic_phy_ops = { .init = mmp3_hsic_phy_init, .owner = THIS_MODULE, }; static const struct of_device_id mmp3_hsic_phy_of_match[] = { { .compatible = "marvell,mmp3-hsic-phy", }, { }, }; MODULE_DEVICE_TABLE(of, mmp3_hsic_phy_of_match); static int mmp3_hsic_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *provider; void __iomem *base; struct phy *phy; base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(base)) return PTR_ERR(base); phy = devm_phy_create(dev, NULL, &mmp3_hsic_phy_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create PHY\n"); return PTR_ERR(phy); } phy_set_drvdata(phy, (void *)base); provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(provider)) { dev_err(dev, "failed to register PHY provider\n"); return PTR_ERR(provider); } return 0; } static struct platform_driver mmp3_hsic_phy_driver = { .probe = mmp3_hsic_phy_probe, .driver = { .name = "mmp3-hsic-phy", .of_match_table = mmp3_hsic_phy_of_match, }, }; module_platform_driver(mmp3_hsic_phy_driver); MODULE_AUTHOR("Lubomir Rintel <[email protected]>"); MODULE_DESCRIPTION("Marvell MMP3 USB HSIC PHY Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/marvell/phy-mmp3-hsic.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Marvell * * Authors: * Igal Liberman <[email protected]> * Miquèl Raynal <[email protected]> * * Marvell A3700 UTMI PHY driver */ #include <linux/io.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> /* Armada 3700 UTMI PHY registers */ #define USB2_PHY_PLL_CTRL_REG0 0x0 #define PLL_REF_DIV_OFF 0 #define PLL_REF_DIV_MASK GENMASK(6, 0) #define PLL_REF_DIV_5 5 #define PLL_FB_DIV_OFF 16 #define PLL_FB_DIV_MASK GENMASK(24, 16) #define PLL_FB_DIV_96 96 #define PLL_SEL_LPFR_OFF 28 #define PLL_SEL_LPFR_MASK GENMASK(29, 28) #define PLL_READY BIT(31) #define USB2_PHY_CAL_CTRL 0x8 #define PHY_PLLCAL_DONE BIT(31) #define PHY_IMPCAL_DONE BIT(23) #define USB2_RX_CHAN_CTRL1 0x18 #define USB2PHY_SQCAL_DONE BIT(31) #define USB2_PHY_OTG_CTRL 0x34 #define PHY_PU_OTG BIT(4) #define USB2_PHY_CHRGR_DETECT 0x38 #define PHY_CDP_EN BIT(2) #define PHY_DCP_EN BIT(3) #define PHY_PD_EN BIT(4) #define PHY_PU_CHRG_DTC BIT(5) #define PHY_CDP_DM_AUTO BIT(7) #define PHY_ENSWITCH_DP BIT(12) #define PHY_ENSWITCH_DM BIT(13) /* Armada 3700 USB miscellaneous registers */ #define USB2_PHY_CTRL(usb32) (usb32 ? 0x20 : 0x4) #define RB_USB2PHY_PU BIT(0) #define USB2_DP_PULLDN_DEV_MODE BIT(5) #define USB2_DM_PULLDN_DEV_MODE BIT(6) #define RB_USB2PHY_SUSPM(usb32) (usb32 ? BIT(14) : BIT(7)) #define PLL_LOCK_DELAY_US 10000 #define PLL_LOCK_TIMEOUT_US 1000000 /** * struct mvebu_a3700_utmi_caps - PHY capabilities * * @usb32: Flag indicating which PHY is in use (impacts the register map): * - The UTMI PHY wired to the USB3/USB2 controller (otg) * - The UTMI PHY wired to the USB2 controller (host only) * @ops: PHY operations */ struct mvebu_a3700_utmi_caps { int usb32; const struct phy_ops *ops; }; /** * struct mvebu_a3700_utmi - PHY driver data * * @regs: PHY registers * @usb_misc: Regmap with USB miscellaneous registers including PHY ones * @caps: PHY capabilities * @phy: PHY handle */ struct mvebu_a3700_utmi { void __iomem *regs; struct regmap *usb_misc; const struct mvebu_a3700_utmi_caps *caps; struct phy *phy; }; static int mvebu_a3700_utmi_phy_power_on(struct phy *phy) { struct mvebu_a3700_utmi *utmi = phy_get_drvdata(phy); struct device *dev = &phy->dev; int usb32 = utmi->caps->usb32; int ret = 0; u32 reg; /* * Setup PLL. 40MHz clock used to be the default, being 25MHz now. * See "PLL Settings for Typical REFCLK" table. */ reg = readl(utmi->regs + USB2_PHY_PLL_CTRL_REG0); reg &= ~(PLL_REF_DIV_MASK | PLL_FB_DIV_MASK | PLL_SEL_LPFR_MASK); reg |= (PLL_REF_DIV_5 << PLL_REF_DIV_OFF) | (PLL_FB_DIV_96 << PLL_FB_DIV_OFF); writel(reg, utmi->regs + USB2_PHY_PLL_CTRL_REG0); /* Enable PHY pull up and disable USB2 suspend */ regmap_update_bits(utmi->usb_misc, USB2_PHY_CTRL(usb32), RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU, RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU); if (usb32) { /* Power up OTG module */ reg = readl(utmi->regs + USB2_PHY_OTG_CTRL); reg |= PHY_PU_OTG; writel(reg, utmi->regs + USB2_PHY_OTG_CTRL); /* Disable PHY charger detection */ reg = readl(utmi->regs + USB2_PHY_CHRGR_DETECT); reg &= ~(PHY_CDP_EN | PHY_DCP_EN | PHY_PD_EN | PHY_PU_CHRG_DTC | PHY_CDP_DM_AUTO | PHY_ENSWITCH_DP | PHY_ENSWITCH_DM); writel(reg, utmi->regs + USB2_PHY_CHRGR_DETECT); /* Disable PHY DP/DM pull-down (used for device mode) */ regmap_update_bits(utmi->usb_misc, USB2_PHY_CTRL(usb32), USB2_DP_PULLDN_DEV_MODE | USB2_DM_PULLDN_DEV_MODE, 0); } /* Wait for PLL calibration */ ret = readl_poll_timeout(utmi->regs + USB2_PHY_CAL_CTRL, reg, reg & PHY_PLLCAL_DONE, PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US); if (ret) { dev_err(dev, "Failed to end USB2 PLL calibration\n"); return ret; } /* Wait for impedance calibration */ ret = readl_poll_timeout(utmi->regs + USB2_PHY_CAL_CTRL, reg, reg & PHY_IMPCAL_DONE, PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US); if (ret) { dev_err(dev, "Failed to end USB2 impedance calibration\n"); return ret; } /* Wait for squelch calibration */ ret = readl_poll_timeout(utmi->regs + USB2_RX_CHAN_CTRL1, reg, reg & USB2PHY_SQCAL_DONE, PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US); if (ret) { dev_err(dev, "Failed to end USB2 unknown calibration\n"); return ret; } /* Wait for PLL to be locked */ ret = readl_poll_timeout(utmi->regs + USB2_PHY_PLL_CTRL_REG0, reg, reg & PLL_READY, PLL_LOCK_DELAY_US, PLL_LOCK_TIMEOUT_US); if (ret) dev_err(dev, "Failed to lock USB2 PLL\n"); return ret; } static int mvebu_a3700_utmi_phy_power_off(struct phy *phy) { struct mvebu_a3700_utmi *utmi = phy_get_drvdata(phy); int usb32 = utmi->caps->usb32; u32 reg; /* Disable PHY pull-up and enable USB2 suspend */ reg = readl(utmi->regs + USB2_PHY_CTRL(usb32)); reg &= ~(RB_USB2PHY_PU | RB_USB2PHY_SUSPM(usb32)); writel(reg, utmi->regs + USB2_PHY_CTRL(usb32)); /* Power down OTG module */ if (usb32) { reg = readl(utmi->regs + USB2_PHY_OTG_CTRL); reg &= ~PHY_PU_OTG; writel(reg, utmi->regs + USB2_PHY_OTG_CTRL); } return 0; } static const struct phy_ops mvebu_a3700_utmi_phy_ops = { .power_on = mvebu_a3700_utmi_phy_power_on, .power_off = mvebu_a3700_utmi_phy_power_off, .owner = THIS_MODULE, }; static const struct mvebu_a3700_utmi_caps mvebu_a3700_utmi_otg_phy_caps = { .usb32 = true, .ops = &mvebu_a3700_utmi_phy_ops, }; static const struct mvebu_a3700_utmi_caps mvebu_a3700_utmi_host_phy_caps = { .usb32 = false, .ops = &mvebu_a3700_utmi_phy_ops, }; static const struct of_device_id mvebu_a3700_utmi_of_match[] = { { .compatible = "marvell,a3700-utmi-otg-phy", .data = &mvebu_a3700_utmi_otg_phy_caps, }, { .compatible = "marvell,a3700-utmi-host-phy", .data = &mvebu_a3700_utmi_host_phy_caps, }, {}, }; MODULE_DEVICE_TABLE(of, mvebu_a3700_utmi_of_match); static int mvebu_a3700_utmi_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mvebu_a3700_utmi *utmi; struct phy_provider *provider; utmi = devm_kzalloc(dev, sizeof(*utmi), GFP_KERNEL); if (!utmi) return -ENOMEM; /* Get UTMI memory region */ utmi->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(utmi->regs)) return PTR_ERR(utmi->regs); /* Get miscellaneous Host/PHY region */ utmi->usb_misc = syscon_regmap_lookup_by_phandle(dev->of_node, "marvell,usb-misc-reg"); if (IS_ERR(utmi->usb_misc)) { dev_err(dev, "Missing USB misc purpose system controller\n"); return PTR_ERR(utmi->usb_misc); } /* Retrieve PHY capabilities */ utmi->caps = of_device_get_match_data(dev); /* Instantiate the PHY */ utmi->phy = devm_phy_create(dev, NULL, utmi->caps->ops); if (IS_ERR(utmi->phy)) { dev_err(dev, "Failed to create the UTMI PHY\n"); return PTR_ERR(utmi->phy); } phy_set_drvdata(utmi->phy, utmi); /* Ensure the PHY is powered off */ utmi->caps->ops->power_off(utmi->phy); provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(provider); } static struct platform_driver mvebu_a3700_utmi_driver = { .probe = mvebu_a3700_utmi_phy_probe, .driver = { .name = "mvebu-a3700-utmi-phy", .of_match_table = mvebu_a3700_utmi_of_match, }, }; module_platform_driver(mvebu_a3700_utmi_driver); MODULE_AUTHOR("Igal Liberman <[email protected]>"); MODULE_AUTHOR("Miquel Raynal <[email protected]>"); MODULE_DESCRIPTION("Marvell EBU A3700 UTMI PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/marvell/phy-mvebu-a3700-utmi.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #define USB2_PHY_USB_PHY_UTMI_CTRL0 (0x3c) #define SLEEPM BIT(0) #define OPMODE_MASK GENMASK(4, 3) #define OPMODE_NORMAL (0x00) #define OPMODE_NONDRIVING BIT(3) #define TERMSEL BIT(5) #define USB2_PHY_USB_PHY_UTMI_CTRL1 (0x40) #define XCVRSEL BIT(0) #define USB2_PHY_USB_PHY_UTMI_CTRL5 (0x50) #define POR BIT(1) #define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0 (0x54) #define SIDDQ BIT(2) #define RETENABLEN BIT(3) #define FSEL_MASK GENMASK(6, 4) #define FSEL_DEFAULT (0x3 << 4) #define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1 (0x58) #define VBUSVLDEXTSEL0 BIT(4) #define PLLBTUNE BIT(5) #define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2 (0x5c) #define VREGBYPASS BIT(0) #define USB2_PHY_USB_PHY_HS_PHY_CTRL1 (0x60) #define VBUSVLDEXT0 BIT(0) #define USB2_PHY_USB_PHY_HS_PHY_CTRL2 (0x64) #define USB2_AUTO_RESUME BIT(0) #define USB2_SUSPEND_N BIT(2) #define USB2_SUSPEND_N_SEL BIT(3) #define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0 (0x6c) #define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1 (0x70) #define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2 (0x74) #define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X3 (0x78) #define PARAM_OVRD_MASK 0xFF #define USB2_PHY_USB_PHY_CFG0 (0x94) #define UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN BIT(0) #define UTMI_PHY_CMN_CTRL_OVERRIDE_EN BIT(1) #define USB2_PHY_USB_PHY_REFCLK_CTRL (0xa0) #define REFCLK_SEL_MASK GENMASK(1, 0) #define REFCLK_SEL_DEFAULT (0x2 << 0) #define HS_DISCONNECT_MASK GENMASK(2, 0) #define SQUELCH_DETECTOR_MASK GENMASK(7, 5) #define HS_AMPLITUDE_MASK GENMASK(3, 0) #define PREEMPHASIS_DURATION_MASK BIT(5) #define PREEMPHASIS_AMPLITUDE_MASK GENMASK(7, 6) #define HS_RISE_FALL_MASK GENMASK(1, 0) #define HS_CROSSOVER_VOLTAGE_MASK GENMASK(3, 2) #define HS_OUTPUT_IMPEDANCE_MASK GENMASK(5, 4) #define LS_FS_OUTPUT_IMPEDANCE_MASK GENMASK(3, 0) static const char * const qcom_snps_hsphy_vreg_names[] = { "vdda-pll", "vdda33", "vdda18", }; #define SNPS_HS_NUM_VREGS ARRAY_SIZE(qcom_snps_hsphy_vreg_names) struct override_param { s32 value; u8 reg_val; }; struct override_param_map { const char *prop_name; const struct override_param *param_table; u8 table_size; u8 reg_offset; u8 param_mask; }; struct phy_override_seq { bool need_update; u8 offset; u8 value; u8 mask; }; #define NUM_HSPHY_TUNING_PARAMS (9) /** * struct qcom_snps_hsphy - snps hs phy attributes * * @dev: device structure * * @phy: generic phy * @base: iomapped memory space for snps hs phy * * @num_clks: number of clocks * @clks: array of clocks * @phy_reset: phy reset control * @vregs: regulator supplies bulk data * @phy_initialized: if PHY has been initialized correctly * @mode: contains the current mode the PHY is in * @update_seq_cfg: tuning parameters for phy init */ struct qcom_snps_hsphy { struct device *dev; struct phy *phy; void __iomem *base; int num_clks; struct clk_bulk_data *clks; struct reset_control *phy_reset; struct regulator_bulk_data vregs[SNPS_HS_NUM_VREGS]; bool phy_initialized; enum phy_mode mode; struct phy_override_seq update_seq_cfg[NUM_HSPHY_TUNING_PARAMS]; }; static int qcom_snps_hsphy_clk_init(struct qcom_snps_hsphy *hsphy) { struct device *dev = hsphy->dev; hsphy->num_clks = 2; hsphy->clks = devm_kcalloc(dev, hsphy->num_clks, sizeof(*hsphy->clks), GFP_KERNEL); if (!hsphy->clks) return -ENOMEM; /* * TODO: Currently no device tree instantiation of the PHY is using the clock. * This needs to be fixed in order for this code to be able to use devm_clk_bulk_get(). */ hsphy->clks[0].id = "cfg_ahb"; hsphy->clks[0].clk = devm_clk_get_optional(dev, "cfg_ahb"); if (IS_ERR(hsphy->clks[0].clk)) return dev_err_probe(dev, PTR_ERR(hsphy->clks[0].clk), "failed to get cfg_ahb clk\n"); hsphy->clks[1].id = "ref"; hsphy->clks[1].clk = devm_clk_get(dev, "ref"); if (IS_ERR(hsphy->clks[1].clk)) return dev_err_probe(dev, PTR_ERR(hsphy->clks[1].clk), "failed to get ref clk\n"); return 0; } static inline void qcom_snps_hsphy_write_mask(void __iomem *base, u32 offset, u32 mask, u32 val) { u32 reg; reg = readl_relaxed(base + offset); reg &= ~mask; reg |= val & mask; writel_relaxed(reg, base + offset); /* Ensure above write is completed */ readl_relaxed(base + offset); } static int qcom_snps_hsphy_suspend(struct qcom_snps_hsphy *hsphy) { dev_dbg(&hsphy->phy->dev, "Suspend QCOM SNPS PHY\n"); if (hsphy->mode == PHY_MODE_USB_HOST) { /* Enable auto-resume to meet remote wakeup timing */ qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2, USB2_AUTO_RESUME, USB2_AUTO_RESUME); usleep_range(500, 1000); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2, 0, USB2_AUTO_RESUME); } return 0; } static int qcom_snps_hsphy_resume(struct qcom_snps_hsphy *hsphy) { dev_dbg(&hsphy->phy->dev, "Resume QCOM SNPS PHY, mode\n"); return 0; } static int __maybe_unused qcom_snps_hsphy_runtime_suspend(struct device *dev) { struct qcom_snps_hsphy *hsphy = dev_get_drvdata(dev); if (!hsphy->phy_initialized) return 0; return qcom_snps_hsphy_suspend(hsphy); } static int __maybe_unused qcom_snps_hsphy_runtime_resume(struct device *dev) { struct qcom_snps_hsphy *hsphy = dev_get_drvdata(dev); if (!hsphy->phy_initialized) return 0; return qcom_snps_hsphy_resume(hsphy); } static int qcom_snps_hsphy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy); hsphy->mode = mode; return 0; } static const struct override_param hs_disconnect_sc7280[] = { { -272, 0 }, { 0, 1 }, { 317, 2 }, { 630, 3 }, { 973, 4 }, { 1332, 5 }, { 1743, 6 }, { 2156, 7 }, }; static const struct override_param squelch_det_threshold_sc7280[] = { { -2090, 7 }, { -1560, 6 }, { -1030, 5 }, { -530, 4 }, { 0, 3 }, { 530, 2 }, { 1060, 1 }, { 1590, 0 }, }; static const struct override_param hs_amplitude_sc7280[] = { { -660, 0 }, { -440, 1 }, { -220, 2 }, { 0, 3 }, { 230, 4 }, { 440, 5 }, { 650, 6 }, { 890, 7 }, { 1110, 8 }, { 1330, 9 }, { 1560, 10 }, { 1780, 11 }, { 2000, 12 }, { 2220, 13 }, { 2430, 14 }, { 2670, 15 }, }; static const struct override_param preemphasis_duration_sc7280[] = { { 10000, 1 }, { 20000, 0 }, }; static const struct override_param preemphasis_amplitude_sc7280[] = { { 10000, 1 }, { 20000, 2 }, { 30000, 3 }, { 40000, 0 }, }; static const struct override_param hs_rise_fall_time_sc7280[] = { { -4100, 3 }, { 0, 2 }, { 2810, 1 }, { 5430, 0 }, }; static const struct override_param hs_crossover_voltage_sc7280[] = { { -31000, 1 }, { 0, 3 }, { 28000, 2 }, }; static const struct override_param hs_output_impedance_sc7280[] = { { -2300000, 3 }, { 0, 2 }, { 2600000, 1 }, { 6100000, 0 }, }; static const struct override_param ls_fs_output_impedance_sc7280[] = { { -1053, 15 }, { -557, 7 }, { 0, 3 }, { 612, 1 }, { 1310, 0 }, }; static const struct override_param_map sc7280_snps_7nm_phy[] = { { "qcom,hs-disconnect-bp", hs_disconnect_sc7280, ARRAY_SIZE(hs_disconnect_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0, HS_DISCONNECT_MASK }, { "qcom,squelch-detector-bp", squelch_det_threshold_sc7280, ARRAY_SIZE(squelch_det_threshold_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0, SQUELCH_DETECTOR_MASK }, { "qcom,hs-amplitude-bp", hs_amplitude_sc7280, ARRAY_SIZE(hs_amplitude_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1, HS_AMPLITUDE_MASK }, { "qcom,pre-emphasis-duration-bp", preemphasis_duration_sc7280, ARRAY_SIZE(preemphasis_duration_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1, PREEMPHASIS_DURATION_MASK, }, { "qcom,pre-emphasis-amplitude-bp", preemphasis_amplitude_sc7280, ARRAY_SIZE(preemphasis_amplitude_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1, PREEMPHASIS_AMPLITUDE_MASK, }, { "qcom,hs-rise-fall-time-bp", hs_rise_fall_time_sc7280, ARRAY_SIZE(hs_rise_fall_time_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2, HS_RISE_FALL_MASK }, { "qcom,hs-crossover-voltage-microvolt", hs_crossover_voltage_sc7280, ARRAY_SIZE(hs_crossover_voltage_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2, HS_CROSSOVER_VOLTAGE_MASK }, { "qcom,hs-output-impedance-micro-ohms", hs_output_impedance_sc7280, ARRAY_SIZE(hs_output_impedance_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2, HS_OUTPUT_IMPEDANCE_MASK, }, { "qcom,ls-fs-output-impedance-bp", ls_fs_output_impedance_sc7280, ARRAY_SIZE(ls_fs_output_impedance_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X3, LS_FS_OUTPUT_IMPEDANCE_MASK, }, {}, }; static int qcom_snps_hsphy_init(struct phy *phy) { struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy); int ret, i; dev_vdbg(&phy->dev, "%s(): Initializing SNPS HS phy\n", __func__); ret = regulator_bulk_enable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs); if (ret) return ret; ret = clk_bulk_prepare_enable(hsphy->num_clks, hsphy->clks); if (ret) { dev_err(&phy->dev, "failed to enable clocks, %d\n", ret); goto poweroff_phy; } ret = reset_control_assert(hsphy->phy_reset); if (ret) { dev_err(&phy->dev, "failed to assert phy_reset, %d\n", ret); goto disable_clks; } usleep_range(100, 150); ret = reset_control_deassert(hsphy->phy_reset); if (ret) { dev_err(&phy->dev, "failed to de-assert phy_reset, %d\n", ret); goto disable_clks; } qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_CFG0, UTMI_PHY_CMN_CTRL_OVERRIDE_EN, UTMI_PHY_CMN_CTRL_OVERRIDE_EN); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL5, POR, POR); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0, FSEL_MASK, 0); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1, PLLBTUNE, PLLBTUNE); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_REFCLK_CTRL, REFCLK_SEL_DEFAULT, REFCLK_SEL_MASK); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1, VBUSVLDEXTSEL0, VBUSVLDEXTSEL0); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL1, VBUSVLDEXT0, VBUSVLDEXT0); for (i = 0; i < ARRAY_SIZE(hsphy->update_seq_cfg); i++) { if (hsphy->update_seq_cfg[i].need_update) qcom_snps_hsphy_write_mask(hsphy->base, hsphy->update_seq_cfg[i].offset, hsphy->update_seq_cfg[i].mask, hsphy->update_seq_cfg[i].value); } qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2, VREGBYPASS, VREGBYPASS); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2, USB2_SUSPEND_N_SEL | USB2_SUSPEND_N, USB2_SUSPEND_N_SEL | USB2_SUSPEND_N); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL0, SLEEPM, SLEEPM); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0, SIDDQ, 0); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL5, POR, 0); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2, USB2_SUSPEND_N_SEL, 0); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_CFG0, UTMI_PHY_CMN_CTRL_OVERRIDE_EN, 0); hsphy->phy_initialized = true; return 0; disable_clks: clk_bulk_disable_unprepare(hsphy->num_clks, hsphy->clks); poweroff_phy: regulator_bulk_disable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs); return ret; } static int qcom_snps_hsphy_exit(struct phy *phy) { struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy); reset_control_assert(hsphy->phy_reset); clk_bulk_disable_unprepare(hsphy->num_clks, hsphy->clks); regulator_bulk_disable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs); hsphy->phy_initialized = false; return 0; } static const struct phy_ops qcom_snps_hsphy_gen_ops = { .init = qcom_snps_hsphy_init, .exit = qcom_snps_hsphy_exit, .set_mode = qcom_snps_hsphy_set_mode, .owner = THIS_MODULE, }; static const struct of_device_id qcom_snps_hsphy_of_match_table[] = { { .compatible = "qcom,sm8150-usb-hs-phy", }, { .compatible = "qcom,usb-snps-hs-5nm-phy", }, { .compatible = "qcom,usb-snps-hs-7nm-phy", .data = &sc7280_snps_7nm_phy, }, { .compatible = "qcom,usb-snps-femto-v2-phy", }, { } }; MODULE_DEVICE_TABLE(of, qcom_snps_hsphy_of_match_table); static const struct dev_pm_ops qcom_snps_hsphy_pm_ops = { SET_RUNTIME_PM_OPS(qcom_snps_hsphy_runtime_suspend, qcom_snps_hsphy_runtime_resume, NULL) }; static void qcom_snps_hsphy_override_param_update_val( const struct override_param_map map, s32 dt_val, struct phy_override_seq *seq_entry) { int i; /* * Param table for each param is in increasing order * of dt values. We need to iterate over the list to * select the entry that matches the dt value and pick * up the corresponding register value. */ for (i = 0; i < map.table_size - 1; i++) { if (map.param_table[i].value == dt_val) break; } seq_entry->need_update = true; seq_entry->offset = map.reg_offset; seq_entry->mask = map.param_mask; seq_entry->value = map.param_table[i].reg_val << __ffs(map.param_mask); } static void qcom_snps_hsphy_read_override_param_seq(struct device *dev) { struct device_node *node = dev->of_node; s32 val; int ret, i; struct qcom_snps_hsphy *hsphy; const struct override_param_map *cfg = of_device_get_match_data(dev); if (!cfg) return; hsphy = dev_get_drvdata(dev); for (i = 0; cfg[i].prop_name != NULL; i++) { ret = of_property_read_s32(node, cfg[i].prop_name, &val); if (ret) continue; qcom_snps_hsphy_override_param_update_val(cfg[i], val, &hsphy->update_seq_cfg[i]); dev_dbg(&hsphy->phy->dev, "Read param: %s dt_val: %d reg_val: 0x%x\n", cfg[i].prop_name, val, hsphy->update_seq_cfg[i].value); } } static int qcom_snps_hsphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct qcom_snps_hsphy *hsphy; struct phy_provider *phy_provider; struct phy *generic_phy; int ret, i; int num; hsphy = devm_kzalloc(dev, sizeof(*hsphy), GFP_KERNEL); if (!hsphy) return -ENOMEM; hsphy->dev = dev; hsphy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(hsphy->base)) return PTR_ERR(hsphy->base); ret = qcom_snps_hsphy_clk_init(hsphy); if (ret) return dev_err_probe(dev, ret, "failed to initialize clocks\n"); hsphy->phy_reset = devm_reset_control_get_exclusive(&pdev->dev, NULL); if (IS_ERR(hsphy->phy_reset)) { dev_err(dev, "failed to get phy core reset\n"); return PTR_ERR(hsphy->phy_reset); } num = ARRAY_SIZE(hsphy->vregs); for (i = 0; i < num; i++) hsphy->vregs[i].supply = qcom_snps_hsphy_vreg_names[i]; ret = devm_regulator_bulk_get(dev, num, hsphy->vregs); if (ret) return dev_err_probe(dev, ret, "failed to get regulator supplies\n"); pm_runtime_set_active(dev); pm_runtime_enable(dev); /* * Prevent runtime pm from being ON by default. Users can enable * it using power/control in sysfs. */ pm_runtime_forbid(dev); generic_phy = devm_phy_create(dev, NULL, &qcom_snps_hsphy_gen_ops); if (IS_ERR(generic_phy)) { ret = PTR_ERR(generic_phy); dev_err(dev, "failed to create phy, %d\n", ret); return ret; } hsphy->phy = generic_phy; dev_set_drvdata(dev, hsphy); phy_set_drvdata(generic_phy, hsphy); qcom_snps_hsphy_read_override_param_seq(dev); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (!IS_ERR(phy_provider)) dev_dbg(dev, "Registered Qcom-SNPS HS phy\n"); else pm_runtime_disable(dev); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver qcom_snps_hsphy_driver = { .probe = qcom_snps_hsphy_probe, .driver = { .name = "qcom-snps-hs-femto-v2-phy", .pm = &qcom_snps_hsphy_pm_ops, .of_match_table = qcom_snps_hsphy_of_match_table, }, }; module_platform_driver(qcom_snps_hsphy_driver); MODULE_DESCRIPTION("Qualcomm SNPS FEMTO USB HS PHY V2 driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-snps-femto-v2.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2014-2023, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/slab.h> #define USB2PHY_PORT_UTMI_CTRL1 0x40 #define USB2PHY_PORT_UTMI_CTRL2 0x44 #define UTMI_ULPI_SEL BIT(7) #define UTMI_TEST_MUX_SEL BIT(6) #define HS_PHY_CTRL_REG 0x10 #define UTMI_OTG_VBUS_VALID BIT(20) #define SW_SESSVLD_SEL BIT(28) #define USB_PHY_UTMI_CTRL0 0x3c #define USB_PHY_UTMI_CTRL5 0x50 #define POR_EN BIT(1) #define USB_PHY_HS_PHY_CTRL_COMMON0 0x54 #define COMMONONN BIT(7) #define FSEL BIT(4) #define RETENABLEN BIT(3) #define FREQ_24MHZ (BIT(6) | BIT(4)) #define USB_PHY_HS_PHY_CTRL2 0x64 #define USB2_SUSPEND_N_SEL BIT(3) #define USB2_SUSPEND_N BIT(2) #define USB2_UTMI_CLK_EN BIT(1) #define USB_PHY_CFG0 0x94 #define UTMI_PHY_OVERRIDE_EN BIT(1) #define USB_PHY_REFCLK_CTRL 0xa0 #define CLKCORE BIT(1) #define USB2PHY_PORT_POWERDOWN 0xa4 #define POWER_UP BIT(0) #define POWER_DOWN 0 #define USB_PHY_FSEL_SEL 0xb8 #define FREQ_SEL BIT(0) #define USB2PHY_USB_PHY_M31_XCFGI_1 0xbc #define USB2_0_TX_ENABLE BIT(2) #define USB2PHY_USB_PHY_M31_XCFGI_4 0xc8 #define HSTX_SLEW_RATE_565PS GENMASK(1, 0) #define PLL_CHARGING_PUMP_CURRENT_35UA GENMASK(4, 3) #define ODT_VALUE_38_02_OHM GENMASK(7, 6) #define USB2PHY_USB_PHY_M31_XCFGI_5 0xcc #define ODT_VALUE_45_02_OHM BIT(2) #define HSTX_PRE_EMPHASIS_LEVEL_0_55MA BIT(0) #define USB2PHY_USB_PHY_M31_XCFGI_11 0xe4 #define XCFG_COARSE_TUNE_NUM BIT(1) #define XCFG_FINE_TUNE_NUM BIT(3) struct m31_phy_regs { u32 off; u32 val; u32 delay; }; struct m31_priv_data { bool ulpi_mode; const struct m31_phy_regs *regs; unsigned int nregs; }; struct m31_phy_regs m31_ipq5332_regs[] = { { USB_PHY_CFG0, UTMI_PHY_OVERRIDE_EN, 0 }, { USB_PHY_UTMI_CTRL5, POR_EN, 15 }, { USB_PHY_FSEL_SEL, FREQ_SEL, 0 }, { USB_PHY_HS_PHY_CTRL_COMMON0, COMMONONN | FREQ_24MHZ | RETENABLEN, 0 }, { USB_PHY_UTMI_CTRL5, POR_EN, 0 }, { USB_PHY_HS_PHY_CTRL2, USB2_SUSPEND_N_SEL | USB2_SUSPEND_N | USB2_UTMI_CLK_EN, 0 }, { USB2PHY_USB_PHY_M31_XCFGI_11, XCFG_COARSE_TUNE_NUM | XCFG_FINE_TUNE_NUM, 0 }, { USB2PHY_USB_PHY_M31_XCFGI_4, HSTX_SLEW_RATE_565PS | PLL_CHARGING_PUMP_CURRENT_35UA | ODT_VALUE_38_02_OHM, 0 }, { USB2PHY_USB_PHY_M31_XCFGI_1, USB2_0_TX_ENABLE, 0 }, { USB2PHY_USB_PHY_M31_XCFGI_5, ODT_VALUE_45_02_OHM | HSTX_PRE_EMPHASIS_LEVEL_0_55MA, 4 }, { USB_PHY_UTMI_CTRL5, 0x0, 0 }, { USB_PHY_HS_PHY_CTRL2, USB2_SUSPEND_N | USB2_UTMI_CLK_EN, 0 }, }; struct m31usb_phy { struct phy *phy; void __iomem *base; const struct m31_phy_regs *regs; int nregs; struct regulator *vreg; struct clk *clk; struct reset_control *reset; bool ulpi_mode; }; static int m31usb_phy_init(struct phy *phy) { struct m31usb_phy *qphy = phy_get_drvdata(phy); const struct m31_phy_regs *regs = qphy->regs; int i, ret; ret = regulator_enable(qphy->vreg); if (ret) { dev_err(&phy->dev, "failed to enable regulator, %d\n", ret); return ret; } ret = clk_prepare_enable(qphy->clk); if (ret) { if (qphy->vreg) regulator_disable(qphy->vreg); dev_err(&phy->dev, "failed to enable cfg ahb clock, %d\n", ret); return ret; } /* Perform phy reset */ reset_control_assert(qphy->reset); udelay(5); reset_control_deassert(qphy->reset); /* configure for ULPI mode if requested */ if (qphy->ulpi_mode) writel(0x0, qphy->base + USB2PHY_PORT_UTMI_CTRL2); /* Enable the PHY */ writel(POWER_UP, qphy->base + USB2PHY_PORT_POWERDOWN); /* Turn on phy ref clock */ for (i = 0; i < qphy->nregs; i++) { writel(regs[i].val, qphy->base + regs[i].off); if (regs[i].delay) udelay(regs[i].delay); } return 0; } static int m31usb_phy_shutdown(struct phy *phy) { struct m31usb_phy *qphy = phy_get_drvdata(phy); /* Disable the PHY */ writel_relaxed(POWER_DOWN, qphy->base + USB2PHY_PORT_POWERDOWN); clk_disable_unprepare(qphy->clk); regulator_disable(qphy->vreg); return 0; } static const struct phy_ops m31usb_phy_gen_ops = { .power_on = m31usb_phy_init, .power_off = m31usb_phy_shutdown, .owner = THIS_MODULE, }; static int m31usb_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; const struct m31_priv_data *data; struct device *dev = &pdev->dev; struct m31usb_phy *qphy; qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL); if (!qphy) return -ENOMEM; qphy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(qphy->base)) return PTR_ERR(qphy->base); qphy->reset = devm_reset_control_get_exclusive_by_index(dev, 0); if (IS_ERR(qphy->reset)) return PTR_ERR(qphy->reset); qphy->clk = devm_clk_get(dev, NULL); if (IS_ERR(qphy->clk)) return dev_err_probe(dev, PTR_ERR(qphy->clk), "failed to get clk\n"); data = of_device_get_match_data(dev); qphy->regs = data->regs; qphy->nregs = data->nregs; qphy->ulpi_mode = data->ulpi_mode; qphy->phy = devm_phy_create(dev, NULL, &m31usb_phy_gen_ops); if (IS_ERR(qphy->phy)) return dev_err_probe(dev, PTR_ERR(qphy->phy), "failed to create phy\n"); qphy->vreg = devm_regulator_get(dev, "vdda-phy"); if (IS_ERR(qphy->vreg)) return dev_err_probe(dev, PTR_ERR(qphy->phy), "failed to get vreg\n"); phy_set_drvdata(qphy->phy, qphy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (!IS_ERR(phy_provider)) dev_info(dev, "Registered M31 USB phy\n"); return PTR_ERR_OR_ZERO(phy_provider); } static const struct m31_priv_data m31_ipq5332_data = { .ulpi_mode = false, .regs = m31_ipq5332_regs, .nregs = ARRAY_SIZE(m31_ipq5332_regs), }; static const struct of_device_id m31usb_phy_id_table[] = { { .compatible = "qcom,ipq5332-usb-hsphy", .data = &m31_ipq5332_data }, { }, }; MODULE_DEVICE_TABLE(of, m31usb_phy_id_table); static struct platform_driver m31usb_phy_driver = { .probe = m31usb_phy_probe, .driver = { .name = "qcom-m31usb-phy", .of_match_table = m31usb_phy_id_table, }, }; module_platform_driver(m31usb_phy_driver); MODULE_DESCRIPTION("USB2 Qualcomm M31 HSPHY driver"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/qualcomm/phy-qcom-m31.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014, The Linux Foundation. All rights reserved. */ #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/time.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/phy/phy.h> /* PHY registers */ #define UNIPHY_PLL_REFCLK_CFG 0x000 #define UNIPHY_PLL_PWRGEN_CFG 0x014 #define UNIPHY_PLL_GLB_CFG 0x020 #define UNIPHY_PLL_SDM_CFG0 0x038 #define UNIPHY_PLL_SDM_CFG1 0x03C #define UNIPHY_PLL_SDM_CFG2 0x040 #define UNIPHY_PLL_SDM_CFG3 0x044 #define UNIPHY_PLL_SDM_CFG4 0x048 #define UNIPHY_PLL_SSC_CFG0 0x04C #define UNIPHY_PLL_SSC_CFG1 0x050 #define UNIPHY_PLL_SSC_CFG2 0x054 #define UNIPHY_PLL_SSC_CFG3 0x058 #define UNIPHY_PLL_LKDET_CFG0 0x05C #define UNIPHY_PLL_LKDET_CFG1 0x060 #define UNIPHY_PLL_LKDET_CFG2 0x064 #define UNIPHY_PLL_CAL_CFG0 0x06C #define UNIPHY_PLL_CAL_CFG8 0x08C #define UNIPHY_PLL_CAL_CFG9 0x090 #define UNIPHY_PLL_CAL_CFG10 0x094 #define UNIPHY_PLL_CAL_CFG11 0x098 #define UNIPHY_PLL_STATUS 0x0C0 #define SATA_PHY_SER_CTRL 0x100 #define SATA_PHY_TX_DRIV_CTRL0 0x104 #define SATA_PHY_TX_DRIV_CTRL1 0x108 #define SATA_PHY_TX_IMCAL0 0x11C #define SATA_PHY_TX_IMCAL2 0x124 #define SATA_PHY_RX_IMCAL0 0x128 #define SATA_PHY_EQUAL 0x13C #define SATA_PHY_OOB_TERM 0x144 #define SATA_PHY_CDR_CTRL0 0x148 #define SATA_PHY_CDR_CTRL1 0x14C #define SATA_PHY_CDR_CTRL2 0x150 #define SATA_PHY_CDR_CTRL3 0x154 #define SATA_PHY_PI_CTRL0 0x168 #define SATA_PHY_POW_DWN_CTRL0 0x180 #define SATA_PHY_POW_DWN_CTRL1 0x184 #define SATA_PHY_TX_DATA_CTRL 0x188 #define SATA_PHY_ALIGNP 0x1A4 #define SATA_PHY_TX_IMCAL_STAT 0x1E4 #define SATA_PHY_RX_IMCAL_STAT 0x1E8 #define UNIPHY_PLL_LOCK BIT(0) #define SATA_PHY_TX_CAL BIT(0) #define SATA_PHY_RX_CAL BIT(0) /* default timeout set to 1 sec */ #define TIMEOUT_MS 10000 #define DELAY_INTERVAL_US 100 struct qcom_apq8064_sata_phy { void __iomem *mmio; struct clk *cfg_clk; struct device *dev; }; /* Helper function to do poll and timeout */ static int poll_timeout(void __iomem *addr, u32 mask) { u32 val; return readl_relaxed_poll_timeout(addr, val, (val & mask), DELAY_INTERVAL_US, TIMEOUT_MS * 1000); } static int qcom_apq8064_sata_phy_init(struct phy *generic_phy) { struct qcom_apq8064_sata_phy *phy = phy_get_drvdata(generic_phy); void __iomem *base = phy->mmio; int ret = 0; /* SATA phy initialization */ writel_relaxed(0x01, base + SATA_PHY_SER_CTRL); writel_relaxed(0xB1, base + SATA_PHY_POW_DWN_CTRL0); /* Make sure the power down happens before power up */ mb(); usleep_range(10, 60); writel_relaxed(0x01, base + SATA_PHY_POW_DWN_CTRL0); writel_relaxed(0x3E, base + SATA_PHY_POW_DWN_CTRL1); writel_relaxed(0x01, base + SATA_PHY_RX_IMCAL0); writel_relaxed(0x01, base + SATA_PHY_TX_IMCAL0); writel_relaxed(0x02, base + SATA_PHY_TX_IMCAL2); /* Write UNIPHYPLL registers to configure PLL */ writel_relaxed(0x04, base + UNIPHY_PLL_REFCLK_CFG); writel_relaxed(0x00, base + UNIPHY_PLL_PWRGEN_CFG); writel_relaxed(0x0A, base + UNIPHY_PLL_CAL_CFG0); writel_relaxed(0xF3, base + UNIPHY_PLL_CAL_CFG8); writel_relaxed(0x01, base + UNIPHY_PLL_CAL_CFG9); writel_relaxed(0xED, base + UNIPHY_PLL_CAL_CFG10); writel_relaxed(0x02, base + UNIPHY_PLL_CAL_CFG11); writel_relaxed(0x36, base + UNIPHY_PLL_SDM_CFG0); writel_relaxed(0x0D, base + UNIPHY_PLL_SDM_CFG1); writel_relaxed(0xA3, base + UNIPHY_PLL_SDM_CFG2); writel_relaxed(0xF0, base + UNIPHY_PLL_SDM_CFG3); writel_relaxed(0x00, base + UNIPHY_PLL_SDM_CFG4); writel_relaxed(0x19, base + UNIPHY_PLL_SSC_CFG0); writel_relaxed(0xE1, base + UNIPHY_PLL_SSC_CFG1); writel_relaxed(0x00, base + UNIPHY_PLL_SSC_CFG2); writel_relaxed(0x11, base + UNIPHY_PLL_SSC_CFG3); writel_relaxed(0x04, base + UNIPHY_PLL_LKDET_CFG0); writel_relaxed(0xFF, base + UNIPHY_PLL_LKDET_CFG1); writel_relaxed(0x02, base + UNIPHY_PLL_GLB_CFG); /* make sure global config LDO power down happens before power up */ mb(); writel_relaxed(0x03, base + UNIPHY_PLL_GLB_CFG); writel_relaxed(0x05, base + UNIPHY_PLL_LKDET_CFG2); /* PLL Lock wait */ ret = poll_timeout(base + UNIPHY_PLL_STATUS, UNIPHY_PLL_LOCK); if (ret) { dev_err(phy->dev, "poll timeout UNIPHY_PLL_STATUS\n"); return ret; } /* TX Calibration */ ret = poll_timeout(base + SATA_PHY_TX_IMCAL_STAT, SATA_PHY_TX_CAL); if (ret) { dev_err(phy->dev, "poll timeout SATA_PHY_TX_IMCAL_STAT\n"); return ret; } /* RX Calibration */ ret = poll_timeout(base + SATA_PHY_RX_IMCAL_STAT, SATA_PHY_RX_CAL); if (ret) { dev_err(phy->dev, "poll timeout SATA_PHY_RX_IMCAL_STAT\n"); return ret; } /* SATA phy calibrated succesfully, power up to functional mode */ writel_relaxed(0x3E, base + SATA_PHY_POW_DWN_CTRL1); writel_relaxed(0x01, base + SATA_PHY_RX_IMCAL0); writel_relaxed(0x01, base + SATA_PHY_TX_IMCAL0); writel_relaxed(0x00, base + SATA_PHY_POW_DWN_CTRL1); writel_relaxed(0x59, base + SATA_PHY_CDR_CTRL0); writel_relaxed(0x04, base + SATA_PHY_CDR_CTRL1); writel_relaxed(0x00, base + SATA_PHY_CDR_CTRL2); writel_relaxed(0x00, base + SATA_PHY_PI_CTRL0); writel_relaxed(0x00, base + SATA_PHY_CDR_CTRL3); writel_relaxed(0x01, base + SATA_PHY_POW_DWN_CTRL0); writel_relaxed(0x11, base + SATA_PHY_TX_DATA_CTRL); writel_relaxed(0x43, base + SATA_PHY_ALIGNP); writel_relaxed(0x04, base + SATA_PHY_OOB_TERM); writel_relaxed(0x01, base + SATA_PHY_EQUAL); writel_relaxed(0x09, base + SATA_PHY_TX_DRIV_CTRL0); writel_relaxed(0x09, base + SATA_PHY_TX_DRIV_CTRL1); return 0; } static int qcom_apq8064_sata_phy_exit(struct phy *generic_phy) { struct qcom_apq8064_sata_phy *phy = phy_get_drvdata(generic_phy); void __iomem *base = phy->mmio; /* Power down PHY */ writel_relaxed(0xF8, base + SATA_PHY_POW_DWN_CTRL0); writel_relaxed(0xFE, base + SATA_PHY_POW_DWN_CTRL1); /* Power down PLL block */ writel_relaxed(0x00, base + UNIPHY_PLL_GLB_CFG); return 0; } static const struct phy_ops qcom_apq8064_sata_phy_ops = { .init = qcom_apq8064_sata_phy_init, .exit = qcom_apq8064_sata_phy_exit, .owner = THIS_MODULE, }; static int qcom_apq8064_sata_phy_probe(struct platform_device *pdev) { struct qcom_apq8064_sata_phy *phy; struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct phy *generic_phy; int ret; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) return -ENOMEM; phy->mmio = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(phy->mmio)) return PTR_ERR(phy->mmio); generic_phy = devm_phy_create(dev, NULL, &qcom_apq8064_sata_phy_ops); if (IS_ERR(generic_phy)) { dev_err(dev, "%s: failed to create phy\n", __func__); return PTR_ERR(generic_phy); } phy->dev = dev; phy_set_drvdata(generic_phy, phy); platform_set_drvdata(pdev, phy); phy->cfg_clk = devm_clk_get(dev, "cfg"); if (IS_ERR(phy->cfg_clk)) { dev_err(dev, "Failed to get sata cfg clock\n"); return PTR_ERR(phy->cfg_clk); } ret = clk_prepare_enable(phy->cfg_clk); if (ret) return ret; phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) { clk_disable_unprepare(phy->cfg_clk); dev_err(dev, "%s: failed to register phy\n", __func__); return PTR_ERR(phy_provider); } return 0; } static void qcom_apq8064_sata_phy_remove(struct platform_device *pdev) { struct qcom_apq8064_sata_phy *phy = platform_get_drvdata(pdev); clk_disable_unprepare(phy->cfg_clk); } static const struct of_device_id qcom_apq8064_sata_phy_of_match[] = { { .compatible = "qcom,apq8064-sata-phy" }, { }, }; MODULE_DEVICE_TABLE(of, qcom_apq8064_sata_phy_of_match); static struct platform_driver qcom_apq8064_sata_phy_driver = { .probe = qcom_apq8064_sata_phy_probe, .remove_new = qcom_apq8064_sata_phy_remove, .driver = { .name = "qcom-apq8064-sata-phy", .of_match_table = qcom_apq8064_sata_phy_of_match, } }; module_platform_driver(qcom_apq8064_sata_phy_driver); MODULE_DESCRIPTION("QCOM apq8064 SATA PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-apq8064-sata.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Linaro Ltd */ #include <linux/module.h> #include <linux/ulpi/driver.h> #include <linux/ulpi/regs.h> #include <linux/clk.h> #include <linux/regulator/consumer.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/reset.h> #include <linux/extcon.h> #include <linux/notifier.h> #define ULPI_PWR_CLK_MNG_REG 0x88 # define ULPI_PWR_OTG_COMP_DISABLE BIT(0) #define ULPI_MISC_A 0x96 # define ULPI_MISC_A_VBUSVLDEXTSEL BIT(1) # define ULPI_MISC_A_VBUSVLDEXT BIT(0) struct ulpi_seq { u8 addr; u8 val; }; struct qcom_usb_hs_phy { struct ulpi *ulpi; struct phy *phy; struct clk *ref_clk; struct clk *sleep_clk; struct regulator *v1p8; struct regulator *v3p3; struct reset_control *reset; struct ulpi_seq *init_seq; struct extcon_dev *vbus_edev; struct notifier_block vbus_notify; }; static int qcom_usb_hs_phy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct qcom_usb_hs_phy *uphy = phy_get_drvdata(phy); u8 addr; int ret; if (!uphy->vbus_edev) { u8 val = 0; switch (mode) { case PHY_MODE_USB_OTG: case PHY_MODE_USB_HOST: val |= ULPI_INT_IDGRD; fallthrough; case PHY_MODE_USB_DEVICE: val |= ULPI_INT_SESS_VALID; break; default: break; } ret = ulpi_write(uphy->ulpi, ULPI_USB_INT_EN_RISE, val); if (ret) return ret; ret = ulpi_write(uphy->ulpi, ULPI_USB_INT_EN_FALL, val); } else { switch (mode) { case PHY_MODE_USB_OTG: case PHY_MODE_USB_DEVICE: addr = ULPI_SET(ULPI_MISC_A); break; case PHY_MODE_USB_HOST: addr = ULPI_CLR(ULPI_MISC_A); break; default: return -EINVAL; } ret = ulpi_write(uphy->ulpi, ULPI_SET(ULPI_PWR_CLK_MNG_REG), ULPI_PWR_OTG_COMP_DISABLE); if (ret) return ret; ret = ulpi_write(uphy->ulpi, addr, ULPI_MISC_A_VBUSVLDEXTSEL); } return ret; } static int qcom_usb_hs_phy_vbus_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct qcom_usb_hs_phy *uphy; u8 addr; uphy = container_of(nb, struct qcom_usb_hs_phy, vbus_notify); if (event) addr = ULPI_SET(ULPI_MISC_A); else addr = ULPI_CLR(ULPI_MISC_A); return ulpi_write(uphy->ulpi, addr, ULPI_MISC_A_VBUSVLDEXT); } static int qcom_usb_hs_phy_power_on(struct phy *phy) { struct qcom_usb_hs_phy *uphy = phy_get_drvdata(phy); struct ulpi *ulpi = uphy->ulpi; const struct ulpi_seq *seq; int ret, state; ret = clk_prepare_enable(uphy->ref_clk); if (ret) return ret; ret = clk_prepare_enable(uphy->sleep_clk); if (ret) goto err_sleep; ret = regulator_set_load(uphy->v1p8, 50000); if (ret < 0) goto err_1p8; ret = regulator_enable(uphy->v1p8); if (ret) goto err_1p8; ret = regulator_set_voltage_triplet(uphy->v3p3, 3050000, 3300000, 3300000); if (ret) goto err_3p3; ret = regulator_set_load(uphy->v3p3, 50000); if (ret < 0) goto err_3p3; ret = regulator_enable(uphy->v3p3); if (ret) goto err_3p3; for (seq = uphy->init_seq; seq->addr; seq++) { ret = ulpi_write(ulpi, ULPI_EXT_VENDOR_SPECIFIC + seq->addr, seq->val); if (ret) goto err_ulpi; } if (uphy->reset) { ret = reset_control_reset(uphy->reset); if (ret) goto err_ulpi; } if (uphy->vbus_edev) { state = extcon_get_state(uphy->vbus_edev, EXTCON_USB); /* setup initial state */ qcom_usb_hs_phy_vbus_notifier(&uphy->vbus_notify, state, uphy->vbus_edev); ret = extcon_register_notifier(uphy->vbus_edev, EXTCON_USB, &uphy->vbus_notify); if (ret) goto err_ulpi; } return 0; err_ulpi: regulator_disable(uphy->v3p3); err_3p3: regulator_disable(uphy->v1p8); err_1p8: clk_disable_unprepare(uphy->sleep_clk); err_sleep: clk_disable_unprepare(uphy->ref_clk); return ret; } static int qcom_usb_hs_phy_power_off(struct phy *phy) { struct qcom_usb_hs_phy *uphy = phy_get_drvdata(phy); if (uphy->vbus_edev) extcon_unregister_notifier(uphy->vbus_edev, EXTCON_USB, &uphy->vbus_notify); regulator_disable(uphy->v3p3); regulator_disable(uphy->v1p8); clk_disable_unprepare(uphy->sleep_clk); clk_disable_unprepare(uphy->ref_clk); return 0; } static const struct phy_ops qcom_usb_hs_phy_ops = { .power_on = qcom_usb_hs_phy_power_on, .power_off = qcom_usb_hs_phy_power_off, .set_mode = qcom_usb_hs_phy_set_mode, .owner = THIS_MODULE, }; static int qcom_usb_hs_phy_probe(struct ulpi *ulpi) { struct qcom_usb_hs_phy *uphy; struct phy_provider *p; struct clk *clk; struct regulator *reg; struct reset_control *reset; int size; int ret; uphy = devm_kzalloc(&ulpi->dev, sizeof(*uphy), GFP_KERNEL); if (!uphy) return -ENOMEM; ulpi_set_drvdata(ulpi, uphy); uphy->ulpi = ulpi; size = of_property_count_u8_elems(ulpi->dev.of_node, "qcom,init-seq"); if (size < 0) size = 0; uphy->init_seq = devm_kmalloc_array(&ulpi->dev, (size / 2) + 1, sizeof(*uphy->init_seq), GFP_KERNEL); if (!uphy->init_seq) return -ENOMEM; ret = of_property_read_u8_array(ulpi->dev.of_node, "qcom,init-seq", (u8 *)uphy->init_seq, size); if (ret && size) return ret; /* NUL terminate */ uphy->init_seq[size / 2].addr = uphy->init_seq[size / 2].val = 0; uphy->ref_clk = clk = devm_clk_get(&ulpi->dev, "ref"); if (IS_ERR(clk)) return PTR_ERR(clk); uphy->sleep_clk = clk = devm_clk_get(&ulpi->dev, "sleep"); if (IS_ERR(clk)) return PTR_ERR(clk); uphy->v1p8 = reg = devm_regulator_get(&ulpi->dev, "v1p8"); if (IS_ERR(reg)) return PTR_ERR(reg); uphy->v3p3 = reg = devm_regulator_get(&ulpi->dev, "v3p3"); if (IS_ERR(reg)) return PTR_ERR(reg); uphy->reset = reset = devm_reset_control_get(&ulpi->dev, "por"); if (IS_ERR(reset)) { if (PTR_ERR(reset) == -EPROBE_DEFER) return PTR_ERR(reset); uphy->reset = NULL; } uphy->phy = devm_phy_create(&ulpi->dev, ulpi->dev.of_node, &qcom_usb_hs_phy_ops); if (IS_ERR(uphy->phy)) return PTR_ERR(uphy->phy); uphy->vbus_edev = extcon_get_edev_by_phandle(&ulpi->dev, 0); if (IS_ERR(uphy->vbus_edev)) { if (PTR_ERR(uphy->vbus_edev) != -ENODEV) return PTR_ERR(uphy->vbus_edev); uphy->vbus_edev = NULL; } uphy->vbus_notify.notifier_call = qcom_usb_hs_phy_vbus_notifier; phy_set_drvdata(uphy->phy, uphy); p = devm_of_phy_provider_register(&ulpi->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(p); } static const struct of_device_id qcom_usb_hs_phy_match[] = { { .compatible = "qcom,usb-hs-phy", }, { } }; MODULE_DEVICE_TABLE(of, qcom_usb_hs_phy_match); static struct ulpi_driver qcom_usb_hs_phy_driver = { .probe = qcom_usb_hs_phy_probe, .driver = { .name = "qcom_usb_hs_phy", .of_match_table = qcom_usb_hs_phy_match, }, }; module_ulpi_driver(qcom_usb_hs_phy_driver); MODULE_DESCRIPTION("Qualcomm USB HS phy"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-usb-hs.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2009-2018, Linux Foundation. All rights reserved. * Copyright (c) 2018-2020, Linaro Limited */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_graph.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> /* PHY register and bit definitions */ #define PHY_CTRL_COMMON0 0x078 #define SIDDQ BIT(2) #define PHY_IRQ_CMD 0x0d0 #define PHY_INTR_MASK0 0x0d4 #define PHY_INTR_CLEAR0 0x0dc #define DPDM_MASK 0x1e #define DP_1_0 BIT(4) #define DP_0_1 BIT(3) #define DM_1_0 BIT(2) #define DM_0_1 BIT(1) enum hsphy_voltage { VOL_NONE, VOL_MIN, VOL_MAX, VOL_NUM, }; enum hsphy_vreg { VDD, VDDA_1P8, VDDA_3P3, VREG_NUM, }; struct hsphy_init_seq { int offset; int val; int delay; }; struct hsphy_data { const struct hsphy_init_seq *init_seq; unsigned int init_seq_num; }; struct hsphy_priv { void __iomem *base; struct clk_bulk_data *clks; int num_clks; struct reset_control *phy_reset; struct reset_control *por_reset; struct regulator_bulk_data vregs[VREG_NUM]; const struct hsphy_data *data; enum phy_mode mode; }; static int qcom_snps_hsphy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct hsphy_priv *priv = phy_get_drvdata(phy); priv->mode = PHY_MODE_INVALID; if (mode > 0) priv->mode = mode; return 0; } static void qcom_snps_hsphy_enable_hv_interrupts(struct hsphy_priv *priv) { u32 val; /* Clear any existing interrupts before enabling the interrupts */ val = readb(priv->base + PHY_INTR_CLEAR0); val |= DPDM_MASK; writeb(val, priv->base + PHY_INTR_CLEAR0); writeb(0x0, priv->base + PHY_IRQ_CMD); usleep_range(200, 220); writeb(0x1, priv->base + PHY_IRQ_CMD); /* Make sure the interrupts are cleared */ usleep_range(200, 220); val = readb(priv->base + PHY_INTR_MASK0); switch (priv->mode) { case PHY_MODE_USB_HOST_HS: case PHY_MODE_USB_HOST_FS: case PHY_MODE_USB_DEVICE_HS: case PHY_MODE_USB_DEVICE_FS: val |= DP_1_0 | DM_0_1; break; case PHY_MODE_USB_HOST_LS: case PHY_MODE_USB_DEVICE_LS: val |= DP_0_1 | DM_1_0; break; default: /* No device connected */ val |= DP_0_1 | DM_0_1; break; } writeb(val, priv->base + PHY_INTR_MASK0); } static void qcom_snps_hsphy_disable_hv_interrupts(struct hsphy_priv *priv) { u32 val; val = readb(priv->base + PHY_INTR_MASK0); val &= ~DPDM_MASK; writeb(val, priv->base + PHY_INTR_MASK0); /* Clear any pending interrupts */ val = readb(priv->base + PHY_INTR_CLEAR0); val |= DPDM_MASK; writeb(val, priv->base + PHY_INTR_CLEAR0); writeb(0x0, priv->base + PHY_IRQ_CMD); usleep_range(200, 220); writeb(0x1, priv->base + PHY_IRQ_CMD); usleep_range(200, 220); } static void qcom_snps_hsphy_enter_retention(struct hsphy_priv *priv) { u32 val; val = readb(priv->base + PHY_CTRL_COMMON0); val |= SIDDQ; writeb(val, priv->base + PHY_CTRL_COMMON0); } static void qcom_snps_hsphy_exit_retention(struct hsphy_priv *priv) { u32 val; val = readb(priv->base + PHY_CTRL_COMMON0); val &= ~SIDDQ; writeb(val, priv->base + PHY_CTRL_COMMON0); } static int qcom_snps_hsphy_power_on(struct phy *phy) { struct hsphy_priv *priv = phy_get_drvdata(phy); int ret; ret = regulator_bulk_enable(VREG_NUM, priv->vregs); if (ret) return ret; qcom_snps_hsphy_disable_hv_interrupts(priv); qcom_snps_hsphy_exit_retention(priv); return 0; } static int qcom_snps_hsphy_power_off(struct phy *phy) { struct hsphy_priv *priv = phy_get_drvdata(phy); qcom_snps_hsphy_enter_retention(priv); qcom_snps_hsphy_enable_hv_interrupts(priv); regulator_bulk_disable(VREG_NUM, priv->vregs); return 0; } static int qcom_snps_hsphy_reset(struct hsphy_priv *priv) { int ret; ret = reset_control_assert(priv->phy_reset); if (ret) return ret; usleep_range(10, 15); ret = reset_control_deassert(priv->phy_reset); if (ret) return ret; usleep_range(80, 100); return 0; } static void qcom_snps_hsphy_init_sequence(struct hsphy_priv *priv) { const struct hsphy_data *data = priv->data; const struct hsphy_init_seq *seq; int i; /* Device match data is optional. */ if (!data) return; seq = data->init_seq; for (i = 0; i < data->init_seq_num; i++, seq++) { writeb(seq->val, priv->base + seq->offset); if (seq->delay) usleep_range(seq->delay, seq->delay + 10); } } static int qcom_snps_hsphy_por_reset(struct hsphy_priv *priv) { int ret; ret = reset_control_assert(priv->por_reset); if (ret) return ret; /* * The Femto PHY is POR reset in the following scenarios. * * 1. After overriding the parameter registers. * 2. Low power mode exit from PHY retention. * * Ensure that SIDDQ is cleared before bringing the PHY * out of reset. */ qcom_snps_hsphy_exit_retention(priv); /* * As per databook, 10 usec delay is required between * PHY POR assert and de-assert. */ usleep_range(10, 20); ret = reset_control_deassert(priv->por_reset); if (ret) return ret; /* * As per databook, it takes 75 usec for PHY to stabilize * after the reset. */ usleep_range(80, 100); return 0; } static int qcom_snps_hsphy_init(struct phy *phy) { struct hsphy_priv *priv = phy_get_drvdata(phy); int ret; ret = clk_bulk_prepare_enable(priv->num_clks, priv->clks); if (ret) return ret; ret = qcom_snps_hsphy_reset(priv); if (ret) goto disable_clocks; qcom_snps_hsphy_init_sequence(priv); ret = qcom_snps_hsphy_por_reset(priv); if (ret) goto disable_clocks; return 0; disable_clocks: clk_bulk_disable_unprepare(priv->num_clks, priv->clks); return ret; } static int qcom_snps_hsphy_exit(struct phy *phy) { struct hsphy_priv *priv = phy_get_drvdata(phy); clk_bulk_disable_unprepare(priv->num_clks, priv->clks); return 0; } static const struct phy_ops qcom_snps_hsphy_ops = { .init = qcom_snps_hsphy_init, .exit = qcom_snps_hsphy_exit, .power_on = qcom_snps_hsphy_power_on, .power_off = qcom_snps_hsphy_power_off, .set_mode = qcom_snps_hsphy_set_mode, .owner = THIS_MODULE, }; static const char * const qcom_snps_hsphy_clks[] = { "ref", "ahb", "sleep", }; static int qcom_snps_hsphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *provider; struct hsphy_priv *priv; struct phy *phy; int ret; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); priv->num_clks = ARRAY_SIZE(qcom_snps_hsphy_clks); priv->clks = devm_kcalloc(dev, priv->num_clks, sizeof(*priv->clks), GFP_KERNEL); if (!priv->clks) return -ENOMEM; for (i = 0; i < priv->num_clks; i++) priv->clks[i].id = qcom_snps_hsphy_clks[i]; ret = devm_clk_bulk_get(dev, priv->num_clks, priv->clks); if (ret) return ret; priv->phy_reset = devm_reset_control_get_exclusive(dev, "phy"); if (IS_ERR(priv->phy_reset)) return PTR_ERR(priv->phy_reset); priv->por_reset = devm_reset_control_get_exclusive(dev, "por"); if (IS_ERR(priv->por_reset)) return PTR_ERR(priv->por_reset); priv->vregs[VDD].supply = "vdd"; priv->vregs[VDDA_1P8].supply = "vdda1p8"; priv->vregs[VDDA_3P3].supply = "vdda3p3"; ret = devm_regulator_bulk_get(dev, VREG_NUM, priv->vregs); if (ret) return ret; /* Get device match data */ priv->data = device_get_match_data(dev); phy = devm_phy_create(dev, dev->of_node, &qcom_snps_hsphy_ops); if (IS_ERR(phy)) return PTR_ERR(phy); phy_set_drvdata(phy, priv); provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(provider)) return PTR_ERR(provider); ret = regulator_set_load(priv->vregs[VDDA_1P8].consumer, 19000); if (ret < 0) return ret; ret = regulator_set_load(priv->vregs[VDDA_3P3].consumer, 16000); if (ret < 0) goto unset_1p8_load; return 0; unset_1p8_load: regulator_set_load(priv->vregs[VDDA_1P8].consumer, 0); return ret; } /* * The macro is used to define an initialization sequence. Each tuple * is meant to program 'value' into phy register at 'offset' with 'delay' * in us followed. */ #define HSPHY_INIT_CFG(o, v, d) { .offset = o, .val = v, .delay = d, } static const struct hsphy_init_seq init_seq_femtophy[] = { HSPHY_INIT_CFG(0xc0, 0x01, 0), HSPHY_INIT_CFG(0xe8, 0x0d, 0), HSPHY_INIT_CFG(0x74, 0x12, 0), HSPHY_INIT_CFG(0x98, 0x63, 0), HSPHY_INIT_CFG(0x9c, 0x03, 0), HSPHY_INIT_CFG(0xa0, 0x1d, 0), HSPHY_INIT_CFG(0xa4, 0x03, 0), HSPHY_INIT_CFG(0x8c, 0x23, 0), HSPHY_INIT_CFG(0x78, 0x08, 0), HSPHY_INIT_CFG(0x7c, 0xdc, 0), HSPHY_INIT_CFG(0x90, 0xe0, 20), HSPHY_INIT_CFG(0x74, 0x10, 0), HSPHY_INIT_CFG(0x90, 0x60, 0), }; static const struct hsphy_data hsphy_data_femtophy = { .init_seq = init_seq_femtophy, .init_seq_num = ARRAY_SIZE(init_seq_femtophy), }; static const struct of_device_id qcom_snps_hsphy_match[] = { { .compatible = "qcom,usb-hs-28nm-femtophy", .data = &hsphy_data_femtophy, }, { }, }; MODULE_DEVICE_TABLE(of, qcom_snps_hsphy_match); static struct platform_driver qcom_snps_hsphy_driver = { .probe = qcom_snps_hsphy_probe, .driver = { .name = "qcom,usb-hs-28nm-phy", .of_match_table = qcom_snps_hsphy_match, }, }; module_platform_driver(qcom_snps_hsphy_driver); MODULE_DESCRIPTION("Qualcomm 28nm Hi-Speed USB PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-usb-hs-28nm.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2023, Linaro Limited */ #include <linux/clk.h> #include <linux/ethtool.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #define QSERDES_QMP_PLL 0x0 #define QSERDES_COM_BIN_VCOCAL_CMP_CODE1_MODE0 (QSERDES_QMP_PLL + 0x1ac) #define QSERDES_COM_BIN_VCOCAL_CMP_CODE2_MODE0 (QSERDES_QMP_PLL + 0x1b0) #define QSERDES_COM_BIN_VCOCAL_HSCLK_SEL (QSERDES_QMP_PLL + 0x1bc) #define QSERDES_COM_CORE_CLK_EN (QSERDES_QMP_PLL + 0x174) #define QSERDES_COM_CORECLK_DIV_MODE0 (QSERDES_QMP_PLL + 0x168) #define QSERDES_COM_CP_CTRL_MODE0 (QSERDES_QMP_PLL + 0x74) #define QSERDES_COM_DEC_START_MODE0 (QSERDES_QMP_PLL + 0xbc) #define QSERDES_COM_DIV_FRAC_START1_MODE0 (QSERDES_QMP_PLL + 0xcc) #define QSERDES_COM_DIV_FRAC_START2_MODE0 (QSERDES_QMP_PLL + 0xd0) #define QSERDES_COM_DIV_FRAC_START3_MODE0 (QSERDES_QMP_PLL + 0xd4) #define QSERDES_COM_HSCLK_HS_SWITCH_SEL (QSERDES_QMP_PLL + 0x15c) #define QSERDES_COM_HSCLK_SEL (QSERDES_QMP_PLL + 0x158) #define QSERDES_COM_LOCK_CMP1_MODE0 (QSERDES_QMP_PLL + 0xac) #define QSERDES_COM_LOCK_CMP2_MODE0 (QSERDES_QMP_PLL + 0xb0) #define QSERDES_COM_PLL_CCTRL_MODE0 (QSERDES_QMP_PLL + 0x84) #define QSERDES_COM_PLL_IVCO (QSERDES_QMP_PLL + 0x58) #define QSERDES_COM_PLL_RCTRL_MODE0 (QSERDES_QMP_PLL + 0x7c) #define QSERDES_COM_SYSCLK_EN_SEL (QSERDES_QMP_PLL + 0x94) #define QSERDES_COM_VCO_TUNE1_MODE0 (QSERDES_QMP_PLL + 0x110) #define QSERDES_COM_VCO_TUNE2_MODE0 (QSERDES_QMP_PLL + 0x114) #define QSERDES_COM_VCO_TUNE_INITVAL2 (QSERDES_QMP_PLL + 0x124) #define QSERDES_COM_C_READY_STATUS (QSERDES_QMP_PLL + 0x178) #define QSERDES_COM_CMN_STATUS (QSERDES_QMP_PLL + 0x140) #define QSERDES_RX 0x600 #define QSERDES_RX_UCDR_FO_GAIN (QSERDES_RX + 0x8) #define QSERDES_RX_UCDR_SO_GAIN (QSERDES_RX + 0x14) #define QSERDES_RX_UCDR_FASTLOCK_FO_GAIN (QSERDES_RX + 0x30) #define QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE (QSERDES_RX + 0x34) #define QSERDES_RX_UCDR_FASTLOCK_COUNT_LOW (QSERDES_RX + 0x3c) #define QSERDES_RX_UCDR_FASTLOCK_COUNT_HIGH (QSERDES_RX + 0x40) #define QSERDES_RX_UCDR_PI_CONTROLS (QSERDES_RX + 0x44) #define QSERDES_RX_UCDR_PI_CTRL2 (QSERDES_RX + 0x48) #define QSERDES_RX_RX_TERM_BW (QSERDES_RX + 0x80) #define QSERDES_RX_VGA_CAL_CNTRL2 (QSERDES_RX + 0xd8) #define QSERDES_RX_GM_CAL (QSERDES_RX + 0xdc) #define QSERDES_RX_RX_EQU_ADAPTOR_CNTRL1 (QSERDES_RX + 0xe8) #define QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2 (QSERDES_RX + 0xec) #define QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3 (QSERDES_RX + 0xf0) #define QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4 (QSERDES_RX + 0xf4) #define QSERDES_RX_RX_IDAC_TSETTLE_LOW (QSERDES_RX + 0xf8) #define QSERDES_RX_RX_IDAC_TSETTLE_HIGH (QSERDES_RX + 0xfc) #define QSERDES_RX_RX_IDAC_MEASURE_TIME (QSERDES_RX + 0x100) #define QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1 (QSERDES_RX + 0x110) #define QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2 (QSERDES_RX + 0x114) #define QSERDES_RX_SIGDET_CNTRL (QSERDES_RX + 0x11c) #define QSERDES_RX_SIGDET_DEGLITCH_CNTRL (QSERDES_RX + 0x124) #define QSERDES_RX_RX_BAND (QSERDES_RX + 0x128) #define QSERDES_RX_RX_MODE_00_LOW (QSERDES_RX + 0x15c) #define QSERDES_RX_RX_MODE_00_HIGH (QSERDES_RX + 0x160) #define QSERDES_RX_RX_MODE_00_HIGH2 (QSERDES_RX + 0x164) #define QSERDES_RX_RX_MODE_00_HIGH3 (QSERDES_RX + 0x168) #define QSERDES_RX_RX_MODE_00_HIGH4 (QSERDES_RX + 0x16c) #define QSERDES_RX_RX_MODE_01_LOW (QSERDES_RX + 0x170) #define QSERDES_RX_RX_MODE_01_HIGH (QSERDES_RX + 0x174) #define QSERDES_RX_RX_MODE_01_HIGH2 (QSERDES_RX + 0x178) #define QSERDES_RX_RX_MODE_01_HIGH3 (QSERDES_RX + 0x17c) #define QSERDES_RX_RX_MODE_01_HIGH4 (QSERDES_RX + 0x180) #define QSERDES_RX_RX_MODE_10_LOW (QSERDES_RX + 0x184) #define QSERDES_RX_RX_MODE_10_HIGH (QSERDES_RX + 0x188) #define QSERDES_RX_RX_MODE_10_HIGH2 (QSERDES_RX + 0x18c) #define QSERDES_RX_RX_MODE_10_HIGH3 (QSERDES_RX + 0x190) #define QSERDES_RX_RX_MODE_10_HIGH4 (QSERDES_RX + 0x194) #define QSERDES_RX_DCC_CTRL1 (QSERDES_RX + 0x1a8) #define QSERDES_TX 0x400 #define QSERDES_TX_TX_BAND (QSERDES_TX + 0x24) #define QSERDES_TX_SLEW_CNTL (QSERDES_TX + 0x28) #define QSERDES_TX_RES_CODE_LANE_OFFSET_TX (QSERDES_TX + 0x3c) #define QSERDES_TX_RES_CODE_LANE_OFFSET_RX (QSERDES_TX + 0x40) #define QSERDES_TX_LANE_MODE_1 (QSERDES_TX + 0x84) #define QSERDES_TX_LANE_MODE_3 (QSERDES_TX + 0x8c) #define QSERDES_TX_RCV_DETECT_LVL_2 (QSERDES_TX + 0xa4) #define QSERDES_TX_TRAN_DRVR_EMP_EN (QSERDES_TX + 0xc0) #define QSERDES_PCS 0xC00 #define QSERDES_PCS_PHY_START (QSERDES_PCS + 0x0) #define QSERDES_PCS_POWER_DOWN_CONTROL (QSERDES_PCS + 0x4) #define QSERDES_PCS_SW_RESET (QSERDES_PCS + 0x8) #define QSERDES_PCS_LINE_RESET_TIME (QSERDES_PCS + 0xc) #define QSERDES_PCS_TX_LARGE_AMP_DRV_LVL (QSERDES_PCS + 0x20) #define QSERDES_PCS_TX_SMALL_AMP_DRV_LVL (QSERDES_PCS + 0x28) #define QSERDES_PCS_TX_MID_TERM_CTRL1 (QSERDES_PCS + 0xd8) #define QSERDES_PCS_TX_MID_TERM_CTRL2 (QSERDES_PCS + 0xdc) #define QSERDES_PCS_SGMII_MISC_CTRL8 (QSERDES_PCS + 0x118) #define QSERDES_PCS_PCS_READY_STATUS (QSERDES_PCS + 0x94) #define QSERDES_COM_C_READY BIT(0) #define QSERDES_PCS_READY BIT(0) #define QSERDES_PCS_SGMIIPHY_READY BIT(7) #define QSERDES_COM_C_PLL_LOCKED BIT(1) struct qcom_dwmac_sgmii_phy_data { struct regmap *regmap; struct clk *refclk; int speed; }; static void qcom_dwmac_sgmii_phy_init_1g(struct regmap *regmap) { regmap_write(regmap, QSERDES_PCS_SW_RESET, 0x01); regmap_write(regmap, QSERDES_PCS_POWER_DOWN_CONTROL, 0x01); regmap_write(regmap, QSERDES_COM_PLL_IVCO, 0x0F); regmap_write(regmap, QSERDES_COM_CP_CTRL_MODE0, 0x06); regmap_write(regmap, QSERDES_COM_PLL_RCTRL_MODE0, 0x16); regmap_write(regmap, QSERDES_COM_PLL_CCTRL_MODE0, 0x36); regmap_write(regmap, QSERDES_COM_SYSCLK_EN_SEL, 0x1A); regmap_write(regmap, QSERDES_COM_LOCK_CMP1_MODE0, 0x0A); regmap_write(regmap, QSERDES_COM_LOCK_CMP2_MODE0, 0x1A); regmap_write(regmap, QSERDES_COM_DEC_START_MODE0, 0x82); regmap_write(regmap, QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55); regmap_write(regmap, QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55); regmap_write(regmap, QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03); regmap_write(regmap, QSERDES_COM_VCO_TUNE1_MODE0, 0x24); regmap_write(regmap, QSERDES_COM_VCO_TUNE2_MODE0, 0x02); regmap_write(regmap, QSERDES_COM_VCO_TUNE_INITVAL2, 0x00); regmap_write(regmap, QSERDES_COM_HSCLK_SEL, 0x04); regmap_write(regmap, QSERDES_COM_HSCLK_HS_SWITCH_SEL, 0x00); regmap_write(regmap, QSERDES_COM_CORECLK_DIV_MODE0, 0x0A); regmap_write(regmap, QSERDES_COM_CORE_CLK_EN, 0x00); regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xB9); regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1E); regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_HSCLK_SEL, 0x11); regmap_write(regmap, QSERDES_TX_TX_BAND, 0x05); regmap_write(regmap, QSERDES_TX_SLEW_CNTL, 0x0A); regmap_write(regmap, QSERDES_TX_RES_CODE_LANE_OFFSET_TX, 0x09); regmap_write(regmap, QSERDES_TX_RES_CODE_LANE_OFFSET_RX, 0x09); regmap_write(regmap, QSERDES_TX_LANE_MODE_1, 0x05); regmap_write(regmap, QSERDES_TX_LANE_MODE_3, 0x00); regmap_write(regmap, QSERDES_TX_RCV_DETECT_LVL_2, 0x12); regmap_write(regmap, QSERDES_TX_TRAN_DRVR_EMP_EN, 0x0C); regmap_write(regmap, QSERDES_RX_UCDR_FO_GAIN, 0x0A); regmap_write(regmap, QSERDES_RX_UCDR_SO_GAIN, 0x06); regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0A); regmap_write(regmap, QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7F); regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_COUNT_LOW, 0x00); regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x01); regmap_write(regmap, QSERDES_RX_UCDR_PI_CONTROLS, 0x81); regmap_write(regmap, QSERDES_RX_UCDR_PI_CTRL2, 0x80); regmap_write(regmap, QSERDES_RX_RX_TERM_BW, 0x04); regmap_write(regmap, QSERDES_RX_VGA_CAL_CNTRL2, 0x08); regmap_write(regmap, QSERDES_RX_GM_CAL, 0x0F); regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL1, 0x04); regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x00); regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4A); regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0A); regmap_write(regmap, QSERDES_RX_RX_IDAC_TSETTLE_LOW, 0x80); regmap_write(regmap, QSERDES_RX_RX_IDAC_TSETTLE_HIGH, 0x01); regmap_write(regmap, QSERDES_RX_RX_IDAC_MEASURE_TIME, 0x20); regmap_write(regmap, QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17); regmap_write(regmap, QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x00); regmap_write(regmap, QSERDES_RX_SIGDET_CNTRL, 0x0F); regmap_write(regmap, QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x1E); regmap_write(regmap, QSERDES_RX_RX_BAND, 0x05); regmap_write(regmap, QSERDES_RX_RX_MODE_00_LOW, 0xE0); regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH2, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH3, 0x09); regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH4, 0xB1); regmap_write(regmap, QSERDES_RX_RX_MODE_01_LOW, 0xE0); regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH2, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH3, 0x09); regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH4, 0xB1); regmap_write(regmap, QSERDES_RX_RX_MODE_10_LOW, 0xE0); regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH2, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH3, 0x3B); regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH4, 0xB7); regmap_write(regmap, QSERDES_RX_DCC_CTRL1, 0x0C); regmap_write(regmap, QSERDES_PCS_LINE_RESET_TIME, 0x0C); regmap_write(regmap, QSERDES_PCS_TX_LARGE_AMP_DRV_LVL, 0x1F); regmap_write(regmap, QSERDES_PCS_TX_SMALL_AMP_DRV_LVL, 0x03); regmap_write(regmap, QSERDES_PCS_TX_MID_TERM_CTRL1, 0x83); regmap_write(regmap, QSERDES_PCS_TX_MID_TERM_CTRL2, 0x08); regmap_write(regmap, QSERDES_PCS_SGMII_MISC_CTRL8, 0x0C); regmap_write(regmap, QSERDES_PCS_SW_RESET, 0x00); regmap_write(regmap, QSERDES_PCS_PHY_START, 0x01); } static void qcom_dwmac_sgmii_phy_init_2p5g(struct regmap *regmap) { regmap_write(regmap, QSERDES_PCS_SW_RESET, 0x01); regmap_write(regmap, QSERDES_PCS_POWER_DOWN_CONTROL, 0x01); regmap_write(regmap, QSERDES_COM_PLL_IVCO, 0x0F); regmap_write(regmap, QSERDES_COM_CP_CTRL_MODE0, 0x06); regmap_write(regmap, QSERDES_COM_PLL_RCTRL_MODE0, 0x16); regmap_write(regmap, QSERDES_COM_PLL_CCTRL_MODE0, 0x36); regmap_write(regmap, QSERDES_COM_SYSCLK_EN_SEL, 0x1A); regmap_write(regmap, QSERDES_COM_LOCK_CMP1_MODE0, 0x1A); regmap_write(regmap, QSERDES_COM_LOCK_CMP2_MODE0, 0x41); regmap_write(regmap, QSERDES_COM_DEC_START_MODE0, 0x7A); regmap_write(regmap, QSERDES_COM_DIV_FRAC_START1_MODE0, 0x00); regmap_write(regmap, QSERDES_COM_DIV_FRAC_START2_MODE0, 0x20); regmap_write(regmap, QSERDES_COM_DIV_FRAC_START3_MODE0, 0x01); regmap_write(regmap, QSERDES_COM_VCO_TUNE1_MODE0, 0xA1); regmap_write(regmap, QSERDES_COM_VCO_TUNE2_MODE0, 0x02); regmap_write(regmap, QSERDES_COM_VCO_TUNE_INITVAL2, 0x00); regmap_write(regmap, QSERDES_COM_HSCLK_SEL, 0x03); regmap_write(regmap, QSERDES_COM_HSCLK_HS_SWITCH_SEL, 0x00); regmap_write(regmap, QSERDES_COM_CORECLK_DIV_MODE0, 0x05); regmap_write(regmap, QSERDES_COM_CORE_CLK_EN, 0x00); regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xCD); regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1C); regmap_write(regmap, QSERDES_COM_BIN_VCOCAL_HSCLK_SEL, 0x11); regmap_write(regmap, QSERDES_TX_TX_BAND, 0x04); regmap_write(regmap, QSERDES_TX_SLEW_CNTL, 0x0A); regmap_write(regmap, QSERDES_TX_RES_CODE_LANE_OFFSET_TX, 0x09); regmap_write(regmap, QSERDES_TX_RES_CODE_LANE_OFFSET_RX, 0x02); regmap_write(regmap, QSERDES_TX_LANE_MODE_1, 0x05); regmap_write(regmap, QSERDES_TX_LANE_MODE_3, 0x00); regmap_write(regmap, QSERDES_TX_RCV_DETECT_LVL_2, 0x12); regmap_write(regmap, QSERDES_TX_TRAN_DRVR_EMP_EN, 0x0C); regmap_write(regmap, QSERDES_RX_UCDR_FO_GAIN, 0x0A); regmap_write(regmap, QSERDES_RX_UCDR_SO_GAIN, 0x06); regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0A); regmap_write(regmap, QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7F); regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_COUNT_LOW, 0x00); regmap_write(regmap, QSERDES_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x01); regmap_write(regmap, QSERDES_RX_UCDR_PI_CONTROLS, 0x81); regmap_write(regmap, QSERDES_RX_UCDR_PI_CTRL2, 0x80); regmap_write(regmap, QSERDES_RX_RX_TERM_BW, 0x00); regmap_write(regmap, QSERDES_RX_VGA_CAL_CNTRL2, 0x08); regmap_write(regmap, QSERDES_RX_GM_CAL, 0x0F); regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL1, 0x04); regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x00); regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4A); regmap_write(regmap, QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0A); regmap_write(regmap, QSERDES_RX_RX_IDAC_TSETTLE_LOW, 0x80); regmap_write(regmap, QSERDES_RX_RX_IDAC_TSETTLE_HIGH, 0x01); regmap_write(regmap, QSERDES_RX_RX_IDAC_MEASURE_TIME, 0x20); regmap_write(regmap, QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17); regmap_write(regmap, QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x00); regmap_write(regmap, QSERDES_RX_SIGDET_CNTRL, 0x0F); regmap_write(regmap, QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x1E); regmap_write(regmap, QSERDES_RX_RX_BAND, 0x18); regmap_write(regmap, QSERDES_RX_RX_MODE_00_LOW, 0x18); regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH2, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH3, 0x0C); regmap_write(regmap, QSERDES_RX_RX_MODE_00_HIGH4, 0xB8); regmap_write(regmap, QSERDES_RX_RX_MODE_01_LOW, 0xE0); regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH2, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH3, 0x09); regmap_write(regmap, QSERDES_RX_RX_MODE_01_HIGH4, 0xB1); regmap_write(regmap, QSERDES_RX_RX_MODE_10_LOW, 0xE0); regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH2, 0xC8); regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH3, 0x3B); regmap_write(regmap, QSERDES_RX_RX_MODE_10_HIGH4, 0xB7); regmap_write(regmap, QSERDES_RX_DCC_CTRL1, 0x0C); regmap_write(regmap, QSERDES_PCS_LINE_RESET_TIME, 0x0C); regmap_write(regmap, QSERDES_PCS_TX_LARGE_AMP_DRV_LVL, 0x1F); regmap_write(regmap, QSERDES_PCS_TX_SMALL_AMP_DRV_LVL, 0x03); regmap_write(regmap, QSERDES_PCS_TX_MID_TERM_CTRL1, 0x83); regmap_write(regmap, QSERDES_PCS_TX_MID_TERM_CTRL2, 0x08); regmap_write(regmap, QSERDES_PCS_SGMII_MISC_CTRL8, 0x8C); regmap_write(regmap, QSERDES_PCS_SW_RESET, 0x00); regmap_write(regmap, QSERDES_PCS_PHY_START, 0x01); } static inline int qcom_dwmac_sgmii_phy_poll_status(struct regmap *regmap, unsigned int reg, unsigned int bit) { unsigned int val; return regmap_read_poll_timeout(regmap, reg, val, val & bit, 1500, 750000); } static int qcom_dwmac_sgmii_phy_calibrate(struct phy *phy) { struct qcom_dwmac_sgmii_phy_data *data = phy_get_drvdata(phy); struct device *dev = phy->dev.parent; switch (data->speed) { case SPEED_10: case SPEED_100: case SPEED_1000: qcom_dwmac_sgmii_phy_init_1g(data->regmap); break; case SPEED_2500: qcom_dwmac_sgmii_phy_init_2p5g(data->regmap); break; } if (qcom_dwmac_sgmii_phy_poll_status(data->regmap, QSERDES_COM_C_READY_STATUS, QSERDES_COM_C_READY)) { dev_err(dev, "QSERDES_COM_C_READY_STATUS timed-out"); return -ETIMEDOUT; } if (qcom_dwmac_sgmii_phy_poll_status(data->regmap, QSERDES_PCS_PCS_READY_STATUS, QSERDES_PCS_READY)) { dev_err(dev, "PCS_READY timed-out"); return -ETIMEDOUT; } if (qcom_dwmac_sgmii_phy_poll_status(data->regmap, QSERDES_PCS_PCS_READY_STATUS, QSERDES_PCS_SGMIIPHY_READY)) { dev_err(dev, "SGMIIPHY_READY timed-out"); return -ETIMEDOUT; } if (qcom_dwmac_sgmii_phy_poll_status(data->regmap, QSERDES_COM_CMN_STATUS, QSERDES_COM_C_PLL_LOCKED)) { dev_err(dev, "PLL Lock Status timed-out"); return -ETIMEDOUT; } return 0; } static int qcom_dwmac_sgmii_phy_power_on(struct phy *phy) { struct qcom_dwmac_sgmii_phy_data *data = phy_get_drvdata(phy); return clk_prepare_enable(data->refclk); } static int qcom_dwmac_sgmii_phy_power_off(struct phy *phy) { struct qcom_dwmac_sgmii_phy_data *data = phy_get_drvdata(phy); regmap_write(data->regmap, QSERDES_PCS_TX_MID_TERM_CTRL2, 0x08); regmap_write(data->regmap, QSERDES_PCS_SW_RESET, 0x01); udelay(100); regmap_write(data->regmap, QSERDES_PCS_SW_RESET, 0x00); regmap_write(data->regmap, QSERDES_PCS_PHY_START, 0x01); clk_disable_unprepare(data->refclk); return 0; } static int qcom_dwmac_sgmii_phy_set_speed(struct phy *phy, int speed) { struct qcom_dwmac_sgmii_phy_data *data = phy_get_drvdata(phy); if (speed != data->speed) data->speed = speed; return qcom_dwmac_sgmii_phy_calibrate(phy); } static const struct phy_ops qcom_dwmac_sgmii_phy_ops = { .power_on = qcom_dwmac_sgmii_phy_power_on, .power_off = qcom_dwmac_sgmii_phy_power_off, .set_speed = qcom_dwmac_sgmii_phy_set_speed, .calibrate = qcom_dwmac_sgmii_phy_calibrate, .owner = THIS_MODULE, }; static const struct regmap_config qcom_dwmac_sgmii_phy_regmap_cfg = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .use_relaxed_mmio = true, .disable_locking = true, }; static int qcom_dwmac_sgmii_phy_probe(struct platform_device *pdev) { struct qcom_dwmac_sgmii_phy_data *data; struct device *dev = &pdev->dev; struct phy_provider *provider; void __iomem *base; struct phy *phy; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->speed = SPEED_10; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); data->regmap = devm_regmap_init_mmio(dev, base, &qcom_dwmac_sgmii_phy_regmap_cfg); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); phy = devm_phy_create(dev, NULL, &qcom_dwmac_sgmii_phy_ops); if (IS_ERR(phy)) return PTR_ERR(phy); data->refclk = devm_clk_get(dev, "sgmi_ref"); if (IS_ERR(data->refclk)) return PTR_ERR(data->refclk); provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(provider)) return PTR_ERR(provider); phy_set_drvdata(phy, data); return 0; } static const struct of_device_id qcom_dwmac_sgmii_phy_of_match[] = { { .compatible = "qcom,sa8775p-dwmac-sgmii-phy" }, { }, }; MODULE_DEVICE_TABLE(of, qcom_dwmac_sgmii_phy_of_match); static struct platform_driver qcom_dwmac_sgmii_phy_driver = { .probe = qcom_dwmac_sgmii_phy_probe, .driver = { .name = "qcom-dwmac-sgmii-phy", .of_match_table = qcom_dwmac_sgmii_phy_of_match, } }; module_platform_driver(qcom_dwmac_sgmii_phy_driver); MODULE_DESCRIPTION("Qualcomm DWMAC SGMII PHY driver"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/qualcomm/phy-qcom-sgmii-eth.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2023, Linaro Limited */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/iopoll.h> #include <linux/mod_devicetable.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #define USB_PHY_UTMI_CTRL0 (0x3c) #define SLEEPM BIT(0) #define OPMODE_MASK GENMASK(4, 3) #define OPMODE_NONDRIVING BIT(3) #define USB_PHY_UTMI_CTRL5 (0x50) #define POR BIT(1) #define USB_PHY_HS_PHY_CTRL_COMMON0 (0x54) #define PHY_ENABLE BIT(0) #define SIDDQ_SEL BIT(1) #define SIDDQ BIT(2) #define RETENABLEN BIT(3) #define FSEL_MASK GENMASK(6, 4) #define FSEL_19_2_MHZ_VAL (0x0) #define FSEL_38_4_MHZ_VAL (0x4) #define USB_PHY_CFG_CTRL_1 (0x58) #define PHY_CFG_PLL_CPBIAS_CNTRL_MASK GENMASK(7, 1) #define USB_PHY_CFG_CTRL_2 (0x5c) #define PHY_CFG_PLL_FB_DIV_7_0_MASK GENMASK(7, 0) #define DIV_7_0_19_2_MHZ_VAL (0x90) #define DIV_7_0_38_4_MHZ_VAL (0xc8) #define USB_PHY_CFG_CTRL_3 (0x60) #define PHY_CFG_PLL_FB_DIV_11_8_MASK GENMASK(3, 0) #define DIV_11_8_19_2_MHZ_VAL (0x1) #define DIV_11_8_38_4_MHZ_VAL (0x0) #define PHY_CFG_PLL_REF_DIV GENMASK(7, 4) #define PLL_REF_DIV_VAL (0x0) #define USB_PHY_HS_PHY_CTRL2 (0x64) #define VBUSVLDEXT0 BIT(0) #define USB2_SUSPEND_N BIT(2) #define USB2_SUSPEND_N_SEL BIT(3) #define VBUS_DET_EXT_SEL BIT(4) #define USB_PHY_CFG_CTRL_4 (0x68) #define PHY_CFG_PLL_GMP_CNTRL_MASK GENMASK(1, 0) #define PHY_CFG_PLL_INT_CNTRL_MASK GENMASK(7, 2) #define USB_PHY_CFG_CTRL_5 (0x6c) #define PHY_CFG_PLL_PROP_CNTRL_MASK GENMASK(4, 0) #define PHY_CFG_PLL_VREF_TUNE_MASK GENMASK(7, 6) #define USB_PHY_CFG_CTRL_6 (0x70) #define PHY_CFG_PLL_VCO_CNTRL_MASK GENMASK(2, 0) #define USB_PHY_CFG_CTRL_7 (0x74) #define USB_PHY_CFG_CTRL_8 (0x78) #define PHY_CFG_TX_FSLS_VREF_TUNE_MASK GENMASK(1, 0) #define PHY_CFG_TX_FSLS_VREG_BYPASS BIT(2) #define PHY_CFG_TX_HS_VREF_TUNE_MASK GENMASK(5, 3) #define PHY_CFG_TX_HS_XV_TUNE_MASK GENMASK(7, 6) #define USB_PHY_CFG_CTRL_9 (0x7c) #define PHY_CFG_TX_PREEMP_TUNE_MASK GENMASK(2, 0) #define PHY_CFG_TX_RES_TUNE_MASK GENMASK(4, 3) #define PHY_CFG_TX_RISE_TUNE_MASK GENMASK(6, 5) #define PHY_CFG_RCAL_BYPASS BIT(7) #define USB_PHY_CFG_CTRL_10 (0x80) #define USB_PHY_CFG0 (0x94) #define DATAPATH_CTRL_OVERRIDE_EN BIT(0) #define CMN_CTRL_OVERRIDE_EN BIT(1) #define UTMI_PHY_CMN_CTRL0 (0x98) #define TESTBURNIN BIT(6) #define USB_PHY_FSEL_SEL (0xb8) #define FSEL_SEL BIT(0) #define USB_PHY_APB_ACCESS_CMD (0x130) #define RW_ACCESS BIT(0) #define APB_START_CMD BIT(1) #define APB_LOGIC_RESET BIT(2) #define USB_PHY_APB_ACCESS_STATUS (0x134) #define ACCESS_DONE BIT(0) #define TIMED_OUT BIT(1) #define ACCESS_ERROR BIT(2) #define ACCESS_IN_PROGRESS BIT(3) #define USB_PHY_APB_ADDRESS (0x138) #define APB_REG_ADDR_MASK GENMASK(7, 0) #define USB_PHY_APB_WRDATA_LSB (0x13c) #define APB_REG_WRDATA_7_0_MASK GENMASK(3, 0) #define USB_PHY_APB_WRDATA_MSB (0x140) #define APB_REG_WRDATA_15_8_MASK GENMASK(7, 4) #define USB_PHY_APB_RDDATA_LSB (0x144) #define APB_REG_RDDATA_7_0_MASK GENMASK(3, 0) #define USB_PHY_APB_RDDATA_MSB (0x148) #define APB_REG_RDDATA_15_8_MASK GENMASK(7, 4) static const char * const eusb2_hsphy_vreg_names[] = { "vdd", "vdda12", }; #define EUSB2_NUM_VREGS ARRAY_SIZE(eusb2_hsphy_vreg_names) struct qcom_snps_eusb2_hsphy { struct phy *phy; void __iomem *base; struct clk *ref_clk; struct reset_control *phy_reset; struct regulator_bulk_data vregs[EUSB2_NUM_VREGS]; enum phy_mode mode; struct phy *repeater; }; static int qcom_snps_eusb2_hsphy_set_mode(struct phy *p, enum phy_mode mode, int submode) { struct qcom_snps_eusb2_hsphy *phy = phy_get_drvdata(p); phy->mode = mode; return phy_set_mode_ext(phy->repeater, mode, submode); } static void qcom_snps_eusb2_hsphy_write_mask(void __iomem *base, u32 offset, u32 mask, u32 val) { u32 reg; reg = readl_relaxed(base + offset); reg &= ~mask; reg |= val & mask; writel_relaxed(reg, base + offset); /* Ensure above write is completed */ readl_relaxed(base + offset); } static void qcom_eusb2_default_parameters(struct qcom_snps_eusb2_hsphy *phy) { /* default parameters: tx pre-emphasis */ qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_9, PHY_CFG_TX_PREEMP_TUNE_MASK, FIELD_PREP(PHY_CFG_TX_PREEMP_TUNE_MASK, 0)); /* tx rise/fall time */ qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_9, PHY_CFG_TX_RISE_TUNE_MASK, FIELD_PREP(PHY_CFG_TX_RISE_TUNE_MASK, 0x2)); /* source impedance adjustment */ qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_9, PHY_CFG_TX_RES_TUNE_MASK, FIELD_PREP(PHY_CFG_TX_RES_TUNE_MASK, 0x1)); /* dc voltage level adjustement */ qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_8, PHY_CFG_TX_HS_VREF_TUNE_MASK, FIELD_PREP(PHY_CFG_TX_HS_VREF_TUNE_MASK, 0x3)); /* transmitter HS crossover adjustement */ qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_8, PHY_CFG_TX_HS_XV_TUNE_MASK, FIELD_PREP(PHY_CFG_TX_HS_XV_TUNE_MASK, 0x0)); } static int qcom_eusb2_ref_clk_init(struct qcom_snps_eusb2_hsphy *phy) { unsigned long ref_clk_freq = clk_get_rate(phy->ref_clk); switch (ref_clk_freq) { case 19200000: qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL_COMMON0, FSEL_MASK, FIELD_PREP(FSEL_MASK, FSEL_19_2_MHZ_VAL)); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_2, PHY_CFG_PLL_FB_DIV_7_0_MASK, DIV_7_0_19_2_MHZ_VAL); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_3, PHY_CFG_PLL_FB_DIV_11_8_MASK, DIV_11_8_19_2_MHZ_VAL); break; case 38400000: qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL_COMMON0, FSEL_MASK, FIELD_PREP(FSEL_MASK, FSEL_38_4_MHZ_VAL)); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_2, PHY_CFG_PLL_FB_DIV_7_0_MASK, DIV_7_0_38_4_MHZ_VAL); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_3, PHY_CFG_PLL_FB_DIV_11_8_MASK, DIV_11_8_38_4_MHZ_VAL); break; default: dev_err(&phy->phy->dev, "unsupported ref_clk_freq:%lu\n", ref_clk_freq); return -EINVAL; } qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_3, PHY_CFG_PLL_REF_DIV, PLL_REF_DIV_VAL); return 0; } static int qcom_snps_eusb2_hsphy_init(struct phy *p) { struct qcom_snps_eusb2_hsphy *phy = phy_get_drvdata(p); int ret; ret = regulator_bulk_enable(ARRAY_SIZE(phy->vregs), phy->vregs); if (ret) return ret; ret = phy_init(phy->repeater); if (ret) { dev_err(&p->dev, "repeater init failed. %d\n", ret); goto disable_vreg; } ret = clk_prepare_enable(phy->ref_clk); if (ret) { dev_err(&p->dev, "failed to enable ref clock, %d\n", ret); goto disable_vreg; } ret = reset_control_assert(phy->phy_reset); if (ret) { dev_err(&p->dev, "failed to assert phy_reset, %d\n", ret); goto disable_ref_clk; } usleep_range(100, 150); ret = reset_control_deassert(phy->phy_reset); if (ret) { dev_err(&p->dev, "failed to de-assert phy_reset, %d\n", ret); goto disable_ref_clk; } qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG0, CMN_CTRL_OVERRIDE_EN, CMN_CTRL_OVERRIDE_EN); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_UTMI_CTRL5, POR, POR); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL_COMMON0, PHY_ENABLE | RETENABLEN, PHY_ENABLE | RETENABLEN); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_APB_ACCESS_CMD, APB_LOGIC_RESET, APB_LOGIC_RESET); qcom_snps_eusb2_hsphy_write_mask(phy->base, UTMI_PHY_CMN_CTRL0, TESTBURNIN, 0); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_FSEL_SEL, FSEL_SEL, FSEL_SEL); /* update ref_clk related registers */ ret = qcom_eusb2_ref_clk_init(phy); if (ret) goto disable_ref_clk; qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_1, PHY_CFG_PLL_CPBIAS_CNTRL_MASK, FIELD_PREP(PHY_CFG_PLL_CPBIAS_CNTRL_MASK, 0x1)); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_4, PHY_CFG_PLL_INT_CNTRL_MASK, FIELD_PREP(PHY_CFG_PLL_INT_CNTRL_MASK, 0x8)); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_4, PHY_CFG_PLL_GMP_CNTRL_MASK, FIELD_PREP(PHY_CFG_PLL_GMP_CNTRL_MASK, 0x1)); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_5, PHY_CFG_PLL_PROP_CNTRL_MASK, FIELD_PREP(PHY_CFG_PLL_PROP_CNTRL_MASK, 0x10)); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_6, PHY_CFG_PLL_VCO_CNTRL_MASK, FIELD_PREP(PHY_CFG_PLL_VCO_CNTRL_MASK, 0x0)); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_CFG_CTRL_5, PHY_CFG_PLL_VREF_TUNE_MASK, FIELD_PREP(PHY_CFG_PLL_VREF_TUNE_MASK, 0x1)); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL2, VBUS_DET_EXT_SEL, VBUS_DET_EXT_SEL); /* set default parameters */ qcom_eusb2_default_parameters(phy); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL2, USB2_SUSPEND_N_SEL | USB2_SUSPEND_N, USB2_SUSPEND_N_SEL | USB2_SUSPEND_N); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_UTMI_CTRL0, SLEEPM, SLEEPM); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL_COMMON0, SIDDQ_SEL, SIDDQ_SEL); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL_COMMON0, SIDDQ, 0); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_UTMI_CTRL5, POR, 0); qcom_snps_eusb2_hsphy_write_mask(phy->base, USB_PHY_HS_PHY_CTRL2, USB2_SUSPEND_N_SEL, 0); return 0; disable_ref_clk: clk_disable_unprepare(phy->ref_clk); disable_vreg: regulator_bulk_disable(ARRAY_SIZE(phy->vregs), phy->vregs); return ret; } static int qcom_snps_eusb2_hsphy_exit(struct phy *p) { struct qcom_snps_eusb2_hsphy *phy = phy_get_drvdata(p); clk_disable_unprepare(phy->ref_clk); regulator_bulk_disable(ARRAY_SIZE(phy->vregs), phy->vregs); phy_exit(phy->repeater); return 0; } static const struct phy_ops qcom_snps_eusb2_hsphy_ops = { .init = qcom_snps_eusb2_hsphy_init, .exit = qcom_snps_eusb2_hsphy_exit, .set_mode = qcom_snps_eusb2_hsphy_set_mode, .owner = THIS_MODULE, }; static int qcom_snps_eusb2_hsphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct qcom_snps_eusb2_hsphy *phy; struct phy_provider *phy_provider; struct phy *generic_phy; int ret, i; int num; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) return -ENOMEM; phy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(phy->base)) return PTR_ERR(phy->base); phy->phy_reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(phy->phy_reset)) return PTR_ERR(phy->phy_reset); phy->ref_clk = devm_clk_get(dev, "ref"); if (IS_ERR(phy->ref_clk)) return dev_err_probe(dev, PTR_ERR(phy->ref_clk), "failed to get ref clk\n"); num = ARRAY_SIZE(phy->vregs); for (i = 0; i < num; i++) phy->vregs[i].supply = eusb2_hsphy_vreg_names[i]; ret = devm_regulator_bulk_get(dev, num, phy->vregs); if (ret) return dev_err_probe(dev, ret, "failed to get regulator supplies\n"); phy->repeater = devm_of_phy_get_by_index(dev, np, 0); if (IS_ERR(phy->repeater)) return dev_err_probe(dev, PTR_ERR(phy->repeater), "failed to get repeater\n"); generic_phy = devm_phy_create(dev, NULL, &qcom_snps_eusb2_hsphy_ops); if (IS_ERR(generic_phy)) { dev_err(dev, "failed to create phy %d\n", ret); return PTR_ERR(generic_phy); } dev_set_drvdata(dev, phy); phy_set_drvdata(generic_phy, phy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) return PTR_ERR(phy_provider); dev_info(dev, "Registered Qcom-eUSB2 phy\n"); return 0; } static const struct of_device_id qcom_snps_eusb2_hsphy_of_match_table[] = { { .compatible = "qcom,sm8550-snps-eusb2-phy", }, { }, }; MODULE_DEVICE_TABLE(of, qcom_snps_eusb2_hsphy_of_match_table); static struct platform_driver qcom_snps_eusb2_hsphy_driver = { .probe = qcom_snps_eusb2_hsphy_probe, .driver = { .name = "qcom-snps-eusb2-hsphy", .of_match_table = qcom_snps_eusb2_hsphy_of_match_table, }, }; module_platform_driver(qcom_snps_eusb2_hsphy_driver); MODULE_DESCRIPTION("Qualcomm SNPS eUSB2 HS PHY driver"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/qualcomm/phy-qcom-snps-eusb2.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2014-2017, The Linux Foundation. All rights reserved. * Copyright (c) 2019, Linaro Ltd. */ #include <linux/clk-provider.h> #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/slab.h> #include <dt-bindings/phy/phy.h> #define PCIE20_PARF_PHY_STTS 0x3c #define PCIE2_PHY_RESET_CTRL 0x44 #define PCIE20_PARF_PHY_REFCLK_CTRL2 0xa0 #define PCIE20_PARF_PHY_REFCLK_CTRL3 0xa4 #define PCIE20_PARF_PCS_SWING_CTRL1 0x88 #define PCIE20_PARF_PCS_SWING_CTRL2 0x8c #define PCIE20_PARF_PCS_DEEMPH1 0x74 #define PCIE20_PARF_PCS_DEEMPH2 0x78 #define PCIE20_PARF_PCS_DEEMPH3 0x7c #define PCIE20_PARF_CONFIGBITS 0x84 #define PCIE20_PARF_PHY_CTRL3 0x94 #define PCIE20_PARF_PCS_CTRL 0x80 #define TX_AMP_VAL 120 #define PHY_RX0_EQ_GEN1_VAL 0 #define PHY_RX0_EQ_GEN2_VAL 4 #define TX_DEEMPH_GEN1_VAL 24 #define TX_DEEMPH_GEN2_3_5DB_VAL 26 #define TX_DEEMPH_GEN2_6DB_VAL 36 #define PHY_TX0_TERM_OFFST_VAL 0 struct qcom_phy { struct device *dev; void __iomem *base; struct regulator_bulk_data vregs[2]; struct reset_control *phy_reset; struct reset_control *pipe_reset; struct clk *pipe_clk; }; static int qcom_pcie2_phy_init(struct phy *phy) { struct qcom_phy *qphy = phy_get_drvdata(phy); int ret; ret = reset_control_deassert(qphy->phy_reset); if (ret) { dev_err(qphy->dev, "cannot deassert pipe reset\n"); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(qphy->vregs), qphy->vregs); if (ret) reset_control_assert(qphy->phy_reset); return ret; } static int qcom_pcie2_phy_power_on(struct phy *phy) { struct qcom_phy *qphy = phy_get_drvdata(phy); int ret; u32 val; /* Program REF_CLK source */ val = readl(qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL2); val &= ~BIT(1); writel(val, qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL2); usleep_range(1000, 2000); /* Don't use PAD for refclock */ val = readl(qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL2); val &= ~BIT(0); writel(val, qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL2); /* Program SSP ENABLE */ val = readl(qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL3); val |= BIT(0); writel(val, qphy->base + PCIE20_PARF_PHY_REFCLK_CTRL3); usleep_range(1000, 2000); /* Assert Phy SW Reset */ val = readl(qphy->base + PCIE2_PHY_RESET_CTRL); val |= BIT(0); writel(val, qphy->base + PCIE2_PHY_RESET_CTRL); /* Program Tx Amplitude */ val = readl(qphy->base + PCIE20_PARF_PCS_SWING_CTRL1); val &= ~0x7f; val |= TX_AMP_VAL; writel(val, qphy->base + PCIE20_PARF_PCS_SWING_CTRL1); val = readl(qphy->base + PCIE20_PARF_PCS_SWING_CTRL2); val &= ~0x7f; val |= TX_AMP_VAL; writel(val, qphy->base + PCIE20_PARF_PCS_SWING_CTRL2); /* Program De-Emphasis */ val = readl(qphy->base + PCIE20_PARF_PCS_DEEMPH1); val &= ~0x3f; val |= TX_DEEMPH_GEN2_6DB_VAL; writel(val, qphy->base + PCIE20_PARF_PCS_DEEMPH1); val = readl(qphy->base + PCIE20_PARF_PCS_DEEMPH2); val &= ~0x3f; val |= TX_DEEMPH_GEN2_3_5DB_VAL; writel(val, qphy->base + PCIE20_PARF_PCS_DEEMPH2); val = readl(qphy->base + PCIE20_PARF_PCS_DEEMPH3); val &= ~0x3f; val |= TX_DEEMPH_GEN1_VAL; writel(val, qphy->base + PCIE20_PARF_PCS_DEEMPH3); /* Program Rx_Eq */ val = readl(qphy->base + PCIE20_PARF_CONFIGBITS); val &= ~0x7; val |= PHY_RX0_EQ_GEN2_VAL; writel(val, qphy->base + PCIE20_PARF_CONFIGBITS); /* Program Tx0_term_offset */ val = readl(qphy->base + PCIE20_PARF_PHY_CTRL3); val &= ~0x1f; val |= PHY_TX0_TERM_OFFST_VAL; writel(val, qphy->base + PCIE20_PARF_PHY_CTRL3); /* disable Tx2Rx Loopback */ val = readl(qphy->base + PCIE20_PARF_PCS_CTRL); val &= ~BIT(1); writel(val, qphy->base + PCIE20_PARF_PCS_CTRL); /* De-assert Phy SW Reset */ val = readl(qphy->base + PCIE2_PHY_RESET_CTRL); val &= ~BIT(0); writel(val, qphy->base + PCIE2_PHY_RESET_CTRL); usleep_range(1000, 2000); ret = reset_control_deassert(qphy->pipe_reset); if (ret) { dev_err(qphy->dev, "cannot deassert pipe reset\n"); goto out; } clk_set_rate(qphy->pipe_clk, 250000000); ret = clk_prepare_enable(qphy->pipe_clk); if (ret) { dev_err(qphy->dev, "failed to enable pipe clock\n"); goto out; } ret = readl_poll_timeout(qphy->base + PCIE20_PARF_PHY_STTS, val, !(val & BIT(0)), 1000, 10); if (ret) dev_err(qphy->dev, "phy initialization failed\n"); out: return ret; } static int qcom_pcie2_phy_power_off(struct phy *phy) { struct qcom_phy *qphy = phy_get_drvdata(phy); u32 val; val = readl(qphy->base + PCIE2_PHY_RESET_CTRL); val |= BIT(0); writel(val, qphy->base + PCIE2_PHY_RESET_CTRL); clk_disable_unprepare(qphy->pipe_clk); reset_control_assert(qphy->pipe_reset); return 0; } static int qcom_pcie2_phy_exit(struct phy *phy) { struct qcom_phy *qphy = phy_get_drvdata(phy); regulator_bulk_disable(ARRAY_SIZE(qphy->vregs), qphy->vregs); reset_control_assert(qphy->phy_reset); return 0; } static const struct phy_ops qcom_pcie2_ops = { .init = qcom_pcie2_phy_init, .power_on = qcom_pcie2_phy_power_on, .power_off = qcom_pcie2_phy_power_off, .exit = qcom_pcie2_phy_exit, .owner = THIS_MODULE, }; /* * Register a fixed rate pipe clock. * * The <s>_pipe_clksrc generated by PHY goes to the GCC that gate * controls it. The <s>_pipe_clk coming out of the GCC is requested * by the PHY driver for its operations. * We register the <s>_pipe_clksrc here. The gcc driver takes care * of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk. * Below picture shows this relationship. * * +---------------+ * | PHY block |<<---------------------------------------+ * | | | * | +-------+ | +-----+ | * I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+ * clk | +-------+ | +-----+ * +---------------+ */ static int phy_pipe_clksrc_register(struct qcom_phy *qphy) { struct device_node *np = qphy->dev->of_node; struct clk_fixed_rate *fixed; struct clk_init_data init = { }; int ret; ret = of_property_read_string(np, "clock-output-names", &init.name); if (ret) { dev_err(qphy->dev, "%s: No clock-output-names\n", np->name); return ret; } fixed = devm_kzalloc(qphy->dev, sizeof(*fixed), GFP_KERNEL); if (!fixed) return -ENOMEM; init.ops = &clk_fixed_rate_ops; /* controllers using QMP phys use 250MHz pipe clock interface */ fixed->fixed_rate = 250000000; fixed->hw.init = &init; ret = devm_clk_hw_register(qphy->dev, &fixed->hw); if (ret < 0) return ret; return devm_of_clk_add_hw_provider(qphy->dev, of_clk_hw_simple_get, &fixed->hw); } static int qcom_pcie2_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct qcom_phy *qphy; struct device *dev = &pdev->dev; struct phy *phy; int ret; qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL); if (!qphy) return -ENOMEM; qphy->dev = dev; qphy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(qphy->base)) return PTR_ERR(qphy->base); ret = phy_pipe_clksrc_register(qphy); if (ret) { dev_err(dev, "failed to register pipe_clk\n"); return ret; } qphy->vregs[0].supply = "vdda-vp"; qphy->vregs[1].supply = "vdda-vph"; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(qphy->vregs), qphy->vregs); if (ret < 0) return ret; qphy->pipe_clk = devm_clk_get(dev, NULL); if (IS_ERR(qphy->pipe_clk)) { dev_err(dev, "failed to acquire pipe clock\n"); return PTR_ERR(qphy->pipe_clk); } qphy->phy_reset = devm_reset_control_get_exclusive(dev, "phy"); if (IS_ERR(qphy->phy_reset)) { dev_err(dev, "failed to acquire phy reset\n"); return PTR_ERR(qphy->phy_reset); } qphy->pipe_reset = devm_reset_control_get_exclusive(dev, "pipe"); if (IS_ERR(qphy->pipe_reset)) { dev_err(dev, "failed to acquire pipe reset\n"); return PTR_ERR(qphy->pipe_reset); } phy = devm_phy_create(dev, dev->of_node, &qcom_pcie2_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create phy\n"); return PTR_ERR(phy); } phy_set_drvdata(phy, qphy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) dev_err(dev, "failed to register phy provider\n"); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id qcom_pcie2_phy_match_table[] = { { .compatible = "qcom,pcie2-phy" }, {} }; MODULE_DEVICE_TABLE(of, qcom_pcie2_phy_match_table); static struct platform_driver qcom_pcie2_phy_driver = { .probe = qcom_pcie2_phy_probe, .driver = { .name = "phy-qcom-pcie2", .of_match_table = qcom_pcie2_phy_match_table, }, }; module_platform_driver(qcom_pcie2_phy_driver); MODULE_DESCRIPTION("Qualcomm PCIe PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-pcie2.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2018 John Crispin <[email protected]> * * Based on code from * Allwinner Technology Co., Ltd. <www.allwinnertech.com> * */ #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/reset.h> struct ipq4019_usb_phy { struct device *dev; struct phy *phy; void __iomem *base; struct reset_control *por_rst; struct reset_control *srif_rst; }; static int ipq4019_ss_phy_power_off(struct phy *_phy) { struct ipq4019_usb_phy *phy = phy_get_drvdata(_phy); reset_control_assert(phy->por_rst); msleep(10); return 0; } static int ipq4019_ss_phy_power_on(struct phy *_phy) { struct ipq4019_usb_phy *phy = phy_get_drvdata(_phy); ipq4019_ss_phy_power_off(_phy); reset_control_deassert(phy->por_rst); return 0; } static const struct phy_ops ipq4019_usb_ss_phy_ops = { .power_on = ipq4019_ss_phy_power_on, .power_off = ipq4019_ss_phy_power_off, }; static int ipq4019_hs_phy_power_off(struct phy *_phy) { struct ipq4019_usb_phy *phy = phy_get_drvdata(_phy); reset_control_assert(phy->por_rst); msleep(10); reset_control_assert(phy->srif_rst); msleep(10); return 0; } static int ipq4019_hs_phy_power_on(struct phy *_phy) { struct ipq4019_usb_phy *phy = phy_get_drvdata(_phy); ipq4019_hs_phy_power_off(_phy); reset_control_deassert(phy->srif_rst); msleep(10); reset_control_deassert(phy->por_rst); return 0; } static const struct phy_ops ipq4019_usb_hs_phy_ops = { .power_on = ipq4019_hs_phy_power_on, .power_off = ipq4019_hs_phy_power_off, }; static const struct of_device_id ipq4019_usb_phy_of_match[] = { { .compatible = "qcom,usb-hs-ipq4019-phy", .data = &ipq4019_usb_hs_phy_ops}, { .compatible = "qcom,usb-ss-ipq4019-phy", .data = &ipq4019_usb_ss_phy_ops}, { }, }; MODULE_DEVICE_TABLE(of, ipq4019_usb_phy_of_match); static int ipq4019_usb_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct ipq4019_usb_phy *phy; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) return -ENOMEM; phy->dev = &pdev->dev; phy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(phy->base)) { dev_err(dev, "failed to remap register memory\n"); return PTR_ERR(phy->base); } phy->por_rst = devm_reset_control_get(phy->dev, "por_rst"); if (IS_ERR(phy->por_rst)) { if (PTR_ERR(phy->por_rst) != -EPROBE_DEFER) dev_err(dev, "POR reset is missing\n"); return PTR_ERR(phy->por_rst); } phy->srif_rst = devm_reset_control_get_optional(phy->dev, "srif_rst"); if (IS_ERR(phy->srif_rst)) return PTR_ERR(phy->srif_rst); phy->phy = devm_phy_create(dev, NULL, of_device_get_match_data(dev)); if (IS_ERR(phy->phy)) { dev_err(dev, "failed to create PHY\n"); return PTR_ERR(phy->phy); } phy_set_drvdata(phy->phy, phy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver ipq4019_usb_phy_driver = { .probe = ipq4019_usb_phy_probe, .driver = { .of_match_table = ipq4019_usb_phy_of_match, .name = "ipq4019-usb-phy", } }; module_platform_driver(ipq4019_usb_phy_driver); MODULE_DESCRIPTION("QCOM/IPQ4019 USB phy driver"); MODULE_AUTHOR("John Crispin <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-ipq4019-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #include "phy-qcom-qmp.h" #include "phy-qcom-qmp-pcs-misc-v3.h" #include "phy-qcom-qmp-pcs-usb-v4.h" #include "phy-qcom-qmp-pcs-usb-v5.h" /* QPHY_SW_RESET bit */ #define SW_RESET BIT(0) /* QPHY_POWER_DOWN_CONTROL */ #define SW_PWRDN BIT(0) /* QPHY_START_CONTROL bits */ #define SERDES_START BIT(0) #define PCS_START BIT(1) /* QPHY_PCS_STATUS bit */ #define PHYSTATUS BIT(6) /* QPHY_V3_DP_COM_RESET_OVRD_CTRL register bits */ /* DP PHY soft reset */ #define SW_DPPHY_RESET BIT(0) /* mux to select DP PHY reset control, 0:HW control, 1: software reset */ #define SW_DPPHY_RESET_MUX BIT(1) /* USB3 PHY soft reset */ #define SW_USB3PHY_RESET BIT(2) /* mux to select USB3 PHY reset control, 0:HW control, 1: software reset */ #define SW_USB3PHY_RESET_MUX BIT(3) /* QPHY_V3_DP_COM_PHY_MODE_CTRL register bits */ #define USB3_MODE BIT(0) /* enables USB3 mode */ #define DP_MODE BIT(1) /* enables DP mode */ /* QPHY_PCS_AUTONOMOUS_MODE_CTRL register bits */ #define ARCVR_DTCT_EN BIT(0) #define ALFPS_DTCT_EN BIT(1) #define ARCVR_DTCT_EVENT_SEL BIT(4) /* QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR register bits */ #define IRQ_CLEAR BIT(0) /* QPHY_V3_PCS_MISC_CLAMP_ENABLE register bits */ #define CLAMP_EN BIT(0) /* enables i/o clamp_n */ #define PHY_INIT_COMPLETE_TIMEOUT 10000 struct qmp_phy_init_tbl { unsigned int offset; unsigned int val; /* * mask of lanes for which this register is written * for cases when second lane needs different values */ u8 lane_mask; }; #define QMP_PHY_INIT_CFG(o, v) \ { \ .offset = o, \ .val = v, \ .lane_mask = 0xff, \ } #define QMP_PHY_INIT_CFG_LANE(o, v, l) \ { \ .offset = o, \ .val = v, \ .lane_mask = l, \ } /* set of registers with offsets different per-PHY */ enum qphy_reg_layout { /* PCS registers */ QPHY_SW_RESET, QPHY_START_CTRL, QPHY_PCS_STATUS, QPHY_PCS_AUTONOMOUS_MODE_CTRL, QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR, QPHY_PCS_POWER_DOWN_CONTROL, /* Keep last to ensure regs_layout arrays are properly initialized */ QPHY_LAYOUT_SIZE }; static const unsigned int qmp_v2_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V2_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V2_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V2_PCS_USB_PCS_STATUS, [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V2_PCS_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V2_PCS_LFPS_RXTERM_IRQ_CLEAR, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V2_PCS_POWER_DOWN_CONTROL, }; static const unsigned int qmp_v3_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V3_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V3_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V3_PCS_PCS_STATUS, [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V3_PCS_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V3_PCS_LFPS_RXTERM_IRQ_CLEAR, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V3_PCS_POWER_DOWN_CONTROL, }; static const unsigned int qmp_v4_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V4_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V4_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V4_PCS_PCS_STATUS1, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V4_PCS_POWER_DOWN_CONTROL, /* In PCS_USB */ [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V4_PCS_USB3_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V4_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR, }; static const unsigned int qmp_v5_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V5_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V5_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V5_PCS_PCS_STATUS1, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_POWER_DOWN_CONTROL, /* In PCS_USB */ [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V5_PCS_USB3_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V5_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR, }; static const struct qmp_phy_init_tbl ipq9574_usb3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x1a), QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x06), /* PLL and Loop filter settings */ QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x68), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0xaa), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x09), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0xa0), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0xaa), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x29), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a), /* SSC settings */ QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x7d), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x05), }; static const struct qmp_phy_init_tbl ipq9574_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45), QMP_PHY_INIT_CFG(QSERDES_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x06), }; static const struct qmp_phy_init_tbl ipq9574_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN, 0x06), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x02), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x6c), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4c), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0xb8), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x16), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_ENABLES, 0x0c), }; static const struct qmp_phy_init_tbl ipq9574_usb3_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0e), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x85), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47), QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0x88), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x17), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0f), }; static const struct qmp_phy_init_tbl ipq8074_usb3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x1a), QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x06), /* PLL and Loop filter settings */ QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0x15), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a), /* SSC settings */ QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0xde), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x07), }; static const struct qmp_phy_init_tbl ipq8074_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN, 0x06), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x02), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4c), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0xb8), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x16), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_ENABLES, 0x0), }; static const struct qmp_phy_init_tbl ipq8074_usb3_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0e), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x85), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47), QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0x88), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x17), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0f), }; static const struct qmp_phy_init_tbl msm8996_usb3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x14), QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x04), /* PLL and Loop filter settings */ QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_CTRL, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0x15), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a), /* SSC settings */ QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0xde), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x07), }; static const struct qmp_phy_init_tbl msm8996_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45), QMP_PHY_INIT_CFG(QSERDES_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x06), }; static const struct qmp_phy_init_tbl msm8996_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN, 0x04), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x02), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4c), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0xbb), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_LVL, 0x18), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x16), }; static const struct qmp_phy_init_tbl msm8996_usb3_pcs_tbl[] = { /* FLL settings */ QMP_PHY_INIT_CFG(QPHY_V2_PCS_FLL_CNTRL2, 0x03), QMP_PHY_INIT_CFG(QPHY_V2_PCS_FLL_CNTRL1, 0x02), QMP_PHY_INIT_CFG(QPHY_V2_PCS_FLL_CNT_VAL_L, 0x09), QMP_PHY_INIT_CFG(QPHY_V2_PCS_FLL_CNT_VAL_H_TOL, 0x42), QMP_PHY_INIT_CFG(QPHY_V2_PCS_FLL_MAN_CODE, 0x85), /* Lock Det settings */ QMP_PHY_INIT_CFG(QPHY_V2_PCS_LOCK_DETECT_CONFIG1, 0xd1), QMP_PHY_INIT_CFG(QPHY_V2_PCS_LOCK_DETECT_CONFIG2, 0x1f), QMP_PHY_INIT_CFG(QPHY_V2_PCS_LOCK_DETECT_CONFIG3, 0x47), QMP_PHY_INIT_CFG(QPHY_V2_PCS_POWER_STATE_CONFIG2, 0x08), }; static const struct qmp_phy_init_tbl qmp_v3_usb3_uniphy_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x14), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0xea), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x15), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_CFG, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x85), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x07), }; static const struct qmp_phy_init_tbl qmp_v3_usb3_uniphy_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0xc6), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x06), }; static const struct qmp_phy_init_tbl qmp_v3_usb3_uniphy_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_RX_VGA_CAL_CNTRL2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x50), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75), }; static const struct qmp_phy_init_tbl qmp_v3_usb3_uniphy_pcs_tbl[] = { /* FLL settings */ QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02), /* Lock Det settings */ QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47), QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0xba), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V1, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V2, 0xb5), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V3, 0x4c), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V4, 0x64), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_LS, 0x6a), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V1, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V1, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V2, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V2, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V3, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V3, 0x1d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V4, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V4, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_LS, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_LS, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RATE_SLEW_CNTRL, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13), QMP_PHY_INIT_CFG(QPHY_V3_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_V3_PCS_REFGEN_REQ_CONFIG2, 0x60), }; static const struct qmp_phy_init_tbl msm8998_usb3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x14), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0xea), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x15), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_CFG, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_INITVAL, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_MODE, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x85), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x07), }; static const struct qmp_phy_init_tbl msm8998_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x00), }; static const struct qmp_phy_init_tbl msm8998_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x43), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_ENABLES, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_RX_VGA_CAL_CNTRL2, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x05), }; static const struct qmp_phy_init_tbl msm8998_usb3_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47), QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V1, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V2, 0xb7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V3, 0x4e), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V4, 0x65), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_LS, 0x6b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V1, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V1, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V2, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V2, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V3, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V3, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V4, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V4, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_LS, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_LS, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RATE_SLEW_CNTRL, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0x8a), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13), }; static const struct qmp_phy_init_tbl sm8150_usb3_uniphy_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11), QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0xea), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE0, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x14), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE2_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE1, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0xab), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0xea), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xca), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_IPTRIM, 0x20), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0xde), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02), }; static const struct qmp_phy_init_tbl sm8150_usb3_uniphy_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x95), QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x40), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x05), }; static const struct qmp_phy_init_tbl sm8150_usb3_uniphy_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0xb8), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x37), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xef), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb3), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x20), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c), }; static const struct qmp_phy_init_tbl sm8150_usb3_uniphy_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0f), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c), }; static const struct qmp_phy_init_tbl sm8150_usb3_uniphy_pcs_usb_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), }; static const struct qmp_phy_init_tbl sm8250_usb3_uniphy_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_2, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x40), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x11), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_RX, 0x02), }; static const struct qmp_phy_init_tbl sm8250_usb3_uniphy_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0xb8), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb4), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x7b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f), }; static const struct qmp_phy_init_tbl sm8250_usb3_uniphy_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xa9), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21), }; static const struct qmp_phy_init_tbl sm8250_usb3_uniphy_pcs_usb_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), }; static const struct qmp_phy_init_tbl sdx55_usb3_uniphy_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x08), }; static const struct qmp_phy_init_tbl sdx55_usb3_uniphy_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x26), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb4), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x7b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x048), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x09), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f), }; static const struct qmp_phy_init_tbl sdx65_usb3_uniphy_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xa5), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_2, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x21), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0b), }; static const struct qmp_phy_init_tbl sdx65_usb3_uniphy_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xdb), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0xbd), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa9), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x7b), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xe4), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x24), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x64), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN2, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_ENABLES, 0x00), }; static const struct qmp_phy_init_tbl sm8350_usb3_uniphy_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xa5), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_2, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x21), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x10), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0e), }; static const struct qmp_phy_init_tbl sm8350_usb3_uniphy_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0xbd), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa9), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x7b), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xe4), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x24), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x64), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN2, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_ENABLES, 0x00), }; static const struct qmp_phy_init_tbl sm8350_usb3_uniphy_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21), }; static const struct qmp_phy_init_tbl sm8350_usb3_uniphy_pcs_usb_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), }; static const struct qmp_phy_init_tbl qcm2290_usb3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x14), QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x06), QMP_PHY_INIT_CFG(QSERDES_COM_RESETSM_CNTRL, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_RESETSM_CNTRL2, 0x08), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0x15), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0xde), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x07), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_INITVAL, 0x80), QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CTRL_BY_PSM, 0x01), }; static const struct qmp_phy_init_tbl qcm2290_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0xc6), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x00), }; static const struct qmp_phy_init_tbl qcm2290_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_VGA_CAL_CNTRL2, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_ENABLES, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x00), }; static const struct qmp_phy_init_tbl qcm2290_usb3_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x17), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x85), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0x88), }; static const struct qmp_phy_init_tbl sc8280xp_usb3_uniphy_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_HSCLK_SEL, 0x11), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0xea), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE0, 0x24), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_BUF_ENABLE, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE2_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE1, 0x24), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0xab), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0xea), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xca), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0xde), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02), }; static const struct qmp_phy_init_tbl sc8280xp_usb3_uniphy_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xa5), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_2, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x21), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x10), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0e), }; static const struct qmp_phy_init_tbl sc8280xp_usb3_uniphy_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0xbd), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa9), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x7b), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xe4), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x24), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x64), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN2, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_ENABLES, 0x00), }; static const struct qmp_phy_init_tbl sc8280xp_usb3_uniphy_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_V5_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG5, 0x10), QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x21), }; static const struct qmp_phy_init_tbl sa8775p_usb3_uniphy_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG1, 0xc4), QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG2, 0x89), QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_POWER_STATE_CONFIG1, 0x6f), QMP_PHY_INIT_CFG(QPHY_V5_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG5, 0x10), QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x21), }; struct qmp_usb_offsets { u16 serdes; u16 pcs; u16 pcs_misc; u16 pcs_usb; u16 tx; u16 rx; /* for PHYs with >= 2 lanes */ u16 tx2; u16 rx2; }; /* struct qmp_phy_cfg - per-PHY initialization config */ struct qmp_phy_cfg { int lanes; const struct qmp_usb_offsets *offsets; /* Init sequence for PHY blocks - serdes, tx, rx, pcs */ const struct qmp_phy_init_tbl *serdes_tbl; int serdes_tbl_num; const struct qmp_phy_init_tbl *tx_tbl; int tx_tbl_num; const struct qmp_phy_init_tbl *rx_tbl; int rx_tbl_num; const struct qmp_phy_init_tbl *pcs_tbl; int pcs_tbl_num; const struct qmp_phy_init_tbl *pcs_usb_tbl; int pcs_usb_tbl_num; /* clock ids to be requested */ const char * const *clk_list; int num_clks; /* resets to be requested */ const char * const *reset_list; int num_resets; /* regulators to be requested */ const char * const *vreg_list; int num_vregs; /* array of registers with different offsets */ const unsigned int *regs; /* true, if PHY needs delay after POWER_DOWN */ bool has_pwrdn_delay; /* Offset from PCS to PCS_USB region */ unsigned int pcs_usb_offset; }; struct qmp_usb { struct device *dev; const struct qmp_phy_cfg *cfg; void __iomem *serdes; void __iomem *pcs; void __iomem *pcs_misc; void __iomem *pcs_usb; void __iomem *tx; void __iomem *rx; void __iomem *tx2; void __iomem *rx2; struct clk *pipe_clk; struct clk_bulk_data *clks; struct reset_control_bulk_data *resets; struct regulator_bulk_data *vregs; enum phy_mode mode; struct phy *phy; struct clk_fixed_rate pipe_clk_fixed; }; static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg |= val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg &= ~val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } /* list of clocks required by phy */ static const char * const msm8996_phy_clk_l[] = { "aux", "cfg_ahb", "ref", }; static const char * const qmp_v3_phy_clk_l[] = { "aux", "cfg_ahb", "ref", "com_aux", }; static const char * const qmp_v4_phy_clk_l[] = { "aux", "ref", "com_aux", }; static const char * const qmp_v4_ref_phy_clk_l[] = { "aux", "ref_clk_src", "ref", "com_aux", }; /* usb3 phy on sdx55 doesn't have com_aux clock */ static const char * const qmp_v4_sdx55_usbphy_clk_l[] = { "aux", "cfg_ahb", "ref" }; static const char * const qcm2290_usb3phy_clk_l[] = { "cfg_ahb", "ref", "com_aux", }; /* list of resets */ static const char * const msm8996_usb3phy_reset_l[] = { "phy", "common", }; static const char * const qcm2290_usb3phy_reset_l[] = { "phy_phy", "phy", }; /* list of regulators */ static const char * const qmp_phy_vreg_l[] = { "vdda-phy", "vdda-pll", }; static const struct qmp_usb_offsets qmp_usb_offsets_ipq9574 = { .serdes = 0, .pcs = 0x800, .pcs_usb = 0x800, .tx = 0x200, .rx = 0x400, }; static const struct qmp_usb_offsets qmp_usb_offsets_v3 = { .serdes = 0, .pcs = 0xc00, .pcs_misc = 0xa00, .tx = 0x200, .rx = 0x400, .tx2 = 0x600, .rx2 = 0x800, }; static const struct qmp_usb_offsets qmp_usb_offsets_v5 = { .serdes = 0, .pcs = 0x0200, .pcs_usb = 0x1200, .tx = 0x0e00, .rx = 0x1000, }; static const struct qmp_phy_cfg ipq8074_usb3phy_cfg = { .lanes = 1, .serdes_tbl = ipq8074_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(ipq8074_usb3_serdes_tbl), .tx_tbl = msm8996_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(msm8996_usb3_tx_tbl), .rx_tbl = ipq8074_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(ipq8074_usb3_rx_tbl), .pcs_tbl = ipq8074_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(ipq8074_usb3_pcs_tbl), .clk_list = msm8996_phy_clk_l, .num_clks = ARRAY_SIZE(msm8996_phy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v3_usb3phy_regs_layout, }; static const struct qmp_phy_cfg ipq9574_usb3phy_cfg = { .lanes = 1, .offsets = &qmp_usb_offsets_ipq9574, .serdes_tbl = ipq9574_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(ipq9574_usb3_serdes_tbl), .tx_tbl = ipq9574_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(ipq9574_usb3_tx_tbl), .rx_tbl = ipq9574_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(ipq9574_usb3_rx_tbl), .pcs_tbl = ipq9574_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(ipq9574_usb3_pcs_tbl), .clk_list = msm8996_phy_clk_l, .num_clks = ARRAY_SIZE(msm8996_phy_clk_l), .reset_list = qcm2290_usb3phy_reset_l, .num_resets = ARRAY_SIZE(qcm2290_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v3_usb3phy_regs_layout, }; static const struct qmp_phy_cfg msm8996_usb3phy_cfg = { .lanes = 1, .serdes_tbl = msm8996_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(msm8996_usb3_serdes_tbl), .tx_tbl = msm8996_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(msm8996_usb3_tx_tbl), .rx_tbl = msm8996_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(msm8996_usb3_rx_tbl), .pcs_tbl = msm8996_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(msm8996_usb3_pcs_tbl), .clk_list = msm8996_phy_clk_l, .num_clks = ARRAY_SIZE(msm8996_phy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v2_usb3phy_regs_layout, }; static const struct qmp_phy_cfg sa8775p_usb3_uniphy_cfg = { .lanes = 1, .offsets = &qmp_usb_offsets_v5, .serdes_tbl = sc8280xp_usb3_uniphy_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_serdes_tbl), .tx_tbl = sc8280xp_usb3_uniphy_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_tx_tbl), .rx_tbl = sc8280xp_usb3_uniphy_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_rx_tbl), .pcs_tbl = sa8775p_usb3_uniphy_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sa8775p_usb3_uniphy_pcs_tbl), .clk_list = qmp_v4_phy_clk_l, .num_clks = ARRAY_SIZE(qmp_v4_phy_clk_l), .reset_list = qcm2290_usb3phy_reset_l, .num_resets = ARRAY_SIZE(qcm2290_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v5_usb3phy_regs_layout, }; static const struct qmp_phy_cfg sc8280xp_usb3_uniphy_cfg = { .lanes = 1, .offsets = &qmp_usb_offsets_v5, .serdes_tbl = sc8280xp_usb3_uniphy_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_serdes_tbl), .tx_tbl = sc8280xp_usb3_uniphy_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_tx_tbl), .rx_tbl = sc8280xp_usb3_uniphy_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_rx_tbl), .pcs_tbl = sc8280xp_usb3_uniphy_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sc8280xp_usb3_uniphy_pcs_tbl), .clk_list = qmp_v4_phy_clk_l, .num_clks = ARRAY_SIZE(qmp_v4_phy_clk_l), .reset_list = qcm2290_usb3phy_reset_l, .num_resets = ARRAY_SIZE(qcm2290_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v5_usb3phy_regs_layout, }; static const struct qmp_phy_cfg qmp_v3_usb3_uniphy_cfg = { .lanes = 1, .serdes_tbl = qmp_v3_usb3_uniphy_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_uniphy_serdes_tbl), .tx_tbl = qmp_v3_usb3_uniphy_tx_tbl, .tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_uniphy_tx_tbl), .rx_tbl = qmp_v3_usb3_uniphy_rx_tbl, .rx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_uniphy_rx_tbl), .pcs_tbl = qmp_v3_usb3_uniphy_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(qmp_v3_usb3_uniphy_pcs_tbl), .clk_list = qmp_v3_phy_clk_l, .num_clks = ARRAY_SIZE(qmp_v3_phy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v3_usb3phy_regs_layout, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg msm8998_usb3phy_cfg = { .lanes = 2, .serdes_tbl = msm8998_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(msm8998_usb3_serdes_tbl), .tx_tbl = msm8998_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(msm8998_usb3_tx_tbl), .rx_tbl = msm8998_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(msm8998_usb3_rx_tbl), .pcs_tbl = msm8998_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(msm8998_usb3_pcs_tbl), .clk_list = msm8996_phy_clk_l, .num_clks = ARRAY_SIZE(msm8996_phy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v3_usb3phy_regs_layout, }; static const struct qmp_phy_cfg sm8150_usb3_uniphy_cfg = { .lanes = 1, .serdes_tbl = sm8150_usb3_uniphy_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_serdes_tbl), .tx_tbl = sm8150_usb3_uniphy_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_tx_tbl), .rx_tbl = sm8150_usb3_uniphy_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_rx_tbl), .pcs_tbl = sm8150_usb3_uniphy_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_pcs_tbl), .pcs_usb_tbl = sm8150_usb3_uniphy_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_pcs_usb_tbl), .clk_list = qmp_v4_ref_phy_clk_l, .num_clks = ARRAY_SIZE(qmp_v4_ref_phy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v4_usb3phy_regs_layout, .pcs_usb_offset = 0x600, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg sm8250_usb3_uniphy_cfg = { .lanes = 1, .serdes_tbl = sm8150_usb3_uniphy_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_serdes_tbl), .tx_tbl = sm8250_usb3_uniphy_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_tx_tbl), .rx_tbl = sm8250_usb3_uniphy_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_rx_tbl), .pcs_tbl = sm8250_usb3_uniphy_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_pcs_tbl), .pcs_usb_tbl = sm8250_usb3_uniphy_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_pcs_usb_tbl), .clk_list = qmp_v4_ref_phy_clk_l, .num_clks = ARRAY_SIZE(qmp_v4_ref_phy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v4_usb3phy_regs_layout, .pcs_usb_offset = 0x600, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg sdx55_usb3_uniphy_cfg = { .lanes = 1, .serdes_tbl = sm8150_usb3_uniphy_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_serdes_tbl), .tx_tbl = sdx55_usb3_uniphy_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sdx55_usb3_uniphy_tx_tbl), .rx_tbl = sdx55_usb3_uniphy_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sdx55_usb3_uniphy_rx_tbl), .pcs_tbl = sm8250_usb3_uniphy_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_pcs_tbl), .pcs_usb_tbl = sm8250_usb3_uniphy_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8250_usb3_uniphy_pcs_usb_tbl), .clk_list = qmp_v4_sdx55_usbphy_clk_l, .num_clks = ARRAY_SIZE(qmp_v4_sdx55_usbphy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v4_usb3phy_regs_layout, .pcs_usb_offset = 0x600, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg sdx65_usb3_uniphy_cfg = { .lanes = 1, .serdes_tbl = sm8150_usb3_uniphy_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_serdes_tbl), .tx_tbl = sdx65_usb3_uniphy_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sdx65_usb3_uniphy_tx_tbl), .rx_tbl = sdx65_usb3_uniphy_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sdx65_usb3_uniphy_rx_tbl), .pcs_tbl = sm8350_usb3_uniphy_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_pcs_tbl), .pcs_usb_tbl = sm8350_usb3_uniphy_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_pcs_usb_tbl), .clk_list = qmp_v4_sdx55_usbphy_clk_l, .num_clks = ARRAY_SIZE(qmp_v4_sdx55_usbphy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v5_usb3phy_regs_layout, .pcs_usb_offset = 0x1000, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg sm8350_usb3_uniphy_cfg = { .lanes = 1, .serdes_tbl = sm8150_usb3_uniphy_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_uniphy_serdes_tbl), .tx_tbl = sm8350_usb3_uniphy_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_tx_tbl), .rx_tbl = sm8350_usb3_uniphy_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_rx_tbl), .pcs_tbl = sm8350_usb3_uniphy_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_pcs_tbl), .pcs_usb_tbl = sm8350_usb3_uniphy_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8350_usb3_uniphy_pcs_usb_tbl), .clk_list = qmp_v4_ref_phy_clk_l, .num_clks = ARRAY_SIZE(qmp_v4_ref_phy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v5_usb3phy_regs_layout, .pcs_usb_offset = 0x1000, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg qcm2290_usb3phy_cfg = { .lanes = 2, .offsets = &qmp_usb_offsets_v3, .serdes_tbl = qcm2290_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(qcm2290_usb3_serdes_tbl), .tx_tbl = qcm2290_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(qcm2290_usb3_tx_tbl), .rx_tbl = qcm2290_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(qcm2290_usb3_rx_tbl), .pcs_tbl = qcm2290_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(qcm2290_usb3_pcs_tbl), .clk_list = qcm2290_usb3phy_clk_l, .num_clks = ARRAY_SIZE(qcm2290_usb3phy_clk_l), .reset_list = qcm2290_usb3phy_reset_l, .num_resets = ARRAY_SIZE(qcm2290_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v3_usb3phy_regs_layout, }; static void qmp_usb_configure_lane(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num, u8 lane_mask) { int i; const struct qmp_phy_init_tbl *t = tbl; if (!t) return; for (i = 0; i < num; i++, t++) { if (!(t->lane_mask & lane_mask)) continue; writel(t->val, base + t->offset); } } static void qmp_usb_configure(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num) { qmp_usb_configure_lane(base, tbl, num, 0xff); } static int qmp_usb_serdes_init(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *serdes = qmp->serdes; const struct qmp_phy_init_tbl *serdes_tbl = cfg->serdes_tbl; int serdes_tbl_num = cfg->serdes_tbl_num; qmp_usb_configure(serdes, serdes_tbl, serdes_tbl_num); return 0; } static int qmp_usb_init(struct phy *phy) { struct qmp_usb *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *pcs = qmp->pcs; int ret; ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs); if (ret) { dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret); return ret; } ret = reset_control_bulk_assert(cfg->num_resets, qmp->resets); if (ret) { dev_err(qmp->dev, "reset assert failed\n"); goto err_disable_regulators; } ret = reset_control_bulk_deassert(cfg->num_resets, qmp->resets); if (ret) { dev_err(qmp->dev, "reset deassert failed\n"); goto err_disable_regulators; } ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks); if (ret) goto err_assert_reset; qphy_setbits(pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN); return 0; err_assert_reset: reset_control_bulk_assert(cfg->num_resets, qmp->resets); err_disable_regulators: regulator_bulk_disable(cfg->num_vregs, qmp->vregs); return ret; } static int qmp_usb_exit(struct phy *phy) { struct qmp_usb *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; reset_control_bulk_assert(cfg->num_resets, qmp->resets); clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks); regulator_bulk_disable(cfg->num_vregs, qmp->vregs); return 0; } static int qmp_usb_power_on(struct phy *phy) { struct qmp_usb *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *tx = qmp->tx; void __iomem *rx = qmp->rx; void __iomem *pcs = qmp->pcs; void __iomem *status; unsigned int val; int ret; qmp_usb_serdes_init(qmp); ret = clk_prepare_enable(qmp->pipe_clk); if (ret) { dev_err(qmp->dev, "pipe_clk enable failed err=%d\n", ret); return ret; } /* Tx, Rx, and PCS configurations */ qmp_usb_configure_lane(tx, cfg->tx_tbl, cfg->tx_tbl_num, 1); qmp_usb_configure_lane(rx, cfg->rx_tbl, cfg->rx_tbl_num, 1); if (cfg->lanes >= 2) { qmp_usb_configure_lane(qmp->tx2, cfg->tx_tbl, cfg->tx_tbl_num, 2); qmp_usb_configure_lane(qmp->rx2, cfg->rx_tbl, cfg->rx_tbl_num, 2); } qmp_usb_configure(pcs, cfg->pcs_tbl, cfg->pcs_tbl_num); if (cfg->has_pwrdn_delay) usleep_range(10, 20); /* Pull PHY out of reset state */ qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* start SerDes and Phy-Coding-Sublayer */ qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START); status = pcs + cfg->regs[QPHY_PCS_STATUS]; ret = readl_poll_timeout(status, val, !(val & PHYSTATUS), 200, PHY_INIT_COMPLETE_TIMEOUT); if (ret) { dev_err(qmp->dev, "phy initialization timed-out\n"); goto err_disable_pipe_clk; } return 0; err_disable_pipe_clk: clk_disable_unprepare(qmp->pipe_clk); return ret; } static int qmp_usb_power_off(struct phy *phy) { struct qmp_usb *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; clk_disable_unprepare(qmp->pipe_clk); /* PHY reset */ qphy_setbits(qmp->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* stop SerDes and Phy-Coding-Sublayer */ qphy_clrbits(qmp->pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START); /* Put PHY into POWER DOWN state: active low */ qphy_clrbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN); return 0; } static int qmp_usb_enable(struct phy *phy) { int ret; ret = qmp_usb_init(phy); if (ret) return ret; ret = qmp_usb_power_on(phy); if (ret) qmp_usb_exit(phy); return ret; } static int qmp_usb_disable(struct phy *phy) { int ret; ret = qmp_usb_power_off(phy); if (ret) return ret; return qmp_usb_exit(phy); } static int qmp_usb_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct qmp_usb *qmp = phy_get_drvdata(phy); qmp->mode = mode; return 0; } static const struct phy_ops qmp_usb_phy_ops = { .init = qmp_usb_enable, .exit = qmp_usb_disable, .set_mode = qmp_usb_set_mode, .owner = THIS_MODULE, }; static void qmp_usb_enable_autonomous_mode(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs; void __iomem *pcs_misc = qmp->pcs_misc; u32 intr_mask; if (qmp->mode == PHY_MODE_USB_HOST_SS || qmp->mode == PHY_MODE_USB_DEVICE_SS) intr_mask = ARCVR_DTCT_EN | ALFPS_DTCT_EN; else intr_mask = ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL; /* Clear any pending interrupts status */ qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); /* Writing 1 followed by 0 clears the interrupt */ qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], ARCVR_DTCT_EN | ALFPS_DTCT_EN | ARCVR_DTCT_EVENT_SEL); /* Enable required PHY autonomous mode interrupts */ qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], intr_mask); /* Enable i/o clamp_n for autonomous mode */ if (pcs_misc) qphy_clrbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN); } static void qmp_usb_disable_autonomous_mode(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs; void __iomem *pcs_misc = qmp->pcs_misc; /* Disable i/o clamp_n on resume for normal mode */ if (pcs_misc) qphy_setbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN); qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL | ALFPS_DTCT_EN); qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); /* Writing 1 followed by 0 clears the interrupt */ qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); } static int __maybe_unused qmp_usb_runtime_suspend(struct device *dev) { struct qmp_usb *qmp = dev_get_drvdata(dev); const struct qmp_phy_cfg *cfg = qmp->cfg; dev_vdbg(dev, "Suspending QMP phy, mode:%d\n", qmp->mode); if (!qmp->phy->init_count) { dev_vdbg(dev, "PHY not initialized, bailing out\n"); return 0; } qmp_usb_enable_autonomous_mode(qmp); clk_disable_unprepare(qmp->pipe_clk); clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks); return 0; } static int __maybe_unused qmp_usb_runtime_resume(struct device *dev) { struct qmp_usb *qmp = dev_get_drvdata(dev); const struct qmp_phy_cfg *cfg = qmp->cfg; int ret = 0; dev_vdbg(dev, "Resuming QMP phy, mode:%d\n", qmp->mode); if (!qmp->phy->init_count) { dev_vdbg(dev, "PHY not initialized, bailing out\n"); return 0; } ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks); if (ret) return ret; ret = clk_prepare_enable(qmp->pipe_clk); if (ret) { dev_err(dev, "pipe_clk enable failed, err=%d\n", ret); clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks); return ret; } qmp_usb_disable_autonomous_mode(qmp); return 0; } static const struct dev_pm_ops qmp_usb_pm_ops = { SET_RUNTIME_PM_OPS(qmp_usb_runtime_suspend, qmp_usb_runtime_resume, NULL) }; static int qmp_usb_vreg_init(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int num = cfg->num_vregs; int i; qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL); if (!qmp->vregs) return -ENOMEM; for (i = 0; i < num; i++) qmp->vregs[i].supply = cfg->vreg_list[i]; return devm_regulator_bulk_get(dev, num, qmp->vregs); } static int qmp_usb_reset_init(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int i; int ret; qmp->resets = devm_kcalloc(dev, cfg->num_resets, sizeof(*qmp->resets), GFP_KERNEL); if (!qmp->resets) return -ENOMEM; for (i = 0; i < cfg->num_resets; i++) qmp->resets[i].id = cfg->reset_list[i]; ret = devm_reset_control_bulk_get_exclusive(dev, cfg->num_resets, qmp->resets); if (ret) return dev_err_probe(dev, ret, "failed to get resets\n"); return 0; } static int qmp_usb_clk_init(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int num = cfg->num_clks; int i; qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL); if (!qmp->clks) return -ENOMEM; for (i = 0; i < num; i++) qmp->clks[i].id = cfg->clk_list[i]; return devm_clk_bulk_get(dev, num, qmp->clks); } static void phy_clk_release_provider(void *res) { of_clk_del_provider(res); } /* * Register a fixed rate pipe clock. * * The <s>_pipe_clksrc generated by PHY goes to the GCC that gate * controls it. The <s>_pipe_clk coming out of the GCC is requested * by the PHY driver for its operations. * We register the <s>_pipe_clksrc here. The gcc driver takes care * of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk. * Below picture shows this relationship. * * +---------------+ * | PHY block |<<---------------------------------------+ * | | | * | +-------+ | +-----+ | * I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+ * clk | +-------+ | +-----+ * +---------------+ */ static int phy_pipe_clk_register(struct qmp_usb *qmp, struct device_node *np) { struct clk_fixed_rate *fixed = &qmp->pipe_clk_fixed; struct clk_init_data init = { }; int ret; ret = of_property_read_string(np, "clock-output-names", &init.name); if (ret) { dev_err(qmp->dev, "%pOFn: No clock-output-names\n", np); return ret; } init.ops = &clk_fixed_rate_ops; /* controllers using QMP phys use 125MHz pipe clock interface */ fixed->fixed_rate = 125000000; fixed->hw.init = &init; ret = devm_clk_hw_register(qmp->dev, &fixed->hw); if (ret) return ret; ret = of_clk_add_hw_provider(np, of_clk_hw_simple_get, &fixed->hw); if (ret) return ret; /* * Roll a devm action because the clock provider is the child node, but * the child node is not actually a device. */ return devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, np); } static void __iomem *qmp_usb_iomap(struct device *dev, struct device_node *np, int index, bool exclusive) { struct resource res; if (!exclusive) { if (of_address_to_resource(np, index, &res)) return IOMEM_ERR_PTR(-EINVAL); return devm_ioremap(dev, res.start, resource_size(&res)); } return devm_of_iomap(dev, np, index, NULL); } static int qmp_usb_parse_dt_legacy(struct qmp_usb *qmp, struct device_node *np) { struct platform_device *pdev = to_platform_device(qmp->dev); const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; bool exclusive = true; qmp->serdes = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(qmp->serdes)) return PTR_ERR(qmp->serdes); /* * FIXME: These bindings should be fixed to not rely on overlapping * mappings for PCS. */ if (of_device_is_compatible(dev->of_node, "qcom,sdx65-qmp-usb3-uni-phy")) exclusive = false; if (of_device_is_compatible(dev->of_node, "qcom,sm8350-qmp-usb3-uni-phy")) exclusive = false; /* * Get memory resources for the PHY: * Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2. * For dual lane PHYs: tx2 -> 3, rx2 -> 4, pcs_misc (optional) -> 5 * For single lane PHYs: pcs_misc (optional) -> 3. */ qmp->tx = devm_of_iomap(dev, np, 0, NULL); if (IS_ERR(qmp->tx)) return PTR_ERR(qmp->tx); qmp->rx = devm_of_iomap(dev, np, 1, NULL); if (IS_ERR(qmp->rx)) return PTR_ERR(qmp->rx); qmp->pcs = qmp_usb_iomap(dev, np, 2, exclusive); if (IS_ERR(qmp->pcs)) return PTR_ERR(qmp->pcs); if (cfg->pcs_usb_offset) qmp->pcs_usb = qmp->pcs + cfg->pcs_usb_offset; if (cfg->lanes >= 2) { qmp->tx2 = devm_of_iomap(dev, np, 3, NULL); if (IS_ERR(qmp->tx2)) return PTR_ERR(qmp->tx2); qmp->rx2 = devm_of_iomap(dev, np, 4, NULL); if (IS_ERR(qmp->rx2)) return PTR_ERR(qmp->rx2); qmp->pcs_misc = devm_of_iomap(dev, np, 5, NULL); } else { qmp->pcs_misc = devm_of_iomap(dev, np, 3, NULL); } if (IS_ERR(qmp->pcs_misc)) { dev_vdbg(dev, "PHY pcs_misc-reg not used\n"); qmp->pcs_misc = NULL; } qmp->pipe_clk = devm_get_clk_from_child(dev, np, NULL); if (IS_ERR(qmp->pipe_clk)) { return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk), "failed to get pipe clock\n"); } return 0; } static int qmp_usb_parse_dt(struct qmp_usb *qmp) { struct platform_device *pdev = to_platform_device(qmp->dev); const struct qmp_phy_cfg *cfg = qmp->cfg; const struct qmp_usb_offsets *offs = cfg->offsets; struct device *dev = qmp->dev; void __iomem *base; if (!offs) return -EINVAL; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); qmp->serdes = base + offs->serdes; qmp->pcs = base + offs->pcs; qmp->pcs_misc = base + offs->pcs_misc; qmp->pcs_usb = base + offs->pcs_usb; qmp->tx = base + offs->tx; qmp->rx = base + offs->rx; if (cfg->lanes >= 2) { qmp->tx2 = base + offs->tx2; qmp->rx2 = base + offs->rx2; } qmp->pipe_clk = devm_clk_get(dev, "pipe"); if (IS_ERR(qmp->pipe_clk)) { return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk), "failed to get pipe clock\n"); } return 0; } static int qmp_usb_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct device_node *np; struct qmp_usb *qmp; int ret; qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL); if (!qmp) return -ENOMEM; qmp->dev = dev; qmp->cfg = of_device_get_match_data(dev); if (!qmp->cfg) return -EINVAL; ret = qmp_usb_clk_init(qmp); if (ret) return ret; ret = qmp_usb_reset_init(qmp); if (ret) return ret; ret = qmp_usb_vreg_init(qmp); if (ret) return ret; /* Check for legacy binding with child node. */ np = of_get_next_available_child(dev->of_node, NULL); if (np) { ret = qmp_usb_parse_dt_legacy(qmp, np); } else { np = of_node_get(dev->of_node); ret = qmp_usb_parse_dt(qmp); } if (ret) goto err_node_put; pm_runtime_set_active(dev); ret = devm_pm_runtime_enable(dev); if (ret) goto err_node_put; /* * Prevent runtime pm from being ON by default. Users can enable * it using power/control in sysfs. */ pm_runtime_forbid(dev); ret = phy_pipe_clk_register(qmp, np); if (ret) goto err_node_put; qmp->phy = devm_phy_create(dev, np, &qmp_usb_phy_ops); if (IS_ERR(qmp->phy)) { ret = PTR_ERR(qmp->phy); dev_err(dev, "failed to create PHY: %d\n", ret); goto err_node_put; } phy_set_drvdata(qmp->phy, qmp); of_node_put(np); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); err_node_put: of_node_put(np); return ret; } static const struct of_device_id qmp_usb_of_match_table[] = { { .compatible = "qcom,ipq6018-qmp-usb3-phy", .data = &ipq8074_usb3phy_cfg, }, { .compatible = "qcom,ipq8074-qmp-usb3-phy", .data = &ipq8074_usb3phy_cfg, }, { .compatible = "qcom,ipq9574-qmp-usb3-phy", .data = &ipq9574_usb3phy_cfg, }, { .compatible = "qcom,msm8996-qmp-usb3-phy", .data = &msm8996_usb3phy_cfg, }, { .compatible = "qcom,msm8998-qmp-usb3-phy", .data = &msm8998_usb3phy_cfg, }, { .compatible = "qcom,qcm2290-qmp-usb3-phy", .data = &qcm2290_usb3phy_cfg, }, { .compatible = "qcom,sa8775p-qmp-usb3-uni-phy", .data = &sa8775p_usb3_uniphy_cfg, }, { .compatible = "qcom,sc8280xp-qmp-usb3-uni-phy", .data = &sc8280xp_usb3_uniphy_cfg, }, { .compatible = "qcom,sdm845-qmp-usb3-uni-phy", .data = &qmp_v3_usb3_uniphy_cfg, }, { .compatible = "qcom,sdx55-qmp-usb3-uni-phy", .data = &sdx55_usb3_uniphy_cfg, }, { .compatible = "qcom,sdx65-qmp-usb3-uni-phy", .data = &sdx65_usb3_uniphy_cfg, }, { .compatible = "qcom,sm6115-qmp-usb3-phy", .data = &qcm2290_usb3phy_cfg, }, { .compatible = "qcom,sm8150-qmp-usb3-uni-phy", .data = &sm8150_usb3_uniphy_cfg, }, { .compatible = "qcom,sm8250-qmp-usb3-uni-phy", .data = &sm8250_usb3_uniphy_cfg, }, { .compatible = "qcom,sm8350-qmp-usb3-uni-phy", .data = &sm8350_usb3_uniphy_cfg, }, { }, }; MODULE_DEVICE_TABLE(of, qmp_usb_of_match_table); static struct platform_driver qmp_usb_driver = { .probe = qmp_usb_probe, .driver = { .name = "qcom-qmp-usb-phy", .pm = &qmp_usb_pm_ops, .of_match_table = qmp_usb_of_match_table, }, }; module_platform_driver(qmp_usb_driver); MODULE_AUTHOR("Vivek Gautam <[email protected]>"); MODULE_DESCRIPTION("Qualcomm QMP USB PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-qmp-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2023, Linaro Limited */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/regmap.h> #include <linux/of.h> #include <linux/phy/phy.h> /* eUSB2 status registers */ #define EUSB2_RPTR_STATUS 0x08 #define RPTR_OK BIT(7) /* eUSB2 control registers */ #define EUSB2_EN_CTL1 0x46 #define EUSB2_RPTR_EN BIT(7) #define EUSB2_FORCE_EN_5 0xe8 #define F_CLK_19P2M_EN BIT(6) #define EUSB2_FORCE_VAL_5 0xeD #define V_CLK_19P2M_EN BIT(6) #define EUSB2_TUNE_IUSB2 0x51 #define EUSB2_TUNE_SQUELCH_U 0x54 #define EUSB2_TUNE_USB2_PREEM 0x57 #define QCOM_EUSB2_REPEATER_INIT_CFG(o, v) \ { \ .offset = o, \ .val = v, \ } struct eusb2_repeater_init_tbl { unsigned int offset; unsigned int val; }; struct eusb2_repeater_cfg { const struct eusb2_repeater_init_tbl *init_tbl; int init_tbl_num; const char * const *vreg_list; int num_vregs; }; struct eusb2_repeater { struct device *dev; struct regmap *regmap; struct phy *phy; struct regulator_bulk_data *vregs; const struct eusb2_repeater_cfg *cfg; u16 base; enum phy_mode mode; }; static const char * const pm8550b_vreg_l[] = { "vdd18", "vdd3", }; static const struct eusb2_repeater_init_tbl pm8550b_init_tbl[] = { QCOM_EUSB2_REPEATER_INIT_CFG(EUSB2_TUNE_IUSB2, 0x8), QCOM_EUSB2_REPEATER_INIT_CFG(EUSB2_TUNE_SQUELCH_U, 0x3), QCOM_EUSB2_REPEATER_INIT_CFG(EUSB2_TUNE_USB2_PREEM, 0x5), }; static const struct eusb2_repeater_cfg pm8550b_eusb2_cfg = { .init_tbl = pm8550b_init_tbl, .init_tbl_num = ARRAY_SIZE(pm8550b_init_tbl), .vreg_list = pm8550b_vreg_l, .num_vregs = ARRAY_SIZE(pm8550b_vreg_l), }; static int eusb2_repeater_init_vregs(struct eusb2_repeater *rptr) { int num = rptr->cfg->num_vregs; struct device *dev = rptr->dev; int i; rptr->vregs = devm_kcalloc(dev, num, sizeof(*rptr->vregs), GFP_KERNEL); if (!rptr->vregs) return -ENOMEM; for (i = 0; i < num; i++) rptr->vregs[i].supply = rptr->cfg->vreg_list[i]; return devm_regulator_bulk_get(dev, num, rptr->vregs); } static int eusb2_repeater_init(struct phy *phy) { struct eusb2_repeater *rptr = phy_get_drvdata(phy); const struct eusb2_repeater_init_tbl *init_tbl = rptr->cfg->init_tbl; int num = rptr->cfg->init_tbl_num; u32 val; int ret; int i; ret = regulator_bulk_enable(rptr->cfg->num_vregs, rptr->vregs); if (ret) return ret; regmap_update_bits(rptr->regmap, rptr->base + EUSB2_EN_CTL1, EUSB2_RPTR_EN, EUSB2_RPTR_EN); for (i = 0; i < num; i++) regmap_update_bits(rptr->regmap, rptr->base + init_tbl[i].offset, init_tbl[i].val, init_tbl[i].val); ret = regmap_read_poll_timeout(rptr->regmap, rptr->base + EUSB2_RPTR_STATUS, val, val & RPTR_OK, 10, 5); if (ret) dev_err(rptr->dev, "initialization timed-out\n"); return ret; } static int eusb2_repeater_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct eusb2_repeater *rptr = phy_get_drvdata(phy); switch (mode) { case PHY_MODE_USB_HOST: /* * CM.Lx is prohibited when repeater is already into Lx state as * per eUSB 1.2 Spec. Below implement software workaround until * PHY and controller is fixing seen observation. */ regmap_update_bits(rptr->regmap, rptr->base + EUSB2_FORCE_EN_5, F_CLK_19P2M_EN, F_CLK_19P2M_EN); regmap_update_bits(rptr->regmap, rptr->base + EUSB2_FORCE_VAL_5, V_CLK_19P2M_EN, V_CLK_19P2M_EN); break; case PHY_MODE_USB_DEVICE: /* * In device mode clear host mode related workaround as there * is no repeater reset available, and enable/disable of * repeater doesn't clear previous value due to shared * regulators (say host <-> device mode switch). */ regmap_update_bits(rptr->regmap, rptr->base + EUSB2_FORCE_EN_5, F_CLK_19P2M_EN, 0); regmap_update_bits(rptr->regmap, rptr->base + EUSB2_FORCE_VAL_5, V_CLK_19P2M_EN, 0); break; default: return -EINVAL; } return 0; } static int eusb2_repeater_exit(struct phy *phy) { struct eusb2_repeater *rptr = phy_get_drvdata(phy); return regulator_bulk_disable(rptr->cfg->num_vregs, rptr->vregs); } static const struct phy_ops eusb2_repeater_ops = { .init = eusb2_repeater_init, .exit = eusb2_repeater_exit, .set_mode = eusb2_repeater_set_mode, .owner = THIS_MODULE, }; static int eusb2_repeater_probe(struct platform_device *pdev) { struct eusb2_repeater *rptr; struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct device_node *np = dev->of_node; u32 res; int ret; rptr = devm_kzalloc(dev, sizeof(*rptr), GFP_KERNEL); if (!rptr) return -ENOMEM; rptr->dev = dev; dev_set_drvdata(dev, rptr); rptr->cfg = of_device_get_match_data(dev); if (!rptr->cfg) return -EINVAL; rptr->regmap = dev_get_regmap(dev->parent, NULL); if (!rptr->regmap) return -ENODEV; ret = of_property_read_u32(np, "reg", &res); if (ret < 0) return ret; rptr->base = res; ret = eusb2_repeater_init_vregs(rptr); if (ret < 0) { dev_err(dev, "unable to get supplies\n"); return ret; } rptr->phy = devm_phy_create(dev, np, &eusb2_repeater_ops); if (IS_ERR(rptr->phy)) { dev_err(dev, "failed to create PHY: %d\n", ret); return PTR_ERR(rptr->phy); } phy_set_drvdata(rptr->phy, rptr); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) return PTR_ERR(phy_provider); dev_info(dev, "Registered Qcom-eUSB2 repeater\n"); return 0; } static void eusb2_repeater_remove(struct platform_device *pdev) { struct eusb2_repeater *rptr = platform_get_drvdata(pdev); if (!rptr) return; eusb2_repeater_exit(rptr->phy); } static const struct of_device_id eusb2_repeater_of_match_table[] = { { .compatible = "qcom,pm8550b-eusb2-repeater", .data = &pm8550b_eusb2_cfg, }, { }, }; MODULE_DEVICE_TABLE(of, eusb2_repeater_of_match_table); static struct platform_driver eusb2_repeater_driver = { .probe = eusb2_repeater_probe, .remove_new = eusb2_repeater_remove, .driver = { .name = "qcom-eusb2-repeater", .of_match_table = eusb2_repeater_of_match_table, }, }; module_platform_driver(eusb2_repeater_driver); MODULE_DESCRIPTION("Qualcomm PMIC eUSB2 Repeater driver"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/qualcomm/phy-qcom-eusb2-repeater.c
// SPDX-License-Identifier: GPL-2.0-only #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/bitfield.h> /* USB QSCRATCH Hardware registers */ #define QSCRATCH_GENERAL_CFG (0x08) #define HSUSB_PHY_CTRL_REG (0x10) /* PHY_CTRL_REG */ #define HSUSB_CTRL_DMSEHV_CLAMP BIT(24) #define HSUSB_CTRL_USB2_SUSPEND BIT(23) #define HSUSB_CTRL_UTMI_CLK_EN BIT(21) #define HSUSB_CTRL_UTMI_OTG_VBUS_VALID BIT(20) #define HSUSB_CTRL_USE_CLKCORE BIT(18) #define HSUSB_CTRL_DPSEHV_CLAMP BIT(17) #define HSUSB_CTRL_COMMONONN BIT(11) #define HSUSB_CTRL_ID_HV_CLAMP BIT(9) #define HSUSB_CTRL_OTGSESSVLD_CLAMP BIT(8) #define HSUSB_CTRL_CLAMP_EN BIT(7) #define HSUSB_CTRL_RETENABLEN BIT(1) #define HSUSB_CTRL_POR BIT(0) /* QSCRATCH_GENERAL_CFG */ #define HSUSB_GCFG_XHCI_REV BIT(2) /* USB QSCRATCH Hardware registers */ #define SSUSB_PHY_CTRL_REG (0x00) #define SSUSB_PHY_PARAM_CTRL_1 (0x04) #define SSUSB_PHY_PARAM_CTRL_2 (0x08) #define CR_PROTOCOL_DATA_IN_REG (0x0c) #define CR_PROTOCOL_DATA_OUT_REG (0x10) #define CR_PROTOCOL_CAP_ADDR_REG (0x14) #define CR_PROTOCOL_CAP_DATA_REG (0x18) #define CR_PROTOCOL_READ_REG (0x1c) #define CR_PROTOCOL_WRITE_REG (0x20) /* PHY_CTRL_REG */ #define SSUSB_CTRL_REF_USE_PAD BIT(28) #define SSUSB_CTRL_TEST_POWERDOWN BIT(27) #define SSUSB_CTRL_LANE0_PWR_PRESENT BIT(24) #define SSUSB_CTRL_SS_PHY_EN BIT(8) #define SSUSB_CTRL_SS_PHY_RESET BIT(7) /* SSPHY control registers - Does this need 0x30? */ #define SSPHY_CTRL_RX_OVRD_IN_HI(lane) (0x1006 + 0x100 * (lane)) #define SSPHY_CTRL_TX_OVRD_DRV_LO(lane) (0x1002 + 0x100 * (lane)) /* SSPHY SoC version specific values */ #define SSPHY_RX_EQ_VALUE 4 /* Override value for rx_eq */ /* Override value for transmit preemphasis */ #define SSPHY_TX_DEEMPH_3_5DB 23 /* Override value for mpll */ #define SSPHY_MPLL_VALUE 0 /* QSCRATCH PHY_PARAM_CTRL1 fields */ #define PHY_PARAM_CTRL1_TX_FULL_SWING_MASK GENMASK(26, 19) #define PHY_PARAM_CTRL1_TX_DEEMPH_6DB_MASK GENMASK(19, 13) #define PHY_PARAM_CTRL1_TX_DEEMPH_3_5DB_MASK GENMASK(13, 7) #define PHY_PARAM_CTRL1_LOS_BIAS_MASK GENMASK(7, 2) #define PHY_PARAM_CTRL1_MASK \ (PHY_PARAM_CTRL1_TX_FULL_SWING_MASK | \ PHY_PARAM_CTRL1_TX_DEEMPH_6DB_MASK | \ PHY_PARAM_CTRL1_TX_DEEMPH_3_5DB_MASK | \ PHY_PARAM_CTRL1_LOS_BIAS_MASK) #define PHY_PARAM_CTRL1_TX_FULL_SWING(x) \ FIELD_PREP(PHY_PARAM_CTRL1_TX_FULL_SWING_MASK, (x)) #define PHY_PARAM_CTRL1_TX_DEEMPH_6DB(x) \ FIELD_PREP(PHY_PARAM_CTRL1_TX_DEEMPH_6DB_MASK, (x)) #define PHY_PARAM_CTRL1_TX_DEEMPH_3_5DB(x) \ FIELD_PREP(PHY_PARAM_CTRL1_TX_DEEMPH_3_5DB_MASK, x) #define PHY_PARAM_CTRL1_LOS_BIAS(x) \ FIELD_PREP(PHY_PARAM_CTRL1_LOS_BIAS_MASK, (x)) /* RX OVRD IN HI bits */ #define RX_OVRD_IN_HI_RX_RESET_OVRD BIT(13) #define RX_OVRD_IN_HI_RX_RX_RESET BIT(12) #define RX_OVRD_IN_HI_RX_EQ_OVRD BIT(11) #define RX_OVRD_IN_HI_RX_EQ_MASK GENMASK(10, 7) #define RX_OVRD_IN_HI_RX_EQ(x) FIELD_PREP(RX_OVRD_IN_HI_RX_EQ_MASK, (x)) #define RX_OVRD_IN_HI_RX_EQ_EN_OVRD BIT(7) #define RX_OVRD_IN_HI_RX_EQ_EN BIT(6) #define RX_OVRD_IN_HI_RX_LOS_FILTER_OVRD BIT(5) #define RX_OVRD_IN_HI_RX_LOS_FILTER_MASK GENMASK(4, 2) #define RX_OVRD_IN_HI_RX_RATE_OVRD BIT(2) #define RX_OVRD_IN_HI_RX_RATE_MASK GENMASK(2, 0) /* TX OVRD DRV LO register bits */ #define TX_OVRD_DRV_LO_AMPLITUDE_MASK GENMASK(6, 0) #define TX_OVRD_DRV_LO_PREEMPH_MASK GENMASK(13, 6) #define TX_OVRD_DRV_LO_PREEMPH(x) ((x) << 7) #define TX_OVRD_DRV_LO_EN BIT(14) /* MPLL bits */ #define SSPHY_MPLL_MASK GENMASK(8, 5) #define SSPHY_MPLL(x) ((x) << 5) /* SS CAP register bits */ #define SS_CR_CAP_ADDR_REG BIT(0) #define SS_CR_CAP_DATA_REG BIT(0) #define SS_CR_READ_REG BIT(0) #define SS_CR_WRITE_REG BIT(0) #define LATCH_SLEEP 40 #define LATCH_TIMEOUT 100 struct usb_phy { void __iomem *base; struct device *dev; struct clk *xo_clk; struct clk *ref_clk; u32 rx_eq; u32 tx_deamp_3_5db; u32 mpll; }; struct phy_drvdata { struct phy_ops ops; u32 clk_rate; }; /** * usb_phy_write_readback() - Write register and read back masked value to * confirm it is written * * @phy_dwc3: QCOM DWC3 phy context * @offset: register offset. * @mask: register bitmask specifying what should be updated * @val: value to write. */ static inline void usb_phy_write_readback(struct usb_phy *phy_dwc3, u32 offset, const u32 mask, u32 val) { u32 write_val, tmp = readl(phy_dwc3->base + offset); tmp &= ~mask; /* retain other bits */ write_val = tmp | val; writel(write_val, phy_dwc3->base + offset); /* Read back to see if val was written */ tmp = readl(phy_dwc3->base + offset); tmp &= mask; /* clear other bits */ if (tmp != val) dev_err(phy_dwc3->dev, "write: %x to QSCRATCH: %x FAILED\n", val, offset); } static int wait_for_latch(void __iomem *addr) { u32 val; return readl_poll_timeout(addr, val, !val, LATCH_SLEEP, LATCH_TIMEOUT); } /** * usb_ss_write_phycreg() - Write SSPHY register * * @phy_dwc3: QCOM DWC3 phy context * @addr: SSPHY address to write. * @val: value to write. */ static int usb_ss_write_phycreg(struct usb_phy *phy_dwc3, u32 addr, u32 val) { int ret; writel(addr, phy_dwc3->base + CR_PROTOCOL_DATA_IN_REG); writel(SS_CR_CAP_ADDR_REG, phy_dwc3->base + CR_PROTOCOL_CAP_ADDR_REG); ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_CAP_ADDR_REG); if (ret) goto err_wait; writel(val, phy_dwc3->base + CR_PROTOCOL_DATA_IN_REG); writel(SS_CR_CAP_DATA_REG, phy_dwc3->base + CR_PROTOCOL_CAP_DATA_REG); ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_CAP_DATA_REG); if (ret) goto err_wait; writel(SS_CR_WRITE_REG, phy_dwc3->base + CR_PROTOCOL_WRITE_REG); ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_WRITE_REG); err_wait: if (ret) dev_err(phy_dwc3->dev, "timeout waiting for latch\n"); return ret; } /** * usb_ss_read_phycreg() - Read SSPHY register. * * @phy_dwc3: QCOM DWC3 phy context * @addr: SSPHY address to read. * @val: pointer in which read is store. */ static int usb_ss_read_phycreg(struct usb_phy *phy_dwc3, u32 addr, u32 *val) { int ret; writel(addr, phy_dwc3->base + CR_PROTOCOL_DATA_IN_REG); writel(SS_CR_CAP_ADDR_REG, phy_dwc3->base + CR_PROTOCOL_CAP_ADDR_REG); ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_CAP_ADDR_REG); if (ret) goto err_wait; /* * Due to hardware bug, first read of SSPHY register might be * incorrect. Hence as workaround, SW should perform SSPHY register * read twice, but use only second read and ignore first read. */ writel(SS_CR_READ_REG, phy_dwc3->base + CR_PROTOCOL_READ_REG); ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_READ_REG); if (ret) goto err_wait; /* throwaway read */ readl(phy_dwc3->base + CR_PROTOCOL_DATA_OUT_REG); writel(SS_CR_READ_REG, phy_dwc3->base + CR_PROTOCOL_READ_REG); ret = wait_for_latch(phy_dwc3->base + CR_PROTOCOL_READ_REG); if (ret) goto err_wait; *val = readl(phy_dwc3->base + CR_PROTOCOL_DATA_OUT_REG); err_wait: return ret; } static int qcom_ipq806x_usb_hs_phy_init(struct phy *phy) { struct usb_phy *phy_dwc3 = phy_get_drvdata(phy); int ret; u32 val; ret = clk_prepare_enable(phy_dwc3->xo_clk); if (ret) return ret; ret = clk_prepare_enable(phy_dwc3->ref_clk); if (ret) { clk_disable_unprepare(phy_dwc3->xo_clk); return ret; } /* * HSPHY Initialization: Enable UTMI clock, select 19.2MHz fsel * enable clamping, and disable RETENTION (power-on default is ENABLED) */ val = HSUSB_CTRL_DPSEHV_CLAMP | HSUSB_CTRL_DMSEHV_CLAMP | HSUSB_CTRL_RETENABLEN | HSUSB_CTRL_COMMONONN | HSUSB_CTRL_OTGSESSVLD_CLAMP | HSUSB_CTRL_ID_HV_CLAMP | HSUSB_CTRL_UTMI_OTG_VBUS_VALID | HSUSB_CTRL_UTMI_CLK_EN | HSUSB_CTRL_CLAMP_EN | 0x70; /* use core clock if external reference is not present */ if (!phy_dwc3->xo_clk) val |= HSUSB_CTRL_USE_CLKCORE; writel(val, phy_dwc3->base + HSUSB_PHY_CTRL_REG); usleep_range(2000, 2200); /* Disable (bypass) VBUS and ID filters */ writel(HSUSB_GCFG_XHCI_REV, phy_dwc3->base + QSCRATCH_GENERAL_CFG); return 0; } static int qcom_ipq806x_usb_hs_phy_exit(struct phy *phy) { struct usb_phy *phy_dwc3 = phy_get_drvdata(phy); clk_disable_unprepare(phy_dwc3->ref_clk); clk_disable_unprepare(phy_dwc3->xo_clk); return 0; } static int qcom_ipq806x_usb_ss_phy_init(struct phy *phy) { struct usb_phy *phy_dwc3 = phy_get_drvdata(phy); int ret; u32 data; ret = clk_prepare_enable(phy_dwc3->xo_clk); if (ret) return ret; ret = clk_prepare_enable(phy_dwc3->ref_clk); if (ret) { clk_disable_unprepare(phy_dwc3->xo_clk); return ret; } /* reset phy */ data = readl(phy_dwc3->base + SSUSB_PHY_CTRL_REG); writel(data | SSUSB_CTRL_SS_PHY_RESET, phy_dwc3->base + SSUSB_PHY_CTRL_REG); usleep_range(2000, 2200); writel(data, phy_dwc3->base + SSUSB_PHY_CTRL_REG); /* clear REF_PAD if we don't have XO clk */ if (!phy_dwc3->xo_clk) data &= ~SSUSB_CTRL_REF_USE_PAD; else data |= SSUSB_CTRL_REF_USE_PAD; writel(data, phy_dwc3->base + SSUSB_PHY_CTRL_REG); /* wait for ref clk to become stable, this can take up to 30ms */ msleep(30); data |= SSUSB_CTRL_SS_PHY_EN | SSUSB_CTRL_LANE0_PWR_PRESENT; writel(data, phy_dwc3->base + SSUSB_PHY_CTRL_REG); /* * WORKAROUND: There is SSPHY suspend bug due to which USB enumerates * in HS mode instead of SS mode. Workaround it by asserting * LANE0.TX_ALT_BLOCK.EN_ALT_BUS to enable TX to use alt bus mode */ ret = usb_ss_read_phycreg(phy_dwc3, 0x102D, &data); if (ret) goto err_phy_trans; data |= (1 << 7); ret = usb_ss_write_phycreg(phy_dwc3, 0x102D, data); if (ret) goto err_phy_trans; ret = usb_ss_read_phycreg(phy_dwc3, 0x1010, &data); if (ret) goto err_phy_trans; data &= ~0xff0; data |= 0x20; ret = usb_ss_write_phycreg(phy_dwc3, 0x1010, data); if (ret) goto err_phy_trans; /* * Fix RX Equalization setting as follows * LANE0.RX_OVRD_IN_HI. RX_EQ_EN set to 0 * LANE0.RX_OVRD_IN_HI.RX_EQ_EN_OVRD set to 1 * LANE0.RX_OVRD_IN_HI.RX_EQ set based on SoC version * LANE0.RX_OVRD_IN_HI.RX_EQ_OVRD set to 1 */ ret = usb_ss_read_phycreg(phy_dwc3, SSPHY_CTRL_RX_OVRD_IN_HI(0), &data); if (ret) goto err_phy_trans; data &= ~RX_OVRD_IN_HI_RX_EQ_EN; data |= RX_OVRD_IN_HI_RX_EQ_EN_OVRD; data &= ~RX_OVRD_IN_HI_RX_EQ_MASK; data |= RX_OVRD_IN_HI_RX_EQ(phy_dwc3->rx_eq); data |= RX_OVRD_IN_HI_RX_EQ_OVRD; ret = usb_ss_write_phycreg(phy_dwc3, SSPHY_CTRL_RX_OVRD_IN_HI(0), data); if (ret) goto err_phy_trans; /* * Set EQ and TX launch amplitudes as follows * LANE0.TX_OVRD_DRV_LO.PREEMPH set based on SoC version * LANE0.TX_OVRD_DRV_LO.AMPLITUDE set to 110 * LANE0.TX_OVRD_DRV_LO.EN set to 1. */ ret = usb_ss_read_phycreg(phy_dwc3, SSPHY_CTRL_TX_OVRD_DRV_LO(0), &data); if (ret) goto err_phy_trans; data &= ~TX_OVRD_DRV_LO_PREEMPH_MASK; data |= TX_OVRD_DRV_LO_PREEMPH(phy_dwc3->tx_deamp_3_5db); data &= ~TX_OVRD_DRV_LO_AMPLITUDE_MASK; data |= 0x6E; data |= TX_OVRD_DRV_LO_EN; ret = usb_ss_write_phycreg(phy_dwc3, SSPHY_CTRL_TX_OVRD_DRV_LO(0), data); if (ret) goto err_phy_trans; data = 0; data &= ~SSPHY_MPLL_MASK; data |= SSPHY_MPLL(phy_dwc3->mpll); usb_ss_write_phycreg(phy_dwc3, 0x30, data); /* * Set the QSCRATCH PHY_PARAM_CTRL1 parameters as follows * TX_FULL_SWING [26:20] amplitude to 110 * TX_DEEMPH_6DB [19:14] to 32 * TX_DEEMPH_3_5DB [13:8] set based on SoC version * LOS_BIAS [7:3] to 9 */ data = readl(phy_dwc3->base + SSUSB_PHY_PARAM_CTRL_1); data &= ~PHY_PARAM_CTRL1_MASK; data |= PHY_PARAM_CTRL1_TX_FULL_SWING(0x6e) | PHY_PARAM_CTRL1_TX_DEEMPH_6DB(0x20) | PHY_PARAM_CTRL1_TX_DEEMPH_3_5DB(phy_dwc3->tx_deamp_3_5db) | PHY_PARAM_CTRL1_LOS_BIAS(0x9); usb_phy_write_readback(phy_dwc3, SSUSB_PHY_PARAM_CTRL_1, PHY_PARAM_CTRL1_MASK, data); err_phy_trans: return ret; } static int qcom_ipq806x_usb_ss_phy_exit(struct phy *phy) { struct usb_phy *phy_dwc3 = phy_get_drvdata(phy); /* Sequence to put SSPHY in low power state: * 1. Clear REF_PHY_EN in PHY_CTRL_REG * 2. Clear REF_USE_PAD in PHY_CTRL_REG * 3. Set TEST_POWERED_DOWN in PHY_CTRL_REG to enable PHY retention */ usb_phy_write_readback(phy_dwc3, SSUSB_PHY_CTRL_REG, SSUSB_CTRL_SS_PHY_EN, 0x0); usb_phy_write_readback(phy_dwc3, SSUSB_PHY_CTRL_REG, SSUSB_CTRL_REF_USE_PAD, 0x0); usb_phy_write_readback(phy_dwc3, SSUSB_PHY_CTRL_REG, SSUSB_CTRL_TEST_POWERDOWN, 0x0); clk_disable_unprepare(phy_dwc3->ref_clk); clk_disable_unprepare(phy_dwc3->xo_clk); return 0; } static const struct phy_drvdata qcom_ipq806x_usb_hs_drvdata = { .ops = { .init = qcom_ipq806x_usb_hs_phy_init, .exit = qcom_ipq806x_usb_hs_phy_exit, .owner = THIS_MODULE, }, .clk_rate = 60000000, }; static const struct phy_drvdata qcom_ipq806x_usb_ss_drvdata = { .ops = { .init = qcom_ipq806x_usb_ss_phy_init, .exit = qcom_ipq806x_usb_ss_phy_exit, .owner = THIS_MODULE, }, .clk_rate = 125000000, }; static const struct of_device_id qcom_ipq806x_usb_phy_table[] = { { .compatible = "qcom,ipq806x-usb-phy-hs", .data = &qcom_ipq806x_usb_hs_drvdata }, { .compatible = "qcom,ipq806x-usb-phy-ss", .data = &qcom_ipq806x_usb_ss_drvdata }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, qcom_ipq806x_usb_phy_table); static int qcom_ipq806x_usb_phy_probe(struct platform_device *pdev) { struct resource *res; resource_size_t size; struct phy *generic_phy; struct usb_phy *phy_dwc3; const struct phy_drvdata *data; struct phy_provider *phy_provider; phy_dwc3 = devm_kzalloc(&pdev->dev, sizeof(*phy_dwc3), GFP_KERNEL); if (!phy_dwc3) return -ENOMEM; data = of_device_get_match_data(&pdev->dev); phy_dwc3->dev = &pdev->dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; size = resource_size(res); phy_dwc3->base = devm_ioremap(phy_dwc3->dev, res->start, size); if (!phy_dwc3->base) { dev_err(phy_dwc3->dev, "failed to map reg\n"); return -ENOMEM; } phy_dwc3->ref_clk = devm_clk_get(phy_dwc3->dev, "ref"); if (IS_ERR(phy_dwc3->ref_clk)) { dev_dbg(phy_dwc3->dev, "cannot get reference clock\n"); return PTR_ERR(phy_dwc3->ref_clk); } clk_set_rate(phy_dwc3->ref_clk, data->clk_rate); phy_dwc3->xo_clk = devm_clk_get(phy_dwc3->dev, "xo"); if (IS_ERR(phy_dwc3->xo_clk)) { dev_dbg(phy_dwc3->dev, "cannot get TCXO clock\n"); phy_dwc3->xo_clk = NULL; } /* Parse device node to probe HSIO settings */ if (device_property_read_u32(&pdev->dev, "qcom,rx-eq", &phy_dwc3->rx_eq)) phy_dwc3->rx_eq = SSPHY_RX_EQ_VALUE; if (device_property_read_u32(&pdev->dev, "qcom,tx-deamp_3_5db", &phy_dwc3->tx_deamp_3_5db)) phy_dwc3->tx_deamp_3_5db = SSPHY_TX_DEEMPH_3_5DB; if (device_property_read_u32(&pdev->dev, "qcom,mpll", &phy_dwc3->mpll)) phy_dwc3->mpll = SSPHY_MPLL_VALUE; generic_phy = devm_phy_create(phy_dwc3->dev, pdev->dev.of_node, &data->ops); if (IS_ERR(generic_phy)) return PTR_ERR(generic_phy); phy_set_drvdata(generic_phy, phy_dwc3); platform_set_drvdata(pdev, phy_dwc3); phy_provider = devm_of_phy_provider_register(phy_dwc3->dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) return PTR_ERR(phy_provider); return 0; } static struct platform_driver qcom_ipq806x_usb_phy_driver = { .probe = qcom_ipq806x_usb_phy_probe, .driver = { .name = "qcom-ipq806x-usb-phy", .of_match_table = qcom_ipq806x_usb_phy_table, }, }; module_platform_driver(qcom_ipq806x_usb_phy_driver); MODULE_ALIAS("platform:phy-qcom-ipq806x-usb"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Andy Gross <[email protected]>"); MODULE_AUTHOR("Ivan T. Ivanov <[email protected]>"); MODULE_DESCRIPTION("DesignWare USB3 QCOM PHY driver");
linux-master
drivers/phy/qualcomm/phy-qcom-ipq806x-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017, 2020, The Linux Foundation. All rights reserved. * Copyright (c) 2021, Linaro Ltd. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #include <dt-bindings/phy/phy.h> #include "phy-qcom-qmp.h" /* EDP_PHY registers */ #define DP_PHY_CFG 0x0010 #define DP_PHY_CFG_1 0x0014 #define DP_PHY_PD_CTL 0x001c #define DP_PHY_MODE 0x0020 #define DP_PHY_AUX_CFG0 0x0024 #define DP_PHY_AUX_CFG1 0x0028 #define DP_PHY_AUX_CFG2 0x002C #define DP_PHY_AUX_CFG3 0x0030 #define DP_PHY_AUX_CFG4 0x0034 #define DP_PHY_AUX_CFG5 0x0038 #define DP_PHY_AUX_CFG6 0x003C #define DP_PHY_AUX_CFG7 0x0040 #define DP_PHY_AUX_CFG8 0x0044 #define DP_PHY_AUX_CFG9 0x0048 #define DP_PHY_AUX_INTERRUPT_MASK 0x0058 #define DP_PHY_VCO_DIV 0x0074 #define DP_PHY_TX0_TX1_LANE_CTL 0x007c #define DP_PHY_TX2_TX3_LANE_CTL 0x00a0 #define DP_PHY_STATUS 0x00e0 /* LANE_TXn registers */ #define TXn_CLKBUF_ENABLE 0x0000 #define TXn_TX_EMP_POST1_LVL 0x0004 #define TXn_TX_DRV_LVL 0x0014 #define TXn_TX_DRV_LVL_OFFSET 0x0018 #define TXn_RESET_TSYNC_EN 0x001c #define TXn_LDO_CONFIG 0x0084 #define TXn_TX_BAND 0x0028 #define TXn_RES_CODE_LANE_OFFSET_TX0 0x0044 #define TXn_RES_CODE_LANE_OFFSET_TX1 0x0048 #define TXn_TRANSCEIVER_BIAS_EN 0x0054 #define TXn_HIGHZ_DRVR_EN 0x0058 #define TXn_TX_POL_INV 0x005c #define TXn_LANE_MODE_1 0x0064 #define TXn_TRAN_DRVR_EMP_EN 0x0078 struct qcom_edp_cfg { bool is_dp; /* DP PHY swing and pre_emphasis tables */ const u8 (*swing_hbr_rbr)[4][4]; const u8 (*swing_hbr3_hbr2)[4][4]; const u8 (*pre_emphasis_hbr_rbr)[4][4]; const u8 (*pre_emphasis_hbr3_hbr2)[4][4]; }; struct qcom_edp { struct device *dev; const struct qcom_edp_cfg *cfg; struct phy *phy; void __iomem *edp; void __iomem *tx0; void __iomem *tx1; void __iomem *pll; struct clk_hw dp_link_hw; struct clk_hw dp_pixel_hw; struct phy_configure_opts_dp dp_opts; struct clk_bulk_data clks[2]; struct regulator_bulk_data supplies[2]; }; static const u8 dp_swing_hbr_rbr[4][4] = { { 0x08, 0x0f, 0x16, 0x1f }, { 0x11, 0x1e, 0x1f, 0xff }, { 0x16, 0x1f, 0xff, 0xff }, { 0x1f, 0xff, 0xff, 0xff } }; static const u8 dp_pre_emp_hbr_rbr[4][4] = { { 0x00, 0x0d, 0x14, 0x1a }, { 0x00, 0x0e, 0x15, 0xff }, { 0x00, 0x0e, 0xff, 0xff }, { 0x03, 0xff, 0xff, 0xff } }; static const u8 dp_swing_hbr2_hbr3[4][4] = { { 0x02, 0x12, 0x16, 0x1a }, { 0x09, 0x19, 0x1f, 0xff }, { 0x10, 0x1f, 0xff, 0xff }, { 0x1f, 0xff, 0xff, 0xff } }; static const u8 dp_pre_emp_hbr2_hbr3[4][4] = { { 0x00, 0x0c, 0x15, 0x1b }, { 0x02, 0x0e, 0x16, 0xff }, { 0x02, 0x11, 0xff, 0xff }, { 0x04, 0xff, 0xff, 0xff } }; static const struct qcom_edp_cfg dp_phy_cfg = { .is_dp = true, .swing_hbr_rbr = &dp_swing_hbr_rbr, .swing_hbr3_hbr2 = &dp_swing_hbr2_hbr3, .pre_emphasis_hbr_rbr = &dp_pre_emp_hbr_rbr, .pre_emphasis_hbr3_hbr2 = &dp_pre_emp_hbr2_hbr3, }; static const u8 edp_swing_hbr_rbr[4][4] = { { 0x07, 0x0f, 0x16, 0x1f }, { 0x0d, 0x16, 0x1e, 0xff }, { 0x11, 0x1b, 0xff, 0xff }, { 0x16, 0xff, 0xff, 0xff } }; static const u8 edp_pre_emp_hbr_rbr[4][4] = { { 0x05, 0x12, 0x17, 0x1d }, { 0x05, 0x11, 0x18, 0xff }, { 0x06, 0x11, 0xff, 0xff }, { 0x00, 0xff, 0xff, 0xff } }; static const u8 edp_swing_hbr2_hbr3[4][4] = { { 0x0b, 0x11, 0x17, 0x1c }, { 0x10, 0x19, 0x1f, 0xff }, { 0x19, 0x1f, 0xff, 0xff }, { 0x1f, 0xff, 0xff, 0xff } }; static const u8 edp_pre_emp_hbr2_hbr3[4][4] = { { 0x08, 0x11, 0x17, 0x1b }, { 0x00, 0x0c, 0x13, 0xff }, { 0x05, 0x10, 0xff, 0xff }, { 0x00, 0xff, 0xff, 0xff } }; static const struct qcom_edp_cfg edp_phy_cfg = { .is_dp = false, .swing_hbr_rbr = &edp_swing_hbr_rbr, .swing_hbr3_hbr2 = &edp_swing_hbr2_hbr3, .pre_emphasis_hbr_rbr = &edp_pre_emp_hbr_rbr, .pre_emphasis_hbr3_hbr2 = &edp_pre_emp_hbr2_hbr3, }; static int qcom_edp_phy_init(struct phy *phy) { struct qcom_edp *edp = phy_get_drvdata(phy); const struct qcom_edp_cfg *cfg = edp->cfg; int ret; u8 cfg8; ret = regulator_bulk_enable(ARRAY_SIZE(edp->supplies), edp->supplies); if (ret) return ret; ret = clk_bulk_prepare_enable(ARRAY_SIZE(edp->clks), edp->clks); if (ret) goto out_disable_supplies; writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN | DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN, edp->edp + DP_PHY_PD_CTL); /* Turn on BIAS current for PHY/PLL */ writel(0x17, edp->pll + QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN); writel(DP_PHY_PD_CTL_PSR_PWRDN, edp->edp + DP_PHY_PD_CTL); msleep(20); writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN | DP_PHY_PD_CTL_LANE_0_1_PWRDN | DP_PHY_PD_CTL_LANE_2_3_PWRDN | DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN, edp->edp + DP_PHY_PD_CTL); if (cfg && cfg->is_dp) cfg8 = 0xb7; else cfg8 = 0x37; writel(0xfc, edp->edp + DP_PHY_MODE); writel(0x00, edp->edp + DP_PHY_AUX_CFG0); writel(0x13, edp->edp + DP_PHY_AUX_CFG1); writel(0x24, edp->edp + DP_PHY_AUX_CFG2); writel(0x00, edp->edp + DP_PHY_AUX_CFG3); writel(0x0a, edp->edp + DP_PHY_AUX_CFG4); writel(0x26, edp->edp + DP_PHY_AUX_CFG5); writel(0x0a, edp->edp + DP_PHY_AUX_CFG6); writel(0x03, edp->edp + DP_PHY_AUX_CFG7); writel(cfg8, edp->edp + DP_PHY_AUX_CFG8); writel(0x03, edp->edp + DP_PHY_AUX_CFG9); writel(PHY_AUX_STOP_ERR_MASK | PHY_AUX_DEC_ERR_MASK | PHY_AUX_SYNC_ERR_MASK | PHY_AUX_ALIGN_ERR_MASK | PHY_AUX_REQ_ERR_MASK, edp->edp + DP_PHY_AUX_INTERRUPT_MASK); msleep(20); return 0; out_disable_supplies: regulator_bulk_disable(ARRAY_SIZE(edp->supplies), edp->supplies); return ret; } static int qcom_edp_set_voltages(struct qcom_edp *edp, const struct phy_configure_opts_dp *dp_opts) { const struct qcom_edp_cfg *cfg = edp->cfg; unsigned int v_level = 0; unsigned int p_level = 0; u8 ldo_config; u8 swing; u8 emph; int i; if (!cfg) return 0; for (i = 0; i < dp_opts->lanes; i++) { v_level = max(v_level, dp_opts->voltage[i]); p_level = max(p_level, dp_opts->pre[i]); } if (dp_opts->link_rate <= 2700) { swing = (*cfg->swing_hbr_rbr)[v_level][p_level]; emph = (*cfg->pre_emphasis_hbr_rbr)[v_level][p_level]; } else { swing = (*cfg->swing_hbr3_hbr2)[v_level][p_level]; emph = (*cfg->pre_emphasis_hbr3_hbr2)[v_level][p_level]; } if (swing == 0xff || emph == 0xff) return -EINVAL; ldo_config = (cfg && cfg->is_dp) ? 0x1 : 0x0; writel(ldo_config, edp->tx0 + TXn_LDO_CONFIG); writel(swing, edp->tx0 + TXn_TX_DRV_LVL); writel(emph, edp->tx0 + TXn_TX_EMP_POST1_LVL); writel(ldo_config, edp->tx1 + TXn_LDO_CONFIG); writel(swing, edp->tx1 + TXn_TX_DRV_LVL); writel(emph, edp->tx1 + TXn_TX_EMP_POST1_LVL); return 0; } static int qcom_edp_phy_configure(struct phy *phy, union phy_configure_opts *opts) { const struct phy_configure_opts_dp *dp_opts = &opts->dp; struct qcom_edp *edp = phy_get_drvdata(phy); int ret = 0; memcpy(&edp->dp_opts, dp_opts, sizeof(*dp_opts)); if (dp_opts->set_voltages) ret = qcom_edp_set_voltages(edp, dp_opts); return ret; } static int qcom_edp_configure_ssc(const struct qcom_edp *edp) { const struct phy_configure_opts_dp *dp_opts = &edp->dp_opts; u32 step1; u32 step2; switch (dp_opts->link_rate) { case 1620: case 2700: case 8100: step1 = 0x45; step2 = 0x06; break; case 5400: step1 = 0x5c; step2 = 0x08; break; default: /* Other link rates aren't supported */ return -EINVAL; } writel(0x01, edp->pll + QSERDES_V4_COM_SSC_EN_CENTER); writel(0x00, edp->pll + QSERDES_V4_COM_SSC_ADJ_PER1); writel(0x36, edp->pll + QSERDES_V4_COM_SSC_PER1); writel(0x01, edp->pll + QSERDES_V4_COM_SSC_PER2); writel(step1, edp->pll + QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0); writel(step2, edp->pll + QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0); return 0; } static int qcom_edp_configure_pll(const struct qcom_edp *edp) { const struct phy_configure_opts_dp *dp_opts = &edp->dp_opts; u32 div_frac_start2_mode0; u32 div_frac_start3_mode0; u32 dec_start_mode0; u32 lock_cmp1_mode0; u32 lock_cmp2_mode0; u32 hsclk_sel; switch (dp_opts->link_rate) { case 1620: hsclk_sel = 0x5; dec_start_mode0 = 0x69; div_frac_start2_mode0 = 0x80; div_frac_start3_mode0 = 0x07; lock_cmp1_mode0 = 0x6f; lock_cmp2_mode0 = 0x08; break; case 2700: hsclk_sel = 0x3; dec_start_mode0 = 0x69; div_frac_start2_mode0 = 0x80; div_frac_start3_mode0 = 0x07; lock_cmp1_mode0 = 0x0f; lock_cmp2_mode0 = 0x0e; break; case 5400: hsclk_sel = 0x1; dec_start_mode0 = 0x8c; div_frac_start2_mode0 = 0x00; div_frac_start3_mode0 = 0x0a; lock_cmp1_mode0 = 0x1f; lock_cmp2_mode0 = 0x1c; break; case 8100: hsclk_sel = 0x0; dec_start_mode0 = 0x69; div_frac_start2_mode0 = 0x80; div_frac_start3_mode0 = 0x07; lock_cmp1_mode0 = 0x2f; lock_cmp2_mode0 = 0x2a; break; default: /* Other link rates aren't supported */ return -EINVAL; } writel(0x01, edp->pll + QSERDES_V4_COM_SVS_MODE_CLK_SEL); writel(0x0b, edp->pll + QSERDES_V4_COM_SYSCLK_EN_SEL); writel(0x02, edp->pll + QSERDES_V4_COM_SYS_CLK_CTRL); writel(0x0c, edp->pll + QSERDES_V4_COM_CLK_ENABLE1); writel(0x06, edp->pll + QSERDES_V4_COM_SYSCLK_BUF_ENABLE); writel(0x30, edp->pll + QSERDES_V4_COM_CLK_SELECT); writel(hsclk_sel, edp->pll + QSERDES_V4_COM_HSCLK_SEL); writel(0x0f, edp->pll + QSERDES_V4_COM_PLL_IVCO); writel(0x08, edp->pll + QSERDES_V4_COM_LOCK_CMP_EN); writel(0x36, edp->pll + QSERDES_V4_COM_PLL_CCTRL_MODE0); writel(0x16, edp->pll + QSERDES_V4_COM_PLL_RCTRL_MODE0); writel(0x06, edp->pll + QSERDES_V4_COM_CP_CTRL_MODE0); writel(dec_start_mode0, edp->pll + QSERDES_V4_COM_DEC_START_MODE0); writel(0x00, edp->pll + QSERDES_V4_COM_DIV_FRAC_START1_MODE0); writel(div_frac_start2_mode0, edp->pll + QSERDES_V4_COM_DIV_FRAC_START2_MODE0); writel(div_frac_start3_mode0, edp->pll + QSERDES_V4_COM_DIV_FRAC_START3_MODE0); writel(0x02, edp->pll + QSERDES_V4_COM_CMN_CONFIG); writel(0x3f, edp->pll + QSERDES_V4_COM_INTEGLOOP_GAIN0_MODE0); writel(0x00, edp->pll + QSERDES_V4_COM_INTEGLOOP_GAIN1_MODE0); writel(0x00, edp->pll + QSERDES_V4_COM_VCO_TUNE_MAP); writel(lock_cmp1_mode0, edp->pll + QSERDES_V4_COM_LOCK_CMP1_MODE0); writel(lock_cmp2_mode0, edp->pll + QSERDES_V4_COM_LOCK_CMP2_MODE0); writel(0x0a, edp->pll + QSERDES_V4_COM_BG_TIMER); writel(0x14, edp->pll + QSERDES_V4_COM_CORECLK_DIV_MODE0); writel(0x00, edp->pll + QSERDES_V4_COM_VCO_TUNE_CTRL); writel(0x17, edp->pll + QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN); writel(0x0f, edp->pll + QSERDES_V4_COM_CORE_CLK_EN); writel(0xa0, edp->pll + QSERDES_V4_COM_VCO_TUNE1_MODE0); writel(0x03, edp->pll + QSERDES_V4_COM_VCO_TUNE2_MODE0); return 0; } static int qcom_edp_set_vco_div(const struct qcom_edp *edp, unsigned long *pixel_freq) { const struct phy_configure_opts_dp *dp_opts = &edp->dp_opts; u32 vco_div; switch (dp_opts->link_rate) { case 1620: vco_div = 0x1; *pixel_freq = 1620000000UL / 2; break; case 2700: vco_div = 0x1; *pixel_freq = 2700000000UL / 2; break; case 5400: vco_div = 0x2; *pixel_freq = 5400000000UL / 4; break; case 8100: vco_div = 0x0; *pixel_freq = 8100000000UL / 6; break; default: /* Other link rates aren't supported */ return -EINVAL; } writel(vco_div, edp->edp + DP_PHY_VCO_DIV); return 0; } static int qcom_edp_phy_power_on(struct phy *phy) { const struct qcom_edp *edp = phy_get_drvdata(phy); const struct qcom_edp_cfg *cfg = edp->cfg; u32 bias0_en, drvr0_en, bias1_en, drvr1_en; unsigned long pixel_freq; u8 ldo_config; int timeout; int ret; u32 val; u8 cfg1; writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN | DP_PHY_PD_CTL_LANE_0_1_PWRDN | DP_PHY_PD_CTL_LANE_2_3_PWRDN | DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN, edp->edp + DP_PHY_PD_CTL); writel(0xfc, edp->edp + DP_PHY_MODE); timeout = readl_poll_timeout(edp->pll + QSERDES_V4_COM_CMN_STATUS, val, val & BIT(7), 5, 200); if (timeout) return timeout; ldo_config = (cfg && cfg->is_dp) ? 0x1 : 0x0; writel(ldo_config, edp->tx0 + TXn_LDO_CONFIG); writel(ldo_config, edp->tx1 + TXn_LDO_CONFIG); writel(0x00, edp->tx0 + TXn_LANE_MODE_1); writel(0x00, edp->tx1 + TXn_LANE_MODE_1); if (edp->dp_opts.ssc) { ret = qcom_edp_configure_ssc(edp); if (ret) return ret; } ret = qcom_edp_configure_pll(edp); if (ret) return ret; /* TX Lane configuration */ writel(0x05, edp->edp + DP_PHY_TX0_TX1_LANE_CTL); writel(0x05, edp->edp + DP_PHY_TX2_TX3_LANE_CTL); /* TX-0 register configuration */ writel(0x03, edp->tx0 + TXn_TRANSCEIVER_BIAS_EN); writel(0x0f, edp->tx0 + TXn_CLKBUF_ENABLE); writel(0x03, edp->tx0 + TXn_RESET_TSYNC_EN); writel(0x01, edp->tx0 + TXn_TRAN_DRVR_EMP_EN); writel(0x04, edp->tx0 + TXn_TX_BAND); /* TX-1 register configuration */ writel(0x03, edp->tx1 + TXn_TRANSCEIVER_BIAS_EN); writel(0x0f, edp->tx1 + TXn_CLKBUF_ENABLE); writel(0x03, edp->tx1 + TXn_RESET_TSYNC_EN); writel(0x01, edp->tx1 + TXn_TRAN_DRVR_EMP_EN); writel(0x04, edp->tx1 + TXn_TX_BAND); ret = qcom_edp_set_vco_div(edp, &pixel_freq); if (ret) return ret; writel(0x01, edp->edp + DP_PHY_CFG); writel(0x05, edp->edp + DP_PHY_CFG); writel(0x01, edp->edp + DP_PHY_CFG); writel(0x09, edp->edp + DP_PHY_CFG); writel(0x20, edp->pll + QSERDES_V4_COM_RESETSM_CNTRL); timeout = readl_poll_timeout(edp->pll + QSERDES_V4_COM_C_READY_STATUS, val, val & BIT(0), 500, 10000); if (timeout) return timeout; writel(0x19, edp->edp + DP_PHY_CFG); writel(0x1f, edp->tx0 + TXn_HIGHZ_DRVR_EN); writel(0x04, edp->tx0 + TXn_HIGHZ_DRVR_EN); writel(0x00, edp->tx0 + TXn_TX_POL_INV); writel(0x1f, edp->tx1 + TXn_HIGHZ_DRVR_EN); writel(0x04, edp->tx1 + TXn_HIGHZ_DRVR_EN); writel(0x00, edp->tx1 + TXn_TX_POL_INV); writel(0x10, edp->tx0 + TXn_TX_DRV_LVL_OFFSET); writel(0x10, edp->tx1 + TXn_TX_DRV_LVL_OFFSET); writel(0x11, edp->tx0 + TXn_RES_CODE_LANE_OFFSET_TX0); writel(0x11, edp->tx0 + TXn_RES_CODE_LANE_OFFSET_TX1); writel(0x11, edp->tx1 + TXn_RES_CODE_LANE_OFFSET_TX0); writel(0x11, edp->tx1 + TXn_RES_CODE_LANE_OFFSET_TX1); writel(0x10, edp->tx0 + TXn_TX_EMP_POST1_LVL); writel(0x10, edp->tx1 + TXn_TX_EMP_POST1_LVL); writel(0x1f, edp->tx0 + TXn_TX_DRV_LVL); writel(0x1f, edp->tx1 + TXn_TX_DRV_LVL); if (edp->dp_opts.lanes == 1) { bias0_en = 0x01; bias1_en = 0x00; drvr0_en = 0x06; drvr1_en = 0x07; cfg1 = 0x1; } else if (edp->dp_opts.lanes == 2) { bias0_en = 0x03; bias1_en = 0x00; drvr0_en = 0x04; drvr1_en = 0x07; cfg1 = 0x3; } else { bias0_en = 0x03; bias1_en = 0x03; drvr0_en = 0x04; drvr1_en = 0x04; cfg1 = 0xf; } writel(drvr0_en, edp->tx0 + TXn_HIGHZ_DRVR_EN); writel(bias0_en, edp->tx0 + TXn_TRANSCEIVER_BIAS_EN); writel(drvr1_en, edp->tx1 + TXn_HIGHZ_DRVR_EN); writel(bias1_en, edp->tx1 + TXn_TRANSCEIVER_BIAS_EN); writel(cfg1, edp->edp + DP_PHY_CFG_1); writel(0x18, edp->edp + DP_PHY_CFG); usleep_range(100, 1000); writel(0x19, edp->edp + DP_PHY_CFG); ret = readl_poll_timeout(edp->edp + DP_PHY_STATUS, val, val & BIT(1), 500, 10000); if (ret) return ret; clk_set_rate(edp->dp_link_hw.clk, edp->dp_opts.link_rate * 100000); clk_set_rate(edp->dp_pixel_hw.clk, pixel_freq); return 0; } static int qcom_edp_phy_power_off(struct phy *phy) { const struct qcom_edp *edp = phy_get_drvdata(phy); writel(DP_PHY_PD_CTL_PSR_PWRDN, edp->edp + DP_PHY_PD_CTL); return 0; } static int qcom_edp_phy_exit(struct phy *phy) { struct qcom_edp *edp = phy_get_drvdata(phy); clk_bulk_disable_unprepare(ARRAY_SIZE(edp->clks), edp->clks); regulator_bulk_disable(ARRAY_SIZE(edp->supplies), edp->supplies); return 0; } static const struct phy_ops qcom_edp_ops = { .init = qcom_edp_phy_init, .configure = qcom_edp_phy_configure, .power_on = qcom_edp_phy_power_on, .power_off = qcom_edp_phy_power_off, .exit = qcom_edp_phy_exit, .owner = THIS_MODULE, }; /* * Embedded Display Port PLL driver block diagram for branch clocks * * +------------------------------+ * | EDP_VCO_CLK | * | | * | +-------------------+ | * | | (EDP PLL/VCO) | | * | +---------+---------+ | * | v | * | +----------+-----------+ | * | | hsclk_divsel_clk_src | | * | +----------+-----------+ | * +------------------------------+ * | * +---------<---------v------------>----------+ * | | * +--------v----------------+ | * | edp_phy_pll_link_clk | | * | link_clk | | * +--------+----------------+ | * | | * | | * v v * Input to DISPCC block | * for link clk, crypto clk | * and interface clock | * | * | * +--------<------------+-----------------+---<---+ * | | | * +----v---------+ +--------v-----+ +--------v------+ * | vco_divided | | vco_divided | | vco_divided | * | _clk_src | | _clk_src | | _clk_src | * | | | | | | * |divsel_six | | divsel_two | | divsel_four | * +-------+------+ +-----+--------+ +--------+------+ * | | | * v---->----------v-------------<------v * | * +----------+-----------------+ * | edp_phy_pll_vco_div_clk | * +---------+------------------+ * | * v * Input to DISPCC block * for EDP pixel clock * */ static int qcom_edp_dp_pixel_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { switch (req->rate) { case 1620000000UL / 2: case 2700000000UL / 2: /* 5.4 and 8.1 GHz are same link rate as 2.7GHz, i.e. div 4 and div 6 */ return 0; default: return -EINVAL; } } static unsigned long qcom_edp_dp_pixel_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { const struct qcom_edp *edp = container_of(hw, struct qcom_edp, dp_pixel_hw); const struct phy_configure_opts_dp *dp_opts = &edp->dp_opts; switch (dp_opts->link_rate) { case 1620: return 1620000000UL / 2; case 2700: return 2700000000UL / 2; case 5400: return 5400000000UL / 4; case 8100: return 8100000000UL / 6; default: return 0; } } static const struct clk_ops qcom_edp_dp_pixel_clk_ops = { .determine_rate = qcom_edp_dp_pixel_clk_determine_rate, .recalc_rate = qcom_edp_dp_pixel_clk_recalc_rate, }; static int qcom_edp_dp_link_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { switch (req->rate) { case 162000000: case 270000000: case 540000000: case 810000000: return 0; default: return -EINVAL; } } static unsigned long qcom_edp_dp_link_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { const struct qcom_edp *edp = container_of(hw, struct qcom_edp, dp_link_hw); const struct phy_configure_opts_dp *dp_opts = &edp->dp_opts; switch (dp_opts->link_rate) { case 1620: case 2700: case 5400: case 8100: return dp_opts->link_rate * 100000; default: return 0; } } static const struct clk_ops qcom_edp_dp_link_clk_ops = { .determine_rate = qcom_edp_dp_link_clk_determine_rate, .recalc_rate = qcom_edp_dp_link_clk_recalc_rate, }; static int qcom_edp_clks_register(struct qcom_edp *edp, struct device_node *np) { struct clk_hw_onecell_data *data; struct clk_init_data init = { }; char name[64]; int ret; data = devm_kzalloc(edp->dev, struct_size(data, hws, 2), GFP_KERNEL); if (!data) return -ENOMEM; data->num = 2; snprintf(name, sizeof(name), "%s::link_clk", dev_name(edp->dev)); init.ops = &qcom_edp_dp_link_clk_ops; init.name = name; edp->dp_link_hw.init = &init; ret = devm_clk_hw_register(edp->dev, &edp->dp_link_hw); if (ret) return ret; snprintf(name, sizeof(name), "%s::vco_div_clk", dev_name(edp->dev)); init.ops = &qcom_edp_dp_pixel_clk_ops; init.name = name; edp->dp_pixel_hw.init = &init; ret = devm_clk_hw_register(edp->dev, &edp->dp_pixel_hw); if (ret) return ret; data->hws[0] = &edp->dp_link_hw; data->hws[1] = &edp->dp_pixel_hw; return devm_of_clk_add_hw_provider(edp->dev, of_clk_hw_onecell_get, data); } static int qcom_edp_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct device *dev = &pdev->dev; struct qcom_edp *edp; int ret; edp = devm_kzalloc(dev, sizeof(*edp), GFP_KERNEL); if (!edp) return -ENOMEM; edp->dev = dev; edp->cfg = of_device_get_match_data(&pdev->dev); edp->edp = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(edp->edp)) return PTR_ERR(edp->edp); edp->tx0 = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(edp->tx0)) return PTR_ERR(edp->tx0); edp->tx1 = devm_platform_ioremap_resource(pdev, 2); if (IS_ERR(edp->tx1)) return PTR_ERR(edp->tx1); edp->pll = devm_platform_ioremap_resource(pdev, 3); if (IS_ERR(edp->pll)) return PTR_ERR(edp->pll); edp->clks[0].id = "aux"; edp->clks[1].id = "cfg_ahb"; ret = devm_clk_bulk_get(dev, ARRAY_SIZE(edp->clks), edp->clks); if (ret) return ret; edp->supplies[0].supply = "vdda-phy"; edp->supplies[1].supply = "vdda-pll"; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(edp->supplies), edp->supplies); if (ret) return ret; ret = regulator_set_load(edp->supplies[0].consumer, 21800); /* 1.2 V vdda-phy */ if (ret) { dev_err(dev, "failed to set load at %s\n", edp->supplies[0].supply); return ret; } ret = regulator_set_load(edp->supplies[1].consumer, 36000); /* 0.9 V vdda-pll */ if (ret) { dev_err(dev, "failed to set load at %s\n", edp->supplies[1].supply); return ret; } ret = qcom_edp_clks_register(edp, pdev->dev.of_node); if (ret) return ret; edp->phy = devm_phy_create(dev, pdev->dev.of_node, &qcom_edp_ops); if (IS_ERR(edp->phy)) { dev_err(dev, "failed to register phy\n"); return PTR_ERR(edp->phy); } phy_set_drvdata(edp->phy, edp); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id qcom_edp_phy_match_table[] = { { .compatible = "qcom,sc7280-edp-phy" }, { .compatible = "qcom,sc8180x-edp-phy" }, { .compatible = "qcom,sc8280xp-dp-phy", .data = &dp_phy_cfg }, { .compatible = "qcom,sc8280xp-edp-phy", .data = &edp_phy_cfg }, { } }; MODULE_DEVICE_TABLE(of, qcom_edp_phy_match_table); static struct platform_driver qcom_edp_phy_driver = { .probe = qcom_edp_phy_probe, .driver = { .name = "qcom-edp-phy", .of_match_table = qcom_edp_phy_match_table, }, }; module_platform_driver(qcom_edp_phy_driver); MODULE_AUTHOR("Bjorn Andersson <[email protected]>"); MODULE_DESCRIPTION("Qualcomm eDP QMP PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-edp.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #include "phy-qcom-qmp.h" /* QPHY_SW_RESET bit */ #define SW_RESET BIT(0) /* QPHY_POWER_DOWN_CONTROL */ #define SW_PWRDN BIT(0) #define REFCLK_DRV_DSBL BIT(1) /* QPHY_START_CONTROL bits */ #define SERDES_START BIT(0) #define PCS_START BIT(1) #define PLL_READY_GATE_EN BIT(3) /* QPHY_PCS_STATUS bit */ #define PHYSTATUS BIT(6) /* QPHY_COM_PCS_READY_STATUS bit */ #define PCS_READY BIT(0) #define PHY_INIT_COMPLETE_TIMEOUT 10000 #define POWER_DOWN_DELAY_US_MIN 10 #define POWER_DOWN_DELAY_US_MAX 20 struct qmp_phy_init_tbl { unsigned int offset; unsigned int val; /* * mask of lanes for which this register is written * for cases when second lane needs different values */ u8 lane_mask; }; #define QMP_PHY_INIT_CFG(o, v) \ { \ .offset = o, \ .val = v, \ .lane_mask = 0xff, \ } #define QMP_PHY_INIT_CFG_LANE(o, v, l) \ { \ .offset = o, \ .val = v, \ .lane_mask = l, \ } /* set of registers with offsets different per-PHY */ enum qphy_reg_layout { /* Common block control registers */ QPHY_COM_SW_RESET, QPHY_COM_POWER_DOWN_CONTROL, QPHY_COM_START_CONTROL, QPHY_COM_PCS_READY_STATUS, /* PCS registers */ QPHY_SW_RESET, QPHY_START_CTRL, QPHY_PCS_STATUS, /* Keep last to ensure regs_layout arrays are properly initialized */ QPHY_LAYOUT_SIZE }; static const unsigned int pciephy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_COM_SW_RESET] = 0x400, [QPHY_COM_POWER_DOWN_CONTROL] = 0x404, [QPHY_COM_START_CONTROL] = 0x408, [QPHY_COM_PCS_READY_STATUS] = 0x448, [QPHY_SW_RESET] = QPHY_V2_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V2_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V2_PCS_PCI_PCS_STATUS, }; static const struct qmp_phy_init_tbl msm8996_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x1c), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_ENABLE1, 0x10), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x33), QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_EN, 0x42), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER1, 0xff), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER2, 0x1f), QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x09), QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x1a), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x33), QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_BUF_ENABLE, 0x1f), QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x04), QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x02), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0x2f), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x19), QMP_PHY_INIT_CFG(QSERDES_COM_RESCODE_DIV_NUM, 0x15), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_EP_DIV, 0x19), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_ENABLE1, 0x10), QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_RESCODE_DIV_NUM, 0x40), }; static const struct qmp_phy_init_tbl msm8996_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45), QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x06), }; static const struct qmp_phy_init_tbl msm8996_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_ENABLES, 0x1c), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x01), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x00), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0xdb), QMP_PHY_INIT_CFG(QSERDES_RX_RX_BAND, 0x18), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN, 0x04), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN_HALF, 0x04), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x14), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_LVL, 0x19), }; static const struct qmp_phy_init_tbl msm8996_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V2_PCS_RX_IDLE_DTCT_CNTRL, 0x4c), QMP_PHY_INIT_CFG(QPHY_V2_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x00), QMP_PHY_INIT_CFG(QPHY_V2_PCS_LP_WAKEUP_DLY_TIME_AUXCLK, 0x01), QMP_PHY_INIT_CFG(QPHY_V2_PCS_PLL_LOCK_CHK_DLY_TIME, 0x05), QMP_PHY_INIT_CFG(QPHY_V2_PCS_ENDPOINT_REFCLK_DRIVE, 0x05), QMP_PHY_INIT_CFG(QPHY_V2_PCS_POWER_DOWN_CONTROL, 0x02), QMP_PHY_INIT_CFG(QPHY_V2_PCS_POWER_STATE_CONFIG4, 0x00), QMP_PHY_INIT_CFG(QPHY_V2_PCS_POWER_STATE_CONFIG1, 0xa3), QMP_PHY_INIT_CFG(QPHY_V2_PCS_TXDEEMPH_M3P5DB_V0, 0x0e), }; /* struct qmp_phy_cfg - per-PHY initialization config */ struct qmp_phy_cfg { /* number of PHYs provided by this block */ int num_phys; /* Init sequence for PHY blocks - serdes, tx, rx, pcs */ const struct qmp_phy_init_tbl *serdes_tbl; int serdes_tbl_num; const struct qmp_phy_init_tbl *tx_tbl; int tx_tbl_num; const struct qmp_phy_init_tbl *rx_tbl; int rx_tbl_num; const struct qmp_phy_init_tbl *pcs_tbl; int pcs_tbl_num; /* clock ids to be requested */ const char * const *clk_list; int num_clks; /* resets to be requested */ const char * const *reset_list; int num_resets; /* regulators to be requested */ const char * const *vreg_list; int num_vregs; /* array of registers with different offsets */ const unsigned int *regs; }; /** * struct qmp_phy - per-lane phy descriptor * * @phy: generic phy * @cfg: phy specific configuration * @serdes: iomapped memory space for phy's serdes (i.e. PLL) * @tx: iomapped memory space for lane's tx * @rx: iomapped memory space for lane's rx * @pcs: iomapped memory space for lane's pcs * @pipe_clk: pipe clock * @index: lane index * @qmp: QMP phy to which this lane belongs * @lane_rst: lane's reset controller */ struct qmp_phy { struct phy *phy; const struct qmp_phy_cfg *cfg; void __iomem *serdes; void __iomem *tx; void __iomem *rx; void __iomem *pcs; struct clk *pipe_clk; unsigned int index; struct qcom_qmp *qmp; struct reset_control *lane_rst; }; /** * struct qcom_qmp - structure holding QMP phy block attributes * * @dev: device * * @clks: array of clocks required by phy * @resets: array of resets required by phy * @vregs: regulator supplies bulk data * * @phys: array of per-lane phy descriptors * @phy_mutex: mutex lock for PHY common block initialization * @init_count: phy common block initialization count */ struct qcom_qmp { struct device *dev; struct clk_bulk_data *clks; struct reset_control_bulk_data *resets; struct regulator_bulk_data *vregs; struct qmp_phy **phys; struct mutex phy_mutex; int init_count; }; static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg |= val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg &= ~val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } /* list of clocks required by phy */ static const char * const msm8996_phy_clk_l[] = { "aux", "cfg_ahb", "ref", }; /* list of resets */ static const char * const msm8996_pciephy_reset_l[] = { "phy", "common", "cfg", }; /* list of regulators */ static const char * const qmp_phy_vreg_l[] = { "vdda-phy", "vdda-pll", }; static const struct qmp_phy_cfg msm8996_pciephy_cfg = { .num_phys = 3, .serdes_tbl = msm8996_pcie_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(msm8996_pcie_serdes_tbl), .tx_tbl = msm8996_pcie_tx_tbl, .tx_tbl_num = ARRAY_SIZE(msm8996_pcie_tx_tbl), .rx_tbl = msm8996_pcie_rx_tbl, .rx_tbl_num = ARRAY_SIZE(msm8996_pcie_rx_tbl), .pcs_tbl = msm8996_pcie_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(msm8996_pcie_pcs_tbl), .clk_list = msm8996_phy_clk_l, .num_clks = ARRAY_SIZE(msm8996_phy_clk_l), .reset_list = msm8996_pciephy_reset_l, .num_resets = ARRAY_SIZE(msm8996_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_regs_layout, }; static void qmp_pcie_msm8996_configure_lane(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num, u8 lane_mask) { int i; const struct qmp_phy_init_tbl *t = tbl; if (!t) return; for (i = 0; i < num; i++, t++) { if (!(t->lane_mask & lane_mask)) continue; writel(t->val, base + t->offset); } } static void qmp_pcie_msm8996_configure(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num) { qmp_pcie_msm8996_configure_lane(base, tbl, num, 0xff); } static int qmp_pcie_msm8996_serdes_init(struct qmp_phy *qphy) { struct qcom_qmp *qmp = qphy->qmp; const struct qmp_phy_cfg *cfg = qphy->cfg; void __iomem *serdes = qphy->serdes; const struct qmp_phy_init_tbl *serdes_tbl = cfg->serdes_tbl; int serdes_tbl_num = cfg->serdes_tbl_num; void __iomem *status; unsigned int val; int ret; qmp_pcie_msm8996_configure(serdes, serdes_tbl, serdes_tbl_num); qphy_clrbits(serdes, cfg->regs[QPHY_COM_SW_RESET], SW_RESET); qphy_setbits(serdes, cfg->regs[QPHY_COM_START_CONTROL], SERDES_START | PCS_START); status = serdes + cfg->regs[QPHY_COM_PCS_READY_STATUS]; ret = readl_poll_timeout(status, val, (val & PCS_READY), 200, PHY_INIT_COMPLETE_TIMEOUT); if (ret) { dev_err(qmp->dev, "phy common block init timed-out\n"); return ret; } return 0; } static int qmp_pcie_msm8996_com_init(struct qmp_phy *qphy) { struct qcom_qmp *qmp = qphy->qmp; const struct qmp_phy_cfg *cfg = qphy->cfg; void __iomem *serdes = qphy->serdes; int ret; mutex_lock(&qmp->phy_mutex); if (qmp->init_count++) { mutex_unlock(&qmp->phy_mutex); return 0; } ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs); if (ret) { dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret); goto err_decrement_count; } ret = reset_control_bulk_assert(cfg->num_resets, qmp->resets); if (ret) { dev_err(qmp->dev, "reset assert failed\n"); goto err_disable_regulators; } ret = reset_control_bulk_deassert(cfg->num_resets, qmp->resets); if (ret) { dev_err(qmp->dev, "reset deassert failed\n"); goto err_disable_regulators; } ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks); if (ret) goto err_assert_reset; qphy_setbits(serdes, cfg->regs[QPHY_COM_POWER_DOWN_CONTROL], SW_PWRDN); mutex_unlock(&qmp->phy_mutex); return 0; err_assert_reset: reset_control_bulk_assert(cfg->num_resets, qmp->resets); err_disable_regulators: regulator_bulk_disable(cfg->num_vregs, qmp->vregs); err_decrement_count: qmp->init_count--; mutex_unlock(&qmp->phy_mutex); return ret; } static int qmp_pcie_msm8996_com_exit(struct qmp_phy *qphy) { struct qcom_qmp *qmp = qphy->qmp; const struct qmp_phy_cfg *cfg = qphy->cfg; void __iomem *serdes = qphy->serdes; mutex_lock(&qmp->phy_mutex); if (--qmp->init_count) { mutex_unlock(&qmp->phy_mutex); return 0; } qphy_setbits(serdes, cfg->regs[QPHY_COM_START_CONTROL], SERDES_START | PCS_START); qphy_clrbits(serdes, cfg->regs[QPHY_COM_SW_RESET], SW_RESET); qphy_setbits(serdes, cfg->regs[QPHY_COM_POWER_DOWN_CONTROL], SW_PWRDN); reset_control_bulk_assert(cfg->num_resets, qmp->resets); clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks); regulator_bulk_disable(cfg->num_vregs, qmp->vregs); mutex_unlock(&qmp->phy_mutex); return 0; } static int qmp_pcie_msm8996_init(struct phy *phy) { struct qmp_phy *qphy = phy_get_drvdata(phy); struct qcom_qmp *qmp = qphy->qmp; int ret; dev_vdbg(qmp->dev, "Initializing QMP phy\n"); ret = qmp_pcie_msm8996_com_init(qphy); if (ret) return ret; return 0; } static int qmp_pcie_msm8996_power_on(struct phy *phy) { struct qmp_phy *qphy = phy_get_drvdata(phy); struct qcom_qmp *qmp = qphy->qmp; const struct qmp_phy_cfg *cfg = qphy->cfg; void __iomem *tx = qphy->tx; void __iomem *rx = qphy->rx; void __iomem *pcs = qphy->pcs; void __iomem *status; unsigned int val; int ret; qmp_pcie_msm8996_serdes_init(qphy); ret = reset_control_deassert(qphy->lane_rst); if (ret) { dev_err(qmp->dev, "lane%d reset deassert failed\n", qphy->index); return ret; } ret = clk_prepare_enable(qphy->pipe_clk); if (ret) { dev_err(qmp->dev, "pipe_clk enable failed err=%d\n", ret); goto err_reset_lane; } /* Tx, Rx, and PCS configurations */ qmp_pcie_msm8996_configure_lane(tx, cfg->tx_tbl, cfg->tx_tbl_num, 1); qmp_pcie_msm8996_configure_lane(rx, cfg->rx_tbl, cfg->rx_tbl_num, 1); qmp_pcie_msm8996_configure(pcs, cfg->pcs_tbl, cfg->pcs_tbl_num); /* * Pull out PHY from POWER DOWN state. * This is active low enable signal to power-down PHY. */ qphy_setbits(pcs, QPHY_V2_PCS_POWER_DOWN_CONTROL, SW_PWRDN | REFCLK_DRV_DSBL); usleep_range(POWER_DOWN_DELAY_US_MIN, POWER_DOWN_DELAY_US_MAX); /* Pull PHY out of reset state */ qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* start SerDes and Phy-Coding-Sublayer */ qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], PCS_START | PLL_READY_GATE_EN); status = pcs + cfg->regs[QPHY_PCS_STATUS]; ret = readl_poll_timeout(status, val, !(val & PHYSTATUS), 200, PHY_INIT_COMPLETE_TIMEOUT); if (ret) { dev_err(qmp->dev, "phy initialization timed-out\n"); goto err_disable_pipe_clk; } return 0; err_disable_pipe_clk: clk_disable_unprepare(qphy->pipe_clk); err_reset_lane: reset_control_assert(qphy->lane_rst); return ret; } static int qmp_pcie_msm8996_power_off(struct phy *phy) { struct qmp_phy *qphy = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qphy->cfg; clk_disable_unprepare(qphy->pipe_clk); /* PHY reset */ qphy_setbits(qphy->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* stop SerDes and Phy-Coding-Sublayer */ qphy_clrbits(qphy->pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START); /* Put PHY into POWER DOWN state: active low */ qphy_clrbits(qphy->pcs, QPHY_V2_PCS_POWER_DOWN_CONTROL, SW_PWRDN | REFCLK_DRV_DSBL); return 0; } static int qmp_pcie_msm8996_exit(struct phy *phy) { struct qmp_phy *qphy = phy_get_drvdata(phy); reset_control_assert(qphy->lane_rst); qmp_pcie_msm8996_com_exit(qphy); return 0; } static int qmp_pcie_msm8996_enable(struct phy *phy) { int ret; ret = qmp_pcie_msm8996_init(phy); if (ret) return ret; ret = qmp_pcie_msm8996_power_on(phy); if (ret) qmp_pcie_msm8996_exit(phy); return ret; } static int qmp_pcie_msm8996_disable(struct phy *phy) { int ret; ret = qmp_pcie_msm8996_power_off(phy); if (ret) return ret; return qmp_pcie_msm8996_exit(phy); } static int qmp_pcie_msm8996_vreg_init(struct device *dev, const struct qmp_phy_cfg *cfg) { struct qcom_qmp *qmp = dev_get_drvdata(dev); int num = cfg->num_vregs; int i; qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL); if (!qmp->vregs) return -ENOMEM; for (i = 0; i < num; i++) qmp->vregs[i].supply = cfg->vreg_list[i]; return devm_regulator_bulk_get(dev, num, qmp->vregs); } static int qmp_pcie_msm8996_reset_init(struct device *dev, const struct qmp_phy_cfg *cfg) { struct qcom_qmp *qmp = dev_get_drvdata(dev); int i; int ret; qmp->resets = devm_kcalloc(dev, cfg->num_resets, sizeof(*qmp->resets), GFP_KERNEL); if (!qmp->resets) return -ENOMEM; for (i = 0; i < cfg->num_resets; i++) qmp->resets[i].id = cfg->reset_list[i]; ret = devm_reset_control_bulk_get_exclusive(dev, cfg->num_resets, qmp->resets); if (ret) return dev_err_probe(dev, ret, "failed to get resets\n"); return 0; } static int qmp_pcie_msm8996_clk_init(struct device *dev, const struct qmp_phy_cfg *cfg) { struct qcom_qmp *qmp = dev_get_drvdata(dev); int num = cfg->num_clks; int i; qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL); if (!qmp->clks) return -ENOMEM; for (i = 0; i < num; i++) qmp->clks[i].id = cfg->clk_list[i]; return devm_clk_bulk_get(dev, num, qmp->clks); } static void phy_clk_release_provider(void *res) { of_clk_del_provider(res); } /* * Register a fixed rate pipe clock. * * The <s>_pipe_clksrc generated by PHY goes to the GCC that gate * controls it. The <s>_pipe_clk coming out of the GCC is requested * by the PHY driver for its operations. * We register the <s>_pipe_clksrc here. The gcc driver takes care * of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk. * Below picture shows this relationship. * * +---------------+ * | PHY block |<<---------------------------------------+ * | | | * | +-------+ | +-----+ | * I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+ * clk | +-------+ | +-----+ * +---------------+ */ static int phy_pipe_clk_register(struct qcom_qmp *qmp, struct device_node *np) { struct clk_fixed_rate *fixed; struct clk_init_data init = { }; int ret; ret = of_property_read_string(np, "clock-output-names", &init.name); if (ret) { dev_err(qmp->dev, "%pOFn: No clock-output-names\n", np); return ret; } fixed = devm_kzalloc(qmp->dev, sizeof(*fixed), GFP_KERNEL); if (!fixed) return -ENOMEM; init.ops = &clk_fixed_rate_ops; /* controllers using QMP phys use 125MHz pipe clock interface */ fixed->fixed_rate = 125000000; fixed->hw.init = &init; ret = devm_clk_hw_register(qmp->dev, &fixed->hw); if (ret) return ret; ret = of_clk_add_hw_provider(np, of_clk_hw_simple_get, &fixed->hw); if (ret) return ret; /* * Roll a devm action because the clock provider is the child node, but * the child node is not actually a device. */ return devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, np); } static const struct phy_ops qmp_pcie_msm8996_ops = { .power_on = qmp_pcie_msm8996_enable, .power_off = qmp_pcie_msm8996_disable, .owner = THIS_MODULE, }; static void qcom_qmp_reset_control_put(void *data) { reset_control_put(data); } static int qmp_pcie_msm8996_create(struct device *dev, struct device_node *np, int id, void __iomem *serdes, const struct qmp_phy_cfg *cfg) { struct qcom_qmp *qmp = dev_get_drvdata(dev); struct phy *generic_phy; struct qmp_phy *qphy; int ret; qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL); if (!qphy) return -ENOMEM; qphy->cfg = cfg; qphy->serdes = serdes; /* * Get memory resources for each PHY: * Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2. */ qphy->tx = devm_of_iomap(dev, np, 0, NULL); if (IS_ERR(qphy->tx)) return PTR_ERR(qphy->tx); qphy->rx = devm_of_iomap(dev, np, 1, NULL); if (IS_ERR(qphy->rx)) return PTR_ERR(qphy->rx); qphy->pcs = devm_of_iomap(dev, np, 2, NULL); if (IS_ERR(qphy->pcs)) return PTR_ERR(qphy->pcs); qphy->pipe_clk = devm_get_clk_from_child(dev, np, NULL); if (IS_ERR(qphy->pipe_clk)) { return dev_err_probe(dev, PTR_ERR(qphy->pipe_clk), "failed to get lane%d pipe clock\n", id); } qphy->lane_rst = of_reset_control_get_exclusive_by_index(np, 0); if (IS_ERR(qphy->lane_rst)) { dev_err(dev, "failed to get lane%d reset\n", id); return PTR_ERR(qphy->lane_rst); } ret = devm_add_action_or_reset(dev, qcom_qmp_reset_control_put, qphy->lane_rst); if (ret) return ret; generic_phy = devm_phy_create(dev, np, &qmp_pcie_msm8996_ops); if (IS_ERR(generic_phy)) { ret = PTR_ERR(generic_phy); dev_err(dev, "failed to create qphy %d\n", ret); return ret; } qphy->phy = generic_phy; qphy->index = id; qphy->qmp = qmp; qmp->phys[id] = qphy; phy_set_drvdata(generic_phy, qphy); return 0; } static const struct of_device_id qmp_pcie_msm8996_of_match_table[] = { { .compatible = "qcom,msm8996-qmp-pcie-phy", .data = &msm8996_pciephy_cfg, }, { }, }; MODULE_DEVICE_TABLE(of, qmp_pcie_msm8996_of_match_table); static int qmp_pcie_msm8996_probe(struct platform_device *pdev) { struct qcom_qmp *qmp; struct device *dev = &pdev->dev; struct device_node *child; struct phy_provider *phy_provider; void __iomem *serdes; const struct qmp_phy_cfg *cfg = NULL; int num, id, expected_phys; int ret; qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL); if (!qmp) return -ENOMEM; qmp->dev = dev; dev_set_drvdata(dev, qmp); cfg = of_device_get_match_data(dev); if (!cfg) return -EINVAL; serdes = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(serdes)) return PTR_ERR(serdes); expected_phys = cfg->num_phys; mutex_init(&qmp->phy_mutex); ret = qmp_pcie_msm8996_clk_init(dev, cfg); if (ret) return ret; ret = qmp_pcie_msm8996_reset_init(dev, cfg); if (ret) return ret; ret = qmp_pcie_msm8996_vreg_init(dev, cfg); if (ret) return ret; num = of_get_available_child_count(dev->of_node); /* do we have a rogue child node ? */ if (num > expected_phys) return -EINVAL; qmp->phys = devm_kcalloc(dev, num, sizeof(*qmp->phys), GFP_KERNEL); if (!qmp->phys) return -ENOMEM; id = 0; for_each_available_child_of_node(dev->of_node, child) { /* Create per-lane phy */ ret = qmp_pcie_msm8996_create(dev, child, id, serdes, cfg); if (ret) { dev_err(dev, "failed to create lane%d phy, %d\n", id, ret); goto err_node_put; } /* * Register the pipe clock provided by phy. * See function description to see details of this pipe clock. */ ret = phy_pipe_clk_register(qmp, child); if (ret) { dev_err(qmp->dev, "failed to register pipe clock source\n"); goto err_node_put; } id++; } phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); err_node_put: of_node_put(child); return ret; } static struct platform_driver qmp_pcie_msm8996_driver = { .probe = qmp_pcie_msm8996_probe, .driver = { .name = "qcom-qmp-msm8996-pcie-phy", .of_match_table = qmp_pcie_msm8996_of_match_table, }, }; module_platform_driver(qmp_pcie_msm8996_driver); MODULE_AUTHOR("Vivek Gautam <[email protected]>"); MODULE_DESCRIPTION("Qualcomm QMP MSM8996 PCIe PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-qmp-pcie-msm8996.c
// SPDX-License-Identifier: GPL-2.0+ /* * Atheros AR71XX/9XXX USB PHY driver * * Copyright (C) 2015-2018 Alban Bedel <[email protected]> */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/phy/phy.h> #include <linux/reset.h> struct ath79_usb_phy { struct reset_control *reset; /* The suspend override logic is inverted, hence the no prefix * to make the code a bit easier to understand. */ struct reset_control *no_suspend_override; }; static int ath79_usb_phy_power_on(struct phy *phy) { struct ath79_usb_phy *priv = phy_get_drvdata(phy); int err = 0; if (priv->no_suspend_override) { err = reset_control_assert(priv->no_suspend_override); if (err) return err; } err = reset_control_deassert(priv->reset); if (err && priv->no_suspend_override) reset_control_deassert(priv->no_suspend_override); return err; } static int ath79_usb_phy_power_off(struct phy *phy) { struct ath79_usb_phy *priv = phy_get_drvdata(phy); int err = 0; err = reset_control_assert(priv->reset); if (err) return err; if (priv->no_suspend_override) { err = reset_control_deassert(priv->no_suspend_override); if (err) reset_control_deassert(priv->reset); } return err; } static const struct phy_ops ath79_usb_phy_ops = { .power_on = ath79_usb_phy_power_on, .power_off = ath79_usb_phy_power_off, .owner = THIS_MODULE, }; static int ath79_usb_phy_probe(struct platform_device *pdev) { struct ath79_usb_phy *priv; struct phy *phy; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->reset = devm_reset_control_get(&pdev->dev, "phy"); if (IS_ERR(priv->reset)) return PTR_ERR(priv->reset); priv->no_suspend_override = devm_reset_control_get_optional( &pdev->dev, "usb-suspend-override"); if (IS_ERR(priv->no_suspend_override)) return PTR_ERR(priv->no_suspend_override); phy = devm_phy_create(&pdev->dev, NULL, &ath79_usb_phy_ops); if (IS_ERR(phy)) return PTR_ERR(phy); phy_set_drvdata(phy, priv); return PTR_ERR_OR_ZERO(devm_of_phy_provider_register( &pdev->dev, of_phy_simple_xlate)); } static const struct of_device_id ath79_usb_phy_of_match[] = { { .compatible = "qca,ar7100-usb-phy" }, {} }; MODULE_DEVICE_TABLE(of, ath79_usb_phy_of_match); static struct platform_driver ath79_usb_phy_driver = { .probe = ath79_usb_phy_probe, .driver = { .of_match_table = ath79_usb_phy_of_match, .name = "ath79-usb-phy", } }; module_platform_driver(ath79_usb_phy_driver); MODULE_DESCRIPTION("ATH79 USB PHY driver"); MODULE_AUTHOR("Alban Bedel <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/qualcomm/phy-ath79-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/usb/typec.h> #include <linux/usb/typec_mux.h> #include <drm/drm_bridge.h> #include <dt-bindings/phy/phy-qcom-qmp.h> #include "phy-qcom-qmp.h" #include "phy-qcom-qmp-pcs-misc-v3.h" #include "phy-qcom-qmp-pcs-usb-v4.h" #include "phy-qcom-qmp-pcs-usb-v5.h" #include "phy-qcom-qmp-pcs-usb-v6.h" /* QPHY_SW_RESET bit */ #define SW_RESET BIT(0) /* QPHY_POWER_DOWN_CONTROL */ #define SW_PWRDN BIT(0) /* QPHY_START_CONTROL bits */ #define SERDES_START BIT(0) #define PCS_START BIT(1) /* QPHY_PCS_STATUS bit */ #define PHYSTATUS BIT(6) /* QPHY_V3_DP_COM_RESET_OVRD_CTRL register bits */ /* DP PHY soft reset */ #define SW_DPPHY_RESET BIT(0) /* mux to select DP PHY reset control, 0:HW control, 1: software reset */ #define SW_DPPHY_RESET_MUX BIT(1) /* USB3 PHY soft reset */ #define SW_USB3PHY_RESET BIT(2) /* mux to select USB3 PHY reset control, 0:HW control, 1: software reset */ #define SW_USB3PHY_RESET_MUX BIT(3) /* QPHY_V3_DP_COM_PHY_MODE_CTRL register bits */ #define USB3_MODE BIT(0) /* enables USB3 mode */ #define DP_MODE BIT(1) /* enables DP mode */ /* QPHY_PCS_AUTONOMOUS_MODE_CTRL register bits */ #define ARCVR_DTCT_EN BIT(0) #define ALFPS_DTCT_EN BIT(1) #define ARCVR_DTCT_EVENT_SEL BIT(4) /* QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR register bits */ #define IRQ_CLEAR BIT(0) /* QPHY_V3_PCS_MISC_CLAMP_ENABLE register bits */ #define CLAMP_EN BIT(0) /* enables i/o clamp_n */ /* QPHY_V3_DP_COM_TYPEC_CTRL register bits */ #define SW_PORTSELECT_VAL BIT(0) #define SW_PORTSELECT_MUX BIT(1) #define PHY_INIT_COMPLETE_TIMEOUT 10000 struct qmp_phy_init_tbl { unsigned int offset; unsigned int val; /* * mask of lanes for which this register is written * for cases when second lane needs different values */ u8 lane_mask; }; #define QMP_PHY_INIT_CFG(o, v) \ { \ .offset = o, \ .val = v, \ .lane_mask = 0xff, \ } #define QMP_PHY_INIT_CFG_LANE(o, v, l) \ { \ .offset = o, \ .val = v, \ .lane_mask = l, \ } /* set of registers with offsets different per-PHY */ enum qphy_reg_layout { /* PCS registers */ QPHY_SW_RESET, QPHY_START_CTRL, QPHY_PCS_STATUS, QPHY_PCS_AUTONOMOUS_MODE_CTRL, QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR, QPHY_PCS_POWER_DOWN_CONTROL, QPHY_COM_RESETSM_CNTRL, QPHY_COM_C_READY_STATUS, QPHY_COM_CMN_STATUS, QPHY_COM_BIAS_EN_CLKBUFLR_EN, QPHY_DP_PHY_STATUS, QPHY_TX_TX_POL_INV, QPHY_TX_TX_DRV_LVL, QPHY_TX_TX_EMP_POST1_LVL, QPHY_TX_HIGHZ_DRVR_EN, QPHY_TX_TRANSCEIVER_BIAS_EN, /* Keep last to ensure regs_layout arrays are properly initialized */ QPHY_LAYOUT_SIZE }; static const unsigned int qmp_v3_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V3_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V3_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V3_PCS_PCS_STATUS, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V3_PCS_POWER_DOWN_CONTROL, [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V3_PCS_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V3_PCS_LFPS_RXTERM_IRQ_CLEAR, [QPHY_COM_RESETSM_CNTRL] = QSERDES_V3_COM_RESETSM_CNTRL, [QPHY_COM_C_READY_STATUS] = QSERDES_V3_COM_C_READY_STATUS, [QPHY_COM_CMN_STATUS] = QSERDES_V3_COM_CMN_STATUS, [QPHY_COM_BIAS_EN_CLKBUFLR_EN] = QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, [QPHY_DP_PHY_STATUS] = QSERDES_V3_DP_PHY_STATUS, [QPHY_TX_TX_POL_INV] = QSERDES_V3_TX_TX_POL_INV, [QPHY_TX_TX_DRV_LVL] = QSERDES_V3_TX_TX_DRV_LVL, [QPHY_TX_TX_EMP_POST1_LVL] = QSERDES_V3_TX_TX_EMP_POST1_LVL, [QPHY_TX_HIGHZ_DRVR_EN] = QSERDES_V3_TX_HIGHZ_DRVR_EN, [QPHY_TX_TRANSCEIVER_BIAS_EN] = QSERDES_V3_TX_TRANSCEIVER_BIAS_EN, }; static const unsigned int qmp_v45_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V4_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V4_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V4_PCS_PCS_STATUS1, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V4_PCS_POWER_DOWN_CONTROL, /* In PCS_USB */ [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V4_PCS_USB3_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V4_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR, [QPHY_COM_RESETSM_CNTRL] = QSERDES_V4_COM_RESETSM_CNTRL, [QPHY_COM_C_READY_STATUS] = QSERDES_V4_COM_C_READY_STATUS, [QPHY_COM_CMN_STATUS] = QSERDES_V4_COM_CMN_STATUS, [QPHY_COM_BIAS_EN_CLKBUFLR_EN] = QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN, [QPHY_DP_PHY_STATUS] = QSERDES_V4_DP_PHY_STATUS, [QPHY_TX_TX_POL_INV] = QSERDES_V4_TX_TX_POL_INV, [QPHY_TX_TX_DRV_LVL] = QSERDES_V4_TX_TX_DRV_LVL, [QPHY_TX_TX_EMP_POST1_LVL] = QSERDES_V4_TX_TX_EMP_POST1_LVL, [QPHY_TX_HIGHZ_DRVR_EN] = QSERDES_V4_TX_HIGHZ_DRVR_EN, [QPHY_TX_TRANSCEIVER_BIAS_EN] = QSERDES_V4_TX_TRANSCEIVER_BIAS_EN, }; static const unsigned int qmp_v5_5nm_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V5_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V5_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V5_PCS_PCS_STATUS1, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_POWER_DOWN_CONTROL, /* In PCS_USB */ [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V5_PCS_USB3_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V5_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR, [QPHY_COM_RESETSM_CNTRL] = QSERDES_V5_COM_RESETSM_CNTRL, [QPHY_COM_C_READY_STATUS] = QSERDES_V5_COM_C_READY_STATUS, [QPHY_COM_CMN_STATUS] = QSERDES_V5_COM_CMN_STATUS, [QPHY_COM_BIAS_EN_CLKBUFLR_EN] = QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, [QPHY_DP_PHY_STATUS] = QSERDES_V5_DP_PHY_STATUS, [QPHY_TX_TX_POL_INV] = QSERDES_V5_5NM_TX_TX_POL_INV, [QPHY_TX_TX_DRV_LVL] = QSERDES_V5_5NM_TX_TX_DRV_LVL, [QPHY_TX_TX_EMP_POST1_LVL] = QSERDES_V5_5NM_TX_TX_EMP_POST1_LVL, [QPHY_TX_HIGHZ_DRVR_EN] = QSERDES_V5_5NM_TX_HIGHZ_DRVR_EN, [QPHY_TX_TRANSCEIVER_BIAS_EN] = QSERDES_V5_5NM_TX_TRANSCEIVER_BIAS_EN, }; static const unsigned int qmp_v6_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V5_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V5_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V5_PCS_PCS_STATUS1, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_POWER_DOWN_CONTROL, /* In PCS_USB */ [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V5_PCS_USB3_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V5_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR, [QPHY_COM_RESETSM_CNTRL] = QSERDES_V6_COM_RESETSM_CNTRL, [QPHY_COM_C_READY_STATUS] = QSERDES_V6_COM_C_READY_STATUS, [QPHY_COM_CMN_STATUS] = QSERDES_V6_COM_CMN_STATUS, [QPHY_COM_BIAS_EN_CLKBUFLR_EN] = QSERDES_V6_COM_PLL_BIAS_EN_CLK_BUFLR_EN, [QPHY_DP_PHY_STATUS] = QSERDES_V6_DP_PHY_STATUS, [QPHY_TX_TX_POL_INV] = QSERDES_V6_TX_TX_POL_INV, [QPHY_TX_TX_DRV_LVL] = QSERDES_V6_TX_TX_DRV_LVL, [QPHY_TX_TX_EMP_POST1_LVL] = QSERDES_V6_TX_TX_EMP_POST1_LVL, [QPHY_TX_HIGHZ_DRVR_EN] = QSERDES_V6_TX_HIGHZ_DRVR_EN, [QPHY_TX_TRANSCEIVER_BIAS_EN] = QSERDES_V6_TX_TRANSCEIVER_BIAS_EN, }; static const struct qmp_phy_init_tbl qmp_v3_usb3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x14), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0xea), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x15), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_CFG, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x85), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x07), }; static const struct qmp_phy_init_tbl qmp_v3_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x09), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x06), }; static const struct qmp_phy_init_tbl qmp_v3_dp_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x37), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_ENABLE1, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_CTRL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06), }; static const struct qmp_phy_init_tbl qmp_v3_dp_serdes_tbl_rbr[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x69), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x6f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x08), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x00), }; static const struct qmp_phy_init_tbl qmp_v3_dp_serdes_tbl_hbr[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x69), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x00), }; static const struct qmp_phy_init_tbl qmp_v3_dp_serdes_tbl_hbr2[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x8c), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x00), }; static const struct qmp_phy_init_tbl qmp_v3_dp_serdes_tbl_hbr3[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x69), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x2a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x08), }; static const struct qmp_phy_init_tbl qmp_v3_dp_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_TX_TRANSCEIVER_BIAS_EN, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V3_TX_VMODE_CTRL1, 0x40), QMP_PHY_INIT_CFG(QSERDES_V3_TX_PRE_STALL_LDO_BOOST_EN, 0x30), QMP_PHY_INIT_CFG(QSERDES_V3_TX_INTERFACE_SELECT, 0x3d), QMP_PHY_INIT_CFG(QSERDES_V3_TX_CLKBUF_ENABLE, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RESET_TSYNC_EN, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_TX_TRAN_DRVR_EMP_EN, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_TX_PARRATE_REC_DETECT_IDLE_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_TX_TX_INTERFACE_MODE, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_TX_TX_BAND, 0x4), QMP_PHY_INIT_CFG(QSERDES_V3_TX_TX_POL_INV, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_TX_TX_DRV_LVL, 0x38), QMP_PHY_INIT_CFG(QSERDES_V3_TX_TX_EMP_POST1_LVL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x07), }; static const struct qmp_phy_init_tbl qmp_v3_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75), }; static const struct qmp_phy_init_tbl qmp_v3_usb3_pcs_tbl[] = { /* FLL settings */ QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02), /* Lock Det settings */ QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47), QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0xba), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V1, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V2, 0xb7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V3, 0x4e), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V4, 0x65), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_LS, 0x6b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V1, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V1, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V2, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V2, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V3, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V3, 0x1d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V4, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V4, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_LS, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_LS, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RATE_SLEW_CNTRL, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13), }; static const struct qmp_phy_init_tbl sm6350_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x05), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75), }; static const struct qmp_phy_init_tbl sm6350_usb3_pcs_tbl[] = { /* FLL settings */ QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02), /* Lock Det settings */ QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47), QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0xcc), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V1, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V2, 0xb7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V3, 0x4e), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V4, 0x65), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_LS, 0x6b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V1, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V1, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V2, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V2, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V3, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V3, 0x1d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V4, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V4, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_LS, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_LS, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RATE_SLEW_CNTRL, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_DET_HIGH_COUNT_VAL, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_V3_PCS_REFGEN_REQ_CONFIG2, 0x60), }; static const struct qmp_phy_init_tbl sm8150_usb3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0xde), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_IPTRIM, 0x20), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x14), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0xea), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0xab), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0xea), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE0, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE1, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE2_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xca), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11), }; static const struct qmp_phy_init_tbl sm8150_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_TX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_RX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x20), }; static const struct qmp_phy_init_tbl sm8150_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x94), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb3), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VTH_CODE, 0x10), }; static const struct qmp_phy_init_tbl sm8150_usb3_pcs_tbl[] = { /* Lock Det settings */ QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10), }; static const struct qmp_phy_init_tbl sm8150_usb3_pcs_usb_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), }; static const struct qmp_phy_init_tbl sm8250_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_TX, 0x60), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_RX, 0x60), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x11), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_RX, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_TX_PI_QEC_CTRL, 0x40, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_TX_PI_QEC_CTRL, 0x54, 2), }; static const struct qmp_phy_init_tbl sm8250_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_LOW, 0xff, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_LOW, 0x7f, 2), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x7f, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xff, 2), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x97), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x7b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb4), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VTH_CODE, 0x10), }; static const struct qmp_phy_init_tbl sm8250_usb3_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xa9), QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10), }; static const struct qmp_phy_init_tbl sm8250_usb3_pcs_usb_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), }; static const struct qmp_phy_init_tbl sm8350_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_TX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_RX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0x35), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_5, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x21), }; static const struct qmp_phy_init_tbl sm8350_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN2, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xbb), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x7b), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xbb), QMP_PHY_INIT_CFG_LANE(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3d, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3c, 2), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xdb), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x64), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x24), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xd2), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x13), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa9), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_RX_AUX_DATA_TCOARSE_TFINE, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VTH_CODE, 0x10), }; static const struct qmp_phy_init_tbl sm8350_usb3_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10), }; static const struct qmp_phy_init_tbl sm8350_usb3_pcs_usb_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RCVR_DTCT_DLY_U3_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), }; static const struct qmp_phy_init_tbl sm8550_usb3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE1, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORECLK_DIV_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE1, 0x41), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE1, 0x41), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MSB_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE1, 0x75), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE1_MODE1, 0x25), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE2_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE0, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x08), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x41), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MSB_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0x75), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE1_MODE0, 0x25), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE2_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER1, 0x62), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER2, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_BUF_ENABLE, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_EN_SEL, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_CFG, 0x14), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_MAP, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORE_CLK_EN, 0x20), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_CONFIG_1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_AUTO_GAIN_ADJ_CTRL_1, 0xb6), QMP_PHY_INIT_CFG(QSERDES_V6_COM_AUTO_GAIN_ADJ_CTRL_2, 0x4b), QMP_PHY_INIT_CFG(QSERDES_V6_COM_AUTO_GAIN_ADJ_CTRL_3, 0x37), QMP_PHY_INIT_CFG(QSERDES_V6_COM_ADDITIONAL_MISC, 0x0c), }; static const struct qmp_phy_init_tbl sm8550_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_TX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_RX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_TX, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_RX, 0x09), QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_1, 0xf5), QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_3, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_5, 0x5f), QMP_PHY_INIT_CFG(QSERDES_V6_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_TX_PI_QEC_CTRL, 0x21, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_TX_PI_QEC_CTRL, 0x05, 2), }; static const struct qmp_phy_init_tbl sm8550_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_FO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SO_GAIN, 0x06), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_THRESH1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_GAIN1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_GAIN2, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_RX_AUX_DATA_TCOARSE_TFINE, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V6_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V6_RX_VGA_CAL_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_RX_GM_CAL, 0x13), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_IDAC_TSETTLE_LOW, 0x07), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47), QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH2, 0x9c), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH3, 0x1d), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH4, 0x09), QMP_PHY_INIT_CFG(QSERDES_V6_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V6_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V6_RX_VTH_CODE, 0x10), QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIGDET_CAL_CTRL1, 0x14), QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIGDET_CAL_TRIM, 0x08), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_LOW, 0x3f, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH, 0xbf, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH2, 0xff, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH3, 0xdf, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH4, 0xed, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_LOW, 0xbf, 2), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH, 0xbf, 2), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH2, 0xbf, 2), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH3, 0xdf, 2), QMP_PHY_INIT_CFG_LANE(QSERDES_V6_RX_RX_MODE_00_HIGH4, 0xfd, 2), }; static const struct qmp_phy_init_tbl sm8550_usb3_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_LOCK_DETECT_CONFIG1, 0xc4), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_LOCK_DETECT_CONFIG2, 0x89), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_RX_SIGDET_LVL, 0x99), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_EQ_CONFIG5, 0x10), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_USB3_POWER_STATE_CONFIG1, 0x68), }; static const struct qmp_phy_init_tbl sm8550_usb3_pcs_usb_tbl[] = { QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_USB3_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_USB_V6_PCS_USB3_RCVR_DTCT_DLY_U3_H, 0x00), }; static const struct qmp_phy_init_tbl qmp_v4_dp_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_SVS_MODE_CLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_ENABLE1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_CONFIG, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_CTRL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN, 0x17), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORE_CLK_EN, 0x1f), }; static const struct qmp_phy_init_tbl qmp_v4_dp_serdes_tbl_rbr[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x69), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x6f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x04), }; static const struct qmp_phy_init_tbl qmp_v4_dp_serdes_tbl_hbr[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x69), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x08), }; static const struct qmp_phy_init_tbl qmp_v4_dp_serdes_tbl_hbr2[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x8c), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x08), }; static const struct qmp_phy_init_tbl qmp_v4_dp_serdes_tbl_hbr3[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x69), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x2a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x08), }; static const struct qmp_phy_init_tbl qmp_v4_dp_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_VMODE_CTRL1, 0x40), QMP_PHY_INIT_CFG(QSERDES_V4_TX_PRE_STALL_LDO_BOOST_EN, 0x30), QMP_PHY_INIT_CFG(QSERDES_V4_TX_INTERFACE_SELECT, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V4_TX_CLKBUF_ENABLE, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RESET_TSYNC_EN, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_TX_TRAN_DRVR_EMP_EN, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_TX_PARRATE_REC_DETECT_IDLE_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_TX_TX_INTERFACE_MODE, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x11), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_RX, 0x11), QMP_PHY_INIT_CFG(QSERDES_V4_TX_TX_BAND, 0x4), QMP_PHY_INIT_CFG(QSERDES_V4_TX_TX_POL_INV, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_TX_TX_DRV_LVL, 0x2a), QMP_PHY_INIT_CFG(QSERDES_V4_TX_TX_EMP_POST1_LVL, 0x20), }; static const struct qmp_phy_init_tbl qmp_v5_dp_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_SVS_MODE_CLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_ENABLE1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_CONFIG, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_CTRL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN, 0x17), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORE_CLK_EN, 0x1f), }; static const struct qmp_phy_init_tbl qmp_v5_dp_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_VMODE_CTRL1, 0x40), QMP_PHY_INIT_CFG(QSERDES_V5_TX_PRE_STALL_LDO_BOOST_EN, 0x30), QMP_PHY_INIT_CFG(QSERDES_V5_TX_INTERFACE_SELECT, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V5_TX_CLKBUF_ENABLE, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RESET_TSYNC_EN, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_TX_TRAN_DRVR_EMP_EN, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_PARRATE_REC_DETECT_IDLE_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_TX_TX_INTERFACE_MODE, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x11), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x11), QMP_PHY_INIT_CFG(QSERDES_V5_TX_TX_BAND, 0x04), }; static const struct qmp_phy_init_tbl qmp_v5_5nm_dp_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_LANE_MODE_3, 0x51), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_TRANSCEIVER_BIAS_EN, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_VMODE_CTRL1, 0x40), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_PRE_STALL_LDO_BOOST_EN, 0x0), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_INTERFACE_SELECT, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_CLKBUF_ENABLE, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_RESET_TSYNC_EN, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_TRAN_DRVR_EMP_EN, 0xf), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_PARRATE_REC_DETECT_IDLE_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_RES_CODE_LANE_OFFSET_TX, 0x11), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_RES_CODE_LANE_OFFSET_RX, 0x11), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_TX_BAND, 0x01), }; static const struct qmp_phy_init_tbl qmp_v6_dp_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_COM_SVS_MODE_CLK_SEL, 0x15), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_EN_SEL, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_ENABLE1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_BUF_ENABLE, 0x06), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_CONFIG_1, 0x12), QMP_PHY_INIT_CFG(QSERDES_V6_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V6_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CORE_CLK_DIV_MODE0, 0x14), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_CTRL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_BIAS_EN_CLK_BUFLR_EN, 0x17), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORE_CLK_EN, 0x0f), }; static const struct qmp_phy_init_tbl qmp_v6_dp_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_TX_VMODE_CTRL1, 0x40), QMP_PHY_INIT_CFG(QSERDES_V6_TX_PRE_STALL_LDO_BOOST_EN, 0x30), QMP_PHY_INIT_CFG(QSERDES_V6_TX_INTERFACE_SELECT, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V6_TX_CLKBUF_ENABLE, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_TX_RESET_TSYNC_EN, 0x03), QMP_PHY_INIT_CFG(QSERDES_V6_TX_TRAN_DRVR_EMP_EN, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_TX_PARRATE_REC_DETECT_IDLE_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_TX_TX_INTERFACE_MODE, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_TX, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_RX, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V6_TX_TX_BAND, 0x4), }; static const struct qmp_phy_init_tbl qmp_v6_dp_serdes_tbl_rbr[] = { QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x37), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x71), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x0c), }; static const struct qmp_phy_init_tbl qmp_v6_dp_serdes_tbl_hbr[] = { QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x71), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x0c), }; static const struct qmp_phy_init_tbl qmp_v6_dp_serdes_tbl_hbr2[] = { QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x46), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x05), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x97), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x10), }; static const struct qmp_phy_init_tbl qmp_v6_dp_serdes_tbl_hbr3[] = { QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x17), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x15), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x71), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x0c), }; static const struct qmp_phy_init_tbl sc8280xp_usb43dp_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xfd), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0xfd), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_BUF_ENABLE, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MSB_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MSB_MODE1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE0, 0xd4), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE2_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE1, 0xd4), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE2_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x13), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x60), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_CONFIG, 0x76), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE0, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE1, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_INITVAL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAXVAL2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SVS_MODE_CLK_SEL, 0x0a), }; static const struct qmp_phy_init_tbl sc8280xp_usb43dp_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_LANE_MODE_1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_LANE_MODE_2, 0xc2), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_LANE_MODE_3, 0x10), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_RES_CODE_LANE_OFFSET_TX, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_TX_RES_CODE_LANE_OFFSET_RX, 0x0a), }; static const struct qmp_phy_init_tbl sc8280xp_usb43dp_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_SIGDET_ENABLES, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B0, 0xd2), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B1, 0xd2), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B2, 0xdb), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B3, 0x21), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B5, 0x80), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B6, 0x45), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE_0_1_B7, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B0, 0x6b), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B1, 0x63), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B2, 0xb6), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B3, 0x23), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B4, 0x35), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B5, 0x30), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B6, 0x8e), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_MODE_RATE2_B7, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_IVCM_CAL_CODE_OVERRIDE, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_IVCM_CAL_CTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_SUMMER_CAL_SPD_MODE, 0x1b), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_UCDR_PI_CONTROLS, 0x15), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_UCDR_SB2_GAIN2_RATE2, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_RX_IVCM_POSTCAL_OFFSET, 0x7c), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_VGA_CAL_CNTRL1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_VGA_CAL_MAN_VAL, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_DFE_DAC_ENABLE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_DFE_3, 0x45), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_GM_CAL, 0x09), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_UCDR_FO_GAIN_RATE2, 0x09), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_UCDR_SO_GAIN_RATE2, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_5NM_RX_Q_PI_INTRINSIC_BIAS_RATE32, 0x3f), }; static const struct qmp_phy_init_tbl sc8280xp_usb43dp_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_V5_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_CONFIG, 0x0a), QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V5_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG5, 0x10), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), }; /* list of regulators */ struct qmp_regulator_data { const char *name; unsigned int enable_load; }; static struct qmp_regulator_data qmp_phy_vreg_l[] = { { .name = "vdda-phy", .enable_load = 21800 }, { .name = "vdda-pll", .enable_load = 36000 }, }; static const u8 qmp_dp_v3_pre_emphasis_hbr3_hbr2[4][4] = { { 0x00, 0x0c, 0x15, 0x1a }, { 0x02, 0x0e, 0x16, 0xff }, { 0x02, 0x11, 0xff, 0xff }, { 0x04, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v3_voltage_swing_hbr3_hbr2[4][4] = { { 0x02, 0x12, 0x16, 0x1a }, { 0x09, 0x19, 0x1f, 0xff }, { 0x10, 0x1f, 0xff, 0xff }, { 0x1f, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v3_pre_emphasis_hbr_rbr[4][4] = { { 0x00, 0x0c, 0x14, 0x19 }, { 0x00, 0x0b, 0x12, 0xff }, { 0x00, 0x0b, 0xff, 0xff }, { 0x04, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v3_voltage_swing_hbr_rbr[4][4] = { { 0x08, 0x0f, 0x16, 0x1f }, { 0x11, 0x1e, 0x1f, 0xff }, { 0x19, 0x1f, 0xff, 0xff }, { 0x1f, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v4_pre_emphasis_hbr3_hbr2[4][4] = { { 0x00, 0x0c, 0x15, 0x1b }, { 0x02, 0x0e, 0x16, 0xff }, { 0x02, 0x11, 0xff, 0xff }, { 0x04, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v4_pre_emphasis_hbr_rbr[4][4] = { { 0x00, 0x0d, 0x14, 0x1a }, { 0x00, 0x0e, 0x15, 0xff }, { 0x00, 0x0d, 0xff, 0xff }, { 0x03, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v4_voltage_swing_hbr_rbr[4][4] = { { 0x08, 0x0f, 0x16, 0x1f }, { 0x11, 0x1e, 0x1f, 0xff }, { 0x16, 0x1f, 0xff, 0xff }, { 0x1f, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v5_pre_emphasis_hbr3_hbr2[4][4] = { { 0x20, 0x2c, 0x35, 0x3b }, { 0x22, 0x2e, 0x36, 0xff }, { 0x22, 0x31, 0xff, 0xff }, { 0x24, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v5_voltage_swing_hbr3_hbr2[4][4] = { { 0x22, 0x32, 0x36, 0x3a }, { 0x29, 0x39, 0x3f, 0xff }, { 0x30, 0x3f, 0xff, 0xff }, { 0x3f, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v5_pre_emphasis_hbr_rbr[4][4] = { { 0x20, 0x2d, 0x34, 0x3a }, { 0x20, 0x2e, 0x35, 0xff }, { 0x20, 0x2e, 0xff, 0xff }, { 0x24, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v5_voltage_swing_hbr_rbr[4][4] = { { 0x28, 0x2f, 0x36, 0x3f }, { 0x31, 0x3e, 0x3f, 0xff }, { 0x36, 0x3f, 0xff, 0xff }, { 0x3f, 0xff, 0xff, 0xff } }; static const u8 qmp_dp_v6_pre_emphasis_hbr_rbr[4][4] = { { 0x20, 0x2d, 0x34, 0x3a }, { 0x20, 0x2e, 0x35, 0xff }, { 0x20, 0x2e, 0xff, 0xff }, { 0x22, 0xff, 0xff, 0xff } }; struct qmp_combo; struct qmp_combo_offsets { u16 com; u16 txa; u16 rxa; u16 txb; u16 rxb; u16 usb3_serdes; u16 usb3_pcs_misc; u16 usb3_pcs; u16 usb3_pcs_usb; u16 dp_serdes; u16 dp_txa; u16 dp_txb; u16 dp_dp_phy; }; struct qmp_phy_cfg { const struct qmp_combo_offsets *offsets; /* Init sequence for PHY blocks - serdes, tx, rx, pcs */ const struct qmp_phy_init_tbl *serdes_tbl; int serdes_tbl_num; const struct qmp_phy_init_tbl *tx_tbl; int tx_tbl_num; const struct qmp_phy_init_tbl *rx_tbl; int rx_tbl_num; const struct qmp_phy_init_tbl *pcs_tbl; int pcs_tbl_num; const struct qmp_phy_init_tbl *pcs_usb_tbl; int pcs_usb_tbl_num; const struct qmp_phy_init_tbl *dp_serdes_tbl; int dp_serdes_tbl_num; const struct qmp_phy_init_tbl *dp_tx_tbl; int dp_tx_tbl_num; /* Init sequence for DP PHY block link rates */ const struct qmp_phy_init_tbl *serdes_tbl_rbr; int serdes_tbl_rbr_num; const struct qmp_phy_init_tbl *serdes_tbl_hbr; int serdes_tbl_hbr_num; const struct qmp_phy_init_tbl *serdes_tbl_hbr2; int serdes_tbl_hbr2_num; const struct qmp_phy_init_tbl *serdes_tbl_hbr3; int serdes_tbl_hbr3_num; /* DP PHY swing and pre_emphasis tables */ const u8 (*swing_hbr_rbr)[4][4]; const u8 (*swing_hbr3_hbr2)[4][4]; const u8 (*pre_emphasis_hbr_rbr)[4][4]; const u8 (*pre_emphasis_hbr3_hbr2)[4][4]; /* DP PHY callbacks */ int (*configure_dp_phy)(struct qmp_combo *qmp); void (*configure_dp_tx)(struct qmp_combo *qmp); int (*calibrate_dp_phy)(struct qmp_combo *qmp); void (*dp_aux_init)(struct qmp_combo *qmp); /* resets to be requested */ const char * const *reset_list; int num_resets; /* regulators to be requested */ const struct qmp_regulator_data *vreg_list; int num_vregs; /* array of registers with different offsets */ const unsigned int *regs; /* true, if PHY needs delay after POWER_DOWN */ bool has_pwrdn_delay; /* Offset from PCS to PCS_USB region */ unsigned int pcs_usb_offset; }; struct qmp_combo { struct device *dev; const struct qmp_phy_cfg *cfg; void __iomem *com; void __iomem *serdes; void __iomem *tx; void __iomem *rx; void __iomem *pcs; void __iomem *tx2; void __iomem *rx2; void __iomem *pcs_misc; void __iomem *pcs_usb; void __iomem *dp_serdes; void __iomem *dp_tx; void __iomem *dp_tx2; void __iomem *dp_dp_phy; struct clk *pipe_clk; struct clk_bulk_data *clks; int num_clks; struct reset_control_bulk_data *resets; struct regulator_bulk_data *vregs; struct mutex phy_mutex; int init_count; struct phy *usb_phy; enum phy_mode mode; unsigned int usb_init_count; struct phy *dp_phy; unsigned int dp_aux_cfg; struct phy_configure_opts_dp dp_opts; unsigned int dp_init_count; struct clk_fixed_rate pipe_clk_fixed; struct clk_hw dp_link_hw; struct clk_hw dp_pixel_hw; struct drm_bridge bridge; struct typec_switch_dev *sw; enum typec_orientation orientation; }; static void qmp_v3_dp_aux_init(struct qmp_combo *qmp); static void qmp_v3_configure_dp_tx(struct qmp_combo *qmp); static int qmp_v3_configure_dp_phy(struct qmp_combo *qmp); static int qmp_v3_calibrate_dp_phy(struct qmp_combo *qmp); static void qmp_v4_dp_aux_init(struct qmp_combo *qmp); static void qmp_v4_configure_dp_tx(struct qmp_combo *qmp); static int qmp_v4_configure_dp_phy(struct qmp_combo *qmp); static int qmp_v4_calibrate_dp_phy(struct qmp_combo *qmp); static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg |= val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg &= ~val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } /* list of clocks required by phy */ static const char * const qmp_combo_phy_clk_l[] = { "aux", "cfg_ahb", "ref", "com_aux", }; /* list of resets */ static const char * const msm8996_usb3phy_reset_l[] = { "phy", "common", }; static const char * const sc7180_usb3phy_reset_l[] = { "phy", }; static const struct qmp_combo_offsets qmp_combo_offsets_v3 = { .com = 0x0000, .txa = 0x1200, .rxa = 0x1400, .txb = 0x1600, .rxb = 0x1800, .usb3_serdes = 0x1000, .usb3_pcs_misc = 0x1a00, .usb3_pcs = 0x1c00, .usb3_pcs_usb = 0x1f00, .dp_serdes = 0x2000, .dp_txa = 0x2200, .dp_txb = 0x2600, .dp_dp_phy = 0x2a00, }; static const struct qmp_combo_offsets qmp_combo_offsets_v5 = { .com = 0x0000, .txa = 0x0400, .rxa = 0x0600, .txb = 0x0a00, .rxb = 0x0c00, .usb3_serdes = 0x1000, .usb3_pcs_misc = 0x1200, .usb3_pcs = 0x1400, .usb3_pcs_usb = 0x1700, .dp_serdes = 0x2000, .dp_dp_phy = 0x2200, }; static const struct qmp_phy_cfg sc7180_usb3dpphy_cfg = { .offsets = &qmp_combo_offsets_v3, .serdes_tbl = qmp_v3_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_serdes_tbl), .tx_tbl = qmp_v3_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_tx_tbl), .rx_tbl = qmp_v3_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_rx_tbl), .pcs_tbl = qmp_v3_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(qmp_v3_usb3_pcs_tbl), .dp_serdes_tbl = qmp_v3_dp_serdes_tbl, .dp_serdes_tbl_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl), .dp_tx_tbl = qmp_v3_dp_tx_tbl, .dp_tx_tbl_num = ARRAY_SIZE(qmp_v3_dp_tx_tbl), .serdes_tbl_rbr = qmp_v3_dp_serdes_tbl_rbr, .serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_rbr), .serdes_tbl_hbr = qmp_v3_dp_serdes_tbl_hbr, .serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr), .serdes_tbl_hbr2 = qmp_v3_dp_serdes_tbl_hbr2, .serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr2), .serdes_tbl_hbr3 = qmp_v3_dp_serdes_tbl_hbr3, .serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr3), .swing_hbr_rbr = &qmp_dp_v3_voltage_swing_hbr_rbr, .pre_emphasis_hbr_rbr = &qmp_dp_v3_pre_emphasis_hbr_rbr, .swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2, .pre_emphasis_hbr3_hbr2 = &qmp_dp_v3_pre_emphasis_hbr3_hbr2, .dp_aux_init = qmp_v3_dp_aux_init, .configure_dp_tx = qmp_v3_configure_dp_tx, .configure_dp_phy = qmp_v3_configure_dp_phy, .calibrate_dp_phy = qmp_v3_calibrate_dp_phy, .reset_list = sc7180_usb3phy_reset_l, .num_resets = ARRAY_SIZE(sc7180_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v3_usb3phy_regs_layout, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg sdm845_usb3dpphy_cfg = { .offsets = &qmp_combo_offsets_v3, .serdes_tbl = qmp_v3_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_serdes_tbl), .tx_tbl = qmp_v3_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_tx_tbl), .rx_tbl = qmp_v3_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_rx_tbl), .pcs_tbl = qmp_v3_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(qmp_v3_usb3_pcs_tbl), .dp_serdes_tbl = qmp_v3_dp_serdes_tbl, .dp_serdes_tbl_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl), .dp_tx_tbl = qmp_v3_dp_tx_tbl, .dp_tx_tbl_num = ARRAY_SIZE(qmp_v3_dp_tx_tbl), .serdes_tbl_rbr = qmp_v3_dp_serdes_tbl_rbr, .serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_rbr), .serdes_tbl_hbr = qmp_v3_dp_serdes_tbl_hbr, .serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr), .serdes_tbl_hbr2 = qmp_v3_dp_serdes_tbl_hbr2, .serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr2), .serdes_tbl_hbr3 = qmp_v3_dp_serdes_tbl_hbr3, .serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr3), .swing_hbr_rbr = &qmp_dp_v3_voltage_swing_hbr_rbr, .pre_emphasis_hbr_rbr = &qmp_dp_v3_pre_emphasis_hbr_rbr, .swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2, .pre_emphasis_hbr3_hbr2 = &qmp_dp_v3_pre_emphasis_hbr3_hbr2, .dp_aux_init = qmp_v3_dp_aux_init, .configure_dp_tx = qmp_v3_configure_dp_tx, .configure_dp_phy = qmp_v3_configure_dp_phy, .calibrate_dp_phy = qmp_v3_calibrate_dp_phy, .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v3_usb3phy_regs_layout, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg sc8180x_usb3dpphy_cfg = { .offsets = &qmp_combo_offsets_v3, .serdes_tbl = sm8150_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl), .tx_tbl = sm8150_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sm8150_usb3_tx_tbl), .rx_tbl = sm8150_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm8150_usb3_rx_tbl), .pcs_tbl = sm8150_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8150_usb3_pcs_tbl), .pcs_usb_tbl = sm8150_usb3_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8150_usb3_pcs_usb_tbl), .dp_serdes_tbl = qmp_v4_dp_serdes_tbl, .dp_serdes_tbl_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl), .dp_tx_tbl = qmp_v4_dp_tx_tbl, .dp_tx_tbl_num = ARRAY_SIZE(qmp_v4_dp_tx_tbl), .serdes_tbl_rbr = qmp_v4_dp_serdes_tbl_rbr, .serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_rbr), .serdes_tbl_hbr = qmp_v4_dp_serdes_tbl_hbr, .serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr), .serdes_tbl_hbr2 = qmp_v4_dp_serdes_tbl_hbr2, .serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr2), .serdes_tbl_hbr3 = qmp_v4_dp_serdes_tbl_hbr3, .serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr3), .swing_hbr_rbr = &qmp_dp_v3_voltage_swing_hbr_rbr, .pre_emphasis_hbr_rbr = &qmp_dp_v3_pre_emphasis_hbr_rbr, .swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2, .pre_emphasis_hbr3_hbr2 = &qmp_dp_v3_pre_emphasis_hbr3_hbr2, .dp_aux_init = qmp_v4_dp_aux_init, .configure_dp_tx = qmp_v4_configure_dp_tx, .configure_dp_phy = qmp_v4_configure_dp_phy, .calibrate_dp_phy = qmp_v4_calibrate_dp_phy, .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v45_usb3phy_regs_layout, .pcs_usb_offset = 0x300, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg sc8280xp_usb43dpphy_cfg = { .offsets = &qmp_combo_offsets_v5, .serdes_tbl = sc8280xp_usb43dp_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sc8280xp_usb43dp_serdes_tbl), .tx_tbl = sc8280xp_usb43dp_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sc8280xp_usb43dp_tx_tbl), .rx_tbl = sc8280xp_usb43dp_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sc8280xp_usb43dp_rx_tbl), .pcs_tbl = sc8280xp_usb43dp_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sc8280xp_usb43dp_pcs_tbl), .dp_serdes_tbl = qmp_v5_dp_serdes_tbl, .dp_serdes_tbl_num = ARRAY_SIZE(qmp_v5_dp_serdes_tbl), .dp_tx_tbl = qmp_v5_5nm_dp_tx_tbl, .dp_tx_tbl_num = ARRAY_SIZE(qmp_v5_5nm_dp_tx_tbl), .serdes_tbl_rbr = qmp_v4_dp_serdes_tbl_rbr, .serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_rbr), .serdes_tbl_hbr = qmp_v4_dp_serdes_tbl_hbr, .serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr), .serdes_tbl_hbr2 = qmp_v4_dp_serdes_tbl_hbr2, .serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr2), .serdes_tbl_hbr3 = qmp_v4_dp_serdes_tbl_hbr3, .serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr3), .swing_hbr_rbr = &qmp_dp_v5_voltage_swing_hbr_rbr, .pre_emphasis_hbr_rbr = &qmp_dp_v5_pre_emphasis_hbr_rbr, .swing_hbr3_hbr2 = &qmp_dp_v5_voltage_swing_hbr3_hbr2, .pre_emphasis_hbr3_hbr2 = &qmp_dp_v5_pre_emphasis_hbr3_hbr2, .dp_aux_init = qmp_v4_dp_aux_init, .configure_dp_tx = qmp_v4_configure_dp_tx, .configure_dp_phy = qmp_v4_configure_dp_phy, .calibrate_dp_phy = qmp_v4_calibrate_dp_phy, .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v5_5nm_usb3phy_regs_layout, }; static const struct qmp_phy_cfg sm6350_usb3dpphy_cfg = { .offsets = &qmp_combo_offsets_v3, .serdes_tbl = qmp_v3_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_serdes_tbl), .tx_tbl = qmp_v3_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_tx_tbl), .rx_tbl = sm6350_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm6350_usb3_rx_tbl), .pcs_tbl = sm6350_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm6350_usb3_pcs_tbl), .dp_serdes_tbl = qmp_v3_dp_serdes_tbl, .dp_serdes_tbl_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl), .dp_tx_tbl = qmp_v3_dp_tx_tbl, .dp_tx_tbl_num = ARRAY_SIZE(qmp_v3_dp_tx_tbl), .serdes_tbl_rbr = qmp_v3_dp_serdes_tbl_rbr, .serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_rbr), .serdes_tbl_hbr = qmp_v3_dp_serdes_tbl_hbr, .serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr), .serdes_tbl_hbr2 = qmp_v3_dp_serdes_tbl_hbr2, .serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr2), .serdes_tbl_hbr3 = qmp_v3_dp_serdes_tbl_hbr3, .serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v3_dp_serdes_tbl_hbr3), .swing_hbr_rbr = &qmp_dp_v3_voltage_swing_hbr_rbr, .pre_emphasis_hbr_rbr = &qmp_dp_v3_pre_emphasis_hbr_rbr, .swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2, .pre_emphasis_hbr3_hbr2 = &qmp_dp_v3_pre_emphasis_hbr3_hbr2, .dp_aux_init = qmp_v3_dp_aux_init, .configure_dp_tx = qmp_v3_configure_dp_tx, .configure_dp_phy = qmp_v3_configure_dp_phy, .calibrate_dp_phy = qmp_v3_calibrate_dp_phy, .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v3_usb3phy_regs_layout, }; static const struct qmp_phy_cfg sm8250_usb3dpphy_cfg = { .offsets = &qmp_combo_offsets_v3, .serdes_tbl = sm8150_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl), .tx_tbl = sm8250_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sm8250_usb3_tx_tbl), .rx_tbl = sm8250_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm8250_usb3_rx_tbl), .pcs_tbl = sm8250_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8250_usb3_pcs_tbl), .pcs_usb_tbl = sm8250_usb3_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8250_usb3_pcs_usb_tbl), .dp_serdes_tbl = qmp_v4_dp_serdes_tbl, .dp_serdes_tbl_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl), .dp_tx_tbl = qmp_v4_dp_tx_tbl, .dp_tx_tbl_num = ARRAY_SIZE(qmp_v4_dp_tx_tbl), .serdes_tbl_rbr = qmp_v4_dp_serdes_tbl_rbr, .serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_rbr), .serdes_tbl_hbr = qmp_v4_dp_serdes_tbl_hbr, .serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr), .serdes_tbl_hbr2 = qmp_v4_dp_serdes_tbl_hbr2, .serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr2), .serdes_tbl_hbr3 = qmp_v4_dp_serdes_tbl_hbr3, .serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr3), .swing_hbr_rbr = &qmp_dp_v3_voltage_swing_hbr_rbr, .pre_emphasis_hbr_rbr = &qmp_dp_v3_pre_emphasis_hbr_rbr, .swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2, .pre_emphasis_hbr3_hbr2 = &qmp_dp_v3_pre_emphasis_hbr3_hbr2, .dp_aux_init = qmp_v4_dp_aux_init, .configure_dp_tx = qmp_v4_configure_dp_tx, .configure_dp_phy = qmp_v4_configure_dp_phy, .calibrate_dp_phy = qmp_v4_calibrate_dp_phy, .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v45_usb3phy_regs_layout, .pcs_usb_offset = 0x300, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg sm8350_usb3dpphy_cfg = { .offsets = &qmp_combo_offsets_v3, .serdes_tbl = sm8150_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl), .tx_tbl = sm8350_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sm8350_usb3_tx_tbl), .rx_tbl = sm8350_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm8350_usb3_rx_tbl), .pcs_tbl = sm8350_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8350_usb3_pcs_tbl), .pcs_usb_tbl = sm8350_usb3_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8350_usb3_pcs_usb_tbl), .dp_serdes_tbl = qmp_v4_dp_serdes_tbl, .dp_serdes_tbl_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl), .dp_tx_tbl = qmp_v5_dp_tx_tbl, .dp_tx_tbl_num = ARRAY_SIZE(qmp_v5_dp_tx_tbl), .serdes_tbl_rbr = qmp_v4_dp_serdes_tbl_rbr, .serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_rbr), .serdes_tbl_hbr = qmp_v4_dp_serdes_tbl_hbr, .serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr), .serdes_tbl_hbr2 = qmp_v4_dp_serdes_tbl_hbr2, .serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr2), .serdes_tbl_hbr3 = qmp_v4_dp_serdes_tbl_hbr3, .serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v4_dp_serdes_tbl_hbr3), .swing_hbr_rbr = &qmp_dp_v4_voltage_swing_hbr_rbr, .pre_emphasis_hbr_rbr = &qmp_dp_v4_pre_emphasis_hbr_rbr, .swing_hbr3_hbr2 = &qmp_dp_v3_voltage_swing_hbr3_hbr2, .pre_emphasis_hbr3_hbr2 = &qmp_dp_v4_pre_emphasis_hbr3_hbr2, .dp_aux_init = qmp_v4_dp_aux_init, .configure_dp_tx = qmp_v4_configure_dp_tx, .configure_dp_phy = qmp_v4_configure_dp_phy, .calibrate_dp_phy = qmp_v4_calibrate_dp_phy, .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v45_usb3phy_regs_layout, .has_pwrdn_delay = true, }; static const struct qmp_phy_cfg sm8550_usb3dpphy_cfg = { .offsets = &qmp_combo_offsets_v3, .serdes_tbl = sm8550_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8550_usb3_serdes_tbl), .tx_tbl = sm8550_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sm8550_usb3_tx_tbl), .rx_tbl = sm8550_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm8550_usb3_rx_tbl), .pcs_tbl = sm8550_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8550_usb3_pcs_tbl), .pcs_usb_tbl = sm8550_usb3_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8550_usb3_pcs_usb_tbl), .dp_serdes_tbl = qmp_v6_dp_serdes_tbl, .dp_serdes_tbl_num = ARRAY_SIZE(qmp_v6_dp_serdes_tbl), .dp_tx_tbl = qmp_v6_dp_tx_tbl, .dp_tx_tbl_num = ARRAY_SIZE(qmp_v6_dp_tx_tbl), .serdes_tbl_rbr = qmp_v6_dp_serdes_tbl_rbr, .serdes_tbl_rbr_num = ARRAY_SIZE(qmp_v6_dp_serdes_tbl_rbr), .serdes_tbl_hbr = qmp_v6_dp_serdes_tbl_hbr, .serdes_tbl_hbr_num = ARRAY_SIZE(qmp_v6_dp_serdes_tbl_hbr), .serdes_tbl_hbr2 = qmp_v6_dp_serdes_tbl_hbr2, .serdes_tbl_hbr2_num = ARRAY_SIZE(qmp_v6_dp_serdes_tbl_hbr2), .serdes_tbl_hbr3 = qmp_v6_dp_serdes_tbl_hbr3, .serdes_tbl_hbr3_num = ARRAY_SIZE(qmp_v6_dp_serdes_tbl_hbr3), .swing_hbr_rbr = &qmp_dp_v5_voltage_swing_hbr_rbr, .pre_emphasis_hbr_rbr = &qmp_dp_v6_pre_emphasis_hbr_rbr, .swing_hbr3_hbr2 = &qmp_dp_v5_voltage_swing_hbr3_hbr2, .pre_emphasis_hbr3_hbr2 = &qmp_dp_v5_pre_emphasis_hbr3_hbr2, .dp_aux_init = qmp_v4_dp_aux_init, .configure_dp_tx = qmp_v4_configure_dp_tx, .configure_dp_phy = qmp_v4_configure_dp_phy, .calibrate_dp_phy = qmp_v4_calibrate_dp_phy, .regs = qmp_v6_usb3phy_regs_layout, .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), }; static void qmp_combo_configure_lane(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num, u8 lane_mask) { int i; const struct qmp_phy_init_tbl *t = tbl; if (!t) return; for (i = 0; i < num; i++, t++) { if (!(t->lane_mask & lane_mask)) continue; writel(t->val, base + t->offset); } } static void qmp_combo_configure(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num) { qmp_combo_configure_lane(base, tbl, num, 0xff); } static int qmp_combo_dp_serdes_init(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *serdes = qmp->dp_serdes; const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts; qmp_combo_configure(serdes, cfg->dp_serdes_tbl, cfg->dp_serdes_tbl_num); switch (dp_opts->link_rate) { case 1620: qmp_combo_configure(serdes, cfg->serdes_tbl_rbr, cfg->serdes_tbl_rbr_num); break; case 2700: qmp_combo_configure(serdes, cfg->serdes_tbl_hbr, cfg->serdes_tbl_hbr_num); break; case 5400: qmp_combo_configure(serdes, cfg->serdes_tbl_hbr2, cfg->serdes_tbl_hbr2_num); break; case 8100: qmp_combo_configure(serdes, cfg->serdes_tbl_hbr3, cfg->serdes_tbl_hbr3_num); break; default: /* Other link rates aren't supported */ return -EINVAL; } return 0; } static void qmp_v3_dp_aux_init(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN | DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN, qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL); /* Turn on BIAS current for PHY/PLL */ writel(QSERDES_V3_COM_BIAS_EN | QSERDES_V3_COM_BIAS_EN_MUX | QSERDES_V3_COM_CLKBUF_L_EN | QSERDES_V3_COM_EN_SYSCLK_TX_SEL, qmp->dp_serdes + cfg->regs[QPHY_COM_BIAS_EN_CLKBUFLR_EN]); writel(DP_PHY_PD_CTL_PSR_PWRDN, qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL); writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN | DP_PHY_PD_CTL_LANE_0_1_PWRDN | DP_PHY_PD_CTL_LANE_2_3_PWRDN | DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN, qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL); writel(QSERDES_V3_COM_BIAS_EN | QSERDES_V3_COM_BIAS_EN_MUX | QSERDES_V3_COM_CLKBUF_R_EN | QSERDES_V3_COM_CLKBUF_L_EN | QSERDES_V3_COM_EN_SYSCLK_TX_SEL | QSERDES_V3_COM_CLKBUF_RX_DRIVE_L, qmp->dp_serdes + cfg->regs[QPHY_COM_BIAS_EN_CLKBUFLR_EN]); writel(0x00, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG0); writel(0x13, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG1); writel(0x24, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG2); writel(0x00, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG3); writel(0x0a, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG4); writel(0x26, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG5); writel(0x0a, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG6); writel(0x03, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG7); writel(0xbb, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG8); writel(0x03, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG9); qmp->dp_aux_cfg = 0; writel(PHY_AUX_STOP_ERR_MASK | PHY_AUX_DEC_ERR_MASK | PHY_AUX_SYNC_ERR_MASK | PHY_AUX_ALIGN_ERR_MASK | PHY_AUX_REQ_ERR_MASK, qmp->dp_dp_phy + QSERDES_V3_DP_PHY_AUX_INTERRUPT_MASK); } static int qmp_combo_configure_dp_swing(struct qmp_combo *qmp) { const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts; const struct qmp_phy_cfg *cfg = qmp->cfg; unsigned int v_level = 0, p_level = 0; u8 voltage_swing_cfg, pre_emphasis_cfg; int i; for (i = 0; i < dp_opts->lanes; i++) { v_level = max(v_level, dp_opts->voltage[i]); p_level = max(p_level, dp_opts->pre[i]); } if (dp_opts->link_rate <= 2700) { voltage_swing_cfg = (*cfg->swing_hbr_rbr)[v_level][p_level]; pre_emphasis_cfg = (*cfg->pre_emphasis_hbr_rbr)[v_level][p_level]; } else { voltage_swing_cfg = (*cfg->swing_hbr3_hbr2)[v_level][p_level]; pre_emphasis_cfg = (*cfg->pre_emphasis_hbr3_hbr2)[v_level][p_level]; } /* TODO: Move check to config check */ if (voltage_swing_cfg == 0xFF && pre_emphasis_cfg == 0xFF) return -EINVAL; /* Enable MUX to use Cursor values from these registers */ voltage_swing_cfg |= DP_PHY_TXn_TX_DRV_LVL_MUX_EN; pre_emphasis_cfg |= DP_PHY_TXn_TX_EMP_POST1_LVL_MUX_EN; writel(voltage_swing_cfg, qmp->dp_tx + cfg->regs[QPHY_TX_TX_DRV_LVL]); writel(pre_emphasis_cfg, qmp->dp_tx + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]); writel(voltage_swing_cfg, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_DRV_LVL]); writel(pre_emphasis_cfg, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]); return 0; } static void qmp_v3_configure_dp_tx(struct qmp_combo *qmp) { const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts; u32 bias_en, drvr_en; if (qmp_combo_configure_dp_swing(qmp) < 0) return; if (dp_opts->lanes == 1) { bias_en = 0x3e; drvr_en = 0x13; } else { bias_en = 0x3f; drvr_en = 0x10; } writel(drvr_en, qmp->dp_tx + QSERDES_V3_TX_HIGHZ_DRVR_EN); writel(bias_en, qmp->dp_tx + QSERDES_V3_TX_TRANSCEIVER_BIAS_EN); writel(drvr_en, qmp->dp_tx2 + QSERDES_V3_TX_HIGHZ_DRVR_EN); writel(bias_en, qmp->dp_tx2 + QSERDES_V3_TX_TRANSCEIVER_BIAS_EN); } static bool qmp_combo_configure_dp_mode(struct qmp_combo *qmp) { bool reverse = (qmp->orientation == TYPEC_ORIENTATION_REVERSE); const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts; u32 val; val = DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN | DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN; if (dp_opts->lanes == 4 || reverse) val |= DP_PHY_PD_CTL_LANE_0_1_PWRDN; if (dp_opts->lanes == 4 || !reverse) val |= DP_PHY_PD_CTL_LANE_2_3_PWRDN; writel(val, qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL); if (reverse) writel(0x4c, qmp->pcs + QSERDES_DP_PHY_MODE); else writel(0x5c, qmp->pcs + QSERDES_DP_PHY_MODE); return reverse; } static int qmp_combo_configure_dp_clocks(struct qmp_combo *qmp) { const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts; u32 phy_vco_div; unsigned long pixel_freq; switch (dp_opts->link_rate) { case 1620: phy_vco_div = 0x1; pixel_freq = 1620000000UL / 2; break; case 2700: phy_vco_div = 0x1; pixel_freq = 2700000000UL / 2; break; case 5400: phy_vco_div = 0x2; pixel_freq = 5400000000UL / 4; break; case 8100: phy_vco_div = 0x0; pixel_freq = 8100000000UL / 6; break; default: /* Other link rates aren't supported */ return -EINVAL; } writel(phy_vco_div, qmp->dp_dp_phy + QSERDES_V4_DP_PHY_VCO_DIV); clk_set_rate(qmp->dp_link_hw.clk, dp_opts->link_rate * 100000); clk_set_rate(qmp->dp_pixel_hw.clk, pixel_freq); return 0; } static int qmp_v3_configure_dp_phy(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; u32 status; int ret; qmp_combo_configure_dp_mode(qmp); writel(0x05, qmp->dp_dp_phy + QSERDES_V3_DP_PHY_TX0_TX1_LANE_CTL); writel(0x05, qmp->dp_dp_phy + QSERDES_V3_DP_PHY_TX2_TX3_LANE_CTL); ret = qmp_combo_configure_dp_clocks(qmp); if (ret) return ret; writel(0x04, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG2); writel(0x01, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); writel(0x05, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); writel(0x01, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); writel(0x09, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); writel(0x20, qmp->dp_serdes + cfg->regs[QPHY_COM_RESETSM_CNTRL]); if (readl_poll_timeout(qmp->dp_serdes + cfg->regs[QPHY_COM_C_READY_STATUS], status, ((status & BIT(0)) > 0), 500, 10000)) return -ETIMEDOUT; writel(0x19, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); if (readl_poll_timeout(qmp->dp_dp_phy + cfg->regs[QPHY_DP_PHY_STATUS], status, ((status & BIT(1)) > 0), 500, 10000)) return -ETIMEDOUT; writel(0x18, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); udelay(2000); writel(0x19, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); return readl_poll_timeout(qmp->dp_dp_phy + cfg->regs[QPHY_DP_PHY_STATUS], status, ((status & BIT(1)) > 0), 500, 10000); } /* * We need to calibrate the aux setting here as many times * as the caller tries */ static int qmp_v3_calibrate_dp_phy(struct qmp_combo *qmp) { static const u8 cfg1_settings[] = { 0x13, 0x23, 0x1d }; u8 val; qmp->dp_aux_cfg++; qmp->dp_aux_cfg %= ARRAY_SIZE(cfg1_settings); val = cfg1_settings[qmp->dp_aux_cfg]; writel(val, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG1); return 0; } static void qmp_v4_dp_aux_init(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; writel(DP_PHY_PD_CTL_PWRDN | DP_PHY_PD_CTL_PSR_PWRDN | DP_PHY_PD_CTL_AUX_PWRDN | DP_PHY_PD_CTL_PLL_PWRDN | DP_PHY_PD_CTL_DP_CLAMP_EN, qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL); /* Turn on BIAS current for PHY/PLL */ writel(0x17, qmp->dp_serdes + cfg->regs[QPHY_COM_BIAS_EN_CLKBUFLR_EN]); writel(0x00, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG0); writel(0x13, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG1); writel(0xa4, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG2); writel(0x00, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG3); writel(0x0a, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG4); writel(0x26, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG5); writel(0x0a, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG6); writel(0x03, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG7); writel(0xb7, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG8); writel(0x03, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG9); qmp->dp_aux_cfg = 0; writel(PHY_AUX_STOP_ERR_MASK | PHY_AUX_DEC_ERR_MASK | PHY_AUX_SYNC_ERR_MASK | PHY_AUX_ALIGN_ERR_MASK | PHY_AUX_REQ_ERR_MASK, qmp->dp_dp_phy + QSERDES_V4_DP_PHY_AUX_INTERRUPT_MASK); } static void qmp_v4_configure_dp_tx(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; /* Program default values before writing proper values */ writel(0x27, qmp->dp_tx + cfg->regs[QPHY_TX_TX_DRV_LVL]); writel(0x27, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_DRV_LVL]); writel(0x20, qmp->dp_tx + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]); writel(0x20, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]); qmp_combo_configure_dp_swing(qmp); } static int qmp_v456_configure_dp_phy(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; u32 status; int ret; writel(0x0f, qmp->dp_dp_phy + QSERDES_V4_DP_PHY_CFG_1); qmp_combo_configure_dp_mode(qmp); writel(0x13, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG1); writel(0xa4, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG2); writel(0x05, qmp->dp_dp_phy + QSERDES_V4_DP_PHY_TX0_TX1_LANE_CTL); writel(0x05, qmp->dp_dp_phy + QSERDES_V4_DP_PHY_TX2_TX3_LANE_CTL); ret = qmp_combo_configure_dp_clocks(qmp); if (ret) return ret; writel(0x01, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); writel(0x05, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); writel(0x01, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); writel(0x09, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); writel(0x20, qmp->dp_serdes + cfg->regs[QPHY_COM_RESETSM_CNTRL]); if (readl_poll_timeout(qmp->dp_serdes + cfg->regs[QPHY_COM_C_READY_STATUS], status, ((status & BIT(0)) > 0), 500, 10000)) return -ETIMEDOUT; if (readl_poll_timeout(qmp->dp_serdes + cfg->regs[QPHY_COM_CMN_STATUS], status, ((status & BIT(0)) > 0), 500, 10000)) return -ETIMEDOUT; if (readl_poll_timeout(qmp->dp_serdes + cfg->regs[QPHY_COM_CMN_STATUS], status, ((status & BIT(1)) > 0), 500, 10000)) return -ETIMEDOUT; writel(0x19, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); if (readl_poll_timeout(qmp->dp_dp_phy + cfg->regs[QPHY_DP_PHY_STATUS], status, ((status & BIT(0)) > 0), 500, 10000)) return -ETIMEDOUT; if (readl_poll_timeout(qmp->dp_dp_phy + cfg->regs[QPHY_DP_PHY_STATUS], status, ((status & BIT(1)) > 0), 500, 10000)) return -ETIMEDOUT; return 0; } static int qmp_v4_configure_dp_phy(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; bool reverse = (qmp->orientation == TYPEC_ORIENTATION_REVERSE); const struct phy_configure_opts_dp *dp_opts = &qmp->dp_opts; u32 bias0_en, drvr0_en, bias1_en, drvr1_en; u32 status; int ret; ret = qmp_v456_configure_dp_phy(qmp); if (ret < 0) return ret; /* * At least for 7nm DP PHY this has to be done after enabling link * clock. */ if (dp_opts->lanes == 1) { bias0_en = reverse ? 0x3e : 0x15; bias1_en = reverse ? 0x15 : 0x3e; drvr0_en = reverse ? 0x13 : 0x10; drvr1_en = reverse ? 0x10 : 0x13; } else if (dp_opts->lanes == 2) { bias0_en = reverse ? 0x3f : 0x15; bias1_en = reverse ? 0x15 : 0x3f; drvr0_en = 0x10; drvr1_en = 0x10; } else { bias0_en = 0x3f; bias1_en = 0x3f; drvr0_en = 0x10; drvr1_en = 0x10; } writel(drvr0_en, qmp->dp_tx + cfg->regs[QPHY_TX_HIGHZ_DRVR_EN]); writel(bias0_en, qmp->dp_tx + cfg->regs[QPHY_TX_TRANSCEIVER_BIAS_EN]); writel(drvr1_en, qmp->dp_tx2 + cfg->regs[QPHY_TX_HIGHZ_DRVR_EN]); writel(bias1_en, qmp->dp_tx2 + cfg->regs[QPHY_TX_TRANSCEIVER_BIAS_EN]); writel(0x18, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); udelay(2000); writel(0x19, qmp->dp_dp_phy + QSERDES_DP_PHY_CFG); if (readl_poll_timeout(qmp->dp_dp_phy + cfg->regs[QPHY_DP_PHY_STATUS], status, ((status & BIT(1)) > 0), 500, 10000)) return -ETIMEDOUT; writel(0x0a, qmp->dp_tx + cfg->regs[QPHY_TX_TX_POL_INV]); writel(0x0a, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_POL_INV]); writel(0x27, qmp->dp_tx + cfg->regs[QPHY_TX_TX_DRV_LVL]); writel(0x27, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_DRV_LVL]); writel(0x20, qmp->dp_tx + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]); writel(0x20, qmp->dp_tx2 + cfg->regs[QPHY_TX_TX_EMP_POST1_LVL]); return 0; return 0; } /* * We need to calibrate the aux setting here as many times * as the caller tries */ static int qmp_v4_calibrate_dp_phy(struct qmp_combo *qmp) { static const u8 cfg1_settings[] = { 0x20, 0x13, 0x23, 0x1d }; u8 val; qmp->dp_aux_cfg++; qmp->dp_aux_cfg %= ARRAY_SIZE(cfg1_settings); val = cfg1_settings[qmp->dp_aux_cfg]; writel(val, qmp->dp_dp_phy + QSERDES_DP_PHY_AUX_CFG1); return 0; } static int qmp_combo_dp_configure(struct phy *phy, union phy_configure_opts *opts) { const struct phy_configure_opts_dp *dp_opts = &opts->dp; struct qmp_combo *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; mutex_lock(&qmp->phy_mutex); memcpy(&qmp->dp_opts, dp_opts, sizeof(*dp_opts)); if (qmp->dp_opts.set_voltages) { cfg->configure_dp_tx(qmp); qmp->dp_opts.set_voltages = 0; } mutex_unlock(&qmp->phy_mutex); return 0; } static int qmp_combo_dp_calibrate(struct phy *phy) { struct qmp_combo *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; int ret = 0; mutex_lock(&qmp->phy_mutex); if (cfg->calibrate_dp_phy) ret = cfg->calibrate_dp_phy(qmp); mutex_unlock(&qmp->phy_mutex); return ret; } static int qmp_combo_com_init(struct qmp_combo *qmp, bool force) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *com = qmp->com; int ret; u32 val; if (!force && qmp->init_count++) return 0; ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs); if (ret) { dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret); goto err_decrement_count; } ret = reset_control_bulk_assert(cfg->num_resets, qmp->resets); if (ret) { dev_err(qmp->dev, "reset assert failed\n"); goto err_disable_regulators; } ret = reset_control_bulk_deassert(cfg->num_resets, qmp->resets); if (ret) { dev_err(qmp->dev, "reset deassert failed\n"); goto err_disable_regulators; } ret = clk_bulk_prepare_enable(qmp->num_clks, qmp->clks); if (ret) goto err_assert_reset; qphy_setbits(com, QPHY_V3_DP_COM_POWER_DOWN_CTRL, SW_PWRDN); /* override hardware control for reset of qmp phy */ qphy_setbits(com, QPHY_V3_DP_COM_RESET_OVRD_CTRL, SW_DPPHY_RESET_MUX | SW_DPPHY_RESET | SW_USB3PHY_RESET_MUX | SW_USB3PHY_RESET); /* Use software based port select and switch on typec orientation */ val = SW_PORTSELECT_MUX; if (qmp->orientation == TYPEC_ORIENTATION_REVERSE) val |= SW_PORTSELECT_VAL; writel(val, com + QPHY_V3_DP_COM_TYPEC_CTRL); writel(USB3_MODE | DP_MODE, com + QPHY_V3_DP_COM_PHY_MODE_CTRL); /* bring both QMP USB and QMP DP PHYs PCS block out of reset */ qphy_clrbits(com, QPHY_V3_DP_COM_RESET_OVRD_CTRL, SW_DPPHY_RESET_MUX | SW_DPPHY_RESET | SW_USB3PHY_RESET_MUX | SW_USB3PHY_RESET); qphy_clrbits(com, QPHY_V3_DP_COM_SWI_CTRL, 0x03); qphy_clrbits(com, QPHY_V3_DP_COM_SW_RESET, SW_RESET); qphy_setbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN); return 0; err_assert_reset: reset_control_bulk_assert(cfg->num_resets, qmp->resets); err_disable_regulators: regulator_bulk_disable(cfg->num_vregs, qmp->vregs); err_decrement_count: qmp->init_count--; return ret; } static int qmp_combo_com_exit(struct qmp_combo *qmp, bool force) { const struct qmp_phy_cfg *cfg = qmp->cfg; if (!force && --qmp->init_count) return 0; reset_control_bulk_assert(cfg->num_resets, qmp->resets); clk_bulk_disable_unprepare(qmp->num_clks, qmp->clks); regulator_bulk_disable(cfg->num_vregs, qmp->vregs); return 0; } static int qmp_combo_dp_init(struct phy *phy) { struct qmp_combo *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; int ret; mutex_lock(&qmp->phy_mutex); ret = qmp_combo_com_init(qmp, false); if (ret) goto out_unlock; cfg->dp_aux_init(qmp); qmp->dp_init_count++; out_unlock: mutex_unlock(&qmp->phy_mutex); return ret; } static int qmp_combo_dp_exit(struct phy *phy) { struct qmp_combo *qmp = phy_get_drvdata(phy); mutex_lock(&qmp->phy_mutex); qmp_combo_com_exit(qmp, false); qmp->dp_init_count--; mutex_unlock(&qmp->phy_mutex); return 0; } static int qmp_combo_dp_power_on(struct phy *phy) { struct qmp_combo *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *tx = qmp->dp_tx; void __iomem *tx2 = qmp->dp_tx2; mutex_lock(&qmp->phy_mutex); qmp_combo_dp_serdes_init(qmp); qmp_combo_configure_lane(tx, cfg->dp_tx_tbl, cfg->dp_tx_tbl_num, 1); qmp_combo_configure_lane(tx2, cfg->dp_tx_tbl, cfg->dp_tx_tbl_num, 2); /* Configure special DP tx tunings */ cfg->configure_dp_tx(qmp); /* Configure link rate, swing, etc. */ cfg->configure_dp_phy(qmp); mutex_unlock(&qmp->phy_mutex); return 0; } static int qmp_combo_dp_power_off(struct phy *phy) { struct qmp_combo *qmp = phy_get_drvdata(phy); mutex_lock(&qmp->phy_mutex); /* Assert DP PHY power down */ writel(DP_PHY_PD_CTL_PSR_PWRDN, qmp->dp_dp_phy + QSERDES_DP_PHY_PD_CTL); mutex_unlock(&qmp->phy_mutex); return 0; } static int qmp_combo_usb_power_on(struct phy *phy) { struct qmp_combo *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *serdes = qmp->serdes; void __iomem *tx = qmp->tx; void __iomem *rx = qmp->rx; void __iomem *tx2 = qmp->tx2; void __iomem *rx2 = qmp->rx2; void __iomem *pcs = qmp->pcs; void __iomem *status; unsigned int val; int ret; qmp_combo_configure(serdes, cfg->serdes_tbl, cfg->serdes_tbl_num); ret = clk_prepare_enable(qmp->pipe_clk); if (ret) { dev_err(qmp->dev, "pipe_clk enable failed err=%d\n", ret); return ret; } /* Tx, Rx, and PCS configurations */ qmp_combo_configure_lane(tx, cfg->tx_tbl, cfg->tx_tbl_num, 1); qmp_combo_configure_lane(tx2, cfg->tx_tbl, cfg->tx_tbl_num, 2); qmp_combo_configure_lane(rx, cfg->rx_tbl, cfg->rx_tbl_num, 1); qmp_combo_configure_lane(rx2, cfg->rx_tbl, cfg->rx_tbl_num, 2); qmp_combo_configure(pcs, cfg->pcs_tbl, cfg->pcs_tbl_num); if (cfg->has_pwrdn_delay) usleep_range(10, 20); /* Pull PHY out of reset state */ qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* start SerDes and Phy-Coding-Sublayer */ qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START); status = pcs + cfg->regs[QPHY_PCS_STATUS]; ret = readl_poll_timeout(status, val, !(val & PHYSTATUS), 200, PHY_INIT_COMPLETE_TIMEOUT); if (ret) { dev_err(qmp->dev, "phy initialization timed-out\n"); goto err_disable_pipe_clk; } return 0; err_disable_pipe_clk: clk_disable_unprepare(qmp->pipe_clk); return ret; } static int qmp_combo_usb_power_off(struct phy *phy) { struct qmp_combo *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; clk_disable_unprepare(qmp->pipe_clk); /* PHY reset */ qphy_setbits(qmp->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* stop SerDes and Phy-Coding-Sublayer */ qphy_clrbits(qmp->pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START); /* Put PHY into POWER DOWN state: active low */ qphy_clrbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN); return 0; } static int qmp_combo_usb_init(struct phy *phy) { struct qmp_combo *qmp = phy_get_drvdata(phy); int ret; mutex_lock(&qmp->phy_mutex); ret = qmp_combo_com_init(qmp, false); if (ret) goto out_unlock; ret = qmp_combo_usb_power_on(phy); if (ret) { qmp_combo_com_exit(qmp, false); goto out_unlock; } qmp->usb_init_count++; out_unlock: mutex_unlock(&qmp->phy_mutex); return ret; } static int qmp_combo_usb_exit(struct phy *phy) { struct qmp_combo *qmp = phy_get_drvdata(phy); int ret; mutex_lock(&qmp->phy_mutex); ret = qmp_combo_usb_power_off(phy); if (ret) goto out_unlock; ret = qmp_combo_com_exit(qmp, false); if (ret) goto out_unlock; qmp->usb_init_count--; out_unlock: mutex_unlock(&qmp->phy_mutex); return ret; } static int qmp_combo_usb_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct qmp_combo *qmp = phy_get_drvdata(phy); qmp->mode = mode; return 0; } static const struct phy_ops qmp_combo_usb_phy_ops = { .init = qmp_combo_usb_init, .exit = qmp_combo_usb_exit, .set_mode = qmp_combo_usb_set_mode, .owner = THIS_MODULE, }; static const struct phy_ops qmp_combo_dp_phy_ops = { .init = qmp_combo_dp_init, .configure = qmp_combo_dp_configure, .power_on = qmp_combo_dp_power_on, .calibrate = qmp_combo_dp_calibrate, .power_off = qmp_combo_dp_power_off, .exit = qmp_combo_dp_exit, .owner = THIS_MODULE, }; static void qmp_combo_enable_autonomous_mode(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs; void __iomem *pcs_misc = qmp->pcs_misc; u32 intr_mask; if (qmp->mode == PHY_MODE_USB_HOST_SS || qmp->mode == PHY_MODE_USB_DEVICE_SS) intr_mask = ARCVR_DTCT_EN | ALFPS_DTCT_EN; else intr_mask = ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL; /* Clear any pending interrupts status */ qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); /* Writing 1 followed by 0 clears the interrupt */ qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], ARCVR_DTCT_EN | ALFPS_DTCT_EN | ARCVR_DTCT_EVENT_SEL); /* Enable required PHY autonomous mode interrupts */ qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], intr_mask); /* Enable i/o clamp_n for autonomous mode */ if (pcs_misc) qphy_clrbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN); } static void qmp_combo_disable_autonomous_mode(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs; void __iomem *pcs_misc = qmp->pcs_misc; /* Disable i/o clamp_n on resume for normal mode */ if (pcs_misc) qphy_setbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN); qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL | ALFPS_DTCT_EN); qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); /* Writing 1 followed by 0 clears the interrupt */ qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); } static int __maybe_unused qmp_combo_runtime_suspend(struct device *dev) { struct qmp_combo *qmp = dev_get_drvdata(dev); dev_vdbg(dev, "Suspending QMP phy, mode:%d\n", qmp->mode); if (!qmp->init_count) { dev_vdbg(dev, "PHY not initialized, bailing out\n"); return 0; } qmp_combo_enable_autonomous_mode(qmp); clk_disable_unprepare(qmp->pipe_clk); clk_bulk_disable_unprepare(qmp->num_clks, qmp->clks); return 0; } static int __maybe_unused qmp_combo_runtime_resume(struct device *dev) { struct qmp_combo *qmp = dev_get_drvdata(dev); int ret = 0; dev_vdbg(dev, "Resuming QMP phy, mode:%d\n", qmp->mode); if (!qmp->init_count) { dev_vdbg(dev, "PHY not initialized, bailing out\n"); return 0; } ret = clk_bulk_prepare_enable(qmp->num_clks, qmp->clks); if (ret) return ret; ret = clk_prepare_enable(qmp->pipe_clk); if (ret) { dev_err(dev, "pipe_clk enable failed, err=%d\n", ret); clk_bulk_disable_unprepare(qmp->num_clks, qmp->clks); return ret; } qmp_combo_disable_autonomous_mode(qmp); return 0; } static const struct dev_pm_ops qmp_combo_pm_ops = { SET_RUNTIME_PM_OPS(qmp_combo_runtime_suspend, qmp_combo_runtime_resume, NULL) }; static int qmp_combo_vreg_init(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int num = cfg->num_vregs; int ret, i; qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL); if (!qmp->vregs) return -ENOMEM; for (i = 0; i < num; i++) qmp->vregs[i].supply = cfg->vreg_list[i].name; ret = devm_regulator_bulk_get(dev, num, qmp->vregs); if (ret) { dev_err(dev, "failed at devm_regulator_bulk_get\n"); return ret; } for (i = 0; i < num; i++) { ret = regulator_set_load(qmp->vregs[i].consumer, cfg->vreg_list[i].enable_load); if (ret) { dev_err(dev, "failed to set load at %s\n", qmp->vregs[i].supply); return ret; } } return 0; } static int qmp_combo_reset_init(struct qmp_combo *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int i; int ret; qmp->resets = devm_kcalloc(dev, cfg->num_resets, sizeof(*qmp->resets), GFP_KERNEL); if (!qmp->resets) return -ENOMEM; for (i = 0; i < cfg->num_resets; i++) qmp->resets[i].id = cfg->reset_list[i]; ret = devm_reset_control_bulk_get_exclusive(dev, cfg->num_resets, qmp->resets); if (ret) return dev_err_probe(dev, ret, "failed to get resets\n"); return 0; } static int qmp_combo_clk_init(struct qmp_combo *qmp) { struct device *dev = qmp->dev; int num = ARRAY_SIZE(qmp_combo_phy_clk_l); int i; qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL); if (!qmp->clks) return -ENOMEM; for (i = 0; i < num; i++) qmp->clks[i].id = qmp_combo_phy_clk_l[i]; qmp->num_clks = num; return devm_clk_bulk_get_optional(dev, num, qmp->clks); } static void phy_clk_release_provider(void *res) { of_clk_del_provider(res); } /* * Register a fixed rate pipe clock. * * The <s>_pipe_clksrc generated by PHY goes to the GCC that gate * controls it. The <s>_pipe_clk coming out of the GCC is requested * by the PHY driver for its operations. * We register the <s>_pipe_clksrc here. The gcc driver takes care * of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk. * Below picture shows this relationship. * * +---------------+ * | PHY block |<<---------------------------------------+ * | | | * | +-------+ | +-----+ | * I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+ * clk | +-------+ | +-----+ * +---------------+ */ static int phy_pipe_clk_register(struct qmp_combo *qmp, struct device_node *np) { struct clk_fixed_rate *fixed = &qmp->pipe_clk_fixed; struct clk_init_data init = { }; char name[64]; snprintf(name, sizeof(name), "%s::pipe_clk", dev_name(qmp->dev)); init.name = name; init.ops = &clk_fixed_rate_ops; /* controllers using QMP phys use 125MHz pipe clock interface */ fixed->fixed_rate = 125000000; fixed->hw.init = &init; return devm_clk_hw_register(qmp->dev, &fixed->hw); } /* * Display Port PLL driver block diagram for branch clocks * * +------------------------------+ * | DP_VCO_CLK | * | | * | +-------------------+ | * | | (DP PLL/VCO) | | * | +---------+---------+ | * | v | * | +----------+-----------+ | * | | hsclk_divsel_clk_src | | * | +----------+-----------+ | * +------------------------------+ * | * +---------<---------v------------>----------+ * | | * +--------v----------------+ | * | dp_phy_pll_link_clk | | * | link_clk | | * +--------+----------------+ | * | | * | | * v v * Input to DISPCC block | * for link clk, crypto clk | * and interface clock | * | * | * +--------<------------+-----------------+---<---+ * | | | * +----v---------+ +--------v-----+ +--------v------+ * | vco_divided | | vco_divided | | vco_divided | * | _clk_src | | _clk_src | | _clk_src | * | | | | | | * |divsel_six | | divsel_two | | divsel_four | * +-------+------+ +-----+--------+ +--------+------+ * | | | * v---->----------v-------------<------v * | * +----------+-----------------+ * | dp_phy_pll_vco_div_clk | * +---------+------------------+ * | * v * Input to DISPCC block * for DP pixel clock * */ static int qmp_dp_pixel_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { switch (req->rate) { case 1620000000UL / 2: case 2700000000UL / 2: /* 5.4 and 8.1 GHz are same link rate as 2.7GHz, i.e. div 4 and div 6 */ return 0; default: return -EINVAL; } } static unsigned long qmp_dp_pixel_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { const struct qmp_combo *qmp; const struct phy_configure_opts_dp *dp_opts; qmp = container_of(hw, struct qmp_combo, dp_pixel_hw); dp_opts = &qmp->dp_opts; switch (dp_opts->link_rate) { case 1620: return 1620000000UL / 2; case 2700: return 2700000000UL / 2; case 5400: return 5400000000UL / 4; case 8100: return 8100000000UL / 6; default: return 0; } } static const struct clk_ops qmp_dp_pixel_clk_ops = { .determine_rate = qmp_dp_pixel_clk_determine_rate, .recalc_rate = qmp_dp_pixel_clk_recalc_rate, }; static int qmp_dp_link_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { switch (req->rate) { case 162000000: case 270000000: case 540000000: case 810000000: return 0; default: return -EINVAL; } } static unsigned long qmp_dp_link_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { const struct qmp_combo *qmp; const struct phy_configure_opts_dp *dp_opts; qmp = container_of(hw, struct qmp_combo, dp_link_hw); dp_opts = &qmp->dp_opts; switch (dp_opts->link_rate) { case 1620: case 2700: case 5400: case 8100: return dp_opts->link_rate * 100000; default: return 0; } } static const struct clk_ops qmp_dp_link_clk_ops = { .determine_rate = qmp_dp_link_clk_determine_rate, .recalc_rate = qmp_dp_link_clk_recalc_rate, }; static struct clk_hw *qmp_dp_clks_hw_get(struct of_phandle_args *clkspec, void *data) { struct qmp_combo *qmp = data; unsigned int idx = clkspec->args[0]; if (idx >= 2) { pr_err("%s: invalid index %u\n", __func__, idx); return ERR_PTR(-EINVAL); } if (idx == 0) return &qmp->dp_link_hw; return &qmp->dp_pixel_hw; } static int phy_dp_clks_register(struct qmp_combo *qmp, struct device_node *np) { struct clk_init_data init = { }; char name[64]; int ret; snprintf(name, sizeof(name), "%s::link_clk", dev_name(qmp->dev)); init.ops = &qmp_dp_link_clk_ops; init.name = name; qmp->dp_link_hw.init = &init; ret = devm_clk_hw_register(qmp->dev, &qmp->dp_link_hw); if (ret) return ret; snprintf(name, sizeof(name), "%s::vco_div_clk", dev_name(qmp->dev)); init.ops = &qmp_dp_pixel_clk_ops; init.name = name; qmp->dp_pixel_hw.init = &init; ret = devm_clk_hw_register(qmp->dev, &qmp->dp_pixel_hw); if (ret) return ret; return 0; } static struct clk_hw *qmp_combo_clk_hw_get(struct of_phandle_args *clkspec, void *data) { struct qmp_combo *qmp = data; switch (clkspec->args[0]) { case QMP_USB43DP_USB3_PIPE_CLK: return &qmp->pipe_clk_fixed.hw; case QMP_USB43DP_DP_LINK_CLK: return &qmp->dp_link_hw; case QMP_USB43DP_DP_VCO_DIV_CLK: return &qmp->dp_pixel_hw; } return ERR_PTR(-EINVAL); } static int qmp_combo_register_clocks(struct qmp_combo *qmp, struct device_node *usb_np, struct device_node *dp_np) { int ret; ret = phy_pipe_clk_register(qmp, usb_np); if (ret) return ret; ret = phy_dp_clks_register(qmp, dp_np); if (ret) return ret; /* * Register a single provider for bindings without child nodes. */ if (usb_np == qmp->dev->of_node) return devm_of_clk_add_hw_provider(qmp->dev, qmp_combo_clk_hw_get, qmp); /* * Register multiple providers for legacy bindings with child nodes. */ ret = of_clk_add_hw_provider(usb_np, of_clk_hw_simple_get, &qmp->pipe_clk_fixed.hw); if (ret) return ret; /* * Roll a devm action because the clock provider is the child node, but * the child node is not actually a device. */ ret = devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, usb_np); if (ret) return ret; ret = of_clk_add_hw_provider(dp_np, qmp_dp_clks_hw_get, qmp); if (ret) return ret; return devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, dp_np); } #if IS_ENABLED(CONFIG_TYPEC) static int qmp_combo_typec_switch_set(struct typec_switch_dev *sw, enum typec_orientation orientation) { struct qmp_combo *qmp = typec_switch_get_drvdata(sw); const struct qmp_phy_cfg *cfg = qmp->cfg; if (orientation == qmp->orientation || orientation == TYPEC_ORIENTATION_NONE) return 0; mutex_lock(&qmp->phy_mutex); qmp->orientation = orientation; if (qmp->init_count) { if (qmp->usb_init_count) qmp_combo_usb_power_off(qmp->usb_phy); qmp_combo_com_exit(qmp, true); qmp_combo_com_init(qmp, true); if (qmp->usb_init_count) qmp_combo_usb_power_on(qmp->usb_phy); if (qmp->dp_init_count) cfg->dp_aux_init(qmp); } mutex_unlock(&qmp->phy_mutex); return 0; } static void qmp_combo_typec_unregister(void *data) { struct qmp_combo *qmp = data; typec_switch_unregister(qmp->sw); } static int qmp_combo_typec_switch_register(struct qmp_combo *qmp) { struct typec_switch_desc sw_desc = {}; struct device *dev = qmp->dev; sw_desc.drvdata = qmp; sw_desc.fwnode = dev->fwnode; sw_desc.set = qmp_combo_typec_switch_set; qmp->sw = typec_switch_register(dev, &sw_desc); if (IS_ERR(qmp->sw)) { dev_err(dev, "Unable to register typec switch: %pe\n", qmp->sw); return PTR_ERR(qmp->sw); } return devm_add_action_or_reset(dev, qmp_combo_typec_unregister, qmp); } #else static int qmp_combo_typec_switch_register(struct qmp_combo *qmp) { return 0; } #endif #if IS_ENABLED(CONFIG_DRM) static int qmp_combo_bridge_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct qmp_combo *qmp = container_of(bridge, struct qmp_combo, bridge); struct drm_bridge *next_bridge; if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)) return -EINVAL; next_bridge = devm_drm_of_get_bridge(qmp->dev, qmp->dev->of_node, 0, 0); if (IS_ERR(next_bridge)) { dev_err(qmp->dev, "failed to acquire drm_bridge: %pe\n", next_bridge); return PTR_ERR(next_bridge); } return drm_bridge_attach(bridge->encoder, next_bridge, bridge, DRM_BRIDGE_ATTACH_NO_CONNECTOR); } static const struct drm_bridge_funcs qmp_combo_bridge_funcs = { .attach = qmp_combo_bridge_attach, }; static int qmp_combo_dp_register_bridge(struct qmp_combo *qmp) { qmp->bridge.funcs = &qmp_combo_bridge_funcs; qmp->bridge.of_node = qmp->dev->of_node; return devm_drm_bridge_add(qmp->dev, &qmp->bridge); } #else static int qmp_combo_dp_register_bridge(struct qmp_combo *qmp) { return 0; } #endif static int qmp_combo_parse_dt_lecacy_dp(struct qmp_combo *qmp, struct device_node *np) { struct device *dev = qmp->dev; /* * Get memory resources from the DP child node: * Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2; * tx2 -> 3; rx2 -> 4 * * Note that only tx/tx2 and pcs (dp_phy) are used by the DP * implementation. */ qmp->dp_tx = devm_of_iomap(dev, np, 0, NULL); if (IS_ERR(qmp->dp_tx)) return PTR_ERR(qmp->dp_tx); qmp->dp_dp_phy = devm_of_iomap(dev, np, 2, NULL); if (IS_ERR(qmp->dp_dp_phy)) return PTR_ERR(qmp->dp_dp_phy); qmp->dp_tx2 = devm_of_iomap(dev, np, 3, NULL); if (IS_ERR(qmp->dp_tx2)) return PTR_ERR(qmp->dp_tx2); return 0; } static int qmp_combo_parse_dt_lecacy_usb(struct qmp_combo *qmp, struct device_node *np) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; /* * Get memory resources from the USB child node: * Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2; * tx2 -> 3; rx2 -> 4; pcs_misc (optional) -> 5 */ qmp->tx = devm_of_iomap(dev, np, 0, NULL); if (IS_ERR(qmp->tx)) return PTR_ERR(qmp->tx); qmp->rx = devm_of_iomap(dev, np, 1, NULL); if (IS_ERR(qmp->rx)) return PTR_ERR(qmp->rx); qmp->pcs = devm_of_iomap(dev, np, 2, NULL); if (IS_ERR(qmp->pcs)) return PTR_ERR(qmp->pcs); if (cfg->pcs_usb_offset) qmp->pcs_usb = qmp->pcs + cfg->pcs_usb_offset; qmp->tx2 = devm_of_iomap(dev, np, 3, NULL); if (IS_ERR(qmp->tx2)) return PTR_ERR(qmp->tx2); qmp->rx2 = devm_of_iomap(dev, np, 4, NULL); if (IS_ERR(qmp->rx2)) return PTR_ERR(qmp->rx2); qmp->pcs_misc = devm_of_iomap(dev, np, 5, NULL); if (IS_ERR(qmp->pcs_misc)) { dev_vdbg(dev, "PHY pcs_misc-reg not used\n"); qmp->pcs_misc = NULL; } qmp->pipe_clk = devm_get_clk_from_child(dev, np, NULL); if (IS_ERR(qmp->pipe_clk)) { return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk), "failed to get pipe clock\n"); } return 0; } static int qmp_combo_parse_dt_legacy(struct qmp_combo *qmp, struct device_node *usb_np, struct device_node *dp_np) { struct platform_device *pdev = to_platform_device(qmp->dev); int ret; qmp->serdes = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(qmp->serdes)) return PTR_ERR(qmp->serdes); qmp->com = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(qmp->com)) return PTR_ERR(qmp->com); qmp->dp_serdes = devm_platform_ioremap_resource(pdev, 2); if (IS_ERR(qmp->dp_serdes)) return PTR_ERR(qmp->dp_serdes); ret = qmp_combo_parse_dt_lecacy_usb(qmp, usb_np); if (ret) return ret; ret = qmp_combo_parse_dt_lecacy_dp(qmp, dp_np); if (ret) return ret; ret = devm_clk_bulk_get_all(qmp->dev, &qmp->clks); if (ret < 0) return ret; qmp->num_clks = ret; return 0; } static int qmp_combo_parse_dt(struct qmp_combo *qmp) { struct platform_device *pdev = to_platform_device(qmp->dev); const struct qmp_phy_cfg *cfg = qmp->cfg; const struct qmp_combo_offsets *offs = cfg->offsets; struct device *dev = qmp->dev; void __iomem *base; int ret; if (!offs) return -EINVAL; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); qmp->com = base + offs->com; qmp->tx = base + offs->txa; qmp->rx = base + offs->rxa; qmp->tx2 = base + offs->txb; qmp->rx2 = base + offs->rxb; qmp->serdes = base + offs->usb3_serdes; qmp->pcs_misc = base + offs->usb3_pcs_misc; qmp->pcs = base + offs->usb3_pcs; qmp->pcs_usb = base + offs->usb3_pcs_usb; qmp->dp_serdes = base + offs->dp_serdes; if (offs->dp_txa) { qmp->dp_tx = base + offs->dp_txa; qmp->dp_tx2 = base + offs->dp_txb; } else { qmp->dp_tx = base + offs->txa; qmp->dp_tx2 = base + offs->txb; } qmp->dp_dp_phy = base + offs->dp_dp_phy; ret = qmp_combo_clk_init(qmp); if (ret) return ret; qmp->pipe_clk = devm_clk_get(dev, "usb3_pipe"); if (IS_ERR(qmp->pipe_clk)) { return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk), "failed to get usb3_pipe clock\n"); } return 0; } static struct phy *qmp_combo_phy_xlate(struct device *dev, struct of_phandle_args *args) { struct qmp_combo *qmp = dev_get_drvdata(dev); if (args->args_count == 0) return ERR_PTR(-EINVAL); switch (args->args[0]) { case QMP_USB43DP_USB3_PHY: return qmp->usb_phy; case QMP_USB43DP_DP_PHY: return qmp->dp_phy; } return ERR_PTR(-EINVAL); } static int qmp_combo_probe(struct platform_device *pdev) { struct qmp_combo *qmp; struct device *dev = &pdev->dev; struct device_node *dp_np, *usb_np; struct phy_provider *phy_provider; int ret; qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL); if (!qmp) return -ENOMEM; qmp->dev = dev; qmp->orientation = TYPEC_ORIENTATION_NORMAL; qmp->cfg = of_device_get_match_data(dev); if (!qmp->cfg) return -EINVAL; mutex_init(&qmp->phy_mutex); ret = qmp_combo_reset_init(qmp); if (ret) return ret; ret = qmp_combo_vreg_init(qmp); if (ret) return ret; ret = qmp_combo_typec_switch_register(qmp); if (ret) return ret; ret = qmp_combo_dp_register_bridge(qmp); if (ret) return ret; /* Check for legacy binding with child nodes. */ usb_np = of_get_child_by_name(dev->of_node, "usb3-phy"); if (usb_np) { dp_np = of_get_child_by_name(dev->of_node, "dp-phy"); if (!dp_np) { of_node_put(usb_np); return -EINVAL; } ret = qmp_combo_parse_dt_legacy(qmp, usb_np, dp_np); } else { usb_np = of_node_get(dev->of_node); dp_np = of_node_get(dev->of_node); ret = qmp_combo_parse_dt(qmp); } if (ret) goto err_node_put; pm_runtime_set_active(dev); ret = devm_pm_runtime_enable(dev); if (ret) goto err_node_put; /* * Prevent runtime pm from being ON by default. Users can enable * it using power/control in sysfs. */ pm_runtime_forbid(dev); ret = qmp_combo_register_clocks(qmp, usb_np, dp_np); if (ret) goto err_node_put; qmp->usb_phy = devm_phy_create(dev, usb_np, &qmp_combo_usb_phy_ops); if (IS_ERR(qmp->usb_phy)) { ret = PTR_ERR(qmp->usb_phy); dev_err(dev, "failed to create USB PHY: %d\n", ret); goto err_node_put; } phy_set_drvdata(qmp->usb_phy, qmp); qmp->dp_phy = devm_phy_create(dev, dp_np, &qmp_combo_dp_phy_ops); if (IS_ERR(qmp->dp_phy)) { ret = PTR_ERR(qmp->dp_phy); dev_err(dev, "failed to create DP PHY: %d\n", ret); goto err_node_put; } phy_set_drvdata(qmp->dp_phy, qmp); dev_set_drvdata(dev, qmp); if (usb_np == dev->of_node) phy_provider = devm_of_phy_provider_register(dev, qmp_combo_phy_xlate); else phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); of_node_put(usb_np); of_node_put(dp_np); return PTR_ERR_OR_ZERO(phy_provider); err_node_put: of_node_put(usb_np); of_node_put(dp_np); return ret; } static const struct of_device_id qmp_combo_of_match_table[] = { { .compatible = "qcom,sc7180-qmp-usb3-dp-phy", .data = &sc7180_usb3dpphy_cfg, }, { .compatible = "qcom,sc7280-qmp-usb3-dp-phy", .data = &sm8250_usb3dpphy_cfg, }, { .compatible = "qcom,sc8180x-qmp-usb3-dp-phy", .data = &sc8180x_usb3dpphy_cfg, }, { .compatible = "qcom,sc8280xp-qmp-usb43dp-phy", .data = &sc8280xp_usb43dpphy_cfg, }, { .compatible = "qcom,sdm845-qmp-usb3-dp-phy", .data = &sdm845_usb3dpphy_cfg, }, { .compatible = "qcom,sm6350-qmp-usb3-dp-phy", .data = &sm6350_usb3dpphy_cfg, }, { .compatible = "qcom,sm8150-qmp-usb3-dp-phy", .data = &sc8180x_usb3dpphy_cfg, }, { .compatible = "qcom,sm8250-qmp-usb3-dp-phy", .data = &sm8250_usb3dpphy_cfg, }, { .compatible = "qcom,sm8350-qmp-usb3-dp-phy", .data = &sm8350_usb3dpphy_cfg, }, { .compatible = "qcom,sm8450-qmp-usb3-dp-phy", .data = &sm8350_usb3dpphy_cfg, }, { .compatible = "qcom,sm8550-qmp-usb3-dp-phy", .data = &sm8550_usb3dpphy_cfg, }, { } }; MODULE_DEVICE_TABLE(of, qmp_combo_of_match_table); static struct platform_driver qmp_combo_driver = { .probe = qmp_combo_probe, .driver = { .name = "qcom-qmp-combo-phy", .pm = &qmp_combo_pm_ops, .of_match_table = qmp_combo_of_match_table, }, }; module_platform_driver(qmp_combo_driver); MODULE_AUTHOR("Vivek Gautam <[email protected]>"); MODULE_DESCRIPTION("Qualcomm QMP USB+DP combo PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-qmp-combo.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #include <ufs/unipro.h> #include "phy-qcom-qmp.h" #include "phy-qcom-qmp-pcs-ufs-v2.h" #include "phy-qcom-qmp-pcs-ufs-v3.h" #include "phy-qcom-qmp-pcs-ufs-v4.h" #include "phy-qcom-qmp-pcs-ufs-v5.h" #include "phy-qcom-qmp-pcs-ufs-v6.h" #include "phy-qcom-qmp-qserdes-txrx-ufs-v6.h" /* QPHY_SW_RESET bit */ #define SW_RESET BIT(0) /* QPHY_POWER_DOWN_CONTROL */ #define SW_PWRDN BIT(0) /* QPHY_START_CONTROL bits */ #define SERDES_START BIT(0) #define PCS_START BIT(1) /* QPHY_PCS_READY_STATUS bit */ #define PCS_READY BIT(0) #define PHY_INIT_COMPLETE_TIMEOUT 10000 struct qmp_phy_init_tbl { unsigned int offset; unsigned int val; /* * mask of lanes for which this register is written * for cases when second lane needs different values */ u8 lane_mask; }; #define QMP_PHY_INIT_CFG(o, v) \ { \ .offset = o, \ .val = v, \ .lane_mask = 0xff, \ } #define QMP_PHY_INIT_CFG_LANE(o, v, l) \ { \ .offset = o, \ .val = v, \ .lane_mask = l, \ } /* set of registers with offsets different per-PHY */ enum qphy_reg_layout { /* PCS registers */ QPHY_SW_RESET, QPHY_START_CTRL, QPHY_PCS_READY_STATUS, QPHY_PCS_POWER_DOWN_CONTROL, /* Keep last to ensure regs_layout arrays are properly initialized */ QPHY_LAYOUT_SIZE }; static const unsigned int ufsphy_v2_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_START_CTRL] = QPHY_V2_PCS_UFS_PHY_START, [QPHY_PCS_READY_STATUS] = QPHY_V2_PCS_UFS_READY_STATUS, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V2_PCS_UFS_POWER_DOWN_CONTROL, }; static const unsigned int ufsphy_v3_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_START_CTRL] = QPHY_V3_PCS_UFS_PHY_START, [QPHY_PCS_READY_STATUS] = QPHY_V3_PCS_UFS_READY_STATUS, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V3_PCS_UFS_POWER_DOWN_CONTROL, }; static const unsigned int ufsphy_v4_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_START_CTRL] = QPHY_V4_PCS_UFS_PHY_START, [QPHY_PCS_READY_STATUS] = QPHY_V4_PCS_UFS_READY_STATUS, [QPHY_SW_RESET] = QPHY_V4_PCS_UFS_SW_RESET, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V4_PCS_UFS_POWER_DOWN_CONTROL, }; static const unsigned int ufsphy_v5_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_START_CTRL] = QPHY_V5_PCS_UFS_PHY_START, [QPHY_PCS_READY_STATUS] = QPHY_V5_PCS_UFS_READY_STATUS, [QPHY_SW_RESET] = QPHY_V5_PCS_UFS_SW_RESET, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_UFS_POWER_DOWN_CONTROL, }; static const unsigned int ufsphy_v6_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_START_CTRL] = QPHY_V6_PCS_UFS_PHY_START, [QPHY_PCS_READY_STATUS] = QPHY_V6_PCS_UFS_READY_STATUS, [QPHY_SW_RESET] = QPHY_V6_PCS_UFS_SW_RESET, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V6_PCS_UFS_POWER_DOWN_CONTROL, }; static const struct qmp_phy_init_tbl msm8996_ufsphy_serdes[] = { QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x0e), QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0xd7), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x06), QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV_MODE1, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_EN, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_CTRL, 0x10), QMP_PHY_INIT_CFG(QSERDES_COM_RESETSM_CNTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER1, 0xff), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER2, 0x3f), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x54), QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE1_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE2_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0xff), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x0c), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE1, 0x98), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE1, 0x0b), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE1, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE1, 0x80), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE1_MODE1, 0xd6), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE2_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE1, 0x32), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE1, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE1, 0x00), }; static const struct qmp_phy_init_tbl msm8996_ufsphy_tx[] = { QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45), QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x02), }; static const struct qmp_phy_init_tbl msm8996_ufsphy_rx[] = { QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_LVL, 0x24), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_CNTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_RX_RX_INTERFACE_MODE, 0x00), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x18), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0B), QMP_PHY_INIT_CFG(QSERDES_RX_RX_TERM_BW, 0x5b), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN1_LSB, 0xff), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN1_MSB, 0x3f), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN2_LSB, 0xff), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN2_MSB, 0x0f), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0E), }; static const struct qmp_phy_init_tbl sm6115_ufsphy_serdes[] = { QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x0e), QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0x14), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV_MODE1, 0x0a), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_EN, 0x01), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_CTRL, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_RESETSM_CNTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_CFG, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER1, 0xff), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER2, 0x3f), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x04), QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0x0b), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE1_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE2_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0xff), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0x0c), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE1, 0x98), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE1, 0x0b), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE1, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE1, 0x80), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE1_MODE1, 0xd6), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE2_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE1, 0x32), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE1, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0x0f), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_INITVAL1, 0xff), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_INITVAL2, 0x00), }; static const struct qmp_phy_init_tbl sm6115_ufsphy_hs_b_serdes[] = { QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x44), }; static const struct qmp_phy_init_tbl sm6115_ufsphy_tx[] = { QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45), QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x06), }; static const struct qmp_phy_init_tbl sm6115_ufsphy_rx[] = { QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_LVL, 0x24), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_CNTRL, 0x0F), QMP_PHY_INIT_CFG(QSERDES_RX_RX_INTERFACE_MODE, 0x40), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x1E), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_FASTLOCK_FO_GAIN, 0x0B), QMP_PHY_INIT_CFG(QSERDES_RX_RX_TERM_BW, 0x5B), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN1_LSB, 0xFF), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN1_MSB, 0x3F), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN2_LSB, 0xFF), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQ_GAIN2_MSB, 0x3F), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0D), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SVS_SO_GAIN_HALF, 0x04), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SVS_SO_GAIN_QUARTER, 0x04), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SVS_SO_GAIN, 0x04), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x5B), }; static const struct qmp_phy_init_tbl sm6115_ufsphy_pcs[] = { QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_RX_PWM_GEAR_BAND, 0x15), QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_RX_SIGDET_CTRL2, 0x6d), QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0f), QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_TX_SMALL_AMP_DRV_LVL, 0x02), QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_RX_MIN_STALL_NOCONFIG_TIME_CAP, 0x28), QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_RX_SYM_RESYNC_CTRL, 0x03), QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_TX_LARGE_AMP_POST_EMP_LVL, 0x12), QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_TX_SMALL_AMP_POST_EMP_LVL, 0x0f), QMP_PHY_INIT_CFG(QPHY_V2_PCS_UFS_RX_MIN_HIBERN8_TIME, 0x9a), /* 8 us */ }; static const struct qmp_phy_init_tbl sdm845_ufsphy_serdes[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_CTRL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_INITVAL1, 0xff), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_INITVAL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xda), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0xff), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE1, 0x98), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE1, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE1, 0xc1), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE1, 0x32), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE1, 0x0f), }; static const struct qmp_phy_init_tbl sdm845_ufsphy_hs_b_serdes[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x44), }; static const struct qmp_phy_init_tbl sdm845_ufsphy_tx[] = { QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x07), }; static const struct qmp_phy_init_tbl sdm845_ufsphy_rx[] = { QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_LVL, 0x24), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_INTERFACE_MODE, 0x40), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_TERM_BW, 0x5b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN_HALF, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN_QUARTER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x81), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x59), }; static const struct qmp_phy_init_tbl sdm845_ufsphy_pcs[] = { QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SIGDET_CTRL2, 0x6e), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0a), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_SMALL_AMP_DRV_LVL, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SYM_RESYNC_CTRL, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_MID_TERM_CTRL1, 0x43), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SIGDET_CTRL1, 0x0f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_MIN_HIBERN8_TIME, 0x9a), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_MULTI_LANE_CTRL1, 0x02), }; static const struct qmp_phy_init_tbl sm7150_ufsphy_rx[] = { QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_LVL, 0x24), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_INTERFACE_MODE, 0x40), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_TERM_BW, 0x5b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN_HALF, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN_QUARTER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SVS_SO_GAIN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x5b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x81), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x59), }; static const struct qmp_phy_init_tbl sm7150_ufsphy_pcs[] = { QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SIGDET_CTRL2, 0x6f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_SMALL_AMP_DRV_LVL, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SYM_RESYNC_CTRL, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_TX_MID_TERM_CTRL1, 0x43), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_SIGDET_CTRL1, 0x0f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_RX_MIN_HIBERN8_TIME, 0xff), QMP_PHY_INIT_CFG(QPHY_V3_PCS_UFS_MULTI_LANE_CTRL1, 0x02), }; static const struct qmp_phy_init_tbl sm8150_ufsphy_serdes[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0xd9), QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x11), QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_HS_SWITCH_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_INITVAL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xac), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x98), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x32), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xdd), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x23), }; static const struct qmp_phy_init_tbl sm8150_ufsphy_hs_b_serdes[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x06), }; static const struct qmp_phy_init_tbl sm8150_ufsphy_tx[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_PWM_GEAR_1_DIVIDER_BAND0_1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_TX_PWM_GEAR_2_DIVIDER_BAND0_1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_TX_PWM_GEAR_3_DIVIDER_BAND0_1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_TX_PWM_GEAR_4_DIVIDER_BAND0_1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_TX_TRAN_DRVR_EMP_EN, 0x0c), }; static const struct qmp_phy_init_tbl sm8150_ufsphy_hs_g4_tx[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x75), }; static const struct qmp_phy_init_tbl sm8150_ufsphy_rx[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_LVL, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_BAND, 0x18), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0xf1), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_TERM_BW, 0x1b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1d), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_MEASURE_TIME, 0x10), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xf6), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x3d), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xe0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb1), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_LOW, 0xe0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH2, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH3, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH4, 0xb1), }; static const struct qmp_phy_init_tbl sm8150_ufsphy_hs_g4_rx[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x5a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CTRL2, 0x81), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_TERM_BW, 0x6f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_MEASURE_TIME, 0x20), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x6c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x6d), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0x6d), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xed), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0x3c), }; static const struct qmp_phy_init_tbl sm8150_ufsphy_pcs[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_RX_SIGDET_CTRL2, 0x6d), QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0a), QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_TX_SMALL_AMP_DRV_LVL, 0x02), QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_TX_MID_TERM_CTRL1, 0x43), QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_DEBUG_BUS_CLKSEL, 0x1f), QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_RX_MIN_HIBERN8_TIME, 0xff), QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_MULTI_LANE_CTRL1, 0x02), }; static const struct qmp_phy_init_tbl sm8150_ufsphy_hs_g4_pcs[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x10), QMP_PHY_INIT_CFG(QPHY_V4_PCS_UFS_BIST_FIXED_PAT_CTRL, 0x0a), }; static const struct qmp_phy_init_tbl sm8250_ufsphy_hs_g4_tx[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xe5), }; static const struct qmp_phy_init_tbl sm8250_ufsphy_hs_g4_rx[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x5a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CTRL2, 0x81), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_TERM_BW, 0x6f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x09), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_MEASURE_TIME, 0x20), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x2c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x6d), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0x6d), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xed), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0x3c), }; static const struct qmp_phy_init_tbl sm8350_ufsphy_serdes[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0xd9), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x11), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x42), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_INITVAL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_HSCLK_SEL, 0x11), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x18), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x18), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x19), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xac), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x98), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x18), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x18), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x65), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xdd), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x23), }; static const struct qmp_phy_init_tbl sm8350_ufsphy_hs_b_serdes[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x06), }; static const struct qmp_phy_init_tbl sm8350_ufsphy_tx[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_PWM_GEAR_1_DIVIDER_BAND0_1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_TX_PWM_GEAR_2_DIVIDER_BAND0_1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_TX_PWM_GEAR_3_DIVIDER_BAND0_1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_TX_PWM_GEAR_4_DIVIDER_BAND0_1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xf5), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x09), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x09), QMP_PHY_INIT_CFG(QSERDES_V5_TX_TRAN_DRVR_EMP_EN, 0x0c), }; static const struct qmp_phy_init_tbl sm8350_ufsphy_rx[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_LVL, 0x24), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_BAND, 0x18), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x5a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0xf1), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0x80), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_TERM_BW, 0x1b), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_MEASURE_TIME, 0x10), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0x6d), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x6d), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xed), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0x3c), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0xe0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xb7), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_LOW, 0xe0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH2, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH3, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH4, 0xb7), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DCC_CTRL1, 0x0c), }; static const struct qmp_phy_init_tbl sm8350_ufsphy_pcs[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_RX_SIGDET_CTRL2, 0x6d), QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0a), QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_TX_SMALL_AMP_DRV_LVL, 0x02), QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_TX_MID_TERM_CTRL1, 0x43), QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_DEBUG_BUS_CLKSEL, 0x1f), QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_RX_MIN_HIBERN8_TIME, 0xff), QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_RX_SIGDET_CTRL1, 0x0e), QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_MULTI_LANE_CTRL1, 0x02), }; static const struct qmp_phy_init_tbl sm8350_ufsphy_g4_tx[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xe5), }; static const struct qmp_phy_init_tbl sm8350_ufsphy_g4_rx[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CTRL2, 0x81), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_TERM_BW, 0x6f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_MEASURE_TIME, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_LOW, 0x80), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_HIGH, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0x2d), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x6d), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x6d), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xed), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0x3c), }; static const struct qmp_phy_init_tbl sm8350_ufsphy_g4_pcs[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_UFS_BIST_FIXED_PAT_CTRL, 0x0a), }; static const struct qmp_phy_init_tbl sm8550_ufsphy_serdes[] = { QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_EN_SEL, 0xd9), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_CONFIG_1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x11), QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_HS_SWITCH_SEL_1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_MAP, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_INITVAL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x41), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x18), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x14), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x4c), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x18), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x14), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x99), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x07), }; static const struct qmp_phy_init_tbl sm8550_ufsphy_tx[] = { QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_1, 0x05), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_TX_RES_CODE_LANE_OFFSET_TX, 0x07), }; static const struct qmp_phy_init_tbl sm8550_ufsphy_rx[] = { QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_UCDR_FASTLOCK_FO_GAIN_RATE2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_UCDR_FASTLOCK_FO_GAIN_RATE4, 0x0f), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_VGA_CAL_MAN_VAL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE_0_1_B0, 0xc2), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE_0_1_B1, 0xc2), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE_0_1_B3, 0x1a), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE_0_1_B6, 0x60), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE2_B3, 0x9e), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE2_B6, 0x60), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE3_B3, 0x9e), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE3_B4, 0x0e), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE3_B5, 0x36), QMP_PHY_INIT_CFG(QSERDES_UFS_V6_RX_MODE_RATE3_B8, 0x02), }; static const struct qmp_phy_init_tbl sm8550_ufsphy_pcs[] = { QMP_PHY_INIT_CFG(QPHY_V6_PCS_UFS_RX_SIGDET_CTRL2, 0x69), QMP_PHY_INIT_CFG(QPHY_V6_PCS_UFS_TX_LARGE_AMP_DRV_LVL, 0x0f), QMP_PHY_INIT_CFG(QPHY_V6_PCS_UFS_TX_MID_TERM_CTRL1, 0x43), QMP_PHY_INIT_CFG(QPHY_V6_PCS_UFS_PLL_CNTL, 0x2b), QMP_PHY_INIT_CFG(QPHY_V6_PCS_UFS_MULTI_LANE_CTRL1, 0x02), }; struct qmp_ufs_offsets { u16 serdes; u16 pcs; u16 tx; u16 rx; u16 tx2; u16 rx2; }; struct qmp_phy_cfg_tbls { /* Init sequence for PHY blocks - serdes, tx, rx, pcs */ const struct qmp_phy_init_tbl *serdes; int serdes_num; const struct qmp_phy_init_tbl *tx; int tx_num; const struct qmp_phy_init_tbl *rx; int rx_num; const struct qmp_phy_init_tbl *pcs; int pcs_num; }; /* struct qmp_phy_cfg - per-PHY initialization config */ struct qmp_phy_cfg { int lanes; const struct qmp_ufs_offsets *offsets; /* Main init sequence for PHY blocks - serdes, tx, rx, pcs */ const struct qmp_phy_cfg_tbls tbls; /* Additional sequence for HS Series B */ const struct qmp_phy_cfg_tbls tbls_hs_b; /* Additional sequence for HS G4 */ const struct qmp_phy_cfg_tbls tbls_hs_g4; /* clock ids to be requested */ const char * const *clk_list; int num_clks; /* regulators to be requested */ const char * const *vreg_list; int num_vregs; /* array of registers with different offsets */ const unsigned int *regs; /* true, if PCS block has no separate SW_RESET register */ bool no_pcs_sw_reset; }; struct qmp_ufs { struct device *dev; const struct qmp_phy_cfg *cfg; void __iomem *serdes; void __iomem *pcs; void __iomem *pcs_misc; void __iomem *tx; void __iomem *rx; void __iomem *tx2; void __iomem *rx2; struct clk_bulk_data *clks; struct regulator_bulk_data *vregs; struct reset_control *ufs_reset; struct phy *phy; u32 mode; u32 submode; }; static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg |= val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg &= ~val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } /* list of clocks required by phy */ static const char * const msm8996_ufs_phy_clk_l[] = { "ref", }; /* the primary usb3 phy on sm8250 doesn't have a ref clock */ static const char * const sm8450_ufs_phy_clk_l[] = { "qref", "ref", "ref_aux", }; static const char * const sdm845_ufs_phy_clk_l[] = { "ref", "ref_aux", }; /* list of regulators */ static const char * const qmp_phy_vreg_l[] = { "vdda-phy", "vdda-pll", }; static const struct qmp_ufs_offsets qmp_ufs_offsets = { .serdes = 0, .pcs = 0xc00, .tx = 0x400, .rx = 0x600, .tx2 = 0x800, .rx2 = 0xa00, }; static const struct qmp_ufs_offsets qmp_ufs_offsets_v6 = { .serdes = 0, .pcs = 0x0400, .tx = 0x1000, .rx = 0x1200, .tx2 = 0x1800, .rx2 = 0x1a00, }; static const struct qmp_phy_cfg msm8996_ufsphy_cfg = { .lanes = 1, .offsets = &qmp_ufs_offsets, .tbls = { .serdes = msm8996_ufsphy_serdes, .serdes_num = ARRAY_SIZE(msm8996_ufsphy_serdes), .tx = msm8996_ufsphy_tx, .tx_num = ARRAY_SIZE(msm8996_ufsphy_tx), .rx = msm8996_ufsphy_rx, .rx_num = ARRAY_SIZE(msm8996_ufsphy_rx), }, .clk_list = msm8996_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(msm8996_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v2_regs_layout, .no_pcs_sw_reset = true, }; static const struct qmp_phy_cfg sa8775p_ufsphy_cfg = { .lanes = 2, .offsets = &qmp_ufs_offsets, .tbls = { .serdes = sm8350_ufsphy_serdes, .serdes_num = ARRAY_SIZE(sm8350_ufsphy_serdes), .tx = sm8350_ufsphy_tx, .tx_num = ARRAY_SIZE(sm8350_ufsphy_tx), .rx = sm8350_ufsphy_rx, .rx_num = ARRAY_SIZE(sm8350_ufsphy_rx), .pcs = sm8350_ufsphy_pcs, .pcs_num = ARRAY_SIZE(sm8350_ufsphy_pcs), }, .tbls_hs_b = { .serdes = sm8350_ufsphy_hs_b_serdes, .serdes_num = ARRAY_SIZE(sm8350_ufsphy_hs_b_serdes), }, .tbls_hs_g4 = { .tx = sm8350_ufsphy_g4_tx, .tx_num = ARRAY_SIZE(sm8350_ufsphy_g4_tx), .rx = sm8350_ufsphy_g4_rx, .rx_num = ARRAY_SIZE(sm8350_ufsphy_g4_rx), .pcs = sm8350_ufsphy_g4_pcs, .pcs_num = ARRAY_SIZE(sm8350_ufsphy_g4_pcs), }, .clk_list = sm8450_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(sm8450_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v5_regs_layout, }; static const struct qmp_phy_cfg sc8280xp_ufsphy_cfg = { .lanes = 2, .offsets = &qmp_ufs_offsets, .tbls = { .serdes = sm8350_ufsphy_serdes, .serdes_num = ARRAY_SIZE(sm8350_ufsphy_serdes), .tx = sm8350_ufsphy_tx, .tx_num = ARRAY_SIZE(sm8350_ufsphy_tx), .rx = sm8350_ufsphy_rx, .rx_num = ARRAY_SIZE(sm8350_ufsphy_rx), .pcs = sm8350_ufsphy_pcs, .pcs_num = ARRAY_SIZE(sm8350_ufsphy_pcs), }, .tbls_hs_b = { .serdes = sm8350_ufsphy_hs_b_serdes, .serdes_num = ARRAY_SIZE(sm8350_ufsphy_hs_b_serdes), }, .tbls_hs_g4 = { .tx = sm8350_ufsphy_g4_tx, .tx_num = ARRAY_SIZE(sm8350_ufsphy_g4_tx), .rx = sm8350_ufsphy_g4_rx, .rx_num = ARRAY_SIZE(sm8350_ufsphy_g4_rx), .pcs = sm8350_ufsphy_g4_pcs, .pcs_num = ARRAY_SIZE(sm8350_ufsphy_g4_pcs), }, .clk_list = sdm845_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v5_regs_layout, }; static const struct qmp_phy_cfg sdm845_ufsphy_cfg = { .lanes = 2, .offsets = &qmp_ufs_offsets, .tbls = { .serdes = sdm845_ufsphy_serdes, .serdes_num = ARRAY_SIZE(sdm845_ufsphy_serdes), .tx = sdm845_ufsphy_tx, .tx_num = ARRAY_SIZE(sdm845_ufsphy_tx), .rx = sdm845_ufsphy_rx, .rx_num = ARRAY_SIZE(sdm845_ufsphy_rx), .pcs = sdm845_ufsphy_pcs, .pcs_num = ARRAY_SIZE(sdm845_ufsphy_pcs), }, .tbls_hs_b = { .serdes = sdm845_ufsphy_hs_b_serdes, .serdes_num = ARRAY_SIZE(sdm845_ufsphy_hs_b_serdes), }, .clk_list = sdm845_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v3_regs_layout, .no_pcs_sw_reset = true, }; static const struct qmp_phy_cfg sm6115_ufsphy_cfg = { .lanes = 1, .offsets = &qmp_ufs_offsets, .tbls = { .serdes = sm6115_ufsphy_serdes, .serdes_num = ARRAY_SIZE(sm6115_ufsphy_serdes), .tx = sm6115_ufsphy_tx, .tx_num = ARRAY_SIZE(sm6115_ufsphy_tx), .rx = sm6115_ufsphy_rx, .rx_num = ARRAY_SIZE(sm6115_ufsphy_rx), .pcs = sm6115_ufsphy_pcs, .pcs_num = ARRAY_SIZE(sm6115_ufsphy_pcs), }, .tbls_hs_b = { .serdes = sm6115_ufsphy_hs_b_serdes, .serdes_num = ARRAY_SIZE(sm6115_ufsphy_hs_b_serdes), }, .clk_list = sdm845_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v2_regs_layout, .no_pcs_sw_reset = true, }; static const struct qmp_phy_cfg sm7150_ufsphy_cfg = { .lanes = 1, .offsets = &qmp_ufs_offsets, .tbls = { .serdes = sdm845_ufsphy_serdes, .serdes_num = ARRAY_SIZE(sdm845_ufsphy_serdes), .tx = sdm845_ufsphy_tx, .tx_num = ARRAY_SIZE(sdm845_ufsphy_tx), .rx = sm7150_ufsphy_rx, .rx_num = ARRAY_SIZE(sm7150_ufsphy_rx), .pcs = sm7150_ufsphy_pcs, .pcs_num = ARRAY_SIZE(sm7150_ufsphy_pcs), }, .tbls_hs_b = { .serdes = sdm845_ufsphy_hs_b_serdes, .serdes_num = ARRAY_SIZE(sdm845_ufsphy_hs_b_serdes), }, .clk_list = sdm845_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v3_regs_layout, .no_pcs_sw_reset = true, }; static const struct qmp_phy_cfg sm8150_ufsphy_cfg = { .lanes = 2, .offsets = &qmp_ufs_offsets, .tbls = { .serdes = sm8150_ufsphy_serdes, .serdes_num = ARRAY_SIZE(sm8150_ufsphy_serdes), .tx = sm8150_ufsphy_tx, .tx_num = ARRAY_SIZE(sm8150_ufsphy_tx), .rx = sm8150_ufsphy_rx, .rx_num = ARRAY_SIZE(sm8150_ufsphy_rx), .pcs = sm8150_ufsphy_pcs, .pcs_num = ARRAY_SIZE(sm8150_ufsphy_pcs), }, .tbls_hs_b = { .serdes = sm8150_ufsphy_hs_b_serdes, .serdes_num = ARRAY_SIZE(sm8150_ufsphy_hs_b_serdes), }, .tbls_hs_g4 = { .tx = sm8150_ufsphy_hs_g4_tx, .tx_num = ARRAY_SIZE(sm8150_ufsphy_hs_g4_tx), .rx = sm8150_ufsphy_hs_g4_rx, .rx_num = ARRAY_SIZE(sm8150_ufsphy_hs_g4_rx), .pcs = sm8150_ufsphy_hs_g4_pcs, .pcs_num = ARRAY_SIZE(sm8150_ufsphy_hs_g4_pcs), }, .clk_list = sdm845_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v4_regs_layout, }; static const struct qmp_phy_cfg sm8250_ufsphy_cfg = { .lanes = 2, .offsets = &qmp_ufs_offsets, .tbls = { .serdes = sm8150_ufsphy_serdes, .serdes_num = ARRAY_SIZE(sm8150_ufsphy_serdes), .tx = sm8150_ufsphy_tx, .tx_num = ARRAY_SIZE(sm8150_ufsphy_tx), .rx = sm8150_ufsphy_rx, .rx_num = ARRAY_SIZE(sm8150_ufsphy_rx), .pcs = sm8150_ufsphy_pcs, .pcs_num = ARRAY_SIZE(sm8150_ufsphy_pcs), }, .tbls_hs_b = { .serdes = sm8150_ufsphy_hs_b_serdes, .serdes_num = ARRAY_SIZE(sm8150_ufsphy_hs_b_serdes), }, .tbls_hs_g4 = { .tx = sm8250_ufsphy_hs_g4_tx, .tx_num = ARRAY_SIZE(sm8250_ufsphy_hs_g4_tx), .rx = sm8250_ufsphy_hs_g4_rx, .rx_num = ARRAY_SIZE(sm8250_ufsphy_hs_g4_rx), .pcs = sm8150_ufsphy_hs_g4_pcs, .pcs_num = ARRAY_SIZE(sm8150_ufsphy_hs_g4_pcs), }, .clk_list = sdm845_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v4_regs_layout, }; static const struct qmp_phy_cfg sm8350_ufsphy_cfg = { .lanes = 2, .offsets = &qmp_ufs_offsets, .tbls = { .serdes = sm8350_ufsphy_serdes, .serdes_num = ARRAY_SIZE(sm8350_ufsphy_serdes), .tx = sm8350_ufsphy_tx, .tx_num = ARRAY_SIZE(sm8350_ufsphy_tx), .rx = sm8350_ufsphy_rx, .rx_num = ARRAY_SIZE(sm8350_ufsphy_rx), .pcs = sm8350_ufsphy_pcs, .pcs_num = ARRAY_SIZE(sm8350_ufsphy_pcs), }, .tbls_hs_b = { .serdes = sm8350_ufsphy_hs_b_serdes, .serdes_num = ARRAY_SIZE(sm8350_ufsphy_hs_b_serdes), }, .tbls_hs_g4 = { .tx = sm8350_ufsphy_g4_tx, .tx_num = ARRAY_SIZE(sm8350_ufsphy_g4_tx), .rx = sm8350_ufsphy_g4_rx, .rx_num = ARRAY_SIZE(sm8350_ufsphy_g4_rx), .pcs = sm8350_ufsphy_g4_pcs, .pcs_num = ARRAY_SIZE(sm8350_ufsphy_g4_pcs), }, .clk_list = sdm845_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v5_regs_layout, }; static const struct qmp_phy_cfg sm8450_ufsphy_cfg = { .lanes = 2, .offsets = &qmp_ufs_offsets, .tbls = { .serdes = sm8350_ufsphy_serdes, .serdes_num = ARRAY_SIZE(sm8350_ufsphy_serdes), .tx = sm8350_ufsphy_tx, .tx_num = ARRAY_SIZE(sm8350_ufsphy_tx), .rx = sm8350_ufsphy_rx, .rx_num = ARRAY_SIZE(sm8350_ufsphy_rx), .pcs = sm8350_ufsphy_pcs, .pcs_num = ARRAY_SIZE(sm8350_ufsphy_pcs), }, .tbls_hs_b = { .serdes = sm8350_ufsphy_hs_b_serdes, .serdes_num = ARRAY_SIZE(sm8350_ufsphy_hs_b_serdes), }, .tbls_hs_g4 = { .tx = sm8350_ufsphy_g4_tx, .tx_num = ARRAY_SIZE(sm8350_ufsphy_g4_tx), .rx = sm8350_ufsphy_g4_rx, .rx_num = ARRAY_SIZE(sm8350_ufsphy_g4_rx), .pcs = sm8350_ufsphy_g4_pcs, .pcs_num = ARRAY_SIZE(sm8350_ufsphy_g4_pcs), }, .clk_list = sm8450_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(sm8450_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v5_regs_layout, }; static const struct qmp_phy_cfg sm8550_ufsphy_cfg = { .lanes = 2, .offsets = &qmp_ufs_offsets_v6, .tbls = { .serdes = sm8550_ufsphy_serdes, .serdes_num = ARRAY_SIZE(sm8550_ufsphy_serdes), .tx = sm8550_ufsphy_tx, .tx_num = ARRAY_SIZE(sm8550_ufsphy_tx), .rx = sm8550_ufsphy_rx, .rx_num = ARRAY_SIZE(sm8550_ufsphy_rx), .pcs = sm8550_ufsphy_pcs, .pcs_num = ARRAY_SIZE(sm8550_ufsphy_pcs), }, .clk_list = sdm845_ufs_phy_clk_l, .num_clks = ARRAY_SIZE(sdm845_ufs_phy_clk_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = ufsphy_v6_regs_layout, }; static void qmp_ufs_configure_lane(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num, u8 lane_mask) { int i; const struct qmp_phy_init_tbl *t = tbl; if (!t) return; for (i = 0; i < num; i++, t++) { if (!(t->lane_mask & lane_mask)) continue; writel(t->val, base + t->offset); } } static void qmp_ufs_configure(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num) { qmp_ufs_configure_lane(base, tbl, num, 0xff); } static void qmp_ufs_serdes_init(struct qmp_ufs *qmp, const struct qmp_phy_cfg_tbls *tbls) { void __iomem *serdes = qmp->serdes; qmp_ufs_configure(serdes, tbls->serdes, tbls->serdes_num); } static void qmp_ufs_lanes_init(struct qmp_ufs *qmp, const struct qmp_phy_cfg_tbls *tbls) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *tx = qmp->tx; void __iomem *rx = qmp->rx; qmp_ufs_configure_lane(tx, tbls->tx, tbls->tx_num, 1); qmp_ufs_configure_lane(rx, tbls->rx, tbls->rx_num, 1); if (cfg->lanes >= 2) { qmp_ufs_configure_lane(qmp->tx2, tbls->tx, tbls->tx_num, 2); qmp_ufs_configure_lane(qmp->rx2, tbls->rx, tbls->rx_num, 2); } } static void qmp_ufs_pcs_init(struct qmp_ufs *qmp, const struct qmp_phy_cfg_tbls *tbls) { void __iomem *pcs = qmp->pcs; qmp_ufs_configure(pcs, tbls->pcs, tbls->pcs_num); } static void qmp_ufs_init_registers(struct qmp_ufs *qmp, const struct qmp_phy_cfg *cfg) { qmp_ufs_serdes_init(qmp, &cfg->tbls); if (qmp->mode == PHY_MODE_UFS_HS_B) qmp_ufs_serdes_init(qmp, &cfg->tbls_hs_b); qmp_ufs_lanes_init(qmp, &cfg->tbls); if (qmp->submode == UFS_HS_G4) qmp_ufs_lanes_init(qmp, &cfg->tbls_hs_g4); qmp_ufs_pcs_init(qmp, &cfg->tbls); if (qmp->submode == UFS_HS_G4) qmp_ufs_pcs_init(qmp, &cfg->tbls_hs_g4); } static int qmp_ufs_com_init(struct qmp_ufs *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *pcs = qmp->pcs; int ret; ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs); if (ret) { dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret); return ret; } ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks); if (ret) goto err_disable_regulators; qphy_setbits(pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN); return 0; err_disable_regulators: regulator_bulk_disable(cfg->num_vregs, qmp->vregs); return ret; } static int qmp_ufs_com_exit(struct qmp_ufs *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; reset_control_assert(qmp->ufs_reset); clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks); regulator_bulk_disable(cfg->num_vregs, qmp->vregs); return 0; } static int qmp_ufs_init(struct phy *phy) { struct qmp_ufs *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; int ret; dev_vdbg(qmp->dev, "Initializing QMP phy\n"); if (cfg->no_pcs_sw_reset) { /* * Get UFS reset, which is delayed until now to avoid a * circular dependency where UFS needs its PHY, but the PHY * needs this UFS reset. */ if (!qmp->ufs_reset) { qmp->ufs_reset = devm_reset_control_get_exclusive(qmp->dev, "ufsphy"); if (IS_ERR(qmp->ufs_reset)) { ret = PTR_ERR(qmp->ufs_reset); dev_err(qmp->dev, "failed to get UFS reset: %d\n", ret); qmp->ufs_reset = NULL; return ret; } } ret = reset_control_assert(qmp->ufs_reset); if (ret) return ret; } ret = qmp_ufs_com_init(qmp); if (ret) return ret; return 0; } static int qmp_ufs_power_on(struct phy *phy) { struct qmp_ufs *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *pcs = qmp->pcs; void __iomem *status; unsigned int val; int ret; qmp_ufs_init_registers(qmp, cfg); ret = reset_control_deassert(qmp->ufs_reset); if (ret) return ret; /* Pull PHY out of reset state */ if (!cfg->no_pcs_sw_reset) qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* start SerDes */ qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], SERDES_START); status = pcs + cfg->regs[QPHY_PCS_READY_STATUS]; ret = readl_poll_timeout(status, val, (val & PCS_READY), 200, PHY_INIT_COMPLETE_TIMEOUT); if (ret) { dev_err(qmp->dev, "phy initialization timed-out\n"); return ret; } return 0; } static int qmp_ufs_power_off(struct phy *phy) { struct qmp_ufs *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; /* PHY reset */ if (!cfg->no_pcs_sw_reset) qphy_setbits(qmp->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* stop SerDes */ qphy_clrbits(qmp->pcs, cfg->regs[QPHY_START_CTRL], SERDES_START); /* Put PHY into POWER DOWN state: active low */ qphy_clrbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN); return 0; } static int qmp_ufs_exit(struct phy *phy) { struct qmp_ufs *qmp = phy_get_drvdata(phy); qmp_ufs_com_exit(qmp); return 0; } static int qmp_ufs_enable(struct phy *phy) { int ret; ret = qmp_ufs_init(phy); if (ret) return ret; ret = qmp_ufs_power_on(phy); if (ret) qmp_ufs_exit(phy); return ret; } static int qmp_ufs_disable(struct phy *phy) { int ret; ret = qmp_ufs_power_off(phy); if (ret) return ret; return qmp_ufs_exit(phy); } static int qmp_ufs_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct qmp_ufs *qmp = phy_get_drvdata(phy); qmp->mode = mode; qmp->submode = submode; return 0; } static const struct phy_ops qcom_qmp_ufs_phy_ops = { .power_on = qmp_ufs_enable, .power_off = qmp_ufs_disable, .set_mode = qmp_ufs_set_mode, .owner = THIS_MODULE, }; static int qmp_ufs_vreg_init(struct qmp_ufs *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int num = cfg->num_vregs; int i; qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL); if (!qmp->vregs) return -ENOMEM; for (i = 0; i < num; i++) qmp->vregs[i].supply = cfg->vreg_list[i]; return devm_regulator_bulk_get(dev, num, qmp->vregs); } static int qmp_ufs_clk_init(struct qmp_ufs *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int num = cfg->num_clks; int i; qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL); if (!qmp->clks) return -ENOMEM; for (i = 0; i < num; i++) qmp->clks[i].id = cfg->clk_list[i]; return devm_clk_bulk_get(dev, num, qmp->clks); } static void qmp_ufs_clk_release_provider(void *res) { of_clk_del_provider(res); } #define UFS_SYMBOL_CLOCKS 3 static int qmp_ufs_register_clocks(struct qmp_ufs *qmp, struct device_node *np) { struct clk_hw_onecell_data *clk_data; struct clk_hw *hw; char name[64]; int ret; clk_data = devm_kzalloc(qmp->dev, struct_size(clk_data, hws, UFS_SYMBOL_CLOCKS), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = UFS_SYMBOL_CLOCKS; snprintf(name, sizeof(name), "%s::rx_symbol_0", dev_name(qmp->dev)); hw = devm_clk_hw_register_fixed_rate(qmp->dev, name, NULL, 0, 0); if (IS_ERR(hw)) return PTR_ERR(hw); clk_data->hws[0] = hw; snprintf(name, sizeof(name), "%s::rx_symbol_1", dev_name(qmp->dev)); hw = devm_clk_hw_register_fixed_rate(qmp->dev, name, NULL, 0, 0); if (IS_ERR(hw)) return PTR_ERR(hw); clk_data->hws[1] = hw; snprintf(name, sizeof(name), "%s::tx_symbol_0", dev_name(qmp->dev)); hw = devm_clk_hw_register_fixed_rate(qmp->dev, name, NULL, 0, 0); if (IS_ERR(hw)) return PTR_ERR(hw); clk_data->hws[2] = hw; ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); if (ret) return ret; /* * Roll a devm action because the clock provider can be a child node. */ return devm_add_action_or_reset(qmp->dev, qmp_ufs_clk_release_provider, np); } static int qmp_ufs_parse_dt_legacy(struct qmp_ufs *qmp, struct device_node *np) { struct platform_device *pdev = to_platform_device(qmp->dev); const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; qmp->serdes = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(qmp->serdes)) return PTR_ERR(qmp->serdes); /* * Get memory resources for the PHY: * Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2. * For dual lane PHYs: tx2 -> 3, rx2 -> 4, pcs_misc (optional) -> 5 * For single lane PHYs: pcs_misc (optional) -> 3. */ qmp->tx = devm_of_iomap(dev, np, 0, NULL); if (IS_ERR(qmp->tx)) return PTR_ERR(qmp->tx); qmp->rx = devm_of_iomap(dev, np, 1, NULL); if (IS_ERR(qmp->rx)) return PTR_ERR(qmp->rx); qmp->pcs = devm_of_iomap(dev, np, 2, NULL); if (IS_ERR(qmp->pcs)) return PTR_ERR(qmp->pcs); if (cfg->lanes >= 2) { qmp->tx2 = devm_of_iomap(dev, np, 3, NULL); if (IS_ERR(qmp->tx2)) return PTR_ERR(qmp->tx2); qmp->rx2 = devm_of_iomap(dev, np, 4, NULL); if (IS_ERR(qmp->rx2)) return PTR_ERR(qmp->rx2); qmp->pcs_misc = devm_of_iomap(dev, np, 5, NULL); } else { qmp->pcs_misc = devm_of_iomap(dev, np, 3, NULL); } if (IS_ERR(qmp->pcs_misc)) dev_vdbg(dev, "PHY pcs_misc-reg not used\n"); return 0; } static int qmp_ufs_parse_dt(struct qmp_ufs *qmp) { struct platform_device *pdev = to_platform_device(qmp->dev); const struct qmp_phy_cfg *cfg = qmp->cfg; const struct qmp_ufs_offsets *offs = cfg->offsets; void __iomem *base; if (!offs) return -EINVAL; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); qmp->serdes = base + offs->serdes; qmp->pcs = base + offs->pcs; qmp->tx = base + offs->tx; qmp->rx = base + offs->rx; if (cfg->lanes >= 2) { qmp->tx2 = base + offs->tx2; qmp->rx2 = base + offs->rx2; } return 0; } static int qmp_ufs_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct device_node *np; struct qmp_ufs *qmp; int ret; qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL); if (!qmp) return -ENOMEM; qmp->dev = dev; qmp->cfg = of_device_get_match_data(dev); if (!qmp->cfg) return -EINVAL; ret = qmp_ufs_clk_init(qmp); if (ret) return ret; ret = qmp_ufs_vreg_init(qmp); if (ret) return ret; /* Check for legacy binding with child node. */ np = of_get_next_available_child(dev->of_node, NULL); if (np) { ret = qmp_ufs_parse_dt_legacy(qmp, np); } else { np = of_node_get(dev->of_node); ret = qmp_ufs_parse_dt(qmp); } if (ret) goto err_node_put; ret = qmp_ufs_register_clocks(qmp, np); if (ret) goto err_node_put; qmp->phy = devm_phy_create(dev, np, &qcom_qmp_ufs_phy_ops); if (IS_ERR(qmp->phy)) { ret = PTR_ERR(qmp->phy); dev_err(dev, "failed to create PHY: %d\n", ret); goto err_node_put; } phy_set_drvdata(qmp->phy, qmp); of_node_put(np); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); err_node_put: of_node_put(np); return ret; } static const struct of_device_id qmp_ufs_of_match_table[] = { { .compatible = "qcom,msm8996-qmp-ufs-phy", .data = &msm8996_ufsphy_cfg, }, { .compatible = "qcom,msm8998-qmp-ufs-phy", .data = &sdm845_ufsphy_cfg, }, { .compatible = "qcom,sa8775p-qmp-ufs-phy", .data = &sa8775p_ufsphy_cfg, }, { .compatible = "qcom,sc8180x-qmp-ufs-phy", .data = &sm8150_ufsphy_cfg, }, { .compatible = "qcom,sc8280xp-qmp-ufs-phy", .data = &sc8280xp_ufsphy_cfg, }, { .compatible = "qcom,sdm845-qmp-ufs-phy", .data = &sdm845_ufsphy_cfg, }, { .compatible = "qcom,sm6115-qmp-ufs-phy", .data = &sm6115_ufsphy_cfg, }, { .compatible = "qcom,sm6125-qmp-ufs-phy", .data = &sm6115_ufsphy_cfg, }, { .compatible = "qcom,sm6350-qmp-ufs-phy", .data = &sdm845_ufsphy_cfg, }, { .compatible = "qcom,sm7150-qmp-ufs-phy", .data = &sm7150_ufsphy_cfg, }, { .compatible = "qcom,sm8150-qmp-ufs-phy", .data = &sm8150_ufsphy_cfg, }, { .compatible = "qcom,sm8250-qmp-ufs-phy", .data = &sm8250_ufsphy_cfg, }, { .compatible = "qcom,sm8350-qmp-ufs-phy", .data = &sm8350_ufsphy_cfg, }, { .compatible = "qcom,sm8450-qmp-ufs-phy", .data = &sm8450_ufsphy_cfg, }, { .compatible = "qcom,sm8550-qmp-ufs-phy", .data = &sm8550_ufsphy_cfg, }, { }, }; MODULE_DEVICE_TABLE(of, qmp_ufs_of_match_table); static struct platform_driver qmp_ufs_driver = { .probe = qmp_ufs_probe, .driver = { .name = "qcom-qmp-ufs-phy", .of_match_table = qmp_ufs_of_match_table, }, }; module_platform_driver(qmp_ufs_driver); MODULE_AUTHOR("Vivek Gautam <[email protected]>"); MODULE_DESCRIPTION("Qualcomm QMP UFS PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-qmp-ufs.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/phy/pcie.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #include "phy-qcom-qmp.h" #include "phy-qcom-qmp-pcs-misc-v3.h" #include "phy-qcom-qmp-pcs-pcie-v4.h" #include "phy-qcom-qmp-pcs-pcie-v4_20.h" #include "phy-qcom-qmp-pcs-pcie-v5.h" #include "phy-qcom-qmp-pcs-pcie-v5_20.h" #include "phy-qcom-qmp-pcs-pcie-v6.h" #include "phy-qcom-qmp-pcs-pcie-v6_20.h" #include "phy-qcom-qmp-pcie-qhp.h" /* QPHY_SW_RESET bit */ #define SW_RESET BIT(0) /* QPHY_POWER_DOWN_CONTROL */ #define SW_PWRDN BIT(0) #define REFCLK_DRV_DSBL BIT(1) /* QPHY_START_CONTROL bits */ #define SERDES_START BIT(0) #define PCS_START BIT(1) /* QPHY_PCS_STATUS bit */ #define PHYSTATUS BIT(6) #define PHYSTATUS_4_20 BIT(7) #define PHY_INIT_COMPLETE_TIMEOUT 10000 struct qmp_phy_init_tbl { unsigned int offset; unsigned int val; /* * mask of lanes for which this register is written * for cases when second lane needs different values */ u8 lane_mask; }; #define QMP_PHY_INIT_CFG(o, v) \ { \ .offset = o, \ .val = v, \ .lane_mask = 0xff, \ } #define QMP_PHY_INIT_CFG_LANE(o, v, l) \ { \ .offset = o, \ .val = v, \ .lane_mask = l, \ } /* set of registers with offsets different per-PHY */ enum qphy_reg_layout { /* PCS registers */ QPHY_SW_RESET, QPHY_START_CTRL, QPHY_PCS_STATUS, QPHY_PCS_POWER_DOWN_CONTROL, /* Keep last to ensure regs_layout arrays are properly initialized */ QPHY_LAYOUT_SIZE }; static const unsigned int pciephy_v2_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V2_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V2_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V2_PCS_PCI_PCS_STATUS, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V2_PCS_POWER_DOWN_CONTROL, }; static const unsigned int pciephy_v3_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V3_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V3_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V3_PCS_PCS_STATUS, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V3_PCS_POWER_DOWN_CONTROL, }; static const unsigned int sdm845_qhp_pciephy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = 0x00, [QPHY_START_CTRL] = 0x08, [QPHY_PCS_STATUS] = 0x2ac, [QPHY_PCS_POWER_DOWN_CONTROL] = 0x04, }; static const unsigned int pciephy_v4_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V4_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V4_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V4_PCS_PCS_STATUS1, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V4_PCS_POWER_DOWN_CONTROL, }; static const unsigned int pciephy_v5_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V5_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V5_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V5_PCS_PCS_STATUS1, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_POWER_DOWN_CONTROL, }; static const struct qmp_phy_init_tbl msm8998_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x14), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_TIMER1, 0xff), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_TIMER2, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_EP_DIV, 0x19), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x08), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x33), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BG_TIMER, 0x09), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x40), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x7e), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x15), }; static const struct qmp_phy_init_tbl msm8998_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10), QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x06), }; static const struct qmp_phy_init_tbl msm8998_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_ENABLES, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x14), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN_HALF, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_INTERFACE_MODE, 0x40), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x71), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x40), }; static const struct qmp_phy_init_tbl msm8998_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V3_PCS_ENDPOINT_REFCLK_DRIVE, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_OSC_DTCT_ACTIONS, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x01), QMP_PHY_INIT_CFG(QPHY_V3_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_MSB, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_LSB, 0x20), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LP_WAKEUP_DLY_TIME_AUXCLK_MSB, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LP_WAKEUP_DLY_TIME_AUXCLK, 0x01), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PLL_LOCK_CHK_DLY_TIME, 0x73), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0x99), QMP_PHY_INIT_CFG(QPHY_V3_PCS_SIGDET_CNTRL, 0x03), }; static const struct qmp_phy_init_tbl ipq6018_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_PER1, 0x7d), QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_STEP_SIZE1_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_STEP_SIZE2_MODE0, 0x05), QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_STEP_SIZE1_MODE1, 0x08), QMP_PHY_INIT_CFG(QSERDES_PLL_SSC_STEP_SIZE2_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_PLL_BIAS_EN_CLKBUFLR_EN, 0x18), QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_PLL_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_PLL_SYSCLK_BUF_ENABLE, 0x07), QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP1_MODE0, 0xd4), QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP2_MODE0, 0x14), QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP1_MODE1, 0xaa), QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP2_MODE1, 0x29), QMP_PHY_INIT_CFG(QSERDES_PLL_BG_TRIM, 0x0f), QMP_PHY_INIT_CFG(QSERDES_PLL_CP_CTRL_MODE0, 0x09), QMP_PHY_INIT_CFG(QSERDES_PLL_CP_CTRL_MODE1, 0x09), QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_CCTRL_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_CCTRL_MODE1, 0x28), QMP_PHY_INIT_CFG(QSERDES_PLL_BIAS_EN_CTRL_BY_PSM, 0x01), QMP_PHY_INIT_CFG(QSERDES_PLL_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_PLL_RESETSM_CNTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP_EN, 0x42), QMP_PHY_INIT_CFG(QSERDES_PLL_DEC_START_MODE0, 0x68), QMP_PHY_INIT_CFG(QSERDES_PLL_DEC_START_MODE1, 0x53), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START2_MODE0, 0xaa), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START1_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START2_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START3_MODE1, 0x05), QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN0_MODE0, 0xa0), QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN0_MODE1, 0xa0), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE1_MODE0, 0x24), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE2_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE1_MODE1, 0xb4), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE2_MODE1, 0x03), QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_SELECT, 0x32), QMP_PHY_INIT_CFG(QSERDES_PLL_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_PLL_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_PLL_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_PLL_SVS_MODE_CLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_PLL_CORECLK_DIV_MODE1, 0x08), }; static const struct qmp_phy_init_tbl ipq6018_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), }; static const struct qmp_phy_init_tbl ipq6018_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x70), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x61), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x73), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_ENABLES, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x14), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xf0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0xd3), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x40), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x09), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb1), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_LOW, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH2, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH3, 0x09), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH4, 0xb1), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), }; static const struct qmp_phy_init_tbl ipq6018_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_CNTRL1, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x0d), QMP_PHY_INIT_CFG(QPHY_V4_PCS_G12S1_TXDEEMPH_M3P5DB, 0x10), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V4_PCS_P2U3_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_DCC_CAL_CONFIG, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x01), }; static const struct qmp_phy_init_tbl ipq6018_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_POWER_STATE_CONFIG2, 0x0d), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_POWER_STATE_CONFIG4, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P1_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P2_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_EQ_CONFIG1, 0x11), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_PRE, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_POST, 0x58), }; static const struct qmp_phy_init_tbl ipq8074_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x18), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_ENABLE1, 0x10), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TRIM, 0xf), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP_EN, 0x1), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_MAP, 0x0), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER1, 0xff), QMP_PHY_INIT_CFG(QSERDES_COM_VCO_TUNE_TIMER2, 0x1f), QMP_PHY_INIT_CFG(QSERDES_COM_CMN_CONFIG, 0x6), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_IVCO, 0xf), QMP_PHY_INIT_CFG(QSERDES_COM_HSCLK_SEL, 0x0), QMP_PHY_INIT_CFG(QSERDES_COM_SVS_MODE_CLK_SEL, 0x1), QMP_PHY_INIT_CFG(QSERDES_COM_CORE_CLK_EN, 0x20), QMP_PHY_INIT_CFG(QSERDES_COM_CORECLK_DIV, 0xa), QMP_PHY_INIT_CFG(QSERDES_COM_RESETSM_CNTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_COM_BG_TIMER, 0xa), QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_EN_SEL, 0xa), QMP_PHY_INIT_CFG(QSERDES_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START3_MODE0, 0x3), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP3_MODE0, 0x0), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP2_MODE0, 0xD), QMP_PHY_INIT_CFG(QSERDES_COM_LOCK_CMP1_MODE0, 0xD04), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_SELECT, 0x33), QMP_PHY_INIT_CFG(QSERDES_COM_SYS_CLK_CTRL, 0x2), QMP_PHY_INIT_CFG(QSERDES_COM_SYSCLK_BUF_ENABLE, 0x1f), QMP_PHY_INIT_CFG(QSERDES_COM_CP_CTRL_MODE0, 0xb), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_COM_PLL_CCTRL_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x0), QMP_PHY_INIT_CFG(QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80), QMP_PHY_INIT_CFG(QSERDES_COM_BIAS_EN_CTRL_BY_PSM, 0x1), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_EN_CENTER, 0x1), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_PER2, 0x1), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER1, 0x2), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_ADJ_PER2, 0x0), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE1, 0x2f), QMP_PHY_INIT_CFG(QSERDES_COM_SSC_STEP_SIZE2, 0x19), QMP_PHY_INIT_CFG(QSERDES_COM_CLK_EP_DIV, 0x19), }; static const struct qmp_phy_init_tbl ipq8074_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_TX_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN, 0x45), QMP_PHY_INIT_CFG(QSERDES_TX_LANE_MODE, 0x6), QMP_PHY_INIT_CFG(QSERDES_TX_RES_CODE_LANE_OFFSET, 0x2), QMP_PHY_INIT_CFG(QSERDES_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_TX_TX_EMP_POST1_LVL, 0x36), QMP_PHY_INIT_CFG(QSERDES_TX_SLEW_CNTL, 0x0a), }; static const struct qmp_phy_init_tbl ipq8074_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_ENABLES, 0x1c), QMP_PHY_INIT_CFG(QSERDES_RX_SIGDET_DEGLITCH_CNTRL, 0x14), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL2, 0x1), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL3, 0x0), QMP_PHY_INIT_CFG(QSERDES_RX_RX_EQU_ADAPTOR_CNTRL4, 0xdb), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b), QMP_PHY_INIT_CFG(QSERDES_RX_UCDR_SO_GAIN, 0x4), }; static const struct qmp_phy_init_tbl ipq8074_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V2_PCS_ENDPOINT_REFCLK_DRIVE, 0x4), QMP_PHY_INIT_CFG(QPHY_V2_PCS_OSC_DTCT_ACTIONS, 0x0), QMP_PHY_INIT_CFG(QPHY_V2_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x40), QMP_PHY_INIT_CFG(QPHY_V2_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_MSB, 0x0), QMP_PHY_INIT_CFG(QPHY_V2_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_LSB, 0x40), QMP_PHY_INIT_CFG(QPHY_V2_PCS_PLL_LOCK_CHK_DLY_TIME_AUXCLK_LSB, 0x0), QMP_PHY_INIT_CFG(QPHY_V2_PCS_LP_WAKEUP_DLY_TIME_AUXCLK, 0x40), QMP_PHY_INIT_CFG(QPHY_V2_PCS_PLL_LOCK_CHK_DLY_TIME, 0x73), QMP_PHY_INIT_CFG(QPHY_V2_PCS_RX_SIGDET_LVL, 0x99), QMP_PHY_INIT_CFG(QPHY_V2_PCS_TXDEEMPH_M6DB_V0, 0x15), QMP_PHY_INIT_CFG(QPHY_V2_PCS_TXDEEMPH_M3P5DB_V0, 0xe), }; static const struct qmp_phy_init_tbl ipq8074_pcie_gen3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_PLL_BIAS_EN_CLKBUFLR_EN, 0x18), QMP_PHY_INIT_CFG(QSERDES_PLL_BIAS_EN_CTRL_BY_PSM, 0x01), QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_SELECT, 0x31), QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_PLL_BG_TRIM, 0x0f), QMP_PHY_INIT_CFG(QSERDES_PLL_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP_EN, 0x42), QMP_PHY_INIT_CFG(QSERDES_PLL_RESETSM_CNTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_PLL_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE_MAP, 0x04), QMP_PHY_INIT_CFG(QSERDES_PLL_SVS_MODE_CLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE_TIMER1, 0xff), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE_TIMER2, 0x3f), QMP_PHY_INIT_CFG(QSERDES_PLL_CORE_CLK_EN, 0x30), QMP_PHY_INIT_CFG(QSERDES_PLL_HSCLK_SEL, 0x21), QMP_PHY_INIT_CFG(QSERDES_PLL_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START2_MODE0, 0x355), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START1_MODE0, 0x35555), QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP2_MODE0, 0x1a), QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP1_MODE0, 0x1a0a), QMP_PHY_INIT_CFG(QSERDES_PLL_CP_CTRL_MODE0, 0xb), QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_CCTRL_MODE0, 0x28), QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN1_MODE0, 0x0), QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN0_MODE0, 0x40), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE2_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE1_MODE0, 0x24), QMP_PHY_INIT_CFG(QSERDES_PLL_SVS_MODE_CLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_PLL_CORE_CLK_EN, 0x20), QMP_PHY_INIT_CFG(QSERDES_PLL_CORECLK_DIV, 0xa), QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_SELECT, 0x32), QMP_PHY_INIT_CFG(QSERDES_PLL_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_PLL_SYSCLK_BUF_ENABLE, 0x07), QMP_PHY_INIT_CFG(QSERDES_PLL_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_PLL_BG_TIMER, 0xa), QMP_PHY_INIT_CFG(QSERDES_PLL_HSCLK_SEL, 0x1), QMP_PHY_INIT_CFG(QSERDES_PLL_DEC_START_MODE1, 0x68), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START3_MODE1, 0x2), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START2_MODE1, 0x2aa), QMP_PHY_INIT_CFG(QSERDES_PLL_DIV_FRAC_START1_MODE1, 0x2aaab), QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP2_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_PLL_LOCK_CMP1_MODE1, 0x3414), QMP_PHY_INIT_CFG(QSERDES_PLL_CP_CTRL_MODE1, 0x0b), QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_PLL_PLL_CCTRL_MODE1, 0x28), QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN1_MODE1, 0x0), QMP_PHY_INIT_CFG(QSERDES_PLL_INTEGLOOP_GAIN0_MODE1, 0x40), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE2_MODE1, 0x03), QMP_PHY_INIT_CFG(QSERDES_PLL_VCO_TUNE1_MODE1, 0xb4), QMP_PHY_INIT_CFG(QSERDES_PLL_SVS_MODE_CLK_SEL, 0x05), QMP_PHY_INIT_CFG(QSERDES_PLL_CORE_CLK_EN, 0x0), QMP_PHY_INIT_CFG(QSERDES_PLL_CORECLK_DIV_MODE1, 0x08), QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_EP_DIV_MODE0, 0x19), QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_EP_DIV_MODE1, 0x28), QMP_PHY_INIT_CFG(QSERDES_PLL_CLK_ENABLE1, 0x90), }; static const struct qmp_phy_init_tbl ipq8074_pcie_gen3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V4_TX_HIGHZ_DRVR_EN, 0x10), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x06), }; static const struct qmp_phy_init_tbl ipq8074_pcie_gen3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_ENABLES, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x14), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0xe), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x70), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x73), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_LOW, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH2, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH3, 0x09), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH4, 0xb1), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xc8), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x09), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb1), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xf0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x2), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0xd3), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x40), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x02), }; static const struct qmp_phy_init_tbl ipq8074_pcie_gen3_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_CNTRL2, 0x83), QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_CNT_VAL_L, 0x9), QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_CNT_VAL_H_TOL, 0x42), QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_MAN_CODE, 0x40), QMP_PHY_INIT_CFG(QPHY_V4_PCS_FLL_CNTRL1, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_P2U3_WAKEUP_DLY_TIME_AUXCLK_H, 0x0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_P2U3_WAKEUP_DLY_TIME_AUXCLK_L, 0x1), QMP_PHY_INIT_CFG(QPHY_V4_PCS_G12S1_TXDEEMPH_M3P5DB, 0x10), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_DCC_CAL_CONFIG, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x0d), }; static const struct qmp_phy_init_tbl ipq8074_pcie_gen3_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_ACTIONS, 0x0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P1_WAKEUP_DLY_TIME_AUXCLK_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P1_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P2_WAKEUP_DLY_TIME_AUXCLK_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P2_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_EQ_CONFIG1, 0x11), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_EQ_CONFIG2, 0xb), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_POWER_STATE_CONFIG4, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_CONFIG2, 0x52), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_MODE2_CONFIG2, 0x50), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_MODE2_CONFIG4, 0x1a), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_MODE2_CONFIG5, 0x6), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), }; static const struct qmp_phy_init_tbl sdm845_qmp_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x14), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x007), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_TIMER1, 0xff), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_TIMER2, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_EP_DIV, 0x19), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0xea), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_MODE, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x33), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BG_TIMER, 0x09), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x40), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x7e), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x15), }; static const struct qmp_phy_init_tbl sdm845_qmp_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10), QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x06), }; static const struct qmp_phy_init_tbl sdm845_qmp_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_ENABLES, 0x10), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x14), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x4b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_GAIN_HALF, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x71), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_00, 0x59), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_MODE_01, 0x59), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_INTERFACE_MODE, 0x40), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_PI_CONTROLS, 0x71), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_COUNT_LOW, 0x40), }; static const struct qmp_phy_init_tbl sdm845_qmp_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V3_PCS_ENDPOINT_REFCLK_DRIVE, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_OSC_DTCT_ACTIONS, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x01), QMP_PHY_INIT_CFG(QPHY_V3_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_MSB, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_L1SS_WAKEUP_DLY_TIME_AUXCLK_LSB, 0x20), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LP_WAKEUP_DLY_TIME_AUXCLK_MSB, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LP_WAKEUP_DLY_TIME_AUXCLK, 0x01), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PLL_LOCK_CHK_DLY_TIME, 0x73), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0xbb), QMP_PHY_INIT_CFG(QPHY_V3_PCS_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_REFGEN_REQ_CONFIG1, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG4, 0x00), }; static const struct qmp_phy_init_tbl sdm845_qmp_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V3_PCS_MISC_OSC_DTCT_CONFIG2, 0x52), QMP_PHY_INIT_CFG(QPHY_V3_PCS_MISC_OSC_DTCT_MODE2_CONFIG2, 0x10), QMP_PHY_INIT_CFG(QPHY_V3_PCS_MISC_OSC_DTCT_MODE2_CONFIG4, 0x1a), QMP_PHY_INIT_CFG(QPHY_V3_PCS_MISC_OSC_DTCT_MODE2_CONFIG5, 0x06), QMP_PHY_INIT_CFG(QPHY_V3_PCS_MISC_PCIE_INT_AUX_CLK_CONFIG1, 0x00), }; static const struct qmp_phy_init_tbl sdm845_qhp_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SYSCLK_EN_SEL, 0x27), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_STEP_SIZE1, 0xde), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_STEP_SIZE2, 0x07), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_STEP_SIZE1_MODE1, 0x4c), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SSC_STEP_SIZE2_MODE1, 0x06), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_BIAS_EN_CKBUFLR_EN, 0x18), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CLK_ENABLE1, 0xb0), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_LOCK_CMP1_MODE0, 0x8c), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_LOCK_CMP2_MODE0, 0x20), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_LOCK_CMP1_MODE1, 0x14), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_LOCK_CMP2_MODE1, 0x34), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_RESTRIM_CTRL2, 0x05), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_LOCK_CMP_EN, 0x42), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DEC_START_MODE1, 0x68), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START1_MODE1, 0xab), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START2_MODE1, 0xaa), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_DIV_FRAC_START3_MODE1, 0x02), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_INTEGLOOP_GAIN0_MODE1, 0x3f), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_VCO_TUNE_MAP, 0x10), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CLK_SELECT, 0x04), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_HSCLK_SEL1, 0x30), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CORECLK_DIV, 0x04), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CORE_CLK_EN, 0x73), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CMN_CONFIG, 0x0c), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_SVS_MODE_CLK_SEL, 0x15), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CORECLK_DIV_MODE1, 0x04), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_CMN_MODE, 0x01), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_VREGCLK_DIV1, 0x22), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_VREGCLK_DIV2, 0x00), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_BGV_TRIM, 0x20), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_COM_BG_CTRL, 0x07), }; static const struct qmp_phy_init_tbl sdm845_qhp_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DRVR_CTRL0, 0x00), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DRVR_TAP_EN, 0x0d), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_TX_BAND_MODE, 0x01), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_LANE_MODE, 0x1a), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_PARALLEL_RATE, 0x2f), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CML_CTRL_MODE0, 0x09), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CML_CTRL_MODE1, 0x09), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CML_CTRL_MODE2, 0x1b), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_PREAMP_CTRL_MODE1, 0x01), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_PREAMP_CTRL_MODE2, 0x07), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_MIXER_CTRL_MODE0, 0x31), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_MIXER_CTRL_MODE1, 0x31), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_MIXER_CTRL_MODE2, 0x03), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CTLE_THRESH_DFE, 0x02), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CGA_THRESH_DFE, 0x00), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RXENGINE_EN0, 0x12), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CTLE_TRAIN_TIME, 0x25), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_CTLE_DFE_OVRLP_TIME, 0x00), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DFE_REFRESH_TIME, 0x05), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DFE_ENABLE_TIME, 0x01), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_VGA_GAIN, 0x26), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DFE_GAIN, 0x12), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_EQ_GAIN, 0x04), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_OFFSET_GAIN, 0x04), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_PRE_GAIN, 0x09), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_EQ_INTVAL, 0x15), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_EDAC_INITVAL, 0x28), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RXEQ_INITB0, 0x7f), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RXEQ_INITB1, 0x07), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RCVRDONE_THRESH1, 0x04), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RXEQ_CTRL, 0x70), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_FO_GAIN_MODE0, 0x8b), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_FO_GAIN_MODE1, 0x08), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_FO_GAIN_MODE2, 0x0a), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_SO_GAIN_MODE0, 0x03), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_SO_GAIN_MODE1, 0x04), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_SO_GAIN_MODE2, 0x04), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_UCDR_SO_CONFIG, 0x0c), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_BAND, 0x02), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_RCVR_PATH1_MODE0, 0x5c), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_RCVR_PATH1_MODE1, 0x3e), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_RCVR_PATH1_MODE2, 0x3f), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_SIGDET_ENABLES, 0x01), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_SIGDET_CNTRL, 0xa0), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_SIGDET_DEGLITCH_CNTRL, 0x08), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DCC_GAIN, 0x01), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_EN_SIGNAL, 0xc3), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_PSM_RX_EN_CAL, 0x00), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_MISC_CNTRL0, 0xbc), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_TS0_TIMER, 0x7f), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DLL_HIGHDATARATE, 0x15), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DRVR_CTRL1, 0x0c), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_DRVR_CTRL2, 0x0f), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RX_RESETCODE_OFFSET, 0x04), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_VGA_INITVAL, 0x20), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_L0_RSM_START, 0x01), }; static const struct qmp_phy_init_tbl sdm845_qhp_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_POWER_STATE_CONFIG, 0x3f), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_PCS_TX_RX_CONFIG, 0x50), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_TXMGN_MAIN_V0_M3P5DB, 0x19), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_TXMGN_POST_V0_M3P5DB, 0x07), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_TXMGN_MAIN_V0_M6DB, 0x17), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_TXMGN_POST_V0_M6DB, 0x09), QMP_PHY_INIT_CFG(PCIE_GEN3_QHP_PHY_POWER_STATE_CONFIG5, 0x9f), }; static const struct qmp_phy_init_tbl sc8180x_qmp_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_SELECT, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x42), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE0, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE2_MODE1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE1, 0xb4), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x68), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0xaa), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0xab), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x14), QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x18), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xa2), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0x4c), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_ENABLE1, 0x90), }; static const struct qmp_phy_init_tbl sc8180x_qmp_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x5), }; static const struct qmp_phy_init_tbl sc8180x_qmp_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_ENABLES, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x14), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL1, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x6e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x6e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x70), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x37), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_LOW, 0xd4), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH, 0x54), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH2, 0xdb), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH3, 0x39), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH4, 0x31), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xe4), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xec), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x39), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0xdb), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x75), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RCLK_AUXDATA_SEL, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x03), }; static const struct qmp_phy_init_tbl sc8180x_qmp_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_P2U3_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RATE_SLEW_CNTRL1, 0x0b), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x0d), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x01), }; static const struct qmp_phy_init_tbl sc8180x_qmp_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P1_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P2_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_INT_AUX_CLK_CONFIG1, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_PRE, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_POST, 0x58), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0x4c), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x42), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x68), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0xab), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0xaa), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE0, 0x24), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE1, 0xb4), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE2_MODE1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_SELECT, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xb9), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0x94), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x18), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_HSCLK_SEL, 0x11), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x1_pcie_rc_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_BUF_ENABLE, 0x07), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x2_pcie_rc_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x14), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x4_pcie_serdes_4ln_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x1c), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x1_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0x75), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x1d), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0c), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x1_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xd8), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa6), QMP_PHY_INIT_CFG(QSERDES_V5_RX_TX_ADAPT_POST_THRESH, 0xf0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH3, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0xf0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x1_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x05), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0x77), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RATE_SLEW_CNTRL1, 0x0b), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x1_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_INT_AUX_CLK_CONFIG1, 0x00), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_EQ_CONFIG2, 0x0f), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x2_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG_LANE(QSERDES_V5_TX_PI_QEC_CTRL, 0x02, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V5_TX_PI_QEC_CTRL, 0x04, 2), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x11), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0c), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x2_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xd8), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa6), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH3, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0xf0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x2_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x05), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0x88), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RATE_SLEW_CNTRL1, 0x0b), QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG3, 0x0f), }; static const struct qmp_phy_init_tbl sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_POWER_STATE_CONFIG2, 0x1d), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_POWER_STATE_CONFIG4, 0x07), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00), }; static const struct qmp_phy_init_tbl sm8250_qmp_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_SELECT, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x42), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE0, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE2_MODE1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE1, 0xb4), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x68), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0xaa), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0xab), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x14), QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x18), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xa2), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0x4c), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_ENABLE1, 0x90), }; static const struct qmp_phy_init_tbl sm8250_qmp_gen3x1_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x07), }; static const struct qmp_phy_init_tbl sm8250_qmp_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0x35), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x11), }; static const struct qmp_phy_init_tbl sm8250_qmp_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FO_GAIN, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0x30), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x70), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_ENABLES, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x17), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_LOW, 0xd4), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH, 0x54), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH2, 0xdb), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH3, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_10_HIGH4, 0x31), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xe4), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0xec), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x3b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0x36), }; static const struct qmp_phy_init_tbl sm8250_qmp_gen3x1_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_RCLK_AUXDATA_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x14), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x30), }; static const struct qmp_phy_init_tbl sm8250_qmp_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_P2U3_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0x77), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RATE_SLEW_CNTRL1, 0x0b), }; static const struct qmp_phy_init_tbl sm8250_qmp_gen3x1_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x0d), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x12), }; static const struct qmp_phy_init_tbl sm8250_qmp_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P1_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_L1P2_WAKEUP_DLY_TIME_AUXCLK_L, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P6_P7_PRE, 0x33), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_PRE, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_PRESET_P10_POST, 0x58), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), }; static const struct qmp_phy_init_tbl sm8250_qmp_gen3x1_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_INT_AUX_CLK_CONFIG1, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_EQ_CONFIG2, 0x0f), }; static const struct qmp_phy_init_tbl sm8250_qmp_gen3x2_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x20), }; static const struct qmp_phy_init_tbl sm8250_qmp_gen3x2_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x15), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), }; static const struct qmp_phy_init_tbl sm8250_qmp_gen3x2_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x05), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG2, 0x0f), }; static const struct qmp_phy_init_tbl sm8250_qmp_gen3x2_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_POWER_STATE_CONFIG2, 0x0d), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCIE_POWER_STATE_CONFIG4, 0x07), }; static const struct qmp_phy_init_tbl sdx55_qmp_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIAS_EN_CLKBUFLR_EN, 0x18), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x46), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_CFG, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x12), QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_HS_SWITCH_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE0, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_MISC1, 0x88), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_MISC2, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_MODE, 0x17), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_DC_LEVEL_CTRL, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x22), }; static const struct qmp_phy_init_tbl sdx55_qmp_pcie_rc_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xce), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0x97), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_EP_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_EP_DIV_MODE1, 0x10), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0xc3), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0xd0), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CLK_SELECT, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xd8), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x20), }; static const struct qmp_phy_init_tbl sdx55_qmp_pcie_ep_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_BG_TIMER, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYS_CLK_CTRL, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x19), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x19), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x4b), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x50), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN0_MODE0, 0xfb), QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN1_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN0_MODE1, 0xfb), QMP_PHY_INIT_CFG(QSERDES_V4_COM_INTEGLOOP_GAIN1_MODE1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_CONFIG, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0x56), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1d), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0x4b), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x1f), }; static const struct qmp_phy_init_tbl sdx55_qmp_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_20_TX_LANE_MODE_1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_20_TX_LANE_MODE_2, 0xf6), QMP_PHY_INIT_CFG(QSERDES_V4_20_TX_LANE_MODE_3, 0x13), QMP_PHY_INIT_CFG(QSERDES_V4_20_TX_VMODE_CTRL1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_20_TX_PI_QEC_CTRL, 0x00), }; static const struct qmp_phy_init_tbl sdx55_qmp_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_FO_GAIN_RATE2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_UCDR_PI_CONTROLS, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_AUX_DATA_TCOARSE_TFINE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_DFE_3, 0x55), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_DFE_DAC_ENABLE1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_DFE_DAC_ENABLE2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_VGA_CAL_CNTRL2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x27), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE_0_1_B1, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE_0_1_B2, 0x5a), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE_0_1_B3, 0x09), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE_0_1_B4, 0x37), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE2_B0, 0xbd), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE2_B1, 0xf9), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE2_B2, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE2_B3, 0xce), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE2_B4, 0x62), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE3_B0, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE3_B1, 0x7d), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE3_B2, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE3_B3, 0xcf), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_RX_MODE_RATE3_B4, 0xd6), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_PHPRE_CTRL, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V4_20_RX_MARG_COARSE_CTRL2, 0x12), }; static const struct qmp_phy_init_tbl sdx55_qmp_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_RX_SIGDET_LVL, 0x77), QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_EQ_CONFIG2, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_EQ_CONFIG4, 0x16), QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_EQ_CONFIG5, 0x02), }; static const struct qmp_phy_init_tbl sdx55_qmp_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_EQ_CONFIG1, 0x17), QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_G3_RXEQEVAL_TIME, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_G4_RXEQEVAL_TIME, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_G4_EQ_CONFIG2, 0x01), QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_G4_EQ_CONFIG5, 0x02), }; static const struct qmp_phy_init_tbl sdx55_qmp_pcie_rc_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00), }; static const struct qmp_phy_init_tbl sdx55_qmp_pcie_ep_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_LANE1_INSIG_SW_CTRL2, 0x00), QMP_PHY_INIT_CFG(QPHY_V4_20_PCS_LANE1_INSIG_MX_CTRL2, 0x00), }; static const struct qmp_phy_init_tbl sdx65_qmp_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_BG_TIMER, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYS_CLK_CTRL, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x27), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x17), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x19), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x46), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_CFG, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x09), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x19), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x28), QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE0, 0xfb), QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN1_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE1, 0xfb), QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN1_MODE1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x12), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x60), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MISC1, 0x88), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MODE, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MODE_CONTD, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_DC_LEVEL_CTRL, 0x0f), }; static const struct qmp_phy_init_tbl sdx65_qmp_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_2, 0xf6), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_3, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_VMODE_CTRL1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_PI_QEC_CTRL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_TX, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_RX, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RCV_DETECT_LVL_2, 0x12), }; static const struct qmp_phy_init_tbl sdx65_qmp_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_0_1, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_2, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_PRE_THRESH1, 0x3e), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_PRE_THRESH2, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH2, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_MAIN_THRESH1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_MAIN_THRESH2, 0x1d), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_CNTRL1, 0x44), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_CNTRL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x74), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_SIGDET_ENABLES, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_SIGDET_DEGLITCH_CNTRL, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B0, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B1, 0xcc), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B3, 0xcc), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B4, 0x64), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B5, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B6, 0x29), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_PHPRE_CTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH4_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH5_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH6_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE3, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_PI_CONTROLS, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_2_3, 0x37), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_IDAC_SAOFFSET, 0x10), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_3, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_DAC_ENABLE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_DAC_ENABLE2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_MAN_VAL, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_GM_CAL, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B0, 0xc5), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B1, 0xac), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B2, 0xb6), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B3, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B4, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B5, 0xfb), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B6, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B0, 0xc5), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B1, 0xee), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B2, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B3, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B4, 0x81), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B5, 0xde), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B6, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_EN_TIMER, 0x28), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), }; static const struct qmp_phy_init_tbl sdx65_qmp_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_G3S2_PRE_GAIN, 0x2e), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG2, 0x0d), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG4, 0x16), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG5, 0x22), }; static const struct qmp_phy_init_tbl sdx65_qmp_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_EQ_CONFIG1, 0x16), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_RX_MARGINING_CONFIG3, 0x28), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_OSC_DTCT_MODE2_CONFIG5, 0x08), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_EQ_CONFIG2, 0x0d), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_EQ_CONFIG5, 0x02), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_PRE_GAIN, 0x2e), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_LANE1_INSIG_SW_CTRL2, 0x00), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_LANE1_INSIG_MX_CTRL2, 0x00), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen3_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_SELECT, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x42), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE0, 0x24), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE2_MODE1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE1_MODE1, 0xb4), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_HSCLK_SEL, 0x11), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x68), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0xaa), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0xab), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x18), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xa2), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0x4c), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_ENABLE1, 0x90), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen3x1_pcie_rc_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_BUF_ENABLE, 0x07), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen3x1_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0x75), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x04), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen3_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xd8), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa6), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH3, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_RX_TX_ADAPT_POST_THRESH, 0xf0), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen3x1_pcie_rc_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_10_HIGH4, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0xf0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x09), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen3_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_RX_SIGDET_LVL, 0x77), QMP_PHY_INIT_CFG(QPHY_V5_PCS_RATE_SLEW_CNTRL1, 0x0b), QMP_PHY_INIT_CFG(QPHY_V5_PCS_REFGEN_REQ_CONFIG1, 0x05), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen3x1_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_INT_AUX_CLK_CONFIG1, 0x00), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_EQ_CONFIG2, 0x0f), QMP_PHY_INIT_CFG(QPHY_V5_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), }; static const struct qmp_phy_init_tbl sm8350_qmp_gen3x1_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0x75), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x1d), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0c), }; static const struct qmp_phy_init_tbl sm8350_qmp_gen3x1_pcie_rc_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0xf0), }; static const struct qmp_phy_init_tbl sm8350_qmp_gen3x2_pcie_rc_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f), }; static const struct qmp_phy_init_tbl sm8350_qmp_gen3x2_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG_LANE(QSERDES_V5_TX_PI_QEC_CTRL, 0x02, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V5_TX_PI_QEC_CTRL, 0x04, 2), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x1d), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0c), }; static const struct qmp_phy_init_tbl sm8350_qmp_gen3x2_pcie_rc_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_EQ_CONFIG2, 0x0f), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x46), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_CFG, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x12), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MISC1, 0x88), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MODE, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_DC_LEVEL_CTRL, 0x0f), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_rc_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0x97), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0xd0), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_SELECT, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x20), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_2, 0xf6), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_TX, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_RX, 0x0c), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_PI_CONTROLS, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B1, 0xcc), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B3, 0xcc), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B5, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B6, 0x29), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B0, 0xc5), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B1, 0xad), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B2, 0xb6), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B3, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B4, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B5, 0xfb), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B6, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B0, 0xc7), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B1, 0xef), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B2, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B3, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B4, 0x81), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B5, 0xde), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B6, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_PHPRE_CTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_0_1, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_2_3, 0x37), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_3, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH4_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH5_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH6_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE3, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_MAN_VAL, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_IDAC_SAOFFSET, 0x10), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_DAC_ENABLE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_GM_CAL, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH2, 0x1f), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG4, 0x16), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG5, 0x22), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_G3S2_PRE_GAIN, 0x2e), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_RX_SIGDET_LVL, 0x99), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_EQ_CONFIG5, 0x02), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_EQ_CONFIG1, 0x16), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_RX_MARGINING_CONFIG3, 0x28), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_PRE_GAIN, 0x2e), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_rc_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_PRESET_P10_POST, 0x00), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_ep_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_BG_TIMER, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYS_CLK_CTRL, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x27), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x17), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x19), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x09), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x19), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0x28), QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE0, 0xfb), QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN1_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN0_MODE1, 0xfb), QMP_PHY_INIT_CFG(QSERDES_V5_COM_INTEGLOOP_GAIN1_MODE1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x60), }; static const struct qmp_phy_init_tbl sm8450_qmp_gen4x2_pcie_ep_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_OSC_DTCT_MODE2_CONFIG5, 0x08), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen3x2_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER1, 0x62), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER2, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE0, 0xf8), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE1, 0x93), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYS_CLK_CTRL, 0x82), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_IVCO, 0x07), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x42), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE1, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE1, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x41), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0xaa), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_MAP, 0x14), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_SELECT, 0x34), QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORECLK_DIV_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_CONFIG_1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_ADDITIONAL_MISC_3, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORE_CLK_EN, 0xa0), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen3x2_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_1, 0x15), QMP_PHY_INIT_CFG(QSERDES_V6_TX_LANE_MODE_4, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V6_TX_PI_QEC_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_RX, 0x06), QMP_PHY_INIT_CFG(QSERDES_V6_TX_RES_CODE_LANE_OFFSET_TX, 0x18), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen3x2_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V6_RX_GM_CAL, 0x11), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_00_HIGH, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_00_HIGH2, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_00_HIGH3, 0xb7), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_00_HIGH4, 0xea), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_00_LOW, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH2, 0x9c), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH3, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_HIGH4, 0x89), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_10_HIGH, 0x94), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_10_HIGH2, 0x5b), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_10_HIGH3, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_MODE_10_HIGH4, 0x89), QMP_PHY_INIT_CFG(QSERDES_V6_RX_TX_ADAPT_POST_THRESH, 0xf0), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_FO_GAIN, 0x09), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SO_GAIN, 0x05), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_THRESH1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V6_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V6_RX_VGA_CAL_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIDGET_ENABLES, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V6_RX_RX_IDAC_TSETTLE_LOW, 0x07), QMP_PHY_INIT_CFG(QSERDES_V6_RX_SIGDET_CAL_TRIM, 0x08), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen3x2_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V6_PCS_REFGEN_REQ_CONFIG1, 0x05), QMP_PHY_INIT_CFG(QPHY_V6_PCS_RX_SIGDET_LVL, 0x77), QMP_PHY_INIT_CFG(QPHY_V6_PCS_RATE_SLEW_CNTRL1, 0x0b), QMP_PHY_INIT_CFG(QPHY_V6_PCS_EQ_CONFIG2, 0x0f), QMP_PHY_INIT_CFG(QPHY_V6_PCS_PCS_TX_RX_CONFIG, 0x8c), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen3x2_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_PCIE_V6_PCS_PCIE_POWER_STATE_CONFIG2, 0x1d), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_PCS_PCIE_POWER_STATE_CONFIG4, 0x07), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE1, 0x26), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE1, 0x03), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORECLK_DIV_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE1, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE1, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE1, 0x68), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE1, 0xab), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE1, 0xaa), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_SEL_1, 0x12), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE1_MODE0, 0xf8), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_STEP_SIZE2_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_CORE_CLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP1_MODE0, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP2_MODE0, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DEC_START_MODE0, 0x41), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START2_MODE0, 0xaa), QMP_PHY_INIT_CFG(QSERDES_V6_COM_DIV_FRAC_START3_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_HSCLK_HS_SWITCH_SEL_1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_COM_BG_TIMER, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER1, 0x62), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SSC_PER2, 0x02), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_POST_DIV_MUX, 0x40), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_BIAS_EN_CLK_BUFLR_EN, 0x14), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYS_CLK_CTRL, 0x82), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V6_COM_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_EN, 0x46), QMP_PHY_INIT_CFG(QSERDES_V6_COM_LOCK_CMP_CFG, 0x04), QMP_PHY_INIT_CFG(QSERDES_V6_COM_VCO_TUNE_MAP, 0x14), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CLK_SELECT, 0x34), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CORE_CLK_EN, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_CONFIG_1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_MISC_1, 0x88), QMP_PHY_INIT_CFG(QSERDES_V6_COM_CMN_MODE, 0x14), QMP_PHY_INIT_CFG(QSERDES_V6_COM_PLL_VCO_DC_LEVEL_CTRL, 0x0f), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_ln_shrd_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RXCLK_DIV2_CTRL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_Q_EN_RATES, 0xe), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_DFE_DAC_ENABLE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_TX_ADAPT_POST_THRESH1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_TX_ADAPT_POST_THRESH2, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B0, 0x12), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B1, 0x12), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B2, 0xdb), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B3, 0x9a), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B4, 0x38), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B5, 0xb6), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MODE_RATE_0_1_B6, 0x64), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH1_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH1_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH2_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH2_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH3_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH3_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH4_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH5_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V6_LN_SHRD_RX_MARG_COARSE_THRESH6_RATE3, 0x1f), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_RES_CODE_LANE_OFFSET_TX, 0x1d), QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_RES_CODE_LANE_OFFSET_RX, 0x03), QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_LANE_MODE_1, 0x01), QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_LANE_MODE_2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_LANE_MODE_3, 0x51), QMP_PHY_INIT_CFG(QSERDES_V6_20_TX_TRAN_DRVR_EMP_EN, 0x34), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_UCDR_FO_GAIN_RATE_2, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_UCDR_FO_GAIN_RATE_3, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_UCDR_PI_CONTROLS, 0x16), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_UCDR_SO_ACC_DEFAULT_VAL_RATE3, 0x00), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_IVCM_CAL_CTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_IVCM_POSTCAL_OFFSET, 0x7c), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_DFE_3, 0x05), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_VGA_CAL_MAN_VAL, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_GM_CAL, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_EQU_ADAPTOR_CNTRL4, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_SIGDET_ENABLES, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_PHPRE_CTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x30), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_Q_PI_INTRINSIC_BIAS_RATE32, 0x09), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B0, 0x14), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B1, 0xb3), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B2, 0x58), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B3, 0x9a), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B4, 0x26), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B5, 0xb6), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE2_B6, 0xee), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B0, 0xdb), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B1, 0xdb), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B2, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B3, 0xdf), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B4, 0x78), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B5, 0x76), QMP_PHY_INIT_CFG(QSERDES_V6_20_RX_MODE_RATE3_B6, 0xff), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_G3S2_PRE_GAIN, 0x2e), QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_COM_ELECIDLE_DLY_SEL, 0x25), QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_EQ_CONFIG4, 0x00), QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_EQ_CONFIG5, 0x22), QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_TX_RX_CONFIG1, 0x04), QMP_PHY_INIT_CFG(QPHY_V6_20_PCS_TX_RX_CONFIG2, 0x02), }; static const struct qmp_phy_init_tbl sm8550_qmp_gen4x2_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_ENDPOINT_REFCLK_DRIVE, 0xc1), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_OSC_DTCT_ATCIONS, 0x00), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_EQ_CONFIG1, 0x16), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_EQ_CONFIG5, 0x02), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_G4_PRE_GAIN, 0x2e), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_RX_MARGINING_CONFIG1, 0x03), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_RX_MARGINING_CONFIG3, 0x28), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_TX_RX_CONFIG, 0xc0), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_POWER_STATE_CONFIG2, 0x1d), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_RX_MARGINING_CONFIG5, 0x0f), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_G3_FOM_EQ_CONFIG5, 0xf2), QMP_PHY_INIT_CFG(QPHY_PCIE_V6_20_PCS_G4_FOM_EQ_CONFIG5, 0xf2), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x2_pcie_serdes_alt_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x46), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_CFG, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x12), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MISC1, 0x88), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x60), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MODE, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_DC_LEVEL_CTRL, 0x0f), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x2_pcie_rc_serdes_alt_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0x97), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0xd0), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_SELECT, 0x34), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x2_pcie_rx_alt_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_PI_CONTROLS, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B0, 0x9a), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B1, 0xb0), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B2, 0x92), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B3, 0xf0), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B4, 0x42), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B5, 0x99), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B6, 0x29), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B0, 0x9a), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B1, 0xfb), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B2, 0x92), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B3, 0xec), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B4, 0x43), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B5, 0xdd), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B6, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B0, 0xf3), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B1, 0xf8), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B2, 0xec), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B3, 0xd6), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B4, 0x83), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B5, 0xf5), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B6, 0x5e), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_PHPRE_CTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_0_1, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_2_3, 0x37), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_3, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH4_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH5_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH6_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_Q_PI_INTRINSIC_BIAS_RATE32, 0x09), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE3, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_SO_GAIN_RATE3, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_CNTRL1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_MAN_VAL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x7c), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_IDAC_SAOFFSET, 0x10), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_DAC_ENABLE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_GM_CAL, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH2, 0x1f), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4_pcie_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_TX, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_RES_CODE_LANE_OFFSET_RX, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_2, 0xf6), QMP_PHY_INIT_CFG(QSERDES_V5_20_TX_LANE_MODE_3, 0x0f), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4_pcie_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_EQ_CONFIG1, 0x16), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_EQ_CONFIG5, 0x02), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_G4_PRE_GAIN, 0x2e), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_RX_MARGINING_CONFIG3, 0x28), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4_pcie_rc_pcs_misc_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_POWER_STATE_CONFIG2, 0x1d), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_ENDPOINT_REFCLK_DRIVE, 0xc1), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_PCIE_OSC_DTCT_ACTIONS, 0x00), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x2_pcie_pcs_alt_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG4, 0x16), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG5, 0x22), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_LANE1_INSIG_SW_CTRL2, 0x00), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_LANE1_INSIG_MX_CTRL2, 0x00), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_G3S2_PRE_GAIN, 0x2e), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_RX_SIGDET_LVL, 0x66), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x4_pcie_rx_alt_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_0_1, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_AUX_DATA_THRESH_BIN_RATE_2_3, 0x37), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_3, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_DFE_DAC_ENABLE1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_GM_CAL, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_PHPRE_CTRL, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x7c), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_IDAC_SAOFFSET, 0x10), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH1_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH2_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE210, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH3_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH4_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH5_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MARG_COARSE_THRESH6_RATE3, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_Q_PI_INTRINSIC_BIAS_RATE32, 0x09), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B0, 0x99), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B1, 0xb0), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B2, 0x92), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B3, 0xf0), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B4, 0x42), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B5, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE_0_1_B6, 0x20), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B0, 0x9a), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B1, 0xb6), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B2, 0x92), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B3, 0xf0), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B4, 0x43), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B5, 0xdd), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE2_B6, 0x0d), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B0, 0xf3), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B1, 0xf6), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B2, 0xee), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B3, 0xd2), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B4, 0x83), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B5, 0xf9), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_RX_MODE_RATE3_B6, 0x3d), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_TX_ADAPT_POST_THRESH2, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_FO_GAIN_RATE3, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_SO_GAIN_RATE3, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_UCDR_PI_CONTROLS, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_CNTRL1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_20_RX_VGA_CAL_MAN_VAL, 0x08), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x4_pcie_pcs_alt_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG4, 0x16), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_EQ_CONFIG5, 0x22), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_G3S2_PRE_GAIN, 0x2e), QMP_PHY_INIT_CFG(QPHY_V5_20_PCS_RX_SIGDET_LVL, 0x66), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x4_pcie_serdes_alt_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_IVCO, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_EN, 0x46), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP_CFG, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_SEL, 0x12), QMP_PHY_INIT_CFG(QSERDES_V5_COM_HSCLK_HS_SWITCH_SEL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORECLK_DIV_MODE1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MISC1, 0x88), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CORE_CLK_EN, 0x60), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_CONFIG, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CMN_MODE, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_VCO_DC_LEVEL_CTRL, 0x0f), }; static const struct qmp_phy_init_tbl sa8775p_qmp_gen4x4_pcie_rc_serdes_alt_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_EN_CENTER, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE1_MODE1, 0x97), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SSC_STEP_SIZE2_MODE1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_COM_BIAS_EN_CLKBUFLR_EN, 0x1c), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_ENABLE1, 0x90), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_COM_SYSCLK_EN_SEL, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE0, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP1_MODE1, 0x14), QMP_PHY_INIT_CFG(QSERDES_V5_COM_LOCK_CMP2_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DEC_START_MODE1, 0xd0), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE0, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE0, 0x03), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START1_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START2_MODE1, 0x55), QMP_PHY_INIT_CFG(QSERDES_V5_COM_DIV_FRAC_START3_MODE1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_COM_CLK_SELECT, 0x34), }; struct qmp_pcie_offsets { u16 serdes; u16 pcs; u16 pcs_misc; u16 tx; u16 rx; u16 tx2; u16 rx2; u16 ln_shrd; }; struct qmp_phy_cfg_tbls { const struct qmp_phy_init_tbl *serdes; int serdes_num; const struct qmp_phy_init_tbl *tx; int tx_num; const struct qmp_phy_init_tbl *rx; int rx_num; const struct qmp_phy_init_tbl *pcs; int pcs_num; const struct qmp_phy_init_tbl *pcs_misc; int pcs_misc_num; const struct qmp_phy_init_tbl *ln_shrd; int ln_shrd_num; }; /* struct qmp_phy_cfg - per-PHY initialization config */ struct qmp_phy_cfg { int lanes; const struct qmp_pcie_offsets *offsets; /* Main init sequence for PHY blocks - serdes, tx, rx, pcs */ const struct qmp_phy_cfg_tbls tbls; /* * Additional init sequences for PHY blocks, providing additional * register programming. They are used for providing separate sequences * for the Root Complex and End Point use cases. * * If EP mode is not supported, both tables can be left unset. */ const struct qmp_phy_cfg_tbls *tbls_rc; const struct qmp_phy_cfg_tbls *tbls_ep; const struct qmp_phy_init_tbl *serdes_4ln_tbl; int serdes_4ln_num; /* resets to be requested */ const char * const *reset_list; int num_resets; /* regulators to be requested */ const char * const *vreg_list; int num_vregs; /* array of registers with different offsets */ const unsigned int *regs; unsigned int pwrdn_ctrl; /* bit offset of PHYSTATUS in QPHY_PCS_STATUS register */ unsigned int phy_status; bool skip_start_delay; bool has_nocsr_reset; /* QMP PHY pipe clock interface rate */ unsigned long pipe_clock_rate; }; struct qmp_pcie { struct device *dev; const struct qmp_phy_cfg *cfg; bool tcsr_4ln_config; void __iomem *serdes; void __iomem *pcs; void __iomem *pcs_misc; void __iomem *tx; void __iomem *rx; void __iomem *tx2; void __iomem *rx2; void __iomem *ln_shrd; void __iomem *port_b; struct clk_bulk_data *clks; struct clk_bulk_data pipe_clks[2]; int num_pipe_clks; struct reset_control_bulk_data *resets; struct reset_control *nocsr_reset; struct regulator_bulk_data *vregs; struct phy *phy; int mode; struct clk_fixed_rate pipe_clk_fixed; }; static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg |= val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg &= ~val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } /* list of clocks required by phy */ static const char * const qmp_pciephy_clk_l[] = { "aux", "cfg_ahb", "ref", "refgen", "rchng", "phy_aux", }; /* list of regulators */ static const char * const qmp_phy_vreg_l[] = { "vdda-phy", "vdda-pll", }; static const char * const sm8550_qmp_phy_vreg_l[] = { "vdda-phy", "vdda-pll", "vdda-qref", }; /* list of resets */ static const char * const ipq8074_pciephy_reset_l[] = { "phy", "common", }; static const char * const sdm845_pciephy_reset_l[] = { "phy", }; static const struct qmp_pcie_offsets qmp_pcie_offsets_qhp = { .serdes = 0, .pcs = 0x1800, .tx = 0x0800, /* no .rx for QHP */ }; static const struct qmp_pcie_offsets qmp_pcie_offsets_v2 = { .serdes = 0, .pcs = 0x0800, .tx = 0x0200, .rx = 0x0400, }; static const struct qmp_pcie_offsets qmp_pcie_offsets_v3 = { .serdes = 0, .pcs = 0x0800, .pcs_misc = 0x0600, .tx = 0x0200, .rx = 0x0400, }; static const struct qmp_pcie_offsets qmp_pcie_offsets_v4x1 = { .serdes = 0, .pcs = 0x0800, .pcs_misc = 0x0c00, .tx = 0x0200, .rx = 0x0400, }; static const struct qmp_pcie_offsets qmp_pcie_offsets_v4x2 = { .serdes = 0, .pcs = 0x0a00, .pcs_misc = 0x0e00, .tx = 0x0200, .rx = 0x0400, .tx2 = 0x0600, .rx2 = 0x0800, }; static const struct qmp_pcie_offsets qmp_pcie_offsets_v4_20 = { .serdes = 0x1000, .pcs = 0x1200, .pcs_misc = 0x1600, .tx = 0x0000, .rx = 0x0200, .tx2 = 0x0800, .rx2 = 0x0a00, }; static const struct qmp_pcie_offsets qmp_pcie_offsets_v5 = { .serdes = 0, .pcs = 0x0200, .pcs_misc = 0x0600, .tx = 0x0e00, .rx = 0x1000, .tx2 = 0x1600, .rx2 = 0x1800, }; static const struct qmp_pcie_offsets qmp_pcie_offsets_v5_20 = { .serdes = 0x1000, .pcs = 0x1200, .pcs_misc = 0x1400, .tx = 0x0000, .rx = 0x0200, .tx2 = 0x0800, .rx2 = 0x0a00, }; static const struct qmp_pcie_offsets qmp_pcie_offsets_v5_30 = { .serdes = 0x2000, .pcs = 0x2200, .pcs_misc = 0x2400, .tx = 0x0, .rx = 0x0200, .tx2 = 0x3800, .rx2 = 0x3a00, }; static const struct qmp_pcie_offsets qmp_pcie_offsets_v6_20 = { .serdes = 0x1000, .pcs = 0x1200, .pcs_misc = 0x1400, .tx = 0x0000, .rx = 0x0200, .tx2 = 0x0800, .rx2 = 0x0a00, .ln_shrd = 0x0e00, }; static const struct qmp_phy_cfg ipq8074_pciephy_cfg = { .lanes = 1, .offsets = &qmp_pcie_offsets_v2, .tbls = { .serdes = ipq8074_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(ipq8074_pcie_serdes_tbl), .tx = ipq8074_pcie_tx_tbl, .tx_num = ARRAY_SIZE(ipq8074_pcie_tx_tbl), .rx = ipq8074_pcie_rx_tbl, .rx_num = ARRAY_SIZE(ipq8074_pcie_rx_tbl), .pcs = ipq8074_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(ipq8074_pcie_pcs_tbl), }, .reset_list = ipq8074_pciephy_reset_l, .num_resets = ARRAY_SIZE(ipq8074_pciephy_reset_l), .vreg_list = NULL, .num_vregs = 0, .regs = pciephy_v2_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg ipq8074_pciephy_gen3_cfg = { .lanes = 1, .offsets = &qmp_pcie_offsets_v4x1, .tbls = { .serdes = ipq8074_pcie_gen3_serdes_tbl, .serdes_num = ARRAY_SIZE(ipq8074_pcie_gen3_serdes_tbl), .tx = ipq8074_pcie_gen3_tx_tbl, .tx_num = ARRAY_SIZE(ipq8074_pcie_gen3_tx_tbl), .rx = ipq8074_pcie_gen3_rx_tbl, .rx_num = ARRAY_SIZE(ipq8074_pcie_gen3_rx_tbl), .pcs = ipq8074_pcie_gen3_pcs_tbl, .pcs_num = ARRAY_SIZE(ipq8074_pcie_gen3_pcs_tbl), .pcs_misc = ipq8074_pcie_gen3_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(ipq8074_pcie_gen3_pcs_misc_tbl), }, .reset_list = ipq8074_pciephy_reset_l, .num_resets = ARRAY_SIZE(ipq8074_pciephy_reset_l), .vreg_list = NULL, .num_vregs = 0, .regs = pciephy_v4_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, .pipe_clock_rate = 250000000, }; static const struct qmp_phy_cfg ipq6018_pciephy_cfg = { .lanes = 1, .offsets = &qmp_pcie_offsets_v4x1, .tbls = { .serdes = ipq6018_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(ipq6018_pcie_serdes_tbl), .tx = ipq6018_pcie_tx_tbl, .tx_num = ARRAY_SIZE(ipq6018_pcie_tx_tbl), .rx = ipq6018_pcie_rx_tbl, .rx_num = ARRAY_SIZE(ipq6018_pcie_rx_tbl), .pcs = ipq6018_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(ipq6018_pcie_pcs_tbl), .pcs_misc = ipq6018_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(ipq6018_pcie_pcs_misc_tbl), }, .reset_list = ipq8074_pciephy_reset_l, .num_resets = ARRAY_SIZE(ipq8074_pciephy_reset_l), .vreg_list = NULL, .num_vregs = 0, .regs = pciephy_v4_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sdm845_qmp_pciephy_cfg = { .lanes = 1, .offsets = &qmp_pcie_offsets_v3, .tbls = { .serdes = sdm845_qmp_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sdm845_qmp_pcie_serdes_tbl), .tx = sdm845_qmp_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sdm845_qmp_pcie_tx_tbl), .rx = sdm845_qmp_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sdm845_qmp_pcie_rx_tbl), .pcs = sdm845_qmp_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sdm845_qmp_pcie_pcs_tbl), .pcs_misc = sdm845_qmp_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sdm845_qmp_pcie_pcs_misc_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v3_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sdm845_qhp_pciephy_cfg = { .lanes = 1, .offsets = &qmp_pcie_offsets_qhp, .tbls = { .serdes = sdm845_qhp_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sdm845_qhp_pcie_serdes_tbl), .tx = sdm845_qhp_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sdm845_qhp_pcie_tx_tbl), .pcs = sdm845_qhp_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sdm845_qhp_pcie_pcs_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = sdm845_qhp_pciephy_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sm8250_qmp_gen3x1_pciephy_cfg = { .lanes = 1, .offsets = &qmp_pcie_offsets_v4x1, .tbls = { .serdes = sm8250_qmp_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8250_qmp_pcie_serdes_tbl), .tx = sm8250_qmp_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sm8250_qmp_pcie_tx_tbl), .rx = sm8250_qmp_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sm8250_qmp_pcie_rx_tbl), .pcs = sm8250_qmp_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8250_qmp_pcie_pcs_tbl), .pcs_misc = sm8250_qmp_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8250_qmp_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .serdes = sm8250_qmp_gen3x1_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8250_qmp_gen3x1_pcie_serdes_tbl), .rx = sm8250_qmp_gen3x1_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sm8250_qmp_gen3x1_pcie_rx_tbl), .pcs = sm8250_qmp_gen3x1_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8250_qmp_gen3x1_pcie_pcs_tbl), .pcs_misc = sm8250_qmp_gen3x1_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8250_qmp_gen3x1_pcie_pcs_misc_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v4_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sm8250_qmp_gen3x2_pciephy_cfg = { .lanes = 2, .offsets = &qmp_pcie_offsets_v4x2, .tbls = { .serdes = sm8250_qmp_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8250_qmp_pcie_serdes_tbl), .tx = sm8250_qmp_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sm8250_qmp_pcie_tx_tbl), .rx = sm8250_qmp_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sm8250_qmp_pcie_rx_tbl), .pcs = sm8250_qmp_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8250_qmp_pcie_pcs_tbl), .pcs_misc = sm8250_qmp_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8250_qmp_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .tx = sm8250_qmp_gen3x2_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sm8250_qmp_gen3x2_pcie_tx_tbl), .rx = sm8250_qmp_gen3x2_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sm8250_qmp_gen3x2_pcie_rx_tbl), .pcs = sm8250_qmp_gen3x2_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8250_qmp_gen3x2_pcie_pcs_tbl), .pcs_misc = sm8250_qmp_gen3x2_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8250_qmp_gen3x2_pcie_pcs_misc_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v4_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg msm8998_pciephy_cfg = { .lanes = 1, .offsets = &qmp_pcie_offsets_v3, .tbls = { .serdes = msm8998_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(msm8998_pcie_serdes_tbl), .tx = msm8998_pcie_tx_tbl, .tx_num = ARRAY_SIZE(msm8998_pcie_tx_tbl), .rx = msm8998_pcie_rx_tbl, .rx_num = ARRAY_SIZE(msm8998_pcie_rx_tbl), .pcs = msm8998_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(msm8998_pcie_pcs_tbl), }, .reset_list = ipq8074_pciephy_reset_l, .num_resets = ARRAY_SIZE(ipq8074_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v3_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, .skip_start_delay = true, }; static const struct qmp_phy_cfg sc8180x_pciephy_cfg = { .lanes = 2, .offsets = &qmp_pcie_offsets_v4x2, .tbls = { .serdes = sc8180x_qmp_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sc8180x_qmp_pcie_serdes_tbl), .tx = sc8180x_qmp_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sc8180x_qmp_pcie_tx_tbl), .rx = sc8180x_qmp_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sc8180x_qmp_pcie_rx_tbl), .pcs = sc8180x_qmp_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sc8180x_qmp_pcie_pcs_tbl), .pcs_misc = sc8180x_qmp_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sc8180x_qmp_pcie_pcs_misc_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v4_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sc8280xp_qmp_gen3x1_pciephy_cfg = { .lanes = 1, .offsets = &qmp_pcie_offsets_v5, .tbls = { .serdes = sc8280xp_qmp_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sc8280xp_qmp_pcie_serdes_tbl), .tx = sc8280xp_qmp_gen3x1_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x1_pcie_tx_tbl), .rx = sc8280xp_qmp_gen3x1_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x1_pcie_rx_tbl), .pcs = sc8280xp_qmp_gen3x1_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sc8280xp_qmp_gen3x1_pcie_pcs_tbl), .pcs_misc = sc8280xp_qmp_gen3x1_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sc8280xp_qmp_gen3x1_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .serdes = sc8280xp_qmp_gen3x1_pcie_rc_serdes_tbl, .serdes_num = ARRAY_SIZE(sc8280xp_qmp_gen3x1_pcie_rc_serdes_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sc8280xp_qmp_gen3x2_pciephy_cfg = { .lanes = 2, .offsets = &qmp_pcie_offsets_v5, .tbls = { .serdes = sc8280xp_qmp_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sc8280xp_qmp_pcie_serdes_tbl), .tx = sc8280xp_qmp_gen3x2_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_tx_tbl), .rx = sc8280xp_qmp_gen3x2_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_rx_tbl), .pcs = sc8280xp_qmp_gen3x2_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_pcs_tbl), .pcs_misc = sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .serdes = sc8280xp_qmp_gen3x2_pcie_rc_serdes_tbl, .serdes_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_rc_serdes_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sc8280xp_qmp_gen3x4_pciephy_cfg = { .lanes = 4, .offsets = &qmp_pcie_offsets_v5, .tbls = { .serdes = sc8280xp_qmp_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sc8280xp_qmp_pcie_serdes_tbl), .tx = sc8280xp_qmp_gen3x2_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_tx_tbl), .rx = sc8280xp_qmp_gen3x2_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_rx_tbl), .pcs = sc8280xp_qmp_gen3x2_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_pcs_tbl), .pcs_misc = sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .serdes = sc8280xp_qmp_gen3x2_pcie_rc_serdes_tbl, .serdes_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_rc_serdes_tbl), }, .serdes_4ln_tbl = sc8280xp_qmp_gen3x4_pcie_serdes_4ln_tbl, .serdes_4ln_num = ARRAY_SIZE(sc8280xp_qmp_gen3x4_pcie_serdes_4ln_tbl), .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sdx55_qmp_pciephy_cfg = { .lanes = 2, .offsets = &qmp_pcie_offsets_v4_20, .tbls = { .serdes = sdx55_qmp_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sdx55_qmp_pcie_serdes_tbl), .tx = sdx55_qmp_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sdx55_qmp_pcie_tx_tbl), .rx = sdx55_qmp_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sdx55_qmp_pcie_rx_tbl), .pcs = sdx55_qmp_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sdx55_qmp_pcie_pcs_tbl), .pcs_misc = sdx55_qmp_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sdx55_qmp_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .serdes = sdx55_qmp_pcie_rc_serdes_tbl, .serdes_num = ARRAY_SIZE(sdx55_qmp_pcie_rc_serdes_tbl), .pcs_misc = sdx55_qmp_pcie_rc_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sdx55_qmp_pcie_rc_pcs_misc_tbl), }, .tbls_ep = &(const struct qmp_phy_cfg_tbls) { .serdes = sdx55_qmp_pcie_ep_serdes_tbl, .serdes_num = ARRAY_SIZE(sdx55_qmp_pcie_ep_serdes_tbl), .pcs_misc = sdx55_qmp_pcie_ep_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sdx55_qmp_pcie_ep_pcs_misc_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v4_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS_4_20, }; static const struct qmp_phy_cfg sm8350_qmp_gen3x1_pciephy_cfg = { .lanes = 1, .offsets = &qmp_pcie_offsets_v5, .tbls = { .serdes = sm8450_qmp_gen3_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_serdes_tbl), .tx = sm8350_qmp_gen3x1_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sm8350_qmp_gen3x1_pcie_tx_tbl), .rx = sm8450_qmp_gen3_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_rx_tbl), .pcs = sm8450_qmp_gen3_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_pcs_tbl), .pcs_misc = sm8450_qmp_gen3x1_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .serdes = sm8450_qmp_gen3x1_pcie_rc_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_rc_serdes_tbl), .rx = sm8350_qmp_gen3x1_pcie_rc_rx_tbl, .rx_num = ARRAY_SIZE(sm8350_qmp_gen3x1_pcie_rc_rx_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sm8350_qmp_gen3x2_pciephy_cfg = { .lanes = 2, .offsets = &qmp_pcie_offsets_v5, .tbls = { .serdes = sm8450_qmp_gen3_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_serdes_tbl), .tx = sm8350_qmp_gen3x2_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sm8350_qmp_gen3x2_pcie_tx_tbl), .rx = sm8450_qmp_gen3_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_rx_tbl), .pcs = sm8450_qmp_gen3_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_pcs_tbl), .pcs_misc = sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sc8280xp_qmp_gen3x2_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .rx = sm8350_qmp_gen3x2_pcie_rc_rx_tbl, .rx_num = ARRAY_SIZE(sm8350_qmp_gen3x2_pcie_rc_rx_tbl), .pcs = sm8350_qmp_gen3x2_pcie_rc_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8350_qmp_gen3x2_pcie_rc_pcs_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sdx65_qmp_pciephy_cfg = { .lanes = 2, .offsets = &qmp_pcie_offsets_v6_20, .tbls = { .serdes = sdx65_qmp_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sdx65_qmp_pcie_serdes_tbl), .tx = sdx65_qmp_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sdx65_qmp_pcie_tx_tbl), .rx = sdx65_qmp_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sdx65_qmp_pcie_rx_tbl), .pcs = sdx65_qmp_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sdx65_qmp_pcie_pcs_tbl), .pcs_misc = sdx65_qmp_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sdx65_qmp_pcie_pcs_misc_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN, .phy_status = PHYSTATUS_4_20, }; static const struct qmp_phy_cfg sm8450_qmp_gen3x1_pciephy_cfg = { .lanes = 1, .offsets = &qmp_pcie_offsets_v5, .tbls = { .serdes = sm8450_qmp_gen3_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_serdes_tbl), .tx = sm8450_qmp_gen3x1_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_tx_tbl), .rx = sm8450_qmp_gen3_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_rx_tbl), .pcs = sm8450_qmp_gen3_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8450_qmp_gen3_pcie_pcs_tbl), .pcs_misc = sm8450_qmp_gen3x1_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .serdes = sm8450_qmp_gen3x1_pcie_rc_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_rc_serdes_tbl), .rx = sm8450_qmp_gen3x1_pcie_rc_rx_tbl, .rx_num = ARRAY_SIZE(sm8450_qmp_gen3x1_pcie_rc_rx_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sm8450_qmp_gen4x2_pciephy_cfg = { .lanes = 2, .offsets = &qmp_pcie_offsets_v5_20, .tbls = { .serdes = sm8450_qmp_gen4x2_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_serdes_tbl), .tx = sm8450_qmp_gen4x2_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_tx_tbl), .rx = sm8450_qmp_gen4x2_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_rx_tbl), .pcs = sm8450_qmp_gen4x2_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_pcs_tbl), .pcs_misc = sm8450_qmp_gen4x2_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .serdes = sm8450_qmp_gen4x2_pcie_rc_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_rc_serdes_tbl), .pcs_misc = sm8450_qmp_gen4x2_pcie_rc_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_rc_pcs_misc_tbl), }, .tbls_ep = &(const struct qmp_phy_cfg_tbls) { .serdes = sm8450_qmp_gen4x2_pcie_ep_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_ep_serdes_tbl), .pcs_misc = sm8450_qmp_gen4x2_pcie_ep_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8450_qmp_gen4x2_pcie_ep_pcs_misc_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS_4_20, }; static const struct qmp_phy_cfg sm8550_qmp_gen3x2_pciephy_cfg = { .lanes = 2, .offsets = &qmp_pcie_offsets_v5, .tbls = { .serdes = sm8550_qmp_gen3x2_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8550_qmp_gen3x2_pcie_serdes_tbl), .tx = sm8550_qmp_gen3x2_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sm8550_qmp_gen3x2_pcie_tx_tbl), .rx = sm8550_qmp_gen3x2_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sm8550_qmp_gen3x2_pcie_rx_tbl), .pcs = sm8550_qmp_gen3x2_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8550_qmp_gen3x2_pcie_pcs_tbl), .pcs_misc = sm8550_qmp_gen3x2_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8550_qmp_gen3x2_pcie_pcs_misc_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS, }; static const struct qmp_phy_cfg sm8550_qmp_gen4x2_pciephy_cfg = { .lanes = 2, .offsets = &qmp_pcie_offsets_v6_20, .tbls = { .serdes = sm8550_qmp_gen4x2_pcie_serdes_tbl, .serdes_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_serdes_tbl), .tx = sm8550_qmp_gen4x2_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_tx_tbl), .rx = sm8550_qmp_gen4x2_pcie_rx_tbl, .rx_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_rx_tbl), .pcs = sm8550_qmp_gen4x2_pcie_pcs_tbl, .pcs_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_pcs_tbl), .pcs_misc = sm8550_qmp_gen4x2_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_pcs_misc_tbl), .ln_shrd = sm8550_qmp_gen4x2_pcie_ln_shrd_tbl, .ln_shrd_num = ARRAY_SIZE(sm8550_qmp_gen4x2_pcie_ln_shrd_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = sm8550_qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(sm8550_qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS_4_20, .has_nocsr_reset = true, }; static const struct qmp_phy_cfg sa8775p_qmp_gen4x2_pciephy_cfg = { .lanes = 2, .offsets = &qmp_pcie_offsets_v5_20, .tbls = { .serdes = sa8775p_qmp_gen4x2_pcie_serdes_alt_tbl, .serdes_num = ARRAY_SIZE(sa8775p_qmp_gen4x2_pcie_serdes_alt_tbl), .tx = sa8775p_qmp_gen4_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_tx_tbl), .rx = sa8775p_qmp_gen4x2_pcie_rx_alt_tbl, .rx_num = ARRAY_SIZE(sa8775p_qmp_gen4x2_pcie_rx_alt_tbl), .pcs = sa8775p_qmp_gen4x2_pcie_pcs_alt_tbl, .pcs_num = ARRAY_SIZE(sa8775p_qmp_gen4x2_pcie_pcs_alt_tbl), .pcs_misc = sa8775p_qmp_gen4_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .serdes = sa8775p_qmp_gen4x2_pcie_rc_serdes_alt_tbl, .serdes_num = ARRAY_SIZE(sa8775p_qmp_gen4x2_pcie_rc_serdes_alt_tbl), .pcs_misc = sa8775p_qmp_gen4_pcie_rc_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_rc_pcs_misc_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS_4_20, }; static const struct qmp_phy_cfg sa8775p_qmp_gen4x4_pciephy_cfg = { .lanes = 4, .offsets = &qmp_pcie_offsets_v5_30, .tbls = { .serdes = sa8775p_qmp_gen4x4_pcie_serdes_alt_tbl, .serdes_num = ARRAY_SIZE(sa8775p_qmp_gen4x4_pcie_serdes_alt_tbl), .tx = sa8775p_qmp_gen4_pcie_tx_tbl, .tx_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_tx_tbl), .rx = sa8775p_qmp_gen4x4_pcie_rx_alt_tbl, .rx_num = ARRAY_SIZE(sa8775p_qmp_gen4x4_pcie_rx_alt_tbl), .pcs = sa8775p_qmp_gen4x4_pcie_pcs_alt_tbl, .pcs_num = ARRAY_SIZE(sa8775p_qmp_gen4x4_pcie_pcs_alt_tbl), .pcs_misc = sa8775p_qmp_gen4_pcie_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_pcs_misc_tbl), }, .tbls_rc = &(const struct qmp_phy_cfg_tbls) { .serdes = sa8775p_qmp_gen4x4_pcie_rc_serdes_alt_tbl, .serdes_num = ARRAY_SIZE(sa8775p_qmp_gen4x4_pcie_rc_serdes_alt_tbl), .pcs_misc = sa8775p_qmp_gen4_pcie_rc_pcs_misc_tbl, .pcs_misc_num = ARRAY_SIZE(sa8775p_qmp_gen4_pcie_rc_pcs_misc_tbl), }, .reset_list = sdm845_pciephy_reset_l, .num_resets = ARRAY_SIZE(sdm845_pciephy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = pciephy_v5_regs_layout, .pwrdn_ctrl = SW_PWRDN | REFCLK_DRV_DSBL, .phy_status = PHYSTATUS_4_20, }; static void qmp_pcie_configure_lane(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num, u8 lane_mask) { int i; const struct qmp_phy_init_tbl *t = tbl; if (!t) return; for (i = 0; i < num; i++, t++) { if (!(t->lane_mask & lane_mask)) continue; writel(t->val, base + t->offset); } } static void qmp_pcie_configure(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num) { qmp_pcie_configure_lane(base, tbl, num, 0xff); } static void qmp_pcie_init_port_b(struct qmp_pcie *qmp, const struct qmp_phy_cfg_tbls *tbls) { const struct qmp_phy_cfg *cfg = qmp->cfg; const struct qmp_pcie_offsets *offs = cfg->offsets; void __iomem *tx3, *rx3, *tx4, *rx4; tx3 = qmp->port_b + offs->tx; rx3 = qmp->port_b + offs->rx; tx4 = qmp->port_b + offs->tx2; rx4 = qmp->port_b + offs->rx2; qmp_pcie_configure_lane(tx3, tbls->tx, tbls->tx_num, 1); qmp_pcie_configure_lane(rx3, tbls->rx, tbls->rx_num, 1); qmp_pcie_configure_lane(tx4, tbls->tx, tbls->tx_num, 2); qmp_pcie_configure_lane(rx4, tbls->rx, tbls->rx_num, 2); } static void qmp_pcie_init_registers(struct qmp_pcie *qmp, const struct qmp_phy_cfg_tbls *tbls) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *serdes = qmp->serdes; void __iomem *tx = qmp->tx; void __iomem *rx = qmp->rx; void __iomem *tx2 = qmp->tx2; void __iomem *rx2 = qmp->rx2; void __iomem *pcs = qmp->pcs; void __iomem *pcs_misc = qmp->pcs_misc; void __iomem *ln_shrd = qmp->ln_shrd; if (!tbls) return; qmp_pcie_configure(serdes, tbls->serdes, tbls->serdes_num); qmp_pcie_configure_lane(tx, tbls->tx, tbls->tx_num, 1); qmp_pcie_configure_lane(rx, tbls->rx, tbls->rx_num, 1); if (cfg->lanes >= 2) { qmp_pcie_configure_lane(tx2, tbls->tx, tbls->tx_num, 2); qmp_pcie_configure_lane(rx2, tbls->rx, tbls->rx_num, 2); } qmp_pcie_configure(pcs, tbls->pcs, tbls->pcs_num); qmp_pcie_configure(pcs_misc, tbls->pcs_misc, tbls->pcs_misc_num); if (cfg->lanes >= 4 && qmp->tcsr_4ln_config) { qmp_pcie_configure(serdes, cfg->serdes_4ln_tbl, cfg->serdes_4ln_num); qmp_pcie_init_port_b(qmp, tbls); } qmp_pcie_configure(ln_shrd, tbls->ln_shrd, tbls->ln_shrd_num); } static int qmp_pcie_init(struct phy *phy) { struct qmp_pcie *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; int ret; ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs); if (ret) { dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret); return ret; } ret = reset_control_bulk_assert(cfg->num_resets, qmp->resets); if (ret) { dev_err(qmp->dev, "reset assert failed\n"); goto err_disable_regulators; } ret = reset_control_assert(qmp->nocsr_reset); if (ret) { dev_err(qmp->dev, "no-csr reset assert failed\n"); goto err_assert_reset; } usleep_range(200, 300); ret = reset_control_bulk_deassert(cfg->num_resets, qmp->resets); if (ret) { dev_err(qmp->dev, "reset deassert failed\n"); goto err_assert_reset; } ret = clk_bulk_prepare_enable(ARRAY_SIZE(qmp_pciephy_clk_l), qmp->clks); if (ret) goto err_assert_reset; return 0; err_assert_reset: reset_control_bulk_assert(cfg->num_resets, qmp->resets); err_disable_regulators: regulator_bulk_disable(cfg->num_vregs, qmp->vregs); return ret; } static int qmp_pcie_exit(struct phy *phy) { struct qmp_pcie *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; reset_control_bulk_assert(cfg->num_resets, qmp->resets); clk_bulk_disable_unprepare(ARRAY_SIZE(qmp_pciephy_clk_l), qmp->clks); regulator_bulk_disable(cfg->num_vregs, qmp->vregs); return 0; } static int qmp_pcie_power_on(struct phy *phy) { struct qmp_pcie *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; const struct qmp_phy_cfg_tbls *mode_tbls; void __iomem *pcs = qmp->pcs; void __iomem *status; unsigned int mask, val; int ret; qphy_setbits(pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], cfg->pwrdn_ctrl); if (qmp->mode == PHY_MODE_PCIE_RC) mode_tbls = cfg->tbls_rc; else mode_tbls = cfg->tbls_ep; qmp_pcie_init_registers(qmp, &cfg->tbls); qmp_pcie_init_registers(qmp, mode_tbls); ret = clk_bulk_prepare_enable(qmp->num_pipe_clks, qmp->pipe_clks); if (ret) return ret; ret = reset_control_deassert(qmp->nocsr_reset); if (ret) { dev_err(qmp->dev, "no-csr reset deassert failed\n"); goto err_disable_pipe_clk; } /* Pull PHY out of reset state */ qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* start SerDes and Phy-Coding-Sublayer */ qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START); if (!cfg->skip_start_delay) usleep_range(1000, 1200); status = pcs + cfg->regs[QPHY_PCS_STATUS]; mask = cfg->phy_status; ret = readl_poll_timeout(status, val, !(val & mask), 200, PHY_INIT_COMPLETE_TIMEOUT); if (ret) { dev_err(qmp->dev, "phy initialization timed-out\n"); goto err_disable_pipe_clk; } return 0; err_disable_pipe_clk: clk_bulk_disable_unprepare(qmp->num_pipe_clks, qmp->pipe_clks); return ret; } static int qmp_pcie_power_off(struct phy *phy) { struct qmp_pcie *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; clk_bulk_disable_unprepare(qmp->num_pipe_clks, qmp->pipe_clks); /* PHY reset */ qphy_setbits(qmp->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* stop SerDes and Phy-Coding-Sublayer */ qphy_clrbits(qmp->pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START); /* Put PHY into POWER DOWN state: active low */ qphy_clrbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], cfg->pwrdn_ctrl); return 0; } static int qmp_pcie_enable(struct phy *phy) { int ret; ret = qmp_pcie_init(phy); if (ret) return ret; ret = qmp_pcie_power_on(phy); if (ret) qmp_pcie_exit(phy); return ret; } static int qmp_pcie_disable(struct phy *phy) { int ret; ret = qmp_pcie_power_off(phy); if (ret) return ret; return qmp_pcie_exit(phy); } static int qmp_pcie_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct qmp_pcie *qmp = phy_get_drvdata(phy); switch (submode) { case PHY_MODE_PCIE_RC: case PHY_MODE_PCIE_EP: qmp->mode = submode; break; default: dev_err(&phy->dev, "Unsupported submode %d\n", submode); return -EINVAL; } return 0; } static const struct phy_ops qmp_pcie_phy_ops = { .power_on = qmp_pcie_enable, .power_off = qmp_pcie_disable, .set_mode = qmp_pcie_set_mode, .owner = THIS_MODULE, }; static int qmp_pcie_vreg_init(struct qmp_pcie *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int num = cfg->num_vregs; int i; qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL); if (!qmp->vregs) return -ENOMEM; for (i = 0; i < num; i++) qmp->vregs[i].supply = cfg->vreg_list[i]; return devm_regulator_bulk_get(dev, num, qmp->vregs); } static int qmp_pcie_reset_init(struct qmp_pcie *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int i; int ret; qmp->resets = devm_kcalloc(dev, cfg->num_resets, sizeof(*qmp->resets), GFP_KERNEL); if (!qmp->resets) return -ENOMEM; for (i = 0; i < cfg->num_resets; i++) qmp->resets[i].id = cfg->reset_list[i]; ret = devm_reset_control_bulk_get_exclusive(dev, cfg->num_resets, qmp->resets); if (ret) return dev_err_probe(dev, ret, "failed to get resets\n"); if (cfg->has_nocsr_reset) { qmp->nocsr_reset = devm_reset_control_get_exclusive(dev, "phy_nocsr"); if (IS_ERR(qmp->nocsr_reset)) return dev_err_probe(dev, PTR_ERR(qmp->nocsr_reset), "failed to get no-csr reset\n"); } return 0; } static int qmp_pcie_clk_init(struct qmp_pcie *qmp) { struct device *dev = qmp->dev; int num = ARRAY_SIZE(qmp_pciephy_clk_l); int i; qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL); if (!qmp->clks) return -ENOMEM; for (i = 0; i < num; i++) qmp->clks[i].id = qmp_pciephy_clk_l[i]; return devm_clk_bulk_get_optional(dev, num, qmp->clks); } static void phy_clk_release_provider(void *res) { of_clk_del_provider(res); } /* * Register a fixed rate pipe clock. * * The <s>_pipe_clksrc generated by PHY goes to the GCC that gate * controls it. The <s>_pipe_clk coming out of the GCC is requested * by the PHY driver for its operations. * We register the <s>_pipe_clksrc here. The gcc driver takes care * of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk. * Below picture shows this relationship. * * +---------------+ * | PHY block |<<---------------------------------------+ * | | | * | +-------+ | +-----+ | * I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+ * clk | +-------+ | +-----+ * +---------------+ */ static int phy_pipe_clk_register(struct qmp_pcie *qmp, struct device_node *np) { struct clk_fixed_rate *fixed = &qmp->pipe_clk_fixed; struct clk_init_data init = { }; int ret; ret = of_property_read_string(np, "clock-output-names", &init.name); if (ret) { dev_err(qmp->dev, "%pOFn: No clock-output-names\n", np); return ret; } init.ops = &clk_fixed_rate_ops; /* * Controllers using QMP PHY-s use 125MHz pipe clock interface * unless other frequency is specified in the PHY config. */ if (qmp->cfg->pipe_clock_rate) fixed->fixed_rate = qmp->cfg->pipe_clock_rate; else fixed->fixed_rate = 125000000; fixed->hw.init = &init; ret = devm_clk_hw_register(qmp->dev, &fixed->hw); if (ret) return ret; ret = of_clk_add_hw_provider(np, of_clk_hw_simple_get, &fixed->hw); if (ret) return ret; /* * Roll a devm action because the clock provider is the child node, but * the child node is not actually a device. */ return devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, np); } static int qmp_pcie_parse_dt_legacy(struct qmp_pcie *qmp, struct device_node *np) { struct platform_device *pdev = to_platform_device(qmp->dev); const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; struct clk *clk; qmp->serdes = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(qmp->serdes)) return PTR_ERR(qmp->serdes); /* * Get memory resources for the PHY: * Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2. * For dual lane PHYs: tx2 -> 3, rx2 -> 4, pcs_misc (optional) -> 5 * For single lane PHYs: pcs_misc (optional) -> 3. */ qmp->tx = devm_of_iomap(dev, np, 0, NULL); if (IS_ERR(qmp->tx)) return PTR_ERR(qmp->tx); if (of_device_is_compatible(dev->of_node, "qcom,sdm845-qhp-pcie-phy")) qmp->rx = qmp->tx; else qmp->rx = devm_of_iomap(dev, np, 1, NULL); if (IS_ERR(qmp->rx)) return PTR_ERR(qmp->rx); qmp->pcs = devm_of_iomap(dev, np, 2, NULL); if (IS_ERR(qmp->pcs)) return PTR_ERR(qmp->pcs); if (cfg->lanes >= 2) { qmp->tx2 = devm_of_iomap(dev, np, 3, NULL); if (IS_ERR(qmp->tx2)) return PTR_ERR(qmp->tx2); qmp->rx2 = devm_of_iomap(dev, np, 4, NULL); if (IS_ERR(qmp->rx2)) return PTR_ERR(qmp->rx2); qmp->pcs_misc = devm_of_iomap(dev, np, 5, NULL); } else { qmp->pcs_misc = devm_of_iomap(dev, np, 3, NULL); } if (IS_ERR(qmp->pcs_misc) && of_device_is_compatible(dev->of_node, "qcom,ipq6018-qmp-pcie-phy")) qmp->pcs_misc = qmp->pcs + 0x400; if (IS_ERR(qmp->pcs_misc)) { if (cfg->tbls.pcs_misc || (cfg->tbls_rc && cfg->tbls_rc->pcs_misc) || (cfg->tbls_ep && cfg->tbls_ep->pcs_misc)) { return PTR_ERR(qmp->pcs_misc); } } clk = devm_get_clk_from_child(dev, np, NULL); if (IS_ERR(clk)) { return dev_err_probe(dev, PTR_ERR(clk), "failed to get pipe clock\n"); } qmp->num_pipe_clks = 1; qmp->pipe_clks[0].id = "pipe"; qmp->pipe_clks[0].clk = clk; return 0; } static int qmp_pcie_get_4ln_config(struct qmp_pcie *qmp) { struct regmap *tcsr; unsigned int args[2]; int ret; tcsr = syscon_regmap_lookup_by_phandle_args(qmp->dev->of_node, "qcom,4ln-config-sel", ARRAY_SIZE(args), args); if (IS_ERR(tcsr)) { ret = PTR_ERR(tcsr); if (ret == -ENOENT) return 0; dev_err(qmp->dev, "failed to lookup syscon: %d\n", ret); return ret; } ret = regmap_test_bits(tcsr, args[0], BIT(args[1])); if (ret < 0) { dev_err(qmp->dev, "failed to read tcsr: %d\n", ret); return ret; } qmp->tcsr_4ln_config = ret; dev_dbg(qmp->dev, "4ln_config_sel = %d\n", qmp->tcsr_4ln_config); return 0; } static int qmp_pcie_parse_dt(struct qmp_pcie *qmp) { struct platform_device *pdev = to_platform_device(qmp->dev); const struct qmp_phy_cfg *cfg = qmp->cfg; const struct qmp_pcie_offsets *offs = cfg->offsets; struct device *dev = qmp->dev; void __iomem *base; int ret; if (!offs) return -EINVAL; ret = qmp_pcie_get_4ln_config(qmp); if (ret) return ret; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); qmp->serdes = base + offs->serdes; qmp->pcs = base + offs->pcs; qmp->pcs_misc = base + offs->pcs_misc; qmp->tx = base + offs->tx; qmp->rx = base + offs->rx; if (cfg->lanes >= 2) { qmp->tx2 = base + offs->tx2; qmp->rx2 = base + offs->rx2; } if (qmp->cfg->lanes >= 4 && qmp->tcsr_4ln_config) { qmp->port_b = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(qmp->port_b)) return PTR_ERR(qmp->port_b); } if (cfg->tbls.ln_shrd) qmp->ln_shrd = base + offs->ln_shrd; qmp->num_pipe_clks = 2; qmp->pipe_clks[0].id = "pipe"; qmp->pipe_clks[1].id = "pipediv2"; ret = devm_clk_bulk_get(dev, 1, qmp->pipe_clks); if (ret) return ret; ret = devm_clk_bulk_get_optional(dev, qmp->num_pipe_clks - 1, qmp->pipe_clks + 1); if (ret) return ret; return 0; } static int qmp_pcie_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct device_node *np; struct qmp_pcie *qmp; int ret; qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL); if (!qmp) return -ENOMEM; qmp->dev = dev; qmp->cfg = of_device_get_match_data(dev); if (!qmp->cfg) return -EINVAL; WARN_ON_ONCE(!qmp->cfg->pwrdn_ctrl); WARN_ON_ONCE(!qmp->cfg->phy_status); ret = qmp_pcie_clk_init(qmp); if (ret) return ret; ret = qmp_pcie_reset_init(qmp); if (ret) return ret; ret = qmp_pcie_vreg_init(qmp); if (ret) return ret; /* Check for legacy binding with child node. */ np = of_get_next_available_child(dev->of_node, NULL); if (np) { ret = qmp_pcie_parse_dt_legacy(qmp, np); } else { np = of_node_get(dev->of_node); ret = qmp_pcie_parse_dt(qmp); } if (ret) goto err_node_put; ret = phy_pipe_clk_register(qmp, np); if (ret) goto err_node_put; qmp->mode = PHY_MODE_PCIE_RC; qmp->phy = devm_phy_create(dev, np, &qmp_pcie_phy_ops); if (IS_ERR(qmp->phy)) { ret = PTR_ERR(qmp->phy); dev_err(dev, "failed to create PHY: %d\n", ret); goto err_node_put; } phy_set_drvdata(qmp->phy, qmp); of_node_put(np); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); err_node_put: of_node_put(np); return ret; } static const struct of_device_id qmp_pcie_of_match_table[] = { { .compatible = "qcom,ipq6018-qmp-pcie-phy", .data = &ipq6018_pciephy_cfg, }, { .compatible = "qcom,ipq8074-qmp-gen3-pcie-phy", .data = &ipq8074_pciephy_gen3_cfg, }, { .compatible = "qcom,ipq8074-qmp-pcie-phy", .data = &ipq8074_pciephy_cfg, }, { .compatible = "qcom,msm8998-qmp-pcie-phy", .data = &msm8998_pciephy_cfg, }, { .compatible = "qcom,sa8775p-qmp-gen4x2-pcie-phy", .data = &sa8775p_qmp_gen4x2_pciephy_cfg, }, { .compatible = "qcom,sa8775p-qmp-gen4x4-pcie-phy", .data = &sa8775p_qmp_gen4x4_pciephy_cfg, }, { .compatible = "qcom,sc8180x-qmp-pcie-phy", .data = &sc8180x_pciephy_cfg, }, { .compatible = "qcom,sc8280xp-qmp-gen3x1-pcie-phy", .data = &sc8280xp_qmp_gen3x1_pciephy_cfg, }, { .compatible = "qcom,sc8280xp-qmp-gen3x2-pcie-phy", .data = &sc8280xp_qmp_gen3x2_pciephy_cfg, }, { .compatible = "qcom,sc8280xp-qmp-gen3x4-pcie-phy", .data = &sc8280xp_qmp_gen3x4_pciephy_cfg, }, { .compatible = "qcom,sdm845-qhp-pcie-phy", .data = &sdm845_qhp_pciephy_cfg, }, { .compatible = "qcom,sdm845-qmp-pcie-phy", .data = &sdm845_qmp_pciephy_cfg, }, { .compatible = "qcom,sdx55-qmp-pcie-phy", .data = &sdx55_qmp_pciephy_cfg, }, { .compatible = "qcom,sdx65-qmp-gen4x2-pcie-phy", .data = &sdx65_qmp_pciephy_cfg, }, { .compatible = "qcom,sm8150-qmp-gen3x1-pcie-phy", .data = &sm8250_qmp_gen3x1_pciephy_cfg, }, { .compatible = "qcom,sm8150-qmp-gen3x2-pcie-phy", .data = &sm8250_qmp_gen3x2_pciephy_cfg, }, { .compatible = "qcom,sm8250-qmp-gen3x1-pcie-phy", .data = &sm8250_qmp_gen3x1_pciephy_cfg, }, { .compatible = "qcom,sm8250-qmp-gen3x2-pcie-phy", .data = &sm8250_qmp_gen3x2_pciephy_cfg, }, { .compatible = "qcom,sm8250-qmp-modem-pcie-phy", .data = &sm8250_qmp_gen3x2_pciephy_cfg, }, { .compatible = "qcom,sm8350-qmp-gen3x1-pcie-phy", .data = &sm8350_qmp_gen3x1_pciephy_cfg, }, { .compatible = "qcom,sm8350-qmp-gen3x2-pcie-phy", .data = &sm8350_qmp_gen3x2_pciephy_cfg, }, { .compatible = "qcom,sm8450-qmp-gen3x1-pcie-phy", .data = &sm8450_qmp_gen3x1_pciephy_cfg, }, { .compatible = "qcom,sm8450-qmp-gen4x2-pcie-phy", .data = &sm8450_qmp_gen4x2_pciephy_cfg, }, { .compatible = "qcom,sm8550-qmp-gen3x2-pcie-phy", .data = &sm8550_qmp_gen3x2_pciephy_cfg, }, { .compatible = "qcom,sm8550-qmp-gen4x2-pcie-phy", .data = &sm8550_qmp_gen4x2_pciephy_cfg, }, { }, }; MODULE_DEVICE_TABLE(of, qmp_pcie_of_match_table); static struct platform_driver qmp_pcie_driver = { .probe = qmp_pcie_probe, .driver = { .name = "qcom-qmp-pcie-phy", .of_match_table = qmp_pcie_of_match_table, }, }; module_platform_driver(qmp_pcie_driver); MODULE_AUTHOR("Vivek Gautam <[email protected]>"); MODULE_DESCRIPTION("Qualcomm QMP PCIe PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-qmp-pcie.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #include "phy-qcom-qmp.h" #include "phy-qcom-qmp-pcs-misc-v3.h" #include "phy-qcom-qmp-pcs-usb-v4.h" #include "phy-qcom-qmp-pcs-usb-v5.h" /* QPHY_SW_RESET bit */ #define SW_RESET BIT(0) /* QPHY_POWER_DOWN_CONTROL */ #define SW_PWRDN BIT(0) /* QPHY_START_CONTROL bits */ #define SERDES_START BIT(0) #define PCS_START BIT(1) /* QPHY_PCS_STATUS bit */ #define PHYSTATUS BIT(6) /* QPHY_V3_DP_COM_RESET_OVRD_CTRL register bits */ /* DP PHY soft reset */ #define SW_DPPHY_RESET BIT(0) /* mux to select DP PHY reset control, 0:HW control, 1: software reset */ #define SW_DPPHY_RESET_MUX BIT(1) /* USB3 PHY soft reset */ #define SW_USB3PHY_RESET BIT(2) /* mux to select USB3 PHY reset control, 0:HW control, 1: software reset */ #define SW_USB3PHY_RESET_MUX BIT(3) /* QPHY_V3_DP_COM_PHY_MODE_CTRL register bits */ #define USB3_MODE BIT(0) /* enables USB3 mode */ #define DP_MODE BIT(1) /* enables DP mode */ /* QPHY_PCS_AUTONOMOUS_MODE_CTRL register bits */ #define ARCVR_DTCT_EN BIT(0) #define ALFPS_DTCT_EN BIT(1) #define ARCVR_DTCT_EVENT_SEL BIT(4) /* QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR register bits */ #define IRQ_CLEAR BIT(0) /* QPHY_V3_PCS_MISC_CLAMP_ENABLE register bits */ #define CLAMP_EN BIT(0) /* enables i/o clamp_n */ #define PHY_INIT_COMPLETE_TIMEOUT 10000 struct qmp_phy_init_tbl { unsigned int offset; unsigned int val; /* * mask of lanes for which this register is written * for cases when second lane needs different values */ u8 lane_mask; }; #define QMP_PHY_INIT_CFG(o, v) \ { \ .offset = o, \ .val = v, \ .lane_mask = 0xff, \ } #define QMP_PHY_INIT_CFG_LANE(o, v, l) \ { \ .offset = o, \ .val = v, \ .lane_mask = l, \ } /* set of registers with offsets different per-PHY */ enum qphy_reg_layout { /* PCS registers */ QPHY_SW_RESET, QPHY_START_CTRL, QPHY_PCS_STATUS, QPHY_PCS_AUTONOMOUS_MODE_CTRL, QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR, QPHY_PCS_POWER_DOWN_CONTROL, /* Keep last to ensure regs_layout arrays are properly initialized */ QPHY_LAYOUT_SIZE }; static const unsigned int qmp_v3_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V3_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V3_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V3_PCS_PCS_STATUS, [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V3_PCS_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V3_PCS_LFPS_RXTERM_IRQ_CLEAR, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V3_PCS_POWER_DOWN_CONTROL, }; static const unsigned int qmp_v4_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V4_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V4_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V4_PCS_PCS_STATUS1, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V4_PCS_POWER_DOWN_CONTROL, /* In PCS_USB */ [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V4_PCS_USB3_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V4_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR, }; static const unsigned int qmp_v5_usb3phy_regs_layout[QPHY_LAYOUT_SIZE] = { [QPHY_SW_RESET] = QPHY_V5_PCS_SW_RESET, [QPHY_START_CTRL] = QPHY_V5_PCS_START_CONTROL, [QPHY_PCS_STATUS] = QPHY_V5_PCS_PCS_STATUS1, [QPHY_PCS_POWER_DOWN_CONTROL] = QPHY_V5_PCS_POWER_DOWN_CONTROL, /* In PCS_USB */ [QPHY_PCS_AUTONOMOUS_MODE_CTRL] = QPHY_V5_PCS_USB3_AUTONOMOUS_MODE_CTRL, [QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR] = QPHY_V5_PCS_USB3_LFPS_RXTERM_IRQ_CLEAR, }; static const struct qmp_phy_init_tbl qmp_v3_usb3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_IVCO, 0x07), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_EN_SEL, 0x14), QMP_PHY_INIT_CFG(QSERDES_V3_COM_BIAS_EN_CLKBUFLR_EN, 0x08), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CLK_SELECT, 0x30), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYS_CLK_CTRL, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_RESETSM_CNTRL2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CMN_CONFIG, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SVS_MODE_CLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_HSCLK_SEL, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START2_MODE0, 0xea), QMP_PHY_INIT_CFG(QSERDES_V3_COM_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN1_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_INTEGLOOP_GAIN0_MODE0, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE2_MODE0, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE1_MODE0, 0xc9), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORECLK_DIV_MODE0, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP3_MODE0, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP1_MODE0, 0x15), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V3_COM_CORE_CLK_EN, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_LOCK_CMP_CFG, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_VCO_TUNE_MAP, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SYSCLK_BUF_ENABLE, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_ADJ_PER2, 0x00), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE1, 0x85), QMP_PHY_INIT_CFG(QSERDES_V3_COM_SSC_STEP_SIZE2, 0x07), }; static const struct qmp_phy_init_tbl qmp_v3_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_TX_HIGHZ_DRVR_EN, 0x10), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V3_TX_LANE_MODE_1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_RX, 0x09), QMP_PHY_INIT_CFG(QSERDES_V3_TX_RES_CODE_LANE_OFFSET_TX, 0x06), }; static const struct qmp_phy_init_tbl qmp_v3_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_FASTLOCK_FO_GAIN, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4e), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQU_ADAPTOR_CNTRL4, 0x18), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_V3_RX_RX_OFFSET_ADAPTOR_CNTRL2, 0x80), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_CNTRL, 0x03), QMP_PHY_INIT_CFG(QSERDES_V3_RX_SIGDET_DEGLITCH_CNTRL, 0x16), QMP_PHY_INIT_CFG(QSERDES_V3_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x75), }; static const struct qmp_phy_init_tbl qmp_v3_usb3_pcs_tbl[] = { /* FLL settings */ QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL2, 0x83), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_L, 0x09), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNT_VAL_H_TOL, 0xa2), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_MAN_CODE, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_FLL_CNTRL1, 0x02), /* Lock Det settings */ QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG1, 0xd1), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG2, 0x1f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LOCK_DETECT_CONFIG3, 0x47), QMP_PHY_INIT_CFG(QPHY_V3_PCS_POWER_STATE_CONFIG2, 0x1b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RX_SIGDET_LVL, 0xba), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V0, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V1, 0x9f), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V2, 0xb7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V3, 0x4e), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_V4, 0x65), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXMGN_LS, 0x6b), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V0, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V0, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V1, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V1, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V2, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V2, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V3, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V3, 0x1d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_V4, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_V4, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M6DB_LS, 0x15), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TXDEEMPH_M3P5DB_LS, 0x0d), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RATE_SLEW_CNTRL, 0x02), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_TSYNC_RSYNC_TIME, 0x44), QMP_PHY_INIT_CFG(QPHY_V3_PCS_PWRUP_RESET_DLY_TIME_AUXCLK, 0x04), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RCVR_DTCT_DLY_U3_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_WAIT_TIME, 0x75), QMP_PHY_INIT_CFG(QPHY_V3_PCS_LFPS_TX_ECSTART_EQTLOCK, 0x86), QMP_PHY_INIT_CFG(QPHY_V3_PCS_RXEQTRAINING_RUN_TIME, 0x13), }; static const struct qmp_phy_init_tbl sm8150_usb3_serdes_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_EN_CENTER, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER1, 0x31), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_PER2, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE0, 0xde), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE0, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE1_MODE1, 0xde), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SSC_STEP_SIZE2_MODE1, 0x07), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_BUF_ENABLE, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CMN_IPTRIM, 0x20), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE0, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CP_CTRL_MODE1, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE0, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_RCTRL_MODE1, 0x16), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE0, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_PLL_CCTRL_MODE1, 0x36), QMP_PHY_INIT_CFG(QSERDES_V4_COM_SYSCLK_EN_SEL, 0x1a), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP_EN, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE0, 0x14), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE0, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP1_MODE1, 0x34), QMP_PHY_INIT_CFG(QSERDES_V4_COM_LOCK_CMP2_MODE1, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE0, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DEC_START_MODE1, 0x82), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE0, 0xab), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE0, 0xea), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE0, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE_MAP, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START1_MODE1, 0xab), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START2_MODE1, 0xea), QMP_PHY_INIT_CFG(QSERDES_V4_COM_DIV_FRAC_START3_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE0, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE1_MODE1, 0x24), QMP_PHY_INIT_CFG(QSERDES_V4_COM_VCO_TUNE2_MODE1, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_COM_HSCLK_SEL, 0x01), QMP_PHY_INIT_CFG(QSERDES_V4_COM_CORECLK_DIV_MODE1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE0, 0xca), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE0, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE1_MODE1, 0xca), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_CMP_CODE2_MODE1, 0x1e), QMP_PHY_INIT_CFG(QSERDES_V4_COM_BIN_VCOCAL_HSCLK_SEL, 0x11), }; static const struct qmp_phy_init_tbl sm8150_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_TX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_RX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V4_TX_PI_QEC_CTRL, 0x20), }; static const struct qmp_phy_init_tbl sm8150_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_LOW, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xbf), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x94), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x0b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb3), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VTH_CODE, 0x10), }; static const struct qmp_phy_init_tbl sm8150_usb3_pcs_tbl[] = { /* Lock Det settings */ QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10), }; static const struct qmp_phy_init_tbl sm8150_usb3_pcs_usb_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), }; static const struct qmp_phy_init_tbl sm8250_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_TX, 0x60), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_RX, 0x60), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_TX, 0x11), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RES_CODE_LANE_OFFSET_RX, 0x02), QMP_PHY_INIT_CFG(QSERDES_V4_TX_LANE_MODE_1, 0xd5), QMP_PHY_INIT_CFG(QSERDES_V4_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_TX_PI_QEC_CTRL, 0x40, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_TX_PI_QEC_CTRL, 0x54, 2), }; static const struct qmp_phy_init_tbl sm8250_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_GAIN, 0x06), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH1, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN1, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_UCDR_SB2_GAIN2, 0x05), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VGA_CAL_CNTRL2, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x77), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_LOW, 0xff, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_LOW, 0x7f, 2), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_HIGH, 0x7f, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V4_RX_RX_MODE_00_HIGH, 0xff, 2), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH2, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH3, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_00_HIGH4, 0x97), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_LOW, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH, 0xdc), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH2, 0x5c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH3, 0x7b), QMP_PHY_INIT_CFG(QSERDES_V4_RX_RX_MODE_01_HIGH4, 0xb4), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V4_RX_AUX_DATA_TCOARSE_TFINE, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V4_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V4_RX_GM_CAL, 0x1f), QMP_PHY_INIT_CFG(QSERDES_V4_RX_VTH_CODE, 0x10), }; static const struct qmp_phy_init_tbl sm8250_usb3_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xa9), QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10), }; static const struct qmp_phy_init_tbl sm8250_usb3_pcs_usb_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_V4_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), }; static const struct qmp_phy_init_tbl sm8350_usb3_tx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_TX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_RX, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_TX, 0x16), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RES_CODE_LANE_OFFSET_RX, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_1, 0x35), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_3, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_4, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_LANE_MODE_5, 0x3f), QMP_PHY_INIT_CFG(QSERDES_V5_TX_RCV_DETECT_LVL_2, 0x12), QMP_PHY_INIT_CFG(QSERDES_V5_TX_PI_QEC_CTRL, 0x21), }; static const struct qmp_phy_init_tbl sm8350_usb3_rx_tbl[] = { QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FO_GAIN, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_GAIN, 0x05), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_FO_GAIN, 0x2f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SO_SATURATION_AND_ENABLE, 0x7f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_LOW, 0xff), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_FASTLOCK_COUNT_HIGH, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_PI_CONTROLS, 0x99), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH1, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_THRESH2, 0x08), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN1, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_UCDR_SB2_GAIN2, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL1, 0x54), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VGA_CAL_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL2, 0x0f), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL3, 0x4a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQU_ADAPTOR_CNTRL4, 0x0a), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_LOW, 0xc0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_IDAC_TSETTLE_HIGH, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_EQ_OFFSET_ADAPTOR_CNTRL1, 0x47), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_CNTRL, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_SIGDET_DEGLITCH_CNTRL, 0x0e), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_LOW, 0xbb), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH, 0x7b), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH2, 0xbb), QMP_PHY_INIT_CFG_LANE(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3d, 1), QMP_PHY_INIT_CFG_LANE(QSERDES_V5_RX_RX_MODE_00_HIGH3, 0x3c, 2), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_00_HIGH4, 0xdb), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_LOW, 0x64), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH, 0x24), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH2, 0xd2), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH3, 0x13), QMP_PHY_INIT_CFG(QSERDES_V5_RX_RX_MODE_01_HIGH4, 0xa9), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_EN_TIMER, 0x04), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DFE_CTLE_POST_CAL_OFFSET, 0x38), QMP_PHY_INIT_CFG(QSERDES_V5_RX_AUX_DATA_TCOARSE_TFINE, 0xa0), QMP_PHY_INIT_CFG(QSERDES_V5_RX_DCC_CTRL1, 0x0c), QMP_PHY_INIT_CFG(QSERDES_V5_RX_GM_CAL, 0x00), QMP_PHY_INIT_CFG(QSERDES_V5_RX_VTH_CODE, 0x10), }; static const struct qmp_phy_init_tbl sm8350_usb3_pcs_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_L, 0xe7), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RCVR_DTCT_DLY_P1U2_H, 0x03), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG1, 0xd0), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG2, 0x07), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG3, 0x20), QMP_PHY_INIT_CFG(QPHY_V4_PCS_LOCK_DETECT_CONFIG6, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_REFGEN_REQ_CONFIG1, 0x21), QMP_PHY_INIT_CFG(QPHY_V4_PCS_RX_SIGDET_LVL, 0xaa), QMP_PHY_INIT_CFG(QPHY_V4_PCS_CDR_RESET_TIME, 0x0a), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG1, 0x88), QMP_PHY_INIT_CFG(QPHY_V4_PCS_ALIGN_DETECT_CONFIG2, 0x13), QMP_PHY_INIT_CFG(QPHY_V4_PCS_PCS_TX_RX_CONFIG, 0x0c), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG1, 0x4b), QMP_PHY_INIT_CFG(QPHY_V4_PCS_EQ_CONFIG5, 0x10), }; static const struct qmp_phy_init_tbl sm8350_usb3_pcs_usb_tbl[] = { QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RCVR_DTCT_DLY_U3_L, 0x40), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RCVR_DTCT_DLY_U3_H, 0x00), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_LFPS_DET_HIGH_COUNT_VAL, 0xf8), QMP_PHY_INIT_CFG(QPHY_V5_PCS_USB3_RXEQTRAINING_DFE_TIME_S2, 0x07), }; struct qmp_usb_legacy_offsets { u16 serdes; u16 pcs; u16 pcs_usb; u16 tx; u16 rx; }; /* struct qmp_phy_cfg - per-PHY initialization config */ struct qmp_phy_cfg { int lanes; const struct qmp_usb_legacy_offsets *offsets; /* Init sequence for PHY blocks - serdes, tx, rx, pcs */ const struct qmp_phy_init_tbl *serdes_tbl; int serdes_tbl_num; const struct qmp_phy_init_tbl *tx_tbl; int tx_tbl_num; const struct qmp_phy_init_tbl *rx_tbl; int rx_tbl_num; const struct qmp_phy_init_tbl *pcs_tbl; int pcs_tbl_num; const struct qmp_phy_init_tbl *pcs_usb_tbl; int pcs_usb_tbl_num; /* clock ids to be requested */ const char * const *clk_list; int num_clks; /* resets to be requested */ const char * const *reset_list; int num_resets; /* regulators to be requested */ const char * const *vreg_list; int num_vregs; /* array of registers with different offsets */ const unsigned int *regs; /* Offset from PCS to PCS_USB region */ unsigned int pcs_usb_offset; }; struct qmp_usb { struct device *dev; const struct qmp_phy_cfg *cfg; void __iomem *serdes; void __iomem *pcs; void __iomem *pcs_misc; void __iomem *pcs_usb; void __iomem *tx; void __iomem *rx; void __iomem *tx2; void __iomem *rx2; void __iomem *dp_com; struct clk *pipe_clk; struct clk_bulk_data *clks; struct reset_control_bulk_data *resets; struct regulator_bulk_data *vregs; enum phy_mode mode; struct phy *phy; struct clk_fixed_rate pipe_clk_fixed; }; static inline void qphy_setbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg |= val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } static inline void qphy_clrbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg &= ~val; writel(reg, base + offset); /* ensure that above write is through */ readl(base + offset); } /* list of clocks required by phy */ static const char * const qmp_v3_phy_clk_l[] = { "aux", "cfg_ahb", "ref", "com_aux", }; static const char * const qmp_v4_ref_phy_clk_l[] = { "aux", "ref_clk_src", "ref", "com_aux", }; /* the primary usb3 phy on sm8250 doesn't have a ref clock */ static const char * const qmp_v4_sm8250_usbphy_clk_l[] = { "aux", "ref_clk_src", "com_aux" }; /* list of resets */ static const char * const msm8996_usb3phy_reset_l[] = { "phy", "common", }; static const char * const sc7180_usb3phy_reset_l[] = { "phy", }; /* list of regulators */ static const char * const qmp_phy_vreg_l[] = { "vdda-phy", "vdda-pll", }; static const struct qmp_phy_cfg qmp_v3_usb3phy_cfg = { .lanes = 2, .serdes_tbl = qmp_v3_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_serdes_tbl), .tx_tbl = qmp_v3_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_tx_tbl), .rx_tbl = qmp_v3_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_rx_tbl), .pcs_tbl = qmp_v3_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(qmp_v3_usb3_pcs_tbl), .clk_list = qmp_v3_phy_clk_l, .num_clks = ARRAY_SIZE(qmp_v3_phy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v3_usb3phy_regs_layout, }; static const struct qmp_phy_cfg sc7180_usb3phy_cfg = { .lanes = 2, .serdes_tbl = qmp_v3_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(qmp_v3_usb3_serdes_tbl), .tx_tbl = qmp_v3_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_tx_tbl), .rx_tbl = qmp_v3_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(qmp_v3_usb3_rx_tbl), .pcs_tbl = qmp_v3_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(qmp_v3_usb3_pcs_tbl), .clk_list = qmp_v3_phy_clk_l, .num_clks = ARRAY_SIZE(qmp_v3_phy_clk_l), .reset_list = sc7180_usb3phy_reset_l, .num_resets = ARRAY_SIZE(sc7180_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v3_usb3phy_regs_layout, }; static const struct qmp_phy_cfg sm8150_usb3phy_cfg = { .lanes = 2, .serdes_tbl = sm8150_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl), .tx_tbl = sm8150_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sm8150_usb3_tx_tbl), .rx_tbl = sm8150_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm8150_usb3_rx_tbl), .pcs_tbl = sm8150_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8150_usb3_pcs_tbl), .pcs_usb_tbl = sm8150_usb3_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8150_usb3_pcs_usb_tbl), .clk_list = qmp_v4_ref_phy_clk_l, .num_clks = ARRAY_SIZE(qmp_v4_ref_phy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v4_usb3phy_regs_layout, .pcs_usb_offset = 0x300, }; static const struct qmp_phy_cfg sm8250_usb3phy_cfg = { .lanes = 2, .serdes_tbl = sm8150_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl), .tx_tbl = sm8250_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sm8250_usb3_tx_tbl), .rx_tbl = sm8250_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm8250_usb3_rx_tbl), .pcs_tbl = sm8250_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8250_usb3_pcs_tbl), .pcs_usb_tbl = sm8250_usb3_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8250_usb3_pcs_usb_tbl), .clk_list = qmp_v4_sm8250_usbphy_clk_l, .num_clks = ARRAY_SIZE(qmp_v4_sm8250_usbphy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v4_usb3phy_regs_layout, .pcs_usb_offset = 0x300, }; static const struct qmp_phy_cfg sm8350_usb3phy_cfg = { .lanes = 2, .serdes_tbl = sm8150_usb3_serdes_tbl, .serdes_tbl_num = ARRAY_SIZE(sm8150_usb3_serdes_tbl), .tx_tbl = sm8350_usb3_tx_tbl, .tx_tbl_num = ARRAY_SIZE(sm8350_usb3_tx_tbl), .rx_tbl = sm8350_usb3_rx_tbl, .rx_tbl_num = ARRAY_SIZE(sm8350_usb3_rx_tbl), .pcs_tbl = sm8350_usb3_pcs_tbl, .pcs_tbl_num = ARRAY_SIZE(sm8350_usb3_pcs_tbl), .pcs_usb_tbl = sm8350_usb3_pcs_usb_tbl, .pcs_usb_tbl_num = ARRAY_SIZE(sm8350_usb3_pcs_usb_tbl), .clk_list = qmp_v4_sm8250_usbphy_clk_l, .num_clks = ARRAY_SIZE(qmp_v4_sm8250_usbphy_clk_l), .reset_list = msm8996_usb3phy_reset_l, .num_resets = ARRAY_SIZE(msm8996_usb3phy_reset_l), .vreg_list = qmp_phy_vreg_l, .num_vregs = ARRAY_SIZE(qmp_phy_vreg_l), .regs = qmp_v5_usb3phy_regs_layout, .pcs_usb_offset = 0x300, }; static void qmp_usb_legacy_configure_lane(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num, u8 lane_mask) { int i; const struct qmp_phy_init_tbl *t = tbl; if (!t) return; for (i = 0; i < num; i++, t++) { if (!(t->lane_mask & lane_mask)) continue; writel(t->val, base + t->offset); } } static void qmp_usb_legacy_configure(void __iomem *base, const struct qmp_phy_init_tbl tbl[], int num) { qmp_usb_legacy_configure_lane(base, tbl, num, 0xff); } static int qmp_usb_legacy_serdes_init(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *serdes = qmp->serdes; const struct qmp_phy_init_tbl *serdes_tbl = cfg->serdes_tbl; int serdes_tbl_num = cfg->serdes_tbl_num; qmp_usb_legacy_configure(serdes, serdes_tbl, serdes_tbl_num); return 0; } static void qmp_usb_legacy_init_dp_com(struct phy *phy) { struct qmp_usb *qmp = phy_get_drvdata(phy); void __iomem *dp_com = qmp->dp_com; qphy_setbits(dp_com, QPHY_V3_DP_COM_POWER_DOWN_CTRL, SW_PWRDN); /* override hardware control for reset of qmp phy */ qphy_setbits(dp_com, QPHY_V3_DP_COM_RESET_OVRD_CTRL, SW_DPPHY_RESET_MUX | SW_DPPHY_RESET | SW_USB3PHY_RESET_MUX | SW_USB3PHY_RESET); /* Default type-c orientation, i.e CC1 */ qphy_setbits(dp_com, QPHY_V3_DP_COM_TYPEC_CTRL, 0x02); qphy_setbits(dp_com, QPHY_V3_DP_COM_PHY_MODE_CTRL, USB3_MODE | DP_MODE); /* bring both QMP USB and QMP DP PHYs PCS block out of reset */ qphy_clrbits(dp_com, QPHY_V3_DP_COM_RESET_OVRD_CTRL, SW_DPPHY_RESET_MUX | SW_DPPHY_RESET | SW_USB3PHY_RESET_MUX | SW_USB3PHY_RESET); qphy_clrbits(dp_com, QPHY_V3_DP_COM_SWI_CTRL, 0x03); qphy_clrbits(dp_com, QPHY_V3_DP_COM_SW_RESET, SW_RESET); } static int qmp_usb_legacy_init(struct phy *phy) { struct qmp_usb *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *pcs = qmp->pcs; int ret; ret = regulator_bulk_enable(cfg->num_vregs, qmp->vregs); if (ret) { dev_err(qmp->dev, "failed to enable regulators, err=%d\n", ret); return ret; } ret = reset_control_bulk_assert(cfg->num_resets, qmp->resets); if (ret) { dev_err(qmp->dev, "reset assert failed\n"); goto err_disable_regulators; } ret = reset_control_bulk_deassert(cfg->num_resets, qmp->resets); if (ret) { dev_err(qmp->dev, "reset deassert failed\n"); goto err_disable_regulators; } ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks); if (ret) goto err_assert_reset; qmp_usb_legacy_init_dp_com(phy); qphy_setbits(pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN); return 0; err_assert_reset: reset_control_bulk_assert(cfg->num_resets, qmp->resets); err_disable_regulators: regulator_bulk_disable(cfg->num_vregs, qmp->vregs); return ret; } static int qmp_usb_legacy_exit(struct phy *phy) { struct qmp_usb *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; reset_control_bulk_assert(cfg->num_resets, qmp->resets); clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks); regulator_bulk_disable(cfg->num_vregs, qmp->vregs); return 0; } static int qmp_usb_legacy_power_on(struct phy *phy) { struct qmp_usb *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *tx = qmp->tx; void __iomem *rx = qmp->rx; void __iomem *pcs = qmp->pcs; void __iomem *status; unsigned int val; int ret; qmp_usb_legacy_serdes_init(qmp); ret = clk_prepare_enable(qmp->pipe_clk); if (ret) { dev_err(qmp->dev, "pipe_clk enable failed err=%d\n", ret); return ret; } /* Tx, Rx, and PCS configurations */ qmp_usb_legacy_configure_lane(tx, cfg->tx_tbl, cfg->tx_tbl_num, 1); qmp_usb_legacy_configure_lane(rx, cfg->rx_tbl, cfg->rx_tbl_num, 1); if (cfg->lanes >= 2) { qmp_usb_legacy_configure_lane(qmp->tx2, cfg->tx_tbl, cfg->tx_tbl_num, 2); qmp_usb_legacy_configure_lane(qmp->rx2, cfg->rx_tbl, cfg->rx_tbl_num, 2); } qmp_usb_legacy_configure(pcs, cfg->pcs_tbl, cfg->pcs_tbl_num); usleep_range(10, 20); /* Pull PHY out of reset state */ qphy_clrbits(pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* start SerDes and Phy-Coding-Sublayer */ qphy_setbits(pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START); status = pcs + cfg->regs[QPHY_PCS_STATUS]; ret = readl_poll_timeout(status, val, !(val & PHYSTATUS), 200, PHY_INIT_COMPLETE_TIMEOUT); if (ret) { dev_err(qmp->dev, "phy initialization timed-out\n"); goto err_disable_pipe_clk; } return 0; err_disable_pipe_clk: clk_disable_unprepare(qmp->pipe_clk); return ret; } static int qmp_usb_legacy_power_off(struct phy *phy) { struct qmp_usb *qmp = phy_get_drvdata(phy); const struct qmp_phy_cfg *cfg = qmp->cfg; clk_disable_unprepare(qmp->pipe_clk); /* PHY reset */ qphy_setbits(qmp->pcs, cfg->regs[QPHY_SW_RESET], SW_RESET); /* stop SerDes and Phy-Coding-Sublayer */ qphy_clrbits(qmp->pcs, cfg->regs[QPHY_START_CTRL], SERDES_START | PCS_START); /* Put PHY into POWER DOWN state: active low */ qphy_clrbits(qmp->pcs, cfg->regs[QPHY_PCS_POWER_DOWN_CONTROL], SW_PWRDN); return 0; } static int qmp_usb_legacy_enable(struct phy *phy) { int ret; ret = qmp_usb_legacy_init(phy); if (ret) return ret; ret = qmp_usb_legacy_power_on(phy); if (ret) qmp_usb_legacy_exit(phy); return ret; } static int qmp_usb_legacy_disable(struct phy *phy) { int ret; ret = qmp_usb_legacy_power_off(phy); if (ret) return ret; return qmp_usb_legacy_exit(phy); } static int qmp_usb_legacy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct qmp_usb *qmp = phy_get_drvdata(phy); qmp->mode = mode; return 0; } static const struct phy_ops qmp_usb_legacy_phy_ops = { .init = qmp_usb_legacy_enable, .exit = qmp_usb_legacy_disable, .set_mode = qmp_usb_legacy_set_mode, .owner = THIS_MODULE, }; static void qmp_usb_legacy_enable_autonomous_mode(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs; void __iomem *pcs_misc = qmp->pcs_misc; u32 intr_mask; if (qmp->mode == PHY_MODE_USB_HOST_SS || qmp->mode == PHY_MODE_USB_DEVICE_SS) intr_mask = ARCVR_DTCT_EN | ALFPS_DTCT_EN; else intr_mask = ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL; /* Clear any pending interrupts status */ qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); /* Writing 1 followed by 0 clears the interrupt */ qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], ARCVR_DTCT_EN | ALFPS_DTCT_EN | ARCVR_DTCT_EVENT_SEL); /* Enable required PHY autonomous mode interrupts */ qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], intr_mask); /* Enable i/o clamp_n for autonomous mode */ if (pcs_misc) qphy_clrbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN); } static void qmp_usb_legacy_disable_autonomous_mode(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; void __iomem *pcs_usb = qmp->pcs_usb ?: qmp->pcs; void __iomem *pcs_misc = qmp->pcs_misc; /* Disable i/o clamp_n on resume for normal mode */ if (pcs_misc) qphy_setbits(pcs_misc, QPHY_V3_PCS_MISC_CLAMP_ENABLE, CLAMP_EN); qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_AUTONOMOUS_MODE_CTRL], ARCVR_DTCT_EN | ARCVR_DTCT_EVENT_SEL | ALFPS_DTCT_EN); qphy_setbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); /* Writing 1 followed by 0 clears the interrupt */ qphy_clrbits(pcs_usb, cfg->regs[QPHY_PCS_LFPS_RXTERM_IRQ_CLEAR], IRQ_CLEAR); } static int __maybe_unused qmp_usb_legacy_runtime_suspend(struct device *dev) { struct qmp_usb *qmp = dev_get_drvdata(dev); const struct qmp_phy_cfg *cfg = qmp->cfg; dev_vdbg(dev, "Suspending QMP phy, mode:%d\n", qmp->mode); if (!qmp->phy->init_count) { dev_vdbg(dev, "PHY not initialized, bailing out\n"); return 0; } qmp_usb_legacy_enable_autonomous_mode(qmp); clk_disable_unprepare(qmp->pipe_clk); clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks); return 0; } static int __maybe_unused qmp_usb_legacy_runtime_resume(struct device *dev) { struct qmp_usb *qmp = dev_get_drvdata(dev); const struct qmp_phy_cfg *cfg = qmp->cfg; int ret = 0; dev_vdbg(dev, "Resuming QMP phy, mode:%d\n", qmp->mode); if (!qmp->phy->init_count) { dev_vdbg(dev, "PHY not initialized, bailing out\n"); return 0; } ret = clk_bulk_prepare_enable(cfg->num_clks, qmp->clks); if (ret) return ret; ret = clk_prepare_enable(qmp->pipe_clk); if (ret) { dev_err(dev, "pipe_clk enable failed, err=%d\n", ret); clk_bulk_disable_unprepare(cfg->num_clks, qmp->clks); return ret; } qmp_usb_legacy_disable_autonomous_mode(qmp); return 0; } static const struct dev_pm_ops qmp_usb_legacy_pm_ops = { SET_RUNTIME_PM_OPS(qmp_usb_legacy_runtime_suspend, qmp_usb_legacy_runtime_resume, NULL) }; static int qmp_usb_legacy_vreg_init(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int num = cfg->num_vregs; int i; qmp->vregs = devm_kcalloc(dev, num, sizeof(*qmp->vregs), GFP_KERNEL); if (!qmp->vregs) return -ENOMEM; for (i = 0; i < num; i++) qmp->vregs[i].supply = cfg->vreg_list[i]; return devm_regulator_bulk_get(dev, num, qmp->vregs); } static int qmp_usb_legacy_reset_init(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int i; int ret; qmp->resets = devm_kcalloc(dev, cfg->num_resets, sizeof(*qmp->resets), GFP_KERNEL); if (!qmp->resets) return -ENOMEM; for (i = 0; i < cfg->num_resets; i++) qmp->resets[i].id = cfg->reset_list[i]; ret = devm_reset_control_bulk_get_exclusive(dev, cfg->num_resets, qmp->resets); if (ret) return dev_err_probe(dev, ret, "failed to get resets\n"); return 0; } static int qmp_usb_legacy_clk_init(struct qmp_usb *qmp) { const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; int num = cfg->num_clks; int i; qmp->clks = devm_kcalloc(dev, num, sizeof(*qmp->clks), GFP_KERNEL); if (!qmp->clks) return -ENOMEM; for (i = 0; i < num; i++) qmp->clks[i].id = cfg->clk_list[i]; return devm_clk_bulk_get(dev, num, qmp->clks); } static void phy_clk_release_provider(void *res) { of_clk_del_provider(res); } /* * Register a fixed rate pipe clock. * * The <s>_pipe_clksrc generated by PHY goes to the GCC that gate * controls it. The <s>_pipe_clk coming out of the GCC is requested * by the PHY driver for its operations. * We register the <s>_pipe_clksrc here. The gcc driver takes care * of assigning this <s>_pipe_clksrc as parent to <s>_pipe_clk. * Below picture shows this relationship. * * +---------------+ * | PHY block |<<---------------------------------------+ * | | | * | +-------+ | +-----+ | * I/P---^-->| PLL |---^--->pipe_clksrc--->| GCC |--->pipe_clk---+ * clk | +-------+ | +-----+ * +---------------+ */ static int phy_pipe_clk_register(struct qmp_usb *qmp, struct device_node *np) { struct clk_fixed_rate *fixed = &qmp->pipe_clk_fixed; struct clk_init_data init = { }; int ret; ret = of_property_read_string(np, "clock-output-names", &init.name); if (ret) { dev_err(qmp->dev, "%pOFn: No clock-output-names\n", np); return ret; } init.ops = &clk_fixed_rate_ops; /* controllers using QMP phys use 125MHz pipe clock interface */ fixed->fixed_rate = 125000000; fixed->hw.init = &init; ret = devm_clk_hw_register(qmp->dev, &fixed->hw); if (ret) return ret; ret = of_clk_add_hw_provider(np, of_clk_hw_simple_get, &fixed->hw); if (ret) return ret; /* * Roll a devm action because the clock provider is the child node, but * the child node is not actually a device. */ return devm_add_action_or_reset(qmp->dev, phy_clk_release_provider, np); } static void __iomem *qmp_usb_legacy_iomap(struct device *dev, struct device_node *np, int index, bool exclusive) { struct resource res; if (!exclusive) { if (of_address_to_resource(np, index, &res)) return IOMEM_ERR_PTR(-EINVAL); return devm_ioremap(dev, res.start, resource_size(&res)); } return devm_of_iomap(dev, np, index, NULL); } static int qmp_usb_legacy_parse_dt_legacy(struct qmp_usb *qmp, struct device_node *np) { struct platform_device *pdev = to_platform_device(qmp->dev); const struct qmp_phy_cfg *cfg = qmp->cfg; struct device *dev = qmp->dev; bool exclusive = true; qmp->serdes = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(qmp->serdes)) return PTR_ERR(qmp->serdes); qmp->dp_com = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(qmp->dp_com)) return PTR_ERR(qmp->dp_com); /* * Get memory resources for the PHY: * Resources are indexed as: tx -> 0; rx -> 1; pcs -> 2. * For dual lane PHYs: tx2 -> 3, rx2 -> 4, pcs_misc (optional) -> 5 * For single lane PHYs: pcs_misc (optional) -> 3. */ qmp->tx = devm_of_iomap(dev, np, 0, NULL); if (IS_ERR(qmp->tx)) return PTR_ERR(qmp->tx); qmp->rx = devm_of_iomap(dev, np, 1, NULL); if (IS_ERR(qmp->rx)) return PTR_ERR(qmp->rx); qmp->pcs = qmp_usb_legacy_iomap(dev, np, 2, exclusive); if (IS_ERR(qmp->pcs)) return PTR_ERR(qmp->pcs); if (cfg->pcs_usb_offset) qmp->pcs_usb = qmp->pcs + cfg->pcs_usb_offset; if (cfg->lanes >= 2) { qmp->tx2 = devm_of_iomap(dev, np, 3, NULL); if (IS_ERR(qmp->tx2)) return PTR_ERR(qmp->tx2); qmp->rx2 = devm_of_iomap(dev, np, 4, NULL); if (IS_ERR(qmp->rx2)) return PTR_ERR(qmp->rx2); qmp->pcs_misc = devm_of_iomap(dev, np, 5, NULL); } else { qmp->pcs_misc = devm_of_iomap(dev, np, 3, NULL); } if (IS_ERR(qmp->pcs_misc)) { dev_vdbg(dev, "PHY pcs_misc-reg not used\n"); qmp->pcs_misc = NULL; } qmp->pipe_clk = devm_get_clk_from_child(dev, np, NULL); if (IS_ERR(qmp->pipe_clk)) { return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk), "failed to get pipe clock\n"); } return 0; } static int qmp_usb_legacy_parse_dt(struct qmp_usb *qmp) { struct platform_device *pdev = to_platform_device(qmp->dev); const struct qmp_phy_cfg *cfg = qmp->cfg; const struct qmp_usb_legacy_offsets *offs = cfg->offsets; struct device *dev = qmp->dev; void __iomem *base; if (!offs) return -EINVAL; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); qmp->serdes = base + offs->serdes; qmp->pcs = base + offs->pcs; qmp->pcs_usb = base + offs->pcs_usb; qmp->tx = base + offs->tx; qmp->rx = base + offs->rx; qmp->pipe_clk = devm_clk_get(dev, "pipe"); if (IS_ERR(qmp->pipe_clk)) { return dev_err_probe(dev, PTR_ERR(qmp->pipe_clk), "failed to get pipe clock\n"); } return 0; } static int qmp_usb_legacy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct device_node *np; struct qmp_usb *qmp; int ret; qmp = devm_kzalloc(dev, sizeof(*qmp), GFP_KERNEL); if (!qmp) return -ENOMEM; qmp->dev = dev; qmp->cfg = of_device_get_match_data(dev); if (!qmp->cfg) return -EINVAL; ret = qmp_usb_legacy_clk_init(qmp); if (ret) return ret; ret = qmp_usb_legacy_reset_init(qmp); if (ret) return ret; ret = qmp_usb_legacy_vreg_init(qmp); if (ret) return ret; /* Check for legacy binding with child node. */ np = of_get_next_available_child(dev->of_node, NULL); if (np) { ret = qmp_usb_legacy_parse_dt_legacy(qmp, np); } else { np = of_node_get(dev->of_node); ret = qmp_usb_legacy_parse_dt(qmp); } if (ret) goto err_node_put; pm_runtime_set_active(dev); ret = devm_pm_runtime_enable(dev); if (ret) goto err_node_put; /* * Prevent runtime pm from being ON by default. Users can enable * it using power/control in sysfs. */ pm_runtime_forbid(dev); ret = phy_pipe_clk_register(qmp, np); if (ret) goto err_node_put; qmp->phy = devm_phy_create(dev, np, &qmp_usb_legacy_phy_ops); if (IS_ERR(qmp->phy)) { ret = PTR_ERR(qmp->phy); dev_err(dev, "failed to create PHY: %d\n", ret); goto err_node_put; } phy_set_drvdata(qmp->phy, qmp); of_node_put(np); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); err_node_put: of_node_put(np); return ret; } static const struct of_device_id qmp_usb_legacy_of_match_table[] = { { .compatible = "qcom,sc7180-qmp-usb3-phy", .data = &sc7180_usb3phy_cfg, }, { .compatible = "qcom,sc8180x-qmp-usb3-phy", .data = &sm8150_usb3phy_cfg, }, { .compatible = "qcom,sdm845-qmp-usb3-phy", .data = &qmp_v3_usb3phy_cfg, }, { .compatible = "qcom,sm8150-qmp-usb3-phy", .data = &sm8150_usb3phy_cfg, }, { .compatible = "qcom,sm8250-qmp-usb3-phy", .data = &sm8250_usb3phy_cfg, }, { .compatible = "qcom,sm8350-qmp-usb3-phy", .data = &sm8350_usb3phy_cfg, }, { .compatible = "qcom,sm8450-qmp-usb3-phy", .data = &sm8350_usb3phy_cfg, }, { }, }; MODULE_DEVICE_TABLE(of, qmp_usb_legacy_of_match_table); static struct platform_driver qmp_usb_legacy_driver = { .probe = qmp_usb_legacy_probe, .driver = { .name = "qcom-qmp-usb-legacy-phy", .pm = &qmp_usb_legacy_pm_ops, .of_match_table = qmp_usb_legacy_of_match_table, }, }; module_platform_driver(qmp_usb_legacy_driver); MODULE_AUTHOR("Vivek Gautam <[email protected]>"); MODULE_DESCRIPTION("Qualcomm QMP legacy USB+DP PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-qmp-usb-legacy.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Linaro Ltd */ #include <linux/module.h> #include <linux/ulpi/driver.h> #include <linux/ulpi/regs.h> #include <linux/phy/phy.h> #include <linux/pinctrl/consumer.h> #include <linux/pinctrl/pinctrl-state.h> #include <linux/delay.h> #include <linux/clk.h> #define ULPI_HSIC_CFG 0x30 #define ULPI_HSIC_IO_CAL 0x33 struct qcom_usb_hsic_phy { struct ulpi *ulpi; struct phy *phy; struct pinctrl *pctl; struct clk *phy_clk; struct clk *cal_clk; struct clk *cal_sleep_clk; }; static int qcom_usb_hsic_phy_power_on(struct phy *phy) { struct qcom_usb_hsic_phy *uphy = phy_get_drvdata(phy); struct ulpi *ulpi = uphy->ulpi; struct pinctrl_state *pins_default; int ret; ret = clk_prepare_enable(uphy->phy_clk); if (ret) return ret; ret = clk_prepare_enable(uphy->cal_clk); if (ret) goto err_cal; ret = clk_prepare_enable(uphy->cal_sleep_clk); if (ret) goto err_sleep; /* Set periodic calibration interval to ~2.048sec in HSIC_IO_CAL_REG */ ret = ulpi_write(ulpi, ULPI_HSIC_IO_CAL, 0xff); if (ret) goto err_ulpi; /* Enable periodic IO calibration in HSIC_CFG register */ ret = ulpi_write(ulpi, ULPI_HSIC_CFG, 0xa8); if (ret) goto err_ulpi; /* Configure pins for HSIC functionality */ pins_default = pinctrl_lookup_state(uphy->pctl, PINCTRL_STATE_DEFAULT); if (IS_ERR(pins_default)) { ret = PTR_ERR(pins_default); goto err_ulpi; } ret = pinctrl_select_state(uphy->pctl, pins_default); if (ret) goto err_ulpi; /* Enable HSIC mode in HSIC_CFG register */ ret = ulpi_write(ulpi, ULPI_SET(ULPI_HSIC_CFG), 0x01); if (ret) goto err_ulpi; /* Disable auto-resume */ ret = ulpi_write(ulpi, ULPI_CLR(ULPI_IFC_CTRL), ULPI_IFC_CTRL_AUTORESUME); if (ret) goto err_ulpi; return ret; err_ulpi: clk_disable_unprepare(uphy->cal_sleep_clk); err_sleep: clk_disable_unprepare(uphy->cal_clk); err_cal: clk_disable_unprepare(uphy->phy_clk); return ret; } static int qcom_usb_hsic_phy_power_off(struct phy *phy) { struct qcom_usb_hsic_phy *uphy = phy_get_drvdata(phy); clk_disable_unprepare(uphy->cal_sleep_clk); clk_disable_unprepare(uphy->cal_clk); clk_disable_unprepare(uphy->phy_clk); return 0; } static const struct phy_ops qcom_usb_hsic_phy_ops = { .power_on = qcom_usb_hsic_phy_power_on, .power_off = qcom_usb_hsic_phy_power_off, .owner = THIS_MODULE, }; static int qcom_usb_hsic_phy_probe(struct ulpi *ulpi) { struct qcom_usb_hsic_phy *uphy; struct phy_provider *p; struct clk *clk; uphy = devm_kzalloc(&ulpi->dev, sizeof(*uphy), GFP_KERNEL); if (!uphy) return -ENOMEM; ulpi_set_drvdata(ulpi, uphy); uphy->ulpi = ulpi; uphy->pctl = devm_pinctrl_get(&ulpi->dev); if (IS_ERR(uphy->pctl)) return PTR_ERR(uphy->pctl); uphy->phy_clk = clk = devm_clk_get(&ulpi->dev, "phy"); if (IS_ERR(clk)) return PTR_ERR(clk); uphy->cal_clk = clk = devm_clk_get(&ulpi->dev, "cal"); if (IS_ERR(clk)) return PTR_ERR(clk); uphy->cal_sleep_clk = clk = devm_clk_get(&ulpi->dev, "cal_sleep"); if (IS_ERR(clk)) return PTR_ERR(clk); uphy->phy = devm_phy_create(&ulpi->dev, ulpi->dev.of_node, &qcom_usb_hsic_phy_ops); if (IS_ERR(uphy->phy)) return PTR_ERR(uphy->phy); phy_set_drvdata(uphy->phy, uphy); p = devm_of_phy_provider_register(&ulpi->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(p); } static const struct of_device_id qcom_usb_hsic_phy_match[] = { { .compatible = "qcom,usb-hsic-phy", }, { } }; MODULE_DEVICE_TABLE(of, qcom_usb_hsic_phy_match); static struct ulpi_driver qcom_usb_hsic_phy_driver = { .probe = qcom_usb_hsic_phy_probe, .driver = { .name = "qcom_usb_hsic_phy", .of_match_table = qcom_usb_hsic_phy_match, }, }; module_ulpi_driver(qcom_usb_hsic_phy_driver); MODULE_DESCRIPTION("Qualcomm USB HSIC phy"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-usb-hsic.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014, The Linux Foundation. All rights reserved. */ #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/time.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/phy/phy.h> struct qcom_ipq806x_sata_phy { void __iomem *mmio; struct clk *cfg_clk; struct device *dev; }; #define __set(v, a, b) (((v) << (b)) & GENMASK(a, b)) #define SATA_PHY_P0_PARAM0 0x200 #define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN3(x) __set(x, 17, 12) #define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN3_MASK GENMASK(17, 12) #define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN2(x) __set(x, 11, 6) #define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN2_MASK GENMASK(11, 6) #define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN1(x) __set(x, 5, 0) #define SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN1_MASK GENMASK(5, 0) #define SATA_PHY_P0_PARAM1 0x204 #define SATA_PHY_P0_PARAM1_RESERVED_BITS31_21(x) __set(x, 31, 21) #define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN3(x) __set(x, 20, 14) #define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN3_MASK GENMASK(20, 14) #define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN2(x) __set(x, 13, 7) #define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN2_MASK GENMASK(13, 7) #define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN1(x) __set(x, 6, 0) #define SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN1_MASK GENMASK(6, 0) #define SATA_PHY_P0_PARAM2 0x208 #define SATA_PHY_P0_PARAM2_RX_EQ(x) __set(x, 20, 18) #define SATA_PHY_P0_PARAM2_RX_EQ_MASK GENMASK(20, 18) #define SATA_PHY_P0_PARAM3 0x20C #define SATA_PHY_SSC_EN 0x8 #define SATA_PHY_P0_PARAM4 0x210 #define SATA_PHY_REF_SSP_EN 0x2 #define SATA_PHY_RESET 0x1 static int qcom_ipq806x_sata_phy_init(struct phy *generic_phy) { struct qcom_ipq806x_sata_phy *phy = phy_get_drvdata(generic_phy); u32 reg; /* Setting SSC_EN to 1 */ reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM3); reg = reg | SATA_PHY_SSC_EN; writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM3); reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM0) & ~(SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN3_MASK | SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN2_MASK | SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN1_MASK); reg |= SATA_PHY_P0_PARAM0_P0_TX_PREEMPH_GEN3(0xf); writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM0); reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM1) & ~(SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN3_MASK | SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN2_MASK | SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN1_MASK); reg |= SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN3(0x55) | SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN2(0x55) | SATA_PHY_P0_PARAM1_P0_TX_AMPLITUDE_GEN1(0x55); writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM1); reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM2) & ~SATA_PHY_P0_PARAM2_RX_EQ_MASK; reg |= SATA_PHY_P0_PARAM2_RX_EQ(0x3); writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM2); /* Setting PHY_RESET to 1 */ reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM4); reg = reg | SATA_PHY_RESET; writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM4); /* Setting REF_SSP_EN to 1 */ reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM4); reg = reg | SATA_PHY_REF_SSP_EN | SATA_PHY_RESET; writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM4); /* make sure all changes complete before we let the PHY out of reset */ mb(); /* sleep for max. 50us more to combine processor wakeups */ usleep_range(20, 20 + 50); /* Clearing PHY_RESET to 0 */ reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM4); reg = reg & ~SATA_PHY_RESET; writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM4); return 0; } static int qcom_ipq806x_sata_phy_exit(struct phy *generic_phy) { struct qcom_ipq806x_sata_phy *phy = phy_get_drvdata(generic_phy); u32 reg; /* Setting PHY_RESET to 1 */ reg = readl_relaxed(phy->mmio + SATA_PHY_P0_PARAM4); reg = reg | SATA_PHY_RESET; writel_relaxed(reg, phy->mmio + SATA_PHY_P0_PARAM4); return 0; } static const struct phy_ops qcom_ipq806x_sata_phy_ops = { .init = qcom_ipq806x_sata_phy_init, .exit = qcom_ipq806x_sata_phy_exit, .owner = THIS_MODULE, }; static int qcom_ipq806x_sata_phy_probe(struct platform_device *pdev) { struct qcom_ipq806x_sata_phy *phy; struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct phy *generic_phy; int ret; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) return -ENOMEM; phy->mmio = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(phy->mmio)) return PTR_ERR(phy->mmio); generic_phy = devm_phy_create(dev, NULL, &qcom_ipq806x_sata_phy_ops); if (IS_ERR(generic_phy)) { dev_err(dev, "%s: failed to create phy\n", __func__); return PTR_ERR(generic_phy); } phy->dev = dev; phy_set_drvdata(generic_phy, phy); platform_set_drvdata(pdev, phy); phy->cfg_clk = devm_clk_get(dev, "cfg"); if (IS_ERR(phy->cfg_clk)) { dev_err(dev, "Failed to get sata cfg clock\n"); return PTR_ERR(phy->cfg_clk); } ret = clk_prepare_enable(phy->cfg_clk); if (ret) return ret; phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) { clk_disable_unprepare(phy->cfg_clk); dev_err(dev, "%s: failed to register phy\n", __func__); return PTR_ERR(phy_provider); } return 0; } static void qcom_ipq806x_sata_phy_remove(struct platform_device *pdev) { struct qcom_ipq806x_sata_phy *phy = platform_get_drvdata(pdev); clk_disable_unprepare(phy->cfg_clk); } static const struct of_device_id qcom_ipq806x_sata_phy_of_match[] = { { .compatible = "qcom,ipq806x-sata-phy" }, { }, }; MODULE_DEVICE_TABLE(of, qcom_ipq806x_sata_phy_of_match); static struct platform_driver qcom_ipq806x_sata_phy_driver = { .probe = qcom_ipq806x_sata_phy_probe, .remove_new = qcom_ipq806x_sata_phy_remove, .driver = { .name = "qcom-ipq806x-sata-phy", .of_match_table = qcom_ipq806x_sata_phy_of_match, } }; module_platform_driver(qcom_ipq806x_sata_phy_driver); MODULE_DESCRIPTION("QCOM IPQ806x SATA PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-ipq806x-sata.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017, 2019, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #include <dt-bindings/phy/phy-qcom-qusb2.h> #define QUSB2PHY_PLL 0x0 #define QUSB2PHY_PLL_TEST 0x04 #define CLK_REF_SEL BIT(7) #define QUSB2PHY_PLL_TUNE 0x08 #define QUSB2PHY_PLL_USER_CTL1 0x0c #define QUSB2PHY_PLL_USER_CTL2 0x10 #define QUSB2PHY_PLL_AUTOPGM_CTL1 0x1c #define QUSB2PHY_PLL_PWR_CTRL 0x18 /* QUSB2PHY_PLL_STATUS register bits */ #define PLL_LOCKED BIT(5) /* QUSB2PHY_PLL_COMMON_STATUS_ONE register bits */ #define CORE_READY_STATUS BIT(0) /* QUSB2PHY_PORT_POWERDOWN register bits */ #define CLAMP_N_EN BIT(5) #define FREEZIO_N BIT(1) #define POWER_DOWN BIT(0) /* QUSB2PHY_PWR_CTRL1 register bits */ #define PWR_CTRL1_VREF_SUPPLY_TRIM BIT(5) #define PWR_CTRL1_CLAMP_N_EN BIT(1) #define QUSB2PHY_REFCLK_ENABLE BIT(0) #define PHY_CLK_SCHEME_SEL BIT(0) /* QUSB2PHY_INTR_CTRL register bits */ #define DMSE_INTR_HIGH_SEL BIT(4) #define DPSE_INTR_HIGH_SEL BIT(3) #define CHG_DET_INTR_EN BIT(2) #define DMSE_INTR_EN BIT(1) #define DPSE_INTR_EN BIT(0) /* QUSB2PHY_PLL_CORE_INPUT_OVERRIDE register bits */ #define CORE_PLL_EN_FROM_RESET BIT(4) #define CORE_RESET BIT(5) #define CORE_RESET_MUX BIT(6) /* QUSB2PHY_IMP_CTRL1 register bits */ #define IMP_RES_OFFSET_MASK GENMASK(5, 0) #define IMP_RES_OFFSET_SHIFT 0x0 /* QUSB2PHY_PLL_BIAS_CONTROL_2 register bits */ #define BIAS_CTRL2_RES_OFFSET_MASK GENMASK(5, 0) #define BIAS_CTRL2_RES_OFFSET_SHIFT 0x0 /* QUSB2PHY_CHG_CONTROL_2 register bits */ #define CHG_CTRL2_OFFSET_MASK GENMASK(5, 4) #define CHG_CTRL2_OFFSET_SHIFT 0x4 /* QUSB2PHY_PORT_TUNE1 register bits */ #define HSTX_TRIM_MASK GENMASK(7, 4) #define HSTX_TRIM_SHIFT 0x4 #define PREEMPH_WIDTH_HALF_BIT BIT(2) #define PREEMPHASIS_EN_MASK GENMASK(1, 0) #define PREEMPHASIS_EN_SHIFT 0x0 /* QUSB2PHY_PORT_TUNE2 register bits */ #define HSDISC_TRIM_MASK GENMASK(1, 0) #define HSDISC_TRIM_SHIFT 0x0 #define QUSB2PHY_PLL_ANALOG_CONTROLS_TWO 0x04 #define QUSB2PHY_PLL_CLOCK_INVERTERS 0x18c #define QUSB2PHY_PLL_CMODE 0x2c #define QUSB2PHY_PLL_LOCK_DELAY 0x184 #define QUSB2PHY_PLL_DIGITAL_TIMERS_TWO 0xb4 #define QUSB2PHY_PLL_BIAS_CONTROL_1 0x194 #define QUSB2PHY_PLL_BIAS_CONTROL_2 0x198 #define QUSB2PHY_PWR_CTRL2 0x214 #define QUSB2PHY_IMP_CTRL1 0x220 #define QUSB2PHY_IMP_CTRL2 0x224 #define QUSB2PHY_CHG_CTRL2 0x23c struct qusb2_phy_init_tbl { unsigned int offset; unsigned int val; /* * register part of layout ? * if yes, then offset gives index in the reg-layout */ int in_layout; }; #define QUSB2_PHY_INIT_CFG(o, v) \ { \ .offset = o, \ .val = v, \ } #define QUSB2_PHY_INIT_CFG_L(o, v) \ { \ .offset = o, \ .val = v, \ .in_layout = 1, \ } /* set of registers with offsets different per-PHY */ enum qusb2phy_reg_layout { QUSB2PHY_PLL_CORE_INPUT_OVERRIDE, QUSB2PHY_PLL_STATUS, QUSB2PHY_PORT_TUNE1, QUSB2PHY_PORT_TUNE2, QUSB2PHY_PORT_TUNE3, QUSB2PHY_PORT_TUNE4, QUSB2PHY_PORT_TUNE5, QUSB2PHY_PORT_TEST1, QUSB2PHY_PORT_TEST2, QUSB2PHY_PORT_POWERDOWN, QUSB2PHY_INTR_CTRL, }; static const struct qusb2_phy_init_tbl ipq6018_init_tbl[] = { QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL, 0x14), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE1, 0xF8), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE2, 0xB3), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE3, 0x83), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE4, 0xC0), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_TUNE, 0x30), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL1, 0x79), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL2, 0x21), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE5, 0x00), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_PWR_CTRL, 0x00), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TEST2, 0x14), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_TEST, 0x80), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_AUTOPGM_CTL1, 0x9F), }; static const unsigned int ipq6018_regs_layout[] = { [QUSB2PHY_PLL_STATUS] = 0x38, [QUSB2PHY_PORT_TUNE1] = 0x80, [QUSB2PHY_PORT_TUNE2] = 0x84, [QUSB2PHY_PORT_TUNE3] = 0x88, [QUSB2PHY_PORT_TUNE4] = 0x8C, [QUSB2PHY_PORT_TUNE5] = 0x90, [QUSB2PHY_PORT_TEST1] = 0x98, [QUSB2PHY_PORT_TEST2] = 0x9C, [QUSB2PHY_PORT_POWERDOWN] = 0xB4, [QUSB2PHY_INTR_CTRL] = 0xBC, }; static const unsigned int msm8996_regs_layout[] = { [QUSB2PHY_PLL_STATUS] = 0x38, [QUSB2PHY_PORT_TUNE1] = 0x80, [QUSB2PHY_PORT_TUNE2] = 0x84, [QUSB2PHY_PORT_TUNE3] = 0x88, [QUSB2PHY_PORT_TUNE4] = 0x8c, [QUSB2PHY_PORT_TUNE5] = 0x90, [QUSB2PHY_PORT_TEST1] = 0xb8, [QUSB2PHY_PORT_TEST2] = 0x9c, [QUSB2PHY_PORT_POWERDOWN] = 0xb4, [QUSB2PHY_INTR_CTRL] = 0xbc, }; static const struct qusb2_phy_init_tbl msm8996_init_tbl[] = { QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE1, 0xf8), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE2, 0xb3), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE3, 0x83), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE4, 0xc0), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_TUNE, 0x30), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL1, 0x79), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL2, 0x21), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TEST2, 0x14), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_AUTOPGM_CTL1, 0x9f), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_PWR_CTRL, 0x00), }; static const unsigned int msm8998_regs_layout[] = { [QUSB2PHY_PLL_CORE_INPUT_OVERRIDE] = 0xa8, [QUSB2PHY_PLL_STATUS] = 0x1a0, [QUSB2PHY_PORT_TUNE1] = 0x23c, [QUSB2PHY_PORT_TUNE2] = 0x240, [QUSB2PHY_PORT_TUNE3] = 0x244, [QUSB2PHY_PORT_TUNE4] = 0x248, [QUSB2PHY_PORT_TEST1] = 0x24c, [QUSB2PHY_PORT_TEST2] = 0x250, [QUSB2PHY_PORT_POWERDOWN] = 0x210, [QUSB2PHY_INTR_CTRL] = 0x22c, }; static const struct qusb2_phy_init_tbl msm8998_init_tbl[] = { QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_ANALOG_CONTROLS_TWO, 0x13), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_CLOCK_INVERTERS, 0x7c), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_CMODE, 0x80), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_LOCK_DELAY, 0x0a), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE1, 0xa5), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE2, 0x09), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_DIGITAL_TIMERS_TWO, 0x19), }; static const struct qusb2_phy_init_tbl sm6115_init_tbl[] = { QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE1, 0xf8), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE2, 0x53), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE3, 0x81), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE4, 0x17), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_TUNE, 0x30), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL1, 0x79), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_USER_CTL2, 0x21), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TEST2, 0x14), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_AUTOPGM_CTL1, 0x9f), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_PWR_CTRL, 0x00), }; static const unsigned int qusb2_v2_regs_layout[] = { [QUSB2PHY_PLL_CORE_INPUT_OVERRIDE] = 0xa8, [QUSB2PHY_PLL_STATUS] = 0x1a0, [QUSB2PHY_PORT_TUNE1] = 0x240, [QUSB2PHY_PORT_TUNE2] = 0x244, [QUSB2PHY_PORT_TUNE3] = 0x248, [QUSB2PHY_PORT_TUNE4] = 0x24c, [QUSB2PHY_PORT_TUNE5] = 0x250, [QUSB2PHY_PORT_TEST1] = 0x254, [QUSB2PHY_PORT_TEST2] = 0x258, [QUSB2PHY_PORT_POWERDOWN] = 0x210, [QUSB2PHY_INTR_CTRL] = 0x230, }; static const struct qusb2_phy_init_tbl qusb2_v2_init_tbl[] = { QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_ANALOG_CONTROLS_TWO, 0x03), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_CLOCK_INVERTERS, 0x7c), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_CMODE, 0x80), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_LOCK_DELAY, 0x0a), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_DIGITAL_TIMERS_TWO, 0x19), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_BIAS_CONTROL_1, 0x40), QUSB2_PHY_INIT_CFG(QUSB2PHY_PLL_BIAS_CONTROL_2, 0x20), QUSB2_PHY_INIT_CFG(QUSB2PHY_PWR_CTRL2, 0x21), QUSB2_PHY_INIT_CFG(QUSB2PHY_IMP_CTRL1, 0x0), QUSB2_PHY_INIT_CFG(QUSB2PHY_IMP_CTRL2, 0x58), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE1, 0x30), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE2, 0x29), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE3, 0xca), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE4, 0x04), QUSB2_PHY_INIT_CFG_L(QUSB2PHY_PORT_TUNE5, 0x03), QUSB2_PHY_INIT_CFG(QUSB2PHY_CHG_CTRL2, 0x0), }; struct qusb2_phy_cfg { const struct qusb2_phy_init_tbl *tbl; /* number of entries in the table */ unsigned int tbl_num; /* offset to PHY_CLK_SCHEME register in TCSR map */ unsigned int clk_scheme_offset; /* array of registers with different offsets */ const unsigned int *regs; unsigned int mask_core_ready; unsigned int disable_ctrl; unsigned int autoresume_en; /* true if PHY has PLL_TEST register to select clk_scheme */ bool has_pll_test; /* true if TUNE1 register must be updated by fused value, else TUNE2 */ bool update_tune1_with_efuse; /* true if PHY has PLL_CORE_INPUT_OVERRIDE register to reset PLL */ bool has_pll_override; /* true if PHY default clk scheme is single-ended */ bool se_clk_scheme_default; }; static const struct qusb2_phy_cfg msm8996_phy_cfg = { .tbl = msm8996_init_tbl, .tbl_num = ARRAY_SIZE(msm8996_init_tbl), .regs = msm8996_regs_layout, .has_pll_test = true, .se_clk_scheme_default = true, .disable_ctrl = (CLAMP_N_EN | FREEZIO_N | POWER_DOWN), .mask_core_ready = PLL_LOCKED, .autoresume_en = BIT(3), }; static const struct qusb2_phy_cfg msm8998_phy_cfg = { .tbl = msm8998_init_tbl, .tbl_num = ARRAY_SIZE(msm8998_init_tbl), .regs = msm8998_regs_layout, .disable_ctrl = POWER_DOWN, .mask_core_ready = CORE_READY_STATUS, .has_pll_override = true, .se_clk_scheme_default = true, .autoresume_en = BIT(0), .update_tune1_with_efuse = true, }; static const struct qusb2_phy_cfg ipq6018_phy_cfg = { .tbl = ipq6018_init_tbl, .tbl_num = ARRAY_SIZE(ipq6018_init_tbl), .regs = ipq6018_regs_layout, .disable_ctrl = POWER_DOWN, .mask_core_ready = PLL_LOCKED, /* autoresume not used */ .autoresume_en = BIT(0), }; static const struct qusb2_phy_cfg qusb2_v2_phy_cfg = { .tbl = qusb2_v2_init_tbl, .tbl_num = ARRAY_SIZE(qusb2_v2_init_tbl), .regs = qusb2_v2_regs_layout, .disable_ctrl = (PWR_CTRL1_VREF_SUPPLY_TRIM | PWR_CTRL1_CLAMP_N_EN | POWER_DOWN), .mask_core_ready = CORE_READY_STATUS, .has_pll_override = true, .se_clk_scheme_default = true, .autoresume_en = BIT(0), .update_tune1_with_efuse = true, }; static const struct qusb2_phy_cfg sdm660_phy_cfg = { .tbl = msm8996_init_tbl, .tbl_num = ARRAY_SIZE(msm8996_init_tbl), .regs = msm8996_regs_layout, .has_pll_test = true, .se_clk_scheme_default = false, .disable_ctrl = (CLAMP_N_EN | FREEZIO_N | POWER_DOWN), .mask_core_ready = PLL_LOCKED, .autoresume_en = BIT(3), }; static const struct qusb2_phy_cfg sm6115_phy_cfg = { .tbl = sm6115_init_tbl, .tbl_num = ARRAY_SIZE(sm6115_init_tbl), .regs = msm8996_regs_layout, .has_pll_test = true, .se_clk_scheme_default = true, .disable_ctrl = (CLAMP_N_EN | FREEZIO_N | POWER_DOWN), .mask_core_ready = PLL_LOCKED, .autoresume_en = BIT(3), }; static const char * const qusb2_phy_vreg_names[] = { "vdd", "vdda-pll", "vdda-phy-dpdm", }; #define QUSB2_NUM_VREGS ARRAY_SIZE(qusb2_phy_vreg_names) /* struct override_param - structure holding qusb2 v2 phy overriding param * set override true if the device tree property exists and read and assign * to value */ struct override_param { bool override; u8 value; }; /*struct override_params - structure holding qusb2 v2 phy overriding params * @imp_res_offset: rescode offset to be updated in IMP_CTRL1 register * @hstx_trim: HSTX_TRIM to be updated in TUNE1 register * @preemphasis: Amplitude Pre-Emphasis to be updated in TUNE1 register * @preemphasis_width: half/full-width Pre-Emphasis updated via TUNE1 * @bias_ctrl: bias ctrl to be updated in BIAS_CONTROL_2 register * @charge_ctrl: charge ctrl to be updated in CHG_CTRL2 register * @hsdisc_trim: disconnect threshold to be updated in TUNE2 register */ struct override_params { struct override_param imp_res_offset; struct override_param hstx_trim; struct override_param preemphasis; struct override_param preemphasis_width; struct override_param bias_ctrl; struct override_param charge_ctrl; struct override_param hsdisc_trim; }; /** * struct qusb2_phy - structure holding qusb2 phy attributes * * @phy: generic phy * @base: iomapped memory space for qubs2 phy * * @cfg_ahb_clk: AHB2PHY interface clock * @ref_clk: phy reference clock * @iface_clk: phy interface clock * @phy_reset: phy reset control * @vregs: regulator supplies bulk data * * @tcsr: TCSR syscon register map * @cell: nvmem cell containing phy tuning value * * @overrides: pointer to structure for all overriding tuning params * * @cfg: phy config data * @has_se_clk_scheme: indicate if PHY has single-ended ref clock scheme * @phy_initialized: indicate if PHY has been initialized * @mode: current PHY mode */ struct qusb2_phy { struct phy *phy; void __iomem *base; struct clk *cfg_ahb_clk; struct clk *ref_clk; struct clk *iface_clk; struct reset_control *phy_reset; struct regulator_bulk_data vregs[QUSB2_NUM_VREGS]; struct regmap *tcsr; struct nvmem_cell *cell; struct override_params overrides; const struct qusb2_phy_cfg *cfg; bool has_se_clk_scheme; bool phy_initialized; enum phy_mode mode; }; static inline void qusb2_write_mask(void __iomem *base, u32 offset, u32 val, u32 mask) { u32 reg; reg = readl(base + offset); reg &= ~mask; reg |= val & mask; writel(reg, base + offset); /* Ensure above write is completed */ readl(base + offset); } static inline void qusb2_setbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg |= val; writel(reg, base + offset); /* Ensure above write is completed */ readl(base + offset); } static inline void qusb2_clrbits(void __iomem *base, u32 offset, u32 val) { u32 reg; reg = readl(base + offset); reg &= ~val; writel(reg, base + offset); /* Ensure above write is completed */ readl(base + offset); } static inline void qcom_qusb2_phy_configure(void __iomem *base, const unsigned int *regs, const struct qusb2_phy_init_tbl tbl[], int num) { int i; for (i = 0; i < num; i++) { if (tbl[i].in_layout) writel(tbl[i].val, base + regs[tbl[i].offset]); else writel(tbl[i].val, base + tbl[i].offset); } } /* * Update board specific PHY tuning override values if specified from * device tree. */ static void qusb2_phy_override_phy_params(struct qusb2_phy *qphy) { const struct qusb2_phy_cfg *cfg = qphy->cfg; struct override_params *or = &qphy->overrides; if (or->imp_res_offset.override) qusb2_write_mask(qphy->base, QUSB2PHY_IMP_CTRL1, or->imp_res_offset.value << IMP_RES_OFFSET_SHIFT, IMP_RES_OFFSET_MASK); if (or->bias_ctrl.override) qusb2_write_mask(qphy->base, QUSB2PHY_PLL_BIAS_CONTROL_2, or->bias_ctrl.value << BIAS_CTRL2_RES_OFFSET_SHIFT, BIAS_CTRL2_RES_OFFSET_MASK); if (or->charge_ctrl.override) qusb2_write_mask(qphy->base, QUSB2PHY_CHG_CTRL2, or->charge_ctrl.value << CHG_CTRL2_OFFSET_SHIFT, CHG_CTRL2_OFFSET_MASK); if (or->hstx_trim.override) qusb2_write_mask(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE1], or->hstx_trim.value << HSTX_TRIM_SHIFT, HSTX_TRIM_MASK); if (or->preemphasis.override) qusb2_write_mask(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE1], or->preemphasis.value << PREEMPHASIS_EN_SHIFT, PREEMPHASIS_EN_MASK); if (or->preemphasis_width.override) { if (or->preemphasis_width.value == QUSB2_V2_PREEMPHASIS_WIDTH_HALF_BIT) qusb2_setbits(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE1], PREEMPH_WIDTH_HALF_BIT); else qusb2_clrbits(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE1], PREEMPH_WIDTH_HALF_BIT); } if (or->hsdisc_trim.override) qusb2_write_mask(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE2], or->hsdisc_trim.value << HSDISC_TRIM_SHIFT, HSDISC_TRIM_MASK); } /* * Fetches HS Tx tuning value from nvmem and sets the * QUSB2PHY_PORT_TUNE1/2 register. * For error case, skip setting the value and use the default value. */ static void qusb2_phy_set_tune2_param(struct qusb2_phy *qphy) { struct device *dev = &qphy->phy->dev; const struct qusb2_phy_cfg *cfg = qphy->cfg; u8 *val, hstx_trim; /* efuse register is optional */ if (!qphy->cell) return; /* * Read efuse register having TUNE2/1 parameter's high nibble. * If efuse register shows value as 0x0 (indicating value is not * fused), or if we fail to find a valid efuse register setting, * then use default value for high nibble that we have already * set while configuring the phy. */ val = nvmem_cell_read(qphy->cell, NULL); if (IS_ERR(val)) { dev_dbg(dev, "failed to read a valid hs-tx trim value\n"); return; } hstx_trim = val[0]; kfree(val); if (!hstx_trim) { dev_dbg(dev, "failed to read a valid hs-tx trim value\n"); return; } /* Fused TUNE1/2 value is the higher nibble only */ if (cfg->update_tune1_with_efuse) qusb2_write_mask(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE1], hstx_trim << HSTX_TRIM_SHIFT, HSTX_TRIM_MASK); else qusb2_write_mask(qphy->base, cfg->regs[QUSB2PHY_PORT_TUNE2], hstx_trim << HSTX_TRIM_SHIFT, HSTX_TRIM_MASK); } static int qusb2_phy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct qusb2_phy *qphy = phy_get_drvdata(phy); qphy->mode = mode; return 0; } static int __maybe_unused qusb2_phy_runtime_suspend(struct device *dev) { struct qusb2_phy *qphy = dev_get_drvdata(dev); const struct qusb2_phy_cfg *cfg = qphy->cfg; u32 intr_mask; dev_vdbg(dev, "Suspending QUSB2 Phy, mode:%d\n", qphy->mode); if (!qphy->phy_initialized) { dev_vdbg(dev, "PHY not initialized, bailing out\n"); return 0; } /* * Enable DP/DM interrupts to detect line state changes based on current * speed. In other words, enable the triggers _opposite_ of what the * current D+/D- levels are e.g. if currently D+ high, D- low * (HS 'J'/Suspend), configure the mask to trigger on D+ low OR D- high */ intr_mask = DPSE_INTR_EN | DMSE_INTR_EN; switch (qphy->mode) { case PHY_MODE_USB_HOST_HS: case PHY_MODE_USB_HOST_FS: case PHY_MODE_USB_DEVICE_HS: case PHY_MODE_USB_DEVICE_FS: intr_mask |= DMSE_INTR_HIGH_SEL; break; case PHY_MODE_USB_HOST_LS: case PHY_MODE_USB_DEVICE_LS: intr_mask |= DPSE_INTR_HIGH_SEL; break; default: /* No device connected, enable both DP/DM high interrupt */ intr_mask |= DMSE_INTR_HIGH_SEL; intr_mask |= DPSE_INTR_HIGH_SEL; break; } writel(intr_mask, qphy->base + cfg->regs[QUSB2PHY_INTR_CTRL]); /* hold core PLL into reset */ if (cfg->has_pll_override) { qusb2_setbits(qphy->base, cfg->regs[QUSB2PHY_PLL_CORE_INPUT_OVERRIDE], CORE_PLL_EN_FROM_RESET | CORE_RESET | CORE_RESET_MUX); } /* enable phy auto-resume only if device is connected on bus */ if (qphy->mode != PHY_MODE_INVALID) { qusb2_setbits(qphy->base, cfg->regs[QUSB2PHY_PORT_TEST1], cfg->autoresume_en); /* Autoresume bit has to be toggled in order to enable it */ qusb2_clrbits(qphy->base, cfg->regs[QUSB2PHY_PORT_TEST1], cfg->autoresume_en); } if (!qphy->has_se_clk_scheme) clk_disable_unprepare(qphy->ref_clk); clk_disable_unprepare(qphy->cfg_ahb_clk); clk_disable_unprepare(qphy->iface_clk); return 0; } static int __maybe_unused qusb2_phy_runtime_resume(struct device *dev) { struct qusb2_phy *qphy = dev_get_drvdata(dev); const struct qusb2_phy_cfg *cfg = qphy->cfg; int ret; dev_vdbg(dev, "Resuming QUSB2 phy, mode:%d\n", qphy->mode); if (!qphy->phy_initialized) { dev_vdbg(dev, "PHY not initialized, bailing out\n"); return 0; } ret = clk_prepare_enable(qphy->iface_clk); if (ret) { dev_err(dev, "failed to enable iface_clk, %d\n", ret); return ret; } ret = clk_prepare_enable(qphy->cfg_ahb_clk); if (ret) { dev_err(dev, "failed to enable cfg ahb clock, %d\n", ret); goto disable_iface_clk; } if (!qphy->has_se_clk_scheme) { ret = clk_prepare_enable(qphy->ref_clk); if (ret) { dev_err(dev, "failed to enable ref clk, %d\n", ret); goto disable_ahb_clk; } } writel(0x0, qphy->base + cfg->regs[QUSB2PHY_INTR_CTRL]); /* bring core PLL out of reset */ if (cfg->has_pll_override) { qusb2_clrbits(qphy->base, cfg->regs[QUSB2PHY_PLL_CORE_INPUT_OVERRIDE], CORE_RESET | CORE_RESET_MUX); } return 0; disable_ahb_clk: clk_disable_unprepare(qphy->cfg_ahb_clk); disable_iface_clk: clk_disable_unprepare(qphy->iface_clk); return ret; } static int qusb2_phy_init(struct phy *phy) { struct qusb2_phy *qphy = phy_get_drvdata(phy); const struct qusb2_phy_cfg *cfg = qphy->cfg; unsigned int val = 0; unsigned int clk_scheme; int ret; dev_vdbg(&phy->dev, "%s(): Initializing QUSB2 phy\n", __func__); /* turn on regulator supplies */ ret = regulator_bulk_enable(ARRAY_SIZE(qphy->vregs), qphy->vregs); if (ret) return ret; ret = clk_prepare_enable(qphy->iface_clk); if (ret) { dev_err(&phy->dev, "failed to enable iface_clk, %d\n", ret); goto poweroff_phy; } /* enable ahb interface clock to program phy */ ret = clk_prepare_enable(qphy->cfg_ahb_clk); if (ret) { dev_err(&phy->dev, "failed to enable cfg ahb clock, %d\n", ret); goto disable_iface_clk; } /* Perform phy reset */ ret = reset_control_assert(qphy->phy_reset); if (ret) { dev_err(&phy->dev, "failed to assert phy_reset, %d\n", ret); goto disable_ahb_clk; } /* 100 us delay to keep PHY in reset mode */ usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) { dev_err(&phy->dev, "failed to de-assert phy_reset, %d\n", ret); goto disable_ahb_clk; } /* Disable the PHY */ qusb2_setbits(qphy->base, cfg->regs[QUSB2PHY_PORT_POWERDOWN], qphy->cfg->disable_ctrl); if (cfg->has_pll_test) { /* save reset value to override reference clock scheme later */ val = readl(qphy->base + QUSB2PHY_PLL_TEST); } qcom_qusb2_phy_configure(qphy->base, cfg->regs, cfg->tbl, cfg->tbl_num); /* Override board specific PHY tuning values */ qusb2_phy_override_phy_params(qphy); /* Set efuse value for tuning the PHY */ qusb2_phy_set_tune2_param(qphy); /* Enable the PHY */ qusb2_clrbits(qphy->base, cfg->regs[QUSB2PHY_PORT_POWERDOWN], POWER_DOWN); /* Required to get phy pll lock successfully */ usleep_range(150, 160); /* * Not all the SoCs have got a readable TCSR_PHY_CLK_SCHEME * register in the TCSR so, if there's none, use the default * value hardcoded in the configuration. */ qphy->has_se_clk_scheme = cfg->se_clk_scheme_default; /* * read TCSR_PHY_CLK_SCHEME register to check if single-ended * clock scheme is selected. If yes, then disable differential * ref_clk and use single-ended clock, otherwise use differential * ref_clk only. */ if (qphy->tcsr) { ret = regmap_read(qphy->tcsr, qphy->cfg->clk_scheme_offset, &clk_scheme); if (ret) { dev_err(&phy->dev, "failed to read clk scheme reg\n"); goto assert_phy_reset; } /* is it a differential clock scheme ? */ if (!(clk_scheme & PHY_CLK_SCHEME_SEL)) { dev_vdbg(&phy->dev, "%s(): select differential clk\n", __func__); qphy->has_se_clk_scheme = false; } else { dev_vdbg(&phy->dev, "%s(): select single-ended clk\n", __func__); } } if (!qphy->has_se_clk_scheme) { ret = clk_prepare_enable(qphy->ref_clk); if (ret) { dev_err(&phy->dev, "failed to enable ref clk, %d\n", ret); goto assert_phy_reset; } } if (cfg->has_pll_test) { if (!qphy->has_se_clk_scheme) val &= ~CLK_REF_SEL; else val |= CLK_REF_SEL; writel(val, qphy->base + QUSB2PHY_PLL_TEST); /* ensure above write is through */ readl(qphy->base + QUSB2PHY_PLL_TEST); } /* Required to get phy pll lock successfully */ usleep_range(100, 110); val = readb(qphy->base + cfg->regs[QUSB2PHY_PLL_STATUS]); if (!(val & cfg->mask_core_ready)) { dev_err(&phy->dev, "QUSB2PHY pll lock failed: status reg = %x\n", val); ret = -EBUSY; goto disable_ref_clk; } qphy->phy_initialized = true; return 0; disable_ref_clk: if (!qphy->has_se_clk_scheme) clk_disable_unprepare(qphy->ref_clk); assert_phy_reset: reset_control_assert(qphy->phy_reset); disable_ahb_clk: clk_disable_unprepare(qphy->cfg_ahb_clk); disable_iface_clk: clk_disable_unprepare(qphy->iface_clk); poweroff_phy: regulator_bulk_disable(ARRAY_SIZE(qphy->vregs), qphy->vregs); return ret; } static int qusb2_phy_exit(struct phy *phy) { struct qusb2_phy *qphy = phy_get_drvdata(phy); /* Disable the PHY */ qusb2_setbits(qphy->base, qphy->cfg->regs[QUSB2PHY_PORT_POWERDOWN], qphy->cfg->disable_ctrl); if (!qphy->has_se_clk_scheme) clk_disable_unprepare(qphy->ref_clk); reset_control_assert(qphy->phy_reset); clk_disable_unprepare(qphy->cfg_ahb_clk); clk_disable_unprepare(qphy->iface_clk); regulator_bulk_disable(ARRAY_SIZE(qphy->vregs), qphy->vregs); qphy->phy_initialized = false; return 0; } static const struct phy_ops qusb2_phy_gen_ops = { .init = qusb2_phy_init, .exit = qusb2_phy_exit, .set_mode = qusb2_phy_set_mode, .owner = THIS_MODULE, }; static const struct of_device_id qusb2_phy_of_match_table[] = { { .compatible = "qcom,ipq6018-qusb2-phy", .data = &ipq6018_phy_cfg, }, { .compatible = "qcom,ipq8074-qusb2-phy", .data = &msm8996_phy_cfg, }, { .compatible = "qcom,ipq9574-qusb2-phy", .data = &ipq6018_phy_cfg, }, { .compatible = "qcom,msm8953-qusb2-phy", .data = &msm8996_phy_cfg, }, { .compatible = "qcom,msm8996-qusb2-phy", .data = &msm8996_phy_cfg, }, { .compatible = "qcom,msm8998-qusb2-phy", .data = &msm8998_phy_cfg, }, { .compatible = "qcom,qcm2290-qusb2-phy", .data = &sm6115_phy_cfg, }, { .compatible = "qcom,sdm660-qusb2-phy", .data = &sdm660_phy_cfg, }, { .compatible = "qcom,sm4250-qusb2-phy", .data = &sm6115_phy_cfg, }, { .compatible = "qcom,sm6115-qusb2-phy", .data = &sm6115_phy_cfg, }, { /* * Deprecated. Only here to support legacy device * trees that didn't include "qcom,qusb2-v2-phy" */ .compatible = "qcom,sdm845-qusb2-phy", .data = &qusb2_v2_phy_cfg, }, { .compatible = "qcom,qusb2-v2-phy", .data = &qusb2_v2_phy_cfg, }, { }, }; MODULE_DEVICE_TABLE(of, qusb2_phy_of_match_table); static const struct dev_pm_ops qusb2_phy_pm_ops = { SET_RUNTIME_PM_OPS(qusb2_phy_runtime_suspend, qusb2_phy_runtime_resume, NULL) }; static int qusb2_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct qusb2_phy *qphy; struct phy_provider *phy_provider; struct phy *generic_phy; int ret, i; int num; u32 value; struct override_params *or; qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL); if (!qphy) return -ENOMEM; or = &qphy->overrides; qphy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(qphy->base)) return PTR_ERR(qphy->base); qphy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb"); if (IS_ERR(qphy->cfg_ahb_clk)) return dev_err_probe(dev, PTR_ERR(qphy->cfg_ahb_clk), "failed to get cfg ahb clk\n"); qphy->ref_clk = devm_clk_get(dev, "ref"); if (IS_ERR(qphy->ref_clk)) return dev_err_probe(dev, PTR_ERR(qphy->ref_clk), "failed to get ref clk\n"); qphy->iface_clk = devm_clk_get_optional(dev, "iface"); if (IS_ERR(qphy->iface_clk)) return PTR_ERR(qphy->iface_clk); qphy->phy_reset = devm_reset_control_get_by_index(&pdev->dev, 0); if (IS_ERR(qphy->phy_reset)) { dev_err(dev, "failed to get phy core reset\n"); return PTR_ERR(qphy->phy_reset); } num = ARRAY_SIZE(qphy->vregs); for (i = 0; i < num; i++) qphy->vregs[i].supply = qusb2_phy_vreg_names[i]; ret = devm_regulator_bulk_get(dev, num, qphy->vregs); if (ret) return dev_err_probe(dev, ret, "failed to get regulator supplies\n"); /* Get the specific init parameters of QMP phy */ qphy->cfg = of_device_get_match_data(dev); qphy->tcsr = syscon_regmap_lookup_by_phandle(dev->of_node, "qcom,tcsr-syscon"); if (IS_ERR(qphy->tcsr)) { dev_dbg(dev, "failed to lookup TCSR regmap\n"); qphy->tcsr = NULL; } qphy->cell = devm_nvmem_cell_get(dev, NULL); if (IS_ERR(qphy->cell)) { if (PTR_ERR(qphy->cell) == -EPROBE_DEFER) return -EPROBE_DEFER; qphy->cell = NULL; dev_dbg(dev, "failed to lookup tune2 hstx trim value\n"); } if (!of_property_read_u32(dev->of_node, "qcom,imp-res-offset-value", &value)) { or->imp_res_offset.value = (u8)value; or->imp_res_offset.override = true; } if (!of_property_read_u32(dev->of_node, "qcom,bias-ctrl-value", &value)) { or->bias_ctrl.value = (u8)value; or->bias_ctrl.override = true; } if (!of_property_read_u32(dev->of_node, "qcom,charge-ctrl-value", &value)) { or->charge_ctrl.value = (u8)value; or->charge_ctrl.override = true; } if (!of_property_read_u32(dev->of_node, "qcom,hstx-trim-value", &value)) { or->hstx_trim.value = (u8)value; or->hstx_trim.override = true; } if (!of_property_read_u32(dev->of_node, "qcom,preemphasis-level", &value)) { or->preemphasis.value = (u8)value; or->preemphasis.override = true; } if (!of_property_read_u32(dev->of_node, "qcom,preemphasis-width", &value)) { or->preemphasis_width.value = (u8)value; or->preemphasis_width.override = true; } if (!of_property_read_u32(dev->of_node, "qcom,hsdisc-trim-value", &value)) { or->hsdisc_trim.value = (u8)value; or->hsdisc_trim.override = true; } pm_runtime_set_active(dev); pm_runtime_enable(dev); /* * Prevent runtime pm from being ON by default. Users can enable * it using power/control in sysfs. */ pm_runtime_forbid(dev); generic_phy = devm_phy_create(dev, NULL, &qusb2_phy_gen_ops); if (IS_ERR(generic_phy)) { ret = PTR_ERR(generic_phy); dev_err(dev, "failed to create phy, %d\n", ret); pm_runtime_disable(dev); return ret; } qphy->phy = generic_phy; dev_set_drvdata(dev, qphy); phy_set_drvdata(generic_phy, qphy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (!IS_ERR(phy_provider)) dev_info(dev, "Registered Qcom-QUSB2 phy\n"); else pm_runtime_disable(dev); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver qusb2_phy_driver = { .probe = qusb2_phy_probe, .driver = { .name = "qcom-qusb2-phy", .pm = &qusb2_phy_pm_ops, .of_match_table = qusb2_phy_of_match_table, }, }; module_platform_driver(qusb2_phy_driver); MODULE_AUTHOR("Vivek Gautam <[email protected]>"); MODULE_DESCRIPTION("Qualcomm QUSB2 PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-qusb2.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2012-2014,2017 The Linux Foundation. All rights reserved. * Copyright (c) 2018-2020, Linaro Limited */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #define PHY_CTRL0 0x6C #define PHY_CTRL1 0x70 #define PHY_CTRL2 0x74 #define PHY_CTRL4 0x7C /* PHY_CTRL bits */ #define REF_PHY_EN BIT(0) #define LANE0_PWR_ON BIT(2) #define SWI_PCS_CLK_SEL BIT(4) #define TST_PWR_DOWN BIT(4) #define PHY_RESET BIT(7) #define NUM_BULK_CLKS 3 #define NUM_BULK_REGS 2 struct ssphy_priv { void __iomem *base; struct device *dev; struct reset_control *reset_com; struct reset_control *reset_phy; struct regulator_bulk_data regs[NUM_BULK_REGS]; struct clk_bulk_data clks[NUM_BULK_CLKS]; enum phy_mode mode; }; static inline void qcom_ssphy_updatel(void __iomem *addr, u32 mask, u32 val) { writel((readl(addr) & ~mask) | val, addr); } static int qcom_ssphy_do_reset(struct ssphy_priv *priv) { int ret; if (!priv->reset_com) { qcom_ssphy_updatel(priv->base + PHY_CTRL1, PHY_RESET, PHY_RESET); usleep_range(10, 20); qcom_ssphy_updatel(priv->base + PHY_CTRL1, PHY_RESET, 0); } else { ret = reset_control_assert(priv->reset_com); if (ret) { dev_err(priv->dev, "Failed to assert reset com\n"); return ret; } ret = reset_control_assert(priv->reset_phy); if (ret) { dev_err(priv->dev, "Failed to assert reset phy\n"); return ret; } usleep_range(10, 20); ret = reset_control_deassert(priv->reset_com); if (ret) { dev_err(priv->dev, "Failed to deassert reset com\n"); return ret; } ret = reset_control_deassert(priv->reset_phy); if (ret) { dev_err(priv->dev, "Failed to deassert reset phy\n"); return ret; } } return 0; } static int qcom_ssphy_power_on(struct phy *phy) { struct ssphy_priv *priv = phy_get_drvdata(phy); int ret; ret = regulator_bulk_enable(NUM_BULK_REGS, priv->regs); if (ret) return ret; ret = clk_bulk_prepare_enable(NUM_BULK_CLKS, priv->clks); if (ret) goto err_disable_regulator; ret = qcom_ssphy_do_reset(priv); if (ret) goto err_disable_clock; writeb(SWI_PCS_CLK_SEL, priv->base + PHY_CTRL0); qcom_ssphy_updatel(priv->base + PHY_CTRL4, LANE0_PWR_ON, LANE0_PWR_ON); qcom_ssphy_updatel(priv->base + PHY_CTRL2, REF_PHY_EN, REF_PHY_EN); qcom_ssphy_updatel(priv->base + PHY_CTRL4, TST_PWR_DOWN, 0); return 0; err_disable_clock: clk_bulk_disable_unprepare(NUM_BULK_CLKS, priv->clks); err_disable_regulator: regulator_bulk_disable(NUM_BULK_REGS, priv->regs); return ret; } static int qcom_ssphy_power_off(struct phy *phy) { struct ssphy_priv *priv = phy_get_drvdata(phy); qcom_ssphy_updatel(priv->base + PHY_CTRL4, LANE0_PWR_ON, 0); qcom_ssphy_updatel(priv->base + PHY_CTRL2, REF_PHY_EN, 0); qcom_ssphy_updatel(priv->base + PHY_CTRL4, TST_PWR_DOWN, TST_PWR_DOWN); clk_bulk_disable_unprepare(NUM_BULK_CLKS, priv->clks); regulator_bulk_disable(NUM_BULK_REGS, priv->regs); return 0; } static int qcom_ssphy_init_clock(struct ssphy_priv *priv) { priv->clks[0].id = "ref"; priv->clks[1].id = "ahb"; priv->clks[2].id = "pipe"; return devm_clk_bulk_get(priv->dev, NUM_BULK_CLKS, priv->clks); } static int qcom_ssphy_init_regulator(struct ssphy_priv *priv) { int ret; priv->regs[0].supply = "vdd"; priv->regs[1].supply = "vdda1p8"; ret = devm_regulator_bulk_get(priv->dev, NUM_BULK_REGS, priv->regs); if (ret) { if (ret != -EPROBE_DEFER) dev_err(priv->dev, "Failed to get regulators\n"); return ret; } return ret; } static int qcom_ssphy_init_reset(struct ssphy_priv *priv) { priv->reset_com = devm_reset_control_get_optional_exclusive(priv->dev, "com"); if (IS_ERR(priv->reset_com)) { dev_err(priv->dev, "Failed to get reset control com\n"); return PTR_ERR(priv->reset_com); } if (priv->reset_com) { /* if reset_com is present, reset_phy is no longer optional */ priv->reset_phy = devm_reset_control_get_exclusive(priv->dev, "phy"); if (IS_ERR(priv->reset_phy)) { dev_err(priv->dev, "Failed to get reset control phy\n"); return PTR_ERR(priv->reset_phy); } } return 0; } static const struct phy_ops qcom_ssphy_ops = { .power_off = qcom_ssphy_power_off, .power_on = qcom_ssphy_power_on, .owner = THIS_MODULE, }; static int qcom_ssphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *provider; struct ssphy_priv *priv; struct phy *phy; int ret; priv = devm_kzalloc(dev, sizeof(struct ssphy_priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->mode = PHY_MODE_INVALID; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); ret = qcom_ssphy_init_clock(priv); if (ret) return ret; ret = qcom_ssphy_init_reset(priv); if (ret) return ret; ret = qcom_ssphy_init_regulator(priv); if (ret) return ret; phy = devm_phy_create(dev, dev->of_node, &qcom_ssphy_ops); if (IS_ERR(phy)) { dev_err(dev, "Failed to create the SS phy\n"); return PTR_ERR(phy); } phy_set_drvdata(phy, priv); provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(provider); } static const struct of_device_id qcom_ssphy_match[] = { { .compatible = "qcom,usb-ss-28nm-phy", }, { }, }; MODULE_DEVICE_TABLE(of, qcom_ssphy_match); static struct platform_driver qcom_ssphy_driver = { .probe = qcom_ssphy_probe, .driver = { .name = "qcom-usb-ssphy", .of_match_table = qcom_ssphy_match, }, }; module_platform_driver(qcom_ssphy_driver); MODULE_DESCRIPTION("Qualcomm SuperSpeed USB PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/qualcomm/phy-qcom-usb-ss.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016-2018 Broadcom */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> /* we have up to 8 PAXB based RC. The 9th one is always PAXC */ #define SR_NR_PCIE_PHYS 9 #define SR_PAXC_PHY_IDX (SR_NR_PCIE_PHYS - 1) #define PCIE_PIPEMUX_CFG_OFFSET 0x10c #define PCIE_PIPEMUX_SELECT_STRAP 0xf #define CDRU_STRAP_DATA_LSW_OFFSET 0x5c #define PCIE_PIPEMUX_SHIFT 19 #define PCIE_PIPEMUX_MASK 0xf #define MHB_MEM_PW_PAXC_OFFSET 0x1c0 #define MHB_PWR_ARR_POWERON 0x8 #define MHB_PWR_ARR_POWEROK 0x4 #define MHB_PWR_POWERON 0x2 #define MHB_PWR_POWEROK 0x1 #define MHB_PWR_STATUS_MASK (MHB_PWR_ARR_POWERON | \ MHB_PWR_ARR_POWEROK | \ MHB_PWR_POWERON | \ MHB_PWR_POWEROK) struct sr_pcie_phy_core; /** * struct sr_pcie_phy - Stingray PCIe PHY * * @core: pointer to the Stingray PCIe PHY core control * @index: PHY index * @phy: pointer to the kernel PHY device */ struct sr_pcie_phy { struct sr_pcie_phy_core *core; unsigned int index; struct phy *phy; }; /** * struct sr_pcie_phy_core - Stingray PCIe PHY core control * * @dev: pointer to device * @base: base register of PCIe SS * @cdru: regmap to the CDRU device * @mhb: regmap to the MHB device * @pipemux: pipemuex strap * @phys: array of PCIe PHYs */ struct sr_pcie_phy_core { struct device *dev; void __iomem *base; struct regmap *cdru; struct regmap *mhb; u32 pipemux; struct sr_pcie_phy phys[SR_NR_PCIE_PHYS]; }; /* * PCIe PIPEMUX lookup table * * Each array index represents a PIPEMUX strap setting * The array element represents a bitmap where a set bit means the PCIe * core and associated serdes has been enabled as RC and is available for use */ static const u8 pipemux_table[] = { /* PIPEMUX = 0, EP 1x16 */ 0x00, /* PIPEMUX = 1, EP 1x8 + RC 1x8, core 7 */ 0x80, /* PIPEMUX = 2, EP 4x4 */ 0x00, /* PIPEMUX = 3, RC 2x8, cores 0, 7 */ 0x81, /* PIPEMUX = 4, RC 4x4, cores 0, 1, 6, 7 */ 0xc3, /* PIPEMUX = 5, RC 8x2, all 8 cores */ 0xff, /* PIPEMUX = 6, RC 3x4 + 2x2, cores 0, 2, 3, 6, 7 */ 0xcd, /* PIPEMUX = 7, RC 1x4 + 6x2, cores 0, 2, 3, 4, 5, 6, 7 */ 0xfd, /* PIPEMUX = 8, EP 1x8 + RC 4x2, cores 4, 5, 6, 7 */ 0xf0, /* PIPEMUX = 9, EP 1x8 + RC 2x4, cores 6, 7 */ 0xc0, /* PIPEMUX = 10, EP 2x4 + RC 2x4, cores 1, 6 */ 0x42, /* PIPEMUX = 11, EP 2x4 + RC 4x2, cores 2, 3, 4, 5 */ 0x3c, /* PIPEMUX = 12, EP 1x4 + RC 6x2, cores 2, 3, 4, 5, 6, 7 */ 0xfc, /* PIPEMUX = 13, RC 2x4 + RC 1x4 + 2x2, cores 2, 3, 6 */ 0x4c, }; /* * Return true if the strap setting is valid */ static bool pipemux_strap_is_valid(u32 pipemux) { return !!(pipemux < ARRAY_SIZE(pipemux_table)); } /* * Read the PCIe PIPEMUX from strap */ static u32 pipemux_strap_read(struct sr_pcie_phy_core *core) { u32 pipemux; /* * Read PIPEMUX configuration register to determine the pipemux setting * * In the case when the value indicates using HW strap, fall back to * use HW strap */ pipemux = readl(core->base + PCIE_PIPEMUX_CFG_OFFSET); pipemux &= PCIE_PIPEMUX_MASK; if (pipemux == PCIE_PIPEMUX_SELECT_STRAP) { regmap_read(core->cdru, CDRU_STRAP_DATA_LSW_OFFSET, &pipemux); pipemux >>= PCIE_PIPEMUX_SHIFT; pipemux &= PCIE_PIPEMUX_MASK; } return pipemux; } /* * Given a PIPEMUX strap and PCIe core index, this function returns true if the * PCIe core needs to be enabled */ static bool pcie_core_is_for_rc(struct sr_pcie_phy *phy) { struct sr_pcie_phy_core *core = phy->core; unsigned int core_idx = phy->index; return !!((pipemux_table[core->pipemux] >> core_idx) & 0x1); } static int sr_pcie_phy_init(struct phy *p) { struct sr_pcie_phy *phy = phy_get_drvdata(p); /* * Check whether this PHY is for root complex or not. If yes, return * zero so the host driver can proceed to enumeration. If not, return * an error and that will force the host driver to bail out */ if (pcie_core_is_for_rc(phy)) return 0; return -ENODEV; } static int sr_paxc_phy_init(struct phy *p) { struct sr_pcie_phy *phy = phy_get_drvdata(p); struct sr_pcie_phy_core *core = phy->core; unsigned int core_idx = phy->index; u32 val; if (core_idx != SR_PAXC_PHY_IDX) return -EINVAL; regmap_read(core->mhb, MHB_MEM_PW_PAXC_OFFSET, &val); if ((val & MHB_PWR_STATUS_MASK) != MHB_PWR_STATUS_MASK) { dev_err(core->dev, "PAXC is not powered up\n"); return -ENODEV; } return 0; } static const struct phy_ops sr_pcie_phy_ops = { .init = sr_pcie_phy_init, .owner = THIS_MODULE, }; static const struct phy_ops sr_paxc_phy_ops = { .init = sr_paxc_phy_init, .owner = THIS_MODULE, }; static struct phy *sr_pcie_phy_xlate(struct device *dev, struct of_phandle_args *args) { struct sr_pcie_phy_core *core; int phy_idx; core = dev_get_drvdata(dev); if (!core) return ERR_PTR(-EINVAL); phy_idx = args->args[0]; if (WARN_ON(phy_idx >= SR_NR_PCIE_PHYS)) return ERR_PTR(-ENODEV); return core->phys[phy_idx].phy; } static int sr_pcie_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; struct sr_pcie_phy_core *core; struct phy_provider *provider; unsigned int phy_idx = 0; core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); if (!core) return -ENOMEM; core->dev = dev; core->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(core->base)) return PTR_ERR(core->base); core->cdru = syscon_regmap_lookup_by_phandle(node, "brcm,sr-cdru"); if (IS_ERR(core->cdru)) { dev_err(core->dev, "unable to find CDRU device\n"); return PTR_ERR(core->cdru); } core->mhb = syscon_regmap_lookup_by_phandle(node, "brcm,sr-mhb"); if (IS_ERR(core->mhb)) { dev_err(core->dev, "unable to find MHB device\n"); return PTR_ERR(core->mhb); } /* read the PCIe PIPEMUX strap setting */ core->pipemux = pipemux_strap_read(core); if (!pipemux_strap_is_valid(core->pipemux)) { dev_err(core->dev, "invalid PCIe PIPEMUX strap %u\n", core->pipemux); return -EIO; } for (phy_idx = 0; phy_idx < SR_NR_PCIE_PHYS; phy_idx++) { struct sr_pcie_phy *p = &core->phys[phy_idx]; const struct phy_ops *ops; if (phy_idx == SR_PAXC_PHY_IDX) ops = &sr_paxc_phy_ops; else ops = &sr_pcie_phy_ops; p->phy = devm_phy_create(dev, NULL, ops); if (IS_ERR(p->phy)) { dev_err(dev, "failed to create PCIe PHY\n"); return PTR_ERR(p->phy); } p->core = core; p->index = phy_idx; phy_set_drvdata(p->phy, p); } dev_set_drvdata(dev, core); provider = devm_of_phy_provider_register(dev, sr_pcie_phy_xlate); if (IS_ERR(provider)) { dev_err(dev, "failed to register PHY provider\n"); return PTR_ERR(provider); } dev_info(dev, "Stingray PCIe PHY driver initialized\n"); return 0; } static const struct of_device_id sr_pcie_phy_match_table[] = { { .compatible = "brcm,sr-pcie-phy" }, { } }; MODULE_DEVICE_TABLE(of, sr_pcie_phy_match_table); static struct platform_driver sr_pcie_phy_driver = { .driver = { .name = "sr-pcie-phy", .of_match_table = sr_pcie_phy_match_table, }, .probe = sr_pcie_phy_probe, }; module_platform_driver(sr_pcie_phy_driver); MODULE_AUTHOR("Ray Jui <[email protected]>"); MODULE_DESCRIPTION("Broadcom Stingray PCIe PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/broadcom/phy-bcm-sr-pcie.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (C) 2015 Broadcom Corporation #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #define PCIE_CFG_OFFSET 0x00 #define PCIE1_PHY_IDDQ_SHIFT 10 #define PCIE0_PHY_IDDQ_SHIFT 2 enum cygnus_pcie_phy_id { CYGNUS_PHY_PCIE0 = 0, CYGNUS_PHY_PCIE1, MAX_NUM_PHYS, }; struct cygnus_pcie_phy_core; /** * struct cygnus_pcie_phy - Cygnus PCIe PHY device * @core: pointer to the Cygnus PCIe PHY core control * @id: internal ID to identify the Cygnus PCIe PHY * @phy: pointer to the kernel PHY device */ struct cygnus_pcie_phy { struct cygnus_pcie_phy_core *core; enum cygnus_pcie_phy_id id; struct phy *phy; }; /** * struct cygnus_pcie_phy_core - Cygnus PCIe PHY core control * @dev: pointer to device * @base: base register * @lock: mutex to protect access to individual PHYs * @phys: pointer to Cygnus PHY device */ struct cygnus_pcie_phy_core { struct device *dev; void __iomem *base; struct mutex lock; struct cygnus_pcie_phy phys[MAX_NUM_PHYS]; }; static int cygnus_pcie_power_config(struct cygnus_pcie_phy *phy, bool enable) { struct cygnus_pcie_phy_core *core = phy->core; unsigned shift; u32 val; mutex_lock(&core->lock); switch (phy->id) { case CYGNUS_PHY_PCIE0: shift = PCIE0_PHY_IDDQ_SHIFT; break; case CYGNUS_PHY_PCIE1: shift = PCIE1_PHY_IDDQ_SHIFT; break; default: mutex_unlock(&core->lock); dev_err(core->dev, "PCIe PHY %d invalid\n", phy->id); return -EINVAL; } if (enable) { val = readl(core->base + PCIE_CFG_OFFSET); val &= ~BIT(shift); writel(val, core->base + PCIE_CFG_OFFSET); /* * Wait 50 ms for the PCIe Serdes to stabilize after the analog * front end is brought up */ msleep(50); } else { val = readl(core->base + PCIE_CFG_OFFSET); val |= BIT(shift); writel(val, core->base + PCIE_CFG_OFFSET); } mutex_unlock(&core->lock); dev_dbg(core->dev, "PCIe PHY %d %s\n", phy->id, enable ? "enabled" : "disabled"); return 0; } static int cygnus_pcie_phy_power_on(struct phy *p) { struct cygnus_pcie_phy *phy = phy_get_drvdata(p); return cygnus_pcie_power_config(phy, true); } static int cygnus_pcie_phy_power_off(struct phy *p) { struct cygnus_pcie_phy *phy = phy_get_drvdata(p); return cygnus_pcie_power_config(phy, false); } static const struct phy_ops cygnus_pcie_phy_ops = { .power_on = cygnus_pcie_phy_power_on, .power_off = cygnus_pcie_phy_power_off, .owner = THIS_MODULE, }; static int cygnus_pcie_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node, *child; struct cygnus_pcie_phy_core *core; struct phy_provider *provider; unsigned cnt = 0; int ret; if (of_get_child_count(node) == 0) { dev_err(dev, "PHY no child node\n"); return -ENODEV; } core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); if (!core) return -ENOMEM; core->dev = dev; core->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(core->base)) return PTR_ERR(core->base); mutex_init(&core->lock); for_each_available_child_of_node(node, child) { unsigned int id; struct cygnus_pcie_phy *p; if (of_property_read_u32(child, "reg", &id)) { dev_err(dev, "missing reg property for %pOFn\n", child); ret = -EINVAL; goto put_child; } if (id >= MAX_NUM_PHYS) { dev_err(dev, "invalid PHY id: %u\n", id); ret = -EINVAL; goto put_child; } if (core->phys[id].phy) { dev_err(dev, "duplicated PHY id: %u\n", id); ret = -EINVAL; goto put_child; } p = &core->phys[id]; p->phy = devm_phy_create(dev, child, &cygnus_pcie_phy_ops); if (IS_ERR(p->phy)) { dev_err(dev, "failed to create PHY\n"); ret = PTR_ERR(p->phy); goto put_child; } p->core = core; p->id = id; phy_set_drvdata(p->phy, p); cnt++; } dev_set_drvdata(dev, core); provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(provider)) { dev_err(dev, "failed to register PHY provider\n"); return PTR_ERR(provider); } dev_dbg(dev, "registered %u PCIe PHY(s)\n", cnt); return 0; put_child: of_node_put(child); return ret; } static const struct of_device_id cygnus_pcie_phy_match_table[] = { { .compatible = "brcm,cygnus-pcie-phy" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, cygnus_pcie_phy_match_table); static struct platform_driver cygnus_pcie_phy_driver = { .driver = { .name = "cygnus-pcie-phy", .of_match_table = cygnus_pcie_phy_match_table, }, .probe = cygnus_pcie_phy_probe, }; module_platform_driver(cygnus_pcie_phy_driver); MODULE_AUTHOR("Ray Jui <[email protected]>"); MODULE_DESCRIPTION("Broadcom Cygnus PCIe PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/broadcom/phy-bcm-cygnus-pcie.c
// SPDX-License-Identifier: GPL-2.0-only /* * phy-bcm-kona-usb2.c - Broadcom Kona USB2 Phy Driver * * Copyright (C) 2013 Linaro Limited * Matt Porter <[email protected]> */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #define OTGCTL (0) #define OTGCTL_OTGSTAT2 BIT(31) #define OTGCTL_OTGSTAT1 BIT(30) #define OTGCTL_PRST_N_SW BIT(11) #define OTGCTL_HRESET_N BIT(10) #define OTGCTL_UTMI_LINE_STATE1 BIT(9) #define OTGCTL_UTMI_LINE_STATE0 BIT(8) #define P1CTL (8) #define P1CTL_SOFT_RESET BIT(1) #define P1CTL_NON_DRIVING BIT(0) struct bcm_kona_usb { void __iomem *regs; }; static void bcm_kona_usb_phy_power(struct bcm_kona_usb *phy, int on) { u32 val; val = readl(phy->regs + OTGCTL); if (on) { /* Configure and power PHY */ val &= ~(OTGCTL_OTGSTAT2 | OTGCTL_OTGSTAT1 | OTGCTL_UTMI_LINE_STATE1 | OTGCTL_UTMI_LINE_STATE0); val |= OTGCTL_PRST_N_SW | OTGCTL_HRESET_N; } else { val &= ~(OTGCTL_PRST_N_SW | OTGCTL_HRESET_N); } writel(val, phy->regs + OTGCTL); } static int bcm_kona_usb_phy_init(struct phy *gphy) { struct bcm_kona_usb *phy = phy_get_drvdata(gphy); u32 val; /* Soft reset PHY */ val = readl(phy->regs + P1CTL); val &= ~P1CTL_NON_DRIVING; val |= P1CTL_SOFT_RESET; writel(val, phy->regs + P1CTL); writel(val & ~P1CTL_SOFT_RESET, phy->regs + P1CTL); /* Reset needs to be asserted for 2ms */ mdelay(2); writel(val | P1CTL_SOFT_RESET, phy->regs + P1CTL); return 0; } static int bcm_kona_usb_phy_power_on(struct phy *gphy) { struct bcm_kona_usb *phy = phy_get_drvdata(gphy); bcm_kona_usb_phy_power(phy, 1); return 0; } static int bcm_kona_usb_phy_power_off(struct phy *gphy) { struct bcm_kona_usb *phy = phy_get_drvdata(gphy); bcm_kona_usb_phy_power(phy, 0); return 0; } static const struct phy_ops ops = { .init = bcm_kona_usb_phy_init, .power_on = bcm_kona_usb_phy_power_on, .power_off = bcm_kona_usb_phy_power_off, .owner = THIS_MODULE, }; static int bcm_kona_usb2_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct bcm_kona_usb *phy; struct phy *gphy; struct phy_provider *phy_provider; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) return -ENOMEM; phy->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(phy->regs)) return PTR_ERR(phy->regs); platform_set_drvdata(pdev, phy); gphy = devm_phy_create(dev, NULL, &ops); if (IS_ERR(gphy)) return PTR_ERR(gphy); /* The Kona PHY supports an 8-bit wide UTMI interface */ phy_set_bus_width(gphy, 8); phy_set_drvdata(gphy, phy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id bcm_kona_usb2_dt_ids[] = { { .compatible = "brcm,kona-usb2-phy" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, bcm_kona_usb2_dt_ids); static struct platform_driver bcm_kona_usb2_driver = { .probe = bcm_kona_usb2_probe, .driver = { .name = "bcm-kona-usb2", .of_match_table = bcm_kona_usb2_dt_ids, }, }; module_platform_driver(bcm_kona_usb2_driver); MODULE_ALIAS("platform:bcm-kona-usb2"); MODULE_AUTHOR("Matt Porter <[email protected]>"); MODULE_DESCRIPTION("BCM Kona USB 2.0 PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/broadcom/phy-bcm-kona-usb2.c
// SPDX-License-Identifier: GPL-2.0-only /* * Broadcom Northstar USB 2.0 PHY Driver * * Copyright (C) 2016 Rafał Miłecki <[email protected]> */ #include <linux/bcma/bcma.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> struct bcm_ns_usb2 { struct device *dev; struct clk *ref_clk; struct phy *phy; struct regmap *clkset; void __iomem *base; /* Deprecated binding */ void __iomem *dmu; }; static int bcm_ns_usb2_phy_init(struct phy *phy) { struct bcm_ns_usb2 *usb2 = phy_get_drvdata(phy); struct device *dev = usb2->dev; u32 ref_clk_rate, usb2ctl, usb_pll_ndiv, usb_pll_pdiv; int err = 0; err = clk_prepare_enable(usb2->ref_clk); if (err < 0) { dev_err(dev, "Failed to prepare ref clock: %d\n", err); goto err_out; } ref_clk_rate = clk_get_rate(usb2->ref_clk); if (!ref_clk_rate) { dev_err(dev, "Failed to get ref clock rate\n"); err = -EINVAL; goto err_clk_off; } if (usb2->base) usb2ctl = readl(usb2->base); else usb2ctl = readl(usb2->dmu + BCMA_DMU_CRU_USB2_CONTROL); if (usb2ctl & BCMA_DMU_CRU_USB2_CONTROL_USB_PLL_PDIV_MASK) { usb_pll_pdiv = usb2ctl; usb_pll_pdiv &= BCMA_DMU_CRU_USB2_CONTROL_USB_PLL_PDIV_MASK; usb_pll_pdiv >>= BCMA_DMU_CRU_USB2_CONTROL_USB_PLL_PDIV_SHIFT; } else { usb_pll_pdiv = 1 << 3; } /* Calculate ndiv based on a solid 1920 MHz that is for USB2 PHY */ usb_pll_ndiv = (1920000000 * usb_pll_pdiv) / ref_clk_rate; /* Unlock DMU PLL settings with some magic value */ if (usb2->clkset) regmap_write(usb2->clkset, 0, 0x0000ea68); else writel(0x0000ea68, usb2->dmu + BCMA_DMU_CRU_CLKSET_KEY); /* Write USB 2.0 PLL control setting */ usb2ctl &= ~BCMA_DMU_CRU_USB2_CONTROL_USB_PLL_NDIV_MASK; usb2ctl |= usb_pll_ndiv << BCMA_DMU_CRU_USB2_CONTROL_USB_PLL_NDIV_SHIFT; if (usb2->base) writel(usb2ctl, usb2->base); else writel(usb2ctl, usb2->dmu + BCMA_DMU_CRU_USB2_CONTROL); /* Lock DMU PLL settings */ if (usb2->clkset) regmap_write(usb2->clkset, 0, 0x00000000); else writel(0x00000000, usb2->dmu + BCMA_DMU_CRU_CLKSET_KEY); err_clk_off: clk_disable_unprepare(usb2->ref_clk); err_out: return err; } static const struct phy_ops ops = { .init = bcm_ns_usb2_phy_init, .owner = THIS_MODULE, }; static int bcm_ns_usb2_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct bcm_ns_usb2 *usb2; struct phy_provider *phy_provider; usb2 = devm_kzalloc(&pdev->dev, sizeof(*usb2), GFP_KERNEL); if (!usb2) return -ENOMEM; usb2->dev = dev; if (of_property_present(dev->of_node, "brcm,syscon-clkset")) { usb2->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(usb2->base)) { dev_err(dev, "Failed to map control reg\n"); return PTR_ERR(usb2->base); } usb2->clkset = syscon_regmap_lookup_by_phandle(dev->of_node, "brcm,syscon-clkset"); if (IS_ERR(usb2->clkset)) { dev_err(dev, "Failed to lookup clkset regmap\n"); return PTR_ERR(usb2->clkset); } } else { usb2->dmu = devm_platform_ioremap_resource_byname(pdev, "dmu"); if (IS_ERR(usb2->dmu)) { dev_err(dev, "Failed to map DMU regs\n"); return PTR_ERR(usb2->dmu); } dev_warn(dev, "using deprecated DT binding\n"); } usb2->ref_clk = devm_clk_get(dev, "phy-ref-clk"); if (IS_ERR(usb2->ref_clk)) { dev_err_probe(dev, PTR_ERR(usb2->ref_clk), "failed to get ref clk\n"); return PTR_ERR(usb2->ref_clk); } usb2->phy = devm_phy_create(dev, NULL, &ops); if (IS_ERR(usb2->phy)) return PTR_ERR(usb2->phy); phy_set_drvdata(usb2->phy, usb2); platform_set_drvdata(pdev, usb2); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id bcm_ns_usb2_id_table[] = { { .compatible = "brcm,ns-usb2-phy", }, {}, }; MODULE_DEVICE_TABLE(of, bcm_ns_usb2_id_table); static struct platform_driver bcm_ns_usb2_driver = { .probe = bcm_ns_usb2_probe, .driver = { .name = "bcm_ns_usb2", .of_match_table = bcm_ns_usb2_id_table, }, }; module_platform_driver(bcm_ns_usb2_driver); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/broadcom/phy-bcm-ns-usb2.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Broadcom */ /* * This module contains USB PHY initialization for power up and S3 resume * for newer Synopsys based USB hardware first used on the bcm7216. */ #include <linux/delay.h> #include <linux/io.h> #include <linux/soc/brcmstb/brcmstb.h> #include "phy-brcm-usb-init.h" #define PHY_LOCK_TIMEOUT_MS 200 /* Register definitions for syscon piarbctl registers */ #define PIARBCTL_CAM 0x00 #define PIARBCTL_SPLITTER 0x04 #define PIARBCTL_MISC 0x08 #define PIARBCTL_MISC_SATA_PRIORITY_MASK GENMASK(3, 0) #define PIARBCTL_MISC_CAM0_MEM_PAGE_MASK GENMASK(7, 4) #define PIARBCTL_MISC_CAM1_MEM_PAGE_MASK GENMASK(11, 8) #define PIARBCTL_MISC_USB_MEM_PAGE_MASK GENMASK(15, 12) #define PIARBCTL_MISC_USB_PRIORITY_MASK GENMASK(19, 16) #define PIARBCTL_MISC_USB_4G_SDRAM_MASK BIT(29) #define PIARBCTL_MISC_USB_SELECT_MASK BIT(30) #define PIARBCTL_MISC_SECURE_MASK BIT(31) #define PIARBCTL_MISC_USB_ONLY_MASK \ (PIARBCTL_MISC_USB_SELECT_MASK | \ PIARBCTL_MISC_USB_4G_SDRAM_MASK | \ PIARBCTL_MISC_USB_PRIORITY_MASK | \ PIARBCTL_MISC_USB_MEM_PAGE_MASK) /* Register definitions for the USB CTRL block */ #define USB_CTRL_SETUP 0x00 #define USB_CTRL_SETUP_IOC_MASK BIT(4) #define USB_CTRL_SETUP_IPP_MASK BIT(5) #define USB_CTRL_SETUP_SOFT_SHUTDOWN_MASK BIT(9) #define USB_CTRL_SETUP_SCB1_EN_MASK BIT(14) #define USB_CTRL_SETUP_SCB2_EN_MASK BIT(15) #define USB_CTRL_SETUP_tca_drv_sel_MASK BIT(24) #define USB_CTRL_SETUP_STRAP_IPP_SEL_MASK BIT(25) #define USB_CTRL_USB_PM 0x04 #define USB_CTRL_USB_PM_XHC_S2_CLK_SWITCH_EN_MASK BIT(3) #define USB_CTRL_USB_PM_XHC_PME_EN_MASK BIT(4) #define USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK BIT(22) #define USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK BIT(23) #define USB_CTRL_USB_PM_SOFT_RESET_MASK BIT(30) #define USB_CTRL_USB_PM_USB_PWRDN_MASK BIT(31) #define USB_CTRL_USB_PM_STATUS 0x08 #define USB_CTRL_USB_DEVICE_CTL1 0x10 #define USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK GENMASK(1, 0) #define USB_CTRL_TEST_PORT_CTL 0x30 #define USB_CTRL_TEST_PORT_CTL_TPOUT_SEL_MASK GENMASK(7, 0) #define USB_CTRL_TEST_PORT_CTL_TPOUT_SEL_PME_GEN_MASK 0x0000002e #define USB_CTRL_TP_DIAG1 0x34 #define USB_CTLR_TP_DIAG1_wake_MASK BIT(1) #define USB_CTRL_CTLR_CSHCR 0x50 #define USB_CTRL_CTLR_CSHCR_ctl_pme_en_MASK BIT(18) #define USB_CTRL_P0_U2PHY_CFG1 0x68 #define USB_CTRL_P0_U2PHY_CFG1_COMMONONN_MASK BIT(10) /* Register definitions for the USB_PHY block in 7211b0 */ #define USB_PHY_PLL_CTL 0x00 #define USB_PHY_PLL_CTL_PLL_SUSPEND_MASK BIT(27) #define USB_PHY_PLL_CTL_PLL_RESETB_MASK BIT(30) #define USB_PHY_PLL_LDO_CTL 0x08 #define USB_PHY_PLL_LDO_CTL_AFE_BG_PWRDWNB_MASK BIT(0) #define USB_PHY_PLL_LDO_CTL_AFE_LDO_PWRDWNB_MASK BIT(1) #define USB_PHY_PLL_LDO_CTL_AFE_CORERDY_MASK BIT(2) #define USB_PHY_UTMI_CTL_1 0x04 #define USB_PHY_UTMI_CTL_1_PHY_MODE_MASK GENMASK(3, 2) #define USB_PHY_UTMI_CTL_1_PHY_MODE_SHIFT 2 #define USB_PHY_UTMI_CTL_1_POWER_UP_FSM_EN_MASK BIT(11) #define USB_PHY_IDDQ 0x1c #define USB_PHY_IDDQ_phy_iddq_MASK BIT(0) #define USB_PHY_STATUS 0x20 #define USB_PHY_STATUS_pll_lock_MASK BIT(0) /* Register definitions for the MDIO registers in the DWC2 block of * the 7211b0. * NOTE: The PHY's MDIO registers are only accessible through the * legacy DesignWare USB controller even though it's not being used. */ #define USB_GMDIOCSR 0 #define USB_GMDIOGEN 4 /* Register definitions for the BDC EC block in 7211b0 */ #define BDC_EC_AXIRDA 0x0c #define BDC_EC_AXIRDA_RTS_MASK GENMASK(31, 28) #define BDC_EC_AXIRDA_RTS_SHIFT 28 #define USB_XHCI_GBL_GUSB2PHYCFG 0x100 #define USB_XHCI_GBL_GUSB2PHYCFG_U2_FREECLK_EXISTS_MASK BIT(30) static void usb_mdio_write_7211b0(struct brcm_usb_init_params *params, uint8_t addr, uint16_t data) { void __iomem *usb_mdio = params->regs[BRCM_REGS_USB_MDIO]; addr &= 0x1f; /* 5-bit address */ brcm_usb_writel(0xffffffff, usb_mdio + USB_GMDIOGEN); while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31)) ; brcm_usb_writel(0x59020000 | (addr << 18) | data, usb_mdio + USB_GMDIOGEN); while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31)) ; brcm_usb_writel(0x00000000, usb_mdio + USB_GMDIOGEN); while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31)) ; } static uint16_t __maybe_unused usb_mdio_read_7211b0( struct brcm_usb_init_params *params, uint8_t addr) { void __iomem *usb_mdio = params->regs[BRCM_REGS_USB_MDIO]; addr &= 0x1f; /* 5-bit address */ brcm_usb_writel(0xffffffff, usb_mdio + USB_GMDIOGEN); while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31)) ; brcm_usb_writel(0x69020000 | (addr << 18), usb_mdio + USB_GMDIOGEN); while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31)) ; brcm_usb_writel(0x00000000, usb_mdio + USB_GMDIOGEN); while (brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & (1<<31)) ; return brcm_usb_readl(usb_mdio + USB_GMDIOCSR) & 0xffff; } static void usb2_eye_fix_7211b0(struct brcm_usb_init_params *params) { /* select bank */ usb_mdio_write_7211b0(params, 0x1f, 0x80a0); /* Set the eye */ usb_mdio_write_7211b0(params, 0x0a, 0xc6a0); } static void xhci_soft_reset(struct brcm_usb_init_params *params, int on_off) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; void __iomem *xhci_gbl = params->regs[BRCM_REGS_XHCI_GBL]; /* Assert reset */ if (on_off) { USB_CTRL_UNSET(ctrl, USB_PM, XHC_SOFT_RESETB); /* De-assert reset */ } else { USB_CTRL_SET(ctrl, USB_PM, XHC_SOFT_RESETB); /* Required for COMMONONN to be set */ USB_XHCI_GBL_UNSET(xhci_gbl, GUSB2PHYCFG, U2_FREECLK_EXISTS); } } static void usb_init_ipp(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; u32 reg; u32 orig_reg; pr_debug("%s\n", __func__); orig_reg = reg = brcm_usb_readl(USB_CTRL_REG(ctrl, SETUP)); if (params->ipp != 2) /* override ipp strap pin (if it exits) */ reg &= ~(USB_CTRL_MASK(SETUP, STRAP_IPP_SEL)); /* Override the default OC and PP polarity */ reg &= ~(USB_CTRL_MASK(SETUP, IPP) | USB_CTRL_MASK(SETUP, IOC)); if (params->ioc) reg |= USB_CTRL_MASK(SETUP, IOC); if (params->ipp == 1) reg |= USB_CTRL_MASK(SETUP, IPP); brcm_usb_writel(reg, USB_CTRL_REG(ctrl, SETUP)); /* * If we're changing IPP, make sure power is off long enough * to turn off any connected devices. */ if ((reg ^ orig_reg) & USB_CTRL_MASK(SETUP, IPP)) msleep(50); } static void syscon_piarbctl_init(struct regmap *rmap) { /* Switch from legacy USB OTG controller to new STB USB controller */ regmap_update_bits(rmap, PIARBCTL_MISC, PIARBCTL_MISC_USB_ONLY_MASK, PIARBCTL_MISC_USB_SELECT_MASK | PIARBCTL_MISC_USB_4G_SDRAM_MASK); } static void usb_init_common(struct brcm_usb_init_params *params) { u32 reg; void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; pr_debug("%s\n", __func__); if (USB_CTRL_MASK(USB_DEVICE_CTL1, PORT_MODE)) { reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1)); reg &= ~USB_CTRL_MASK(USB_DEVICE_CTL1, PORT_MODE); reg |= params->port_mode; brcm_usb_writel(reg, USB_CTRL_REG(ctrl, USB_DEVICE_CTL1)); } switch (params->supported_port_modes) { case USB_CTLR_MODE_HOST: USB_CTRL_UNSET(ctrl, USB_PM, BDC_SOFT_RESETB); break; default: USB_CTRL_UNSET(ctrl, USB_PM, BDC_SOFT_RESETB); USB_CTRL_SET(ctrl, USB_PM, BDC_SOFT_RESETB); break; } } static void usb_wake_enable_7211b0(struct brcm_usb_init_params *params, bool enable) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; if (enable) USB_CTRL_SET(ctrl, CTLR_CSHCR, ctl_pme_en); else USB_CTRL_UNSET(ctrl, CTLR_CSHCR, ctl_pme_en); } static void usb_wake_enable_7216(struct brcm_usb_init_params *params, bool enable) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; if (enable) USB_CTRL_SET(ctrl, USB_PM, XHC_PME_EN); else USB_CTRL_UNSET(ctrl, USB_PM, XHC_PME_EN); } static void usb_init_common_7211b0(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; void __iomem *usb_phy = params->regs[BRCM_REGS_USB_PHY]; void __iomem *bdc_ec = params->regs[BRCM_REGS_BDC_EC]; int timeout_ms = PHY_LOCK_TIMEOUT_MS; u32 reg; if (params->syscon_piarbctl) syscon_piarbctl_init(params->syscon_piarbctl); USB_CTRL_UNSET(ctrl, USB_PM, USB_PWRDN); usb_wake_enable_7211b0(params, false); if (!params->wake_enabled) { /* undo possible suspend settings */ brcm_usb_writel(0, usb_phy + USB_PHY_IDDQ); reg = brcm_usb_readl(usb_phy + USB_PHY_PLL_CTL); reg |= USB_PHY_PLL_CTL_PLL_RESETB_MASK; brcm_usb_writel(reg, usb_phy + USB_PHY_PLL_CTL); /* temporarily enable FSM so PHY comes up properly */ reg = brcm_usb_readl(usb_phy + USB_PHY_UTMI_CTL_1); reg |= USB_PHY_UTMI_CTL_1_POWER_UP_FSM_EN_MASK; brcm_usb_writel(reg, usb_phy + USB_PHY_UTMI_CTL_1); } /* Disable PLL auto suspend */ reg = brcm_usb_readl(usb_phy + USB_PHY_PLL_CTL); reg |= USB_PHY_PLL_CTL_PLL_SUSPEND_MASK; brcm_usb_writel(reg, usb_phy + USB_PHY_PLL_CTL); /* Init the PHY */ reg = USB_PHY_PLL_LDO_CTL_AFE_CORERDY_MASK | USB_PHY_PLL_LDO_CTL_AFE_LDO_PWRDWNB_MASK | USB_PHY_PLL_LDO_CTL_AFE_BG_PWRDWNB_MASK; brcm_usb_writel(reg, usb_phy + USB_PHY_PLL_LDO_CTL); /* wait for lock */ while (timeout_ms-- > 0) { reg = brcm_usb_readl(usb_phy + USB_PHY_STATUS); if (reg & USB_PHY_STATUS_pll_lock_MASK) break; usleep_range(1000, 2000); } /* Set the PHY_MODE */ reg = brcm_usb_readl(usb_phy + USB_PHY_UTMI_CTL_1); reg &= ~USB_PHY_UTMI_CTL_1_PHY_MODE_MASK; reg |= params->supported_port_modes << USB_PHY_UTMI_CTL_1_PHY_MODE_SHIFT; brcm_usb_writel(reg, usb_phy + USB_PHY_UTMI_CTL_1); usb_init_common(params); /* * The BDC controller will get occasional failures with * the default "Read Transaction Size" of 6 (1024 bytes). * Set it to 4 (256 bytes). */ if ((params->supported_port_modes != USB_CTLR_MODE_HOST) && bdc_ec) { reg = brcm_usb_readl(bdc_ec + BDC_EC_AXIRDA); reg &= ~BDC_EC_AXIRDA_RTS_MASK; reg |= (0x4 << BDC_EC_AXIRDA_RTS_SHIFT); brcm_usb_writel(reg, bdc_ec + BDC_EC_AXIRDA); } /* * Disable FSM, otherwise the PHY will auto suspend when no * device is connected and will be reset on resume. */ reg = brcm_usb_readl(usb_phy + USB_PHY_UTMI_CTL_1); reg &= ~USB_PHY_UTMI_CTL_1_POWER_UP_FSM_EN_MASK; brcm_usb_writel(reg, usb_phy + USB_PHY_UTMI_CTL_1); usb2_eye_fix_7211b0(params); } static void usb_init_common_7216(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; USB_CTRL_UNSET(ctrl, USB_PM, XHC_S2_CLK_SWITCH_EN); USB_CTRL_UNSET(ctrl, USB_PM, USB_PWRDN); /* 1 millisecond - for USB clocks to settle down */ usleep_range(1000, 2000); /* Disable PHY when port is suspended */ USB_CTRL_SET(ctrl, P0_U2PHY_CFG1, COMMONONN); usb_wake_enable_7216(params, false); usb_init_common(params); } static void usb_init_xhci(struct brcm_usb_init_params *params) { pr_debug("%s\n", __func__); xhci_soft_reset(params, 0); } static void usb_uninit_common_7216(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; pr_debug("%s\n", __func__); if (params->wake_enabled) { /* Switch to using slower clock during suspend to save power */ USB_CTRL_SET(ctrl, USB_PM, XHC_S2_CLK_SWITCH_EN); usb_wake_enable_7216(params, true); } else { USB_CTRL_SET(ctrl, USB_PM, USB_PWRDN); } } static void usb_uninit_common_7211b0(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; void __iomem *usb_phy = params->regs[BRCM_REGS_USB_PHY]; u32 reg; pr_debug("%s\n", __func__); if (params->wake_enabled) { USB_CTRL_SET(ctrl, TEST_PORT_CTL, TPOUT_SEL_PME_GEN); usb_wake_enable_7211b0(params, true); } else { USB_CTRL_SET(ctrl, USB_PM, USB_PWRDN); brcm_usb_writel(0, usb_phy + USB_PHY_PLL_LDO_CTL); reg = brcm_usb_readl(usb_phy + USB_PHY_PLL_CTL); reg &= ~USB_PHY_PLL_CTL_PLL_RESETB_MASK; brcm_usb_writel(reg, usb_phy + USB_PHY_PLL_CTL); brcm_usb_writel(USB_PHY_IDDQ_phy_iddq_MASK, usb_phy + USB_PHY_IDDQ); } } static void usb_uninit_xhci(struct brcm_usb_init_params *params) { pr_debug("%s\n", __func__); if (!params->wake_enabled) xhci_soft_reset(params, 1); } static int usb_get_dual_select(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; u32 reg = 0; pr_debug("%s\n", __func__); reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1)); reg &= USB_CTRL_MASK(USB_DEVICE_CTL1, PORT_MODE); return reg; } static void usb_set_dual_select(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; u32 reg; pr_debug("%s\n", __func__); reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1)); reg &= ~USB_CTRL_MASK(USB_DEVICE_CTL1, PORT_MODE); reg |= params->port_mode; brcm_usb_writel(reg, USB_CTRL_REG(ctrl, USB_DEVICE_CTL1)); } static const struct brcm_usb_init_ops bcm7216_ops = { .init_ipp = usb_init_ipp, .init_common = usb_init_common_7216, .init_xhci = usb_init_xhci, .uninit_common = usb_uninit_common_7216, .uninit_xhci = usb_uninit_xhci, .get_dual_select = usb_get_dual_select, .set_dual_select = usb_set_dual_select, }; static const struct brcm_usb_init_ops bcm7211b0_ops = { .init_ipp = usb_init_ipp, .init_common = usb_init_common_7211b0, .init_xhci = usb_init_xhci, .uninit_common = usb_uninit_common_7211b0, .uninit_xhci = usb_uninit_xhci, .get_dual_select = usb_get_dual_select, .set_dual_select = usb_set_dual_select, }; void brcm_usb_dvr_init_7216(struct brcm_usb_init_params *params) { pr_debug("%s\n", __func__); params->family_name = "7216"; params->ops = &bcm7216_ops; } void brcm_usb_dvr_init_7211b0(struct brcm_usb_init_params *params) { pr_debug("%s\n", __func__); params->family_name = "7211"; params->ops = &bcm7211b0_ops; }
linux-master
drivers/phy/broadcom/phy-brcm-usb-init-synopsys.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (C) 2016 Broadcom #include <linux/device.h> #include <linux/module.h> #include <linux/of_mdio.h> #include <linux/mdio.h> #include <linux/phy.h> #include <linux/phy/phy.h> #define BLK_ADDR_REG_OFFSET 0x1f #define PLL_AFE1_100MHZ_BLK 0x2100 #define PLL_CLK_AMP_OFFSET 0x03 #define PLL_CLK_AMP_2P05V 0x2b18 static int ns2_pci_phy_init(struct phy *p) { struct mdio_device *mdiodev = phy_get_drvdata(p); int rc; /* select the AFE 100MHz block page */ rc = mdiodev_write(mdiodev, BLK_ADDR_REG_OFFSET, PLL_AFE1_100MHZ_BLK); if (rc) goto err; /* set the 100 MHz reference clock amplitude to 2.05 v */ rc = mdiodev_write(mdiodev, PLL_CLK_AMP_OFFSET, PLL_CLK_AMP_2P05V); if (rc) goto err; return 0; err: dev_err(&mdiodev->dev, "Error %d writing to phy\n", rc); return rc; } static const struct phy_ops ns2_pci_phy_ops = { .init = ns2_pci_phy_init, .owner = THIS_MODULE, }; static int ns2_pci_phy_probe(struct mdio_device *mdiodev) { struct device *dev = &mdiodev->dev; struct phy_provider *provider; struct phy *phy; phy = devm_phy_create(dev, dev->of_node, &ns2_pci_phy_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create Phy\n"); return PTR_ERR(phy); } phy_set_drvdata(phy, mdiodev); provider = devm_of_phy_provider_register(&phy->dev, of_phy_simple_xlate); if (IS_ERR(provider)) { dev_err(dev, "failed to register Phy provider\n"); return PTR_ERR(provider); } dev_info(dev, "%s PHY registered\n", dev_name(dev)); return 0; } static const struct of_device_id ns2_pci_phy_of_match[] = { { .compatible = "brcm,ns2-pcie-phy", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, ns2_pci_phy_of_match); static struct mdio_driver ns2_pci_phy_driver = { .mdiodrv = { .driver = { .name = "phy-bcm-ns2-pci", .of_match_table = ns2_pci_phy_of_match, }, }, .probe = ns2_pci_phy_probe, }; mdio_module_driver(ns2_pci_phy_driver); MODULE_AUTHOR("Broadcom"); MODULE_DESCRIPTION("Broadcom Northstar2 PCI Phy driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:phy-bcm-ns2-pci");
linux-master
drivers/phy/broadcom/phy-bcm-ns2-pcie.c
// SPDX-License-Identifier: GPL-2.0-only /* * phy-brcm-usb.c - Broadcom USB Phy Driver * * Copyright (C) 2015-2017 Broadcom */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/soc/brcmstb/brcmstb.h> #include <dt-bindings/phy/phy.h> #include <linux/mfd/syscon.h> #include <linux/suspend.h> #include "phy-brcm-usb-init.h" static DEFINE_MUTEX(sysfs_lock); enum brcm_usb_phy_id { BRCM_USB_PHY_2_0 = 0, BRCM_USB_PHY_3_0, BRCM_USB_PHY_ID_MAX }; struct value_to_name_map { int value; const char *name; }; struct match_chip_info { void (*init_func)(struct brcm_usb_init_params *params); u8 required_regs[BRCM_REGS_MAX + 1]; u8 optional_reg; }; static const struct value_to_name_map brcm_dr_mode_to_name[] = { { USB_CTLR_MODE_HOST, "host" }, { USB_CTLR_MODE_DEVICE, "peripheral" }, { USB_CTLR_MODE_DRD, "drd" }, { USB_CTLR_MODE_TYPEC_PD, "typec-pd" } }; static const struct value_to_name_map brcm_dual_mode_to_name[] = { { 0, "host" }, { 1, "device" }, { 2, "auto" }, }; struct brcm_usb_phy { struct phy *phy; unsigned int id; bool inited; }; struct brcm_usb_phy_data { struct brcm_usb_init_params ini; bool has_eohci; bool has_xhci; struct clk *usb_20_clk; struct clk *usb_30_clk; struct clk *suspend_clk; struct mutex mutex; /* serialize phy init */ int init_count; int wake_irq; struct brcm_usb_phy phys[BRCM_USB_PHY_ID_MAX]; struct notifier_block pm_notifier; bool pm_active; }; static s8 *node_reg_names[BRCM_REGS_MAX] = { "crtl", "xhci_ec", "xhci_gbl", "usb_phy", "usb_mdio", "bdc_ec" }; static int brcm_pm_notifier(struct notifier_block *notifier, unsigned long pm_event, void *unused) { struct brcm_usb_phy_data *priv = container_of(notifier, struct brcm_usb_phy_data, pm_notifier); switch (pm_event) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: priv->pm_active = true; break; case PM_POST_RESTORE: case PM_POST_HIBERNATION: case PM_POST_SUSPEND: priv->pm_active = false; break; } return NOTIFY_DONE; } static irqreturn_t brcm_usb_phy_wake_isr(int irq, void *dev_id) { struct device *dev = dev_id; pm_wakeup_event(dev, 0); return IRQ_HANDLED; } static int brcm_usb_phy_init(struct phy *gphy) { struct brcm_usb_phy *phy = phy_get_drvdata(gphy); struct brcm_usb_phy_data *priv = container_of(phy, struct brcm_usb_phy_data, phys[phy->id]); if (priv->pm_active) return 0; /* * Use a lock to make sure a second caller waits until * the base phy is inited before using it. */ mutex_lock(&priv->mutex); if (priv->init_count++ == 0) { clk_prepare_enable(priv->usb_20_clk); clk_prepare_enable(priv->usb_30_clk); clk_prepare_enable(priv->suspend_clk); brcm_usb_init_common(&priv->ini); } mutex_unlock(&priv->mutex); if (phy->id == BRCM_USB_PHY_2_0) brcm_usb_init_eohci(&priv->ini); else if (phy->id == BRCM_USB_PHY_3_0) brcm_usb_init_xhci(&priv->ini); phy->inited = true; dev_dbg(&gphy->dev, "INIT, id: %d, total: %d\n", phy->id, priv->init_count); return 0; } static int brcm_usb_phy_exit(struct phy *gphy) { struct brcm_usb_phy *phy = phy_get_drvdata(gphy); struct brcm_usb_phy_data *priv = container_of(phy, struct brcm_usb_phy_data, phys[phy->id]); if (priv->pm_active) return 0; dev_dbg(&gphy->dev, "EXIT\n"); if (phy->id == BRCM_USB_PHY_2_0) brcm_usb_uninit_eohci(&priv->ini); if (phy->id == BRCM_USB_PHY_3_0) brcm_usb_uninit_xhci(&priv->ini); /* If both xhci and eohci are gone, reset everything else */ mutex_lock(&priv->mutex); if (--priv->init_count == 0) { brcm_usb_uninit_common(&priv->ini); clk_disable_unprepare(priv->usb_20_clk); clk_disable_unprepare(priv->usb_30_clk); clk_disable_unprepare(priv->suspend_clk); } mutex_unlock(&priv->mutex); phy->inited = false; return 0; } static const struct phy_ops brcm_usb_phy_ops = { .init = brcm_usb_phy_init, .exit = brcm_usb_phy_exit, .owner = THIS_MODULE, }; static struct phy *brcm_usb_phy_xlate(struct device *dev, struct of_phandle_args *args) { struct brcm_usb_phy_data *data = dev_get_drvdata(dev); /* * values 0 and 1 are for backward compatibility with * device tree nodes from older bootloaders. */ switch (args->args[0]) { case 0: case PHY_TYPE_USB2: if (data->phys[BRCM_USB_PHY_2_0].phy) return data->phys[BRCM_USB_PHY_2_0].phy; dev_warn(dev, "Error, 2.0 Phy not found\n"); break; case 1: case PHY_TYPE_USB3: if (data->phys[BRCM_USB_PHY_3_0].phy) return data->phys[BRCM_USB_PHY_3_0].phy; dev_warn(dev, "Error, 3.0 Phy not found\n"); break; } return ERR_PTR(-ENODEV); } static int name_to_value(const struct value_to_name_map *table, int count, const char *name, int *value) { int x; *value = 0; for (x = 0; x < count; x++) { if (sysfs_streq(name, table[x].name)) { *value = x; return 0; } } return -EINVAL; } static const char *value_to_name(const struct value_to_name_map *table, int count, int value) { if (value >= count) return "unknown"; return table[value].name; } static ssize_t dr_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct brcm_usb_phy_data *priv = dev_get_drvdata(dev); return sprintf(buf, "%s\n", value_to_name(&brcm_dr_mode_to_name[0], ARRAY_SIZE(brcm_dr_mode_to_name), priv->ini.supported_port_modes)); } static DEVICE_ATTR_RO(dr_mode); static ssize_t dual_select_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct brcm_usb_phy_data *priv = dev_get_drvdata(dev); int value; int res; mutex_lock(&sysfs_lock); res = name_to_value(&brcm_dual_mode_to_name[0], ARRAY_SIZE(brcm_dual_mode_to_name), buf, &value); if (!res) { priv->ini.port_mode = value; brcm_usb_set_dual_select(&priv->ini); res = len; } mutex_unlock(&sysfs_lock); return res; } static ssize_t dual_select_show(struct device *dev, struct device_attribute *attr, char *buf) { struct brcm_usb_phy_data *priv = dev_get_drvdata(dev); int value; mutex_lock(&sysfs_lock); value = brcm_usb_get_dual_select(&priv->ini); mutex_unlock(&sysfs_lock); return sprintf(buf, "%s\n", value_to_name(&brcm_dual_mode_to_name[0], ARRAY_SIZE(brcm_dual_mode_to_name), value)); } static DEVICE_ATTR_RW(dual_select); static struct attribute *brcm_usb_phy_attrs[] = { &dev_attr_dr_mode.attr, &dev_attr_dual_select.attr, NULL }; static const struct attribute_group brcm_usb_phy_group = { .attrs = brcm_usb_phy_attrs, }; static const struct match_chip_info chip_info_4908 = { .init_func = &brcm_usb_dvr_init_4908, .required_regs = { BRCM_REGS_CTRL, BRCM_REGS_XHCI_EC, -1, }, }; static const struct match_chip_info chip_info_7216 = { .init_func = &brcm_usb_dvr_init_7216, .required_regs = { BRCM_REGS_CTRL, BRCM_REGS_XHCI_EC, BRCM_REGS_XHCI_GBL, -1, }, }; static const struct match_chip_info chip_info_7211b0 = { .init_func = &brcm_usb_dvr_init_7211b0, .required_regs = { BRCM_REGS_CTRL, BRCM_REGS_XHCI_EC, BRCM_REGS_XHCI_GBL, BRCM_REGS_USB_PHY, BRCM_REGS_USB_MDIO, -1, }, .optional_reg = BRCM_REGS_BDC_EC, }; static const struct match_chip_info chip_info_7445 = { .init_func = &brcm_usb_dvr_init_7445, .required_regs = { BRCM_REGS_CTRL, BRCM_REGS_XHCI_EC, -1, }, }; static const struct of_device_id brcm_usb_dt_ids[] = { { .compatible = "brcm,bcm4908-usb-phy", .data = &chip_info_4908, }, { .compatible = "brcm,bcm7216-usb-phy", .data = &chip_info_7216, }, { .compatible = "brcm,bcm7211-usb-phy", .data = &chip_info_7211b0, }, { .compatible = "brcm,brcmstb-usb-phy", .data = &chip_info_7445, }, { /* sentinel */ } }; static int brcm_usb_get_regs(struct platform_device *pdev, enum brcmusb_reg_sel regs, struct brcm_usb_init_params *ini, bool optional) { struct resource *res; /* Older DT nodes have ctrl and optional xhci_ec by index only */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, node_reg_names[regs]); if (res == NULL) { if (regs == BRCM_REGS_CTRL) { res = platform_get_resource(pdev, IORESOURCE_MEM, 0); } else if (regs == BRCM_REGS_XHCI_EC) { res = platform_get_resource(pdev, IORESOURCE_MEM, 1); /* XHCI_EC registers are optional */ if (res == NULL) return 0; } if (res == NULL) { if (optional) { dev_dbg(&pdev->dev, "Optional reg %s not found\n", node_reg_names[regs]); return 0; } dev_err(&pdev->dev, "can't get %s base addr\n", node_reg_names[regs]); return 1; } } ini->regs[regs] = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(ini->regs[regs])) { dev_err(&pdev->dev, "can't map %s register space\n", node_reg_names[regs]); return 1; } return 0; } static int brcm_usb_phy_dvr_init(struct platform_device *pdev, struct brcm_usb_phy_data *priv, struct device_node *dn) { struct device *dev = &pdev->dev; struct phy *gphy = NULL; int err; priv->usb_20_clk = of_clk_get_by_name(dn, "sw_usb"); if (IS_ERR(priv->usb_20_clk)) { if (PTR_ERR(priv->usb_20_clk) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_info(dev, "Clock not found in Device Tree\n"); priv->usb_20_clk = NULL; } err = clk_prepare_enable(priv->usb_20_clk); if (err) return err; if (priv->has_eohci) { gphy = devm_phy_create(dev, NULL, &brcm_usb_phy_ops); if (IS_ERR(gphy)) { dev_err(dev, "failed to create EHCI/OHCI PHY\n"); return PTR_ERR(gphy); } priv->phys[BRCM_USB_PHY_2_0].phy = gphy; priv->phys[BRCM_USB_PHY_2_0].id = BRCM_USB_PHY_2_0; phy_set_drvdata(gphy, &priv->phys[BRCM_USB_PHY_2_0]); } if (priv->has_xhci) { gphy = devm_phy_create(dev, NULL, &brcm_usb_phy_ops); if (IS_ERR(gphy)) { dev_err(dev, "failed to create XHCI PHY\n"); return PTR_ERR(gphy); } priv->phys[BRCM_USB_PHY_3_0].phy = gphy; priv->phys[BRCM_USB_PHY_3_0].id = BRCM_USB_PHY_3_0; phy_set_drvdata(gphy, &priv->phys[BRCM_USB_PHY_3_0]); priv->usb_30_clk = of_clk_get_by_name(dn, "sw_usb3"); if (IS_ERR(priv->usb_30_clk)) { if (PTR_ERR(priv->usb_30_clk) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_info(dev, "USB3.0 clock not found in Device Tree\n"); priv->usb_30_clk = NULL; } err = clk_prepare_enable(priv->usb_30_clk); if (err) return err; } priv->suspend_clk = clk_get(dev, "usb0_freerun"); if (IS_ERR(priv->suspend_clk)) { if (PTR_ERR(priv->suspend_clk) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_err(dev, "Suspend Clock not found in Device Tree\n"); priv->suspend_clk = NULL; } priv->wake_irq = platform_get_irq_byname_optional(pdev, "wake"); if (priv->wake_irq < 0) priv->wake_irq = platform_get_irq_byname_optional(pdev, "wakeup"); if (priv->wake_irq >= 0) { err = devm_request_irq(dev, priv->wake_irq, brcm_usb_phy_wake_isr, 0, dev_name(dev), dev); if (err < 0) return err; device_set_wakeup_capable(dev, 1); } else { dev_info(dev, "Wake interrupt missing, system wake not supported\n"); } return 0; } static int brcm_usb_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct brcm_usb_phy_data *priv; struct phy_provider *phy_provider; struct device_node *dn = pdev->dev.of_node; int err; const char *mode; const struct match_chip_info *info; struct regmap *rmap; int x; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; platform_set_drvdata(pdev, priv); priv->ini.family_id = brcmstb_get_family_id(); priv->ini.product_id = brcmstb_get_product_id(); info = of_device_get_match_data(&pdev->dev); if (!info) return -ENOENT; info->init_func(&priv->ini); dev_dbg(dev, "Best mapping table is for %s\n", priv->ini.family_name); of_property_read_u32(dn, "brcm,ipp", &priv->ini.ipp); of_property_read_u32(dn, "brcm,ioc", &priv->ini.ioc); priv->ini.supported_port_modes = USB_CTLR_MODE_HOST; err = of_property_read_string(dn, "dr_mode", &mode); if (err == 0) { name_to_value(&brcm_dr_mode_to_name[0], ARRAY_SIZE(brcm_dr_mode_to_name), mode, &priv->ini.supported_port_modes); } /* Default port_mode to supported port_modes */ priv->ini.port_mode = priv->ini.supported_port_modes; if (of_property_read_bool(dn, "brcm,has-xhci")) priv->has_xhci = true; if (of_property_read_bool(dn, "brcm,has-eohci")) priv->has_eohci = true; for (x = 0; x < BRCM_REGS_MAX; x++) { if (info->required_regs[x] >= BRCM_REGS_MAX) break; err = brcm_usb_get_regs(pdev, info->required_regs[x], &priv->ini, false); if (err) return -EINVAL; } if (info->optional_reg) { err = brcm_usb_get_regs(pdev, info->optional_reg, &priv->ini, true); if (err) return -EINVAL; } err = brcm_usb_phy_dvr_init(pdev, priv, dn); if (err) return err; priv->pm_notifier.notifier_call = brcm_pm_notifier; register_pm_notifier(&priv->pm_notifier); mutex_init(&priv->mutex); /* make sure invert settings are correct */ brcm_usb_init_ipp(&priv->ini); /* * Create sysfs entries for mode. * Remove "dual_select" attribute if not in dual mode */ if (priv->ini.supported_port_modes != USB_CTLR_MODE_DRD) brcm_usb_phy_attrs[1] = NULL; err = sysfs_create_group(&dev->kobj, &brcm_usb_phy_group); if (err) dev_warn(dev, "Error creating sysfs attributes\n"); /* Get piarbctl syscon if it exists */ rmap = syscon_regmap_lookup_by_phandle(dev->of_node, "syscon-piarbctl"); if (IS_ERR(rmap)) rmap = syscon_regmap_lookup_by_phandle(dev->of_node, "brcm,syscon-piarbctl"); if (!IS_ERR(rmap)) priv->ini.syscon_piarbctl = rmap; /* start with everything off */ if (priv->has_xhci) brcm_usb_uninit_xhci(&priv->ini); if (priv->has_eohci) brcm_usb_uninit_eohci(&priv->ini); brcm_usb_uninit_common(&priv->ini); clk_disable_unprepare(priv->usb_20_clk); clk_disable_unprepare(priv->usb_30_clk); phy_provider = devm_of_phy_provider_register(dev, brcm_usb_phy_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static void brcm_usb_phy_remove(struct platform_device *pdev) { struct brcm_usb_phy_data *priv = dev_get_drvdata(&pdev->dev); sysfs_remove_group(&pdev->dev.kobj, &brcm_usb_phy_group); unregister_pm_notifier(&priv->pm_notifier); } #ifdef CONFIG_PM_SLEEP static int brcm_usb_phy_suspend(struct device *dev) { struct brcm_usb_phy_data *priv = dev_get_drvdata(dev); if (priv->init_count) { dev_dbg(dev, "SUSPEND\n"); priv->ini.wake_enabled = device_may_wakeup(dev); if (priv->phys[BRCM_USB_PHY_3_0].inited) brcm_usb_uninit_xhci(&priv->ini); if (priv->phys[BRCM_USB_PHY_2_0].inited) brcm_usb_uninit_eohci(&priv->ini); brcm_usb_uninit_common(&priv->ini); /* * Handle the clocks unless needed for wake. This has * to work for both older XHCI->3.0-clks, EOHCI->2.0-clks * and newer XHCI->2.0-clks/3.0-clks. */ if (!priv->ini.wake_enabled) { if (priv->phys[BRCM_USB_PHY_3_0].inited) clk_disable_unprepare(priv->usb_30_clk); if (priv->phys[BRCM_USB_PHY_2_0].inited || !priv->has_eohci) clk_disable_unprepare(priv->usb_20_clk); } if (priv->wake_irq >= 0) enable_irq_wake(priv->wake_irq); } return 0; } static int brcm_usb_phy_resume(struct device *dev) { struct brcm_usb_phy_data *priv = dev_get_drvdata(dev); if (!priv->ini.wake_enabled) { clk_prepare_enable(priv->usb_20_clk); clk_prepare_enable(priv->usb_30_clk); } brcm_usb_init_ipp(&priv->ini); /* * Initialize anything that was previously initialized. * Uninitialize anything that wasn't previously initialized. */ if (priv->init_count) { dev_dbg(dev, "RESUME\n"); if (priv->wake_irq >= 0) disable_irq_wake(priv->wake_irq); brcm_usb_init_common(&priv->ini); if (priv->phys[BRCM_USB_PHY_2_0].inited) { brcm_usb_init_eohci(&priv->ini); } else if (priv->has_eohci) { brcm_usb_uninit_eohci(&priv->ini); clk_disable_unprepare(priv->usb_20_clk); } if (priv->phys[BRCM_USB_PHY_3_0].inited) { brcm_usb_init_xhci(&priv->ini); } else if (priv->has_xhci) { brcm_usb_uninit_xhci(&priv->ini); clk_disable_unprepare(priv->usb_30_clk); if (!priv->has_eohci) clk_disable_unprepare(priv->usb_20_clk); } } else { if (priv->has_xhci) brcm_usb_uninit_xhci(&priv->ini); if (priv->has_eohci) brcm_usb_uninit_eohci(&priv->ini); brcm_usb_uninit_common(&priv->ini); clk_disable_unprepare(priv->usb_20_clk); clk_disable_unprepare(priv->usb_30_clk); } priv->ini.wake_enabled = false; return 0; } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops brcm_usb_phy_pm_ops = { SET_LATE_SYSTEM_SLEEP_PM_OPS(brcm_usb_phy_suspend, brcm_usb_phy_resume) }; MODULE_DEVICE_TABLE(of, brcm_usb_dt_ids); static struct platform_driver brcm_usb_driver = { .probe = brcm_usb_phy_probe, .remove_new = brcm_usb_phy_remove, .driver = { .name = "brcmstb-usb-phy", .pm = &brcm_usb_phy_pm_ops, .of_match_table = brcm_usb_dt_ids, }, }; module_platform_driver(brcm_usb_driver); MODULE_ALIAS("platform:brcmstb-usb-phy"); MODULE_AUTHOR("Al Cooper <[email protected]>"); MODULE_DESCRIPTION("BRCM USB PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/broadcom/phy-brcm-usb.c
// SPDX-License-Identifier: GPL-2.0-only /* * phy-brcm-usb-init.c - Broadcom USB Phy chip specific init functions * * Copyright (C) 2014-2017 Broadcom */ /* * This module contains USB PHY initialization for power up and S3 resume */ #include <linux/delay.h> #include <linux/io.h> #include <linux/soc/brcmstb/brcmstb.h> #include "phy-brcm-usb-init.h" #define PHY_PORTS 2 #define PHY_PORT_SELECT_0 0 #define PHY_PORT_SELECT_1 0x1000 /* Register definitions for the USB CTRL block */ #define USB_CTRL_SETUP 0x00 #define USB_CTRL_SETUP_BABO_MASK BIT(0) #define USB_CTRL_SETUP_FNHW_MASK BIT(1) #define USB_CTRL_SETUP_FNBO_MASK BIT(2) #define USB_CTRL_SETUP_WABO_MASK BIT(3) #define USB_CTRL_SETUP_IOC_MASK BIT(4) #define USB_CTRL_SETUP_IPP_MASK BIT(5) #define USB_CTRL_SETUP_SCB_CLIENT_SWAP_MASK BIT(13) /* option */ #define USB_CTRL_SETUP_SCB1_EN_MASK BIT(14) /* option */ #define USB_CTRL_SETUP_SCB2_EN_MASK BIT(15) /* option */ #define USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK BIT(17) /* option */ #define USB_CTRL_SETUP_SS_EHCI64BIT_EN_VAR_MASK BIT(16) /* option */ #define USB_CTRL_SETUP_STRAP_IPP_SEL_MASK BIT(25) /* option */ #define USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK BIT(26) /* option */ #define USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK BIT(27) /* opt */ #define USB_CTRL_SETUP_OC_DISABLE_PORT0_MASK BIT(28) #define USB_CTRL_SETUP_OC_DISABLE_PORT1_MASK BIT(29) #define USB_CTRL_SETUP_OC_DISABLE_MASK GENMASK(29, 28) /* option */ #define USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK BIT(30) #define USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK BIT(31) #define USB_CTRL_SETUP_OC3_DISABLE_MASK GENMASK(31, 30) /* option */ #define USB_CTRL_PLL_CTL 0x04 #define USB_CTRL_PLL_CTL_PLL_SUSPEND_EN_MASK BIT(27) #define USB_CTRL_PLL_CTL_PLL_RESETB_MASK BIT(30) #define USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK BIT(31) /* option */ #define USB_CTRL_EBRIDGE 0x0c #define USB_CTRL_EBRIDGE_EBR_SCB_SIZE_MASK GENMASK(11, 7) /* option */ #define USB_CTRL_EBRIDGE_ESTOP_SCB_REQ_MASK BIT(17) /* option */ #define USB_CTRL_OBRIDGE 0x10 #define USB_CTRL_OBRIDGE_LS_KEEP_ALIVE_MASK BIT(27) #define USB_CTRL_MDIO 0x14 #define USB_CTRL_MDIO2 0x18 #define USB_CTRL_UTMI_CTL_1 0x2c #define USB_CTRL_UTMI_CTL_1_POWER_UP_FSM_EN_MASK BIT(11) #define USB_CTRL_UTMI_CTL_1_POWER_UP_FSM_EN_P1_MASK BIT(27) #define USB_CTRL_USB_PM 0x34 #define USB_CTRL_USB_PM_RMTWKUP_EN_MASK BIT(0) #define USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK GENMASK(21, 20) /* option */ #define USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK BIT(22) /* option */ #define USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK BIT(23) /* option */ #define USB_CTRL_USB_PM_USB20_HC_RESETB_MASK GENMASK(29, 28) /* option */ #define USB_CTRL_USB_PM_XHC_SOFT_RESETB_VAR_MASK BIT(30) /* option */ #define USB_CTRL_USB_PM_SOFT_RESET_MASK BIT(30) /* option */ #define USB_CTRL_USB_PM_USB_PWRDN_MASK BIT(31) /* option */ #define USB_CTRL_USB_PM_STATUS 0x38 #define USB_CTRL_USB30_CTL1 0x60 #define USB_CTRL_USB30_CTL1_PHY3_PLL_SEQ_START_MASK BIT(4) #define USB_CTRL_USB30_CTL1_PHY3_RESETB_MASK BIT(16) #define USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK BIT(17) /* option */ #define USB_CTRL_USB30_CTL1_USB3_IOC_MASK BIT(28) /* option */ #define USB_CTRL_USB30_CTL1_USB3_IPP_MASK BIT(29) /* option */ #define USB_CTRL_USB30_PCTL 0x70 #define USB_CTRL_USB30_PCTL_PHY3_SOFT_RESETB_MASK BIT(1) #define USB_CTRL_USB30_PCTL_PHY3_IDDQ_OVERRIDE_MASK BIT(15) #define USB_CTRL_USB30_PCTL_PHY3_SOFT_RESETB_P1_MASK BIT(17) #define USB_CTRL_USB_DEVICE_CTL1 0x90 #define USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK GENMASK(1, 0) /* option */ /* Register definitions for the XHCI EC block */ #define USB_XHCI_EC_IRAADR 0x658 #define USB_XHCI_EC_IRADAT 0x65c enum brcm_family_type { BRCM_FAMILY_3390A0, BRCM_FAMILY_4908, BRCM_FAMILY_7250B0, BRCM_FAMILY_7271A0, BRCM_FAMILY_7364A0, BRCM_FAMILY_7366C0, BRCM_FAMILY_74371A0, BRCM_FAMILY_7439B0, BRCM_FAMILY_7445D0, BRCM_FAMILY_7260A0, BRCM_FAMILY_7278A0, BRCM_FAMILY_COUNT, }; #define USB_BRCM_FAMILY(chip) \ [BRCM_FAMILY_##chip] = __stringify(chip) static const char *family_names[BRCM_FAMILY_COUNT] = { USB_BRCM_FAMILY(3390A0), USB_BRCM_FAMILY(4908), USB_BRCM_FAMILY(7250B0), USB_BRCM_FAMILY(7271A0), USB_BRCM_FAMILY(7364A0), USB_BRCM_FAMILY(7366C0), USB_BRCM_FAMILY(74371A0), USB_BRCM_FAMILY(7439B0), USB_BRCM_FAMILY(7445D0), USB_BRCM_FAMILY(7260A0), USB_BRCM_FAMILY(7278A0), }; enum { USB_CTRL_SETUP_SCB1_EN_SELECTOR, USB_CTRL_SETUP_SCB2_EN_SELECTOR, USB_CTRL_SETUP_SS_EHCI64BIT_EN_SELECTOR, USB_CTRL_SETUP_STRAP_IPP_SEL_SELECTOR, USB_CTRL_SETUP_OC3_DISABLE_PORT0_SELECTOR, USB_CTRL_SETUP_OC3_DISABLE_PORT1_SELECTOR, USB_CTRL_SETUP_OC3_DISABLE_SELECTOR, USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_SELECTOR, USB_CTRL_USB_PM_BDC_SOFT_RESETB_SELECTOR, USB_CTRL_USB_PM_XHC_SOFT_RESETB_SELECTOR, USB_CTRL_USB_PM_USB_PWRDN_SELECTOR, USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_SELECTOR, USB_CTRL_USB30_CTL1_USB3_IOC_SELECTOR, USB_CTRL_USB30_CTL1_USB3_IPP_SELECTOR, USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_SELECTOR, USB_CTRL_USB_PM_SOFT_RESET_SELECTOR, USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_SELECTOR, USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_SELECTOR, USB_CTRL_USB_PM_USB20_HC_RESETB_SELECTOR, USB_CTRL_SETUP_ENDIAN_SELECTOR, USB_CTRL_SELECTOR_COUNT, }; #define USB_CTRL_MASK_FAMILY(params, reg, field) \ (params->usb_reg_bits_map[USB_CTRL_##reg##_##field##_SELECTOR]) #define USB_CTRL_SET_FAMILY(params, reg, field) \ usb_ctrl_set_family(params, USB_CTRL_##reg, \ USB_CTRL_##reg##_##field##_SELECTOR) #define USB_CTRL_UNSET_FAMILY(params, reg, field) \ usb_ctrl_unset_family(params, USB_CTRL_##reg, \ USB_CTRL_##reg##_##field##_SELECTOR) #define MDIO_USB2 0 #define MDIO_USB3 BIT(31) #define USB_CTRL_SETUP_ENDIAN_BITS ( \ USB_CTRL_MASK(SETUP, BABO) | \ USB_CTRL_MASK(SETUP, FNHW) | \ USB_CTRL_MASK(SETUP, FNBO) | \ USB_CTRL_MASK(SETUP, WABO)) #ifdef __LITTLE_ENDIAN #define ENDIAN_SETTINGS ( \ USB_CTRL_MASK(SETUP, BABO) | \ USB_CTRL_MASK(SETUP, FNHW)) #else #define ENDIAN_SETTINGS ( \ USB_CTRL_MASK(SETUP, FNHW) | \ USB_CTRL_MASK(SETUP, FNBO) | \ USB_CTRL_MASK(SETUP, WABO)) #endif struct id_to_type { u32 id; int type; }; static const struct id_to_type id_to_type_table[] = { { 0x33900000, BRCM_FAMILY_3390A0 }, { 0x72500010, BRCM_FAMILY_7250B0 }, { 0x72600000, BRCM_FAMILY_7260A0 }, { 0x72550000, BRCM_FAMILY_7260A0 }, { 0x72680000, BRCM_FAMILY_7271A0 }, { 0x72710000, BRCM_FAMILY_7271A0 }, { 0x73640000, BRCM_FAMILY_7364A0 }, { 0x73660020, BRCM_FAMILY_7366C0 }, { 0x07437100, BRCM_FAMILY_74371A0 }, { 0x74390010, BRCM_FAMILY_7439B0 }, { 0x74450030, BRCM_FAMILY_7445D0 }, { 0x72780000, BRCM_FAMILY_7278A0 }, { 0, BRCM_FAMILY_7271A0 }, /* default */ }; static const u32 usb_reg_bits_map_table[BRCM_FAMILY_COUNT][USB_CTRL_SELECTOR_COUNT] = { /* 3390B0 */ [BRCM_FAMILY_3390A0] = { USB_CTRL_SETUP_SCB1_EN_MASK, USB_CTRL_SETUP_SCB2_EN_MASK, USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK, USB_CTRL_SETUP_STRAP_IPP_SEL_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK, USB_CTRL_SETUP_OC3_DISABLE_MASK, 0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */ 0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */ USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK, USB_CTRL_USB_PM_USB_PWRDN_MASK, 0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */ USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK, 0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */ 0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */ 0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */ USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK, ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */ }, /* 4908 */ [BRCM_FAMILY_4908] = { 0, /* USB_CTRL_SETUP_SCB1_EN_MASK */ 0, /* USB_CTRL_SETUP_SCB2_EN_MASK */ 0, /* USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK */ 0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */ 0, /* USB_CTRL_SETUP_OC3_DISABLE_MASK */ 0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */ 0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */ USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK, USB_CTRL_USB_PM_USB_PWRDN_MASK, 0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */ 0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */ 0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */ 0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */ 0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */ 0, /* USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK */ 0, /* USB_CTRL_SETUP ENDIAN bits */ }, /* 7250b0 */ [BRCM_FAMILY_7250B0] = { USB_CTRL_SETUP_SCB1_EN_MASK, USB_CTRL_SETUP_SCB2_EN_MASK, USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK, 0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */ USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK, USB_CTRL_SETUP_OC3_DISABLE_MASK, USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK, 0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */ USB_CTRL_USB_PM_XHC_SOFT_RESETB_VAR_MASK, 0, /* USB_CTRL_USB_PM_USB_PWRDN_MASK */ 0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */ 0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */ 0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */ 0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */ 0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */ USB_CTRL_USB_PM_USB20_HC_RESETB_MASK, ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */ }, /* 7271a0 */ [BRCM_FAMILY_7271A0] = { 0, /* USB_CTRL_SETUP_SCB1_EN_MASK */ 0, /* USB_CTRL_SETUP_SCB2_EN_MASK */ USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK, USB_CTRL_SETUP_STRAP_IPP_SEL_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK, USB_CTRL_SETUP_OC3_DISABLE_MASK, 0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */ USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK, USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK, USB_CTRL_USB_PM_USB_PWRDN_MASK, 0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */ USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK, USB_CTRL_USB_PM_SOFT_RESET_MASK, USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK, USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK, USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK, ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */ }, /* 7364a0 */ [BRCM_FAMILY_7364A0] = { USB_CTRL_SETUP_SCB1_EN_MASK, USB_CTRL_SETUP_SCB2_EN_MASK, USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK, 0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */ USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK, USB_CTRL_SETUP_OC3_DISABLE_MASK, USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK, 0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */ USB_CTRL_USB_PM_XHC_SOFT_RESETB_VAR_MASK, 0, /* USB_CTRL_USB_PM_USB_PWRDN_MASK */ 0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */ 0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */ 0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */ 0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */ 0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */ USB_CTRL_USB_PM_USB20_HC_RESETB_MASK, ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */ }, /* 7366c0 */ [BRCM_FAMILY_7366C0] = { USB_CTRL_SETUP_SCB1_EN_MASK, USB_CTRL_SETUP_SCB2_EN_MASK, USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK, 0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */ USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK, USB_CTRL_SETUP_OC3_DISABLE_MASK, 0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */ 0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */ USB_CTRL_USB_PM_XHC_SOFT_RESETB_VAR_MASK, USB_CTRL_USB_PM_USB_PWRDN_MASK, 0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */ 0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */ 0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */ 0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */ 0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */ USB_CTRL_USB_PM_USB20_HC_RESETB_MASK, ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */ }, /* 74371A0 */ [BRCM_FAMILY_74371A0] = { USB_CTRL_SETUP_SCB1_EN_MASK, USB_CTRL_SETUP_SCB2_EN_MASK, USB_CTRL_SETUP_SS_EHCI64BIT_EN_VAR_MASK, 0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */ 0, /* USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK */ 0, /* USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK */ 0, /* USB_CTRL_SETUP_OC3_DISABLE_MASK */ USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK, 0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB_PM_USB_PWRDN_MASK */ USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK, USB_CTRL_USB30_CTL1_USB3_IOC_MASK, USB_CTRL_USB30_CTL1_USB3_IPP_MASK, 0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */ 0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */ 0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */ 0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */ 0, /* USB_CTRL_USB_PM_USB20_HC_RESETB_MASK */ ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */ }, /* 7439B0 */ [BRCM_FAMILY_7439B0] = { USB_CTRL_SETUP_SCB1_EN_MASK, USB_CTRL_SETUP_SCB2_EN_MASK, USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK, USB_CTRL_SETUP_STRAP_IPP_SEL_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK, USB_CTRL_SETUP_OC3_DISABLE_MASK, 0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */ USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK, USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK, USB_CTRL_USB_PM_USB_PWRDN_MASK, 0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */ USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK, 0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */ 0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */ 0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */ USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK, ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */ }, /* 7445d0 */ [BRCM_FAMILY_7445D0] = { USB_CTRL_SETUP_SCB1_EN_MASK, USB_CTRL_SETUP_SCB2_EN_MASK, USB_CTRL_SETUP_SS_EHCI64BIT_EN_VAR_MASK, 0, /* USB_CTRL_SETUP_STRAP_IPP_SEL_MASK */ USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK, USB_CTRL_SETUP_OC3_DISABLE_MASK, USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK, 0, /* USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB_PM_USB_PWRDN_MASK */ USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK, 0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */ 0, /* USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK */ 0, /* USB_CTRL_USB_PM_SOFT_RESET_MASK */ 0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */ 0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */ USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK, ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */ }, /* 7260a0 */ [BRCM_FAMILY_7260A0] = { 0, /* USB_CTRL_SETUP_SCB1_EN_MASK */ 0, /* USB_CTRL_SETUP_SCB2_EN_MASK */ USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK, USB_CTRL_SETUP_STRAP_IPP_SEL_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK, USB_CTRL_SETUP_OC3_DISABLE_MASK, 0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */ USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK, USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK, USB_CTRL_USB_PM_USB_PWRDN_MASK, 0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */ USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK, USB_CTRL_USB_PM_SOFT_RESET_MASK, USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK, USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK, USB_CTRL_USB_PM_USB20_HC_RESETB_VAR_MASK, ENDIAN_SETTINGS, /* USB_CTRL_SETUP ENDIAN bits */ }, /* 7278a0 */ [BRCM_FAMILY_7278A0] = { 0, /* USB_CTRL_SETUP_SCB1_EN_MASK */ 0, /* USB_CTRL_SETUP_SCB2_EN_MASK */ 0, /*USB_CTRL_SETUP_SS_EHCI64BIT_EN_MASK */ USB_CTRL_SETUP_STRAP_IPP_SEL_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT0_MASK, USB_CTRL_SETUP_OC3_DISABLE_PORT1_MASK, USB_CTRL_SETUP_OC3_DISABLE_MASK, 0, /* USB_CTRL_PLL_CTL_PLL_IDDQ_PWRDN_MASK */ USB_CTRL_USB_PM_BDC_SOFT_RESETB_MASK, USB_CTRL_USB_PM_XHC_SOFT_RESETB_MASK, USB_CTRL_USB_PM_USB_PWRDN_MASK, 0, /* USB_CTRL_USB30_CTL1_XHC_SOFT_RESETB_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IOC_MASK */ 0, /* USB_CTRL_USB30_CTL1_USB3_IPP_MASK */ USB_CTRL_USB_DEVICE_CTL1_PORT_MODE_MASK, USB_CTRL_USB_PM_SOFT_RESET_MASK, 0, /* USB_CTRL_SETUP_CC_DRD_MODE_ENABLE_MASK */ 0, /* USB_CTRL_SETUP_STRAP_CC_DRD_MODE_ENABLE_SEL_MASK */ 0, /* USB_CTRL_USB_PM_USB20_HC_RESETB_MASK */ 0, /* USB_CTRL_SETUP ENDIAN bits */ }, }; static inline void usb_ctrl_unset_family(struct brcm_usb_init_params *params, u32 reg_offset, u32 field) { u32 mask; mask = params->usb_reg_bits_map[field]; brcm_usb_ctrl_unset(params->regs[BRCM_REGS_CTRL] + reg_offset, mask); }; static inline void usb_ctrl_set_family(struct brcm_usb_init_params *params, u32 reg_offset, u32 field) { u32 mask; mask = params->usb_reg_bits_map[field]; brcm_usb_ctrl_set(params->regs[BRCM_REGS_CTRL] + reg_offset, mask); }; static u32 brcmusb_usb_mdio_read(void __iomem *ctrl_base, u32 reg, int mode) { u32 data; data = (reg << 16) | mode; brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO)); data |= (1 << 24); brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO)); data &= ~(1 << 24); /* wait for the 60MHz parallel to serial shifter */ usleep_range(10, 20); brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO)); /* wait for the 60MHz parallel to serial shifter */ usleep_range(10, 20); return brcm_usb_readl(USB_CTRL_REG(ctrl_base, MDIO2)) & 0xffff; } static void brcmusb_usb_mdio_write(void __iomem *ctrl_base, u32 reg, u32 val, int mode) { u32 data; data = (reg << 16) | val | mode; brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO)); data |= (1 << 25); brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO)); data &= ~(1 << 25); /* wait for the 60MHz parallel to serial shifter */ usleep_range(10, 20); brcm_usb_writel(data, USB_CTRL_REG(ctrl_base, MDIO)); /* wait for the 60MHz parallel to serial shifter */ usleep_range(10, 20); } static void brcmusb_usb_phy_ldo_fix(void __iomem *ctrl_base) { /* first disable FSM but also leave it that way */ /* to allow normal suspend/resume */ USB_CTRL_UNSET(ctrl_base, UTMI_CTL_1, POWER_UP_FSM_EN); USB_CTRL_UNSET(ctrl_base, UTMI_CTL_1, POWER_UP_FSM_EN_P1); /* reset USB 2.0 PLL */ USB_CTRL_UNSET(ctrl_base, PLL_CTL, PLL_RESETB); /* PLL reset period */ udelay(1); USB_CTRL_SET(ctrl_base, PLL_CTL, PLL_RESETB); /* Give PLL enough time to lock */ usleep_range(1000, 2000); } static void brcmusb_usb2_eye_fix(void __iomem *ctrl_base) { /* Increase USB 2.0 TX level to meet spec requirement */ brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x80a0, MDIO_USB2); brcmusb_usb_mdio_write(ctrl_base, 0x0a, 0xc6a0, MDIO_USB2); } static void brcmusb_usb3_pll_fix(void __iomem *ctrl_base) { /* Set correct window for PLL lock detect */ brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x8000, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x07, 0x1503, MDIO_USB3); } static void brcmusb_usb3_enable_pipe_reset(void __iomem *ctrl_base) { u32 val; /* Re-enable USB 3.0 pipe reset */ brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x8000, MDIO_USB3); val = brcmusb_usb_mdio_read(ctrl_base, 0x0f, MDIO_USB3) | 0x200; brcmusb_usb_mdio_write(ctrl_base, 0x0f, val, MDIO_USB3); } static void brcmusb_usb3_enable_sigdet(void __iomem *ctrl_base) { u32 val, ofs; int ii; ofs = 0; for (ii = 0; ii < PHY_PORTS; ++ii) { /* Set correct default for sigdet */ brcmusb_usb_mdio_write(ctrl_base, 0x1f, (0x8080 + ofs), MDIO_USB3); val = brcmusb_usb_mdio_read(ctrl_base, 0x05, MDIO_USB3); val = (val & ~0x800f) | 0x800d; brcmusb_usb_mdio_write(ctrl_base, 0x05, val, MDIO_USB3); ofs = PHY_PORT_SELECT_1; } } static void brcmusb_usb3_enable_skip_align(void __iomem *ctrl_base) { u32 val, ofs; int ii; ofs = 0; for (ii = 0; ii < PHY_PORTS; ++ii) { /* Set correct default for SKIP align */ brcmusb_usb_mdio_write(ctrl_base, 0x1f, (0x8060 + ofs), MDIO_USB3); val = brcmusb_usb_mdio_read(ctrl_base, 0x01, MDIO_USB3) | 0x200; brcmusb_usb_mdio_write(ctrl_base, 0x01, val, MDIO_USB3); ofs = PHY_PORT_SELECT_1; } } static void brcmusb_usb3_unfreeze_aeq(void __iomem *ctrl_base) { u32 val, ofs; int ii; ofs = 0; for (ii = 0; ii < PHY_PORTS; ++ii) { /* Let EQ freeze after TSEQ */ brcmusb_usb_mdio_write(ctrl_base, 0x1f, (0x80e0 + ofs), MDIO_USB3); val = brcmusb_usb_mdio_read(ctrl_base, 0x01, MDIO_USB3); val &= ~0x0008; brcmusb_usb_mdio_write(ctrl_base, 0x01, val, MDIO_USB3); ofs = PHY_PORT_SELECT_1; } } static void brcmusb_usb3_pll_54mhz(struct brcm_usb_init_params *params) { u32 ofs; int ii; void __iomem *ctrl_base = params->regs[BRCM_REGS_CTRL]; /* * On newer B53 based SoC's, the reference clock for the * 3.0 PLL has been changed from 50MHz to 54MHz so the * PLL needs to be reprogrammed. * See SWLINUX-4006. * * On the 7364C0, the reference clock for the * 3.0 PLL has been changed from 50MHz to 54MHz to * work around a MOCA issue. * See SWLINUX-4169. */ switch (params->selected_family) { case BRCM_FAMILY_3390A0: case BRCM_FAMILY_4908: case BRCM_FAMILY_7250B0: case BRCM_FAMILY_7366C0: case BRCM_FAMILY_74371A0: case BRCM_FAMILY_7439B0: case BRCM_FAMILY_7445D0: case BRCM_FAMILY_7260A0: return; case BRCM_FAMILY_7364A0: if (BRCM_REV(params->family_id) < 0x20) return; break; } /* set USB 3.0 PLL to accept 54Mhz reference clock */ USB_CTRL_UNSET(ctrl_base, USB30_CTL1, PHY3_PLL_SEQ_START); brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x8000, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x10, 0x5784, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x11, 0x01d0, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x12, 0x1DE8, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x13, 0xAA80, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x14, 0x8826, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x15, 0x0044, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x16, 0x8000, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x17, 0x0851, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x18, 0x0000, MDIO_USB3); /* both ports */ ofs = 0; for (ii = 0; ii < PHY_PORTS; ++ii) { brcmusb_usb_mdio_write(ctrl_base, 0x1f, (0x8040 + ofs), MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x03, 0x0090, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x04, 0x0134, MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x1f, (0x8020 + ofs), MDIO_USB3); brcmusb_usb_mdio_write(ctrl_base, 0x01, 0x00e2, MDIO_USB3); ofs = PHY_PORT_SELECT_1; } /* restart PLL sequence */ USB_CTRL_SET(ctrl_base, USB30_CTL1, PHY3_PLL_SEQ_START); /* Give PLL enough time to lock */ usleep_range(1000, 2000); } static void brcmusb_usb3_ssc_enable(void __iomem *ctrl_base) { u32 val; /* Enable USB 3.0 TX spread spectrum */ brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x8040, MDIO_USB3); val = brcmusb_usb_mdio_read(ctrl_base, 0x01, MDIO_USB3) | 0xf; brcmusb_usb_mdio_write(ctrl_base, 0x01, val, MDIO_USB3); /* Currently, USB 3.0 SSC is enabled via port 0 MDIO registers, * which should have been adequate. However, due to a bug in the * USB 3.0 PHY, it must be enabled via both ports (HWUSB3DVT-26). */ brcmusb_usb_mdio_write(ctrl_base, 0x1f, 0x9040, MDIO_USB3); val = brcmusb_usb_mdio_read(ctrl_base, 0x01, MDIO_USB3) | 0xf; brcmusb_usb_mdio_write(ctrl_base, 0x01, val, MDIO_USB3); } static void brcmusb_usb3_phy_workarounds(struct brcm_usb_init_params *params) { void __iomem *ctrl_base = params->regs[BRCM_REGS_CTRL]; brcmusb_usb3_pll_fix(ctrl_base); brcmusb_usb3_pll_54mhz(params); brcmusb_usb3_ssc_enable(ctrl_base); brcmusb_usb3_enable_pipe_reset(ctrl_base); brcmusb_usb3_enable_sigdet(ctrl_base); brcmusb_usb3_enable_skip_align(ctrl_base); brcmusb_usb3_unfreeze_aeq(ctrl_base); } static void brcmusb_memc_fix(struct brcm_usb_init_params *params) { u32 prid; if (params->selected_family != BRCM_FAMILY_7445D0) return; /* * This is a workaround for HW7445-1869 where a DMA write ends up * doing a read pre-fetch after the end of the DMA buffer. This * causes a problem when the DMA buffer is at the end of physical * memory, causing the pre-fetch read to access non-existent memory, * and the chip bondout has MEMC2 disabled. When the pre-fetch read * tries to use the disabled MEMC2, it hangs the bus. The workaround * is to disable MEMC2 access in the usb controller which avoids * the hang. */ prid = params->product_id & 0xfffff000; switch (prid) { case 0x72520000: case 0x74480000: case 0x74490000: case 0x07252000: case 0x07448000: case 0x07449000: USB_CTRL_UNSET_FAMILY(params, SETUP, SCB2_EN); } } static void brcmusb_usb3_otp_fix(struct brcm_usb_init_params *params) { void __iomem *xhci_ec_base = params->regs[BRCM_REGS_XHCI_EC]; u32 val; if (params->family_id != 0x74371000 || !xhci_ec_base) return; brcm_usb_writel(0xa20c, USB_XHCI_EC_REG(xhci_ec_base, IRAADR)); val = brcm_usb_readl(USB_XHCI_EC_REG(xhci_ec_base, IRADAT)); /* set cfg_pick_ss_lock */ val |= (1 << 27); brcm_usb_writel(val, USB_XHCI_EC_REG(xhci_ec_base, IRADAT)); /* Reset USB 3.0 PHY for workaround to take effect */ USB_CTRL_UNSET(params->regs[BRCM_REGS_CTRL], USB30_CTL1, PHY3_RESETB); USB_CTRL_SET(params->regs[BRCM_REGS_CTRL], USB30_CTL1, PHY3_RESETB); } static void brcmusb_xhci_soft_reset(struct brcm_usb_init_params *params, int on_off) { /* Assert reset */ if (on_off) { if (USB_CTRL_MASK_FAMILY(params, USB_PM, XHC_SOFT_RESETB)) USB_CTRL_UNSET_FAMILY(params, USB_PM, XHC_SOFT_RESETB); else USB_CTRL_UNSET_FAMILY(params, USB30_CTL1, XHC_SOFT_RESETB); } else { /* De-assert reset */ if (USB_CTRL_MASK_FAMILY(params, USB_PM, XHC_SOFT_RESETB)) USB_CTRL_SET_FAMILY(params, USB_PM, XHC_SOFT_RESETB); else USB_CTRL_SET_FAMILY(params, USB30_CTL1, XHC_SOFT_RESETB); } } /* * Return the best map table family. The order is: * - exact match of chip and major rev * - exact match of chip and closest older major rev * - default chip/rev. * NOTE: The minor rev is always ignored. */ static enum brcm_family_type get_family_type( struct brcm_usb_init_params *params) { int last_type = -1; u32 last_family = 0; u32 family_no_major; unsigned int x; u32 family; family = params->family_id & 0xfffffff0; family_no_major = params->family_id & 0xffffff00; for (x = 0; id_to_type_table[x].id; x++) { if (family == id_to_type_table[x].id) return id_to_type_table[x].type; if (family_no_major == (id_to_type_table[x].id & 0xffffff00)) if (family > id_to_type_table[x].id && last_family < id_to_type_table[x].id) { last_family = id_to_type_table[x].id; last_type = id_to_type_table[x].type; } } /* If no match, return the default family */ if (last_type == -1) return id_to_type_table[x].type; return last_type; } static void usb_init_ipp(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; u32 reg; u32 orig_reg; /* Starting with the 7445d0, there are no longer separate 3.0 * versions of IOC and IPP. */ if (USB_CTRL_MASK_FAMILY(params, USB30_CTL1, USB3_IOC)) { if (params->ioc) USB_CTRL_SET_FAMILY(params, USB30_CTL1, USB3_IOC); if (params->ipp == 1) USB_CTRL_SET_FAMILY(params, USB30_CTL1, USB3_IPP); } reg = brcm_usb_readl(USB_CTRL_REG(ctrl, SETUP)); orig_reg = reg; if (USB_CTRL_MASK_FAMILY(params, SETUP, STRAP_CC_DRD_MODE_ENABLE_SEL)) /* Never use the strap, it's going away. */ reg &= ~(USB_CTRL_MASK_FAMILY(params, SETUP, STRAP_CC_DRD_MODE_ENABLE_SEL)); if (USB_CTRL_MASK_FAMILY(params, SETUP, STRAP_IPP_SEL)) /* override ipp strap pin (if it exits) */ if (params->ipp != 2) reg &= ~(USB_CTRL_MASK_FAMILY(params, SETUP, STRAP_IPP_SEL)); /* Override the default OC and PP polarity */ reg &= ~(USB_CTRL_MASK(SETUP, IPP) | USB_CTRL_MASK(SETUP, IOC)); if (params->ioc) reg |= USB_CTRL_MASK(SETUP, IOC); if (params->ipp == 1) reg |= USB_CTRL_MASK(SETUP, IPP); brcm_usb_writel(reg, USB_CTRL_REG(ctrl, SETUP)); /* * If we're changing IPP, make sure power is off long enough * to turn off any connected devices. */ if ((reg ^ orig_reg) & USB_CTRL_MASK(SETUP, IPP)) msleep(50); } static void usb_wake_enable(struct brcm_usb_init_params *params, bool enable) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; if (enable) USB_CTRL_SET(ctrl, USB_PM, RMTWKUP_EN); else USB_CTRL_UNSET(ctrl, USB_PM, RMTWKUP_EN); } static void usb_init_common(struct brcm_usb_init_params *params) { u32 reg; void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; /* Clear any pending wake conditions */ usb_wake_enable(params, false); reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_PM_STATUS)); brcm_usb_writel(reg, USB_CTRL_REG(ctrl, USB_PM_STATUS)); /* Take USB out of power down */ if (USB_CTRL_MASK_FAMILY(params, PLL_CTL, PLL_IDDQ_PWRDN)) { USB_CTRL_UNSET_FAMILY(params, PLL_CTL, PLL_IDDQ_PWRDN); /* 1 millisecond - for USB clocks to settle down */ usleep_range(1000, 2000); } if (USB_CTRL_MASK_FAMILY(params, USB_PM, USB_PWRDN)) { USB_CTRL_UNSET_FAMILY(params, USB_PM, USB_PWRDN); /* 1 millisecond - for USB clocks to settle down */ usleep_range(1000, 2000); } if (params->selected_family != BRCM_FAMILY_74371A0 && (BRCM_ID(params->family_id) != 0x7364)) /* * HW7439-637: 7439a0 and its derivatives do not have large * enough descriptor storage for this. */ USB_CTRL_SET_FAMILY(params, SETUP, SS_EHCI64BIT_EN); /* Block auto PLL suspend by USB2 PHY (Sasi) */ USB_CTRL_SET(ctrl, PLL_CTL, PLL_SUSPEND_EN); reg = brcm_usb_readl(USB_CTRL_REG(ctrl, SETUP)); if (params->selected_family == BRCM_FAMILY_7364A0) /* Suppress overcurrent indication from USB30 ports for A0 */ reg |= USB_CTRL_MASK_FAMILY(params, SETUP, OC3_DISABLE); brcmusb_usb_phy_ldo_fix(ctrl); brcmusb_usb2_eye_fix(ctrl); /* * Make sure the second and third memory controller * interfaces are enabled if they exist. */ if (USB_CTRL_MASK_FAMILY(params, SETUP, SCB1_EN)) reg |= USB_CTRL_MASK_FAMILY(params, SETUP, SCB1_EN); if (USB_CTRL_MASK_FAMILY(params, SETUP, SCB2_EN)) reg |= USB_CTRL_MASK_FAMILY(params, SETUP, SCB2_EN); brcm_usb_writel(reg, USB_CTRL_REG(ctrl, SETUP)); brcmusb_memc_fix(params); /* Workaround for false positive OC for 7439b2 in DRD/Device mode */ if ((params->family_id == 0x74390012) && (params->supported_port_modes != USB_CTLR_MODE_HOST)) { USB_CTRL_SET(ctrl, SETUP, OC_DISABLE_PORT1); USB_CTRL_SET_FAMILY(params, SETUP, OC3_DISABLE_PORT1); } if (USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1, PORT_MODE)) { reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1)); reg &= ~USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1, PORT_MODE); reg |= params->port_mode; brcm_usb_writel(reg, USB_CTRL_REG(ctrl, USB_DEVICE_CTL1)); } if (USB_CTRL_MASK_FAMILY(params, USB_PM, BDC_SOFT_RESETB)) { switch (params->supported_port_modes) { case USB_CTLR_MODE_HOST: USB_CTRL_UNSET_FAMILY(params, USB_PM, BDC_SOFT_RESETB); break; default: USB_CTRL_UNSET_FAMILY(params, USB_PM, BDC_SOFT_RESETB); USB_CTRL_SET_FAMILY(params, USB_PM, BDC_SOFT_RESETB); break; } } if (USB_CTRL_MASK_FAMILY(params, SETUP, CC_DRD_MODE_ENABLE)) { if (params->supported_port_modes == USB_CTLR_MODE_TYPEC_PD) USB_CTRL_SET_FAMILY(params, SETUP, CC_DRD_MODE_ENABLE); else USB_CTRL_UNSET_FAMILY(params, SETUP, CC_DRD_MODE_ENABLE); } } static void usb_init_eohci(struct brcm_usb_init_params *params) { u32 reg; void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; if (USB_CTRL_MASK_FAMILY(params, USB_PM, USB20_HC_RESETB)) USB_CTRL_SET_FAMILY(params, USB_PM, USB20_HC_RESETB); if (params->selected_family == BRCM_FAMILY_7366C0) /* * Don't enable this so the memory controller doesn't read * into memory holes. NOTE: This bit is low true on 7366C0. */ USB_CTRL_SET(ctrl, EBRIDGE, ESTOP_SCB_REQ); /* Setup the endian bits */ reg = brcm_usb_readl(USB_CTRL_REG(ctrl, SETUP)); reg &= ~USB_CTRL_SETUP_ENDIAN_BITS; reg |= USB_CTRL_MASK_FAMILY(params, SETUP, ENDIAN); brcm_usb_writel(reg, USB_CTRL_REG(ctrl, SETUP)); if (params->selected_family == BRCM_FAMILY_7271A0) /* Enable LS keep alive fix for certain keyboards */ USB_CTRL_SET(ctrl, OBRIDGE, LS_KEEP_ALIVE); if (params->family_id == 0x72550000) { /* * Make the burst size 512 bytes to fix a hardware bug * on the 7255a0. See HW7255-24. */ reg = brcm_usb_readl(USB_CTRL_REG(ctrl, EBRIDGE)); reg &= ~USB_CTRL_MASK(EBRIDGE, EBR_SCB_SIZE); reg |= 0x800; brcm_usb_writel(reg, USB_CTRL_REG(ctrl, EBRIDGE)); } } static void usb_init_xhci(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; USB_CTRL_UNSET(ctrl, USB30_PCTL, PHY3_IDDQ_OVERRIDE); /* 1 millisecond - for USB clocks to settle down */ usleep_range(1000, 2000); if (BRCM_ID(params->family_id) == 0x7366) { /* * The PHY3_SOFT_RESETB bits default to the wrong state. */ USB_CTRL_SET(ctrl, USB30_PCTL, PHY3_SOFT_RESETB); USB_CTRL_SET(ctrl, USB30_PCTL, PHY3_SOFT_RESETB_P1); } /* * Kick start USB3 PHY * Make sure it's low to insure a rising edge. */ USB_CTRL_UNSET(ctrl, USB30_CTL1, PHY3_PLL_SEQ_START); USB_CTRL_SET(ctrl, USB30_CTL1, PHY3_PLL_SEQ_START); brcmusb_usb3_phy_workarounds(params); brcmusb_xhci_soft_reset(params, 0); brcmusb_usb3_otp_fix(params); } static void usb_uninit_common(struct brcm_usb_init_params *params) { if (USB_CTRL_MASK_FAMILY(params, USB_PM, USB_PWRDN)) USB_CTRL_SET_FAMILY(params, USB_PM, USB_PWRDN); if (USB_CTRL_MASK_FAMILY(params, PLL_CTL, PLL_IDDQ_PWRDN)) USB_CTRL_SET_FAMILY(params, PLL_CTL, PLL_IDDQ_PWRDN); if (params->wake_enabled) usb_wake_enable(params, true); } static void usb_uninit_eohci(struct brcm_usb_init_params *params) { } static void usb_uninit_xhci(struct brcm_usb_init_params *params) { brcmusb_xhci_soft_reset(params, 1); USB_CTRL_SET(params->regs[BRCM_REGS_CTRL], USB30_PCTL, PHY3_IDDQ_OVERRIDE); } static int usb_get_dual_select(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; u32 reg = 0; pr_debug("%s\n", __func__); if (USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1, PORT_MODE)) { reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1)); reg &= USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1, PORT_MODE); } return reg; } static void usb_set_dual_select(struct brcm_usb_init_params *params) { void __iomem *ctrl = params->regs[BRCM_REGS_CTRL]; u32 reg; pr_debug("%s\n", __func__); if (USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1, PORT_MODE)) { reg = brcm_usb_readl(USB_CTRL_REG(ctrl, USB_DEVICE_CTL1)); reg &= ~USB_CTRL_MASK_FAMILY(params, USB_DEVICE_CTL1, PORT_MODE); reg |= params->port_mode; brcm_usb_writel(reg, USB_CTRL_REG(ctrl, USB_DEVICE_CTL1)); } } static const struct brcm_usb_init_ops bcm7445_ops = { .init_ipp = usb_init_ipp, .init_common = usb_init_common, .init_eohci = usb_init_eohci, .init_xhci = usb_init_xhci, .uninit_common = usb_uninit_common, .uninit_eohci = usb_uninit_eohci, .uninit_xhci = usb_uninit_xhci, .get_dual_select = usb_get_dual_select, .set_dual_select = usb_set_dual_select, }; void brcm_usb_dvr_init_4908(struct brcm_usb_init_params *params) { int fam; fam = BRCM_FAMILY_4908; params->selected_family = fam; params->usb_reg_bits_map = &usb_reg_bits_map_table[fam][0]; params->family_name = family_names[fam]; params->ops = &bcm7445_ops; } void brcm_usb_dvr_init_7445(struct brcm_usb_init_params *params) { int fam; pr_debug("%s\n", __func__); fam = get_family_type(params); params->selected_family = fam; params->usb_reg_bits_map = &usb_reg_bits_map_table[fam][0]; params->family_name = family_names[fam]; params->ops = &bcm7445_ops; }
linux-master
drivers/phy/broadcom/phy-brcm-usb-init.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (C) 2017 Broadcom #include <linux/delay.h> #include <linux/extcon-provider.h> #include <linux/gpio.h> #include <linux/gpio/consumer.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/irq.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/workqueue.h> #define ICFG_DRD_AFE 0x0 #define ICFG_MISC_STAT 0x18 #define ICFG_DRD_P0CTL 0x1C #define ICFG_STRAP_CTRL 0x20 #define ICFG_FSM_CTRL 0x24 #define ICFG_DEV_BIT BIT(2) #define IDM_RST_BIT BIT(0) #define AFE_CORERDY_VDDC BIT(18) #define PHY_PLL_RESETB BIT(15) #define PHY_RESETB BIT(14) #define PHY_PLL_LOCK BIT(0) #define DRD_DEV_MODE BIT(20) #define OHCI_OVRCUR_POL BIT(11) #define ICFG_OFF_MODE BIT(6) #define PLL_LOCK_RETRY 1000 #define EVT_DEVICE 0 #define EVT_HOST 1 #define DRD_HOST_MODE (BIT(2) | BIT(3)) #define DRD_DEVICE_MODE (BIT(4) | BIT(5)) #define DRD_HOST_VAL 0x803 #define DRD_DEV_VAL 0x807 #define GPIO_DELAY 20 struct ns2_phy_data; struct ns2_phy_driver { void __iomem *icfgdrd_regs; void __iomem *idmdrd_rst_ctrl; void __iomem *crmu_usb2_ctrl; void __iomem *usb2h_strap_reg; struct ns2_phy_data *data; struct extcon_dev *edev; struct gpio_desc *vbus_gpiod; struct gpio_desc *id_gpiod; int id_irq; int vbus_irq; unsigned long debounce_jiffies; struct delayed_work wq_extcon; }; struct ns2_phy_data { struct ns2_phy_driver *driver; struct phy *phy; int new_state; }; static const unsigned int usb_extcon_cable[] = { EXTCON_USB, EXTCON_USB_HOST, EXTCON_NONE, }; static inline int pll_lock_stat(u32 usb_reg, int reg_mask, struct ns2_phy_driver *driver) { u32 val; return readl_poll_timeout_atomic(driver->icfgdrd_regs + usb_reg, val, (val & reg_mask), 1, PLL_LOCK_RETRY); } static int ns2_drd_phy_init(struct phy *phy) { struct ns2_phy_data *data = phy_get_drvdata(phy); struct ns2_phy_driver *driver = data->driver; u32 val; val = readl(driver->icfgdrd_regs + ICFG_FSM_CTRL); if (data->new_state == EVT_HOST) { val &= ~DRD_DEVICE_MODE; val |= DRD_HOST_MODE; } else { val &= ~DRD_HOST_MODE; val |= DRD_DEVICE_MODE; } writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL); return 0; } static int ns2_drd_phy_poweroff(struct phy *phy) { struct ns2_phy_data *data = phy_get_drvdata(phy); struct ns2_phy_driver *driver = data->driver; u32 val; val = readl(driver->crmu_usb2_ctrl); val &= ~AFE_CORERDY_VDDC; writel(val, driver->crmu_usb2_ctrl); val = readl(driver->crmu_usb2_ctrl); val &= ~DRD_DEV_MODE; writel(val, driver->crmu_usb2_ctrl); /* Disable Host and Device Mode */ val = readl(driver->icfgdrd_regs + ICFG_FSM_CTRL); val &= ~(DRD_HOST_MODE | DRD_DEVICE_MODE | ICFG_OFF_MODE); writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL); return 0; } static int ns2_drd_phy_poweron(struct phy *phy) { struct ns2_phy_data *data = phy_get_drvdata(phy); struct ns2_phy_driver *driver = data->driver; u32 extcon_event = data->new_state; int ret; u32 val; if (extcon_event == EVT_DEVICE) { writel(DRD_DEV_VAL, driver->icfgdrd_regs + ICFG_DRD_P0CTL); val = readl(driver->idmdrd_rst_ctrl); val &= ~IDM_RST_BIT; writel(val, driver->idmdrd_rst_ctrl); val = readl(driver->crmu_usb2_ctrl); val |= (AFE_CORERDY_VDDC | DRD_DEV_MODE); writel(val, driver->crmu_usb2_ctrl); /* Bring PHY and PHY_PLL out of Reset */ val = readl(driver->crmu_usb2_ctrl); val |= (PHY_PLL_RESETB | PHY_RESETB); writel(val, driver->crmu_usb2_ctrl); ret = pll_lock_stat(ICFG_MISC_STAT, PHY_PLL_LOCK, driver); if (ret < 0) { dev_err(&phy->dev, "Phy PLL lock failed\n"); return ret; } } else { writel(DRD_HOST_VAL, driver->icfgdrd_regs + ICFG_DRD_P0CTL); val = readl(driver->crmu_usb2_ctrl); val |= AFE_CORERDY_VDDC; writel(val, driver->crmu_usb2_ctrl); ret = pll_lock_stat(ICFG_MISC_STAT, PHY_PLL_LOCK, driver); if (ret < 0) { dev_err(&phy->dev, "Phy PLL lock failed\n"); return ret; } val = readl(driver->idmdrd_rst_ctrl); val &= ~IDM_RST_BIT; writel(val, driver->idmdrd_rst_ctrl); /* port over current Polarity */ val = readl(driver->usb2h_strap_reg); val |= OHCI_OVRCUR_POL; writel(val, driver->usb2h_strap_reg); } return 0; } static void connect_change(struct ns2_phy_driver *driver) { u32 extcon_event; u32 val; extcon_event = driver->data->new_state; val = readl(driver->icfgdrd_regs + ICFG_FSM_CTRL); switch (extcon_event) { case EVT_DEVICE: val &= ~(DRD_HOST_MODE | DRD_DEVICE_MODE); writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL); val = (val & ~DRD_HOST_MODE) | DRD_DEVICE_MODE; writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL); val = readl(driver->icfgdrd_regs + ICFG_DRD_P0CTL); val |= ICFG_DEV_BIT; writel(val, driver->icfgdrd_regs + ICFG_DRD_P0CTL); break; case EVT_HOST: val &= ~(DRD_HOST_MODE | DRD_DEVICE_MODE); writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL); val = (val & ~DRD_DEVICE_MODE) | DRD_HOST_MODE; writel(val, driver->icfgdrd_regs + ICFG_FSM_CTRL); val = readl(driver->usb2h_strap_reg); val |= OHCI_OVRCUR_POL; writel(val, driver->usb2h_strap_reg); val = readl(driver->icfgdrd_regs + ICFG_DRD_P0CTL); val &= ~ICFG_DEV_BIT; writel(val, driver->icfgdrd_regs + ICFG_DRD_P0CTL); break; default: pr_err("Invalid extcon event\n"); break; } } static void extcon_work(struct work_struct *work) { struct ns2_phy_driver *driver; int vbus; int id; driver = container_of(to_delayed_work(work), struct ns2_phy_driver, wq_extcon); id = gpiod_get_value_cansleep(driver->id_gpiod); vbus = gpiod_get_value_cansleep(driver->vbus_gpiod); if (!id && vbus) { /* Host connected */ extcon_set_state_sync(driver->edev, EXTCON_USB_HOST, true); pr_debug("Host cable connected\n"); driver->data->new_state = EVT_HOST; connect_change(driver); } else if (id && !vbus) { /* Disconnected */ extcon_set_state_sync(driver->edev, EXTCON_USB_HOST, false); extcon_set_state_sync(driver->edev, EXTCON_USB, false); pr_debug("Cable disconnected\n"); } else if (id && vbus) { /* Device connected */ extcon_set_state_sync(driver->edev, EXTCON_USB, true); pr_debug("Device cable connected\n"); driver->data->new_state = EVT_DEVICE; connect_change(driver); } } static irqreturn_t gpio_irq_handler(int irq, void *dev_id) { struct ns2_phy_driver *driver = dev_id; queue_delayed_work(system_power_efficient_wq, &driver->wq_extcon, driver->debounce_jiffies); return IRQ_HANDLED; } static const struct phy_ops ops = { .init = ns2_drd_phy_init, .power_on = ns2_drd_phy_poweron, .power_off = ns2_drd_phy_poweroff, .owner = THIS_MODULE, }; static const struct of_device_id ns2_drd_phy_dt_ids[] = { { .compatible = "brcm,ns2-drd-phy", }, { } }; MODULE_DEVICE_TABLE(of, ns2_drd_phy_dt_ids); static int ns2_drd_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct device *dev = &pdev->dev; struct ns2_phy_driver *driver; struct ns2_phy_data *data; int ret; u32 val; driver = devm_kzalloc(dev, sizeof(struct ns2_phy_driver), GFP_KERNEL); if (!driver) return -ENOMEM; driver->data = devm_kzalloc(dev, sizeof(struct ns2_phy_data), GFP_KERNEL); if (!driver->data) return -ENOMEM; driver->icfgdrd_regs = devm_platform_ioremap_resource_byname(pdev, "icfg"); if (IS_ERR(driver->icfgdrd_regs)) return PTR_ERR(driver->icfgdrd_regs); driver->idmdrd_rst_ctrl = devm_platform_ioremap_resource_byname(pdev, "rst-ctrl"); if (IS_ERR(driver->idmdrd_rst_ctrl)) return PTR_ERR(driver->idmdrd_rst_ctrl); driver->crmu_usb2_ctrl = devm_platform_ioremap_resource_byname(pdev, "crmu-ctrl"); if (IS_ERR(driver->crmu_usb2_ctrl)) return PTR_ERR(driver->crmu_usb2_ctrl); driver->usb2h_strap_reg = devm_platform_ioremap_resource_byname(pdev, "usb2-strap"); if (IS_ERR(driver->usb2h_strap_reg)) return PTR_ERR(driver->usb2h_strap_reg); /* create extcon */ driver->id_gpiod = devm_gpiod_get(&pdev->dev, "id", GPIOD_IN); if (IS_ERR(driver->id_gpiod)) { dev_err(dev, "failed to get ID GPIO\n"); return PTR_ERR(driver->id_gpiod); } driver->vbus_gpiod = devm_gpiod_get(&pdev->dev, "vbus", GPIOD_IN); if (IS_ERR(driver->vbus_gpiod)) { dev_err(dev, "failed to get VBUS GPIO\n"); return PTR_ERR(driver->vbus_gpiod); } driver->edev = devm_extcon_dev_allocate(dev, usb_extcon_cable); if (IS_ERR(driver->edev)) { dev_err(dev, "failed to allocate extcon device\n"); return -ENOMEM; } ret = devm_extcon_dev_register(dev, driver->edev); if (ret < 0) { dev_err(dev, "failed to register extcon device\n"); return ret; } ret = gpiod_set_debounce(driver->id_gpiod, GPIO_DELAY * 1000); if (ret < 0) driver->debounce_jiffies = msecs_to_jiffies(GPIO_DELAY); INIT_DELAYED_WORK(&driver->wq_extcon, extcon_work); driver->id_irq = gpiod_to_irq(driver->id_gpiod); if (driver->id_irq < 0) { dev_err(dev, "failed to get ID IRQ\n"); return driver->id_irq; } driver->vbus_irq = gpiod_to_irq(driver->vbus_gpiod); if (driver->vbus_irq < 0) { dev_err(dev, "failed to get ID IRQ\n"); return driver->vbus_irq; } ret = devm_request_irq(dev, driver->id_irq, gpio_irq_handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "usb_id", driver); if (ret < 0) { dev_err(dev, "failed to request handler for ID IRQ\n"); return ret; } ret = devm_request_irq(dev, driver->vbus_irq, gpio_irq_handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "usb_vbus", driver); if (ret < 0) { dev_err(dev, "failed to request handler for VBUS IRQ\n"); return ret; } dev_set_drvdata(dev, driver); /* Shutdown all ports. They can be powered up as required */ val = readl(driver->crmu_usb2_ctrl); val &= ~(AFE_CORERDY_VDDC | PHY_RESETB); writel(val, driver->crmu_usb2_ctrl); data = driver->data; data->phy = devm_phy_create(dev, dev->of_node, &ops); if (IS_ERR(data->phy)) { dev_err(dev, "Failed to create usb drd phy\n"); return PTR_ERR(data->phy); } data->driver = driver; phy_set_drvdata(data->phy, data); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) { dev_err(dev, "Failed to register as phy provider\n"); return PTR_ERR(phy_provider); } platform_set_drvdata(pdev, driver); dev_info(dev, "Registered NS2 DRD Phy device\n"); queue_delayed_work(system_power_efficient_wq, &driver->wq_extcon, driver->debounce_jiffies); return 0; } static struct platform_driver ns2_drd_phy_driver = { .probe = ns2_drd_phy_probe, .driver = { .name = "bcm-ns2-usbphy", .of_match_table = of_match_ptr(ns2_drd_phy_dt_ids), }, }; module_platform_driver(ns2_drd_phy_driver); MODULE_ALIAS("platform:bcm-ns2-drd-phy"); MODULE_AUTHOR("Broadcom"); MODULE_DESCRIPTION("Broadcom NS2 USB2 PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/broadcom/phy-bcm-ns2-usbdrd.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Broadcom SATA3 AHCI Controller PHY Driver * * Copyright (C) 2016 Broadcom */ #include <linux/delay.h> #include <linux/device.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #define SATA_PCB_BANK_OFFSET 0x23c #define SATA_PCB_REG_OFFSET(ofs) ((ofs) * 4) #define MAX_PORTS 2 /* Register offset between PHYs in PCB space */ #define SATA_PCB_REG_28NM_SPACE_SIZE 0x1000 /* The older SATA PHY registers duplicated per port registers within the map, * rather than having a separate map per port. */ #define SATA_PCB_REG_40NM_SPACE_SIZE 0x10 /* Register offset between PHYs in PHY control space */ #define SATA_PHY_CTRL_REG_28NM_SPACE_SIZE 0x8 enum brcm_sata_phy_version { BRCM_SATA_PHY_STB_16NM, BRCM_SATA_PHY_STB_28NM, BRCM_SATA_PHY_STB_40NM, BRCM_SATA_PHY_IPROC_NS2, BRCM_SATA_PHY_IPROC_NSP, BRCM_SATA_PHY_IPROC_SR, BRCM_SATA_PHY_DSL_28NM, }; enum brcm_sata_phy_rxaeq_mode { RXAEQ_MODE_OFF = 0, RXAEQ_MODE_AUTO, RXAEQ_MODE_MANUAL, }; static enum brcm_sata_phy_rxaeq_mode rxaeq_to_val(const char *m) { if (!strcmp(m, "auto")) return RXAEQ_MODE_AUTO; else if (!strcmp(m, "manual")) return RXAEQ_MODE_MANUAL; else return RXAEQ_MODE_OFF; } struct brcm_sata_port { int portnum; struct phy *phy; struct brcm_sata_phy *phy_priv; bool ssc_en; enum brcm_sata_phy_rxaeq_mode rxaeq_mode; u32 rxaeq_val; u32 tx_amplitude_val; }; struct brcm_sata_phy { struct device *dev; void __iomem *phy_base; void __iomem *ctrl_base; enum brcm_sata_phy_version version; struct brcm_sata_port phys[MAX_PORTS]; }; enum sata_phy_regs { BLOCK0_REG_BANK = 0x000, BLOCK0_XGXSSTATUS = 0x81, BLOCK0_XGXSSTATUS_PLL_LOCK = BIT(12), BLOCK0_SPARE = 0x8d, BLOCK0_SPARE_OOB_CLK_SEL_MASK = 0x3, BLOCK0_SPARE_OOB_CLK_SEL_REFBY2 = 0x1, BLOCK1_REG_BANK = 0x10, BLOCK1_TEST_TX = 0x83, BLOCK1_TEST_TX_AMP_SHIFT = 12, PLL_REG_BANK_0 = 0x050, PLL_REG_BANK_0_PLLCONTROL_0 = 0x81, PLLCONTROL_0_FREQ_DET_RESTART = BIT(13), PLLCONTROL_0_FREQ_MONITOR = BIT(12), PLLCONTROL_0_SEQ_START = BIT(15), PLL_CAP_CHARGE_TIME = 0x83, PLL_VCO_CAL_THRESH = 0x84, PLL_CAP_CONTROL = 0x85, PLL_FREQ_DET_TIME = 0x86, PLL_ACTRL2 = 0x8b, PLL_ACTRL2_SELDIV_MASK = 0x1f, PLL_ACTRL2_SELDIV_SHIFT = 9, PLL_ACTRL6 = 0x86, PLL1_REG_BANK = 0x060, PLL1_ACTRL2 = 0x82, PLL1_ACTRL3 = 0x83, PLL1_ACTRL4 = 0x84, PLL1_ACTRL5 = 0x85, PLL1_ACTRL6 = 0x86, PLL1_ACTRL7 = 0x87, PLL1_ACTRL8 = 0x88, TX_REG_BANK = 0x070, TX_ACTRL0 = 0x80, TX_ACTRL0_TXPOL_FLIP = BIT(6), TX_ACTRL5 = 0x85, TX_ACTRL5_SSC_EN = BIT(11), AEQRX_REG_BANK_0 = 0xd0, AEQ_CONTROL1 = 0x81, AEQ_CONTROL1_ENABLE = BIT(2), AEQ_CONTROL1_FREEZE = BIT(3), AEQ_FRC_EQ = 0x83, AEQ_FRC_EQ_FORCE = BIT(0), AEQ_FRC_EQ_FORCE_VAL = BIT(1), AEQ_RFZ_FRC_VAL = BIT(8), AEQRX_REG_BANK_1 = 0xe0, AEQRX_SLCAL0_CTRL0 = 0x82, AEQRX_SLCAL1_CTRL0 = 0x86, OOB_REG_BANK = 0x150, OOB1_REG_BANK = 0x160, OOB_CTRL1 = 0x80, OOB_CTRL1_BURST_MAX_MASK = 0xf, OOB_CTRL1_BURST_MAX_SHIFT = 12, OOB_CTRL1_BURST_MIN_MASK = 0xf, OOB_CTRL1_BURST_MIN_SHIFT = 8, OOB_CTRL1_WAKE_IDLE_MAX_MASK = 0xf, OOB_CTRL1_WAKE_IDLE_MAX_SHIFT = 4, OOB_CTRL1_WAKE_IDLE_MIN_MASK = 0xf, OOB_CTRL1_WAKE_IDLE_MIN_SHIFT = 0, OOB_CTRL2 = 0x81, OOB_CTRL2_SEL_ENA_SHIFT = 15, OOB_CTRL2_SEL_ENA_RC_SHIFT = 14, OOB_CTRL2_RESET_IDLE_MAX_MASK = 0x3f, OOB_CTRL2_RESET_IDLE_MAX_SHIFT = 8, OOB_CTRL2_BURST_CNT_MASK = 0x3, OOB_CTRL2_BURST_CNT_SHIFT = 6, OOB_CTRL2_RESET_IDLE_MIN_MASK = 0x3f, OOB_CTRL2_RESET_IDLE_MIN_SHIFT = 0, TXPMD_REG_BANK = 0x1a0, TXPMD_CONTROL1 = 0x81, TXPMD_CONTROL1_TX_SSC_EN_FRC = BIT(0), TXPMD_CONTROL1_TX_SSC_EN_FRC_VAL = BIT(1), TXPMD_TX_FREQ_CTRL_CONTROL1 = 0x82, TXPMD_TX_FREQ_CTRL_CONTROL2 = 0x83, TXPMD_TX_FREQ_CTRL_CONTROL2_FMIN_MASK = 0x3ff, TXPMD_TX_FREQ_CTRL_CONTROL3 = 0x84, TXPMD_TX_FREQ_CTRL_CONTROL3_FMAX_MASK = 0x3ff, RXPMD_REG_BANK = 0x1c0, RXPMD_RX_CDR_CONTROL1 = 0x81, RXPMD_RX_PPM_VAL_MASK = 0x1ff, RXPMD_RXPMD_EN_FRC = BIT(12), RXPMD_RXPMD_EN_FRC_VAL = BIT(13), RXPMD_RX_CDR_CDR_PROP_BW = 0x82, RXPMD_G_CDR_PROP_BW_MASK = 0x7, RXPMD_G1_CDR_PROP_BW_SHIFT = 0, RXPMD_G2_CDR_PROP_BW_SHIFT = 3, RXPMD_G3_CDR_PROB_BW_SHIFT = 6, RXPMD_RX_CDR_CDR_ACQ_INTEG_BW = 0x83, RXPMD_G_CDR_ACQ_INT_BW_MASK = 0x7, RXPMD_G1_CDR_ACQ_INT_BW_SHIFT = 0, RXPMD_G2_CDR_ACQ_INT_BW_SHIFT = 3, RXPMD_G3_CDR_ACQ_INT_BW_SHIFT = 6, RXPMD_RX_CDR_CDR_LOCK_INTEG_BW = 0x84, RXPMD_G_CDR_LOCK_INT_BW_MASK = 0x7, RXPMD_G1_CDR_LOCK_INT_BW_SHIFT = 0, RXPMD_G2_CDR_LOCK_INT_BW_SHIFT = 3, RXPMD_G3_CDR_LOCK_INT_BW_SHIFT = 6, RXPMD_RX_FREQ_MON_CONTROL1 = 0x87, RXPMD_MON_CORRECT_EN = BIT(8), RXPMD_MON_MARGIN_VAL_MASK = 0xff, }; enum sata_phy_ctrl_regs { PHY_CTRL_1 = 0x0, PHY_CTRL_1_RESET = BIT(0), }; static inline void __iomem *brcm_sata_ctrl_base(struct brcm_sata_port *port) { struct brcm_sata_phy *priv = port->phy_priv; u32 size = 0; switch (priv->version) { case BRCM_SATA_PHY_IPROC_NS2: size = SATA_PHY_CTRL_REG_28NM_SPACE_SIZE; break; default: dev_err(priv->dev, "invalid phy version\n"); break; } return priv->ctrl_base + (port->portnum * size); } static void brcm_sata_phy_wr(struct brcm_sata_port *port, u32 bank, u32 ofs, u32 msk, u32 value) { struct brcm_sata_phy *priv = port->phy_priv; void __iomem *pcb_base = priv->phy_base; u32 tmp; if (priv->version == BRCM_SATA_PHY_STB_40NM) bank += (port->portnum * SATA_PCB_REG_40NM_SPACE_SIZE); else pcb_base += (port->portnum * SATA_PCB_REG_28NM_SPACE_SIZE); writel(bank, pcb_base + SATA_PCB_BANK_OFFSET); tmp = readl(pcb_base + SATA_PCB_REG_OFFSET(ofs)); tmp = (tmp & msk) | value; writel(tmp, pcb_base + SATA_PCB_REG_OFFSET(ofs)); } static u32 brcm_sata_phy_rd(struct brcm_sata_port *port, u32 bank, u32 ofs) { struct brcm_sata_phy *priv = port->phy_priv; void __iomem *pcb_base = priv->phy_base; if (priv->version == BRCM_SATA_PHY_STB_40NM) bank += (port->portnum * SATA_PCB_REG_40NM_SPACE_SIZE); else pcb_base += (port->portnum * SATA_PCB_REG_28NM_SPACE_SIZE); writel(bank, pcb_base + SATA_PCB_BANK_OFFSET); return readl(pcb_base + SATA_PCB_REG_OFFSET(ofs)); } /* These defaults were characterized by H/W group */ #define STB_FMIN_VAL_DEFAULT 0x3df #define STB_FMAX_VAL_DEFAULT 0x3df #define STB_FMAX_VAL_SSC 0x83 static void brcm_stb_sata_ssc_init(struct brcm_sata_port *port) { struct brcm_sata_phy *priv = port->phy_priv; u32 tmp; /* override the TX spread spectrum setting */ tmp = TXPMD_CONTROL1_TX_SSC_EN_FRC_VAL | TXPMD_CONTROL1_TX_SSC_EN_FRC; brcm_sata_phy_wr(port, TXPMD_REG_BANK, TXPMD_CONTROL1, ~tmp, tmp); /* set fixed min freq */ brcm_sata_phy_wr(port, TXPMD_REG_BANK, TXPMD_TX_FREQ_CTRL_CONTROL2, ~TXPMD_TX_FREQ_CTRL_CONTROL2_FMIN_MASK, STB_FMIN_VAL_DEFAULT); /* set fixed max freq depending on SSC config */ if (port->ssc_en) { dev_info(priv->dev, "enabling SSC on port%d\n", port->portnum); tmp = STB_FMAX_VAL_SSC; } else { tmp = STB_FMAX_VAL_DEFAULT; } brcm_sata_phy_wr(port, TXPMD_REG_BANK, TXPMD_TX_FREQ_CTRL_CONTROL3, ~TXPMD_TX_FREQ_CTRL_CONTROL3_FMAX_MASK, tmp); } #define AEQ_FRC_EQ_VAL_SHIFT 2 #define AEQ_FRC_EQ_VAL_MASK 0x3f static int brcm_stb_sata_rxaeq_init(struct brcm_sata_port *port) { u32 tmp = 0, reg = 0; switch (port->rxaeq_mode) { case RXAEQ_MODE_OFF: return 0; case RXAEQ_MODE_AUTO: reg = AEQ_CONTROL1; tmp = AEQ_CONTROL1_ENABLE | AEQ_CONTROL1_FREEZE; break; case RXAEQ_MODE_MANUAL: reg = AEQ_FRC_EQ; tmp = AEQ_FRC_EQ_FORCE | AEQ_FRC_EQ_FORCE_VAL; if (port->rxaeq_val > AEQ_FRC_EQ_VAL_MASK) return -EINVAL; tmp |= port->rxaeq_val << AEQ_FRC_EQ_VAL_SHIFT; break; } brcm_sata_phy_wr(port, AEQRX_REG_BANK_0, reg, ~tmp, tmp); brcm_sata_phy_wr(port, AEQRX_REG_BANK_1, reg, ~tmp, tmp); return 0; } static int brcm_stb_sata_init(struct brcm_sata_port *port) { brcm_stb_sata_ssc_init(port); return brcm_stb_sata_rxaeq_init(port); } static int brcm_stb_sata_16nm_ssc_init(struct brcm_sata_port *port) { u32 tmp, value; /* Reduce CP tail current to 1/16th of its default value */ brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL6, 0, 0x141); /* Turn off CP tail current boost */ brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL8, 0, 0xc006); /* Set a specific AEQ equalizer value */ tmp = AEQ_FRC_EQ_FORCE_VAL | AEQ_FRC_EQ_FORCE; brcm_sata_phy_wr(port, AEQRX_REG_BANK_0, AEQ_FRC_EQ, ~(tmp | AEQ_RFZ_FRC_VAL | AEQ_FRC_EQ_VAL_MASK << AEQ_FRC_EQ_VAL_SHIFT), tmp | 32 << AEQ_FRC_EQ_VAL_SHIFT); /* Set RX PPM val center frequency */ if (port->ssc_en) value = 0x52; else value = 0; brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CONTROL1, ~RXPMD_RX_PPM_VAL_MASK, value); /* Set proportional loop bandwith Gen1/2/3 */ tmp = RXPMD_G_CDR_PROP_BW_MASK << RXPMD_G1_CDR_PROP_BW_SHIFT | RXPMD_G_CDR_PROP_BW_MASK << RXPMD_G2_CDR_PROP_BW_SHIFT | RXPMD_G_CDR_PROP_BW_MASK << RXPMD_G3_CDR_PROB_BW_SHIFT; if (port->ssc_en) value = 2 << RXPMD_G1_CDR_PROP_BW_SHIFT | 2 << RXPMD_G2_CDR_PROP_BW_SHIFT | 2 << RXPMD_G3_CDR_PROB_BW_SHIFT; else value = 1 << RXPMD_G1_CDR_PROP_BW_SHIFT | 1 << RXPMD_G2_CDR_PROP_BW_SHIFT | 1 << RXPMD_G3_CDR_PROB_BW_SHIFT; brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CDR_PROP_BW, ~tmp, value); /* Set CDR integral loop acquisition bandwidth for Gen1/2/3 */ tmp = RXPMD_G_CDR_ACQ_INT_BW_MASK << RXPMD_G1_CDR_ACQ_INT_BW_SHIFT | RXPMD_G_CDR_ACQ_INT_BW_MASK << RXPMD_G2_CDR_ACQ_INT_BW_SHIFT | RXPMD_G_CDR_ACQ_INT_BW_MASK << RXPMD_G3_CDR_ACQ_INT_BW_SHIFT; if (port->ssc_en) value = 1 << RXPMD_G1_CDR_ACQ_INT_BW_SHIFT | 1 << RXPMD_G2_CDR_ACQ_INT_BW_SHIFT | 1 << RXPMD_G3_CDR_ACQ_INT_BW_SHIFT; else value = 0; brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CDR_ACQ_INTEG_BW, ~tmp, value); /* Set CDR integral loop locking bandwidth to 1 for Gen 1/2/3 */ tmp = RXPMD_G_CDR_LOCK_INT_BW_MASK << RXPMD_G1_CDR_LOCK_INT_BW_SHIFT | RXPMD_G_CDR_LOCK_INT_BW_MASK << RXPMD_G2_CDR_LOCK_INT_BW_SHIFT | RXPMD_G_CDR_LOCK_INT_BW_MASK << RXPMD_G3_CDR_LOCK_INT_BW_SHIFT; if (port->ssc_en) value = 1 << RXPMD_G1_CDR_LOCK_INT_BW_SHIFT | 1 << RXPMD_G2_CDR_LOCK_INT_BW_SHIFT | 1 << RXPMD_G3_CDR_LOCK_INT_BW_SHIFT; else value = 0; brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CDR_LOCK_INTEG_BW, ~tmp, value); /* Set no guard band and clamp CDR */ tmp = RXPMD_MON_CORRECT_EN | RXPMD_MON_MARGIN_VAL_MASK; if (port->ssc_en) value = 0x51; else value = 0; brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_FREQ_MON_CONTROL1, ~tmp, RXPMD_MON_CORRECT_EN | value); tmp = GENMASK(15, 12); switch (port->tx_amplitude_val) { case 400: value = BIT(12) | BIT(13); break; case 500: value = BIT(13); break; case 600: value = BIT(12); break; case 800: value = 0; break; default: value = tmp; break; } if (value != tmp) brcm_sata_phy_wr(port, BLOCK1_REG_BANK, BLOCK1_TEST_TX, ~tmp, value); /* Turn on/off SSC */ brcm_sata_phy_wr(port, TX_REG_BANK, TX_ACTRL5, ~TX_ACTRL5_SSC_EN, port->ssc_en ? TX_ACTRL5_SSC_EN : 0); return 0; } static int brcm_stb_sata_16nm_init(struct brcm_sata_port *port) { return brcm_stb_sata_16nm_ssc_init(port); } /* NS2 SATA PLL1 defaults were characterized by H/W group */ #define NS2_PLL1_ACTRL2_MAGIC 0x1df8 #define NS2_PLL1_ACTRL3_MAGIC 0x2b00 #define NS2_PLL1_ACTRL4_MAGIC 0x8824 static int brcm_ns2_sata_init(struct brcm_sata_port *port) { int try; unsigned int val; void __iomem *ctrl_base = brcm_sata_ctrl_base(port); struct device *dev = port->phy_priv->dev; /* Configure OOB control */ val = 0x0; val |= (0xc << OOB_CTRL1_BURST_MAX_SHIFT); val |= (0x4 << OOB_CTRL1_BURST_MIN_SHIFT); val |= (0x9 << OOB_CTRL1_WAKE_IDLE_MAX_SHIFT); val |= (0x3 << OOB_CTRL1_WAKE_IDLE_MIN_SHIFT); brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL1, 0x0, val); val = 0x0; val |= (0x1b << OOB_CTRL2_RESET_IDLE_MAX_SHIFT); val |= (0x2 << OOB_CTRL2_BURST_CNT_SHIFT); val |= (0x9 << OOB_CTRL2_RESET_IDLE_MIN_SHIFT); brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL2, 0x0, val); /* Configure PHY PLL register bank 1 */ val = NS2_PLL1_ACTRL2_MAGIC; brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL2, 0x0, val); val = NS2_PLL1_ACTRL3_MAGIC; brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL3, 0x0, val); val = NS2_PLL1_ACTRL4_MAGIC; brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL4, 0x0, val); /* Configure PHY BLOCK0 register bank */ /* Set oob_clk_sel to refclk/2 */ brcm_sata_phy_wr(port, BLOCK0_REG_BANK, BLOCK0_SPARE, ~BLOCK0_SPARE_OOB_CLK_SEL_MASK, BLOCK0_SPARE_OOB_CLK_SEL_REFBY2); /* Strobe PHY reset using PHY control register */ writel(PHY_CTRL_1_RESET, ctrl_base + PHY_CTRL_1); mdelay(1); writel(0x0, ctrl_base + PHY_CTRL_1); mdelay(1); /* Wait for PHY PLL lock by polling pll_lock bit */ try = 50; while (try) { val = brcm_sata_phy_rd(port, BLOCK0_REG_BANK, BLOCK0_XGXSSTATUS); if (val & BLOCK0_XGXSSTATUS_PLL_LOCK) break; msleep(20); try--; } if (!try) { /* PLL did not lock; give up */ dev_err(dev, "port%d PLL did not lock\n", port->portnum); return -ETIMEDOUT; } dev_dbg(dev, "port%d initialized\n", port->portnum); return 0; } static int brcm_nsp_sata_init(struct brcm_sata_port *port) { struct device *dev = port->phy_priv->dev; unsigned int oob_bank; unsigned int val, try; /* Configure OOB control */ if (port->portnum == 0) oob_bank = OOB_REG_BANK; else if (port->portnum == 1) oob_bank = OOB1_REG_BANK; else return -EINVAL; val = 0x0; val |= (0x0f << OOB_CTRL1_BURST_MAX_SHIFT); val |= (0x06 << OOB_CTRL1_BURST_MIN_SHIFT); val |= (0x0f << OOB_CTRL1_WAKE_IDLE_MAX_SHIFT); val |= (0x06 << OOB_CTRL1_WAKE_IDLE_MIN_SHIFT); brcm_sata_phy_wr(port, oob_bank, OOB_CTRL1, 0x0, val); val = 0x0; val |= (0x2e << OOB_CTRL2_RESET_IDLE_MAX_SHIFT); val |= (0x02 << OOB_CTRL2_BURST_CNT_SHIFT); val |= (0x16 << OOB_CTRL2_RESET_IDLE_MIN_SHIFT); brcm_sata_phy_wr(port, oob_bank, OOB_CTRL2, 0x0, val); brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_ACTRL2, ~(PLL_ACTRL2_SELDIV_MASK << PLL_ACTRL2_SELDIV_SHIFT), 0x0c << PLL_ACTRL2_SELDIV_SHIFT); brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_CAP_CONTROL, 0xff0, 0x4f0); val = PLLCONTROL_0_FREQ_DET_RESTART | PLLCONTROL_0_FREQ_MONITOR; brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0, ~val, val); val = PLLCONTROL_0_SEQ_START; brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0, ~val, 0); mdelay(10); brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0, ~val, val); /* Wait for pll_seq_done bit */ try = 50; while (--try) { val = brcm_sata_phy_rd(port, BLOCK0_REG_BANK, BLOCK0_XGXSSTATUS); if (val & BLOCK0_XGXSSTATUS_PLL_LOCK) break; msleep(20); } if (!try) { /* PLL did not lock; give up */ dev_err(dev, "port%d PLL did not lock\n", port->portnum); return -ETIMEDOUT; } dev_dbg(dev, "port%d initialized\n", port->portnum); return 0; } /* SR PHY PLL0 registers */ #define SR_PLL0_ACTRL6_MAGIC 0xa /* SR PHY PLL1 registers */ #define SR_PLL1_ACTRL2_MAGIC 0x32 #define SR_PLL1_ACTRL3_MAGIC 0x2 #define SR_PLL1_ACTRL4_MAGIC 0x3e8 static int brcm_sr_sata_init(struct brcm_sata_port *port) { struct device *dev = port->phy_priv->dev; unsigned int val, try; /* Configure PHY PLL register bank 1 */ val = SR_PLL1_ACTRL2_MAGIC; brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL2, 0x0, val); val = SR_PLL1_ACTRL3_MAGIC; brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL3, 0x0, val); val = SR_PLL1_ACTRL4_MAGIC; brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL4, 0x0, val); /* Configure PHY PLL register bank 0 */ val = SR_PLL0_ACTRL6_MAGIC; brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_ACTRL6, 0x0, val); /* Wait for PHY PLL lock by polling pll_lock bit */ try = 50; do { val = brcm_sata_phy_rd(port, BLOCK0_REG_BANK, BLOCK0_XGXSSTATUS); if (val & BLOCK0_XGXSSTATUS_PLL_LOCK) break; msleep(20); try--; } while (try); if ((val & BLOCK0_XGXSSTATUS_PLL_LOCK) == 0) { /* PLL did not lock; give up */ dev_err(dev, "port%d PLL did not lock\n", port->portnum); return -ETIMEDOUT; } /* Invert Tx polarity */ brcm_sata_phy_wr(port, TX_REG_BANK, TX_ACTRL0, ~TX_ACTRL0_TXPOL_FLIP, TX_ACTRL0_TXPOL_FLIP); /* Configure OOB control to handle 100MHz reference clock */ val = ((0xc << OOB_CTRL1_BURST_MAX_SHIFT) | (0x4 << OOB_CTRL1_BURST_MIN_SHIFT) | (0x8 << OOB_CTRL1_WAKE_IDLE_MAX_SHIFT) | (0x3 << OOB_CTRL1_WAKE_IDLE_MIN_SHIFT)); brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL1, 0x0, val); val = ((0x1b << OOB_CTRL2_RESET_IDLE_MAX_SHIFT) | (0x2 << OOB_CTRL2_BURST_CNT_SHIFT) | (0x9 << OOB_CTRL2_RESET_IDLE_MIN_SHIFT)); brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL2, 0x0, val); return 0; } static int brcm_dsl_sata_init(struct brcm_sata_port *port) { struct device *dev = port->phy_priv->dev; unsigned int try; u32 tmp; brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL7, 0, 0x873); brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL6, 0, 0xc000); brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0, 0, 0x3089); usleep_range(1000, 2000); brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0, 0, 0x3088); usleep_range(1000, 2000); brcm_sata_phy_wr(port, AEQRX_REG_BANK_1, AEQRX_SLCAL0_CTRL0, 0, 0x3000); brcm_sata_phy_wr(port, AEQRX_REG_BANK_1, AEQRX_SLCAL1_CTRL0, 0, 0x3000); usleep_range(1000, 2000); brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_CAP_CHARGE_TIME, 0, 0x32); brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_VCO_CAL_THRESH, 0, 0xa); brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_FREQ_DET_TIME, 0, 0x64); usleep_range(1000, 2000); /* Acquire PLL lock */ try = 50; while (try) { tmp = brcm_sata_phy_rd(port, BLOCK0_REG_BANK, BLOCK0_XGXSSTATUS); if (tmp & BLOCK0_XGXSSTATUS_PLL_LOCK) break; msleep(20); try--; } if (!try) { /* PLL did not lock; give up */ dev_err(dev, "port%d PLL did not lock\n", port->portnum); return -ETIMEDOUT; } dev_dbg(dev, "port%d initialized\n", port->portnum); return 0; } static int brcm_sata_phy_init(struct phy *phy) { int rc; struct brcm_sata_port *port = phy_get_drvdata(phy); switch (port->phy_priv->version) { case BRCM_SATA_PHY_STB_16NM: rc = brcm_stb_sata_16nm_init(port); break; case BRCM_SATA_PHY_STB_28NM: case BRCM_SATA_PHY_STB_40NM: rc = brcm_stb_sata_init(port); break; case BRCM_SATA_PHY_IPROC_NS2: rc = brcm_ns2_sata_init(port); break; case BRCM_SATA_PHY_IPROC_NSP: rc = brcm_nsp_sata_init(port); break; case BRCM_SATA_PHY_IPROC_SR: rc = brcm_sr_sata_init(port); break; case BRCM_SATA_PHY_DSL_28NM: rc = brcm_dsl_sata_init(port); break; default: rc = -ENODEV; } return rc; } static void brcm_stb_sata_calibrate(struct brcm_sata_port *port) { u32 tmp = BIT(8); brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_FREQ_MON_CONTROL1, ~tmp, tmp); } static int brcm_sata_phy_calibrate(struct phy *phy) { struct brcm_sata_port *port = phy_get_drvdata(phy); int rc = -EOPNOTSUPP; switch (port->phy_priv->version) { case BRCM_SATA_PHY_STB_28NM: case BRCM_SATA_PHY_STB_40NM: brcm_stb_sata_calibrate(port); rc = 0; break; default: break; } return rc; } static const struct phy_ops phy_ops = { .init = brcm_sata_phy_init, .calibrate = brcm_sata_phy_calibrate, .owner = THIS_MODULE, }; static const struct of_device_id brcm_sata_phy_of_match[] = { { .compatible = "brcm,bcm7216-sata-phy", .data = (void *)BRCM_SATA_PHY_STB_16NM }, { .compatible = "brcm,bcm7445-sata-phy", .data = (void *)BRCM_SATA_PHY_STB_28NM }, { .compatible = "brcm,bcm7425-sata-phy", .data = (void *)BRCM_SATA_PHY_STB_40NM }, { .compatible = "brcm,iproc-ns2-sata-phy", .data = (void *)BRCM_SATA_PHY_IPROC_NS2 }, { .compatible = "brcm,iproc-nsp-sata-phy", .data = (void *)BRCM_SATA_PHY_IPROC_NSP }, { .compatible = "brcm,iproc-sr-sata-phy", .data = (void *)BRCM_SATA_PHY_IPROC_SR }, { .compatible = "brcm,bcm63138-sata-phy", .data = (void *)BRCM_SATA_PHY_DSL_28NM }, {}, }; MODULE_DEVICE_TABLE(of, brcm_sata_phy_of_match); static int brcm_sata_phy_probe(struct platform_device *pdev) { const char *rxaeq_mode; struct device *dev = &pdev->dev; struct device_node *dn = dev->of_node, *child; const struct of_device_id *of_id; struct brcm_sata_phy *priv; struct phy_provider *provider; int ret, count = 0; if (of_get_child_count(dn) == 0) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; dev_set_drvdata(dev, priv); priv->dev = dev; priv->phy_base = devm_platform_ioremap_resource_byname(pdev, "phy"); if (IS_ERR(priv->phy_base)) return PTR_ERR(priv->phy_base); of_id = of_match_node(brcm_sata_phy_of_match, dn); if (of_id) priv->version = (uintptr_t)of_id->data; else priv->version = BRCM_SATA_PHY_STB_28NM; if (priv->version == BRCM_SATA_PHY_IPROC_NS2) { priv->ctrl_base = devm_platform_ioremap_resource_byname(pdev, "phy-ctrl"); if (IS_ERR(priv->ctrl_base)) return PTR_ERR(priv->ctrl_base); } for_each_available_child_of_node(dn, child) { unsigned int id; struct brcm_sata_port *port; if (of_property_read_u32(child, "reg", &id)) { dev_err(dev, "missing reg property in node %pOFn\n", child); ret = -EINVAL; goto put_child; } if (id >= MAX_PORTS) { dev_err(dev, "invalid reg: %u\n", id); ret = -EINVAL; goto put_child; } if (priv->phys[id].phy) { dev_err(dev, "already registered port %u\n", id); ret = -EINVAL; goto put_child; } port = &priv->phys[id]; port->portnum = id; port->phy_priv = priv; port->phy = devm_phy_create(dev, child, &phy_ops); port->rxaeq_mode = RXAEQ_MODE_OFF; if (!of_property_read_string(child, "brcm,rxaeq-mode", &rxaeq_mode)) port->rxaeq_mode = rxaeq_to_val(rxaeq_mode); if (port->rxaeq_mode == RXAEQ_MODE_MANUAL) of_property_read_u32(child, "brcm,rxaeq-value", &port->rxaeq_val); of_property_read_u32(child, "brcm,tx-amplitude-millivolt", &port->tx_amplitude_val); port->ssc_en = of_property_read_bool(child, "brcm,enable-ssc"); if (IS_ERR(port->phy)) { dev_err(dev, "failed to create PHY\n"); ret = PTR_ERR(port->phy); goto put_child; } phy_set_drvdata(port->phy, port); count++; } provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(provider)) { dev_err(dev, "could not register PHY provider\n"); return PTR_ERR(provider); } dev_info(dev, "registered %d port(s)\n", count); return 0; put_child: of_node_put(child); return ret; } static struct platform_driver brcm_sata_phy_driver = { .probe = brcm_sata_phy_probe, .driver = { .of_match_table = brcm_sata_phy_of_match, .name = "brcm-sata-phy", } }; module_platform_driver(brcm_sata_phy_driver); MODULE_DESCRIPTION("Broadcom SATA PHY driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Marc Carino"); MODULE_AUTHOR("Brian Norris"); MODULE_ALIAS("platform:phy-brcm-sata");
linux-master
drivers/phy/broadcom/phy-brcm-sata.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016-2018 Broadcom */ #include <linux/delay.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> enum bcm_usb_phy_version { BCM_SR_USB_COMBO_PHY, BCM_SR_USB_HS_PHY, }; enum bcm_usb_phy_reg { PLL_CTRL, PHY_CTRL, PHY_PLL_CTRL, }; /* USB PHY registers */ static const u8 bcm_usb_combo_phy_ss[] = { [PLL_CTRL] = 0x18, [PHY_CTRL] = 0x14, }; static const u8 bcm_usb_combo_phy_hs[] = { [PLL_CTRL] = 0x0c, [PHY_CTRL] = 0x10, }; static const u8 bcm_usb_hs_phy[] = { [PLL_CTRL] = 0x8, [PHY_CTRL] = 0xc, }; enum pll_ctrl_bits { PLL_RESETB, SSPLL_SUSPEND_EN, PLL_SEQ_START, PLL_LOCK, }; static const u8 u3pll_ctrl[] = { [PLL_RESETB] = 0, [SSPLL_SUSPEND_EN] = 1, [PLL_SEQ_START] = 2, [PLL_LOCK] = 3, }; #define HSPLL_PDIV_MASK 0xF #define HSPLL_PDIV_VAL 0x1 static const u8 u2pll_ctrl[] = { [PLL_RESETB] = 5, [PLL_LOCK] = 6, }; enum bcm_usb_phy_ctrl_bits { CORERDY, PHY_RESETB, PHY_PCTL, }; #define PHY_PCTL_MASK 0xffff #define SSPHY_PCTL_VAL 0x0006 static const u8 u3phy_ctrl[] = { [PHY_RESETB] = 1, [PHY_PCTL] = 2, }; static const u8 u2phy_ctrl[] = { [CORERDY] = 0, [PHY_RESETB] = 5, [PHY_PCTL] = 6, }; struct bcm_usb_phy_cfg { uint32_t type; uint32_t version; void __iomem *regs; struct phy *phy; const u8 *offset; }; #define PLL_LOCK_RETRY_COUNT 1000 enum bcm_usb_phy_type { USB_HS_PHY, USB_SS_PHY, }; #define NUM_BCM_SR_USB_COMBO_PHYS 2 static inline void bcm_usb_reg32_clrbits(void __iomem *addr, uint32_t clear) { writel(readl(addr) & ~clear, addr); } static inline void bcm_usb_reg32_setbits(void __iomem *addr, uint32_t set) { writel(readl(addr) | set, addr); } static int bcm_usb_pll_lock_check(void __iomem *addr, u32 bit) { u32 data; int ret; ret = readl_poll_timeout_atomic(addr, data, (data & bit), 1, PLL_LOCK_RETRY_COUNT); if (ret) pr_err("%s: FAIL\n", __func__); return ret; } static int bcm_usb_ss_phy_init(struct bcm_usb_phy_cfg *phy_cfg) { int ret = 0; void __iomem *regs = phy_cfg->regs; const u8 *offset; u32 rd_data; offset = phy_cfg->offset; /* Set pctl with mode and soft reset */ rd_data = readl(regs + offset[PHY_CTRL]); rd_data &= ~(PHY_PCTL_MASK << u3phy_ctrl[PHY_PCTL]); rd_data |= (SSPHY_PCTL_VAL << u3phy_ctrl[PHY_PCTL]); writel(rd_data, regs + offset[PHY_CTRL]); bcm_usb_reg32_clrbits(regs + offset[PLL_CTRL], BIT(u3pll_ctrl[SSPLL_SUSPEND_EN])); bcm_usb_reg32_setbits(regs + offset[PLL_CTRL], BIT(u3pll_ctrl[PLL_SEQ_START])); bcm_usb_reg32_setbits(regs + offset[PLL_CTRL], BIT(u3pll_ctrl[PLL_RESETB])); /* Maximum timeout for PLL reset done */ msleep(30); ret = bcm_usb_pll_lock_check(regs + offset[PLL_CTRL], BIT(u3pll_ctrl[PLL_LOCK])); return ret; } static int bcm_usb_hs_phy_init(struct bcm_usb_phy_cfg *phy_cfg) { int ret = 0; void __iomem *regs = phy_cfg->regs; const u8 *offset; offset = phy_cfg->offset; bcm_usb_reg32_clrbits(regs + offset[PLL_CTRL], BIT(u2pll_ctrl[PLL_RESETB])); bcm_usb_reg32_setbits(regs + offset[PLL_CTRL], BIT(u2pll_ctrl[PLL_RESETB])); ret = bcm_usb_pll_lock_check(regs + offset[PLL_CTRL], BIT(u2pll_ctrl[PLL_LOCK])); return ret; } static int bcm_usb_phy_reset(struct phy *phy) { struct bcm_usb_phy_cfg *phy_cfg = phy_get_drvdata(phy); void __iomem *regs = phy_cfg->regs; const u8 *offset; offset = phy_cfg->offset; if (phy_cfg->type == USB_HS_PHY) { bcm_usb_reg32_clrbits(regs + offset[PHY_CTRL], BIT(u2phy_ctrl[CORERDY])); bcm_usb_reg32_setbits(regs + offset[PHY_CTRL], BIT(u2phy_ctrl[CORERDY])); } return 0; } static int bcm_usb_phy_init(struct phy *phy) { struct bcm_usb_phy_cfg *phy_cfg = phy_get_drvdata(phy); int ret = -EINVAL; if (phy_cfg->type == USB_SS_PHY) ret = bcm_usb_ss_phy_init(phy_cfg); else if (phy_cfg->type == USB_HS_PHY) ret = bcm_usb_hs_phy_init(phy_cfg); return ret; } static const struct phy_ops sr_phy_ops = { .init = bcm_usb_phy_init, .reset = bcm_usb_phy_reset, .owner = THIS_MODULE, }; static struct phy *bcm_usb_phy_xlate(struct device *dev, struct of_phandle_args *args) { struct bcm_usb_phy_cfg *phy_cfg; int phy_idx; phy_cfg = dev_get_drvdata(dev); if (!phy_cfg) return ERR_PTR(-EINVAL); if (phy_cfg->version == BCM_SR_USB_COMBO_PHY) { phy_idx = args->args[0]; if (WARN_ON(phy_idx > 1)) return ERR_PTR(-ENODEV); return phy_cfg[phy_idx].phy; } else return phy_cfg->phy; } static int bcm_usb_phy_create(struct device *dev, struct device_node *node, void __iomem *regs, uint32_t version) { struct bcm_usb_phy_cfg *phy_cfg; int idx; if (version == BCM_SR_USB_COMBO_PHY) { phy_cfg = devm_kzalloc(dev, NUM_BCM_SR_USB_COMBO_PHYS * sizeof(struct bcm_usb_phy_cfg), GFP_KERNEL); if (!phy_cfg) return -ENOMEM; for (idx = 0; idx < NUM_BCM_SR_USB_COMBO_PHYS; idx++) { phy_cfg[idx].regs = regs; phy_cfg[idx].version = version; if (idx == 0) { phy_cfg[idx].offset = bcm_usb_combo_phy_hs; phy_cfg[idx].type = USB_HS_PHY; } else { phy_cfg[idx].offset = bcm_usb_combo_phy_ss; phy_cfg[idx].type = USB_SS_PHY; } phy_cfg[idx].phy = devm_phy_create(dev, node, &sr_phy_ops); if (IS_ERR(phy_cfg[idx].phy)) return PTR_ERR(phy_cfg[idx].phy); phy_set_drvdata(phy_cfg[idx].phy, &phy_cfg[idx]); } } else if (version == BCM_SR_USB_HS_PHY) { phy_cfg = devm_kzalloc(dev, sizeof(struct bcm_usb_phy_cfg), GFP_KERNEL); if (!phy_cfg) return -ENOMEM; phy_cfg->regs = regs; phy_cfg->version = version; phy_cfg->offset = bcm_usb_hs_phy; phy_cfg->type = USB_HS_PHY; phy_cfg->phy = devm_phy_create(dev, node, &sr_phy_ops); if (IS_ERR(phy_cfg->phy)) return PTR_ERR(phy_cfg->phy); phy_set_drvdata(phy_cfg->phy, phy_cfg); } else return -ENODEV; dev_set_drvdata(dev, phy_cfg); return 0; } static const struct of_device_id bcm_usb_phy_of_match[] = { { .compatible = "brcm,sr-usb-combo-phy", .data = (void *)BCM_SR_USB_COMBO_PHY, }, { .compatible = "brcm,sr-usb-hs-phy", .data = (void *)BCM_SR_USB_HS_PHY, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, bcm_usb_phy_of_match); static int bcm_usb_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *dn = dev->of_node; const struct of_device_id *of_id; void __iomem *regs; int ret; enum bcm_usb_phy_version version; struct phy_provider *phy_provider; regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(regs)) return PTR_ERR(regs); of_id = of_match_node(bcm_usb_phy_of_match, dn); if (of_id) version = (uintptr_t)of_id->data; else return -ENODEV; ret = bcm_usb_phy_create(dev, dn, regs, version); if (ret) return ret; phy_provider = devm_of_phy_provider_register(dev, bcm_usb_phy_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver bcm_usb_phy_driver = { .driver = { .name = "phy-bcm-sr-usb", .of_match_table = bcm_usb_phy_of_match, }, .probe = bcm_usb_phy_probe, }; module_platform_driver(bcm_usb_phy_driver); MODULE_AUTHOR("Broadcom"); MODULE_DESCRIPTION("Broadcom stingray USB Phy driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/broadcom/phy-bcm-sr-usb.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * BCM6328 USBH PHY Controller Driver * * Copyright (C) 2020 Álvaro Fernández Rojas <[email protected]> * Copyright (C) 2015 Simon Arlott * * Derived from bcm963xx_4.12L.06B_consumer/kernel/linux/arch/mips/bcm963xx/setup.c: * Copyright (C) 2002 Broadcom Corporation * * Derived from OpenWrt patches: * Copyright (C) 2013 Jonas Gorski <[email protected]> * Copyright (C) 2013 Florian Fainelli <[email protected]> * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/clk.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/reset.h> /* USBH control register offsets */ enum usbh_regs { USBH_BRT_CONTROL1 = 0, USBH_BRT_CONTROL2, USBH_BRT_STATUS1, USBH_BRT_STATUS2, USBH_UTMI_CONTROL1, #define USBH_UC1_DEV_MODE_SEL BIT(0) USBH_TEST_PORT_CONTROL, USBH_PLL_CONTROL1, #define USBH_PLLC_REFCLKSEL_SHIFT 0 #define USBH_PLLC_REFCLKSEL_MASK (0x3 << USBH_PLLC_REFCLKSEL_SHIFT) #define USBH_PLLC_CLKSEL_SHIFT 2 #define USBH_PLLC_CLKSEL_MASK (0x3 << USBH_PLLC_CLKSEL_MASK) #define USBH_PLLC_XTAL_PWRDWNB BIT(4) #define USBH_PLLC_PLL_PWRDWNB BIT(5) #define USBH_PLLC_PLL_CALEN BIT(6) #define USBH_PLLC_PHYPLL_BYP BIT(7) #define USBH_PLLC_PLL_RESET BIT(8) #define USBH_PLLC_PLL_IDDQ_PWRDN BIT(9) #define USBH_PLLC_PLL_PWRDN_DELAY BIT(10) #define USBH_6318_PLLC_PLL_SUSPEND_EN BIT(27) #define USBH_6318_PLLC_PHYPLL_BYP BIT(29) #define USBH_6318_PLLC_PLL_RESET BIT(30) #define USBH_6318_PLLC_PLL_IDDQ_PWRDN BIT(31) USBH_SWAP_CONTROL, #define USBH_SC_OHCI_DATA_SWAP BIT(0) #define USBH_SC_OHCI_ENDIAN_SWAP BIT(1) #define USBH_SC_OHCI_LOGICAL_ADDR_EN BIT(2) #define USBH_SC_EHCI_DATA_SWAP BIT(3) #define USBH_SC_EHCI_ENDIAN_SWAP BIT(4) #define USBH_SC_EHCI_LOGICAL_ADDR_EN BIT(5) #define USBH_SC_USB_DEVICE_SEL BIT(6) USBH_GENERIC_CONTROL, #define USBH_GC_PLL_SUSPEND_EN BIT(1) USBH_FRAME_ADJUST_VALUE, USBH_SETUP, #define USBH_S_IOC BIT(4) #define USBH_S_IPP BIT(5) USBH_MDIO, USBH_MDIO32, USBH_USB_SIM_CONTROL, #define USBH_USC_LADDR_SEL BIT(5) __USBH_ENUM_SIZE }; struct bcm63xx_usbh_phy_variant { /* Registers */ long regs[__USBH_ENUM_SIZE]; /* PLLC bits to set/clear for power on */ u32 power_pllc_clr; u32 power_pllc_set; /* Setup bits to set/clear for power on */ u32 setup_clr; u32 setup_set; /* Swap Control bits to set */ u32 swapctl_dev_set; /* Test Port Control value to set if non-zero */ u32 tpc_val; /* USB Sim Control bits to set */ u32 usc_set; /* UTMI Control 1 bits to set */ u32 utmictl1_dev_set; }; struct bcm63xx_usbh_phy { void __iomem *base; struct clk *usbh_clk; struct clk *usb_ref_clk; struct reset_control *reset; const struct bcm63xx_usbh_phy_variant *variant; bool device_mode; }; static const struct bcm63xx_usbh_phy_variant usbh_bcm6318 = { .regs = { [USBH_BRT_CONTROL1] = -1, [USBH_BRT_CONTROL2] = -1, [USBH_BRT_STATUS1] = -1, [USBH_BRT_STATUS2] = -1, [USBH_UTMI_CONTROL1] = 0x2c, [USBH_TEST_PORT_CONTROL] = 0x1c, [USBH_PLL_CONTROL1] = 0x04, [USBH_SWAP_CONTROL] = 0x0c, [USBH_GENERIC_CONTROL] = -1, [USBH_FRAME_ADJUST_VALUE] = 0x08, [USBH_SETUP] = 0x00, [USBH_MDIO] = 0x14, [USBH_MDIO32] = 0x18, [USBH_USB_SIM_CONTROL] = 0x20, }, .power_pllc_clr = USBH_6318_PLLC_PLL_IDDQ_PWRDN, .power_pllc_set = USBH_6318_PLLC_PLL_SUSPEND_EN, .setup_set = USBH_S_IOC, .swapctl_dev_set = USBH_SC_USB_DEVICE_SEL, .usc_set = USBH_USC_LADDR_SEL, .utmictl1_dev_set = USBH_UC1_DEV_MODE_SEL, }; static const struct bcm63xx_usbh_phy_variant usbh_bcm6328 = { .regs = { [USBH_BRT_CONTROL1] = 0x00, [USBH_BRT_CONTROL2] = 0x04, [USBH_BRT_STATUS1] = 0x08, [USBH_BRT_STATUS2] = 0x0c, [USBH_UTMI_CONTROL1] = 0x10, [USBH_TEST_PORT_CONTROL] = 0x14, [USBH_PLL_CONTROL1] = 0x18, [USBH_SWAP_CONTROL] = 0x1c, [USBH_GENERIC_CONTROL] = 0x20, [USBH_FRAME_ADJUST_VALUE] = 0x24, [USBH_SETUP] = 0x28, [USBH_MDIO] = 0x2c, [USBH_MDIO32] = 0x30, [USBH_USB_SIM_CONTROL] = 0x34, }, .setup_set = USBH_S_IOC, .swapctl_dev_set = USBH_SC_USB_DEVICE_SEL, .utmictl1_dev_set = USBH_UC1_DEV_MODE_SEL, }; static const struct bcm63xx_usbh_phy_variant usbh_bcm6358 = { .regs = { [USBH_BRT_CONTROL1] = -1, [USBH_BRT_CONTROL2] = -1, [USBH_BRT_STATUS1] = -1, [USBH_BRT_STATUS2] = -1, [USBH_UTMI_CONTROL1] = -1, [USBH_TEST_PORT_CONTROL] = 0x24, [USBH_PLL_CONTROL1] = -1, [USBH_SWAP_CONTROL] = 0x00, [USBH_GENERIC_CONTROL] = -1, [USBH_FRAME_ADJUST_VALUE] = -1, [USBH_SETUP] = -1, [USBH_MDIO] = -1, [USBH_MDIO32] = -1, [USBH_USB_SIM_CONTROL] = -1, }, /* * The magic value comes for the original vendor BSP * and is needed for USB to work. Datasheet does not * help, so the magic value is used as-is. */ .tpc_val = 0x1c0020, }; static const struct bcm63xx_usbh_phy_variant usbh_bcm6368 = { .regs = { [USBH_BRT_CONTROL1] = 0x00, [USBH_BRT_CONTROL2] = 0x04, [USBH_BRT_STATUS1] = 0x08, [USBH_BRT_STATUS2] = 0x0c, [USBH_UTMI_CONTROL1] = 0x10, [USBH_TEST_PORT_CONTROL] = 0x14, [USBH_PLL_CONTROL1] = 0x18, [USBH_SWAP_CONTROL] = 0x1c, [USBH_GENERIC_CONTROL] = -1, [USBH_FRAME_ADJUST_VALUE] = 0x24, [USBH_SETUP] = 0x28, [USBH_MDIO] = 0x2c, [USBH_MDIO32] = 0x30, [USBH_USB_SIM_CONTROL] = 0x34, }, .power_pllc_clr = USBH_PLLC_PLL_IDDQ_PWRDN | USBH_PLLC_PLL_PWRDN_DELAY, .setup_set = USBH_S_IOC, .swapctl_dev_set = USBH_SC_USB_DEVICE_SEL, .utmictl1_dev_set = USBH_UC1_DEV_MODE_SEL, }; static const struct bcm63xx_usbh_phy_variant usbh_bcm63268 = { .regs = { [USBH_BRT_CONTROL1] = 0x00, [USBH_BRT_CONTROL2] = 0x04, [USBH_BRT_STATUS1] = 0x08, [USBH_BRT_STATUS2] = 0x0c, [USBH_UTMI_CONTROL1] = 0x10, [USBH_TEST_PORT_CONTROL] = 0x14, [USBH_PLL_CONTROL1] = 0x18, [USBH_SWAP_CONTROL] = 0x1c, [USBH_GENERIC_CONTROL] = 0x20, [USBH_FRAME_ADJUST_VALUE] = 0x24, [USBH_SETUP] = 0x28, [USBH_MDIO] = 0x2c, [USBH_MDIO32] = 0x30, [USBH_USB_SIM_CONTROL] = 0x34, }, .power_pllc_clr = USBH_PLLC_PLL_IDDQ_PWRDN | USBH_PLLC_PLL_PWRDN_DELAY, .setup_clr = USBH_S_IPP, .setup_set = USBH_S_IOC, .swapctl_dev_set = USBH_SC_USB_DEVICE_SEL, .utmictl1_dev_set = USBH_UC1_DEV_MODE_SEL, }; static inline bool usbh_has_reg(struct bcm63xx_usbh_phy *usbh, int reg) { return (usbh->variant->regs[reg] >= 0); } static inline u32 usbh_readl(struct bcm63xx_usbh_phy *usbh, int reg) { return __raw_readl(usbh->base + usbh->variant->regs[reg]); } static inline void usbh_writel(struct bcm63xx_usbh_phy *usbh, int reg, u32 value) { __raw_writel(value, usbh->base + usbh->variant->regs[reg]); } static int bcm63xx_usbh_phy_init(struct phy *phy) { struct bcm63xx_usbh_phy *usbh = phy_get_drvdata(phy); int ret; ret = clk_prepare_enable(usbh->usbh_clk); if (ret) { dev_err(&phy->dev, "unable to enable usbh clock: %d\n", ret); return ret; } ret = clk_prepare_enable(usbh->usb_ref_clk); if (ret) { dev_err(&phy->dev, "unable to enable usb_ref clock: %d\n", ret); clk_disable_unprepare(usbh->usbh_clk); return ret; } ret = reset_control_reset(usbh->reset); if (ret) { dev_err(&phy->dev, "unable to reset device: %d\n", ret); clk_disable_unprepare(usbh->usb_ref_clk); clk_disable_unprepare(usbh->usbh_clk); return ret; } /* Configure to work in native CPU endian */ if (usbh_has_reg(usbh, USBH_SWAP_CONTROL)) { u32 val = usbh_readl(usbh, USBH_SWAP_CONTROL); val |= USBH_SC_EHCI_DATA_SWAP; val &= ~USBH_SC_EHCI_ENDIAN_SWAP; val |= USBH_SC_OHCI_DATA_SWAP; val &= ~USBH_SC_OHCI_ENDIAN_SWAP; if (usbh->device_mode && usbh->variant->swapctl_dev_set) val |= usbh->variant->swapctl_dev_set; usbh_writel(usbh, USBH_SWAP_CONTROL, val); } if (usbh_has_reg(usbh, USBH_SETUP)) { u32 val = usbh_readl(usbh, USBH_SETUP); val |= usbh->variant->setup_set; val &= ~usbh->variant->setup_clr; usbh_writel(usbh, USBH_SETUP, val); } if (usbh_has_reg(usbh, USBH_USB_SIM_CONTROL)) { u32 val = usbh_readl(usbh, USBH_USB_SIM_CONTROL); val |= usbh->variant->usc_set; usbh_writel(usbh, USBH_USB_SIM_CONTROL, val); } if (usbh->variant->tpc_val && usbh_has_reg(usbh, USBH_TEST_PORT_CONTROL)) usbh_writel(usbh, USBH_TEST_PORT_CONTROL, usbh->variant->tpc_val); if (usbh->device_mode && usbh_has_reg(usbh, USBH_UTMI_CONTROL1) && usbh->variant->utmictl1_dev_set) { u32 val = usbh_readl(usbh, USBH_UTMI_CONTROL1); val |= usbh->variant->utmictl1_dev_set; usbh_writel(usbh, USBH_UTMI_CONTROL1, val); } return 0; } static int bcm63xx_usbh_phy_power_on(struct phy *phy) { struct bcm63xx_usbh_phy *usbh = phy_get_drvdata(phy); if (usbh_has_reg(usbh, USBH_PLL_CONTROL1)) { u32 val = usbh_readl(usbh, USBH_PLL_CONTROL1); val |= usbh->variant->power_pllc_set; val &= ~usbh->variant->power_pllc_clr; usbh_writel(usbh, USBH_PLL_CONTROL1, val); } return 0; } static int bcm63xx_usbh_phy_power_off(struct phy *phy) { struct bcm63xx_usbh_phy *usbh = phy_get_drvdata(phy); if (usbh_has_reg(usbh, USBH_PLL_CONTROL1)) { u32 val = usbh_readl(usbh, USBH_PLL_CONTROL1); val &= ~usbh->variant->power_pllc_set; val |= usbh->variant->power_pllc_clr; usbh_writel(usbh, USBH_PLL_CONTROL1, val); } return 0; } static int bcm63xx_usbh_phy_exit(struct phy *phy) { struct bcm63xx_usbh_phy *usbh = phy_get_drvdata(phy); clk_disable_unprepare(usbh->usbh_clk); clk_disable_unprepare(usbh->usb_ref_clk); return 0; } static const struct phy_ops bcm63xx_usbh_phy_ops = { .exit = bcm63xx_usbh_phy_exit, .init = bcm63xx_usbh_phy_init, .power_off = bcm63xx_usbh_phy_power_off, .power_on = bcm63xx_usbh_phy_power_on, .owner = THIS_MODULE, }; static struct phy *bcm63xx_usbh_phy_xlate(struct device *dev, struct of_phandle_args *args) { struct bcm63xx_usbh_phy *usbh = dev_get_drvdata(dev); usbh->device_mode = !!args->args[0]; return of_phy_simple_xlate(dev, args); } static int __init bcm63xx_usbh_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct bcm63xx_usbh_phy *usbh; const struct bcm63xx_usbh_phy_variant *variant; struct phy *phy; struct phy_provider *phy_provider; usbh = devm_kzalloc(dev, sizeof(*usbh), GFP_KERNEL); if (!usbh) return -ENOMEM; variant = device_get_match_data(dev); if (!variant) return -EINVAL; usbh->variant = variant; usbh->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(usbh->base)) return PTR_ERR(usbh->base); usbh->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(usbh->reset)) { if (PTR_ERR(usbh->reset) != -EPROBE_DEFER) dev_err(dev, "failed to get reset\n"); return PTR_ERR(usbh->reset); } usbh->usbh_clk = devm_clk_get_optional(dev, "usbh"); if (IS_ERR(usbh->usbh_clk)) return PTR_ERR(usbh->usbh_clk); usbh->usb_ref_clk = devm_clk_get_optional(dev, "usb_ref"); if (IS_ERR(usbh->usb_ref_clk)) return PTR_ERR(usbh->usb_ref_clk); phy = devm_phy_create(dev, NULL, &bcm63xx_usbh_phy_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create PHY\n"); return PTR_ERR(phy); } platform_set_drvdata(pdev, usbh); phy_set_drvdata(phy, usbh); phy_provider = devm_of_phy_provider_register(dev, bcm63xx_usbh_phy_xlate); if (IS_ERR(phy_provider)) { dev_err(dev, "failed to register PHY provider\n"); return PTR_ERR(phy_provider); } dev_dbg(dev, "Registered BCM63xx USB PHY driver\n"); return 0; } static const struct of_device_id bcm63xx_usbh_phy_ids[] __initconst = { { .compatible = "brcm,bcm6318-usbh-phy", .data = &usbh_bcm6318 }, { .compatible = "brcm,bcm6328-usbh-phy", .data = &usbh_bcm6328 }, { .compatible = "brcm,bcm6358-usbh-phy", .data = &usbh_bcm6358 }, { .compatible = "brcm,bcm6362-usbh-phy", .data = &usbh_bcm6368 }, { .compatible = "brcm,bcm6368-usbh-phy", .data = &usbh_bcm6368 }, { .compatible = "brcm,bcm63268-usbh-phy", .data = &usbh_bcm63268 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, bcm63xx_usbh_phy_ids); static struct platform_driver bcm63xx_usbh_phy_driver __refdata = { .driver = { .name = "bcm63xx-usbh-phy", .of_match_table = bcm63xx_usbh_phy_ids, }, .probe = bcm63xx_usbh_phy_probe, }; module_platform_driver(bcm63xx_usbh_phy_driver); MODULE_DESCRIPTION("BCM63xx USBH PHY driver"); MODULE_AUTHOR("Álvaro Fernández Rojas <[email protected]>"); MODULE_AUTHOR("Simon Arlott"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/broadcom/phy-bcm63xx-usbh.c
// SPDX-License-Identifier: GPL-2.0-only /* * Broadcom Northstar USB 3.0 PHY Driver * * Copyright (C) 2016 Rafał Miłecki <[email protected]> * Copyright (C) 2016 Broadcom * * All magic values used for initialization (and related comments) were obtained * from Broadcom's SDK: * Copyright (c) Broadcom Corp, 2012 */ #include <linux/bcma/bcma.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/iopoll.h> #include <linux/mdio.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/phy/phy.h> #include <linux/slab.h> #define BCM_NS_USB3_PHY_BASE_ADDR_REG 0x1f #define BCM_NS_USB3_PHY_PLL30_BLOCK 0x8000 #define BCM_NS_USB3_PHY_TX_PMD_BLOCK 0x8040 #define BCM_NS_USB3_PHY_PIPE_BLOCK 0x8060 /* Registers of PLL30 block */ #define BCM_NS_USB3_PLL_CONTROL 0x01 #define BCM_NS_USB3_PLLA_CONTROL0 0x0a #define BCM_NS_USB3_PLLA_CONTROL1 0x0b /* Registers of TX PMD block */ #define BCM_NS_USB3_TX_PMD_CONTROL1 0x01 /* Registers of PIPE block */ #define BCM_NS_USB3_LFPS_CMP 0x02 #define BCM_NS_USB3_LFPS_DEGLITCH 0x03 enum bcm_ns_family { BCM_NS_UNKNOWN, BCM_NS_AX, BCM_NS_BX, }; struct bcm_ns_usb3 { struct device *dev; enum bcm_ns_family family; void __iomem *dmp; struct mdio_device *mdiodev; struct phy *phy; }; static const struct of_device_id bcm_ns_usb3_id_table[] = { { .compatible = "brcm,ns-ax-usb3-phy", .data = (int *)BCM_NS_AX, }, { .compatible = "brcm,ns-bx-usb3-phy", .data = (int *)BCM_NS_BX, }, {}, }; static int bcm_ns_usb3_mdio_phy_write(struct bcm_ns_usb3 *usb3, u16 reg, u16 value); static int bcm_ns_usb3_phy_init_ns_bx(struct bcm_ns_usb3 *usb3) { int err; /* USB3 PLL Block */ err = bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG, BCM_NS_USB3_PHY_PLL30_BLOCK); if (err < 0) return err; /* Assert Ana_Pllseq start */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLL_CONTROL, 0x1000); /* Assert CML Divider ratio to 26 */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLLA_CONTROL0, 0x6400); /* Asserting PLL Reset */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLLA_CONTROL1, 0xc000); /* Deaaserting PLL Reset */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLLA_CONTROL1, 0x8000); /* Deasserting USB3 system reset */ writel(0, usb3->dmp + BCMA_RESET_CTL); /* PLL frequency monitor enable */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLL_CONTROL, 0x9000); /* PIPE Block */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG, BCM_NS_USB3_PHY_PIPE_BLOCK); /* CMPMAX & CMPMINTH setting */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_LFPS_CMP, 0xf30d); /* DEGLITCH MIN & MAX setting */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_LFPS_DEGLITCH, 0x6302); /* TXPMD block */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG, BCM_NS_USB3_PHY_TX_PMD_BLOCK); /* Enabling SSC */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_TX_PMD_CONTROL1, 0x1003); return 0; } static int bcm_ns_usb3_phy_init_ns_ax(struct bcm_ns_usb3 *usb3) { int err; /* PLL30 block */ err = bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG, BCM_NS_USB3_PHY_PLL30_BLOCK); if (err < 0) return err; bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PLLA_CONTROL0, 0x6400); bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG, 0x80e0); bcm_ns_usb3_mdio_phy_write(usb3, 0x02, 0x009c); /* Enable SSC */ bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_PHY_BASE_ADDR_REG, BCM_NS_USB3_PHY_TX_PMD_BLOCK); bcm_ns_usb3_mdio_phy_write(usb3, 0x02, 0x21d3); bcm_ns_usb3_mdio_phy_write(usb3, BCM_NS_USB3_TX_PMD_CONTROL1, 0x1003); /* Deasserting USB3 system reset */ writel(0, usb3->dmp + BCMA_RESET_CTL); return 0; } static int bcm_ns_usb3_phy_init(struct phy *phy) { struct bcm_ns_usb3 *usb3 = phy_get_drvdata(phy); int err; /* Perform USB3 system soft reset */ writel(BCMA_RESET_CTL_RESET, usb3->dmp + BCMA_RESET_CTL); switch (usb3->family) { case BCM_NS_AX: err = bcm_ns_usb3_phy_init_ns_ax(usb3); break; case BCM_NS_BX: err = bcm_ns_usb3_phy_init_ns_bx(usb3); break; default: WARN_ON(1); err = -ENOTSUPP; } return err; } static const struct phy_ops ops = { .init = bcm_ns_usb3_phy_init, .owner = THIS_MODULE, }; /************************************************** * MDIO driver code **************************************************/ static int bcm_ns_usb3_mdio_phy_write(struct bcm_ns_usb3 *usb3, u16 reg, u16 value) { struct mdio_device *mdiodev = usb3->mdiodev; return mdiodev_write(mdiodev, reg, value); } static int bcm_ns_usb3_mdio_probe(struct mdio_device *mdiodev) { struct device *dev = &mdiodev->dev; const struct of_device_id *of_id; struct phy_provider *phy_provider; struct device_node *syscon_np; struct bcm_ns_usb3 *usb3; struct resource res; int err; usb3 = devm_kzalloc(dev, sizeof(*usb3), GFP_KERNEL); if (!usb3) return -ENOMEM; usb3->dev = dev; usb3->mdiodev = mdiodev; of_id = of_match_device(bcm_ns_usb3_id_table, dev); if (!of_id) return -EINVAL; usb3->family = (uintptr_t)of_id->data; syscon_np = of_parse_phandle(dev->of_node, "usb3-dmp-syscon", 0); err = of_address_to_resource(syscon_np, 0, &res); of_node_put(syscon_np); if (err) return err; usb3->dmp = devm_ioremap_resource(dev, &res); if (IS_ERR(usb3->dmp)) return PTR_ERR(usb3->dmp); usb3->phy = devm_phy_create(dev, NULL, &ops); if (IS_ERR(usb3->phy)) { dev_err(dev, "Failed to create PHY\n"); return PTR_ERR(usb3->phy); } phy_set_drvdata(usb3->phy, usb3); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static struct mdio_driver bcm_ns_usb3_mdio_driver = { .mdiodrv = { .driver = { .name = "bcm_ns_mdio_usb3", .of_match_table = bcm_ns_usb3_id_table, }, }, .probe = bcm_ns_usb3_mdio_probe, }; mdio_module_driver(bcm_ns_usb3_mdio_driver); MODULE_LICENSE("GPL v2"); MODULE_DEVICE_TABLE(of, bcm_ns_usb3_id_table);
linux-master
drivers/phy/broadcom/phy-bcm-ns-usb3.c
// SPDX-License-Identifier: GPL-2.0 /* * Rockchip PCIE3.0 phy driver * * Copyright (C) 2022 Rockchip Electronics Co., Ltd. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/pcie.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/reset.h> /* Register for RK3568 */ #define GRF_PCIE30PHY_CON1 0x4 #define GRF_PCIE30PHY_CON6 0x18 #define GRF_PCIE30PHY_CON9 0x24 #define GRF_PCIE30PHY_DA_OCM (BIT(15) | BIT(31)) #define GRF_PCIE30PHY_STATUS0 0x80 #define GRF_PCIE30PHY_WR_EN (0xf << 16) #define SRAM_INIT_DONE(reg) (reg & BIT(14)) #define RK3568_BIFURCATION_LANE_0_1 BIT(0) /* Register for RK3588 */ #define PHP_GRF_PCIESEL_CON 0x100 #define RK3588_PCIE3PHY_GRF_CMN_CON0 0x0 #define RK3588_PCIE3PHY_GRF_PHY0_STATUS1 0x904 #define RK3588_PCIE3PHY_GRF_PHY1_STATUS1 0xa04 #define RK3588_SRAM_INIT_DONE(reg) (reg & BIT(0)) #define RK3588_BIFURCATION_LANE_0_1 BIT(0) #define RK3588_BIFURCATION_LANE_2_3 BIT(1) #define RK3588_LANE_AGGREGATION BIT(2) struct rockchip_p3phy_ops; struct rockchip_p3phy_priv { const struct rockchip_p3phy_ops *ops; void __iomem *mmio; /* mode: RC, EP */ int mode; /* pcie30_phymode: Aggregation, Bifurcation */ int pcie30_phymode; struct regmap *phy_grf; struct regmap *pipe_grf; struct reset_control *p30phy; struct phy *phy; struct clk_bulk_data *clks; int num_clks; int num_lanes; u32 lanes[4]; }; struct rockchip_p3phy_ops { int (*phy_init)(struct rockchip_p3phy_priv *priv); }; static int rockchip_p3phy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct rockchip_p3phy_priv *priv = phy_get_drvdata(phy); /* Actually We don't care EP/RC mode, but just record it */ switch (submode) { case PHY_MODE_PCIE_RC: priv->mode = PHY_MODE_PCIE_RC; break; case PHY_MODE_PCIE_EP: priv->mode = PHY_MODE_PCIE_EP; break; default: dev_err(&phy->dev, "%s, invalid mode\n", __func__); return -EINVAL; } return 0; } static int rockchip_p3phy_rk3568_init(struct rockchip_p3phy_priv *priv) { struct phy *phy = priv->phy; bool bifurcation = false; int ret; u32 reg; /* Deassert PCIe PMA output clamp mode */ regmap_write(priv->phy_grf, GRF_PCIE30PHY_CON9, GRF_PCIE30PHY_DA_OCM); for (int i = 0; i < priv->num_lanes; i++) { dev_info(&phy->dev, "lane number %d, val %d\n", i, priv->lanes[i]); if (priv->lanes[i] > 1) bifurcation = true; } /* Set bifurcation if needed, and it doesn't care RC/EP */ if (bifurcation) { dev_info(&phy->dev, "bifurcation enabled\n"); regmap_write(priv->phy_grf, GRF_PCIE30PHY_CON6, GRF_PCIE30PHY_WR_EN | RK3568_BIFURCATION_LANE_0_1); regmap_write(priv->phy_grf, GRF_PCIE30PHY_CON1, GRF_PCIE30PHY_DA_OCM); } else { dev_dbg(&phy->dev, "bifurcation disabled\n"); regmap_write(priv->phy_grf, GRF_PCIE30PHY_CON6, GRF_PCIE30PHY_WR_EN & ~RK3568_BIFURCATION_LANE_0_1); } reset_control_deassert(priv->p30phy); ret = regmap_read_poll_timeout(priv->phy_grf, GRF_PCIE30PHY_STATUS0, reg, SRAM_INIT_DONE(reg), 0, 500); if (ret) dev_err(&priv->phy->dev, "%s: lock failed 0x%x, check input refclk and power supply\n", __func__, reg); return ret; } static const struct rockchip_p3phy_ops rk3568_ops = { .phy_init = rockchip_p3phy_rk3568_init, }; static int rockchip_p3phy_rk3588_init(struct rockchip_p3phy_priv *priv) { u32 reg = 0; u8 mode = 0; int ret; /* Deassert PCIe PMA output clamp mode */ regmap_write(priv->phy_grf, RK3588_PCIE3PHY_GRF_CMN_CON0, BIT(8) | BIT(24)); /* Set bifurcation if needed */ for (int i = 0; i < priv->num_lanes; i++) { if (!priv->lanes[i]) mode |= (BIT(i) << 3); if (priv->lanes[i] > 1) mode |= (BIT(i) >> 1); } if (!mode) reg = RK3588_LANE_AGGREGATION; else { if (mode & (BIT(0) | BIT(1))) reg |= RK3588_BIFURCATION_LANE_0_1; if (mode & (BIT(2) | BIT(3))) reg |= RK3588_BIFURCATION_LANE_2_3; } regmap_write(priv->phy_grf, RK3588_PCIE3PHY_GRF_CMN_CON0, (0x7<<16) | reg); /* Set pcie1ln_sel in PHP_GRF_PCIESEL_CON */ if (!IS_ERR(priv->pipe_grf)) { reg = (mode & (BIT(6) | BIT(7))) >> 6; if (reg) regmap_write(priv->pipe_grf, PHP_GRF_PCIESEL_CON, (reg << 16) | reg); } reset_control_deassert(priv->p30phy); ret = regmap_read_poll_timeout(priv->phy_grf, RK3588_PCIE3PHY_GRF_PHY0_STATUS1, reg, RK3588_SRAM_INIT_DONE(reg), 0, 500); ret |= regmap_read_poll_timeout(priv->phy_grf, RK3588_PCIE3PHY_GRF_PHY1_STATUS1, reg, RK3588_SRAM_INIT_DONE(reg), 0, 500); if (ret) dev_err(&priv->phy->dev, "lock failed 0x%x, check input refclk and power supply\n", reg); return ret; } static const struct rockchip_p3phy_ops rk3588_ops = { .phy_init = rockchip_p3phy_rk3588_init, }; static int rochchip_p3phy_init(struct phy *phy) { struct rockchip_p3phy_priv *priv = phy_get_drvdata(phy); int ret; ret = clk_bulk_prepare_enable(priv->num_clks, priv->clks); if (ret) { dev_err(&priv->phy->dev, "failed to enable PCIe bulk clks %d\n", ret); return ret; } reset_control_assert(priv->p30phy); udelay(1); if (priv->ops->phy_init) { ret = priv->ops->phy_init(priv); if (ret) clk_bulk_disable_unprepare(priv->num_clks, priv->clks); } return ret; } static int rochchip_p3phy_exit(struct phy *phy) { struct rockchip_p3phy_priv *priv = phy_get_drvdata(phy); clk_bulk_disable_unprepare(priv->num_clks, priv->clks); reset_control_assert(priv->p30phy); return 0; } static const struct phy_ops rochchip_p3phy_ops = { .init = rochchip_p3phy_init, .exit = rochchip_p3phy_exit, .set_mode = rockchip_p3phy_set_mode, .owner = THIS_MODULE, }; static int rockchip_p3phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct device *dev = &pdev->dev; struct rockchip_p3phy_priv *priv; struct device_node *np = dev->of_node; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(priv->mmio)) { ret = PTR_ERR(priv->mmio); return ret; } priv->ops = of_device_get_match_data(&pdev->dev); if (!priv->ops) { dev_err(dev, "no of match data provided\n"); return -EINVAL; } priv->phy_grf = syscon_regmap_lookup_by_phandle(np, "rockchip,phy-grf"); if (IS_ERR(priv->phy_grf)) { dev_err(dev, "failed to find rockchip,phy_grf regmap\n"); return PTR_ERR(priv->phy_grf); } if (of_device_is_compatible(np, "rockchip,rk3588-pcie3-phy")) { priv->pipe_grf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,pipe-grf"); if (IS_ERR(priv->pipe_grf)) dev_info(dev, "failed to find rockchip,pipe_grf regmap\n"); } else { priv->pipe_grf = NULL; } priv->num_lanes = of_property_read_variable_u32_array(dev->of_node, "data-lanes", priv->lanes, 2, ARRAY_SIZE(priv->lanes)); /* if no data-lanes assume aggregation */ if (priv->num_lanes == -EINVAL) { dev_dbg(dev, "no data-lanes property found\n"); priv->num_lanes = 1; priv->lanes[0] = 1; } else if (priv->num_lanes < 0) { dev_err(dev, "failed to read data-lanes property %d\n", priv->num_lanes); return priv->num_lanes; } priv->phy = devm_phy_create(dev, NULL, &rochchip_p3phy_ops); if (IS_ERR(priv->phy)) { dev_err(dev, "failed to create combphy\n"); return PTR_ERR(priv->phy); } priv->p30phy = devm_reset_control_get_optional_exclusive(dev, "phy"); if (IS_ERR(priv->p30phy)) { return dev_err_probe(dev, PTR_ERR(priv->p30phy), "failed to get phy reset control\n"); } if (!priv->p30phy) dev_info(dev, "no phy reset control specified\n"); priv->num_clks = devm_clk_bulk_get_all(dev, &priv->clks); if (priv->num_clks < 1) return -ENODEV; dev_set_drvdata(dev, priv); phy_set_drvdata(priv->phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id rockchip_p3phy_of_match[] = { { .compatible = "rockchip,rk3568-pcie3-phy", .data = &rk3568_ops }, { .compatible = "rockchip,rk3588-pcie3-phy", .data = &rk3588_ops }, { }, }; MODULE_DEVICE_TABLE(of, rockchip_p3phy_of_match); static struct platform_driver rockchip_p3phy_driver = { .probe = rockchip_p3phy_probe, .driver = { .name = "rockchip-snps-pcie3-phy", .of_match_table = rockchip_p3phy_of_match, }, }; module_platform_driver(rockchip_p3phy_driver); MODULE_DESCRIPTION("Rockchip Synopsys PCIe 3.0 PHY driver"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/rockchip/phy-rockchip-snps-pcie3.c
// SPDX-License-Identifier: GPL-2.0 /* * Rockchip MIPI RX Innosilicon DPHY driver * * Copyright (C) 2021 Fuzhou Rockchip Electronics Co., Ltd. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/phy/phy-mipi-dphy.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/reset.h> /* GRF */ #define RK1808_GRF_PD_VI_CON_OFFSET 0x0430 #define RK3326_GRF_PD_VI_CON_OFFSET 0x0430 #define RK3368_GRF_SOC_CON6_OFFSET 0x0418 #define RK3568_GRF_VI_CON0 0x0340 #define RK3568_GRF_VI_CON1 0x0344 /* PHY */ #define CSIDPHY_CTRL_LANE_ENABLE 0x00 #define CSIDPHY_CTRL_LANE_ENABLE_CK BIT(6) #define CSIDPHY_CTRL_LANE_ENABLE_MASK GENMASK(5, 2) #define CSIDPHY_CTRL_LANE_ENABLE_UNDEFINED BIT(0) /* not present on all variants */ #define CSIDPHY_CTRL_PWRCTL 0x04 #define CSIDPHY_CTRL_PWRCTL_UNDEFINED GENMASK(7, 5) #define CSIDPHY_CTRL_PWRCTL_SYNCRST BIT(2) #define CSIDPHY_CTRL_PWRCTL_LDO_PD BIT(1) #define CSIDPHY_CTRL_PWRCTL_PLL_PD BIT(0) #define CSIDPHY_CTRL_DIG_RST 0x80 #define CSIDPHY_CTRL_DIG_RST_UNDEFINED 0x1e #define CSIDPHY_CTRL_DIG_RST_RESET BIT(0) /* offset after ths_settle_offset */ #define CSIDPHY_CLK_THS_SETTLE 0 #define CSIDPHY_LANE_THS_SETTLE(n) (((n) + 1) * 0x80) #define CSIDPHY_THS_SETTLE_MASK GENMASK(6, 0) /* offset after calib_offset */ #define CSIDPHY_CLK_CALIB_EN 0 #define CSIDPHY_LANE_CALIB_EN(n) (((n) + 1) * 0x80) #define CSIDPHY_CALIB_EN BIT(7) /* Configure the count time of the THS-SETTLE by protocol. */ #define RK1808_CSIDPHY_CLK_WR_THS_SETTLE 0x160 #define RK3326_CSIDPHY_CLK_WR_THS_SETTLE 0x100 #define RK3368_CSIDPHY_CLK_WR_THS_SETTLE 0x100 #define RK3568_CSIDPHY_CLK_WR_THS_SETTLE 0x160 /* Calibration reception enable */ #define RK1808_CSIDPHY_CLK_CALIB_EN 0x168 #define RK3568_CSIDPHY_CLK_CALIB_EN 0x168 /* * The higher 16-bit of this register is used for write protection * only if BIT(x + 16) set to 1 the BIT(x) can be written. */ #define HIWORD_UPDATE(val, mask, shift) \ ((val) << (shift) | (mask) << ((shift) + 16)) #define HZ_TO_MHZ(freq) div_u64(freq, 1000 * 1000) enum dphy_reg_id { /* rk1808 & rk3326 */ GRF_DPHY_CSIPHY_FORCERXMODE, GRF_DPHY_CSIPHY_CLKLANE_EN, GRF_DPHY_CSIPHY_DATALANE_EN, }; struct dphy_reg { u32 offset; u32 mask; u32 shift; }; #define PHY_REG(_offset, _width, _shift) \ { .offset = _offset, .mask = BIT(_width) - 1, .shift = _shift, } static const struct dphy_reg rk1808_grf_dphy_regs[] = { [GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK1808_GRF_PD_VI_CON_OFFSET, 4, 0), [GRF_DPHY_CSIPHY_CLKLANE_EN] = PHY_REG(RK1808_GRF_PD_VI_CON_OFFSET, 1, 8), [GRF_DPHY_CSIPHY_DATALANE_EN] = PHY_REG(RK1808_GRF_PD_VI_CON_OFFSET, 4, 4), }; static const struct dphy_reg rk3326_grf_dphy_regs[] = { [GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK3326_GRF_PD_VI_CON_OFFSET, 4, 0), [GRF_DPHY_CSIPHY_CLKLANE_EN] = PHY_REG(RK3326_GRF_PD_VI_CON_OFFSET, 1, 8), [GRF_DPHY_CSIPHY_DATALANE_EN] = PHY_REG(RK3326_GRF_PD_VI_CON_OFFSET, 4, 4), }; static const struct dphy_reg rk3368_grf_dphy_regs[] = { [GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK3368_GRF_SOC_CON6_OFFSET, 4, 8), }; static const struct dphy_reg rk3568_grf_dphy_regs[] = { [GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK3568_GRF_VI_CON0, 4, 0), [GRF_DPHY_CSIPHY_DATALANE_EN] = PHY_REG(RK3568_GRF_VI_CON0, 4, 4), [GRF_DPHY_CSIPHY_CLKLANE_EN] = PHY_REG(RK3568_GRF_VI_CON0, 1, 8), }; struct hsfreq_range { u32 range_h; u8 cfg_bit; }; struct dphy_drv_data { int pwrctl_offset; int ths_settle_offset; int calib_offset; const struct hsfreq_range *hsfreq_ranges; int num_hsfreq_ranges; const struct dphy_reg *grf_regs; }; struct rockchip_inno_csidphy { struct device *dev; void __iomem *phy_base; struct clk *pclk; struct regmap *grf; struct reset_control *rst; const struct dphy_drv_data *drv_data; struct phy_configure_opts_mipi_dphy config; u8 hsfreq; }; static inline void write_grf_reg(struct rockchip_inno_csidphy *priv, int index, u8 value) { const struct dphy_drv_data *drv_data = priv->drv_data; const struct dphy_reg *reg = &drv_data->grf_regs[index]; if (reg->offset) regmap_write(priv->grf, reg->offset, HIWORD_UPDATE(value, reg->mask, reg->shift)); } /* These tables must be sorted by .range_h ascending. */ static const struct hsfreq_range rk1808_mipidphy_hsfreq_ranges[] = { { 109, 0x02}, { 149, 0x03}, { 199, 0x06}, { 249, 0x06}, { 299, 0x06}, { 399, 0x08}, { 499, 0x0b}, { 599, 0x0e}, { 699, 0x10}, { 799, 0x12}, { 999, 0x16}, {1199, 0x1e}, {1399, 0x23}, {1599, 0x2d}, {1799, 0x32}, {1999, 0x37}, {2199, 0x3c}, {2399, 0x41}, {2499, 0x46} }; static const struct hsfreq_range rk3326_mipidphy_hsfreq_ranges[] = { { 109, 0x00}, { 149, 0x01}, { 199, 0x02}, { 249, 0x03}, { 299, 0x04}, { 399, 0x05}, { 499, 0x06}, { 599, 0x07}, { 699, 0x08}, { 799, 0x09}, { 899, 0x0a}, {1099, 0x0b}, {1249, 0x0c}, {1349, 0x0d}, {1500, 0x0e} }; static const struct hsfreq_range rk3368_mipidphy_hsfreq_ranges[] = { { 109, 0x00}, { 149, 0x01}, { 199, 0x02}, { 249, 0x03}, { 299, 0x04}, { 399, 0x05}, { 499, 0x06}, { 599, 0x07}, { 699, 0x08}, { 799, 0x09}, { 899, 0x0a}, {1099, 0x0b}, {1249, 0x0c}, {1349, 0x0d}, {1500, 0x0e} }; static void rockchip_inno_csidphy_ths_settle(struct rockchip_inno_csidphy *priv, int hsfreq, int offset) { const struct dphy_drv_data *drv_data = priv->drv_data; u32 val; val = readl(priv->phy_base + drv_data->ths_settle_offset + offset); val &= ~CSIDPHY_THS_SETTLE_MASK; val |= hsfreq; writel(val, priv->phy_base + drv_data->ths_settle_offset + offset); } static int rockchip_inno_csidphy_configure(struct phy *phy, union phy_configure_opts *opts) { struct rockchip_inno_csidphy *priv = phy_get_drvdata(phy); const struct dphy_drv_data *drv_data = priv->drv_data; struct phy_configure_opts_mipi_dphy *config = &opts->mipi_dphy; unsigned int hsfreq = 0; unsigned int i; u64 data_rate_mbps; int ret; /* pass with phy_mipi_dphy_get_default_config (with pixel rate?) */ ret = phy_mipi_dphy_config_validate(config); if (ret) return ret; data_rate_mbps = HZ_TO_MHZ(config->hs_clk_rate); dev_dbg(priv->dev, "lanes %d - data_rate_mbps %llu\n", config->lanes, data_rate_mbps); for (i = 0; i < drv_data->num_hsfreq_ranges; i++) { if (drv_data->hsfreq_ranges[i].range_h >= data_rate_mbps) { hsfreq = drv_data->hsfreq_ranges[i].cfg_bit; break; } } if (!hsfreq) return -EINVAL; priv->hsfreq = hsfreq; priv->config = *config; return 0; } static int rockchip_inno_csidphy_power_on(struct phy *phy) { struct rockchip_inno_csidphy *priv = phy_get_drvdata(phy); const struct dphy_drv_data *drv_data = priv->drv_data; u64 data_rate_mbps = HZ_TO_MHZ(priv->config.hs_clk_rate); u32 val; int ret, i; ret = clk_enable(priv->pclk); if (ret < 0) return ret; ret = pm_runtime_resume_and_get(priv->dev); if (ret < 0) { clk_disable(priv->pclk); return ret; } /* phy start */ if (drv_data->pwrctl_offset >= 0) writel(CSIDPHY_CTRL_PWRCTL_UNDEFINED | CSIDPHY_CTRL_PWRCTL_SYNCRST, priv->phy_base + drv_data->pwrctl_offset); /* set data lane num and enable clock lane */ val = FIELD_PREP(CSIDPHY_CTRL_LANE_ENABLE_MASK, GENMASK(priv->config.lanes - 1, 0)) | FIELD_PREP(CSIDPHY_CTRL_LANE_ENABLE_CK, 1) | FIELD_PREP(CSIDPHY_CTRL_LANE_ENABLE_UNDEFINED, 1); writel(val, priv->phy_base + CSIDPHY_CTRL_LANE_ENABLE); /* Reset dphy analog part */ if (drv_data->pwrctl_offset >= 0) writel(CSIDPHY_CTRL_PWRCTL_UNDEFINED, priv->phy_base + drv_data->pwrctl_offset); usleep_range(500, 1000); /* Reset dphy digital part */ writel(CSIDPHY_CTRL_DIG_RST_UNDEFINED, priv->phy_base + CSIDPHY_CTRL_DIG_RST); writel(CSIDPHY_CTRL_DIG_RST_UNDEFINED + CSIDPHY_CTRL_DIG_RST_RESET, priv->phy_base + CSIDPHY_CTRL_DIG_RST); /* not into receive mode/wait stopstate */ write_grf_reg(priv, GRF_DPHY_CSIPHY_FORCERXMODE, 0x0); /* enable calibration */ if (data_rate_mbps > 1500 && drv_data->calib_offset >= 0) { writel(CSIDPHY_CALIB_EN, priv->phy_base + drv_data->calib_offset + CSIDPHY_CLK_CALIB_EN); for (i = 0; i < priv->config.lanes; i++) writel(CSIDPHY_CALIB_EN, priv->phy_base + drv_data->calib_offset + CSIDPHY_LANE_CALIB_EN(i)); } rockchip_inno_csidphy_ths_settle(priv, priv->hsfreq, CSIDPHY_CLK_THS_SETTLE); for (i = 0; i < priv->config.lanes; i++) rockchip_inno_csidphy_ths_settle(priv, priv->hsfreq, CSIDPHY_LANE_THS_SETTLE(i)); write_grf_reg(priv, GRF_DPHY_CSIPHY_CLKLANE_EN, 0x1); write_grf_reg(priv, GRF_DPHY_CSIPHY_DATALANE_EN, GENMASK(priv->config.lanes - 1, 0)); return 0; } static int rockchip_inno_csidphy_power_off(struct phy *phy) { struct rockchip_inno_csidphy *priv = phy_get_drvdata(phy); const struct dphy_drv_data *drv_data = priv->drv_data; /* disable all lanes */ writel(CSIDPHY_CTRL_LANE_ENABLE_UNDEFINED, priv->phy_base + CSIDPHY_CTRL_LANE_ENABLE); /* disable pll and ldo */ if (drv_data->pwrctl_offset >= 0) writel(CSIDPHY_CTRL_PWRCTL_UNDEFINED | CSIDPHY_CTRL_PWRCTL_LDO_PD | CSIDPHY_CTRL_PWRCTL_PLL_PD, priv->phy_base + drv_data->pwrctl_offset); usleep_range(500, 1000); pm_runtime_put(priv->dev); clk_disable(priv->pclk); return 0; } static int rockchip_inno_csidphy_init(struct phy *phy) { struct rockchip_inno_csidphy *priv = phy_get_drvdata(phy); return clk_prepare(priv->pclk); } static int rockchip_inno_csidphy_exit(struct phy *phy) { struct rockchip_inno_csidphy *priv = phy_get_drvdata(phy); clk_unprepare(priv->pclk); return 0; } static const struct phy_ops rockchip_inno_csidphy_ops = { .power_on = rockchip_inno_csidphy_power_on, .power_off = rockchip_inno_csidphy_power_off, .init = rockchip_inno_csidphy_init, .exit = rockchip_inno_csidphy_exit, .configure = rockchip_inno_csidphy_configure, .owner = THIS_MODULE, }; static const struct dphy_drv_data rk1808_mipidphy_drv_data = { .pwrctl_offset = -1, .ths_settle_offset = RK1808_CSIDPHY_CLK_WR_THS_SETTLE, .calib_offset = RK1808_CSIDPHY_CLK_CALIB_EN, .hsfreq_ranges = rk1808_mipidphy_hsfreq_ranges, .num_hsfreq_ranges = ARRAY_SIZE(rk1808_mipidphy_hsfreq_ranges), .grf_regs = rk1808_grf_dphy_regs, }; static const struct dphy_drv_data rk3326_mipidphy_drv_data = { .pwrctl_offset = CSIDPHY_CTRL_PWRCTL, .ths_settle_offset = RK3326_CSIDPHY_CLK_WR_THS_SETTLE, .calib_offset = -1, .hsfreq_ranges = rk3326_mipidphy_hsfreq_ranges, .num_hsfreq_ranges = ARRAY_SIZE(rk3326_mipidphy_hsfreq_ranges), .grf_regs = rk3326_grf_dphy_regs, }; static const struct dphy_drv_data rk3368_mipidphy_drv_data = { .pwrctl_offset = CSIDPHY_CTRL_PWRCTL, .ths_settle_offset = RK3368_CSIDPHY_CLK_WR_THS_SETTLE, .calib_offset = -1, .hsfreq_ranges = rk3368_mipidphy_hsfreq_ranges, .num_hsfreq_ranges = ARRAY_SIZE(rk3368_mipidphy_hsfreq_ranges), .grf_regs = rk3368_grf_dphy_regs, }; static const struct dphy_drv_data rk3568_mipidphy_drv_data = { .pwrctl_offset = -1, .ths_settle_offset = RK3568_CSIDPHY_CLK_WR_THS_SETTLE, .calib_offset = RK3568_CSIDPHY_CLK_CALIB_EN, .hsfreq_ranges = rk1808_mipidphy_hsfreq_ranges, .num_hsfreq_ranges = ARRAY_SIZE(rk1808_mipidphy_hsfreq_ranges), .grf_regs = rk3568_grf_dphy_regs, }; static const struct of_device_id rockchip_inno_csidphy_match_id[] = { { .compatible = "rockchip,px30-csi-dphy", .data = &rk3326_mipidphy_drv_data, }, { .compatible = "rockchip,rk1808-csi-dphy", .data = &rk1808_mipidphy_drv_data, }, { .compatible = "rockchip,rk3326-csi-dphy", .data = &rk3326_mipidphy_drv_data, }, { .compatible = "rockchip,rk3368-csi-dphy", .data = &rk3368_mipidphy_drv_data, }, { .compatible = "rockchip,rk3568-csi-dphy", .data = &rk3568_mipidphy_drv_data, }, {} }; MODULE_DEVICE_TABLE(of, rockchip_inno_csidphy_match_id); static int rockchip_inno_csidphy_probe(struct platform_device *pdev) { struct rockchip_inno_csidphy *priv; struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct phy *phy; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; platform_set_drvdata(pdev, priv); priv->drv_data = of_device_get_match_data(dev); if (!priv->drv_data) { dev_err(dev, "Can't find device data\n"); return -ENODEV; } priv->grf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,grf"); if (IS_ERR(priv->grf)) { dev_err(dev, "Can't find GRF syscon\n"); return PTR_ERR(priv->grf); } priv->phy_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->phy_base)) return PTR_ERR(priv->phy_base); priv->pclk = devm_clk_get(dev, "pclk"); if (IS_ERR(priv->pclk)) { dev_err(dev, "failed to get pclk\n"); return PTR_ERR(priv->pclk); } priv->rst = devm_reset_control_get(dev, "apb"); if (IS_ERR(priv->rst)) { dev_err(dev, "failed to get system reset control\n"); return PTR_ERR(priv->rst); } phy = devm_phy_create(dev, NULL, &rockchip_inno_csidphy_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create phy\n"); return PTR_ERR(phy); } phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) { dev_err(dev, "failed to register phy provider\n"); return PTR_ERR(phy_provider); } pm_runtime_enable(dev); return 0; } static void rockchip_inno_csidphy_remove(struct platform_device *pdev) { struct rockchip_inno_csidphy *priv = platform_get_drvdata(pdev); pm_runtime_disable(priv->dev); } static struct platform_driver rockchip_inno_csidphy_driver = { .driver = { .name = "rockchip-inno-csidphy", .of_match_table = rockchip_inno_csidphy_match_id, }, .probe = rockchip_inno_csidphy_probe, .remove_new = rockchip_inno_csidphy_remove, }; module_platform_driver(rockchip_inno_csidphy_driver); MODULE_AUTHOR("Heiko Stuebner <[email protected]>"); MODULE_DESCRIPTION("Rockchip MIPI Innosilicon CSI-DPHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/rockchip/phy-rockchip-inno-csidphy.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Rockchip USB2.0 PHY with Innosilicon IP block driver * * Copyright (C) 2016 Fuzhou Rockchip Electronics Co., Ltd */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/extcon-provider.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/gpio/consumer.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/mfd/syscon.h> #include <linux/usb/of.h> #include <linux/usb/otg.h> #define BIT_WRITEABLE_SHIFT 16 #define SCHEDULE_DELAY (60 * HZ) #define OTG_SCHEDULE_DELAY (2 * HZ) struct rockchip_usb2phy; enum rockchip_usb2phy_port_id { USB2PHY_PORT_OTG, USB2PHY_PORT_HOST, USB2PHY_NUM_PORTS, }; enum rockchip_usb2phy_host_state { PHY_STATE_HS_ONLINE = 0, PHY_STATE_DISCONNECT = 1, PHY_STATE_CONNECT = 2, PHY_STATE_FS_LS_ONLINE = 4, }; /** * enum usb_chg_state - Different states involved in USB charger detection. * @USB_CHG_STATE_UNDEFINED: USB charger is not connected or detection * process is not yet started. * @USB_CHG_STATE_WAIT_FOR_DCD: Waiting for Data pins contact. * @USB_CHG_STATE_DCD_DONE: Data pin contact is detected. * @USB_CHG_STATE_PRIMARY_DONE: Primary detection is completed (Detects * between SDP and DCP/CDP). * @USB_CHG_STATE_SECONDARY_DONE: Secondary detection is completed (Detects * between DCP and CDP). * @USB_CHG_STATE_DETECTED: USB charger type is determined. */ enum usb_chg_state { USB_CHG_STATE_UNDEFINED = 0, USB_CHG_STATE_WAIT_FOR_DCD, USB_CHG_STATE_DCD_DONE, USB_CHG_STATE_PRIMARY_DONE, USB_CHG_STATE_SECONDARY_DONE, USB_CHG_STATE_DETECTED, }; static const unsigned int rockchip_usb2phy_extcon_cable[] = { EXTCON_USB, EXTCON_USB_HOST, EXTCON_CHG_USB_SDP, EXTCON_CHG_USB_CDP, EXTCON_CHG_USB_DCP, EXTCON_CHG_USB_SLOW, EXTCON_NONE, }; struct usb2phy_reg { unsigned int offset; unsigned int bitend; unsigned int bitstart; unsigned int disable; unsigned int enable; }; /** * struct rockchip_chg_det_reg - usb charger detect registers * @cp_det: charging port detected successfully. * @dcp_det: dedicated charging port detected successfully. * @dp_det: assert data pin connect successfully. * @idm_sink_en: open dm sink curren. * @idp_sink_en: open dp sink current. * @idp_src_en: open dm source current. * @rdm_pdwn_en: open dm pull down resistor. * @vdm_src_en: open dm voltage source. * @vdp_src_en: open dp voltage source. * @opmode: utmi operational mode. */ struct rockchip_chg_det_reg { struct usb2phy_reg cp_det; struct usb2phy_reg dcp_det; struct usb2phy_reg dp_det; struct usb2phy_reg idm_sink_en; struct usb2phy_reg idp_sink_en; struct usb2phy_reg idp_src_en; struct usb2phy_reg rdm_pdwn_en; struct usb2phy_reg vdm_src_en; struct usb2phy_reg vdp_src_en; struct usb2phy_reg opmode; }; /** * struct rockchip_usb2phy_port_cfg - usb-phy port configuration. * @phy_sus: phy suspend register. * @bvalid_det_en: vbus valid rise detection enable register. * @bvalid_det_st: vbus valid rise detection status register. * @bvalid_det_clr: vbus valid rise detection clear register. * @disfall_en: host disconnect fall edge detection enable. * @disfall_st: host disconnect fall edge detection state. * @disfall_clr: host disconnect fall edge detection clear. * @disrise_en: host disconnect rise edge detection enable. * @disrise_st: host disconnect rise edge detection state. * @disrise_clr: host disconnect rise edge detection clear. * @id_det_en: id detection enable register. * @id_det_st: id detection state register. * @id_det_clr: id detection clear register. * @ls_det_en: linestate detection enable register. * @ls_det_st: linestate detection state register. * @ls_det_clr: linestate detection clear register. * @utmi_avalid: utmi vbus avalid status register. * @utmi_bvalid: utmi vbus bvalid status register. * @utmi_id: utmi id state register. * @utmi_ls: utmi linestate state register. * @utmi_hstdet: utmi host disconnect register. */ struct rockchip_usb2phy_port_cfg { struct usb2phy_reg phy_sus; struct usb2phy_reg bvalid_det_en; struct usb2phy_reg bvalid_det_st; struct usb2phy_reg bvalid_det_clr; struct usb2phy_reg disfall_en; struct usb2phy_reg disfall_st; struct usb2phy_reg disfall_clr; struct usb2phy_reg disrise_en; struct usb2phy_reg disrise_st; struct usb2phy_reg disrise_clr; struct usb2phy_reg id_det_en; struct usb2phy_reg id_det_st; struct usb2phy_reg id_det_clr; struct usb2phy_reg ls_det_en; struct usb2phy_reg ls_det_st; struct usb2phy_reg ls_det_clr; struct usb2phy_reg utmi_avalid; struct usb2phy_reg utmi_bvalid; struct usb2phy_reg utmi_id; struct usb2phy_reg utmi_ls; struct usb2phy_reg utmi_hstdet; }; /** * struct rockchip_usb2phy_cfg - usb-phy configuration. * @reg: the address offset of grf for usb-phy config. * @num_ports: specify how many ports that the phy has. * @phy_tuning: phy default parameters tuning. * @clkout_ctl: keep on/turn off output clk of phy. * @port_cfgs: usb-phy port configurations. * @chg_det: charger detection registers. */ struct rockchip_usb2phy_cfg { unsigned int reg; unsigned int num_ports; int (*phy_tuning)(struct rockchip_usb2phy *rphy); struct usb2phy_reg clkout_ctl; const struct rockchip_usb2phy_port_cfg port_cfgs[USB2PHY_NUM_PORTS]; const struct rockchip_chg_det_reg chg_det; }; /** * struct rockchip_usb2phy_port - usb-phy port data. * @phy: generic phy. * @port_id: flag for otg port or host port. * @suspended: phy suspended flag. * @vbus_attached: otg device vbus status. * @host_disconnect: usb host disconnect status. * @bvalid_irq: IRQ number assigned for vbus valid rise detection. * @id_irq: IRQ number assigned for ID pin detection. * @ls_irq: IRQ number assigned for linestate detection. * @otg_mux_irq: IRQ number which multiplex otg-id/otg-bvalid/linestate * irqs to one irq in otg-port. * @mutex: for register updating in sm_work. * @chg_work: charge detect work. * @otg_sm_work: OTG state machine work. * @sm_work: HOST state machine work. * @port_cfg: port register configuration, assigned by driver data. * @event_nb: hold event notification callback. * @state: define OTG enumeration states before device reset. * @mode: the dr_mode of the controller. */ struct rockchip_usb2phy_port { struct phy *phy; unsigned int port_id; bool suspended; bool vbus_attached; bool host_disconnect; int bvalid_irq; int id_irq; int ls_irq; int otg_mux_irq; struct mutex mutex; struct delayed_work chg_work; struct delayed_work otg_sm_work; struct delayed_work sm_work; const struct rockchip_usb2phy_port_cfg *port_cfg; struct notifier_block event_nb; enum usb_otg_state state; enum usb_dr_mode mode; }; /** * struct rockchip_usb2phy - usb2.0 phy driver data. * @dev: pointer to device. * @grf: General Register Files regmap. * @usbgrf: USB General Register Files regmap. * @clk: clock struct of phy input clk. * @clk480m: clock struct of phy output clk. * @clk480m_hw: clock struct of phy output clk management. * @phy_reset: phy reset control. * @chg_state: states involved in USB charger detection. * @chg_type: USB charger types. * @dcd_retries: The retry count used to track Data contact * detection process. * @edev: extcon device for notification registration * @irq: muxed interrupt for single irq configuration * @phy_cfg: phy register configuration, assigned by driver data. * @ports: phy port instance. */ struct rockchip_usb2phy { struct device *dev; struct regmap *grf; struct regmap *usbgrf; struct clk *clk; struct clk *clk480m; struct clk_hw clk480m_hw; struct reset_control *phy_reset; enum usb_chg_state chg_state; enum power_supply_type chg_type; u8 dcd_retries; struct extcon_dev *edev; int irq; const struct rockchip_usb2phy_cfg *phy_cfg; struct rockchip_usb2phy_port ports[USB2PHY_NUM_PORTS]; }; static inline struct regmap *get_reg_base(struct rockchip_usb2phy *rphy) { return rphy->usbgrf == NULL ? rphy->grf : rphy->usbgrf; } static inline int property_enable(struct regmap *base, const struct usb2phy_reg *reg, bool en) { unsigned int val, mask, tmp; tmp = en ? reg->enable : reg->disable; mask = GENMASK(reg->bitend, reg->bitstart); val = (tmp << reg->bitstart) | (mask << BIT_WRITEABLE_SHIFT); return regmap_write(base, reg->offset, val); } static inline bool property_enabled(struct regmap *base, const struct usb2phy_reg *reg) { int ret; unsigned int tmp, orig; unsigned int mask = GENMASK(reg->bitend, reg->bitstart); ret = regmap_read(base, reg->offset, &orig); if (ret) return false; tmp = (orig & mask) >> reg->bitstart; return tmp != reg->disable; } static int rockchip_usb2phy_reset(struct rockchip_usb2phy *rphy) { int ret; ret = reset_control_assert(rphy->phy_reset); if (ret) return ret; udelay(10); ret = reset_control_deassert(rphy->phy_reset); if (ret) return ret; usleep_range(100, 200); return 0; } static int rockchip_usb2phy_clk480m_prepare(struct clk_hw *hw) { struct rockchip_usb2phy *rphy = container_of(hw, struct rockchip_usb2phy, clk480m_hw); struct regmap *base = get_reg_base(rphy); int ret; /* turn on 480m clk output if it is off */ if (!property_enabled(base, &rphy->phy_cfg->clkout_ctl)) { ret = property_enable(base, &rphy->phy_cfg->clkout_ctl, true); if (ret) return ret; /* waiting for the clk become stable */ usleep_range(1200, 1300); } return 0; } static void rockchip_usb2phy_clk480m_unprepare(struct clk_hw *hw) { struct rockchip_usb2phy *rphy = container_of(hw, struct rockchip_usb2phy, clk480m_hw); struct regmap *base = get_reg_base(rphy); /* turn off 480m clk output */ property_enable(base, &rphy->phy_cfg->clkout_ctl, false); } static int rockchip_usb2phy_clk480m_prepared(struct clk_hw *hw) { struct rockchip_usb2phy *rphy = container_of(hw, struct rockchip_usb2phy, clk480m_hw); struct regmap *base = get_reg_base(rphy); return property_enabled(base, &rphy->phy_cfg->clkout_ctl); } static unsigned long rockchip_usb2phy_clk480m_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return 480000000; } static const struct clk_ops rockchip_usb2phy_clkout_ops = { .prepare = rockchip_usb2phy_clk480m_prepare, .unprepare = rockchip_usb2phy_clk480m_unprepare, .is_prepared = rockchip_usb2phy_clk480m_prepared, .recalc_rate = rockchip_usb2phy_clk480m_recalc_rate, }; static void rockchip_usb2phy_clk480m_unregister(void *data) { struct rockchip_usb2phy *rphy = data; of_clk_del_provider(rphy->dev->of_node); clk_unregister(rphy->clk480m); } static int rockchip_usb2phy_clk480m_register(struct rockchip_usb2phy *rphy) { struct device_node *node = rphy->dev->of_node; struct clk_init_data init; const char *clk_name; int ret = 0; init.flags = 0; init.name = "clk_usbphy_480m"; init.ops = &rockchip_usb2phy_clkout_ops; /* optional override of the clockname */ of_property_read_string(node, "clock-output-names", &init.name); if (rphy->clk) { clk_name = __clk_get_name(rphy->clk); init.parent_names = &clk_name; init.num_parents = 1; } else { init.parent_names = NULL; init.num_parents = 0; } rphy->clk480m_hw.init = &init; /* register the clock */ rphy->clk480m = clk_register(rphy->dev, &rphy->clk480m_hw); if (IS_ERR(rphy->clk480m)) { ret = PTR_ERR(rphy->clk480m); goto err_ret; } ret = of_clk_add_provider(node, of_clk_src_simple_get, rphy->clk480m); if (ret < 0) goto err_clk_provider; return devm_add_action_or_reset(rphy->dev, rockchip_usb2phy_clk480m_unregister, rphy); err_clk_provider: clk_unregister(rphy->clk480m); err_ret: return ret; } static int rockchip_usb2phy_extcon_register(struct rockchip_usb2phy *rphy) { int ret; struct device_node *node = rphy->dev->of_node; struct extcon_dev *edev; if (of_property_read_bool(node, "extcon")) { edev = extcon_get_edev_by_phandle(rphy->dev, 0); if (IS_ERR(edev)) { if (PTR_ERR(edev) != -EPROBE_DEFER) dev_err(rphy->dev, "Invalid or missing extcon\n"); return PTR_ERR(edev); } } else { /* Initialize extcon device */ edev = devm_extcon_dev_allocate(rphy->dev, rockchip_usb2phy_extcon_cable); if (IS_ERR(edev)) return -ENOMEM; ret = devm_extcon_dev_register(rphy->dev, edev); if (ret) { dev_err(rphy->dev, "failed to register extcon device\n"); return ret; } } rphy->edev = edev; return 0; } static int rockchip_usb2phy_enable_host_disc_irq(struct rockchip_usb2phy *rphy, struct rockchip_usb2phy_port *rport, bool en) { int ret; ret = property_enable(rphy->grf, &rport->port_cfg->disfall_clr, true); if (ret) return ret; ret = property_enable(rphy->grf, &rport->port_cfg->disfall_en, en); if (ret) return ret; ret = property_enable(rphy->grf, &rport->port_cfg->disrise_clr, true); if (ret) return ret; return property_enable(rphy->grf, &rport->port_cfg->disrise_en, en); } static int rockchip_usb2phy_init(struct phy *phy) { struct rockchip_usb2phy_port *rport = phy_get_drvdata(phy); struct rockchip_usb2phy *rphy = dev_get_drvdata(phy->dev.parent); int ret = 0; mutex_lock(&rport->mutex); if (rport->port_id == USB2PHY_PORT_OTG) { if (rport->mode != USB_DR_MODE_HOST && rport->mode != USB_DR_MODE_UNKNOWN) { /* clear bvalid status and enable bvalid detect irq */ ret = property_enable(rphy->grf, &rport->port_cfg->bvalid_det_clr, true); if (ret) goto out; ret = property_enable(rphy->grf, &rport->port_cfg->bvalid_det_en, true); if (ret) goto out; /* clear id status and enable id detect irq */ ret = property_enable(rphy->grf, &rport->port_cfg->id_det_clr, true); if (ret) goto out; ret = property_enable(rphy->grf, &rport->port_cfg->id_det_en, true); if (ret) goto out; schedule_delayed_work(&rport->otg_sm_work, OTG_SCHEDULE_DELAY * 3); } else { /* If OTG works in host only mode, do nothing. */ dev_dbg(&rport->phy->dev, "mode %d\n", rport->mode); } } else if (rport->port_id == USB2PHY_PORT_HOST) { if (rport->port_cfg->disfall_en.offset) { rport->host_disconnect = true; ret = rockchip_usb2phy_enable_host_disc_irq(rphy, rport, true); if (ret) { dev_err(rphy->dev, "failed to enable disconnect irq\n"); goto out; } } /* clear linestate and enable linestate detect irq */ ret = property_enable(rphy->grf, &rport->port_cfg->ls_det_clr, true); if (ret) goto out; ret = property_enable(rphy->grf, &rport->port_cfg->ls_det_en, true); if (ret) goto out; schedule_delayed_work(&rport->sm_work, SCHEDULE_DELAY); } out: mutex_unlock(&rport->mutex); return ret; } static int rockchip_usb2phy_power_on(struct phy *phy) { struct rockchip_usb2phy_port *rport = phy_get_drvdata(phy); struct rockchip_usb2phy *rphy = dev_get_drvdata(phy->dev.parent); struct regmap *base = get_reg_base(rphy); int ret; dev_dbg(&rport->phy->dev, "port power on\n"); if (!rport->suspended) return 0; ret = clk_prepare_enable(rphy->clk480m); if (ret) return ret; ret = property_enable(base, &rport->port_cfg->phy_sus, false); if (ret) { clk_disable_unprepare(rphy->clk480m); return ret; } /* * For rk3588, it needs to reset phy when exit from * suspend mode with common_on_n 1'b1(aka REFCLK_LOGIC, * Bias, and PLL blocks are powered down) for lower * power consumption. If you don't want to reset phy, * please keep the common_on_n 1'b0 to set these blocks * remain powered. */ ret = rockchip_usb2phy_reset(rphy); if (ret) return ret; /* waiting for the utmi_clk to become stable */ usleep_range(1500, 2000); rport->suspended = false; return 0; } static int rockchip_usb2phy_power_off(struct phy *phy) { struct rockchip_usb2phy_port *rport = phy_get_drvdata(phy); struct rockchip_usb2phy *rphy = dev_get_drvdata(phy->dev.parent); struct regmap *base = get_reg_base(rphy); int ret; dev_dbg(&rport->phy->dev, "port power off\n"); if (rport->suspended) return 0; ret = property_enable(base, &rport->port_cfg->phy_sus, true); if (ret) return ret; rport->suspended = true; clk_disable_unprepare(rphy->clk480m); return 0; } static int rockchip_usb2phy_exit(struct phy *phy) { struct rockchip_usb2phy_port *rport = phy_get_drvdata(phy); if (rport->port_id == USB2PHY_PORT_OTG && rport->mode != USB_DR_MODE_HOST && rport->mode != USB_DR_MODE_UNKNOWN) { cancel_delayed_work_sync(&rport->otg_sm_work); cancel_delayed_work_sync(&rport->chg_work); } else if (rport->port_id == USB2PHY_PORT_HOST) cancel_delayed_work_sync(&rport->sm_work); return 0; } static const struct phy_ops rockchip_usb2phy_ops = { .init = rockchip_usb2phy_init, .exit = rockchip_usb2phy_exit, .power_on = rockchip_usb2phy_power_on, .power_off = rockchip_usb2phy_power_off, .owner = THIS_MODULE, }; static void rockchip_usb2phy_otg_sm_work(struct work_struct *work) { struct rockchip_usb2phy_port *rport = container_of(work, struct rockchip_usb2phy_port, otg_sm_work.work); struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent); static unsigned int cable; unsigned long delay; bool vbus_attach, sch_work, notify_charger; vbus_attach = property_enabled(rphy->grf, &rport->port_cfg->utmi_bvalid); sch_work = false; notify_charger = false; delay = OTG_SCHEDULE_DELAY; dev_dbg(&rport->phy->dev, "%s otg sm work\n", usb_otg_state_string(rport->state)); switch (rport->state) { case OTG_STATE_UNDEFINED: rport->state = OTG_STATE_B_IDLE; if (!vbus_attach) rockchip_usb2phy_power_off(rport->phy); fallthrough; case OTG_STATE_B_IDLE: if (extcon_get_state(rphy->edev, EXTCON_USB_HOST) > 0) { dev_dbg(&rport->phy->dev, "usb otg host connect\n"); rport->state = OTG_STATE_A_HOST; rockchip_usb2phy_power_on(rport->phy); return; } else if (vbus_attach) { dev_dbg(&rport->phy->dev, "vbus_attach\n"); switch (rphy->chg_state) { case USB_CHG_STATE_UNDEFINED: schedule_delayed_work(&rport->chg_work, 0); return; case USB_CHG_STATE_DETECTED: switch (rphy->chg_type) { case POWER_SUPPLY_TYPE_USB: dev_dbg(&rport->phy->dev, "sdp cable is connected\n"); rockchip_usb2phy_power_on(rport->phy); rport->state = OTG_STATE_B_PERIPHERAL; notify_charger = true; sch_work = true; cable = EXTCON_CHG_USB_SDP; break; case POWER_SUPPLY_TYPE_USB_DCP: dev_dbg(&rport->phy->dev, "dcp cable is connected\n"); rockchip_usb2phy_power_off(rport->phy); notify_charger = true; sch_work = true; cable = EXTCON_CHG_USB_DCP; break; case POWER_SUPPLY_TYPE_USB_CDP: dev_dbg(&rport->phy->dev, "cdp cable is connected\n"); rockchip_usb2phy_power_on(rport->phy); rport->state = OTG_STATE_B_PERIPHERAL; notify_charger = true; sch_work = true; cable = EXTCON_CHG_USB_CDP; break; default: break; } break; default: break; } } else { notify_charger = true; rphy->chg_state = USB_CHG_STATE_UNDEFINED; rphy->chg_type = POWER_SUPPLY_TYPE_UNKNOWN; } if (rport->vbus_attached != vbus_attach) { rport->vbus_attached = vbus_attach; if (notify_charger && rphy->edev) { extcon_set_state_sync(rphy->edev, cable, vbus_attach); if (cable == EXTCON_CHG_USB_SDP) extcon_set_state_sync(rphy->edev, EXTCON_USB, vbus_attach); } } break; case OTG_STATE_B_PERIPHERAL: if (!vbus_attach) { dev_dbg(&rport->phy->dev, "usb disconnect\n"); rphy->chg_state = USB_CHG_STATE_UNDEFINED; rphy->chg_type = POWER_SUPPLY_TYPE_UNKNOWN; rport->state = OTG_STATE_B_IDLE; delay = 0; rockchip_usb2phy_power_off(rport->phy); } sch_work = true; break; case OTG_STATE_A_HOST: if (extcon_get_state(rphy->edev, EXTCON_USB_HOST) == 0) { dev_dbg(&rport->phy->dev, "usb otg host disconnect\n"); rport->state = OTG_STATE_B_IDLE; rockchip_usb2phy_power_off(rport->phy); } break; default: break; } if (sch_work) schedule_delayed_work(&rport->otg_sm_work, delay); } static const char *chg_to_string(enum power_supply_type chg_type) { switch (chg_type) { case POWER_SUPPLY_TYPE_USB: return "USB_SDP_CHARGER"; case POWER_SUPPLY_TYPE_USB_DCP: return "USB_DCP_CHARGER"; case POWER_SUPPLY_TYPE_USB_CDP: return "USB_CDP_CHARGER"; default: return "INVALID_CHARGER"; } } static void rockchip_chg_enable_dcd(struct rockchip_usb2phy *rphy, bool en) { struct regmap *base = get_reg_base(rphy); property_enable(base, &rphy->phy_cfg->chg_det.rdm_pdwn_en, en); property_enable(base, &rphy->phy_cfg->chg_det.idp_src_en, en); } static void rockchip_chg_enable_primary_det(struct rockchip_usb2phy *rphy, bool en) { struct regmap *base = get_reg_base(rphy); property_enable(base, &rphy->phy_cfg->chg_det.vdp_src_en, en); property_enable(base, &rphy->phy_cfg->chg_det.idm_sink_en, en); } static void rockchip_chg_enable_secondary_det(struct rockchip_usb2phy *rphy, bool en) { struct regmap *base = get_reg_base(rphy); property_enable(base, &rphy->phy_cfg->chg_det.vdm_src_en, en); property_enable(base, &rphy->phy_cfg->chg_det.idp_sink_en, en); } #define CHG_DCD_POLL_TIME (100 * HZ / 1000) #define CHG_DCD_MAX_RETRIES 6 #define CHG_PRIMARY_DET_TIME (40 * HZ / 1000) #define CHG_SECONDARY_DET_TIME (40 * HZ / 1000) static void rockchip_chg_detect_work(struct work_struct *work) { struct rockchip_usb2phy_port *rport = container_of(work, struct rockchip_usb2phy_port, chg_work.work); struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent); struct regmap *base = get_reg_base(rphy); bool is_dcd, tmout, vout; unsigned long delay; dev_dbg(&rport->phy->dev, "chg detection work state = %d\n", rphy->chg_state); switch (rphy->chg_state) { case USB_CHG_STATE_UNDEFINED: if (!rport->suspended) rockchip_usb2phy_power_off(rport->phy); /* put the controller in non-driving mode */ property_enable(base, &rphy->phy_cfg->chg_det.opmode, false); /* Start DCD processing stage 1 */ rockchip_chg_enable_dcd(rphy, true); rphy->chg_state = USB_CHG_STATE_WAIT_FOR_DCD; rphy->dcd_retries = 0; delay = CHG_DCD_POLL_TIME; break; case USB_CHG_STATE_WAIT_FOR_DCD: /* get data contact detection status */ is_dcd = property_enabled(rphy->grf, &rphy->phy_cfg->chg_det.dp_det); tmout = ++rphy->dcd_retries == CHG_DCD_MAX_RETRIES; /* stage 2 */ if (is_dcd || tmout) { /* stage 4 */ /* Turn off DCD circuitry */ rockchip_chg_enable_dcd(rphy, false); /* Voltage Source on DP, Probe on DM */ rockchip_chg_enable_primary_det(rphy, true); delay = CHG_PRIMARY_DET_TIME; rphy->chg_state = USB_CHG_STATE_DCD_DONE; } else { /* stage 3 */ delay = CHG_DCD_POLL_TIME; } break; case USB_CHG_STATE_DCD_DONE: vout = property_enabled(rphy->grf, &rphy->phy_cfg->chg_det.cp_det); rockchip_chg_enable_primary_det(rphy, false); if (vout) { /* Voltage Source on DM, Probe on DP */ rockchip_chg_enable_secondary_det(rphy, true); delay = CHG_SECONDARY_DET_TIME; rphy->chg_state = USB_CHG_STATE_PRIMARY_DONE; } else { if (rphy->dcd_retries == CHG_DCD_MAX_RETRIES) { /* floating charger found */ rphy->chg_type = POWER_SUPPLY_TYPE_USB_DCP; rphy->chg_state = USB_CHG_STATE_DETECTED; delay = 0; } else { rphy->chg_type = POWER_SUPPLY_TYPE_USB; rphy->chg_state = USB_CHG_STATE_DETECTED; delay = 0; } } break; case USB_CHG_STATE_PRIMARY_DONE: vout = property_enabled(rphy->grf, &rphy->phy_cfg->chg_det.dcp_det); /* Turn off voltage source */ rockchip_chg_enable_secondary_det(rphy, false); if (vout) rphy->chg_type = POWER_SUPPLY_TYPE_USB_DCP; else rphy->chg_type = POWER_SUPPLY_TYPE_USB_CDP; fallthrough; case USB_CHG_STATE_SECONDARY_DONE: rphy->chg_state = USB_CHG_STATE_DETECTED; fallthrough; case USB_CHG_STATE_DETECTED: /* put the controller in normal mode */ property_enable(base, &rphy->phy_cfg->chg_det.opmode, true); rockchip_usb2phy_otg_sm_work(&rport->otg_sm_work.work); dev_dbg(&rport->phy->dev, "charger = %s\n", chg_to_string(rphy->chg_type)); return; default: return; } schedule_delayed_work(&rport->chg_work, delay); } /* * The function manage host-phy port state and suspend/resume phy port * to save power. * * we rely on utmi_linestate and utmi_hostdisconnect to identify whether * devices is disconnect or not. Besides, we do not need care it is FS/LS * disconnected or HS disconnected, actually, we just only need get the * device is disconnected at last through rearm the delayed work, * to suspend the phy port in _PHY_STATE_DISCONNECT_ case. * * NOTE: It may invoke *phy_powr_off or *phy_power_on which will invoke * some clk related APIs, so do not invoke it from interrupt context directly. */ static void rockchip_usb2phy_sm_work(struct work_struct *work) { struct rockchip_usb2phy_port *rport = container_of(work, struct rockchip_usb2phy_port, sm_work.work); struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent); unsigned int sh, ul, uhd, state; unsigned int ul_mask, uhd_mask; int ret; mutex_lock(&rport->mutex); ret = regmap_read(rphy->grf, rport->port_cfg->utmi_ls.offset, &ul); if (ret < 0) goto next_schedule; ul_mask = GENMASK(rport->port_cfg->utmi_ls.bitend, rport->port_cfg->utmi_ls.bitstart); if (rport->port_cfg->utmi_hstdet.offset) { ret = regmap_read(rphy->grf, rport->port_cfg->utmi_hstdet.offset, &uhd); if (ret < 0) goto next_schedule; uhd_mask = GENMASK(rport->port_cfg->utmi_hstdet.bitend, rport->port_cfg->utmi_hstdet.bitstart); sh = rport->port_cfg->utmi_hstdet.bitend - rport->port_cfg->utmi_hstdet.bitstart + 1; /* stitch on utmi_ls and utmi_hstdet as phy state */ state = ((uhd & uhd_mask) >> rport->port_cfg->utmi_hstdet.bitstart) | (((ul & ul_mask) >> rport->port_cfg->utmi_ls.bitstart) << sh); } else { state = ((ul & ul_mask) >> rport->port_cfg->utmi_ls.bitstart) << 1 | rport->host_disconnect; } switch (state) { case PHY_STATE_HS_ONLINE: dev_dbg(&rport->phy->dev, "HS online\n"); break; case PHY_STATE_FS_LS_ONLINE: /* * For FS/LS device, the online state share with connect state * from utmi_ls and utmi_hstdet register, so we distinguish * them via suspended flag. * * Plus, there are two cases, one is D- Line pull-up, and D+ * line pull-down, the state is 4; another is D+ line pull-up, * and D- line pull-down, the state is 2. */ if (!rport->suspended) { /* D- line pull-up, D+ line pull-down */ dev_dbg(&rport->phy->dev, "FS/LS online\n"); break; } fallthrough; case PHY_STATE_CONNECT: if (rport->suspended) { dev_dbg(&rport->phy->dev, "Connected\n"); rockchip_usb2phy_power_on(rport->phy); rport->suspended = false; } else { /* D+ line pull-up, D- line pull-down */ dev_dbg(&rport->phy->dev, "FS/LS online\n"); } break; case PHY_STATE_DISCONNECT: if (!rport->suspended) { dev_dbg(&rport->phy->dev, "Disconnected\n"); rockchip_usb2phy_power_off(rport->phy); rport->suspended = true; } /* * activate the linestate detection to get the next device * plug-in irq. */ property_enable(rphy->grf, &rport->port_cfg->ls_det_clr, true); property_enable(rphy->grf, &rport->port_cfg->ls_det_en, true); /* * we don't need to rearm the delayed work when the phy port * is suspended. */ mutex_unlock(&rport->mutex); return; default: dev_dbg(&rport->phy->dev, "unknown phy state\n"); break; } next_schedule: mutex_unlock(&rport->mutex); schedule_delayed_work(&rport->sm_work, SCHEDULE_DELAY); } static irqreturn_t rockchip_usb2phy_linestate_irq(int irq, void *data) { struct rockchip_usb2phy_port *rport = data; struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent); if (!property_enabled(rphy->grf, &rport->port_cfg->ls_det_st)) return IRQ_NONE; mutex_lock(&rport->mutex); /* disable linestate detect irq and clear its status */ property_enable(rphy->grf, &rport->port_cfg->ls_det_en, false); property_enable(rphy->grf, &rport->port_cfg->ls_det_clr, true); mutex_unlock(&rport->mutex); /* * In this case for host phy port, a new device is plugged in, * meanwhile, if the phy port is suspended, we need rearm the work to * resume it and mange its states; otherwise, we do nothing about that. */ if (rport->suspended && rport->port_id == USB2PHY_PORT_HOST) rockchip_usb2phy_sm_work(&rport->sm_work.work); return IRQ_HANDLED; } static irqreturn_t rockchip_usb2phy_bvalid_irq(int irq, void *data) { struct rockchip_usb2phy_port *rport = data; struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent); if (!property_enabled(rphy->grf, &rport->port_cfg->bvalid_det_st)) return IRQ_NONE; /* clear bvalid detect irq pending status */ property_enable(rphy->grf, &rport->port_cfg->bvalid_det_clr, true); rockchip_usb2phy_otg_sm_work(&rport->otg_sm_work.work); return IRQ_HANDLED; } static irqreturn_t rockchip_usb2phy_id_irq(int irq, void *data) { struct rockchip_usb2phy_port *rport = data; struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent); bool id; if (!property_enabled(rphy->grf, &rport->port_cfg->id_det_st)) return IRQ_NONE; /* clear id detect irq pending status */ property_enable(rphy->grf, &rport->port_cfg->id_det_clr, true); id = property_enabled(rphy->grf, &rport->port_cfg->utmi_id); extcon_set_state_sync(rphy->edev, EXTCON_USB_HOST, !id); return IRQ_HANDLED; } static irqreturn_t rockchip_usb2phy_otg_mux_irq(int irq, void *data) { irqreturn_t ret = IRQ_NONE; ret |= rockchip_usb2phy_bvalid_irq(irq, data); ret |= rockchip_usb2phy_id_irq(irq, data); return ret; } static irqreturn_t rockchip_usb2phy_host_disc_irq(int irq, void *data) { struct rockchip_usb2phy_port *rport = data; struct rockchip_usb2phy *rphy = dev_get_drvdata(rport->phy->dev.parent); if (!property_enabled(rphy->grf, &rport->port_cfg->disfall_st) && !property_enabled(rphy->grf, &rport->port_cfg->disrise_st)) return IRQ_NONE; mutex_lock(&rport->mutex); /* clear disconnect fall or rise detect irq pending status */ if (property_enabled(rphy->grf, &rport->port_cfg->disfall_st)) { property_enable(rphy->grf, &rport->port_cfg->disfall_clr, true); rport->host_disconnect = false; } else if (property_enabled(rphy->grf, &rport->port_cfg->disrise_st)) { property_enable(rphy->grf, &rport->port_cfg->disrise_clr, true); rport->host_disconnect = true; } mutex_unlock(&rport->mutex); return IRQ_HANDLED; } static irqreturn_t rockchip_usb2phy_irq(int irq, void *data) { struct rockchip_usb2phy *rphy = data; struct rockchip_usb2phy_port *rport; irqreturn_t ret = IRQ_NONE; unsigned int index; for (index = 0; index < rphy->phy_cfg->num_ports; index++) { rport = &rphy->ports[index]; if (!rport->phy) continue; if (rport->port_id == USB2PHY_PORT_HOST && rport->port_cfg->disfall_en.offset) ret |= rockchip_usb2phy_host_disc_irq(irq, rport); switch (rport->port_id) { case USB2PHY_PORT_OTG: if (rport->mode != USB_DR_MODE_HOST && rport->mode != USB_DR_MODE_UNKNOWN) ret |= rockchip_usb2phy_otg_mux_irq(irq, rport); break; case USB2PHY_PORT_HOST: ret |= rockchip_usb2phy_linestate_irq(irq, rport); break; } } return ret; } static int rockchip_usb2phy_port_irq_init(struct rockchip_usb2phy *rphy, struct rockchip_usb2phy_port *rport, struct device_node *child_np) { int ret; /* * If the usb2 phy used combined irq for otg and host port, * don't need to init otg and host port irq separately. */ if (rphy->irq > 0) return 0; switch (rport->port_id) { case USB2PHY_PORT_HOST: rport->ls_irq = of_irq_get_byname(child_np, "linestate"); if (rport->ls_irq < 0) { dev_err(rphy->dev, "no linestate irq provided\n"); return rport->ls_irq; } ret = devm_request_threaded_irq(rphy->dev, rport->ls_irq, NULL, rockchip_usb2phy_linestate_irq, IRQF_ONESHOT, "rockchip_usb2phy", rport); if (ret) { dev_err(rphy->dev, "failed to request linestate irq handle\n"); return ret; } break; case USB2PHY_PORT_OTG: /* * Some SoCs use one interrupt with otg-id/otg-bvalid/linestate * interrupts muxed together, so probe the otg-mux interrupt first, * if not found, then look for the regular interrupts one by one. */ rport->otg_mux_irq = of_irq_get_byname(child_np, "otg-mux"); if (rport->otg_mux_irq > 0) { ret = devm_request_threaded_irq(rphy->dev, rport->otg_mux_irq, NULL, rockchip_usb2phy_otg_mux_irq, IRQF_ONESHOT, "rockchip_usb2phy_otg", rport); if (ret) { dev_err(rphy->dev, "failed to request otg-mux irq handle\n"); return ret; } } else { rport->bvalid_irq = of_irq_get_byname(child_np, "otg-bvalid"); if (rport->bvalid_irq < 0) { dev_err(rphy->dev, "no vbus valid irq provided\n"); ret = rport->bvalid_irq; return ret; } ret = devm_request_threaded_irq(rphy->dev, rport->bvalid_irq, NULL, rockchip_usb2phy_bvalid_irq, IRQF_ONESHOT, "rockchip_usb2phy_bvalid", rport); if (ret) { dev_err(rphy->dev, "failed to request otg-bvalid irq handle\n"); return ret; } rport->id_irq = of_irq_get_byname(child_np, "otg-id"); if (rport->id_irq < 0) { dev_err(rphy->dev, "no otg-id irq provided\n"); ret = rport->id_irq; return ret; } ret = devm_request_threaded_irq(rphy->dev, rport->id_irq, NULL, rockchip_usb2phy_id_irq, IRQF_ONESHOT, "rockchip_usb2phy_id", rport); if (ret) { dev_err(rphy->dev, "failed to request otg-id irq handle\n"); return ret; } } break; default: return -EINVAL; } return 0; } static int rockchip_usb2phy_host_port_init(struct rockchip_usb2phy *rphy, struct rockchip_usb2phy_port *rport, struct device_node *child_np) { int ret; rport->port_id = USB2PHY_PORT_HOST; rport->port_cfg = &rphy->phy_cfg->port_cfgs[USB2PHY_PORT_HOST]; rport->suspended = true; mutex_init(&rport->mutex); INIT_DELAYED_WORK(&rport->sm_work, rockchip_usb2phy_sm_work); ret = rockchip_usb2phy_port_irq_init(rphy, rport, child_np); if (ret) { dev_err(rphy->dev, "failed to setup host irq\n"); return ret; } return 0; } static int rockchip_otg_event(struct notifier_block *nb, unsigned long event, void *ptr) { struct rockchip_usb2phy_port *rport = container_of(nb, struct rockchip_usb2phy_port, event_nb); schedule_delayed_work(&rport->otg_sm_work, OTG_SCHEDULE_DELAY); return NOTIFY_DONE; } static int rockchip_usb2phy_otg_port_init(struct rockchip_usb2phy *rphy, struct rockchip_usb2phy_port *rport, struct device_node *child_np) { int ret, id; rport->port_id = USB2PHY_PORT_OTG; rport->port_cfg = &rphy->phy_cfg->port_cfgs[USB2PHY_PORT_OTG]; rport->state = OTG_STATE_UNDEFINED; /* * set suspended flag to true, but actually don't * put phy in suspend mode, it aims to enable usb * phy and clock in power_on() called by usb controller * driver during probe. */ rport->suspended = true; rport->vbus_attached = false; mutex_init(&rport->mutex); rport->mode = of_usb_get_dr_mode_by_phy(child_np, -1); if (rport->mode == USB_DR_MODE_HOST || rport->mode == USB_DR_MODE_UNKNOWN) { ret = 0; goto out; } INIT_DELAYED_WORK(&rport->chg_work, rockchip_chg_detect_work); INIT_DELAYED_WORK(&rport->otg_sm_work, rockchip_usb2phy_otg_sm_work); ret = rockchip_usb2phy_port_irq_init(rphy, rport, child_np); if (ret) { dev_err(rphy->dev, "failed to init irq for host port\n"); goto out; } if (!IS_ERR(rphy->edev)) { rport->event_nb.notifier_call = rockchip_otg_event; ret = devm_extcon_register_notifier(rphy->dev, rphy->edev, EXTCON_USB_HOST, &rport->event_nb); if (ret) { dev_err(rphy->dev, "register USB HOST notifier failed\n"); goto out; } if (!of_property_read_bool(rphy->dev->of_node, "extcon")) { /* do initial sync of usb state */ id = property_enabled(rphy->grf, &rport->port_cfg->utmi_id); extcon_set_state_sync(rphy->edev, EXTCON_USB_HOST, !id); } } out: return ret; } static int rockchip_usb2phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct device_node *child_np; struct phy_provider *provider; struct rockchip_usb2phy *rphy; const struct rockchip_usb2phy_cfg *phy_cfgs; unsigned int reg; int index, ret; rphy = devm_kzalloc(dev, sizeof(*rphy), GFP_KERNEL); if (!rphy) return -ENOMEM; if (!dev->parent || !dev->parent->of_node) { rphy->grf = syscon_regmap_lookup_by_phandle(np, "rockchip,usbgrf"); if (IS_ERR(rphy->grf)) { dev_err(dev, "failed to locate usbgrf\n"); return PTR_ERR(rphy->grf); } } else { rphy->grf = syscon_node_to_regmap(dev->parent->of_node); if (IS_ERR(rphy->grf)) return PTR_ERR(rphy->grf); } if (of_device_is_compatible(np, "rockchip,rv1108-usb2phy")) { rphy->usbgrf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,usbgrf"); if (IS_ERR(rphy->usbgrf)) return PTR_ERR(rphy->usbgrf); } else { rphy->usbgrf = NULL; } if (of_property_read_u32_index(np, "reg", 0, &reg)) { dev_err(dev, "the reg property is not assigned in %pOFn node\n", np); return -EINVAL; } /* support address_cells=2 */ if (of_property_count_u32_elems(np, "reg") > 2 && reg == 0) { if (of_property_read_u32_index(np, "reg", 1, &reg)) { dev_err(dev, "the reg property is not assigned in %pOFn node\n", np); return -EINVAL; } } rphy->dev = dev; phy_cfgs = device_get_match_data(dev); rphy->chg_state = USB_CHG_STATE_UNDEFINED; rphy->chg_type = POWER_SUPPLY_TYPE_UNKNOWN; rphy->irq = platform_get_irq_optional(pdev, 0); platform_set_drvdata(pdev, rphy); if (!phy_cfgs) return dev_err_probe(dev, -EINVAL, "phy configs are not assigned!\n"); ret = rockchip_usb2phy_extcon_register(rphy); if (ret) return ret; /* find out a proper config which can be matched with dt. */ index = 0; do { if (phy_cfgs[index].reg == reg) { rphy->phy_cfg = &phy_cfgs[index]; break; } ++index; } while (phy_cfgs[index].reg); if (!rphy->phy_cfg) { dev_err(dev, "could not find phy config for reg=0x%08x\n", reg); return -EINVAL; } rphy->phy_reset = devm_reset_control_get_optional(dev, "phy"); if (IS_ERR(rphy->phy_reset)) return PTR_ERR(rphy->phy_reset); rphy->clk = devm_clk_get_optional_enabled(dev, "phyclk"); if (IS_ERR(rphy->clk)) { return dev_err_probe(&pdev->dev, PTR_ERR(rphy->clk), "failed to get phyclk\n"); } ret = rockchip_usb2phy_clk480m_register(rphy); if (ret) { dev_err(dev, "failed to register 480m output clock\n"); return ret; } if (rphy->phy_cfg->phy_tuning) { ret = rphy->phy_cfg->phy_tuning(rphy); if (ret) return ret; } index = 0; for_each_available_child_of_node(np, child_np) { struct rockchip_usb2phy_port *rport = &rphy->ports[index]; struct phy *phy; /* This driver aims to support both otg-port and host-port */ if (!of_node_name_eq(child_np, "host-port") && !of_node_name_eq(child_np, "otg-port")) goto next_child; phy = devm_phy_create(dev, child_np, &rockchip_usb2phy_ops); if (IS_ERR(phy)) { dev_err_probe(dev, PTR_ERR(phy), "failed to create phy\n"); ret = PTR_ERR(phy); goto put_child; } rport->phy = phy; phy_set_drvdata(rport->phy, rport); /* initialize otg/host port separately */ if (of_node_name_eq(child_np, "host-port")) { ret = rockchip_usb2phy_host_port_init(rphy, rport, child_np); if (ret) goto put_child; } else { ret = rockchip_usb2phy_otg_port_init(rphy, rport, child_np); if (ret) goto put_child; } next_child: /* to prevent out of boundary */ if (++index >= rphy->phy_cfg->num_ports) { of_node_put(child_np); break; } } provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (rphy->irq > 0) { ret = devm_request_threaded_irq(rphy->dev, rphy->irq, NULL, rockchip_usb2phy_irq, IRQF_ONESHOT, "rockchip_usb2phy", rphy); if (ret) { dev_err(rphy->dev, "failed to request usb2phy irq handle\n"); goto put_child; } } return PTR_ERR_OR_ZERO(provider); put_child: of_node_put(child_np); return ret; } static int rk3588_usb2phy_tuning(struct rockchip_usb2phy *rphy) { int ret; bool usb3otg = false; /* * utmi_termselect = 1'b1 (en FS terminations) * utmi_xcvrselect = 2'b01 (FS transceiver) */ int suspend_cfg = 0x14; if (rphy->phy_cfg->reg == 0x0000 || rphy->phy_cfg->reg == 0x4000) { /* USB2 config for USB3_0 and USB3_1 */ suspend_cfg |= 0x01; /* utmi_opmode = 2'b01 (no-driving) */ usb3otg = true; } else if (rphy->phy_cfg->reg == 0x8000 || rphy->phy_cfg->reg == 0xc000) { /* USB2 config for USB2_0 and USB2_1 */ suspend_cfg |= 0x00; /* utmi_opmode = 2'b00 (normal) */ } else { return -EINVAL; } /* Deassert SIDDQ to power on analog block */ ret = regmap_write(rphy->grf, 0x0008, GENMASK(29, 29) | 0x0000); if (ret) return ret; /* Do reset after exit IDDQ mode */ ret = rockchip_usb2phy_reset(rphy); if (ret) return ret; /* suspend configuration */ ret |= regmap_write(rphy->grf, 0x000c, GENMASK(20, 16) | suspend_cfg); /* HS DC Voltage Level Adjustment 4'b1001 : +5.89% */ ret |= regmap_write(rphy->grf, 0x0004, GENMASK(27, 24) | 0x0900); /* HS Transmitter Pre-Emphasis Current Control 2'b10 : 2x */ ret |= regmap_write(rphy->grf, 0x0008, GENMASK(20, 19) | 0x0010); if (!usb3otg) return ret; /* Pullup iddig pin for USB3_0 OTG mode */ ret |= regmap_write(rphy->grf, 0x0010, GENMASK(17, 16) | 0x0003); return ret; } static const struct rockchip_usb2phy_cfg rk3228_phy_cfgs[] = { { .reg = 0x760, .num_ports = 2, .clkout_ctl = { 0x0768, 4, 4, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0x0760, 15, 0, 0, 0x1d1 }, .bvalid_det_en = { 0x0680, 3, 3, 0, 1 }, .bvalid_det_st = { 0x0690, 3, 3, 0, 1 }, .bvalid_det_clr = { 0x06a0, 3, 3, 0, 1 }, .id_det_en = { 0x0680, 6, 5, 0, 3 }, .id_det_st = { 0x0690, 6, 5, 0, 3 }, .id_det_clr = { 0x06a0, 6, 5, 0, 3 }, .ls_det_en = { 0x0680, 2, 2, 0, 1 }, .ls_det_st = { 0x0690, 2, 2, 0, 1 }, .ls_det_clr = { 0x06a0, 2, 2, 0, 1 }, .utmi_bvalid = { 0x0480, 4, 4, 0, 1 }, .utmi_id = { 0x0480, 1, 1, 0, 1 }, .utmi_ls = { 0x0480, 3, 2, 0, 1 }, }, [USB2PHY_PORT_HOST] = { .phy_sus = { 0x0764, 15, 0, 0, 0x1d1 }, .ls_det_en = { 0x0680, 4, 4, 0, 1 }, .ls_det_st = { 0x0690, 4, 4, 0, 1 }, .ls_det_clr = { 0x06a0, 4, 4, 0, 1 } } }, .chg_det = { .opmode = { 0x0760, 3, 0, 5, 1 }, .cp_det = { 0x0884, 4, 4, 0, 1 }, .dcp_det = { 0x0884, 3, 3, 0, 1 }, .dp_det = { 0x0884, 5, 5, 0, 1 }, .idm_sink_en = { 0x0768, 8, 8, 0, 1 }, .idp_sink_en = { 0x0768, 7, 7, 0, 1 }, .idp_src_en = { 0x0768, 9, 9, 0, 1 }, .rdm_pdwn_en = { 0x0768, 10, 10, 0, 1 }, .vdm_src_en = { 0x0768, 12, 12, 0, 1 }, .vdp_src_en = { 0x0768, 11, 11, 0, 1 }, }, }, { .reg = 0x800, .num_ports = 2, .clkout_ctl = { 0x0808, 4, 4, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0x800, 15, 0, 0, 0x1d1 }, .ls_det_en = { 0x0684, 0, 0, 0, 1 }, .ls_det_st = { 0x0694, 0, 0, 0, 1 }, .ls_det_clr = { 0x06a4, 0, 0, 0, 1 } }, [USB2PHY_PORT_HOST] = { .phy_sus = { 0x804, 15, 0, 0, 0x1d1 }, .ls_det_en = { 0x0684, 1, 1, 0, 1 }, .ls_det_st = { 0x0694, 1, 1, 0, 1 }, .ls_det_clr = { 0x06a4, 1, 1, 0, 1 } } }, }, { /* sentinel */ } }; static const struct rockchip_usb2phy_cfg rk3308_phy_cfgs[] = { { .reg = 0x100, .num_ports = 2, .clkout_ctl = { 0x108, 4, 4, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0x0100, 8, 0, 0, 0x1d1 }, .bvalid_det_en = { 0x3020, 3, 2, 0, 3 }, .bvalid_det_st = { 0x3024, 3, 2, 0, 3 }, .bvalid_det_clr = { 0x3028, 3, 2, 0, 3 }, .id_det_en = { 0x3020, 5, 4, 0, 3 }, .id_det_st = { 0x3024, 5, 4, 0, 3 }, .id_det_clr = { 0x3028, 5, 4, 0, 3 }, .ls_det_en = { 0x3020, 0, 0, 0, 1 }, .ls_det_st = { 0x3024, 0, 0, 0, 1 }, .ls_det_clr = { 0x3028, 0, 0, 0, 1 }, .utmi_avalid = { 0x0120, 10, 10, 0, 1 }, .utmi_bvalid = { 0x0120, 9, 9, 0, 1 }, .utmi_id = { 0x0120, 6, 6, 0, 1 }, .utmi_ls = { 0x0120, 5, 4, 0, 1 }, }, [USB2PHY_PORT_HOST] = { .phy_sus = { 0x0104, 8, 0, 0, 0x1d1 }, .ls_det_en = { 0x3020, 1, 1, 0, 1 }, .ls_det_st = { 0x3024, 1, 1, 0, 1 }, .ls_det_clr = { 0x3028, 1, 1, 0, 1 }, .utmi_ls = { 0x0120, 17, 16, 0, 1 }, .utmi_hstdet = { 0x0120, 19, 19, 0, 1 } } }, .chg_det = { .opmode = { 0x0100, 3, 0, 5, 1 }, .cp_det = { 0x0120, 24, 24, 0, 1 }, .dcp_det = { 0x0120, 23, 23, 0, 1 }, .dp_det = { 0x0120, 25, 25, 0, 1 }, .idm_sink_en = { 0x0108, 8, 8, 0, 1 }, .idp_sink_en = { 0x0108, 7, 7, 0, 1 }, .idp_src_en = { 0x0108, 9, 9, 0, 1 }, .rdm_pdwn_en = { 0x0108, 10, 10, 0, 1 }, .vdm_src_en = { 0x0108, 12, 12, 0, 1 }, .vdp_src_en = { 0x0108, 11, 11, 0, 1 }, }, }, { /* sentinel */ } }; static const struct rockchip_usb2phy_cfg rk3328_phy_cfgs[] = { { .reg = 0x100, .num_ports = 2, .clkout_ctl = { 0x108, 4, 4, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0x0100, 15, 0, 0, 0x1d1 }, .bvalid_det_en = { 0x0110, 3, 2, 0, 3 }, .bvalid_det_st = { 0x0114, 3, 2, 0, 3 }, .bvalid_det_clr = { 0x0118, 3, 2, 0, 3 }, .id_det_en = { 0x0110, 5, 4, 0, 3 }, .id_det_st = { 0x0114, 5, 4, 0, 3 }, .id_det_clr = { 0x0118, 5, 4, 0, 3 }, .ls_det_en = { 0x0110, 0, 0, 0, 1 }, .ls_det_st = { 0x0114, 0, 0, 0, 1 }, .ls_det_clr = { 0x0118, 0, 0, 0, 1 }, .utmi_avalid = { 0x0120, 10, 10, 0, 1 }, .utmi_bvalid = { 0x0120, 9, 9, 0, 1 }, .utmi_id = { 0x0120, 6, 6, 0, 1 }, .utmi_ls = { 0x0120, 5, 4, 0, 1 }, }, [USB2PHY_PORT_HOST] = { .phy_sus = { 0x104, 15, 0, 0, 0x1d1 }, .ls_det_en = { 0x110, 1, 1, 0, 1 }, .ls_det_st = { 0x114, 1, 1, 0, 1 }, .ls_det_clr = { 0x118, 1, 1, 0, 1 }, .utmi_ls = { 0x120, 17, 16, 0, 1 }, .utmi_hstdet = { 0x120, 19, 19, 0, 1 } } }, .chg_det = { .opmode = { 0x0100, 3, 0, 5, 1 }, .cp_det = { 0x0120, 24, 24, 0, 1 }, .dcp_det = { 0x0120, 23, 23, 0, 1 }, .dp_det = { 0x0120, 25, 25, 0, 1 }, .idm_sink_en = { 0x0108, 8, 8, 0, 1 }, .idp_sink_en = { 0x0108, 7, 7, 0, 1 }, .idp_src_en = { 0x0108, 9, 9, 0, 1 }, .rdm_pdwn_en = { 0x0108, 10, 10, 0, 1 }, .vdm_src_en = { 0x0108, 12, 12, 0, 1 }, .vdp_src_en = { 0x0108, 11, 11, 0, 1 }, }, }, { /* sentinel */ } }; static const struct rockchip_usb2phy_cfg rk3366_phy_cfgs[] = { { .reg = 0x700, .num_ports = 2, .clkout_ctl = { 0x0724, 15, 15, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_HOST] = { .phy_sus = { 0x0728, 15, 0, 0, 0x1d1 }, .ls_det_en = { 0x0680, 4, 4, 0, 1 }, .ls_det_st = { 0x0690, 4, 4, 0, 1 }, .ls_det_clr = { 0x06a0, 4, 4, 0, 1 }, .utmi_ls = { 0x049c, 14, 13, 0, 1 }, .utmi_hstdet = { 0x049c, 12, 12, 0, 1 } } }, }, { /* sentinel */ } }; static const struct rockchip_usb2phy_cfg rk3399_phy_cfgs[] = { { .reg = 0xe450, .num_ports = 2, .clkout_ctl = { 0xe450, 4, 4, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0xe454, 1, 0, 2, 1 }, .bvalid_det_en = { 0xe3c0, 3, 3, 0, 1 }, .bvalid_det_st = { 0xe3e0, 3, 3, 0, 1 }, .bvalid_det_clr = { 0xe3d0, 3, 3, 0, 1 }, .id_det_en = { 0xe3c0, 5, 4, 0, 3 }, .id_det_st = { 0xe3e0, 5, 4, 0, 3 }, .id_det_clr = { 0xe3d0, 5, 4, 0, 3 }, .utmi_avalid = { 0xe2ac, 7, 7, 0, 1 }, .utmi_bvalid = { 0xe2ac, 12, 12, 0, 1 }, .utmi_id = { 0xe2ac, 8, 8, 0, 1 }, }, [USB2PHY_PORT_HOST] = { .phy_sus = { 0xe458, 1, 0, 0x2, 0x1 }, .ls_det_en = { 0xe3c0, 6, 6, 0, 1 }, .ls_det_st = { 0xe3e0, 6, 6, 0, 1 }, .ls_det_clr = { 0xe3d0, 6, 6, 0, 1 }, .utmi_ls = { 0xe2ac, 22, 21, 0, 1 }, .utmi_hstdet = { 0xe2ac, 23, 23, 0, 1 } } }, .chg_det = { .opmode = { 0xe454, 3, 0, 5, 1 }, .cp_det = { 0xe2ac, 2, 2, 0, 1 }, .dcp_det = { 0xe2ac, 1, 1, 0, 1 }, .dp_det = { 0xe2ac, 0, 0, 0, 1 }, .idm_sink_en = { 0xe450, 8, 8, 0, 1 }, .idp_sink_en = { 0xe450, 7, 7, 0, 1 }, .idp_src_en = { 0xe450, 9, 9, 0, 1 }, .rdm_pdwn_en = { 0xe450, 10, 10, 0, 1 }, .vdm_src_en = { 0xe450, 12, 12, 0, 1 }, .vdp_src_en = { 0xe450, 11, 11, 0, 1 }, }, }, { .reg = 0xe460, .num_ports = 2, .clkout_ctl = { 0xe460, 4, 4, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0xe464, 1, 0, 2, 1 }, .bvalid_det_en = { 0xe3c0, 8, 8, 0, 1 }, .bvalid_det_st = { 0xe3e0, 8, 8, 0, 1 }, .bvalid_det_clr = { 0xe3d0, 8, 8, 0, 1 }, .id_det_en = { 0xe3c0, 10, 9, 0, 3 }, .id_det_st = { 0xe3e0, 10, 9, 0, 3 }, .id_det_clr = { 0xe3d0, 10, 9, 0, 3 }, .utmi_avalid = { 0xe2ac, 10, 10, 0, 1 }, .utmi_bvalid = { 0xe2ac, 16, 16, 0, 1 }, .utmi_id = { 0xe2ac, 11, 11, 0, 1 }, }, [USB2PHY_PORT_HOST] = { .phy_sus = { 0xe468, 1, 0, 0x2, 0x1 }, .ls_det_en = { 0xe3c0, 11, 11, 0, 1 }, .ls_det_st = { 0xe3e0, 11, 11, 0, 1 }, .ls_det_clr = { 0xe3d0, 11, 11, 0, 1 }, .utmi_ls = { 0xe2ac, 26, 25, 0, 1 }, .utmi_hstdet = { 0xe2ac, 27, 27, 0, 1 } } }, }, { /* sentinel */ } }; static const struct rockchip_usb2phy_cfg rk3568_phy_cfgs[] = { { .reg = 0xfe8a0000, .num_ports = 2, .clkout_ctl = { 0x0008, 4, 4, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0x0000, 8, 0, 0, 0x1d1 }, .bvalid_det_en = { 0x0080, 3, 2, 0, 3 }, .bvalid_det_st = { 0x0084, 3, 2, 0, 3 }, .bvalid_det_clr = { 0x0088, 3, 2, 0, 3 }, .id_det_en = { 0x0080, 5, 4, 0, 3 }, .id_det_st = { 0x0084, 5, 4, 0, 3 }, .id_det_clr = { 0x0088, 5, 4, 0, 3 }, .utmi_avalid = { 0x00c0, 10, 10, 0, 1 }, .utmi_bvalid = { 0x00c0, 9, 9, 0, 1 }, .utmi_id = { 0x00c0, 6, 6, 0, 1 }, }, [USB2PHY_PORT_HOST] = { /* Select suspend control from controller */ .phy_sus = { 0x0004, 8, 0, 0x1d2, 0x1d2 }, .ls_det_en = { 0x0080, 1, 1, 0, 1 }, .ls_det_st = { 0x0084, 1, 1, 0, 1 }, .ls_det_clr = { 0x0088, 1, 1, 0, 1 }, .utmi_ls = { 0x00c0, 17, 16, 0, 1 }, .utmi_hstdet = { 0x00c0, 19, 19, 0, 1 } } }, .chg_det = { .opmode = { 0x0000, 3, 0, 5, 1 }, .cp_det = { 0x00c0, 24, 24, 0, 1 }, .dcp_det = { 0x00c0, 23, 23, 0, 1 }, .dp_det = { 0x00c0, 25, 25, 0, 1 }, .idm_sink_en = { 0x0008, 8, 8, 0, 1 }, .idp_sink_en = { 0x0008, 7, 7, 0, 1 }, .idp_src_en = { 0x0008, 9, 9, 0, 1 }, .rdm_pdwn_en = { 0x0008, 10, 10, 0, 1 }, .vdm_src_en = { 0x0008, 12, 12, 0, 1 }, .vdp_src_en = { 0x0008, 11, 11, 0, 1 }, }, }, { .reg = 0xfe8b0000, .num_ports = 2, .clkout_ctl = { 0x0008, 4, 4, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0x0000, 8, 0, 0x1d2, 0x1d1 }, .ls_det_en = { 0x0080, 0, 0, 0, 1 }, .ls_det_st = { 0x0084, 0, 0, 0, 1 }, .ls_det_clr = { 0x0088, 0, 0, 0, 1 }, .utmi_ls = { 0x00c0, 5, 4, 0, 1 }, .utmi_hstdet = { 0x00c0, 7, 7, 0, 1 } }, [USB2PHY_PORT_HOST] = { .phy_sus = { 0x0004, 8, 0, 0x1d2, 0x1d1 }, .ls_det_en = { 0x0080, 1, 1, 0, 1 }, .ls_det_st = { 0x0084, 1, 1, 0, 1 }, .ls_det_clr = { 0x0088, 1, 1, 0, 1 }, .utmi_ls = { 0x00c0, 17, 16, 0, 1 }, .utmi_hstdet = { 0x00c0, 19, 19, 0, 1 } } }, }, { /* sentinel */ } }; static const struct rockchip_usb2phy_cfg rk3588_phy_cfgs[] = { { .reg = 0x0000, .num_ports = 1, .phy_tuning = rk3588_usb2phy_tuning, .clkout_ctl = { 0x0000, 0, 0, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0x000c, 11, 11, 0, 1 }, .bvalid_det_en = { 0x0080, 1, 1, 0, 1 }, .bvalid_det_st = { 0x0084, 1, 1, 0, 1 }, .bvalid_det_clr = { 0x0088, 1, 1, 0, 1 }, .ls_det_en = { 0x0080, 0, 0, 0, 1 }, .ls_det_st = { 0x0084, 0, 0, 0, 1 }, .ls_det_clr = { 0x0088, 0, 0, 0, 1 }, .disfall_en = { 0x0080, 6, 6, 0, 1 }, .disfall_st = { 0x0084, 6, 6, 0, 1 }, .disfall_clr = { 0x0088, 6, 6, 0, 1 }, .disrise_en = { 0x0080, 5, 5, 0, 1 }, .disrise_st = { 0x0084, 5, 5, 0, 1 }, .disrise_clr = { 0x0088, 5, 5, 0, 1 }, .utmi_avalid = { 0x00c0, 7, 7, 0, 1 }, .utmi_bvalid = { 0x00c0, 6, 6, 0, 1 }, .utmi_ls = { 0x00c0, 10, 9, 0, 1 }, } }, .chg_det = { .cp_det = { 0x00c0, 0, 0, 0, 1 }, .dcp_det = { 0x00c0, 0, 0, 0, 1 }, .dp_det = { 0x00c0, 1, 1, 1, 0 }, .idm_sink_en = { 0x0008, 5, 5, 1, 0 }, .idp_sink_en = { 0x0008, 5, 5, 0, 1 }, .idp_src_en = { 0x0008, 14, 14, 0, 1 }, .rdm_pdwn_en = { 0x0008, 14, 14, 0, 1 }, .vdm_src_en = { 0x0008, 7, 6, 0, 3 }, .vdp_src_en = { 0x0008, 7, 6, 0, 3 }, }, }, { .reg = 0x4000, .num_ports = 1, .phy_tuning = rk3588_usb2phy_tuning, .clkout_ctl = { 0x0000, 0, 0, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0x000c, 11, 11, 0, 1 }, .bvalid_det_en = { 0x0080, 1, 1, 0, 1 }, .bvalid_det_st = { 0x0084, 1, 1, 0, 1 }, .bvalid_det_clr = { 0x0088, 1, 1, 0, 1 }, .ls_det_en = { 0x0080, 0, 0, 0, 1 }, .ls_det_st = { 0x0084, 0, 0, 0, 1 }, .ls_det_clr = { 0x0088, 0, 0, 0, 1 }, .disfall_en = { 0x0080, 6, 6, 0, 1 }, .disfall_st = { 0x0084, 6, 6, 0, 1 }, .disfall_clr = { 0x0088, 6, 6, 0, 1 }, .disrise_en = { 0x0080, 5, 5, 0, 1 }, .disrise_st = { 0x0084, 5, 5, 0, 1 }, .disrise_clr = { 0x0088, 5, 5, 0, 1 }, .utmi_avalid = { 0x00c0, 7, 7, 0, 1 }, .utmi_bvalid = { 0x00c0, 6, 6, 0, 1 }, .utmi_ls = { 0x00c0, 10, 9, 0, 1 }, } }, .chg_det = { .cp_det = { 0x00c0, 0, 0, 0, 1 }, .dcp_det = { 0x00c0, 0, 0, 0, 1 }, .dp_det = { 0x00c0, 1, 1, 1, 0 }, .idm_sink_en = { 0x0008, 5, 5, 1, 0 }, .idp_sink_en = { 0x0008, 5, 5, 0, 1 }, .idp_src_en = { 0x0008, 14, 14, 0, 1 }, .rdm_pdwn_en = { 0x0008, 14, 14, 0, 1 }, .vdm_src_en = { 0x0008, 7, 6, 0, 3 }, .vdp_src_en = { 0x0008, 7, 6, 0, 3 }, }, }, { .reg = 0x8000, .num_ports = 1, .phy_tuning = rk3588_usb2phy_tuning, .clkout_ctl = { 0x0000, 0, 0, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_HOST] = { .phy_sus = { 0x0008, 2, 2, 0, 1 }, .ls_det_en = { 0x0080, 0, 0, 0, 1 }, .ls_det_st = { 0x0084, 0, 0, 0, 1 }, .ls_det_clr = { 0x0088, 0, 0, 0, 1 }, .disfall_en = { 0x0080, 6, 6, 0, 1 }, .disfall_st = { 0x0084, 6, 6, 0, 1 }, .disfall_clr = { 0x0088, 6, 6, 0, 1 }, .disrise_en = { 0x0080, 5, 5, 0, 1 }, .disrise_st = { 0x0084, 5, 5, 0, 1 }, .disrise_clr = { 0x0088, 5, 5, 0, 1 }, .utmi_ls = { 0x00c0, 10, 9, 0, 1 }, } }, }, { .reg = 0xc000, .num_ports = 1, .phy_tuning = rk3588_usb2phy_tuning, .clkout_ctl = { 0x0000, 0, 0, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_HOST] = { .phy_sus = { 0x0008, 2, 2, 0, 1 }, .ls_det_en = { 0x0080, 0, 0, 0, 1 }, .ls_det_st = { 0x0084, 0, 0, 0, 1 }, .ls_det_clr = { 0x0088, 0, 0, 0, 1 }, .disfall_en = { 0x0080, 6, 6, 0, 1 }, .disfall_st = { 0x0084, 6, 6, 0, 1 }, .disfall_clr = { 0x0088, 6, 6, 0, 1 }, .disrise_en = { 0x0080, 5, 5, 0, 1 }, .disrise_st = { 0x0084, 5, 5, 0, 1 }, .disrise_clr = { 0x0088, 5, 5, 0, 1 }, .utmi_ls = { 0x00c0, 10, 9, 0, 1 }, } }, }, { /* sentinel */ } }; static const struct rockchip_usb2phy_cfg rv1108_phy_cfgs[] = { { .reg = 0x100, .num_ports = 2, .clkout_ctl = { 0x108, 4, 4, 1, 0 }, .port_cfgs = { [USB2PHY_PORT_OTG] = { .phy_sus = { 0x0100, 15, 0, 0, 0x1d1 }, .bvalid_det_en = { 0x0680, 3, 3, 0, 1 }, .bvalid_det_st = { 0x0690, 3, 3, 0, 1 }, .bvalid_det_clr = { 0x06a0, 3, 3, 0, 1 }, .ls_det_en = { 0x0680, 2, 2, 0, 1 }, .ls_det_st = { 0x0690, 2, 2, 0, 1 }, .ls_det_clr = { 0x06a0, 2, 2, 0, 1 }, .utmi_bvalid = { 0x0804, 10, 10, 0, 1 }, .utmi_ls = { 0x0804, 13, 12, 0, 1 }, }, [USB2PHY_PORT_HOST] = { .phy_sus = { 0x0104, 15, 0, 0, 0x1d1 }, .ls_det_en = { 0x0680, 4, 4, 0, 1 }, .ls_det_st = { 0x0690, 4, 4, 0, 1 }, .ls_det_clr = { 0x06a0, 4, 4, 0, 1 }, .utmi_ls = { 0x0804, 9, 8, 0, 1 }, .utmi_hstdet = { 0x0804, 7, 7, 0, 1 } } }, .chg_det = { .opmode = { 0x0100, 3, 0, 5, 1 }, .cp_det = { 0x0804, 1, 1, 0, 1 }, .dcp_det = { 0x0804, 0, 0, 0, 1 }, .dp_det = { 0x0804, 2, 2, 0, 1 }, .idm_sink_en = { 0x0108, 8, 8, 0, 1 }, .idp_sink_en = { 0x0108, 7, 7, 0, 1 }, .idp_src_en = { 0x0108, 9, 9, 0, 1 }, .rdm_pdwn_en = { 0x0108, 10, 10, 0, 1 }, .vdm_src_en = { 0x0108, 12, 12, 0, 1 }, .vdp_src_en = { 0x0108, 11, 11, 0, 1 }, }, }, { /* sentinel */ } }; static const struct of_device_id rockchip_usb2phy_dt_match[] = { { .compatible = "rockchip,px30-usb2phy", .data = &rk3328_phy_cfgs }, { .compatible = "rockchip,rk3228-usb2phy", .data = &rk3228_phy_cfgs }, { .compatible = "rockchip,rk3308-usb2phy", .data = &rk3308_phy_cfgs }, { .compatible = "rockchip,rk3328-usb2phy", .data = &rk3328_phy_cfgs }, { .compatible = "rockchip,rk3366-usb2phy", .data = &rk3366_phy_cfgs }, { .compatible = "rockchip,rk3399-usb2phy", .data = &rk3399_phy_cfgs }, { .compatible = "rockchip,rk3568-usb2phy", .data = &rk3568_phy_cfgs }, { .compatible = "rockchip,rk3588-usb2phy", .data = &rk3588_phy_cfgs }, { .compatible = "rockchip,rv1108-usb2phy", .data = &rv1108_phy_cfgs }, {} }; MODULE_DEVICE_TABLE(of, rockchip_usb2phy_dt_match); static struct platform_driver rockchip_usb2phy_driver = { .probe = rockchip_usb2phy_probe, .driver = { .name = "rockchip-usb2phy", .of_match_table = rockchip_usb2phy_dt_match, }, }; module_platform_driver(rockchip_usb2phy_driver); MODULE_AUTHOR("Frank Wang <[email protected]>"); MODULE_DESCRIPTION("Rockchip USB2.0 PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/rockchip/phy-rockchip-inno-usb2.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2017 Rockchip Electronics Co. Ltd. * * Author: Zheng Yang <[email protected]> * Heiko Stuebner <[email protected]> */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/phy/phy.h> #include <linux/slab.h> #define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l))) /* REG: 0x00 */ #define RK3228_PRE_PLL_REFCLK_SEL_PCLK BIT(0) /* REG: 0x01 */ #define RK3228_BYPASS_RXSENSE_EN BIT(2) #define RK3228_BYPASS_PWRON_EN BIT(1) #define RK3228_BYPASS_PLLPD_EN BIT(0) /* REG: 0x02 */ #define RK3228_BYPASS_PDATA_EN BIT(4) #define RK3228_PDATAEN_DISABLE BIT(0) /* REG: 0x03 */ #define RK3228_BYPASS_AUTO_TERM_RES_CAL BIT(7) #define RK3228_AUTO_TERM_RES_CAL_SPEED_14_8(x) UPDATE(x, 6, 0) /* REG: 0x04 */ #define RK3228_AUTO_TERM_RES_CAL_SPEED_7_0(x) UPDATE(x, 7, 0) /* REG: 0xaa */ #define RK3228_POST_PLL_CTRL_MANUAL BIT(0) /* REG: 0xe0 */ #define RK3228_POST_PLL_POWER_DOWN BIT(5) #define RK3228_PRE_PLL_POWER_DOWN BIT(4) #define RK3228_RXSENSE_CLK_CH_ENABLE BIT(3) #define RK3228_RXSENSE_DATA_CH2_ENABLE BIT(2) #define RK3228_RXSENSE_DATA_CH1_ENABLE BIT(1) #define RK3228_RXSENSE_DATA_CH0_ENABLE BIT(0) /* REG: 0xe1 */ #define RK3228_BANDGAP_ENABLE BIT(4) #define RK3228_TMDS_DRIVER_ENABLE GENMASK(3, 0) /* REG: 0xe2 */ #define RK3228_PRE_PLL_FB_DIV_8_MASK BIT(7) #define RK3228_PRE_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7) #define RK3228_PCLK_VCO_DIV_5_MASK BIT(5) #define RK3228_PCLK_VCO_DIV_5(x) UPDATE(x, 5, 5) #define RK3228_PRE_PLL_PRE_DIV_MASK GENMASK(4, 0) #define RK3228_PRE_PLL_PRE_DIV(x) UPDATE(x, 4, 0) /* REG: 0xe3 */ #define RK3228_PRE_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0) /* REG: 0xe4 */ #define RK3228_PRE_PLL_PCLK_DIV_B_MASK GENMASK(6, 5) #define RK3228_PRE_PLL_PCLK_DIV_B_SHIFT 5 #define RK3228_PRE_PLL_PCLK_DIV_B(x) UPDATE(x, 6, 5) #define RK3228_PRE_PLL_PCLK_DIV_A_MASK GENMASK(4, 0) #define RK3228_PRE_PLL_PCLK_DIV_A(x) UPDATE(x, 4, 0) /* REG: 0xe5 */ #define RK3228_PRE_PLL_PCLK_DIV_C_MASK GENMASK(6, 5) #define RK3228_PRE_PLL_PCLK_DIV_C(x) UPDATE(x, 6, 5) #define RK3228_PRE_PLL_PCLK_DIV_D_MASK GENMASK(4, 0) #define RK3228_PRE_PLL_PCLK_DIV_D(x) UPDATE(x, 4, 0) /* REG: 0xe6 */ #define RK3228_PRE_PLL_TMDSCLK_DIV_C_MASK GENMASK(5, 4) #define RK3228_PRE_PLL_TMDSCLK_DIV_C(x) UPDATE(x, 5, 4) #define RK3228_PRE_PLL_TMDSCLK_DIV_A_MASK GENMASK(3, 2) #define RK3228_PRE_PLL_TMDSCLK_DIV_A(x) UPDATE(x, 3, 2) #define RK3228_PRE_PLL_TMDSCLK_DIV_B_MASK GENMASK(1, 0) #define RK3228_PRE_PLL_TMDSCLK_DIV_B(x) UPDATE(x, 1, 0) /* REG: 0xe8 */ #define RK3228_PRE_PLL_LOCK_STATUS BIT(0) /* REG: 0xe9 */ #define RK3228_POST_PLL_POST_DIV_ENABLE UPDATE(3, 7, 6) #define RK3228_POST_PLL_PRE_DIV_MASK GENMASK(4, 0) #define RK3228_POST_PLL_PRE_DIV(x) UPDATE(x, 4, 0) /* REG: 0xea */ #define RK3228_POST_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0) /* REG: 0xeb */ #define RK3228_POST_PLL_FB_DIV_8_MASK BIT(7) #define RK3228_POST_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7) #define RK3228_POST_PLL_POST_DIV_MASK GENMASK(5, 4) #define RK3228_POST_PLL_POST_DIV(x) UPDATE(x, 5, 4) #define RK3228_POST_PLL_LOCK_STATUS BIT(0) /* REG: 0xee */ #define RK3228_TMDS_CH_TA_ENABLE GENMASK(7, 4) /* REG: 0xef */ #define RK3228_TMDS_CLK_CH_TA(x) UPDATE(x, 7, 6) #define RK3228_TMDS_DATA_CH2_TA(x) UPDATE(x, 5, 4) #define RK3228_TMDS_DATA_CH1_TA(x) UPDATE(x, 3, 2) #define RK3228_TMDS_DATA_CH0_TA(x) UPDATE(x, 1, 0) /* REG: 0xf0 */ #define RK3228_TMDS_DATA_CH2_PRE_EMPHASIS_MASK GENMASK(5, 4) #define RK3228_TMDS_DATA_CH2_PRE_EMPHASIS(x) UPDATE(x, 5, 4) #define RK3228_TMDS_DATA_CH1_PRE_EMPHASIS_MASK GENMASK(3, 2) #define RK3228_TMDS_DATA_CH1_PRE_EMPHASIS(x) UPDATE(x, 3, 2) #define RK3228_TMDS_DATA_CH0_PRE_EMPHASIS_MASK GENMASK(1, 0) #define RK3228_TMDS_DATA_CH0_PRE_EMPHASIS(x) UPDATE(x, 1, 0) /* REG: 0xf1 */ #define RK3228_TMDS_CLK_CH_OUTPUT_SWING(x) UPDATE(x, 7, 4) #define RK3228_TMDS_DATA_CH2_OUTPUT_SWING(x) UPDATE(x, 3, 0) /* REG: 0xf2 */ #define RK3228_TMDS_DATA_CH1_OUTPUT_SWING(x) UPDATE(x, 7, 4) #define RK3228_TMDS_DATA_CH0_OUTPUT_SWING(x) UPDATE(x, 3, 0) /* REG: 0x01 */ #define RK3328_BYPASS_RXSENSE_EN BIT(2) #define RK3328_BYPASS_POWERON_EN BIT(1) #define RK3328_BYPASS_PLLPD_EN BIT(0) /* REG: 0x02 */ #define RK3328_INT_POL_HIGH BIT(7) #define RK3328_BYPASS_PDATA_EN BIT(4) #define RK3328_PDATA_EN BIT(0) /* REG:0x05 */ #define RK3328_INT_TMDS_CLK(x) UPDATE(x, 7, 4) #define RK3328_INT_TMDS_D2(x) UPDATE(x, 3, 0) /* REG:0x07 */ #define RK3328_INT_TMDS_D1(x) UPDATE(x, 7, 4) #define RK3328_INT_TMDS_D0(x) UPDATE(x, 3, 0) /* for all RK3328_INT_TMDS_*, ESD_DET as defined in 0xc8-0xcb */ #define RK3328_INT_AGND_LOW_PULSE_LOCKED BIT(3) #define RK3328_INT_RXSENSE_LOW_PULSE_LOCKED BIT(2) #define RK3328_INT_VSS_AGND_ESD_DET BIT(1) #define RK3328_INT_AGND_VSS_ESD_DET BIT(0) /* REG: 0xa0 */ #define RK3328_PCLK_VCO_DIV_5_MASK BIT(1) #define RK3328_PCLK_VCO_DIV_5(x) UPDATE(x, 1, 1) #define RK3328_PRE_PLL_POWER_DOWN BIT(0) /* REG: 0xa1 */ #define RK3328_PRE_PLL_PRE_DIV_MASK GENMASK(5, 0) #define RK3328_PRE_PLL_PRE_DIV(x) UPDATE(x, 5, 0) /* REG: 0xa2 */ /* unset means center spread */ #define RK3328_SPREAD_SPECTRUM_MOD_DOWN BIT(7) #define RK3328_SPREAD_SPECTRUM_MOD_DISABLE BIT(6) #define RK3328_PRE_PLL_FRAC_DIV_DISABLE UPDATE(3, 5, 4) #define RK3328_PRE_PLL_FB_DIV_11_8_MASK GENMASK(3, 0) #define RK3328_PRE_PLL_FB_DIV_11_8(x) UPDATE((x) >> 8, 3, 0) /* REG: 0xa3 */ #define RK3328_PRE_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0) /* REG: 0xa4*/ #define RK3328_PRE_PLL_TMDSCLK_DIV_C_MASK GENMASK(1, 0) #define RK3328_PRE_PLL_TMDSCLK_DIV_C(x) UPDATE(x, 1, 0) #define RK3328_PRE_PLL_TMDSCLK_DIV_B_MASK GENMASK(3, 2) #define RK3328_PRE_PLL_TMDSCLK_DIV_B(x) UPDATE(x, 3, 2) #define RK3328_PRE_PLL_TMDSCLK_DIV_A_MASK GENMASK(5, 4) #define RK3328_PRE_PLL_TMDSCLK_DIV_A(x) UPDATE(x, 5, 4) /* REG: 0xa5 */ #define RK3328_PRE_PLL_PCLK_DIV_B_SHIFT 5 #define RK3328_PRE_PLL_PCLK_DIV_B_MASK GENMASK(6, 5) #define RK3328_PRE_PLL_PCLK_DIV_B(x) UPDATE(x, 6, 5) #define RK3328_PRE_PLL_PCLK_DIV_A_MASK GENMASK(4, 0) #define RK3328_PRE_PLL_PCLK_DIV_A(x) UPDATE(x, 4, 0) /* REG: 0xa6 */ #define RK3328_PRE_PLL_PCLK_DIV_C_SHIFT 5 #define RK3328_PRE_PLL_PCLK_DIV_C_MASK GENMASK(6, 5) #define RK3328_PRE_PLL_PCLK_DIV_C(x) UPDATE(x, 6, 5) #define RK3328_PRE_PLL_PCLK_DIV_D_MASK GENMASK(4, 0) #define RK3328_PRE_PLL_PCLK_DIV_D(x) UPDATE(x, 4, 0) /* REG: 0xa9 */ #define RK3328_PRE_PLL_LOCK_STATUS BIT(0) /* REG: 0xaa */ #define RK3328_POST_PLL_POST_DIV_ENABLE GENMASK(3, 2) #define RK3328_POST_PLL_REFCLK_SEL_TMDS BIT(1) #define RK3328_POST_PLL_POWER_DOWN BIT(0) /* REG:0xab */ #define RK3328_POST_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7) #define RK3328_POST_PLL_PRE_DIV(x) UPDATE(x, 4, 0) /* REG: 0xac */ #define RK3328_POST_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0) /* REG: 0xad */ #define RK3328_POST_PLL_POST_DIV_MASK GENMASK(1, 0) #define RK3328_POST_PLL_POST_DIV_2 0x0 #define RK3328_POST_PLL_POST_DIV_4 0x1 #define RK3328_POST_PLL_POST_DIV_8 0x3 /* REG: 0xaf */ #define RK3328_POST_PLL_LOCK_STATUS BIT(0) /* REG: 0xb0 */ #define RK3328_BANDGAP_ENABLE BIT(2) /* REG: 0xb2 */ #define RK3328_TMDS_CLK_DRIVER_EN BIT(3) #define RK3328_TMDS_D2_DRIVER_EN BIT(2) #define RK3328_TMDS_D1_DRIVER_EN BIT(1) #define RK3328_TMDS_D0_DRIVER_EN BIT(0) #define RK3328_TMDS_DRIVER_ENABLE (RK3328_TMDS_CLK_DRIVER_EN | \ RK3328_TMDS_D2_DRIVER_EN | \ RK3328_TMDS_D1_DRIVER_EN | \ RK3328_TMDS_D0_DRIVER_EN) /* REG:0xc5 */ #define RK3328_BYPASS_TERM_RESISTOR_CALIB BIT(7) #define RK3328_TERM_RESISTOR_CALIB_SPEED_14_8(x) UPDATE((x) >> 8, 6, 0) /* REG:0xc6 */ #define RK3328_TERM_RESISTOR_CALIB_SPEED_7_0(x) UPDATE(x, 7, 0) /* REG:0xc7 */ #define RK3328_TERM_RESISTOR_50 UPDATE(0, 2, 1) #define RK3328_TERM_RESISTOR_62_5 UPDATE(1, 2, 1) #define RK3328_TERM_RESISTOR_75 UPDATE(2, 2, 1) #define RK3328_TERM_RESISTOR_100 UPDATE(3, 2, 1) /* REG 0xc8 - 0xcb */ #define RK3328_ESD_DETECT_MASK GENMASK(7, 6) #define RK3328_ESD_DETECT_340MV (0x0 << 6) #define RK3328_ESD_DETECT_280MV (0x1 << 6) #define RK3328_ESD_DETECT_260MV (0x2 << 6) #define RK3328_ESD_DETECT_240MV (0x3 << 6) /* resistors can be used in parallel */ #define RK3328_TMDS_TERM_RESIST_MASK GENMASK(5, 0) #define RK3328_TMDS_TERM_RESIST_75 BIT(5) #define RK3328_TMDS_TERM_RESIST_150 BIT(4) #define RK3328_TMDS_TERM_RESIST_300 BIT(3) #define RK3328_TMDS_TERM_RESIST_600 BIT(2) #define RK3328_TMDS_TERM_RESIST_1000 BIT(1) #define RK3328_TMDS_TERM_RESIST_2000 BIT(0) /* REG: 0xd1 */ #define RK3328_PRE_PLL_FRAC_DIV_23_16(x) UPDATE((x) >> 16, 7, 0) /* REG: 0xd2 */ #define RK3328_PRE_PLL_FRAC_DIV_15_8(x) UPDATE((x) >> 8, 7, 0) /* REG: 0xd3 */ #define RK3328_PRE_PLL_FRAC_DIV_7_0(x) UPDATE(x, 7, 0) struct inno_hdmi_phy_drv_data; struct inno_hdmi_phy { struct device *dev; struct regmap *regmap; int irq; struct phy *phy; struct clk *sysclk; struct clk *refoclk; struct clk *refpclk; /* platform data */ const struct inno_hdmi_phy_drv_data *plat_data; int chip_version; /* clk provider */ struct clk_hw hw; struct clk *phyclk; unsigned long pixclock; unsigned long tmdsclock; }; struct pre_pll_config { unsigned long pixclock; unsigned long tmdsclock; u8 prediv; u16 fbdiv; u8 tmds_div_a; u8 tmds_div_b; u8 tmds_div_c; u8 pclk_div_a; u8 pclk_div_b; u8 pclk_div_c; u8 pclk_div_d; u8 vco_div_5_en; u32 fracdiv; }; struct post_pll_config { unsigned long tmdsclock; u8 prediv; u16 fbdiv; u8 postdiv; u8 version; }; struct phy_config { unsigned long tmdsclock; u8 regs[14]; }; struct inno_hdmi_phy_ops { int (*init)(struct inno_hdmi_phy *inno); int (*power_on)(struct inno_hdmi_phy *inno, const struct post_pll_config *cfg, const struct phy_config *phy_cfg); void (*power_off)(struct inno_hdmi_phy *inno); }; struct inno_hdmi_phy_drv_data { const struct inno_hdmi_phy_ops *ops; const struct clk_ops *clk_ops; const struct phy_config *phy_cfg_table; }; static const struct pre_pll_config pre_pll_cfg_table[] = { { 25175000, 25175000, 3, 125, 3, 1, 1, 1, 3, 3, 4, 0, 0xe00000}, { 25175000, 31468750, 1, 41, 0, 3, 3, 1, 3, 3, 4, 0, 0xf5554f}, { 27000000, 27000000, 1, 36, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 27000000, 33750000, 1, 45, 0, 3, 3, 1, 3, 3, 4, 0, 0x0}, { 31500000, 31500000, 1, 42, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 31500000, 39375000, 1, 105, 1, 3, 3, 10, 0, 3, 4, 0, 0x0}, { 33750000, 33750000, 1, 45, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 33750000, 42187500, 1, 169, 2, 3, 3, 15, 0, 3, 4, 0, 0x0}, { 35500000, 35500000, 1, 71, 2, 2, 2, 6, 0, 3, 4, 0, 0x0}, { 35500000, 44375000, 1, 74, 3, 1, 1, 25, 0, 1, 1, 0, 0x0}, { 36000000, 36000000, 1, 36, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, { 36000000, 45000000, 1, 45, 2, 1, 1, 15, 0, 1, 1, 0, 0x0}, { 40000000, 40000000, 1, 40, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, { 40000000, 50000000, 1, 50, 2, 1, 1, 15, 0, 1, 1, 0, 0x0}, { 49500000, 49500000, 1, 66, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 49500000, 61875000, 1, 165, 1, 3, 3, 10, 0, 3, 4, 0, 0x0}, { 50000000, 50000000, 1, 50, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, { 50000000, 62500000, 1, 125, 2, 2, 2, 15, 0, 2, 2, 0, 0x0}, { 54000000, 54000000, 1, 36, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, { 54000000, 67500000, 1, 45, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, { 56250000, 56250000, 1, 75, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 56250000, 70312500, 1, 117, 3, 1, 1, 25, 0, 1, 1, 0, 0x0}, { 59341000, 59341000, 1, 118, 2, 2, 2, 6, 0, 3, 4, 0, 0xae978d}, { 59341000, 74176250, 2, 148, 2, 1, 1, 15, 0, 1, 1, 0, 0x5a3d70}, { 59400000, 59400000, 1, 99, 3, 1, 1, 1, 3, 3, 4, 0, 0x0}, { 59400000, 74250000, 1, 99, 0, 3, 3, 1, 3, 3, 4, 0, 0x0}, { 65000000, 65000000, 1, 65, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, { 65000000, 81250000, 3, 325, 0, 3, 3, 1, 3, 3, 4, 0, 0x0}, { 68250000, 68250000, 1, 91, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 68250000, 85312500, 1, 142, 3, 1, 1, 25, 0, 1, 1, 0, 0x0}, { 71000000, 71000000, 1, 71, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, { 71000000, 88750000, 3, 355, 0, 3, 3, 1, 3, 3, 4, 0, 0x0}, { 72000000, 72000000, 1, 36, 2, 0, 0, 1, 1, 2, 2, 0, 0x0}, { 72000000, 90000000, 1, 60, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, { 73250000, 73250000, 3, 293, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 73250000, 91562500, 1, 61, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, { 74176000, 74176000, 1, 37, 2, 0, 0, 1, 1, 2, 2, 0, 0x16872b}, { 74176000, 92720000, 2, 185, 2, 1, 1, 15, 0, 1, 1, 0, 0x70a3d7}, { 74250000, 74250000, 1, 99, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 74250000, 92812500, 4, 495, 0, 3, 3, 1, 3, 3, 4, 0, 0x0}, { 75000000, 75000000, 1, 50, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, { 75000000, 93750000, 1, 125, 0, 3, 3, 1, 3, 3, 4, 0, 0x0}, { 78750000, 78750000, 1, 105, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 78750000, 98437500, 1, 164, 3, 1, 1, 25, 0, 1, 1, 0, 0x0}, { 79500000, 79500000, 1, 53, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, { 79500000, 99375000, 1, 199, 2, 2, 2, 15, 0, 2, 2, 0, 0x0}, { 83500000, 83500000, 2, 167, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, { 83500000, 104375000, 1, 104, 2, 1, 1, 15, 0, 1, 1, 0, 0x600000}, { 85500000, 85500000, 1, 57, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, { 85500000, 106875000, 1, 178, 3, 1, 1, 25, 0, 1, 1, 0, 0x0}, { 85750000, 85750000, 3, 343, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 85750000, 107187500, 1, 143, 0, 3, 3, 1, 3, 3, 4, 0, 0x0}, { 88750000, 88750000, 3, 355, 0, 3, 3, 1, 2, 3, 4, 0, 0x0}, { 88750000, 110937500, 1, 110, 2, 1, 1, 15, 0, 1, 1, 0, 0xf00000}, { 94500000, 94500000, 1, 63, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, { 94500000, 118125000, 1, 197, 3, 1, 1, 25, 0, 1, 1, 0, 0x0}, {101000000, 101000000, 1, 101, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, {101000000, 126250000, 1, 42, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {102250000, 102250000, 4, 409, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, {102250000, 127812500, 1, 128, 2, 1, 1, 15, 0, 1, 1, 0, 0x0}, {106500000, 106500000, 1, 71, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, {106500000, 133125000, 1, 133, 2, 1, 1, 15, 0, 1, 1, 0, 0x0}, {108000000, 108000000, 1, 36, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {108000000, 135000000, 1, 45, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {115500000, 115500000, 1, 77, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, {115500000, 144375000, 1, 48, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {117500000, 117500000, 2, 235, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, {117500000, 146875000, 1, 49, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {119000000, 119000000, 1, 119, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, {119000000, 148750000, 3, 148, 0, 1, 1, 1, 3, 1, 1, 0, 0xc00000}, {121750000, 121750000, 4, 487, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, {121750000, 152187500, 1, 203, 0, 3, 3, 1, 3, 3, 4, 0, 0x0}, {122500000, 122500000, 2, 245, 2, 1, 1, 1, 1, 3, 4, 0, 0x0}, {122500000, 153125000, 1, 51, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {135000000, 135000000, 1, 45, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {135000000, 168750000, 1, 169, 2, 1, 1, 15, 0, 1, 1, 0, 0x0}, {136750000, 136750000, 1, 68, 2, 0, 0, 1, 1, 2, 2, 0, 0x600000}, {136750000, 170937500, 1, 113, 0, 2, 2, 1, 3, 2, 2, 0, 0xf5554f}, {140250000, 140250000, 2, 187, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, {140250000, 175312500, 1, 117, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, {146250000, 146250000, 2, 195, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, {146250000, 182812500, 1, 61, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {148250000, 148250000, 3, 222, 2, 0, 0, 1, 1, 2, 2, 0, 0x600000}, {148250000, 185312500, 1, 123, 0, 2, 2, 1, 3, 2, 2, 0, 0x8aaab0}, {148352000, 148352000, 2, 148, 2, 0, 0, 1, 1, 2, 2, 0, 0x5a1cac}, {148352000, 185440000, 3, 185, 0, 1, 1, 1, 3, 1, 1, 0, 0x70a3d7}, {148500000, 148500000, 1, 99, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, {148500000, 185625000, 4, 495, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, {154000000, 154000000, 1, 77, 2, 0, 0, 1, 1, 2, 2, 0, 0x0}, {154000000, 192500000, 1, 64, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {156000000, 156000000, 1, 52, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {156000000, 195000000, 1, 65, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {156750000, 156750000, 2, 209, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, {156750000, 195937500, 1, 196, 2, 1, 1, 15, 0, 1, 1, 0, 0x0}, {157000000, 157000000, 2, 157, 2, 0, 0, 1, 1, 2, 2, 0, 0x0}, {157000000, 196250000, 1, 131, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, {157500000, 157500000, 1, 105, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, {157500000, 196875000, 1, 197, 2, 1, 1, 15, 0, 1, 1, 0, 0x0}, {162000000, 162000000, 1, 54, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {162000000, 202500000, 2, 135, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {175500000, 175500000, 1, 117, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, {175500000, 219375000, 1, 73, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {179500000, 179500000, 3, 359, 0, 2, 2, 1, 0, 3, 4, 0, 0x0}, {179500000, 224375000, 1, 75, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {182750000, 182750000, 1, 91, 2, 0, 0, 1, 1, 2, 2, 0, 0x600000}, {182750000, 228437500, 1, 152, 0, 2, 2, 1, 3, 2, 2, 0, 0x4aaab0}, {182750000, 228437500, 1, 152, 0, 2, 2, 1, 3, 2, 2, 0, 0x4aaab0}, {187000000, 187000000, 2, 187, 2, 0, 0, 1, 1, 2, 2, 0, 0x0}, {187000000, 233750000, 1, 39, 0, 0, 0, 1, 3, 0, 0, 1, 0x0}, {187250000, 187250000, 3, 280, 2, 0, 0, 1, 1, 2, 2, 0, 0xe00000}, {187250000, 234062500, 1, 156, 0, 2, 2, 1, 3, 2, 2, 0, 0xaaab0}, {189000000, 189000000, 1, 63, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {189000000, 236250000, 1, 79, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {193250000, 193250000, 3, 289, 2, 0, 0, 1, 1, 2, 2, 0, 0xe00000}, {193250000, 241562500, 1, 161, 0, 2, 2, 1, 3, 2, 2, 0, 0xaaab0}, {202500000, 202500000, 2, 135, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {202500000, 253125000, 1, 169, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, {204750000, 204750000, 4, 273, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {204750000, 255937500, 1, 171, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, {208000000, 208000000, 1, 104, 2, 0, 0, 1, 1, 2, 2, 0, 0x0}, {208000000, 260000000, 1, 173, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, {214750000, 214750000, 1, 107, 2, 0, 0, 1, 1, 2, 2, 0, 0x600000}, {214750000, 268437500, 1, 178, 0, 2, 2, 1, 3, 2, 2, 0, 0xf5554f}, {218250000, 218250000, 4, 291, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {218250000, 272812500, 1, 91, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {229500000, 229500000, 2, 153, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {229500000, 286875000, 1, 191, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, {234000000, 234000000, 1, 39, 0, 0, 0, 1, 0, 1, 1, 0, 0x0}, {234000000, 292500000, 1, 195, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, {241500000, 241500000, 2, 161, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {241500000, 301875000, 1, 201, 0, 2, 2, 1, 3, 2, 2, 0, 0x0}, {245250000, 245250000, 4, 327, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {245250000, 306562500, 1, 51, 0, 0, 0, 1, 3, 0, 0, 1, 0x0}, {245500000, 245500000, 4, 491, 2, 0, 0, 1, 1, 2, 2, 0, 0x0}, {245500000, 306875000, 1, 51, 0, 0, 0, 1, 3, 0, 0, 1, 0x0}, {261000000, 261000000, 1, 87, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {261000000, 326250000, 1, 109, 0, 1, 1, 1, 3, 1, 1, 0, 0x0}, {268250000, 268250000, 9, 402, 0, 0, 0, 1, 0, 1, 1, 0, 0x600000}, {268250000, 335312500, 1, 111, 0, 1, 1, 1, 3, 1, 1, 0, 0xc5554f}, {268500000, 268500000, 2, 179, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {268500000, 335625000, 1, 56, 0, 0, 0, 1, 3, 0, 0, 1, 0x0}, {281250000, 281250000, 4, 375, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {281250000, 351562500, 1, 117, 0, 3, 1, 1, 3, 1, 1, 0, 0x0}, {288000000, 288000000, 1, 48, 0, 0, 0, 1, 0, 1, 1, 0, 0x0}, {288000000, 360000000, 1, 60, 0, 2, 0, 1, 3, 0, 0, 1, 0x0}, {296703000, 296703000, 1, 49, 0, 0, 0, 1, 0, 1, 1, 0, 0x7353f7}, {296703000, 370878750, 1, 123, 0, 3, 1, 1, 3, 1, 1, 0, 0xa051eb}, {297000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {297000000, 371250000, 4, 495, 0, 3, 1, 1, 3, 1, 1, 0, 0x0}, {312250000, 312250000, 9, 468, 0, 0, 0, 1, 0, 1, 1, 0, 0x600000}, {312250000, 390312500, 1, 130, 0, 3, 1, 1, 3, 1, 1, 0, 0x1aaab0}, {317000000, 317000000, 3, 317, 0, 1, 1, 1, 0, 2, 2, 0, 0x0}, {317000000, 396250000, 1, 66, 0, 2, 0, 1, 3, 0, 0, 1, 0x0}, {319750000, 319750000, 3, 159, 0, 0, 0, 1, 0, 1, 1, 0, 0xe00000}, {319750000, 399687500, 3, 199, 0, 2, 0, 1, 3, 0, 0, 1, 0xd80000}, {333250000, 333250000, 9, 499, 0, 0, 0, 1, 0, 1, 1, 0, 0xe00000}, {333250000, 416562500, 1, 138, 0, 3, 1, 1, 3, 1, 1, 0, 0xdaaab0}, {348500000, 348500000, 9, 522, 0, 2, 0, 1, 0, 1, 1, 0, 0xc00000}, {348500000, 435625000, 1, 145, 0, 3, 1, 1, 3, 1, 1, 0, 0x35554f}, {356500000, 356500000, 9, 534, 0, 2, 0, 1, 0, 1, 1, 0, 0xc00000}, {356500000, 445625000, 1, 148, 0, 3, 1, 1, 3, 1, 1, 0, 0x8aaab0}, {380500000, 380500000, 9, 570, 0, 2, 0, 1, 0, 1, 1, 0, 0xc00000}, {380500000, 475625000, 1, 158, 0, 3, 1, 1, 3, 1, 1, 0, 0x8aaab0}, {443250000, 443250000, 1, 73, 0, 2, 0, 1, 0, 1, 1, 0, 0xe00000}, {443250000, 554062500, 1, 92, 0, 2, 0, 1, 3, 0, 0, 1, 0x580000}, {505250000, 505250000, 9, 757, 0, 2, 0, 1, 0, 1, 1, 0, 0xe00000}, {552750000, 552750000, 3, 276, 0, 2, 0, 1, 0, 1, 1, 0, 0x600000}, {593407000, 296703500, 3, 296, 0, 1, 1, 1, 0, 1, 1, 0, 0xb41893}, {593407000, 370879375, 4, 494, 0, 3, 1, 1, 3, 0, 0, 1, 0x817e4a}, {593407000, 593407000, 3, 296, 0, 2, 0, 1, 0, 1, 1, 0, 0xb41893}, {594000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 1, 1, 0, 0x0}, {594000000, 371250000, 4, 495, 0, 3, 1, 1, 3, 0, 0, 1, 0x0}, {594000000, 594000000, 1, 99, 0, 2, 0, 1, 0, 1, 1, 0, 0x0}, { /* sentinel */ } }; static const struct post_pll_config post_pll_cfg_table[] = { {33750000, 1, 40, 8, 1}, {33750000, 1, 80, 8, 2}, {74250000, 1, 40, 8, 1}, {74250000, 18, 80, 8, 2}, {148500000, 2, 40, 4, 3}, {297000000, 4, 40, 2, 3}, {594000000, 8, 40, 1, 3}, { /* sentinel */ } }; /* phy tuning values for an undocumented set of registers */ static const struct phy_config rk3228_phy_cfg[] = { { 165000000, { 0xaa, 0x00, 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }, }, { 340000000, { 0xaa, 0x15, 0x6a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }, }, { 594000000, { 0xaa, 0x15, 0x7a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }, }, { /* sentinel */ }, }; /* phy tuning values for an undocumented set of registers */ static const struct phy_config rk3328_phy_cfg[] = { { 165000000, { 0x07, 0x0a, 0x0a, 0x0a, 0x00, 0x00, 0x08, 0x08, 0x08, 0x00, 0xac, 0xcc, 0xcc, 0xcc, }, }, { 340000000, { 0x0b, 0x0d, 0x0d, 0x0d, 0x07, 0x15, 0x08, 0x08, 0x08, 0x3f, 0xac, 0xcc, 0xcd, 0xdd, }, }, { 594000000, { 0x10, 0x1a, 0x1a, 0x1a, 0x07, 0x15, 0x08, 0x08, 0x08, 0x00, 0xac, 0xcc, 0xcc, 0xcc, }, }, { /* sentinel */ }, }; static inline struct inno_hdmi_phy *to_inno_hdmi_phy(struct clk_hw *hw) { return container_of(hw, struct inno_hdmi_phy, hw); } /* * The register description of the IP block does not use any distinct names * but instead the databook simply numbers the registers in one-increments. * As the registers are obviously 32bit sized, the inno_* functions * translate the databook register names to the actual registers addresses. */ static inline void inno_write(struct inno_hdmi_phy *inno, u32 reg, u8 val) { regmap_write(inno->regmap, reg * 4, val); } static inline u8 inno_read(struct inno_hdmi_phy *inno, u32 reg) { u32 val; regmap_read(inno->regmap, reg * 4, &val); return val; } static inline void inno_update_bits(struct inno_hdmi_phy *inno, u8 reg, u8 mask, u8 val) { regmap_update_bits(inno->regmap, reg * 4, mask, val); } #define inno_poll(inno, reg, val, cond, sleep_us, timeout_us) \ regmap_read_poll_timeout((inno)->regmap, (reg) * 4, val, cond, \ sleep_us, timeout_us) static unsigned long inno_hdmi_phy_get_tmdsclk(struct inno_hdmi_phy *inno, unsigned long rate) { int bus_width = phy_get_bus_width(inno->phy); switch (bus_width) { case 4: case 5: case 6: case 10: case 12: case 16: return (u64)rate * bus_width / 8; default: return rate; } } static irqreturn_t inno_hdmi_phy_rk3328_hardirq(int irq, void *dev_id) { struct inno_hdmi_phy *inno = dev_id; int intr_stat1, intr_stat2, intr_stat3; intr_stat1 = inno_read(inno, 0x04); intr_stat2 = inno_read(inno, 0x06); intr_stat3 = inno_read(inno, 0x08); if (intr_stat1) inno_write(inno, 0x04, intr_stat1); if (intr_stat2) inno_write(inno, 0x06, intr_stat2); if (intr_stat3) inno_write(inno, 0x08, intr_stat3); if (intr_stat1 || intr_stat2 || intr_stat3) return IRQ_WAKE_THREAD; return IRQ_HANDLED; } static irqreturn_t inno_hdmi_phy_rk3328_irq(int irq, void *dev_id) { struct inno_hdmi_phy *inno = dev_id; inno_update_bits(inno, 0x02, RK3328_PDATA_EN, 0); usleep_range(10, 20); inno_update_bits(inno, 0x02, RK3328_PDATA_EN, RK3328_PDATA_EN); return IRQ_HANDLED; } static int inno_hdmi_phy_power_on(struct phy *phy) { struct inno_hdmi_phy *inno = phy_get_drvdata(phy); const struct post_pll_config *cfg = post_pll_cfg_table; const struct phy_config *phy_cfg = inno->plat_data->phy_cfg_table; unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, inno->pixclock); int ret; if (!tmdsclock) { dev_err(inno->dev, "TMDS clock is zero!\n"); return -EINVAL; } if (!inno->plat_data->ops->power_on) return -EINVAL; for (; cfg->tmdsclock != 0; cfg++) if (tmdsclock <= cfg->tmdsclock && cfg->version & inno->chip_version) break; for (; phy_cfg->tmdsclock != 0; phy_cfg++) if (tmdsclock <= phy_cfg->tmdsclock) break; if (cfg->tmdsclock == 0 || phy_cfg->tmdsclock == 0) return -EINVAL; dev_dbg(inno->dev, "Inno HDMI PHY Power On\n"); inno->plat_data->clk_ops->set_rate(&inno->hw, inno->pixclock, 24000000); ret = clk_prepare_enable(inno->phyclk); if (ret) return ret; ret = inno->plat_data->ops->power_on(inno, cfg, phy_cfg); if (ret) { clk_disable_unprepare(inno->phyclk); return ret; } return 0; } static int inno_hdmi_phy_power_off(struct phy *phy) { struct inno_hdmi_phy *inno = phy_get_drvdata(phy); if (!inno->plat_data->ops->power_off) return -EINVAL; inno->plat_data->ops->power_off(inno); clk_disable_unprepare(inno->phyclk); inno->tmdsclock = 0; dev_dbg(inno->dev, "Inno HDMI PHY Power Off\n"); return 0; } static const struct phy_ops inno_hdmi_phy_ops = { .owner = THIS_MODULE, .power_on = inno_hdmi_phy_power_on, .power_off = inno_hdmi_phy_power_off, }; static const struct pre_pll_config *inno_hdmi_phy_get_pre_pll_cfg(struct inno_hdmi_phy *inno, unsigned long rate) { const struct pre_pll_config *cfg = pre_pll_cfg_table; unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate); for (; cfg->pixclock != 0; cfg++) if (cfg->pixclock == rate && cfg->tmdsclock == tmdsclock) break; if (cfg->pixclock == 0) return ERR_PTR(-EINVAL); return cfg; } static int inno_hdmi_phy_rk3228_clk_is_prepared(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); u8 status; status = inno_read(inno, 0xe0) & RK3228_PRE_PLL_POWER_DOWN; return status ? 0 : 1; } static int inno_hdmi_phy_rk3228_clk_prepare(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, 0); return 0; } static void inno_hdmi_phy_rk3228_clk_unprepare(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, RK3228_PRE_PLL_POWER_DOWN); } static unsigned long inno_hdmi_phy_rk3228_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); u8 nd, no_a, no_b, no_d; u64 vco; u16 nf; nd = inno_read(inno, 0xe2) & RK3228_PRE_PLL_PRE_DIV_MASK; nf = (inno_read(inno, 0xe2) & RK3228_PRE_PLL_FB_DIV_8_MASK) << 1; nf |= inno_read(inno, 0xe3); vco = parent_rate * nf; if (inno_read(inno, 0xe2) & RK3228_PCLK_VCO_DIV_5_MASK) { do_div(vco, nd * 5); } else { no_a = inno_read(inno, 0xe4) & RK3228_PRE_PLL_PCLK_DIV_A_MASK; if (!no_a) no_a = 1; no_b = inno_read(inno, 0xe4) & RK3228_PRE_PLL_PCLK_DIV_B_MASK; no_b >>= RK3228_PRE_PLL_PCLK_DIV_B_SHIFT; no_b += 2; no_d = inno_read(inno, 0xe5) & RK3228_PRE_PLL_PCLK_DIV_D_MASK; do_div(vco, (nd * (no_a == 1 ? no_b : no_a) * no_d * 2)); } inno->pixclock = vco; dev_dbg(inno->dev, "%s rate %lu\n", __func__, inno->pixclock); return vco; } static long inno_hdmi_phy_rk3228_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { const struct pre_pll_config *cfg = pre_pll_cfg_table; rate = (rate / 1000) * 1000; for (; cfg->pixclock != 0; cfg++) if (cfg->pixclock == rate && !cfg->fracdiv) break; if (cfg->pixclock == 0) return -EINVAL; return cfg->pixclock; } static int inno_hdmi_phy_rk3228_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); const struct pre_pll_config *cfg; unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate); u32 v; int ret; dev_dbg(inno->dev, "%s rate %lu tmdsclk %lu\n", __func__, rate, tmdsclock); if (inno->pixclock == rate && inno->tmdsclock == tmdsclock) return 0; cfg = inno_hdmi_phy_get_pre_pll_cfg(inno, rate); if (IS_ERR(cfg)) return PTR_ERR(cfg); /* Power down PRE-PLL */ inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, RK3228_PRE_PLL_POWER_DOWN); inno_update_bits(inno, 0xe2, RK3228_PRE_PLL_FB_DIV_8_MASK | RK3228_PCLK_VCO_DIV_5_MASK | RK3228_PRE_PLL_PRE_DIV_MASK, RK3228_PRE_PLL_FB_DIV_8(cfg->fbdiv) | RK3228_PCLK_VCO_DIV_5(cfg->vco_div_5_en) | RK3228_PRE_PLL_PRE_DIV(cfg->prediv)); inno_write(inno, 0xe3, RK3228_PRE_PLL_FB_DIV_7_0(cfg->fbdiv)); inno_update_bits(inno, 0xe4, RK3228_PRE_PLL_PCLK_DIV_B_MASK | RK3228_PRE_PLL_PCLK_DIV_A_MASK, RK3228_PRE_PLL_PCLK_DIV_B(cfg->pclk_div_b) | RK3228_PRE_PLL_PCLK_DIV_A(cfg->pclk_div_a)); inno_update_bits(inno, 0xe5, RK3228_PRE_PLL_PCLK_DIV_C_MASK | RK3228_PRE_PLL_PCLK_DIV_D_MASK, RK3228_PRE_PLL_PCLK_DIV_C(cfg->pclk_div_c) | RK3228_PRE_PLL_PCLK_DIV_D(cfg->pclk_div_d)); inno_update_bits(inno, 0xe6, RK3228_PRE_PLL_TMDSCLK_DIV_C_MASK | RK3228_PRE_PLL_TMDSCLK_DIV_A_MASK | RK3228_PRE_PLL_TMDSCLK_DIV_B_MASK, RK3228_PRE_PLL_TMDSCLK_DIV_C(cfg->tmds_div_c) | RK3228_PRE_PLL_TMDSCLK_DIV_A(cfg->tmds_div_a) | RK3228_PRE_PLL_TMDSCLK_DIV_B(cfg->tmds_div_b)); /* Power up PRE-PLL */ inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, 0); /* Wait for Pre-PLL lock */ ret = inno_poll(inno, 0xe8, v, v & RK3228_PRE_PLL_LOCK_STATUS, 100, 100000); if (ret) { dev_err(inno->dev, "Pre-PLL locking failed\n"); return ret; } inno->pixclock = rate; inno->tmdsclock = tmdsclock; return 0; } static const struct clk_ops inno_hdmi_phy_rk3228_clk_ops = { .prepare = inno_hdmi_phy_rk3228_clk_prepare, .unprepare = inno_hdmi_phy_rk3228_clk_unprepare, .is_prepared = inno_hdmi_phy_rk3228_clk_is_prepared, .recalc_rate = inno_hdmi_phy_rk3228_clk_recalc_rate, .round_rate = inno_hdmi_phy_rk3228_clk_round_rate, .set_rate = inno_hdmi_phy_rk3228_clk_set_rate, }; static int inno_hdmi_phy_rk3328_clk_is_prepared(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); u8 status; status = inno_read(inno, 0xa0) & RK3328_PRE_PLL_POWER_DOWN; return status ? 0 : 1; } static int inno_hdmi_phy_rk3328_clk_prepare(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, 0); return 0; } static void inno_hdmi_phy_rk3328_clk_unprepare(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, RK3328_PRE_PLL_POWER_DOWN); } static unsigned long inno_hdmi_phy_rk3328_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); unsigned long frac; u8 nd, no_a, no_b, no_d; u64 vco; u16 nf; nd = inno_read(inno, 0xa1) & RK3328_PRE_PLL_PRE_DIV_MASK; nf = ((inno_read(inno, 0xa2) & RK3328_PRE_PLL_FB_DIV_11_8_MASK) << 8); nf |= inno_read(inno, 0xa3); vco = parent_rate * nf; if (!(inno_read(inno, 0xa2) & RK3328_PRE_PLL_FRAC_DIV_DISABLE)) { frac = inno_read(inno, 0xd3) | (inno_read(inno, 0xd2) << 8) | (inno_read(inno, 0xd1) << 16); vco += DIV_ROUND_CLOSEST(parent_rate * frac, (1 << 24)); } if (inno_read(inno, 0xa0) & RK3328_PCLK_VCO_DIV_5_MASK) { do_div(vco, nd * 5); } else { no_a = inno_read(inno, 0xa5) & RK3328_PRE_PLL_PCLK_DIV_A_MASK; no_b = inno_read(inno, 0xa5) & RK3328_PRE_PLL_PCLK_DIV_B_MASK; no_b >>= RK3328_PRE_PLL_PCLK_DIV_B_SHIFT; no_b += 2; no_d = inno_read(inno, 0xa6) & RK3328_PRE_PLL_PCLK_DIV_D_MASK; do_div(vco, (nd * (no_a == 1 ? no_b : no_a) * no_d * 2)); } inno->pixclock = DIV_ROUND_CLOSEST((unsigned long)vco, 1000) * 1000; dev_dbg(inno->dev, "%s rate %lu vco %llu\n", __func__, inno->pixclock, vco); return inno->pixclock; } static long inno_hdmi_phy_rk3328_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { const struct pre_pll_config *cfg = pre_pll_cfg_table; rate = (rate / 1000) * 1000; for (; cfg->pixclock != 0; cfg++) if (cfg->pixclock == rate) break; if (cfg->pixclock == 0) return -EINVAL; return cfg->pixclock; } static int inno_hdmi_phy_rk3328_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); const struct pre_pll_config *cfg; unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate); u32 val; int ret; dev_dbg(inno->dev, "%s rate %lu tmdsclk %lu\n", __func__, rate, tmdsclock); if (inno->pixclock == rate && inno->tmdsclock == tmdsclock) return 0; cfg = inno_hdmi_phy_get_pre_pll_cfg(inno, rate); if (IS_ERR(cfg)) return PTR_ERR(cfg); inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, RK3328_PRE_PLL_POWER_DOWN); /* Configure pre-pll */ inno_update_bits(inno, 0xa0, RK3328_PCLK_VCO_DIV_5_MASK, RK3328_PCLK_VCO_DIV_5(cfg->vco_div_5_en)); inno_write(inno, 0xa1, RK3328_PRE_PLL_PRE_DIV(cfg->prediv)); val = RK3328_SPREAD_SPECTRUM_MOD_DISABLE; if (!cfg->fracdiv) val |= RK3328_PRE_PLL_FRAC_DIV_DISABLE; inno_write(inno, 0xa2, RK3328_PRE_PLL_FB_DIV_11_8(cfg->fbdiv) | val); inno_write(inno, 0xa3, RK3328_PRE_PLL_FB_DIV_7_0(cfg->fbdiv)); inno_write(inno, 0xa5, RK3328_PRE_PLL_PCLK_DIV_A(cfg->pclk_div_a) | RK3328_PRE_PLL_PCLK_DIV_B(cfg->pclk_div_b)); inno_write(inno, 0xa6, RK3328_PRE_PLL_PCLK_DIV_C(cfg->pclk_div_c) | RK3328_PRE_PLL_PCLK_DIV_D(cfg->pclk_div_d)); inno_write(inno, 0xa4, RK3328_PRE_PLL_TMDSCLK_DIV_C(cfg->tmds_div_c) | RK3328_PRE_PLL_TMDSCLK_DIV_A(cfg->tmds_div_a) | RK3328_PRE_PLL_TMDSCLK_DIV_B(cfg->tmds_div_b)); inno_write(inno, 0xd3, RK3328_PRE_PLL_FRAC_DIV_7_0(cfg->fracdiv)); inno_write(inno, 0xd2, RK3328_PRE_PLL_FRAC_DIV_15_8(cfg->fracdiv)); inno_write(inno, 0xd1, RK3328_PRE_PLL_FRAC_DIV_23_16(cfg->fracdiv)); inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, 0); /* Wait for Pre-PLL lock */ ret = inno_poll(inno, 0xa9, val, val & RK3328_PRE_PLL_LOCK_STATUS, 1000, 10000); if (ret) { dev_err(inno->dev, "Pre-PLL locking failed\n"); return ret; } inno->pixclock = rate; inno->tmdsclock = tmdsclock; return 0; } static const struct clk_ops inno_hdmi_phy_rk3328_clk_ops = { .prepare = inno_hdmi_phy_rk3328_clk_prepare, .unprepare = inno_hdmi_phy_rk3328_clk_unprepare, .is_prepared = inno_hdmi_phy_rk3328_clk_is_prepared, .recalc_rate = inno_hdmi_phy_rk3328_clk_recalc_rate, .round_rate = inno_hdmi_phy_rk3328_clk_round_rate, .set_rate = inno_hdmi_phy_rk3328_clk_set_rate, }; static int inno_hdmi_phy_clk_register(struct inno_hdmi_phy *inno) { struct device *dev = inno->dev; struct device_node *np = dev->of_node; struct clk_init_data init; const char *parent_name; int ret; parent_name = __clk_get_name(inno->refoclk); init.parent_names = &parent_name; init.num_parents = 1; init.flags = 0; init.name = "pin_hd20_pclk"; init.ops = inno->plat_data->clk_ops; /* optional override of the clock name */ of_property_read_string(np, "clock-output-names", &init.name); inno->hw.init = &init; inno->phyclk = devm_clk_register(dev, &inno->hw); if (IS_ERR(inno->phyclk)) { ret = PTR_ERR(inno->phyclk); dev_err(dev, "failed to register clock: %d\n", ret); return ret; } ret = of_clk_add_provider(np, of_clk_src_simple_get, inno->phyclk); if (ret) { dev_err(dev, "failed to register clock provider: %d\n", ret); return ret; } return 0; } static int inno_hdmi_phy_rk3228_init(struct inno_hdmi_phy *inno) { /* * Use phy internal register control * rxsense/poweron/pllpd/pdataen signal. */ inno_write(inno, 0x01, RK3228_BYPASS_RXSENSE_EN | RK3228_BYPASS_PWRON_EN | RK3228_BYPASS_PLLPD_EN); inno_update_bits(inno, 0x02, RK3228_BYPASS_PDATA_EN, RK3228_BYPASS_PDATA_EN); /* manual power down post-PLL */ inno_update_bits(inno, 0xaa, RK3228_POST_PLL_CTRL_MANUAL, RK3228_POST_PLL_CTRL_MANUAL); inno->chip_version = 1; return 0; } static int inno_hdmi_phy_rk3228_power_on(struct inno_hdmi_phy *inno, const struct post_pll_config *cfg, const struct phy_config *phy_cfg) { int ret; u32 v; inno_update_bits(inno, 0x02, RK3228_PDATAEN_DISABLE, RK3228_PDATAEN_DISABLE); inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN | RK3228_POST_PLL_POWER_DOWN, RK3228_PRE_PLL_POWER_DOWN | RK3228_POST_PLL_POWER_DOWN); /* Post-PLL update */ inno_update_bits(inno, 0xe9, RK3228_POST_PLL_PRE_DIV_MASK, RK3228_POST_PLL_PRE_DIV(cfg->prediv)); inno_update_bits(inno, 0xeb, RK3228_POST_PLL_FB_DIV_8_MASK, RK3228_POST_PLL_FB_DIV_8(cfg->fbdiv)); inno_write(inno, 0xea, RK3228_POST_PLL_FB_DIV_7_0(cfg->fbdiv)); if (cfg->postdiv == 1) { inno_update_bits(inno, 0xe9, RK3228_POST_PLL_POST_DIV_ENABLE, 0); } else { int div = cfg->postdiv / 2 - 1; inno_update_bits(inno, 0xe9, RK3228_POST_PLL_POST_DIV_ENABLE, RK3228_POST_PLL_POST_DIV_ENABLE); inno_update_bits(inno, 0xeb, RK3228_POST_PLL_POST_DIV_MASK, RK3228_POST_PLL_POST_DIV(div)); } for (v = 0; v < 4; v++) inno_write(inno, 0xef + v, phy_cfg->regs[v]); inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN | RK3228_POST_PLL_POWER_DOWN, 0); inno_update_bits(inno, 0xe1, RK3228_BANDGAP_ENABLE, RK3228_BANDGAP_ENABLE); inno_update_bits(inno, 0xe1, RK3228_TMDS_DRIVER_ENABLE, RK3228_TMDS_DRIVER_ENABLE); /* Wait for post PLL lock */ ret = inno_poll(inno, 0xeb, v, v & RK3228_POST_PLL_LOCK_STATUS, 100, 100000); if (ret) { dev_err(inno->dev, "Post-PLL locking failed\n"); return ret; } if (cfg->tmdsclock > 340000000) msleep(100); inno_update_bits(inno, 0x02, RK3228_PDATAEN_DISABLE, 0); return 0; } static void inno_hdmi_phy_rk3228_power_off(struct inno_hdmi_phy *inno) { inno_update_bits(inno, 0xe1, RK3228_TMDS_DRIVER_ENABLE, 0); inno_update_bits(inno, 0xe1, RK3228_BANDGAP_ENABLE, 0); inno_update_bits(inno, 0xe0, RK3228_POST_PLL_POWER_DOWN, RK3228_POST_PLL_POWER_DOWN); } static const struct inno_hdmi_phy_ops rk3228_hdmi_phy_ops = { .init = inno_hdmi_phy_rk3228_init, .power_on = inno_hdmi_phy_rk3228_power_on, .power_off = inno_hdmi_phy_rk3228_power_off, }; static int inno_hdmi_phy_rk3328_init(struct inno_hdmi_phy *inno) { struct nvmem_cell *cell; unsigned char *efuse_buf; size_t len; /* * Use phy internal register control * rxsense/poweron/pllpd/pdataen signal. */ inno_write(inno, 0x01, RK3328_BYPASS_RXSENSE_EN | RK3328_BYPASS_POWERON_EN | RK3328_BYPASS_PLLPD_EN); inno_write(inno, 0x02, RK3328_INT_POL_HIGH | RK3328_BYPASS_PDATA_EN | RK3328_PDATA_EN); /* Disable phy irq */ inno_write(inno, 0x05, 0); inno_write(inno, 0x07, 0); /* try to read the chip-version */ inno->chip_version = 1; cell = nvmem_cell_get(inno->dev, "cpu-version"); if (IS_ERR(cell)) { if (PTR_ERR(cell) == -EPROBE_DEFER) return -EPROBE_DEFER; return 0; } efuse_buf = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(efuse_buf)) return 0; if (len == 1) inno->chip_version = efuse_buf[0] + 1; kfree(efuse_buf); return 0; } static int inno_hdmi_phy_rk3328_power_on(struct inno_hdmi_phy *inno, const struct post_pll_config *cfg, const struct phy_config *phy_cfg) { int ret; u32 v; inno_update_bits(inno, 0x02, RK3328_PDATA_EN, 0); inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN, RK3328_POST_PLL_POWER_DOWN); inno_write(inno, 0xac, RK3328_POST_PLL_FB_DIV_7_0(cfg->fbdiv)); if (cfg->postdiv == 1) { inno_write(inno, 0xab, RK3328_POST_PLL_FB_DIV_8(cfg->fbdiv) | RK3328_POST_PLL_PRE_DIV(cfg->prediv)); inno_write(inno, 0xaa, RK3328_POST_PLL_REFCLK_SEL_TMDS | RK3328_POST_PLL_POWER_DOWN); } else { v = (cfg->postdiv / 2) - 1; v &= RK3328_POST_PLL_POST_DIV_MASK; inno_write(inno, 0xad, v); inno_write(inno, 0xab, RK3328_POST_PLL_FB_DIV_8(cfg->fbdiv) | RK3328_POST_PLL_PRE_DIV(cfg->prediv)); inno_write(inno, 0xaa, RK3328_POST_PLL_POST_DIV_ENABLE | RK3328_POST_PLL_REFCLK_SEL_TMDS | RK3328_POST_PLL_POWER_DOWN); } for (v = 0; v < 14; v++) inno_write(inno, 0xb5 + v, phy_cfg->regs[v]); /* set ESD detection threshold for TMDS CLK, D2, D1 and D0 */ for (v = 0; v < 4; v++) inno_update_bits(inno, 0xc8 + v, RK3328_ESD_DETECT_MASK, RK3328_ESD_DETECT_340MV); if (phy_cfg->tmdsclock > 340000000) { /* Set termination resistor to 100ohm */ v = clk_get_rate(inno->sysclk) / 100000; inno_write(inno, 0xc5, RK3328_TERM_RESISTOR_CALIB_SPEED_14_8(v) | RK3328_BYPASS_TERM_RESISTOR_CALIB); inno_write(inno, 0xc6, RK3328_TERM_RESISTOR_CALIB_SPEED_7_0(v)); inno_write(inno, 0xc7, RK3328_TERM_RESISTOR_100); inno_update_bits(inno, 0xc5, RK3328_BYPASS_TERM_RESISTOR_CALIB, 0); } else { inno_write(inno, 0xc5, RK3328_BYPASS_TERM_RESISTOR_CALIB); /* clk termination resistor is 50ohm (parallel resistors) */ if (phy_cfg->tmdsclock > 165000000) inno_update_bits(inno, 0xc8, RK3328_TMDS_TERM_RESIST_MASK, RK3328_TMDS_TERM_RESIST_75 | RK3328_TMDS_TERM_RESIST_150); /* data termination resistor for D2, D1 and D0 is 150ohm */ for (v = 0; v < 3; v++) inno_update_bits(inno, 0xc9 + v, RK3328_TMDS_TERM_RESIST_MASK, RK3328_TMDS_TERM_RESIST_150); } inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN, 0); inno_update_bits(inno, 0xb0, RK3328_BANDGAP_ENABLE, RK3328_BANDGAP_ENABLE); inno_update_bits(inno, 0xb2, RK3328_TMDS_DRIVER_ENABLE, RK3328_TMDS_DRIVER_ENABLE); /* Wait for post PLL lock */ ret = inno_poll(inno, 0xaf, v, v & RK3328_POST_PLL_LOCK_STATUS, 1000, 10000); if (ret) { dev_err(inno->dev, "Post-PLL locking failed\n"); return ret; } if (phy_cfg->tmdsclock > 340000000) msleep(100); inno_update_bits(inno, 0x02, RK3328_PDATA_EN, RK3328_PDATA_EN); /* Enable PHY IRQ */ inno_write(inno, 0x05, RK3328_INT_TMDS_CLK(RK3328_INT_VSS_AGND_ESD_DET) | RK3328_INT_TMDS_D2(RK3328_INT_VSS_AGND_ESD_DET)); inno_write(inno, 0x07, RK3328_INT_TMDS_D1(RK3328_INT_VSS_AGND_ESD_DET) | RK3328_INT_TMDS_D0(RK3328_INT_VSS_AGND_ESD_DET)); return 0; } static void inno_hdmi_phy_rk3328_power_off(struct inno_hdmi_phy *inno) { inno_update_bits(inno, 0xb2, RK3328_TMDS_DRIVER_ENABLE, 0); inno_update_bits(inno, 0xb0, RK3328_BANDGAP_ENABLE, 0); inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN, RK3328_POST_PLL_POWER_DOWN); /* Disable PHY IRQ */ inno_write(inno, 0x05, 0); inno_write(inno, 0x07, 0); } static const struct inno_hdmi_phy_ops rk3328_hdmi_phy_ops = { .init = inno_hdmi_phy_rk3328_init, .power_on = inno_hdmi_phy_rk3328_power_on, .power_off = inno_hdmi_phy_rk3328_power_off, }; static const struct inno_hdmi_phy_drv_data rk3228_hdmi_phy_drv_data = { .ops = &rk3228_hdmi_phy_ops, .clk_ops = &inno_hdmi_phy_rk3228_clk_ops, .phy_cfg_table = rk3228_phy_cfg, }; static const struct inno_hdmi_phy_drv_data rk3328_hdmi_phy_drv_data = { .ops = &rk3328_hdmi_phy_ops, .clk_ops = &inno_hdmi_phy_rk3328_clk_ops, .phy_cfg_table = rk3328_phy_cfg, }; static const struct regmap_config inno_hdmi_phy_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = 0x400, }; static void inno_hdmi_phy_action(void *data) { struct inno_hdmi_phy *inno = data; clk_disable_unprepare(inno->refpclk); clk_disable_unprepare(inno->sysclk); } static int inno_hdmi_phy_probe(struct platform_device *pdev) { struct inno_hdmi_phy *inno; struct phy_provider *phy_provider; void __iomem *regs; int ret; inno = devm_kzalloc(&pdev->dev, sizeof(*inno), GFP_KERNEL); if (!inno) return -ENOMEM; inno->dev = &pdev->dev; inno->plat_data = of_device_get_match_data(inno->dev); if (!inno->plat_data || !inno->plat_data->ops) return -EINVAL; regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(regs)) return PTR_ERR(regs); inno->sysclk = devm_clk_get(inno->dev, "sysclk"); if (IS_ERR(inno->sysclk)) { ret = PTR_ERR(inno->sysclk); dev_err(inno->dev, "failed to get sysclk: %d\n", ret); return ret; } inno->refpclk = devm_clk_get(inno->dev, "refpclk"); if (IS_ERR(inno->refpclk)) { ret = PTR_ERR(inno->refpclk); dev_err(inno->dev, "failed to get ref clock: %d\n", ret); return ret; } inno->refoclk = devm_clk_get(inno->dev, "refoclk"); if (IS_ERR(inno->refoclk)) { ret = PTR_ERR(inno->refoclk); dev_err(inno->dev, "failed to get oscillator-ref clock: %d\n", ret); return ret; } ret = clk_prepare_enable(inno->sysclk); if (ret) { dev_err(inno->dev, "Cannot enable inno phy sysclk: %d\n", ret); return ret; } /* * Refpclk needs to be on, on at least the rk3328 for still * unknown reasons. */ ret = clk_prepare_enable(inno->refpclk); if (ret) { dev_err(inno->dev, "failed to enable refpclk\n"); clk_disable_unprepare(inno->sysclk); return ret; } ret = devm_add_action_or_reset(inno->dev, inno_hdmi_phy_action, inno); if (ret) return ret; inno->regmap = devm_regmap_init_mmio(inno->dev, regs, &inno_hdmi_phy_regmap_config); if (IS_ERR(inno->regmap)) return PTR_ERR(inno->regmap); /* only the newer rk3328 hdmiphy has an interrupt */ inno->irq = platform_get_irq(pdev, 0); if (inno->irq > 0) { ret = devm_request_threaded_irq(inno->dev, inno->irq, inno_hdmi_phy_rk3328_hardirq, inno_hdmi_phy_rk3328_irq, IRQF_SHARED, dev_name(inno->dev), inno); if (ret) return ret; } inno->phy = devm_phy_create(inno->dev, NULL, &inno_hdmi_phy_ops); if (IS_ERR(inno->phy)) { dev_err(inno->dev, "failed to create HDMI PHY\n"); return PTR_ERR(inno->phy); } phy_set_drvdata(inno->phy, inno); phy_set_bus_width(inno->phy, 8); if (inno->plat_data->ops->init) { ret = inno->plat_data->ops->init(inno); if (ret) return ret; } ret = inno_hdmi_phy_clk_register(inno); if (ret) return ret; phy_provider = devm_of_phy_provider_register(inno->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static void inno_hdmi_phy_remove(struct platform_device *pdev) { of_clk_del_provider(pdev->dev.of_node); } static const struct of_device_id inno_hdmi_phy_of_match[] = { { .compatible = "rockchip,rk3228-hdmi-phy", .data = &rk3228_hdmi_phy_drv_data }, { .compatible = "rockchip,rk3328-hdmi-phy", .data = &rk3328_hdmi_phy_drv_data }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, inno_hdmi_phy_of_match); static struct platform_driver inno_hdmi_phy_driver = { .probe = inno_hdmi_phy_probe, .remove_new = inno_hdmi_phy_remove, .driver = { .name = "inno-hdmi-phy", .of_match_table = inno_hdmi_phy_of_match, }, }; module_platform_driver(inno_hdmi_phy_driver); MODULE_AUTHOR("Zheng Yang <[email protected]>"); MODULE_DESCRIPTION("Innosilion HDMI 2.0 Transmitter PHY Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/rockchip/phy-rockchip-inno-hdmi.c
// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Rockchip MIPI Synopsys DPHY RX0 driver * * Copyright (C) 2019 Collabora, Ltd. * * Based on: * * drivers/media/platform/rockchip/isp1/mipi_dphy_sy.c * in https://chromium.googlesource.com/chromiumos/third_party/kernel, * chromeos-4.4 branch. * * Copyright (C) 2017 Fuzhou Rockchip Electronics Co., Ltd. * Jacob Chen <[email protected]> * Shunqian Zheng <[email protected]> */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/phy/phy-mipi-dphy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #define RK3399_GRF_SOC_CON9 0x6224 #define RK3399_GRF_SOC_CON21 0x6254 #define RK3399_GRF_SOC_CON22 0x6258 #define RK3399_GRF_SOC_CON23 0x625c #define RK3399_GRF_SOC_CON24 0x6260 #define RK3399_GRF_SOC_CON25 0x6264 #define RK3399_GRF_SOC_STATUS1 0xe2a4 #define CLOCK_LANE_HS_RX_CONTROL 0x34 #define LANE0_HS_RX_CONTROL 0x44 #define LANE1_HS_RX_CONTROL 0x54 #define LANE2_HS_RX_CONTROL 0x84 #define LANE3_HS_RX_CONTROL 0x94 #define LANES_THS_SETTLE_CONTROL 0x75 #define THS_SETTLE_COUNTER_THRESHOLD 0x04 struct hsfreq_range { u16 range_h; u8 cfg_bit; }; static const struct hsfreq_range rk3399_mipidphy_hsfreq_ranges[] = { { 89, 0x00 }, { 99, 0x10 }, { 109, 0x20 }, { 129, 0x01 }, { 139, 0x11 }, { 149, 0x21 }, { 169, 0x02 }, { 179, 0x12 }, { 199, 0x22 }, { 219, 0x03 }, { 239, 0x13 }, { 249, 0x23 }, { 269, 0x04 }, { 299, 0x14 }, { 329, 0x05 }, { 359, 0x15 }, { 399, 0x25 }, { 449, 0x06 }, { 499, 0x16 }, { 549, 0x07 }, { 599, 0x17 }, { 649, 0x08 }, { 699, 0x18 }, { 749, 0x09 }, { 799, 0x19 }, { 849, 0x29 }, { 899, 0x39 }, { 949, 0x0a }, { 999, 0x1a }, { 1049, 0x2a }, { 1099, 0x3a }, { 1149, 0x0b }, { 1199, 0x1b }, { 1249, 0x2b }, { 1299, 0x3b }, { 1349, 0x0c }, { 1399, 0x1c }, { 1449, 0x2c }, { 1500, 0x3c } }; static const char * const rk3399_mipidphy_clks[] = { "dphy-ref", "dphy-cfg", "grf", }; enum dphy_reg_id { GRF_DPHY_RX0_TURNDISABLE = 0, GRF_DPHY_RX0_FORCERXMODE, GRF_DPHY_RX0_FORCETXSTOPMODE, GRF_DPHY_RX0_ENABLE, GRF_DPHY_RX0_TESTCLR, GRF_DPHY_RX0_TESTCLK, GRF_DPHY_RX0_TESTEN, GRF_DPHY_RX0_TESTDIN, GRF_DPHY_RX0_TURNREQUEST, GRF_DPHY_RX0_TESTDOUT, GRF_DPHY_TX0_TURNDISABLE, GRF_DPHY_TX0_FORCERXMODE, GRF_DPHY_TX0_FORCETXSTOPMODE, GRF_DPHY_TX0_TURNREQUEST, GRF_DPHY_TX1RX1_TURNDISABLE, GRF_DPHY_TX1RX1_FORCERXMODE, GRF_DPHY_TX1RX1_FORCETXSTOPMODE, GRF_DPHY_TX1RX1_ENABLE, GRF_DPHY_TX1RX1_MASTERSLAVEZ, GRF_DPHY_TX1RX1_BASEDIR, GRF_DPHY_TX1RX1_ENABLECLK, GRF_DPHY_TX1RX1_TURNREQUEST, GRF_DPHY_RX1_SRC_SEL, /* rk3288 only */ GRF_CON_DISABLE_ISP, GRF_CON_ISP_DPHY_SEL, GRF_DSI_CSI_TESTBUS_SEL, GRF_DVP_V18SEL, /* below is for rk3399 only */ GRF_DPHY_RX0_CLK_INV_SEL, GRF_DPHY_RX1_CLK_INV_SEL, }; struct dphy_reg { u16 offset; u8 mask; u8 shift; }; #define PHY_REG(_offset, _width, _shift) \ { .offset = _offset, .mask = BIT(_width) - 1, .shift = _shift, } static const struct dphy_reg rk3399_grf_dphy_regs[] = { [GRF_DPHY_RX0_TURNREQUEST] = PHY_REG(RK3399_GRF_SOC_CON9, 4, 0), [GRF_DPHY_RX0_CLK_INV_SEL] = PHY_REG(RK3399_GRF_SOC_CON9, 1, 10), [GRF_DPHY_RX1_CLK_INV_SEL] = PHY_REG(RK3399_GRF_SOC_CON9, 1, 11), [GRF_DPHY_RX0_ENABLE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 0), [GRF_DPHY_RX0_FORCERXMODE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 4), [GRF_DPHY_RX0_FORCETXSTOPMODE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 8), [GRF_DPHY_RX0_TURNDISABLE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 12), [GRF_DPHY_TX0_FORCERXMODE] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 0), [GRF_DPHY_TX0_FORCETXSTOPMODE] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 4), [GRF_DPHY_TX0_TURNDISABLE] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 8), [GRF_DPHY_TX0_TURNREQUEST] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 12), [GRF_DPHY_TX1RX1_ENABLE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 0), [GRF_DPHY_TX1RX1_FORCERXMODE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 4), [GRF_DPHY_TX1RX1_FORCETXSTOPMODE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 8), [GRF_DPHY_TX1RX1_TURNDISABLE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 12), [GRF_DPHY_TX1RX1_TURNREQUEST] = PHY_REG(RK3399_GRF_SOC_CON24, 4, 0), [GRF_DPHY_RX1_SRC_SEL] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 4), [GRF_DPHY_TX1RX1_BASEDIR] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 5), [GRF_DPHY_TX1RX1_ENABLECLK] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 6), [GRF_DPHY_TX1RX1_MASTERSLAVEZ] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 7), [GRF_DPHY_RX0_TESTDIN] = PHY_REG(RK3399_GRF_SOC_CON25, 8, 0), [GRF_DPHY_RX0_TESTEN] = PHY_REG(RK3399_GRF_SOC_CON25, 1, 8), [GRF_DPHY_RX0_TESTCLK] = PHY_REG(RK3399_GRF_SOC_CON25, 1, 9), [GRF_DPHY_RX0_TESTCLR] = PHY_REG(RK3399_GRF_SOC_CON25, 1, 10), [GRF_DPHY_RX0_TESTDOUT] = PHY_REG(RK3399_GRF_SOC_STATUS1, 8, 0), }; struct rk_dphy_drv_data { const char * const *clks; unsigned int num_clks; const struct hsfreq_range *hsfreq_ranges; unsigned int num_hsfreq_ranges; const struct dphy_reg *regs; }; struct rk_dphy { struct device *dev; struct regmap *grf; struct clk_bulk_data *clks; const struct rk_dphy_drv_data *drv_data; struct phy_configure_opts_mipi_dphy config; u8 hsfreq; }; static inline void rk_dphy_write_grf(struct rk_dphy *priv, unsigned int index, u8 value) { const struct dphy_reg *reg = &priv->drv_data->regs[index]; /* Update high word */ unsigned int val = (value << reg->shift) | (reg->mask << (reg->shift + 16)); if (WARN_ON(!reg->offset)) return; regmap_write(priv->grf, reg->offset, val); } static void rk_dphy_write(struct rk_dphy *priv, u8 test_code, u8 test_data) { rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTDIN, test_code); rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTEN, 1); /* * With the falling edge on TESTCLK, the TESTDIN[7:0] signal content * is latched internally as the current test code. Test data is * programmed internally by rising edge on TESTCLK. * This code assumes that TESTCLK is already 1. */ rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTCLK, 0); rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTEN, 0); rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTDIN, test_data); rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTCLK, 1); } static void rk_dphy_enable(struct rk_dphy *priv) { rk_dphy_write_grf(priv, GRF_DPHY_RX0_FORCERXMODE, 0); rk_dphy_write_grf(priv, GRF_DPHY_RX0_FORCETXSTOPMODE, 0); /* Disable lane turn around, which is ignored in receive mode */ rk_dphy_write_grf(priv, GRF_DPHY_RX0_TURNREQUEST, 0); rk_dphy_write_grf(priv, GRF_DPHY_RX0_TURNDISABLE, 0xf); rk_dphy_write_grf(priv, GRF_DPHY_RX0_ENABLE, GENMASK(priv->config.lanes - 1, 0)); /* dphy start */ rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTCLK, 1); rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTCLR, 1); usleep_range(100, 150); rk_dphy_write_grf(priv, GRF_DPHY_RX0_TESTCLR, 0); usleep_range(100, 150); /* set clock lane */ /* HS hsfreq_range & lane 0 settle bypass */ rk_dphy_write(priv, CLOCK_LANE_HS_RX_CONTROL, 0); /* HS RX Control of lane0 */ rk_dphy_write(priv, LANE0_HS_RX_CONTROL, priv->hsfreq << 1); /* HS RX Control of lane1 */ rk_dphy_write(priv, LANE1_HS_RX_CONTROL, priv->hsfreq << 1); /* HS RX Control of lane2 */ rk_dphy_write(priv, LANE2_HS_RX_CONTROL, priv->hsfreq << 1); /* HS RX Control of lane3 */ rk_dphy_write(priv, LANE3_HS_RX_CONTROL, priv->hsfreq << 1); /* HS RX Data Lanes Settle State Time Control */ rk_dphy_write(priv, LANES_THS_SETTLE_CONTROL, THS_SETTLE_COUNTER_THRESHOLD); /* Normal operation */ rk_dphy_write(priv, 0x0, 0); } static int rk_dphy_configure(struct phy *phy, union phy_configure_opts *opts) { struct rk_dphy *priv = phy_get_drvdata(phy); const struct rk_dphy_drv_data *drv_data = priv->drv_data; struct phy_configure_opts_mipi_dphy *config = &opts->mipi_dphy; unsigned int hsfreq = 0; unsigned int i; u64 data_rate_mbps; int ret; /* pass with phy_mipi_dphy_get_default_config (with pixel rate?) */ ret = phy_mipi_dphy_config_validate(config); if (ret) return ret; data_rate_mbps = div_u64(config->hs_clk_rate, 1000 * 1000); dev_dbg(priv->dev, "lanes %d - data_rate_mbps %llu\n", config->lanes, data_rate_mbps); for (i = 0; i < drv_data->num_hsfreq_ranges; i++) { if (drv_data->hsfreq_ranges[i].range_h >= data_rate_mbps) { hsfreq = drv_data->hsfreq_ranges[i].cfg_bit; break; } } if (!hsfreq) return -EINVAL; priv->hsfreq = hsfreq; priv->config = *config; return 0; } static int rk_dphy_power_on(struct phy *phy) { struct rk_dphy *priv = phy_get_drvdata(phy); int ret; ret = clk_bulk_enable(priv->drv_data->num_clks, priv->clks); if (ret) return ret; rk_dphy_enable(priv); return 0; } static int rk_dphy_power_off(struct phy *phy) { struct rk_dphy *priv = phy_get_drvdata(phy); rk_dphy_write_grf(priv, GRF_DPHY_RX0_ENABLE, 0); clk_bulk_disable(priv->drv_data->num_clks, priv->clks); return 0; } static int rk_dphy_init(struct phy *phy) { struct rk_dphy *priv = phy_get_drvdata(phy); return clk_bulk_prepare(priv->drv_data->num_clks, priv->clks); } static int rk_dphy_exit(struct phy *phy) { struct rk_dphy *priv = phy_get_drvdata(phy); clk_bulk_unprepare(priv->drv_data->num_clks, priv->clks); return 0; } static const struct phy_ops rk_dphy_ops = { .power_on = rk_dphy_power_on, .power_off = rk_dphy_power_off, .init = rk_dphy_init, .exit = rk_dphy_exit, .configure = rk_dphy_configure, .owner = THIS_MODULE, }; static const struct rk_dphy_drv_data rk3399_mipidphy_drv_data = { .clks = rk3399_mipidphy_clks, .num_clks = ARRAY_SIZE(rk3399_mipidphy_clks), .hsfreq_ranges = rk3399_mipidphy_hsfreq_ranges, .num_hsfreq_ranges = ARRAY_SIZE(rk3399_mipidphy_hsfreq_ranges), .regs = rk3399_grf_dphy_regs, }; static const struct of_device_id rk_dphy_dt_ids[] = { { .compatible = "rockchip,rk3399-mipi-dphy-rx0", .data = &rk3399_mipidphy_drv_data, }, {} }; MODULE_DEVICE_TABLE(of, rk_dphy_dt_ids); static int rk_dphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct rk_dphy_drv_data *drv_data; struct phy_provider *phy_provider; struct rk_dphy *priv; struct phy *phy; unsigned int i; int ret; if (!dev->parent || !dev->parent->of_node) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->grf = syscon_node_to_regmap(dev->parent->of_node); if (IS_ERR(priv->grf)) { dev_err(dev, "Can't find GRF syscon\n"); return -ENODEV; } drv_data = of_device_get_match_data(dev); priv->drv_data = drv_data; priv->clks = devm_kcalloc(&pdev->dev, drv_data->num_clks, sizeof(*priv->clks), GFP_KERNEL); if (!priv->clks) return -ENOMEM; for (i = 0; i < drv_data->num_clks; i++) priv->clks[i].id = drv_data->clks[i]; ret = devm_clk_bulk_get(&pdev->dev, drv_data->num_clks, priv->clks); if (ret) return ret; phy = devm_phy_create(dev, np, &rk_dphy_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create phy\n"); return PTR_ERR(phy); } phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver rk_dphy_driver = { .probe = rk_dphy_probe, .driver = { .name = "rockchip-mipi-dphy-rx0", .of_match_table = rk_dphy_dt_ids, }, }; module_platform_driver(rk_dphy_driver); MODULE_AUTHOR("Ezequiel Garcia <[email protected]>"); MODULE_DESCRIPTION("Rockchip MIPI Synopsys DPHY RX0 driver"); MODULE_LICENSE("Dual MIT/GPL");
linux-master
drivers/phy/rockchip/phy-rockchip-dphy-rx0.c
// SPDX-License-Identifier: GPL-2.0-only /* * Rockchip usb PHY driver * * Copyright (C) 2014 Yunzhi Li <[email protected]> * Copyright (C) 2014 ROCKCHIP, Inc. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/delay.h> static int enable_usb_uart; #define HIWORD_UPDATE(val, mask) \ ((val) | (mask) << 16) #define UOC_CON0 0x00 #define UOC_CON0_SIDDQ BIT(13) #define UOC_CON0_DISABLE BIT(4) #define UOC_CON0_COMMON_ON_N BIT(0) #define UOC_CON2 0x08 #define UOC_CON2_SOFT_CON_SEL BIT(2) #define UOC_CON3 0x0c /* bits present on rk3188 and rk3288 phys */ #define UOC_CON3_UTMI_TERMSEL_FULLSPEED BIT(5) #define UOC_CON3_UTMI_XCVRSEELCT_FSTRANSC (1 << 3) #define UOC_CON3_UTMI_XCVRSEELCT_MASK (3 << 3) #define UOC_CON3_UTMI_OPMODE_NODRIVING (1 << 1) #define UOC_CON3_UTMI_OPMODE_MASK (3 << 1) #define UOC_CON3_UTMI_SUSPENDN BIT(0) struct rockchip_usb_phys { int reg; const char *pll_name; }; struct rockchip_usb_phy_base; struct rockchip_usb_phy_pdata { struct rockchip_usb_phys *phys; int (*init_usb_uart)(struct regmap *grf, const struct rockchip_usb_phy_pdata *pdata); int usb_uart_phy; }; struct rockchip_usb_phy_base { struct device *dev; struct regmap *reg_base; const struct rockchip_usb_phy_pdata *pdata; }; struct rockchip_usb_phy { struct rockchip_usb_phy_base *base; struct device_node *np; unsigned int reg_offset; struct clk *clk; struct clk *clk480m; struct clk_hw clk480m_hw; struct phy *phy; bool uart_enabled; struct reset_control *reset; struct regulator *vbus; }; static int rockchip_usb_phy_power(struct rockchip_usb_phy *phy, bool siddq) { u32 val = HIWORD_UPDATE(siddq ? UOC_CON0_SIDDQ : 0, UOC_CON0_SIDDQ); return regmap_write(phy->base->reg_base, phy->reg_offset, val); } static unsigned long rockchip_usb_phy480m_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return 480000000; } static void rockchip_usb_phy480m_disable(struct clk_hw *hw) { struct rockchip_usb_phy *phy = container_of(hw, struct rockchip_usb_phy, clk480m_hw); if (phy->vbus) regulator_disable(phy->vbus); /* Power down usb phy analog blocks by set siddq 1 */ rockchip_usb_phy_power(phy, 1); } static int rockchip_usb_phy480m_enable(struct clk_hw *hw) { struct rockchip_usb_phy *phy = container_of(hw, struct rockchip_usb_phy, clk480m_hw); /* Power up usb phy analog blocks by set siddq 0 */ return rockchip_usb_phy_power(phy, 0); } static int rockchip_usb_phy480m_is_enabled(struct clk_hw *hw) { struct rockchip_usb_phy *phy = container_of(hw, struct rockchip_usb_phy, clk480m_hw); int ret; u32 val; ret = regmap_read(phy->base->reg_base, phy->reg_offset, &val); if (ret < 0) return ret; return (val & UOC_CON0_SIDDQ) ? 0 : 1; } static const struct clk_ops rockchip_usb_phy480m_ops = { .enable = rockchip_usb_phy480m_enable, .disable = rockchip_usb_phy480m_disable, .is_enabled = rockchip_usb_phy480m_is_enabled, .recalc_rate = rockchip_usb_phy480m_recalc_rate, }; static int rockchip_usb_phy_power_off(struct phy *_phy) { struct rockchip_usb_phy *phy = phy_get_drvdata(_phy); if (phy->uart_enabled) return -EBUSY; clk_disable_unprepare(phy->clk480m); return 0; } static int rockchip_usb_phy_power_on(struct phy *_phy) { struct rockchip_usb_phy *phy = phy_get_drvdata(_phy); if (phy->uart_enabled) return -EBUSY; if (phy->vbus) { int ret; ret = regulator_enable(phy->vbus); if (ret) return ret; } return clk_prepare_enable(phy->clk480m); } static int rockchip_usb_phy_reset(struct phy *_phy) { struct rockchip_usb_phy *phy = phy_get_drvdata(_phy); if (phy->reset) { reset_control_assert(phy->reset); udelay(10); reset_control_deassert(phy->reset); } return 0; } static const struct phy_ops ops = { .power_on = rockchip_usb_phy_power_on, .power_off = rockchip_usb_phy_power_off, .reset = rockchip_usb_phy_reset, .owner = THIS_MODULE, }; static void rockchip_usb_phy_action(void *data) { struct rockchip_usb_phy *rk_phy = data; if (!rk_phy->uart_enabled) { of_clk_del_provider(rk_phy->np); clk_unregister(rk_phy->clk480m); } if (rk_phy->clk) clk_put(rk_phy->clk); } static int rockchip_usb_phy_init(struct rockchip_usb_phy_base *base, struct device_node *child) { struct rockchip_usb_phy *rk_phy; unsigned int reg_offset; const char *clk_name; struct clk_init_data init; int err, i; rk_phy = devm_kzalloc(base->dev, sizeof(*rk_phy), GFP_KERNEL); if (!rk_phy) return -ENOMEM; rk_phy->base = base; rk_phy->np = child; if (of_property_read_u32(child, "reg", &reg_offset)) { dev_err(base->dev, "missing reg property in node %pOFn\n", child); return -EINVAL; } rk_phy->reset = of_reset_control_get(child, "phy-reset"); if (IS_ERR(rk_phy->reset)) rk_phy->reset = NULL; rk_phy->reg_offset = reg_offset; rk_phy->clk = of_clk_get_by_name(child, "phyclk"); if (IS_ERR(rk_phy->clk)) rk_phy->clk = NULL; i = 0; init.name = NULL; while (base->pdata->phys[i].reg) { if (base->pdata->phys[i].reg == reg_offset) { init.name = base->pdata->phys[i].pll_name; break; } i++; } if (!init.name) { dev_err(base->dev, "phy data not found\n"); return -EINVAL; } if (enable_usb_uart && base->pdata->usb_uart_phy == i) { dev_dbg(base->dev, "phy%d used as uart output\n", i); rk_phy->uart_enabled = true; } else { if (rk_phy->clk) { clk_name = __clk_get_name(rk_phy->clk); init.flags = 0; init.parent_names = &clk_name; init.num_parents = 1; } else { init.flags = 0; init.parent_names = NULL; init.num_parents = 0; } init.ops = &rockchip_usb_phy480m_ops; rk_phy->clk480m_hw.init = &init; rk_phy->clk480m = clk_register(base->dev, &rk_phy->clk480m_hw); if (IS_ERR(rk_phy->clk480m)) { err = PTR_ERR(rk_phy->clk480m); goto err_clk; } err = of_clk_add_provider(child, of_clk_src_simple_get, rk_phy->clk480m); if (err < 0) goto err_clk_prov; } err = devm_add_action_or_reset(base->dev, rockchip_usb_phy_action, rk_phy); if (err) return err; rk_phy->phy = devm_phy_create(base->dev, child, &ops); if (IS_ERR(rk_phy->phy)) { dev_err(base->dev, "failed to create PHY\n"); return PTR_ERR(rk_phy->phy); } phy_set_drvdata(rk_phy->phy, rk_phy); rk_phy->vbus = devm_regulator_get_optional(&rk_phy->phy->dev, "vbus"); if (IS_ERR(rk_phy->vbus)) { if (PTR_ERR(rk_phy->vbus) == -EPROBE_DEFER) return PTR_ERR(rk_phy->vbus); rk_phy->vbus = NULL; } /* * When acting as uart-pipe, just keep clock on otherwise * only power up usb phy when it use, so disable it when init */ if (rk_phy->uart_enabled) return clk_prepare_enable(rk_phy->clk); else return rockchip_usb_phy_power(rk_phy, 1); err_clk_prov: if (!rk_phy->uart_enabled) clk_unregister(rk_phy->clk480m); err_clk: if (rk_phy->clk) clk_put(rk_phy->clk); return err; } static const struct rockchip_usb_phy_pdata rk3066a_pdata = { .phys = (struct rockchip_usb_phys[]){ { .reg = 0x17c, .pll_name = "sclk_otgphy0_480m" }, { .reg = 0x188, .pll_name = "sclk_otgphy1_480m" }, { /* sentinel */ } }, }; static int __init rockchip_init_usb_uart_common(struct regmap *grf, const struct rockchip_usb_phy_pdata *pdata) { int regoffs = pdata->phys[pdata->usb_uart_phy].reg; int ret; u32 val; /* * COMMON_ON and DISABLE settings are described in the TRM, * but were not present in the original code. * Also disable the analog phy components to save power. */ val = HIWORD_UPDATE(UOC_CON0_COMMON_ON_N | UOC_CON0_DISABLE | UOC_CON0_SIDDQ, UOC_CON0_COMMON_ON_N | UOC_CON0_DISABLE | UOC_CON0_SIDDQ); ret = regmap_write(grf, regoffs + UOC_CON0, val); if (ret) return ret; val = HIWORD_UPDATE(UOC_CON2_SOFT_CON_SEL, UOC_CON2_SOFT_CON_SEL); ret = regmap_write(grf, regoffs + UOC_CON2, val); if (ret) return ret; val = HIWORD_UPDATE(UOC_CON3_UTMI_OPMODE_NODRIVING | UOC_CON3_UTMI_XCVRSEELCT_FSTRANSC | UOC_CON3_UTMI_TERMSEL_FULLSPEED, UOC_CON3_UTMI_SUSPENDN | UOC_CON3_UTMI_OPMODE_MASK | UOC_CON3_UTMI_XCVRSEELCT_MASK | UOC_CON3_UTMI_TERMSEL_FULLSPEED); ret = regmap_write(grf, UOC_CON3, val); if (ret) return ret; return 0; } #define RK3188_UOC0_CON0 0x10c #define RK3188_UOC0_CON0_BYPASSSEL BIT(9) #define RK3188_UOC0_CON0_BYPASSDMEN BIT(8) /* * Enable the bypass of uart2 data through the otg usb phy. * See description of rk3288-variant for details. */ static int __init rk3188_init_usb_uart(struct regmap *grf, const struct rockchip_usb_phy_pdata *pdata) { u32 val; int ret; ret = rockchip_init_usb_uart_common(grf, pdata); if (ret) return ret; val = HIWORD_UPDATE(RK3188_UOC0_CON0_BYPASSSEL | RK3188_UOC0_CON0_BYPASSDMEN, RK3188_UOC0_CON0_BYPASSSEL | RK3188_UOC0_CON0_BYPASSDMEN); ret = regmap_write(grf, RK3188_UOC0_CON0, val); if (ret) return ret; return 0; } static const struct rockchip_usb_phy_pdata rk3188_pdata = { .phys = (struct rockchip_usb_phys[]){ { .reg = 0x10c, .pll_name = "sclk_otgphy0_480m" }, { .reg = 0x11c, .pll_name = "sclk_otgphy1_480m" }, { /* sentinel */ } }, .init_usb_uart = rk3188_init_usb_uart, .usb_uart_phy = 0, }; #define RK3288_UOC0_CON3 0x32c #define RK3288_UOC0_CON3_BYPASSDMEN BIT(6) #define RK3288_UOC0_CON3_BYPASSSEL BIT(7) /* * Enable the bypass of uart2 data through the otg usb phy. * Original description in the TRM. * 1. Disable the OTG block by setting OTGDISABLE0 to 1’b1. * 2. Disable the pull-up resistance on the D+ line by setting * OPMODE0[1:0] to 2’b01. * 3. To ensure that the XO, Bias, and PLL blocks are powered down in Suspend * mode, set COMMONONN to 1’b1. * 4. Place the USB PHY in Suspend mode by setting SUSPENDM0 to 1’b0. * 5. Set BYPASSSEL0 to 1’b1. * 6. To transmit data, controls BYPASSDMEN0, and BYPASSDMDATA0. * To receive data, monitor FSVPLUS0. * * The actual code in the vendor kernel does some things differently. */ static int __init rk3288_init_usb_uart(struct regmap *grf, const struct rockchip_usb_phy_pdata *pdata) { u32 val; int ret; ret = rockchip_init_usb_uart_common(grf, pdata); if (ret) return ret; val = HIWORD_UPDATE(RK3288_UOC0_CON3_BYPASSSEL | RK3288_UOC0_CON3_BYPASSDMEN, RK3288_UOC0_CON3_BYPASSSEL | RK3288_UOC0_CON3_BYPASSDMEN); ret = regmap_write(grf, RK3288_UOC0_CON3, val); if (ret) return ret; return 0; } static const struct rockchip_usb_phy_pdata rk3288_pdata = { .phys = (struct rockchip_usb_phys[]){ { .reg = 0x320, .pll_name = "sclk_otgphy0_480m" }, { .reg = 0x334, .pll_name = "sclk_otgphy1_480m" }, { .reg = 0x348, .pll_name = "sclk_otgphy2_480m" }, { /* sentinel */ } }, .init_usb_uart = rk3288_init_usb_uart, .usb_uart_phy = 0, }; static int rockchip_usb_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rockchip_usb_phy_base *phy_base; struct phy_provider *phy_provider; const struct of_device_id *match; struct device_node *child; int err; phy_base = devm_kzalloc(dev, sizeof(*phy_base), GFP_KERNEL); if (!phy_base) return -ENOMEM; match = of_match_device(dev->driver->of_match_table, dev); if (!match || !match->data) { dev_err(dev, "missing phy data\n"); return -EINVAL; } phy_base->pdata = match->data; phy_base->dev = dev; phy_base->reg_base = ERR_PTR(-ENODEV); if (dev->parent && dev->parent->of_node) phy_base->reg_base = syscon_node_to_regmap( dev->parent->of_node); if (IS_ERR(phy_base->reg_base)) phy_base->reg_base = syscon_regmap_lookup_by_phandle( dev->of_node, "rockchip,grf"); if (IS_ERR(phy_base->reg_base)) { dev_err(&pdev->dev, "Missing rockchip,grf property\n"); return PTR_ERR(phy_base->reg_base); } for_each_available_child_of_node(dev->of_node, child) { err = rockchip_usb_phy_init(phy_base, child); if (err) { of_node_put(child); return err; } } phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id rockchip_usb_phy_dt_ids[] = { { .compatible = "rockchip,rk3066a-usb-phy", .data = &rk3066a_pdata }, { .compatible = "rockchip,rk3188-usb-phy", .data = &rk3188_pdata }, { .compatible = "rockchip,rk3288-usb-phy", .data = &rk3288_pdata }, {} }; MODULE_DEVICE_TABLE(of, rockchip_usb_phy_dt_ids); static struct platform_driver rockchip_usb_driver = { .probe = rockchip_usb_phy_probe, .driver = { .name = "rockchip-usb-phy", .of_match_table = rockchip_usb_phy_dt_ids, }, }; module_platform_driver(rockchip_usb_driver); #ifndef MODULE static int __init rockchip_init_usb_uart(void) { const struct of_device_id *match; const struct rockchip_usb_phy_pdata *data; struct device_node *np; struct regmap *grf; int ret; if (!enable_usb_uart) return 0; np = of_find_matching_node_and_match(NULL, rockchip_usb_phy_dt_ids, &match); if (!np) { pr_err("%s: failed to find usbphy node\n", __func__); return -ENOTSUPP; } pr_debug("%s: using settings for %s\n", __func__, match->compatible); data = match->data; if (!data->init_usb_uart) { pr_err("%s: usb-uart not available on %s\n", __func__, match->compatible); return -ENOTSUPP; } grf = ERR_PTR(-ENODEV); if (np->parent) grf = syscon_node_to_regmap(np->parent); if (IS_ERR(grf)) grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); if (IS_ERR(grf)) { pr_err("%s: Missing rockchip,grf property, %lu\n", __func__, PTR_ERR(grf)); return PTR_ERR(grf); } ret = data->init_usb_uart(grf, data); if (ret) { pr_err("%s: could not init usb_uart, %d\n", __func__, ret); enable_usb_uart = 0; return ret; } return 0; } early_initcall(rockchip_init_usb_uart); static int __init rockchip_usb_uart(char *buf) { enable_usb_uart = true; return 0; } early_param("rockchip.usb_uart", rockchip_usb_uart); #endif MODULE_AUTHOR("Yunzhi Li <[email protected]>"); MODULE_DESCRIPTION("Rockchip USB 2.0 PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/rockchip/phy-rockchip-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * Rockchip PIPE USB3.0 PCIE SATA Combo Phy driver * * Copyright (C) 2021 Rockchip Electronics Co., Ltd. */ #include <dt-bindings/phy/phy.h> #include <linux/clk.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/units.h> #define BIT_WRITEABLE_SHIFT 16 #define REF_CLOCK_24MHz (24 * HZ_PER_MHZ) #define REF_CLOCK_25MHz (25 * HZ_PER_MHZ) #define REF_CLOCK_100MHz (100 * HZ_PER_MHZ) /* COMBO PHY REG */ #define PHYREG6 0x14 #define PHYREG6_PLL_DIV_MASK GENMASK(7, 6) #define PHYREG6_PLL_DIV_SHIFT 6 #define PHYREG6_PLL_DIV_2 1 #define PHYREG7 0x18 #define PHYREG7_TX_RTERM_MASK GENMASK(7, 4) #define PHYREG7_TX_RTERM_SHIFT 4 #define PHYREG7_TX_RTERM_50OHM 8 #define PHYREG7_RX_RTERM_MASK GENMASK(3, 0) #define PHYREG7_RX_RTERM_SHIFT 0 #define PHYREG7_RX_RTERM_44OHM 15 #define PHYREG8 0x1C #define PHYREG8_SSC_EN BIT(4) #define PHYREG11 0x28 #define PHYREG11_SU_TRIM_0_7 0xF0 #define PHYREG12 0x2C #define PHYREG12_PLL_LPF_ADJ_VALUE 4 #define PHYREG13 0x30 #define PHYREG13_RESISTER_MASK GENMASK(5, 4) #define PHYREG13_RESISTER_SHIFT 0x4 #define PHYREG13_RESISTER_HIGH_Z 3 #define PHYREG13_CKRCV_AMP0 BIT(7) #define PHYREG14 0x34 #define PHYREG14_CKRCV_AMP1 BIT(0) #define PHYREG15 0x38 #define PHYREG15_CTLE_EN BIT(0) #define PHYREG15_SSC_CNT_MASK GENMASK(7, 6) #define PHYREG15_SSC_CNT_SHIFT 6 #define PHYREG15_SSC_CNT_VALUE 1 #define PHYREG16 0x3C #define PHYREG16_SSC_CNT_VALUE 0x5f #define PHYREG18 0x44 #define PHYREG18_PLL_LOOP 0x32 #define PHYREG27 0x6C #define PHYREG27_RX_TRIM_RK3588 0x4C #define PHYREG32 0x7C #define PHYREG32_SSC_MASK GENMASK(7, 4) #define PHYREG32_SSC_DIR_SHIFT 4 #define PHYREG32_SSC_UPWARD 0 #define PHYREG32_SSC_DOWNWARD 1 #define PHYREG32_SSC_OFFSET_SHIFT 6 #define PHYREG32_SSC_OFFSET_500PPM 1 #define PHYREG33 0x80 #define PHYREG33_PLL_KVCO_MASK GENMASK(4, 2) #define PHYREG33_PLL_KVCO_SHIFT 2 #define PHYREG33_PLL_KVCO_VALUE 2 struct rockchip_combphy_priv; struct combphy_reg { u16 offset; u16 bitend; u16 bitstart; u16 disable; u16 enable; }; struct rockchip_combphy_grfcfg { struct combphy_reg pcie_mode_set; struct combphy_reg usb_mode_set; struct combphy_reg sgmii_mode_set; struct combphy_reg qsgmii_mode_set; struct combphy_reg pipe_rxterm_set; struct combphy_reg pipe_txelec_set; struct combphy_reg pipe_txcomp_set; struct combphy_reg pipe_clk_25m; struct combphy_reg pipe_clk_100m; struct combphy_reg pipe_phymode_sel; struct combphy_reg pipe_rate_sel; struct combphy_reg pipe_rxterm_sel; struct combphy_reg pipe_txelec_sel; struct combphy_reg pipe_txcomp_sel; struct combphy_reg pipe_clk_ext; struct combphy_reg pipe_sel_usb; struct combphy_reg pipe_sel_qsgmii; struct combphy_reg pipe_phy_status; struct combphy_reg con0_for_pcie; struct combphy_reg con1_for_pcie; struct combphy_reg con2_for_pcie; struct combphy_reg con3_for_pcie; struct combphy_reg con0_for_sata; struct combphy_reg con1_for_sata; struct combphy_reg con2_for_sata; struct combphy_reg con3_for_sata; struct combphy_reg pipe_con0_for_sata; struct combphy_reg pipe_con1_for_sata; struct combphy_reg pipe_xpcs_phy_ready; struct combphy_reg pipe_pcie1l0_sel; struct combphy_reg pipe_pcie1l1_sel; }; struct rockchip_combphy_cfg { const struct rockchip_combphy_grfcfg *grfcfg; int (*combphy_cfg)(struct rockchip_combphy_priv *priv); }; struct rockchip_combphy_priv { u8 type; void __iomem *mmio; int num_clks; struct clk_bulk_data *clks; struct device *dev; struct regmap *pipe_grf; struct regmap *phy_grf; struct phy *phy; struct reset_control *phy_rst; const struct rockchip_combphy_cfg *cfg; bool enable_ssc; bool ext_refclk; struct clk *refclk; }; static void rockchip_combphy_updatel(struct rockchip_combphy_priv *priv, int mask, int val, int reg) { unsigned int temp; temp = readl(priv->mmio + reg); temp = (temp & ~(mask)) | val; writel(temp, priv->mmio + reg); } static int rockchip_combphy_param_write(struct regmap *base, const struct combphy_reg *reg, bool en) { u32 val, mask, tmp; tmp = en ? reg->enable : reg->disable; mask = GENMASK(reg->bitend, reg->bitstart); val = (tmp << reg->bitstart) | (mask << BIT_WRITEABLE_SHIFT); return regmap_write(base, reg->offset, val); } static u32 rockchip_combphy_is_ready(struct rockchip_combphy_priv *priv) { const struct rockchip_combphy_grfcfg *cfg = priv->cfg->grfcfg; u32 mask, val; mask = GENMASK(cfg->pipe_phy_status.bitend, cfg->pipe_phy_status.bitstart); regmap_read(priv->phy_grf, cfg->pipe_phy_status.offset, &val); val = (val & mask) >> cfg->pipe_phy_status.bitstart; return val; } static int rockchip_combphy_init(struct phy *phy) { struct rockchip_combphy_priv *priv = phy_get_drvdata(phy); const struct rockchip_combphy_grfcfg *cfg = priv->cfg->grfcfg; u32 val; int ret; ret = clk_bulk_prepare_enable(priv->num_clks, priv->clks); if (ret) { dev_err(priv->dev, "failed to enable clks\n"); return ret; } switch (priv->type) { case PHY_TYPE_PCIE: case PHY_TYPE_USB3: case PHY_TYPE_SATA: case PHY_TYPE_SGMII: case PHY_TYPE_QSGMII: if (priv->cfg->combphy_cfg) ret = priv->cfg->combphy_cfg(priv); break; default: dev_err(priv->dev, "incompatible PHY type\n"); ret = -EINVAL; break; } if (ret) { dev_err(priv->dev, "failed to init phy for phy type %x\n", priv->type); goto err_clk; } ret = reset_control_deassert(priv->phy_rst); if (ret) goto err_clk; if (priv->type == PHY_TYPE_USB3) { ret = readx_poll_timeout_atomic(rockchip_combphy_is_ready, priv, val, val == cfg->pipe_phy_status.enable, 10, 1000); if (ret) dev_warn(priv->dev, "wait phy status ready timeout\n"); } return 0; err_clk: clk_bulk_disable_unprepare(priv->num_clks, priv->clks); return ret; } static int rockchip_combphy_exit(struct phy *phy) { struct rockchip_combphy_priv *priv = phy_get_drvdata(phy); clk_bulk_disable_unprepare(priv->num_clks, priv->clks); reset_control_assert(priv->phy_rst); return 0; } static const struct phy_ops rochchip_combphy_ops = { .init = rockchip_combphy_init, .exit = rockchip_combphy_exit, .owner = THIS_MODULE, }; static struct phy *rockchip_combphy_xlate(struct device *dev, struct of_phandle_args *args) { struct rockchip_combphy_priv *priv = dev_get_drvdata(dev); if (args->args_count != 1) { dev_err(dev, "invalid number of arguments\n"); return ERR_PTR(-EINVAL); } if (priv->type != PHY_NONE && priv->type != args->args[0]) dev_warn(dev, "phy type select %d overwriting type %d\n", args->args[0], priv->type); priv->type = args->args[0]; return priv->phy; } static int rockchip_combphy_parse_dt(struct device *dev, struct rockchip_combphy_priv *priv) { int i; priv->num_clks = devm_clk_bulk_get_all(dev, &priv->clks); if (priv->num_clks < 1) return -EINVAL; priv->refclk = NULL; for (i = 0; i < priv->num_clks; i++) { if (!strncmp(priv->clks[i].id, "ref", 3)) { priv->refclk = priv->clks[i].clk; break; } } if (!priv->refclk) { dev_err(dev, "no refclk found\n"); return -EINVAL; } priv->pipe_grf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,pipe-grf"); if (IS_ERR(priv->pipe_grf)) { dev_err(dev, "failed to find peri_ctrl pipe-grf regmap\n"); return PTR_ERR(priv->pipe_grf); } priv->phy_grf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,pipe-phy-grf"); if (IS_ERR(priv->phy_grf)) { dev_err(dev, "failed to find peri_ctrl pipe-phy-grf regmap\n"); return PTR_ERR(priv->phy_grf); } priv->enable_ssc = device_property_present(dev, "rockchip,enable-ssc"); priv->ext_refclk = device_property_present(dev, "rockchip,ext-refclk"); priv->phy_rst = devm_reset_control_array_get_exclusive(dev); if (IS_ERR(priv->phy_rst)) return dev_err_probe(dev, PTR_ERR(priv->phy_rst), "failed to get phy reset\n"); return 0; } static int rockchip_combphy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct device *dev = &pdev->dev; struct rockchip_combphy_priv *priv; const struct rockchip_combphy_cfg *phy_cfg; struct resource *res; int ret; phy_cfg = of_device_get_match_data(dev); if (!phy_cfg) { dev_err(dev, "no OF match data provided\n"); return -EINVAL; } priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(priv->mmio)) { ret = PTR_ERR(priv->mmio); return ret; } priv->dev = dev; priv->type = PHY_NONE; priv->cfg = phy_cfg; ret = rockchip_combphy_parse_dt(dev, priv); if (ret) return ret; ret = reset_control_assert(priv->phy_rst); if (ret) { dev_err(dev, "failed to reset phy\n"); return ret; } priv->phy = devm_phy_create(dev, NULL, &rochchip_combphy_ops); if (IS_ERR(priv->phy)) { dev_err(dev, "failed to create combphy\n"); return PTR_ERR(priv->phy); } dev_set_drvdata(dev, priv); phy_set_drvdata(priv->phy, priv); phy_provider = devm_of_phy_provider_register(dev, rockchip_combphy_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static int rk3568_combphy_cfg(struct rockchip_combphy_priv *priv) { const struct rockchip_combphy_grfcfg *cfg = priv->cfg->grfcfg; unsigned long rate; u32 val; switch (priv->type) { case PHY_TYPE_PCIE: /* Set SSC downward spread spectrum. */ rockchip_combphy_updatel(priv, PHYREG32_SSC_MASK, PHYREG32_SSC_DOWNWARD << PHYREG32_SSC_DIR_SHIFT, PHYREG32); rockchip_combphy_param_write(priv->phy_grf, &cfg->con0_for_pcie, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con1_for_pcie, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con2_for_pcie, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con3_for_pcie, true); break; case PHY_TYPE_USB3: /* Set SSC downward spread spectrum. */ rockchip_combphy_updatel(priv, PHYREG32_SSC_MASK, PHYREG32_SSC_DOWNWARD << PHYREG32_SSC_DIR_SHIFT, PHYREG32); /* Enable adaptive CTLE for USB3.0 Rx. */ val = readl(priv->mmio + PHYREG15); val |= PHYREG15_CTLE_EN; writel(val, priv->mmio + PHYREG15); /* Set PLL KVCO fine tuning signals. */ rockchip_combphy_updatel(priv, PHYREG33_PLL_KVCO_MASK, PHYREG33_PLL_KVCO_VALUE << PHYREG33_PLL_KVCO_SHIFT, PHYREG33); /* Enable controlling random jitter. */ writel(PHYREG12_PLL_LPF_ADJ_VALUE, priv->mmio + PHYREG12); /* Set PLL input clock divider 1/2. */ rockchip_combphy_updatel(priv, PHYREG6_PLL_DIV_MASK, PHYREG6_PLL_DIV_2 << PHYREG6_PLL_DIV_SHIFT, PHYREG6); writel(PHYREG18_PLL_LOOP, priv->mmio + PHYREG18); writel(PHYREG11_SU_TRIM_0_7, priv->mmio + PHYREG11); rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_sel_usb, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_txcomp_sel, false); rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_txelec_sel, false); rockchip_combphy_param_write(priv->phy_grf, &cfg->usb_mode_set, true); break; case PHY_TYPE_SATA: /* Enable adaptive CTLE for SATA Rx. */ val = readl(priv->mmio + PHYREG15); val |= PHYREG15_CTLE_EN; writel(val, priv->mmio + PHYREG15); /* * Set tx_rterm=50ohm and rx_rterm=44ohm for SATA. * 0: 60ohm, 8: 50ohm 15: 44ohm (by step abort 1ohm) */ val = PHYREG7_TX_RTERM_50OHM << PHYREG7_TX_RTERM_SHIFT; val |= PHYREG7_RX_RTERM_44OHM << PHYREG7_RX_RTERM_SHIFT; writel(val, priv->mmio + PHYREG7); rockchip_combphy_param_write(priv->phy_grf, &cfg->con0_for_sata, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con1_for_sata, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con2_for_sata, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con3_for_sata, true); rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_con0_for_sata, true); break; case PHY_TYPE_SGMII: rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_xpcs_phy_ready, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_phymode_sel, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_sel_qsgmii, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->sgmii_mode_set, true); break; case PHY_TYPE_QSGMII: rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_xpcs_phy_ready, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_phymode_sel, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_rate_sel, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_sel_qsgmii, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->qsgmii_mode_set, true); break; default: dev_err(priv->dev, "incompatible PHY type\n"); return -EINVAL; } rate = clk_get_rate(priv->refclk); switch (rate) { case REF_CLOCK_24MHz: if (priv->type == PHY_TYPE_USB3 || priv->type == PHY_TYPE_SATA) { /* Set ssc_cnt[9:0]=0101111101 & 31.5KHz. */ val = PHYREG15_SSC_CNT_VALUE << PHYREG15_SSC_CNT_SHIFT; rockchip_combphy_updatel(priv, PHYREG15_SSC_CNT_MASK, val, PHYREG15); writel(PHYREG16_SSC_CNT_VALUE, priv->mmio + PHYREG16); } break; case REF_CLOCK_25MHz: rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_25m, true); break; case REF_CLOCK_100MHz: rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_100m, true); if (priv->type == PHY_TYPE_PCIE) { /* PLL KVCO fine tuning. */ val = PHYREG33_PLL_KVCO_VALUE << PHYREG33_PLL_KVCO_SHIFT; rockchip_combphy_updatel(priv, PHYREG33_PLL_KVCO_MASK, val, PHYREG33); /* Enable controlling random jitter. */ writel(PHYREG12_PLL_LPF_ADJ_VALUE, priv->mmio + PHYREG12); val = PHYREG6_PLL_DIV_2 << PHYREG6_PLL_DIV_SHIFT; rockchip_combphy_updatel(priv, PHYREG6_PLL_DIV_MASK, val, PHYREG6); writel(PHYREG18_PLL_LOOP, priv->mmio + PHYREG18); writel(PHYREG11_SU_TRIM_0_7, priv->mmio + PHYREG11); } else if (priv->type == PHY_TYPE_SATA) { /* downward spread spectrum +500ppm */ val = PHYREG32_SSC_DOWNWARD << PHYREG32_SSC_DIR_SHIFT; val |= PHYREG32_SSC_OFFSET_500PPM << PHYREG32_SSC_OFFSET_SHIFT; rockchip_combphy_updatel(priv, PHYREG32_SSC_MASK, val, PHYREG32); } break; default: dev_err(priv->dev, "unsupported rate: %lu\n", rate); return -EINVAL; } if (priv->ext_refclk) { rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_ext, true); if (priv->type == PHY_TYPE_PCIE && rate == REF_CLOCK_100MHz) { val = PHYREG13_RESISTER_HIGH_Z << PHYREG13_RESISTER_SHIFT; val |= PHYREG13_CKRCV_AMP0; rockchip_combphy_updatel(priv, PHYREG13_RESISTER_MASK, val, PHYREG13); val = readl(priv->mmio + PHYREG14); val |= PHYREG14_CKRCV_AMP1; writel(val, priv->mmio + PHYREG14); } } if (priv->enable_ssc) { val = readl(priv->mmio + PHYREG8); val |= PHYREG8_SSC_EN; writel(val, priv->mmio + PHYREG8); } return 0; } static const struct rockchip_combphy_grfcfg rk3568_combphy_grfcfgs = { /* pipe-phy-grf */ .pcie_mode_set = { 0x0000, 5, 0, 0x00, 0x11 }, .usb_mode_set = { 0x0000, 5, 0, 0x00, 0x04 }, .sgmii_mode_set = { 0x0000, 5, 0, 0x00, 0x01 }, .qsgmii_mode_set = { 0x0000, 5, 0, 0x00, 0x21 }, .pipe_rxterm_set = { 0x0000, 12, 12, 0x00, 0x01 }, .pipe_txelec_set = { 0x0004, 1, 1, 0x00, 0x01 }, .pipe_txcomp_set = { 0x0004, 4, 4, 0x00, 0x01 }, .pipe_clk_25m = { 0x0004, 14, 13, 0x00, 0x01 }, .pipe_clk_100m = { 0x0004, 14, 13, 0x00, 0x02 }, .pipe_phymode_sel = { 0x0008, 1, 1, 0x00, 0x01 }, .pipe_rate_sel = { 0x0008, 2, 2, 0x00, 0x01 }, .pipe_rxterm_sel = { 0x0008, 8, 8, 0x00, 0x01 }, .pipe_txelec_sel = { 0x0008, 12, 12, 0x00, 0x01 }, .pipe_txcomp_sel = { 0x0008, 15, 15, 0x00, 0x01 }, .pipe_clk_ext = { 0x000c, 9, 8, 0x02, 0x01 }, .pipe_sel_usb = { 0x000c, 14, 13, 0x00, 0x01 }, .pipe_sel_qsgmii = { 0x000c, 15, 13, 0x00, 0x07 }, .pipe_phy_status = { 0x0034, 6, 6, 0x01, 0x00 }, .con0_for_pcie = { 0x0000, 15, 0, 0x00, 0x1000 }, .con1_for_pcie = { 0x0004, 15, 0, 0x00, 0x0000 }, .con2_for_pcie = { 0x0008, 15, 0, 0x00, 0x0101 }, .con3_for_pcie = { 0x000c, 15, 0, 0x00, 0x0200 }, .con0_for_sata = { 0x0000, 15, 0, 0x00, 0x0119 }, .con1_for_sata = { 0x0004, 15, 0, 0x00, 0x0040 }, .con2_for_sata = { 0x0008, 15, 0, 0x00, 0x80c3 }, .con3_for_sata = { 0x000c, 15, 0, 0x00, 0x4407 }, /* pipe-grf */ .pipe_con0_for_sata = { 0x0000, 15, 0, 0x00, 0x2220 }, .pipe_xpcs_phy_ready = { 0x0040, 2, 2, 0x00, 0x01 }, }; static const struct rockchip_combphy_cfg rk3568_combphy_cfgs = { .grfcfg = &rk3568_combphy_grfcfgs, .combphy_cfg = rk3568_combphy_cfg, }; static int rk3588_combphy_cfg(struct rockchip_combphy_priv *priv) { const struct rockchip_combphy_grfcfg *cfg = priv->cfg->grfcfg; unsigned long rate; u32 val; switch (priv->type) { case PHY_TYPE_PCIE: rockchip_combphy_param_write(priv->phy_grf, &cfg->con0_for_pcie, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con1_for_pcie, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con2_for_pcie, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con3_for_pcie, true); rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_pcie1l0_sel, true); rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_pcie1l1_sel, true); break; case PHY_TYPE_USB3: /* Set SSC downward spread spectrum */ rockchip_combphy_updatel(priv, PHYREG32_SSC_MASK, PHYREG32_SSC_DOWNWARD << PHYREG32_SSC_DIR_SHIFT, PHYREG32); /* Enable adaptive CTLE for USB3.0 Rx. */ val = readl(priv->mmio + PHYREG15); val |= PHYREG15_CTLE_EN; writel(val, priv->mmio + PHYREG15); /* Set PLL KVCO fine tuning signals. */ rockchip_combphy_updatel(priv, PHYREG33_PLL_KVCO_MASK, PHYREG33_PLL_KVCO_VALUE << PHYREG33_PLL_KVCO_SHIFT, PHYREG33); /* Enable controlling random jitter. */ writel(PHYREG12_PLL_LPF_ADJ_VALUE, priv->mmio + PHYREG12); /* Set PLL input clock divider 1/2. */ rockchip_combphy_updatel(priv, PHYREG6_PLL_DIV_MASK, PHYREG6_PLL_DIV_2 << PHYREG6_PLL_DIV_SHIFT, PHYREG6); writel(PHYREG18_PLL_LOOP, priv->mmio + PHYREG18); writel(PHYREG11_SU_TRIM_0_7, priv->mmio + PHYREG11); rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_txcomp_sel, false); rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_txelec_sel, false); rockchip_combphy_param_write(priv->phy_grf, &cfg->usb_mode_set, true); break; case PHY_TYPE_SATA: /* Enable adaptive CTLE for SATA Rx. */ val = readl(priv->mmio + PHYREG15); val |= PHYREG15_CTLE_EN; writel(val, priv->mmio + PHYREG15); /* * Set tx_rterm=50ohm and rx_rterm=44ohm for SATA. * 0: 60ohm, 8: 50ohm 15: 44ohm (by step abort 1ohm) */ val = PHYREG7_TX_RTERM_50OHM << PHYREG7_TX_RTERM_SHIFT; val |= PHYREG7_RX_RTERM_44OHM << PHYREG7_RX_RTERM_SHIFT; writel(val, priv->mmio + PHYREG7); rockchip_combphy_param_write(priv->phy_grf, &cfg->con0_for_sata, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con1_for_sata, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con2_for_sata, true); rockchip_combphy_param_write(priv->phy_grf, &cfg->con3_for_sata, true); rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_con0_for_sata, true); rockchip_combphy_param_write(priv->pipe_grf, &cfg->pipe_con1_for_sata, true); break; case PHY_TYPE_SGMII: case PHY_TYPE_QSGMII: default: dev_err(priv->dev, "incompatible PHY type\n"); return -EINVAL; } rate = clk_get_rate(priv->refclk); switch (rate) { case REF_CLOCK_24MHz: if (priv->type == PHY_TYPE_USB3 || priv->type == PHY_TYPE_SATA) { /* Set ssc_cnt[9:0]=0101111101 & 31.5KHz. */ val = PHYREG15_SSC_CNT_VALUE << PHYREG15_SSC_CNT_SHIFT; rockchip_combphy_updatel(priv, PHYREG15_SSC_CNT_MASK, val, PHYREG15); writel(PHYREG16_SSC_CNT_VALUE, priv->mmio + PHYREG16); } break; case REF_CLOCK_25MHz: rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_25m, true); break; case REF_CLOCK_100MHz: rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_100m, true); if (priv->type == PHY_TYPE_PCIE) { /* PLL KVCO fine tuning. */ val = 4 << PHYREG33_PLL_KVCO_SHIFT; rockchip_combphy_updatel(priv, PHYREG33_PLL_KVCO_MASK, val, PHYREG33); /* Enable controlling random jitter. */ writel(PHYREG12_PLL_LPF_ADJ_VALUE, priv->mmio + PHYREG12); /* Set up rx_trim: PLL LPF C1 85pf R1 1.25kohm */ writel(PHYREG27_RX_TRIM_RK3588, priv->mmio + PHYREG27); /* Set up su_trim: */ writel(PHYREG11_SU_TRIM_0_7, priv->mmio + PHYREG11); } else if (priv->type == PHY_TYPE_SATA) { /* downward spread spectrum +500ppm */ val = PHYREG32_SSC_DOWNWARD << PHYREG32_SSC_DIR_SHIFT; val |= PHYREG32_SSC_OFFSET_500PPM << PHYREG32_SSC_OFFSET_SHIFT; rockchip_combphy_updatel(priv, PHYREG32_SSC_MASK, val, PHYREG32); } break; default: dev_err(priv->dev, "Unsupported rate: %lu\n", rate); return -EINVAL; } if (priv->ext_refclk) { rockchip_combphy_param_write(priv->phy_grf, &cfg->pipe_clk_ext, true); if (priv->type == PHY_TYPE_PCIE && rate == REF_CLOCK_100MHz) { val = PHYREG13_RESISTER_HIGH_Z << PHYREG13_RESISTER_SHIFT; val |= PHYREG13_CKRCV_AMP0; rockchip_combphy_updatel(priv, PHYREG13_RESISTER_MASK, val, PHYREG13); val = readl(priv->mmio + PHYREG14); val |= PHYREG14_CKRCV_AMP1; writel(val, priv->mmio + PHYREG14); } } if (priv->enable_ssc) { val = readl(priv->mmio + PHYREG8); val |= PHYREG8_SSC_EN; writel(val, priv->mmio + PHYREG8); } return 0; } static const struct rockchip_combphy_grfcfg rk3588_combphy_grfcfgs = { /* pipe-phy-grf */ .pcie_mode_set = { 0x0000, 5, 0, 0x00, 0x11 }, .usb_mode_set = { 0x0000, 5, 0, 0x00, 0x04 }, .pipe_rxterm_set = { 0x0000, 12, 12, 0x00, 0x01 }, .pipe_txelec_set = { 0x0004, 1, 1, 0x00, 0x01 }, .pipe_txcomp_set = { 0x0004, 4, 4, 0x00, 0x01 }, .pipe_clk_25m = { 0x0004, 14, 13, 0x00, 0x01 }, .pipe_clk_100m = { 0x0004, 14, 13, 0x00, 0x02 }, .pipe_rxterm_sel = { 0x0008, 8, 8, 0x00, 0x01 }, .pipe_txelec_sel = { 0x0008, 12, 12, 0x00, 0x01 }, .pipe_txcomp_sel = { 0x0008, 15, 15, 0x00, 0x01 }, .pipe_clk_ext = { 0x000c, 9, 8, 0x02, 0x01 }, .pipe_phy_status = { 0x0034, 6, 6, 0x01, 0x00 }, .con0_for_pcie = { 0x0000, 15, 0, 0x00, 0x1000 }, .con1_for_pcie = { 0x0004, 15, 0, 0x00, 0x0000 }, .con2_for_pcie = { 0x0008, 15, 0, 0x00, 0x0101 }, .con3_for_pcie = { 0x000c, 15, 0, 0x00, 0x0200 }, .con0_for_sata = { 0x0000, 15, 0, 0x00, 0x0129 }, .con1_for_sata = { 0x0004, 15, 0, 0x00, 0x0000 }, .con2_for_sata = { 0x0008, 15, 0, 0x00, 0x80c1 }, .con3_for_sata = { 0x000c, 15, 0, 0x00, 0x0407 }, /* pipe-grf */ .pipe_con0_for_sata = { 0x0000, 11, 5, 0x00, 0x22 }, .pipe_con1_for_sata = { 0x0000, 2, 0, 0x00, 0x2 }, .pipe_pcie1l0_sel = { 0x0100, 0, 0, 0x01, 0x0 }, .pipe_pcie1l1_sel = { 0x0100, 1, 1, 0x01, 0x0 }, }; static const struct rockchip_combphy_cfg rk3588_combphy_cfgs = { .grfcfg = &rk3588_combphy_grfcfgs, .combphy_cfg = rk3588_combphy_cfg, }; static const struct of_device_id rockchip_combphy_of_match[] = { { .compatible = "rockchip,rk3568-naneng-combphy", .data = &rk3568_combphy_cfgs, }, { .compatible = "rockchip,rk3588-naneng-combphy", .data = &rk3588_combphy_cfgs, }, { }, }; MODULE_DEVICE_TABLE(of, rockchip_combphy_of_match); static struct platform_driver rockchip_combphy_driver = { .probe = rockchip_combphy_probe, .driver = { .name = "rockchip-naneng-combphy", .of_match_table = rockchip_combphy_of_match, }, }; module_platform_driver(rockchip_combphy_driver); MODULE_DESCRIPTION("Rockchip NANENG COMBPHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/rockchip/phy-rockchip-naneng-combphy.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd * Author: Chris Zhong <[email protected]> * Kever Yang <[email protected]> * * The ROCKCHIP Type-C PHY has two PLL clocks. The first PLL clock * is used for USB3, the second PLL clock is used for DP. This Type-C PHY has * 3 working modes: USB3 only mode, DP only mode, and USB3+DP mode. * At USB3 only mode, both PLL clocks need to be initialized, this allows the * PHY to switch mode between USB3 and USB3+DP, without disconnecting the USB * device. * In The DP only mode, only the DP PLL needs to be powered on, and the 4 lanes * are all used for DP. * * This driver gets extcon cable state and property, then decides which mode to * select: * * 1. USB3 only mode: * EXTCON_USB or EXTCON_USB_HOST state is true, and * EXTCON_PROP_USB_SS property is true. * EXTCON_DISP_DP state is false. * * 2. DP only mode: * EXTCON_DISP_DP state is true, and * EXTCON_PROP_USB_SS property is false. * If EXTCON_USB_HOST state is true, it is DP + USB2 mode, since the USB2 phy * is a separate phy, so this case is still DP only mode. * * 3. USB3+DP mode: * EXTCON_USB_HOST and EXTCON_DISP_DP are both true, and * EXTCON_PROP_USB_SS property is true. * * This Type-C PHY driver supports normal and flip orientation. The orientation * is reported by the EXTCON_PROP_USB_TYPEC_POLARITY property: true is flip * orientation, false is normal orientation. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/extcon.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/mfd/syscon.h> #include <linux/phy/phy.h> #define CMN_SSM_BANDGAP (0x21 << 2) #define CMN_SSM_BIAS (0x22 << 2) #define CMN_PLLSM0_PLLEN (0x29 << 2) #define CMN_PLLSM0_PLLPRE (0x2a << 2) #define CMN_PLLSM0_PLLVREF (0x2b << 2) #define CMN_PLLSM0_PLLLOCK (0x2c << 2) #define CMN_PLLSM1_PLLEN (0x31 << 2) #define CMN_PLLSM1_PLLPRE (0x32 << 2) #define CMN_PLLSM1_PLLVREF (0x33 << 2) #define CMN_PLLSM1_PLLLOCK (0x34 << 2) #define CMN_PLLSM1_USER_DEF_CTRL (0x37 << 2) #define CMN_ICAL_OVRD (0xc1 << 2) #define CMN_PLL0_VCOCAL_OVRD (0x83 << 2) #define CMN_PLL0_VCOCAL_INIT (0x84 << 2) #define CMN_PLL0_VCOCAL_ITER (0x85 << 2) #define CMN_PLL0_LOCK_REFCNT_START (0x90 << 2) #define CMN_PLL0_LOCK_PLLCNT_START (0x92 << 2) #define CMN_PLL0_LOCK_PLLCNT_THR (0x93 << 2) #define CMN_PLL0_INTDIV (0x94 << 2) #define CMN_PLL0_FRACDIV (0x95 << 2) #define CMN_PLL0_HIGH_THR (0x96 << 2) #define CMN_PLL0_DSM_DIAG (0x97 << 2) #define CMN_PLL0_SS_CTRL1 (0x98 << 2) #define CMN_PLL0_SS_CTRL2 (0x99 << 2) #define CMN_PLL1_VCOCAL_START (0xa1 << 2) #define CMN_PLL1_VCOCAL_OVRD (0xa3 << 2) #define CMN_PLL1_VCOCAL_INIT (0xa4 << 2) #define CMN_PLL1_VCOCAL_ITER (0xa5 << 2) #define CMN_PLL1_LOCK_REFCNT_START (0xb0 << 2) #define CMN_PLL1_LOCK_PLLCNT_START (0xb2 << 2) #define CMN_PLL1_LOCK_PLLCNT_THR (0xb3 << 2) #define CMN_PLL1_INTDIV (0xb4 << 2) #define CMN_PLL1_FRACDIV (0xb5 << 2) #define CMN_PLL1_HIGH_THR (0xb6 << 2) #define CMN_PLL1_DSM_DIAG (0xb7 << 2) #define CMN_PLL1_SS_CTRL1 (0xb8 << 2) #define CMN_PLL1_SS_CTRL2 (0xb9 << 2) #define CMN_RXCAL_OVRD (0xd1 << 2) #define CMN_TXPUCAL_CTRL (0xe0 << 2) #define CMN_TXPUCAL_OVRD (0xe1 << 2) #define CMN_TXPDCAL_CTRL (0xf0 << 2) #define CMN_TXPDCAL_OVRD (0xf1 << 2) /* For CMN_TXPUCAL_CTRL, CMN_TXPDCAL_CTRL */ #define CMN_TXPXCAL_START BIT(15) #define CMN_TXPXCAL_DONE BIT(14) #define CMN_TXPXCAL_NO_RESPONSE BIT(13) #define CMN_TXPXCAL_CURRENT_RESPONSE BIT(12) #define CMN_TXPU_ADJ_CTRL (0x108 << 2) #define CMN_TXPD_ADJ_CTRL (0x10c << 2) /* * For CMN_TXPUCAL_CTRL, CMN_TXPDCAL_CTRL, * CMN_TXPU_ADJ_CTRL, CMN_TXPDCAL_CTRL * * NOTE: some of these registers are documented to be 2's complement * signed numbers, but then documented to be always positive. Weird. * In such a case, using CMN_CALIB_CODE_POS() avoids the unnecessary * sign extension. */ #define CMN_CALIB_CODE_WIDTH 7 #define CMN_CALIB_CODE_OFFSET 0 #define CMN_CALIB_CODE_MASK GENMASK(CMN_CALIB_CODE_WIDTH, 0) #define CMN_CALIB_CODE(x) \ sign_extend32((x) >> CMN_CALIB_CODE_OFFSET, CMN_CALIB_CODE_WIDTH) #define CMN_CALIB_CODE_POS_MASK GENMASK(CMN_CALIB_CODE_WIDTH - 1, 0) #define CMN_CALIB_CODE_POS(x) \ (((x) >> CMN_CALIB_CODE_OFFSET) & CMN_CALIB_CODE_POS_MASK) #define CMN_DIAG_PLL0_FBH_OVRD (0x1c0 << 2) #define CMN_DIAG_PLL0_FBL_OVRD (0x1c1 << 2) #define CMN_DIAG_PLL0_OVRD (0x1c2 << 2) #define CMN_DIAG_PLL0_V2I_TUNE (0x1c5 << 2) #define CMN_DIAG_PLL0_CP_TUNE (0x1c6 << 2) #define CMN_DIAG_PLL0_LF_PROG (0x1c7 << 2) #define CMN_DIAG_PLL1_FBH_OVRD (0x1d0 << 2) #define CMN_DIAG_PLL1_FBL_OVRD (0x1d1 << 2) #define CMN_DIAG_PLL1_OVRD (0x1d2 << 2) #define CMN_DIAG_PLL1_V2I_TUNE (0x1d5 << 2) #define CMN_DIAG_PLL1_CP_TUNE (0x1d6 << 2) #define CMN_DIAG_PLL1_LF_PROG (0x1d7 << 2) #define CMN_DIAG_PLL1_PTATIS_TUNE1 (0x1d8 << 2) #define CMN_DIAG_PLL1_PTATIS_TUNE2 (0x1d9 << 2) #define CMN_DIAG_PLL1_INCLK_CTRL (0x1da << 2) #define CMN_DIAG_HSCLK_SEL (0x1e0 << 2) #define XCVR_PSM_RCTRL(n) ((0x4001 | ((n) << 9)) << 2) #define XCVR_PSM_CAL_TMR(n) ((0x4002 | ((n) << 9)) << 2) #define XCVR_PSM_A0IN_TMR(n) ((0x4003 | ((n) << 9)) << 2) #define TX_TXCC_CAL_SCLR_MULT(n) ((0x4047 | ((n) << 9)) << 2) #define TX_TXCC_CPOST_MULT_00(n) ((0x404c | ((n) << 9)) << 2) #define TX_TXCC_CPOST_MULT_01(n) ((0x404d | ((n) << 9)) << 2) #define TX_TXCC_CPOST_MULT_10(n) ((0x404e | ((n) << 9)) << 2) #define TX_TXCC_CPOST_MULT_11(n) ((0x404f | ((n) << 9)) << 2) #define TX_TXCC_MGNFS_MULT_000(n) ((0x4050 | ((n) << 9)) << 2) #define TX_TXCC_MGNFS_MULT_001(n) ((0x4051 | ((n) << 9)) << 2) #define TX_TXCC_MGNFS_MULT_010(n) ((0x4052 | ((n) << 9)) << 2) #define TX_TXCC_MGNFS_MULT_011(n) ((0x4053 | ((n) << 9)) << 2) #define TX_TXCC_MGNFS_MULT_100(n) ((0x4054 | ((n) << 9)) << 2) #define TX_TXCC_MGNFS_MULT_101(n) ((0x4055 | ((n) << 9)) << 2) #define TX_TXCC_MGNFS_MULT_110(n) ((0x4056 | ((n) << 9)) << 2) #define TX_TXCC_MGNFS_MULT_111(n) ((0x4057 | ((n) << 9)) << 2) #define TX_TXCC_MGNLS_MULT_000(n) ((0x4058 | ((n) << 9)) << 2) #define TX_TXCC_MGNLS_MULT_001(n) ((0x4059 | ((n) << 9)) << 2) #define TX_TXCC_MGNLS_MULT_010(n) ((0x405a | ((n) << 9)) << 2) #define TX_TXCC_MGNLS_MULT_011(n) ((0x405b | ((n) << 9)) << 2) #define TX_TXCC_MGNLS_MULT_100(n) ((0x405c | ((n) << 9)) << 2) #define TX_TXCC_MGNLS_MULT_101(n) ((0x405d | ((n) << 9)) << 2) #define TX_TXCC_MGNLS_MULT_110(n) ((0x405e | ((n) << 9)) << 2) #define TX_TXCC_MGNLS_MULT_111(n) ((0x405f | ((n) << 9)) << 2) #define XCVR_DIAG_PLLDRC_CTRL(n) ((0x40e0 | ((n) << 9)) << 2) #define XCVR_DIAG_BIDI_CTRL(n) ((0x40e8 | ((n) << 9)) << 2) #define XCVR_DIAG_LANE_FCM_EN_MGN(n) ((0x40f2 | ((n) << 9)) << 2) #define TX_PSC_A0(n) ((0x4100 | ((n) << 9)) << 2) #define TX_PSC_A1(n) ((0x4101 | ((n) << 9)) << 2) #define TX_PSC_A2(n) ((0x4102 | ((n) << 9)) << 2) #define TX_PSC_A3(n) ((0x4103 | ((n) << 9)) << 2) #define TX_RCVDET_CTRL(n) ((0x4120 | ((n) << 9)) << 2) #define TX_RCVDET_EN_TMR(n) ((0x4122 | ((n) << 9)) << 2) #define TX_RCVDET_ST_TMR(n) ((0x4123 | ((n) << 9)) << 2) #define TX_DIAG_TX_DRV(n) ((0x41e1 | ((n) << 9)) << 2) #define TX_DIAG_BGREF_PREDRV_DELAY (0x41e7 << 2) /* Use this for "n" in macros like "_MULT_XXX" to target the aux channel */ #define AUX_CH_LANE 8 #define TX_ANA_CTRL_REG_1 (0x5020 << 2) #define TXDA_DP_AUX_EN BIT(15) #define AUXDA_SE_EN BIT(14) #define TXDA_CAL_LATCH_EN BIT(13) #define AUXDA_POLARITY BIT(12) #define TXDA_DRV_POWER_ISOLATION_EN BIT(11) #define TXDA_DRV_POWER_EN_PH_2_N BIT(10) #define TXDA_DRV_POWER_EN_PH_1_N BIT(9) #define TXDA_BGREF_EN BIT(8) #define TXDA_DRV_LDO_EN BIT(7) #define TXDA_DECAP_EN_DEL BIT(6) #define TXDA_DECAP_EN BIT(5) #define TXDA_UPHY_SUPPLY_EN_DEL BIT(4) #define TXDA_UPHY_SUPPLY_EN BIT(3) #define TXDA_LOW_LEAKAGE_EN BIT(2) #define TXDA_DRV_IDLE_LOWI_EN BIT(1) #define TXDA_DRV_CMN_MODE_EN BIT(0) #define TX_ANA_CTRL_REG_2 (0x5021 << 2) #define AUXDA_DEBOUNCING_CLK BIT(15) #define TXDA_LPBK_RECOVERED_CLK_EN BIT(14) #define TXDA_LPBK_ISI_GEN_EN BIT(13) #define TXDA_LPBK_SERIAL_EN BIT(12) #define TXDA_LPBK_LINE_EN BIT(11) #define TXDA_DRV_LDO_REDC_SINKIQ BIT(10) #define XCVR_DECAP_EN_DEL BIT(9) #define XCVR_DECAP_EN BIT(8) #define TXDA_MPHY_ENABLE_HS_NT BIT(7) #define TXDA_MPHY_SA_MODE BIT(6) #define TXDA_DRV_LDO_RBYR_FB_EN BIT(5) #define TXDA_DRV_RST_PULL_DOWN BIT(4) #define TXDA_DRV_LDO_BG_FB_EN BIT(3) #define TXDA_DRV_LDO_BG_REF_EN BIT(2) #define TXDA_DRV_PREDRV_EN_DEL BIT(1) #define TXDA_DRV_PREDRV_EN BIT(0) #define TXDA_COEFF_CALC_CTRL (0x5022 << 2) #define TX_HIGH_Z BIT(6) #define TX_VMARGIN_OFFSET 3 #define TX_VMARGIN_MASK 0x7 #define LOW_POWER_SWING_EN BIT(2) #define TX_FCM_DRV_MAIN_EN BIT(1) #define TX_FCM_FULL_MARGIN BIT(0) #define TX_DIG_CTRL_REG_2 (0x5024 << 2) #define TX_HIGH_Z_TM_EN BIT(15) #define TX_RESCAL_CODE_OFFSET 0 #define TX_RESCAL_CODE_MASK 0x3f #define TXDA_CYA_AUXDA_CYA (0x5025 << 2) #define TX_ANA_CTRL_REG_3 (0x5026 << 2) #define TX_ANA_CTRL_REG_4 (0x5027 << 2) #define TX_ANA_CTRL_REG_5 (0x5029 << 2) #define RX_PSC_A0(n) ((0x8000 | ((n) << 9)) << 2) #define RX_PSC_A1(n) ((0x8001 | ((n) << 9)) << 2) #define RX_PSC_A2(n) ((0x8002 | ((n) << 9)) << 2) #define RX_PSC_A3(n) ((0x8003 | ((n) << 9)) << 2) #define RX_PSC_CAL(n) ((0x8006 | ((n) << 9)) << 2) #define RX_PSC_RDY(n) ((0x8007 | ((n) << 9)) << 2) #define RX_IQPI_ILL_CAL_OVRD (0x8023 << 2) #define RX_EPI_ILL_CAL_OVRD (0x8033 << 2) #define RX_SDCAL0_OVRD (0x8041 << 2) #define RX_SDCAL1_OVRD (0x8049 << 2) #define RX_SLC_INIT (0x806d << 2) #define RX_SLC_RUN (0x806e << 2) #define RX_CDRLF_CNFG2 (0x8081 << 2) #define RX_SIGDET_HL_FILT_TMR(n) ((0x8090 | ((n) << 9)) << 2) #define RX_SLC_IOP0_OVRD (0x8101 << 2) #define RX_SLC_IOP1_OVRD (0x8105 << 2) #define RX_SLC_QOP0_OVRD (0x8109 << 2) #define RX_SLC_QOP1_OVRD (0x810d << 2) #define RX_SLC_EOP0_OVRD (0x8111 << 2) #define RX_SLC_EOP1_OVRD (0x8115 << 2) #define RX_SLC_ION0_OVRD (0x8119 << 2) #define RX_SLC_ION1_OVRD (0x811d << 2) #define RX_SLC_QON0_OVRD (0x8121 << 2) #define RX_SLC_QON1_OVRD (0x8125 << 2) #define RX_SLC_EON0_OVRD (0x8129 << 2) #define RX_SLC_EON1_OVRD (0x812d << 2) #define RX_SLC_IEP0_OVRD (0x8131 << 2) #define RX_SLC_IEP1_OVRD (0x8135 << 2) #define RX_SLC_QEP0_OVRD (0x8139 << 2) #define RX_SLC_QEP1_OVRD (0x813d << 2) #define RX_SLC_EEP0_OVRD (0x8141 << 2) #define RX_SLC_EEP1_OVRD (0x8145 << 2) #define RX_SLC_IEN0_OVRD (0x8149 << 2) #define RX_SLC_IEN1_OVRD (0x814d << 2) #define RX_SLC_QEN0_OVRD (0x8151 << 2) #define RX_SLC_QEN1_OVRD (0x8155 << 2) #define RX_SLC_EEN0_OVRD (0x8159 << 2) #define RX_SLC_EEN1_OVRD (0x815d << 2) #define RX_REE_CTRL_DATA_MASK(n) ((0x81bb | ((n) << 9)) << 2) #define RX_DIAG_SIGDET_TUNE(n) ((0x81dc | ((n) << 9)) << 2) #define RX_DIAG_SC2C_DELAY (0x81e1 << 2) #define PMA_LANE_CFG (0xc000 << 2) #define PIPE_CMN_CTRL1 (0xc001 << 2) #define PIPE_CMN_CTRL2 (0xc002 << 2) #define PIPE_COM_LOCK_CFG1 (0xc003 << 2) #define PIPE_COM_LOCK_CFG2 (0xc004 << 2) #define PIPE_RCV_DET_INH (0xc005 << 2) #define DP_MODE_CTL (0xc008 << 2) #define DP_CLK_CTL (0xc009 << 2) #define STS (0xc00F << 2) #define PHY_ISO_CMN_CTRL (0xc010 << 2) #define PHY_DP_TX_CTL (0xc408 << 2) #define PMA_CMN_CTRL1 (0xc800 << 2) #define PHY_PMA_ISO_CMN_CTRL (0xc810 << 2) #define PHY_ISOLATION_CTRL (0xc81f << 2) #define PHY_PMA_ISO_XCVR_CTRL(n) ((0xcc11 | ((n) << 6)) << 2) #define PHY_PMA_ISO_LINK_MODE(n) ((0xcc12 | ((n) << 6)) << 2) #define PHY_PMA_ISO_PWRST_CTRL(n) ((0xcc13 | ((n) << 6)) << 2) #define PHY_PMA_ISO_TX_DATA_LO(n) ((0xcc14 | ((n) << 6)) << 2) #define PHY_PMA_ISO_TX_DATA_HI(n) ((0xcc15 | ((n) << 6)) << 2) #define PHY_PMA_ISO_RX_DATA_LO(n) ((0xcc16 | ((n) << 6)) << 2) #define PHY_PMA_ISO_RX_DATA_HI(n) ((0xcc17 | ((n) << 6)) << 2) #define TX_BIST_CTRL(n) ((0x4140 | ((n) << 9)) << 2) #define TX_BIST_UDDWR(n) ((0x4141 | ((n) << 9)) << 2) /* * Selects which PLL clock will be driven on the analog high speed * clock 0: PLL 0 div 1 * clock 1: PLL 1 div 2 */ #define CLK_PLL_CONFIG 0X30 #define CLK_PLL_MASK 0x33 #define CMN_READY BIT(0) #define DP_PLL_CLOCK_ENABLE BIT(2) #define DP_PLL_ENABLE BIT(0) #define DP_PLL_DATA_RATE_RBR ((2 << 12) | (4 << 8)) #define DP_PLL_DATA_RATE_HBR ((2 << 12) | (4 << 8)) #define DP_PLL_DATA_RATE_HBR2 ((1 << 12) | (2 << 8)) #define DP_MODE_A0 BIT(4) #define DP_MODE_A2 BIT(6) #define DP_MODE_ENTER_A0 0xc101 #define DP_MODE_ENTER_A2 0xc104 #define PHY_MODE_SET_TIMEOUT 100000 #define PIN_ASSIGN_C_E 0x51d9 #define PIN_ASSIGN_D_F 0x5100 #define MODE_DISCONNECT 0 #define MODE_UFP_USB BIT(0) #define MODE_DFP_USB BIT(1) #define MODE_DFP_DP BIT(2) struct usb3phy_reg { u32 offset; u32 enable_bit; u32 write_enable; }; /** * struct rockchip_usb3phy_port_cfg - usb3-phy port configuration. * @reg: the base address for usb3-phy config. * @typec_conn_dir: the register of type-c connector direction. * @usb3tousb2_en: the register of type-c force usb2 to usb2 enable. * @external_psm: the register of type-c phy external psm clock. * @pipe_status: the register of type-c phy pipe status. * @usb3_host_disable: the register of type-c usb3 host disable. * @usb3_host_port: the register of type-c usb3 host port. * @uphy_dp_sel: the register of type-c phy DP select control. */ struct rockchip_usb3phy_port_cfg { unsigned int reg; struct usb3phy_reg typec_conn_dir; struct usb3phy_reg usb3tousb2_en; struct usb3phy_reg external_psm; struct usb3phy_reg pipe_status; struct usb3phy_reg usb3_host_disable; struct usb3phy_reg usb3_host_port; struct usb3phy_reg uphy_dp_sel; }; struct rockchip_typec_phy { struct device *dev; void __iomem *base; struct extcon_dev *extcon; struct regmap *grf_regs; struct clk *clk_core; struct clk *clk_ref; struct reset_control *uphy_rst; struct reset_control *pipe_rst; struct reset_control *tcphy_rst; const struct rockchip_usb3phy_port_cfg *port_cfgs; /* mutex to protect access to individual PHYs */ struct mutex lock; bool flip; u8 mode; }; struct phy_reg { u16 value; u32 addr; }; static struct phy_reg usb3_pll_cfg[] = { { 0xf0, CMN_PLL0_VCOCAL_INIT }, { 0x18, CMN_PLL0_VCOCAL_ITER }, { 0xd0, CMN_PLL0_INTDIV }, { 0x4a4a, CMN_PLL0_FRACDIV }, { 0x34, CMN_PLL0_HIGH_THR }, { 0x1ee, CMN_PLL0_SS_CTRL1 }, { 0x7f03, CMN_PLL0_SS_CTRL2 }, { 0x20, CMN_PLL0_DSM_DIAG }, { 0, CMN_DIAG_PLL0_OVRD }, { 0, CMN_DIAG_PLL0_FBH_OVRD }, { 0, CMN_DIAG_PLL0_FBL_OVRD }, { 0x7, CMN_DIAG_PLL0_V2I_TUNE }, { 0x45, CMN_DIAG_PLL0_CP_TUNE }, { 0x8, CMN_DIAG_PLL0_LF_PROG }, }; static struct phy_reg dp_pll_cfg[] = { { 0xf0, CMN_PLL1_VCOCAL_INIT }, { 0x18, CMN_PLL1_VCOCAL_ITER }, { 0x30b9, CMN_PLL1_VCOCAL_START }, { 0x21c, CMN_PLL1_INTDIV }, { 0, CMN_PLL1_FRACDIV }, { 0x5, CMN_PLL1_HIGH_THR }, { 0x35, CMN_PLL1_SS_CTRL1 }, { 0x7f1e, CMN_PLL1_SS_CTRL2 }, { 0x20, CMN_PLL1_DSM_DIAG }, { 0, CMN_PLLSM1_USER_DEF_CTRL }, { 0, CMN_DIAG_PLL1_OVRD }, { 0, CMN_DIAG_PLL1_FBH_OVRD }, { 0, CMN_DIAG_PLL1_FBL_OVRD }, { 0x6, CMN_DIAG_PLL1_V2I_TUNE }, { 0x45, CMN_DIAG_PLL1_CP_TUNE }, { 0x8, CMN_DIAG_PLL1_LF_PROG }, { 0x100, CMN_DIAG_PLL1_PTATIS_TUNE1 }, { 0x7, CMN_DIAG_PLL1_PTATIS_TUNE2 }, { 0x4, CMN_DIAG_PLL1_INCLK_CTRL }, }; static const struct rockchip_usb3phy_port_cfg rk3399_usb3phy_port_cfgs[] = { { .reg = 0xff7c0000, .typec_conn_dir = { 0xe580, 0, 16 }, .usb3tousb2_en = { 0xe580, 3, 19 }, .external_psm = { 0xe588, 14, 30 }, .pipe_status = { 0xe5c0, 0, 0 }, .usb3_host_disable = { 0x2434, 0, 16 }, .usb3_host_port = { 0x2434, 12, 28 }, .uphy_dp_sel = { 0x6268, 19, 19 }, }, { .reg = 0xff800000, .typec_conn_dir = { 0xe58c, 0, 16 }, .usb3tousb2_en = { 0xe58c, 3, 19 }, .external_psm = { 0xe594, 14, 30 }, .pipe_status = { 0xe5c0, 16, 16 }, .usb3_host_disable = { 0x2444, 0, 16 }, .usb3_host_port = { 0x2444, 12, 28 }, .uphy_dp_sel = { 0x6268, 3, 19 }, }, { /* sentinel */ } }; static void tcphy_cfg_24m(struct rockchip_typec_phy *tcphy) { u32 i, rdata; /* * cmn_ref_clk_sel = 3, select the 24Mhz for clk parent * cmn_psm_clk_dig_div = 2, set the clk division to 2 */ writel(0x830, tcphy->base + PMA_CMN_CTRL1); for (i = 0; i < 4; i++) { /* * The following PHY configuration assumes a 24 MHz reference * clock. */ writel(0x90, tcphy->base + XCVR_DIAG_LANE_FCM_EN_MGN(i)); writel(0x960, tcphy->base + TX_RCVDET_EN_TMR(i)); writel(0x30, tcphy->base + TX_RCVDET_ST_TMR(i)); } rdata = readl(tcphy->base + CMN_DIAG_HSCLK_SEL); rdata &= ~CLK_PLL_MASK; rdata |= CLK_PLL_CONFIG; writel(rdata, tcphy->base + CMN_DIAG_HSCLK_SEL); } static void tcphy_cfg_usb3_pll(struct rockchip_typec_phy *tcphy) { u32 i; /* load the configuration of PLL0 */ for (i = 0; i < ARRAY_SIZE(usb3_pll_cfg); i++) writel(usb3_pll_cfg[i].value, tcphy->base + usb3_pll_cfg[i].addr); } static void tcphy_cfg_dp_pll(struct rockchip_typec_phy *tcphy) { u32 i; /* set the default mode to RBR */ writel(DP_PLL_CLOCK_ENABLE | DP_PLL_ENABLE | DP_PLL_DATA_RATE_RBR, tcphy->base + DP_CLK_CTL); /* load the configuration of PLL1 */ for (i = 0; i < ARRAY_SIZE(dp_pll_cfg); i++) writel(dp_pll_cfg[i].value, tcphy->base + dp_pll_cfg[i].addr); } static void tcphy_tx_usb3_cfg_lane(struct rockchip_typec_phy *tcphy, u32 lane) { writel(0x7799, tcphy->base + TX_PSC_A0(lane)); writel(0x7798, tcphy->base + TX_PSC_A1(lane)); writel(0x5098, tcphy->base + TX_PSC_A2(lane)); writel(0x5098, tcphy->base + TX_PSC_A3(lane)); writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_000(lane)); writel(0xbf, tcphy->base + XCVR_DIAG_BIDI_CTRL(lane)); } static void tcphy_rx_usb3_cfg_lane(struct rockchip_typec_phy *tcphy, u32 lane) { writel(0xa6fd, tcphy->base + RX_PSC_A0(lane)); writel(0xa6fd, tcphy->base + RX_PSC_A1(lane)); writel(0xa410, tcphy->base + RX_PSC_A2(lane)); writel(0x2410, tcphy->base + RX_PSC_A3(lane)); writel(0x23ff, tcphy->base + RX_PSC_CAL(lane)); writel(0x13, tcphy->base + RX_SIGDET_HL_FILT_TMR(lane)); writel(0x03e7, tcphy->base + RX_REE_CTRL_DATA_MASK(lane)); writel(0x1004, tcphy->base + RX_DIAG_SIGDET_TUNE(lane)); writel(0x2010, tcphy->base + RX_PSC_RDY(lane)); writel(0xfb, tcphy->base + XCVR_DIAG_BIDI_CTRL(lane)); } static void tcphy_dp_cfg_lane(struct rockchip_typec_phy *tcphy, u32 lane) { u16 rdata; writel(0xbefc, tcphy->base + XCVR_PSM_RCTRL(lane)); writel(0x6799, tcphy->base + TX_PSC_A0(lane)); writel(0x6798, tcphy->base + TX_PSC_A1(lane)); writel(0x98, tcphy->base + TX_PSC_A2(lane)); writel(0x98, tcphy->base + TX_PSC_A3(lane)); writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_000(lane)); writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_001(lane)); writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_010(lane)); writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_011(lane)); writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_100(lane)); writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_101(lane)); writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_110(lane)); writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_111(lane)); writel(0, tcphy->base + TX_TXCC_CPOST_MULT_10(lane)); writel(0, tcphy->base + TX_TXCC_CPOST_MULT_01(lane)); writel(0, tcphy->base + TX_TXCC_CPOST_MULT_00(lane)); writel(0, tcphy->base + TX_TXCC_CPOST_MULT_11(lane)); writel(0x128, tcphy->base + TX_TXCC_CAL_SCLR_MULT(lane)); writel(0x400, tcphy->base + TX_DIAG_TX_DRV(lane)); rdata = readl(tcphy->base + XCVR_DIAG_PLLDRC_CTRL(lane)); rdata = (rdata & 0x8fff) | 0x6000; writel(rdata, tcphy->base + XCVR_DIAG_PLLDRC_CTRL(lane)); } static inline int property_enable(struct rockchip_typec_phy *tcphy, const struct usb3phy_reg *reg, bool en) { u32 mask = 1 << reg->write_enable; u32 val = en << reg->enable_bit; return regmap_write(tcphy->grf_regs, reg->offset, val | mask); } static void tcphy_dp_aux_set_flip(struct rockchip_typec_phy *tcphy) { u16 tx_ana_ctrl_reg_1; /* * Select the polarity of the xcvr: * 1, Reverses the polarity (If TYPEC, Pulls ups aux_p and pull * down aux_m) * 0, Normal polarity (if TYPEC, pulls up aux_m and pulls down * aux_p) */ tx_ana_ctrl_reg_1 = readl(tcphy->base + TX_ANA_CTRL_REG_1); if (!tcphy->flip) tx_ana_ctrl_reg_1 |= AUXDA_POLARITY; else tx_ana_ctrl_reg_1 &= ~AUXDA_POLARITY; writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1); } static void tcphy_dp_aux_calibration(struct rockchip_typec_phy *tcphy) { u16 val; u16 tx_ana_ctrl_reg_1; u16 tx_ana_ctrl_reg_2; s32 pu_calib_code, pd_calib_code; s32 pu_adj, pd_adj; u16 calib; /* * Calculate calibration code as per docs: use an average of the * pull down and pull up. Then add in adjustments. */ val = readl(tcphy->base + CMN_TXPUCAL_CTRL); pu_calib_code = CMN_CALIB_CODE_POS(val); val = readl(tcphy->base + CMN_TXPDCAL_CTRL); pd_calib_code = CMN_CALIB_CODE_POS(val); val = readl(tcphy->base + CMN_TXPU_ADJ_CTRL); pu_adj = CMN_CALIB_CODE(val); val = readl(tcphy->base + CMN_TXPD_ADJ_CTRL); pd_adj = CMN_CALIB_CODE(val); calib = (pu_calib_code + pd_calib_code) / 2 + pu_adj + pd_adj; /* disable txda_cal_latch_en for rewrite the calibration values */ tx_ana_ctrl_reg_1 = readl(tcphy->base + TX_ANA_CTRL_REG_1); tx_ana_ctrl_reg_1 &= ~TXDA_CAL_LATCH_EN; writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1); /* write the calibration, then delay 10 ms as sample in docs */ val = readl(tcphy->base + TX_DIG_CTRL_REG_2); val &= ~(TX_RESCAL_CODE_MASK << TX_RESCAL_CODE_OFFSET); val |= calib << TX_RESCAL_CODE_OFFSET; writel(val, tcphy->base + TX_DIG_CTRL_REG_2); usleep_range(10000, 10050); /* * Enable signal for latch that sample and holds calibration values. * Activate this signal for 1 clock cycle to sample new calibration * values. */ tx_ana_ctrl_reg_1 |= TXDA_CAL_LATCH_EN; writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1); usleep_range(150, 200); /* set TX Voltage Level and TX Deemphasis to 0 */ writel(0, tcphy->base + PHY_DP_TX_CTL); /* re-enable decap */ tx_ana_ctrl_reg_2 = XCVR_DECAP_EN; writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2); udelay(1); tx_ana_ctrl_reg_2 |= XCVR_DECAP_EN_DEL; writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2); writel(0, tcphy->base + TX_ANA_CTRL_REG_3); tx_ana_ctrl_reg_1 |= TXDA_UPHY_SUPPLY_EN; writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1); udelay(1); tx_ana_ctrl_reg_1 |= TXDA_UPHY_SUPPLY_EN_DEL; writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1); writel(0, tcphy->base + TX_ANA_CTRL_REG_5); /* * Programs txda_drv_ldo_prog[15:0], Sets driver LDO * voltage 16'h1001 for DP-AUX-TX and RX */ writel(0x1001, tcphy->base + TX_ANA_CTRL_REG_4); /* re-enables Bandgap reference for LDO */ tx_ana_ctrl_reg_1 |= TXDA_DRV_LDO_EN; writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1); udelay(5); tx_ana_ctrl_reg_1 |= TXDA_BGREF_EN; writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1); /* * re-enables the transmitter pre-driver, driver data selection MUX, * and receiver detect circuits. */ tx_ana_ctrl_reg_2 |= TXDA_DRV_PREDRV_EN; writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2); udelay(1); tx_ana_ctrl_reg_2 |= TXDA_DRV_PREDRV_EN_DEL; writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2); /* * Do all the undocumented magic: * - Turn on TXDA_DP_AUX_EN, whatever that is, even though sample * never shows this going on. * - Turn on TXDA_DECAP_EN (and TXDA_DECAP_EN_DEL) even though * docs say for aux it's always 0. * - Turn off the LDO and BGREF, which we just spent time turning * on above (???). * * Without this magic, things seem worse. */ tx_ana_ctrl_reg_1 |= TXDA_DP_AUX_EN; tx_ana_ctrl_reg_1 |= TXDA_DECAP_EN; tx_ana_ctrl_reg_1 &= ~TXDA_DRV_LDO_EN; tx_ana_ctrl_reg_1 &= ~TXDA_BGREF_EN; writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1); udelay(1); tx_ana_ctrl_reg_1 |= TXDA_DECAP_EN_DEL; writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1); /* * Undo the work we did to set the LDO voltage. * This doesn't seem to help nor hurt, but it kinda goes with the * undocumented magic above. */ writel(0, tcphy->base + TX_ANA_CTRL_REG_4); /* Don't set voltage swing to 400 mV peak to peak (differential) */ writel(0, tcphy->base + TXDA_COEFF_CALC_CTRL); /* Init TXDA_CYA_AUXDA_CYA for unknown magic reasons */ writel(0, tcphy->base + TXDA_CYA_AUXDA_CYA); /* * More undocumented magic, presumably the goal of which is to * make the "auxda_source_aux_oen" be ignored and instead to decide * about "high impedance state" based on what software puts in the * register TXDA_COEFF_CALC_CTRL (see TX_HIGH_Z). Since we only * program that register once and we don't set the bit TX_HIGH_Z, * presumably the goal here is that we should never put the analog * driver in high impedance state. */ val = readl(tcphy->base + TX_DIG_CTRL_REG_2); val |= TX_HIGH_Z_TM_EN; writel(val, tcphy->base + TX_DIG_CTRL_REG_2); } static int tcphy_phy_init(struct rockchip_typec_phy *tcphy, u8 mode) { const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs; int ret, i; u32 val; ret = clk_prepare_enable(tcphy->clk_core); if (ret) { dev_err(tcphy->dev, "Failed to prepare_enable core clock\n"); return ret; } ret = clk_prepare_enable(tcphy->clk_ref); if (ret) { dev_err(tcphy->dev, "Failed to prepare_enable ref clock\n"); goto err_clk_core; } reset_control_deassert(tcphy->tcphy_rst); property_enable(tcphy, &cfg->typec_conn_dir, tcphy->flip); tcphy_dp_aux_set_flip(tcphy); tcphy_cfg_24m(tcphy); if (mode == MODE_DFP_DP) { tcphy_cfg_dp_pll(tcphy); for (i = 0; i < 4; i++) tcphy_dp_cfg_lane(tcphy, i); writel(PIN_ASSIGN_C_E, tcphy->base + PMA_LANE_CFG); } else { tcphy_cfg_usb3_pll(tcphy); tcphy_cfg_dp_pll(tcphy); if (tcphy->flip) { tcphy_tx_usb3_cfg_lane(tcphy, 3); tcphy_rx_usb3_cfg_lane(tcphy, 2); tcphy_dp_cfg_lane(tcphy, 0); tcphy_dp_cfg_lane(tcphy, 1); } else { tcphy_tx_usb3_cfg_lane(tcphy, 0); tcphy_rx_usb3_cfg_lane(tcphy, 1); tcphy_dp_cfg_lane(tcphy, 2); tcphy_dp_cfg_lane(tcphy, 3); } writel(PIN_ASSIGN_D_F, tcphy->base + PMA_LANE_CFG); } writel(DP_MODE_ENTER_A2, tcphy->base + DP_MODE_CTL); reset_control_deassert(tcphy->uphy_rst); ret = readx_poll_timeout(readl, tcphy->base + PMA_CMN_CTRL1, val, val & CMN_READY, 10, PHY_MODE_SET_TIMEOUT); if (ret < 0) { dev_err(tcphy->dev, "wait pma ready timeout\n"); ret = -ETIMEDOUT; goto err_wait_pma; } reset_control_deassert(tcphy->pipe_rst); return 0; err_wait_pma: reset_control_assert(tcphy->uphy_rst); reset_control_assert(tcphy->tcphy_rst); clk_disable_unprepare(tcphy->clk_ref); err_clk_core: clk_disable_unprepare(tcphy->clk_core); return ret; } static void tcphy_phy_deinit(struct rockchip_typec_phy *tcphy) { reset_control_assert(tcphy->tcphy_rst); reset_control_assert(tcphy->uphy_rst); reset_control_assert(tcphy->pipe_rst); clk_disable_unprepare(tcphy->clk_core); clk_disable_unprepare(tcphy->clk_ref); } static int tcphy_get_mode(struct rockchip_typec_phy *tcphy) { struct extcon_dev *edev = tcphy->extcon; union extcon_property_value property; unsigned int id; u8 mode; int ret, ufp, dp; if (!edev) return MODE_DFP_USB; ufp = extcon_get_state(edev, EXTCON_USB); dp = extcon_get_state(edev, EXTCON_DISP_DP); mode = MODE_DFP_USB; id = EXTCON_USB_HOST; if (ufp > 0) { mode = MODE_UFP_USB; id = EXTCON_USB; } else if (dp > 0) { mode = MODE_DFP_DP; id = EXTCON_DISP_DP; ret = extcon_get_property(edev, id, EXTCON_PROP_USB_SS, &property); if (ret) { dev_err(tcphy->dev, "get superspeed property failed\n"); return ret; } if (property.intval) mode |= MODE_DFP_USB; } ret = extcon_get_property(edev, id, EXTCON_PROP_USB_TYPEC_POLARITY, &property); if (ret) { dev_err(tcphy->dev, "get polarity property failed\n"); return ret; } tcphy->flip = property.intval ? 1 : 0; return mode; } static int tcphy_cfg_usb3_to_usb2_only(struct rockchip_typec_phy *tcphy, bool value) { const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs; property_enable(tcphy, &cfg->usb3tousb2_en, value); property_enable(tcphy, &cfg->usb3_host_disable, value); property_enable(tcphy, &cfg->usb3_host_port, !value); return 0; } static int rockchip_usb3_phy_power_on(struct phy *phy) { struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy); const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs; const struct usb3phy_reg *reg = &cfg->pipe_status; int timeout, new_mode, ret = 0; u32 val; mutex_lock(&tcphy->lock); new_mode = tcphy_get_mode(tcphy); if (new_mode < 0) { ret = new_mode; goto unlock_ret; } /* DP-only mode; fall back to USB2 */ if (!(new_mode & (MODE_DFP_USB | MODE_UFP_USB))) { tcphy_cfg_usb3_to_usb2_only(tcphy, true); goto unlock_ret; } if (tcphy->mode == new_mode) goto unlock_ret; if (tcphy->mode == MODE_DISCONNECT) { ret = tcphy_phy_init(tcphy, new_mode); if (ret) goto unlock_ret; } /* wait TCPHY for pipe ready */ for (timeout = 0; timeout < 100; timeout++) { regmap_read(tcphy->grf_regs, reg->offset, &val); if (!(val & BIT(reg->enable_bit))) { tcphy->mode |= new_mode & (MODE_DFP_USB | MODE_UFP_USB); /* enable usb3 host */ tcphy_cfg_usb3_to_usb2_only(tcphy, false); goto unlock_ret; } usleep_range(10, 20); } if (tcphy->mode == MODE_DISCONNECT) tcphy_phy_deinit(tcphy); ret = -ETIMEDOUT; unlock_ret: mutex_unlock(&tcphy->lock); return ret; } static int rockchip_usb3_phy_power_off(struct phy *phy) { struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy); mutex_lock(&tcphy->lock); tcphy_cfg_usb3_to_usb2_only(tcphy, false); if (tcphy->mode == MODE_DISCONNECT) goto unlock; tcphy->mode &= ~(MODE_UFP_USB | MODE_DFP_USB); if (tcphy->mode == MODE_DISCONNECT) tcphy_phy_deinit(tcphy); unlock: mutex_unlock(&tcphy->lock); return 0; } static const struct phy_ops rockchip_usb3_phy_ops = { .power_on = rockchip_usb3_phy_power_on, .power_off = rockchip_usb3_phy_power_off, .owner = THIS_MODULE, }; static int rockchip_dp_phy_power_on(struct phy *phy) { struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy); const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs; int new_mode, ret = 0; u32 val; mutex_lock(&tcphy->lock); new_mode = tcphy_get_mode(tcphy); if (new_mode < 0) { ret = new_mode; goto unlock_ret; } if (!(new_mode & MODE_DFP_DP)) { ret = -ENODEV; goto unlock_ret; } if (tcphy->mode == new_mode) goto unlock_ret; /* * If the PHY has been power on, but the mode is not DP only mode, * re-init the PHY for setting all of 4 lanes to DP. */ if (new_mode == MODE_DFP_DP && tcphy->mode != MODE_DISCONNECT) { tcphy_phy_deinit(tcphy); ret = tcphy_phy_init(tcphy, new_mode); } else if (tcphy->mode == MODE_DISCONNECT) { ret = tcphy_phy_init(tcphy, new_mode); } if (ret) goto unlock_ret; property_enable(tcphy, &cfg->uphy_dp_sel, 1); ret = readx_poll_timeout(readl, tcphy->base + DP_MODE_CTL, val, val & DP_MODE_A2, 1000, PHY_MODE_SET_TIMEOUT); if (ret < 0) { dev_err(tcphy->dev, "failed to wait TCPHY enter A2\n"); goto power_on_finish; } tcphy_dp_aux_calibration(tcphy); writel(DP_MODE_ENTER_A0, tcphy->base + DP_MODE_CTL); ret = readx_poll_timeout(readl, tcphy->base + DP_MODE_CTL, val, val & DP_MODE_A0, 1000, PHY_MODE_SET_TIMEOUT); if (ret < 0) { writel(DP_MODE_ENTER_A2, tcphy->base + DP_MODE_CTL); dev_err(tcphy->dev, "failed to wait TCPHY enter A0\n"); goto power_on_finish; } tcphy->mode |= MODE_DFP_DP; power_on_finish: if (tcphy->mode == MODE_DISCONNECT) tcphy_phy_deinit(tcphy); unlock_ret: mutex_unlock(&tcphy->lock); return ret; } static int rockchip_dp_phy_power_off(struct phy *phy) { struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy); mutex_lock(&tcphy->lock); if (tcphy->mode == MODE_DISCONNECT) goto unlock; tcphy->mode &= ~MODE_DFP_DP; writel(DP_MODE_ENTER_A2, tcphy->base + DP_MODE_CTL); if (tcphy->mode == MODE_DISCONNECT) tcphy_phy_deinit(tcphy); unlock: mutex_unlock(&tcphy->lock); return 0; } static const struct phy_ops rockchip_dp_phy_ops = { .power_on = rockchip_dp_phy_power_on, .power_off = rockchip_dp_phy_power_off, .owner = THIS_MODULE, }; static int tcphy_parse_dt(struct rockchip_typec_phy *tcphy, struct device *dev) { tcphy->grf_regs = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,grf"); if (IS_ERR(tcphy->grf_regs)) { dev_err(dev, "could not find grf dt node\n"); return PTR_ERR(tcphy->grf_regs); } tcphy->clk_core = devm_clk_get(dev, "tcpdcore"); if (IS_ERR(tcphy->clk_core)) { dev_err(dev, "could not get uphy core clock\n"); return PTR_ERR(tcphy->clk_core); } tcphy->clk_ref = devm_clk_get(dev, "tcpdphy-ref"); if (IS_ERR(tcphy->clk_ref)) { dev_err(dev, "could not get uphy ref clock\n"); return PTR_ERR(tcphy->clk_ref); } tcphy->uphy_rst = devm_reset_control_get(dev, "uphy"); if (IS_ERR(tcphy->uphy_rst)) { dev_err(dev, "no uphy_rst reset control found\n"); return PTR_ERR(tcphy->uphy_rst); } tcphy->pipe_rst = devm_reset_control_get(dev, "uphy-pipe"); if (IS_ERR(tcphy->pipe_rst)) { dev_err(dev, "no pipe_rst reset control found\n"); return PTR_ERR(tcphy->pipe_rst); } tcphy->tcphy_rst = devm_reset_control_get(dev, "uphy-tcphy"); if (IS_ERR(tcphy->tcphy_rst)) { dev_err(dev, "no tcphy_rst reset control found\n"); return PTR_ERR(tcphy->tcphy_rst); } return 0; } static void typec_phy_pre_init(struct rockchip_typec_phy *tcphy) { const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs; reset_control_assert(tcphy->tcphy_rst); reset_control_assert(tcphy->uphy_rst); reset_control_assert(tcphy->pipe_rst); /* select external psm clock */ property_enable(tcphy, &cfg->external_psm, 1); property_enable(tcphy, &cfg->usb3tousb2_en, 0); tcphy->mode = MODE_DISCONNECT; } static int rockchip_typec_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct device_node *child_np; struct rockchip_typec_phy *tcphy; struct phy_provider *phy_provider; struct resource *res; const struct rockchip_usb3phy_port_cfg *phy_cfgs; int index, ret; tcphy = devm_kzalloc(dev, sizeof(*tcphy), GFP_KERNEL); if (!tcphy) return -ENOMEM; phy_cfgs = of_device_get_match_data(dev); if (!phy_cfgs) { dev_err(dev, "phy configs are not assigned!\n"); return -EINVAL; } tcphy->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(tcphy->base)) return PTR_ERR(tcphy->base); /* find out a proper config which can be matched with dt. */ index = 0; while (phy_cfgs[index].reg) { if (phy_cfgs[index].reg == res->start) { tcphy->port_cfgs = &phy_cfgs[index]; break; } ++index; } if (!tcphy->port_cfgs) { dev_err(dev, "no phy-config can be matched with %pOFn node\n", np); return -EINVAL; } ret = tcphy_parse_dt(tcphy, dev); if (ret) return ret; tcphy->dev = dev; platform_set_drvdata(pdev, tcphy); mutex_init(&tcphy->lock); typec_phy_pre_init(tcphy); tcphy->extcon = extcon_get_edev_by_phandle(dev, 0); if (IS_ERR(tcphy->extcon)) { if (PTR_ERR(tcphy->extcon) == -ENODEV) { tcphy->extcon = NULL; } else { if (PTR_ERR(tcphy->extcon) != -EPROBE_DEFER) dev_err(dev, "Invalid or missing extcon\n"); return PTR_ERR(tcphy->extcon); } } pm_runtime_enable(dev); for_each_available_child_of_node(np, child_np) { struct phy *phy; if (of_node_name_eq(child_np, "dp-port")) phy = devm_phy_create(dev, child_np, &rockchip_dp_phy_ops); else if (of_node_name_eq(child_np, "usb3-port")) phy = devm_phy_create(dev, child_np, &rockchip_usb3_phy_ops); else continue; if (IS_ERR(phy)) { dev_err(dev, "failed to create phy: %pOFn\n", child_np); pm_runtime_disable(dev); of_node_put(child_np); return PTR_ERR(phy); } phy_set_drvdata(phy, tcphy); } phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) { dev_err(dev, "Failed to register phy provider\n"); pm_runtime_disable(dev); return PTR_ERR(phy_provider); } return 0; } static void rockchip_typec_phy_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); } static const struct of_device_id rockchip_typec_phy_dt_ids[] = { { .compatible = "rockchip,rk3399-typec-phy", .data = &rk3399_usb3phy_port_cfgs }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rockchip_typec_phy_dt_ids); static struct platform_driver rockchip_typec_phy_driver = { .probe = rockchip_typec_phy_probe, .remove_new = rockchip_typec_phy_remove, .driver = { .name = "rockchip-typec-phy", .of_match_table = rockchip_typec_phy_dt_ids, }, }; module_platform_driver(rockchip_typec_phy_driver); MODULE_AUTHOR("Chris Zhong <[email protected]>"); MODULE_AUTHOR("Kever Yang <[email protected]>"); MODULE_DESCRIPTION("Rockchip USB TYPE-C PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/rockchip/phy-rockchip-typec.c
// SPDX-License-Identifier: GPL-2.0-only /* * Rockchip DP PHY driver * * Copyright (C) 2016 FuZhou Rockchip Co., Ltd. * Author: Yakir Yang <ykk@@rock-chips.com> */ #include <linux/clk.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #define GRF_SOC_CON12 0x0274 #define GRF_EDP_REF_CLK_SEL_INTER_HIWORD_MASK BIT(20) #define GRF_EDP_REF_CLK_SEL_INTER BIT(4) #define GRF_EDP_PHY_SIDDQ_HIWORD_MASK BIT(21) #define GRF_EDP_PHY_SIDDQ_ON 0 #define GRF_EDP_PHY_SIDDQ_OFF BIT(5) struct rockchip_dp_phy { struct device *dev; struct regmap *grf; struct clk *phy_24m; }; static int rockchip_set_phy_state(struct phy *phy, bool enable) { struct rockchip_dp_phy *dp = phy_get_drvdata(phy); int ret; if (enable) { ret = regmap_write(dp->grf, GRF_SOC_CON12, GRF_EDP_PHY_SIDDQ_HIWORD_MASK | GRF_EDP_PHY_SIDDQ_ON); if (ret < 0) { dev_err(dp->dev, "Can't enable PHY power %d\n", ret); return ret; } ret = clk_prepare_enable(dp->phy_24m); } else { clk_disable_unprepare(dp->phy_24m); ret = regmap_write(dp->grf, GRF_SOC_CON12, GRF_EDP_PHY_SIDDQ_HIWORD_MASK | GRF_EDP_PHY_SIDDQ_OFF); } return ret; } static int rockchip_dp_phy_power_on(struct phy *phy) { return rockchip_set_phy_state(phy, true); } static int rockchip_dp_phy_power_off(struct phy *phy) { return rockchip_set_phy_state(phy, false); } static const struct phy_ops rockchip_dp_phy_ops = { .power_on = rockchip_dp_phy_power_on, .power_off = rockchip_dp_phy_power_off, .owner = THIS_MODULE, }; static int rockchip_dp_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct phy_provider *phy_provider; struct rockchip_dp_phy *dp; struct phy *phy; int ret; if (!np) return -ENODEV; if (!dev->parent || !dev->parent->of_node) return -ENODEV; dp = devm_kzalloc(dev, sizeof(*dp), GFP_KERNEL); if (!dp) return -ENOMEM; dp->dev = dev; dp->phy_24m = devm_clk_get(dev, "24m"); if (IS_ERR(dp->phy_24m)) { dev_err(dev, "cannot get clock 24m\n"); return PTR_ERR(dp->phy_24m); } ret = clk_set_rate(dp->phy_24m, 24000000); if (ret < 0) { dev_err(dp->dev, "cannot set clock phy_24m %d\n", ret); return ret; } dp->grf = syscon_node_to_regmap(dev->parent->of_node); if (IS_ERR(dp->grf)) { dev_err(dev, "rk3288-dp needs the General Register Files syscon\n"); return PTR_ERR(dp->grf); } ret = regmap_write(dp->grf, GRF_SOC_CON12, GRF_EDP_REF_CLK_SEL_INTER | GRF_EDP_REF_CLK_SEL_INTER_HIWORD_MASK); if (ret != 0) { dev_err(dp->dev, "Could not config GRF edp ref clk: %d\n", ret); return ret; } phy = devm_phy_create(dev, np, &rockchip_dp_phy_ops); if (IS_ERR(phy)) { dev_err(dev, "failed to create phy\n"); return PTR_ERR(phy); } phy_set_drvdata(phy, dp); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id rockchip_dp_phy_dt_ids[] = { { .compatible = "rockchip,rk3288-dp-phy" }, {} }; MODULE_DEVICE_TABLE(of, rockchip_dp_phy_dt_ids); static struct platform_driver rockchip_dp_phy_driver = { .probe = rockchip_dp_phy_probe, .driver = { .name = "rockchip-dp-phy", .of_match_table = rockchip_dp_phy_dt_ids, }, }; module_platform_driver(rockchip_dp_phy_driver); MODULE_AUTHOR("Yakir Yang <[email protected]>"); MODULE_DESCRIPTION("Rockchip DP PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/rockchip/phy-rockchip-dp.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018 Rockchip Electronics Co. Ltd. * * Author: Wyon Bi <[email protected]> */ #include <linux/bits.h> #include <linux/kernel.h> #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <linux/time64.h> #include <linux/phy/phy.h> #include <linux/phy/phy-mipi-dphy.h> #define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l))) /* * The offset address[7:0] is distributed two parts, one from the bit7 to bit5 * is the first address, the other from the bit4 to bit0 is the second address. * when you configure the registers, you must set both of them. The Clock Lane * and Data Lane use the same registers with the same second address, but the * first address is different. */ #define FIRST_ADDRESS(x) (((x) & 0x7) << 5) #define SECOND_ADDRESS(x) (((x) & 0x1f) << 0) #define PHY_REG(first, second) (FIRST_ADDRESS(first) | \ SECOND_ADDRESS(second)) /* Analog Register Part: reg00 */ #define BANDGAP_POWER_MASK BIT(7) #define BANDGAP_POWER_DOWN BIT(7) #define BANDGAP_POWER_ON 0 #define LANE_EN_MASK GENMASK(6, 2) #define LANE_EN_CK BIT(6) #define LANE_EN_3 BIT(5) #define LANE_EN_2 BIT(4) #define LANE_EN_1 BIT(3) #define LANE_EN_0 BIT(2) #define POWER_WORK_MASK GENMASK(1, 0) #define POWER_WORK_ENABLE UPDATE(1, 1, 0) #define POWER_WORK_DISABLE UPDATE(2, 1, 0) /* Analog Register Part: reg01 */ #define REG_SYNCRST_MASK BIT(2) #define REG_SYNCRST_RESET BIT(2) #define REG_SYNCRST_NORMAL 0 #define REG_LDOPD_MASK BIT(1) #define REG_LDOPD_POWER_DOWN BIT(1) #define REG_LDOPD_POWER_ON 0 #define REG_PLLPD_MASK BIT(0) #define REG_PLLPD_POWER_DOWN BIT(0) #define REG_PLLPD_POWER_ON 0 /* Analog Register Part: reg03 */ #define REG_FBDIV_HI_MASK BIT(5) #define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5) #define REG_PREDIV_MASK GENMASK(4, 0) #define REG_PREDIV(x) UPDATE(x, 4, 0) /* Analog Register Part: reg04 */ #define REG_FBDIV_LO_MASK GENMASK(7, 0) #define REG_FBDIV_LO(x) UPDATE(x, 7, 0) /* Analog Register Part: reg05 */ #define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4) #define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4) #define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0) #define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0) /* Analog Register Part: reg06 */ #define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4) #define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4) #define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0) #define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0) /* Analog Register Part: reg07 */ #define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4) #define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4) #define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0) #define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0) /* Analog Register Part: reg08 */ #define PLL_POST_DIV_ENABLE_MASK BIT(5) #define PLL_POST_DIV_ENABLE BIT(5) #define SAMPLE_CLOCK_DIRECTION_MASK BIT(4) #define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4) #define SAMPLE_CLOCK_DIRECTION_FORWARD 0 #define LOWFRE_EN_MASK BIT(5) #define PLL_OUTPUT_FREQUENCY_DIV_BY_1 0 #define PLL_OUTPUT_FREQUENCY_DIV_BY_2 1 /* Analog Register Part: reg0b */ #define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0) #define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0) #define VOD_MIN_RANGE 0x1 #define VOD_MID_RANGE 0x3 #define VOD_BIG_RANGE 0x7 #define VOD_MAX_RANGE 0xf /* Analog Register Part: reg1E */ #define PLL_MODE_SEL_MASK GENMASK(6, 5) #define PLL_MODE_SEL_LVDS_MODE 0 #define PLL_MODE_SEL_MIPI_MODE BIT(5) /* Digital Register Part: reg00 */ #define REG_DIG_RSTN_MASK BIT(0) #define REG_DIG_RSTN_NORMAL BIT(0) #define REG_DIG_RSTN_RESET 0 /* Digital Register Part: reg01 */ #define INVERT_TXCLKESC_MASK BIT(1) #define INVERT_TXCLKESC_ENABLE BIT(1) #define INVERT_TXCLKESC_DISABLE 0 #define INVERT_TXBYTECLKHS_MASK BIT(0) #define INVERT_TXBYTECLKHS_ENABLE BIT(0) #define INVERT_TXBYTECLKHS_DISABLE 0 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */ #define T_LPX_CNT_MASK GENMASK(5, 0) #define T_LPX_CNT(x) UPDATE(x, 5, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */ #define T_HS_ZERO_CNT_HI_MASK BIT(7) #define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7) #define T_HS_PREPARE_CNT_MASK GENMASK(6, 0) #define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */ #define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0) #define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */ #define T_HS_TRAIL_CNT_MASK GENMASK(6, 0) #define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */ #define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0) #define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */ #define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0) #define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */ #define LPDT_TX_PPI_SYNC_MASK BIT(2) #define LPDT_TX_PPI_SYNC_ENABLE BIT(2) #define LPDT_TX_PPI_SYNC_DISABLE 0 #define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0) #define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */ #define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0) #define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */ #define T_CLK_PRE_CNT_MASK GENMASK(3, 0) #define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */ #define T_CLK_POST_CNT_HI_MASK GENMASK(7, 6) #define T_CLK_POST_CNT_HI(x) UPDATE(x, 7, 6) #define T_TA_GO_CNT_MASK GENMASK(5, 0) #define T_TA_GO_CNT(x) UPDATE(x, 5, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */ #define T_HS_EXIT_CNT_HI_MASK BIT(6) #define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6) #define T_TA_SURE_CNT_MASK GENMASK(5, 0) #define T_TA_SURE_CNT(x) UPDATE(x, 5, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */ #define T_TA_WAIT_CNT_MASK GENMASK(5, 0) #define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0) /* LVDS Register Part: reg00 */ #define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2) #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2) #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0 /* LVDS Register Part: reg01 */ #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7) #define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7) #define LVDS_DIGITAL_INTERNAL_DISABLE 0 /* LVDS Register Part: reg03 */ #define MODE_ENABLE_MASK GENMASK(2, 0) #define TTL_MODE_ENABLE BIT(2) #define LVDS_MODE_ENABLE BIT(1) #define MIPI_MODE_ENABLE BIT(0) /* LVDS Register Part: reg0b */ #define LVDS_LANE_EN_MASK GENMASK(7, 3) #define LVDS_DATA_LANE0_EN BIT(7) #define LVDS_DATA_LANE1_EN BIT(6) #define LVDS_DATA_LANE2_EN BIT(5) #define LVDS_DATA_LANE3_EN BIT(4) #define LVDS_CLK_LANE_EN BIT(3) #define LVDS_PLL_POWER_MASK BIT(2) #define LVDS_PLL_POWER_OFF BIT(2) #define LVDS_PLL_POWER_ON 0 #define LVDS_BANDGAP_POWER_MASK BIT(0) #define LVDS_BANDGAP_POWER_DOWN BIT(0) #define LVDS_BANDGAP_POWER_ON 0 #define DSI_PHY_RSTZ 0xa0 #define PHY_ENABLECLK BIT(2) #define DSI_PHY_STATUS 0xb0 #define PHY_LOCK BIT(0) enum phy_max_rate { MAX_1GHZ, MAX_2_5GHZ, }; struct inno_video_phy_plat_data { const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table; const unsigned int num_timings; enum phy_max_rate max_rate; }; struct inno_dsidphy { struct device *dev; struct clk *ref_clk; struct clk *pclk_phy; struct clk *pclk_host; const struct inno_video_phy_plat_data *pdata; void __iomem *phy_base; void __iomem *host_base; struct reset_control *rst; enum phy_mode mode; struct phy_configure_opts_mipi_dphy dphy_cfg; struct clk *pll_clk; struct { struct clk_hw hw; u8 prediv; u16 fbdiv; unsigned long rate; } pll; }; enum { REGISTER_PART_ANALOG, REGISTER_PART_DIGITAL, REGISTER_PART_CLOCK_LANE, REGISTER_PART_DATA0_LANE, REGISTER_PART_DATA1_LANE, REGISTER_PART_DATA2_LANE, REGISTER_PART_DATA3_LANE, REGISTER_PART_LVDS, }; struct inno_mipi_dphy_timing { unsigned long rate; u8 lpx; u8 hs_prepare; u8 clk_lane_hs_zero; u8 data_lane_hs_zero; u8 hs_trail; }; static const struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = { { 110000000, 0x0, 0x20, 0x16, 0x02, 0x22}, { 150000000, 0x0, 0x06, 0x16, 0x03, 0x45}, { 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b}, { 250000000, 0x0, 0x05, 0x17, 0x05, 0x16}, { 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c}, { 400000000, 0x0, 0x64, 0x19, 0x07, 0x33}, { 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e}, { 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a}, { 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a}, { 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29}, {1000000000, 0x0, 0x09, 0x20, 0x09, 0x27}, }; static const struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = { { 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02}, { 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02}, { 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02}, { 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04}, { 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04}, { 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04}, { 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08}, { 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10}, { 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30}, { 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30}, {1000000000, 0x05, 0x08, 0x20, 0x09, 0x30}, {1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f}, {1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f}, {1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f}, {1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f}, {2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b}, {2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b}, {2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a}, {2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a}, }; static void phy_update_bits(struct inno_dsidphy *inno, u8 first, u8 second, u8 mask, u8 val) { u32 reg = PHY_REG(first, second) << 2; unsigned int tmp, orig; orig = readl(inno->phy_base + reg); tmp = orig & ~mask; tmp |= val & mask; writel(tmp, inno->phy_base + reg); } static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno, unsigned long rate) { unsigned long prate = clk_get_rate(inno->ref_clk); unsigned long best_freq = 0; unsigned long fref, fout; u8 min_prediv, max_prediv; u8 _prediv, best_prediv = 1; u16 _fbdiv, best_fbdiv = 1; u32 min_delta = UINT_MAX; /* * The PLL output frequency can be calculated using a simple formula: * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2 */ fref = prate / 2; if (rate > 1000000000UL) fout = 1000000000UL; else fout = rate; /* 5Mhz < Fref / prediv < 40MHz */ min_prediv = DIV_ROUND_UP(fref, 40000000); max_prediv = fref / 5000000; for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) { u64 tmp; u32 delta; tmp = (u64)fout * _prediv; do_div(tmp, fref); _fbdiv = tmp; /* * The possible settings of feedback divider are * 12, 13, 14, 16, ~ 511 */ if (_fbdiv == 15) continue; if (_fbdiv < 12 || _fbdiv > 511) continue; tmp = (u64)_fbdiv * fref; do_div(tmp, _prediv); delta = abs(fout - tmp); if (!delta) { best_prediv = _prediv; best_fbdiv = _fbdiv; best_freq = tmp; break; } else if (delta < min_delta) { best_prediv = _prediv; best_fbdiv = _fbdiv; best_freq = tmp; min_delta = delta; } } if (best_freq) { inno->pll.prediv = best_prediv; inno->pll.fbdiv = best_fbdiv; inno->pll.rate = best_freq; } return best_freq; } static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno) { struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg; const struct inno_mipi_dphy_timing *timings; u32 t_txbyteclkhs, t_txclkesc; u32 txbyteclkhs, txclkesc, esc_clk_div; u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait; u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero; unsigned int i; timings = inno->pdata->inno_mipi_dphy_timing_table; inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate); /* Select MIPI mode */ phy_update_bits(inno, REGISTER_PART_LVDS, 0x03, MODE_ENABLE_MASK, MIPI_MODE_ENABLE); /* Configure PLL */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv)); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv)); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04, REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv)); if (inno->pdata->max_rate == MAX_2_5GHZ) { phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08, PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b, CLOCK_LANE_VOD_RANGE_SET_MASK, CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE)); } /* Enable PLL and LDO */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, REG_LDOPD_MASK | REG_PLLPD_MASK, REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON); /* Reset analog */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, REG_SYNCRST_MASK, REG_SYNCRST_RESET); udelay(1); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, REG_SYNCRST_MASK, REG_SYNCRST_NORMAL); /* Reset digital */ phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00, REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET); udelay(1); phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00, REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL); txbyteclkhs = inno->pll.rate / 8; t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs); esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000); txclkesc = txbyteclkhs / esc_clk_div; t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc); /* * The value of counter for HS Ths-exit * Ths-exit = Tpin_txbyteclkhs * value */ hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs); /* * The value of counter for HS Tclk-post * Tclk-post = Tpin_txbyteclkhs * value */ clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs); /* * The value of counter for HS Tclk-pre * Tclk-pre = Tpin_txbyteclkhs * value */ clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE); /* * The value of counter for HS Tta-go * Tta-go for turnaround * Tta-go = Ttxclkesc * value */ ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc); /* * The value of counter for HS Tta-sure * Tta-sure for turnaround * Tta-sure = Ttxclkesc * value */ ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc); /* * The value of counter for HS Tta-wait * Tta-wait for turnaround * Tta-wait = Ttxclkesc * value */ ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc); for (i = 0; i < inno->pdata->num_timings; i++) if (inno->pll.rate <= timings[i].rate) break; if (i == inno->pdata->num_timings) --i; /* * The value of counter for HS Tlpx Time * Tlpx = Tpin_txbyteclkhs * (2 + value) */ if (inno->pdata->max_rate == MAX_1GHZ) { lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs); if (lpx >= 2) lpx -= 2; } else lpx = timings[i].lpx; hs_prepare = timings[i].hs_prepare; hs_trail = timings[i].hs_trail; clk_lane_hs_zero = timings[i].clk_lane_hs_zero; data_lane_hs_zero = timings[i].data_lane_hs_zero; wakeup = 0x3ff; for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) { if (i == REGISTER_PART_CLOCK_LANE) hs_zero = clk_lane_hs_zero; else hs_zero = data_lane_hs_zero; phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK, T_LPX_CNT(lpx)); phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK, T_HS_PREPARE_CNT(hs_prepare)); if (inno->pdata->max_rate == MAX_2_5GHZ) phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK, T_HS_ZERO_CNT_HI(hs_zero >> 6)); phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK, T_HS_ZERO_CNT_LO(hs_zero)); phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK, T_HS_TRAIL_CNT(hs_trail)); if (inno->pdata->max_rate == MAX_2_5GHZ) phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK, T_HS_EXIT_CNT_HI(hs_exit >> 5)); phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK, T_HS_EXIT_CNT_LO(hs_exit)); if (inno->pdata->max_rate == MAX_2_5GHZ) phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK, T_CLK_POST_CNT_HI(clk_post >> 4)); phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK, T_CLK_POST_CNT_LO(clk_post)); phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK, T_CLK_PRE_CNT(clk_pre)); phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK, T_WAKEUP_CNT_HI(wakeup >> 8)); phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK, T_WAKEUP_CNT_LO(wakeup)); phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK, T_TA_GO_CNT(ta_go)); phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK, T_TA_SURE_CNT(ta_sure)); phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK, T_TA_WAIT_CNT(ta_wait)); } /* Enable all lanes on analog part */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 | LANE_EN_1 | LANE_EN_0); } static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno) { u8 prediv = 2; u16 fbdiv = 28; /* Sample clock reverse direction */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08, SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK, SAMPLE_CLOCK_DIRECTION_REVERSE | PLL_OUTPUT_FREQUENCY_DIV_BY_1); /* Select LVDS mode */ phy_update_bits(inno, REGISTER_PART_LVDS, 0x03, MODE_ENABLE_MASK, LVDS_MODE_ENABLE); /* Configure PLL */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, REG_PREDIV_MASK, REG_PREDIV(prediv)); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv)); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04, REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv)); phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc); /* Enable PLL and Bandgap */ phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK, LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON); msleep(20); /* Select PLL mode */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e, PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE); /* Reset LVDS digital logic */ phy_update_bits(inno, REGISTER_PART_LVDS, 0x00, LVDS_DIGITAL_INTERNAL_RESET_MASK, LVDS_DIGITAL_INTERNAL_RESET_ENABLE); udelay(1); phy_update_bits(inno, REGISTER_PART_LVDS, 0x00, LVDS_DIGITAL_INTERNAL_RESET_MASK, LVDS_DIGITAL_INTERNAL_RESET_DISABLE); /* Enable LVDS digital logic */ phy_update_bits(inno, REGISTER_PART_LVDS, 0x01, LVDS_DIGITAL_INTERNAL_ENABLE_MASK, LVDS_DIGITAL_INTERNAL_ENABLE); /* Enable LVDS analog driver */ phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN | LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN | LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN); } static int inno_dsidphy_power_on(struct phy *phy) { struct inno_dsidphy *inno = phy_get_drvdata(phy); clk_prepare_enable(inno->pclk_phy); clk_prepare_enable(inno->ref_clk); pm_runtime_get_sync(inno->dev); /* Bandgap power on */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, BANDGAP_POWER_MASK, BANDGAP_POWER_ON); /* Enable power work */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, POWER_WORK_MASK, POWER_WORK_ENABLE); switch (inno->mode) { case PHY_MODE_MIPI_DPHY: inno_dsidphy_mipi_mode_enable(inno); break; case PHY_MODE_LVDS: inno_dsidphy_lvds_mode_enable(inno); break; default: return -EINVAL; } return 0; } static int inno_dsidphy_power_off(struct phy *phy) { struct inno_dsidphy *inno = phy_get_drvdata(phy); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, REG_LDOPD_MASK | REG_PLLPD_MASK, REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, POWER_WORK_MASK, POWER_WORK_DISABLE); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN); phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0); phy_update_bits(inno, REGISTER_PART_LVDS, 0x01, LVDS_DIGITAL_INTERNAL_ENABLE_MASK, LVDS_DIGITAL_INTERNAL_DISABLE); phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK, LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN); pm_runtime_put(inno->dev); clk_disable_unprepare(inno->ref_clk); clk_disable_unprepare(inno->pclk_phy); return 0; } static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct inno_dsidphy *inno = phy_get_drvdata(phy); switch (mode) { case PHY_MODE_MIPI_DPHY: case PHY_MODE_LVDS: inno->mode = mode; break; default: return -EINVAL; } return 0; } static int inno_dsidphy_configure(struct phy *phy, union phy_configure_opts *opts) { struct inno_dsidphy *inno = phy_get_drvdata(phy); int ret; if (inno->mode != PHY_MODE_MIPI_DPHY) return -EINVAL; ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy); if (ret) return ret; memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg)); return 0; } static const struct phy_ops inno_dsidphy_ops = { .configure = inno_dsidphy_configure, .set_mode = inno_dsidphy_set_mode, .power_on = inno_dsidphy_power_on, .power_off = inno_dsidphy_power_off, .owner = THIS_MODULE, }; static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = { .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz, .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz), .max_rate = MAX_1GHZ, }; static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = { .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz, .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz), .max_rate = MAX_2_5GHZ, }; static int inno_dsidphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct inno_dsidphy *inno; struct phy_provider *phy_provider; struct phy *phy; int ret; inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL); if (!inno) return -ENOMEM; inno->dev = dev; inno->pdata = of_device_get_match_data(inno->dev); platform_set_drvdata(pdev, inno); inno->phy_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(inno->phy_base)) return PTR_ERR(inno->phy_base); inno->ref_clk = devm_clk_get(dev, "ref"); if (IS_ERR(inno->ref_clk)) { ret = PTR_ERR(inno->ref_clk); dev_err(dev, "failed to get ref clock: %d\n", ret); return ret; } inno->pclk_phy = devm_clk_get(dev, "pclk"); if (IS_ERR(inno->pclk_phy)) { ret = PTR_ERR(inno->pclk_phy); dev_err(dev, "failed to get phy pclk: %d\n", ret); return ret; } inno->rst = devm_reset_control_get(dev, "apb"); if (IS_ERR(inno->rst)) { ret = PTR_ERR(inno->rst); dev_err(dev, "failed to get system reset control: %d\n", ret); return ret; } phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops); if (IS_ERR(phy)) { ret = PTR_ERR(phy); dev_err(dev, "failed to create phy: %d\n", ret); return ret; } phy_set_drvdata(phy, inno); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) { ret = PTR_ERR(phy_provider); dev_err(dev, "failed to register phy provider: %d\n", ret); return ret; } pm_runtime_enable(dev); return 0; } static void inno_dsidphy_remove(struct platform_device *pdev) { struct inno_dsidphy *inno = platform_get_drvdata(pdev); pm_runtime_disable(inno->dev); } static const struct of_device_id inno_dsidphy_of_match[] = { { .compatible = "rockchip,px30-dsi-dphy", .data = &max_1ghz_video_phy_plat_data, }, { .compatible = "rockchip,rk3128-dsi-dphy", .data = &max_1ghz_video_phy_plat_data, }, { .compatible = "rockchip,rk3368-dsi-dphy", .data = &max_1ghz_video_phy_plat_data, }, { .compatible = "rockchip,rk3568-dsi-dphy", .data = &max_2_5ghz_video_phy_plat_data, }, { .compatible = "rockchip,rv1126-dsi-dphy", .data = &max_2_5ghz_video_phy_plat_data, }, {} }; MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match); static struct platform_driver inno_dsidphy_driver = { .driver = { .name = "inno-dsidphy", .of_match_table = of_match_ptr(inno_dsidphy_of_match), }, .probe = inno_dsidphy_probe, .remove_new = inno_dsidphy_remove, }; module_platform_driver(inno_dsidphy_driver); MODULE_AUTHOR("Wyon Bi <[email protected]>"); MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/rockchip/phy-rockchip-inno-dsidphy.c
// SPDX-License-Identifier: GPL-2.0-only /* * Rockchip emmc PHY driver * * Copyright (C) 2016 Shawn Lin <[email protected]> * Copyright (C) 2016 ROCKCHIP, Inc. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> /* * The higher 16-bit of this register is used for write protection * only if BIT(x + 16) set to 1 the BIT(x) can be written. */ #define HIWORD_UPDATE(val, mask, shift) \ ((val) << (shift) | (mask) << ((shift) + 16)) /* Register definition */ #define GRF_EMMCPHY_CON0 0x0 #define GRF_EMMCPHY_CON1 0x4 #define GRF_EMMCPHY_CON2 0x8 #define GRF_EMMCPHY_CON3 0xc #define GRF_EMMCPHY_CON4 0x10 #define GRF_EMMCPHY_CON5 0x14 #define GRF_EMMCPHY_CON6 0x18 #define GRF_EMMCPHY_STATUS 0x20 #define PHYCTRL_PDB_MASK 0x1 #define PHYCTRL_PDB_SHIFT 0x0 #define PHYCTRL_PDB_PWR_ON 0x1 #define PHYCTRL_PDB_PWR_OFF 0x0 #define PHYCTRL_ENDLL_MASK 0x1 #define PHYCTRL_ENDLL_SHIFT 0x1 #define PHYCTRL_ENDLL_ENABLE 0x1 #define PHYCTRL_ENDLL_DISABLE 0x0 #define PHYCTRL_CALDONE_MASK 0x1 #define PHYCTRL_CALDONE_SHIFT 0x6 #define PHYCTRL_CALDONE_DONE 0x1 #define PHYCTRL_CALDONE_GOING 0x0 #define PHYCTRL_DLLRDY_MASK 0x1 #define PHYCTRL_DLLRDY_SHIFT 0x5 #define PHYCTRL_DLLRDY_DONE 0x1 #define PHYCTRL_DLLRDY_GOING 0x0 #define PHYCTRL_FREQSEL_200M 0x0 #define PHYCTRL_FREQSEL_50M 0x1 #define PHYCTRL_FREQSEL_100M 0x2 #define PHYCTRL_FREQSEL_150M 0x3 #define PHYCTRL_FREQSEL_MASK 0x3 #define PHYCTRL_FREQSEL_SHIFT 0xc #define PHYCTRL_DR_MASK 0x7 #define PHYCTRL_DR_SHIFT 0x4 #define PHYCTRL_DR_50OHM 0x0 #define PHYCTRL_DR_33OHM 0x1 #define PHYCTRL_DR_66OHM 0x2 #define PHYCTRL_DR_100OHM 0x3 #define PHYCTRL_DR_40OHM 0x4 #define PHYCTRL_OTAPDLYENA 0x1 #define PHYCTRL_OTAPDLYENA_MASK 0x1 #define PHYCTRL_OTAPDLYENA_SHIFT 0xb #define PHYCTRL_OTAPDLYSEL_DEFAULT 0x4 #define PHYCTRL_OTAPDLYSEL_MAXVALUE 0xf #define PHYCTRL_OTAPDLYSEL_MASK 0xf #define PHYCTRL_OTAPDLYSEL_SHIFT 0x7 #define PHYCTRL_REN_STRB_DISABLE 0x0 #define PHYCTRL_REN_STRB_ENABLE 0x1 #define PHYCTRL_REN_STRB_MASK 0x1 #define PHYCTRL_REN_STRB_SHIFT 0x9 #define PHYCTRL_IS_CALDONE(x) \ ((((x) >> PHYCTRL_CALDONE_SHIFT) & \ PHYCTRL_CALDONE_MASK) == PHYCTRL_CALDONE_DONE) #define PHYCTRL_IS_DLLRDY(x) \ ((((x) >> PHYCTRL_DLLRDY_SHIFT) & \ PHYCTRL_DLLRDY_MASK) == PHYCTRL_DLLRDY_DONE) struct rockchip_emmc_phy { unsigned int reg_offset; struct regmap *reg_base; struct clk *emmcclk; unsigned int drive_impedance; unsigned int enable_strobe_pulldown; unsigned int output_tapdelay_select; }; static int rockchip_emmc_phy_power(struct phy *phy, bool on_off) { struct rockchip_emmc_phy *rk_phy = phy_get_drvdata(phy); unsigned int caldone; unsigned int dllrdy; unsigned int freqsel = PHYCTRL_FREQSEL_200M; unsigned long rate; int ret; /* * Keep phyctrl_pdb and phyctrl_endll low to allow * initialization of CALIO state M/C DFFs */ regmap_write(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_CON6, HIWORD_UPDATE(PHYCTRL_PDB_PWR_OFF, PHYCTRL_PDB_MASK, PHYCTRL_PDB_SHIFT)); regmap_write(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_CON6, HIWORD_UPDATE(PHYCTRL_ENDLL_DISABLE, PHYCTRL_ENDLL_MASK, PHYCTRL_ENDLL_SHIFT)); /* Already finish power_off above */ if (on_off == PHYCTRL_PDB_PWR_OFF) return 0; rate = clk_get_rate(rk_phy->emmcclk); if (rate != 0) { unsigned long ideal_rate; unsigned long diff; switch (rate) { case 1 ... 74999999: ideal_rate = 50000000; freqsel = PHYCTRL_FREQSEL_50M; break; case 75000000 ... 124999999: ideal_rate = 100000000; freqsel = PHYCTRL_FREQSEL_100M; break; case 125000000 ... 174999999: ideal_rate = 150000000; freqsel = PHYCTRL_FREQSEL_150M; break; default: ideal_rate = 200000000; break; } diff = (rate > ideal_rate) ? rate - ideal_rate : ideal_rate - rate; /* * In order for tuning delays to be accurate we need to be * pretty spot on for the DLL range, so warn if we're too * far off. Also warn if we're above the 200 MHz max. Don't * warn for really slow rates since we won't be tuning then. */ if ((rate > 50000000 && diff > 15000000) || (rate > 200000000)) dev_warn(&phy->dev, "Unsupported rate: %lu\n", rate); } /* * According to the user manual, calpad calibration * cycle takes more than 2us without the minimal recommended * value, so we may need a little margin here */ udelay(3); regmap_write(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_CON6, HIWORD_UPDATE(PHYCTRL_PDB_PWR_ON, PHYCTRL_PDB_MASK, PHYCTRL_PDB_SHIFT)); /* * According to the user manual, it asks driver to wait 5us for * calpad busy trimming. However it is documented that this value is * PVT(A.K.A process,voltage and temperature) relevant, so some * failure cases are found which indicates we should be more tolerant * to calpad busy trimming. */ ret = regmap_read_poll_timeout(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_STATUS, caldone, PHYCTRL_IS_CALDONE(caldone), 0, 50); if (ret) { pr_err("%s: caldone failed, ret=%d\n", __func__, ret); return ret; } /* Set the frequency of the DLL operation */ regmap_write(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_CON0, HIWORD_UPDATE(freqsel, PHYCTRL_FREQSEL_MASK, PHYCTRL_FREQSEL_SHIFT)); /* Turn on the DLL */ regmap_write(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_CON6, HIWORD_UPDATE(PHYCTRL_ENDLL_ENABLE, PHYCTRL_ENDLL_MASK, PHYCTRL_ENDLL_SHIFT)); /* * We turned on the DLL even though the rate was 0 because we the * clock might be turned on later. ...but we can't wait for the DLL * to lock when the rate is 0 because it will never lock with no * input clock. * * Technically we should be checking the lock later when the clock * is turned on, but for now we won't. */ if (rate == 0) return 0; /* * After enabling analog DLL circuits docs say that we need 10.2 us if * our source clock is at 50 MHz and that lock time scales linearly * with clock speed. If we are powering on the PHY and the card clock * is super slow (like 100 kHZ) this could take as long as 5.1 ms as * per the math: 10.2 us * (50000000 Hz / 100000 Hz) => 5.1 ms * Hopefully we won't be running at 100 kHz, but we should still make * sure we wait long enough. * * NOTE: There appear to be corner cases where the DLL seems to take * extra long to lock for reasons that aren't understood. In some * extreme cases we've seen it take up to over 10ms (!). We'll be * generous and give it 50ms. */ ret = regmap_read_poll_timeout(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_STATUS, dllrdy, PHYCTRL_IS_DLLRDY(dllrdy), 0, 50 * USEC_PER_MSEC); if (ret) { pr_err("%s: dllrdy failed. ret=%d\n", __func__, ret); return ret; } return 0; } static int rockchip_emmc_phy_init(struct phy *phy) { struct rockchip_emmc_phy *rk_phy = phy_get_drvdata(phy); int ret = 0; /* * We purposely get the clock here and not in probe to avoid the * circular dependency problem. We expect: * - PHY driver to probe * - SDHCI driver to start probe * - SDHCI driver to register it's clock * - SDHCI driver to get the PHY * - SDHCI driver to init the PHY * * The clock is optional, using clk_get_optional() to get the clock * and do error processing if the return value != NULL * * NOTE: we don't do anything special for EPROBE_DEFER here. Given the * above expected use case, EPROBE_DEFER isn't sensible to expect, so * it's just like any other error. */ rk_phy->emmcclk = clk_get_optional(&phy->dev, "emmcclk"); if (IS_ERR(rk_phy->emmcclk)) { ret = PTR_ERR(rk_phy->emmcclk); dev_err(&phy->dev, "Error getting emmcclk: %d\n", ret); rk_phy->emmcclk = NULL; } return ret; } static int rockchip_emmc_phy_exit(struct phy *phy) { struct rockchip_emmc_phy *rk_phy = phy_get_drvdata(phy); clk_put(rk_phy->emmcclk); return 0; } static int rockchip_emmc_phy_power_off(struct phy *phy) { /* Power down emmc phy analog blocks */ return rockchip_emmc_phy_power(phy, PHYCTRL_PDB_PWR_OFF); } static int rockchip_emmc_phy_power_on(struct phy *phy) { struct rockchip_emmc_phy *rk_phy = phy_get_drvdata(phy); /* Drive impedance: from DTS */ regmap_write(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_CON6, HIWORD_UPDATE(rk_phy->drive_impedance, PHYCTRL_DR_MASK, PHYCTRL_DR_SHIFT)); /* Output tap delay: enable */ regmap_write(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_CON0, HIWORD_UPDATE(PHYCTRL_OTAPDLYENA, PHYCTRL_OTAPDLYENA_MASK, PHYCTRL_OTAPDLYENA_SHIFT)); /* Output tap delay */ regmap_write(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_CON0, HIWORD_UPDATE(rk_phy->output_tapdelay_select, PHYCTRL_OTAPDLYSEL_MASK, PHYCTRL_OTAPDLYSEL_SHIFT)); /* Internal pull-down for strobe line */ regmap_write(rk_phy->reg_base, rk_phy->reg_offset + GRF_EMMCPHY_CON2, HIWORD_UPDATE(rk_phy->enable_strobe_pulldown, PHYCTRL_REN_STRB_MASK, PHYCTRL_REN_STRB_SHIFT)); /* Power up emmc phy analog blocks */ return rockchip_emmc_phy_power(phy, PHYCTRL_PDB_PWR_ON); } static const struct phy_ops ops = { .init = rockchip_emmc_phy_init, .exit = rockchip_emmc_phy_exit, .power_on = rockchip_emmc_phy_power_on, .power_off = rockchip_emmc_phy_power_off, .owner = THIS_MODULE, }; static u32 convert_drive_impedance_ohm(struct platform_device *pdev, u32 dr_ohm) { switch (dr_ohm) { case 100: return PHYCTRL_DR_100OHM; case 66: return PHYCTRL_DR_66OHM; case 50: return PHYCTRL_DR_50OHM; case 40: return PHYCTRL_DR_40OHM; case 33: return PHYCTRL_DR_33OHM; } dev_warn(&pdev->dev, "Invalid value %u for drive-impedance-ohm.\n", dr_ohm); return PHYCTRL_DR_50OHM; } static int rockchip_emmc_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rockchip_emmc_phy *rk_phy; struct phy *generic_phy; struct phy_provider *phy_provider; struct regmap *grf; unsigned int reg_offset; u32 val; if (!dev->parent || !dev->parent->of_node) return -ENODEV; grf = syscon_node_to_regmap(dev->parent->of_node); if (IS_ERR(grf)) { dev_err(dev, "Missing rockchip,grf property\n"); return PTR_ERR(grf); } rk_phy = devm_kzalloc(dev, sizeof(*rk_phy), GFP_KERNEL); if (!rk_phy) return -ENOMEM; if (of_property_read_u32(dev->of_node, "reg", &reg_offset)) { dev_err(dev, "missing reg property in node %pOFn\n", dev->of_node); return -EINVAL; } rk_phy->reg_offset = reg_offset; rk_phy->reg_base = grf; rk_phy->drive_impedance = PHYCTRL_DR_50OHM; rk_phy->enable_strobe_pulldown = PHYCTRL_REN_STRB_DISABLE; rk_phy->output_tapdelay_select = PHYCTRL_OTAPDLYSEL_DEFAULT; if (!of_property_read_u32(dev->of_node, "drive-impedance-ohm", &val)) rk_phy->drive_impedance = convert_drive_impedance_ohm(pdev, val); if (of_property_read_bool(dev->of_node, "rockchip,enable-strobe-pulldown")) rk_phy->enable_strobe_pulldown = PHYCTRL_REN_STRB_ENABLE; if (!of_property_read_u32(dev->of_node, "rockchip,output-tapdelay-select", &val)) { if (val <= PHYCTRL_OTAPDLYSEL_MAXVALUE) rk_phy->output_tapdelay_select = val; else dev_err(dev, "output-tapdelay-select exceeds limit, apply default\n"); } generic_phy = devm_phy_create(dev, dev->of_node, &ops); if (IS_ERR(generic_phy)) { dev_err(dev, "failed to create PHY\n"); return PTR_ERR(generic_phy); } phy_set_drvdata(generic_phy, rk_phy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id rockchip_emmc_phy_dt_ids[] = { { .compatible = "rockchip,rk3399-emmc-phy" }, {} }; MODULE_DEVICE_TABLE(of, rockchip_emmc_phy_dt_ids); static struct platform_driver rockchip_emmc_driver = { .probe = rockchip_emmc_phy_probe, .driver = { .name = "rockchip-emmc-phy", .of_match_table = rockchip_emmc_phy_dt_ids, }, }; module_platform_driver(rockchip_emmc_driver); MODULE_AUTHOR("Shawn Lin <[email protected]>"); MODULE_DESCRIPTION("Rockchip EMMC PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/rockchip/phy-rockchip-emmc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Rockchip PCIe PHY driver * * Copyright (C) 2016 Shawn Lin <[email protected]> * Copyright (C) 2016 ROCKCHIP, Inc. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/reset.h> /* * The higher 16-bit of this register is used for write protection * only if BIT(x + 16) set to 1 the BIT(x) can be written. */ #define HIWORD_UPDATE(val, mask, shift) \ ((val) << (shift) | (mask) << ((shift) + 16)) #define PHY_MAX_LANE_NUM 4 #define PHY_CFG_DATA_SHIFT 7 #define PHY_CFG_ADDR_SHIFT 1 #define PHY_CFG_DATA_MASK 0xf #define PHY_CFG_ADDR_MASK 0x3f #define PHY_CFG_RD_MASK 0x3ff #define PHY_CFG_WR_ENABLE 1 #define PHY_CFG_WR_DISABLE 1 #define PHY_CFG_WR_SHIFT 0 #define PHY_CFG_WR_MASK 1 #define PHY_CFG_PLL_LOCK 0x10 #define PHY_CFG_CLK_TEST 0x10 #define PHY_CFG_CLK_SCC 0x12 #define PHY_CFG_SEPE_RATE BIT(3) #define PHY_CFG_PLL_100M BIT(3) #define PHY_PLL_LOCKED BIT(9) #define PHY_PLL_OUTPUT BIT(10) #define PHY_LANE_A_STATUS 0x30 #define PHY_LANE_B_STATUS 0x31 #define PHY_LANE_C_STATUS 0x32 #define PHY_LANE_D_STATUS 0x33 #define PHY_LANE_RX_DET_SHIFT 11 #define PHY_LANE_RX_DET_TH 0x1 #define PHY_LANE_IDLE_OFF 0x1 #define PHY_LANE_IDLE_MASK 0x1 #define PHY_LANE_IDLE_A_SHIFT 3 #define PHY_LANE_IDLE_B_SHIFT 4 #define PHY_LANE_IDLE_C_SHIFT 5 #define PHY_LANE_IDLE_D_SHIFT 6 struct rockchip_pcie_data { unsigned int pcie_conf; unsigned int pcie_status; unsigned int pcie_laneoff; }; struct rockchip_pcie_phy { struct rockchip_pcie_data *phy_data; struct regmap *reg_base; struct phy_pcie_instance { struct phy *phy; u32 index; } phys[PHY_MAX_LANE_NUM]; struct mutex pcie_mutex; struct reset_control *phy_rst; struct clk *clk_pciephy_ref; int pwr_cnt; int init_cnt; }; static struct rockchip_pcie_phy *to_pcie_phy(struct phy_pcie_instance *inst) { return container_of(inst, struct rockchip_pcie_phy, phys[inst->index]); } static struct phy *rockchip_pcie_phy_of_xlate(struct device *dev, struct of_phandle_args *args) { struct rockchip_pcie_phy *rk_phy = dev_get_drvdata(dev); if (args->args_count == 0) return rk_phy->phys[0].phy; if (WARN_ON(args->args[0] >= PHY_MAX_LANE_NUM)) return ERR_PTR(-ENODEV); return rk_phy->phys[args->args[0]].phy; } static inline void phy_wr_cfg(struct rockchip_pcie_phy *rk_phy, u32 addr, u32 data) { regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_conf, HIWORD_UPDATE(data, PHY_CFG_DATA_MASK, PHY_CFG_DATA_SHIFT) | HIWORD_UPDATE(addr, PHY_CFG_ADDR_MASK, PHY_CFG_ADDR_SHIFT)); udelay(1); regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_conf, HIWORD_UPDATE(PHY_CFG_WR_ENABLE, PHY_CFG_WR_MASK, PHY_CFG_WR_SHIFT)); udelay(1); regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_conf, HIWORD_UPDATE(PHY_CFG_WR_DISABLE, PHY_CFG_WR_MASK, PHY_CFG_WR_SHIFT)); } static int rockchip_pcie_phy_power_off(struct phy *phy) { struct phy_pcie_instance *inst = phy_get_drvdata(phy); struct rockchip_pcie_phy *rk_phy = to_pcie_phy(inst); int err = 0; mutex_lock(&rk_phy->pcie_mutex); regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_laneoff, HIWORD_UPDATE(PHY_LANE_IDLE_OFF, PHY_LANE_IDLE_MASK, PHY_LANE_IDLE_A_SHIFT + inst->index)); if (--rk_phy->pwr_cnt) goto err_out; err = reset_control_assert(rk_phy->phy_rst); if (err) { dev_err(&phy->dev, "assert phy_rst err %d\n", err); goto err_restore; } err_out: mutex_unlock(&rk_phy->pcie_mutex); return 0; err_restore: rk_phy->pwr_cnt++; regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_laneoff, HIWORD_UPDATE(!PHY_LANE_IDLE_OFF, PHY_LANE_IDLE_MASK, PHY_LANE_IDLE_A_SHIFT + inst->index)); mutex_unlock(&rk_phy->pcie_mutex); return err; } static int rockchip_pcie_phy_power_on(struct phy *phy) { struct phy_pcie_instance *inst = phy_get_drvdata(phy); struct rockchip_pcie_phy *rk_phy = to_pcie_phy(inst); int err = 0; u32 status; unsigned long timeout; mutex_lock(&rk_phy->pcie_mutex); if (rk_phy->pwr_cnt++) goto err_out; err = reset_control_deassert(rk_phy->phy_rst); if (err) { dev_err(&phy->dev, "deassert phy_rst err %d\n", err); goto err_pwr_cnt; } regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_conf, HIWORD_UPDATE(PHY_CFG_PLL_LOCK, PHY_CFG_ADDR_MASK, PHY_CFG_ADDR_SHIFT)); regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_laneoff, HIWORD_UPDATE(!PHY_LANE_IDLE_OFF, PHY_LANE_IDLE_MASK, PHY_LANE_IDLE_A_SHIFT + inst->index)); /* * No documented timeout value for phy operation below, * so we make it large enough here. And we use loop-break * method which should not be harmful. */ timeout = jiffies + msecs_to_jiffies(1000); err = -EINVAL; while (time_before(jiffies, timeout)) { regmap_read(rk_phy->reg_base, rk_phy->phy_data->pcie_status, &status); if (status & PHY_PLL_LOCKED) { dev_dbg(&phy->dev, "pll locked!\n"); err = 0; break; } msleep(20); } if (err) { dev_err(&phy->dev, "pll lock timeout!\n"); goto err_pll_lock; } phy_wr_cfg(rk_phy, PHY_CFG_CLK_TEST, PHY_CFG_SEPE_RATE); phy_wr_cfg(rk_phy, PHY_CFG_CLK_SCC, PHY_CFG_PLL_100M); err = -ETIMEDOUT; while (time_before(jiffies, timeout)) { regmap_read(rk_phy->reg_base, rk_phy->phy_data->pcie_status, &status); if (!(status & PHY_PLL_OUTPUT)) { dev_dbg(&phy->dev, "pll output enable done!\n"); err = 0; break; } msleep(20); } if (err) { dev_err(&phy->dev, "pll output enable timeout!\n"); goto err_pll_lock; } regmap_write(rk_phy->reg_base, rk_phy->phy_data->pcie_conf, HIWORD_UPDATE(PHY_CFG_PLL_LOCK, PHY_CFG_ADDR_MASK, PHY_CFG_ADDR_SHIFT)); err = -EINVAL; while (time_before(jiffies, timeout)) { regmap_read(rk_phy->reg_base, rk_phy->phy_data->pcie_status, &status); if (status & PHY_PLL_LOCKED) { dev_dbg(&phy->dev, "pll relocked!\n"); err = 0; break; } msleep(20); } if (err) { dev_err(&phy->dev, "pll relock timeout!\n"); goto err_pll_lock; } err_out: mutex_unlock(&rk_phy->pcie_mutex); return 0; err_pll_lock: reset_control_assert(rk_phy->phy_rst); err_pwr_cnt: rk_phy->pwr_cnt--; mutex_unlock(&rk_phy->pcie_mutex); return err; } static int rockchip_pcie_phy_init(struct phy *phy) { struct phy_pcie_instance *inst = phy_get_drvdata(phy); struct rockchip_pcie_phy *rk_phy = to_pcie_phy(inst); int err = 0; mutex_lock(&rk_phy->pcie_mutex); if (rk_phy->init_cnt++) goto err_out; err = clk_prepare_enable(rk_phy->clk_pciephy_ref); if (err) { dev_err(&phy->dev, "Fail to enable pcie ref clock.\n"); goto err_refclk; } err = reset_control_assert(rk_phy->phy_rst); if (err) { dev_err(&phy->dev, "assert phy_rst err %d\n", err); goto err_reset; } err_out: mutex_unlock(&rk_phy->pcie_mutex); return 0; err_reset: clk_disable_unprepare(rk_phy->clk_pciephy_ref); err_refclk: rk_phy->init_cnt--; mutex_unlock(&rk_phy->pcie_mutex); return err; } static int rockchip_pcie_phy_exit(struct phy *phy) { struct phy_pcie_instance *inst = phy_get_drvdata(phy); struct rockchip_pcie_phy *rk_phy = to_pcie_phy(inst); mutex_lock(&rk_phy->pcie_mutex); if (--rk_phy->init_cnt) goto err_init_cnt; clk_disable_unprepare(rk_phy->clk_pciephy_ref); err_init_cnt: mutex_unlock(&rk_phy->pcie_mutex); return 0; } static const struct phy_ops ops = { .init = rockchip_pcie_phy_init, .exit = rockchip_pcie_phy_exit, .power_on = rockchip_pcie_phy_power_on, .power_off = rockchip_pcie_phy_power_off, .owner = THIS_MODULE, }; static const struct rockchip_pcie_data rk3399_pcie_data = { .pcie_conf = 0xe220, .pcie_status = 0xe2a4, .pcie_laneoff = 0xe214, }; static const struct of_device_id rockchip_pcie_phy_dt_ids[] = { { .compatible = "rockchip,rk3399-pcie-phy", .data = &rk3399_pcie_data, }, {} }; MODULE_DEVICE_TABLE(of, rockchip_pcie_phy_dt_ids); static int rockchip_pcie_phy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rockchip_pcie_phy *rk_phy; struct phy_provider *phy_provider; struct regmap *grf; const struct of_device_id *of_id; int i; u32 phy_num; grf = syscon_node_to_regmap(dev->parent->of_node); if (IS_ERR(grf)) { dev_err(dev, "Cannot find GRF syscon\n"); return PTR_ERR(grf); } rk_phy = devm_kzalloc(dev, sizeof(*rk_phy), GFP_KERNEL); if (!rk_phy) return -ENOMEM; of_id = of_match_device(rockchip_pcie_phy_dt_ids, &pdev->dev); if (!of_id) return -EINVAL; rk_phy->phy_data = (struct rockchip_pcie_data *)of_id->data; rk_phy->reg_base = grf; mutex_init(&rk_phy->pcie_mutex); rk_phy->phy_rst = devm_reset_control_get(dev, "phy"); if (IS_ERR(rk_phy->phy_rst)) { if (PTR_ERR(rk_phy->phy_rst) != -EPROBE_DEFER) dev_err(dev, "missing phy property for reset controller\n"); return PTR_ERR(rk_phy->phy_rst); } rk_phy->clk_pciephy_ref = devm_clk_get(dev, "refclk"); if (IS_ERR(rk_phy->clk_pciephy_ref)) { dev_err(dev, "refclk not found.\n"); return PTR_ERR(rk_phy->clk_pciephy_ref); } /* parse #phy-cells to see if it's legacy PHY model */ if (of_property_read_u32(dev->of_node, "#phy-cells", &phy_num)) return -ENOENT; phy_num = (phy_num == 0) ? 1 : PHY_MAX_LANE_NUM; dev_dbg(dev, "phy number is %d\n", phy_num); for (i = 0; i < phy_num; i++) { rk_phy->phys[i].phy = devm_phy_create(dev, dev->of_node, &ops); if (IS_ERR(rk_phy->phys[i].phy)) { dev_err(dev, "failed to create PHY%d\n", i); return PTR_ERR(rk_phy->phys[i].phy); } rk_phy->phys[i].index = i; phy_set_drvdata(rk_phy->phys[i].phy, &rk_phy->phys[i]); } platform_set_drvdata(pdev, rk_phy); phy_provider = devm_of_phy_provider_register(dev, rockchip_pcie_phy_of_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver rockchip_pcie_driver = { .probe = rockchip_pcie_phy_probe, .driver = { .name = "rockchip-pcie-phy", .of_match_table = rockchip_pcie_phy_dt_ids, }, }; module_platform_driver(rockchip_pcie_driver); MODULE_AUTHOR("Shawn Lin <[email protected]>"); MODULE_DESCRIPTION("Rockchip PCIe PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/phy/rockchip/phy-rockchip-pcie.c
// SPDX-License-Identifier: GPL-2.0+ /* * StarFive JH7110 PCIe 2.0 PHY driver * * Copyright (C) 2023 StarFive Technology Co., Ltd. * Author: Minda Chen <[email protected]> */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mfd/syscon.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #define PCIE_KVCO_LEVEL_OFF 0x28 #define PCIE_USB3_PHY_PLL_CTL_OFF 0x7c #define PCIE_KVCO_TUNE_SIGNAL_OFF 0x80 #define PCIE_USB3_PHY_ENABLE BIT(4) #define PHY_KVCO_FINE_TUNE_LEVEL 0x91 #define PHY_KVCO_FINE_TUNE_SIGNALS 0xc #define USB_PDRSTN_SPLIT BIT(17) #define PCIE_PHY_MODE BIT(20) #define PCIE_PHY_MODE_MASK GENMASK(21, 20) #define PCIE_USB3_BUS_WIDTH_MASK GENMASK(3, 2) #define PCIE_USB3_BUS_WIDTH BIT(3) #define PCIE_USB3_RATE_MASK GENMASK(6, 5) #define PCIE_USB3_RX_STANDBY_MASK BIT(7) #define PCIE_USB3_PHY_ENABLE BIT(4) struct jh7110_pcie_phy { struct phy *phy; struct regmap *stg_syscon; struct regmap *sys_syscon; void __iomem *regs; u32 sys_phy_connect; u32 stg_pcie_mode; u32 stg_pcie_usb; enum phy_mode mode; }; static int phy_usb3_mode_set(struct jh7110_pcie_phy *data) { if (!data->stg_syscon || !data->sys_syscon) { dev_err(&data->phy->dev, "doesn't support usb3 mode\n"); return -EINVAL; } regmap_update_bits(data->stg_syscon, data->stg_pcie_mode, PCIE_PHY_MODE_MASK, PCIE_PHY_MODE); regmap_update_bits(data->stg_syscon, data->stg_pcie_usb, PCIE_USB3_BUS_WIDTH_MASK, 0); regmap_update_bits(data->stg_syscon, data->stg_pcie_usb, PCIE_USB3_PHY_ENABLE, PCIE_USB3_PHY_ENABLE); /* Connect usb 3.0 phy mode */ regmap_update_bits(data->sys_syscon, data->sys_phy_connect, USB_PDRSTN_SPLIT, 0); /* Configuare spread-spectrum mode: down-spread-spectrum */ writel(PCIE_USB3_PHY_ENABLE, data->regs + PCIE_USB3_PHY_PLL_CTL_OFF); return 0; } static void phy_pcie_mode_set(struct jh7110_pcie_phy *data) { u32 val; /* default is PCIe mode */ if (!data->stg_syscon || !data->sys_syscon) return; regmap_update_bits(data->stg_syscon, data->stg_pcie_mode, PCIE_PHY_MODE_MASK, 0); regmap_update_bits(data->stg_syscon, data->stg_pcie_usb, PCIE_USB3_BUS_WIDTH_MASK, PCIE_USB3_BUS_WIDTH); regmap_update_bits(data->stg_syscon, data->stg_pcie_usb, PCIE_USB3_PHY_ENABLE, 0); regmap_update_bits(data->sys_syscon, data->sys_phy_connect, USB_PDRSTN_SPLIT, 0); val = readl(data->regs + PCIE_USB3_PHY_PLL_CTL_OFF); val &= ~PCIE_USB3_PHY_ENABLE; writel(val, data->regs + PCIE_USB3_PHY_PLL_CTL_OFF); } static void phy_kvco_gain_set(struct jh7110_pcie_phy *phy) { /* PCIe Multi-PHY PLL KVCO Gain fine tune settings: */ writel(PHY_KVCO_FINE_TUNE_LEVEL, phy->regs + PCIE_KVCO_LEVEL_OFF); writel(PHY_KVCO_FINE_TUNE_SIGNALS, phy->regs + PCIE_KVCO_TUNE_SIGNAL_OFF); } static int jh7110_pcie_phy_set_mode(struct phy *_phy, enum phy_mode mode, int submode) { struct jh7110_pcie_phy *phy = phy_get_drvdata(_phy); int ret; if (mode == phy->mode) return 0; switch (mode) { case PHY_MODE_USB_HOST: case PHY_MODE_USB_DEVICE: case PHY_MODE_USB_OTG: ret = phy_usb3_mode_set(phy); if (ret) return ret; break; case PHY_MODE_PCIE: phy_pcie_mode_set(phy); break; default: return -EINVAL; } dev_dbg(&_phy->dev, "Changing phy mode to %d\n", mode); phy->mode = mode; return 0; } static const struct phy_ops jh7110_pcie_phy_ops = { .set_mode = jh7110_pcie_phy_set_mode, .owner = THIS_MODULE, }; static int jh7110_pcie_phy_probe(struct platform_device *pdev) { struct jh7110_pcie_phy *phy; struct device *dev = &pdev->dev; struct phy_provider *phy_provider; u32 args[2]; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) return -ENOMEM; phy->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(phy->regs)) return PTR_ERR(phy->regs); phy->phy = devm_phy_create(dev, NULL, &jh7110_pcie_phy_ops); if (IS_ERR(phy->phy)) return dev_err_probe(dev, PTR_ERR(phy->phy), "Failed to map phy base\n"); phy->sys_syscon = syscon_regmap_lookup_by_phandle_args(pdev->dev.of_node, "starfive,sys-syscon", 1, args); if (!IS_ERR_OR_NULL(phy->sys_syscon)) phy->sys_phy_connect = args[0]; else phy->sys_syscon = NULL; phy->stg_syscon = syscon_regmap_lookup_by_phandle_args(pdev->dev.of_node, "starfive,stg-syscon", 2, args); if (!IS_ERR_OR_NULL(phy->stg_syscon)) { phy->stg_pcie_mode = args[0]; phy->stg_pcie_usb = args[1]; } else { phy->stg_syscon = NULL; } phy_kvco_gain_set(phy); phy_set_drvdata(phy->phy, phy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id jh7110_pcie_phy_of_match[] = { { .compatible = "starfive,jh7110-pcie-phy" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, jh7110_pcie_phy_of_match); static struct platform_driver jh7110_pcie_phy_driver = { .probe = jh7110_pcie_phy_probe, .driver = { .of_match_table = jh7110_pcie_phy_of_match, .name = "jh7110-pcie-phy", } }; module_platform_driver(jh7110_pcie_phy_driver); MODULE_DESCRIPTION("StarFive JH7110 PCIe 2.0 PHY driver"); MODULE_AUTHOR("Minda Chen <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/starfive/phy-jh7110-pcie.c
// SPDX-License-Identifier: GPL-2.0+ /* * StarFive JH7110 USB 2.0 PHY driver * * Copyright (C) 2023 StarFive Technology Co., Ltd. * Author: Minda Chen <[email protected]> */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/usb/of.h> #define USB_125M_CLK_RATE 125000000 #define USB_LS_KEEPALIVE_OFF 0x4 #define USB_LS_KEEPALIVE_ENABLE BIT(4) struct jh7110_usb2_phy { struct phy *phy; void __iomem *regs; struct clk *usb_125m_clk; struct clk *app_125m; enum phy_mode mode; }; static void usb2_set_ls_keepalive(struct jh7110_usb2_phy *phy, bool set) { unsigned int val; /* Host mode enable the LS speed keep-alive signal */ val = readl(phy->regs + USB_LS_KEEPALIVE_OFF); if (set) val |= USB_LS_KEEPALIVE_ENABLE; else val &= ~USB_LS_KEEPALIVE_ENABLE; writel(val, phy->regs + USB_LS_KEEPALIVE_OFF); } static int usb2_phy_set_mode(struct phy *_phy, enum phy_mode mode, int submode) { struct jh7110_usb2_phy *phy = phy_get_drvdata(_phy); switch (mode) { case PHY_MODE_USB_HOST: case PHY_MODE_USB_DEVICE: case PHY_MODE_USB_OTG: break; default: return -EINVAL; } if (mode != phy->mode) { dev_dbg(&_phy->dev, "Changing phy to %d\n", mode); phy->mode = mode; usb2_set_ls_keepalive(phy, (mode != PHY_MODE_USB_DEVICE)); } return 0; } static int jh7110_usb2_phy_init(struct phy *_phy) { struct jh7110_usb2_phy *phy = phy_get_drvdata(_phy); int ret; ret = clk_set_rate(phy->usb_125m_clk, USB_125M_CLK_RATE); if (ret) return ret; ret = clk_prepare_enable(phy->app_125m); if (ret) return ret; return 0; } static int jh7110_usb2_phy_exit(struct phy *_phy) { struct jh7110_usb2_phy *phy = phy_get_drvdata(_phy); clk_disable_unprepare(phy->app_125m); return 0; } static const struct phy_ops jh7110_usb2_phy_ops = { .init = jh7110_usb2_phy_init, .exit = jh7110_usb2_phy_exit, .set_mode = usb2_phy_set_mode, .owner = THIS_MODULE, }; static int jh7110_usb_phy_probe(struct platform_device *pdev) { struct jh7110_usb2_phy *phy; struct device *dev = &pdev->dev; struct phy_provider *phy_provider; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) return -ENOMEM; phy->usb_125m_clk = devm_clk_get(dev, "125m"); if (IS_ERR(phy->usb_125m_clk)) return dev_err_probe(dev, PTR_ERR(phy->usb_125m_clk), "Failed to get 125m clock\n"); phy->app_125m = devm_clk_get(dev, "app_125m"); if (IS_ERR(phy->app_125m)) return dev_err_probe(dev, PTR_ERR(phy->app_125m), "Failed to get app 125m clock\n"); phy->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(phy->regs)) return dev_err_probe(dev, PTR_ERR(phy->regs), "Failed to map phy base\n"); phy->phy = devm_phy_create(dev, NULL, &jh7110_usb2_phy_ops); if (IS_ERR(phy->phy)) return dev_err_probe(dev, PTR_ERR(phy->phy), "Failed to create phy\n"); phy_set_drvdata(phy->phy, phy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id jh7110_usb_phy_of_match[] = { { .compatible = "starfive,jh7110-usb-phy" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, jh7110_usb_phy_of_match); static struct platform_driver jh7110_usb_phy_driver = { .probe = jh7110_usb_phy_probe, .driver = { .of_match_table = jh7110_usb_phy_of_match, .name = "jh7110-usb-phy", } }; module_platform_driver(jh7110_usb_phy_driver); MODULE_DESCRIPTION("StarFive JH7110 USB 2.0 PHY driver"); MODULE_AUTHOR("Minda Chen <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/starfive/phy-jh7110-usb.c
// SPDX-License-Identifier: GPL-2.0+ /* * StarFive JH7110 DPHY RX driver * * Copyright (C) 2023 StarFive Technology Co., Ltd. * Author: Jack Zhu <[email protected]> * Author: Changhuang Liang <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #define STF_DPHY_APBCFGSAIF_SYSCFG(x) (x) #define STF_DPHY_ENABLE_CLK BIT(6) #define STF_DPHY_ENABLE_CLK1 BIT(7) #define STF_DPHY_ENABLE_LAN0 BIT(8) #define STF_DPHY_ENABLE_LAN1 BIT(9) #define STF_DPHY_ENABLE_LAN2 BIT(10) #define STF_DPHY_ENABLE_LAN3 BIT(11) #define STF_DPHY_LANE_SWAP_CLK GENMASK(22, 20) #define STF_DPHY_LANE_SWAP_CLK1 GENMASK(25, 23) #define STF_DPHY_LANE_SWAP_LAN0 GENMASK(28, 26) #define STF_DPHY_LANE_SWAP_LAN1 GENMASK(31, 29) #define STF_DPHY_LANE_SWAP_LAN2 GENMASK(2, 0) #define STF_DPHY_LANE_SWAP_LAN3 GENMASK(5, 3) #define STF_DPHY_PLL_CLK_SEL GENMASK(21, 12) #define STF_DPHY_PRECOUNTER_IN_CLK GENMASK(29, 22) #define STF_DPHY_PRECOUNTER_IN_CLK1 GENMASK(7, 0) #define STF_DPHY_PRECOUNTER_IN_LAN0 GENMASK(15, 8) #define STF_DPHY_PRECOUNTER_IN_LAN1 GENMASK(23, 16) #define STF_DPHY_PRECOUNTER_IN_LAN2 GENMASK(31, 24) #define STF_DPHY_PRECOUNTER_IN_LAN3 GENMASK(7, 0) #define STF_DPHY_RX_1C2C_SEL BIT(8) #define STF_MAP_LANES_NUM 6 struct regval { u32 addr; u32 val; }; struct stf_dphy_info { /** * @maps: * * Physical lanes and logic lanes mapping table. * * The default order is: * [clk lane0, data lane 0, data lane 1, data lane 2, date lane 3, clk lane 1] */ u8 maps[STF_MAP_LANES_NUM]; }; struct stf_dphy { struct device *dev; void __iomem *regs; struct clk *cfg_clk; struct clk *ref_clk; struct clk *tx_clk; struct reset_control *rstc; struct regulator *mipi_0p9; struct phy *phy; const struct stf_dphy_info *info; }; static int stf_dphy_configure(struct phy *phy, union phy_configure_opts *opts) { struct stf_dphy *dphy = phy_get_drvdata(phy); const struct stf_dphy_info *info = dphy->info; writel(FIELD_PREP(STF_DPHY_ENABLE_CLK, 1) | FIELD_PREP(STF_DPHY_ENABLE_CLK1, 1) | FIELD_PREP(STF_DPHY_ENABLE_LAN0, 1) | FIELD_PREP(STF_DPHY_ENABLE_LAN1, 1) | FIELD_PREP(STF_DPHY_ENABLE_LAN2, 1) | FIELD_PREP(STF_DPHY_ENABLE_LAN3, 1) | FIELD_PREP(STF_DPHY_LANE_SWAP_CLK, info->maps[0]) | FIELD_PREP(STF_DPHY_LANE_SWAP_CLK1, info->maps[5]) | FIELD_PREP(STF_DPHY_LANE_SWAP_LAN0, info->maps[1]) | FIELD_PREP(STF_DPHY_LANE_SWAP_LAN1, info->maps[2]), dphy->regs + STF_DPHY_APBCFGSAIF_SYSCFG(188)); writel(FIELD_PREP(STF_DPHY_LANE_SWAP_LAN2, info->maps[3]) | FIELD_PREP(STF_DPHY_LANE_SWAP_LAN3, info->maps[4]) | FIELD_PREP(STF_DPHY_PRECOUNTER_IN_CLK, 8), dphy->regs + STF_DPHY_APBCFGSAIF_SYSCFG(192)); writel(FIELD_PREP(STF_DPHY_PRECOUNTER_IN_CLK1, 8) | FIELD_PREP(STF_DPHY_PRECOUNTER_IN_LAN0, 7) | FIELD_PREP(STF_DPHY_PRECOUNTER_IN_LAN1, 7) | FIELD_PREP(STF_DPHY_PRECOUNTER_IN_LAN2, 7), dphy->regs + STF_DPHY_APBCFGSAIF_SYSCFG(196)); writel(FIELD_PREP(STF_DPHY_PRECOUNTER_IN_LAN3, 7), dphy->regs + STF_DPHY_APBCFGSAIF_SYSCFG(200)); return 0; } static int stf_dphy_power_on(struct phy *phy) { struct stf_dphy *dphy = phy_get_drvdata(phy); int ret; ret = pm_runtime_resume_and_get(dphy->dev); if (ret < 0) return ret; ret = regulator_enable(dphy->mipi_0p9); if (ret) { pm_runtime_put(dphy->dev); return ret; } clk_set_rate(dphy->cfg_clk, 99000000); clk_set_rate(dphy->ref_clk, 49500000); clk_set_rate(dphy->tx_clk, 19800000); reset_control_deassert(dphy->rstc); return 0; } static int stf_dphy_power_off(struct phy *phy) { struct stf_dphy *dphy = phy_get_drvdata(phy); reset_control_assert(dphy->rstc); regulator_disable(dphy->mipi_0p9); pm_runtime_put_sync(dphy->dev); return 0; } static const struct phy_ops stf_dphy_ops = { .configure = stf_dphy_configure, .power_on = stf_dphy_power_on, .power_off = stf_dphy_power_off, }; static int stf_dphy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct stf_dphy *dphy; dphy = devm_kzalloc(&pdev->dev, sizeof(*dphy), GFP_KERNEL); if (!dphy) return -ENOMEM; dphy->info = of_device_get_match_data(&pdev->dev); dev_set_drvdata(&pdev->dev, dphy); dphy->dev = &pdev->dev; dphy->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dphy->regs)) return PTR_ERR(dphy->regs); dphy->cfg_clk = devm_clk_get(&pdev->dev, "cfg"); if (IS_ERR(dphy->cfg_clk)) return PTR_ERR(dphy->cfg_clk); dphy->ref_clk = devm_clk_get(&pdev->dev, "ref"); if (IS_ERR(dphy->ref_clk)) return PTR_ERR(dphy->ref_clk); dphy->tx_clk = devm_clk_get(&pdev->dev, "tx"); if (IS_ERR(dphy->tx_clk)) return PTR_ERR(dphy->tx_clk); dphy->rstc = devm_reset_control_array_get_exclusive(&pdev->dev); if (IS_ERR(dphy->rstc)) return PTR_ERR(dphy->rstc); dphy->mipi_0p9 = devm_regulator_get(&pdev->dev, "mipi_0p9"); if (IS_ERR(dphy->mipi_0p9)) return PTR_ERR(dphy->mipi_0p9); dphy->phy = devm_phy_create(&pdev->dev, NULL, &stf_dphy_ops); if (IS_ERR(dphy->phy)) { dev_err(&pdev->dev, "Failed to create PHY\n"); return PTR_ERR(dphy->phy); } pm_runtime_enable(&pdev->dev); phy_set_drvdata(dphy->phy, dphy); phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct stf_dphy_info starfive_dphy_info = { .maps = {4, 0, 1, 2, 3, 5}, }; static const struct of_device_id stf_dphy_dt_ids[] = { { .compatible = "starfive,jh7110-dphy-rx", .data = &starfive_dphy_info, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, stf_dphy_dt_ids); static struct platform_driver stf_dphy_driver = { .probe = stf_dphy_probe, .driver = { .name = "starfive-dphy-rx", .of_match_table = stf_dphy_dt_ids, }, }; module_platform_driver(stf_dphy_driver); MODULE_AUTHOR("Jack Zhu <[email protected]>"); MODULE_AUTHOR("Changhuang Liang <[email protected]>"); MODULE_DESCRIPTION("StarFive JH7110 DPHY RX driver"); MODULE_LICENSE("GPL");
linux-master
drivers/phy/starfive/phy-jh7110-dphy-rx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Samsung SoC USB 1.1/2.0 PHY driver * * Copyright (C) 2013 Samsung Electronics Co., Ltd. * Author: Kamil Debski <[email protected]> */ #include <linux/clk.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include "phy-samsung-usb2.h" static int samsung_usb2_phy_power_on(struct phy *phy) { struct samsung_usb2_phy_instance *inst = phy_get_drvdata(phy); struct samsung_usb2_phy_driver *drv = inst->drv; int ret; dev_dbg(drv->dev, "Request to power_on \"%s\" usb phy\n", inst->cfg->label); if (drv->vbus) { ret = regulator_enable(drv->vbus); if (ret) goto err_regulator; } ret = clk_prepare_enable(drv->clk); if (ret) goto err_main_clk; ret = clk_prepare_enable(drv->ref_clk); if (ret) goto err_instance_clk; if (inst->cfg->power_on) { spin_lock(&drv->lock); ret = inst->cfg->power_on(inst); spin_unlock(&drv->lock); if (ret) goto err_power_on; } return 0; err_power_on: clk_disable_unprepare(drv->ref_clk); err_instance_clk: clk_disable_unprepare(drv->clk); err_main_clk: if (drv->vbus) regulator_disable(drv->vbus); err_regulator: return ret; } static int samsung_usb2_phy_power_off(struct phy *phy) { struct samsung_usb2_phy_instance *inst = phy_get_drvdata(phy); struct samsung_usb2_phy_driver *drv = inst->drv; int ret = 0; dev_dbg(drv->dev, "Request to power_off \"%s\" usb phy\n", inst->cfg->label); if (inst->cfg->power_off) { spin_lock(&drv->lock); ret = inst->cfg->power_off(inst); spin_unlock(&drv->lock); if (ret) return ret; } clk_disable_unprepare(drv->ref_clk); clk_disable_unprepare(drv->clk); if (drv->vbus) ret = regulator_disable(drv->vbus); return ret; } static const struct phy_ops samsung_usb2_phy_ops = { .power_on = samsung_usb2_phy_power_on, .power_off = samsung_usb2_phy_power_off, .owner = THIS_MODULE, }; static struct phy *samsung_usb2_phy_xlate(struct device *dev, struct of_phandle_args *args) { struct samsung_usb2_phy_driver *drv; drv = dev_get_drvdata(dev); if (!drv) return ERR_PTR(-EINVAL); if (WARN_ON(args->args[0] >= drv->cfg->num_phys)) return ERR_PTR(-ENODEV); return drv->instances[args->args[0]].phy; } static const struct of_device_id samsung_usb2_phy_of_match[] = { #ifdef CONFIG_PHY_EXYNOS4X12_USB2 { .compatible = "samsung,exynos3250-usb2-phy", .data = &exynos3250_usb2_phy_config, }, #endif #ifdef CONFIG_PHY_EXYNOS4210_USB2 { .compatible = "samsung,exynos4210-usb2-phy", .data = &exynos4210_usb2_phy_config, }, #endif #ifdef CONFIG_PHY_EXYNOS4X12_USB2 { .compatible = "samsung,exynos4x12-usb2-phy", .data = &exynos4x12_usb2_phy_config, }, #endif #ifdef CONFIG_PHY_EXYNOS5250_USB2 { .compatible = "samsung,exynos5250-usb2-phy", .data = &exynos5250_usb2_phy_config, }, { .compatible = "samsung,exynos5420-usb2-phy", .data = &exynos5420_usb2_phy_config, }, #endif #ifdef CONFIG_PHY_S5PV210_USB2 { .compatible = "samsung,s5pv210-usb2-phy", .data = &s5pv210_usb2_phy_config, }, #endif { }, }; MODULE_DEVICE_TABLE(of, samsung_usb2_phy_of_match); static int samsung_usb2_phy_probe(struct platform_device *pdev) { const struct samsung_usb2_phy_config *cfg; struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct samsung_usb2_phy_driver *drv; int i, ret; if (!pdev->dev.of_node) { dev_err(dev, "This driver is required to be instantiated from device tree\n"); return -EINVAL; } cfg = of_device_get_match_data(dev); if (!cfg) return -EINVAL; drv = devm_kzalloc(dev, struct_size(drv, instances, cfg->num_phys), GFP_KERNEL); if (!drv) return -ENOMEM; dev_set_drvdata(dev, drv); spin_lock_init(&drv->lock); drv->cfg = cfg; drv->dev = dev; drv->reg_phy = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(drv->reg_phy)) { dev_err(dev, "Failed to map register memory (phy)\n"); return PTR_ERR(drv->reg_phy); } drv->reg_pmu = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "samsung,pmureg-phandle"); if (IS_ERR(drv->reg_pmu)) { dev_err(dev, "Failed to map PMU registers (via syscon)\n"); return PTR_ERR(drv->reg_pmu); } if (drv->cfg->has_mode_switch) { drv->reg_sys = syscon_regmap_lookup_by_phandle( pdev->dev.of_node, "samsung,sysreg-phandle"); if (IS_ERR(drv->reg_sys)) { dev_err(dev, "Failed to map system registers (via syscon)\n"); return PTR_ERR(drv->reg_sys); } } drv->clk = devm_clk_get(dev, "phy"); if (IS_ERR(drv->clk)) { dev_err(dev, "Failed to get clock of phy controller\n"); return PTR_ERR(drv->clk); } drv->ref_clk = devm_clk_get(dev, "ref"); if (IS_ERR(drv->ref_clk)) { dev_err(dev, "Failed to get reference clock for the phy controller\n"); return PTR_ERR(drv->ref_clk); } drv->ref_rate = clk_get_rate(drv->ref_clk); if (drv->cfg->rate_to_clk) { ret = drv->cfg->rate_to_clk(drv->ref_rate, &drv->ref_reg_val); if (ret) return ret; } drv->vbus = devm_regulator_get(dev, "vbus"); if (IS_ERR(drv->vbus)) { ret = PTR_ERR(drv->vbus); if (ret == -EPROBE_DEFER) return ret; drv->vbus = NULL; } for (i = 0; i < drv->cfg->num_phys; i++) { char *label = drv->cfg->phys[i].label; struct samsung_usb2_phy_instance *p = &drv->instances[i]; dev_dbg(dev, "Creating phy \"%s\"\n", label); p->phy = devm_phy_create(dev, NULL, &samsung_usb2_phy_ops); if (IS_ERR(p->phy)) { dev_err(drv->dev, "Failed to create usb2_phy \"%s\"\n", label); return PTR_ERR(p->phy); } p->cfg = &drv->cfg->phys[i]; p->drv = drv; phy_set_bus_width(p->phy, 8); phy_set_drvdata(p->phy, p); } phy_provider = devm_of_phy_provider_register(dev, samsung_usb2_phy_xlate); if (IS_ERR(phy_provider)) { dev_err(drv->dev, "Failed to register phy provider\n"); return PTR_ERR(phy_provider); } return 0; } static struct platform_driver samsung_usb2_phy_driver = { .probe = samsung_usb2_phy_probe, .driver = { .of_match_table = samsung_usb2_phy_of_match, .name = "samsung-usb2-phy", .suppress_bind_attrs = true, } }; module_platform_driver(samsung_usb2_phy_driver); MODULE_DESCRIPTION("Samsung S5P/Exynos SoC USB PHY driver"); MODULE_AUTHOR("Kamil Debski <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:samsung-usb2-phy");
linux-master
drivers/phy/samsung/phy-samsung-usb2.c
// SPDX-License-Identifier: GPL-2.0-only /* * Samsung SoC USB 1.1/2.0 PHY driver - S5PV210 support * * Copyright (C) 2013 Samsung Electronics Co., Ltd. * Authors: Kamil Debski <[email protected]> */ #include <linux/delay.h> #include <linux/io.h> #include <linux/phy/phy.h> #include "phy-samsung-usb2.h" /* Exynos USB PHY registers */ /* PHY power control */ #define S5PV210_UPHYPWR 0x0 #define S5PV210_UPHYPWR_PHY0_SUSPEND BIT(0) #define S5PV210_UPHYPWR_PHY0_PWR BIT(3) #define S5PV210_UPHYPWR_PHY0_OTG_PWR BIT(4) #define S5PV210_UPHYPWR_PHY0 ( \ S5PV210_UPHYPWR_PHY0_SUSPEND | \ S5PV210_UPHYPWR_PHY0_PWR | \ S5PV210_UPHYPWR_PHY0_OTG_PWR) #define S5PV210_UPHYPWR_PHY1_SUSPEND BIT(6) #define S5PV210_UPHYPWR_PHY1_PWR BIT(7) #define S5PV210_UPHYPWR_PHY1 ( \ S5PV210_UPHYPWR_PHY1_SUSPEND | \ S5PV210_UPHYPWR_PHY1_PWR) /* PHY clock control */ #define S5PV210_UPHYCLK 0x4 #define S5PV210_UPHYCLK_PHYFSEL_MASK (0x3 << 0) #define S5PV210_UPHYCLK_PHYFSEL_48MHZ (0x0 << 0) #define S5PV210_UPHYCLK_PHYFSEL_24MHZ (0x3 << 0) #define S5PV210_UPHYCLK_PHYFSEL_12MHZ (0x2 << 0) #define S5PV210_UPHYCLK_PHY0_ID_PULLUP BIT(2) #define S5PV210_UPHYCLK_PHY0_COMMON_ON BIT(4) #define S5PV210_UPHYCLK_PHY1_COMMON_ON BIT(7) /* PHY reset control */ #define S5PV210_UPHYRST 0x8 #define S5PV210_URSTCON_PHY0 BIT(0) #define S5PV210_URSTCON_OTG_HLINK BIT(1) #define S5PV210_URSTCON_OTG_PHYLINK BIT(2) #define S5PV210_URSTCON_PHY1_ALL BIT(3) #define S5PV210_URSTCON_HOST_LINK_ALL BIT(4) /* Isolation, configured in the power management unit */ #define S5PV210_USB_ISOL_OFFSET 0x680c #define S5PV210_USB_ISOL_DEVICE BIT(0) #define S5PV210_USB_ISOL_HOST BIT(1) enum s5pv210_phy_id { S5PV210_DEVICE, S5PV210_HOST, S5PV210_NUM_PHYS, }; /* * s5pv210_rate_to_clk() converts the supplied clock rate to the value that * can be written to the phy register. */ static int s5pv210_rate_to_clk(unsigned long rate, u32 *reg) { switch (rate) { case 12 * MHZ: *reg = S5PV210_UPHYCLK_PHYFSEL_12MHZ; break; case 24 * MHZ: *reg = S5PV210_UPHYCLK_PHYFSEL_24MHZ; break; case 48 * MHZ: *reg = S5PV210_UPHYCLK_PHYFSEL_48MHZ; break; default: return -EINVAL; } return 0; } static void s5pv210_isol(struct samsung_usb2_phy_instance *inst, bool on) { struct samsung_usb2_phy_driver *drv = inst->drv; u32 mask; switch (inst->cfg->id) { case S5PV210_DEVICE: mask = S5PV210_USB_ISOL_DEVICE; break; case S5PV210_HOST: mask = S5PV210_USB_ISOL_HOST; break; default: return; } regmap_update_bits(drv->reg_pmu, S5PV210_USB_ISOL_OFFSET, mask, on ? 0 : mask); } static void s5pv210_phy_pwr(struct samsung_usb2_phy_instance *inst, bool on) { struct samsung_usb2_phy_driver *drv = inst->drv; u32 rstbits = 0; u32 phypwr = 0; u32 rst; u32 pwr; switch (inst->cfg->id) { case S5PV210_DEVICE: phypwr = S5PV210_UPHYPWR_PHY0; rstbits = S5PV210_URSTCON_PHY0; break; case S5PV210_HOST: phypwr = S5PV210_UPHYPWR_PHY1; rstbits = S5PV210_URSTCON_PHY1_ALL | S5PV210_URSTCON_HOST_LINK_ALL; break; } if (on) { writel(drv->ref_reg_val, drv->reg_phy + S5PV210_UPHYCLK); pwr = readl(drv->reg_phy + S5PV210_UPHYPWR); pwr &= ~phypwr; writel(pwr, drv->reg_phy + S5PV210_UPHYPWR); rst = readl(drv->reg_phy + S5PV210_UPHYRST); rst |= rstbits; writel(rst, drv->reg_phy + S5PV210_UPHYRST); udelay(10); rst &= ~rstbits; writel(rst, drv->reg_phy + S5PV210_UPHYRST); /* The following delay is necessary for the reset sequence to be * completed */ udelay(80); } else { pwr = readl(drv->reg_phy + S5PV210_UPHYPWR); pwr |= phypwr; writel(pwr, drv->reg_phy + S5PV210_UPHYPWR); } } static int s5pv210_power_on(struct samsung_usb2_phy_instance *inst) { s5pv210_isol(inst, 0); s5pv210_phy_pwr(inst, 1); return 0; } static int s5pv210_power_off(struct samsung_usb2_phy_instance *inst) { s5pv210_phy_pwr(inst, 0); s5pv210_isol(inst, 1); return 0; } static const struct samsung_usb2_common_phy s5pv210_phys[S5PV210_NUM_PHYS] = { [S5PV210_DEVICE] = { .label = "device", .id = S5PV210_DEVICE, .power_on = s5pv210_power_on, .power_off = s5pv210_power_off, }, [S5PV210_HOST] = { .label = "host", .id = S5PV210_HOST, .power_on = s5pv210_power_on, .power_off = s5pv210_power_off, }, }; const struct samsung_usb2_phy_config s5pv210_usb2_phy_config = { .num_phys = ARRAY_SIZE(s5pv210_phys), .phys = s5pv210_phys, .rate_to_clk = s5pv210_rate_to_clk, };
linux-master
drivers/phy/samsung/phy-s5pv210-usb2.c
// SPDX-License-Identifier: GPL-2.0-only /* * Samsung SoC USB 1.1/2.0 PHY driver - Exynos 4x12 support * * Copyright (C) 2013 Samsung Electronics Co., Ltd. * Author: Kamil Debski <[email protected]> */ #include <linux/delay.h> #include <linux/io.h> #include <linux/phy/phy.h> #include <linux/regmap.h> #include "phy-samsung-usb2.h" /* Exynos USB PHY registers */ /* PHY power control */ #define EXYNOS_4x12_UPHYPWR 0x0 #define EXYNOS_4x12_UPHYPWR_PHY0_SUSPEND BIT(0) #define EXYNOS_4x12_UPHYPWR_PHY0_PWR BIT(3) #define EXYNOS_4x12_UPHYPWR_PHY0_OTG_PWR BIT(4) #define EXYNOS_4x12_UPHYPWR_PHY0_SLEEP BIT(5) #define EXYNOS_4x12_UPHYPWR_PHY0 ( \ EXYNOS_4x12_UPHYPWR_PHY0_SUSPEND | \ EXYNOS_4x12_UPHYPWR_PHY0_PWR | \ EXYNOS_4x12_UPHYPWR_PHY0_OTG_PWR | \ EXYNOS_4x12_UPHYPWR_PHY0_SLEEP) #define EXYNOS_4x12_UPHYPWR_PHY1_SUSPEND BIT(6) #define EXYNOS_4x12_UPHYPWR_PHY1_PWR BIT(7) #define EXYNOS_4x12_UPHYPWR_PHY1_SLEEP BIT(8) #define EXYNOS_4x12_UPHYPWR_PHY1 ( \ EXYNOS_4x12_UPHYPWR_PHY1_SUSPEND | \ EXYNOS_4x12_UPHYPWR_PHY1_PWR | \ EXYNOS_4x12_UPHYPWR_PHY1_SLEEP) #define EXYNOS_4x12_UPHYPWR_HSIC0_SUSPEND BIT(9) #define EXYNOS_4x12_UPHYPWR_HSIC0_PWR BIT(10) #define EXYNOS_4x12_UPHYPWR_HSIC0_SLEEP BIT(11) #define EXYNOS_4x12_UPHYPWR_HSIC0 ( \ EXYNOS_4x12_UPHYPWR_HSIC0_SUSPEND | \ EXYNOS_4x12_UPHYPWR_HSIC0_PWR | \ EXYNOS_4x12_UPHYPWR_HSIC0_SLEEP) #define EXYNOS_4x12_UPHYPWR_HSIC1_SUSPEND BIT(12) #define EXYNOS_4x12_UPHYPWR_HSIC1_PWR BIT(13) #define EXYNOS_4x12_UPHYPWR_HSIC1_SLEEP BIT(14) #define EXYNOS_4x12_UPHYPWR_HSIC1 ( \ EXYNOS_4x12_UPHYPWR_HSIC1_SUSPEND | \ EXYNOS_4x12_UPHYPWR_HSIC1_PWR | \ EXYNOS_4x12_UPHYPWR_HSIC1_SLEEP) /* PHY clock control */ #define EXYNOS_4x12_UPHYCLK 0x4 #define EXYNOS_4x12_UPHYCLK_PHYFSEL_MASK (0x7 << 0) #define EXYNOS_4x12_UPHYCLK_PHYFSEL_OFFSET 0 #define EXYNOS_4x12_UPHYCLK_PHYFSEL_9MHZ6 (0x0 << 0) #define EXYNOS_4x12_UPHYCLK_PHYFSEL_10MHZ (0x1 << 0) #define EXYNOS_4x12_UPHYCLK_PHYFSEL_12MHZ (0x2 << 0) #define EXYNOS_4x12_UPHYCLK_PHYFSEL_19MHZ2 (0x3 << 0) #define EXYNOS_4x12_UPHYCLK_PHYFSEL_20MHZ (0x4 << 0) #define EXYNOS_4x12_UPHYCLK_PHYFSEL_24MHZ (0x5 << 0) #define EXYNOS_4x12_UPHYCLK_PHYFSEL_50MHZ (0x7 << 0) #define EXYNOS_3250_UPHYCLK_REFCLKSEL (0x2 << 8) #define EXYNOS_4x12_UPHYCLK_PHY0_ID_PULLUP BIT(3) #define EXYNOS_4x12_UPHYCLK_PHY0_COMMON_ON BIT(4) #define EXYNOS_4x12_UPHYCLK_PHY1_COMMON_ON BIT(7) #define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_MASK (0x7f << 10) #define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_OFFSET 10 #define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_12MHZ (0x24 << 10) #define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_15MHZ (0x1c << 10) #define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_16MHZ (0x1a << 10) #define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_19MHZ2 (0x15 << 10) #define EXYNOS_4x12_UPHYCLK_HSIC_REFCLK_20MHZ (0x14 << 10) /* PHY reset control */ #define EXYNOS_4x12_UPHYRST 0x8 #define EXYNOS_4x12_URSTCON_PHY0 BIT(0) #define EXYNOS_4x12_URSTCON_OTG_HLINK BIT(1) #define EXYNOS_4x12_URSTCON_OTG_PHYLINK BIT(2) #define EXYNOS_4x12_URSTCON_HOST_PHY BIT(3) /* The following bit defines are presented in the * order taken from the Exynos4412 reference manual. * * During experiments with the hardware and debugging * it was determined that the hardware behaves contrary * to the manual. * * The following bit values were chaned accordingly to the * results of real hardware experiments. */ #define EXYNOS_4x12_URSTCON_PHY1 BIT(4) #define EXYNOS_4x12_URSTCON_HSIC0 BIT(6) #define EXYNOS_4x12_URSTCON_HSIC1 BIT(5) #define EXYNOS_4x12_URSTCON_HOST_LINK_ALL BIT(7) #define EXYNOS_4x12_URSTCON_HOST_LINK_P0 BIT(10) #define EXYNOS_4x12_URSTCON_HOST_LINK_P1 BIT(9) #define EXYNOS_4x12_URSTCON_HOST_LINK_P2 BIT(8) /* Isolation, configured in the power management unit */ #define EXYNOS_4x12_USB_ISOL_OFFSET 0x704 #define EXYNOS_4x12_USB_ISOL_OTG BIT(0) #define EXYNOS_4x12_USB_ISOL_HSIC0_OFFSET 0x708 #define EXYNOS_4x12_USB_ISOL_HSIC0 BIT(0) #define EXYNOS_4x12_USB_ISOL_HSIC1_OFFSET 0x70c #define EXYNOS_4x12_USB_ISOL_HSIC1 BIT(0) /* Mode switching SUB Device <-> Host */ #define EXYNOS_4x12_MODE_SWITCH_OFFSET 0x21c #define EXYNOS_4x12_MODE_SWITCH_MASK 1 #define EXYNOS_4x12_MODE_SWITCH_DEVICE 0 #define EXYNOS_4x12_MODE_SWITCH_HOST 1 enum exynos4x12_phy_id { EXYNOS4x12_DEVICE, EXYNOS4x12_HOST, EXYNOS4x12_HSIC0, EXYNOS4x12_HSIC1, EXYNOS4x12_NUM_PHYS, }; /* * exynos4x12_rate_to_clk() converts the supplied clock rate to the value that * can be written to the phy register. */ static int exynos4x12_rate_to_clk(unsigned long rate, u32 *reg) { /* EXYNOS_4x12_UPHYCLK_PHYFSEL_MASK */ switch (rate) { case 9600 * KHZ: *reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_9MHZ6; break; case 10 * MHZ: *reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_10MHZ; break; case 12 * MHZ: *reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_12MHZ; break; case 19200 * KHZ: *reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_19MHZ2; break; case 20 * MHZ: *reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_20MHZ; break; case 24 * MHZ: *reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_24MHZ; break; case 50 * MHZ: *reg = EXYNOS_4x12_UPHYCLK_PHYFSEL_50MHZ; break; default: return -EINVAL; } return 0; } static void exynos4x12_isol(struct samsung_usb2_phy_instance *inst, bool on) { struct samsung_usb2_phy_driver *drv = inst->drv; u32 offset; u32 mask; switch (inst->cfg->id) { case EXYNOS4x12_DEVICE: case EXYNOS4x12_HOST: offset = EXYNOS_4x12_USB_ISOL_OFFSET; mask = EXYNOS_4x12_USB_ISOL_OTG; break; case EXYNOS4x12_HSIC0: offset = EXYNOS_4x12_USB_ISOL_HSIC0_OFFSET; mask = EXYNOS_4x12_USB_ISOL_HSIC0; break; case EXYNOS4x12_HSIC1: offset = EXYNOS_4x12_USB_ISOL_HSIC1_OFFSET; mask = EXYNOS_4x12_USB_ISOL_HSIC1; break; default: return; } regmap_update_bits(drv->reg_pmu, offset, mask, on ? 0 : mask); } static void exynos4x12_setup_clk(struct samsung_usb2_phy_instance *inst) { struct samsung_usb2_phy_driver *drv = inst->drv; u32 clk; clk = readl(drv->reg_phy + EXYNOS_4x12_UPHYCLK); clk &= ~EXYNOS_4x12_UPHYCLK_PHYFSEL_MASK; if (drv->cfg->has_refclk_sel) clk = EXYNOS_3250_UPHYCLK_REFCLKSEL; clk |= drv->ref_reg_val << EXYNOS_4x12_UPHYCLK_PHYFSEL_OFFSET; clk |= EXYNOS_4x12_UPHYCLK_PHY1_COMMON_ON; writel(clk, drv->reg_phy + EXYNOS_4x12_UPHYCLK); } static void exynos4x12_phy_pwr(struct samsung_usb2_phy_instance *inst, bool on) { struct samsung_usb2_phy_driver *drv = inst->drv; u32 rstbits = 0; u32 phypwr = 0; u32 rst; u32 pwr; switch (inst->cfg->id) { case EXYNOS4x12_DEVICE: phypwr = EXYNOS_4x12_UPHYPWR_PHY0; rstbits = EXYNOS_4x12_URSTCON_PHY0; break; case EXYNOS4x12_HOST: phypwr = EXYNOS_4x12_UPHYPWR_PHY1; rstbits = EXYNOS_4x12_URSTCON_HOST_PHY | EXYNOS_4x12_URSTCON_PHY1 | EXYNOS_4x12_URSTCON_HOST_LINK_P0; break; case EXYNOS4x12_HSIC0: phypwr = EXYNOS_4x12_UPHYPWR_HSIC0; rstbits = EXYNOS_4x12_URSTCON_HSIC0 | EXYNOS_4x12_URSTCON_HOST_LINK_P1; break; case EXYNOS4x12_HSIC1: phypwr = EXYNOS_4x12_UPHYPWR_HSIC1; rstbits = EXYNOS_4x12_URSTCON_HSIC1 | EXYNOS_4x12_URSTCON_HOST_LINK_P1; break; } if (on) { pwr = readl(drv->reg_phy + EXYNOS_4x12_UPHYPWR); pwr &= ~phypwr; writel(pwr, drv->reg_phy + EXYNOS_4x12_UPHYPWR); rst = readl(drv->reg_phy + EXYNOS_4x12_UPHYRST); rst |= rstbits; writel(rst, drv->reg_phy + EXYNOS_4x12_UPHYRST); udelay(10); rst &= ~rstbits; writel(rst, drv->reg_phy + EXYNOS_4x12_UPHYRST); /* The following delay is necessary for the reset sequence to be * completed */ udelay(80); } else { pwr = readl(drv->reg_phy + EXYNOS_4x12_UPHYPWR); pwr |= phypwr; writel(pwr, drv->reg_phy + EXYNOS_4x12_UPHYPWR); } } static void exynos4x12_power_on_int(struct samsung_usb2_phy_instance *inst) { if (inst->int_cnt++ > 0) return; exynos4x12_setup_clk(inst); exynos4x12_isol(inst, 0); exynos4x12_phy_pwr(inst, 1); } static int exynos4x12_power_on(struct samsung_usb2_phy_instance *inst) { struct samsung_usb2_phy_driver *drv = inst->drv; if (inst->ext_cnt++ > 0) return 0; if (inst->cfg->id == EXYNOS4x12_HOST) { regmap_update_bits(drv->reg_sys, EXYNOS_4x12_MODE_SWITCH_OFFSET, EXYNOS_4x12_MODE_SWITCH_MASK, EXYNOS_4x12_MODE_SWITCH_HOST); exynos4x12_power_on_int(&drv->instances[EXYNOS4x12_DEVICE]); } if (inst->cfg->id == EXYNOS4x12_DEVICE && drv->cfg->has_mode_switch) regmap_update_bits(drv->reg_sys, EXYNOS_4x12_MODE_SWITCH_OFFSET, EXYNOS_4x12_MODE_SWITCH_MASK, EXYNOS_4x12_MODE_SWITCH_DEVICE); if (inst->cfg->id == EXYNOS4x12_HSIC0 || inst->cfg->id == EXYNOS4x12_HSIC1) { exynos4x12_power_on_int(&drv->instances[EXYNOS4x12_DEVICE]); exynos4x12_power_on_int(&drv->instances[EXYNOS4x12_HOST]); } exynos4x12_power_on_int(inst); return 0; } static void exynos4x12_power_off_int(struct samsung_usb2_phy_instance *inst) { if (inst->int_cnt-- > 1) return; exynos4x12_isol(inst, 1); exynos4x12_phy_pwr(inst, 0); } static int exynos4x12_power_off(struct samsung_usb2_phy_instance *inst) { struct samsung_usb2_phy_driver *drv = inst->drv; if (inst->ext_cnt-- > 1) return 0; if (inst->cfg->id == EXYNOS4x12_DEVICE && drv->cfg->has_mode_switch) regmap_update_bits(drv->reg_sys, EXYNOS_4x12_MODE_SWITCH_OFFSET, EXYNOS_4x12_MODE_SWITCH_MASK, EXYNOS_4x12_MODE_SWITCH_HOST); if (inst->cfg->id == EXYNOS4x12_HOST) exynos4x12_power_off_int(&drv->instances[EXYNOS4x12_DEVICE]); if (inst->cfg->id == EXYNOS4x12_HSIC0 || inst->cfg->id == EXYNOS4x12_HSIC1) { exynos4x12_power_off_int(&drv->instances[EXYNOS4x12_DEVICE]); exynos4x12_power_off_int(&drv->instances[EXYNOS4x12_HOST]); } exynos4x12_power_off_int(inst); return 0; } static const struct samsung_usb2_common_phy exynos4x12_phys[] = { { .label = "device", .id = EXYNOS4x12_DEVICE, .power_on = exynos4x12_power_on, .power_off = exynos4x12_power_off, }, { .label = "host", .id = EXYNOS4x12_HOST, .power_on = exynos4x12_power_on, .power_off = exynos4x12_power_off, }, { .label = "hsic0", .id = EXYNOS4x12_HSIC0, .power_on = exynos4x12_power_on, .power_off = exynos4x12_power_off, }, { .label = "hsic1", .id = EXYNOS4x12_HSIC1, .power_on = exynos4x12_power_on, .power_off = exynos4x12_power_off, }, }; const struct samsung_usb2_phy_config exynos3250_usb2_phy_config = { .has_refclk_sel = 1, .num_phys = 1, .phys = exynos4x12_phys, .rate_to_clk = exynos4x12_rate_to_clk, }; const struct samsung_usb2_phy_config exynos4x12_usb2_phy_config = { .has_mode_switch = 1, .num_phys = EXYNOS4x12_NUM_PHYS, .phys = exynos4x12_phys, .rate_to_clk = exynos4x12_rate_to_clk, };
linux-master
drivers/phy/samsung/phy-exynos4x12-usb2.c
// SPDX-License-Identifier: GPL-2.0-only /* * Samsung SoC USB 1.1/2.0 PHY driver - Exynos 4210 support * * Copyright (C) 2013 Samsung Electronics Co., Ltd. * Author: Kamil Debski <[email protected]> */ #include <linux/delay.h> #include <linux/io.h> #include <linux/phy/phy.h> #include <linux/regmap.h> #include "phy-samsung-usb2.h" /* Exynos USB PHY registers */ /* PHY power control */ #define EXYNOS_4210_UPHYPWR 0x0 #define EXYNOS_4210_UPHYPWR_PHY0_SUSPEND BIT(0) #define EXYNOS_4210_UPHYPWR_PHY0_PWR BIT(3) #define EXYNOS_4210_UPHYPWR_PHY0_OTG_PWR BIT(4) #define EXYNOS_4210_UPHYPWR_PHY0_SLEEP BIT(5) #define EXYNOS_4210_UPHYPWR_PHY0 ( \ EXYNOS_4210_UPHYPWR_PHY0_SUSPEND | \ EXYNOS_4210_UPHYPWR_PHY0_PWR | \ EXYNOS_4210_UPHYPWR_PHY0_OTG_PWR | \ EXYNOS_4210_UPHYPWR_PHY0_SLEEP) #define EXYNOS_4210_UPHYPWR_PHY1_SUSPEND BIT(6) #define EXYNOS_4210_UPHYPWR_PHY1_PWR BIT(7) #define EXYNOS_4210_UPHYPWR_PHY1_SLEEP BIT(8) #define EXYNOS_4210_UPHYPWR_PHY1 ( \ EXYNOS_4210_UPHYPWR_PHY1_SUSPEND | \ EXYNOS_4210_UPHYPWR_PHY1_PWR | \ EXYNOS_4210_UPHYPWR_PHY1_SLEEP) #define EXYNOS_4210_UPHYPWR_HSIC0_SUSPEND BIT(9) #define EXYNOS_4210_UPHYPWR_HSIC0_SLEEP BIT(10) #define EXYNOS_4210_UPHYPWR_HSIC0 ( \ EXYNOS_4210_UPHYPWR_HSIC0_SUSPEND | \ EXYNOS_4210_UPHYPWR_HSIC0_SLEEP) #define EXYNOS_4210_UPHYPWR_HSIC1_SUSPEND BIT(11) #define EXYNOS_4210_UPHYPWR_HSIC1_SLEEP BIT(12) #define EXYNOS_4210_UPHYPWR_HSIC1 ( \ EXYNOS_4210_UPHYPWR_HSIC1_SUSPEND | \ EXYNOS_4210_UPHYPWR_HSIC1_SLEEP) /* PHY clock control */ #define EXYNOS_4210_UPHYCLK 0x4 #define EXYNOS_4210_UPHYCLK_PHYFSEL_MASK (0x3 << 0) #define EXYNOS_4210_UPHYCLK_PHYFSEL_OFFSET 0 #define EXYNOS_4210_UPHYCLK_PHYFSEL_48MHZ (0x0 << 0) #define EXYNOS_4210_UPHYCLK_PHYFSEL_24MHZ (0x3 << 0) #define EXYNOS_4210_UPHYCLK_PHYFSEL_12MHZ (0x2 << 0) #define EXYNOS_4210_UPHYCLK_PHY0_ID_PULLUP BIT(2) #define EXYNOS_4210_UPHYCLK_PHY0_COMMON_ON BIT(4) #define EXYNOS_4210_UPHYCLK_PHY1_COMMON_ON BIT(7) /* PHY reset control */ #define EXYNOS_4210_UPHYRST 0x8 #define EXYNOS_4210_URSTCON_PHY0 BIT(0) #define EXYNOS_4210_URSTCON_OTG_HLINK BIT(1) #define EXYNOS_4210_URSTCON_OTG_PHYLINK BIT(2) #define EXYNOS_4210_URSTCON_PHY1_ALL BIT(3) #define EXYNOS_4210_URSTCON_PHY1_P0 BIT(4) #define EXYNOS_4210_URSTCON_PHY1_P1P2 BIT(5) #define EXYNOS_4210_URSTCON_HOST_LINK_ALL BIT(6) #define EXYNOS_4210_URSTCON_HOST_LINK_P0 BIT(7) #define EXYNOS_4210_URSTCON_HOST_LINK_P1 BIT(8) #define EXYNOS_4210_URSTCON_HOST_LINK_P2 BIT(9) /* Isolation, configured in the power management unit */ #define EXYNOS_4210_USB_ISOL_DEVICE_OFFSET 0x704 #define EXYNOS_4210_USB_ISOL_DEVICE BIT(0) #define EXYNOS_4210_USB_ISOL_HOST_OFFSET 0x708 #define EXYNOS_4210_USB_ISOL_HOST BIT(0) /* USBYPHY1 Floating prevention */ #define EXYNOS_4210_UPHY1CON 0x34 #define EXYNOS_4210_UPHY1CON_FLOAT_PREVENTION 0x1 /* Mode switching SUB Device <-> Host */ #define EXYNOS_4210_MODE_SWITCH_OFFSET 0x21c #define EXYNOS_4210_MODE_SWITCH_MASK 1 #define EXYNOS_4210_MODE_SWITCH_DEVICE 0 #define EXYNOS_4210_MODE_SWITCH_HOST 1 enum exynos4210_phy_id { EXYNOS4210_DEVICE, EXYNOS4210_HOST, EXYNOS4210_HSIC0, EXYNOS4210_HSIC1, EXYNOS4210_NUM_PHYS, }; /* * exynos4210_rate_to_clk() converts the supplied clock rate to the value that * can be written to the phy register. */ static int exynos4210_rate_to_clk(unsigned long rate, u32 *reg) { switch (rate) { case 12 * MHZ: *reg = EXYNOS_4210_UPHYCLK_PHYFSEL_12MHZ; break; case 24 * MHZ: *reg = EXYNOS_4210_UPHYCLK_PHYFSEL_24MHZ; break; case 48 * MHZ: *reg = EXYNOS_4210_UPHYCLK_PHYFSEL_48MHZ; break; default: return -EINVAL; } return 0; } static void exynos4210_isol(struct samsung_usb2_phy_instance *inst, bool on) { struct samsung_usb2_phy_driver *drv = inst->drv; u32 offset; u32 mask; switch (inst->cfg->id) { case EXYNOS4210_DEVICE: offset = EXYNOS_4210_USB_ISOL_DEVICE_OFFSET; mask = EXYNOS_4210_USB_ISOL_DEVICE; break; case EXYNOS4210_HOST: offset = EXYNOS_4210_USB_ISOL_HOST_OFFSET; mask = EXYNOS_4210_USB_ISOL_HOST; break; default: return; } regmap_update_bits(drv->reg_pmu, offset, mask, on ? 0 : mask); } static void exynos4210_phy_pwr(struct samsung_usb2_phy_instance *inst, bool on) { struct samsung_usb2_phy_driver *drv = inst->drv; u32 rstbits = 0; u32 phypwr = 0; u32 rst; u32 pwr; u32 clk; switch (inst->cfg->id) { case EXYNOS4210_DEVICE: phypwr = EXYNOS_4210_UPHYPWR_PHY0; rstbits = EXYNOS_4210_URSTCON_PHY0; break; case EXYNOS4210_HOST: phypwr = EXYNOS_4210_UPHYPWR_PHY1; rstbits = EXYNOS_4210_URSTCON_PHY1_ALL | EXYNOS_4210_URSTCON_PHY1_P0 | EXYNOS_4210_URSTCON_PHY1_P1P2 | EXYNOS_4210_URSTCON_HOST_LINK_ALL | EXYNOS_4210_URSTCON_HOST_LINK_P0; writel(on, drv->reg_phy + EXYNOS_4210_UPHY1CON); break; case EXYNOS4210_HSIC0: phypwr = EXYNOS_4210_UPHYPWR_HSIC0; rstbits = EXYNOS_4210_URSTCON_PHY1_P1P2 | EXYNOS_4210_URSTCON_HOST_LINK_P1; break; case EXYNOS4210_HSIC1: phypwr = EXYNOS_4210_UPHYPWR_HSIC1; rstbits = EXYNOS_4210_URSTCON_PHY1_P1P2 | EXYNOS_4210_URSTCON_HOST_LINK_P2; break; } if (on) { clk = readl(drv->reg_phy + EXYNOS_4210_UPHYCLK); clk &= ~EXYNOS_4210_UPHYCLK_PHYFSEL_MASK; clk |= drv->ref_reg_val << EXYNOS_4210_UPHYCLK_PHYFSEL_OFFSET; writel(clk, drv->reg_phy + EXYNOS_4210_UPHYCLK); pwr = readl(drv->reg_phy + EXYNOS_4210_UPHYPWR); pwr &= ~phypwr; writel(pwr, drv->reg_phy + EXYNOS_4210_UPHYPWR); rst = readl(drv->reg_phy + EXYNOS_4210_UPHYRST); rst |= rstbits; writel(rst, drv->reg_phy + EXYNOS_4210_UPHYRST); udelay(10); rst &= ~rstbits; writel(rst, drv->reg_phy + EXYNOS_4210_UPHYRST); /* The following delay is necessary for the reset sequence to be * completed */ udelay(80); } else { pwr = readl(drv->reg_phy + EXYNOS_4210_UPHYPWR); pwr |= phypwr; writel(pwr, drv->reg_phy + EXYNOS_4210_UPHYPWR); } } static int exynos4210_power_on(struct samsung_usb2_phy_instance *inst) { /* Order of initialisation is important - first power then isolation */ exynos4210_phy_pwr(inst, 1); exynos4210_isol(inst, 0); return 0; } static int exynos4210_power_off(struct samsung_usb2_phy_instance *inst) { exynos4210_isol(inst, 1); exynos4210_phy_pwr(inst, 0); return 0; } static const struct samsung_usb2_common_phy exynos4210_phys[] = { { .label = "device", .id = EXYNOS4210_DEVICE, .power_on = exynos4210_power_on, .power_off = exynos4210_power_off, }, { .label = "host", .id = EXYNOS4210_HOST, .power_on = exynos4210_power_on, .power_off = exynos4210_power_off, }, { .label = "hsic0", .id = EXYNOS4210_HSIC0, .power_on = exynos4210_power_on, .power_off = exynos4210_power_off, }, { .label = "hsic1", .id = EXYNOS4210_HSIC1, .power_on = exynos4210_power_on, .power_off = exynos4210_power_off, }, }; const struct samsung_usb2_phy_config exynos4210_usb2_phy_config = { .has_mode_switch = 0, .num_phys = EXYNOS4210_NUM_PHYS, .phys = exynos4210_phys, .rate_to_clk = exynos4210_rate_to_clk, };
linux-master
drivers/phy/samsung/phy-exynos4210-usb2.c
// SPDX-License-Identifier: GPL-2.0-only /* * UFS PHY driver data for Samsung EXYNOSAUTO v9 SoC * * Copyright (C) 2021 Samsung Electronics Co., Ltd. */ #include "phy-samsung-ufs.h" #define EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL 0x728 #define EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL_MASK 0x1 #define EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL_EN BIT(0) #define EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CDR_LOCK_STATUS 0x5e #define PHY_TRSV_REG_CFG_AUTOV9(o, v, d) \ PHY_TRSV_REG_CFG_OFFSET(o, v, d, 0x50) /* Calibration for phy initialization */ static const struct samsung_ufs_phy_cfg exynosautov9_pre_init_cfg[] = { PHY_COMN_REG_CFG(0x023, 0x80, PWR_MODE_ANY), PHY_COMN_REG_CFG(0x01d, 0x10, PWR_MODE_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x044, 0xb5, PWR_MODE_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x04d, 0x43, PWR_MODE_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x05b, 0x20, PWR_MODE_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x05e, 0xc0, PWR_MODE_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x038, 0x12, PWR_MODE_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x059, 0x58, PWR_MODE_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x06c, 0x18, PWR_MODE_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x06d, 0x02, PWR_MODE_ANY), PHY_COMN_REG_CFG(0x023, 0xc0, PWR_MODE_ANY), PHY_COMN_REG_CFG(0x023, 0x00, PWR_MODE_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x042, 0x5d, PWR_MODE_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x043, 0x80, PWR_MODE_ANY), END_UFS_PHY_CFG, }; /* Calibration for HS mode series A/B */ static const struct samsung_ufs_phy_cfg exynosautov9_pre_pwr_hs_cfg[] = { PHY_TRSV_REG_CFG_AUTOV9(0x032, 0xbc, PWR_MODE_HS_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x03c, 0x7f, PWR_MODE_HS_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x048, 0xc0, PWR_MODE_HS_ANY), PHY_TRSV_REG_CFG_AUTOV9(0x04a, 0x00, PWR_MODE_HS_G3_SER_B), PHY_TRSV_REG_CFG_AUTOV9(0x04b, 0x10, PWR_MODE_HS_G1_SER_B | PWR_MODE_HS_G3_SER_B), PHY_TRSV_REG_CFG_AUTOV9(0x04d, 0x63, PWR_MODE_HS_G3_SER_B), END_UFS_PHY_CFG, }; static const struct samsung_ufs_phy_cfg *exynosautov9_ufs_phy_cfgs[CFG_TAG_MAX] = { [CFG_PRE_INIT] = exynosautov9_pre_init_cfg, [CFG_PRE_PWR_HS] = exynosautov9_pre_pwr_hs_cfg, }; static const char * const exynosautov9_ufs_phy_clks[] = { "ref_clk", }; const struct samsung_ufs_phy_drvdata exynosautov9_ufs_phy = { .cfgs = exynosautov9_ufs_phy_cfgs, .isol = { .offset = EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL, .mask = EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL_MASK, .en = EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CTRL_EN, }, .clk_list = exynosautov9_ufs_phy_clks, .num_clks = ARRAY_SIZE(exynosautov9_ufs_phy_clks), .cdr_lock_status_offset = EXYNOSAUTOV9_EMBEDDED_COMBO_PHY_CDR_LOCK_STATUS, };
linux-master
drivers/phy/samsung/phy-exynosautov9-ufs.c
// SPDX-License-Identifier: GPL-2.0-only /* * UFS PHY driver data for FSD SoC * * Copyright (C) 2022 Samsung Electronics Co., Ltd. * */ #include "phy-samsung-ufs.h" #define FSD_EMBEDDED_COMBO_PHY_CTRL 0x724 #define FSD_EMBEDDED_COMBO_PHY_CTRL_MASK 0x1 #define FSD_EMBEDDED_COMBO_PHY_CTRL_EN BIT(0) #define FSD_EMBEDDED_COMBO_PHY_CDR_LOCK_STATUS 0x6e static const struct samsung_ufs_phy_cfg fsd_pre_init_cfg[] = { PHY_COMN_REG_CFG(0x00f, 0xfa, PWR_MODE_ANY), PHY_COMN_REG_CFG(0x010, 0x82, PWR_MODE_ANY), PHY_COMN_REG_CFG(0x011, 0x1e, PWR_MODE_ANY), PHY_COMN_REG_CFG(0x017, 0x94, PWR_MODE_ANY), PHY_TRSV_REG_CFG(0x035, 0x58, PWR_MODE_ANY), PHY_TRSV_REG_CFG(0x036, 0x32, PWR_MODE_ANY), PHY_TRSV_REG_CFG(0x037, 0x40, PWR_MODE_ANY), PHY_TRSV_REG_CFG(0x03b, 0x83, PWR_MODE_ANY), PHY_TRSV_REG_CFG(0x042, 0x88, PWR_MODE_ANY), PHY_TRSV_REG_CFG(0x043, 0xa6, PWR_MODE_ANY), PHY_TRSV_REG_CFG(0x048, 0x74, PWR_MODE_ANY), PHY_TRSV_REG_CFG(0x04c, 0x5b, PWR_MODE_ANY), PHY_TRSV_REG_CFG(0x04d, 0x83, PWR_MODE_ANY), PHY_TRSV_REG_CFG(0x05c, 0x14, PWR_MODE_ANY), END_UFS_PHY_CFG }; /* Calibration for HS mode series A/B */ static const struct samsung_ufs_phy_cfg fsd_pre_pwr_hs_cfg[] = { END_UFS_PHY_CFG }; /* Calibration for HS mode series A/B atfer PMC */ static const struct samsung_ufs_phy_cfg fsd_post_pwr_hs_cfg[] = { END_UFS_PHY_CFG }; static const struct samsung_ufs_phy_cfg *fsd_ufs_phy_cfgs[CFG_TAG_MAX] = { [CFG_PRE_INIT] = fsd_pre_init_cfg, [CFG_PRE_PWR_HS] = fsd_pre_pwr_hs_cfg, [CFG_POST_PWR_HS] = fsd_post_pwr_hs_cfg, }; static const char * const fsd_ufs_phy_clks[] = { "ref_clk", }; const struct samsung_ufs_phy_drvdata fsd_ufs_phy = { .cfgs = fsd_ufs_phy_cfgs, .isol = { .offset = FSD_EMBEDDED_COMBO_PHY_CTRL, .mask = FSD_EMBEDDED_COMBO_PHY_CTRL_MASK, .en = FSD_EMBEDDED_COMBO_PHY_CTRL_EN, }, .clk_list = fsd_ufs_phy_clks, .num_clks = ARRAY_SIZE(fsd_ufs_phy_clks), .cdr_lock_status_offset = FSD_EMBEDDED_COMBO_PHY_CDR_LOCK_STATUS, };
linux-master
drivers/phy/samsung/phy-fsd-ufs.c